xref: /freebsd/sys/dev/liquidio/base/cn23xx_pf_device.c (revision d0b2dbfa0ecf2bbc9709efc5e20baf8e4b44bbbf)
1 /*
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2017 Cavium, Inc.. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Cavium, Inc. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "lio_bsd.h"
35 #include "lio_common.h"
36 #include "lio_droq.h"
37 #include "lio_iq.h"
38 #include "lio_response_manager.h"
39 #include "lio_device.h"
40 #include "cn23xx_pf_device.h"
41 #include "lio_main.h"
42 #include "lio_rss.h"
43 
44 static int
45 lio_cn23xx_pf_soft_reset(struct octeon_device *oct)
46 {
47 
48 	lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF);
49 
50 	lio_dev_dbg(oct, "BIST enabled for CN23XX soft reset\n");
51 
52 	lio_write_csr64(oct, LIO_CN23XX_SLI_SCRATCH1, 0x1234ULL);
53 
54 	/* Initiate chip-wide soft reset */
55 	lio_pci_readq(oct, LIO_CN23XX_RST_SOFT_RST);
56 	lio_pci_writeq(oct, 1, LIO_CN23XX_RST_SOFT_RST);
57 
58 	/* Wait for 100ms as Octeon resets. */
59 	lio_mdelay(100);
60 
61 	if (lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH1)) {
62 		lio_dev_err(oct, "Soft reset failed\n");
63 		return (1);
64 	}
65 
66 	lio_dev_dbg(oct, "Reset completed\n");
67 
68 	/* restore the  reset value */
69 	lio_write_csr64(oct, LIO_CN23XX_SLI_WIN_WR_MASK_REG, 0xFF);
70 
71 	return (0);
72 }
73 
74 static void
75 lio_cn23xx_pf_enable_error_reporting(struct octeon_device *oct)
76 {
77 	uint32_t	corrtable_err_status, uncorrectable_err_mask, regval;
78 
79 	regval = lio_read_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_DEVCTL);
80 	if (regval & LIO_CN23XX_CFG_PCIE_DEVCTL_MASK) {
81 		uncorrectable_err_mask = 0;
82 		corrtable_err_status = 0;
83 		uncorrectable_err_mask =
84 		    lio_read_pci_cfg(oct,
85 				     LIO_CN23XX_CFG_PCIE_UNCORRECT_ERR_MASK);
86 		corrtable_err_status =
87 		    lio_read_pci_cfg(oct,
88 				     LIO_CN23XX_CFG_PCIE_CORRECT_ERR_STATUS);
89 		lio_dev_err(oct, "PCI-E Fatal error detected;\n"
90 			    "\tdev_ctl_status_reg = 0x%08x\n"
91 			    "\tuncorrectable_error_mask_reg = 0x%08x\n"
92 			    "\tcorrectable_error_status_reg = 0x%08x\n",
93 			    regval, uncorrectable_err_mask,
94 			    corrtable_err_status);
95 	}
96 
97 	regval |= 0xf;	/* Enable Link error reporting */
98 
99 	lio_dev_dbg(oct, "Enabling PCI-E error reporting..\n");
100 	lio_write_pci_cfg(oct, LIO_CN23XX_CFG_PCIE_DEVCTL, regval);
101 }
102 
103 static uint32_t
104 lio_cn23xx_pf_coprocessor_clock(struct octeon_device *oct)
105 {
106 	/*
107 	 * Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER
108 	 * for SLI.
109 	 */
110 
111 	/* TBD: get the info in Hand-shake */
112 	return (((lio_pci_readq(oct, LIO_CN23XX_RST_BOOT) >> 24) & 0x3f) * 50);
113 }
114 
115 uint32_t
116 lio_cn23xx_pf_get_oq_ticks(struct octeon_device *oct, uint32_t time_intr_in_us)
117 {
118 	/* This gives the SLI clock per microsec */
119 	uint32_t	oqticks_per_us = lio_cn23xx_pf_coprocessor_clock(oct);
120 
121 	oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us;
122 
123 	/* This gives the clock cycles per millisecond */
124 	oqticks_per_us *= 1000;
125 
126 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
127 	oqticks_per_us /= 1024;
128 
129 	/*
130 	 * time_intr is in microseconds. The next 2 steps gives the oq ticks
131 	 * corresponding to time_intr.
132 	 */
133 	oqticks_per_us *= time_intr_in_us;
134 	oqticks_per_us /= 1000;
135 
136 	return (oqticks_per_us);
137 }
138 
139 static void
140 lio_cn23xx_pf_setup_global_mac_regs(struct octeon_device *oct)
141 {
142 	uint64_t	reg_val;
143 	uint16_t	mac_no = oct->pcie_port;
144 	uint16_t	pf_num = oct->pf_num;
145 	/* programming SRN and TRS for each MAC(0..3)  */
146 
147 	lio_dev_dbg(oct, "%s: Using pcie port %d\n", __func__, mac_no);
148 	/* By default, mapping all 64 IOQs to  a single MACs */
149 
150 	reg_val =
151 	    lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num));
152 
153 	/* setting SRN <6:0>  */
154 	reg_val = pf_num * LIO_CN23XX_PF_MAX_RINGS;
155 
156 	/* setting TRS <23:16> */
157 	reg_val = reg_val |
158 	    (oct->sriov_info.trs << LIO_CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS);
159 
160 	/* write these settings to MAC register */
161 	lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num),
162 			reg_val);
163 
164 	lio_dev_dbg(oct, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", mac_no,
165 		    pf_num,
166 		    LIO_CAST64(lio_read_csr64(oct,
167 				   LIO_CN23XX_SLI_PKT_MAC_RINFO64(mac_no,
168 								  pf_num))));
169 }
170 
171 static int
172 lio_cn23xx_pf_reset_io_queues(struct octeon_device *oct)
173 {
174 	uint64_t	d64;
175 	uint32_t	ern, loop = BUSY_READING_REG_PF_LOOP_COUNT;
176 	uint32_t	q_no, srn;
177 	int		ret_val = 0;
178 
179 	srn = oct->sriov_info.pf_srn;
180 	ern = srn + oct->sriov_info.num_pf_rings;
181 
182 	/* As per HRM reg description, s/w cant write 0 to ENB. */
183 	/* to make the queue off, need to set the RST bit. */
184 
185 	/* Reset the Enable bit for all the 64 IQs.  */
186 	for (q_no = srn; q_no < ern; q_no++) {
187 		/* set RST bit to 1. This bit applies to both IQ and OQ */
188 		d64 = lio_read_csr64(oct,
189 				     LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
190 		d64 = d64 | LIO_CN23XX_PKT_INPUT_CTL_RST;
191 		lio_write_csr64(oct,
192 				LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64);
193 	}
194 
195 	/* wait until the RST bit is clear or the RST and quiet bits are set */
196 	for (q_no = srn; q_no < ern; q_no++) {
197 		volatile uint64_t reg_val =
198 			lio_read_csr64(oct,
199 				       LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
200 		while ((reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) &&
201 		       !(reg_val & LIO_CN23XX_PKT_INPUT_CTL_QUIET) &&
202 		       loop) {
203 			reg_val = lio_read_csr64(oct,
204 				       LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
205 			loop--;
206 		}
207 
208 		if (!loop) {
209 			lio_dev_err(oct,
210 				    "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
211 				    q_no);
212 			return (-1);
213 		}
214 
215 		reg_val &= ~LIO_CN23XX_PKT_INPUT_CTL_RST;
216 		lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
217 				reg_val);
218 
219 		reg_val = lio_read_csr64(oct,
220 					 LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
221 		if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) {
222 			lio_dev_err(oct, "clearing the reset failed for qno: %u\n",
223 				    q_no);
224 			ret_val = -1;
225 		}
226 	}
227 
228 	return (ret_val);
229 }
230 
231 static int
232 lio_cn23xx_pf_setup_global_input_regs(struct octeon_device *oct)
233 {
234 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
235 	struct lio_instr_queue	*iq;
236 	uint64_t		intr_threshold;
237 	uint64_t		pf_num, reg_val;
238 	uint32_t		q_no, ern, srn;
239 
240 	pf_num = oct->pf_num;
241 
242 	srn = oct->sriov_info.pf_srn;
243 	ern = srn + oct->sriov_info.num_pf_rings;
244 
245 	if (lio_cn23xx_pf_reset_io_queues(oct))
246 		return (-1);
247 
248 	/*
249 	 * Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg
250 	 * for all queues.Only PF can set these bits.
251 	 * bits 29:30 indicate the MAC num.
252 	 * bits 32:47 indicate the PVF num.
253 	 */
254 	for (q_no = 0; q_no < ern; q_no++) {
255 		reg_val = oct->pcie_port <<
256 			LIO_CN23XX_PKT_INPUT_CTL_MAC_NUM_POS;
257 
258 		reg_val |= pf_num << LIO_CN23XX_PKT_INPUT_CTL_PF_NUM_POS;
259 
260 		lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
261 				reg_val);
262 	}
263 
264 	/*
265 	 * Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
266 	 * pf queues
267 	 */
268 	for (q_no = srn; q_no < ern; q_no++) {
269 		uint32_t	inst_cnt_reg;
270 
271 		iq = oct->instr_queue[q_no];
272 		if (iq != NULL)
273 			inst_cnt_reg = iq->inst_cnt_reg;
274 		else
275 			inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(q_no);
276 
277 		reg_val =
278 		    lio_read_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
279 
280 		reg_val |= LIO_CN23XX_PKT_INPUT_CTL_MASK;
281 
282 		lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
283 				reg_val);
284 
285 		/* Set WMARK level for triggering PI_INT */
286 		/* intr_threshold = LIO_CN23XX_DEF_IQ_INTR_THRESHOLD & */
287 		intr_threshold = LIO_GET_IQ_INTR_PKT_CFG(cn23xx->conf) &
288 		    LIO_CN23XX_PKT_IN_DONE_WMARK_MASK;
289 
290 		lio_write_csr64(oct, inst_cnt_reg,
291 				(lio_read_csr64(oct, inst_cnt_reg) &
292 				 ~(LIO_CN23XX_PKT_IN_DONE_WMARK_MASK <<
293 				   LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
294 				(intr_threshold <<
295 				 LIO_CN23XX_PKT_IN_DONE_WMARK_BIT_POS));
296 	}
297 	return (0);
298 }
299 
300 static void
301 lio_cn23xx_pf_setup_global_output_regs(struct octeon_device *oct)
302 {
303 	struct lio_cn23xx_pf *cn23xx = (struct lio_cn23xx_pf *)oct->chip;
304 	uint64_t	time_threshold;
305 	uint32_t	ern, q_no, reg_val, srn;
306 
307 	srn = oct->sriov_info.pf_srn;
308 	ern = srn + oct->sriov_info.num_pf_rings;
309 
310 	if (LIO_GET_IS_SLI_BP_ON_CFG(cn23xx->conf)) {
311 		lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 32);
312 	} else {
313 		/* Set Output queue watermark to 0 to disable backpressure */
314 		lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0);
315 	}
316 
317 	for (q_no = srn; q_no < ern; q_no++) {
318 		reg_val = lio_read_csr32(oct,
319 					 LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no));
320 
321 		/* set IPTR & DPTR */
322 		reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_DPTR;
323 
324 		/* reset BMODE */
325 		reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_BMODE);
326 
327 		/*
328 		 * No Relaxed Ordering, No Snoop, 64-bit Byte swap for
329 		 * Output Queue ScatterList reset ROR_P, NSR_P
330 		 */
331 		reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR_P);
332 		reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR_P);
333 
334 #if BYTE_ORDER == LITTLE_ENDIAN
335 		reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ES_P);
336 #else	/* BYTE_ORDER != LITTLE_ENDIAN  */
337 		reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES_P);
338 #endif	/* BYTE_ORDER == LITTLE_ENDIAN */
339 
340 		/*
341 		 * No Relaxed Ordering, No Snoop, 64-bit Byte swap for
342 		 * Output Queue Data reset ROR, NSR
343 		 */
344 		reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_ROR);
345 		reg_val &= ~(LIO_CN23XX_PKT_OUTPUT_CTL_NSR);
346 		/* set the ES bit */
347 		reg_val |= (LIO_CN23XX_PKT_OUTPUT_CTL_ES);
348 
349 		/* write all the selected settings */
350 		lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no),
351 				reg_val);
352 
353 		/*
354 		 * Enabling these interrupt in oct->fn_list.enable_interrupt()
355 		 * routine which called after IOQ init.
356 		 * Set up interrupt packet and time thresholds
357 		 * for all the OQs
358 		 */
359 		time_threshold =lio_cn23xx_pf_get_oq_ticks(
360 		       oct, (uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf));
361 
362 		lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no),
363 				(LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf) |
364 				 (time_threshold << 32)));
365 	}
366 
367 	/* Setting the water mark level for pko back pressure * */
368 	lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_WMARK, 0x40);
369 
370 	/* Enable channel-level backpressure */
371 	if (oct->pf_num)
372 		lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN2_W1S,
373 				0xffffffffffffffffULL);
374 	else
375 		lio_write_csr64(oct, LIO_CN23XX_SLI_OUT_BP_EN_W1S,
376 				0xffffffffffffffffULL);
377 }
378 
379 static int
380 lio_cn23xx_pf_setup_device_regs(struct octeon_device *oct)
381 {
382 
383 	lio_cn23xx_pf_enable_error_reporting(oct);
384 
385 	/* program the MAC(0..3)_RINFO before setting up input/output regs */
386 	lio_cn23xx_pf_setup_global_mac_regs(oct);
387 
388 	if (lio_cn23xx_pf_setup_global_input_regs(oct))
389 		return (-1);
390 
391 	lio_cn23xx_pf_setup_global_output_regs(oct);
392 
393 	/*
394 	 * Default error timeout value should be 0x200000 to avoid host hang
395 	 * when reads invalid register
396 	 */
397 	lio_write_csr64(oct, LIO_CN23XX_SLI_WINDOW_CTL,
398 			LIO_CN23XX_SLI_WINDOW_CTL_DEFAULT);
399 
400 	/* set SLI_PKT_IN_JABBER to handle large VXLAN packets */
401 	lio_write_csr64(oct, LIO_CN23XX_SLI_PKT_IN_JABBER,
402 			LIO_CN23XX_MAX_INPUT_JABBER);
403 	return (0);
404 }
405 
406 static void
407 lio_cn23xx_pf_setup_iq_regs(struct octeon_device *oct, uint32_t iq_no)
408 {
409 	struct lio_instr_queue	*iq = oct->instr_queue[iq_no];
410 	uint64_t		pkt_in_done;
411 
412 	iq_no += oct->sriov_info.pf_srn;
413 
414 	/* Write the start of the input queue's ring and its size  */
415 	lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_BASE_ADDR64(iq_no),
416 			iq->base_addr_dma);
417 	lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count);
418 
419 	/*
420 	 * Remember the doorbell & instruction count register addr
421 	 * for this queue
422 	 */
423 	iq->doorbell_reg = LIO_CN23XX_SLI_IQ_DOORBELL(iq_no);
424 	iq->inst_cnt_reg = LIO_CN23XX_SLI_IQ_INSTR_COUNT64(iq_no);
425 	lio_dev_dbg(oct, "InstQ[%d]:dbell reg @ 0x%x instcnt_reg @ 0x%x\n",
426 		    iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
427 
428 	/*
429 	 * Store the current instruction counter (used in flush_iq
430 	 * calculation)
431 	 */
432 	pkt_in_done = lio_read_csr64(oct, iq->inst_cnt_reg);
433 
434 	if (oct->msix_on) {
435 		/* Set CINT_ENB to enable IQ interrupt   */
436 		lio_write_csr64(oct, iq->inst_cnt_reg,
437 				(pkt_in_done | LIO_CN23XX_INTR_CINT_ENB));
438 	} else {
439 		/*
440 		 * Clear the count by writing back what we read, but don't
441 		 * enable interrupts
442 		 */
443 		lio_write_csr64(oct, iq->inst_cnt_reg, pkt_in_done);
444 	}
445 
446 	iq->reset_instr_cnt = 0;
447 }
448 
449 static void
450 lio_cn23xx_pf_setup_oq_regs(struct octeon_device *oct, uint32_t oq_no)
451 {
452 	struct lio_droq		*droq = oct->droq[oq_no];
453 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
454 	uint64_t		cnt_threshold;
455 	uint64_t		time_threshold;
456 	uint32_t		reg_val;
457 
458 	oq_no += oct->sriov_info.pf_srn;
459 
460 	lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_BASE_ADDR64(oq_no),
461 			droq->desc_ring_dma);
462 	lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count);
463 
464 	lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
465 			droq->buffer_size);
466 
467 	/* pkt_sent and pkts_credit regs */
468 	droq->pkts_sent_reg = LIO_CN23XX_SLI_OQ_PKTS_SENT(oq_no);
469 	droq->pkts_credit_reg = LIO_CN23XX_SLI_OQ_PKTS_CREDIT(oq_no);
470 
471 	if (!oct->msix_on) {
472 		/*
473 		 * Enable this output queue to generate Packet Timer
474 		 * Interrupt
475 		 */
476 		reg_val =
477 		    lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
478 		reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_TENB;
479 		lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
480 				reg_val);
481 
482 		/*
483 		 * Enable this output queue to generate Packet Count
484 		 * Interrupt
485 		 */
486 		reg_val =
487 		    lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
488 		reg_val |= LIO_CN23XX_PKT_OUTPUT_CTL_CENB;
489 		lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
490 				reg_val);
491 	} else {
492 		time_threshold = lio_cn23xx_pf_get_oq_ticks(oct,
493 			(uint32_t)LIO_GET_OQ_INTR_TIME_CFG(cn23xx->conf));
494 		cnt_threshold = (uint32_t)LIO_GET_OQ_INTR_PKT_CFG(cn23xx->conf);
495 
496 		lio_write_csr64(oct, LIO_CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no),
497 				((time_threshold << 32 | cnt_threshold)));
498 	}
499 }
500 
501 
502 static int
503 lio_cn23xx_pf_enable_io_queues(struct octeon_device *oct)
504 {
505 	uint64_t	reg_val;
506 	uint32_t	ern, loop = BUSY_READING_REG_PF_LOOP_COUNT;
507 	uint32_t	q_no, srn;
508 
509 	srn = oct->sriov_info.pf_srn;
510 	ern = srn + oct->num_iqs;
511 
512 	for (q_no = srn; q_no < ern; q_no++) {
513 		/* set the corresponding IQ IS_64B bit */
514 		if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) {
515 			reg_val = lio_read_csr64(oct,
516 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
517 			reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_IS_64B;
518 			lio_write_csr64(oct,
519 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
520 					reg_val);
521 		}
522 		/* set the corresponding IQ ENB bit */
523 		if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) {
524 			/*
525 			 * IOQs are in reset by default in PEM2 mode,
526 			 * clearing reset bit
527 			 */
528 			reg_val = lio_read_csr64(oct,
529 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
530 
531 			if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) {
532 				while ((reg_val &
533 					LIO_CN23XX_PKT_INPUT_CTL_RST) &&
534 				       !(reg_val &
535 					 LIO_CN23XX_PKT_INPUT_CTL_QUIET) &&
536 				       loop) {
537 					reg_val = lio_read_csr64(oct,
538 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
539 					loop--;
540 				}
541 				if (!loop) {
542 					lio_dev_err(oct, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
543 						    q_no);
544 					return (-1);
545 				}
546 				reg_val = reg_val &
547 					~LIO_CN23XX_PKT_INPUT_CTL_RST;
548 				lio_write_csr64(oct,
549 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
550 					reg_val);
551 
552 				reg_val = lio_read_csr64(oct,
553 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
554 				if (reg_val & LIO_CN23XX_PKT_INPUT_CTL_RST) {
555 					lio_dev_err(oct, "clearing the reset failed for qno: %u\n",
556 						    q_no);
557 					return (-1);
558 				}
559 			}
560 			reg_val = lio_read_csr64(oct,
561 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
562 			reg_val = reg_val | LIO_CN23XX_PKT_INPUT_CTL_RING_ENB;
563 			lio_write_csr64(oct,
564 					LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
565 					reg_val);
566 		}
567 	}
568 	for (q_no = srn; q_no < ern; q_no++) {
569 		uint32_t	reg_val;
570 		/* set the corresponding OQ ENB bit */
571 		if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) {
572 			reg_val = lio_read_csr32(oct,
573 					LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no));
574 			reg_val = reg_val | LIO_CN23XX_PKT_OUTPUT_CTL_RING_ENB;
575 			lio_write_csr32(oct,
576 					LIO_CN23XX_SLI_OQ_PKT_CONTROL(q_no),
577 					reg_val);
578 		}
579 	}
580 	return (0);
581 }
582 
583 static void
584 lio_cn23xx_pf_disable_io_queues(struct octeon_device *oct)
585 {
586 	volatile uint64_t	d64;
587 	volatile uint32_t	d32;
588 	int			loop;
589 	unsigned int		q_no;
590 	uint32_t		ern, srn;
591 
592 	srn = oct->sriov_info.pf_srn;
593 	ern = srn + oct->num_iqs;
594 
595 	/* Disable Input Queues. */
596 	for (q_no = srn; q_no < ern; q_no++) {
597 		loop = lio_ms_to_ticks(1000);
598 
599 		/* start the Reset for a particular ring */
600 		d64 = lio_read_csr64(oct,
601 				     LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
602 		d64 &= ~LIO_CN23XX_PKT_INPUT_CTL_RING_ENB;
603 		d64 |= LIO_CN23XX_PKT_INPUT_CTL_RST;
604 		lio_write_csr64(oct, LIO_CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
605 				d64);
606 
607 		/*
608 		 * Wait until hardware indicates that the particular IQ
609 		 * is out of reset.
610 		 */
611 		d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
612 		while (!(d64 & BIT_ULL(q_no)) && loop--) {
613 			d64 = lio_read_csr64(oct,
614 					     LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
615 			lio_sleep_timeout(1);
616 			loop--;
617 		}
618 
619 		/* Reset the doorbell register for this Input Queue. */
620 		lio_write_csr32(oct, LIO_CN23XX_SLI_IQ_DOORBELL(q_no),
621 				0xFFFFFFFF);
622 		while (((lio_read_csr64(oct,
623 					LIO_CN23XX_SLI_IQ_DOORBELL(q_no))) !=
624 			0ULL) && loop--) {
625 			lio_sleep_timeout(1);
626 		}
627 	}
628 
629 	/* Disable Output Queues. */
630 	for (q_no = srn; q_no < ern; q_no++) {
631 		loop = lio_ms_to_ticks(1000);
632 
633 		/*
634 		 * Wait until hardware indicates that the particular IQ
635 		 * is out of reset.It given that SLI_PKT_RING_RST is
636 		 * common for both IQs and OQs
637 		 */
638 		d64 = lio_read_csr64(oct, LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
639 		while (!(d64 & BIT_ULL(q_no)) && loop--) {
640 			d64 = lio_read_csr64(oct,
641 					     LIO_CN23XX_SLI_PKT_IOQ_RING_RST);
642 			lio_sleep_timeout(1);
643 			loop--;
644 		}
645 
646 		/* Reset the doorbell register for this Output Queue. */
647 		lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no),
648 				0xFFFFFFFF);
649 		while ((lio_read_csr64(oct,
650 				       LIO_CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) !=
651 			0ULL) && loop--) {
652 			lio_sleep_timeout(1);
653 		}
654 
655 		/* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */
656 		d32 = lio_read_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no));
657 		lio_write_csr32(oct, LIO_CN23XX_SLI_OQ_PKTS_SENT(q_no),	d32);
658 	}
659 }
660 
661 static uint64_t
662 lio_cn23xx_pf_msix_interrupt_handler(void *dev)
663 {
664 	struct lio_ioq_vector	*ioq_vector = (struct lio_ioq_vector *)dev;
665 	struct octeon_device	*oct = ioq_vector->oct_dev;
666 	struct lio_droq		*droq = oct->droq[ioq_vector->droq_index];
667 	uint64_t		pkts_sent;
668 	uint64_t		ret = 0;
669 
670 	if (droq == NULL) {
671 		lio_dev_err(oct, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n",
672 			    oct->pf_num, ioq_vector->ioq_num);
673 		return (0);
674 	}
675 	pkts_sent = lio_read_csr64(oct, droq->pkts_sent_reg);
676 
677 	/*
678 	 * If our device has interrupted, then proceed. Also check
679 	 * for all f's if interrupt was triggered on an error
680 	 * and the PCI read fails.
681 	 */
682 	if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
683 		return (ret);
684 
685 	/* Write count reg in sli_pkt_cnts to clear these int. */
686 	if (pkts_sent & LIO_CN23XX_INTR_PO_INT)
687 		ret |= LIO_MSIX_PO_INT;
688 
689 	if (pkts_sent & LIO_CN23XX_INTR_PI_INT)
690 		/* We will clear the count when we update the read_index. */
691 		ret |= LIO_MSIX_PI_INT;
692 
693 	/*
694 	 * Never need to handle msix mbox intr for pf. They arrive on the last
695 	 * msix
696 	 */
697 	return (ret);
698 }
699 
700 static void
701 lio_cn23xx_pf_interrupt_handler(void *dev)
702 {
703 	struct octeon_device	*oct = (struct octeon_device *)dev;
704 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
705 	uint64_t		intr64;
706 
707 	lio_dev_dbg(oct, "In %s octeon_dev @ %p\n", __func__, oct);
708 	intr64 = lio_read_csr64(oct, cn23xx->intr_sum_reg64);
709 
710 	oct->int_status = 0;
711 
712 	if (intr64 & LIO_CN23XX_INTR_ERR)
713 		lio_dev_err(oct, "Error Intr: 0x%016llx\n",
714 			    LIO_CAST64(intr64));
715 
716 	if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) {
717 		if (intr64 & LIO_CN23XX_INTR_PKT_DATA)
718 			oct->int_status |= LIO_DEV_INTR_PKT_DATA;
719 	}
720 
721 	if (intr64 & (LIO_CN23XX_INTR_DMA0_FORCE))
722 		oct->int_status |= LIO_DEV_INTR_DMA0_FORCE;
723 
724 	if (intr64 & (LIO_CN23XX_INTR_DMA1_FORCE))
725 		oct->int_status |= LIO_DEV_INTR_DMA1_FORCE;
726 
727 	/* Clear the current interrupts */
728 	lio_write_csr64(oct, cn23xx->intr_sum_reg64, intr64);
729 }
730 
731 static void
732 lio_cn23xx_pf_bar1_idx_setup(struct octeon_device *oct, uint64_t core_addr,
733 			     uint32_t idx, int valid)
734 {
735 	volatile uint64_t	bar1;
736 	uint64_t		reg_adr;
737 
738 	if (!valid) {
739 		reg_adr = lio_pci_readq(oct,
740 				LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
741 							      idx));
742 		bar1 = reg_adr;
743 		lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
744 			       LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
745 							     idx));
746 		reg_adr = lio_pci_readq(oct,
747 				LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
748 							      idx));
749 		bar1 = reg_adr;
750 		return;
751 	}
752 	/*
753 	 *  The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores
754 	 *  bits <41:22> of the Core Addr
755 	 */
756 	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | LIO_PCI_BAR1_MASK),
757 		       LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
758 
759 	bar1 = lio_pci_readq(oct, LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
760 								idx));
761 }
762 
763 static void
764 lio_cn23xx_pf_bar1_idx_write(struct octeon_device *oct, uint32_t idx,
765 			     uint32_t mask)
766 {
767 
768 	lio_pci_writeq(oct, mask,
769 		       LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
770 }
771 
772 static uint32_t
773 lio_cn23xx_pf_bar1_idx_read(struct octeon_device *oct, uint32_t idx)
774 {
775 
776 	return ((uint32_t)lio_pci_readq(oct,
777 				LIO_CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port,
778 							      idx)));
779 }
780 
781 /* always call with lock held */
782 static uint32_t
783 lio_cn23xx_pf_update_read_index(struct lio_instr_queue *iq)
784 {
785 	struct octeon_device	*oct = iq->oct_dev;
786 	uint32_t	new_idx;
787 	uint32_t	last_done;
788 	uint32_t	pkt_in_done = lio_read_csr32(oct, iq->inst_cnt_reg);
789 
790 	last_done = pkt_in_done - iq->pkt_in_done;
791 	iq->pkt_in_done = pkt_in_done;
792 
793 	/*
794 	 * Modulo of the new index with the IQ size will give us
795 	 * the new index.  The iq->reset_instr_cnt is always zero for
796 	 * cn23xx, so no extra adjustments are needed.
797 	 */
798 	new_idx = (iq->octeon_read_index +
799 		   ((uint32_t)(last_done & LIO_CN23XX_PKT_IN_DONE_CNT_MASK))) %
800 	    iq->max_count;
801 
802 	return (new_idx);
803 }
804 
805 static void
806 lio_cn23xx_pf_enable_interrupt(struct octeon_device *oct, uint8_t intr_flag)
807 {
808 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
809 	uint64_t		intr_val = 0;
810 
811 	/* Divide the single write to multiple writes based on the flag. */
812 	/* Enable Interrupt */
813 	if (intr_flag == OCTEON_ALL_INTR) {
814 		lio_write_csr64(oct, cn23xx->intr_enb_reg64,
815 				cn23xx->intr_mask64);
816 	} else if (intr_flag & OCTEON_OUTPUT_INTR) {
817 		intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64);
818 		intr_val |= LIO_CN23XX_INTR_PKT_DATA;
819 		lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val);
820 	}
821 }
822 
823 static void
824 lio_cn23xx_pf_disable_interrupt(struct octeon_device *oct, uint8_t intr_flag)
825 {
826 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
827 	uint64_t		intr_val = 0;
828 
829 	/* Disable Interrupts */
830 	if (intr_flag == OCTEON_ALL_INTR) {
831 		lio_write_csr64(oct, cn23xx->intr_enb_reg64, 0);
832 	} else if (intr_flag & OCTEON_OUTPUT_INTR) {
833 		intr_val = lio_read_csr64(oct, cn23xx->intr_enb_reg64);
834 		intr_val &= ~LIO_CN23XX_INTR_PKT_DATA;
835 		lio_write_csr64(oct, cn23xx->intr_enb_reg64, intr_val);
836 	}
837 }
838 
839 static void
840 lio_cn23xx_pf_get_pcie_qlmport(struct octeon_device *oct)
841 {
842 	oct->pcie_port = (lio_read_csr32(oct,
843 					 LIO_CN23XX_SLI_MAC_NUMBER)) & 0xff;
844 
845 	lio_dev_dbg(oct, "CN23xx uses PCIE Port %d\n",
846 		    oct->pcie_port);
847 }
848 
849 static void
850 lio_cn23xx_pf_get_pf_num(struct octeon_device *oct)
851 {
852 	uint32_t	fdl_bit;
853 
854 	/* Read Function Dependency Link reg to get the function number */
855 	fdl_bit = lio_read_pci_cfg(oct, LIO_CN23XX_PCIE_SRIOV_FDL);
856 	oct->pf_num = ((fdl_bit >> LIO_CN23XX_PCIE_SRIOV_FDL_BIT_POS) &
857 		       LIO_CN23XX_PCIE_SRIOV_FDL_MASK);
858 }
859 
860 static void
861 lio_cn23xx_pf_setup_reg_address(struct octeon_device *oct)
862 {
863 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
864 
865 	oct->reg_list.pci_win_wr_addr = LIO_CN23XX_SLI_WIN_WR_ADDR64;
866 
867 	oct->reg_list.pci_win_rd_addr_hi = LIO_CN23XX_SLI_WIN_RD_ADDR_HI;
868 	oct->reg_list.pci_win_rd_addr_lo = LIO_CN23XX_SLI_WIN_RD_ADDR64;
869 	oct->reg_list.pci_win_rd_addr = LIO_CN23XX_SLI_WIN_RD_ADDR64;
870 
871 	oct->reg_list.pci_win_wr_data_hi = LIO_CN23XX_SLI_WIN_WR_DATA_HI;
872 	oct->reg_list.pci_win_wr_data_lo = LIO_CN23XX_SLI_WIN_WR_DATA_LO;
873 	oct->reg_list.pci_win_wr_data = LIO_CN23XX_SLI_WIN_WR_DATA64;
874 
875 	oct->reg_list.pci_win_rd_data = LIO_CN23XX_SLI_WIN_RD_DATA64;
876 
877 	lio_cn23xx_pf_get_pcie_qlmport(oct);
878 
879 	cn23xx->intr_mask64 = LIO_CN23XX_INTR_MASK;
880 	if (!oct->msix_on)
881 		cn23xx->intr_mask64 |= LIO_CN23XX_INTR_PKT_TIME;
882 
883 	cn23xx->intr_sum_reg64 =
884 	    LIO_CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num);
885 	cn23xx->intr_enb_reg64 =
886 	    LIO_CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num);
887 }
888 
889 static int
890 lio_cn23xx_pf_sriov_config(struct octeon_device *oct)
891 {
892 	struct lio_cn23xx_pf	*cn23xx = (struct lio_cn23xx_pf *)oct->chip;
893 	uint32_t		num_pf_rings, total_rings, max_rings;
894 	cn23xx->conf = (struct lio_config *)lio_get_config_info(oct, LIO_23XX);
895 
896 	max_rings = LIO_CN23XX_PF_MAX_RINGS;
897 
898 	if (oct->sriov_info.num_pf_rings) {
899 		num_pf_rings = oct->sriov_info.num_pf_rings;
900 		if (num_pf_rings > max_rings) {
901 			num_pf_rings = min(mp_ncpus, max_rings);
902 			lio_dev_warn(oct, "num_queues_per_pf requested %u is more than available rings (%u). Reducing to %u\n",
903 				     oct->sriov_info.num_pf_rings,
904 				     max_rings, num_pf_rings);
905 		}
906 	} else {
907 #ifdef RSS
908 		num_pf_rings = min(rss_getnumbuckets(), mp_ncpus);
909 #else
910 		num_pf_rings = min(mp_ncpus, max_rings);
911 #endif
912 
913 	}
914 
915 	total_rings = num_pf_rings;
916 	oct->sriov_info.trs = total_rings;
917 	oct->sriov_info.pf_srn = total_rings - num_pf_rings;
918 	oct->sriov_info.num_pf_rings = num_pf_rings;
919 
920 	lio_dev_dbg(oct, "trs:%d pf_srn:%d num_pf_rings:%d\n",
921 		    oct->sriov_info.trs, oct->sriov_info.pf_srn,
922 		    oct->sriov_info.num_pf_rings);
923 
924 	return (0);
925 }
926 
927 int
928 lio_cn23xx_pf_setup_device(struct octeon_device *oct)
929 {
930 	uint64_t	BAR0, BAR1;
931 	uint32_t	data32;
932 
933 	data32 = lio_read_pci_cfg(oct, 0x10);
934 	BAR0 = (uint64_t)(data32 & ~0xf);
935 	data32 = lio_read_pci_cfg(oct, 0x14);
936 	BAR0 |= ((uint64_t)data32 << 32);
937 	data32 = lio_read_pci_cfg(oct, 0x18);
938 	BAR1 = (uint64_t)(data32 & ~0xf);
939 	data32 = lio_read_pci_cfg(oct, 0x1c);
940 	BAR1 |= ((uint64_t)data32 << 32);
941 
942 	if (!BAR0 || !BAR1) {
943 		if (!BAR0)
944 			lio_dev_err(oct, "Device BAR0 unassigned\n");
945 
946 		if (!BAR1)
947 			lio_dev_err(oct, "Device BAR1 unassigned\n");
948 
949 		return (1);
950 	}
951 
952 	if (lio_map_pci_barx(oct, 0))
953 		return (1);
954 
955 	if (lio_map_pci_barx(oct, 1)) {
956 		lio_dev_err(oct, "%s CN23XX BAR1 map failed\n", __func__);
957 		lio_unmap_pci_barx(oct, 0);
958 		return (1);
959 	}
960 
961 	lio_cn23xx_pf_get_pf_num(oct);
962 
963 	if (lio_cn23xx_pf_sriov_config(oct)) {
964 		lio_unmap_pci_barx(oct, 0);
965 		lio_unmap_pci_barx(oct, 1);
966 		return (1);
967 	}
968 	lio_write_csr64(oct, LIO_CN23XX_SLI_MAC_CREDIT_CNT,
969 			0x3F802080802080ULL);
970 
971 	oct->fn_list.setup_iq_regs = lio_cn23xx_pf_setup_iq_regs;
972 	oct->fn_list.setup_oq_regs = lio_cn23xx_pf_setup_oq_regs;
973 	oct->fn_list.process_interrupt_regs = lio_cn23xx_pf_interrupt_handler;
974 	oct->fn_list.msix_interrupt_handler =
975 		lio_cn23xx_pf_msix_interrupt_handler;
976 
977 	oct->fn_list.soft_reset = lio_cn23xx_pf_soft_reset;
978 	oct->fn_list.setup_device_regs = lio_cn23xx_pf_setup_device_regs;
979 	oct->fn_list.update_iq_read_idx = lio_cn23xx_pf_update_read_index;
980 
981 	oct->fn_list.bar1_idx_setup = lio_cn23xx_pf_bar1_idx_setup;
982 	oct->fn_list.bar1_idx_write = lio_cn23xx_pf_bar1_idx_write;
983 	oct->fn_list.bar1_idx_read = lio_cn23xx_pf_bar1_idx_read;
984 
985 	oct->fn_list.enable_interrupt = lio_cn23xx_pf_enable_interrupt;
986 	oct->fn_list.disable_interrupt = lio_cn23xx_pf_disable_interrupt;
987 
988 	oct->fn_list.enable_io_queues = lio_cn23xx_pf_enable_io_queues;
989 	oct->fn_list.disable_io_queues = lio_cn23xx_pf_disable_io_queues;
990 
991 	lio_cn23xx_pf_setup_reg_address(oct);
992 
993 	oct->coproc_clock_rate = 1000000ULL *
994 		lio_cn23xx_pf_coprocessor_clock(oct);
995 
996 	return (0);
997 }
998 
999 int
1000 lio_cn23xx_pf_fw_loaded(struct octeon_device *oct)
1001 {
1002 	uint64_t	val;
1003 
1004 	val = lio_read_csr64(oct, LIO_CN23XX_SLI_SCRATCH2);
1005 	return ((val >> SCR2_BIT_FW_LOADED) & 1ULL);
1006 }
1007 
1008