1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <william.paul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public 39 * documentation not available, but ask me nicely. 40 * 41 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. 42 * It's a 64-bit PCI part that supports TCP/IP checksum offload, 43 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There 44 * are three supported methods for data transfer between host and 45 * NIC: programmed I/O, traditional scatter/gather DMA and Packet 46 * Propulsion Technology (tm) DMA. The latter mechanism is a form 47 * of double buffer DMA where the packet data is copied to a 48 * pre-allocated DMA buffer who's physical address has been loaded 49 * into a table at device initialization time. The rationale is that 50 * the virtual to physical address translation needed for normal 51 * scatter/gather DMA is more expensive than the data copy needed 52 * for double buffering. This may be true in Windows NT and the like, 53 * but it isn't true for us, at least on the x86 arch. This driver 54 * uses the scatter/gather I/O method for both TX and RX. 55 * 56 * The LXT1001 only supports TCP/IP checksum offload on receive. 57 * Also, the VLAN tagging is done using a 16-entry table which allows 58 * the chip to perform hardware filtering based on VLAN tags. Sadly, 59 * our vlan support doesn't currently play well with this kind of 60 * hardware support. 61 * 62 * Special thanks to: 63 * - Jeff James at Intel, for arranging to have the LXT1001 manual 64 * released (at long last) 65 * - Beny Chen at D-Link, for actually sending it to me 66 * - Brad Short and Keith Alexis at SMC, for sending me sample 67 * SMC9462SX and SMC9462TX adapters for testing 68 * - Paul Saab at Y!, for not killing me (though it remains to be seen 69 * if in fact he did me much of a favor) 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/sockio.h> 75 #include <sys/mbuf.h> 76 #include <sys/malloc.h> 77 #include <sys/kernel.h> 78 #include <sys/module.h> 79 #include <sys/socket.h> 80 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 #include <net/if_types.h> 87 88 #include <net/bpf.h> 89 90 #include <vm/vm.h> /* for vtophys */ 91 #include <vm/pmap.h> /* for vtophys */ 92 #include <machine/bus.h> 93 #include <machine/resource.h> 94 #include <sys/bus.h> 95 #include <sys/rman.h> 96 97 #include <dev/mii/mii.h> 98 #include <dev/mii/miivar.h> 99 100 #include <dev/pci/pcireg.h> 101 #include <dev/pci/pcivar.h> 102 103 #define LGE_USEIOSPACE 104 105 #include <dev/lge/if_lgereg.h> 106 107 /* "device miibus" required. See GENERIC if you get errors here. */ 108 #include "miibus_if.h" 109 110 /* 111 * Various supported device vendors/types and their names. 112 */ 113 static struct lge_type lge_devs[] = { 114 { LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" }, 115 { 0, 0, NULL } 116 }; 117 118 static int lge_probe(device_t); 119 static int lge_attach(device_t); 120 static int lge_detach(device_t); 121 122 static int lge_alloc_jumbo_mem(struct lge_softc *); 123 static void lge_free_jumbo_mem(struct lge_softc *); 124 static void *lge_jalloc(struct lge_softc *); 125 static void lge_jfree(void *, void *); 126 127 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *); 128 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *); 129 static void lge_rxeof(struct lge_softc *, int); 130 static void lge_rxeoc(struct lge_softc *); 131 static void lge_txeof(struct lge_softc *); 132 static void lge_intr(void *); 133 static void lge_tick(void *); 134 static void lge_start(struct ifnet *); 135 static void lge_start_locked(struct ifnet *); 136 static int lge_ioctl(struct ifnet *, u_long, caddr_t); 137 static void lge_init(void *); 138 static void lge_init_locked(struct lge_softc *); 139 static void lge_stop(struct lge_softc *); 140 static void lge_watchdog(struct lge_softc *); 141 static int lge_shutdown(device_t); 142 static int lge_ifmedia_upd(struct ifnet *); 143 static void lge_ifmedia_upd_locked(struct ifnet *); 144 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 145 146 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *); 147 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int); 148 149 static int lge_miibus_readreg(device_t, int, int); 150 static int lge_miibus_writereg(device_t, int, int, int); 151 static void lge_miibus_statchg(device_t); 152 153 static void lge_setmulti(struct lge_softc *); 154 static void lge_reset(struct lge_softc *); 155 static int lge_list_rx_init(struct lge_softc *); 156 static int lge_list_tx_init(struct lge_softc *); 157 158 #ifdef LGE_USEIOSPACE 159 #define LGE_RES SYS_RES_IOPORT 160 #define LGE_RID LGE_PCI_LOIO 161 #else 162 #define LGE_RES SYS_RES_MEMORY 163 #define LGE_RID LGE_PCI_LOMEM 164 #endif 165 166 static device_method_t lge_methods[] = { 167 /* Device interface */ 168 DEVMETHOD(device_probe, lge_probe), 169 DEVMETHOD(device_attach, lge_attach), 170 DEVMETHOD(device_detach, lge_detach), 171 DEVMETHOD(device_shutdown, lge_shutdown), 172 173 /* bus interface */ 174 DEVMETHOD(bus_print_child, bus_generic_print_child), 175 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 176 177 /* MII interface */ 178 DEVMETHOD(miibus_readreg, lge_miibus_readreg), 179 DEVMETHOD(miibus_writereg, lge_miibus_writereg), 180 DEVMETHOD(miibus_statchg, lge_miibus_statchg), 181 182 { 0, 0 } 183 }; 184 185 static driver_t lge_driver = { 186 "lge", 187 lge_methods, 188 sizeof(struct lge_softc) 189 }; 190 191 static devclass_t lge_devclass; 192 193 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0); 194 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0); 195 MODULE_DEPEND(lge, pci, 1, 1, 1); 196 MODULE_DEPEND(lge, ether, 1, 1, 1); 197 MODULE_DEPEND(lge, miibus, 1, 1, 1); 198 199 #define LGE_SETBIT(sc, reg, x) \ 200 CSR_WRITE_4(sc, reg, \ 201 CSR_READ_4(sc, reg) | (x)) 202 203 #define LGE_CLRBIT(sc, reg, x) \ 204 CSR_WRITE_4(sc, reg, \ 205 CSR_READ_4(sc, reg) & ~(x)) 206 207 #define SIO_SET(x) \ 208 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x) 209 210 #define SIO_CLR(x) \ 211 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x) 212 213 /* 214 * Read a word of data stored in the EEPROM at address 'addr.' 215 */ 216 static void 217 lge_eeprom_getword(sc, addr, dest) 218 struct lge_softc *sc; 219 int addr; 220 u_int16_t *dest; 221 { 222 register int i; 223 u_int32_t val; 224 225 CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| 226 LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8)); 227 228 for (i = 0; i < LGE_TIMEOUT; i++) 229 if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ)) 230 break; 231 232 if (i == LGE_TIMEOUT) { 233 device_printf(sc->lge_dev, "EEPROM read timed out\n"); 234 return; 235 } 236 237 val = CSR_READ_4(sc, LGE_EEDATA); 238 239 if (addr & 1) 240 *dest = (val >> 16) & 0xFFFF; 241 else 242 *dest = val & 0xFFFF; 243 244 return; 245 } 246 247 /* 248 * Read a sequence of words from the EEPROM. 249 */ 250 static void 251 lge_read_eeprom(sc, dest, off, cnt, swap) 252 struct lge_softc *sc; 253 caddr_t dest; 254 int off; 255 int cnt; 256 int swap; 257 { 258 int i; 259 u_int16_t word = 0, *ptr; 260 261 for (i = 0; i < cnt; i++) { 262 lge_eeprom_getword(sc, off + i, &word); 263 ptr = (u_int16_t *)(dest + (i * 2)); 264 if (swap) 265 *ptr = ntohs(word); 266 else 267 *ptr = word; 268 } 269 270 return; 271 } 272 273 static int 274 lge_miibus_readreg(dev, phy, reg) 275 device_t dev; 276 int phy, reg; 277 { 278 struct lge_softc *sc; 279 int i; 280 281 sc = device_get_softc(dev); 282 283 /* 284 * If we have a non-PCS PHY, pretend that the internal 285 * autoneg stuff at PHY address 0 isn't there so that 286 * the miibus code will find only the GMII PHY. 287 */ 288 if (sc->lge_pcs == 0 && phy == 0) 289 return(0); 290 291 CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); 292 293 for (i = 0; i < LGE_TIMEOUT; i++) 294 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 295 break; 296 297 if (i == LGE_TIMEOUT) { 298 device_printf(sc->lge_dev, "PHY read timed out\n"); 299 return(0); 300 } 301 302 return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); 303 } 304 305 static int 306 lge_miibus_writereg(dev, phy, reg, data) 307 device_t dev; 308 int phy, reg, data; 309 { 310 struct lge_softc *sc; 311 int i; 312 313 sc = device_get_softc(dev); 314 315 CSR_WRITE_4(sc, LGE_GMIICTL, 316 (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); 317 318 for (i = 0; i < LGE_TIMEOUT; i++) 319 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 320 break; 321 322 if (i == LGE_TIMEOUT) { 323 device_printf(sc->lge_dev, "PHY write timed out\n"); 324 return(0); 325 } 326 327 return(0); 328 } 329 330 static void 331 lge_miibus_statchg(dev) 332 device_t dev; 333 { 334 struct lge_softc *sc; 335 struct mii_data *mii; 336 337 sc = device_get_softc(dev); 338 mii = device_get_softc(sc->lge_miibus); 339 340 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); 341 switch (IFM_SUBTYPE(mii->mii_media_active)) { 342 case IFM_1000_T: 343 case IFM_1000_SX: 344 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 345 break; 346 case IFM_100_TX: 347 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); 348 break; 349 case IFM_10_T: 350 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); 351 break; 352 default: 353 /* 354 * Choose something, even if it's wrong. Clearing 355 * all the bits will hose autoneg on the internal 356 * PHY. 357 */ 358 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 359 break; 360 } 361 362 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 363 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 364 } else { 365 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 366 } 367 368 return; 369 } 370 371 static void 372 lge_setmulti(sc) 373 struct lge_softc *sc; 374 { 375 struct ifnet *ifp; 376 struct ifmultiaddr *ifma; 377 u_int32_t h = 0, hashes[2] = { 0, 0 }; 378 379 ifp = sc->lge_ifp; 380 LGE_LOCK_ASSERT(sc); 381 382 /* Make sure multicast hash table is enabled. */ 383 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST); 384 385 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 386 CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); 387 CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); 388 return; 389 } 390 391 /* first, zot all the existing hash bits */ 392 CSR_WRITE_4(sc, LGE_MAR0, 0); 393 CSR_WRITE_4(sc, LGE_MAR1, 0); 394 395 /* now program new ones */ 396 if_maddr_rlock(ifp); 397 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 398 if (ifma->ifma_addr->sa_family != AF_LINK) 399 continue; 400 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 401 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 402 if (h < 32) 403 hashes[0] |= (1 << h); 404 else 405 hashes[1] |= (1 << (h - 32)); 406 } 407 if_maddr_runlock(ifp); 408 409 CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); 410 CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); 411 412 return; 413 } 414 415 static void 416 lge_reset(sc) 417 struct lge_softc *sc; 418 { 419 register int i; 420 421 LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST); 422 423 for (i = 0; i < LGE_TIMEOUT; i++) { 424 if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST)) 425 break; 426 } 427 428 if (i == LGE_TIMEOUT) 429 device_printf(sc->lge_dev, "reset never completed\n"); 430 431 /* Wait a little while for the chip to get its brains in order. */ 432 DELAY(1000); 433 434 return; 435 } 436 437 /* 438 * Probe for a Level 1 chip. Check the PCI vendor and device 439 * IDs against our list and return a device name if we find a match. 440 */ 441 static int 442 lge_probe(dev) 443 device_t dev; 444 { 445 struct lge_type *t; 446 447 t = lge_devs; 448 449 while(t->lge_name != NULL) { 450 if ((pci_get_vendor(dev) == t->lge_vid) && 451 (pci_get_device(dev) == t->lge_did)) { 452 device_set_desc(dev, t->lge_name); 453 return(BUS_PROBE_DEFAULT); 454 } 455 t++; 456 } 457 458 return(ENXIO); 459 } 460 461 /* 462 * Attach the interface. Allocate softc structures, do ifmedia 463 * setup and ethernet/BPF attach. 464 */ 465 static int 466 lge_attach(dev) 467 device_t dev; 468 { 469 u_char eaddr[ETHER_ADDR_LEN]; 470 struct lge_softc *sc; 471 struct ifnet *ifp = NULL; 472 int error = 0, rid; 473 474 sc = device_get_softc(dev); 475 sc->lge_dev = dev; 476 477 mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 478 MTX_DEF); 479 callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0); 480 481 /* 482 * Map control/status registers. 483 */ 484 pci_enable_busmaster(dev); 485 486 rid = LGE_RID; 487 sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE); 488 489 if (sc->lge_res == NULL) { 490 device_printf(dev, "couldn't map ports/memory\n"); 491 error = ENXIO; 492 goto fail; 493 } 494 495 sc->lge_btag = rman_get_bustag(sc->lge_res); 496 sc->lge_bhandle = rman_get_bushandle(sc->lge_res); 497 498 /* Allocate interrupt */ 499 rid = 0; 500 sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 501 RF_SHAREABLE | RF_ACTIVE); 502 503 if (sc->lge_irq == NULL) { 504 device_printf(dev, "couldn't map interrupt\n"); 505 error = ENXIO; 506 goto fail; 507 } 508 509 /* Reset the adapter. */ 510 lge_reset(sc); 511 512 /* 513 * Get station address from the EEPROM. 514 */ 515 lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0); 516 lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0); 517 lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0); 518 519 sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF, 520 M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); 521 522 if (sc->lge_ldata == NULL) { 523 device_printf(dev, "no memory for list buffers!\n"); 524 error = ENXIO; 525 goto fail; 526 } 527 528 /* Try to allocate memory for jumbo buffers. */ 529 if (lge_alloc_jumbo_mem(sc)) { 530 device_printf(dev, "jumbo buffer allocation failed\n"); 531 error = ENXIO; 532 goto fail; 533 } 534 535 ifp = sc->lge_ifp = if_alloc(IFT_ETHER); 536 if (ifp == NULL) { 537 device_printf(dev, "can not if_alloc()\n"); 538 error = ENOSPC; 539 goto fail; 540 } 541 ifp->if_softc = sc; 542 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 543 ifp->if_mtu = ETHERMTU; 544 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 545 ifp->if_ioctl = lge_ioctl; 546 ifp->if_start = lge_start; 547 ifp->if_init = lge_init; 548 ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1; 549 ifp->if_capabilities = IFCAP_RXCSUM; 550 ifp->if_capenable = ifp->if_capabilities; 551 552 if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) 553 sc->lge_pcs = 1; 554 else 555 sc->lge_pcs = 0; 556 557 /* 558 * Do MII setup. 559 */ 560 error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd, 561 lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 562 if (error != 0) { 563 device_printf(dev, "attaching PHYs failed\n"); 564 goto fail; 565 } 566 567 /* 568 * Call MI attach routine. 569 */ 570 ether_ifattach(ifp, eaddr); 571 572 error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE, 573 NULL, lge_intr, sc, &sc->lge_intrhand); 574 575 if (error) { 576 ether_ifdetach(ifp); 577 device_printf(dev, "couldn't set up irq\n"); 578 goto fail; 579 } 580 return (0); 581 582 fail: 583 lge_free_jumbo_mem(sc); 584 if (sc->lge_ldata) 585 contigfree(sc->lge_ldata, 586 sizeof(struct lge_list_data), M_DEVBUF); 587 if (ifp) 588 if_free(ifp); 589 if (sc->lge_irq) 590 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 591 if (sc->lge_res) 592 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 593 mtx_destroy(&sc->lge_mtx); 594 return(error); 595 } 596 597 static int 598 lge_detach(dev) 599 device_t dev; 600 { 601 struct lge_softc *sc; 602 struct ifnet *ifp; 603 604 sc = device_get_softc(dev); 605 ifp = sc->lge_ifp; 606 607 LGE_LOCK(sc); 608 lge_reset(sc); 609 lge_stop(sc); 610 LGE_UNLOCK(sc); 611 callout_drain(&sc->lge_stat_callout); 612 ether_ifdetach(ifp); 613 614 bus_generic_detach(dev); 615 device_delete_child(dev, sc->lge_miibus); 616 617 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 618 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 619 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 620 621 contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF); 622 if_free(ifp); 623 lge_free_jumbo_mem(sc); 624 mtx_destroy(&sc->lge_mtx); 625 626 return(0); 627 } 628 629 /* 630 * Initialize the transmit descriptors. 631 */ 632 static int 633 lge_list_tx_init(sc) 634 struct lge_softc *sc; 635 { 636 struct lge_list_data *ld; 637 struct lge_ring_data *cd; 638 int i; 639 640 cd = &sc->lge_cdata; 641 ld = sc->lge_ldata; 642 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 643 ld->lge_tx_list[i].lge_mbuf = NULL; 644 ld->lge_tx_list[i].lge_ctl = 0; 645 } 646 647 cd->lge_tx_prod = cd->lge_tx_cons = 0; 648 649 return(0); 650 } 651 652 653 /* 654 * Initialize the RX descriptors and allocate mbufs for them. Note that 655 * we arralge the descriptors in a closed ring, so that the last descriptor 656 * points back to the first. 657 */ 658 static int 659 lge_list_rx_init(sc) 660 struct lge_softc *sc; 661 { 662 struct lge_list_data *ld; 663 struct lge_ring_data *cd; 664 int i; 665 666 ld = sc->lge_ldata; 667 cd = &sc->lge_cdata; 668 669 cd->lge_rx_prod = cd->lge_rx_cons = 0; 670 671 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 672 673 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 674 if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) 675 break; 676 if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) 677 return(ENOBUFS); 678 } 679 680 /* Clear possible 'rx command queue empty' interrupt. */ 681 CSR_READ_4(sc, LGE_ISR); 682 683 return(0); 684 } 685 686 /* 687 * Initialize an RX descriptor and attach an MBUF cluster. 688 */ 689 static int 690 lge_newbuf(sc, c, m) 691 struct lge_softc *sc; 692 struct lge_rx_desc *c; 693 struct mbuf *m; 694 { 695 struct mbuf *m_new = NULL; 696 caddr_t *buf = NULL; 697 698 if (m == NULL) { 699 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 700 if (m_new == NULL) { 701 device_printf(sc->lge_dev, "no memory for rx list " 702 "-- packet dropped!\n"); 703 return(ENOBUFS); 704 } 705 706 /* Allocate the jumbo buffer */ 707 buf = lge_jalloc(sc); 708 if (buf == NULL) { 709 #ifdef LGE_VERBOSE 710 device_printf(sc->lge_dev, "jumbo allocation failed " 711 "-- packet dropped!\n"); 712 #endif 713 m_freem(m_new); 714 return(ENOBUFS); 715 } 716 /* Attach the buffer to the mbuf */ 717 m_new->m_data = (void *)buf; 718 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 719 MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree, 720 buf, (struct lge_softc *)sc, 0, EXT_NET_DRV); 721 } else { 722 m_new = m; 723 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 724 m_new->m_data = m_new->m_ext.ext_buf; 725 } 726 727 /* 728 * Adjust alignment so packet payload begins on a 729 * longword boundary. Mandatory for Alpha, useful on 730 * x86 too. 731 */ 732 m_adj(m_new, ETHER_ALIGN); 733 734 c->lge_mbuf = m_new; 735 c->lge_fragptr_hi = 0; 736 c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); 737 c->lge_fraglen = m_new->m_len; 738 c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); 739 c->lge_sts = 0; 740 741 /* 742 * Put this buffer in the RX command FIFO. To do this, 743 * we just write the physical address of the descriptor 744 * into the RX descriptor address registers. Note that 745 * there are two registers, one high DWORD and one low 746 * DWORD, which lets us specify a 64-bit address if 747 * desired. We only use a 32-bit address for now. 748 * Writing to the low DWORD register is what actually 749 * causes the command to be issued, so we do that 750 * last. 751 */ 752 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); 753 LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); 754 755 return(0); 756 } 757 758 static int 759 lge_alloc_jumbo_mem(sc) 760 struct lge_softc *sc; 761 { 762 caddr_t ptr; 763 register int i; 764 struct lge_jpool_entry *entry; 765 766 /* Grab a big chunk o' storage. */ 767 sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF, 768 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 769 770 if (sc->lge_cdata.lge_jumbo_buf == NULL) { 771 device_printf(sc->lge_dev, "no memory for jumbo buffers!\n"); 772 return(ENOBUFS); 773 } 774 775 SLIST_INIT(&sc->lge_jfree_listhead); 776 SLIST_INIT(&sc->lge_jinuse_listhead); 777 778 /* 779 * Now divide it up into 9K pieces and save the addresses 780 * in an array. 781 */ 782 ptr = sc->lge_cdata.lge_jumbo_buf; 783 for (i = 0; i < LGE_JSLOTS; i++) { 784 sc->lge_cdata.lge_jslots[i] = ptr; 785 ptr += LGE_JLEN; 786 entry = malloc(sizeof(struct lge_jpool_entry), 787 M_DEVBUF, M_NOWAIT); 788 if (entry == NULL) { 789 device_printf(sc->lge_dev, "no memory for jumbo " 790 "buffer queue!\n"); 791 return(ENOBUFS); 792 } 793 entry->slot = i; 794 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, 795 entry, jpool_entries); 796 } 797 798 return(0); 799 } 800 801 static void 802 lge_free_jumbo_mem(sc) 803 struct lge_softc *sc; 804 { 805 struct lge_jpool_entry *entry; 806 807 if (sc->lge_cdata.lge_jumbo_buf == NULL) 808 return; 809 810 while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) { 811 device_printf(sc->lge_dev, 812 "asked to free buffer that is in use!\n"); 813 SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); 814 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, 815 jpool_entries); 816 } 817 while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) { 818 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 819 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 820 free(entry, M_DEVBUF); 821 } 822 823 contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF); 824 825 return; 826 } 827 828 /* 829 * Allocate a jumbo buffer. 830 */ 831 static void * 832 lge_jalloc(sc) 833 struct lge_softc *sc; 834 { 835 struct lge_jpool_entry *entry; 836 837 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 838 839 if (entry == NULL) { 840 #ifdef LGE_VERBOSE 841 device_printf(sc->lge_dev, "no free jumbo buffers\n"); 842 #endif 843 return(NULL); 844 } 845 846 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 847 SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries); 848 return(sc->lge_cdata.lge_jslots[entry->slot]); 849 } 850 851 /* 852 * Release a jumbo buffer. 853 */ 854 static void 855 lge_jfree(buf, args) 856 void *buf; 857 void *args; 858 { 859 struct lge_softc *sc; 860 int i; 861 struct lge_jpool_entry *entry; 862 863 /* Extract the softc struct pointer. */ 864 sc = args; 865 866 if (sc == NULL) 867 panic("lge_jfree: can't find softc pointer!"); 868 869 /* calculate the slot this buffer belongs to */ 870 i = ((vm_offset_t)buf 871 - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN; 872 873 if ((i < 0) || (i >= LGE_JSLOTS)) 874 panic("lge_jfree: asked to free buffer that we don't manage!"); 875 876 entry = SLIST_FIRST(&sc->lge_jinuse_listhead); 877 if (entry == NULL) 878 panic("lge_jfree: buffer not in use!"); 879 entry->slot = i; 880 SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); 881 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); 882 883 return; 884 } 885 886 /* 887 * A frame has been uploaded: pass the resulting mbuf chain up to 888 * the higher level protocols. 889 */ 890 static void 891 lge_rxeof(sc, cnt) 892 struct lge_softc *sc; 893 int cnt; 894 { 895 struct mbuf *m; 896 struct ifnet *ifp; 897 struct lge_rx_desc *cur_rx; 898 int c, i, total_len = 0; 899 u_int32_t rxsts, rxctl; 900 901 ifp = sc->lge_ifp; 902 903 /* Find out how many frames were processed. */ 904 c = cnt; 905 i = sc->lge_cdata.lge_rx_cons; 906 907 /* Suck them in. */ 908 while(c) { 909 struct mbuf *m0 = NULL; 910 911 cur_rx = &sc->lge_ldata->lge_rx_list[i]; 912 rxctl = cur_rx->lge_ctl; 913 rxsts = cur_rx->lge_sts; 914 m = cur_rx->lge_mbuf; 915 cur_rx->lge_mbuf = NULL; 916 total_len = LGE_RXBYTES(cur_rx); 917 LGE_INC(i, LGE_RX_LIST_CNT); 918 c--; 919 920 /* 921 * If an error occurs, update stats, clear the 922 * status word and leave the mbuf cluster in place: 923 * it should simply get re-used next time this descriptor 924 * comes up in the ring. 925 */ 926 if (rxctl & LGE_RXCTL_ERRMASK) { 927 ifp->if_ierrors++; 928 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 929 continue; 930 } 931 932 if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { 933 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 934 ifp, NULL); 935 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 936 if (m0 == NULL) { 937 device_printf(sc->lge_dev, "no receive buffers " 938 "available -- packet dropped!\n"); 939 ifp->if_ierrors++; 940 continue; 941 } 942 m = m0; 943 } else { 944 m->m_pkthdr.rcvif = ifp; 945 m->m_pkthdr.len = m->m_len = total_len; 946 } 947 948 ifp->if_ipackets++; 949 950 /* Do IP checksum checking. */ 951 if (rxsts & LGE_RXSTS_ISIP) 952 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 953 if (!(rxsts & LGE_RXSTS_IPCSUMERR)) 954 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 955 if ((rxsts & LGE_RXSTS_ISTCP && 956 !(rxsts & LGE_RXSTS_TCPCSUMERR)) || 957 (rxsts & LGE_RXSTS_ISUDP && 958 !(rxsts & LGE_RXSTS_UDPCSUMERR))) { 959 m->m_pkthdr.csum_flags |= 960 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 961 m->m_pkthdr.csum_data = 0xffff; 962 } 963 964 LGE_UNLOCK(sc); 965 (*ifp->if_input)(ifp, m); 966 LGE_LOCK(sc); 967 } 968 969 sc->lge_cdata.lge_rx_cons = i; 970 971 return; 972 } 973 974 static void 975 lge_rxeoc(sc) 976 struct lge_softc *sc; 977 { 978 struct ifnet *ifp; 979 980 ifp = sc->lge_ifp; 981 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 982 lge_init_locked(sc); 983 return; 984 } 985 986 /* 987 * A frame was downloaded to the chip. It's safe for us to clean up 988 * the list buffers. 989 */ 990 991 static void 992 lge_txeof(sc) 993 struct lge_softc *sc; 994 { 995 struct lge_tx_desc *cur_tx = NULL; 996 struct ifnet *ifp; 997 u_int32_t idx, txdone; 998 999 ifp = sc->lge_ifp; 1000 1001 /* Clear the timeout timer. */ 1002 sc->lge_timer = 0; 1003 1004 /* 1005 * Go through our tx list and free mbufs for those 1006 * frames that have been transmitted. 1007 */ 1008 idx = sc->lge_cdata.lge_tx_cons; 1009 txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); 1010 1011 while (idx != sc->lge_cdata.lge_tx_prod && txdone) { 1012 cur_tx = &sc->lge_ldata->lge_tx_list[idx]; 1013 1014 ifp->if_opackets++; 1015 if (cur_tx->lge_mbuf != NULL) { 1016 m_freem(cur_tx->lge_mbuf); 1017 cur_tx->lge_mbuf = NULL; 1018 } 1019 cur_tx->lge_ctl = 0; 1020 1021 txdone--; 1022 LGE_INC(idx, LGE_TX_LIST_CNT); 1023 sc->lge_timer = 0; 1024 } 1025 1026 sc->lge_cdata.lge_tx_cons = idx; 1027 1028 if (cur_tx != NULL) 1029 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1030 1031 return; 1032 } 1033 1034 static void 1035 lge_tick(xsc) 1036 void *xsc; 1037 { 1038 struct lge_softc *sc; 1039 struct mii_data *mii; 1040 struct ifnet *ifp; 1041 1042 sc = xsc; 1043 ifp = sc->lge_ifp; 1044 LGE_LOCK_ASSERT(sc); 1045 1046 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); 1047 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1048 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); 1049 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1050 1051 if (!sc->lge_link) { 1052 mii = device_get_softc(sc->lge_miibus); 1053 mii_tick(mii); 1054 if (mii->mii_media_status & IFM_ACTIVE && 1055 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1056 sc->lge_link++; 1057 if (bootverbose && 1058 (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| 1059 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)) 1060 device_printf(sc->lge_dev, "gigabit link up\n"); 1061 if (ifp->if_snd.ifq_head != NULL) 1062 lge_start_locked(ifp); 1063 } 1064 } 1065 1066 if (sc->lge_timer != 0 && --sc->lge_timer == 0) 1067 lge_watchdog(sc); 1068 callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc); 1069 1070 return; 1071 } 1072 1073 static void 1074 lge_intr(arg) 1075 void *arg; 1076 { 1077 struct lge_softc *sc; 1078 struct ifnet *ifp; 1079 u_int32_t status; 1080 1081 sc = arg; 1082 ifp = sc->lge_ifp; 1083 LGE_LOCK(sc); 1084 1085 /* Supress unwanted interrupts */ 1086 if (!(ifp->if_flags & IFF_UP)) { 1087 lge_stop(sc); 1088 LGE_UNLOCK(sc); 1089 return; 1090 } 1091 1092 for (;;) { 1093 /* 1094 * Reading the ISR register clears all interrupts, and 1095 * clears the 'interrupts enabled' bit in the IMR 1096 * register. 1097 */ 1098 status = CSR_READ_4(sc, LGE_ISR); 1099 1100 if ((status & LGE_INTRS) == 0) 1101 break; 1102 1103 if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) 1104 lge_txeof(sc); 1105 1106 if (status & LGE_ISR_RXDMA_DONE) 1107 lge_rxeof(sc, LGE_RX_DMACNT(status)); 1108 1109 if (status & LGE_ISR_RXCMDFIFO_EMPTY) 1110 lge_rxeoc(sc); 1111 1112 if (status & LGE_ISR_PHY_INTR) { 1113 sc->lge_link = 0; 1114 callout_stop(&sc->lge_stat_callout); 1115 lge_tick(sc); 1116 } 1117 } 1118 1119 /* Re-enable interrupts. */ 1120 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); 1121 1122 if (ifp->if_snd.ifq_head != NULL) 1123 lge_start_locked(ifp); 1124 1125 LGE_UNLOCK(sc); 1126 return; 1127 } 1128 1129 /* 1130 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1131 * pointers to the fragment pointers. 1132 */ 1133 static int 1134 lge_encap(sc, m_head, txidx) 1135 struct lge_softc *sc; 1136 struct mbuf *m_head; 1137 u_int32_t *txidx; 1138 { 1139 struct lge_frag *f = NULL; 1140 struct lge_tx_desc *cur_tx; 1141 struct mbuf *m; 1142 int frag = 0, tot_len = 0; 1143 1144 /* 1145 * Start packing the mbufs in this chain into 1146 * the fragment pointers. Stop when we run out 1147 * of fragments or hit the end of the mbuf chain. 1148 */ 1149 m = m_head; 1150 cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; 1151 frag = 0; 1152 1153 for (m = m_head; m != NULL; m = m->m_next) { 1154 if (m->m_len != 0) { 1155 tot_len += m->m_len; 1156 f = &cur_tx->lge_frags[frag]; 1157 f->lge_fraglen = m->m_len; 1158 f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); 1159 f->lge_fragptr_hi = 0; 1160 frag++; 1161 } 1162 } 1163 1164 if (m != NULL) 1165 return(ENOBUFS); 1166 1167 cur_tx->lge_mbuf = m_head; 1168 cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; 1169 LGE_INC((*txidx), LGE_TX_LIST_CNT); 1170 1171 /* Queue for transmit */ 1172 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); 1173 1174 return(0); 1175 } 1176 1177 /* 1178 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1179 * to the mbuf data regions directly in the transmit lists. We also save a 1180 * copy of the pointers since the transmit list fragment pointers are 1181 * physical addresses. 1182 */ 1183 1184 static void 1185 lge_start(ifp) 1186 struct ifnet *ifp; 1187 { 1188 struct lge_softc *sc; 1189 1190 sc = ifp->if_softc; 1191 LGE_LOCK(sc); 1192 lge_start_locked(ifp); 1193 LGE_UNLOCK(sc); 1194 } 1195 1196 static void 1197 lge_start_locked(ifp) 1198 struct ifnet *ifp; 1199 { 1200 struct lge_softc *sc; 1201 struct mbuf *m_head = NULL; 1202 u_int32_t idx; 1203 1204 sc = ifp->if_softc; 1205 1206 if (!sc->lge_link) 1207 return; 1208 1209 idx = sc->lge_cdata.lge_tx_prod; 1210 1211 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) 1212 return; 1213 1214 while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { 1215 if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) 1216 break; 1217 1218 IF_DEQUEUE(&ifp->if_snd, m_head); 1219 if (m_head == NULL) 1220 break; 1221 1222 if (lge_encap(sc, m_head, &idx)) { 1223 IF_PREPEND(&ifp->if_snd, m_head); 1224 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1225 break; 1226 } 1227 1228 /* 1229 * If there's a BPF listener, bounce a copy of this frame 1230 * to him. 1231 */ 1232 BPF_MTAP(ifp, m_head); 1233 } 1234 1235 sc->lge_cdata.lge_tx_prod = idx; 1236 1237 /* 1238 * Set a timeout in case the chip goes out to lunch. 1239 */ 1240 sc->lge_timer = 5; 1241 1242 return; 1243 } 1244 1245 static void 1246 lge_init(xsc) 1247 void *xsc; 1248 { 1249 struct lge_softc *sc = xsc; 1250 1251 LGE_LOCK(sc); 1252 lge_init_locked(sc); 1253 LGE_UNLOCK(sc); 1254 } 1255 1256 static void 1257 lge_init_locked(sc) 1258 struct lge_softc *sc; 1259 { 1260 struct ifnet *ifp = sc->lge_ifp; 1261 1262 LGE_LOCK_ASSERT(sc); 1263 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1264 return; 1265 1266 /* 1267 * Cancel pending I/O and free all RX/TX buffers. 1268 */ 1269 lge_stop(sc); 1270 lge_reset(sc); 1271 1272 /* Set MAC address */ 1273 CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0])); 1274 CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4])); 1275 1276 /* Init circular RX list. */ 1277 if (lge_list_rx_init(sc) == ENOBUFS) { 1278 device_printf(sc->lge_dev, "initialization failed: no " 1279 "memory for rx buffers\n"); 1280 lge_stop(sc); 1281 return; 1282 } 1283 1284 /* 1285 * Init tx descriptors. 1286 */ 1287 lge_list_tx_init(sc); 1288 1289 /* Set initial value for MODE1 register. */ 1290 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST| 1291 LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD| 1292 LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0| 1293 LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2); 1294 1295 /* If we want promiscuous mode, set the allframes bit. */ 1296 if (ifp->if_flags & IFF_PROMISC) { 1297 CSR_WRITE_4(sc, LGE_MODE1, 1298 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC); 1299 } else { 1300 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); 1301 } 1302 1303 /* 1304 * Set the capture broadcast bit to capture broadcast frames. 1305 */ 1306 if (ifp->if_flags & IFF_BROADCAST) { 1307 CSR_WRITE_4(sc, LGE_MODE1, 1308 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST); 1309 } else { 1310 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); 1311 } 1312 1313 /* Packet padding workaround? */ 1314 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); 1315 1316 /* No error frames */ 1317 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); 1318 1319 /* Receive large frames */ 1320 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS); 1321 1322 /* Workaround: disable RX/TX flow control */ 1323 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); 1324 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); 1325 1326 /* Make sure to strip CRC from received frames */ 1327 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); 1328 1329 /* Turn off magic packet mode */ 1330 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); 1331 1332 /* Turn off all VLAN stuff */ 1333 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX| 1334 LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT); 1335 1336 /* Workarond: FIFO overflow */ 1337 CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); 1338 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); 1339 1340 /* 1341 * Load the multicast filter. 1342 */ 1343 lge_setmulti(sc); 1344 1345 /* 1346 * Enable hardware checksum validation for all received IPv4 1347 * packets, do not reject packets with bad checksums. 1348 */ 1349 CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM| 1350 LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM| 1351 LGE_MODE2_RX_ERRCSUM); 1352 1353 /* 1354 * Enable the delivery of PHY interrupts based on 1355 * link/speed/duplex status chalges. 1356 */ 1357 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL); 1358 1359 /* Enable receiver and transmitter. */ 1360 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 1361 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB); 1362 1363 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); 1364 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB); 1365 1366 /* 1367 * Enable interrupts. 1368 */ 1369 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0| 1370 LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS); 1371 1372 lge_ifmedia_upd_locked(ifp); 1373 1374 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1375 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1376 1377 callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc); 1378 1379 return; 1380 } 1381 1382 /* 1383 * Set media options. 1384 */ 1385 static int 1386 lge_ifmedia_upd(ifp) 1387 struct ifnet *ifp; 1388 { 1389 struct lge_softc *sc; 1390 1391 sc = ifp->if_softc; 1392 LGE_LOCK(sc); 1393 lge_ifmedia_upd_locked(ifp); 1394 LGE_UNLOCK(sc); 1395 1396 return(0); 1397 } 1398 1399 static void 1400 lge_ifmedia_upd_locked(ifp) 1401 struct ifnet *ifp; 1402 { 1403 struct lge_softc *sc; 1404 struct mii_data *mii; 1405 struct mii_softc *miisc; 1406 1407 sc = ifp->if_softc; 1408 1409 LGE_LOCK_ASSERT(sc); 1410 mii = device_get_softc(sc->lge_miibus); 1411 sc->lge_link = 0; 1412 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1413 PHY_RESET(miisc); 1414 mii_mediachg(mii); 1415 } 1416 1417 /* 1418 * Report current media status. 1419 */ 1420 static void 1421 lge_ifmedia_sts(ifp, ifmr) 1422 struct ifnet *ifp; 1423 struct ifmediareq *ifmr; 1424 { 1425 struct lge_softc *sc; 1426 struct mii_data *mii; 1427 1428 sc = ifp->if_softc; 1429 1430 LGE_LOCK(sc); 1431 mii = device_get_softc(sc->lge_miibus); 1432 mii_pollstat(mii); 1433 LGE_UNLOCK(sc); 1434 ifmr->ifm_active = mii->mii_media_active; 1435 ifmr->ifm_status = mii->mii_media_status; 1436 1437 return; 1438 } 1439 1440 static int 1441 lge_ioctl(ifp, command, data) 1442 struct ifnet *ifp; 1443 u_long command; 1444 caddr_t data; 1445 { 1446 struct lge_softc *sc = ifp->if_softc; 1447 struct ifreq *ifr = (struct ifreq *) data; 1448 struct mii_data *mii; 1449 int error = 0; 1450 1451 switch(command) { 1452 case SIOCSIFMTU: 1453 LGE_LOCK(sc); 1454 if (ifr->ifr_mtu > LGE_JUMBO_MTU) 1455 error = EINVAL; 1456 else 1457 ifp->if_mtu = ifr->ifr_mtu; 1458 LGE_UNLOCK(sc); 1459 break; 1460 case SIOCSIFFLAGS: 1461 LGE_LOCK(sc); 1462 if (ifp->if_flags & IFF_UP) { 1463 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1464 ifp->if_flags & IFF_PROMISC && 1465 !(sc->lge_if_flags & IFF_PROMISC)) { 1466 CSR_WRITE_4(sc, LGE_MODE1, 1467 LGE_MODE1_SETRST_CTL1| 1468 LGE_MODE1_RX_PROMISC); 1469 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1470 !(ifp->if_flags & IFF_PROMISC) && 1471 sc->lge_if_flags & IFF_PROMISC) { 1472 CSR_WRITE_4(sc, LGE_MODE1, 1473 LGE_MODE1_RX_PROMISC); 1474 } else { 1475 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1476 lge_init_locked(sc); 1477 } 1478 } else { 1479 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1480 lge_stop(sc); 1481 } 1482 sc->lge_if_flags = ifp->if_flags; 1483 LGE_UNLOCK(sc); 1484 error = 0; 1485 break; 1486 case SIOCADDMULTI: 1487 case SIOCDELMULTI: 1488 LGE_LOCK(sc); 1489 lge_setmulti(sc); 1490 LGE_UNLOCK(sc); 1491 error = 0; 1492 break; 1493 case SIOCGIFMEDIA: 1494 case SIOCSIFMEDIA: 1495 mii = device_get_softc(sc->lge_miibus); 1496 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1497 break; 1498 default: 1499 error = ether_ioctl(ifp, command, data); 1500 break; 1501 } 1502 1503 return(error); 1504 } 1505 1506 static void 1507 lge_watchdog(sc) 1508 struct lge_softc *sc; 1509 { 1510 struct ifnet *ifp; 1511 1512 LGE_LOCK_ASSERT(sc); 1513 ifp = sc->lge_ifp; 1514 1515 ifp->if_oerrors++; 1516 if_printf(ifp, "watchdog timeout\n"); 1517 1518 lge_stop(sc); 1519 lge_reset(sc); 1520 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1521 lge_init_locked(sc); 1522 1523 if (ifp->if_snd.ifq_head != NULL) 1524 lge_start_locked(ifp); 1525 } 1526 1527 /* 1528 * Stop the adapter and free any mbufs allocated to the 1529 * RX and TX lists. 1530 */ 1531 static void 1532 lge_stop(sc) 1533 struct lge_softc *sc; 1534 { 1535 register int i; 1536 struct ifnet *ifp; 1537 1538 LGE_LOCK_ASSERT(sc); 1539 ifp = sc->lge_ifp; 1540 sc->lge_timer = 0; 1541 callout_stop(&sc->lge_stat_callout); 1542 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); 1543 1544 /* Disable receiver and transmitter. */ 1545 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); 1546 sc->lge_link = 0; 1547 1548 /* 1549 * Free data in the RX lists. 1550 */ 1551 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 1552 if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { 1553 m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); 1554 sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; 1555 } 1556 } 1557 bzero((char *)&sc->lge_ldata->lge_rx_list, 1558 sizeof(sc->lge_ldata->lge_rx_list)); 1559 1560 /* 1561 * Free the TX list buffers. 1562 */ 1563 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 1564 if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { 1565 m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); 1566 sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; 1567 } 1568 } 1569 1570 bzero((char *)&sc->lge_ldata->lge_tx_list, 1571 sizeof(sc->lge_ldata->lge_tx_list)); 1572 1573 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1574 1575 return; 1576 } 1577 1578 /* 1579 * Stop all chip I/O so that the kernel's probe routines don't 1580 * get confused by errant DMAs when rebooting. 1581 */ 1582 static int 1583 lge_shutdown(dev) 1584 device_t dev; 1585 { 1586 struct lge_softc *sc; 1587 1588 sc = device_get_softc(dev); 1589 1590 LGE_LOCK(sc); 1591 lge_reset(sc); 1592 lge_stop(sc); 1593 LGE_UNLOCK(sc); 1594 1595 return (0); 1596 } 1597