xref: /freebsd/sys/dev/malo/if_malo.c (revision 1d386b48a555f61cb7325543adbbb5c3f3407a66)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008 Weongyo Jeong <weongyo@freebsd.org>
5  * Copyright (c) 2007 Marvell Semiconductor, Inc.
6  * Copyright (c) 2007 Sam Leffler, Errno Consulting
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer,
14  *    without modification.
15  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
16  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
17  *    redistribution must be conditioned upon including a substantially
18  *    similar Disclaimer requirement for further binary redistribution.
19  *
20  * NO WARRANTY
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
24  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
25  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
26  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
29  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGES.
32  */
33 
34 #include <sys/cdefs.h>
35 #ifdef __FreeBSD__
36 #endif
37 
38 #include "opt_malo.h"
39 
40 #include <sys/param.h>
41 #include <sys/endian.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <machine/bus.h>
50 #include <sys/bus.h>
51 
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/ethernet.h>
58 
59 #include <net80211/ieee80211_var.h>
60 #include <net80211/ieee80211_regdomain.h>
61 
62 #include <net/bpf.h>
63 
64 #include <dev/malo/if_malo.h>
65 
66 SYSCTL_NODE(_hw, OID_AUTO, malo, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
67     "Marvell 88w8335 driver parameters");
68 
69 static	int malo_txcoalesce = 8;	/* # tx pkts to q before poking f/w*/
70 SYSCTL_INT(_hw_malo, OID_AUTO, txcoalesce, CTLFLAG_RWTUN, &malo_txcoalesce,
71 	    0, "tx buffers to send at once");
72 static	int malo_rxbuf = MALO_RXBUF;		/* # rx buffers to allocate */
73 SYSCTL_INT(_hw_malo, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &malo_rxbuf,
74 	    0, "rx buffers allocated");
75 static	int malo_rxquota = MALO_RXBUF;		/* # max buffers to process */
76 SYSCTL_INT(_hw_malo, OID_AUTO, rxquota, CTLFLAG_RWTUN, &malo_rxquota,
77 	    0, "max rx buffers to process per interrupt");
78 static	int malo_txbuf = MALO_TXBUF;		/* # tx buffers to allocate */
79 SYSCTL_INT(_hw_malo, OID_AUTO, txbuf, CTLFLAG_RWTUN, &malo_txbuf,
80 	    0, "tx buffers allocated");
81 
82 #ifdef MALO_DEBUG
83 static	int malo_debug = 0;
84 SYSCTL_INT(_hw_malo, OID_AUTO, debug, CTLFLAG_RWTUN, &malo_debug,
85 	    0, "control debugging printfs");
86 enum {
87 	MALO_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
88 	MALO_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
89 	MALO_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
90 	MALO_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
91 	MALO_DEBUG_RESET	= 0x00000010,	/* reset processing */
92 	MALO_DEBUG_INTR		= 0x00000040,	/* ISR */
93 	MALO_DEBUG_TX_PROC	= 0x00000080,	/* tx ISR proc */
94 	MALO_DEBUG_RX_PROC	= 0x00000100,	/* rx ISR proc */
95 	MALO_DEBUG_STATE	= 0x00000400,	/* 802.11 state transitions */
96 	MALO_DEBUG_NODE		= 0x00000800,	/* node management */
97 	MALO_DEBUG_RECV_ALL	= 0x00001000,	/* trace all frames (beacons) */
98 	MALO_DEBUG_FW		= 0x00008000,	/* firmware */
99 	MALO_DEBUG_ANY		= 0xffffffff
100 };
101 #define	IS_BEACON(wh)							\
102 	((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK |			\
103 		IEEE80211_FC0_SUBTYPE_MASK)) ==				\
104 	 (IEEE80211_FC0_TYPE_MGT|IEEE80211_FC0_SUBTYPE_BEACON))
105 #define	IFF_DUMPPKTS_RECV(sc, wh)					\
106 	(((sc->malo_debug & MALO_DEBUG_RECV) &&				\
107 	  ((sc->malo_debug & MALO_DEBUG_RECV_ALL) || !IS_BEACON(wh))))
108 #define	IFF_DUMPPKTS_XMIT(sc)						\
109 	(sc->malo_debug & MALO_DEBUG_XMIT)
110 #define	DPRINTF(sc, m, fmt, ...) do {				\
111 	if (sc->malo_debug & (m))				\
112 		printf(fmt, __VA_ARGS__);			\
113 } while (0)
114 #else
115 #define	DPRINTF(sc, m, fmt, ...) do {				\
116 	(void) sc;						\
117 } while (0)
118 #endif
119 
120 static MALLOC_DEFINE(M_MALODEV, "malodev", "malo driver dma buffers");
121 
122 static struct ieee80211vap *malo_vap_create(struct ieee80211com *,
123 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
124 		    const uint8_t [IEEE80211_ADDR_LEN],
125 		    const uint8_t [IEEE80211_ADDR_LEN]);
126 static  void	malo_vap_delete(struct ieee80211vap *);
127 static	int	malo_dma_setup(struct malo_softc *);
128 static	int	malo_setup_hwdma(struct malo_softc *);
129 static	void	malo_txq_init(struct malo_softc *, struct malo_txq *, int);
130 static	void	malo_tx_cleanupq(struct malo_softc *, struct malo_txq *);
131 static	void	malo_parent(struct ieee80211com *);
132 static	int	malo_transmit(struct ieee80211com *, struct mbuf *);
133 static	void	malo_start(struct malo_softc *);
134 static	void	malo_watchdog(void *);
135 static	void	malo_updateslot(struct ieee80211com *);
136 static	int	malo_newstate(struct ieee80211vap *, enum ieee80211_state, int);
137 static	void	malo_scan_start(struct ieee80211com *);
138 static	void	malo_scan_end(struct ieee80211com *);
139 static	void	malo_set_channel(struct ieee80211com *);
140 static	int	malo_raw_xmit(struct ieee80211_node *, struct mbuf *,
141 		    const struct ieee80211_bpf_params *);
142 static	void	malo_sysctlattach(struct malo_softc *);
143 static	void	malo_announce(struct malo_softc *);
144 static	void	malo_dma_cleanup(struct malo_softc *);
145 static	void	malo_stop(struct malo_softc *);
146 static	int	malo_chan_set(struct malo_softc *, struct ieee80211_channel *);
147 static	int	malo_mode_init(struct malo_softc *);
148 static	void	malo_tx_proc(void *, int);
149 static	void	malo_rx_proc(void *, int);
150 static	void	malo_init(void *);
151 
152 /*
153  * Read/Write shorthands for accesses to BAR 0.  Note that all BAR 1
154  * operations are done in the "hal" except getting H/W MAC address at
155  * malo_attach and there should be no reference to them here.
156  */
157 static uint32_t
158 malo_bar0_read4(struct malo_softc *sc, bus_size_t off)
159 {
160 	return bus_space_read_4(sc->malo_io0t, sc->malo_io0h, off);
161 }
162 
163 static void
164 malo_bar0_write4(struct malo_softc *sc, bus_size_t off, uint32_t val)
165 {
166 	DPRINTF(sc, MALO_DEBUG_FW, "%s: off 0x%jx val 0x%x\n",
167 	    __func__, (uintmax_t)off, val);
168 
169 	bus_space_write_4(sc->malo_io0t, sc->malo_io0h, off, val);
170 }
171 
172 int
173 malo_attach(uint16_t devid, struct malo_softc *sc)
174 {
175 	struct ieee80211com *ic = &sc->malo_ic;
176 	struct malo_hal *mh;
177 	int error;
178 	uint8_t bands[IEEE80211_MODE_BYTES];
179 
180 	MALO_LOCK_INIT(sc);
181 	callout_init_mtx(&sc->malo_watchdog_timer, &sc->malo_mtx, 0);
182 	mbufq_init(&sc->malo_snd, ifqmaxlen);
183 
184 	mh = malo_hal_attach(sc->malo_dev, devid,
185 	    sc->malo_io1h, sc->malo_io1t, sc->malo_dmat);
186 	if (mh == NULL) {
187 		device_printf(sc->malo_dev, "unable to attach HAL\n");
188 		error = EIO;
189 		goto bad;
190 	}
191 	sc->malo_mh = mh;
192 
193 	/*
194 	 * Load firmware so we can get setup.  We arbitrarily pick station
195 	 * firmware; we'll re-load firmware as needed so setting up
196 	 * the wrong mode isn't a big deal.
197 	 */
198 	error = malo_hal_fwload(mh, "malo8335-h", "malo8335-m");
199 	if (error != 0) {
200 		device_printf(sc->malo_dev, "unable to setup firmware\n");
201 		goto bad1;
202 	}
203 	/* XXX gethwspecs() extracts correct informations?  not maybe!  */
204 	error = malo_hal_gethwspecs(mh, &sc->malo_hwspecs);
205 	if (error != 0) {
206 		device_printf(sc->malo_dev, "unable to fetch h/w specs\n");
207 		goto bad1;
208 	}
209 
210 	DPRINTF(sc, MALO_DEBUG_FW,
211 	    "malo_hal_gethwspecs: hwversion 0x%x hostif 0x%x"
212 	    "maxnum_wcb 0x%x maxnum_mcaddr 0x%x maxnum_tx_wcb 0x%x"
213 	    "regioncode 0x%x num_antenna 0x%x fw_releasenum 0x%x"
214 	    "wcbbase0 0x%x rxdesc_read 0x%x rxdesc_write 0x%x"
215 	    "ul_fw_awakecookie 0x%x w[4] = %x %x %x %x",
216 	    sc->malo_hwspecs.hwversion,
217 	    sc->malo_hwspecs.hostinterface, sc->malo_hwspecs.maxnum_wcb,
218 	    sc->malo_hwspecs.maxnum_mcaddr, sc->malo_hwspecs.maxnum_tx_wcb,
219 	    sc->malo_hwspecs.regioncode, sc->malo_hwspecs.num_antenna,
220 	    sc->malo_hwspecs.fw_releasenum, sc->malo_hwspecs.wcbbase0,
221 	    sc->malo_hwspecs.rxdesc_read, sc->malo_hwspecs.rxdesc_write,
222 	    sc->malo_hwspecs.ul_fw_awakecookie,
223 	    sc->malo_hwspecs.wcbbase[0], sc->malo_hwspecs.wcbbase[1],
224 	    sc->malo_hwspecs.wcbbase[2], sc->malo_hwspecs.wcbbase[3]);
225 
226 	/* NB: firmware looks that it does not export regdomain info API.  */
227 	memset(bands, 0, sizeof(bands));
228 	setbit(bands, IEEE80211_MODE_11B);
229 	setbit(bands, IEEE80211_MODE_11G);
230 	ieee80211_init_channels(ic, NULL, bands);
231 
232 	sc->malo_txantenna = 0x2;	/* h/w default */
233 	sc->malo_rxantenna = 0xffff;	/* h/w default */
234 
235 	/*
236 	 * Allocate tx + rx descriptors and populate the lists.
237 	 * We immediately push the information to the firmware
238 	 * as otherwise it gets upset.
239 	 */
240 	error = malo_dma_setup(sc);
241 	if (error != 0) {
242 		device_printf(sc->malo_dev,
243 		    "failed to setup descriptors: %d\n", error);
244 		goto bad1;
245 	}
246 	error = malo_setup_hwdma(sc);	/* push to firmware */
247 	if (error != 0)			/* NB: malo_setupdma prints msg */
248 		goto bad2;
249 
250 	sc->malo_tq = taskqueue_create_fast("malo_taskq", M_NOWAIT,
251 		taskqueue_thread_enqueue, &sc->malo_tq);
252 	taskqueue_start_threads(&sc->malo_tq, 1, PI_NET,
253 		"%s taskq", device_get_nameunit(sc->malo_dev));
254 
255 	NET_TASK_INIT(&sc->malo_rxtask, 0, malo_rx_proc, sc);
256 	TASK_INIT(&sc->malo_txtask, 0, malo_tx_proc, sc);
257 
258 	ic->ic_softc = sc;
259 	ic->ic_name = device_get_nameunit(sc->malo_dev);
260 	/* XXX not right but it's not used anywhere important */
261 	ic->ic_phytype = IEEE80211_T_OFDM;
262 	ic->ic_opmode = IEEE80211_M_STA;
263 	ic->ic_caps =
264 	      IEEE80211_C_STA			/* station mode supported */
265 	    | IEEE80211_C_BGSCAN		/* capable of bg scanning */
266 	    | IEEE80211_C_MONITOR		/* monitor mode */
267 	    | IEEE80211_C_SHPREAMBLE		/* short preamble supported */
268 	    | IEEE80211_C_SHSLOT		/* short slot time supported */
269 	    | IEEE80211_C_TXPMGT		/* capable of txpow mgt */
270 	    | IEEE80211_C_WPA			/* capable of WPA1+WPA2 */
271 	    ;
272 	IEEE80211_ADDR_COPY(ic->ic_macaddr, sc->malo_hwspecs.macaddr);
273 
274 	/*
275 	 * Transmit requires space in the packet for a special format transmit
276 	 * record and optional padding between this record and the payload.
277 	 * Ask the net80211 layer to arrange this when encapsulating
278 	 * packets so we can add it efficiently.
279 	 */
280 	ic->ic_headroom = sizeof(struct malo_txrec) -
281 		sizeof(struct ieee80211_frame);
282 
283 	/* call MI attach routine. */
284 	ieee80211_ifattach(ic);
285 	/* override default methods */
286 	ic->ic_vap_create = malo_vap_create;
287 	ic->ic_vap_delete = malo_vap_delete;
288 	ic->ic_raw_xmit = malo_raw_xmit;
289 	ic->ic_updateslot = malo_updateslot;
290 	ic->ic_scan_start = malo_scan_start;
291 	ic->ic_scan_end = malo_scan_end;
292 	ic->ic_set_channel = malo_set_channel;
293 	ic->ic_parent = malo_parent;
294 	ic->ic_transmit = malo_transmit;
295 
296 	sc->malo_invalid = 0;		/* ready to go, enable int handling */
297 
298 	ieee80211_radiotap_attach(ic,
299 	    &sc->malo_tx_th.wt_ihdr, sizeof(sc->malo_tx_th),
300 		MALO_TX_RADIOTAP_PRESENT,
301 	    &sc->malo_rx_th.wr_ihdr, sizeof(sc->malo_rx_th),
302 		MALO_RX_RADIOTAP_PRESENT);
303 
304 	/*
305 	 * Setup dynamic sysctl's.
306 	 */
307 	malo_sysctlattach(sc);
308 
309 	if (bootverbose)
310 		ieee80211_announce(ic);
311 	malo_announce(sc);
312 
313 	return 0;
314 bad2:
315 	malo_dma_cleanup(sc);
316 bad1:
317 	malo_hal_detach(mh);
318 bad:
319 	sc->malo_invalid = 1;
320 
321 	return error;
322 }
323 
324 static struct ieee80211vap *
325 malo_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
326     enum ieee80211_opmode opmode, int flags,
327     const uint8_t bssid[IEEE80211_ADDR_LEN],
328     const uint8_t mac[IEEE80211_ADDR_LEN])
329 {
330 	struct malo_softc *sc = ic->ic_softc;
331 	struct malo_vap *mvp;
332 	struct ieee80211vap *vap;
333 
334 	if (!TAILQ_EMPTY(&ic->ic_vaps)) {
335 		device_printf(sc->malo_dev, "multiple vaps not supported\n");
336 		return NULL;
337 	}
338 	switch (opmode) {
339 	case IEEE80211_M_STA:
340 		if (opmode == IEEE80211_M_STA)
341 			flags |= IEEE80211_CLONE_NOBEACONS;
342 		/* fall thru... */
343 	case IEEE80211_M_MONITOR:
344 		break;
345 	default:
346 		device_printf(sc->malo_dev, "%s mode not supported\n",
347 		    ieee80211_opmode_name[opmode]);
348 		return NULL;		/* unsupported */
349 	}
350 	mvp = malloc(sizeof(struct malo_vap), M_80211_VAP, M_WAITOK | M_ZERO);
351 	vap = &mvp->malo_vap;
352 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
353 
354 	/* override state transition machine */
355 	mvp->malo_newstate = vap->iv_newstate;
356 	vap->iv_newstate = malo_newstate;
357 
358 	/* complete setup */
359 	ieee80211_vap_attach(vap,
360 	    ieee80211_media_change, ieee80211_media_status, mac);
361 	ic->ic_opmode = opmode;
362 	return vap;
363 }
364 
365 static void
366 malo_vap_delete(struct ieee80211vap *vap)
367 {
368 	struct malo_vap *mvp = MALO_VAP(vap);
369 
370 	ieee80211_vap_detach(vap);
371 	free(mvp, M_80211_VAP);
372 }
373 
374 int
375 malo_intr(void *arg)
376 {
377 	struct malo_softc *sc = arg;
378 	struct malo_hal *mh = sc->malo_mh;
379 	uint32_t status;
380 
381 	if (sc->malo_invalid) {
382 		/*
383 		 * The hardware is not ready/present, don't touch anything.
384 		 * Note this can happen early on if the IRQ is shared.
385 		 */
386 		DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
387 		return (FILTER_STRAY);
388 	}
389 
390 	/*
391 	 * Figure out the reason(s) for the interrupt.
392 	 */
393 	malo_hal_getisr(mh, &status);		/* NB: clears ISR too */
394 	if (status == 0)			/* must be a shared irq */
395 		return (FILTER_STRAY);
396 
397 	DPRINTF(sc, MALO_DEBUG_INTR, "%s: status 0x%x imask 0x%x\n",
398 	    __func__, status, sc->malo_imask);
399 
400 	if (status & MALO_A2HRIC_BIT_RX_RDY)
401 		taskqueue_enqueue(sc->malo_tq, &sc->malo_rxtask);
402 	if (status & MALO_A2HRIC_BIT_TX_DONE)
403 		taskqueue_enqueue(sc->malo_tq, &sc->malo_txtask);
404 	if (status & MALO_A2HRIC_BIT_OPC_DONE)
405 		malo_hal_cmddone(mh);
406 	if (status & MALO_A2HRIC_BIT_MAC_EVENT)
407 		;
408 	if (status & MALO_A2HRIC_BIT_RX_PROBLEM)
409 		;
410 	if (status & MALO_A2HRIC_BIT_ICV_ERROR) {
411 		/* TKIP ICV error */
412 		sc->malo_stats.mst_rx_badtkipicv++;
413 	}
414 #ifdef MALO_DEBUG
415 	if (((status | sc->malo_imask) ^ sc->malo_imask) != 0)
416 		DPRINTF(sc, MALO_DEBUG_INTR,
417 		    "%s: can't handle interrupt status 0x%x\n",
418 		    __func__, status);
419 #endif
420 	return (FILTER_HANDLED);
421 }
422 
423 static void
424 malo_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
425 {
426 	bus_addr_t *paddr = (bus_addr_t*) arg;
427 
428 	KASSERT(error == 0, ("error %u on bus_dma callback", error));
429 
430 	*paddr = segs->ds_addr;
431 }
432 
433 static int
434 malo_desc_setup(struct malo_softc *sc, const char *name,
435     struct malo_descdma *dd,
436     int nbuf, size_t bufsize, int ndesc, size_t descsize)
437 {
438 	int error;
439 	uint8_t *ds;
440 
441 	DPRINTF(sc, MALO_DEBUG_RESET,
442 	    "%s: %s DMA: %u bufs (%ju) %u desc/buf (%ju)\n",
443 	    __func__, name, nbuf, (uintmax_t) bufsize,
444 	    ndesc, (uintmax_t) descsize);
445 
446 	dd->dd_name = name;
447 	dd->dd_desc_len = nbuf * ndesc * descsize;
448 
449 	/*
450 	 * Setup DMA descriptor area.
451 	 */
452 	error = bus_dma_tag_create(bus_get_dma_tag(sc->malo_dev),/* parent */
453 		       PAGE_SIZE, 0,		/* alignment, bounds */
454 		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
455 		       BUS_SPACE_MAXADDR,	/* highaddr */
456 		       NULL, NULL,		/* filter, filterarg */
457 		       dd->dd_desc_len,		/* maxsize */
458 		       1,			/* nsegments */
459 		       dd->dd_desc_len,		/* maxsegsize */
460 		       BUS_DMA_ALLOCNOW,	/* flags */
461 		       NULL,			/* lockfunc */
462 		       NULL,			/* lockarg */
463 		       &dd->dd_dmat);
464 	if (error != 0) {
465 		device_printf(sc->malo_dev, "cannot allocate %s DMA tag\n",
466 		    dd->dd_name);
467 		return error;
468 	}
469 
470 	/* allocate descriptors */
471 	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
472 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dd->dd_dmamap);
473 	if (error != 0) {
474 		device_printf(sc->malo_dev,
475 		    "unable to alloc memory for %u %s descriptors, "
476 		    "error %u\n", nbuf * ndesc, dd->dd_name, error);
477 		goto fail1;
478 	}
479 
480 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
481 	    dd->dd_desc, dd->dd_desc_len,
482 	    malo_load_cb, &dd->dd_desc_paddr, BUS_DMA_NOWAIT);
483 	if (error != 0) {
484 		device_printf(sc->malo_dev,
485 		    "unable to map %s descriptors, error %u\n",
486 		    dd->dd_name, error);
487 		goto fail2;
488 	}
489 
490 	ds = dd->dd_desc;
491 	memset(ds, 0, dd->dd_desc_len);
492 	DPRINTF(sc, MALO_DEBUG_RESET,
493 	    "%s: %s DMA map: %p (%lu) -> 0x%jx (%lu)\n",
494 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
495 	    (uintmax_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
496 
497 	return 0;
498 fail2:
499 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
500 fail1:
501 	bus_dma_tag_destroy(dd->dd_dmat);
502 	memset(dd, 0, sizeof(*dd));
503 	return error;
504 }
505 
506 #define	DS2PHYS(_dd, _ds) \
507 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
508 
509 static int
510 malo_rxdma_setup(struct malo_softc *sc)
511 {
512 	int error, bsize, i;
513 	struct malo_rxbuf *bf;
514 	struct malo_rxdesc *ds;
515 
516 	error = malo_desc_setup(sc, "rx", &sc->malo_rxdma,
517 	    malo_rxbuf, sizeof(struct malo_rxbuf),
518 	    1, sizeof(struct malo_rxdesc));
519 	if (error != 0)
520 		return error;
521 
522 	/*
523 	 * Allocate rx buffers and set them up.
524 	 */
525 	bsize = malo_rxbuf * sizeof(struct malo_rxbuf);
526 	bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO);
527 	if (bf == NULL) {
528 		device_printf(sc->malo_dev,
529 		    "malloc of %u rx buffers failed\n", bsize);
530 		return error;
531 	}
532 	sc->malo_rxdma.dd_bufptr = bf;
533 
534 	STAILQ_INIT(&sc->malo_rxbuf);
535 	ds = sc->malo_rxdma.dd_desc;
536 	for (i = 0; i < malo_rxbuf; i++, bf++, ds++) {
537 		bf->bf_desc = ds;
538 		bf->bf_daddr = DS2PHYS(&sc->malo_rxdma, ds);
539 		error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT,
540 		    &bf->bf_dmamap);
541 		if (error != 0) {
542 			device_printf(sc->malo_dev,
543 			    "%s: unable to dmamap for rx buffer, error %d\n",
544 			    __func__, error);
545 			return error;
546 		}
547 		/* NB: tail is intentional to preserve descriptor order */
548 		STAILQ_INSERT_TAIL(&sc->malo_rxbuf, bf, bf_list);
549 	}
550 	return 0;
551 }
552 
553 static int
554 malo_txdma_setup(struct malo_softc *sc, struct malo_txq *txq)
555 {
556 	int error, bsize, i;
557 	struct malo_txbuf *bf;
558 	struct malo_txdesc *ds;
559 
560 	error = malo_desc_setup(sc, "tx", &txq->dma,
561 	    malo_txbuf, sizeof(struct malo_txbuf),
562 	    MALO_TXDESC, sizeof(struct malo_txdesc));
563 	if (error != 0)
564 		return error;
565 
566 	/* allocate and setup tx buffers */
567 	bsize = malo_txbuf * sizeof(struct malo_txbuf);
568 	bf = malloc(bsize, M_MALODEV, M_NOWAIT | M_ZERO);
569 	if (bf == NULL) {
570 		device_printf(sc->malo_dev, "malloc of %u tx buffers failed\n",
571 		    malo_txbuf);
572 		return ENOMEM;
573 	}
574 	txq->dma.dd_bufptr = bf;
575 
576 	STAILQ_INIT(&txq->free);
577 	txq->nfree = 0;
578 	ds = txq->dma.dd_desc;
579 	for (i = 0; i < malo_txbuf; i++, bf++, ds += MALO_TXDESC) {
580 		bf->bf_desc = ds;
581 		bf->bf_daddr = DS2PHYS(&txq->dma, ds);
582 		error = bus_dmamap_create(sc->malo_dmat, BUS_DMA_NOWAIT,
583 		    &bf->bf_dmamap);
584 		if (error != 0) {
585 			device_printf(sc->malo_dev,
586 			    "unable to create dmamap for tx "
587 			    "buffer %u, error %u\n", i, error);
588 			return error;
589 		}
590 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
591 		txq->nfree++;
592 	}
593 
594 	return 0;
595 }
596 
597 static void
598 malo_desc_cleanup(struct malo_softc *sc, struct malo_descdma *dd)
599 {
600 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
601 	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
602 	bus_dma_tag_destroy(dd->dd_dmat);
603 
604 	memset(dd, 0, sizeof(*dd));
605 }
606 
607 static void
608 malo_rxdma_cleanup(struct malo_softc *sc)
609 {
610 	struct malo_rxbuf *bf;
611 
612 	STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) {
613 		if (bf->bf_m != NULL) {
614 			m_freem(bf->bf_m);
615 			bf->bf_m = NULL;
616 		}
617 		if (bf->bf_dmamap != NULL) {
618 			bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap);
619 			bf->bf_dmamap = NULL;
620 		}
621 	}
622 	STAILQ_INIT(&sc->malo_rxbuf);
623 	if (sc->malo_rxdma.dd_bufptr != NULL) {
624 		free(sc->malo_rxdma.dd_bufptr, M_MALODEV);
625 		sc->malo_rxdma.dd_bufptr = NULL;
626 	}
627 	if (sc->malo_rxdma.dd_desc_len != 0)
628 		malo_desc_cleanup(sc, &sc->malo_rxdma);
629 }
630 
631 static void
632 malo_txdma_cleanup(struct malo_softc *sc, struct malo_txq *txq)
633 {
634 	struct malo_txbuf *bf;
635 	struct ieee80211_node *ni;
636 
637 	STAILQ_FOREACH(bf, &txq->free, bf_list) {
638 		if (bf->bf_m != NULL) {
639 			m_freem(bf->bf_m);
640 			bf->bf_m = NULL;
641 		}
642 		ni = bf->bf_node;
643 		bf->bf_node = NULL;
644 		if (ni != NULL) {
645 			/*
646 			 * Reclaim node reference.
647 			 */
648 			ieee80211_free_node(ni);
649 		}
650 		if (bf->bf_dmamap != NULL) {
651 			bus_dmamap_destroy(sc->malo_dmat, bf->bf_dmamap);
652 			bf->bf_dmamap = NULL;
653 		}
654 	}
655 	STAILQ_INIT(&txq->free);
656 	txq->nfree = 0;
657 	if (txq->dma.dd_bufptr != NULL) {
658 		free(txq->dma.dd_bufptr, M_MALODEV);
659 		txq->dma.dd_bufptr = NULL;
660 	}
661 	if (txq->dma.dd_desc_len != 0)
662 		malo_desc_cleanup(sc, &txq->dma);
663 }
664 
665 static void
666 malo_dma_cleanup(struct malo_softc *sc)
667 {
668 	int i;
669 
670 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++)
671 		malo_txdma_cleanup(sc, &sc->malo_txq[i]);
672 
673 	malo_rxdma_cleanup(sc);
674 }
675 
676 static int
677 malo_dma_setup(struct malo_softc *sc)
678 {
679 	int error, i;
680 
681 	/* rxdma initializing.  */
682 	error = malo_rxdma_setup(sc);
683 	if (error != 0)
684 		return error;
685 
686 	/* NB: we just have 1 tx queue now.  */
687 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
688 		error = malo_txdma_setup(sc, &sc->malo_txq[i]);
689 		if (error != 0) {
690 			malo_dma_cleanup(sc);
691 
692 			return error;
693 		}
694 
695 		malo_txq_init(sc, &sc->malo_txq[i], i);
696 	}
697 
698 	return 0;
699 }
700 
701 static void
702 malo_hal_set_rxtxdma(struct malo_softc *sc)
703 {
704 	int i;
705 
706 	malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read,
707 	    sc->malo_hwdma.rxdesc_read);
708 	malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_write,
709 	    sc->malo_hwdma.rxdesc_read);
710 
711 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
712 		malo_bar0_write4(sc,
713 		    sc->malo_hwspecs.wcbbase[i], sc->malo_hwdma.wcbbase[i]);
714 	}
715 }
716 
717 /*
718  * Inform firmware of our tx/rx dma setup.  The BAR 0 writes below are
719  * for compatibility with older firmware.  For current firmware we send
720  * this information with a cmd block via malo_hal_sethwdma.
721  */
722 static int
723 malo_setup_hwdma(struct malo_softc *sc)
724 {
725 	int i;
726 	struct malo_txq *txq;
727 
728 	sc->malo_hwdma.rxdesc_read = sc->malo_rxdma.dd_desc_paddr;
729 
730 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
731 		txq = &sc->malo_txq[i];
732 		sc->malo_hwdma.wcbbase[i] = txq->dma.dd_desc_paddr;
733 	}
734 	sc->malo_hwdma.maxnum_txwcb = malo_txbuf;
735 	sc->malo_hwdma.maxnum_wcb = MALO_NUM_TX_QUEUES;
736 
737 	malo_hal_set_rxtxdma(sc);
738 
739 	return 0;
740 }
741 
742 static void
743 malo_txq_init(struct malo_softc *sc, struct malo_txq *txq, int qnum)
744 {
745 	struct malo_txbuf *bf, *bn;
746 	struct malo_txdesc *ds;
747 
748 	MALO_TXQ_LOCK_INIT(sc, txq);
749 	txq->qnum = qnum;
750 	txq->txpri = 0;	/* XXX */
751 
752 	STAILQ_FOREACH(bf, &txq->free, bf_list) {
753 		bf->bf_txq = txq;
754 
755 		ds = bf->bf_desc;
756 		bn = STAILQ_NEXT(bf, bf_list);
757 		if (bn == NULL)
758 			bn = STAILQ_FIRST(&txq->free);
759 		ds->physnext = htole32(bn->bf_daddr);
760 	}
761 	STAILQ_INIT(&txq->active);
762 }
763 
764 /*
765  * Reclaim resources for a setup queue.
766  */
767 static void
768 malo_tx_cleanupq(struct malo_softc *sc, struct malo_txq *txq)
769 {
770 	/* XXX hal work? */
771 	MALO_TXQ_LOCK_DESTROY(txq);
772 }
773 
774 /*
775  * Allocate a tx buffer for sending a frame.
776  */
777 static struct malo_txbuf *
778 malo_getbuf(struct malo_softc *sc, struct malo_txq *txq)
779 {
780 	struct malo_txbuf *bf;
781 
782 	MALO_TXQ_LOCK(txq);
783 	bf = STAILQ_FIRST(&txq->free);
784 	if (bf != NULL) {
785 		STAILQ_REMOVE_HEAD(&txq->free, bf_list);
786 		txq->nfree--;
787 	}
788 	MALO_TXQ_UNLOCK(txq);
789 	if (bf == NULL) {
790 		DPRINTF(sc, MALO_DEBUG_XMIT,
791 		    "%s: out of xmit buffers on q %d\n", __func__, txq->qnum);
792 		sc->malo_stats.mst_tx_qstop++;
793 	}
794 	return bf;
795 }
796 
797 static int
798 malo_tx_dmasetup(struct malo_softc *sc, struct malo_txbuf *bf, struct mbuf *m0)
799 {
800 	struct mbuf *m;
801 	int error;
802 
803 	/*
804 	 * Load the DMA map so any coalescing is done.  This also calculates
805 	 * the number of descriptors we need.
806 	 */
807 	error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0,
808 				     bf->bf_segs, &bf->bf_nseg,
809 				     BUS_DMA_NOWAIT);
810 	if (error == EFBIG) {
811 		/* XXX packet requires too many descriptors */
812 		bf->bf_nseg = MALO_TXDESC + 1;
813 	} else if (error != 0) {
814 		sc->malo_stats.mst_tx_busdma++;
815 		m_freem(m0);
816 		return error;
817 	}
818 	/*
819 	 * Discard null packets and check for packets that require too many
820 	 * TX descriptors.  We try to convert the latter to a cluster.
821 	 */
822 	if (error == EFBIG) {		/* too many desc's, linearize */
823 		sc->malo_stats.mst_tx_linear++;
824 		m = m_defrag(m0, M_NOWAIT);
825 		if (m == NULL) {
826 			m_freem(m0);
827 			sc->malo_stats.mst_tx_nombuf++;
828 			return ENOMEM;
829 		}
830 		m0 = m;
831 		error = bus_dmamap_load_mbuf_sg(sc->malo_dmat, bf->bf_dmamap, m0,
832 					     bf->bf_segs, &bf->bf_nseg,
833 					     BUS_DMA_NOWAIT);
834 		if (error != 0) {
835 			sc->malo_stats.mst_tx_busdma++;
836 			m_freem(m0);
837 			return error;
838 		}
839 		KASSERT(bf->bf_nseg <= MALO_TXDESC,
840 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
841 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
842 		sc->malo_stats.mst_tx_nodata++;
843 		m_freem(m0);
844 		return EIO;
845 	}
846 	DPRINTF(sc, MALO_DEBUG_XMIT, "%s: m %p len %u\n",
847 		__func__, m0, m0->m_pkthdr.len);
848 	bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
849 	bf->bf_m = m0;
850 
851 	return 0;
852 }
853 
854 #ifdef MALO_DEBUG
855 static void
856 malo_printrxbuf(const struct malo_rxbuf *bf, u_int ix)
857 {
858 	const struct malo_rxdesc *ds = bf->bf_desc;
859 	uint32_t status = le32toh(ds->status);
860 
861 	printf("R[%2u] (DS.V:%p DS.P:0x%jx) NEXT:%08x DATA:%08x RC:%02x%s\n"
862 	    "      STAT:%02x LEN:%04x SNR:%02x NF:%02x CHAN:%02x"
863 	    " RATE:%02x QOS:%04x\n", ix, ds, (uintmax_t)bf->bf_daddr,
864 	    le32toh(ds->physnext), le32toh(ds->physbuffdata),
865 	    ds->rxcontrol,
866 	    ds->rxcontrol != MALO_RXD_CTRL_DRIVER_OWN ?
867 	        "" : (status & MALO_RXD_STATUS_OK) ? " *" : " !",
868 	    ds->status, le16toh(ds->pktlen), ds->snr, ds->nf, ds->channel,
869 	    ds->rate, le16toh(ds->qosctrl));
870 }
871 
872 static void
873 malo_printtxbuf(const struct malo_txbuf *bf, u_int qnum, u_int ix)
874 {
875 	const struct malo_txdesc *ds = bf->bf_desc;
876 	uint32_t status = le32toh(ds->status);
877 
878 	printf("Q%u[%3u]", qnum, ix);
879 	printf(" (DS.V:%p DS.P:0x%jx)\n", ds, (uintmax_t)bf->bf_daddr);
880 	printf("    NEXT:%08x DATA:%08x LEN:%04x STAT:%08x%s\n",
881 	    le32toh(ds->physnext),
882 	    le32toh(ds->pktptr), le16toh(ds->pktlen), status,
883 	    status & MALO_TXD_STATUS_USED ?
884 	    "" : (status & 3) != 0 ? " *" : " !");
885 	printf("    RATE:%02x PRI:%x QOS:%04x SAP:%08x FORMAT:%04x\n",
886 	    ds->datarate, ds->txpriority, le16toh(ds->qosctrl),
887 	    le32toh(ds->sap_pktinfo), le16toh(ds->format));
888 #if 0
889 	{
890 		const uint8_t *cp = (const uint8_t *) ds;
891 		int i;
892 		for (i = 0; i < sizeof(struct malo_txdesc); i++) {
893 			printf("%02x ", cp[i]);
894 			if (((i+1) % 16) == 0)
895 				printf("\n");
896 		}
897 		printf("\n");
898 	}
899 #endif
900 }
901 #endif /* MALO_DEBUG */
902 
903 static __inline void
904 malo_updatetxrate(struct ieee80211_node *ni, int rix)
905 {
906 	static const int ieeerates[] =
907 	    { 2, 4, 11, 22, 44, 12, 18, 24, 36, 48, 96, 108 };
908 	if (rix < nitems(ieeerates))
909 		ni->ni_txrate = ieeerates[rix];
910 }
911 
912 static int
913 malo_fix2rate(int fix_rate)
914 {
915 	static const int rates[] =
916 	    { 2, 4, 11, 22, 12, 18, 24, 36, 48, 96, 108 };
917 	return (fix_rate < nitems(rates) ? rates[fix_rate] : 0);
918 }
919 
920 /*
921  * Process completed xmit descriptors from the specified queue.
922  */
923 static int
924 malo_tx_processq(struct malo_softc *sc, struct malo_txq *txq)
925 {
926 	struct malo_txbuf *bf;
927 	struct malo_txdesc *ds;
928 	struct ieee80211_node *ni;
929 	int nreaped;
930 	uint32_t status;
931 
932 	DPRINTF(sc, MALO_DEBUG_TX_PROC, "%s: tx queue %u\n",
933 	    __func__, txq->qnum);
934 	for (nreaped = 0;; nreaped++) {
935 		MALO_TXQ_LOCK(txq);
936 		bf = STAILQ_FIRST(&txq->active);
937 		if (bf == NULL) {
938 			MALO_TXQ_UNLOCK(txq);
939 			break;
940 		}
941 		ds = bf->bf_desc;
942 		MALO_TXDESC_SYNC(txq, ds,
943 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
944 		if (ds->status & htole32(MALO_TXD_STATUS_FW_OWNED)) {
945 			MALO_TXQ_UNLOCK(txq);
946 			break;
947 		}
948 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
949 		MALO_TXQ_UNLOCK(txq);
950 
951 #ifdef MALO_DEBUG
952 		if (sc->malo_debug & MALO_DEBUG_XMIT_DESC)
953 			malo_printtxbuf(bf, txq->qnum, nreaped);
954 #endif
955 		ni = bf->bf_node;
956 		if (ni != NULL) {
957 			status = le32toh(ds->status);
958 			if (status & MALO_TXD_STATUS_OK) {
959 				uint16_t format = le16toh(ds->format);
960 				uint8_t txant =_IEEE80211_MASKSHIFT(
961 				    format, MALO_TXD_ANTENNA);
962 
963 				sc->malo_stats.mst_ant_tx[txant]++;
964 				if (status & MALO_TXD_STATUS_OK_RETRY)
965 					sc->malo_stats.mst_tx_retries++;
966 				if (status & MALO_TXD_STATUS_OK_MORE_RETRY)
967 					sc->malo_stats.mst_tx_mretries++;
968 				malo_updatetxrate(ni, ds->datarate);
969 				sc->malo_stats.mst_tx_rate = ds->datarate;
970 			} else {
971 				if (status & MALO_TXD_STATUS_FAILED_LINK_ERROR)
972 					sc->malo_stats.mst_tx_linkerror++;
973 				if (status & MALO_TXD_STATUS_FAILED_XRETRY)
974 					sc->malo_stats.mst_tx_xretries++;
975 				if (status & MALO_TXD_STATUS_FAILED_AGING)
976 					sc->malo_stats.mst_tx_aging++;
977 			}
978 			/* XXX strip fw len in case header inspected */
979 			m_adj(bf->bf_m, sizeof(uint16_t));
980 			ieee80211_tx_complete(ni, bf->bf_m,
981 			    (status & MALO_TXD_STATUS_OK) == 0);
982 		} else
983 			m_freem(bf->bf_m);
984 
985 		ds->status = htole32(MALO_TXD_STATUS_IDLE);
986 		ds->pktlen = htole32(0);
987 
988 		bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap,
989 		    BUS_DMASYNC_POSTWRITE);
990 		bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap);
991 		bf->bf_m = NULL;
992 		bf->bf_node = NULL;
993 
994 		MALO_TXQ_LOCK(txq);
995 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
996 		txq->nfree++;
997 		MALO_TXQ_UNLOCK(txq);
998 	}
999 	return nreaped;
1000 }
1001 
1002 /*
1003  * Deferred processing of transmit interrupt.
1004  */
1005 static void
1006 malo_tx_proc(void *arg, int npending)
1007 {
1008 	struct malo_softc *sc = arg;
1009 	int i, nreaped;
1010 
1011 	/*
1012 	 * Process each active queue.
1013 	 */
1014 	nreaped = 0;
1015 	MALO_LOCK(sc);
1016 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++) {
1017 		if (!STAILQ_EMPTY(&sc->malo_txq[i].active))
1018 			nreaped += malo_tx_processq(sc, &sc->malo_txq[i]);
1019 	}
1020 
1021 	if (nreaped != 0) {
1022 		sc->malo_timer = 0;
1023 		malo_start(sc);
1024 	}
1025 	MALO_UNLOCK(sc);
1026 }
1027 
1028 static int
1029 malo_tx_start(struct malo_softc *sc, struct ieee80211_node *ni,
1030     struct malo_txbuf *bf, struct mbuf *m0)
1031 {
1032 #define	IS_DATA_FRAME(wh)						\
1033 	((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK)) == IEEE80211_FC0_TYPE_DATA)
1034 	int error, iswep;
1035 	int hdrlen, pktlen;
1036 	struct ieee80211_frame *wh;
1037 	struct ieee80211com *ic = &sc->malo_ic;
1038 	struct ieee80211vap *vap = ni->ni_vap;
1039 	struct malo_txdesc *ds;
1040 	struct malo_txrec *tr;
1041 	struct malo_txq *txq;
1042 	uint16_t qos;
1043 
1044 	wh = mtod(m0, struct ieee80211_frame *);
1045 	iswep = wh->i_fc[1] & IEEE80211_FC1_PROTECTED;
1046 	hdrlen = ieee80211_anyhdrsize(wh);
1047 	pktlen = m0->m_pkthdr.len;
1048 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
1049 		qos = *(uint16_t *)ieee80211_getqos(wh);
1050 	} else
1051 		qos = 0;
1052 
1053 	if (iswep) {
1054 		struct ieee80211_key *k;
1055 
1056 		/*
1057 		 * Construct the 802.11 header+trailer for an encrypted
1058 		 * frame. The only reason this can fail is because of an
1059 		 * unknown or unsupported cipher/key type.
1060 		 *
1061 		 * NB: we do this even though the firmware will ignore
1062 		 *     what we've done for WEP and TKIP as we need the
1063 		 *     ExtIV filled in for CCMP and this also adjusts
1064 		 *     the headers which simplifies our work below.
1065 		 */
1066 		k = ieee80211_crypto_encap(ni, m0);
1067 		if (k == NULL) {
1068 			/*
1069 			 * This can happen when the key is yanked after the
1070 			 * frame was queued.  Just discard the frame; the
1071 			 * 802.11 layer counts failures and provides
1072 			 * debugging/diagnostics.
1073 			 */
1074 			m_freem(m0);
1075 			return EIO;
1076 		}
1077 
1078 		/*
1079 		 * Adjust the packet length for the crypto additions
1080 		 * done during encap and any other bits that the f/w
1081 		 * will add later on.
1082 		 */
1083 		pktlen = m0->m_pkthdr.len;
1084 
1085 		/* packet header may have moved, reset our local pointer */
1086 		wh = mtod(m0, struct ieee80211_frame *);
1087 	}
1088 
1089 	if (ieee80211_radiotap_active_vap(vap)) {
1090 		sc->malo_tx_th.wt_flags = 0;	/* XXX */
1091 		if (iswep)
1092 			sc->malo_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1093 		sc->malo_tx_th.wt_txpower = ni->ni_txpower;
1094 		sc->malo_tx_th.wt_antenna = sc->malo_txantenna;
1095 
1096 		ieee80211_radiotap_tx(vap, m0);
1097 	}
1098 
1099 	/*
1100 	 * Copy up/down the 802.11 header; the firmware requires
1101 	 * we present a 2-byte payload length followed by a
1102 	 * 4-address header (w/o QoS), followed (optionally) by
1103 	 * any WEP/ExtIV header (but only filled in for CCMP).
1104 	 * We are assured the mbuf has sufficient headroom to
1105 	 * prepend in-place by the setup of ic_headroom in
1106 	 * malo_attach.
1107 	 */
1108 	if (hdrlen < sizeof(struct malo_txrec)) {
1109 		const int space = sizeof(struct malo_txrec) - hdrlen;
1110 		if (M_LEADINGSPACE(m0) < space) {
1111 			/* NB: should never happen */
1112 			device_printf(sc->malo_dev,
1113 			    "not enough headroom, need %d found %zd, "
1114 			    "m_flags 0x%x m_len %d\n",
1115 			    space, M_LEADINGSPACE(m0), m0->m_flags, m0->m_len);
1116 			ieee80211_dump_pkt(ic,
1117 			    mtod(m0, const uint8_t *), m0->m_len, 0, -1);
1118 			m_freem(m0);
1119 			/* XXX stat */
1120 			return EIO;
1121 		}
1122 		M_PREPEND(m0, space, M_NOWAIT);
1123 	}
1124 	tr = mtod(m0, struct malo_txrec *);
1125 	if (wh != (struct ieee80211_frame *) &tr->wh)
1126 		ovbcopy(wh, &tr->wh, hdrlen);
1127 	/*
1128 	 * Note: the "firmware length" is actually the length of the fully
1129 	 * formed "802.11 payload".  That is, it's everything except for
1130 	 * the 802.11 header.  In particular this includes all crypto
1131 	 * material including the MIC!
1132 	 */
1133 	tr->fwlen = htole16(pktlen - hdrlen);
1134 
1135 	/*
1136 	 * Load the DMA map so any coalescing is done.  This
1137 	 * also calculates the number of descriptors we need.
1138 	 */
1139 	error = malo_tx_dmasetup(sc, bf, m0);
1140 	if (error != 0)
1141 		return error;
1142 	bf->bf_node = ni;			/* NB: held reference */
1143 	m0 = bf->bf_m;				/* NB: may have changed */
1144 	tr = mtod(m0, struct malo_txrec *);
1145 	wh = (struct ieee80211_frame *)&tr->wh;
1146 
1147 	/*
1148 	 * Formulate tx descriptor.
1149 	 */
1150 	ds = bf->bf_desc;
1151 	txq = bf->bf_txq;
1152 
1153 	ds->qosctrl = qos;			/* NB: already little-endian */
1154 	ds->pktptr = htole32(bf->bf_segs[0].ds_addr);
1155 	ds->pktlen = htole16(bf->bf_segs[0].ds_len);
1156 	/* NB: pPhysNext setup once, don't touch */
1157 	ds->datarate = IS_DATA_FRAME(wh) ? 1 : 0;
1158 	ds->sap_pktinfo = 0;
1159 	ds->format = 0;
1160 
1161 	/*
1162 	 * Select transmit rate.
1163 	 */
1164 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1165 	case IEEE80211_FC0_TYPE_MGT:
1166 		sc->malo_stats.mst_tx_mgmt++;
1167 		/* fall thru... */
1168 	case IEEE80211_FC0_TYPE_CTL:
1169 		ds->txpriority = 1;
1170 		break;
1171 	case IEEE80211_FC0_TYPE_DATA:
1172 		ds->txpriority = txq->qnum;
1173 		break;
1174 	default:
1175 		device_printf(sc->malo_dev, "bogus frame type 0x%x (%s)\n",
1176 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
1177 		/* XXX statistic */
1178 		m_freem(m0);
1179 		return EIO;
1180 	}
1181 
1182 #ifdef MALO_DEBUG
1183 	if (IFF_DUMPPKTS_XMIT(sc))
1184 		ieee80211_dump_pkt(ic,
1185 		    mtod(m0, const uint8_t *)+sizeof(uint16_t),
1186 		    m0->m_len - sizeof(uint16_t), ds->datarate, -1);
1187 #endif
1188 
1189 	MALO_TXQ_LOCK(txq);
1190 	if (!IS_DATA_FRAME(wh))
1191 		ds->status |= htole32(1);
1192 	ds->status |= htole32(MALO_TXD_STATUS_FW_OWNED);
1193 	STAILQ_INSERT_TAIL(&txq->active, bf, bf_list);
1194 	MALO_TXDESC_SYNC(txq, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1195 
1196 	sc->malo_timer = 5;
1197 	MALO_TXQ_UNLOCK(txq);
1198 	return 0;
1199 }
1200 
1201 static int
1202 malo_transmit(struct ieee80211com *ic, struct mbuf *m)
1203 {
1204 	struct malo_softc *sc = ic->ic_softc;
1205 	int error;
1206 
1207 	MALO_LOCK(sc);
1208 	if (!sc->malo_running) {
1209 		MALO_UNLOCK(sc);
1210 		return (ENXIO);
1211 	}
1212 	error = mbufq_enqueue(&sc->malo_snd, m);
1213 	if (error) {
1214 		MALO_UNLOCK(sc);
1215 		return (error);
1216 	}
1217 	malo_start(sc);
1218 	MALO_UNLOCK(sc);
1219 	return (0);
1220 }
1221 
1222 static void
1223 malo_start(struct malo_softc *sc)
1224 {
1225 	struct ieee80211_node *ni;
1226 	struct malo_txq *txq = &sc->malo_txq[0];
1227 	struct malo_txbuf *bf = NULL;
1228 	struct mbuf *m;
1229 	int nqueued = 0;
1230 
1231 	MALO_LOCK_ASSERT(sc);
1232 
1233 	if (!sc->malo_running || sc->malo_invalid)
1234 		return;
1235 
1236 	while ((m = mbufq_dequeue(&sc->malo_snd)) != NULL) {
1237 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1238 		bf = malo_getbuf(sc, txq);
1239 		if (bf == NULL) {
1240 			mbufq_prepend(&sc->malo_snd, m);
1241 			sc->malo_stats.mst_tx_qstop++;
1242 			break;
1243 		}
1244 		/*
1245 		 * Pass the frame to the h/w for transmission.
1246 		 */
1247 		if (malo_tx_start(sc, ni, bf, m)) {
1248 			if_inc_counter(ni->ni_vap->iv_ifp,
1249 			    IFCOUNTER_OERRORS, 1);
1250 			if (bf != NULL) {
1251 				bf->bf_m = NULL;
1252 				bf->bf_node = NULL;
1253 				MALO_TXQ_LOCK(txq);
1254 				STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1255 				MALO_TXQ_UNLOCK(txq);
1256 			}
1257 			ieee80211_free_node(ni);
1258 			continue;
1259 		}
1260 		nqueued++;
1261 
1262 		if (nqueued >= malo_txcoalesce) {
1263 			/*
1264 			 * Poke the firmware to process queued frames;
1265 			 * see below about (lack of) locking.
1266 			 */
1267 			nqueued = 0;
1268 			malo_hal_txstart(sc->malo_mh, 0/*XXX*/);
1269 		}
1270 	}
1271 
1272 	if (nqueued) {
1273 		/*
1274 		 * NB: We don't need to lock against tx done because
1275 		 * this just prods the firmware to check the transmit
1276 		 * descriptors.  The firmware will also start fetching
1277 		 * descriptors by itself if it notices new ones are
1278 		 * present when it goes to deliver a tx done interrupt
1279 		 * to the host. So if we race with tx done processing
1280 		 * it's ok.  Delivering the kick here rather than in
1281 		 * malo_tx_start is an optimization to avoid poking the
1282 		 * firmware for each packet.
1283 		 *
1284 		 * NB: the queue id isn't used so 0 is ok.
1285 		 */
1286 		malo_hal_txstart(sc->malo_mh, 0/*XXX*/);
1287 	}
1288 }
1289 
1290 static void
1291 malo_watchdog(void *arg)
1292 {
1293 	struct malo_softc *sc = arg;
1294 
1295 	callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc);
1296 	if (sc->malo_timer == 0 || --sc->malo_timer > 0)
1297 		return;
1298 
1299 	if (sc->malo_running && !sc->malo_invalid) {
1300 		device_printf(sc->malo_dev, "watchdog timeout\n");
1301 
1302 		/* XXX no way to reset h/w. now  */
1303 
1304 		counter_u64_add(sc->malo_ic.ic_oerrors, 1);
1305 		sc->malo_stats.mst_watchdog++;
1306 	}
1307 }
1308 
1309 static int
1310 malo_hal_reset(struct malo_softc *sc)
1311 {
1312 	static int first = 0;
1313 	struct ieee80211com *ic = &sc->malo_ic;
1314 	struct malo_hal *mh = sc->malo_mh;
1315 
1316 	if (first == 0) {
1317 		/*
1318 		 * NB: when the device firstly is initialized, sometimes
1319 		 * firmware could override rx/tx dma registers so we re-set
1320 		 * these values once.
1321 		 */
1322 		malo_hal_set_rxtxdma(sc);
1323 		first = 1;
1324 	}
1325 
1326 	malo_hal_setantenna(mh, MHA_ANTENNATYPE_RX, sc->malo_rxantenna);
1327 	malo_hal_setantenna(mh, MHA_ANTENNATYPE_TX, sc->malo_txantenna);
1328 	malo_hal_setradio(mh, 1, MHP_AUTO_PREAMBLE);
1329 	malo_chan_set(sc, ic->ic_curchan);
1330 
1331 	/* XXX needs other stuffs?  */
1332 
1333 	return 1;
1334 }
1335 
1336 static __inline struct mbuf *
1337 malo_getrxmbuf(struct malo_softc *sc, struct malo_rxbuf *bf)
1338 {
1339 	struct mbuf *m;
1340 	bus_addr_t paddr;
1341 	int error;
1342 
1343 	/* XXX don't need mbuf, just dma buffer */
1344 	m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1345 	if (m == NULL) {
1346 		sc->malo_stats.mst_rx_nombuf++;	/* XXX */
1347 		return NULL;
1348 	}
1349 	error = bus_dmamap_load(sc->malo_dmat, bf->bf_dmamap,
1350 	    mtod(m, caddr_t), MJUMPAGESIZE,
1351 	    malo_load_cb, &paddr, BUS_DMA_NOWAIT);
1352 	if (error != 0) {
1353 		device_printf(sc->malo_dev,
1354 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1355 		m_freem(m);
1356 		return NULL;
1357 	}
1358 	bf->bf_data = paddr;
1359 	bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1360 
1361 	return m;
1362 }
1363 
1364 static int
1365 malo_rxbuf_init(struct malo_softc *sc, struct malo_rxbuf *bf)
1366 {
1367 	struct malo_rxdesc *ds;
1368 
1369 	ds = bf->bf_desc;
1370 	if (bf->bf_m == NULL) {
1371 		bf->bf_m = malo_getrxmbuf(sc, bf);
1372 		if (bf->bf_m == NULL) {
1373 			/* mark descriptor to be skipped */
1374 			ds->rxcontrol = MALO_RXD_CTRL_OS_OWN;
1375 			/* NB: don't need PREREAD */
1376 			MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREWRITE);
1377 			return ENOMEM;
1378 		}
1379 	}
1380 
1381 	/*
1382 	 * Setup descriptor.
1383 	 */
1384 	ds->qosctrl = 0;
1385 	ds->snr = 0;
1386 	ds->status = MALO_RXD_STATUS_IDLE;
1387 	ds->channel = 0;
1388 	ds->pktlen = htole16(MALO_RXSIZE);
1389 	ds->nf = 0;
1390 	ds->physbuffdata = htole32(bf->bf_data);
1391 	/* NB: don't touch pPhysNext, set once */
1392 	ds->rxcontrol = MALO_RXD_CTRL_DRIVER_OWN;
1393 	MALO_RXDESC_SYNC(sc, ds, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Setup the rx data structures.  This should only be done once or we may get
1400  * out of sync with the firmware.
1401  */
1402 static int
1403 malo_startrecv(struct malo_softc *sc)
1404 {
1405 	struct malo_rxbuf *bf, *prev;
1406 	struct malo_rxdesc *ds;
1407 
1408 	if (sc->malo_recvsetup == 1) {
1409 		malo_mode_init(sc);		/* set filters, etc. */
1410 		return 0;
1411 	}
1412 
1413 	prev = NULL;
1414 	STAILQ_FOREACH(bf, &sc->malo_rxbuf, bf_list) {
1415 		int error = malo_rxbuf_init(sc, bf);
1416 		if (error != 0) {
1417 			DPRINTF(sc, MALO_DEBUG_RECV,
1418 			    "%s: malo_rxbuf_init failed %d\n",
1419 			    __func__, error);
1420 			return error;
1421 		}
1422 		if (prev != NULL) {
1423 			ds = prev->bf_desc;
1424 			ds->physnext = htole32(bf->bf_daddr);
1425 		}
1426 		prev = bf;
1427 	}
1428 	if (prev != NULL) {
1429 		ds = prev->bf_desc;
1430 		ds->physnext =
1431 		    htole32(STAILQ_FIRST(&sc->malo_rxbuf)->bf_daddr);
1432 	}
1433 
1434 	sc->malo_recvsetup = 1;
1435 
1436 	malo_mode_init(sc);		/* set filters, etc. */
1437 
1438 	return 0;
1439 }
1440 
1441 static void
1442 malo_init_locked(struct malo_softc *sc)
1443 {
1444 	struct malo_hal *mh = sc->malo_mh;
1445 	int error;
1446 
1447 	MALO_LOCK_ASSERT(sc);
1448 
1449 	/*
1450 	 * Stop anything previously setup.  This is safe whether this is
1451 	 * the first time through or not.
1452 	 */
1453 	malo_stop(sc);
1454 
1455 	/*
1456 	 * Push state to the firmware.
1457 	 */
1458 	if (!malo_hal_reset(sc)) {
1459 		device_printf(sc->malo_dev,
1460 		    "%s: unable to reset hardware\n", __func__);
1461 		return;
1462 	}
1463 
1464 	/*
1465 	 * Setup recv (once); transmit is already good to go.
1466 	 */
1467 	error = malo_startrecv(sc);
1468 	if (error != 0) {
1469 		device_printf(sc->malo_dev,
1470 		    "%s: unable to start recv logic, error %d\n",
1471 		    __func__, error);
1472 		return;
1473 	}
1474 
1475 	/*
1476 	 * Enable interrupts.
1477 	 */
1478 	sc->malo_imask = MALO_A2HRIC_BIT_RX_RDY
1479 	    | MALO_A2HRIC_BIT_TX_DONE
1480 	    | MALO_A2HRIC_BIT_OPC_DONE
1481 	    | MALO_A2HRIC_BIT_MAC_EVENT
1482 	    | MALO_A2HRIC_BIT_RX_PROBLEM
1483 	    | MALO_A2HRIC_BIT_ICV_ERROR
1484 	    | MALO_A2HRIC_BIT_RADAR_DETECT
1485 	    | MALO_A2HRIC_BIT_CHAN_SWITCH;
1486 
1487 	sc->malo_running = 1;
1488 	malo_hal_intrset(mh, sc->malo_imask);
1489 	callout_reset(&sc->malo_watchdog_timer, hz, malo_watchdog, sc);
1490 }
1491 
1492 static void
1493 malo_init(void *arg)
1494 {
1495 	struct malo_softc *sc = (struct malo_softc *) arg;
1496 	struct ieee80211com *ic = &sc->malo_ic;
1497 
1498 	MALO_LOCK(sc);
1499 	malo_init_locked(sc);
1500 	MALO_UNLOCK(sc);
1501 
1502 	if (sc->malo_running)
1503 		ieee80211_start_all(ic);	/* start all vap's */
1504 }
1505 
1506 struct malo_copy_maddr_ctx {
1507 	uint8_t macs[IEEE80211_ADDR_LEN * MALO_HAL_MCAST_MAX];
1508 	int nmc;
1509 };
1510 
1511 static u_int
1512 malo_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int nmc)
1513 {
1514 	struct malo_copy_maddr_ctx *ctx = arg;
1515 
1516 	if (ctx->nmc == MALO_HAL_MCAST_MAX)
1517 		return (0);
1518 
1519 	IEEE80211_ADDR_COPY(ctx->macs + (ctx->nmc * IEEE80211_ADDR_LEN),
1520 	    LLADDR(sdl));
1521 	ctx->nmc++;
1522 
1523 	return (1);
1524 }
1525 
1526 /*
1527  * Set the multicast filter contents into the hardware.
1528  */
1529 static void
1530 malo_setmcastfilter(struct malo_softc *sc)
1531 {
1532 	struct malo_copy_maddr_ctx ctx;
1533 	struct ieee80211com *ic = &sc->malo_ic;
1534 	struct ieee80211vap *vap;
1535 
1536 
1537 	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_allmulti > 0 ||
1538 	    ic->ic_promisc > 0)
1539 		goto all;
1540 
1541 	ctx.nmc = 0;
1542 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1543 		if_foreach_llmaddr(vap->iv_ifp, malo_copy_maddr, &ctx);
1544 
1545 	malo_hal_setmcast(sc->malo_mh, ctx.nmc, ctx.macs);
1546 
1547 all:
1548 	/*
1549 	 * XXX we don't know how to set the f/w for supporting
1550 	 * IFF_ALLMULTI | IFF_PROMISC cases
1551 	 */
1552 	return;
1553 }
1554 
1555 static int
1556 malo_mode_init(struct malo_softc *sc)
1557 {
1558 	struct ieee80211com *ic = &sc->malo_ic;
1559 	struct malo_hal *mh = sc->malo_mh;
1560 
1561 	malo_hal_setpromisc(mh, ic->ic_promisc > 0);
1562 	malo_setmcastfilter(sc);
1563 
1564 	return ENXIO;
1565 }
1566 
1567 static void
1568 malo_tx_draintxq(struct malo_softc *sc, struct malo_txq *txq)
1569 {
1570 	struct ieee80211_node *ni;
1571 	struct malo_txbuf *bf;
1572 	u_int ix __unused;
1573 
1574 	/*
1575 	 * NB: this assumes output has been stopped and
1576 	 *     we do not need to block malo_tx_tasklet
1577 	 */
1578 	for (ix = 0;; ix++) {
1579 		MALO_TXQ_LOCK(txq);
1580 		bf = STAILQ_FIRST(&txq->active);
1581 		if (bf == NULL) {
1582 			MALO_TXQ_UNLOCK(txq);
1583 			break;
1584 		}
1585 		STAILQ_REMOVE_HEAD(&txq->active, bf_list);
1586 		MALO_TXQ_UNLOCK(txq);
1587 #ifdef MALO_DEBUG
1588 		if (sc->malo_debug & MALO_DEBUG_RESET) {
1589 			struct ieee80211com *ic = &sc->malo_ic;
1590 			const struct malo_txrec *tr =
1591 			    mtod(bf->bf_m, const struct malo_txrec *);
1592 			malo_printtxbuf(bf, txq->qnum, ix);
1593 			ieee80211_dump_pkt(ic, (const uint8_t *)&tr->wh,
1594 			    bf->bf_m->m_len - sizeof(tr->fwlen), 0, -1);
1595 		}
1596 #endif /* MALO_DEBUG */
1597 		bus_dmamap_unload(sc->malo_dmat, bf->bf_dmamap);
1598 		ni = bf->bf_node;
1599 		bf->bf_node = NULL;
1600 		if (ni != NULL) {
1601 			/*
1602 			 * Reclaim node reference.
1603 			 */
1604 			ieee80211_free_node(ni);
1605 		}
1606 		m_freem(bf->bf_m);
1607 		bf->bf_m = NULL;
1608 
1609 		MALO_TXQ_LOCK(txq);
1610 		STAILQ_INSERT_TAIL(&txq->free, bf, bf_list);
1611 		txq->nfree++;
1612 		MALO_TXQ_UNLOCK(txq);
1613 	}
1614 }
1615 
1616 static void
1617 malo_stop(struct malo_softc *sc)
1618 {
1619 	struct malo_hal *mh = sc->malo_mh;
1620 	int i;
1621 
1622 	DPRINTF(sc, MALO_DEBUG_ANY, "%s: invalid %u running %u\n",
1623 	    __func__, sc->malo_invalid, sc->malo_running);
1624 
1625 	MALO_LOCK_ASSERT(sc);
1626 
1627 	if (!sc->malo_running)
1628 		return;
1629 
1630 	/*
1631 	 * Shutdown the hardware and driver:
1632 	 *    disable interrupts
1633 	 *    turn off the radio
1634 	 *    drain and release tx queues
1635 	 *
1636 	 * Note that some of this work is not possible if the hardware
1637 	 * is gone (invalid).
1638 	 */
1639 	sc->malo_running = 0;
1640 	callout_stop(&sc->malo_watchdog_timer);
1641 	sc->malo_timer = 0;
1642 	/* disable interrupt.  */
1643 	malo_hal_intrset(mh, 0);
1644 	/* turn off the radio.  */
1645 	malo_hal_setradio(mh, 0, MHP_AUTO_PREAMBLE);
1646 
1647 	/* drain and release tx queues.  */
1648 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++)
1649 		malo_tx_draintxq(sc, &sc->malo_txq[i]);
1650 }
1651 
1652 static void
1653 malo_parent(struct ieee80211com *ic)
1654 {
1655 	struct malo_softc *sc = ic->ic_softc;
1656 	int startall = 0;
1657 
1658 	MALO_LOCK(sc);
1659 	if (ic->ic_nrunning > 0) {
1660 		/*
1661 		 * Beware of being called during attach/detach
1662 		 * to reset promiscuous mode.  In that case we
1663 		 * will still be marked UP but not RUNNING.
1664 		 * However trying to re-init the interface
1665 		 * is the wrong thing to do as we've already
1666 		 * torn down much of our state.  There's
1667 		 * probably a better way to deal with this.
1668 		 */
1669 		if (!sc->malo_running && !sc->malo_invalid) {
1670 			malo_init(sc);
1671 			startall = 1;
1672 		}
1673 		/*
1674 		 * To avoid rescanning another access point,
1675 		 * do not call malo_init() here.  Instead,
1676 		 * only reflect promisc mode settings.
1677 		 */
1678 		malo_mode_init(sc);
1679 	} else if (sc->malo_running)
1680 		malo_stop(sc);
1681 	MALO_UNLOCK(sc);
1682 	if (startall)
1683 		ieee80211_start_all(ic);
1684 }
1685 
1686 /*
1687  * Callback from the 802.11 layer to update the slot time
1688  * based on the current setting.  We use it to notify the
1689  * firmware of ERP changes and the f/w takes care of things
1690  * like slot time and preamble.
1691  */
1692 static void
1693 malo_updateslot(struct ieee80211com *ic)
1694 {
1695 	struct malo_softc *sc = ic->ic_softc;
1696 	struct malo_hal *mh = sc->malo_mh;
1697 	int error;
1698 
1699 	/* NB: can be called early; suppress needless cmds */
1700 	if (!sc->malo_running)
1701 		return;
1702 
1703 	DPRINTF(sc, MALO_DEBUG_RESET,
1704 	    "%s: chan %u MHz/flags 0x%x %s slot, (ic_flags 0x%x)\n",
1705 	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
1706 	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", ic->ic_flags);
1707 
1708 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1709 		error = malo_hal_set_slot(mh, 1);
1710 	else
1711 		error = malo_hal_set_slot(mh, 0);
1712 
1713 	if (error != 0)
1714 		device_printf(sc->malo_dev, "setting %s slot failed\n",
1715 			ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long");
1716 }
1717 
1718 static int
1719 malo_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1720 {
1721 	struct ieee80211com *ic = vap->iv_ic;
1722 	struct malo_softc *sc = ic->ic_softc;
1723 	struct malo_hal *mh = sc->malo_mh;
1724 	int error;
1725 
1726 	DPRINTF(sc, MALO_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1727 	    ieee80211_state_name[vap->iv_state],
1728 	    ieee80211_state_name[nstate]);
1729 
1730 	/*
1731 	 * Invoke the net80211 layer first so iv_bss is setup.
1732 	 */
1733 	error = MALO_VAP(vap)->malo_newstate(vap, nstate, arg);
1734 	if (error != 0)
1735 		return error;
1736 
1737 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1738 		struct ieee80211_node *ni = vap->iv_bss;
1739 		enum ieee80211_phymode mode = ieee80211_chan2mode(ni->ni_chan);
1740 		const struct ieee80211_txparam *tp = &vap->iv_txparms[mode];
1741 
1742 		DPRINTF(sc, MALO_DEBUG_STATE,
1743 		    "%s: %s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
1744 		    "capinfo 0x%04x chan %d associd 0x%x mode %d rate %d\n",
1745 		    if_name(vap->iv_ifp), __func__, vap->iv_flags,
1746 		    ni->ni_intval, ether_sprintf(ni->ni_bssid), ni->ni_capinfo,
1747 		    ieee80211_chan2ieee(ic, ic->ic_curchan),
1748 		    ni->ni_associd, mode, tp->ucastrate);
1749 
1750 		malo_hal_setradio(mh, 1,
1751 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ?
1752 			MHP_SHORT_PREAMBLE : MHP_LONG_PREAMBLE);
1753 		malo_hal_setassocid(sc->malo_mh, ni->ni_bssid, ni->ni_associd);
1754 		malo_hal_set_rate(mh, mode,
1755 		   tp->ucastrate == IEEE80211_FIXED_RATE_NONE ?
1756 		       0 : malo_fix2rate(tp->ucastrate));
1757 	}
1758 	return 0;
1759 }
1760 
1761 static int
1762 malo_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
1763 	const struct ieee80211_bpf_params *params)
1764 {
1765 	struct ieee80211com *ic = ni->ni_ic;
1766 	struct malo_softc *sc = ic->ic_softc;
1767 	struct malo_txbuf *bf;
1768 	struct malo_txq *txq;
1769 
1770 	if (!sc->malo_running || sc->malo_invalid) {
1771 		m_freem(m);
1772 		return ENETDOWN;
1773 	}
1774 
1775 	/*
1776 	 * Grab a TX buffer and associated resources.  Note that we depend
1777 	 * on the classification by the 802.11 layer to get to the right h/w
1778 	 * queue.  Management frames must ALWAYS go on queue 1 but we
1779 	 * cannot just force that here because we may receive non-mgt frames.
1780 	 */
1781 	txq = &sc->malo_txq[0];
1782 	bf = malo_getbuf(sc, txq);
1783 	if (bf == NULL) {
1784 		m_freem(m);
1785 		return ENOBUFS;
1786 	}
1787 
1788 	/*
1789 	 * Pass the frame to the h/w for transmission.
1790 	 */
1791 	if (malo_tx_start(sc, ni, bf, m) != 0) {
1792 		bf->bf_m = NULL;
1793 		bf->bf_node = NULL;
1794 		MALO_TXQ_LOCK(txq);
1795 		STAILQ_INSERT_HEAD(&txq->free, bf, bf_list);
1796 		txq->nfree++;
1797 		MALO_TXQ_UNLOCK(txq);
1798 
1799 		return EIO;		/* XXX */
1800 	}
1801 
1802 	/*
1803 	 * NB: We don't need to lock against tx done because this just
1804 	 * prods the firmware to check the transmit descriptors.  The firmware
1805 	 * will also start fetching descriptors by itself if it notices
1806 	 * new ones are present when it goes to deliver a tx done interrupt
1807 	 * to the host. So if we race with tx done processing it's ok.
1808 	 * Delivering the kick here rather than in malo_tx_start is
1809 	 * an optimization to avoid poking the firmware for each packet.
1810 	 *
1811 	 * NB: the queue id isn't used so 0 is ok.
1812 	 */
1813 	malo_hal_txstart(sc->malo_mh, 0/*XXX*/);
1814 
1815 	return 0;
1816 }
1817 
1818 static void
1819 malo_sysctlattach(struct malo_softc *sc)
1820 {
1821 #ifdef	MALO_DEBUG
1822 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->malo_dev);
1823 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->malo_dev);
1824 
1825 	sc->malo_debug = malo_debug;
1826 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1827 		"debug", CTLFLAG_RW, &sc->malo_debug, 0,
1828 		"control debugging printfs");
1829 #endif
1830 }
1831 
1832 static void
1833 malo_announce(struct malo_softc *sc)
1834 {
1835 
1836 	device_printf(sc->malo_dev,
1837 		"versions [hw %d fw %d.%d.%d.%d] (regioncode %d)\n",
1838 		sc->malo_hwspecs.hwversion,
1839 		(sc->malo_hwspecs.fw_releasenum >> 24) & 0xff,
1840 		(sc->malo_hwspecs.fw_releasenum >> 16) & 0xff,
1841 		(sc->malo_hwspecs.fw_releasenum >> 8) & 0xff,
1842 		(sc->malo_hwspecs.fw_releasenum >> 0) & 0xff,
1843 		sc->malo_hwspecs.regioncode);
1844 
1845 	if (bootverbose || malo_rxbuf != MALO_RXBUF)
1846 		device_printf(sc->malo_dev,
1847 		    "using %u rx buffers\n", malo_rxbuf);
1848 	if (bootverbose || malo_txbuf != MALO_TXBUF)
1849 		device_printf(sc->malo_dev,
1850 		    "using %u tx buffers\n", malo_txbuf);
1851 }
1852 
1853 /*
1854  * Convert net80211 channel to a HAL channel.
1855  */
1856 static void
1857 malo_mapchan(struct malo_hal_channel *hc, const struct ieee80211_channel *chan)
1858 {
1859 	hc->channel = chan->ic_ieee;
1860 
1861 	*(uint32_t *)&hc->flags = 0;
1862 	if (IEEE80211_IS_CHAN_2GHZ(chan))
1863 		hc->flags.freqband = MALO_FREQ_BAND_2DOT4GHZ;
1864 }
1865 
1866 /*
1867  * Set/change channels.  If the channel is really being changed,
1868  * it's done by reseting the chip.  To accomplish this we must
1869  * first cleanup any pending DMA, then restart stuff after a la
1870  * malo_init.
1871  */
1872 static int
1873 malo_chan_set(struct malo_softc *sc, struct ieee80211_channel *chan)
1874 {
1875 	struct malo_hal *mh = sc->malo_mh;
1876 	struct malo_hal_channel hchan;
1877 
1878 	DPRINTF(sc, MALO_DEBUG_RESET, "%s: chan %u MHz/flags 0x%x\n",
1879 	    __func__, chan->ic_freq, chan->ic_flags);
1880 
1881 	/*
1882 	 * Convert to a HAL channel description with the flags constrained
1883 	 * to reflect the current operating mode.
1884 	 */
1885 	malo_mapchan(&hchan, chan);
1886 	malo_hal_intrset(mh, 0);		/* disable interrupts */
1887 	malo_hal_setchannel(mh, &hchan);
1888 	malo_hal_settxpower(mh, &hchan);
1889 
1890 	/*
1891 	 * Update internal state.
1892 	 */
1893 	sc->malo_tx_th.wt_chan_freq = htole16(chan->ic_freq);
1894 	sc->malo_rx_th.wr_chan_freq = htole16(chan->ic_freq);
1895 	if (IEEE80211_IS_CHAN_ANYG(chan)) {
1896 		sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_G);
1897 		sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_G);
1898 	} else {
1899 		sc->malo_tx_th.wt_chan_flags = htole16(IEEE80211_CHAN_B);
1900 		sc->malo_rx_th.wr_chan_flags = htole16(IEEE80211_CHAN_B);
1901 	}
1902 	sc->malo_curchan = hchan;
1903 	malo_hal_intrset(mh, sc->malo_imask);
1904 
1905 	return 0;
1906 }
1907 
1908 static void
1909 malo_scan_start(struct ieee80211com *ic)
1910 {
1911 	struct malo_softc *sc = ic->ic_softc;
1912 
1913 	DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__);
1914 }
1915 
1916 static void
1917 malo_scan_end(struct ieee80211com *ic)
1918 {
1919 	struct malo_softc *sc = ic->ic_softc;
1920 
1921 	DPRINTF(sc, MALO_DEBUG_STATE, "%s\n", __func__);
1922 }
1923 
1924 static void
1925 malo_set_channel(struct ieee80211com *ic)
1926 {
1927 	struct malo_softc *sc = ic->ic_softc;
1928 
1929 	(void) malo_chan_set(sc, ic->ic_curchan);
1930 }
1931 
1932 static void
1933 malo_rx_proc(void *arg, int npending)
1934 {
1935 	struct epoch_tracker et;
1936 	struct malo_softc *sc = arg;
1937 	struct ieee80211com *ic = &sc->malo_ic;
1938 	struct malo_rxbuf *bf;
1939 	struct malo_rxdesc *ds;
1940 	struct mbuf *m, *mnew;
1941 	struct ieee80211_qosframe *wh;
1942 	struct ieee80211_node *ni;
1943 	int off, len, hdrlen, pktlen, rssi, ntodo;
1944 	uint8_t *data, status;
1945 	uint32_t readptr, writeptr;
1946 
1947 	DPRINTF(sc, MALO_DEBUG_RX_PROC,
1948 	    "%s: pending %u rdptr(0x%x) 0x%x wrptr(0x%x) 0x%x\n",
1949 	    __func__, npending,
1950 	    sc->malo_hwspecs.rxdesc_read,
1951 	    malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read),
1952 	    sc->malo_hwspecs.rxdesc_write,
1953 	    malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write));
1954 
1955 	readptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_read);
1956 	writeptr = malo_bar0_read4(sc, sc->malo_hwspecs.rxdesc_write);
1957 	if (readptr == writeptr)
1958 		return;
1959 
1960 	bf = sc->malo_rxnext;
1961 	for (ntodo = malo_rxquota; ntodo > 0 && readptr != writeptr; ntodo--) {
1962 		if (bf == NULL) {
1963 			bf = STAILQ_FIRST(&sc->malo_rxbuf);
1964 			break;
1965 		}
1966 		ds = bf->bf_desc;
1967 		if (bf->bf_m == NULL) {
1968 			/*
1969 			 * If data allocation failed previously there
1970 			 * will be no buffer; try again to re-populate it.
1971 			 * Note the firmware will not advance to the next
1972 			 * descriptor with a dma buffer so we must mimic
1973 			 * this or we'll get out of sync.
1974 			 */
1975 			DPRINTF(sc, MALO_DEBUG_ANY,
1976 			    "%s: rx buf w/o dma memory\n", __func__);
1977 			(void)malo_rxbuf_init(sc, bf);
1978 			break;
1979 		}
1980 		MALO_RXDESC_SYNC(sc, ds,
1981 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1982 		if (ds->rxcontrol != MALO_RXD_CTRL_DMA_OWN)
1983 			break;
1984 
1985 		readptr = le32toh(ds->physnext);
1986 
1987 #ifdef MALO_DEBUG
1988 		if (sc->malo_debug & MALO_DEBUG_RECV_DESC)
1989 			malo_printrxbuf(bf, 0);
1990 #endif
1991 		status = ds->status;
1992 		if (status & MALO_RXD_STATUS_DECRYPT_ERR_MASK) {
1993 			counter_u64_add(ic->ic_ierrors, 1);
1994 			goto rx_next;
1995 		}
1996 		/*
1997 		 * Sync the data buffer.
1998 		 */
1999 		len = le16toh(ds->pktlen);
2000 		bus_dmamap_sync(sc->malo_dmat, bf->bf_dmamap,
2001 		    BUS_DMASYNC_POSTREAD);
2002 		/*
2003 		 * The 802.11 header is provided all or in part at the front;
2004 		 * use it to calculate the true size of the header that we'll
2005 		 * construct below.  We use this to figure out where to copy
2006 		 * payload prior to constructing the header.
2007 		 */
2008 		m = bf->bf_m;
2009 		data = mtod(m, uint8_t *);
2010 		hdrlen = ieee80211_anyhdrsize(data + sizeof(uint16_t));
2011 		off = sizeof(uint16_t) + sizeof(struct ieee80211_frame_addr4);
2012 
2013 		/*
2014 		 * Calculate RSSI. XXX wrong
2015 		 */
2016 		rssi = 2 * ((int) ds->snr - ds->nf);	/* NB: .5 dBm  */
2017 		if (rssi > 100)
2018 			rssi = 100;
2019 
2020 		pktlen = hdrlen + (len - off);
2021 		/*
2022 		 * NB: we know our frame is at least as large as
2023 		 * IEEE80211_MIN_LEN because there is a 4-address frame at
2024 		 * the front.  Hence there's no need to vet the packet length.
2025 		 * If the frame in fact is too small it should be discarded
2026 		 * at the net80211 layer.
2027 		 */
2028 
2029 		/* XXX don't need mbuf, just dma buffer */
2030 		mnew = malo_getrxmbuf(sc, bf);
2031 		if (mnew == NULL) {
2032 			counter_u64_add(ic->ic_ierrors, 1);
2033 			goto rx_next;
2034 		}
2035 		/*
2036 		 * Attach the dma buffer to the mbuf; malo_rxbuf_init will
2037 		 * re-setup the rx descriptor using the replacement dma
2038 		 * buffer we just installed above.
2039 		 */
2040 		bf->bf_m = mnew;
2041 		m->m_data += off - hdrlen;
2042 		m->m_pkthdr.len = m->m_len = pktlen;
2043 
2044 		/*
2045 		 * Piece 802.11 header together.
2046 		 */
2047 		wh = mtod(m, struct ieee80211_qosframe *);
2048 		/* NB: don't need to do this sometimes but ... */
2049 		/* XXX special case so we can memcpy after m_devget? */
2050 		ovbcopy(data + sizeof(uint16_t), wh, hdrlen);
2051 		if (IEEE80211_QOS_HAS_SEQ(wh))
2052 			*(uint16_t *)ieee80211_getqos(wh) = ds->qosctrl;
2053 		if (ieee80211_radiotap_active(ic)) {
2054 			sc->malo_rx_th.wr_flags = 0;
2055 			sc->malo_rx_th.wr_rate = ds->rate;
2056 			sc->malo_rx_th.wr_antsignal = rssi;
2057 			sc->malo_rx_th.wr_antnoise = ds->nf;
2058 		}
2059 #ifdef MALO_DEBUG
2060 		if (IFF_DUMPPKTS_RECV(sc, wh)) {
2061 			ieee80211_dump_pkt(ic, mtod(m, caddr_t),
2062 			    len, ds->rate, rssi);
2063 		}
2064 #endif
2065 		/* dispatch */
2066 		ni = ieee80211_find_rxnode(ic,
2067 		    (struct ieee80211_frame_min *)wh);
2068 		NET_EPOCH_ENTER(et);
2069 		if (ni != NULL) {
2070 			(void) ieee80211_input(ni, m, rssi, ds->nf);
2071 			ieee80211_free_node(ni);
2072 		} else
2073 			(void) ieee80211_input_all(ic, m, rssi, ds->nf);
2074 		NET_EPOCH_EXIT(et);
2075 rx_next:
2076 		/* NB: ignore ENOMEM so we process more descriptors */
2077 		(void) malo_rxbuf_init(sc, bf);
2078 		bf = STAILQ_NEXT(bf, bf_list);
2079 	}
2080 
2081 	malo_bar0_write4(sc, sc->malo_hwspecs.rxdesc_read, readptr);
2082 	sc->malo_rxnext = bf;
2083 
2084 	if (mbufq_first(&sc->malo_snd) != NULL)
2085 		malo_start(sc);
2086 }
2087 
2088 /*
2089  * Reclaim all tx queue resources.
2090  */
2091 static void
2092 malo_tx_cleanup(struct malo_softc *sc)
2093 {
2094 	int i;
2095 
2096 	for (i = 0; i < MALO_NUM_TX_QUEUES; i++)
2097 		malo_tx_cleanupq(sc, &sc->malo_txq[i]);
2098 }
2099 
2100 int
2101 malo_detach(struct malo_softc *sc)
2102 {
2103 	struct ieee80211com *ic = &sc->malo_ic;
2104 
2105 	malo_stop(sc);
2106 
2107 	if (sc->malo_tq != NULL) {
2108 		taskqueue_drain(sc->malo_tq, &sc->malo_rxtask);
2109 		taskqueue_drain(sc->malo_tq, &sc->malo_txtask);
2110 		taskqueue_free(sc->malo_tq);
2111 		sc->malo_tq = NULL;
2112 	}
2113 
2114 	/*
2115 	 * NB: the order of these is important:
2116 	 * o call the 802.11 layer before detaching the hal to
2117 	 *   insure callbacks into the driver to delete global
2118 	 *   key cache entries can be handled
2119 	 * o reclaim the tx queue data structures after calling
2120 	 *   the 802.11 layer as we'll get called back to reclaim
2121 	 *   node state and potentially want to use them
2122 	 * o to cleanup the tx queues the hal is called, so detach
2123 	 *   it last
2124 	 * Other than that, it's straightforward...
2125 	 */
2126 	ieee80211_ifdetach(ic);
2127 	callout_drain(&sc->malo_watchdog_timer);
2128 	malo_dma_cleanup(sc);
2129 	malo_tx_cleanup(sc);
2130 	malo_hal_detach(sc->malo_mh);
2131 	mbufq_drain(&sc->malo_snd);
2132 	MALO_LOCK_DESTROY(sc);
2133 
2134 	return 0;
2135 }
2136 
2137 void
2138 malo_shutdown(struct malo_softc *sc)
2139 {
2140 
2141 	malo_stop(sc);
2142 }
2143 
2144 void
2145 malo_suspend(struct malo_softc *sc)
2146 {
2147 
2148 	malo_stop(sc);
2149 }
2150 
2151 void
2152 malo_resume(struct malo_softc *sc)
2153 {
2154 
2155 	if (sc->malo_ic.ic_nrunning > 0)
2156 		malo_init(sc);
2157 }
2158