xref: /freebsd/sys/dev/lge/if_lge.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
36  * documentation not available, but ask me nicely.
37  *
38  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
39  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
40  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
41  * are three supported methods for data transfer between host and
42  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
43  * Propulsion Technology (tm) DMA. The latter mechanism is a form
44  * of double buffer DMA where the packet data is copied to a
45  * pre-allocated DMA buffer who's physical address has been loaded
46  * into a table at device initialization time. The rationale is that
47  * the virtual to physical address translation needed for normal
48  * scatter/gather DMA is more expensive than the data copy needed
49  * for double buffering. This may be true in Windows NT and the like,
50  * but it isn't true for us, at least on the x86 arch. This driver
51  * uses the scatter/gather I/O method for both TX and RX.
52  *
53  * The LXT1001 only supports TCP/IP checksum offload on receive.
54  * Also, the VLAN tagging is done using a 16-entry table which allows
55  * the chip to perform hardware filtering based on VLAN tags. Sadly,
56  * our vlan support doesn't currently play well with this kind of
57  * hardware support.
58  *
59  * Special thanks to:
60  * - Jeff James at Intel, for arranging to have the LXT1001 manual
61  *   released (at long last)
62  * - Beny Chen at D-Link, for actually sending it to me
63  * - Brad Short and Keith Alexis at SMC, for sending me sample
64  *   SMC9462SX and SMC9462TX adapters for testing
65  * - Paul Saab at Y!, for not killing me (though it remains to be seen
66  *   if in fact he did me much of a favor)
67  */
68 
69 #include <sys/cdefs.h>
70 __FBSDID("$FreeBSD$");
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/ethernet.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 
86 #include <net/bpf.h>
87 
88 #include <vm/vm.h>              /* for vtophys */
89 #include <vm/pmap.h>            /* for vtophys */
90 #include <machine/clock.h>      /* for DELAY */
91 #include <machine/bus_pio.h>
92 #include <machine/bus_memio.h>
93 #include <machine/bus.h>
94 #include <machine/resource.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 
98 #include <dev/mii/mii.h>
99 #include <dev/mii/miivar.h>
100 
101 #include <pci/pcireg.h>
102 #include <pci/pcivar.h>
103 
104 #define LGE_USEIOSPACE
105 
106 #include <dev/lge/if_lgereg.h>
107 
108 /* "controller miibus0" required.  See GENERIC if you get errors here. */
109 #include "miibus_if.h"
110 
111 /*
112  * Various supported device vendors/types and their names.
113  */
114 static struct lge_type lge_devs[] = {
115 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
116 	{ 0, 0, NULL }
117 };
118 
119 static int lge_probe(device_t);
120 static int lge_attach(device_t);
121 static int lge_detach(device_t);
122 
123 static int lge_alloc_jumbo_mem(struct lge_softc *);
124 static void lge_free_jumbo_mem(struct lge_softc *);
125 static void *lge_jalloc(struct lge_softc *);
126 static void lge_jfree(void *, void *);
127 
128 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
129 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
130 static void lge_rxeof(struct lge_softc *, int);
131 static void lge_rxeoc(struct lge_softc *);
132 static void lge_txeof(struct lge_softc *);
133 static void lge_intr(void *);
134 static void lge_tick(void *);
135 static void lge_start(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_stop(struct lge_softc *);
139 static void lge_watchdog(struct ifnet *);
140 static void lge_shutdown(device_t);
141 static int lge_ifmedia_upd(struct ifnet *);
142 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
143 
144 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
145 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
146 
147 static int lge_miibus_readreg(device_t, int, int);
148 static int lge_miibus_writereg(device_t, int, int, int);
149 static void lge_miibus_statchg(device_t);
150 
151 static void lge_setmulti(struct lge_softc *);
152 static u_int32_t lge_crc(struct lge_softc *, caddr_t);
153 static void lge_reset(struct lge_softc *);
154 static int lge_list_rx_init(struct lge_softc *);
155 static int lge_list_tx_init(struct lge_softc *);
156 
157 #ifdef LGE_USEIOSPACE
158 #define LGE_RES			SYS_RES_IOPORT
159 #define LGE_RID			LGE_PCI_LOIO
160 #else
161 #define LGE_RES			SYS_RES_MEMORY
162 #define LGE_RID			LGE_PCI_LOMEM
163 #endif
164 
165 static device_method_t lge_methods[] = {
166 	/* Device interface */
167 	DEVMETHOD(device_probe,		lge_probe),
168 	DEVMETHOD(device_attach,	lge_attach),
169 	DEVMETHOD(device_detach,	lge_detach),
170 	DEVMETHOD(device_shutdown,	lge_shutdown),
171 
172 	/* bus interface */
173 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
174 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
175 
176 	/* MII interface */
177 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
180 
181 	{ 0, 0 }
182 };
183 
184 static driver_t lge_driver = {
185 	"lge",
186 	lge_methods,
187 	sizeof(struct lge_softc)
188 };
189 
190 static devclass_t lge_devclass;
191 
192 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
193 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
194 MODULE_DEPEND(lge, pci, 1, 1, 1);
195 MODULE_DEPEND(lge, ether, 1, 1, 1);
196 MODULE_DEPEND(lge, miibus, 1, 1, 1);
197 
198 #define LGE_SETBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg,				\
204 		CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
211 
212 /*
213  * Read a word of data stored in the EEPROM at address 'addr.'
214  */
215 static void
216 lge_eeprom_getword(sc, addr, dest)
217 	struct lge_softc	*sc;
218 	int			addr;
219 	u_int16_t		*dest;
220 {
221 	register int		i;
222 	u_int32_t		val;
223 
224 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
225 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
226 
227 	for (i = 0; i < LGE_TIMEOUT; i++)
228 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
229 			break;
230 
231 	if (i == LGE_TIMEOUT) {
232 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
233 		return;
234 	}
235 
236 	val = CSR_READ_4(sc, LGE_EEDATA);
237 
238 	if (addr & 1)
239 		*dest = (val >> 16) & 0xFFFF;
240 	else
241 		*dest = val & 0xFFFF;
242 
243 	return;
244 }
245 
246 /*
247  * Read a sequence of words from the EEPROM.
248  */
249 static void
250 lge_read_eeprom(sc, dest, off, cnt, swap)
251 	struct lge_softc	*sc;
252 	caddr_t			dest;
253 	int			off;
254 	int			cnt;
255 	int			swap;
256 {
257 	int			i;
258 	u_int16_t		word = 0, *ptr;
259 
260 	for (i = 0; i < cnt; i++) {
261 		lge_eeprom_getword(sc, off + i, &word);
262 		ptr = (u_int16_t *)(dest + (i * 2));
263 		if (swap)
264 			*ptr = ntohs(word);
265 		else
266 			*ptr = word;
267 	}
268 
269 	return;
270 }
271 
272 static int
273 lge_miibus_readreg(dev, phy, reg)
274 	device_t		dev;
275 	int			phy, reg;
276 {
277 	struct lge_softc	*sc;
278 	int			i;
279 
280 	sc = device_get_softc(dev);
281 
282 	/*
283 	 * If we have a non-PCS PHY, pretend that the internal
284 	 * autoneg stuff at PHY address 0 isn't there so that
285 	 * the miibus code will find only the GMII PHY.
286 	 */
287 	if (sc->lge_pcs == 0 && phy == 0)
288 		return(0);
289 
290 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
291 
292 	for (i = 0; i < LGE_TIMEOUT; i++)
293 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
294 			break;
295 
296 	if (i == LGE_TIMEOUT) {
297 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
298 		return(0);
299 	}
300 
301 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
302 }
303 
304 static int
305 lge_miibus_writereg(dev, phy, reg, data)
306 	device_t		dev;
307 	int			phy, reg, data;
308 {
309 	struct lge_softc	*sc;
310 	int			i;
311 
312 	sc = device_get_softc(dev);
313 
314 	CSR_WRITE_4(sc, LGE_GMIICTL,
315 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
316 
317 	for (i = 0; i < LGE_TIMEOUT; i++)
318 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
319 			break;
320 
321 	if (i == LGE_TIMEOUT) {
322 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
323 		return(0);
324 	}
325 
326 	return(0);
327 }
328 
329 static void
330 lge_miibus_statchg(dev)
331 	device_t		dev;
332 {
333 	struct lge_softc	*sc;
334 	struct mii_data		*mii;
335 
336 	sc = device_get_softc(dev);
337 	mii = device_get_softc(sc->lge_miibus);
338 
339 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
340 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
341 	case IFM_1000_T:
342 	case IFM_1000_SX:
343 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
344 		break;
345 	case IFM_100_TX:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
347 		break;
348 	case IFM_10_T:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
350 		break;
351 	default:
352 		/*
353 		 * Choose something, even if it's wrong. Clearing
354 		 * all the bits will hose autoneg on the internal
355 		 * PHY.
356 		 */
357 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
358 		break;
359 	}
360 
361 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363 	} else {
364 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
365 	}
366 
367 	return;
368 }
369 
370 static u_int32_t
371 lge_crc(sc, addr)
372 	struct lge_softc	*sc;
373 	caddr_t			addr;
374 {
375 	u_int32_t		crc, carry;
376 	int			i, j;
377 	u_int8_t		c;
378 
379 	/* Compute CRC for the address value. */
380 	crc = 0xFFFFFFFF; /* initial value */
381 
382 	for (i = 0; i < 6; i++) {
383 		c = *(addr + i);
384 		for (j = 0; j < 8; j++) {
385 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
386 			crc <<= 1;
387 			c >>= 1;
388 			if (carry)
389 				crc = (crc ^ 0x04c11db6) | carry;
390 		}
391 	}
392 
393 	/*
394 	 * return the filter bit position
395 	 */
396 	return((crc >> 26) & 0x0000003F);
397 }
398 
399 static void
400 lge_setmulti(sc)
401 	struct lge_softc	*sc;
402 {
403 	struct ifnet		*ifp;
404 	struct ifmultiaddr	*ifma;
405 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
406 
407 	ifp = &sc->arpcom.ac_if;
408 
409 	/* Make sure multicast hash table is enabled. */
410 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
411 
412 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
413 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
414 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
415 		return;
416 	}
417 
418 	/* first, zot all the existing hash bits */
419 	CSR_WRITE_4(sc, LGE_MAR0, 0);
420 	CSR_WRITE_4(sc, LGE_MAR1, 0);
421 
422 	/* now program new ones */
423 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
424 		if (ifma->ifma_addr->sa_family != AF_LINK)
425 			continue;
426 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
427 		if (h < 32)
428 			hashes[0] |= (1 << h);
429 		else
430 			hashes[1] |= (1 << (h - 32));
431 	}
432 
433 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
434 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
435 
436 	return;
437 }
438 
439 static void
440 lge_reset(sc)
441 	struct lge_softc	*sc;
442 {
443 	register int		i;
444 
445 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
446 
447 	for (i = 0; i < LGE_TIMEOUT; i++) {
448 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
449 			break;
450 	}
451 
452 	if (i == LGE_TIMEOUT)
453 		printf("lge%d: reset never completed\n", sc->lge_unit);
454 
455 	/* Wait a little while for the chip to get its brains in order. */
456 	DELAY(1000);
457 
458         return;
459 }
460 
461 /*
462  * Probe for a Level 1 chip. Check the PCI vendor and device
463  * IDs against our list and return a device name if we find a match.
464  */
465 static int
466 lge_probe(dev)
467 	device_t		dev;
468 {
469 	struct lge_type		*t;
470 
471 	t = lge_devs;
472 
473 	while(t->lge_name != NULL) {
474 		if ((pci_get_vendor(dev) == t->lge_vid) &&
475 		    (pci_get_device(dev) == t->lge_did)) {
476 			device_set_desc(dev, t->lge_name);
477 			return(0);
478 		}
479 		t++;
480 	}
481 
482 	return(ENXIO);
483 }
484 
485 /*
486  * Attach the interface. Allocate softc structures, do ifmedia
487  * setup and ethernet/BPF attach.
488  */
489 static int
490 lge_attach(dev)
491 	device_t		dev;
492 {
493 	int			s;
494 	u_char			eaddr[ETHER_ADDR_LEN];
495 	struct lge_softc	*sc;
496 	struct ifnet		*ifp;
497 	int			unit, error = 0, rid;
498 
499 	s = splimp();
500 
501 	sc = device_get_softc(dev);
502 	unit = device_get_unit(dev);
503 	bzero(sc, sizeof(struct lge_softc));
504 
505 	/*
506 	 * Handle power management nonsense.
507 	 */
508 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
509 		u_int32_t		iobase, membase, irq;
510 
511 		/* Save important PCI config data. */
512 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
513 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
514 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
515 
516 		/* Reset the power state. */
517 		printf("lge%d: chip is in D%d power mode "
518 		    "-- setting to D0\n", unit,
519 		    pci_get_powerstate(dev));
520 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
521 
522 		/* Restore PCI config data. */
523 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
524 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
525 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
526 	}
527 
528 	/*
529 	 * Map control/status registers.
530 	 */
531 	pci_enable_busmaster(dev);
532 
533 	rid = LGE_RID;
534 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
535 	    0, ~0, 1, RF_ACTIVE);
536 
537 	if (sc->lge_res == NULL) {
538 		printf("lge%d: couldn't map ports/memory\n", unit);
539 		error = ENXIO;
540 		goto fail;
541 	}
542 
543 	sc->lge_btag = rman_get_bustag(sc->lge_res);
544 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
545 
546 	/* Allocate interrupt */
547 	rid = 0;
548 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
549 	    RF_SHAREABLE | RF_ACTIVE);
550 
551 	if (sc->lge_irq == NULL) {
552 		printf("lge%d: couldn't map interrupt\n", unit);
553 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
554 		error = ENXIO;
555 		goto fail;
556 	}
557 
558 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
559 	    lge_intr, sc, &sc->lge_intrhand);
560 
561 	if (error) {
562 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
563 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
564 		printf("lge%d: couldn't set up irq\n", unit);
565 		goto fail;
566 	}
567 
568 	/* Reset the adapter. */
569 	lge_reset(sc);
570 
571 	/*
572 	 * Get station address from the EEPROM.
573 	 */
574 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
575 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
576 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
577 
578 	/*
579 	 * A Level 1 chip was detected. Inform the world.
580 	 */
581 	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
582 
583 	sc->lge_unit = unit;
584 	callout_handle_init(&sc->lge_stat_ch);
585 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
586 
587 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
588 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
589 
590 	if (sc->lge_ldata == NULL) {
591 		printf("lge%d: no memory for list buffers!\n", unit);
592 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
593 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
594 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
595 		error = ENXIO;
596 		goto fail;
597 	}
598 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
599 
600 	/* Try to allocate memory for jumbo buffers. */
601 	if (lge_alloc_jumbo_mem(sc)) {
602 		printf("lge%d: jumbo buffer allocation failed\n",
603                     sc->lge_unit);
604 		contigfree(sc->lge_ldata,
605 		    sizeof(struct lge_list_data), M_DEVBUF);
606 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
607 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
608 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
609 		error = ENXIO;
610 		goto fail;
611 	}
612 
613 	ifp = &sc->arpcom.ac_if;
614 	ifp->if_softc = sc;
615 	ifp->if_unit = unit;
616 	ifp->if_name = "lge";
617 	ifp->if_mtu = ETHERMTU;
618 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
619 	ifp->if_ioctl = lge_ioctl;
620 	ifp->if_output = ether_output;
621 	ifp->if_start = lge_start;
622 	ifp->if_watchdog = lge_watchdog;
623 	ifp->if_init = lge_init;
624 	ifp->if_baudrate = 1000000000;
625 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
626 	ifp->if_capabilities = IFCAP_RXCSUM;
627 	ifp->if_capenable = ifp->if_capabilities;
628 
629 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
630 		sc->lge_pcs = 1;
631 	else
632 		sc->lge_pcs = 0;
633 
634 	/*
635 	 * Do MII setup.
636 	 */
637 	if (mii_phy_probe(dev, &sc->lge_miibus,
638 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
639 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
640 		contigfree(sc->lge_ldata,
641 		    sizeof(struct lge_list_data), M_DEVBUF);
642 		lge_free_jumbo_mem(sc);
643 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
644 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
645 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
646 		error = ENXIO;
647 		goto fail;
648 	}
649 
650 	/*
651 	 * Call MI attach routine.
652 	 */
653 	ether_ifattach(ifp, eaddr);
654 	callout_handle_init(&sc->lge_stat_ch);
655 
656 fail:
657 	splx(s);
658 	return(error);
659 }
660 
661 static int
662 lge_detach(dev)
663 	device_t		dev;
664 {
665 	struct lge_softc	*sc;
666 	struct ifnet		*ifp;
667 	int			s;
668 
669 	s = splimp();
670 
671 	sc = device_get_softc(dev);
672 	ifp = &sc->arpcom.ac_if;
673 
674 	lge_reset(sc);
675 	lge_stop(sc);
676 	ether_ifdetach(ifp);
677 
678 	bus_generic_detach(dev);
679 	device_delete_child(dev, sc->lge_miibus);
680 
681 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
682 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
683 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
684 
685 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
686 	lge_free_jumbo_mem(sc);
687 
688 	splx(s);
689 
690 	return(0);
691 }
692 
693 /*
694  * Initialize the transmit descriptors.
695  */
696 static int
697 lge_list_tx_init(sc)
698 	struct lge_softc	*sc;
699 {
700 	struct lge_list_data	*ld;
701 	struct lge_ring_data	*cd;
702 	int			i;
703 
704 	cd = &sc->lge_cdata;
705 	ld = sc->lge_ldata;
706 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
707 		ld->lge_tx_list[i].lge_mbuf = NULL;
708 		ld->lge_tx_list[i].lge_ctl = 0;
709 	}
710 
711 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
712 
713 	return(0);
714 }
715 
716 
717 /*
718  * Initialize the RX descriptors and allocate mbufs for them. Note that
719  * we arralge the descriptors in a closed ring, so that the last descriptor
720  * points back to the first.
721  */
722 static int
723 lge_list_rx_init(sc)
724 	struct lge_softc	*sc;
725 {
726 	struct lge_list_data	*ld;
727 	struct lge_ring_data	*cd;
728 	int			i;
729 
730 	ld = sc->lge_ldata;
731 	cd = &sc->lge_cdata;
732 
733 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
734 
735 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
736 
737 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
738 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
739 			break;
740 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
741 			return(ENOBUFS);
742 	}
743 
744 	/* Clear possible 'rx command queue empty' interrupt. */
745 	CSR_READ_4(sc, LGE_ISR);
746 
747 	return(0);
748 }
749 
750 /*
751  * Initialize an RX descriptor and attach an MBUF cluster.
752  */
753 static int
754 lge_newbuf(sc, c, m)
755 	struct lge_softc	*sc;
756 	struct lge_rx_desc	*c;
757 	struct mbuf		*m;
758 {
759 	struct mbuf		*m_new = NULL;
760 	caddr_t			*buf = NULL;
761 
762 	if (m == NULL) {
763 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
764 		if (m_new == NULL) {
765 			printf("lge%d: no memory for rx list "
766 			    "-- packet dropped!\n", sc->lge_unit);
767 			return(ENOBUFS);
768 		}
769 
770 		/* Allocate the jumbo buffer */
771 		buf = lge_jalloc(sc);
772 		if (buf == NULL) {
773 #ifdef LGE_VERBOSE
774 			printf("lge%d: jumbo allocation failed "
775 			    "-- packet dropped!\n", sc->lge_unit);
776 #endif
777 			m_freem(m_new);
778 			return(ENOBUFS);
779 		}
780 		/* Attach the buffer to the mbuf */
781 		m_new->m_data = (void *)buf;
782 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
783 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
784 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
785 	} else {
786 		m_new = m;
787 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
788 		m_new->m_data = m_new->m_ext.ext_buf;
789 	}
790 
791 	/*
792 	 * Adjust alignment so packet payload begins on a
793 	 * longword boundary. Mandatory for Alpha, useful on
794 	 * x86 too.
795 	*/
796 	m_adj(m_new, ETHER_ALIGN);
797 
798 	c->lge_mbuf = m_new;
799 	c->lge_fragptr_hi = 0;
800 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
801 	c->lge_fraglen = m_new->m_len;
802 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
803 	c->lge_sts = 0;
804 
805 	/*
806 	 * Put this buffer in the RX command FIFO. To do this,
807 	 * we just write the physical address of the descriptor
808 	 * into the RX descriptor address registers. Note that
809 	 * there are two registers, one high DWORD and one low
810 	 * DWORD, which lets us specify a 64-bit address if
811 	 * desired. We only use a 32-bit address for now.
812 	 * Writing to the low DWORD register is what actually
813 	 * causes the command to be issued, so we do that
814 	 * last.
815 	 */
816 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
817 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
818 
819 	return(0);
820 }
821 
822 static int
823 lge_alloc_jumbo_mem(sc)
824 	struct lge_softc	*sc;
825 {
826 	caddr_t			ptr;
827 	register int		i;
828 	struct lge_jpool_entry   *entry;
829 
830 	/* Grab a big chunk o' storage. */
831 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
832 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
833 
834 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
835 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
836 		return(ENOBUFS);
837 	}
838 
839 	SLIST_INIT(&sc->lge_jfree_listhead);
840 	SLIST_INIT(&sc->lge_jinuse_listhead);
841 
842 	/*
843 	 * Now divide it up into 9K pieces and save the addresses
844 	 * in an array.
845 	 */
846 	ptr = sc->lge_cdata.lge_jumbo_buf;
847 	for (i = 0; i < LGE_JSLOTS; i++) {
848 		sc->lge_cdata.lge_jslots[i] = ptr;
849 		ptr += LGE_JLEN;
850 		entry = malloc(sizeof(struct lge_jpool_entry),
851 		    M_DEVBUF, M_NOWAIT);
852 		if (entry == NULL) {
853 			printf("lge%d: no memory for jumbo "
854 			    "buffer queue!\n", sc->lge_unit);
855 			return(ENOBUFS);
856 		}
857 		entry->slot = i;
858 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
859 		    entry, jpool_entries);
860 	}
861 
862 	return(0);
863 }
864 
865 static void
866 lge_free_jumbo_mem(sc)
867 	struct lge_softc	*sc;
868 {
869 	int			i;
870 	struct lge_jpool_entry	*entry;
871 
872 	for (i = 0; i < LGE_JSLOTS; i++) {
873 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
874 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
875 		free(entry, M_DEVBUF);
876 	}
877 
878 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
879 
880 	return;
881 }
882 
883 /*
884  * Allocate a jumbo buffer.
885  */
886 static void *
887 lge_jalloc(sc)
888 	struct lge_softc	*sc;
889 {
890 	struct lge_jpool_entry   *entry;
891 
892 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
893 
894 	if (entry == NULL) {
895 #ifdef LGE_VERBOSE
896 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
897 #endif
898 		return(NULL);
899 	}
900 
901 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
902 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
903 	return(sc->lge_cdata.lge_jslots[entry->slot]);
904 }
905 
906 /*
907  * Release a jumbo buffer.
908  */
909 static void
910 lge_jfree(buf, args)
911 	void			*buf;
912 	void			*args;
913 {
914 	struct lge_softc	*sc;
915 	int		        i;
916 	struct lge_jpool_entry   *entry;
917 
918 	/* Extract the softc struct pointer. */
919 	sc = args;
920 
921 	if (sc == NULL)
922 		panic("lge_jfree: can't find softc pointer!");
923 
924 	/* calculate the slot this buffer belongs to */
925 	i = ((vm_offset_t)buf
926 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
927 
928 	if ((i < 0) || (i >= LGE_JSLOTS))
929 		panic("lge_jfree: asked to free buffer that we don't manage!");
930 
931 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
932 	if (entry == NULL)
933 		panic("lge_jfree: buffer not in use!");
934 	entry->slot = i;
935 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
936 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
937 
938 	return;
939 }
940 
941 /*
942  * A frame has been uploaded: pass the resulting mbuf chain up to
943  * the higher level protocols.
944  */
945 static void
946 lge_rxeof(sc, cnt)
947 	struct lge_softc	*sc;
948 	int			cnt;
949 {
950         struct mbuf		*m;
951         struct ifnet		*ifp;
952 	struct lge_rx_desc	*cur_rx;
953 	int			c, i, total_len = 0;
954 	u_int32_t		rxsts, rxctl;
955 
956 	ifp = &sc->arpcom.ac_if;
957 
958 	/* Find out how many frames were processed. */
959 	c = cnt;
960 	i = sc->lge_cdata.lge_rx_cons;
961 
962 	/* Suck them in. */
963 	while(c) {
964 		struct mbuf		*m0 = NULL;
965 
966 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
967 		rxctl = cur_rx->lge_ctl;
968 		rxsts = cur_rx->lge_sts;
969 		m = cur_rx->lge_mbuf;
970 		cur_rx->lge_mbuf = NULL;
971 		total_len = LGE_RXBYTES(cur_rx);
972 		LGE_INC(i, LGE_RX_LIST_CNT);
973 		c--;
974 
975 		/*
976 		 * If an error occurs, update stats, clear the
977 		 * status word and leave the mbuf cluster in place:
978 		 * it should simply get re-used next time this descriptor
979 	 	 * comes up in the ring.
980 		 */
981 		if (rxctl & LGE_RXCTL_ERRMASK) {
982 			ifp->if_ierrors++;
983 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
984 			continue;
985 		}
986 
987 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
988 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
989 			    ifp, NULL);
990 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
991 			if (m0 == NULL) {
992 				printf("lge%d: no receive buffers "
993 				    "available -- packet dropped!\n",
994 				    sc->lge_unit);
995 				ifp->if_ierrors++;
996 				continue;
997 			}
998 			m = m0;
999 		} else {
1000 			m->m_pkthdr.rcvif = ifp;
1001 			m->m_pkthdr.len = m->m_len = total_len;
1002 		}
1003 
1004 		ifp->if_ipackets++;
1005 
1006 		/* Do IP checksum checking. */
1007 		if (rxsts & LGE_RXSTS_ISIP)
1008 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1009 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1010 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1011 		if ((rxsts & LGE_RXSTS_ISTCP &&
1012 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1013 		    (rxsts & LGE_RXSTS_ISUDP &&
1014 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1015 			m->m_pkthdr.csum_flags |=
1016 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1017 			m->m_pkthdr.csum_data = 0xffff;
1018 		}
1019 
1020 		(*ifp->if_input)(ifp, m);
1021 	}
1022 
1023 	sc->lge_cdata.lge_rx_cons = i;
1024 
1025 	return;
1026 }
1027 
1028 static void
1029 lge_rxeoc(sc)
1030 	struct lge_softc	*sc;
1031 {
1032 	struct ifnet		*ifp;
1033 
1034 	ifp = &sc->arpcom.ac_if;
1035 	ifp->if_flags &= ~IFF_RUNNING;
1036 	lge_init(sc);
1037 	return;
1038 }
1039 
1040 /*
1041  * A frame was downloaded to the chip. It's safe for us to clean up
1042  * the list buffers.
1043  */
1044 
1045 static void
1046 lge_txeof(sc)
1047 	struct lge_softc	*sc;
1048 {
1049 	struct lge_tx_desc	*cur_tx = NULL;
1050 	struct ifnet		*ifp;
1051 	u_int32_t		idx, txdone;
1052 
1053 	ifp = &sc->arpcom.ac_if;
1054 
1055 	/* Clear the timeout timer. */
1056 	ifp->if_timer = 0;
1057 
1058 	/*
1059 	 * Go through our tx list and free mbufs for those
1060 	 * frames that have been transmitted.
1061 	 */
1062 	idx = sc->lge_cdata.lge_tx_cons;
1063 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1064 
1065 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1066 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1067 
1068 		ifp->if_opackets++;
1069 		if (cur_tx->lge_mbuf != NULL) {
1070 			m_freem(cur_tx->lge_mbuf);
1071 			cur_tx->lge_mbuf = NULL;
1072 		}
1073 		cur_tx->lge_ctl = 0;
1074 
1075 		txdone--;
1076 		LGE_INC(idx, LGE_TX_LIST_CNT);
1077 		ifp->if_timer = 0;
1078 	}
1079 
1080 	sc->lge_cdata.lge_tx_cons = idx;
1081 
1082 	if (cur_tx != NULL)
1083 		ifp->if_flags &= ~IFF_OACTIVE;
1084 
1085 	return;
1086 }
1087 
1088 static void
1089 lge_tick(xsc)
1090 	void			*xsc;
1091 {
1092 	struct lge_softc	*sc;
1093 	struct mii_data		*mii;
1094 	struct ifnet		*ifp;
1095 	int			s;
1096 
1097 	s = splimp();
1098 
1099 	sc = xsc;
1100 	ifp = &sc->arpcom.ac_if;
1101 
1102 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1103 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1104 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1105 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1106 
1107 	if (!sc->lge_link) {
1108 		mii = device_get_softc(sc->lge_miibus);
1109 		mii_tick(mii);
1110 		if (mii->mii_media_status & IFM_ACTIVE &&
1111 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1112 			sc->lge_link++;
1113 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1114 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1115 				printf("lge%d: gigabit link up\n",
1116 				    sc->lge_unit);
1117 			if (ifp->if_snd.ifq_head != NULL)
1118 				lge_start(ifp);
1119 		}
1120 	}
1121 
1122 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1123 
1124 	splx(s);
1125 
1126 	return;
1127 }
1128 
1129 static void
1130 lge_intr(arg)
1131 	void			*arg;
1132 {
1133 	struct lge_softc	*sc;
1134 	struct ifnet		*ifp;
1135 	u_int32_t		status;
1136 
1137 	sc = arg;
1138 	ifp = &sc->arpcom.ac_if;
1139 
1140 	/* Supress unwanted interrupts */
1141 	if (!(ifp->if_flags & IFF_UP)) {
1142 		lge_stop(sc);
1143 		return;
1144 	}
1145 
1146 	for (;;) {
1147 		/*
1148 		 * Reading the ISR register clears all interrupts, and
1149 		 * clears the 'interrupts enabled' bit in the IMR
1150 		 * register.
1151 		 */
1152 		status = CSR_READ_4(sc, LGE_ISR);
1153 
1154 		if ((status & LGE_INTRS) == 0)
1155 			break;
1156 
1157 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1158 			lge_txeof(sc);
1159 
1160 		if (status & LGE_ISR_RXDMA_DONE)
1161 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1162 
1163 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1164 			lge_rxeoc(sc);
1165 
1166 		if (status & LGE_ISR_PHY_INTR) {
1167 			sc->lge_link = 0;
1168 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1169 			lge_tick(sc);
1170 		}
1171 	}
1172 
1173 	/* Re-enable interrupts. */
1174 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1175 
1176 	if (ifp->if_snd.ifq_head != NULL)
1177 		lge_start(ifp);
1178 
1179 	return;
1180 }
1181 
1182 /*
1183  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1184  * pointers to the fragment pointers.
1185  */
1186 static int
1187 lge_encap(sc, m_head, txidx)
1188 	struct lge_softc	*sc;
1189 	struct mbuf		*m_head;
1190 	u_int32_t		*txidx;
1191 {
1192 	struct lge_frag		*f = NULL;
1193 	struct lge_tx_desc	*cur_tx;
1194 	struct mbuf		*m;
1195 	int			frag = 0, tot_len = 0;
1196 
1197 	/*
1198  	 * Start packing the mbufs in this chain into
1199 	 * the fragment pointers. Stop when we run out
1200  	 * of fragments or hit the end of the mbuf chain.
1201 	 */
1202 	m = m_head;
1203 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1204 	frag = 0;
1205 
1206 	for (m = m_head; m != NULL; m = m->m_next) {
1207 		if (m->m_len != 0) {
1208 			tot_len += m->m_len;
1209 			f = &cur_tx->lge_frags[frag];
1210 			f->lge_fraglen = m->m_len;
1211 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1212 			f->lge_fragptr_hi = 0;
1213 			frag++;
1214 		}
1215 	}
1216 
1217 	if (m != NULL)
1218 		return(ENOBUFS);
1219 
1220 	cur_tx->lge_mbuf = m_head;
1221 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1222 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1223 
1224 	/* Queue for transmit */
1225 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1226 
1227 	return(0);
1228 }
1229 
1230 /*
1231  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1232  * to the mbuf data regions directly in the transmit lists. We also save a
1233  * copy of the pointers since the transmit list fragment pointers are
1234  * physical addresses.
1235  */
1236 
1237 static void
1238 lge_start(ifp)
1239 	struct ifnet		*ifp;
1240 {
1241 	struct lge_softc	*sc;
1242 	struct mbuf		*m_head = NULL;
1243 	u_int32_t		idx;
1244 
1245 	sc = ifp->if_softc;
1246 
1247 	if (!sc->lge_link)
1248 		return;
1249 
1250 	idx = sc->lge_cdata.lge_tx_prod;
1251 
1252 	if (ifp->if_flags & IFF_OACTIVE)
1253 		return;
1254 
1255 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1256 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1257 			break;
1258 
1259 		IF_DEQUEUE(&ifp->if_snd, m_head);
1260 		if (m_head == NULL)
1261 			break;
1262 
1263 		if (lge_encap(sc, m_head, &idx)) {
1264 			IF_PREPEND(&ifp->if_snd, m_head);
1265 			ifp->if_flags |= IFF_OACTIVE;
1266 			break;
1267 		}
1268 
1269 		/*
1270 		 * If there's a BPF listener, bounce a copy of this frame
1271 		 * to him.
1272 		 */
1273 		BPF_MTAP(ifp, m_head);
1274 	}
1275 
1276 	sc->lge_cdata.lge_tx_prod = idx;
1277 
1278 	/*
1279 	 * Set a timeout in case the chip goes out to lunch.
1280 	 */
1281 	ifp->if_timer = 5;
1282 
1283 	return;
1284 }
1285 
1286 static void
1287 lge_init(xsc)
1288 	void			*xsc;
1289 {
1290 	struct lge_softc	*sc = xsc;
1291 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1292 	struct mii_data		*mii;
1293 	int			s;
1294 
1295 	if (ifp->if_flags & IFF_RUNNING)
1296 		return;
1297 
1298 	s = splimp();
1299 
1300 	/*
1301 	 * Cancel pending I/O and free all RX/TX buffers.
1302 	 */
1303 	lge_stop(sc);
1304 	lge_reset(sc);
1305 
1306 	mii = device_get_softc(sc->lge_miibus);
1307 
1308 	/* Set MAC address */
1309 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1310 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1311 
1312 	/* Init circular RX list. */
1313 	if (lge_list_rx_init(sc) == ENOBUFS) {
1314 		printf("lge%d: initialization failed: no "
1315 		    "memory for rx buffers\n", sc->lge_unit);
1316 		lge_stop(sc);
1317 		(void)splx(s);
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * Init tx descriptors.
1323 	 */
1324 	lge_list_tx_init(sc);
1325 
1326 	/* Set initial value for MODE1 register. */
1327 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1328 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1329 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1330 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1331 
1332 	 /* If we want promiscuous mode, set the allframes bit. */
1333 	if (ifp->if_flags & IFF_PROMISC) {
1334 		CSR_WRITE_4(sc, LGE_MODE1,
1335 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1336 	} else {
1337 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1338 	}
1339 
1340 	/*
1341 	 * Set the capture broadcast bit to capture broadcast frames.
1342 	 */
1343 	if (ifp->if_flags & IFF_BROADCAST) {
1344 		CSR_WRITE_4(sc, LGE_MODE1,
1345 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1346 	} else {
1347 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1348 	}
1349 
1350 	/* Packet padding workaround? */
1351 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1352 
1353 	/* No error frames */
1354 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1355 
1356 	/* Receive large frames */
1357 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1358 
1359 	/* Workaround: disable RX/TX flow control */
1360 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1361 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1362 
1363 	/* Make sure to strip CRC from received frames */
1364 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1365 
1366 	/* Turn off magic packet mode */
1367 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1368 
1369 	/* Turn off all VLAN stuff */
1370 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1371 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1372 
1373 	/* Workarond: FIFO overflow */
1374 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1375 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1376 
1377 	/*
1378 	 * Load the multicast filter.
1379 	 */
1380 	lge_setmulti(sc);
1381 
1382 	/*
1383 	 * Enable hardware checksum validation for all received IPv4
1384 	 * packets, do not reject packets with bad checksums.
1385 	 */
1386 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1387 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1388 	    LGE_MODE2_RX_ERRCSUM);
1389 
1390 	/*
1391 	 * Enable the delivery of PHY interrupts based on
1392 	 * link/speed/duplex status chalges.
1393 	 */
1394 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1395 
1396 	/* Enable receiver and transmitter. */
1397 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1398 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1399 
1400 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1401 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1402 
1403 	/*
1404 	 * Enable interrupts.
1405 	 */
1406 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1407 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1408 
1409 	lge_ifmedia_upd(ifp);
1410 
1411 	ifp->if_flags |= IFF_RUNNING;
1412 	ifp->if_flags &= ~IFF_OACTIVE;
1413 
1414 	(void)splx(s);
1415 
1416 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1417 
1418 	return;
1419 }
1420 
1421 /*
1422  * Set media options.
1423  */
1424 static int
1425 lge_ifmedia_upd(ifp)
1426 	struct ifnet		*ifp;
1427 {
1428 	struct lge_softc	*sc;
1429 	struct mii_data		*mii;
1430 
1431 	sc = ifp->if_softc;
1432 
1433 	mii = device_get_softc(sc->lge_miibus);
1434 	sc->lge_link = 0;
1435 	if (mii->mii_instance) {
1436 		struct mii_softc	*miisc;
1437 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1438 		    miisc = LIST_NEXT(miisc, mii_list))
1439 			mii_phy_reset(miisc);
1440 	}
1441 	mii_mediachg(mii);
1442 
1443 	return(0);
1444 }
1445 
1446 /*
1447  * Report current media status.
1448  */
1449 static void
1450 lge_ifmedia_sts(ifp, ifmr)
1451 	struct ifnet		*ifp;
1452 	struct ifmediareq	*ifmr;
1453 {
1454 	struct lge_softc	*sc;
1455 	struct mii_data		*mii;
1456 
1457 	sc = ifp->if_softc;
1458 
1459 	mii = device_get_softc(sc->lge_miibus);
1460 	mii_pollstat(mii);
1461 	ifmr->ifm_active = mii->mii_media_active;
1462 	ifmr->ifm_status = mii->mii_media_status;
1463 
1464 	return;
1465 }
1466 
1467 static int
1468 lge_ioctl(ifp, command, data)
1469 	struct ifnet		*ifp;
1470 	u_long			command;
1471 	caddr_t			data;
1472 {
1473 	struct lge_softc	*sc = ifp->if_softc;
1474 	struct ifreq		*ifr = (struct ifreq *) data;
1475 	struct mii_data		*mii;
1476 	int			s, error = 0;
1477 
1478 	s = splimp();
1479 
1480 	switch(command) {
1481 	case SIOCSIFMTU:
1482 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1483 			error = EINVAL;
1484 		else
1485 			ifp->if_mtu = ifr->ifr_mtu;
1486 		break;
1487 	case SIOCSIFFLAGS:
1488 		if (ifp->if_flags & IFF_UP) {
1489 			if (ifp->if_flags & IFF_RUNNING &&
1490 			    ifp->if_flags & IFF_PROMISC &&
1491 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1492 				CSR_WRITE_4(sc, LGE_MODE1,
1493 				    LGE_MODE1_SETRST_CTL1|
1494 				    LGE_MODE1_RX_PROMISC);
1495 			} else if (ifp->if_flags & IFF_RUNNING &&
1496 			    !(ifp->if_flags & IFF_PROMISC) &&
1497 			    sc->lge_if_flags & IFF_PROMISC) {
1498 				CSR_WRITE_4(sc, LGE_MODE1,
1499 				    LGE_MODE1_RX_PROMISC);
1500 			} else {
1501 				ifp->if_flags &= ~IFF_RUNNING;
1502 				lge_init(sc);
1503 			}
1504 		} else {
1505 			if (ifp->if_flags & IFF_RUNNING)
1506 				lge_stop(sc);
1507 		}
1508 		sc->lge_if_flags = ifp->if_flags;
1509 		error = 0;
1510 		break;
1511 	case SIOCADDMULTI:
1512 	case SIOCDELMULTI:
1513 		lge_setmulti(sc);
1514 		error = 0;
1515 		break;
1516 	case SIOCGIFMEDIA:
1517 	case SIOCSIFMEDIA:
1518 		mii = device_get_softc(sc->lge_miibus);
1519 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1520 		break;
1521 	default:
1522 		error = ether_ioctl(ifp, command, data);
1523 		break;
1524 	}
1525 
1526 	(void)splx(s);
1527 
1528 	return(error);
1529 }
1530 
1531 static void
1532 lge_watchdog(ifp)
1533 	struct ifnet		*ifp;
1534 {
1535 	struct lge_softc	*sc;
1536 
1537 	sc = ifp->if_softc;
1538 
1539 	ifp->if_oerrors++;
1540 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1541 
1542 	lge_stop(sc);
1543 	lge_reset(sc);
1544 	ifp->if_flags &= ~IFF_RUNNING;
1545 	lge_init(sc);
1546 
1547 	if (ifp->if_snd.ifq_head != NULL)
1548 		lge_start(ifp);
1549 
1550 	return;
1551 }
1552 
1553 /*
1554  * Stop the adapter and free any mbufs allocated to the
1555  * RX and TX lists.
1556  */
1557 static void
1558 lge_stop(sc)
1559 	struct lge_softc	*sc;
1560 {
1561 	register int		i;
1562 	struct ifnet		*ifp;
1563 
1564 	ifp = &sc->arpcom.ac_if;
1565 	ifp->if_timer = 0;
1566 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1567 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1568 
1569 	/* Disable receiver and transmitter. */
1570 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1571 	sc->lge_link = 0;
1572 
1573 	/*
1574 	 * Free data in the RX lists.
1575 	 */
1576 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1577 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1578 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1579 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1580 		}
1581 	}
1582 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1583 		sizeof(sc->lge_ldata->lge_rx_list));
1584 
1585 	/*
1586 	 * Free the TX list buffers.
1587 	 */
1588 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1589 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1590 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1591 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1592 		}
1593 	}
1594 
1595 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1596 		sizeof(sc->lge_ldata->lge_tx_list));
1597 
1598 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1599 
1600 	return;
1601 }
1602 
1603 /*
1604  * Stop all chip I/O so that the kernel's probe routines don't
1605  * get confused by errant DMAs when rebooting.
1606  */
1607 static void
1608 lge_shutdown(dev)
1609 	device_t		dev;
1610 {
1611 	struct lge_softc	*sc;
1612 
1613 	sc = device_get_softc(dev);
1614 
1615 	lge_reset(sc);
1616 	lge_stop(sc);
1617 
1618 	return;
1619 }
1620