xref: /freebsd/sys/dev/lge/if_lge.c (revision e39e854e27f53a784c3982cbeb68f4ad1cfd9162)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/module.h>
79 #include <sys/socket.h>
80 
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 
88 #include <net/bpf.h>
89 
90 #include <vm/vm.h>              /* for vtophys */
91 #include <vm/pmap.h>            /* for vtophys */
92 #include <machine/bus.h>
93 #include <machine/resource.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 
103 #define LGE_USEIOSPACE
104 
105 #include <dev/lge/if_lgereg.h>
106 
107 /* "device miibus" required.  See GENERIC if you get errors here. */
108 #include "miibus_if.h"
109 
110 /*
111  * Various supported device vendors/types and their names.
112  */
113 static const struct lge_type const lge_devs[] = {
114 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
115 	{ 0, 0, NULL }
116 };
117 
118 static int lge_probe(device_t);
119 static int lge_attach(device_t);
120 static int lge_detach(device_t);
121 
122 static int lge_alloc_jumbo_mem(struct lge_softc *);
123 static void lge_free_jumbo_mem(struct lge_softc *);
124 static void *lge_jalloc(struct lge_softc *);
125 static void lge_jfree(void *, void *);
126 
127 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
128 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
129 static void lge_rxeof(struct lge_softc *, int);
130 static void lge_rxeoc(struct lge_softc *);
131 static void lge_txeof(struct lge_softc *);
132 static void lge_intr(void *);
133 static void lge_tick(void *);
134 static void lge_start(struct ifnet *);
135 static void lge_start_locked(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_init_locked(struct lge_softc *);
139 static void lge_stop(struct lge_softc *);
140 static void lge_watchdog(struct lge_softc *);
141 static int lge_shutdown(device_t);
142 static int lge_ifmedia_upd(struct ifnet *);
143 static void lge_ifmedia_upd_locked(struct ifnet *);
144 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145 
146 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
147 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
148 
149 static int lge_miibus_readreg(device_t, int, int);
150 static int lge_miibus_writereg(device_t, int, int, int);
151 static void lge_miibus_statchg(device_t);
152 
153 static void lge_setmulti(struct lge_softc *);
154 static void lge_reset(struct lge_softc *);
155 static int lge_list_rx_init(struct lge_softc *);
156 static int lge_list_tx_init(struct lge_softc *);
157 
158 #ifdef LGE_USEIOSPACE
159 #define LGE_RES			SYS_RES_IOPORT
160 #define LGE_RID			LGE_PCI_LOIO
161 #else
162 #define LGE_RES			SYS_RES_MEMORY
163 #define LGE_RID			LGE_PCI_LOMEM
164 #endif
165 
166 static device_method_t lge_methods[] = {
167 	/* Device interface */
168 	DEVMETHOD(device_probe,		lge_probe),
169 	DEVMETHOD(device_attach,	lge_attach),
170 	DEVMETHOD(device_detach,	lge_detach),
171 	DEVMETHOD(device_shutdown,	lge_shutdown),
172 
173 	/* MII interface */
174 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
175 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
176 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
177 
178 	DEVMETHOD_END
179 };
180 
181 static driver_t lge_driver = {
182 	"lge",
183 	lge_methods,
184 	sizeof(struct lge_softc)
185 };
186 
187 static devclass_t lge_devclass;
188 
189 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
190 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
191 MODULE_DEPEND(lge, pci, 1, 1, 1);
192 MODULE_DEPEND(lge, ether, 1, 1, 1);
193 MODULE_DEPEND(lge, miibus, 1, 1, 1);
194 
195 #define LGE_SETBIT(sc, reg, x)				\
196 	CSR_WRITE_4(sc, reg,				\
197 		CSR_READ_4(sc, reg) | (x))
198 
199 #define LGE_CLRBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg,				\
201 		CSR_READ_4(sc, reg) & ~(x))
202 
203 #define SIO_SET(x)					\
204 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
205 
206 #define SIO_CLR(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
208 
209 /*
210  * Read a word of data stored in the EEPROM at address 'addr.'
211  */
212 static void
213 lge_eeprom_getword(sc, addr, dest)
214 	struct lge_softc	*sc;
215 	int			addr;
216 	u_int16_t		*dest;
217 {
218 	register int		i;
219 	u_int32_t		val;
220 
221 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
222 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
223 
224 	for (i = 0; i < LGE_TIMEOUT; i++)
225 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
226 			break;
227 
228 	if (i == LGE_TIMEOUT) {
229 		device_printf(sc->lge_dev, "EEPROM read timed out\n");
230 		return;
231 	}
232 
233 	val = CSR_READ_4(sc, LGE_EEDATA);
234 
235 	if (addr & 1)
236 		*dest = (val >> 16) & 0xFFFF;
237 	else
238 		*dest = val & 0xFFFF;
239 
240 	return;
241 }
242 
243 /*
244  * Read a sequence of words from the EEPROM.
245  */
246 static void
247 lge_read_eeprom(sc, dest, off, cnt, swap)
248 	struct lge_softc	*sc;
249 	caddr_t			dest;
250 	int			off;
251 	int			cnt;
252 	int			swap;
253 {
254 	int			i;
255 	u_int16_t		word = 0, *ptr;
256 
257 	for (i = 0; i < cnt; i++) {
258 		lge_eeprom_getword(sc, off + i, &word);
259 		ptr = (u_int16_t *)(dest + (i * 2));
260 		if (swap)
261 			*ptr = ntohs(word);
262 		else
263 			*ptr = word;
264 	}
265 
266 	return;
267 }
268 
269 static int
270 lge_miibus_readreg(dev, phy, reg)
271 	device_t		dev;
272 	int			phy, reg;
273 {
274 	struct lge_softc	*sc;
275 	int			i;
276 
277 	sc = device_get_softc(dev);
278 
279 	/*
280 	 * If we have a non-PCS PHY, pretend that the internal
281 	 * autoneg stuff at PHY address 0 isn't there so that
282 	 * the miibus code will find only the GMII PHY.
283 	 */
284 	if (sc->lge_pcs == 0 && phy == 0)
285 		return(0);
286 
287 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
288 
289 	for (i = 0; i < LGE_TIMEOUT; i++)
290 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
291 			break;
292 
293 	if (i == LGE_TIMEOUT) {
294 		device_printf(sc->lge_dev, "PHY read timed out\n");
295 		return(0);
296 	}
297 
298 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
299 }
300 
301 static int
302 lge_miibus_writereg(dev, phy, reg, data)
303 	device_t		dev;
304 	int			phy, reg, data;
305 {
306 	struct lge_softc	*sc;
307 	int			i;
308 
309 	sc = device_get_softc(dev);
310 
311 	CSR_WRITE_4(sc, LGE_GMIICTL,
312 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
313 
314 	for (i = 0; i < LGE_TIMEOUT; i++)
315 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
316 			break;
317 
318 	if (i == LGE_TIMEOUT) {
319 		device_printf(sc->lge_dev, "PHY write timed out\n");
320 		return(0);
321 	}
322 
323 	return(0);
324 }
325 
326 static void
327 lge_miibus_statchg(dev)
328 	device_t		dev;
329 {
330 	struct lge_softc	*sc;
331 	struct mii_data		*mii;
332 
333 	sc = device_get_softc(dev);
334 	mii = device_get_softc(sc->lge_miibus);
335 
336 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
337 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
338 	case IFM_1000_T:
339 	case IFM_1000_SX:
340 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
341 		break;
342 	case IFM_100_TX:
343 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
344 		break;
345 	case IFM_10_T:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
347 		break;
348 	default:
349 		/*
350 		 * Choose something, even if it's wrong. Clearing
351 		 * all the bits will hose autoneg on the internal
352 		 * PHY.
353 		 */
354 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
355 		break;
356 	}
357 
358 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
359 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
360 	} else {
361 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
362 	}
363 
364 	return;
365 }
366 
367 static void
368 lge_setmulti(sc)
369 	struct lge_softc	*sc;
370 {
371 	struct ifnet		*ifp;
372 	struct ifmultiaddr	*ifma;
373 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
374 
375 	ifp = sc->lge_ifp;
376 	LGE_LOCK_ASSERT(sc);
377 
378 	/* Make sure multicast hash table is enabled. */
379 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
380 
381 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
382 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
383 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
384 		return;
385 	}
386 
387 	/* first, zot all the existing hash bits */
388 	CSR_WRITE_4(sc, LGE_MAR0, 0);
389 	CSR_WRITE_4(sc, LGE_MAR1, 0);
390 
391 	/* now program new ones */
392 	if_maddr_rlock(ifp);
393 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
394 		if (ifma->ifma_addr->sa_family != AF_LINK)
395 			continue;
396 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
397 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
398 		if (h < 32)
399 			hashes[0] |= (1 << h);
400 		else
401 			hashes[1] |= (1 << (h - 32));
402 	}
403 	if_maddr_runlock(ifp);
404 
405 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
406 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
407 
408 	return;
409 }
410 
411 static void
412 lge_reset(sc)
413 	struct lge_softc	*sc;
414 {
415 	register int		i;
416 
417 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
418 
419 	for (i = 0; i < LGE_TIMEOUT; i++) {
420 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
421 			break;
422 	}
423 
424 	if (i == LGE_TIMEOUT)
425 		device_printf(sc->lge_dev, "reset never completed\n");
426 
427 	/* Wait a little while for the chip to get its brains in order. */
428 	DELAY(1000);
429 
430         return;
431 }
432 
433 /*
434  * Probe for a Level 1 chip. Check the PCI vendor and device
435  * IDs against our list and return a device name if we find a match.
436  */
437 static int
438 lge_probe(dev)
439 	device_t		dev;
440 {
441 	const struct lge_type	*t;
442 
443 	t = lge_devs;
444 
445 	while(t->lge_name != NULL) {
446 		if ((pci_get_vendor(dev) == t->lge_vid) &&
447 		    (pci_get_device(dev) == t->lge_did)) {
448 			device_set_desc(dev, t->lge_name);
449 			return(BUS_PROBE_DEFAULT);
450 		}
451 		t++;
452 	}
453 
454 	return(ENXIO);
455 }
456 
457 /*
458  * Attach the interface. Allocate softc structures, do ifmedia
459  * setup and ethernet/BPF attach.
460  */
461 static int
462 lge_attach(dev)
463 	device_t		dev;
464 {
465 	u_char			eaddr[ETHER_ADDR_LEN];
466 	struct lge_softc	*sc;
467 	struct ifnet		*ifp = NULL;
468 	int			error = 0, rid;
469 
470 	sc = device_get_softc(dev);
471 	sc->lge_dev = dev;
472 
473 	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
474 	    MTX_DEF);
475 	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
476 
477 	/*
478 	 * Map control/status registers.
479 	 */
480 	pci_enable_busmaster(dev);
481 
482 	rid = LGE_RID;
483 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
484 
485 	if (sc->lge_res == NULL) {
486 		device_printf(dev, "couldn't map ports/memory\n");
487 		error = ENXIO;
488 		goto fail;
489 	}
490 
491 	sc->lge_btag = rman_get_bustag(sc->lge_res);
492 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
493 
494 	/* Allocate interrupt */
495 	rid = 0;
496 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
497 	    RF_SHAREABLE | RF_ACTIVE);
498 
499 	if (sc->lge_irq == NULL) {
500 		device_printf(dev, "couldn't map interrupt\n");
501 		error = ENXIO;
502 		goto fail;
503 	}
504 
505 	/* Reset the adapter. */
506 	lge_reset(sc);
507 
508 	/*
509 	 * Get station address from the EEPROM.
510 	 */
511 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
512 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
513 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
514 
515 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
516 	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
517 
518 	if (sc->lge_ldata == NULL) {
519 		device_printf(dev, "no memory for list buffers!\n");
520 		error = ENXIO;
521 		goto fail;
522 	}
523 
524 	/* Try to allocate memory for jumbo buffers. */
525 	if (lge_alloc_jumbo_mem(sc)) {
526 		device_printf(dev, "jumbo buffer allocation failed\n");
527 		error = ENXIO;
528 		goto fail;
529 	}
530 
531 	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
532 	if (ifp == NULL) {
533 		device_printf(dev, "can not if_alloc()\n");
534 		error = ENOSPC;
535 		goto fail;
536 	}
537 	ifp->if_softc = sc;
538 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
539 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
540 	ifp->if_ioctl = lge_ioctl;
541 	ifp->if_start = lge_start;
542 	ifp->if_init = lge_init;
543 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
544 	ifp->if_capabilities = IFCAP_RXCSUM;
545 	ifp->if_capenable = ifp->if_capabilities;
546 
547 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
548 		sc->lge_pcs = 1;
549 	else
550 		sc->lge_pcs = 0;
551 
552 	/*
553 	 * Do MII setup.
554 	 */
555 	error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd,
556 	    lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
557 	if (error != 0) {
558 		device_printf(dev, "attaching PHYs failed\n");
559 		goto fail;
560 	}
561 
562 	/*
563 	 * Call MI attach routine.
564 	 */
565 	ether_ifattach(ifp, eaddr);
566 
567 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
568 	    NULL, lge_intr, sc, &sc->lge_intrhand);
569 
570 	if (error) {
571 		ether_ifdetach(ifp);
572 		device_printf(dev, "couldn't set up irq\n");
573 		goto fail;
574 	}
575 	return (0);
576 
577 fail:
578 	lge_free_jumbo_mem(sc);
579 	if (sc->lge_ldata)
580 		contigfree(sc->lge_ldata,
581 		    sizeof(struct lge_list_data), M_DEVBUF);
582 	if (ifp)
583 		if_free(ifp);
584 	if (sc->lge_irq)
585 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
586 	if (sc->lge_res)
587 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
588 	mtx_destroy(&sc->lge_mtx);
589 	return(error);
590 }
591 
592 static int
593 lge_detach(dev)
594 	device_t		dev;
595 {
596 	struct lge_softc	*sc;
597 	struct ifnet		*ifp;
598 
599 	sc = device_get_softc(dev);
600 	ifp = sc->lge_ifp;
601 
602 	LGE_LOCK(sc);
603 	lge_reset(sc);
604 	lge_stop(sc);
605 	LGE_UNLOCK(sc);
606 	callout_drain(&sc->lge_stat_callout);
607 	ether_ifdetach(ifp);
608 
609 	bus_generic_detach(dev);
610 	device_delete_child(dev, sc->lge_miibus);
611 
612 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
613 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
614 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
615 
616 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
617 	if_free(ifp);
618 	lge_free_jumbo_mem(sc);
619 	mtx_destroy(&sc->lge_mtx);
620 
621 	return(0);
622 }
623 
624 /*
625  * Initialize the transmit descriptors.
626  */
627 static int
628 lge_list_tx_init(sc)
629 	struct lge_softc	*sc;
630 {
631 	struct lge_list_data	*ld;
632 	struct lge_ring_data	*cd;
633 	int			i;
634 
635 	cd = &sc->lge_cdata;
636 	ld = sc->lge_ldata;
637 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
638 		ld->lge_tx_list[i].lge_mbuf = NULL;
639 		ld->lge_tx_list[i].lge_ctl = 0;
640 	}
641 
642 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
643 
644 	return(0);
645 }
646 
647 
648 /*
649  * Initialize the RX descriptors and allocate mbufs for them. Note that
650  * we arralge the descriptors in a closed ring, so that the last descriptor
651  * points back to the first.
652  */
653 static int
654 lge_list_rx_init(sc)
655 	struct lge_softc	*sc;
656 {
657 	struct lge_list_data	*ld;
658 	struct lge_ring_data	*cd;
659 	int			i;
660 
661 	ld = sc->lge_ldata;
662 	cd = &sc->lge_cdata;
663 
664 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
665 
666 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
667 
668 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
669 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
670 			break;
671 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
672 			return(ENOBUFS);
673 	}
674 
675 	/* Clear possible 'rx command queue empty' interrupt. */
676 	CSR_READ_4(sc, LGE_ISR);
677 
678 	return(0);
679 }
680 
681 /*
682  * Initialize an RX descriptor and attach an MBUF cluster.
683  */
684 static int
685 lge_newbuf(sc, c, m)
686 	struct lge_softc	*sc;
687 	struct lge_rx_desc	*c;
688 	struct mbuf		*m;
689 {
690 	struct mbuf		*m_new = NULL;
691 	caddr_t			*buf = NULL;
692 
693 	if (m == NULL) {
694 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
695 		if (m_new == NULL) {
696 			device_printf(sc->lge_dev, "no memory for rx list "
697 			    "-- packet dropped!\n");
698 			return(ENOBUFS);
699 		}
700 
701 		/* Allocate the jumbo buffer */
702 		buf = lge_jalloc(sc);
703 		if (buf == NULL) {
704 #ifdef LGE_VERBOSE
705 			device_printf(sc->lge_dev, "jumbo allocation failed "
706 			    "-- packet dropped!\n");
707 #endif
708 			m_freem(m_new);
709 			return(ENOBUFS);
710 		}
711 		/* Attach the buffer to the mbuf */
712 		m_new->m_data = (void *)buf;
713 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
714 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
715 		    buf, (struct lge_softc *)sc, 0, EXT_NET_DRV);
716 	} else {
717 		m_new = m;
718 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
719 		m_new->m_data = m_new->m_ext.ext_buf;
720 	}
721 
722 	/*
723 	 * Adjust alignment so packet payload begins on a
724 	 * longword boundary. Mandatory for Alpha, useful on
725 	 * x86 too.
726 	*/
727 	m_adj(m_new, ETHER_ALIGN);
728 
729 	c->lge_mbuf = m_new;
730 	c->lge_fragptr_hi = 0;
731 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
732 	c->lge_fraglen = m_new->m_len;
733 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
734 	c->lge_sts = 0;
735 
736 	/*
737 	 * Put this buffer in the RX command FIFO. To do this,
738 	 * we just write the physical address of the descriptor
739 	 * into the RX descriptor address registers. Note that
740 	 * there are two registers, one high DWORD and one low
741 	 * DWORD, which lets us specify a 64-bit address if
742 	 * desired. We only use a 32-bit address for now.
743 	 * Writing to the low DWORD register is what actually
744 	 * causes the command to be issued, so we do that
745 	 * last.
746 	 */
747 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
748 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
749 
750 	return(0);
751 }
752 
753 static int
754 lge_alloc_jumbo_mem(sc)
755 	struct lge_softc	*sc;
756 {
757 	caddr_t			ptr;
758 	register int		i;
759 	struct lge_jpool_entry   *entry;
760 
761 	/* Grab a big chunk o' storage. */
762 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
763 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
764 
765 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
766 		device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
767 		return(ENOBUFS);
768 	}
769 
770 	SLIST_INIT(&sc->lge_jfree_listhead);
771 	SLIST_INIT(&sc->lge_jinuse_listhead);
772 
773 	/*
774 	 * Now divide it up into 9K pieces and save the addresses
775 	 * in an array.
776 	 */
777 	ptr = sc->lge_cdata.lge_jumbo_buf;
778 	for (i = 0; i < LGE_JSLOTS; i++) {
779 		sc->lge_cdata.lge_jslots[i] = ptr;
780 		ptr += LGE_JLEN;
781 		entry = malloc(sizeof(struct lge_jpool_entry),
782 		    M_DEVBUF, M_NOWAIT);
783 		if (entry == NULL) {
784 			device_printf(sc->lge_dev, "no memory for jumbo "
785 			    "buffer queue!\n");
786 			return(ENOBUFS);
787 		}
788 		entry->slot = i;
789 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
790 		    entry, jpool_entries);
791 	}
792 
793 	return(0);
794 }
795 
796 static void
797 lge_free_jumbo_mem(sc)
798 	struct lge_softc	*sc;
799 {
800 	struct lge_jpool_entry	*entry;
801 
802 	if (sc->lge_cdata.lge_jumbo_buf == NULL)
803 		return;
804 
805 	while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) {
806 		device_printf(sc->lge_dev,
807 		    "asked to free buffer that is in use!\n");
808 		SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
809 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry,
810 		    jpool_entries);
811 	}
812 	while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) {
813 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
814 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
815 		free(entry, M_DEVBUF);
816 	}
817 
818 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
819 
820 	return;
821 }
822 
823 /*
824  * Allocate a jumbo buffer.
825  */
826 static void *
827 lge_jalloc(sc)
828 	struct lge_softc	*sc;
829 {
830 	struct lge_jpool_entry   *entry;
831 
832 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
833 
834 	if (entry == NULL) {
835 #ifdef LGE_VERBOSE
836 		device_printf(sc->lge_dev, "no free jumbo buffers\n");
837 #endif
838 		return(NULL);
839 	}
840 
841 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
842 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
843 	return(sc->lge_cdata.lge_jslots[entry->slot]);
844 }
845 
846 /*
847  * Release a jumbo buffer.
848  */
849 static void
850 lge_jfree(buf, args)
851 	void			*buf;
852 	void			*args;
853 {
854 	struct lge_softc	*sc;
855 	int		        i;
856 	struct lge_jpool_entry   *entry;
857 
858 	/* Extract the softc struct pointer. */
859 	sc = args;
860 
861 	if (sc == NULL)
862 		panic("lge_jfree: can't find softc pointer!");
863 
864 	/* calculate the slot this buffer belongs to */
865 	i = ((vm_offset_t)buf
866 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
867 
868 	if ((i < 0) || (i >= LGE_JSLOTS))
869 		panic("lge_jfree: asked to free buffer that we don't manage!");
870 
871 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
872 	if (entry == NULL)
873 		panic("lge_jfree: buffer not in use!");
874 	entry->slot = i;
875 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
876 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
877 
878 	return;
879 }
880 
881 /*
882  * A frame has been uploaded: pass the resulting mbuf chain up to
883  * the higher level protocols.
884  */
885 static void
886 lge_rxeof(sc, cnt)
887 	struct lge_softc	*sc;
888 	int			cnt;
889 {
890         struct mbuf		*m;
891         struct ifnet		*ifp;
892 	struct lge_rx_desc	*cur_rx;
893 	int			c, i, total_len = 0;
894 	u_int32_t		rxsts, rxctl;
895 
896 	ifp = sc->lge_ifp;
897 
898 	/* Find out how many frames were processed. */
899 	c = cnt;
900 	i = sc->lge_cdata.lge_rx_cons;
901 
902 	/* Suck them in. */
903 	while(c) {
904 		struct mbuf		*m0 = NULL;
905 
906 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
907 		rxctl = cur_rx->lge_ctl;
908 		rxsts = cur_rx->lge_sts;
909 		m = cur_rx->lge_mbuf;
910 		cur_rx->lge_mbuf = NULL;
911 		total_len = LGE_RXBYTES(cur_rx);
912 		LGE_INC(i, LGE_RX_LIST_CNT);
913 		c--;
914 
915 		/*
916 		 * If an error occurs, update stats, clear the
917 		 * status word and leave the mbuf cluster in place:
918 		 * it should simply get re-used next time this descriptor
919 	 	 * comes up in the ring.
920 		 */
921 		if (rxctl & LGE_RXCTL_ERRMASK) {
922 			ifp->if_ierrors++;
923 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
924 			continue;
925 		}
926 
927 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
928 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
929 			    ifp, NULL);
930 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
931 			if (m0 == NULL) {
932 				device_printf(sc->lge_dev, "no receive buffers "
933 				    "available -- packet dropped!\n");
934 				ifp->if_ierrors++;
935 				continue;
936 			}
937 			m = m0;
938 		} else {
939 			m->m_pkthdr.rcvif = ifp;
940 			m->m_pkthdr.len = m->m_len = total_len;
941 		}
942 
943 		ifp->if_ipackets++;
944 
945 		/* Do IP checksum checking. */
946 		if (rxsts & LGE_RXSTS_ISIP)
947 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
948 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
949 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
950 		if ((rxsts & LGE_RXSTS_ISTCP &&
951 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
952 		    (rxsts & LGE_RXSTS_ISUDP &&
953 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
954 			m->m_pkthdr.csum_flags |=
955 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
956 			m->m_pkthdr.csum_data = 0xffff;
957 		}
958 
959 		LGE_UNLOCK(sc);
960 		(*ifp->if_input)(ifp, m);
961 		LGE_LOCK(sc);
962 	}
963 
964 	sc->lge_cdata.lge_rx_cons = i;
965 
966 	return;
967 }
968 
969 static void
970 lge_rxeoc(sc)
971 	struct lge_softc	*sc;
972 {
973 	struct ifnet		*ifp;
974 
975 	ifp = sc->lge_ifp;
976 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
977 	lge_init_locked(sc);
978 	return;
979 }
980 
981 /*
982  * A frame was downloaded to the chip. It's safe for us to clean up
983  * the list buffers.
984  */
985 
986 static void
987 lge_txeof(sc)
988 	struct lge_softc	*sc;
989 {
990 	struct lge_tx_desc	*cur_tx = NULL;
991 	struct ifnet		*ifp;
992 	u_int32_t		idx, txdone;
993 
994 	ifp = sc->lge_ifp;
995 
996 	/* Clear the timeout timer. */
997 	sc->lge_timer = 0;
998 
999 	/*
1000 	 * Go through our tx list and free mbufs for those
1001 	 * frames that have been transmitted.
1002 	 */
1003 	idx = sc->lge_cdata.lge_tx_cons;
1004 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1005 
1006 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1007 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1008 
1009 		ifp->if_opackets++;
1010 		if (cur_tx->lge_mbuf != NULL) {
1011 			m_freem(cur_tx->lge_mbuf);
1012 			cur_tx->lge_mbuf = NULL;
1013 		}
1014 		cur_tx->lge_ctl = 0;
1015 
1016 		txdone--;
1017 		LGE_INC(idx, LGE_TX_LIST_CNT);
1018 		sc->lge_timer = 0;
1019 	}
1020 
1021 	sc->lge_cdata.lge_tx_cons = idx;
1022 
1023 	if (cur_tx != NULL)
1024 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1025 
1026 	return;
1027 }
1028 
1029 static void
1030 lge_tick(xsc)
1031 	void			*xsc;
1032 {
1033 	struct lge_softc	*sc;
1034 	struct mii_data		*mii;
1035 	struct ifnet		*ifp;
1036 
1037 	sc = xsc;
1038 	ifp = sc->lge_ifp;
1039 	LGE_LOCK_ASSERT(sc);
1040 
1041 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1042 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1043 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1044 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1045 
1046 	if (!sc->lge_link) {
1047 		mii = device_get_softc(sc->lge_miibus);
1048 		mii_tick(mii);
1049 		if (mii->mii_media_status & IFM_ACTIVE &&
1050 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1051 			sc->lge_link++;
1052 			if (bootverbose &&
1053 		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1054 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1055 				device_printf(sc->lge_dev, "gigabit link up\n");
1056 			if (ifp->if_snd.ifq_head != NULL)
1057 				lge_start_locked(ifp);
1058 		}
1059 	}
1060 
1061 	if (sc->lge_timer != 0 && --sc->lge_timer == 0)
1062 		lge_watchdog(sc);
1063 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1064 
1065 	return;
1066 }
1067 
1068 static void
1069 lge_intr(arg)
1070 	void			*arg;
1071 {
1072 	struct lge_softc	*sc;
1073 	struct ifnet		*ifp;
1074 	u_int32_t		status;
1075 
1076 	sc = arg;
1077 	ifp = sc->lge_ifp;
1078 	LGE_LOCK(sc);
1079 
1080 	/* Supress unwanted interrupts */
1081 	if (!(ifp->if_flags & IFF_UP)) {
1082 		lge_stop(sc);
1083 		LGE_UNLOCK(sc);
1084 		return;
1085 	}
1086 
1087 	for (;;) {
1088 		/*
1089 		 * Reading the ISR register clears all interrupts, and
1090 		 * clears the 'interrupts enabled' bit in the IMR
1091 		 * register.
1092 		 */
1093 		status = CSR_READ_4(sc, LGE_ISR);
1094 
1095 		if ((status & LGE_INTRS) == 0)
1096 			break;
1097 
1098 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1099 			lge_txeof(sc);
1100 
1101 		if (status & LGE_ISR_RXDMA_DONE)
1102 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1103 
1104 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1105 			lge_rxeoc(sc);
1106 
1107 		if (status & LGE_ISR_PHY_INTR) {
1108 			sc->lge_link = 0;
1109 			callout_stop(&sc->lge_stat_callout);
1110 			lge_tick(sc);
1111 		}
1112 	}
1113 
1114 	/* Re-enable interrupts. */
1115 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1116 
1117 	if (ifp->if_snd.ifq_head != NULL)
1118 		lge_start_locked(ifp);
1119 
1120 	LGE_UNLOCK(sc);
1121 	return;
1122 }
1123 
1124 /*
1125  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1126  * pointers to the fragment pointers.
1127  */
1128 static int
1129 lge_encap(sc, m_head, txidx)
1130 	struct lge_softc	*sc;
1131 	struct mbuf		*m_head;
1132 	u_int32_t		*txidx;
1133 {
1134 	struct lge_frag		*f = NULL;
1135 	struct lge_tx_desc	*cur_tx;
1136 	struct mbuf		*m;
1137 	int			frag = 0, tot_len = 0;
1138 
1139 	/*
1140  	 * Start packing the mbufs in this chain into
1141 	 * the fragment pointers. Stop when we run out
1142  	 * of fragments or hit the end of the mbuf chain.
1143 	 */
1144 	m = m_head;
1145 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1146 	frag = 0;
1147 
1148 	for (m = m_head; m != NULL; m = m->m_next) {
1149 		if (m->m_len != 0) {
1150 			tot_len += m->m_len;
1151 			f = &cur_tx->lge_frags[frag];
1152 			f->lge_fraglen = m->m_len;
1153 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1154 			f->lge_fragptr_hi = 0;
1155 			frag++;
1156 		}
1157 	}
1158 
1159 	if (m != NULL)
1160 		return(ENOBUFS);
1161 
1162 	cur_tx->lge_mbuf = m_head;
1163 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1164 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1165 
1166 	/* Queue for transmit */
1167 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1168 
1169 	return(0);
1170 }
1171 
1172 /*
1173  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1174  * to the mbuf data regions directly in the transmit lists. We also save a
1175  * copy of the pointers since the transmit list fragment pointers are
1176  * physical addresses.
1177  */
1178 
1179 static void
1180 lge_start(ifp)
1181 	struct ifnet		*ifp;
1182 {
1183 	struct lge_softc	*sc;
1184 
1185 	sc = ifp->if_softc;
1186 	LGE_LOCK(sc);
1187 	lge_start_locked(ifp);
1188 	LGE_UNLOCK(sc);
1189 }
1190 
1191 static void
1192 lge_start_locked(ifp)
1193 	struct ifnet		*ifp;
1194 {
1195 	struct lge_softc	*sc;
1196 	struct mbuf		*m_head = NULL;
1197 	u_int32_t		idx;
1198 
1199 	sc = ifp->if_softc;
1200 
1201 	if (!sc->lge_link)
1202 		return;
1203 
1204 	idx = sc->lge_cdata.lge_tx_prod;
1205 
1206 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1207 		return;
1208 
1209 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1210 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1211 			break;
1212 
1213 		IF_DEQUEUE(&ifp->if_snd, m_head);
1214 		if (m_head == NULL)
1215 			break;
1216 
1217 		if (lge_encap(sc, m_head, &idx)) {
1218 			IF_PREPEND(&ifp->if_snd, m_head);
1219 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1220 			break;
1221 		}
1222 
1223 		/*
1224 		 * If there's a BPF listener, bounce a copy of this frame
1225 		 * to him.
1226 		 */
1227 		BPF_MTAP(ifp, m_head);
1228 	}
1229 
1230 	sc->lge_cdata.lge_tx_prod = idx;
1231 
1232 	/*
1233 	 * Set a timeout in case the chip goes out to lunch.
1234 	 */
1235 	sc->lge_timer = 5;
1236 
1237 	return;
1238 }
1239 
1240 static void
1241 lge_init(xsc)
1242 	void			*xsc;
1243 {
1244 	struct lge_softc	*sc = xsc;
1245 
1246 	LGE_LOCK(sc);
1247 	lge_init_locked(sc);
1248 	LGE_UNLOCK(sc);
1249 }
1250 
1251 static void
1252 lge_init_locked(sc)
1253 	struct lge_softc	*sc;
1254 {
1255 	struct ifnet		*ifp = sc->lge_ifp;
1256 
1257 	LGE_LOCK_ASSERT(sc);
1258 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1259 		return;
1260 
1261 	/*
1262 	 * Cancel pending I/O and free all RX/TX buffers.
1263 	 */
1264 	lge_stop(sc);
1265 	lge_reset(sc);
1266 
1267 	/* Set MAC address */
1268 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1269 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1270 
1271 	/* Init circular RX list. */
1272 	if (lge_list_rx_init(sc) == ENOBUFS) {
1273 		device_printf(sc->lge_dev, "initialization failed: no "
1274 		    "memory for rx buffers\n");
1275 		lge_stop(sc);
1276 		return;
1277 	}
1278 
1279 	/*
1280 	 * Init tx descriptors.
1281 	 */
1282 	lge_list_tx_init(sc);
1283 
1284 	/* Set initial value for MODE1 register. */
1285 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1286 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1287 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1288 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1289 
1290 	 /* If we want promiscuous mode, set the allframes bit. */
1291 	if (ifp->if_flags & IFF_PROMISC) {
1292 		CSR_WRITE_4(sc, LGE_MODE1,
1293 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1294 	} else {
1295 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1296 	}
1297 
1298 	/*
1299 	 * Set the capture broadcast bit to capture broadcast frames.
1300 	 */
1301 	if (ifp->if_flags & IFF_BROADCAST) {
1302 		CSR_WRITE_4(sc, LGE_MODE1,
1303 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1304 	} else {
1305 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1306 	}
1307 
1308 	/* Packet padding workaround? */
1309 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1310 
1311 	/* No error frames */
1312 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1313 
1314 	/* Receive large frames */
1315 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1316 
1317 	/* Workaround: disable RX/TX flow control */
1318 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1319 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1320 
1321 	/* Make sure to strip CRC from received frames */
1322 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1323 
1324 	/* Turn off magic packet mode */
1325 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1326 
1327 	/* Turn off all VLAN stuff */
1328 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1329 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1330 
1331 	/* Workarond: FIFO overflow */
1332 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1333 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1334 
1335 	/*
1336 	 * Load the multicast filter.
1337 	 */
1338 	lge_setmulti(sc);
1339 
1340 	/*
1341 	 * Enable hardware checksum validation for all received IPv4
1342 	 * packets, do not reject packets with bad checksums.
1343 	 */
1344 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1345 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1346 	    LGE_MODE2_RX_ERRCSUM);
1347 
1348 	/*
1349 	 * Enable the delivery of PHY interrupts based on
1350 	 * link/speed/duplex status chalges.
1351 	 */
1352 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1353 
1354 	/* Enable receiver and transmitter. */
1355 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1356 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1357 
1358 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1359 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1360 
1361 	/*
1362 	 * Enable interrupts.
1363 	 */
1364 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1365 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1366 
1367 	lge_ifmedia_upd_locked(ifp);
1368 
1369 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1370 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1371 
1372 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1373 
1374 	return;
1375 }
1376 
1377 /*
1378  * Set media options.
1379  */
1380 static int
1381 lge_ifmedia_upd(ifp)
1382 	struct ifnet		*ifp;
1383 {
1384 	struct lge_softc	*sc;
1385 
1386 	sc = ifp->if_softc;
1387 	LGE_LOCK(sc);
1388 	lge_ifmedia_upd_locked(ifp);
1389 	LGE_UNLOCK(sc);
1390 
1391 	return(0);
1392 }
1393 
1394 static void
1395 lge_ifmedia_upd_locked(ifp)
1396 	struct ifnet		*ifp;
1397 {
1398 	struct lge_softc	*sc;
1399 	struct mii_data		*mii;
1400 	struct mii_softc	*miisc;
1401 
1402 	sc = ifp->if_softc;
1403 
1404 	LGE_LOCK_ASSERT(sc);
1405 	mii = device_get_softc(sc->lge_miibus);
1406 	sc->lge_link = 0;
1407 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1408 		PHY_RESET(miisc);
1409 	mii_mediachg(mii);
1410 }
1411 
1412 /*
1413  * Report current media status.
1414  */
1415 static void
1416 lge_ifmedia_sts(ifp, ifmr)
1417 	struct ifnet		*ifp;
1418 	struct ifmediareq	*ifmr;
1419 {
1420 	struct lge_softc	*sc;
1421 	struct mii_data		*mii;
1422 
1423 	sc = ifp->if_softc;
1424 
1425 	LGE_LOCK(sc);
1426 	mii = device_get_softc(sc->lge_miibus);
1427 	mii_pollstat(mii);
1428 	ifmr->ifm_active = mii->mii_media_active;
1429 	ifmr->ifm_status = mii->mii_media_status;
1430 	LGE_UNLOCK(sc);
1431 
1432 	return;
1433 }
1434 
1435 static int
1436 lge_ioctl(ifp, command, data)
1437 	struct ifnet		*ifp;
1438 	u_long			command;
1439 	caddr_t			data;
1440 {
1441 	struct lge_softc	*sc = ifp->if_softc;
1442 	struct ifreq		*ifr = (struct ifreq *) data;
1443 	struct mii_data		*mii;
1444 	int			error = 0;
1445 
1446 	switch(command) {
1447 	case SIOCSIFMTU:
1448 		LGE_LOCK(sc);
1449 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1450 			error = EINVAL;
1451 		else
1452 			ifp->if_mtu = ifr->ifr_mtu;
1453 		LGE_UNLOCK(sc);
1454 		break;
1455 	case SIOCSIFFLAGS:
1456 		LGE_LOCK(sc);
1457 		if (ifp->if_flags & IFF_UP) {
1458 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1459 			    ifp->if_flags & IFF_PROMISC &&
1460 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1461 				CSR_WRITE_4(sc, LGE_MODE1,
1462 				    LGE_MODE1_SETRST_CTL1|
1463 				    LGE_MODE1_RX_PROMISC);
1464 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1465 			    !(ifp->if_flags & IFF_PROMISC) &&
1466 			    sc->lge_if_flags & IFF_PROMISC) {
1467 				CSR_WRITE_4(sc, LGE_MODE1,
1468 				    LGE_MODE1_RX_PROMISC);
1469 			} else {
1470 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1471 				lge_init_locked(sc);
1472 			}
1473 		} else {
1474 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1475 				lge_stop(sc);
1476 		}
1477 		sc->lge_if_flags = ifp->if_flags;
1478 		LGE_UNLOCK(sc);
1479 		error = 0;
1480 		break;
1481 	case SIOCADDMULTI:
1482 	case SIOCDELMULTI:
1483 		LGE_LOCK(sc);
1484 		lge_setmulti(sc);
1485 		LGE_UNLOCK(sc);
1486 		error = 0;
1487 		break;
1488 	case SIOCGIFMEDIA:
1489 	case SIOCSIFMEDIA:
1490 		mii = device_get_softc(sc->lge_miibus);
1491 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1492 		break;
1493 	default:
1494 		error = ether_ioctl(ifp, command, data);
1495 		break;
1496 	}
1497 
1498 	return(error);
1499 }
1500 
1501 static void
1502 lge_watchdog(sc)
1503 	struct lge_softc	*sc;
1504 {
1505 	struct ifnet		*ifp;
1506 
1507 	LGE_LOCK_ASSERT(sc);
1508 	ifp = sc->lge_ifp;
1509 
1510 	ifp->if_oerrors++;
1511 	if_printf(ifp, "watchdog timeout\n");
1512 
1513 	lge_stop(sc);
1514 	lge_reset(sc);
1515 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1516 	lge_init_locked(sc);
1517 
1518 	if (ifp->if_snd.ifq_head != NULL)
1519 		lge_start_locked(ifp);
1520 }
1521 
1522 /*
1523  * Stop the adapter and free any mbufs allocated to the
1524  * RX and TX lists.
1525  */
1526 static void
1527 lge_stop(sc)
1528 	struct lge_softc	*sc;
1529 {
1530 	register int		i;
1531 	struct ifnet		*ifp;
1532 
1533 	LGE_LOCK_ASSERT(sc);
1534 	ifp = sc->lge_ifp;
1535 	sc->lge_timer = 0;
1536 	callout_stop(&sc->lge_stat_callout);
1537 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1538 
1539 	/* Disable receiver and transmitter. */
1540 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1541 	sc->lge_link = 0;
1542 
1543 	/*
1544 	 * Free data in the RX lists.
1545 	 */
1546 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1547 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1548 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1549 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1550 		}
1551 	}
1552 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1553 		sizeof(sc->lge_ldata->lge_rx_list));
1554 
1555 	/*
1556 	 * Free the TX list buffers.
1557 	 */
1558 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1559 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1560 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1561 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1562 		}
1563 	}
1564 
1565 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1566 		sizeof(sc->lge_ldata->lge_tx_list));
1567 
1568 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1569 
1570 	return;
1571 }
1572 
1573 /*
1574  * Stop all chip I/O so that the kernel's probe routines don't
1575  * get confused by errant DMAs when rebooting.
1576  */
1577 static int
1578 lge_shutdown(dev)
1579 	device_t		dev;
1580 {
1581 	struct lge_softc	*sc;
1582 
1583 	sc = device_get_softc(dev);
1584 
1585 	LGE_LOCK(sc);
1586 	lge_reset(sc);
1587 	lge_stop(sc);
1588 	LGE_UNLOCK(sc);
1589 
1590 	return (0);
1591 }
1592