xref: /freebsd/sys/dev/lge/if_lge.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/module.h>
79 #include <sys/socket.h>
80 
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 
88 #include <net/bpf.h>
89 
90 #include <vm/vm.h>              /* for vtophys */
91 #include <vm/pmap.h>            /* for vtophys */
92 #include <machine/bus.h>
93 #include <machine/resource.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 
103 #define LGE_USEIOSPACE
104 
105 #include <dev/lge/if_lgereg.h>
106 
107 /* "device miibus" required.  See GENERIC if you get errors here. */
108 #include "miibus_if.h"
109 
110 /*
111  * Various supported device vendors/types and their names.
112  */
113 static struct lge_type lge_devs[] = {
114 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
115 	{ 0, 0, NULL }
116 };
117 
118 static int lge_probe(device_t);
119 static int lge_attach(device_t);
120 static int lge_detach(device_t);
121 
122 static int lge_alloc_jumbo_mem(struct lge_softc *);
123 static void lge_free_jumbo_mem(struct lge_softc *);
124 static void *lge_jalloc(struct lge_softc *);
125 static void lge_jfree(void *, void *);
126 
127 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
128 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
129 static void lge_rxeof(struct lge_softc *, int);
130 static void lge_rxeoc(struct lge_softc *);
131 static void lge_txeof(struct lge_softc *);
132 static void lge_intr(void *);
133 static void lge_tick(void *);
134 static void lge_start(struct ifnet *);
135 static void lge_start_locked(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_init_locked(struct lge_softc *);
139 static void lge_stop(struct lge_softc *);
140 static void lge_watchdog(struct ifnet *);
141 static void lge_shutdown(device_t);
142 static int lge_ifmedia_upd(struct ifnet *);
143 static void lge_ifmedia_upd_locked(struct ifnet *);
144 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145 
146 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
147 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
148 
149 static int lge_miibus_readreg(device_t, int, int);
150 static int lge_miibus_writereg(device_t, int, int, int);
151 static void lge_miibus_statchg(device_t);
152 
153 static void lge_setmulti(struct lge_softc *);
154 static void lge_reset(struct lge_softc *);
155 static int lge_list_rx_init(struct lge_softc *);
156 static int lge_list_tx_init(struct lge_softc *);
157 
158 #ifdef LGE_USEIOSPACE
159 #define LGE_RES			SYS_RES_IOPORT
160 #define LGE_RID			LGE_PCI_LOIO
161 #else
162 #define LGE_RES			SYS_RES_MEMORY
163 #define LGE_RID			LGE_PCI_LOMEM
164 #endif
165 
166 static device_method_t lge_methods[] = {
167 	/* Device interface */
168 	DEVMETHOD(device_probe,		lge_probe),
169 	DEVMETHOD(device_attach,	lge_attach),
170 	DEVMETHOD(device_detach,	lge_detach),
171 	DEVMETHOD(device_shutdown,	lge_shutdown),
172 
173 	/* bus interface */
174 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
175 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
176 
177 	/* MII interface */
178 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
179 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
180 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
181 
182 	{ 0, 0 }
183 };
184 
185 static driver_t lge_driver = {
186 	"lge",
187 	lge_methods,
188 	sizeof(struct lge_softc)
189 };
190 
191 static devclass_t lge_devclass;
192 
193 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
194 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(lge, pci, 1, 1, 1);
196 MODULE_DEPEND(lge, ether, 1, 1, 1);
197 MODULE_DEPEND(lge, miibus, 1, 1, 1);
198 
199 #define LGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg,				\
201 		CSR_READ_4(sc, reg) | (x))
202 
203 #define LGE_CLRBIT(sc, reg, x)				\
204 	CSR_WRITE_4(sc, reg,				\
205 		CSR_READ_4(sc, reg) & ~(x))
206 
207 #define SIO_SET(x)					\
208 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
209 
210 #define SIO_CLR(x)					\
211 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
212 
213 /*
214  * Read a word of data stored in the EEPROM at address 'addr.'
215  */
216 static void
217 lge_eeprom_getword(sc, addr, dest)
218 	struct lge_softc	*sc;
219 	int			addr;
220 	u_int16_t		*dest;
221 {
222 	register int		i;
223 	u_int32_t		val;
224 
225 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
226 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
227 
228 	for (i = 0; i < LGE_TIMEOUT; i++)
229 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
230 			break;
231 
232 	if (i == LGE_TIMEOUT) {
233 		if_printf(sc->lge_ifp, "EEPROM read timed out\n");
234 		return;
235 	}
236 
237 	val = CSR_READ_4(sc, LGE_EEDATA);
238 
239 	if (addr & 1)
240 		*dest = (val >> 16) & 0xFFFF;
241 	else
242 		*dest = val & 0xFFFF;
243 
244 	return;
245 }
246 
247 /*
248  * Read a sequence of words from the EEPROM.
249  */
250 static void
251 lge_read_eeprom(sc, dest, off, cnt, swap)
252 	struct lge_softc	*sc;
253 	caddr_t			dest;
254 	int			off;
255 	int			cnt;
256 	int			swap;
257 {
258 	int			i;
259 	u_int16_t		word = 0, *ptr;
260 
261 	for (i = 0; i < cnt; i++) {
262 		lge_eeprom_getword(sc, off + i, &word);
263 		ptr = (u_int16_t *)(dest + (i * 2));
264 		if (swap)
265 			*ptr = ntohs(word);
266 		else
267 			*ptr = word;
268 	}
269 
270 	return;
271 }
272 
273 static int
274 lge_miibus_readreg(dev, phy, reg)
275 	device_t		dev;
276 	int			phy, reg;
277 {
278 	struct lge_softc	*sc;
279 	int			i;
280 
281 	sc = device_get_softc(dev);
282 
283 	/*
284 	 * If we have a non-PCS PHY, pretend that the internal
285 	 * autoneg stuff at PHY address 0 isn't there so that
286 	 * the miibus code will find only the GMII PHY.
287 	 */
288 	if (sc->lge_pcs == 0 && phy == 0)
289 		return(0);
290 
291 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
292 
293 	for (i = 0; i < LGE_TIMEOUT; i++)
294 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
295 			break;
296 
297 	if (i == LGE_TIMEOUT) {
298 		if_printf(sc->lge_ifp, "PHY read timed out\n");
299 		return(0);
300 	}
301 
302 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
303 }
304 
305 static int
306 lge_miibus_writereg(dev, phy, reg, data)
307 	device_t		dev;
308 	int			phy, reg, data;
309 {
310 	struct lge_softc	*sc;
311 	int			i;
312 
313 	sc = device_get_softc(dev);
314 
315 	CSR_WRITE_4(sc, LGE_GMIICTL,
316 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
317 
318 	for (i = 0; i < LGE_TIMEOUT; i++)
319 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
320 			break;
321 
322 	if (i == LGE_TIMEOUT) {
323 		if_printf(sc->lge_ifp, "PHY write timed out\n");
324 		return(0);
325 	}
326 
327 	return(0);
328 }
329 
330 static void
331 lge_miibus_statchg(dev)
332 	device_t		dev;
333 {
334 	struct lge_softc	*sc;
335 	struct mii_data		*mii;
336 
337 	sc = device_get_softc(dev);
338 	mii = device_get_softc(sc->lge_miibus);
339 
340 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
341 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
342 	case IFM_1000_T:
343 	case IFM_1000_SX:
344 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
345 		break;
346 	case IFM_100_TX:
347 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
348 		break;
349 	case IFM_10_T:
350 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
351 		break;
352 	default:
353 		/*
354 		 * Choose something, even if it's wrong. Clearing
355 		 * all the bits will hose autoneg on the internal
356 		 * PHY.
357 		 */
358 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
359 		break;
360 	}
361 
362 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
363 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
364 	} else {
365 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
366 	}
367 
368 	return;
369 }
370 
371 static void
372 lge_setmulti(sc)
373 	struct lge_softc	*sc;
374 {
375 	struct ifnet		*ifp;
376 	struct ifmultiaddr	*ifma;
377 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
378 
379 	ifp = sc->lge_ifp;
380 	LGE_LOCK_ASSERT(sc);
381 
382 	/* Make sure multicast hash table is enabled. */
383 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
384 
385 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
386 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
387 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
388 		return;
389 	}
390 
391 	/* first, zot all the existing hash bits */
392 	CSR_WRITE_4(sc, LGE_MAR0, 0);
393 	CSR_WRITE_4(sc, LGE_MAR1, 0);
394 
395 	/* now program new ones */
396 	IF_ADDR_LOCK(ifp);
397 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
398 		if (ifma->ifma_addr->sa_family != AF_LINK)
399 			continue;
400 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
401 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
402 		if (h < 32)
403 			hashes[0] |= (1 << h);
404 		else
405 			hashes[1] |= (1 << (h - 32));
406 	}
407 	IF_ADDR_UNLOCK(ifp);
408 
409 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
410 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
411 
412 	return;
413 }
414 
415 static void
416 lge_reset(sc)
417 	struct lge_softc	*sc;
418 {
419 	register int		i;
420 
421 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
422 
423 	for (i = 0; i < LGE_TIMEOUT; i++) {
424 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
425 			break;
426 	}
427 
428 	if (i == LGE_TIMEOUT)
429 		if_printf(sc->lge_ifp, "reset never completed\n");
430 
431 	/* Wait a little while for the chip to get its brains in order. */
432 	DELAY(1000);
433 
434         return;
435 }
436 
437 /*
438  * Probe for a Level 1 chip. Check the PCI vendor and device
439  * IDs against our list and return a device name if we find a match.
440  */
441 static int
442 lge_probe(dev)
443 	device_t		dev;
444 {
445 	struct lge_type		*t;
446 
447 	t = lge_devs;
448 
449 	while(t->lge_name != NULL) {
450 		if ((pci_get_vendor(dev) == t->lge_vid) &&
451 		    (pci_get_device(dev) == t->lge_did)) {
452 			device_set_desc(dev, t->lge_name);
453 			return(BUS_PROBE_DEFAULT);
454 		}
455 		t++;
456 	}
457 
458 	return(ENXIO);
459 }
460 
461 /*
462  * Attach the interface. Allocate softc structures, do ifmedia
463  * setup and ethernet/BPF attach.
464  */
465 static int
466 lge_attach(dev)
467 	device_t		dev;
468 {
469 	u_char			eaddr[ETHER_ADDR_LEN];
470 	struct lge_softc	*sc;
471 	struct ifnet		*ifp = NULL;
472 	int			error = 0, rid;
473 
474 	sc = device_get_softc(dev);
475 	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
476 	    MTX_DEF);
477 	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
478 
479 	/*
480 	 * Map control/status registers.
481 	 */
482 	pci_enable_busmaster(dev);
483 
484 	rid = LGE_RID;
485 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
486 
487 	if (sc->lge_res == NULL) {
488 		device_printf(dev, "couldn't map ports/memory\n");
489 		error = ENXIO;
490 		goto fail;
491 	}
492 
493 	sc->lge_btag = rman_get_bustag(sc->lge_res);
494 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
495 
496 	/* Allocate interrupt */
497 	rid = 0;
498 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
499 	    RF_SHAREABLE | RF_ACTIVE);
500 
501 	if (sc->lge_irq == NULL) {
502 		device_printf(dev, "couldn't map interrupt\n");
503 		error = ENXIO;
504 		goto fail;
505 	}
506 
507 	/* Reset the adapter. */
508 	lge_reset(sc);
509 
510 	/*
511 	 * Get station address from the EEPROM.
512 	 */
513 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
514 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
515 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
516 
517 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
518 	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
519 
520 	if (sc->lge_ldata == NULL) {
521 		device_printf(dev, "no memory for list buffers!\n");
522 		error = ENXIO;
523 		goto fail;
524 	}
525 
526 	/* Try to allocate memory for jumbo buffers. */
527 	if (lge_alloc_jumbo_mem(sc)) {
528 		device_printf(dev, "jumbo buffer allocation failed\n");
529 		error = ENXIO;
530 		goto fail;
531 	}
532 
533 	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
534 	if (ifp == NULL) {
535 		device_printf(dev, "can not if_alloc()\n");
536 		lge_free_jumbo_mem(sc);
537 		error = ENOSPC;
538 		goto fail;
539 	}
540 	ifp->if_softc = sc;
541 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
542 	ifp->if_mtu = ETHERMTU;
543 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
544 	ifp->if_ioctl = lge_ioctl;
545 	ifp->if_start = lge_start;
546 	ifp->if_watchdog = lge_watchdog;
547 	ifp->if_init = lge_init;
548 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
549 	ifp->if_capabilities = IFCAP_RXCSUM;
550 	ifp->if_capenable = ifp->if_capabilities;
551 
552 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
553 		sc->lge_pcs = 1;
554 	else
555 		sc->lge_pcs = 0;
556 
557 	/*
558 	 * Do MII setup.
559 	 */
560 	if (mii_phy_probe(dev, &sc->lge_miibus,
561 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
562 		device_printf(dev, "MII without any PHY!\n");
563 		lge_free_jumbo_mem(sc);
564 		error = ENXIO;
565 		goto fail;
566 	}
567 
568 	/*
569 	 * Call MI attach routine.
570 	 */
571 	ether_ifattach(ifp, eaddr);
572 
573 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
574 	    lge_intr, sc, &sc->lge_intrhand);
575 
576 	if (error) {
577 		ether_ifdetach(ifp);
578 		device_printf(dev, "couldn't set up irq\n");
579 		goto fail;
580 	}
581 	return (0);
582 
583 fail:
584 	if (sc->lge_ldata)
585 		contigfree(sc->lge_ldata,
586 		    sizeof(struct lge_list_data), M_DEVBUF);
587 	if (ifp)
588 		if_free(ifp);
589 	if (sc->lge_irq)
590 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
591 	if (sc->lge_res)
592 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
593 	mtx_destroy(&sc->lge_mtx);
594 	return(error);
595 }
596 
597 static int
598 lge_detach(dev)
599 	device_t		dev;
600 {
601 	struct lge_softc	*sc;
602 	struct ifnet		*ifp;
603 
604 	sc = device_get_softc(dev);
605 	ifp = sc->lge_ifp;
606 
607 	LGE_LOCK(sc);
608 	lge_reset(sc);
609 	lge_stop(sc);
610 	LGE_UNLOCK(sc);
611 	callout_drain(&sc->lge_stat_callout);
612 	ether_ifdetach(ifp);
613 
614 	bus_generic_detach(dev);
615 	device_delete_child(dev, sc->lge_miibus);
616 
617 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
618 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
619 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
620 
621 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
622 	if_free(ifp);
623 	lge_free_jumbo_mem(sc);
624 	mtx_destroy(&sc->lge_mtx);
625 
626 	return(0);
627 }
628 
629 /*
630  * Initialize the transmit descriptors.
631  */
632 static int
633 lge_list_tx_init(sc)
634 	struct lge_softc	*sc;
635 {
636 	struct lge_list_data	*ld;
637 	struct lge_ring_data	*cd;
638 	int			i;
639 
640 	cd = &sc->lge_cdata;
641 	ld = sc->lge_ldata;
642 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
643 		ld->lge_tx_list[i].lge_mbuf = NULL;
644 		ld->lge_tx_list[i].lge_ctl = 0;
645 	}
646 
647 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
648 
649 	return(0);
650 }
651 
652 
653 /*
654  * Initialize the RX descriptors and allocate mbufs for them. Note that
655  * we arralge the descriptors in a closed ring, so that the last descriptor
656  * points back to the first.
657  */
658 static int
659 lge_list_rx_init(sc)
660 	struct lge_softc	*sc;
661 {
662 	struct lge_list_data	*ld;
663 	struct lge_ring_data	*cd;
664 	int			i;
665 
666 	ld = sc->lge_ldata;
667 	cd = &sc->lge_cdata;
668 
669 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
670 
671 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
672 
673 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
674 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
675 			break;
676 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
677 			return(ENOBUFS);
678 	}
679 
680 	/* Clear possible 'rx command queue empty' interrupt. */
681 	CSR_READ_4(sc, LGE_ISR);
682 
683 	return(0);
684 }
685 
686 /*
687  * Initialize an RX descriptor and attach an MBUF cluster.
688  */
689 static int
690 lge_newbuf(sc, c, m)
691 	struct lge_softc	*sc;
692 	struct lge_rx_desc	*c;
693 	struct mbuf		*m;
694 {
695 	struct mbuf		*m_new = NULL;
696 	caddr_t			*buf = NULL;
697 
698 	if (m == NULL) {
699 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
700 		if (m_new == NULL) {
701 			if_printf(sc->lge_ifp, "no memory for rx list "
702 			    "-- packet dropped!\n");
703 			return(ENOBUFS);
704 		}
705 
706 		/* Allocate the jumbo buffer */
707 		buf = lge_jalloc(sc);
708 		if (buf == NULL) {
709 #ifdef LGE_VERBOSE
710 			if_printf(sc->lge_ifp, "jumbo allocation failed "
711 			    "-- packet dropped!\n");
712 #endif
713 			m_freem(m_new);
714 			return(ENOBUFS);
715 		}
716 		/* Attach the buffer to the mbuf */
717 		m_new->m_data = (void *)buf;
718 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
719 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
720 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
721 	} else {
722 		m_new = m;
723 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
724 		m_new->m_data = m_new->m_ext.ext_buf;
725 	}
726 
727 	/*
728 	 * Adjust alignment so packet payload begins on a
729 	 * longword boundary. Mandatory for Alpha, useful on
730 	 * x86 too.
731 	*/
732 	m_adj(m_new, ETHER_ALIGN);
733 
734 	c->lge_mbuf = m_new;
735 	c->lge_fragptr_hi = 0;
736 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
737 	c->lge_fraglen = m_new->m_len;
738 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
739 	c->lge_sts = 0;
740 
741 	/*
742 	 * Put this buffer in the RX command FIFO. To do this,
743 	 * we just write the physical address of the descriptor
744 	 * into the RX descriptor address registers. Note that
745 	 * there are two registers, one high DWORD and one low
746 	 * DWORD, which lets us specify a 64-bit address if
747 	 * desired. We only use a 32-bit address for now.
748 	 * Writing to the low DWORD register is what actually
749 	 * causes the command to be issued, so we do that
750 	 * last.
751 	 */
752 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
753 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
754 
755 	return(0);
756 }
757 
758 static int
759 lge_alloc_jumbo_mem(sc)
760 	struct lge_softc	*sc;
761 {
762 	caddr_t			ptr;
763 	register int		i;
764 	struct lge_jpool_entry   *entry;
765 
766 	/* Grab a big chunk o' storage. */
767 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
768 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
769 
770 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
771 		if_printf(sc->lge_ifp, "no memory for jumbo buffers!\n");
772 		return(ENOBUFS);
773 	}
774 
775 	SLIST_INIT(&sc->lge_jfree_listhead);
776 	SLIST_INIT(&sc->lge_jinuse_listhead);
777 
778 	/*
779 	 * Now divide it up into 9K pieces and save the addresses
780 	 * in an array.
781 	 */
782 	ptr = sc->lge_cdata.lge_jumbo_buf;
783 	for (i = 0; i < LGE_JSLOTS; i++) {
784 		sc->lge_cdata.lge_jslots[i] = ptr;
785 		ptr += LGE_JLEN;
786 		entry = malloc(sizeof(struct lge_jpool_entry),
787 		    M_DEVBUF, M_NOWAIT);
788 		if (entry == NULL) {
789 			if_printf(sc->lge_ifp, "no memory for jumbo "
790 			    "buffer queue!\n");
791 			return(ENOBUFS);
792 		}
793 		entry->slot = i;
794 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
795 		    entry, jpool_entries);
796 	}
797 
798 	return(0);
799 }
800 
801 static void
802 lge_free_jumbo_mem(sc)
803 	struct lge_softc	*sc;
804 {
805 	int			i;
806 	struct lge_jpool_entry	*entry;
807 
808 	for (i = 0; i < LGE_JSLOTS; i++) {
809 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
810 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
811 		free(entry, M_DEVBUF);
812 	}
813 
814 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
815 
816 	return;
817 }
818 
819 /*
820  * Allocate a jumbo buffer.
821  */
822 static void *
823 lge_jalloc(sc)
824 	struct lge_softc	*sc;
825 {
826 	struct lge_jpool_entry   *entry;
827 
828 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
829 
830 	if (entry == NULL) {
831 #ifdef LGE_VERBOSE
832 		if_printf(sc->lge_ifp, "no free jumbo buffers\n");
833 #endif
834 		return(NULL);
835 	}
836 
837 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
838 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
839 	return(sc->lge_cdata.lge_jslots[entry->slot]);
840 }
841 
842 /*
843  * Release a jumbo buffer.
844  */
845 static void
846 lge_jfree(buf, args)
847 	void			*buf;
848 	void			*args;
849 {
850 	struct lge_softc	*sc;
851 	int		        i;
852 	struct lge_jpool_entry   *entry;
853 
854 	/* Extract the softc struct pointer. */
855 	sc = args;
856 
857 	if (sc == NULL)
858 		panic("lge_jfree: can't find softc pointer!");
859 
860 	/* calculate the slot this buffer belongs to */
861 	i = ((vm_offset_t)buf
862 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
863 
864 	if ((i < 0) || (i >= LGE_JSLOTS))
865 		panic("lge_jfree: asked to free buffer that we don't manage!");
866 
867 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
868 	if (entry == NULL)
869 		panic("lge_jfree: buffer not in use!");
870 	entry->slot = i;
871 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
872 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
873 
874 	return;
875 }
876 
877 /*
878  * A frame has been uploaded: pass the resulting mbuf chain up to
879  * the higher level protocols.
880  */
881 static void
882 lge_rxeof(sc, cnt)
883 	struct lge_softc	*sc;
884 	int			cnt;
885 {
886         struct mbuf		*m;
887         struct ifnet		*ifp;
888 	struct lge_rx_desc	*cur_rx;
889 	int			c, i, total_len = 0;
890 	u_int32_t		rxsts, rxctl;
891 
892 	ifp = sc->lge_ifp;
893 
894 	/* Find out how many frames were processed. */
895 	c = cnt;
896 	i = sc->lge_cdata.lge_rx_cons;
897 
898 	/* Suck them in. */
899 	while(c) {
900 		struct mbuf		*m0 = NULL;
901 
902 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
903 		rxctl = cur_rx->lge_ctl;
904 		rxsts = cur_rx->lge_sts;
905 		m = cur_rx->lge_mbuf;
906 		cur_rx->lge_mbuf = NULL;
907 		total_len = LGE_RXBYTES(cur_rx);
908 		LGE_INC(i, LGE_RX_LIST_CNT);
909 		c--;
910 
911 		/*
912 		 * If an error occurs, update stats, clear the
913 		 * status word and leave the mbuf cluster in place:
914 		 * it should simply get re-used next time this descriptor
915 	 	 * comes up in the ring.
916 		 */
917 		if (rxctl & LGE_RXCTL_ERRMASK) {
918 			ifp->if_ierrors++;
919 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
920 			continue;
921 		}
922 
923 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
924 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
925 			    ifp, NULL);
926 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
927 			if (m0 == NULL) {
928 				if_printf(ifp, "no receive buffers "
929 				    "available -- packet dropped!\n");
930 				ifp->if_ierrors++;
931 				continue;
932 			}
933 			m = m0;
934 		} else {
935 			m->m_pkthdr.rcvif = ifp;
936 			m->m_pkthdr.len = m->m_len = total_len;
937 		}
938 
939 		ifp->if_ipackets++;
940 
941 		/* Do IP checksum checking. */
942 		if (rxsts & LGE_RXSTS_ISIP)
943 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
944 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
945 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
946 		if ((rxsts & LGE_RXSTS_ISTCP &&
947 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
948 		    (rxsts & LGE_RXSTS_ISUDP &&
949 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
950 			m->m_pkthdr.csum_flags |=
951 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
952 			m->m_pkthdr.csum_data = 0xffff;
953 		}
954 
955 		LGE_UNLOCK(sc);
956 		(*ifp->if_input)(ifp, m);
957 		LGE_LOCK(sc);
958 	}
959 
960 	sc->lge_cdata.lge_rx_cons = i;
961 
962 	return;
963 }
964 
965 static void
966 lge_rxeoc(sc)
967 	struct lge_softc	*sc;
968 {
969 	struct ifnet		*ifp;
970 
971 	ifp = sc->lge_ifp;
972 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
973 	lge_init_locked(sc);
974 	return;
975 }
976 
977 /*
978  * A frame was downloaded to the chip. It's safe for us to clean up
979  * the list buffers.
980  */
981 
982 static void
983 lge_txeof(sc)
984 	struct lge_softc	*sc;
985 {
986 	struct lge_tx_desc	*cur_tx = NULL;
987 	struct ifnet		*ifp;
988 	u_int32_t		idx, txdone;
989 
990 	ifp = sc->lge_ifp;
991 
992 	/* Clear the timeout timer. */
993 	ifp->if_timer = 0;
994 
995 	/*
996 	 * Go through our tx list and free mbufs for those
997 	 * frames that have been transmitted.
998 	 */
999 	idx = sc->lge_cdata.lge_tx_cons;
1000 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1001 
1002 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1003 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1004 
1005 		ifp->if_opackets++;
1006 		if (cur_tx->lge_mbuf != NULL) {
1007 			m_freem(cur_tx->lge_mbuf);
1008 			cur_tx->lge_mbuf = NULL;
1009 		}
1010 		cur_tx->lge_ctl = 0;
1011 
1012 		txdone--;
1013 		LGE_INC(idx, LGE_TX_LIST_CNT);
1014 		ifp->if_timer = 0;
1015 	}
1016 
1017 	sc->lge_cdata.lge_tx_cons = idx;
1018 
1019 	if (cur_tx != NULL)
1020 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1021 
1022 	return;
1023 }
1024 
1025 static void
1026 lge_tick(xsc)
1027 	void			*xsc;
1028 {
1029 	struct lge_softc	*sc;
1030 	struct mii_data		*mii;
1031 	struct ifnet		*ifp;
1032 
1033 	sc = xsc;
1034 	ifp = sc->lge_ifp;
1035 	LGE_LOCK_ASSERT(sc);
1036 
1037 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1038 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1039 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1040 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1041 
1042 	if (!sc->lge_link) {
1043 		mii = device_get_softc(sc->lge_miibus);
1044 		mii_tick(mii);
1045 		if (mii->mii_media_status & IFM_ACTIVE &&
1046 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1047 			sc->lge_link++;
1048 			if (bootverbose &&
1049 		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1050 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1051 				if_printf(ifp, "gigabit link up\n");
1052 			if (ifp->if_snd.ifq_head != NULL)
1053 				lge_start_locked(ifp);
1054 		}
1055 	}
1056 
1057 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1058 
1059 	return;
1060 }
1061 
1062 static void
1063 lge_intr(arg)
1064 	void			*arg;
1065 {
1066 	struct lge_softc	*sc;
1067 	struct ifnet		*ifp;
1068 	u_int32_t		status;
1069 
1070 	sc = arg;
1071 	ifp = sc->lge_ifp;
1072 	LGE_LOCK(sc);
1073 
1074 	/* Supress unwanted interrupts */
1075 	if (!(ifp->if_flags & IFF_UP)) {
1076 		lge_stop(sc);
1077 		LGE_UNLOCK(sc);
1078 		return;
1079 	}
1080 
1081 	for (;;) {
1082 		/*
1083 		 * Reading the ISR register clears all interrupts, and
1084 		 * clears the 'interrupts enabled' bit in the IMR
1085 		 * register.
1086 		 */
1087 		status = CSR_READ_4(sc, LGE_ISR);
1088 
1089 		if ((status & LGE_INTRS) == 0)
1090 			break;
1091 
1092 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1093 			lge_txeof(sc);
1094 
1095 		if (status & LGE_ISR_RXDMA_DONE)
1096 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1097 
1098 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1099 			lge_rxeoc(sc);
1100 
1101 		if (status & LGE_ISR_PHY_INTR) {
1102 			sc->lge_link = 0;
1103 			callout_stop(&sc->lge_stat_callout);
1104 			lge_tick(sc);
1105 		}
1106 	}
1107 
1108 	/* Re-enable interrupts. */
1109 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1110 
1111 	if (ifp->if_snd.ifq_head != NULL)
1112 		lge_start_locked(ifp);
1113 
1114 	LGE_UNLOCK(sc);
1115 	return;
1116 }
1117 
1118 /*
1119  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1120  * pointers to the fragment pointers.
1121  */
1122 static int
1123 lge_encap(sc, m_head, txidx)
1124 	struct lge_softc	*sc;
1125 	struct mbuf		*m_head;
1126 	u_int32_t		*txidx;
1127 {
1128 	struct lge_frag		*f = NULL;
1129 	struct lge_tx_desc	*cur_tx;
1130 	struct mbuf		*m;
1131 	int			frag = 0, tot_len = 0;
1132 
1133 	/*
1134  	 * Start packing the mbufs in this chain into
1135 	 * the fragment pointers. Stop when we run out
1136  	 * of fragments or hit the end of the mbuf chain.
1137 	 */
1138 	m = m_head;
1139 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1140 	frag = 0;
1141 
1142 	for (m = m_head; m != NULL; m = m->m_next) {
1143 		if (m->m_len != 0) {
1144 			tot_len += m->m_len;
1145 			f = &cur_tx->lge_frags[frag];
1146 			f->lge_fraglen = m->m_len;
1147 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1148 			f->lge_fragptr_hi = 0;
1149 			frag++;
1150 		}
1151 	}
1152 
1153 	if (m != NULL)
1154 		return(ENOBUFS);
1155 
1156 	cur_tx->lge_mbuf = m_head;
1157 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1158 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1159 
1160 	/* Queue for transmit */
1161 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1162 
1163 	return(0);
1164 }
1165 
1166 /*
1167  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1168  * to the mbuf data regions directly in the transmit lists. We also save a
1169  * copy of the pointers since the transmit list fragment pointers are
1170  * physical addresses.
1171  */
1172 
1173 static void
1174 lge_start(ifp)
1175 	struct ifnet		*ifp;
1176 {
1177 	struct lge_softc	*sc;
1178 
1179 	sc = ifp->if_softc;
1180 	LGE_LOCK(sc);
1181 	lge_start_locked(ifp);
1182 	LGE_UNLOCK(sc);
1183 }
1184 
1185 static void
1186 lge_start_locked(ifp)
1187 	struct ifnet		*ifp;
1188 {
1189 	struct lge_softc	*sc;
1190 	struct mbuf		*m_head = NULL;
1191 	u_int32_t		idx;
1192 
1193 	sc = ifp->if_softc;
1194 
1195 	if (!sc->lge_link)
1196 		return;
1197 
1198 	idx = sc->lge_cdata.lge_tx_prod;
1199 
1200 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1201 		return;
1202 
1203 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1204 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1205 			break;
1206 
1207 		IF_DEQUEUE(&ifp->if_snd, m_head);
1208 		if (m_head == NULL)
1209 			break;
1210 
1211 		if (lge_encap(sc, m_head, &idx)) {
1212 			IF_PREPEND(&ifp->if_snd, m_head);
1213 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1214 			break;
1215 		}
1216 
1217 		/*
1218 		 * If there's a BPF listener, bounce a copy of this frame
1219 		 * to him.
1220 		 */
1221 		BPF_MTAP(ifp, m_head);
1222 	}
1223 
1224 	sc->lge_cdata.lge_tx_prod = idx;
1225 
1226 	/*
1227 	 * Set a timeout in case the chip goes out to lunch.
1228 	 */
1229 	ifp->if_timer = 5;
1230 
1231 	return;
1232 }
1233 
1234 static void
1235 lge_init(xsc)
1236 	void			*xsc;
1237 {
1238 	struct lge_softc	*sc = xsc;
1239 
1240 	LGE_LOCK(sc);
1241 	lge_init_locked(sc);
1242 	LGE_UNLOCK(sc);
1243 }
1244 
1245 static void
1246 lge_init_locked(sc)
1247 	struct lge_softc	*sc;
1248 {
1249 	struct ifnet		*ifp = sc->lge_ifp;
1250 	struct mii_data		*mii;
1251 
1252 	LGE_LOCK_ASSERT(sc);
1253 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1254 		return;
1255 
1256 	/*
1257 	 * Cancel pending I/O and free all RX/TX buffers.
1258 	 */
1259 	lge_stop(sc);
1260 	lge_reset(sc);
1261 
1262 	mii = device_get_softc(sc->lge_miibus);
1263 
1264 	/* Set MAC address */
1265 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1266 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1267 
1268 	/* Init circular RX list. */
1269 	if (lge_list_rx_init(sc) == ENOBUFS) {
1270 		if_printf(ifp, "initialization failed: no "
1271 		    "memory for rx buffers\n");
1272 		lge_stop(sc);
1273 		return;
1274 	}
1275 
1276 	/*
1277 	 * Init tx descriptors.
1278 	 */
1279 	lge_list_tx_init(sc);
1280 
1281 	/* Set initial value for MODE1 register. */
1282 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1283 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1284 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1285 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1286 
1287 	 /* If we want promiscuous mode, set the allframes bit. */
1288 	if (ifp->if_flags & IFF_PROMISC) {
1289 		CSR_WRITE_4(sc, LGE_MODE1,
1290 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1291 	} else {
1292 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1293 	}
1294 
1295 	/*
1296 	 * Set the capture broadcast bit to capture broadcast frames.
1297 	 */
1298 	if (ifp->if_flags & IFF_BROADCAST) {
1299 		CSR_WRITE_4(sc, LGE_MODE1,
1300 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1301 	} else {
1302 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1303 	}
1304 
1305 	/* Packet padding workaround? */
1306 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1307 
1308 	/* No error frames */
1309 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1310 
1311 	/* Receive large frames */
1312 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1313 
1314 	/* Workaround: disable RX/TX flow control */
1315 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1316 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1317 
1318 	/* Make sure to strip CRC from received frames */
1319 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1320 
1321 	/* Turn off magic packet mode */
1322 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1323 
1324 	/* Turn off all VLAN stuff */
1325 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1326 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1327 
1328 	/* Workarond: FIFO overflow */
1329 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1330 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1331 
1332 	/*
1333 	 * Load the multicast filter.
1334 	 */
1335 	lge_setmulti(sc);
1336 
1337 	/*
1338 	 * Enable hardware checksum validation for all received IPv4
1339 	 * packets, do not reject packets with bad checksums.
1340 	 */
1341 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1342 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1343 	    LGE_MODE2_RX_ERRCSUM);
1344 
1345 	/*
1346 	 * Enable the delivery of PHY interrupts based on
1347 	 * link/speed/duplex status chalges.
1348 	 */
1349 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1350 
1351 	/* Enable receiver and transmitter. */
1352 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1353 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1354 
1355 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1356 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1357 
1358 	/*
1359 	 * Enable interrupts.
1360 	 */
1361 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1362 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1363 
1364 	lge_ifmedia_upd_locked(ifp);
1365 
1366 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1367 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1368 
1369 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1370 
1371 	return;
1372 }
1373 
1374 /*
1375  * Set media options.
1376  */
1377 static int
1378 lge_ifmedia_upd(ifp)
1379 	struct ifnet		*ifp;
1380 {
1381 	struct lge_softc	*sc;
1382 
1383 	sc = ifp->if_softc;
1384 	LGE_LOCK(sc);
1385 	lge_ifmedia_upd_locked(ifp);
1386 	LGE_UNLOCK(sc);
1387 
1388 	return(0);
1389 }
1390 
1391 static void
1392 lge_ifmedia_upd_locked(ifp)
1393 	struct ifnet		*ifp;
1394 {
1395 	struct lge_softc	*sc;
1396 	struct mii_data		*mii;
1397 
1398 	sc = ifp->if_softc;
1399 
1400 	LGE_LOCK_ASSERT(sc);
1401 	mii = device_get_softc(sc->lge_miibus);
1402 	sc->lge_link = 0;
1403 	if (mii->mii_instance) {
1404 		struct mii_softc	*miisc;
1405 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1406 		    miisc = LIST_NEXT(miisc, mii_list))
1407 			mii_phy_reset(miisc);
1408 	}
1409 	mii_mediachg(mii);
1410 }
1411 
1412 /*
1413  * Report current media status.
1414  */
1415 static void
1416 lge_ifmedia_sts(ifp, ifmr)
1417 	struct ifnet		*ifp;
1418 	struct ifmediareq	*ifmr;
1419 {
1420 	struct lge_softc	*sc;
1421 	struct mii_data		*mii;
1422 
1423 	sc = ifp->if_softc;
1424 
1425 	LGE_LOCK(sc);
1426 	mii = device_get_softc(sc->lge_miibus);
1427 	mii_pollstat(mii);
1428 	LGE_UNLOCK(sc);
1429 	ifmr->ifm_active = mii->mii_media_active;
1430 	ifmr->ifm_status = mii->mii_media_status;
1431 
1432 	return;
1433 }
1434 
1435 static int
1436 lge_ioctl(ifp, command, data)
1437 	struct ifnet		*ifp;
1438 	u_long			command;
1439 	caddr_t			data;
1440 {
1441 	struct lge_softc	*sc = ifp->if_softc;
1442 	struct ifreq		*ifr = (struct ifreq *) data;
1443 	struct mii_data		*mii;
1444 	int			error = 0;
1445 
1446 	switch(command) {
1447 	case SIOCSIFMTU:
1448 		LGE_LOCK(sc);
1449 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1450 			error = EINVAL;
1451 		else
1452 			ifp->if_mtu = ifr->ifr_mtu;
1453 		LGE_UNLOCK(sc);
1454 		break;
1455 	case SIOCSIFFLAGS:
1456 		LGE_LOCK(sc);
1457 		if (ifp->if_flags & IFF_UP) {
1458 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1459 			    ifp->if_flags & IFF_PROMISC &&
1460 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1461 				CSR_WRITE_4(sc, LGE_MODE1,
1462 				    LGE_MODE1_SETRST_CTL1|
1463 				    LGE_MODE1_RX_PROMISC);
1464 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1465 			    !(ifp->if_flags & IFF_PROMISC) &&
1466 			    sc->lge_if_flags & IFF_PROMISC) {
1467 				CSR_WRITE_4(sc, LGE_MODE1,
1468 				    LGE_MODE1_RX_PROMISC);
1469 			} else {
1470 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1471 				lge_init_locked(sc);
1472 			}
1473 		} else {
1474 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1475 				lge_stop(sc);
1476 		}
1477 		sc->lge_if_flags = ifp->if_flags;
1478 		LGE_UNLOCK(sc);
1479 		error = 0;
1480 		break;
1481 	case SIOCADDMULTI:
1482 	case SIOCDELMULTI:
1483 		LGE_LOCK(sc);
1484 		lge_setmulti(sc);
1485 		LGE_UNLOCK(sc);
1486 		error = 0;
1487 		break;
1488 	case SIOCGIFMEDIA:
1489 	case SIOCSIFMEDIA:
1490 		mii = device_get_softc(sc->lge_miibus);
1491 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1492 		break;
1493 	default:
1494 		error = ether_ioctl(ifp, command, data);
1495 		break;
1496 	}
1497 
1498 	return(error);
1499 }
1500 
1501 static void
1502 lge_watchdog(ifp)
1503 	struct ifnet		*ifp;
1504 {
1505 	struct lge_softc	*sc;
1506 
1507 	sc = ifp->if_softc;
1508 
1509 	LGE_LOCK(sc);
1510 	ifp->if_oerrors++;
1511 	if_printf(ifp, "watchdog timeout\n");
1512 
1513 	lge_stop(sc);
1514 	lge_reset(sc);
1515 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1516 	lge_init_locked(sc);
1517 
1518 	if (ifp->if_snd.ifq_head != NULL)
1519 		lge_start_locked(ifp);
1520 	LGE_UNLOCK(sc);
1521 
1522 	return;
1523 }
1524 
1525 /*
1526  * Stop the adapter and free any mbufs allocated to the
1527  * RX and TX lists.
1528  */
1529 static void
1530 lge_stop(sc)
1531 	struct lge_softc	*sc;
1532 {
1533 	register int		i;
1534 	struct ifnet		*ifp;
1535 
1536 	LGE_LOCK_ASSERT(sc);
1537 	ifp = sc->lge_ifp;
1538 	ifp->if_timer = 0;
1539 	callout_stop(&sc->lge_stat_callout);
1540 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1541 
1542 	/* Disable receiver and transmitter. */
1543 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1544 	sc->lge_link = 0;
1545 
1546 	/*
1547 	 * Free data in the RX lists.
1548 	 */
1549 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1550 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1551 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1552 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1553 		}
1554 	}
1555 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1556 		sizeof(sc->lge_ldata->lge_rx_list));
1557 
1558 	/*
1559 	 * Free the TX list buffers.
1560 	 */
1561 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1562 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1563 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1564 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1565 		}
1566 	}
1567 
1568 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1569 		sizeof(sc->lge_ldata->lge_tx_list));
1570 
1571 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1572 
1573 	return;
1574 }
1575 
1576 /*
1577  * Stop all chip I/O so that the kernel's probe routines don't
1578  * get confused by errant DMAs when rebooting.
1579  */
1580 static void
1581 lge_shutdown(dev)
1582 	device_t		dev;
1583 {
1584 	struct lge_softc	*sc;
1585 
1586 	sc = device_get_softc(dev);
1587 
1588 	LGE_LOCK(sc);
1589 	lge_reset(sc);
1590 	lge_stop(sc);
1591 	LGE_UNLOCK(sc);
1592 
1593 	return;
1594 }
1595