xref: /freebsd/sys/dev/lge/if_lge.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/cdefs.h>
73 __FBSDID("$FreeBSD$");
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 
83 #include <net/if.h>
84 #include <net/if_arp.h>
85 #include <net/ethernet.h>
86 #include <net/if_dl.h>
87 #include <net/if_media.h>
88 
89 #include <net/bpf.h>
90 
91 #include <vm/vm.h>              /* for vtophys */
92 #include <vm/pmap.h>            /* for vtophys */
93 #include <machine/clock.h>      /* for DELAY */
94 #include <machine/bus_pio.h>
95 #include <machine/bus_memio.h>
96 #include <machine/bus.h>
97 #include <machine/resource.h>
98 #include <sys/bus.h>
99 #include <sys/rman.h>
100 
101 #include <dev/mii/mii.h>
102 #include <dev/mii/miivar.h>
103 
104 #include <dev/pci/pcireg.h>
105 #include <dev/pci/pcivar.h>
106 
107 #define LGE_USEIOSPACE
108 
109 #include <dev/lge/if_lgereg.h>
110 
111 /* "controller miibus0" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113 
114 /*
115  * Various supported device vendors/types and their names.
116  */
117 static struct lge_type lge_devs[] = {
118 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
119 	{ 0, 0, NULL }
120 };
121 
122 static int lge_probe(device_t);
123 static int lge_attach(device_t);
124 static int lge_detach(device_t);
125 
126 static int lge_alloc_jumbo_mem(struct lge_softc *);
127 static void lge_free_jumbo_mem(struct lge_softc *);
128 static void *lge_jalloc(struct lge_softc *);
129 static void lge_jfree(void *, void *);
130 
131 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
132 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
133 static void lge_rxeof(struct lge_softc *, int);
134 static void lge_rxeoc(struct lge_softc *);
135 static void lge_txeof(struct lge_softc *);
136 static void lge_intr(void *);
137 static void lge_tick(void *);
138 static void lge_start(struct ifnet *);
139 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
140 static void lge_init(void *);
141 static void lge_stop(struct lge_softc *);
142 static void lge_watchdog(struct ifnet *);
143 static void lge_shutdown(device_t);
144 static int lge_ifmedia_upd(struct ifnet *);
145 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
146 
147 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
148 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
149 
150 static int lge_miibus_readreg(device_t, int, int);
151 static int lge_miibus_writereg(device_t, int, int, int);
152 static void lge_miibus_statchg(device_t);
153 
154 static void lge_setmulti(struct lge_softc *);
155 static u_int32_t lge_crc(struct lge_softc *, caddr_t);
156 static void lge_reset(struct lge_softc *);
157 static int lge_list_rx_init(struct lge_softc *);
158 static int lge_list_tx_init(struct lge_softc *);
159 
160 #ifdef LGE_USEIOSPACE
161 #define LGE_RES			SYS_RES_IOPORT
162 #define LGE_RID			LGE_PCI_LOIO
163 #else
164 #define LGE_RES			SYS_RES_MEMORY
165 #define LGE_RID			LGE_PCI_LOMEM
166 #endif
167 
168 static device_method_t lge_methods[] = {
169 	/* Device interface */
170 	DEVMETHOD(device_probe,		lge_probe),
171 	DEVMETHOD(device_attach,	lge_attach),
172 	DEVMETHOD(device_detach,	lge_detach),
173 	DEVMETHOD(device_shutdown,	lge_shutdown),
174 
175 	/* bus interface */
176 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
177 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
178 
179 	/* MII interface */
180 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
182 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
183 
184 	{ 0, 0 }
185 };
186 
187 static driver_t lge_driver = {
188 	"lge",
189 	lge_methods,
190 	sizeof(struct lge_softc)
191 };
192 
193 static devclass_t lge_devclass;
194 
195 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
196 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
197 MODULE_DEPEND(lge, pci, 1, 1, 1);
198 MODULE_DEPEND(lge, ether, 1, 1, 1);
199 MODULE_DEPEND(lge, miibus, 1, 1, 1);
200 
201 #define LGE_SETBIT(sc, reg, x)				\
202 	CSR_WRITE_4(sc, reg,				\
203 		CSR_READ_4(sc, reg) | (x))
204 
205 #define LGE_CLRBIT(sc, reg, x)				\
206 	CSR_WRITE_4(sc, reg,				\
207 		CSR_READ_4(sc, reg) & ~(x))
208 
209 #define SIO_SET(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
211 
212 #define SIO_CLR(x)					\
213 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
214 
215 /*
216  * Read a word of data stored in the EEPROM at address 'addr.'
217  */
218 static void
219 lge_eeprom_getword(sc, addr, dest)
220 	struct lge_softc	*sc;
221 	int			addr;
222 	u_int16_t		*dest;
223 {
224 	register int		i;
225 	u_int32_t		val;
226 
227 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
228 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
229 
230 	for (i = 0; i < LGE_TIMEOUT; i++)
231 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
232 			break;
233 
234 	if (i == LGE_TIMEOUT) {
235 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
236 		return;
237 	}
238 
239 	val = CSR_READ_4(sc, LGE_EEDATA);
240 
241 	if (addr & 1)
242 		*dest = (val >> 16) & 0xFFFF;
243 	else
244 		*dest = val & 0xFFFF;
245 
246 	return;
247 }
248 
249 /*
250  * Read a sequence of words from the EEPROM.
251  */
252 static void
253 lge_read_eeprom(sc, dest, off, cnt, swap)
254 	struct lge_softc	*sc;
255 	caddr_t			dest;
256 	int			off;
257 	int			cnt;
258 	int			swap;
259 {
260 	int			i;
261 	u_int16_t		word = 0, *ptr;
262 
263 	for (i = 0; i < cnt; i++) {
264 		lge_eeprom_getword(sc, off + i, &word);
265 		ptr = (u_int16_t *)(dest + (i * 2));
266 		if (swap)
267 			*ptr = ntohs(word);
268 		else
269 			*ptr = word;
270 	}
271 
272 	return;
273 }
274 
275 static int
276 lge_miibus_readreg(dev, phy, reg)
277 	device_t		dev;
278 	int			phy, reg;
279 {
280 	struct lge_softc	*sc;
281 	int			i;
282 
283 	sc = device_get_softc(dev);
284 
285 	/*
286 	 * If we have a non-PCS PHY, pretend that the internal
287 	 * autoneg stuff at PHY address 0 isn't there so that
288 	 * the miibus code will find only the GMII PHY.
289 	 */
290 	if (sc->lge_pcs == 0 && phy == 0)
291 		return(0);
292 
293 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
294 
295 	for (i = 0; i < LGE_TIMEOUT; i++)
296 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
297 			break;
298 
299 	if (i == LGE_TIMEOUT) {
300 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
301 		return(0);
302 	}
303 
304 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
305 }
306 
307 static int
308 lge_miibus_writereg(dev, phy, reg, data)
309 	device_t		dev;
310 	int			phy, reg, data;
311 {
312 	struct lge_softc	*sc;
313 	int			i;
314 
315 	sc = device_get_softc(dev);
316 
317 	CSR_WRITE_4(sc, LGE_GMIICTL,
318 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
319 
320 	for (i = 0; i < LGE_TIMEOUT; i++)
321 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
322 			break;
323 
324 	if (i == LGE_TIMEOUT) {
325 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
326 		return(0);
327 	}
328 
329 	return(0);
330 }
331 
332 static void
333 lge_miibus_statchg(dev)
334 	device_t		dev;
335 {
336 	struct lge_softc	*sc;
337 	struct mii_data		*mii;
338 
339 	sc = device_get_softc(dev);
340 	mii = device_get_softc(sc->lge_miibus);
341 
342 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
343 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
344 	case IFM_1000_T:
345 	case IFM_1000_SX:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
347 		break;
348 	case IFM_100_TX:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
350 		break;
351 	case IFM_10_T:
352 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
353 		break;
354 	default:
355 		/*
356 		 * Choose something, even if it's wrong. Clearing
357 		 * all the bits will hose autoneg on the internal
358 		 * PHY.
359 		 */
360 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
361 		break;
362 	}
363 
364 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
365 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
366 	} else {
367 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
368 	}
369 
370 	return;
371 }
372 
373 static u_int32_t
374 lge_crc(sc, addr)
375 	struct lge_softc	*sc;
376 	caddr_t			addr;
377 {
378 	u_int32_t		crc, carry;
379 	int			i, j;
380 	u_int8_t		c;
381 
382 	/* Compute CRC for the address value. */
383 	crc = 0xFFFFFFFF; /* initial value */
384 
385 	for (i = 0; i < 6; i++) {
386 		c = *(addr + i);
387 		for (j = 0; j < 8; j++) {
388 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
389 			crc <<= 1;
390 			c >>= 1;
391 			if (carry)
392 				crc = (crc ^ 0x04c11db6) | carry;
393 		}
394 	}
395 
396 	/*
397 	 * return the filter bit position
398 	 */
399 	return((crc >> 26) & 0x0000003F);
400 }
401 
402 static void
403 lge_setmulti(sc)
404 	struct lge_softc	*sc;
405 {
406 	struct ifnet		*ifp;
407 	struct ifmultiaddr	*ifma;
408 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
409 
410 	ifp = &sc->arpcom.ac_if;
411 
412 	/* Make sure multicast hash table is enabled. */
413 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
414 
415 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
416 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
417 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
418 		return;
419 	}
420 
421 	/* first, zot all the existing hash bits */
422 	CSR_WRITE_4(sc, LGE_MAR0, 0);
423 	CSR_WRITE_4(sc, LGE_MAR1, 0);
424 
425 	/* now program new ones */
426 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
427 		if (ifma->ifma_addr->sa_family != AF_LINK)
428 			continue;
429 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
430 		if (h < 32)
431 			hashes[0] |= (1 << h);
432 		else
433 			hashes[1] |= (1 << (h - 32));
434 	}
435 
436 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
437 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
438 
439 	return;
440 }
441 
442 static void
443 lge_reset(sc)
444 	struct lge_softc	*sc;
445 {
446 	register int		i;
447 
448 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
449 
450 	for (i = 0; i < LGE_TIMEOUT; i++) {
451 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
452 			break;
453 	}
454 
455 	if (i == LGE_TIMEOUT)
456 		printf("lge%d: reset never completed\n", sc->lge_unit);
457 
458 	/* Wait a little while for the chip to get its brains in order. */
459 	DELAY(1000);
460 
461         return;
462 }
463 
464 /*
465  * Probe for a Level 1 chip. Check the PCI vendor and device
466  * IDs against our list and return a device name if we find a match.
467  */
468 static int
469 lge_probe(dev)
470 	device_t		dev;
471 {
472 	struct lge_type		*t;
473 
474 	t = lge_devs;
475 
476 	while(t->lge_name != NULL) {
477 		if ((pci_get_vendor(dev) == t->lge_vid) &&
478 		    (pci_get_device(dev) == t->lge_did)) {
479 			device_set_desc(dev, t->lge_name);
480 			return(0);
481 		}
482 		t++;
483 	}
484 
485 	return(ENXIO);
486 }
487 
488 /*
489  * Attach the interface. Allocate softc structures, do ifmedia
490  * setup and ethernet/BPF attach.
491  */
492 static int
493 lge_attach(dev)
494 	device_t		dev;
495 {
496 	int			s;
497 	u_char			eaddr[ETHER_ADDR_LEN];
498 	struct lge_softc	*sc;
499 	struct ifnet		*ifp;
500 	int			unit, error = 0, rid;
501 
502 	s = splimp();
503 
504 	sc = device_get_softc(dev);
505 	unit = device_get_unit(dev);
506 	bzero(sc, sizeof(struct lge_softc));
507 #ifndef BURN_BRIDGES
508 	/*
509 	 * Handle power management nonsense.
510 	 */
511 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
512 		u_int32_t		iobase, membase, irq;
513 
514 		/* Save important PCI config data. */
515 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
516 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
517 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
518 
519 		/* Reset the power state. */
520 		printf("lge%d: chip is in D%d power mode "
521 		    "-- setting to D0\n", unit,
522 		    pci_get_powerstate(dev));
523 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
524 
525 		/* Restore PCI config data. */
526 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
527 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
528 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
529 	}
530 #endif
531 	/*
532 	 * Map control/status registers.
533 	 */
534 	pci_enable_busmaster(dev);
535 
536 	rid = LGE_RID;
537 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
538 	    0, ~0, 1, RF_ACTIVE);
539 
540 	if (sc->lge_res == NULL) {
541 		printf("lge%d: couldn't map ports/memory\n", unit);
542 		error = ENXIO;
543 		goto fail;
544 	}
545 
546 	sc->lge_btag = rman_get_bustag(sc->lge_res);
547 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
548 
549 	/* Allocate interrupt */
550 	rid = 0;
551 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
552 	    RF_SHAREABLE | RF_ACTIVE);
553 
554 	if (sc->lge_irq == NULL) {
555 		printf("lge%d: couldn't map interrupt\n", unit);
556 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
557 		error = ENXIO;
558 		goto fail;
559 	}
560 
561 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
562 	    lge_intr, sc, &sc->lge_intrhand);
563 
564 	if (error) {
565 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
566 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
567 		printf("lge%d: couldn't set up irq\n", unit);
568 		goto fail;
569 	}
570 
571 	/* Reset the adapter. */
572 	lge_reset(sc);
573 
574 	/*
575 	 * Get station address from the EEPROM.
576 	 */
577 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
578 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
579 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
580 
581 	/*
582 	 * A Level 1 chip was detected. Inform the world.
583 	 */
584 	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
585 
586 	sc->lge_unit = unit;
587 	callout_handle_init(&sc->lge_stat_ch);
588 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
589 
590 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
591 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
592 
593 	if (sc->lge_ldata == NULL) {
594 		printf("lge%d: no memory for list buffers!\n", unit);
595 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
596 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
597 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
598 		error = ENXIO;
599 		goto fail;
600 	}
601 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
602 
603 	/* Try to allocate memory for jumbo buffers. */
604 	if (lge_alloc_jumbo_mem(sc)) {
605 		printf("lge%d: jumbo buffer allocation failed\n",
606                     sc->lge_unit);
607 		contigfree(sc->lge_ldata,
608 		    sizeof(struct lge_list_data), M_DEVBUF);
609 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
610 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
611 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
612 		error = ENXIO;
613 		goto fail;
614 	}
615 
616 	ifp = &sc->arpcom.ac_if;
617 	ifp->if_softc = sc;
618 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
619 	ifp->if_mtu = ETHERMTU;
620 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 	ifp->if_ioctl = lge_ioctl;
622 	ifp->if_output = ether_output;
623 	ifp->if_start = lge_start;
624 	ifp->if_watchdog = lge_watchdog;
625 	ifp->if_init = lge_init;
626 	ifp->if_baudrate = 1000000000;
627 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
628 	ifp->if_capabilities = IFCAP_RXCSUM;
629 	ifp->if_capenable = ifp->if_capabilities;
630 
631 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
632 		sc->lge_pcs = 1;
633 	else
634 		sc->lge_pcs = 0;
635 
636 	/*
637 	 * Do MII setup.
638 	 */
639 	if (mii_phy_probe(dev, &sc->lge_miibus,
640 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
641 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
642 		contigfree(sc->lge_ldata,
643 		    sizeof(struct lge_list_data), M_DEVBUF);
644 		lge_free_jumbo_mem(sc);
645 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
646 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
647 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
648 		error = ENXIO;
649 		goto fail;
650 	}
651 
652 	/*
653 	 * Call MI attach routine.
654 	 */
655 	ether_ifattach(ifp, eaddr);
656 	callout_handle_init(&sc->lge_stat_ch);
657 
658 fail:
659 	splx(s);
660 	return(error);
661 }
662 
663 static int
664 lge_detach(dev)
665 	device_t		dev;
666 {
667 	struct lge_softc	*sc;
668 	struct ifnet		*ifp;
669 	int			s;
670 
671 	s = splimp();
672 
673 	sc = device_get_softc(dev);
674 	ifp = &sc->arpcom.ac_if;
675 
676 	lge_reset(sc);
677 	lge_stop(sc);
678 	ether_ifdetach(ifp);
679 
680 	bus_generic_detach(dev);
681 	device_delete_child(dev, sc->lge_miibus);
682 
683 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
684 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
685 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
686 
687 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
688 	lge_free_jumbo_mem(sc);
689 
690 	splx(s);
691 
692 	return(0);
693 }
694 
695 /*
696  * Initialize the transmit descriptors.
697  */
698 static int
699 lge_list_tx_init(sc)
700 	struct lge_softc	*sc;
701 {
702 	struct lge_list_data	*ld;
703 	struct lge_ring_data	*cd;
704 	int			i;
705 
706 	cd = &sc->lge_cdata;
707 	ld = sc->lge_ldata;
708 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
709 		ld->lge_tx_list[i].lge_mbuf = NULL;
710 		ld->lge_tx_list[i].lge_ctl = 0;
711 	}
712 
713 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
714 
715 	return(0);
716 }
717 
718 
719 /*
720  * Initialize the RX descriptors and allocate mbufs for them. Note that
721  * we arralge the descriptors in a closed ring, so that the last descriptor
722  * points back to the first.
723  */
724 static int
725 lge_list_rx_init(sc)
726 	struct lge_softc	*sc;
727 {
728 	struct lge_list_data	*ld;
729 	struct lge_ring_data	*cd;
730 	int			i;
731 
732 	ld = sc->lge_ldata;
733 	cd = &sc->lge_cdata;
734 
735 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
736 
737 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
738 
739 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
740 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
741 			break;
742 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
743 			return(ENOBUFS);
744 	}
745 
746 	/* Clear possible 'rx command queue empty' interrupt. */
747 	CSR_READ_4(sc, LGE_ISR);
748 
749 	return(0);
750 }
751 
752 /*
753  * Initialize an RX descriptor and attach an MBUF cluster.
754  */
755 static int
756 lge_newbuf(sc, c, m)
757 	struct lge_softc	*sc;
758 	struct lge_rx_desc	*c;
759 	struct mbuf		*m;
760 {
761 	struct mbuf		*m_new = NULL;
762 	caddr_t			*buf = NULL;
763 
764 	if (m == NULL) {
765 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
766 		if (m_new == NULL) {
767 			printf("lge%d: no memory for rx list "
768 			    "-- packet dropped!\n", sc->lge_unit);
769 			return(ENOBUFS);
770 		}
771 
772 		/* Allocate the jumbo buffer */
773 		buf = lge_jalloc(sc);
774 		if (buf == NULL) {
775 #ifdef LGE_VERBOSE
776 			printf("lge%d: jumbo allocation failed "
777 			    "-- packet dropped!\n", sc->lge_unit);
778 #endif
779 			m_freem(m_new);
780 			return(ENOBUFS);
781 		}
782 		/* Attach the buffer to the mbuf */
783 		m_new->m_data = (void *)buf;
784 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
785 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
786 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
787 	} else {
788 		m_new = m;
789 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
790 		m_new->m_data = m_new->m_ext.ext_buf;
791 	}
792 
793 	/*
794 	 * Adjust alignment so packet payload begins on a
795 	 * longword boundary. Mandatory for Alpha, useful on
796 	 * x86 too.
797 	*/
798 	m_adj(m_new, ETHER_ALIGN);
799 
800 	c->lge_mbuf = m_new;
801 	c->lge_fragptr_hi = 0;
802 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
803 	c->lge_fraglen = m_new->m_len;
804 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
805 	c->lge_sts = 0;
806 
807 	/*
808 	 * Put this buffer in the RX command FIFO. To do this,
809 	 * we just write the physical address of the descriptor
810 	 * into the RX descriptor address registers. Note that
811 	 * there are two registers, one high DWORD and one low
812 	 * DWORD, which lets us specify a 64-bit address if
813 	 * desired. We only use a 32-bit address for now.
814 	 * Writing to the low DWORD register is what actually
815 	 * causes the command to be issued, so we do that
816 	 * last.
817 	 */
818 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
819 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
820 
821 	return(0);
822 }
823 
824 static int
825 lge_alloc_jumbo_mem(sc)
826 	struct lge_softc	*sc;
827 {
828 	caddr_t			ptr;
829 	register int		i;
830 	struct lge_jpool_entry   *entry;
831 
832 	/* Grab a big chunk o' storage. */
833 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
834 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
835 
836 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
837 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
838 		return(ENOBUFS);
839 	}
840 
841 	SLIST_INIT(&sc->lge_jfree_listhead);
842 	SLIST_INIT(&sc->lge_jinuse_listhead);
843 
844 	/*
845 	 * Now divide it up into 9K pieces and save the addresses
846 	 * in an array.
847 	 */
848 	ptr = sc->lge_cdata.lge_jumbo_buf;
849 	for (i = 0; i < LGE_JSLOTS; i++) {
850 		sc->lge_cdata.lge_jslots[i] = ptr;
851 		ptr += LGE_JLEN;
852 		entry = malloc(sizeof(struct lge_jpool_entry),
853 		    M_DEVBUF, M_NOWAIT);
854 		if (entry == NULL) {
855 			printf("lge%d: no memory for jumbo "
856 			    "buffer queue!\n", sc->lge_unit);
857 			return(ENOBUFS);
858 		}
859 		entry->slot = i;
860 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
861 		    entry, jpool_entries);
862 	}
863 
864 	return(0);
865 }
866 
867 static void
868 lge_free_jumbo_mem(sc)
869 	struct lge_softc	*sc;
870 {
871 	int			i;
872 	struct lge_jpool_entry	*entry;
873 
874 	for (i = 0; i < LGE_JSLOTS; i++) {
875 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
876 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
877 		free(entry, M_DEVBUF);
878 	}
879 
880 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
881 
882 	return;
883 }
884 
885 /*
886  * Allocate a jumbo buffer.
887  */
888 static void *
889 lge_jalloc(sc)
890 	struct lge_softc	*sc;
891 {
892 	struct lge_jpool_entry   *entry;
893 
894 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
895 
896 	if (entry == NULL) {
897 #ifdef LGE_VERBOSE
898 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
899 #endif
900 		return(NULL);
901 	}
902 
903 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
904 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
905 	return(sc->lge_cdata.lge_jslots[entry->slot]);
906 }
907 
908 /*
909  * Release a jumbo buffer.
910  */
911 static void
912 lge_jfree(buf, args)
913 	void			*buf;
914 	void			*args;
915 {
916 	struct lge_softc	*sc;
917 	int		        i;
918 	struct lge_jpool_entry   *entry;
919 
920 	/* Extract the softc struct pointer. */
921 	sc = args;
922 
923 	if (sc == NULL)
924 		panic("lge_jfree: can't find softc pointer!");
925 
926 	/* calculate the slot this buffer belongs to */
927 	i = ((vm_offset_t)buf
928 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
929 
930 	if ((i < 0) || (i >= LGE_JSLOTS))
931 		panic("lge_jfree: asked to free buffer that we don't manage!");
932 
933 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
934 	if (entry == NULL)
935 		panic("lge_jfree: buffer not in use!");
936 	entry->slot = i;
937 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
938 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
939 
940 	return;
941 }
942 
943 /*
944  * A frame has been uploaded: pass the resulting mbuf chain up to
945  * the higher level protocols.
946  */
947 static void
948 lge_rxeof(sc, cnt)
949 	struct lge_softc	*sc;
950 	int			cnt;
951 {
952         struct mbuf		*m;
953         struct ifnet		*ifp;
954 	struct lge_rx_desc	*cur_rx;
955 	int			c, i, total_len = 0;
956 	u_int32_t		rxsts, rxctl;
957 
958 	ifp = &sc->arpcom.ac_if;
959 
960 	/* Find out how many frames were processed. */
961 	c = cnt;
962 	i = sc->lge_cdata.lge_rx_cons;
963 
964 	/* Suck them in. */
965 	while(c) {
966 		struct mbuf		*m0 = NULL;
967 
968 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
969 		rxctl = cur_rx->lge_ctl;
970 		rxsts = cur_rx->lge_sts;
971 		m = cur_rx->lge_mbuf;
972 		cur_rx->lge_mbuf = NULL;
973 		total_len = LGE_RXBYTES(cur_rx);
974 		LGE_INC(i, LGE_RX_LIST_CNT);
975 		c--;
976 
977 		/*
978 		 * If an error occurs, update stats, clear the
979 		 * status word and leave the mbuf cluster in place:
980 		 * it should simply get re-used next time this descriptor
981 	 	 * comes up in the ring.
982 		 */
983 		if (rxctl & LGE_RXCTL_ERRMASK) {
984 			ifp->if_ierrors++;
985 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
986 			continue;
987 		}
988 
989 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
990 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
991 			    ifp, NULL);
992 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
993 			if (m0 == NULL) {
994 				printf("lge%d: no receive buffers "
995 				    "available -- packet dropped!\n",
996 				    sc->lge_unit);
997 				ifp->if_ierrors++;
998 				continue;
999 			}
1000 			m = m0;
1001 		} else {
1002 			m->m_pkthdr.rcvif = ifp;
1003 			m->m_pkthdr.len = m->m_len = total_len;
1004 		}
1005 
1006 		ifp->if_ipackets++;
1007 
1008 		/* Do IP checksum checking. */
1009 		if (rxsts & LGE_RXSTS_ISIP)
1010 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1011 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1012 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1013 		if ((rxsts & LGE_RXSTS_ISTCP &&
1014 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1015 		    (rxsts & LGE_RXSTS_ISUDP &&
1016 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1017 			m->m_pkthdr.csum_flags |=
1018 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1019 			m->m_pkthdr.csum_data = 0xffff;
1020 		}
1021 
1022 		(*ifp->if_input)(ifp, m);
1023 	}
1024 
1025 	sc->lge_cdata.lge_rx_cons = i;
1026 
1027 	return;
1028 }
1029 
1030 static void
1031 lge_rxeoc(sc)
1032 	struct lge_softc	*sc;
1033 {
1034 	struct ifnet		*ifp;
1035 
1036 	ifp = &sc->arpcom.ac_if;
1037 	ifp->if_flags &= ~IFF_RUNNING;
1038 	lge_init(sc);
1039 	return;
1040 }
1041 
1042 /*
1043  * A frame was downloaded to the chip. It's safe for us to clean up
1044  * the list buffers.
1045  */
1046 
1047 static void
1048 lge_txeof(sc)
1049 	struct lge_softc	*sc;
1050 {
1051 	struct lge_tx_desc	*cur_tx = NULL;
1052 	struct ifnet		*ifp;
1053 	u_int32_t		idx, txdone;
1054 
1055 	ifp = &sc->arpcom.ac_if;
1056 
1057 	/* Clear the timeout timer. */
1058 	ifp->if_timer = 0;
1059 
1060 	/*
1061 	 * Go through our tx list and free mbufs for those
1062 	 * frames that have been transmitted.
1063 	 */
1064 	idx = sc->lge_cdata.lge_tx_cons;
1065 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1066 
1067 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1068 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1069 
1070 		ifp->if_opackets++;
1071 		if (cur_tx->lge_mbuf != NULL) {
1072 			m_freem(cur_tx->lge_mbuf);
1073 			cur_tx->lge_mbuf = NULL;
1074 		}
1075 		cur_tx->lge_ctl = 0;
1076 
1077 		txdone--;
1078 		LGE_INC(idx, LGE_TX_LIST_CNT);
1079 		ifp->if_timer = 0;
1080 	}
1081 
1082 	sc->lge_cdata.lge_tx_cons = idx;
1083 
1084 	if (cur_tx != NULL)
1085 		ifp->if_flags &= ~IFF_OACTIVE;
1086 
1087 	return;
1088 }
1089 
1090 static void
1091 lge_tick(xsc)
1092 	void			*xsc;
1093 {
1094 	struct lge_softc	*sc;
1095 	struct mii_data		*mii;
1096 	struct ifnet		*ifp;
1097 	int			s;
1098 
1099 	s = splimp();
1100 
1101 	sc = xsc;
1102 	ifp = &sc->arpcom.ac_if;
1103 
1104 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1105 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1106 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1107 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1108 
1109 	if (!sc->lge_link) {
1110 		mii = device_get_softc(sc->lge_miibus);
1111 		mii_tick(mii);
1112 		if (mii->mii_media_status & IFM_ACTIVE &&
1113 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1114 			sc->lge_link++;
1115 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1116 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1117 				printf("lge%d: gigabit link up\n",
1118 				    sc->lge_unit);
1119 			if (ifp->if_snd.ifq_head != NULL)
1120 				lge_start(ifp);
1121 		}
1122 	}
1123 
1124 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1125 
1126 	splx(s);
1127 
1128 	return;
1129 }
1130 
1131 static void
1132 lge_intr(arg)
1133 	void			*arg;
1134 {
1135 	struct lge_softc	*sc;
1136 	struct ifnet		*ifp;
1137 	u_int32_t		status;
1138 
1139 	sc = arg;
1140 	ifp = &sc->arpcom.ac_if;
1141 
1142 	/* Supress unwanted interrupts */
1143 	if (!(ifp->if_flags & IFF_UP)) {
1144 		lge_stop(sc);
1145 		return;
1146 	}
1147 
1148 	for (;;) {
1149 		/*
1150 		 * Reading the ISR register clears all interrupts, and
1151 		 * clears the 'interrupts enabled' bit in the IMR
1152 		 * register.
1153 		 */
1154 		status = CSR_READ_4(sc, LGE_ISR);
1155 
1156 		if ((status & LGE_INTRS) == 0)
1157 			break;
1158 
1159 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1160 			lge_txeof(sc);
1161 
1162 		if (status & LGE_ISR_RXDMA_DONE)
1163 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1164 
1165 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1166 			lge_rxeoc(sc);
1167 
1168 		if (status & LGE_ISR_PHY_INTR) {
1169 			sc->lge_link = 0;
1170 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1171 			lge_tick(sc);
1172 		}
1173 	}
1174 
1175 	/* Re-enable interrupts. */
1176 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1177 
1178 	if (ifp->if_snd.ifq_head != NULL)
1179 		lge_start(ifp);
1180 
1181 	return;
1182 }
1183 
1184 /*
1185  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1186  * pointers to the fragment pointers.
1187  */
1188 static int
1189 lge_encap(sc, m_head, txidx)
1190 	struct lge_softc	*sc;
1191 	struct mbuf		*m_head;
1192 	u_int32_t		*txidx;
1193 {
1194 	struct lge_frag		*f = NULL;
1195 	struct lge_tx_desc	*cur_tx;
1196 	struct mbuf		*m;
1197 	int			frag = 0, tot_len = 0;
1198 
1199 	/*
1200  	 * Start packing the mbufs in this chain into
1201 	 * the fragment pointers. Stop when we run out
1202  	 * of fragments or hit the end of the mbuf chain.
1203 	 */
1204 	m = m_head;
1205 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1206 	frag = 0;
1207 
1208 	for (m = m_head; m != NULL; m = m->m_next) {
1209 		if (m->m_len != 0) {
1210 			tot_len += m->m_len;
1211 			f = &cur_tx->lge_frags[frag];
1212 			f->lge_fraglen = m->m_len;
1213 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1214 			f->lge_fragptr_hi = 0;
1215 			frag++;
1216 		}
1217 	}
1218 
1219 	if (m != NULL)
1220 		return(ENOBUFS);
1221 
1222 	cur_tx->lge_mbuf = m_head;
1223 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1224 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1225 
1226 	/* Queue for transmit */
1227 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1228 
1229 	return(0);
1230 }
1231 
1232 /*
1233  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1234  * to the mbuf data regions directly in the transmit lists. We also save a
1235  * copy of the pointers since the transmit list fragment pointers are
1236  * physical addresses.
1237  */
1238 
1239 static void
1240 lge_start(ifp)
1241 	struct ifnet		*ifp;
1242 {
1243 	struct lge_softc	*sc;
1244 	struct mbuf		*m_head = NULL;
1245 	u_int32_t		idx;
1246 
1247 	sc = ifp->if_softc;
1248 
1249 	if (!sc->lge_link)
1250 		return;
1251 
1252 	idx = sc->lge_cdata.lge_tx_prod;
1253 
1254 	if (ifp->if_flags & IFF_OACTIVE)
1255 		return;
1256 
1257 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1258 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1259 			break;
1260 
1261 		IF_DEQUEUE(&ifp->if_snd, m_head);
1262 		if (m_head == NULL)
1263 			break;
1264 
1265 		if (lge_encap(sc, m_head, &idx)) {
1266 			IF_PREPEND(&ifp->if_snd, m_head);
1267 			ifp->if_flags |= IFF_OACTIVE;
1268 			break;
1269 		}
1270 
1271 		/*
1272 		 * If there's a BPF listener, bounce a copy of this frame
1273 		 * to him.
1274 		 */
1275 		BPF_MTAP(ifp, m_head);
1276 	}
1277 
1278 	sc->lge_cdata.lge_tx_prod = idx;
1279 
1280 	/*
1281 	 * Set a timeout in case the chip goes out to lunch.
1282 	 */
1283 	ifp->if_timer = 5;
1284 
1285 	return;
1286 }
1287 
1288 static void
1289 lge_init(xsc)
1290 	void			*xsc;
1291 {
1292 	struct lge_softc	*sc = xsc;
1293 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1294 	struct mii_data		*mii;
1295 	int			s;
1296 
1297 	if (ifp->if_flags & IFF_RUNNING)
1298 		return;
1299 
1300 	s = splimp();
1301 
1302 	/*
1303 	 * Cancel pending I/O and free all RX/TX buffers.
1304 	 */
1305 	lge_stop(sc);
1306 	lge_reset(sc);
1307 
1308 	mii = device_get_softc(sc->lge_miibus);
1309 
1310 	/* Set MAC address */
1311 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1312 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1313 
1314 	/* Init circular RX list. */
1315 	if (lge_list_rx_init(sc) == ENOBUFS) {
1316 		printf("lge%d: initialization failed: no "
1317 		    "memory for rx buffers\n", sc->lge_unit);
1318 		lge_stop(sc);
1319 		(void)splx(s);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * Init tx descriptors.
1325 	 */
1326 	lge_list_tx_init(sc);
1327 
1328 	/* Set initial value for MODE1 register. */
1329 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1330 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1331 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1332 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1333 
1334 	 /* If we want promiscuous mode, set the allframes bit. */
1335 	if (ifp->if_flags & IFF_PROMISC) {
1336 		CSR_WRITE_4(sc, LGE_MODE1,
1337 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1338 	} else {
1339 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1340 	}
1341 
1342 	/*
1343 	 * Set the capture broadcast bit to capture broadcast frames.
1344 	 */
1345 	if (ifp->if_flags & IFF_BROADCAST) {
1346 		CSR_WRITE_4(sc, LGE_MODE1,
1347 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1348 	} else {
1349 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1350 	}
1351 
1352 	/* Packet padding workaround? */
1353 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1354 
1355 	/* No error frames */
1356 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1357 
1358 	/* Receive large frames */
1359 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1360 
1361 	/* Workaround: disable RX/TX flow control */
1362 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1363 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1364 
1365 	/* Make sure to strip CRC from received frames */
1366 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1367 
1368 	/* Turn off magic packet mode */
1369 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1370 
1371 	/* Turn off all VLAN stuff */
1372 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1373 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1374 
1375 	/* Workarond: FIFO overflow */
1376 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1377 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1378 
1379 	/*
1380 	 * Load the multicast filter.
1381 	 */
1382 	lge_setmulti(sc);
1383 
1384 	/*
1385 	 * Enable hardware checksum validation for all received IPv4
1386 	 * packets, do not reject packets with bad checksums.
1387 	 */
1388 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1389 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1390 	    LGE_MODE2_RX_ERRCSUM);
1391 
1392 	/*
1393 	 * Enable the delivery of PHY interrupts based on
1394 	 * link/speed/duplex status chalges.
1395 	 */
1396 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1397 
1398 	/* Enable receiver and transmitter. */
1399 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1400 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1401 
1402 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1403 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1404 
1405 	/*
1406 	 * Enable interrupts.
1407 	 */
1408 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1409 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1410 
1411 	lge_ifmedia_upd(ifp);
1412 
1413 	ifp->if_flags |= IFF_RUNNING;
1414 	ifp->if_flags &= ~IFF_OACTIVE;
1415 
1416 	(void)splx(s);
1417 
1418 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1419 
1420 	return;
1421 }
1422 
1423 /*
1424  * Set media options.
1425  */
1426 static int
1427 lge_ifmedia_upd(ifp)
1428 	struct ifnet		*ifp;
1429 {
1430 	struct lge_softc	*sc;
1431 	struct mii_data		*mii;
1432 
1433 	sc = ifp->if_softc;
1434 
1435 	mii = device_get_softc(sc->lge_miibus);
1436 	sc->lge_link = 0;
1437 	if (mii->mii_instance) {
1438 		struct mii_softc	*miisc;
1439 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1440 		    miisc = LIST_NEXT(miisc, mii_list))
1441 			mii_phy_reset(miisc);
1442 	}
1443 	mii_mediachg(mii);
1444 
1445 	return(0);
1446 }
1447 
1448 /*
1449  * Report current media status.
1450  */
1451 static void
1452 lge_ifmedia_sts(ifp, ifmr)
1453 	struct ifnet		*ifp;
1454 	struct ifmediareq	*ifmr;
1455 {
1456 	struct lge_softc	*sc;
1457 	struct mii_data		*mii;
1458 
1459 	sc = ifp->if_softc;
1460 
1461 	mii = device_get_softc(sc->lge_miibus);
1462 	mii_pollstat(mii);
1463 	ifmr->ifm_active = mii->mii_media_active;
1464 	ifmr->ifm_status = mii->mii_media_status;
1465 
1466 	return;
1467 }
1468 
1469 static int
1470 lge_ioctl(ifp, command, data)
1471 	struct ifnet		*ifp;
1472 	u_long			command;
1473 	caddr_t			data;
1474 {
1475 	struct lge_softc	*sc = ifp->if_softc;
1476 	struct ifreq		*ifr = (struct ifreq *) data;
1477 	struct mii_data		*mii;
1478 	int			s, error = 0;
1479 
1480 	s = splimp();
1481 
1482 	switch(command) {
1483 	case SIOCSIFMTU:
1484 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1485 			error = EINVAL;
1486 		else
1487 			ifp->if_mtu = ifr->ifr_mtu;
1488 		break;
1489 	case SIOCSIFFLAGS:
1490 		if (ifp->if_flags & IFF_UP) {
1491 			if (ifp->if_flags & IFF_RUNNING &&
1492 			    ifp->if_flags & IFF_PROMISC &&
1493 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1494 				CSR_WRITE_4(sc, LGE_MODE1,
1495 				    LGE_MODE1_SETRST_CTL1|
1496 				    LGE_MODE1_RX_PROMISC);
1497 			} else if (ifp->if_flags & IFF_RUNNING &&
1498 			    !(ifp->if_flags & IFF_PROMISC) &&
1499 			    sc->lge_if_flags & IFF_PROMISC) {
1500 				CSR_WRITE_4(sc, LGE_MODE1,
1501 				    LGE_MODE1_RX_PROMISC);
1502 			} else {
1503 				ifp->if_flags &= ~IFF_RUNNING;
1504 				lge_init(sc);
1505 			}
1506 		} else {
1507 			if (ifp->if_flags & IFF_RUNNING)
1508 				lge_stop(sc);
1509 		}
1510 		sc->lge_if_flags = ifp->if_flags;
1511 		error = 0;
1512 		break;
1513 	case SIOCADDMULTI:
1514 	case SIOCDELMULTI:
1515 		lge_setmulti(sc);
1516 		error = 0;
1517 		break;
1518 	case SIOCGIFMEDIA:
1519 	case SIOCSIFMEDIA:
1520 		mii = device_get_softc(sc->lge_miibus);
1521 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1522 		break;
1523 	default:
1524 		error = ether_ioctl(ifp, command, data);
1525 		break;
1526 	}
1527 
1528 	(void)splx(s);
1529 
1530 	return(error);
1531 }
1532 
1533 static void
1534 lge_watchdog(ifp)
1535 	struct ifnet		*ifp;
1536 {
1537 	struct lge_softc	*sc;
1538 
1539 	sc = ifp->if_softc;
1540 
1541 	ifp->if_oerrors++;
1542 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1543 
1544 	lge_stop(sc);
1545 	lge_reset(sc);
1546 	ifp->if_flags &= ~IFF_RUNNING;
1547 	lge_init(sc);
1548 
1549 	if (ifp->if_snd.ifq_head != NULL)
1550 		lge_start(ifp);
1551 
1552 	return;
1553 }
1554 
1555 /*
1556  * Stop the adapter and free any mbufs allocated to the
1557  * RX and TX lists.
1558  */
1559 static void
1560 lge_stop(sc)
1561 	struct lge_softc	*sc;
1562 {
1563 	register int		i;
1564 	struct ifnet		*ifp;
1565 
1566 	ifp = &sc->arpcom.ac_if;
1567 	ifp->if_timer = 0;
1568 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1569 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1570 
1571 	/* Disable receiver and transmitter. */
1572 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1573 	sc->lge_link = 0;
1574 
1575 	/*
1576 	 * Free data in the RX lists.
1577 	 */
1578 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1579 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1580 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1581 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1582 		}
1583 	}
1584 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1585 		sizeof(sc->lge_ldata->lge_rx_list));
1586 
1587 	/*
1588 	 * Free the TX list buffers.
1589 	 */
1590 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1591 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1592 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1593 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1594 		}
1595 	}
1596 
1597 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1598 		sizeof(sc->lge_ldata->lge_tx_list));
1599 
1600 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1601 
1602 	return;
1603 }
1604 
1605 /*
1606  * Stop all chip I/O so that the kernel's probe routines don't
1607  * get confused by errant DMAs when rebooting.
1608  */
1609 static void
1610 lge_shutdown(dev)
1611 	device_t		dev;
1612 {
1613 	struct lge_softc	*sc;
1614 
1615 	sc = device_get_softc(dev);
1616 
1617 	lge_reset(sc);
1618 	lge_stop(sc);
1619 
1620 	return;
1621 }
1622