xref: /freebsd/sys/dev/lge/if_lge.c (revision dba6dd177bdee890cf445fbe21a5dccefd5de18e)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/ethernet.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 
86 #include <net/bpf.h>
87 
88 #include <vm/vm.h>              /* for vtophys */
89 #include <vm/pmap.h>            /* for vtophys */
90 #include <machine/clock.h>      /* for DELAY */
91 #include <machine/bus_pio.h>
92 #include <machine/bus_memio.h>
93 #include <machine/bus.h>
94 #include <machine/resource.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 
98 #include <dev/mii/mii.h>
99 #include <dev/mii/miivar.h>
100 
101 #include <dev/pci/pcireg.h>
102 #include <dev/pci/pcivar.h>
103 
104 #define LGE_USEIOSPACE
105 
106 #include <dev/lge/if_lgereg.h>
107 
108 /* "controller miibus0" required.  See GENERIC if you get errors here. */
109 #include "miibus_if.h"
110 
111 /*
112  * Various supported device vendors/types and their names.
113  */
114 static struct lge_type lge_devs[] = {
115 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
116 	{ 0, 0, NULL }
117 };
118 
119 static int lge_probe(device_t);
120 static int lge_attach(device_t);
121 static int lge_detach(device_t);
122 
123 static int lge_alloc_jumbo_mem(struct lge_softc *);
124 static void lge_free_jumbo_mem(struct lge_softc *);
125 static void *lge_jalloc(struct lge_softc *);
126 static void lge_jfree(void *, void *);
127 
128 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
129 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
130 static void lge_rxeof(struct lge_softc *, int);
131 static void lge_rxeoc(struct lge_softc *);
132 static void lge_txeof(struct lge_softc *);
133 static void lge_intr(void *);
134 static void lge_tick(void *);
135 static void lge_start(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_stop(struct lge_softc *);
139 static void lge_watchdog(struct ifnet *);
140 static void lge_shutdown(device_t);
141 static int lge_ifmedia_upd(struct ifnet *);
142 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
143 
144 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
145 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
146 
147 static int lge_miibus_readreg(device_t, int, int);
148 static int lge_miibus_writereg(device_t, int, int, int);
149 static void lge_miibus_statchg(device_t);
150 
151 static void lge_setmulti(struct lge_softc *);
152 static uint32_t lge_mchash(const uint8_t *);
153 static void lge_reset(struct lge_softc *);
154 static int lge_list_rx_init(struct lge_softc *);
155 static int lge_list_tx_init(struct lge_softc *);
156 
157 #ifdef LGE_USEIOSPACE
158 #define LGE_RES			SYS_RES_IOPORT
159 #define LGE_RID			LGE_PCI_LOIO
160 #else
161 #define LGE_RES			SYS_RES_MEMORY
162 #define LGE_RID			LGE_PCI_LOMEM
163 #endif
164 
165 static device_method_t lge_methods[] = {
166 	/* Device interface */
167 	DEVMETHOD(device_probe,		lge_probe),
168 	DEVMETHOD(device_attach,	lge_attach),
169 	DEVMETHOD(device_detach,	lge_detach),
170 	DEVMETHOD(device_shutdown,	lge_shutdown),
171 
172 	/* bus interface */
173 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
174 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
175 
176 	/* MII interface */
177 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
180 
181 	{ 0, 0 }
182 };
183 
184 static driver_t lge_driver = {
185 	"lge",
186 	lge_methods,
187 	sizeof(struct lge_softc)
188 };
189 
190 static devclass_t lge_devclass;
191 
192 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
193 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
194 MODULE_DEPEND(lge, pci, 1, 1, 1);
195 MODULE_DEPEND(lge, ether, 1, 1, 1);
196 MODULE_DEPEND(lge, miibus, 1, 1, 1);
197 
198 #define LGE_SETBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg,				\
204 		CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
211 
212 /*
213  * Read a word of data stored in the EEPROM at address 'addr.'
214  */
215 static void
216 lge_eeprom_getword(sc, addr, dest)
217 	struct lge_softc	*sc;
218 	int			addr;
219 	u_int16_t		*dest;
220 {
221 	register int		i;
222 	u_int32_t		val;
223 
224 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
225 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
226 
227 	for (i = 0; i < LGE_TIMEOUT; i++)
228 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
229 			break;
230 
231 	if (i == LGE_TIMEOUT) {
232 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
233 		return;
234 	}
235 
236 	val = CSR_READ_4(sc, LGE_EEDATA);
237 
238 	if (addr & 1)
239 		*dest = (val >> 16) & 0xFFFF;
240 	else
241 		*dest = val & 0xFFFF;
242 
243 	return;
244 }
245 
246 /*
247  * Read a sequence of words from the EEPROM.
248  */
249 static void
250 lge_read_eeprom(sc, dest, off, cnt, swap)
251 	struct lge_softc	*sc;
252 	caddr_t			dest;
253 	int			off;
254 	int			cnt;
255 	int			swap;
256 {
257 	int			i;
258 	u_int16_t		word = 0, *ptr;
259 
260 	for (i = 0; i < cnt; i++) {
261 		lge_eeprom_getword(sc, off + i, &word);
262 		ptr = (u_int16_t *)(dest + (i * 2));
263 		if (swap)
264 			*ptr = ntohs(word);
265 		else
266 			*ptr = word;
267 	}
268 
269 	return;
270 }
271 
272 static int
273 lge_miibus_readreg(dev, phy, reg)
274 	device_t		dev;
275 	int			phy, reg;
276 {
277 	struct lge_softc	*sc;
278 	int			i;
279 
280 	sc = device_get_softc(dev);
281 
282 	/*
283 	 * If we have a non-PCS PHY, pretend that the internal
284 	 * autoneg stuff at PHY address 0 isn't there so that
285 	 * the miibus code will find only the GMII PHY.
286 	 */
287 	if (sc->lge_pcs == 0 && phy == 0)
288 		return(0);
289 
290 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
291 
292 	for (i = 0; i < LGE_TIMEOUT; i++)
293 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
294 			break;
295 
296 	if (i == LGE_TIMEOUT) {
297 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
298 		return(0);
299 	}
300 
301 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
302 }
303 
304 static int
305 lge_miibus_writereg(dev, phy, reg, data)
306 	device_t		dev;
307 	int			phy, reg, data;
308 {
309 	struct lge_softc	*sc;
310 	int			i;
311 
312 	sc = device_get_softc(dev);
313 
314 	CSR_WRITE_4(sc, LGE_GMIICTL,
315 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
316 
317 	for (i = 0; i < LGE_TIMEOUT; i++)
318 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
319 			break;
320 
321 	if (i == LGE_TIMEOUT) {
322 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
323 		return(0);
324 	}
325 
326 	return(0);
327 }
328 
329 static void
330 lge_miibus_statchg(dev)
331 	device_t		dev;
332 {
333 	struct lge_softc	*sc;
334 	struct mii_data		*mii;
335 
336 	sc = device_get_softc(dev);
337 	mii = device_get_softc(sc->lge_miibus);
338 
339 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
340 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
341 	case IFM_1000_T:
342 	case IFM_1000_SX:
343 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
344 		break;
345 	case IFM_100_TX:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
347 		break;
348 	case IFM_10_T:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
350 		break;
351 	default:
352 		/*
353 		 * Choose something, even if it's wrong. Clearing
354 		 * all the bits will hose autoneg on the internal
355 		 * PHY.
356 		 */
357 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
358 		break;
359 	}
360 
361 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363 	} else {
364 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
365 	}
366 
367 	return;
368 }
369 
370 static uint32_t
371 lge_mchash(addr)
372 	const uint8_t *addr;
373 {
374 	uint32_t crc, carry;
375 	int idx, bit;
376 	uint8_t data;
377 
378 	/* Compute CRC for the address value. */
379 	crc = 0xFFFFFFFF; /* initial value */
380 
381 	for (idx = 0; idx < 6; idx++) {
382 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
383 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
384 			crc <<= 1;
385 			if (carry)
386 				crc = (crc ^ 0x04c11db6) | carry;
387 		}
388 	}
389 
390 	/*
391 	 * return the filter bit position
392 	 */
393 	return((crc >> 26) & 0x0000003F);
394 }
395 
396 static void
397 lge_setmulti(sc)
398 	struct lge_softc	*sc;
399 {
400 	struct ifnet		*ifp;
401 	struct ifmultiaddr	*ifma;
402 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
403 
404 	ifp = &sc->arpcom.ac_if;
405 
406 	/* Make sure multicast hash table is enabled. */
407 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
408 
409 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
410 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
411 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
412 		return;
413 	}
414 
415 	/* first, zot all the existing hash bits */
416 	CSR_WRITE_4(sc, LGE_MAR0, 0);
417 	CSR_WRITE_4(sc, LGE_MAR1, 0);
418 
419 	/* now program new ones */
420 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
421 		if (ifma->ifma_addr->sa_family != AF_LINK)
422 			continue;
423 		h = lge_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
424 		if (h < 32)
425 			hashes[0] |= (1 << h);
426 		else
427 			hashes[1] |= (1 << (h - 32));
428 	}
429 
430 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
431 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
432 
433 	return;
434 }
435 
436 static void
437 lge_reset(sc)
438 	struct lge_softc	*sc;
439 {
440 	register int		i;
441 
442 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
443 
444 	for (i = 0; i < LGE_TIMEOUT; i++) {
445 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
446 			break;
447 	}
448 
449 	if (i == LGE_TIMEOUT)
450 		printf("lge%d: reset never completed\n", sc->lge_unit);
451 
452 	/* Wait a little while for the chip to get its brains in order. */
453 	DELAY(1000);
454 
455         return;
456 }
457 
458 /*
459  * Probe for a Level 1 chip. Check the PCI vendor and device
460  * IDs against our list and return a device name if we find a match.
461  */
462 static int
463 lge_probe(dev)
464 	device_t		dev;
465 {
466 	struct lge_type		*t;
467 
468 	t = lge_devs;
469 
470 	while(t->lge_name != NULL) {
471 		if ((pci_get_vendor(dev) == t->lge_vid) &&
472 		    (pci_get_device(dev) == t->lge_did)) {
473 			device_set_desc(dev, t->lge_name);
474 			return(0);
475 		}
476 		t++;
477 	}
478 
479 	return(ENXIO);
480 }
481 
482 /*
483  * Attach the interface. Allocate softc structures, do ifmedia
484  * setup and ethernet/BPF attach.
485  */
486 static int
487 lge_attach(dev)
488 	device_t		dev;
489 {
490 	int			s;
491 	u_char			eaddr[ETHER_ADDR_LEN];
492 	struct lge_softc	*sc;
493 	struct ifnet		*ifp;
494 	int			unit, error = 0, rid;
495 
496 	s = splimp();
497 
498 	sc = device_get_softc(dev);
499 	unit = device_get_unit(dev);
500 	bzero(sc, sizeof(struct lge_softc));
501 #ifndef BURN_BRIDGES
502 	/*
503 	 * Handle power management nonsense.
504 	 */
505 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
506 		u_int32_t		iobase, membase, irq;
507 
508 		/* Save important PCI config data. */
509 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
510 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
511 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
512 
513 		/* Reset the power state. */
514 		printf("lge%d: chip is in D%d power mode "
515 		    "-- setting to D0\n", unit,
516 		    pci_get_powerstate(dev));
517 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
518 
519 		/* Restore PCI config data. */
520 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
521 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
522 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
523 	}
524 #endif
525 	/*
526 	 * Map control/status registers.
527 	 */
528 	pci_enable_busmaster(dev);
529 
530 	rid = LGE_RID;
531 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
532 
533 	if (sc->lge_res == NULL) {
534 		printf("lge%d: couldn't map ports/memory\n", unit);
535 		error = ENXIO;
536 		goto fail;
537 	}
538 
539 	sc->lge_btag = rman_get_bustag(sc->lge_res);
540 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
541 
542 	/* Allocate interrupt */
543 	rid = 0;
544 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
545 	    RF_SHAREABLE | RF_ACTIVE);
546 
547 	if (sc->lge_irq == NULL) {
548 		printf("lge%d: couldn't map interrupt\n", unit);
549 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
550 		error = ENXIO;
551 		goto fail;
552 	}
553 
554 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
555 	    lge_intr, sc, &sc->lge_intrhand);
556 
557 	if (error) {
558 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
559 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
560 		printf("lge%d: couldn't set up irq\n", unit);
561 		goto fail;
562 	}
563 
564 	/* Reset the adapter. */
565 	lge_reset(sc);
566 
567 	/*
568 	 * Get station address from the EEPROM.
569 	 */
570 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
571 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
572 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
573 
574 	sc->lge_unit = unit;
575 	callout_handle_init(&sc->lge_stat_ch);
576 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
577 
578 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
579 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
580 
581 	if (sc->lge_ldata == NULL) {
582 		printf("lge%d: no memory for list buffers!\n", unit);
583 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
584 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
585 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
586 		error = ENXIO;
587 		goto fail;
588 	}
589 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
590 
591 	/* Try to allocate memory for jumbo buffers. */
592 	if (lge_alloc_jumbo_mem(sc)) {
593 		printf("lge%d: jumbo buffer allocation failed\n",
594                     sc->lge_unit);
595 		contigfree(sc->lge_ldata,
596 		    sizeof(struct lge_list_data), M_DEVBUF);
597 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
598 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
599 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
600 		error = ENXIO;
601 		goto fail;
602 	}
603 
604 	ifp = &sc->arpcom.ac_if;
605 	ifp->if_softc = sc;
606 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
607 	ifp->if_mtu = ETHERMTU;
608 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609 	ifp->if_ioctl = lge_ioctl;
610 	ifp->if_start = lge_start;
611 	ifp->if_watchdog = lge_watchdog;
612 	ifp->if_init = lge_init;
613 	ifp->if_baudrate = 1000000000;
614 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
615 	ifp->if_capabilities = IFCAP_RXCSUM;
616 	ifp->if_capenable = ifp->if_capabilities;
617 
618 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
619 		sc->lge_pcs = 1;
620 	else
621 		sc->lge_pcs = 0;
622 
623 	/*
624 	 * Do MII setup.
625 	 */
626 	if (mii_phy_probe(dev, &sc->lge_miibus,
627 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
628 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
629 		contigfree(sc->lge_ldata,
630 		    sizeof(struct lge_list_data), M_DEVBUF);
631 		lge_free_jumbo_mem(sc);
632 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
633 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
634 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
635 		error = ENXIO;
636 		goto fail;
637 	}
638 
639 	/*
640 	 * Call MI attach routine.
641 	 */
642 	ether_ifattach(ifp, eaddr);
643 	callout_handle_init(&sc->lge_stat_ch);
644 
645 fail:
646 	splx(s);
647 	return(error);
648 }
649 
650 static int
651 lge_detach(dev)
652 	device_t		dev;
653 {
654 	struct lge_softc	*sc;
655 	struct ifnet		*ifp;
656 	int			s;
657 
658 	s = splimp();
659 
660 	sc = device_get_softc(dev);
661 	ifp = &sc->arpcom.ac_if;
662 
663 	lge_reset(sc);
664 	lge_stop(sc);
665 	ether_ifdetach(ifp);
666 
667 	bus_generic_detach(dev);
668 	device_delete_child(dev, sc->lge_miibus);
669 
670 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
671 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
672 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
673 
674 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
675 	lge_free_jumbo_mem(sc);
676 
677 	splx(s);
678 
679 	return(0);
680 }
681 
682 /*
683  * Initialize the transmit descriptors.
684  */
685 static int
686 lge_list_tx_init(sc)
687 	struct lge_softc	*sc;
688 {
689 	struct lge_list_data	*ld;
690 	struct lge_ring_data	*cd;
691 	int			i;
692 
693 	cd = &sc->lge_cdata;
694 	ld = sc->lge_ldata;
695 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
696 		ld->lge_tx_list[i].lge_mbuf = NULL;
697 		ld->lge_tx_list[i].lge_ctl = 0;
698 	}
699 
700 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
701 
702 	return(0);
703 }
704 
705 
706 /*
707  * Initialize the RX descriptors and allocate mbufs for them. Note that
708  * we arralge the descriptors in a closed ring, so that the last descriptor
709  * points back to the first.
710  */
711 static int
712 lge_list_rx_init(sc)
713 	struct lge_softc	*sc;
714 {
715 	struct lge_list_data	*ld;
716 	struct lge_ring_data	*cd;
717 	int			i;
718 
719 	ld = sc->lge_ldata;
720 	cd = &sc->lge_cdata;
721 
722 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
723 
724 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
725 
726 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
727 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
728 			break;
729 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
730 			return(ENOBUFS);
731 	}
732 
733 	/* Clear possible 'rx command queue empty' interrupt. */
734 	CSR_READ_4(sc, LGE_ISR);
735 
736 	return(0);
737 }
738 
739 /*
740  * Initialize an RX descriptor and attach an MBUF cluster.
741  */
742 static int
743 lge_newbuf(sc, c, m)
744 	struct lge_softc	*sc;
745 	struct lge_rx_desc	*c;
746 	struct mbuf		*m;
747 {
748 	struct mbuf		*m_new = NULL;
749 	caddr_t			*buf = NULL;
750 
751 	if (m == NULL) {
752 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
753 		if (m_new == NULL) {
754 			printf("lge%d: no memory for rx list "
755 			    "-- packet dropped!\n", sc->lge_unit);
756 			return(ENOBUFS);
757 		}
758 
759 		/* Allocate the jumbo buffer */
760 		buf = lge_jalloc(sc);
761 		if (buf == NULL) {
762 #ifdef LGE_VERBOSE
763 			printf("lge%d: jumbo allocation failed "
764 			    "-- packet dropped!\n", sc->lge_unit);
765 #endif
766 			m_freem(m_new);
767 			return(ENOBUFS);
768 		}
769 		/* Attach the buffer to the mbuf */
770 		m_new->m_data = (void *)buf;
771 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
772 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
773 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
774 	} else {
775 		m_new = m;
776 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
777 		m_new->m_data = m_new->m_ext.ext_buf;
778 	}
779 
780 	/*
781 	 * Adjust alignment so packet payload begins on a
782 	 * longword boundary. Mandatory for Alpha, useful on
783 	 * x86 too.
784 	*/
785 	m_adj(m_new, ETHER_ALIGN);
786 
787 	c->lge_mbuf = m_new;
788 	c->lge_fragptr_hi = 0;
789 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
790 	c->lge_fraglen = m_new->m_len;
791 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
792 	c->lge_sts = 0;
793 
794 	/*
795 	 * Put this buffer in the RX command FIFO. To do this,
796 	 * we just write the physical address of the descriptor
797 	 * into the RX descriptor address registers. Note that
798 	 * there are two registers, one high DWORD and one low
799 	 * DWORD, which lets us specify a 64-bit address if
800 	 * desired. We only use a 32-bit address for now.
801 	 * Writing to the low DWORD register is what actually
802 	 * causes the command to be issued, so we do that
803 	 * last.
804 	 */
805 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
806 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
807 
808 	return(0);
809 }
810 
811 static int
812 lge_alloc_jumbo_mem(sc)
813 	struct lge_softc	*sc;
814 {
815 	caddr_t			ptr;
816 	register int		i;
817 	struct lge_jpool_entry   *entry;
818 
819 	/* Grab a big chunk o' storage. */
820 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
821 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
822 
823 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
824 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
825 		return(ENOBUFS);
826 	}
827 
828 	SLIST_INIT(&sc->lge_jfree_listhead);
829 	SLIST_INIT(&sc->lge_jinuse_listhead);
830 
831 	/*
832 	 * Now divide it up into 9K pieces and save the addresses
833 	 * in an array.
834 	 */
835 	ptr = sc->lge_cdata.lge_jumbo_buf;
836 	for (i = 0; i < LGE_JSLOTS; i++) {
837 		sc->lge_cdata.lge_jslots[i] = ptr;
838 		ptr += LGE_JLEN;
839 		entry = malloc(sizeof(struct lge_jpool_entry),
840 		    M_DEVBUF, M_NOWAIT);
841 		if (entry == NULL) {
842 			printf("lge%d: no memory for jumbo "
843 			    "buffer queue!\n", sc->lge_unit);
844 			return(ENOBUFS);
845 		}
846 		entry->slot = i;
847 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
848 		    entry, jpool_entries);
849 	}
850 
851 	return(0);
852 }
853 
854 static void
855 lge_free_jumbo_mem(sc)
856 	struct lge_softc	*sc;
857 {
858 	int			i;
859 	struct lge_jpool_entry	*entry;
860 
861 	for (i = 0; i < LGE_JSLOTS; i++) {
862 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
863 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
864 		free(entry, M_DEVBUF);
865 	}
866 
867 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
868 
869 	return;
870 }
871 
872 /*
873  * Allocate a jumbo buffer.
874  */
875 static void *
876 lge_jalloc(sc)
877 	struct lge_softc	*sc;
878 {
879 	struct lge_jpool_entry   *entry;
880 
881 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
882 
883 	if (entry == NULL) {
884 #ifdef LGE_VERBOSE
885 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
886 #endif
887 		return(NULL);
888 	}
889 
890 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
891 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
892 	return(sc->lge_cdata.lge_jslots[entry->slot]);
893 }
894 
895 /*
896  * Release a jumbo buffer.
897  */
898 static void
899 lge_jfree(buf, args)
900 	void			*buf;
901 	void			*args;
902 {
903 	struct lge_softc	*sc;
904 	int		        i;
905 	struct lge_jpool_entry   *entry;
906 
907 	/* Extract the softc struct pointer. */
908 	sc = args;
909 
910 	if (sc == NULL)
911 		panic("lge_jfree: can't find softc pointer!");
912 
913 	/* calculate the slot this buffer belongs to */
914 	i = ((vm_offset_t)buf
915 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
916 
917 	if ((i < 0) || (i >= LGE_JSLOTS))
918 		panic("lge_jfree: asked to free buffer that we don't manage!");
919 
920 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
921 	if (entry == NULL)
922 		panic("lge_jfree: buffer not in use!");
923 	entry->slot = i;
924 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
925 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
926 
927 	return;
928 }
929 
930 /*
931  * A frame has been uploaded: pass the resulting mbuf chain up to
932  * the higher level protocols.
933  */
934 static void
935 lge_rxeof(sc, cnt)
936 	struct lge_softc	*sc;
937 	int			cnt;
938 {
939         struct mbuf		*m;
940         struct ifnet		*ifp;
941 	struct lge_rx_desc	*cur_rx;
942 	int			c, i, total_len = 0;
943 	u_int32_t		rxsts, rxctl;
944 
945 	ifp = &sc->arpcom.ac_if;
946 
947 	/* Find out how many frames were processed. */
948 	c = cnt;
949 	i = sc->lge_cdata.lge_rx_cons;
950 
951 	/* Suck them in. */
952 	while(c) {
953 		struct mbuf		*m0 = NULL;
954 
955 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
956 		rxctl = cur_rx->lge_ctl;
957 		rxsts = cur_rx->lge_sts;
958 		m = cur_rx->lge_mbuf;
959 		cur_rx->lge_mbuf = NULL;
960 		total_len = LGE_RXBYTES(cur_rx);
961 		LGE_INC(i, LGE_RX_LIST_CNT);
962 		c--;
963 
964 		/*
965 		 * If an error occurs, update stats, clear the
966 		 * status word and leave the mbuf cluster in place:
967 		 * it should simply get re-used next time this descriptor
968 	 	 * comes up in the ring.
969 		 */
970 		if (rxctl & LGE_RXCTL_ERRMASK) {
971 			ifp->if_ierrors++;
972 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
973 			continue;
974 		}
975 
976 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
977 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
978 			    ifp, NULL);
979 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
980 			if (m0 == NULL) {
981 				printf("lge%d: no receive buffers "
982 				    "available -- packet dropped!\n",
983 				    sc->lge_unit);
984 				ifp->if_ierrors++;
985 				continue;
986 			}
987 			m = m0;
988 		} else {
989 			m->m_pkthdr.rcvif = ifp;
990 			m->m_pkthdr.len = m->m_len = total_len;
991 		}
992 
993 		ifp->if_ipackets++;
994 
995 		/* Do IP checksum checking. */
996 		if (rxsts & LGE_RXSTS_ISIP)
997 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
998 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
999 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1000 		if ((rxsts & LGE_RXSTS_ISTCP &&
1001 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1002 		    (rxsts & LGE_RXSTS_ISUDP &&
1003 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1004 			m->m_pkthdr.csum_flags |=
1005 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1006 			m->m_pkthdr.csum_data = 0xffff;
1007 		}
1008 
1009 		(*ifp->if_input)(ifp, m);
1010 	}
1011 
1012 	sc->lge_cdata.lge_rx_cons = i;
1013 
1014 	return;
1015 }
1016 
1017 static void
1018 lge_rxeoc(sc)
1019 	struct lge_softc	*sc;
1020 {
1021 	struct ifnet		*ifp;
1022 
1023 	ifp = &sc->arpcom.ac_if;
1024 	ifp->if_flags &= ~IFF_RUNNING;
1025 	lge_init(sc);
1026 	return;
1027 }
1028 
1029 /*
1030  * A frame was downloaded to the chip. It's safe for us to clean up
1031  * the list buffers.
1032  */
1033 
1034 static void
1035 lge_txeof(sc)
1036 	struct lge_softc	*sc;
1037 {
1038 	struct lge_tx_desc	*cur_tx = NULL;
1039 	struct ifnet		*ifp;
1040 	u_int32_t		idx, txdone;
1041 
1042 	ifp = &sc->arpcom.ac_if;
1043 
1044 	/* Clear the timeout timer. */
1045 	ifp->if_timer = 0;
1046 
1047 	/*
1048 	 * Go through our tx list and free mbufs for those
1049 	 * frames that have been transmitted.
1050 	 */
1051 	idx = sc->lge_cdata.lge_tx_cons;
1052 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1053 
1054 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1055 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1056 
1057 		ifp->if_opackets++;
1058 		if (cur_tx->lge_mbuf != NULL) {
1059 			m_freem(cur_tx->lge_mbuf);
1060 			cur_tx->lge_mbuf = NULL;
1061 		}
1062 		cur_tx->lge_ctl = 0;
1063 
1064 		txdone--;
1065 		LGE_INC(idx, LGE_TX_LIST_CNT);
1066 		ifp->if_timer = 0;
1067 	}
1068 
1069 	sc->lge_cdata.lge_tx_cons = idx;
1070 
1071 	if (cur_tx != NULL)
1072 		ifp->if_flags &= ~IFF_OACTIVE;
1073 
1074 	return;
1075 }
1076 
1077 static void
1078 lge_tick(xsc)
1079 	void			*xsc;
1080 {
1081 	struct lge_softc	*sc;
1082 	struct mii_data		*mii;
1083 	struct ifnet		*ifp;
1084 	int			s;
1085 
1086 	s = splimp();
1087 
1088 	sc = xsc;
1089 	ifp = &sc->arpcom.ac_if;
1090 
1091 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1092 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1093 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1094 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1095 
1096 	if (!sc->lge_link) {
1097 		mii = device_get_softc(sc->lge_miibus);
1098 		mii_tick(mii);
1099 		if (mii->mii_media_status & IFM_ACTIVE &&
1100 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1101 			sc->lge_link++;
1102 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1103 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1104 				printf("lge%d: gigabit link up\n",
1105 				    sc->lge_unit);
1106 			if (ifp->if_snd.ifq_head != NULL)
1107 				lge_start(ifp);
1108 		}
1109 	}
1110 
1111 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1112 
1113 	splx(s);
1114 
1115 	return;
1116 }
1117 
1118 static void
1119 lge_intr(arg)
1120 	void			*arg;
1121 {
1122 	struct lge_softc	*sc;
1123 	struct ifnet		*ifp;
1124 	u_int32_t		status;
1125 
1126 	sc = arg;
1127 	ifp = &sc->arpcom.ac_if;
1128 
1129 	/* Supress unwanted interrupts */
1130 	if (!(ifp->if_flags & IFF_UP)) {
1131 		lge_stop(sc);
1132 		return;
1133 	}
1134 
1135 	for (;;) {
1136 		/*
1137 		 * Reading the ISR register clears all interrupts, and
1138 		 * clears the 'interrupts enabled' bit in the IMR
1139 		 * register.
1140 		 */
1141 		status = CSR_READ_4(sc, LGE_ISR);
1142 
1143 		if ((status & LGE_INTRS) == 0)
1144 			break;
1145 
1146 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1147 			lge_txeof(sc);
1148 
1149 		if (status & LGE_ISR_RXDMA_DONE)
1150 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1151 
1152 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1153 			lge_rxeoc(sc);
1154 
1155 		if (status & LGE_ISR_PHY_INTR) {
1156 			sc->lge_link = 0;
1157 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1158 			lge_tick(sc);
1159 		}
1160 	}
1161 
1162 	/* Re-enable interrupts. */
1163 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1164 
1165 	if (ifp->if_snd.ifq_head != NULL)
1166 		lge_start(ifp);
1167 
1168 	return;
1169 }
1170 
1171 /*
1172  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1173  * pointers to the fragment pointers.
1174  */
1175 static int
1176 lge_encap(sc, m_head, txidx)
1177 	struct lge_softc	*sc;
1178 	struct mbuf		*m_head;
1179 	u_int32_t		*txidx;
1180 {
1181 	struct lge_frag		*f = NULL;
1182 	struct lge_tx_desc	*cur_tx;
1183 	struct mbuf		*m;
1184 	int			frag = 0, tot_len = 0;
1185 
1186 	/*
1187  	 * Start packing the mbufs in this chain into
1188 	 * the fragment pointers. Stop when we run out
1189  	 * of fragments or hit the end of the mbuf chain.
1190 	 */
1191 	m = m_head;
1192 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1193 	frag = 0;
1194 
1195 	for (m = m_head; m != NULL; m = m->m_next) {
1196 		if (m->m_len != 0) {
1197 			tot_len += m->m_len;
1198 			f = &cur_tx->lge_frags[frag];
1199 			f->lge_fraglen = m->m_len;
1200 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1201 			f->lge_fragptr_hi = 0;
1202 			frag++;
1203 		}
1204 	}
1205 
1206 	if (m != NULL)
1207 		return(ENOBUFS);
1208 
1209 	cur_tx->lge_mbuf = m_head;
1210 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1211 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1212 
1213 	/* Queue for transmit */
1214 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1215 
1216 	return(0);
1217 }
1218 
1219 /*
1220  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1221  * to the mbuf data regions directly in the transmit lists. We also save a
1222  * copy of the pointers since the transmit list fragment pointers are
1223  * physical addresses.
1224  */
1225 
1226 static void
1227 lge_start(ifp)
1228 	struct ifnet		*ifp;
1229 {
1230 	struct lge_softc	*sc;
1231 	struct mbuf		*m_head = NULL;
1232 	u_int32_t		idx;
1233 
1234 	sc = ifp->if_softc;
1235 
1236 	if (!sc->lge_link)
1237 		return;
1238 
1239 	idx = sc->lge_cdata.lge_tx_prod;
1240 
1241 	if (ifp->if_flags & IFF_OACTIVE)
1242 		return;
1243 
1244 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1245 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1246 			break;
1247 
1248 		IF_DEQUEUE(&ifp->if_snd, m_head);
1249 		if (m_head == NULL)
1250 			break;
1251 
1252 		if (lge_encap(sc, m_head, &idx)) {
1253 			IF_PREPEND(&ifp->if_snd, m_head);
1254 			ifp->if_flags |= IFF_OACTIVE;
1255 			break;
1256 		}
1257 
1258 		/*
1259 		 * If there's a BPF listener, bounce a copy of this frame
1260 		 * to him.
1261 		 */
1262 		BPF_MTAP(ifp, m_head);
1263 	}
1264 
1265 	sc->lge_cdata.lge_tx_prod = idx;
1266 
1267 	/*
1268 	 * Set a timeout in case the chip goes out to lunch.
1269 	 */
1270 	ifp->if_timer = 5;
1271 
1272 	return;
1273 }
1274 
1275 static void
1276 lge_init(xsc)
1277 	void			*xsc;
1278 {
1279 	struct lge_softc	*sc = xsc;
1280 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1281 	struct mii_data		*mii;
1282 	int			s;
1283 
1284 	if (ifp->if_flags & IFF_RUNNING)
1285 		return;
1286 
1287 	s = splimp();
1288 
1289 	/*
1290 	 * Cancel pending I/O and free all RX/TX buffers.
1291 	 */
1292 	lge_stop(sc);
1293 	lge_reset(sc);
1294 
1295 	mii = device_get_softc(sc->lge_miibus);
1296 
1297 	/* Set MAC address */
1298 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1299 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1300 
1301 	/* Init circular RX list. */
1302 	if (lge_list_rx_init(sc) == ENOBUFS) {
1303 		printf("lge%d: initialization failed: no "
1304 		    "memory for rx buffers\n", sc->lge_unit);
1305 		lge_stop(sc);
1306 		(void)splx(s);
1307 		return;
1308 	}
1309 
1310 	/*
1311 	 * Init tx descriptors.
1312 	 */
1313 	lge_list_tx_init(sc);
1314 
1315 	/* Set initial value for MODE1 register. */
1316 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1317 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1318 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1319 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1320 
1321 	 /* If we want promiscuous mode, set the allframes bit. */
1322 	if (ifp->if_flags & IFF_PROMISC) {
1323 		CSR_WRITE_4(sc, LGE_MODE1,
1324 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1325 	} else {
1326 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1327 	}
1328 
1329 	/*
1330 	 * Set the capture broadcast bit to capture broadcast frames.
1331 	 */
1332 	if (ifp->if_flags & IFF_BROADCAST) {
1333 		CSR_WRITE_4(sc, LGE_MODE1,
1334 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1335 	} else {
1336 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1337 	}
1338 
1339 	/* Packet padding workaround? */
1340 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1341 
1342 	/* No error frames */
1343 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1344 
1345 	/* Receive large frames */
1346 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1347 
1348 	/* Workaround: disable RX/TX flow control */
1349 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1350 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1351 
1352 	/* Make sure to strip CRC from received frames */
1353 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1354 
1355 	/* Turn off magic packet mode */
1356 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1357 
1358 	/* Turn off all VLAN stuff */
1359 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1360 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1361 
1362 	/* Workarond: FIFO overflow */
1363 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1364 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1365 
1366 	/*
1367 	 * Load the multicast filter.
1368 	 */
1369 	lge_setmulti(sc);
1370 
1371 	/*
1372 	 * Enable hardware checksum validation for all received IPv4
1373 	 * packets, do not reject packets with bad checksums.
1374 	 */
1375 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1376 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1377 	    LGE_MODE2_RX_ERRCSUM);
1378 
1379 	/*
1380 	 * Enable the delivery of PHY interrupts based on
1381 	 * link/speed/duplex status chalges.
1382 	 */
1383 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1384 
1385 	/* Enable receiver and transmitter. */
1386 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1387 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1388 
1389 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1390 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1391 
1392 	/*
1393 	 * Enable interrupts.
1394 	 */
1395 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1396 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1397 
1398 	lge_ifmedia_upd(ifp);
1399 
1400 	ifp->if_flags |= IFF_RUNNING;
1401 	ifp->if_flags &= ~IFF_OACTIVE;
1402 
1403 	(void)splx(s);
1404 
1405 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1406 
1407 	return;
1408 }
1409 
1410 /*
1411  * Set media options.
1412  */
1413 static int
1414 lge_ifmedia_upd(ifp)
1415 	struct ifnet		*ifp;
1416 {
1417 	struct lge_softc	*sc;
1418 	struct mii_data		*mii;
1419 
1420 	sc = ifp->if_softc;
1421 
1422 	mii = device_get_softc(sc->lge_miibus);
1423 	sc->lge_link = 0;
1424 	if (mii->mii_instance) {
1425 		struct mii_softc	*miisc;
1426 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1427 		    miisc = LIST_NEXT(miisc, mii_list))
1428 			mii_phy_reset(miisc);
1429 	}
1430 	mii_mediachg(mii);
1431 
1432 	return(0);
1433 }
1434 
1435 /*
1436  * Report current media status.
1437  */
1438 static void
1439 lge_ifmedia_sts(ifp, ifmr)
1440 	struct ifnet		*ifp;
1441 	struct ifmediareq	*ifmr;
1442 {
1443 	struct lge_softc	*sc;
1444 	struct mii_data		*mii;
1445 
1446 	sc = ifp->if_softc;
1447 
1448 	mii = device_get_softc(sc->lge_miibus);
1449 	mii_pollstat(mii);
1450 	ifmr->ifm_active = mii->mii_media_active;
1451 	ifmr->ifm_status = mii->mii_media_status;
1452 
1453 	return;
1454 }
1455 
1456 static int
1457 lge_ioctl(ifp, command, data)
1458 	struct ifnet		*ifp;
1459 	u_long			command;
1460 	caddr_t			data;
1461 {
1462 	struct lge_softc	*sc = ifp->if_softc;
1463 	struct ifreq		*ifr = (struct ifreq *) data;
1464 	struct mii_data		*mii;
1465 	int			s, error = 0;
1466 
1467 	s = splimp();
1468 
1469 	switch(command) {
1470 	case SIOCSIFMTU:
1471 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1472 			error = EINVAL;
1473 		else
1474 			ifp->if_mtu = ifr->ifr_mtu;
1475 		break;
1476 	case SIOCSIFFLAGS:
1477 		if (ifp->if_flags & IFF_UP) {
1478 			if (ifp->if_flags & IFF_RUNNING &&
1479 			    ifp->if_flags & IFF_PROMISC &&
1480 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1481 				CSR_WRITE_4(sc, LGE_MODE1,
1482 				    LGE_MODE1_SETRST_CTL1|
1483 				    LGE_MODE1_RX_PROMISC);
1484 			} else if (ifp->if_flags & IFF_RUNNING &&
1485 			    !(ifp->if_flags & IFF_PROMISC) &&
1486 			    sc->lge_if_flags & IFF_PROMISC) {
1487 				CSR_WRITE_4(sc, LGE_MODE1,
1488 				    LGE_MODE1_RX_PROMISC);
1489 			} else {
1490 				ifp->if_flags &= ~IFF_RUNNING;
1491 				lge_init(sc);
1492 			}
1493 		} else {
1494 			if (ifp->if_flags & IFF_RUNNING)
1495 				lge_stop(sc);
1496 		}
1497 		sc->lge_if_flags = ifp->if_flags;
1498 		error = 0;
1499 		break;
1500 	case SIOCADDMULTI:
1501 	case SIOCDELMULTI:
1502 		lge_setmulti(sc);
1503 		error = 0;
1504 		break;
1505 	case SIOCGIFMEDIA:
1506 	case SIOCSIFMEDIA:
1507 		mii = device_get_softc(sc->lge_miibus);
1508 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1509 		break;
1510 	default:
1511 		error = ether_ioctl(ifp, command, data);
1512 		break;
1513 	}
1514 
1515 	(void)splx(s);
1516 
1517 	return(error);
1518 }
1519 
1520 static void
1521 lge_watchdog(ifp)
1522 	struct ifnet		*ifp;
1523 {
1524 	struct lge_softc	*sc;
1525 
1526 	sc = ifp->if_softc;
1527 
1528 	ifp->if_oerrors++;
1529 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1530 
1531 	lge_stop(sc);
1532 	lge_reset(sc);
1533 	ifp->if_flags &= ~IFF_RUNNING;
1534 	lge_init(sc);
1535 
1536 	if (ifp->if_snd.ifq_head != NULL)
1537 		lge_start(ifp);
1538 
1539 	return;
1540 }
1541 
1542 /*
1543  * Stop the adapter and free any mbufs allocated to the
1544  * RX and TX lists.
1545  */
1546 static void
1547 lge_stop(sc)
1548 	struct lge_softc	*sc;
1549 {
1550 	register int		i;
1551 	struct ifnet		*ifp;
1552 
1553 	ifp = &sc->arpcom.ac_if;
1554 	ifp->if_timer = 0;
1555 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1556 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1557 
1558 	/* Disable receiver and transmitter. */
1559 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1560 	sc->lge_link = 0;
1561 
1562 	/*
1563 	 * Free data in the RX lists.
1564 	 */
1565 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1566 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1567 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1568 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1569 		}
1570 	}
1571 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1572 		sizeof(sc->lge_ldata->lge_rx_list));
1573 
1574 	/*
1575 	 * Free the TX list buffers.
1576 	 */
1577 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1578 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1579 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1580 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1581 		}
1582 	}
1583 
1584 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1585 		sizeof(sc->lge_ldata->lge_tx_list));
1586 
1587 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1588 
1589 	return;
1590 }
1591 
1592 /*
1593  * Stop all chip I/O so that the kernel's probe routines don't
1594  * get confused by errant DMAs when rebooting.
1595  */
1596 static void
1597 lge_shutdown(dev)
1598 	device_t		dev;
1599 {
1600 	struct lge_softc	*sc;
1601 
1602 	sc = device_get_softc(dev);
1603 
1604 	lge_reset(sc);
1605 	lge_stop(sc);
1606 
1607 	return;
1608 }
1609