1 /* 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <william.paul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD$ 34 */ 35 36 /* 37 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public 38 * documentation not available, but ask me nicely. 39 * 40 * Written by Bill Paul <william.paul@windriver.com> 41 * Wind River Systems 42 */ 43 44 /* 45 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. 46 * It's a 64-bit PCI part that supports TCP/IP checksum offload, 47 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There 48 * are three supported methods for data transfer between host and 49 * NIC: programmed I/O, traditional scatter/gather DMA and Packet 50 * Propulsion Technology (tm) DMA. The latter mechanism is a form 51 * of double buffer DMA where the packet data is copied to a 52 * pre-allocated DMA buffer who's physical address has been loaded 53 * into a table at device initialization time. The rationale is that 54 * the virtual to physical address translation needed for normal 55 * scatter/gather DMA is more expensive than the data copy needed 56 * for double buffering. This may be true in Windows NT and the like, 57 * but it isn't true for us, at least on the x86 arch. This driver 58 * uses the scatter/gather I/O method for both TX and RX. 59 * 60 * The LXT1001 only supports TCP/IP checksum offload on receive. 61 * Also, the VLAN tagging is done using a 16-entry table which allows 62 * the chip to perform hardware filtering based on VLAN tags. Sadly, 63 * our vlan support doesn't currently play well with this kind of 64 * hardware support. 65 * 66 * Special thanks to: 67 * - Jeff James at Intel, for arranging to have the LXT1001 manual 68 * released (at long last) 69 * - Beny Chen at D-Link, for actually sending it to me 70 * - Brad Short and Keith Alexis at SMC, for sending me sample 71 * SMC9462SX and SMC9462TX adapters for testing 72 * - Paul Saab at Y!, for not killing me (though it remains to be seen 73 * if in fact he did me much of a favor) 74 */ 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/sockio.h> 79 #include <sys/mbuf.h> 80 #include <sys/malloc.h> 81 #include <sys/kernel.h> 82 #include <sys/socket.h> 83 84 #include <net/if.h> 85 #include <net/if_arp.h> 86 #include <net/ethernet.h> 87 #include <net/if_dl.h> 88 #include <net/if_media.h> 89 90 #include <net/bpf.h> 91 92 #include <vm/vm.h> /* for vtophys */ 93 #include <vm/pmap.h> /* for vtophys */ 94 #include <machine/clock.h> /* for DELAY */ 95 #include <machine/bus_pio.h> 96 #include <machine/bus_memio.h> 97 #include <machine/bus.h> 98 #include <machine/resource.h> 99 #include <sys/bus.h> 100 #include <sys/rman.h> 101 102 #include <dev/mii/mii.h> 103 #include <dev/mii/miivar.h> 104 105 #include <pci/pcireg.h> 106 #include <pci/pcivar.h> 107 108 #define LGE_USEIOSPACE 109 110 #include <dev/lge/if_lgereg.h> 111 112 /* "controller miibus0" required. See GENERIC if you get errors here. */ 113 #include "miibus_if.h" 114 115 #ifndef lint 116 static const char rcsid[] = 117 "$FreeBSD$"; 118 #endif 119 120 /* 121 * Various supported device vendors/types and their names. 122 */ 123 static struct lge_type lge_devs[] = { 124 { LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" }, 125 { 0, 0, NULL } 126 }; 127 128 static int lge_probe(device_t); 129 static int lge_attach(device_t); 130 static int lge_detach(device_t); 131 132 static int lge_alloc_jumbo_mem(struct lge_softc *); 133 static void lge_free_jumbo_mem(struct lge_softc *); 134 static void *lge_jalloc(struct lge_softc *); 135 static void lge_jfree(void *, void *); 136 137 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *); 138 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *); 139 static void lge_rxeof(struct lge_softc *, int); 140 static void lge_rxeoc(struct lge_softc *); 141 static void lge_txeof(struct lge_softc *); 142 static void lge_intr(void *); 143 static void lge_tick(void *); 144 static void lge_start(struct ifnet *); 145 static int lge_ioctl(struct ifnet *, u_long, caddr_t); 146 static void lge_init(void *); 147 static void lge_stop(struct lge_softc *); 148 static void lge_watchdog(struct ifnet *); 149 static void lge_shutdown(device_t); 150 static int lge_ifmedia_upd(struct ifnet *); 151 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 152 153 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *); 154 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int); 155 156 static int lge_miibus_readreg(device_t, int, int); 157 static int lge_miibus_writereg(device_t, int, int, int); 158 static void lge_miibus_statchg(device_t); 159 160 static void lge_setmulti(struct lge_softc *); 161 static u_int32_t lge_crc(struct lge_softc *, caddr_t); 162 static void lge_reset(struct lge_softc *); 163 static int lge_list_rx_init(struct lge_softc *); 164 static int lge_list_tx_init(struct lge_softc *); 165 166 #ifdef LGE_USEIOSPACE 167 #define LGE_RES SYS_RES_IOPORT 168 #define LGE_RID LGE_PCI_LOIO 169 #else 170 #define LGE_RES SYS_RES_MEMORY 171 #define LGE_RID LGE_PCI_LOMEM 172 #endif 173 174 static device_method_t lge_methods[] = { 175 /* Device interface */ 176 DEVMETHOD(device_probe, lge_probe), 177 DEVMETHOD(device_attach, lge_attach), 178 DEVMETHOD(device_detach, lge_detach), 179 DEVMETHOD(device_shutdown, lge_shutdown), 180 181 /* bus interface */ 182 DEVMETHOD(bus_print_child, bus_generic_print_child), 183 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 184 185 /* MII interface */ 186 DEVMETHOD(miibus_readreg, lge_miibus_readreg), 187 DEVMETHOD(miibus_writereg, lge_miibus_writereg), 188 DEVMETHOD(miibus_statchg, lge_miibus_statchg), 189 190 { 0, 0 } 191 }; 192 193 static driver_t lge_driver = { 194 "lge", 195 lge_methods, 196 sizeof(struct lge_softc) 197 }; 198 199 static devclass_t lge_devclass; 200 201 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0); 202 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0); 203 204 #define LGE_SETBIT(sc, reg, x) \ 205 CSR_WRITE_4(sc, reg, \ 206 CSR_READ_4(sc, reg) | (x)) 207 208 #define LGE_CLRBIT(sc, reg, x) \ 209 CSR_WRITE_4(sc, reg, \ 210 CSR_READ_4(sc, reg) & ~(x)) 211 212 #define SIO_SET(x) \ 213 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x) 214 215 #define SIO_CLR(x) \ 216 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x) 217 218 /* 219 * Read a word of data stored in the EEPROM at address 'addr.' 220 */ 221 static void 222 lge_eeprom_getword(sc, addr, dest) 223 struct lge_softc *sc; 224 int addr; 225 u_int16_t *dest; 226 { 227 register int i; 228 u_int32_t val; 229 230 CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| 231 LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8)); 232 233 for (i = 0; i < LGE_TIMEOUT; i++) 234 if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ)) 235 break; 236 237 if (i == LGE_TIMEOUT) { 238 printf("lge%d: EEPROM read timed out\n", sc->lge_unit); 239 return; 240 } 241 242 val = CSR_READ_4(sc, LGE_EEDATA); 243 244 if (addr & 1) 245 *dest = (val >> 16) & 0xFFFF; 246 else 247 *dest = val & 0xFFFF; 248 249 return; 250 } 251 252 /* 253 * Read a sequence of words from the EEPROM. 254 */ 255 static void 256 lge_read_eeprom(sc, dest, off, cnt, swap) 257 struct lge_softc *sc; 258 caddr_t dest; 259 int off; 260 int cnt; 261 int swap; 262 { 263 int i; 264 u_int16_t word = 0, *ptr; 265 266 for (i = 0; i < cnt; i++) { 267 lge_eeprom_getword(sc, off + i, &word); 268 ptr = (u_int16_t *)(dest + (i * 2)); 269 if (swap) 270 *ptr = ntohs(word); 271 else 272 *ptr = word; 273 } 274 275 return; 276 } 277 278 static int 279 lge_miibus_readreg(dev, phy, reg) 280 device_t dev; 281 int phy, reg; 282 { 283 struct lge_softc *sc; 284 int i; 285 286 sc = device_get_softc(dev); 287 288 /* 289 * If we have a non-PCS PHY, pretend that the internal 290 * autoneg stuff at PHY address 0 isn't there so that 291 * the miibus code will find only the GMII PHY. 292 */ 293 if (sc->lge_pcs == 0 && phy == 0) 294 return(0); 295 296 CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); 297 298 for (i = 0; i < LGE_TIMEOUT; i++) 299 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 300 break; 301 302 if (i == LGE_TIMEOUT) { 303 printf("lge%d: PHY read timed out\n", sc->lge_unit); 304 return(0); 305 } 306 307 return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); 308 } 309 310 static int 311 lge_miibus_writereg(dev, phy, reg, data) 312 device_t dev; 313 int phy, reg, data; 314 { 315 struct lge_softc *sc; 316 int i; 317 318 sc = device_get_softc(dev); 319 320 CSR_WRITE_4(sc, LGE_GMIICTL, 321 (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); 322 323 for (i = 0; i < LGE_TIMEOUT; i++) 324 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 325 break; 326 327 if (i == LGE_TIMEOUT) { 328 printf("lge%d: PHY write timed out\n", sc->lge_unit); 329 return(0); 330 } 331 332 return(0); 333 } 334 335 static void 336 lge_miibus_statchg(dev) 337 device_t dev; 338 { 339 struct lge_softc *sc; 340 struct mii_data *mii; 341 342 sc = device_get_softc(dev); 343 mii = device_get_softc(sc->lge_miibus); 344 345 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); 346 switch (IFM_SUBTYPE(mii->mii_media_active)) { 347 case IFM_1000_T: 348 case IFM_1000_SX: 349 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 350 break; 351 case IFM_100_TX: 352 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); 353 break; 354 case IFM_10_T: 355 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); 356 break; 357 default: 358 /* 359 * Choose something, even if it's wrong. Clearing 360 * all the bits will hose autoneg on the internal 361 * PHY. 362 */ 363 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 364 break; 365 } 366 367 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 368 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 369 } else { 370 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 371 } 372 373 return; 374 } 375 376 static u_int32_t 377 lge_crc(sc, addr) 378 struct lge_softc *sc; 379 caddr_t addr; 380 { 381 u_int32_t crc, carry; 382 int i, j; 383 u_int8_t c; 384 385 /* Compute CRC for the address value. */ 386 crc = 0xFFFFFFFF; /* initial value */ 387 388 for (i = 0; i < 6; i++) { 389 c = *(addr + i); 390 for (j = 0; j < 8; j++) { 391 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); 392 crc <<= 1; 393 c >>= 1; 394 if (carry) 395 crc = (crc ^ 0x04c11db6) | carry; 396 } 397 } 398 399 /* 400 * return the filter bit position 401 */ 402 return((crc >> 26) & 0x0000003F); 403 } 404 405 static void 406 lge_setmulti(sc) 407 struct lge_softc *sc; 408 { 409 struct ifnet *ifp; 410 struct ifmultiaddr *ifma; 411 u_int32_t h = 0, hashes[2] = { 0, 0 }; 412 413 ifp = &sc->arpcom.ac_if; 414 415 /* Make sure multicast hash table is enabled. */ 416 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST); 417 418 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 419 CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); 420 CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); 421 return; 422 } 423 424 /* first, zot all the existing hash bits */ 425 CSR_WRITE_4(sc, LGE_MAR0, 0); 426 CSR_WRITE_4(sc, LGE_MAR1, 0); 427 428 /* now program new ones */ 429 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 430 if (ifma->ifma_addr->sa_family != AF_LINK) 431 continue; 432 h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); 433 if (h < 32) 434 hashes[0] |= (1 << h); 435 else 436 hashes[1] |= (1 << (h - 32)); 437 } 438 439 CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); 440 CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); 441 442 return; 443 } 444 445 static void 446 lge_reset(sc) 447 struct lge_softc *sc; 448 { 449 register int i; 450 451 LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST); 452 453 for (i = 0; i < LGE_TIMEOUT; i++) { 454 if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST)) 455 break; 456 } 457 458 if (i == LGE_TIMEOUT) 459 printf("lge%d: reset never completed\n", sc->lge_unit); 460 461 /* Wait a little while for the chip to get its brains in order. */ 462 DELAY(1000); 463 464 return; 465 } 466 467 /* 468 * Probe for a Level 1 chip. Check the PCI vendor and device 469 * IDs against our list and return a device name if we find a match. 470 */ 471 static int 472 lge_probe(dev) 473 device_t dev; 474 { 475 struct lge_type *t; 476 477 t = lge_devs; 478 479 while(t->lge_name != NULL) { 480 if ((pci_get_vendor(dev) == t->lge_vid) && 481 (pci_get_device(dev) == t->lge_did)) { 482 device_set_desc(dev, t->lge_name); 483 return(0); 484 } 485 t++; 486 } 487 488 return(ENXIO); 489 } 490 491 /* 492 * Attach the interface. Allocate softc structures, do ifmedia 493 * setup and ethernet/BPF attach. 494 */ 495 static int 496 lge_attach(dev) 497 device_t dev; 498 { 499 int s; 500 u_char eaddr[ETHER_ADDR_LEN]; 501 u_int32_t command; 502 struct lge_softc *sc; 503 struct ifnet *ifp; 504 int unit, error = 0, rid; 505 506 s = splimp(); 507 508 sc = device_get_softc(dev); 509 unit = device_get_unit(dev); 510 bzero(sc, sizeof(struct lge_softc)); 511 512 /* 513 * Handle power management nonsense. 514 */ 515 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { 516 u_int32_t iobase, membase, irq; 517 518 /* Save important PCI config data. */ 519 iobase = pci_read_config(dev, LGE_PCI_LOIO, 4); 520 membase = pci_read_config(dev, LGE_PCI_LOMEM, 4); 521 irq = pci_read_config(dev, LGE_PCI_INTLINE, 4); 522 523 /* Reset the power state. */ 524 printf("lge%d: chip is in D%d power mode " 525 "-- setting to D0\n", unit, 526 pci_get_powerstate(dev)); 527 pci_set_powerstate(dev, PCI_POWERSTATE_D0); 528 529 /* Restore PCI config data. */ 530 pci_write_config(dev, LGE_PCI_LOIO, iobase, 4); 531 pci_write_config(dev, LGE_PCI_LOMEM, membase, 4); 532 pci_write_config(dev, LGE_PCI_INTLINE, irq, 4); 533 } 534 535 /* 536 * Map control/status registers. 537 */ 538 pci_enable_busmaster(dev); 539 pci_enable_io(dev, SYS_RES_IOPORT); 540 pci_enable_io(dev, SYS_RES_MEMORY); 541 command = pci_read_config(dev, PCIR_COMMAND, 4); 542 543 #ifdef LGE_USEIOSPACE 544 if (!(command & PCIM_CMD_PORTEN)) { 545 printf("lge%d: failed to enable I/O ports!\n", unit); 546 error = ENXIO;; 547 goto fail; 548 } 549 #else 550 if (!(command & PCIM_CMD_MEMEN)) { 551 printf("lge%d: failed to enable memory mapping!\n", unit); 552 error = ENXIO;; 553 goto fail; 554 } 555 #endif 556 557 rid = LGE_RID; 558 sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid, 559 0, ~0, 1, RF_ACTIVE); 560 561 if (sc->lge_res == NULL) { 562 printf("lge%d: couldn't map ports/memory\n", unit); 563 error = ENXIO; 564 goto fail; 565 } 566 567 sc->lge_btag = rman_get_bustag(sc->lge_res); 568 sc->lge_bhandle = rman_get_bushandle(sc->lge_res); 569 570 /* Allocate interrupt */ 571 rid = 0; 572 sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, 573 RF_SHAREABLE | RF_ACTIVE); 574 575 if (sc->lge_irq == NULL) { 576 printf("lge%d: couldn't map interrupt\n", unit); 577 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 578 error = ENXIO; 579 goto fail; 580 } 581 582 error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET, 583 lge_intr, sc, &sc->lge_intrhand); 584 585 if (error) { 586 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 587 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 588 printf("lge%d: couldn't set up irq\n", unit); 589 goto fail; 590 } 591 592 /* Reset the adapter. */ 593 lge_reset(sc); 594 595 /* 596 * Get station address from the EEPROM. 597 */ 598 lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0); 599 lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0); 600 lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0); 601 602 /* 603 * A Level 1 chip was detected. Inform the world. 604 */ 605 printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":"); 606 607 sc->lge_unit = unit; 608 callout_handle_init(&sc->lge_stat_ch); 609 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 610 611 sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF, 612 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 613 614 if (sc->lge_ldata == NULL) { 615 printf("lge%d: no memory for list buffers!\n", unit); 616 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 617 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 618 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 619 error = ENXIO; 620 goto fail; 621 } 622 bzero(sc->lge_ldata, sizeof(struct lge_list_data)); 623 624 /* Try to allocate memory for jumbo buffers. */ 625 if (lge_alloc_jumbo_mem(sc)) { 626 printf("lge%d: jumbo buffer allocation failed\n", 627 sc->lge_unit); 628 contigfree(sc->lge_ldata, 629 sizeof(struct lge_list_data), M_DEVBUF); 630 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 631 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 632 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 633 error = ENXIO; 634 goto fail; 635 } 636 637 ifp = &sc->arpcom.ac_if; 638 ifp->if_softc = sc; 639 ifp->if_unit = unit; 640 ifp->if_name = "lge"; 641 ifp->if_mtu = ETHERMTU; 642 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 643 ifp->if_ioctl = lge_ioctl; 644 ifp->if_output = ether_output; 645 ifp->if_start = lge_start; 646 ifp->if_watchdog = lge_watchdog; 647 ifp->if_init = lge_init; 648 ifp->if_baudrate = 1000000000; 649 ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1; 650 ifp->if_capabilities = IFCAP_RXCSUM; 651 ifp->if_capenable = ifp->if_capabilities; 652 653 if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) 654 sc->lge_pcs = 1; 655 else 656 sc->lge_pcs = 0; 657 658 /* 659 * Do MII setup. 660 */ 661 if (mii_phy_probe(dev, &sc->lge_miibus, 662 lge_ifmedia_upd, lge_ifmedia_sts)) { 663 printf("lge%d: MII without any PHY!\n", sc->lge_unit); 664 contigfree(sc->lge_ldata, 665 sizeof(struct lge_list_data), M_DEVBUF); 666 lge_free_jumbo_mem(sc); 667 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 668 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 669 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 670 error = ENXIO; 671 goto fail; 672 } 673 674 /* 675 * Call MI attach routine. 676 */ 677 ether_ifattach(ifp, eaddr); 678 callout_handle_init(&sc->lge_stat_ch); 679 680 fail: 681 splx(s); 682 return(error); 683 } 684 685 static int 686 lge_detach(dev) 687 device_t dev; 688 { 689 struct lge_softc *sc; 690 struct ifnet *ifp; 691 int s; 692 693 s = splimp(); 694 695 sc = device_get_softc(dev); 696 ifp = &sc->arpcom.ac_if; 697 698 lge_reset(sc); 699 lge_stop(sc); 700 ether_ifdetach(ifp); 701 702 bus_generic_detach(dev); 703 device_delete_child(dev, sc->lge_miibus); 704 705 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 706 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 707 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 708 709 contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF); 710 lge_free_jumbo_mem(sc); 711 712 splx(s); 713 714 return(0); 715 } 716 717 /* 718 * Initialize the transmit descriptors. 719 */ 720 static int 721 lge_list_tx_init(sc) 722 struct lge_softc *sc; 723 { 724 struct lge_list_data *ld; 725 struct lge_ring_data *cd; 726 int i; 727 728 cd = &sc->lge_cdata; 729 ld = sc->lge_ldata; 730 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 731 ld->lge_tx_list[i].lge_mbuf = NULL; 732 ld->lge_tx_list[i].lge_ctl = 0; 733 } 734 735 cd->lge_tx_prod = cd->lge_tx_cons = 0; 736 737 return(0); 738 } 739 740 741 /* 742 * Initialize the RX descriptors and allocate mbufs for them. Note that 743 * we arralge the descriptors in a closed ring, so that the last descriptor 744 * points back to the first. 745 */ 746 static int 747 lge_list_rx_init(sc) 748 struct lge_softc *sc; 749 { 750 struct lge_list_data *ld; 751 struct lge_ring_data *cd; 752 int i; 753 754 ld = sc->lge_ldata; 755 cd = &sc->lge_cdata; 756 757 cd->lge_rx_prod = cd->lge_rx_cons = 0; 758 759 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 760 761 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 762 if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) 763 break; 764 if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) 765 return(ENOBUFS); 766 } 767 768 /* Clear possible 'rx command queue empty' interrupt. */ 769 CSR_READ_4(sc, LGE_ISR); 770 771 return(0); 772 } 773 774 /* 775 * Initialize an RX descriptor and attach an MBUF cluster. 776 */ 777 static int 778 lge_newbuf(sc, c, m) 779 struct lge_softc *sc; 780 struct lge_rx_desc *c; 781 struct mbuf *m; 782 { 783 struct mbuf *m_new = NULL; 784 caddr_t *buf = NULL; 785 786 if (m == NULL) { 787 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 788 if (m_new == NULL) { 789 printf("lge%d: no memory for rx list " 790 "-- packet dropped!\n", sc->lge_unit); 791 return(ENOBUFS); 792 } 793 794 /* Allocate the jumbo buffer */ 795 buf = lge_jalloc(sc); 796 if (buf == NULL) { 797 #ifdef LGE_VERBOSE 798 printf("lge%d: jumbo allocation failed " 799 "-- packet dropped!\n", sc->lge_unit); 800 #endif 801 m_freem(m_new); 802 return(ENOBUFS); 803 } 804 /* Attach the buffer to the mbuf */ 805 m_new->m_data = (void *)buf; 806 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 807 MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree, 808 (struct lge_softc *)sc, 0, EXT_NET_DRV); 809 } else { 810 m_new = m; 811 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 812 m_new->m_data = m_new->m_ext.ext_buf; 813 } 814 815 /* 816 * Adjust alignment so packet payload begins on a 817 * longword boundary. Mandatory for Alpha, useful on 818 * x86 too. 819 */ 820 m_adj(m_new, ETHER_ALIGN); 821 822 c->lge_mbuf = m_new; 823 c->lge_fragptr_hi = 0; 824 c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); 825 c->lge_fraglen = m_new->m_len; 826 c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); 827 c->lge_sts = 0; 828 829 /* 830 * Put this buffer in the RX command FIFO. To do this, 831 * we just write the physical address of the descriptor 832 * into the RX descriptor address registers. Note that 833 * there are two registers, one high DWORD and one low 834 * DWORD, which lets us specify a 64-bit address if 835 * desired. We only use a 32-bit address for now. 836 * Writing to the low DWORD register is what actually 837 * causes the command to be issued, so we do that 838 * last. 839 */ 840 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); 841 LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); 842 843 return(0); 844 } 845 846 static int 847 lge_alloc_jumbo_mem(sc) 848 struct lge_softc *sc; 849 { 850 caddr_t ptr; 851 register int i; 852 struct lge_jpool_entry *entry; 853 854 /* Grab a big chunk o' storage. */ 855 sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF, 856 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 857 858 if (sc->lge_cdata.lge_jumbo_buf == NULL) { 859 printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit); 860 return(ENOBUFS); 861 } 862 863 SLIST_INIT(&sc->lge_jfree_listhead); 864 SLIST_INIT(&sc->lge_jinuse_listhead); 865 866 /* 867 * Now divide it up into 9K pieces and save the addresses 868 * in an array. 869 */ 870 ptr = sc->lge_cdata.lge_jumbo_buf; 871 for (i = 0; i < LGE_JSLOTS; i++) { 872 sc->lge_cdata.lge_jslots[i] = ptr; 873 ptr += LGE_JLEN; 874 entry = malloc(sizeof(struct lge_jpool_entry), 875 M_DEVBUF, M_NOWAIT); 876 if (entry == NULL) { 877 printf("lge%d: no memory for jumbo " 878 "buffer queue!\n", sc->lge_unit); 879 return(ENOBUFS); 880 } 881 entry->slot = i; 882 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, 883 entry, jpool_entries); 884 } 885 886 return(0); 887 } 888 889 static void 890 lge_free_jumbo_mem(sc) 891 struct lge_softc *sc; 892 { 893 int i; 894 struct lge_jpool_entry *entry; 895 896 for (i = 0; i < LGE_JSLOTS; i++) { 897 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 898 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 899 free(entry, M_DEVBUF); 900 } 901 902 contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF); 903 904 return; 905 } 906 907 /* 908 * Allocate a jumbo buffer. 909 */ 910 static void * 911 lge_jalloc(sc) 912 struct lge_softc *sc; 913 { 914 struct lge_jpool_entry *entry; 915 916 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 917 918 if (entry == NULL) { 919 #ifdef LGE_VERBOSE 920 printf("lge%d: no free jumbo buffers\n", sc->lge_unit); 921 #endif 922 return(NULL); 923 } 924 925 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 926 SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries); 927 return(sc->lge_cdata.lge_jslots[entry->slot]); 928 } 929 930 /* 931 * Release a jumbo buffer. 932 */ 933 static void 934 lge_jfree(buf, args) 935 void *buf; 936 void *args; 937 { 938 struct lge_softc *sc; 939 int i; 940 struct lge_jpool_entry *entry; 941 942 /* Extract the softc struct pointer. */ 943 sc = args; 944 945 if (sc == NULL) 946 panic("lge_jfree: can't find softc pointer!"); 947 948 /* calculate the slot this buffer belongs to */ 949 i = ((vm_offset_t)buf 950 - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN; 951 952 if ((i < 0) || (i >= LGE_JSLOTS)) 953 panic("lge_jfree: asked to free buffer that we don't manage!"); 954 955 entry = SLIST_FIRST(&sc->lge_jinuse_listhead); 956 if (entry == NULL) 957 panic("lge_jfree: buffer not in use!"); 958 entry->slot = i; 959 SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); 960 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); 961 962 return; 963 } 964 965 /* 966 * A frame has been uploaded: pass the resulting mbuf chain up to 967 * the higher level protocols. 968 */ 969 static void 970 lge_rxeof(sc, cnt) 971 struct lge_softc *sc; 972 int cnt; 973 { 974 struct mbuf *m; 975 struct ifnet *ifp; 976 struct lge_rx_desc *cur_rx; 977 int c, i, total_len = 0; 978 u_int32_t rxsts, rxctl; 979 980 ifp = &sc->arpcom.ac_if; 981 982 /* Find out how many frames were processed. */ 983 c = cnt; 984 i = sc->lge_cdata.lge_rx_cons; 985 986 /* Suck them in. */ 987 while(c) { 988 struct mbuf *m0 = NULL; 989 990 cur_rx = &sc->lge_ldata->lge_rx_list[i]; 991 rxctl = cur_rx->lge_ctl; 992 rxsts = cur_rx->lge_sts; 993 m = cur_rx->lge_mbuf; 994 cur_rx->lge_mbuf = NULL; 995 total_len = LGE_RXBYTES(cur_rx); 996 LGE_INC(i, LGE_RX_LIST_CNT); 997 c--; 998 999 /* 1000 * If an error occurs, update stats, clear the 1001 * status word and leave the mbuf cluster in place: 1002 * it should simply get re-used next time this descriptor 1003 * comes up in the ring. 1004 */ 1005 if (rxctl & LGE_RXCTL_ERRMASK) { 1006 ifp->if_ierrors++; 1007 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 1008 continue; 1009 } 1010 1011 if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { 1012 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 1013 ifp, NULL); 1014 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 1015 if (m0 == NULL) { 1016 printf("lge%d: no receive buffers " 1017 "available -- packet dropped!\n", 1018 sc->lge_unit); 1019 ifp->if_ierrors++; 1020 continue; 1021 } 1022 m = m0; 1023 } else { 1024 m->m_pkthdr.rcvif = ifp; 1025 m->m_pkthdr.len = m->m_len = total_len; 1026 } 1027 1028 ifp->if_ipackets++; 1029 1030 /* Do IP checksum checking. */ 1031 if (rxsts & LGE_RXSTS_ISIP) 1032 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1033 if (!(rxsts & LGE_RXSTS_IPCSUMERR)) 1034 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1035 if ((rxsts & LGE_RXSTS_ISTCP && 1036 !(rxsts & LGE_RXSTS_TCPCSUMERR)) || 1037 (rxsts & LGE_RXSTS_ISUDP && 1038 !(rxsts & LGE_RXSTS_UDPCSUMERR))) { 1039 m->m_pkthdr.csum_flags |= 1040 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1041 m->m_pkthdr.csum_data = 0xffff; 1042 } 1043 1044 (*ifp->if_input)(ifp, m); 1045 } 1046 1047 sc->lge_cdata.lge_rx_cons = i; 1048 1049 return; 1050 } 1051 1052 static void 1053 lge_rxeoc(sc) 1054 struct lge_softc *sc; 1055 { 1056 struct ifnet *ifp; 1057 1058 ifp = &sc->arpcom.ac_if; 1059 ifp->if_flags &= ~IFF_RUNNING; 1060 lge_init(sc); 1061 return; 1062 } 1063 1064 /* 1065 * A frame was downloaded to the chip. It's safe for us to clean up 1066 * the list buffers. 1067 */ 1068 1069 static void 1070 lge_txeof(sc) 1071 struct lge_softc *sc; 1072 { 1073 struct lge_tx_desc *cur_tx = NULL; 1074 struct ifnet *ifp; 1075 u_int32_t idx, txdone; 1076 1077 ifp = &sc->arpcom.ac_if; 1078 1079 /* Clear the timeout timer. */ 1080 ifp->if_timer = 0; 1081 1082 /* 1083 * Go through our tx list and free mbufs for those 1084 * frames that have been transmitted. 1085 */ 1086 idx = sc->lge_cdata.lge_tx_cons; 1087 txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); 1088 1089 while (idx != sc->lge_cdata.lge_tx_prod && txdone) { 1090 cur_tx = &sc->lge_ldata->lge_tx_list[idx]; 1091 1092 ifp->if_opackets++; 1093 if (cur_tx->lge_mbuf != NULL) { 1094 m_freem(cur_tx->lge_mbuf); 1095 cur_tx->lge_mbuf = NULL; 1096 } 1097 cur_tx->lge_ctl = 0; 1098 1099 txdone--; 1100 LGE_INC(idx, LGE_TX_LIST_CNT); 1101 ifp->if_timer = 0; 1102 } 1103 1104 sc->lge_cdata.lge_tx_cons = idx; 1105 1106 if (cur_tx != NULL) 1107 ifp->if_flags &= ~IFF_OACTIVE; 1108 1109 return; 1110 } 1111 1112 static void 1113 lge_tick(xsc) 1114 void *xsc; 1115 { 1116 struct lge_softc *sc; 1117 struct mii_data *mii; 1118 struct ifnet *ifp; 1119 int s; 1120 1121 s = splimp(); 1122 1123 sc = xsc; 1124 ifp = &sc->arpcom.ac_if; 1125 1126 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); 1127 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1128 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); 1129 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1130 1131 if (!sc->lge_link) { 1132 mii = device_get_softc(sc->lge_miibus); 1133 mii_tick(mii); 1134 if (mii->mii_media_status & IFM_ACTIVE && 1135 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1136 sc->lge_link++; 1137 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| 1138 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) 1139 printf("lge%d: gigabit link up\n", 1140 sc->lge_unit); 1141 if (ifp->if_snd.ifq_head != NULL) 1142 lge_start(ifp); 1143 } 1144 } 1145 1146 sc->lge_stat_ch = timeout(lge_tick, sc, hz); 1147 1148 splx(s); 1149 1150 return; 1151 } 1152 1153 static void 1154 lge_intr(arg) 1155 void *arg; 1156 { 1157 struct lge_softc *sc; 1158 struct ifnet *ifp; 1159 u_int32_t status; 1160 1161 sc = arg; 1162 ifp = &sc->arpcom.ac_if; 1163 1164 /* Supress unwanted interrupts */ 1165 if (!(ifp->if_flags & IFF_UP)) { 1166 lge_stop(sc); 1167 return; 1168 } 1169 1170 for (;;) { 1171 /* 1172 * Reading the ISR register clears all interrupts, and 1173 * clears the 'interrupts enabled' bit in the IMR 1174 * register. 1175 */ 1176 status = CSR_READ_4(sc, LGE_ISR); 1177 1178 if ((status & LGE_INTRS) == 0) 1179 break; 1180 1181 if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) 1182 lge_txeof(sc); 1183 1184 if (status & LGE_ISR_RXDMA_DONE) 1185 lge_rxeof(sc, LGE_RX_DMACNT(status)); 1186 1187 if (status & LGE_ISR_RXCMDFIFO_EMPTY) 1188 lge_rxeoc(sc); 1189 1190 if (status & LGE_ISR_PHY_INTR) { 1191 sc->lge_link = 0; 1192 untimeout(lge_tick, sc, sc->lge_stat_ch); 1193 lge_tick(sc); 1194 } 1195 } 1196 1197 /* Re-enable interrupts. */ 1198 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); 1199 1200 if (ifp->if_snd.ifq_head != NULL) 1201 lge_start(ifp); 1202 1203 return; 1204 } 1205 1206 /* 1207 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1208 * pointers to the fragment pointers. 1209 */ 1210 static int 1211 lge_encap(sc, m_head, txidx) 1212 struct lge_softc *sc; 1213 struct mbuf *m_head; 1214 u_int32_t *txidx; 1215 { 1216 struct lge_frag *f = NULL; 1217 struct lge_tx_desc *cur_tx; 1218 struct mbuf *m; 1219 int frag = 0, tot_len = 0; 1220 1221 /* 1222 * Start packing the mbufs in this chain into 1223 * the fragment pointers. Stop when we run out 1224 * of fragments or hit the end of the mbuf chain. 1225 */ 1226 m = m_head; 1227 cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; 1228 frag = 0; 1229 1230 for (m = m_head; m != NULL; m = m->m_next) { 1231 if (m->m_len != 0) { 1232 tot_len += m->m_len; 1233 f = &cur_tx->lge_frags[frag]; 1234 f->lge_fraglen = m->m_len; 1235 f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); 1236 f->lge_fragptr_hi = 0; 1237 frag++; 1238 } 1239 } 1240 1241 if (m != NULL) 1242 return(ENOBUFS); 1243 1244 cur_tx->lge_mbuf = m_head; 1245 cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; 1246 LGE_INC((*txidx), LGE_TX_LIST_CNT); 1247 1248 /* Queue for transmit */ 1249 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); 1250 1251 return(0); 1252 } 1253 1254 /* 1255 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1256 * to the mbuf data regions directly in the transmit lists. We also save a 1257 * copy of the pointers since the transmit list fragment pointers are 1258 * physical addresses. 1259 */ 1260 1261 static void 1262 lge_start(ifp) 1263 struct ifnet *ifp; 1264 { 1265 struct lge_softc *sc; 1266 struct mbuf *m_head = NULL; 1267 u_int32_t idx; 1268 1269 sc = ifp->if_softc; 1270 1271 if (!sc->lge_link) 1272 return; 1273 1274 idx = sc->lge_cdata.lge_tx_prod; 1275 1276 if (ifp->if_flags & IFF_OACTIVE) 1277 return; 1278 1279 while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { 1280 if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) 1281 break; 1282 1283 IF_DEQUEUE(&ifp->if_snd, m_head); 1284 if (m_head == NULL) 1285 break; 1286 1287 if (lge_encap(sc, m_head, &idx)) { 1288 IF_PREPEND(&ifp->if_snd, m_head); 1289 ifp->if_flags |= IFF_OACTIVE; 1290 break; 1291 } 1292 1293 /* 1294 * If there's a BPF listener, bounce a copy of this frame 1295 * to him. 1296 */ 1297 BPF_MTAP(ifp, m_head); 1298 } 1299 1300 sc->lge_cdata.lge_tx_prod = idx; 1301 1302 /* 1303 * Set a timeout in case the chip goes out to lunch. 1304 */ 1305 ifp->if_timer = 5; 1306 1307 return; 1308 } 1309 1310 static void 1311 lge_init(xsc) 1312 void *xsc; 1313 { 1314 struct lge_softc *sc = xsc; 1315 struct ifnet *ifp = &sc->arpcom.ac_if; 1316 struct mii_data *mii; 1317 int s; 1318 1319 if (ifp->if_flags & IFF_RUNNING) 1320 return; 1321 1322 s = splimp(); 1323 1324 /* 1325 * Cancel pending I/O and free all RX/TX buffers. 1326 */ 1327 lge_stop(sc); 1328 lge_reset(sc); 1329 1330 mii = device_get_softc(sc->lge_miibus); 1331 1332 /* Set MAC address */ 1333 CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); 1334 CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); 1335 1336 /* Init circular RX list. */ 1337 if (lge_list_rx_init(sc) == ENOBUFS) { 1338 printf("lge%d: initialization failed: no " 1339 "memory for rx buffers\n", sc->lge_unit); 1340 lge_stop(sc); 1341 (void)splx(s); 1342 return; 1343 } 1344 1345 /* 1346 * Init tx descriptors. 1347 */ 1348 lge_list_tx_init(sc); 1349 1350 /* Set initial value for MODE1 register. */ 1351 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST| 1352 LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD| 1353 LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0| 1354 LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2); 1355 1356 /* If we want promiscuous mode, set the allframes bit. */ 1357 if (ifp->if_flags & IFF_PROMISC) { 1358 CSR_WRITE_4(sc, LGE_MODE1, 1359 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC); 1360 } else { 1361 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); 1362 } 1363 1364 /* 1365 * Set the capture broadcast bit to capture broadcast frames. 1366 */ 1367 if (ifp->if_flags & IFF_BROADCAST) { 1368 CSR_WRITE_4(sc, LGE_MODE1, 1369 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST); 1370 } else { 1371 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); 1372 } 1373 1374 /* Packet padding workaround? */ 1375 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); 1376 1377 /* No error frames */ 1378 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); 1379 1380 /* Receive large frames */ 1381 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS); 1382 1383 /* Workaround: disable RX/TX flow control */ 1384 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); 1385 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); 1386 1387 /* Make sure to strip CRC from received frames */ 1388 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); 1389 1390 /* Turn off magic packet mode */ 1391 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); 1392 1393 /* Turn off all VLAN stuff */ 1394 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX| 1395 LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT); 1396 1397 /* Workarond: FIFO overflow */ 1398 CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); 1399 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); 1400 1401 /* 1402 * Load the multicast filter. 1403 */ 1404 lge_setmulti(sc); 1405 1406 /* 1407 * Enable hardware checksum validation for all received IPv4 1408 * packets, do not reject packets with bad checksums. 1409 */ 1410 CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM| 1411 LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM| 1412 LGE_MODE2_RX_ERRCSUM); 1413 1414 /* 1415 * Enable the delivery of PHY interrupts based on 1416 * link/speed/duplex status chalges. 1417 */ 1418 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL); 1419 1420 /* Enable receiver and transmitter. */ 1421 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 1422 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB); 1423 1424 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); 1425 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB); 1426 1427 /* 1428 * Enable interrupts. 1429 */ 1430 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0| 1431 LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS); 1432 1433 lge_ifmedia_upd(ifp); 1434 1435 ifp->if_flags |= IFF_RUNNING; 1436 ifp->if_flags &= ~IFF_OACTIVE; 1437 1438 (void)splx(s); 1439 1440 sc->lge_stat_ch = timeout(lge_tick, sc, hz); 1441 1442 return; 1443 } 1444 1445 /* 1446 * Set media options. 1447 */ 1448 static int 1449 lge_ifmedia_upd(ifp) 1450 struct ifnet *ifp; 1451 { 1452 struct lge_softc *sc; 1453 struct mii_data *mii; 1454 1455 sc = ifp->if_softc; 1456 1457 mii = device_get_softc(sc->lge_miibus); 1458 sc->lge_link = 0; 1459 if (mii->mii_instance) { 1460 struct mii_softc *miisc; 1461 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 1462 miisc = LIST_NEXT(miisc, mii_list)) 1463 mii_phy_reset(miisc); 1464 } 1465 mii_mediachg(mii); 1466 1467 return(0); 1468 } 1469 1470 /* 1471 * Report current media status. 1472 */ 1473 static void 1474 lge_ifmedia_sts(ifp, ifmr) 1475 struct ifnet *ifp; 1476 struct ifmediareq *ifmr; 1477 { 1478 struct lge_softc *sc; 1479 struct mii_data *mii; 1480 1481 sc = ifp->if_softc; 1482 1483 mii = device_get_softc(sc->lge_miibus); 1484 mii_pollstat(mii); 1485 ifmr->ifm_active = mii->mii_media_active; 1486 ifmr->ifm_status = mii->mii_media_status; 1487 1488 return; 1489 } 1490 1491 static int 1492 lge_ioctl(ifp, command, data) 1493 struct ifnet *ifp; 1494 u_long command; 1495 caddr_t data; 1496 { 1497 struct lge_softc *sc = ifp->if_softc; 1498 struct ifreq *ifr = (struct ifreq *) data; 1499 struct mii_data *mii; 1500 int s, error = 0; 1501 1502 s = splimp(); 1503 1504 switch(command) { 1505 case SIOCSIFMTU: 1506 if (ifr->ifr_mtu > LGE_JUMBO_MTU) 1507 error = EINVAL; 1508 else 1509 ifp->if_mtu = ifr->ifr_mtu; 1510 break; 1511 case SIOCSIFFLAGS: 1512 if (ifp->if_flags & IFF_UP) { 1513 if (ifp->if_flags & IFF_RUNNING && 1514 ifp->if_flags & IFF_PROMISC && 1515 !(sc->lge_if_flags & IFF_PROMISC)) { 1516 CSR_WRITE_4(sc, LGE_MODE1, 1517 LGE_MODE1_SETRST_CTL1| 1518 LGE_MODE1_RX_PROMISC); 1519 } else if (ifp->if_flags & IFF_RUNNING && 1520 !(ifp->if_flags & IFF_PROMISC) && 1521 sc->lge_if_flags & IFF_PROMISC) { 1522 CSR_WRITE_4(sc, LGE_MODE1, 1523 LGE_MODE1_RX_PROMISC); 1524 } else { 1525 ifp->if_flags &= ~IFF_RUNNING; 1526 lge_init(sc); 1527 } 1528 } else { 1529 if (ifp->if_flags & IFF_RUNNING) 1530 lge_stop(sc); 1531 } 1532 sc->lge_if_flags = ifp->if_flags; 1533 error = 0; 1534 break; 1535 case SIOCADDMULTI: 1536 case SIOCDELMULTI: 1537 lge_setmulti(sc); 1538 error = 0; 1539 break; 1540 case SIOCGIFMEDIA: 1541 case SIOCSIFMEDIA: 1542 mii = device_get_softc(sc->lge_miibus); 1543 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1544 break; 1545 default: 1546 error = ether_ioctl(ifp, command, data); 1547 break; 1548 } 1549 1550 (void)splx(s); 1551 1552 return(error); 1553 } 1554 1555 static void 1556 lge_watchdog(ifp) 1557 struct ifnet *ifp; 1558 { 1559 struct lge_softc *sc; 1560 1561 sc = ifp->if_softc; 1562 1563 ifp->if_oerrors++; 1564 printf("lge%d: watchdog timeout\n", sc->lge_unit); 1565 1566 lge_stop(sc); 1567 lge_reset(sc); 1568 ifp->if_flags &= ~IFF_RUNNING; 1569 lge_init(sc); 1570 1571 if (ifp->if_snd.ifq_head != NULL) 1572 lge_start(ifp); 1573 1574 return; 1575 } 1576 1577 /* 1578 * Stop the adapter and free any mbufs allocated to the 1579 * RX and TX lists. 1580 */ 1581 static void 1582 lge_stop(sc) 1583 struct lge_softc *sc; 1584 { 1585 register int i; 1586 struct ifnet *ifp; 1587 1588 ifp = &sc->arpcom.ac_if; 1589 ifp->if_timer = 0; 1590 untimeout(lge_tick, sc, sc->lge_stat_ch); 1591 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); 1592 1593 /* Disable receiver and transmitter. */ 1594 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); 1595 sc->lge_link = 0; 1596 1597 /* 1598 * Free data in the RX lists. 1599 */ 1600 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 1601 if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { 1602 m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); 1603 sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; 1604 } 1605 } 1606 bzero((char *)&sc->lge_ldata->lge_rx_list, 1607 sizeof(sc->lge_ldata->lge_rx_list)); 1608 1609 /* 1610 * Free the TX list buffers. 1611 */ 1612 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 1613 if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { 1614 m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); 1615 sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; 1616 } 1617 } 1618 1619 bzero((char *)&sc->lge_ldata->lge_tx_list, 1620 sizeof(sc->lge_ldata->lge_tx_list)); 1621 1622 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1623 1624 return; 1625 } 1626 1627 /* 1628 * Stop all chip I/O so that the kernel's probe routines don't 1629 * get confused by errant DMAs when rebooting. 1630 */ 1631 static void 1632 lge_shutdown(dev) 1633 device_t dev; 1634 { 1635 struct lge_softc *sc; 1636 1637 sc = device_get_softc(dev); 1638 1639 lge_reset(sc); 1640 lge_stop(sc); 1641 1642 return; 1643 } 1644