xref: /freebsd/sys/dev/lge/if_lge.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
38  * documentation not available, but ask me nicely.
39  *
40  * Written by Bill Paul <william.paul@windriver.com>
41  * Wind River Systems
42  */
43 
44 /*
45  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
46  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
47  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
48  * are three supported methods for data transfer between host and
49  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
50  * Propulsion Technology (tm) DMA. The latter mechanism is a form
51  * of double buffer DMA where the packet data is copied to a
52  * pre-allocated DMA buffer who's physical address has been loaded
53  * into a table at device initialization time. The rationale is that
54  * the virtual to physical address translation needed for normal
55  * scatter/gather DMA is more expensive than the data copy needed
56  * for double buffering. This may be true in Windows NT and the like,
57  * but it isn't true for us, at least on the x86 arch. This driver
58  * uses the scatter/gather I/O method for both TX and RX.
59  *
60  * The LXT1001 only supports TCP/IP checksum offload on receive.
61  * Also, the VLAN tagging is done using a 16-entry table which allows
62  * the chip to perform hardware filtering based on VLAN tags. Sadly,
63  * our vlan support doesn't currently play well with this kind of
64  * hardware support.
65  *
66  * Special thanks to:
67  * - Jeff James at Intel, for arranging to have the LXT1001 manual
68  *   released (at long last)
69  * - Beny Chen at D-Link, for actually sending it to me
70  * - Brad Short and Keith Alexis at SMC, for sending me sample
71  *   SMC9462SX and SMC9462TX adapters for testing
72  * - Paul Saab at Y!, for not killing me (though it remains to be seen
73  *   if in fact he did me much of a favor)
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/socket.h>
83 
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 
90 #include <net/bpf.h>
91 
92 #include <vm/vm.h>              /* for vtophys */
93 #include <vm/pmap.h>            /* for vtophys */
94 #include <machine/clock.h>      /* for DELAY */
95 #include <machine/bus_pio.h>
96 #include <machine/bus_memio.h>
97 #include <machine/bus.h>
98 #include <machine/resource.h>
99 #include <sys/bus.h>
100 #include <sys/rman.h>
101 
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104 
105 #include <pci/pcireg.h>
106 #include <pci/pcivar.h>
107 
108 #define LGE_USEIOSPACE
109 
110 #include <dev/lge/if_lgereg.h>
111 
112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 #ifndef lint
116 static const char rcsid[] =
117   "$FreeBSD$";
118 #endif
119 
120 /*
121  * Various supported device vendors/types and their names.
122  */
123 static struct lge_type lge_devs[] = {
124 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
125 	{ 0, 0, NULL }
126 };
127 
128 static int lge_probe(device_t);
129 static int lge_attach(device_t);
130 static int lge_detach(device_t);
131 
132 static int lge_alloc_jumbo_mem(struct lge_softc *);
133 static void lge_free_jumbo_mem(struct lge_softc *);
134 static void *lge_jalloc(struct lge_softc *);
135 static void lge_jfree(void *, void *);
136 
137 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
138 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
139 static void lge_rxeof(struct lge_softc *, int);
140 static void lge_rxeoc(struct lge_softc *);
141 static void lge_txeof(struct lge_softc *);
142 static void lge_intr(void *);
143 static void lge_tick(void *);
144 static void lge_start(struct ifnet *);
145 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
146 static void lge_init(void *);
147 static void lge_stop(struct lge_softc *);
148 static void lge_watchdog(struct ifnet *);
149 static void lge_shutdown(device_t);
150 static int lge_ifmedia_upd(struct ifnet *);
151 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
152 
153 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
154 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
155 
156 static int lge_miibus_readreg(device_t, int, int);
157 static int lge_miibus_writereg(device_t, int, int, int);
158 static void lge_miibus_statchg(device_t);
159 
160 static void lge_setmulti(struct lge_softc *);
161 static u_int32_t lge_crc(struct lge_softc *, caddr_t);
162 static void lge_reset(struct lge_softc *);
163 static int lge_list_rx_init(struct lge_softc *);
164 static int lge_list_tx_init(struct lge_softc *);
165 
166 #ifdef LGE_USEIOSPACE
167 #define LGE_RES			SYS_RES_IOPORT
168 #define LGE_RID			LGE_PCI_LOIO
169 #else
170 #define LGE_RES			SYS_RES_MEMORY
171 #define LGE_RID			LGE_PCI_LOMEM
172 #endif
173 
174 static device_method_t lge_methods[] = {
175 	/* Device interface */
176 	DEVMETHOD(device_probe,		lge_probe),
177 	DEVMETHOD(device_attach,	lge_attach),
178 	DEVMETHOD(device_detach,	lge_detach),
179 	DEVMETHOD(device_shutdown,	lge_shutdown),
180 
181 	/* bus interface */
182 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
183 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
184 
185 	/* MII interface */
186 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
187 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
188 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
189 
190 	{ 0, 0 }
191 };
192 
193 static driver_t lge_driver = {
194 	"lge",
195 	lge_methods,
196 	sizeof(struct lge_softc)
197 };
198 
199 static devclass_t lge_devclass;
200 
201 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
202 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
203 
204 #define LGE_SETBIT(sc, reg, x)				\
205 	CSR_WRITE_4(sc, reg,				\
206 		CSR_READ_4(sc, reg) | (x))
207 
208 #define LGE_CLRBIT(sc, reg, x)				\
209 	CSR_WRITE_4(sc, reg,				\
210 		CSR_READ_4(sc, reg) & ~(x))
211 
212 #define SIO_SET(x)					\
213 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
214 
215 #define SIO_CLR(x)					\
216 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
217 
218 /*
219  * Read a word of data stored in the EEPROM at address 'addr.'
220  */
221 static void
222 lge_eeprom_getword(sc, addr, dest)
223 	struct lge_softc	*sc;
224 	int			addr;
225 	u_int16_t		*dest;
226 {
227 	register int		i;
228 	u_int32_t		val;
229 
230 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
231 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
232 
233 	for (i = 0; i < LGE_TIMEOUT; i++)
234 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
235 			break;
236 
237 	if (i == LGE_TIMEOUT) {
238 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
239 		return;
240 	}
241 
242 	val = CSR_READ_4(sc, LGE_EEDATA);
243 
244 	if (addr & 1)
245 		*dest = (val >> 16) & 0xFFFF;
246 	else
247 		*dest = val & 0xFFFF;
248 
249 	return;
250 }
251 
252 /*
253  * Read a sequence of words from the EEPROM.
254  */
255 static void
256 lge_read_eeprom(sc, dest, off, cnt, swap)
257 	struct lge_softc	*sc;
258 	caddr_t			dest;
259 	int			off;
260 	int			cnt;
261 	int			swap;
262 {
263 	int			i;
264 	u_int16_t		word = 0, *ptr;
265 
266 	for (i = 0; i < cnt; i++) {
267 		lge_eeprom_getword(sc, off + i, &word);
268 		ptr = (u_int16_t *)(dest + (i * 2));
269 		if (swap)
270 			*ptr = ntohs(word);
271 		else
272 			*ptr = word;
273 	}
274 
275 	return;
276 }
277 
278 static int
279 lge_miibus_readreg(dev, phy, reg)
280 	device_t		dev;
281 	int			phy, reg;
282 {
283 	struct lge_softc	*sc;
284 	int			i;
285 
286 	sc = device_get_softc(dev);
287 
288 	/*
289 	 * If we have a non-PCS PHY, pretend that the internal
290 	 * autoneg stuff at PHY address 0 isn't there so that
291 	 * the miibus code will find only the GMII PHY.
292 	 */
293 	if (sc->lge_pcs == 0 && phy == 0)
294 		return(0);
295 
296 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
297 
298 	for (i = 0; i < LGE_TIMEOUT; i++)
299 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
300 			break;
301 
302 	if (i == LGE_TIMEOUT) {
303 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
304 		return(0);
305 	}
306 
307 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
308 }
309 
310 static int
311 lge_miibus_writereg(dev, phy, reg, data)
312 	device_t		dev;
313 	int			phy, reg, data;
314 {
315 	struct lge_softc	*sc;
316 	int			i;
317 
318 	sc = device_get_softc(dev);
319 
320 	CSR_WRITE_4(sc, LGE_GMIICTL,
321 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
322 
323 	for (i = 0; i < LGE_TIMEOUT; i++)
324 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
325 			break;
326 
327 	if (i == LGE_TIMEOUT) {
328 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
329 		return(0);
330 	}
331 
332 	return(0);
333 }
334 
335 static void
336 lge_miibus_statchg(dev)
337 	device_t		dev;
338 {
339 	struct lge_softc	*sc;
340 	struct mii_data		*mii;
341 
342 	sc = device_get_softc(dev);
343 	mii = device_get_softc(sc->lge_miibus);
344 
345 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
346 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
347 	case IFM_1000_T:
348 	case IFM_1000_SX:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
350 		break;
351 	case IFM_100_TX:
352 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
353 		break;
354 	case IFM_10_T:
355 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
356 		break;
357 	default:
358 		/*
359 		 * Choose something, even if it's wrong. Clearing
360 		 * all the bits will hose autoneg on the internal
361 		 * PHY.
362 		 */
363 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
364 		break;
365 	}
366 
367 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
368 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
369 	} else {
370 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
371 	}
372 
373 	return;
374 }
375 
376 static u_int32_t
377 lge_crc(sc, addr)
378 	struct lge_softc	*sc;
379 	caddr_t			addr;
380 {
381 	u_int32_t		crc, carry;
382 	int			i, j;
383 	u_int8_t		c;
384 
385 	/* Compute CRC for the address value. */
386 	crc = 0xFFFFFFFF; /* initial value */
387 
388 	for (i = 0; i < 6; i++) {
389 		c = *(addr + i);
390 		for (j = 0; j < 8; j++) {
391 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
392 			crc <<= 1;
393 			c >>= 1;
394 			if (carry)
395 				crc = (crc ^ 0x04c11db6) | carry;
396 		}
397 	}
398 
399 	/*
400 	 * return the filter bit position
401 	 */
402 	return((crc >> 26) & 0x0000003F);
403 }
404 
405 static void
406 lge_setmulti(sc)
407 	struct lge_softc	*sc;
408 {
409 	struct ifnet		*ifp;
410 	struct ifmultiaddr	*ifma;
411 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
412 
413 	ifp = &sc->arpcom.ac_if;
414 
415 	/* Make sure multicast hash table is enabled. */
416 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
417 
418 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
419 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
420 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
421 		return;
422 	}
423 
424 	/* first, zot all the existing hash bits */
425 	CSR_WRITE_4(sc, LGE_MAR0, 0);
426 	CSR_WRITE_4(sc, LGE_MAR1, 0);
427 
428 	/* now program new ones */
429 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
430 		if (ifma->ifma_addr->sa_family != AF_LINK)
431 			continue;
432 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
433 		if (h < 32)
434 			hashes[0] |= (1 << h);
435 		else
436 			hashes[1] |= (1 << (h - 32));
437 	}
438 
439 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
440 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
441 
442 	return;
443 }
444 
445 static void
446 lge_reset(sc)
447 	struct lge_softc	*sc;
448 {
449 	register int		i;
450 
451 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
452 
453 	for (i = 0; i < LGE_TIMEOUT; i++) {
454 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
455 			break;
456 	}
457 
458 	if (i == LGE_TIMEOUT)
459 		printf("lge%d: reset never completed\n", sc->lge_unit);
460 
461 	/* Wait a little while for the chip to get its brains in order. */
462 	DELAY(1000);
463 
464         return;
465 }
466 
467 /*
468  * Probe for a Level 1 chip. Check the PCI vendor and device
469  * IDs against our list and return a device name if we find a match.
470  */
471 static int
472 lge_probe(dev)
473 	device_t		dev;
474 {
475 	struct lge_type		*t;
476 
477 	t = lge_devs;
478 
479 	while(t->lge_name != NULL) {
480 		if ((pci_get_vendor(dev) == t->lge_vid) &&
481 		    (pci_get_device(dev) == t->lge_did)) {
482 			device_set_desc(dev, t->lge_name);
483 			return(0);
484 		}
485 		t++;
486 	}
487 
488 	return(ENXIO);
489 }
490 
491 /*
492  * Attach the interface. Allocate softc structures, do ifmedia
493  * setup and ethernet/BPF attach.
494  */
495 static int
496 lge_attach(dev)
497 	device_t		dev;
498 {
499 	int			s;
500 	u_char			eaddr[ETHER_ADDR_LEN];
501 	u_int32_t		command;
502 	struct lge_softc	*sc;
503 	struct ifnet		*ifp;
504 	int			unit, error = 0, rid;
505 
506 	s = splimp();
507 
508 	sc = device_get_softc(dev);
509 	unit = device_get_unit(dev);
510 	bzero(sc, sizeof(struct lge_softc));
511 
512 	/*
513 	 * Handle power management nonsense.
514 	 */
515 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
516 		u_int32_t		iobase, membase, irq;
517 
518 		/* Save important PCI config data. */
519 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
520 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
521 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
522 
523 		/* Reset the power state. */
524 		printf("lge%d: chip is in D%d power mode "
525 		    "-- setting to D0\n", unit,
526 		    pci_get_powerstate(dev));
527 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
528 
529 		/* Restore PCI config data. */
530 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
531 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
532 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
533 	}
534 
535 	/*
536 	 * Map control/status registers.
537 	 */
538 	pci_enable_busmaster(dev);
539 	pci_enable_io(dev, SYS_RES_IOPORT);
540 	pci_enable_io(dev, SYS_RES_MEMORY);
541 	command = pci_read_config(dev, PCIR_COMMAND, 4);
542 
543 #ifdef LGE_USEIOSPACE
544 	if (!(command & PCIM_CMD_PORTEN)) {
545 		printf("lge%d: failed to enable I/O ports!\n", unit);
546 		error = ENXIO;;
547 		goto fail;
548 	}
549 #else
550 	if (!(command & PCIM_CMD_MEMEN)) {
551 		printf("lge%d: failed to enable memory mapping!\n", unit);
552 		error = ENXIO;;
553 		goto fail;
554 	}
555 #endif
556 
557 	rid = LGE_RID;
558 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
559 	    0, ~0, 1, RF_ACTIVE);
560 
561 	if (sc->lge_res == NULL) {
562 		printf("lge%d: couldn't map ports/memory\n", unit);
563 		error = ENXIO;
564 		goto fail;
565 	}
566 
567 	sc->lge_btag = rman_get_bustag(sc->lge_res);
568 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
569 
570 	/* Allocate interrupt */
571 	rid = 0;
572 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
573 	    RF_SHAREABLE | RF_ACTIVE);
574 
575 	if (sc->lge_irq == NULL) {
576 		printf("lge%d: couldn't map interrupt\n", unit);
577 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
578 		error = ENXIO;
579 		goto fail;
580 	}
581 
582 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
583 	    lge_intr, sc, &sc->lge_intrhand);
584 
585 	if (error) {
586 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
587 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
588 		printf("lge%d: couldn't set up irq\n", unit);
589 		goto fail;
590 	}
591 
592 	/* Reset the adapter. */
593 	lge_reset(sc);
594 
595 	/*
596 	 * Get station address from the EEPROM.
597 	 */
598 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
599 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
600 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
601 
602 	/*
603 	 * A Level 1 chip was detected. Inform the world.
604 	 */
605 	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
606 
607 	sc->lge_unit = unit;
608 	callout_handle_init(&sc->lge_stat_ch);
609 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
610 
611 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
612 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
613 
614 	if (sc->lge_ldata == NULL) {
615 		printf("lge%d: no memory for list buffers!\n", unit);
616 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
617 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
618 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
619 		error = ENXIO;
620 		goto fail;
621 	}
622 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
623 
624 	/* Try to allocate memory for jumbo buffers. */
625 	if (lge_alloc_jumbo_mem(sc)) {
626 		printf("lge%d: jumbo buffer allocation failed\n",
627                     sc->lge_unit);
628 		contigfree(sc->lge_ldata,
629 		    sizeof(struct lge_list_data), M_DEVBUF);
630 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
631 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
632 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
633 		error = ENXIO;
634 		goto fail;
635 	}
636 
637 	ifp = &sc->arpcom.ac_if;
638 	ifp->if_softc = sc;
639 	ifp->if_unit = unit;
640 	ifp->if_name = "lge";
641 	ifp->if_mtu = ETHERMTU;
642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_ioctl = lge_ioctl;
644 	ifp->if_output = ether_output;
645 	ifp->if_start = lge_start;
646 	ifp->if_watchdog = lge_watchdog;
647 	ifp->if_init = lge_init;
648 	ifp->if_baudrate = 1000000000;
649 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
650 	ifp->if_capabilities = IFCAP_RXCSUM;
651 	ifp->if_capenable = ifp->if_capabilities;
652 
653 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
654 		sc->lge_pcs = 1;
655 	else
656 		sc->lge_pcs = 0;
657 
658 	/*
659 	 * Do MII setup.
660 	 */
661 	if (mii_phy_probe(dev, &sc->lge_miibus,
662 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
663 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
664 		contigfree(sc->lge_ldata,
665 		    sizeof(struct lge_list_data), M_DEVBUF);
666 		lge_free_jumbo_mem(sc);
667 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
668 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
669 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
670 		error = ENXIO;
671 		goto fail;
672 	}
673 
674 	/*
675 	 * Call MI attach routine.
676 	 */
677 	ether_ifattach(ifp, eaddr);
678 	callout_handle_init(&sc->lge_stat_ch);
679 
680 fail:
681 	splx(s);
682 	return(error);
683 }
684 
685 static int
686 lge_detach(dev)
687 	device_t		dev;
688 {
689 	struct lge_softc	*sc;
690 	struct ifnet		*ifp;
691 	int			s;
692 
693 	s = splimp();
694 
695 	sc = device_get_softc(dev);
696 	ifp = &sc->arpcom.ac_if;
697 
698 	lge_reset(sc);
699 	lge_stop(sc);
700 	ether_ifdetach(ifp);
701 
702 	bus_generic_detach(dev);
703 	device_delete_child(dev, sc->lge_miibus);
704 
705 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
706 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
707 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
708 
709 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
710 	lge_free_jumbo_mem(sc);
711 
712 	splx(s);
713 
714 	return(0);
715 }
716 
717 /*
718  * Initialize the transmit descriptors.
719  */
720 static int
721 lge_list_tx_init(sc)
722 	struct lge_softc	*sc;
723 {
724 	struct lge_list_data	*ld;
725 	struct lge_ring_data	*cd;
726 	int			i;
727 
728 	cd = &sc->lge_cdata;
729 	ld = sc->lge_ldata;
730 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
731 		ld->lge_tx_list[i].lge_mbuf = NULL;
732 		ld->lge_tx_list[i].lge_ctl = 0;
733 	}
734 
735 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
736 
737 	return(0);
738 }
739 
740 
741 /*
742  * Initialize the RX descriptors and allocate mbufs for them. Note that
743  * we arralge the descriptors in a closed ring, so that the last descriptor
744  * points back to the first.
745  */
746 static int
747 lge_list_rx_init(sc)
748 	struct lge_softc	*sc;
749 {
750 	struct lge_list_data	*ld;
751 	struct lge_ring_data	*cd;
752 	int			i;
753 
754 	ld = sc->lge_ldata;
755 	cd = &sc->lge_cdata;
756 
757 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
758 
759 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
760 
761 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
762 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
763 			break;
764 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
765 			return(ENOBUFS);
766 	}
767 
768 	/* Clear possible 'rx command queue empty' interrupt. */
769 	CSR_READ_4(sc, LGE_ISR);
770 
771 	return(0);
772 }
773 
774 /*
775  * Initialize an RX descriptor and attach an MBUF cluster.
776  */
777 static int
778 lge_newbuf(sc, c, m)
779 	struct lge_softc	*sc;
780 	struct lge_rx_desc	*c;
781 	struct mbuf		*m;
782 {
783 	struct mbuf		*m_new = NULL;
784 	caddr_t			*buf = NULL;
785 
786 	if (m == NULL) {
787 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
788 		if (m_new == NULL) {
789 			printf("lge%d: no memory for rx list "
790 			    "-- packet dropped!\n", sc->lge_unit);
791 			return(ENOBUFS);
792 		}
793 
794 		/* Allocate the jumbo buffer */
795 		buf = lge_jalloc(sc);
796 		if (buf == NULL) {
797 #ifdef LGE_VERBOSE
798 			printf("lge%d: jumbo allocation failed "
799 			    "-- packet dropped!\n", sc->lge_unit);
800 #endif
801 			m_freem(m_new);
802 			return(ENOBUFS);
803 		}
804 		/* Attach the buffer to the mbuf */
805 		m_new->m_data = (void *)buf;
806 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
807 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
808 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
809 	} else {
810 		m_new = m;
811 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
812 		m_new->m_data = m_new->m_ext.ext_buf;
813 	}
814 
815 	/*
816 	 * Adjust alignment so packet payload begins on a
817 	 * longword boundary. Mandatory for Alpha, useful on
818 	 * x86 too.
819 	*/
820 	m_adj(m_new, ETHER_ALIGN);
821 
822 	c->lge_mbuf = m_new;
823 	c->lge_fragptr_hi = 0;
824 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
825 	c->lge_fraglen = m_new->m_len;
826 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
827 	c->lge_sts = 0;
828 
829 	/*
830 	 * Put this buffer in the RX command FIFO. To do this,
831 	 * we just write the physical address of the descriptor
832 	 * into the RX descriptor address registers. Note that
833 	 * there are two registers, one high DWORD and one low
834 	 * DWORD, which lets us specify a 64-bit address if
835 	 * desired. We only use a 32-bit address for now.
836 	 * Writing to the low DWORD register is what actually
837 	 * causes the command to be issued, so we do that
838 	 * last.
839 	 */
840 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
841 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
842 
843 	return(0);
844 }
845 
846 static int
847 lge_alloc_jumbo_mem(sc)
848 	struct lge_softc	*sc;
849 {
850 	caddr_t			ptr;
851 	register int		i;
852 	struct lge_jpool_entry   *entry;
853 
854 	/* Grab a big chunk o' storage. */
855 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
856 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
857 
858 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
859 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
860 		return(ENOBUFS);
861 	}
862 
863 	SLIST_INIT(&sc->lge_jfree_listhead);
864 	SLIST_INIT(&sc->lge_jinuse_listhead);
865 
866 	/*
867 	 * Now divide it up into 9K pieces and save the addresses
868 	 * in an array.
869 	 */
870 	ptr = sc->lge_cdata.lge_jumbo_buf;
871 	for (i = 0; i < LGE_JSLOTS; i++) {
872 		sc->lge_cdata.lge_jslots[i] = ptr;
873 		ptr += LGE_JLEN;
874 		entry = malloc(sizeof(struct lge_jpool_entry),
875 		    M_DEVBUF, M_NOWAIT);
876 		if (entry == NULL) {
877 			printf("lge%d: no memory for jumbo "
878 			    "buffer queue!\n", sc->lge_unit);
879 			return(ENOBUFS);
880 		}
881 		entry->slot = i;
882 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
883 		    entry, jpool_entries);
884 	}
885 
886 	return(0);
887 }
888 
889 static void
890 lge_free_jumbo_mem(sc)
891 	struct lge_softc	*sc;
892 {
893 	int			i;
894 	struct lge_jpool_entry	*entry;
895 
896 	for (i = 0; i < LGE_JSLOTS; i++) {
897 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
898 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
899 		free(entry, M_DEVBUF);
900 	}
901 
902 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
903 
904 	return;
905 }
906 
907 /*
908  * Allocate a jumbo buffer.
909  */
910 static void *
911 lge_jalloc(sc)
912 	struct lge_softc	*sc;
913 {
914 	struct lge_jpool_entry   *entry;
915 
916 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
917 
918 	if (entry == NULL) {
919 #ifdef LGE_VERBOSE
920 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
921 #endif
922 		return(NULL);
923 	}
924 
925 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
926 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
927 	return(sc->lge_cdata.lge_jslots[entry->slot]);
928 }
929 
930 /*
931  * Release a jumbo buffer.
932  */
933 static void
934 lge_jfree(buf, args)
935 	void			*buf;
936 	void			*args;
937 {
938 	struct lge_softc	*sc;
939 	int		        i;
940 	struct lge_jpool_entry   *entry;
941 
942 	/* Extract the softc struct pointer. */
943 	sc = args;
944 
945 	if (sc == NULL)
946 		panic("lge_jfree: can't find softc pointer!");
947 
948 	/* calculate the slot this buffer belongs to */
949 	i = ((vm_offset_t)buf
950 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
951 
952 	if ((i < 0) || (i >= LGE_JSLOTS))
953 		panic("lge_jfree: asked to free buffer that we don't manage!");
954 
955 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
956 	if (entry == NULL)
957 		panic("lge_jfree: buffer not in use!");
958 	entry->slot = i;
959 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
960 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
961 
962 	return;
963 }
964 
965 /*
966  * A frame has been uploaded: pass the resulting mbuf chain up to
967  * the higher level protocols.
968  */
969 static void
970 lge_rxeof(sc, cnt)
971 	struct lge_softc	*sc;
972 	int			cnt;
973 {
974         struct mbuf		*m;
975         struct ifnet		*ifp;
976 	struct lge_rx_desc	*cur_rx;
977 	int			c, i, total_len = 0;
978 	u_int32_t		rxsts, rxctl;
979 
980 	ifp = &sc->arpcom.ac_if;
981 
982 	/* Find out how many frames were processed. */
983 	c = cnt;
984 	i = sc->lge_cdata.lge_rx_cons;
985 
986 	/* Suck them in. */
987 	while(c) {
988 		struct mbuf		*m0 = NULL;
989 
990 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
991 		rxctl = cur_rx->lge_ctl;
992 		rxsts = cur_rx->lge_sts;
993 		m = cur_rx->lge_mbuf;
994 		cur_rx->lge_mbuf = NULL;
995 		total_len = LGE_RXBYTES(cur_rx);
996 		LGE_INC(i, LGE_RX_LIST_CNT);
997 		c--;
998 
999 		/*
1000 		 * If an error occurs, update stats, clear the
1001 		 * status word and leave the mbuf cluster in place:
1002 		 * it should simply get re-used next time this descriptor
1003 	 	 * comes up in the ring.
1004 		 */
1005 		if (rxctl & LGE_RXCTL_ERRMASK) {
1006 			ifp->if_ierrors++;
1007 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1008 			continue;
1009 		}
1010 
1011 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
1012 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
1013 			    ifp, NULL);
1014 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
1015 			if (m0 == NULL) {
1016 				printf("lge%d: no receive buffers "
1017 				    "available -- packet dropped!\n",
1018 				    sc->lge_unit);
1019 				ifp->if_ierrors++;
1020 				continue;
1021 			}
1022 			m = m0;
1023 		} else {
1024 			m->m_pkthdr.rcvif = ifp;
1025 			m->m_pkthdr.len = m->m_len = total_len;
1026 		}
1027 
1028 		ifp->if_ipackets++;
1029 
1030 		/* Do IP checksum checking. */
1031 		if (rxsts & LGE_RXSTS_ISIP)
1032 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1033 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1034 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1035 		if ((rxsts & LGE_RXSTS_ISTCP &&
1036 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1037 		    (rxsts & LGE_RXSTS_ISUDP &&
1038 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1039 			m->m_pkthdr.csum_flags |=
1040 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1041 			m->m_pkthdr.csum_data = 0xffff;
1042 		}
1043 
1044 		(*ifp->if_input)(ifp, m);
1045 	}
1046 
1047 	sc->lge_cdata.lge_rx_cons = i;
1048 
1049 	return;
1050 }
1051 
1052 static void
1053 lge_rxeoc(sc)
1054 	struct lge_softc	*sc;
1055 {
1056 	struct ifnet		*ifp;
1057 
1058 	ifp = &sc->arpcom.ac_if;
1059 	ifp->if_flags &= ~IFF_RUNNING;
1060 	lge_init(sc);
1061 	return;
1062 }
1063 
1064 /*
1065  * A frame was downloaded to the chip. It's safe for us to clean up
1066  * the list buffers.
1067  */
1068 
1069 static void
1070 lge_txeof(sc)
1071 	struct lge_softc	*sc;
1072 {
1073 	struct lge_tx_desc	*cur_tx = NULL;
1074 	struct ifnet		*ifp;
1075 	u_int32_t		idx, txdone;
1076 
1077 	ifp = &sc->arpcom.ac_if;
1078 
1079 	/* Clear the timeout timer. */
1080 	ifp->if_timer = 0;
1081 
1082 	/*
1083 	 * Go through our tx list and free mbufs for those
1084 	 * frames that have been transmitted.
1085 	 */
1086 	idx = sc->lge_cdata.lge_tx_cons;
1087 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1088 
1089 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1090 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1091 
1092 		ifp->if_opackets++;
1093 		if (cur_tx->lge_mbuf != NULL) {
1094 			m_freem(cur_tx->lge_mbuf);
1095 			cur_tx->lge_mbuf = NULL;
1096 		}
1097 		cur_tx->lge_ctl = 0;
1098 
1099 		txdone--;
1100 		LGE_INC(idx, LGE_TX_LIST_CNT);
1101 		ifp->if_timer = 0;
1102 	}
1103 
1104 	sc->lge_cdata.lge_tx_cons = idx;
1105 
1106 	if (cur_tx != NULL)
1107 		ifp->if_flags &= ~IFF_OACTIVE;
1108 
1109 	return;
1110 }
1111 
1112 static void
1113 lge_tick(xsc)
1114 	void			*xsc;
1115 {
1116 	struct lge_softc	*sc;
1117 	struct mii_data		*mii;
1118 	struct ifnet		*ifp;
1119 	int			s;
1120 
1121 	s = splimp();
1122 
1123 	sc = xsc;
1124 	ifp = &sc->arpcom.ac_if;
1125 
1126 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1127 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1128 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1129 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1130 
1131 	if (!sc->lge_link) {
1132 		mii = device_get_softc(sc->lge_miibus);
1133 		mii_tick(mii);
1134 		if (mii->mii_media_status & IFM_ACTIVE &&
1135 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1136 			sc->lge_link++;
1137 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1138 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1139 				printf("lge%d: gigabit link up\n",
1140 				    sc->lge_unit);
1141 			if (ifp->if_snd.ifq_head != NULL)
1142 				lge_start(ifp);
1143 		}
1144 	}
1145 
1146 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1147 
1148 	splx(s);
1149 
1150 	return;
1151 }
1152 
1153 static void
1154 lge_intr(arg)
1155 	void			*arg;
1156 {
1157 	struct lge_softc	*sc;
1158 	struct ifnet		*ifp;
1159 	u_int32_t		status;
1160 
1161 	sc = arg;
1162 	ifp = &sc->arpcom.ac_if;
1163 
1164 	/* Supress unwanted interrupts */
1165 	if (!(ifp->if_flags & IFF_UP)) {
1166 		lge_stop(sc);
1167 		return;
1168 	}
1169 
1170 	for (;;) {
1171 		/*
1172 		 * Reading the ISR register clears all interrupts, and
1173 		 * clears the 'interrupts enabled' bit in the IMR
1174 		 * register.
1175 		 */
1176 		status = CSR_READ_4(sc, LGE_ISR);
1177 
1178 		if ((status & LGE_INTRS) == 0)
1179 			break;
1180 
1181 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1182 			lge_txeof(sc);
1183 
1184 		if (status & LGE_ISR_RXDMA_DONE)
1185 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1186 
1187 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1188 			lge_rxeoc(sc);
1189 
1190 		if (status & LGE_ISR_PHY_INTR) {
1191 			sc->lge_link = 0;
1192 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1193 			lge_tick(sc);
1194 		}
1195 	}
1196 
1197 	/* Re-enable interrupts. */
1198 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1199 
1200 	if (ifp->if_snd.ifq_head != NULL)
1201 		lge_start(ifp);
1202 
1203 	return;
1204 }
1205 
1206 /*
1207  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1208  * pointers to the fragment pointers.
1209  */
1210 static int
1211 lge_encap(sc, m_head, txidx)
1212 	struct lge_softc	*sc;
1213 	struct mbuf		*m_head;
1214 	u_int32_t		*txidx;
1215 {
1216 	struct lge_frag		*f = NULL;
1217 	struct lge_tx_desc	*cur_tx;
1218 	struct mbuf		*m;
1219 	int			frag = 0, tot_len = 0;
1220 
1221 	/*
1222  	 * Start packing the mbufs in this chain into
1223 	 * the fragment pointers. Stop when we run out
1224  	 * of fragments or hit the end of the mbuf chain.
1225 	 */
1226 	m = m_head;
1227 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1228 	frag = 0;
1229 
1230 	for (m = m_head; m != NULL; m = m->m_next) {
1231 		if (m->m_len != 0) {
1232 			tot_len += m->m_len;
1233 			f = &cur_tx->lge_frags[frag];
1234 			f->lge_fraglen = m->m_len;
1235 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1236 			f->lge_fragptr_hi = 0;
1237 			frag++;
1238 		}
1239 	}
1240 
1241 	if (m != NULL)
1242 		return(ENOBUFS);
1243 
1244 	cur_tx->lge_mbuf = m_head;
1245 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1246 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1247 
1248 	/* Queue for transmit */
1249 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1250 
1251 	return(0);
1252 }
1253 
1254 /*
1255  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1256  * to the mbuf data regions directly in the transmit lists. We also save a
1257  * copy of the pointers since the transmit list fragment pointers are
1258  * physical addresses.
1259  */
1260 
1261 static void
1262 lge_start(ifp)
1263 	struct ifnet		*ifp;
1264 {
1265 	struct lge_softc	*sc;
1266 	struct mbuf		*m_head = NULL;
1267 	u_int32_t		idx;
1268 
1269 	sc = ifp->if_softc;
1270 
1271 	if (!sc->lge_link)
1272 		return;
1273 
1274 	idx = sc->lge_cdata.lge_tx_prod;
1275 
1276 	if (ifp->if_flags & IFF_OACTIVE)
1277 		return;
1278 
1279 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1280 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1281 			break;
1282 
1283 		IF_DEQUEUE(&ifp->if_snd, m_head);
1284 		if (m_head == NULL)
1285 			break;
1286 
1287 		if (lge_encap(sc, m_head, &idx)) {
1288 			IF_PREPEND(&ifp->if_snd, m_head);
1289 			ifp->if_flags |= IFF_OACTIVE;
1290 			break;
1291 		}
1292 
1293 		/*
1294 		 * If there's a BPF listener, bounce a copy of this frame
1295 		 * to him.
1296 		 */
1297 		BPF_MTAP(ifp, m_head);
1298 	}
1299 
1300 	sc->lge_cdata.lge_tx_prod = idx;
1301 
1302 	/*
1303 	 * Set a timeout in case the chip goes out to lunch.
1304 	 */
1305 	ifp->if_timer = 5;
1306 
1307 	return;
1308 }
1309 
1310 static void
1311 lge_init(xsc)
1312 	void			*xsc;
1313 {
1314 	struct lge_softc	*sc = xsc;
1315 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1316 	struct mii_data		*mii;
1317 	int			s;
1318 
1319 	if (ifp->if_flags & IFF_RUNNING)
1320 		return;
1321 
1322 	s = splimp();
1323 
1324 	/*
1325 	 * Cancel pending I/O and free all RX/TX buffers.
1326 	 */
1327 	lge_stop(sc);
1328 	lge_reset(sc);
1329 
1330 	mii = device_get_softc(sc->lge_miibus);
1331 
1332 	/* Set MAC address */
1333 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1334 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1335 
1336 	/* Init circular RX list. */
1337 	if (lge_list_rx_init(sc) == ENOBUFS) {
1338 		printf("lge%d: initialization failed: no "
1339 		    "memory for rx buffers\n", sc->lge_unit);
1340 		lge_stop(sc);
1341 		(void)splx(s);
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * Init tx descriptors.
1347 	 */
1348 	lge_list_tx_init(sc);
1349 
1350 	/* Set initial value for MODE1 register. */
1351 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1352 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1353 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1354 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1355 
1356 	 /* If we want promiscuous mode, set the allframes bit. */
1357 	if (ifp->if_flags & IFF_PROMISC) {
1358 		CSR_WRITE_4(sc, LGE_MODE1,
1359 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1360 	} else {
1361 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1362 	}
1363 
1364 	/*
1365 	 * Set the capture broadcast bit to capture broadcast frames.
1366 	 */
1367 	if (ifp->if_flags & IFF_BROADCAST) {
1368 		CSR_WRITE_4(sc, LGE_MODE1,
1369 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1370 	} else {
1371 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1372 	}
1373 
1374 	/* Packet padding workaround? */
1375 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1376 
1377 	/* No error frames */
1378 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1379 
1380 	/* Receive large frames */
1381 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1382 
1383 	/* Workaround: disable RX/TX flow control */
1384 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1385 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1386 
1387 	/* Make sure to strip CRC from received frames */
1388 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1389 
1390 	/* Turn off magic packet mode */
1391 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1392 
1393 	/* Turn off all VLAN stuff */
1394 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1395 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1396 
1397 	/* Workarond: FIFO overflow */
1398 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1399 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1400 
1401 	/*
1402 	 * Load the multicast filter.
1403 	 */
1404 	lge_setmulti(sc);
1405 
1406 	/*
1407 	 * Enable hardware checksum validation for all received IPv4
1408 	 * packets, do not reject packets with bad checksums.
1409 	 */
1410 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1411 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1412 	    LGE_MODE2_RX_ERRCSUM);
1413 
1414 	/*
1415 	 * Enable the delivery of PHY interrupts based on
1416 	 * link/speed/duplex status chalges.
1417 	 */
1418 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1419 
1420 	/* Enable receiver and transmitter. */
1421 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1422 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1423 
1424 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1425 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1426 
1427 	/*
1428 	 * Enable interrupts.
1429 	 */
1430 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1431 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1432 
1433 	lge_ifmedia_upd(ifp);
1434 
1435 	ifp->if_flags |= IFF_RUNNING;
1436 	ifp->if_flags &= ~IFF_OACTIVE;
1437 
1438 	(void)splx(s);
1439 
1440 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1441 
1442 	return;
1443 }
1444 
1445 /*
1446  * Set media options.
1447  */
1448 static int
1449 lge_ifmedia_upd(ifp)
1450 	struct ifnet		*ifp;
1451 {
1452 	struct lge_softc	*sc;
1453 	struct mii_data		*mii;
1454 
1455 	sc = ifp->if_softc;
1456 
1457 	mii = device_get_softc(sc->lge_miibus);
1458 	sc->lge_link = 0;
1459 	if (mii->mii_instance) {
1460 		struct mii_softc	*miisc;
1461 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1462 		    miisc = LIST_NEXT(miisc, mii_list))
1463 			mii_phy_reset(miisc);
1464 	}
1465 	mii_mediachg(mii);
1466 
1467 	return(0);
1468 }
1469 
1470 /*
1471  * Report current media status.
1472  */
1473 static void
1474 lge_ifmedia_sts(ifp, ifmr)
1475 	struct ifnet		*ifp;
1476 	struct ifmediareq	*ifmr;
1477 {
1478 	struct lge_softc	*sc;
1479 	struct mii_data		*mii;
1480 
1481 	sc = ifp->if_softc;
1482 
1483 	mii = device_get_softc(sc->lge_miibus);
1484 	mii_pollstat(mii);
1485 	ifmr->ifm_active = mii->mii_media_active;
1486 	ifmr->ifm_status = mii->mii_media_status;
1487 
1488 	return;
1489 }
1490 
1491 static int
1492 lge_ioctl(ifp, command, data)
1493 	struct ifnet		*ifp;
1494 	u_long			command;
1495 	caddr_t			data;
1496 {
1497 	struct lge_softc	*sc = ifp->if_softc;
1498 	struct ifreq		*ifr = (struct ifreq *) data;
1499 	struct mii_data		*mii;
1500 	int			s, error = 0;
1501 
1502 	s = splimp();
1503 
1504 	switch(command) {
1505 	case SIOCSIFMTU:
1506 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1507 			error = EINVAL;
1508 		else
1509 			ifp->if_mtu = ifr->ifr_mtu;
1510 		break;
1511 	case SIOCSIFFLAGS:
1512 		if (ifp->if_flags & IFF_UP) {
1513 			if (ifp->if_flags & IFF_RUNNING &&
1514 			    ifp->if_flags & IFF_PROMISC &&
1515 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1516 				CSR_WRITE_4(sc, LGE_MODE1,
1517 				    LGE_MODE1_SETRST_CTL1|
1518 				    LGE_MODE1_RX_PROMISC);
1519 			} else if (ifp->if_flags & IFF_RUNNING &&
1520 			    !(ifp->if_flags & IFF_PROMISC) &&
1521 			    sc->lge_if_flags & IFF_PROMISC) {
1522 				CSR_WRITE_4(sc, LGE_MODE1,
1523 				    LGE_MODE1_RX_PROMISC);
1524 			} else {
1525 				ifp->if_flags &= ~IFF_RUNNING;
1526 				lge_init(sc);
1527 			}
1528 		} else {
1529 			if (ifp->if_flags & IFF_RUNNING)
1530 				lge_stop(sc);
1531 		}
1532 		sc->lge_if_flags = ifp->if_flags;
1533 		error = 0;
1534 		break;
1535 	case SIOCADDMULTI:
1536 	case SIOCDELMULTI:
1537 		lge_setmulti(sc);
1538 		error = 0;
1539 		break;
1540 	case SIOCGIFMEDIA:
1541 	case SIOCSIFMEDIA:
1542 		mii = device_get_softc(sc->lge_miibus);
1543 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1544 		break;
1545 	default:
1546 		error = ether_ioctl(ifp, command, data);
1547 		break;
1548 	}
1549 
1550 	(void)splx(s);
1551 
1552 	return(error);
1553 }
1554 
1555 static void
1556 lge_watchdog(ifp)
1557 	struct ifnet		*ifp;
1558 {
1559 	struct lge_softc	*sc;
1560 
1561 	sc = ifp->if_softc;
1562 
1563 	ifp->if_oerrors++;
1564 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1565 
1566 	lge_stop(sc);
1567 	lge_reset(sc);
1568 	ifp->if_flags &= ~IFF_RUNNING;
1569 	lge_init(sc);
1570 
1571 	if (ifp->if_snd.ifq_head != NULL)
1572 		lge_start(ifp);
1573 
1574 	return;
1575 }
1576 
1577 /*
1578  * Stop the adapter and free any mbufs allocated to the
1579  * RX and TX lists.
1580  */
1581 static void
1582 lge_stop(sc)
1583 	struct lge_softc	*sc;
1584 {
1585 	register int		i;
1586 	struct ifnet		*ifp;
1587 
1588 	ifp = &sc->arpcom.ac_if;
1589 	ifp->if_timer = 0;
1590 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1591 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1592 
1593 	/* Disable receiver and transmitter. */
1594 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1595 	sc->lge_link = 0;
1596 
1597 	/*
1598 	 * Free data in the RX lists.
1599 	 */
1600 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1601 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1602 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1603 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1604 		}
1605 	}
1606 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1607 		sizeof(sc->lge_ldata->lge_rx_list));
1608 
1609 	/*
1610 	 * Free the TX list buffers.
1611 	 */
1612 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1613 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1614 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1615 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1616 		}
1617 	}
1618 
1619 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1620 		sizeof(sc->lge_ldata->lge_tx_list));
1621 
1622 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1623 
1624 	return;
1625 }
1626 
1627 /*
1628  * Stop all chip I/O so that the kernel's probe routines don't
1629  * get confused by errant DMAs when rebooting.
1630  */
1631 static void
1632 lge_shutdown(dev)
1633 	device_t		dev;
1634 {
1635 	struct lge_softc	*sc;
1636 
1637 	sc = device_get_softc(dev);
1638 
1639 	lge_reset(sc);
1640 	lge_stop(sc);
1641 
1642 	return;
1643 }
1644