xref: /freebsd/sys/dev/lge/if_lge.c (revision 995dc984471c92c03daad19a1d35af46c086ef3e)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/module.h>
79 #include <sys/socket.h>
80 
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 
88 #include <net/bpf.h>
89 
90 #include <vm/vm.h>              /* for vtophys */
91 #include <vm/pmap.h>            /* for vtophys */
92 #include <machine/bus.h>
93 #include <machine/resource.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 
103 #define LGE_USEIOSPACE
104 
105 #include <dev/lge/if_lgereg.h>
106 
107 /* "device miibus" required.  See GENERIC if you get errors here. */
108 #include "miibus_if.h"
109 
110 /*
111  * Various supported device vendors/types and their names.
112  */
113 static struct lge_type lge_devs[] = {
114 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
115 	{ 0, 0, NULL }
116 };
117 
118 static int lge_probe(device_t);
119 static int lge_attach(device_t);
120 static int lge_detach(device_t);
121 
122 static int lge_alloc_jumbo_mem(struct lge_softc *);
123 static void lge_free_jumbo_mem(struct lge_softc *);
124 static void *lge_jalloc(struct lge_softc *);
125 static void lge_jfree(void *, void *);
126 
127 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
128 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
129 static void lge_rxeof(struct lge_softc *, int);
130 static void lge_rxeoc(struct lge_softc *);
131 static void lge_txeof(struct lge_softc *);
132 static void lge_intr(void *);
133 static void lge_tick(void *);
134 static void lge_start(struct ifnet *);
135 static void lge_start_locked(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_init_locked(struct lge_softc *);
139 static void lge_stop(struct lge_softc *);
140 static void lge_watchdog(struct ifnet *);
141 static int lge_shutdown(device_t);
142 static int lge_ifmedia_upd(struct ifnet *);
143 static void lge_ifmedia_upd_locked(struct ifnet *);
144 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145 
146 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
147 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
148 
149 static int lge_miibus_readreg(device_t, int, int);
150 static int lge_miibus_writereg(device_t, int, int, int);
151 static void lge_miibus_statchg(device_t);
152 
153 static void lge_setmulti(struct lge_softc *);
154 static void lge_reset(struct lge_softc *);
155 static int lge_list_rx_init(struct lge_softc *);
156 static int lge_list_tx_init(struct lge_softc *);
157 
158 #ifdef LGE_USEIOSPACE
159 #define LGE_RES			SYS_RES_IOPORT
160 #define LGE_RID			LGE_PCI_LOIO
161 #else
162 #define LGE_RES			SYS_RES_MEMORY
163 #define LGE_RID			LGE_PCI_LOMEM
164 #endif
165 
166 static device_method_t lge_methods[] = {
167 	/* Device interface */
168 	DEVMETHOD(device_probe,		lge_probe),
169 	DEVMETHOD(device_attach,	lge_attach),
170 	DEVMETHOD(device_detach,	lge_detach),
171 	DEVMETHOD(device_shutdown,	lge_shutdown),
172 
173 	/* bus interface */
174 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
175 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
176 
177 	/* MII interface */
178 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
179 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
180 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
181 
182 	{ 0, 0 }
183 };
184 
185 static driver_t lge_driver = {
186 	"lge",
187 	lge_methods,
188 	sizeof(struct lge_softc)
189 };
190 
191 static devclass_t lge_devclass;
192 
193 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
194 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(lge, pci, 1, 1, 1);
196 MODULE_DEPEND(lge, ether, 1, 1, 1);
197 MODULE_DEPEND(lge, miibus, 1, 1, 1);
198 
199 #define LGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg,				\
201 		CSR_READ_4(sc, reg) | (x))
202 
203 #define LGE_CLRBIT(sc, reg, x)				\
204 	CSR_WRITE_4(sc, reg,				\
205 		CSR_READ_4(sc, reg) & ~(x))
206 
207 #define SIO_SET(x)					\
208 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
209 
210 #define SIO_CLR(x)					\
211 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
212 
213 /*
214  * Read a word of data stored in the EEPROM at address 'addr.'
215  */
216 static void
217 lge_eeprom_getword(sc, addr, dest)
218 	struct lge_softc	*sc;
219 	int			addr;
220 	u_int16_t		*dest;
221 {
222 	register int		i;
223 	u_int32_t		val;
224 
225 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
226 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
227 
228 	for (i = 0; i < LGE_TIMEOUT; i++)
229 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
230 			break;
231 
232 	if (i == LGE_TIMEOUT) {
233 		device_printf(sc->lge_dev, "EEPROM read timed out\n");
234 		return;
235 	}
236 
237 	val = CSR_READ_4(sc, LGE_EEDATA);
238 
239 	if (addr & 1)
240 		*dest = (val >> 16) & 0xFFFF;
241 	else
242 		*dest = val & 0xFFFF;
243 
244 	return;
245 }
246 
247 /*
248  * Read a sequence of words from the EEPROM.
249  */
250 static void
251 lge_read_eeprom(sc, dest, off, cnt, swap)
252 	struct lge_softc	*sc;
253 	caddr_t			dest;
254 	int			off;
255 	int			cnt;
256 	int			swap;
257 {
258 	int			i;
259 	u_int16_t		word = 0, *ptr;
260 
261 	for (i = 0; i < cnt; i++) {
262 		lge_eeprom_getword(sc, off + i, &word);
263 		ptr = (u_int16_t *)(dest + (i * 2));
264 		if (swap)
265 			*ptr = ntohs(word);
266 		else
267 			*ptr = word;
268 	}
269 
270 	return;
271 }
272 
273 static int
274 lge_miibus_readreg(dev, phy, reg)
275 	device_t		dev;
276 	int			phy, reg;
277 {
278 	struct lge_softc	*sc;
279 	int			i;
280 
281 	sc = device_get_softc(dev);
282 
283 	/*
284 	 * If we have a non-PCS PHY, pretend that the internal
285 	 * autoneg stuff at PHY address 0 isn't there so that
286 	 * the miibus code will find only the GMII PHY.
287 	 */
288 	if (sc->lge_pcs == 0 && phy == 0)
289 		return(0);
290 
291 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
292 
293 	for (i = 0; i < LGE_TIMEOUT; i++)
294 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
295 			break;
296 
297 	if (i == LGE_TIMEOUT) {
298 		device_printf(sc->lge_dev, "PHY read timed out\n");
299 		return(0);
300 	}
301 
302 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
303 }
304 
305 static int
306 lge_miibus_writereg(dev, phy, reg, data)
307 	device_t		dev;
308 	int			phy, reg, data;
309 {
310 	struct lge_softc	*sc;
311 	int			i;
312 
313 	sc = device_get_softc(dev);
314 
315 	CSR_WRITE_4(sc, LGE_GMIICTL,
316 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
317 
318 	for (i = 0; i < LGE_TIMEOUT; i++)
319 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
320 			break;
321 
322 	if (i == LGE_TIMEOUT) {
323 		device_printf(sc->lge_dev, "PHY write timed out\n");
324 		return(0);
325 	}
326 
327 	return(0);
328 }
329 
330 static void
331 lge_miibus_statchg(dev)
332 	device_t		dev;
333 {
334 	struct lge_softc	*sc;
335 	struct mii_data		*mii;
336 
337 	sc = device_get_softc(dev);
338 	mii = device_get_softc(sc->lge_miibus);
339 
340 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
341 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
342 	case IFM_1000_T:
343 	case IFM_1000_SX:
344 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
345 		break;
346 	case IFM_100_TX:
347 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
348 		break;
349 	case IFM_10_T:
350 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
351 		break;
352 	default:
353 		/*
354 		 * Choose something, even if it's wrong. Clearing
355 		 * all the bits will hose autoneg on the internal
356 		 * PHY.
357 		 */
358 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
359 		break;
360 	}
361 
362 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
363 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
364 	} else {
365 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
366 	}
367 
368 	return;
369 }
370 
371 static void
372 lge_setmulti(sc)
373 	struct lge_softc	*sc;
374 {
375 	struct ifnet		*ifp;
376 	struct ifmultiaddr	*ifma;
377 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
378 
379 	ifp = sc->lge_ifp;
380 	LGE_LOCK_ASSERT(sc);
381 
382 	/* Make sure multicast hash table is enabled. */
383 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
384 
385 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
386 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
387 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
388 		return;
389 	}
390 
391 	/* first, zot all the existing hash bits */
392 	CSR_WRITE_4(sc, LGE_MAR0, 0);
393 	CSR_WRITE_4(sc, LGE_MAR1, 0);
394 
395 	/* now program new ones */
396 	IF_ADDR_LOCK(ifp);
397 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
398 		if (ifma->ifma_addr->sa_family != AF_LINK)
399 			continue;
400 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
401 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
402 		if (h < 32)
403 			hashes[0] |= (1 << h);
404 		else
405 			hashes[1] |= (1 << (h - 32));
406 	}
407 	IF_ADDR_UNLOCK(ifp);
408 
409 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
410 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
411 
412 	return;
413 }
414 
415 static void
416 lge_reset(sc)
417 	struct lge_softc	*sc;
418 {
419 	register int		i;
420 
421 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
422 
423 	for (i = 0; i < LGE_TIMEOUT; i++) {
424 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
425 			break;
426 	}
427 
428 	if (i == LGE_TIMEOUT)
429 		device_printf(sc->lge_dev, "reset never completed\n");
430 
431 	/* Wait a little while for the chip to get its brains in order. */
432 	DELAY(1000);
433 
434         return;
435 }
436 
437 /*
438  * Probe for a Level 1 chip. Check the PCI vendor and device
439  * IDs against our list and return a device name if we find a match.
440  */
441 static int
442 lge_probe(dev)
443 	device_t		dev;
444 {
445 	struct lge_type		*t;
446 
447 	t = lge_devs;
448 
449 	while(t->lge_name != NULL) {
450 		if ((pci_get_vendor(dev) == t->lge_vid) &&
451 		    (pci_get_device(dev) == t->lge_did)) {
452 			device_set_desc(dev, t->lge_name);
453 			return(BUS_PROBE_DEFAULT);
454 		}
455 		t++;
456 	}
457 
458 	return(ENXIO);
459 }
460 
461 /*
462  * Attach the interface. Allocate softc structures, do ifmedia
463  * setup and ethernet/BPF attach.
464  */
465 static int
466 lge_attach(dev)
467 	device_t		dev;
468 {
469 	u_char			eaddr[ETHER_ADDR_LEN];
470 	struct lge_softc	*sc;
471 	struct ifnet		*ifp = NULL;
472 	int			error = 0, rid;
473 
474 	sc = device_get_softc(dev);
475 	sc->lge_dev = dev;
476 
477 	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
478 	    MTX_DEF);
479 	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
480 
481 	/*
482 	 * Map control/status registers.
483 	 */
484 	pci_enable_busmaster(dev);
485 
486 	rid = LGE_RID;
487 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
488 
489 	if (sc->lge_res == NULL) {
490 		device_printf(dev, "couldn't map ports/memory\n");
491 		error = ENXIO;
492 		goto fail;
493 	}
494 
495 	sc->lge_btag = rman_get_bustag(sc->lge_res);
496 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
497 
498 	/* Allocate interrupt */
499 	rid = 0;
500 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
501 	    RF_SHAREABLE | RF_ACTIVE);
502 
503 	if (sc->lge_irq == NULL) {
504 		device_printf(dev, "couldn't map interrupt\n");
505 		error = ENXIO;
506 		goto fail;
507 	}
508 
509 	/* Reset the adapter. */
510 	lge_reset(sc);
511 
512 	/*
513 	 * Get station address from the EEPROM.
514 	 */
515 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
516 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
517 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
518 
519 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
520 	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
521 
522 	if (sc->lge_ldata == NULL) {
523 		device_printf(dev, "no memory for list buffers!\n");
524 		error = ENXIO;
525 		goto fail;
526 	}
527 
528 	/* Try to allocate memory for jumbo buffers. */
529 	if (lge_alloc_jumbo_mem(sc)) {
530 		device_printf(dev, "jumbo buffer allocation failed\n");
531 		error = ENXIO;
532 		goto fail;
533 	}
534 
535 	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
536 	if (ifp == NULL) {
537 		device_printf(dev, "can not if_alloc()\n");
538 		lge_free_jumbo_mem(sc);
539 		error = ENOSPC;
540 		goto fail;
541 	}
542 	ifp->if_softc = sc;
543 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
544 	ifp->if_mtu = ETHERMTU;
545 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
546 	ifp->if_ioctl = lge_ioctl;
547 	ifp->if_start = lge_start;
548 	ifp->if_watchdog = lge_watchdog;
549 	ifp->if_init = lge_init;
550 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
551 	ifp->if_capabilities = IFCAP_RXCSUM;
552 	ifp->if_capenable = ifp->if_capabilities;
553 
554 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
555 		sc->lge_pcs = 1;
556 	else
557 		sc->lge_pcs = 0;
558 
559 	/*
560 	 * Do MII setup.
561 	 */
562 	if (mii_phy_probe(dev, &sc->lge_miibus,
563 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
564 		device_printf(dev, "MII without any PHY!\n");
565 		lge_free_jumbo_mem(sc);
566 		error = ENXIO;
567 		goto fail;
568 	}
569 
570 	/*
571 	 * Call MI attach routine.
572 	 */
573 	ether_ifattach(ifp, eaddr);
574 
575 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
576 	    NULL, lge_intr, sc, &sc->lge_intrhand);
577 
578 	if (error) {
579 		ether_ifdetach(ifp);
580 		device_printf(dev, "couldn't set up irq\n");
581 		goto fail;
582 	}
583 	return (0);
584 
585 fail:
586 	if (sc->lge_ldata)
587 		contigfree(sc->lge_ldata,
588 		    sizeof(struct lge_list_data), M_DEVBUF);
589 	if (ifp)
590 		if_free(ifp);
591 	if (sc->lge_irq)
592 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
593 	if (sc->lge_res)
594 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
595 	mtx_destroy(&sc->lge_mtx);
596 	return(error);
597 }
598 
599 static int
600 lge_detach(dev)
601 	device_t		dev;
602 {
603 	struct lge_softc	*sc;
604 	struct ifnet		*ifp;
605 
606 	sc = device_get_softc(dev);
607 	ifp = sc->lge_ifp;
608 
609 	LGE_LOCK(sc);
610 	lge_reset(sc);
611 	lge_stop(sc);
612 	LGE_UNLOCK(sc);
613 	callout_drain(&sc->lge_stat_callout);
614 	ether_ifdetach(ifp);
615 
616 	bus_generic_detach(dev);
617 	device_delete_child(dev, sc->lge_miibus);
618 
619 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
620 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
621 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
622 
623 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
624 	if_free(ifp);
625 	lge_free_jumbo_mem(sc);
626 	mtx_destroy(&sc->lge_mtx);
627 
628 	return(0);
629 }
630 
631 /*
632  * Initialize the transmit descriptors.
633  */
634 static int
635 lge_list_tx_init(sc)
636 	struct lge_softc	*sc;
637 {
638 	struct lge_list_data	*ld;
639 	struct lge_ring_data	*cd;
640 	int			i;
641 
642 	cd = &sc->lge_cdata;
643 	ld = sc->lge_ldata;
644 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
645 		ld->lge_tx_list[i].lge_mbuf = NULL;
646 		ld->lge_tx_list[i].lge_ctl = 0;
647 	}
648 
649 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
650 
651 	return(0);
652 }
653 
654 
655 /*
656  * Initialize the RX descriptors and allocate mbufs for them. Note that
657  * we arralge the descriptors in a closed ring, so that the last descriptor
658  * points back to the first.
659  */
660 static int
661 lge_list_rx_init(sc)
662 	struct lge_softc	*sc;
663 {
664 	struct lge_list_data	*ld;
665 	struct lge_ring_data	*cd;
666 	int			i;
667 
668 	ld = sc->lge_ldata;
669 	cd = &sc->lge_cdata;
670 
671 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
672 
673 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
674 
675 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
676 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
677 			break;
678 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
679 			return(ENOBUFS);
680 	}
681 
682 	/* Clear possible 'rx command queue empty' interrupt. */
683 	CSR_READ_4(sc, LGE_ISR);
684 
685 	return(0);
686 }
687 
688 /*
689  * Initialize an RX descriptor and attach an MBUF cluster.
690  */
691 static int
692 lge_newbuf(sc, c, m)
693 	struct lge_softc	*sc;
694 	struct lge_rx_desc	*c;
695 	struct mbuf		*m;
696 {
697 	struct mbuf		*m_new = NULL;
698 	caddr_t			*buf = NULL;
699 
700 	if (m == NULL) {
701 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
702 		if (m_new == NULL) {
703 			device_printf(sc->lge_dev, "no memory for rx list "
704 			    "-- packet dropped!\n");
705 			return(ENOBUFS);
706 		}
707 
708 		/* Allocate the jumbo buffer */
709 		buf = lge_jalloc(sc);
710 		if (buf == NULL) {
711 #ifdef LGE_VERBOSE
712 			device_printf(sc->lge_dev, "jumbo allocation failed "
713 			    "-- packet dropped!\n");
714 #endif
715 			m_freem(m_new);
716 			return(ENOBUFS);
717 		}
718 		/* Attach the buffer to the mbuf */
719 		m_new->m_data = (void *)buf;
720 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
721 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
722 		    buf, (struct lge_softc *)sc, 0, EXT_NET_DRV);
723 	} else {
724 		m_new = m;
725 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
726 		m_new->m_data = m_new->m_ext.ext_buf;
727 	}
728 
729 	/*
730 	 * Adjust alignment so packet payload begins on a
731 	 * longword boundary. Mandatory for Alpha, useful on
732 	 * x86 too.
733 	*/
734 	m_adj(m_new, ETHER_ALIGN);
735 
736 	c->lge_mbuf = m_new;
737 	c->lge_fragptr_hi = 0;
738 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
739 	c->lge_fraglen = m_new->m_len;
740 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
741 	c->lge_sts = 0;
742 
743 	/*
744 	 * Put this buffer in the RX command FIFO. To do this,
745 	 * we just write the physical address of the descriptor
746 	 * into the RX descriptor address registers. Note that
747 	 * there are two registers, one high DWORD and one low
748 	 * DWORD, which lets us specify a 64-bit address if
749 	 * desired. We only use a 32-bit address for now.
750 	 * Writing to the low DWORD register is what actually
751 	 * causes the command to be issued, so we do that
752 	 * last.
753 	 */
754 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
755 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
756 
757 	return(0);
758 }
759 
760 static int
761 lge_alloc_jumbo_mem(sc)
762 	struct lge_softc	*sc;
763 {
764 	caddr_t			ptr;
765 	register int		i;
766 	struct lge_jpool_entry   *entry;
767 
768 	/* Grab a big chunk o' storage. */
769 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
770 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
771 
772 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
773 		device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
774 		return(ENOBUFS);
775 	}
776 
777 	SLIST_INIT(&sc->lge_jfree_listhead);
778 	SLIST_INIT(&sc->lge_jinuse_listhead);
779 
780 	/*
781 	 * Now divide it up into 9K pieces and save the addresses
782 	 * in an array.
783 	 */
784 	ptr = sc->lge_cdata.lge_jumbo_buf;
785 	for (i = 0; i < LGE_JSLOTS; i++) {
786 		sc->lge_cdata.lge_jslots[i] = ptr;
787 		ptr += LGE_JLEN;
788 		entry = malloc(sizeof(struct lge_jpool_entry),
789 		    M_DEVBUF, M_NOWAIT);
790 		if (entry == NULL) {
791 			device_printf(sc->lge_dev, "no memory for jumbo "
792 			    "buffer queue!\n");
793 			return(ENOBUFS);
794 		}
795 		entry->slot = i;
796 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
797 		    entry, jpool_entries);
798 	}
799 
800 	return(0);
801 }
802 
803 static void
804 lge_free_jumbo_mem(sc)
805 	struct lge_softc	*sc;
806 {
807 	int			i;
808 	struct lge_jpool_entry	*entry;
809 
810 	for (i = 0; i < LGE_JSLOTS; i++) {
811 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
812 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
813 		free(entry, M_DEVBUF);
814 	}
815 
816 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
817 
818 	return;
819 }
820 
821 /*
822  * Allocate a jumbo buffer.
823  */
824 static void *
825 lge_jalloc(sc)
826 	struct lge_softc	*sc;
827 {
828 	struct lge_jpool_entry   *entry;
829 
830 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
831 
832 	if (entry == NULL) {
833 #ifdef LGE_VERBOSE
834 		device_printf(sc->lge_dev, "no free jumbo buffers\n");
835 #endif
836 		return(NULL);
837 	}
838 
839 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
840 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
841 	return(sc->lge_cdata.lge_jslots[entry->slot]);
842 }
843 
844 /*
845  * Release a jumbo buffer.
846  */
847 static void
848 lge_jfree(buf, args)
849 	void			*buf;
850 	void			*args;
851 {
852 	struct lge_softc	*sc;
853 	int		        i;
854 	struct lge_jpool_entry   *entry;
855 
856 	/* Extract the softc struct pointer. */
857 	sc = args;
858 
859 	if (sc == NULL)
860 		panic("lge_jfree: can't find softc pointer!");
861 
862 	/* calculate the slot this buffer belongs to */
863 	i = ((vm_offset_t)buf
864 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
865 
866 	if ((i < 0) || (i >= LGE_JSLOTS))
867 		panic("lge_jfree: asked to free buffer that we don't manage!");
868 
869 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
870 	if (entry == NULL)
871 		panic("lge_jfree: buffer not in use!");
872 	entry->slot = i;
873 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
874 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
875 
876 	return;
877 }
878 
879 /*
880  * A frame has been uploaded: pass the resulting mbuf chain up to
881  * the higher level protocols.
882  */
883 static void
884 lge_rxeof(sc, cnt)
885 	struct lge_softc	*sc;
886 	int			cnt;
887 {
888         struct mbuf		*m;
889         struct ifnet		*ifp;
890 	struct lge_rx_desc	*cur_rx;
891 	int			c, i, total_len = 0;
892 	u_int32_t		rxsts, rxctl;
893 
894 	ifp = sc->lge_ifp;
895 
896 	/* Find out how many frames were processed. */
897 	c = cnt;
898 	i = sc->lge_cdata.lge_rx_cons;
899 
900 	/* Suck them in. */
901 	while(c) {
902 		struct mbuf		*m0 = NULL;
903 
904 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
905 		rxctl = cur_rx->lge_ctl;
906 		rxsts = cur_rx->lge_sts;
907 		m = cur_rx->lge_mbuf;
908 		cur_rx->lge_mbuf = NULL;
909 		total_len = LGE_RXBYTES(cur_rx);
910 		LGE_INC(i, LGE_RX_LIST_CNT);
911 		c--;
912 
913 		/*
914 		 * If an error occurs, update stats, clear the
915 		 * status word and leave the mbuf cluster in place:
916 		 * it should simply get re-used next time this descriptor
917 	 	 * comes up in the ring.
918 		 */
919 		if (rxctl & LGE_RXCTL_ERRMASK) {
920 			ifp->if_ierrors++;
921 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
922 			continue;
923 		}
924 
925 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
926 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
927 			    ifp, NULL);
928 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
929 			if (m0 == NULL) {
930 				device_printf(sc->lge_dev, "no receive buffers "
931 				    "available -- packet dropped!\n");
932 				ifp->if_ierrors++;
933 				continue;
934 			}
935 			m = m0;
936 		} else {
937 			m->m_pkthdr.rcvif = ifp;
938 			m->m_pkthdr.len = m->m_len = total_len;
939 		}
940 
941 		ifp->if_ipackets++;
942 
943 		/* Do IP checksum checking. */
944 		if (rxsts & LGE_RXSTS_ISIP)
945 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
946 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
947 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
948 		if ((rxsts & LGE_RXSTS_ISTCP &&
949 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
950 		    (rxsts & LGE_RXSTS_ISUDP &&
951 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
952 			m->m_pkthdr.csum_flags |=
953 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
954 			m->m_pkthdr.csum_data = 0xffff;
955 		}
956 
957 		LGE_UNLOCK(sc);
958 		(*ifp->if_input)(ifp, m);
959 		LGE_LOCK(sc);
960 	}
961 
962 	sc->lge_cdata.lge_rx_cons = i;
963 
964 	return;
965 }
966 
967 static void
968 lge_rxeoc(sc)
969 	struct lge_softc	*sc;
970 {
971 	struct ifnet		*ifp;
972 
973 	ifp = sc->lge_ifp;
974 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
975 	lge_init_locked(sc);
976 	return;
977 }
978 
979 /*
980  * A frame was downloaded to the chip. It's safe for us to clean up
981  * the list buffers.
982  */
983 
984 static void
985 lge_txeof(sc)
986 	struct lge_softc	*sc;
987 {
988 	struct lge_tx_desc	*cur_tx = NULL;
989 	struct ifnet		*ifp;
990 	u_int32_t		idx, txdone;
991 
992 	ifp = sc->lge_ifp;
993 
994 	/* Clear the timeout timer. */
995 	ifp->if_timer = 0;
996 
997 	/*
998 	 * Go through our tx list and free mbufs for those
999 	 * frames that have been transmitted.
1000 	 */
1001 	idx = sc->lge_cdata.lge_tx_cons;
1002 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1003 
1004 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1005 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1006 
1007 		ifp->if_opackets++;
1008 		if (cur_tx->lge_mbuf != NULL) {
1009 			m_freem(cur_tx->lge_mbuf);
1010 			cur_tx->lge_mbuf = NULL;
1011 		}
1012 		cur_tx->lge_ctl = 0;
1013 
1014 		txdone--;
1015 		LGE_INC(idx, LGE_TX_LIST_CNT);
1016 		ifp->if_timer = 0;
1017 	}
1018 
1019 	sc->lge_cdata.lge_tx_cons = idx;
1020 
1021 	if (cur_tx != NULL)
1022 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1023 
1024 	return;
1025 }
1026 
1027 static void
1028 lge_tick(xsc)
1029 	void			*xsc;
1030 {
1031 	struct lge_softc	*sc;
1032 	struct mii_data		*mii;
1033 	struct ifnet		*ifp;
1034 
1035 	sc = xsc;
1036 	ifp = sc->lge_ifp;
1037 	LGE_LOCK_ASSERT(sc);
1038 
1039 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1040 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1041 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1042 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1043 
1044 	if (!sc->lge_link) {
1045 		mii = device_get_softc(sc->lge_miibus);
1046 		mii_tick(mii);
1047 		if (mii->mii_media_status & IFM_ACTIVE &&
1048 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1049 			sc->lge_link++;
1050 			if (bootverbose &&
1051 		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1052 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1053 				device_printf(sc->lge_dev, "gigabit link up\n");
1054 			if (ifp->if_snd.ifq_head != NULL)
1055 				lge_start_locked(ifp);
1056 		}
1057 	}
1058 
1059 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1060 
1061 	return;
1062 }
1063 
1064 static void
1065 lge_intr(arg)
1066 	void			*arg;
1067 {
1068 	struct lge_softc	*sc;
1069 	struct ifnet		*ifp;
1070 	u_int32_t		status;
1071 
1072 	sc = arg;
1073 	ifp = sc->lge_ifp;
1074 	LGE_LOCK(sc);
1075 
1076 	/* Supress unwanted interrupts */
1077 	if (!(ifp->if_flags & IFF_UP)) {
1078 		lge_stop(sc);
1079 		LGE_UNLOCK(sc);
1080 		return;
1081 	}
1082 
1083 	for (;;) {
1084 		/*
1085 		 * Reading the ISR register clears all interrupts, and
1086 		 * clears the 'interrupts enabled' bit in the IMR
1087 		 * register.
1088 		 */
1089 		status = CSR_READ_4(sc, LGE_ISR);
1090 
1091 		if ((status & LGE_INTRS) == 0)
1092 			break;
1093 
1094 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1095 			lge_txeof(sc);
1096 
1097 		if (status & LGE_ISR_RXDMA_DONE)
1098 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1099 
1100 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1101 			lge_rxeoc(sc);
1102 
1103 		if (status & LGE_ISR_PHY_INTR) {
1104 			sc->lge_link = 0;
1105 			callout_stop(&sc->lge_stat_callout);
1106 			lge_tick(sc);
1107 		}
1108 	}
1109 
1110 	/* Re-enable interrupts. */
1111 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1112 
1113 	if (ifp->if_snd.ifq_head != NULL)
1114 		lge_start_locked(ifp);
1115 
1116 	LGE_UNLOCK(sc);
1117 	return;
1118 }
1119 
1120 /*
1121  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1122  * pointers to the fragment pointers.
1123  */
1124 static int
1125 lge_encap(sc, m_head, txidx)
1126 	struct lge_softc	*sc;
1127 	struct mbuf		*m_head;
1128 	u_int32_t		*txidx;
1129 {
1130 	struct lge_frag		*f = NULL;
1131 	struct lge_tx_desc	*cur_tx;
1132 	struct mbuf		*m;
1133 	int			frag = 0, tot_len = 0;
1134 
1135 	/*
1136  	 * Start packing the mbufs in this chain into
1137 	 * the fragment pointers. Stop when we run out
1138  	 * of fragments or hit the end of the mbuf chain.
1139 	 */
1140 	m = m_head;
1141 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1142 	frag = 0;
1143 
1144 	for (m = m_head; m != NULL; m = m->m_next) {
1145 		if (m->m_len != 0) {
1146 			tot_len += m->m_len;
1147 			f = &cur_tx->lge_frags[frag];
1148 			f->lge_fraglen = m->m_len;
1149 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1150 			f->lge_fragptr_hi = 0;
1151 			frag++;
1152 		}
1153 	}
1154 
1155 	if (m != NULL)
1156 		return(ENOBUFS);
1157 
1158 	cur_tx->lge_mbuf = m_head;
1159 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1160 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1161 
1162 	/* Queue for transmit */
1163 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1164 
1165 	return(0);
1166 }
1167 
1168 /*
1169  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1170  * to the mbuf data regions directly in the transmit lists. We also save a
1171  * copy of the pointers since the transmit list fragment pointers are
1172  * physical addresses.
1173  */
1174 
1175 static void
1176 lge_start(ifp)
1177 	struct ifnet		*ifp;
1178 {
1179 	struct lge_softc	*sc;
1180 
1181 	sc = ifp->if_softc;
1182 	LGE_LOCK(sc);
1183 	lge_start_locked(ifp);
1184 	LGE_UNLOCK(sc);
1185 }
1186 
1187 static void
1188 lge_start_locked(ifp)
1189 	struct ifnet		*ifp;
1190 {
1191 	struct lge_softc	*sc;
1192 	struct mbuf		*m_head = NULL;
1193 	u_int32_t		idx;
1194 
1195 	sc = ifp->if_softc;
1196 
1197 	if (!sc->lge_link)
1198 		return;
1199 
1200 	idx = sc->lge_cdata.lge_tx_prod;
1201 
1202 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1203 		return;
1204 
1205 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1206 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1207 			break;
1208 
1209 		IF_DEQUEUE(&ifp->if_snd, m_head);
1210 		if (m_head == NULL)
1211 			break;
1212 
1213 		if (lge_encap(sc, m_head, &idx)) {
1214 			IF_PREPEND(&ifp->if_snd, m_head);
1215 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1216 			break;
1217 		}
1218 
1219 		/*
1220 		 * If there's a BPF listener, bounce a copy of this frame
1221 		 * to him.
1222 		 */
1223 		BPF_MTAP(ifp, m_head);
1224 	}
1225 
1226 	sc->lge_cdata.lge_tx_prod = idx;
1227 
1228 	/*
1229 	 * Set a timeout in case the chip goes out to lunch.
1230 	 */
1231 	ifp->if_timer = 5;
1232 
1233 	return;
1234 }
1235 
1236 static void
1237 lge_init(xsc)
1238 	void			*xsc;
1239 {
1240 	struct lge_softc	*sc = xsc;
1241 
1242 	LGE_LOCK(sc);
1243 	lge_init_locked(sc);
1244 	LGE_UNLOCK(sc);
1245 }
1246 
1247 static void
1248 lge_init_locked(sc)
1249 	struct lge_softc	*sc;
1250 {
1251 	struct ifnet		*ifp = sc->lge_ifp;
1252 	struct mii_data		*mii;
1253 
1254 	LGE_LOCK_ASSERT(sc);
1255 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1256 		return;
1257 
1258 	/*
1259 	 * Cancel pending I/O and free all RX/TX buffers.
1260 	 */
1261 	lge_stop(sc);
1262 	lge_reset(sc);
1263 
1264 	mii = device_get_softc(sc->lge_miibus);
1265 
1266 	/* Set MAC address */
1267 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1268 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1269 
1270 	/* Init circular RX list. */
1271 	if (lge_list_rx_init(sc) == ENOBUFS) {
1272 		device_printf(sc->lge_dev, "initialization failed: no "
1273 		    "memory for rx buffers\n");
1274 		lge_stop(sc);
1275 		return;
1276 	}
1277 
1278 	/*
1279 	 * Init tx descriptors.
1280 	 */
1281 	lge_list_tx_init(sc);
1282 
1283 	/* Set initial value for MODE1 register. */
1284 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1285 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1286 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1287 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1288 
1289 	 /* If we want promiscuous mode, set the allframes bit. */
1290 	if (ifp->if_flags & IFF_PROMISC) {
1291 		CSR_WRITE_4(sc, LGE_MODE1,
1292 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1293 	} else {
1294 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1295 	}
1296 
1297 	/*
1298 	 * Set the capture broadcast bit to capture broadcast frames.
1299 	 */
1300 	if (ifp->if_flags & IFF_BROADCAST) {
1301 		CSR_WRITE_4(sc, LGE_MODE1,
1302 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1303 	} else {
1304 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1305 	}
1306 
1307 	/* Packet padding workaround? */
1308 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1309 
1310 	/* No error frames */
1311 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1312 
1313 	/* Receive large frames */
1314 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1315 
1316 	/* Workaround: disable RX/TX flow control */
1317 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1318 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1319 
1320 	/* Make sure to strip CRC from received frames */
1321 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1322 
1323 	/* Turn off magic packet mode */
1324 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1325 
1326 	/* Turn off all VLAN stuff */
1327 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1328 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1329 
1330 	/* Workarond: FIFO overflow */
1331 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1332 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1333 
1334 	/*
1335 	 * Load the multicast filter.
1336 	 */
1337 	lge_setmulti(sc);
1338 
1339 	/*
1340 	 * Enable hardware checksum validation for all received IPv4
1341 	 * packets, do not reject packets with bad checksums.
1342 	 */
1343 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1344 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1345 	    LGE_MODE2_RX_ERRCSUM);
1346 
1347 	/*
1348 	 * Enable the delivery of PHY interrupts based on
1349 	 * link/speed/duplex status chalges.
1350 	 */
1351 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1352 
1353 	/* Enable receiver and transmitter. */
1354 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1355 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1356 
1357 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1358 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1359 
1360 	/*
1361 	 * Enable interrupts.
1362 	 */
1363 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1364 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1365 
1366 	lge_ifmedia_upd_locked(ifp);
1367 
1368 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1369 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1370 
1371 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1372 
1373 	return;
1374 }
1375 
1376 /*
1377  * Set media options.
1378  */
1379 static int
1380 lge_ifmedia_upd(ifp)
1381 	struct ifnet		*ifp;
1382 {
1383 	struct lge_softc	*sc;
1384 
1385 	sc = ifp->if_softc;
1386 	LGE_LOCK(sc);
1387 	lge_ifmedia_upd_locked(ifp);
1388 	LGE_UNLOCK(sc);
1389 
1390 	return(0);
1391 }
1392 
1393 static void
1394 lge_ifmedia_upd_locked(ifp)
1395 	struct ifnet		*ifp;
1396 {
1397 	struct lge_softc	*sc;
1398 	struct mii_data		*mii;
1399 
1400 	sc = ifp->if_softc;
1401 
1402 	LGE_LOCK_ASSERT(sc);
1403 	mii = device_get_softc(sc->lge_miibus);
1404 	sc->lge_link = 0;
1405 	if (mii->mii_instance) {
1406 		struct mii_softc	*miisc;
1407 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1408 		    miisc = LIST_NEXT(miisc, mii_list))
1409 			mii_phy_reset(miisc);
1410 	}
1411 	mii_mediachg(mii);
1412 }
1413 
1414 /*
1415  * Report current media status.
1416  */
1417 static void
1418 lge_ifmedia_sts(ifp, ifmr)
1419 	struct ifnet		*ifp;
1420 	struct ifmediareq	*ifmr;
1421 {
1422 	struct lge_softc	*sc;
1423 	struct mii_data		*mii;
1424 
1425 	sc = ifp->if_softc;
1426 
1427 	LGE_LOCK(sc);
1428 	mii = device_get_softc(sc->lge_miibus);
1429 	mii_pollstat(mii);
1430 	LGE_UNLOCK(sc);
1431 	ifmr->ifm_active = mii->mii_media_active;
1432 	ifmr->ifm_status = mii->mii_media_status;
1433 
1434 	return;
1435 }
1436 
1437 static int
1438 lge_ioctl(ifp, command, data)
1439 	struct ifnet		*ifp;
1440 	u_long			command;
1441 	caddr_t			data;
1442 {
1443 	struct lge_softc	*sc = ifp->if_softc;
1444 	struct ifreq		*ifr = (struct ifreq *) data;
1445 	struct mii_data		*mii;
1446 	int			error = 0;
1447 
1448 	switch(command) {
1449 	case SIOCSIFMTU:
1450 		LGE_LOCK(sc);
1451 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1452 			error = EINVAL;
1453 		else
1454 			ifp->if_mtu = ifr->ifr_mtu;
1455 		LGE_UNLOCK(sc);
1456 		break;
1457 	case SIOCSIFFLAGS:
1458 		LGE_LOCK(sc);
1459 		if (ifp->if_flags & IFF_UP) {
1460 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1461 			    ifp->if_flags & IFF_PROMISC &&
1462 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1463 				CSR_WRITE_4(sc, LGE_MODE1,
1464 				    LGE_MODE1_SETRST_CTL1|
1465 				    LGE_MODE1_RX_PROMISC);
1466 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1467 			    !(ifp->if_flags & IFF_PROMISC) &&
1468 			    sc->lge_if_flags & IFF_PROMISC) {
1469 				CSR_WRITE_4(sc, LGE_MODE1,
1470 				    LGE_MODE1_RX_PROMISC);
1471 			} else {
1472 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1473 				lge_init_locked(sc);
1474 			}
1475 		} else {
1476 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1477 				lge_stop(sc);
1478 		}
1479 		sc->lge_if_flags = ifp->if_flags;
1480 		LGE_UNLOCK(sc);
1481 		error = 0;
1482 		break;
1483 	case SIOCADDMULTI:
1484 	case SIOCDELMULTI:
1485 		LGE_LOCK(sc);
1486 		lge_setmulti(sc);
1487 		LGE_UNLOCK(sc);
1488 		error = 0;
1489 		break;
1490 	case SIOCGIFMEDIA:
1491 	case SIOCSIFMEDIA:
1492 		mii = device_get_softc(sc->lge_miibus);
1493 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1494 		break;
1495 	default:
1496 		error = ether_ioctl(ifp, command, data);
1497 		break;
1498 	}
1499 
1500 	return(error);
1501 }
1502 
1503 static void
1504 lge_watchdog(ifp)
1505 	struct ifnet		*ifp;
1506 {
1507 	struct lge_softc	*sc;
1508 
1509 	sc = ifp->if_softc;
1510 
1511 	LGE_LOCK(sc);
1512 	ifp->if_oerrors++;
1513 	if_printf(ifp, "watchdog timeout\n");
1514 
1515 	lge_stop(sc);
1516 	lge_reset(sc);
1517 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1518 	lge_init_locked(sc);
1519 
1520 	if (ifp->if_snd.ifq_head != NULL)
1521 		lge_start_locked(ifp);
1522 	LGE_UNLOCK(sc);
1523 
1524 	return;
1525 }
1526 
1527 /*
1528  * Stop the adapter and free any mbufs allocated to the
1529  * RX and TX lists.
1530  */
1531 static void
1532 lge_stop(sc)
1533 	struct lge_softc	*sc;
1534 {
1535 	register int		i;
1536 	struct ifnet		*ifp;
1537 
1538 	LGE_LOCK_ASSERT(sc);
1539 	ifp = sc->lge_ifp;
1540 	ifp->if_timer = 0;
1541 	callout_stop(&sc->lge_stat_callout);
1542 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1543 
1544 	/* Disable receiver and transmitter. */
1545 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1546 	sc->lge_link = 0;
1547 
1548 	/*
1549 	 * Free data in the RX lists.
1550 	 */
1551 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1552 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1553 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1554 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1555 		}
1556 	}
1557 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1558 		sizeof(sc->lge_ldata->lge_rx_list));
1559 
1560 	/*
1561 	 * Free the TX list buffers.
1562 	 */
1563 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1564 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1565 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1566 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1567 		}
1568 	}
1569 
1570 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1571 		sizeof(sc->lge_ldata->lge_tx_list));
1572 
1573 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1574 
1575 	return;
1576 }
1577 
1578 /*
1579  * Stop all chip I/O so that the kernel's probe routines don't
1580  * get confused by errant DMAs when rebooting.
1581  */
1582 static int
1583 lge_shutdown(dev)
1584 	device_t		dev;
1585 {
1586 	struct lge_softc	*sc;
1587 
1588 	sc = device_get_softc(dev);
1589 
1590 	LGE_LOCK(sc);
1591 	lge_reset(sc);
1592 	lge_stop(sc);
1593 	LGE_UNLOCK(sc);
1594 
1595 	return (0);
1596 }
1597