1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <william.paul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public 39 * documentation not available, but ask me nicely. 40 * 41 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. 42 * It's a 64-bit PCI part that supports TCP/IP checksum offload, 43 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There 44 * are three supported methods for data transfer between host and 45 * NIC: programmed I/O, traditional scatter/gather DMA and Packet 46 * Propulsion Technology (tm) DMA. The latter mechanism is a form 47 * of double buffer DMA where the packet data is copied to a 48 * pre-allocated DMA buffer who's physical address has been loaded 49 * into a table at device initialization time. The rationale is that 50 * the virtual to physical address translation needed for normal 51 * scatter/gather DMA is more expensive than the data copy needed 52 * for double buffering. This may be true in Windows NT and the like, 53 * but it isn't true for us, at least on the x86 arch. This driver 54 * uses the scatter/gather I/O method for both TX and RX. 55 * 56 * The LXT1001 only supports TCP/IP checksum offload on receive. 57 * Also, the VLAN tagging is done using a 16-entry table which allows 58 * the chip to perform hardware filtering based on VLAN tags. Sadly, 59 * our vlan support doesn't currently play well with this kind of 60 * hardware support. 61 * 62 * Special thanks to: 63 * - Jeff James at Intel, for arranging to have the LXT1001 manual 64 * released (at long last) 65 * - Beny Chen at D-Link, for actually sending it to me 66 * - Brad Short and Keith Alexis at SMC, for sending me sample 67 * SMC9462SX and SMC9462TX adapters for testing 68 * - Paul Saab at Y!, for not killing me (though it remains to be seen 69 * if in fact he did me much of a favor) 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/sockio.h> 75 #include <sys/mbuf.h> 76 #include <sys/malloc.h> 77 #include <sys/kernel.h> 78 #include <sys/module.h> 79 #include <sys/socket.h> 80 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 87 #include <net/bpf.h> 88 89 #include <vm/vm.h> /* for vtophys */ 90 #include <vm/pmap.h> /* for vtophys */ 91 #include <machine/clock.h> /* for DELAY */ 92 #include <machine/bus_pio.h> 93 #include <machine/bus_memio.h> 94 #include <machine/bus.h> 95 #include <machine/resource.h> 96 #include <sys/bus.h> 97 #include <sys/rman.h> 98 99 #include <dev/mii/mii.h> 100 #include <dev/mii/miivar.h> 101 102 #include <dev/pci/pcireg.h> 103 #include <dev/pci/pcivar.h> 104 105 #define LGE_USEIOSPACE 106 107 #include <dev/lge/if_lgereg.h> 108 109 /* "controller miibus0" required. See GENERIC if you get errors here. */ 110 #include "miibus_if.h" 111 112 /* 113 * Various supported device vendors/types and their names. 114 */ 115 static struct lge_type lge_devs[] = { 116 { LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" }, 117 { 0, 0, NULL } 118 }; 119 120 static int lge_probe(device_t); 121 static int lge_attach(device_t); 122 static int lge_detach(device_t); 123 124 static int lge_alloc_jumbo_mem(struct lge_softc *); 125 static void lge_free_jumbo_mem(struct lge_softc *); 126 static void *lge_jalloc(struct lge_softc *); 127 static void lge_jfree(void *, void *); 128 129 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *); 130 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *); 131 static void lge_rxeof(struct lge_softc *, int); 132 static void lge_rxeoc(struct lge_softc *); 133 static void lge_txeof(struct lge_softc *); 134 static void lge_intr(void *); 135 static void lge_tick(void *); 136 static void lge_start(struct ifnet *); 137 static int lge_ioctl(struct ifnet *, u_long, caddr_t); 138 static void lge_init(void *); 139 static void lge_stop(struct lge_softc *); 140 static void lge_watchdog(struct ifnet *); 141 static void lge_shutdown(device_t); 142 static int lge_ifmedia_upd(struct ifnet *); 143 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 144 145 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *); 146 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int); 147 148 static int lge_miibus_readreg(device_t, int, int); 149 static int lge_miibus_writereg(device_t, int, int, int); 150 static void lge_miibus_statchg(device_t); 151 152 static void lge_setmulti(struct lge_softc *); 153 static void lge_reset(struct lge_softc *); 154 static int lge_list_rx_init(struct lge_softc *); 155 static int lge_list_tx_init(struct lge_softc *); 156 157 #ifdef LGE_USEIOSPACE 158 #define LGE_RES SYS_RES_IOPORT 159 #define LGE_RID LGE_PCI_LOIO 160 #else 161 #define LGE_RES SYS_RES_MEMORY 162 #define LGE_RID LGE_PCI_LOMEM 163 #endif 164 165 static device_method_t lge_methods[] = { 166 /* Device interface */ 167 DEVMETHOD(device_probe, lge_probe), 168 DEVMETHOD(device_attach, lge_attach), 169 DEVMETHOD(device_detach, lge_detach), 170 DEVMETHOD(device_shutdown, lge_shutdown), 171 172 /* bus interface */ 173 DEVMETHOD(bus_print_child, bus_generic_print_child), 174 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 175 176 /* MII interface */ 177 DEVMETHOD(miibus_readreg, lge_miibus_readreg), 178 DEVMETHOD(miibus_writereg, lge_miibus_writereg), 179 DEVMETHOD(miibus_statchg, lge_miibus_statchg), 180 181 { 0, 0 } 182 }; 183 184 static driver_t lge_driver = { 185 "lge", 186 lge_methods, 187 sizeof(struct lge_softc) 188 }; 189 190 static devclass_t lge_devclass; 191 192 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0); 193 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0); 194 MODULE_DEPEND(lge, pci, 1, 1, 1); 195 MODULE_DEPEND(lge, ether, 1, 1, 1); 196 MODULE_DEPEND(lge, miibus, 1, 1, 1); 197 198 #define LGE_SETBIT(sc, reg, x) \ 199 CSR_WRITE_4(sc, reg, \ 200 CSR_READ_4(sc, reg) | (x)) 201 202 #define LGE_CLRBIT(sc, reg, x) \ 203 CSR_WRITE_4(sc, reg, \ 204 CSR_READ_4(sc, reg) & ~(x)) 205 206 #define SIO_SET(x) \ 207 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x) 208 209 #define SIO_CLR(x) \ 210 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x) 211 212 /* 213 * Read a word of data stored in the EEPROM at address 'addr.' 214 */ 215 static void 216 lge_eeprom_getword(sc, addr, dest) 217 struct lge_softc *sc; 218 int addr; 219 u_int16_t *dest; 220 { 221 register int i; 222 u_int32_t val; 223 224 CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| 225 LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8)); 226 227 for (i = 0; i < LGE_TIMEOUT; i++) 228 if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ)) 229 break; 230 231 if (i == LGE_TIMEOUT) { 232 printf("lge%d: EEPROM read timed out\n", sc->lge_unit); 233 return; 234 } 235 236 val = CSR_READ_4(sc, LGE_EEDATA); 237 238 if (addr & 1) 239 *dest = (val >> 16) & 0xFFFF; 240 else 241 *dest = val & 0xFFFF; 242 243 return; 244 } 245 246 /* 247 * Read a sequence of words from the EEPROM. 248 */ 249 static void 250 lge_read_eeprom(sc, dest, off, cnt, swap) 251 struct lge_softc *sc; 252 caddr_t dest; 253 int off; 254 int cnt; 255 int swap; 256 { 257 int i; 258 u_int16_t word = 0, *ptr; 259 260 for (i = 0; i < cnt; i++) { 261 lge_eeprom_getword(sc, off + i, &word); 262 ptr = (u_int16_t *)(dest + (i * 2)); 263 if (swap) 264 *ptr = ntohs(word); 265 else 266 *ptr = word; 267 } 268 269 return; 270 } 271 272 static int 273 lge_miibus_readreg(dev, phy, reg) 274 device_t dev; 275 int phy, reg; 276 { 277 struct lge_softc *sc; 278 int i; 279 280 sc = device_get_softc(dev); 281 282 /* 283 * If we have a non-PCS PHY, pretend that the internal 284 * autoneg stuff at PHY address 0 isn't there so that 285 * the miibus code will find only the GMII PHY. 286 */ 287 if (sc->lge_pcs == 0 && phy == 0) 288 return(0); 289 290 CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); 291 292 for (i = 0; i < LGE_TIMEOUT; i++) 293 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 294 break; 295 296 if (i == LGE_TIMEOUT) { 297 printf("lge%d: PHY read timed out\n", sc->lge_unit); 298 return(0); 299 } 300 301 return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); 302 } 303 304 static int 305 lge_miibus_writereg(dev, phy, reg, data) 306 device_t dev; 307 int phy, reg, data; 308 { 309 struct lge_softc *sc; 310 int i; 311 312 sc = device_get_softc(dev); 313 314 CSR_WRITE_4(sc, LGE_GMIICTL, 315 (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); 316 317 for (i = 0; i < LGE_TIMEOUT; i++) 318 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 319 break; 320 321 if (i == LGE_TIMEOUT) { 322 printf("lge%d: PHY write timed out\n", sc->lge_unit); 323 return(0); 324 } 325 326 return(0); 327 } 328 329 static void 330 lge_miibus_statchg(dev) 331 device_t dev; 332 { 333 struct lge_softc *sc; 334 struct mii_data *mii; 335 336 sc = device_get_softc(dev); 337 mii = device_get_softc(sc->lge_miibus); 338 339 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); 340 switch (IFM_SUBTYPE(mii->mii_media_active)) { 341 case IFM_1000_T: 342 case IFM_1000_SX: 343 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 344 break; 345 case IFM_100_TX: 346 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); 347 break; 348 case IFM_10_T: 349 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); 350 break; 351 default: 352 /* 353 * Choose something, even if it's wrong. Clearing 354 * all the bits will hose autoneg on the internal 355 * PHY. 356 */ 357 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 358 break; 359 } 360 361 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 362 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 363 } else { 364 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 365 } 366 367 return; 368 } 369 370 static void 371 lge_setmulti(sc) 372 struct lge_softc *sc; 373 { 374 struct ifnet *ifp; 375 struct ifmultiaddr *ifma; 376 u_int32_t h = 0, hashes[2] = { 0, 0 }; 377 378 ifp = &sc->arpcom.ac_if; 379 380 /* Make sure multicast hash table is enabled. */ 381 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST); 382 383 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 384 CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); 385 CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); 386 return; 387 } 388 389 /* first, zot all the existing hash bits */ 390 CSR_WRITE_4(sc, LGE_MAR0, 0); 391 CSR_WRITE_4(sc, LGE_MAR1, 0); 392 393 /* now program new ones */ 394 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 395 if (ifma->ifma_addr->sa_family != AF_LINK) 396 continue; 397 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 398 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 399 if (h < 32) 400 hashes[0] |= (1 << h); 401 else 402 hashes[1] |= (1 << (h - 32)); 403 } 404 405 CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); 406 CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); 407 408 return; 409 } 410 411 static void 412 lge_reset(sc) 413 struct lge_softc *sc; 414 { 415 register int i; 416 417 LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST); 418 419 for (i = 0; i < LGE_TIMEOUT; i++) { 420 if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST)) 421 break; 422 } 423 424 if (i == LGE_TIMEOUT) 425 printf("lge%d: reset never completed\n", sc->lge_unit); 426 427 /* Wait a little while for the chip to get its brains in order. */ 428 DELAY(1000); 429 430 return; 431 } 432 433 /* 434 * Probe for a Level 1 chip. Check the PCI vendor and device 435 * IDs against our list and return a device name if we find a match. 436 */ 437 static int 438 lge_probe(dev) 439 device_t dev; 440 { 441 struct lge_type *t; 442 443 t = lge_devs; 444 445 while(t->lge_name != NULL) { 446 if ((pci_get_vendor(dev) == t->lge_vid) && 447 (pci_get_device(dev) == t->lge_did)) { 448 device_set_desc(dev, t->lge_name); 449 return(0); 450 } 451 t++; 452 } 453 454 return(ENXIO); 455 } 456 457 /* 458 * Attach the interface. Allocate softc structures, do ifmedia 459 * setup and ethernet/BPF attach. 460 */ 461 static int 462 lge_attach(dev) 463 device_t dev; 464 { 465 int s; 466 u_char eaddr[ETHER_ADDR_LEN]; 467 struct lge_softc *sc; 468 struct ifnet *ifp; 469 int unit, error = 0, rid; 470 471 s = splimp(); 472 473 sc = device_get_softc(dev); 474 unit = device_get_unit(dev); 475 bzero(sc, sizeof(struct lge_softc)); 476 /* 477 * Map control/status registers. 478 */ 479 pci_enable_busmaster(dev); 480 481 rid = LGE_RID; 482 sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE); 483 484 if (sc->lge_res == NULL) { 485 printf("lge%d: couldn't map ports/memory\n", unit); 486 error = ENXIO; 487 goto fail; 488 } 489 490 sc->lge_btag = rman_get_bustag(sc->lge_res); 491 sc->lge_bhandle = rman_get_bushandle(sc->lge_res); 492 493 /* Allocate interrupt */ 494 rid = 0; 495 sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 496 RF_SHAREABLE | RF_ACTIVE); 497 498 if (sc->lge_irq == NULL) { 499 printf("lge%d: couldn't map interrupt\n", unit); 500 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 501 error = ENXIO; 502 goto fail; 503 } 504 505 error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET, 506 lge_intr, sc, &sc->lge_intrhand); 507 508 if (error) { 509 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 510 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 511 printf("lge%d: couldn't set up irq\n", unit); 512 goto fail; 513 } 514 515 /* Reset the adapter. */ 516 lge_reset(sc); 517 518 /* 519 * Get station address from the EEPROM. 520 */ 521 lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0); 522 lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0); 523 lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0); 524 525 sc->lge_unit = unit; 526 callout_handle_init(&sc->lge_stat_ch); 527 bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); 528 529 sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF, 530 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 531 532 if (sc->lge_ldata == NULL) { 533 printf("lge%d: no memory for list buffers!\n", unit); 534 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 535 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 536 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 537 error = ENXIO; 538 goto fail; 539 } 540 bzero(sc->lge_ldata, sizeof(struct lge_list_data)); 541 542 /* Try to allocate memory for jumbo buffers. */ 543 if (lge_alloc_jumbo_mem(sc)) { 544 printf("lge%d: jumbo buffer allocation failed\n", 545 sc->lge_unit); 546 contigfree(sc->lge_ldata, 547 sizeof(struct lge_list_data), M_DEVBUF); 548 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 549 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 550 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 551 error = ENXIO; 552 goto fail; 553 } 554 555 ifp = &sc->arpcom.ac_if; 556 ifp->if_softc = sc; 557 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 558 ifp->if_mtu = ETHERMTU; 559 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | 560 IFF_NEEDSGIANT; 561 ifp->if_ioctl = lge_ioctl; 562 ifp->if_start = lge_start; 563 ifp->if_watchdog = lge_watchdog; 564 ifp->if_init = lge_init; 565 ifp->if_baudrate = 1000000000; 566 ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1; 567 ifp->if_capabilities = IFCAP_RXCSUM; 568 ifp->if_capenable = ifp->if_capabilities; 569 570 if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) 571 sc->lge_pcs = 1; 572 else 573 sc->lge_pcs = 0; 574 575 /* 576 * Do MII setup. 577 */ 578 if (mii_phy_probe(dev, &sc->lge_miibus, 579 lge_ifmedia_upd, lge_ifmedia_sts)) { 580 printf("lge%d: MII without any PHY!\n", sc->lge_unit); 581 contigfree(sc->lge_ldata, 582 sizeof(struct lge_list_data), M_DEVBUF); 583 lge_free_jumbo_mem(sc); 584 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 585 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 586 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 587 error = ENXIO; 588 goto fail; 589 } 590 591 /* 592 * Call MI attach routine. 593 */ 594 ether_ifattach(ifp, eaddr); 595 callout_handle_init(&sc->lge_stat_ch); 596 597 fail: 598 splx(s); 599 return(error); 600 } 601 602 static int 603 lge_detach(dev) 604 device_t dev; 605 { 606 struct lge_softc *sc; 607 struct ifnet *ifp; 608 int s; 609 610 s = splimp(); 611 612 sc = device_get_softc(dev); 613 ifp = &sc->arpcom.ac_if; 614 615 lge_reset(sc); 616 lge_stop(sc); 617 ether_ifdetach(ifp); 618 619 bus_generic_detach(dev); 620 device_delete_child(dev, sc->lge_miibus); 621 622 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 623 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 624 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 625 626 contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF); 627 lge_free_jumbo_mem(sc); 628 629 splx(s); 630 631 return(0); 632 } 633 634 /* 635 * Initialize the transmit descriptors. 636 */ 637 static int 638 lge_list_tx_init(sc) 639 struct lge_softc *sc; 640 { 641 struct lge_list_data *ld; 642 struct lge_ring_data *cd; 643 int i; 644 645 cd = &sc->lge_cdata; 646 ld = sc->lge_ldata; 647 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 648 ld->lge_tx_list[i].lge_mbuf = NULL; 649 ld->lge_tx_list[i].lge_ctl = 0; 650 } 651 652 cd->lge_tx_prod = cd->lge_tx_cons = 0; 653 654 return(0); 655 } 656 657 658 /* 659 * Initialize the RX descriptors and allocate mbufs for them. Note that 660 * we arralge the descriptors in a closed ring, so that the last descriptor 661 * points back to the first. 662 */ 663 static int 664 lge_list_rx_init(sc) 665 struct lge_softc *sc; 666 { 667 struct lge_list_data *ld; 668 struct lge_ring_data *cd; 669 int i; 670 671 ld = sc->lge_ldata; 672 cd = &sc->lge_cdata; 673 674 cd->lge_rx_prod = cd->lge_rx_cons = 0; 675 676 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 677 678 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 679 if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) 680 break; 681 if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) 682 return(ENOBUFS); 683 } 684 685 /* Clear possible 'rx command queue empty' interrupt. */ 686 CSR_READ_4(sc, LGE_ISR); 687 688 return(0); 689 } 690 691 /* 692 * Initialize an RX descriptor and attach an MBUF cluster. 693 */ 694 static int 695 lge_newbuf(sc, c, m) 696 struct lge_softc *sc; 697 struct lge_rx_desc *c; 698 struct mbuf *m; 699 { 700 struct mbuf *m_new = NULL; 701 caddr_t *buf = NULL; 702 703 if (m == NULL) { 704 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 705 if (m_new == NULL) { 706 printf("lge%d: no memory for rx list " 707 "-- packet dropped!\n", sc->lge_unit); 708 return(ENOBUFS); 709 } 710 711 /* Allocate the jumbo buffer */ 712 buf = lge_jalloc(sc); 713 if (buf == NULL) { 714 #ifdef LGE_VERBOSE 715 printf("lge%d: jumbo allocation failed " 716 "-- packet dropped!\n", sc->lge_unit); 717 #endif 718 m_freem(m_new); 719 return(ENOBUFS); 720 } 721 /* Attach the buffer to the mbuf */ 722 m_new->m_data = (void *)buf; 723 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 724 MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree, 725 (struct lge_softc *)sc, 0, EXT_NET_DRV); 726 } else { 727 m_new = m; 728 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 729 m_new->m_data = m_new->m_ext.ext_buf; 730 } 731 732 /* 733 * Adjust alignment so packet payload begins on a 734 * longword boundary. Mandatory for Alpha, useful on 735 * x86 too. 736 */ 737 m_adj(m_new, ETHER_ALIGN); 738 739 c->lge_mbuf = m_new; 740 c->lge_fragptr_hi = 0; 741 c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); 742 c->lge_fraglen = m_new->m_len; 743 c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); 744 c->lge_sts = 0; 745 746 /* 747 * Put this buffer in the RX command FIFO. To do this, 748 * we just write the physical address of the descriptor 749 * into the RX descriptor address registers. Note that 750 * there are two registers, one high DWORD and one low 751 * DWORD, which lets us specify a 64-bit address if 752 * desired. We only use a 32-bit address for now. 753 * Writing to the low DWORD register is what actually 754 * causes the command to be issued, so we do that 755 * last. 756 */ 757 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); 758 LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); 759 760 return(0); 761 } 762 763 static int 764 lge_alloc_jumbo_mem(sc) 765 struct lge_softc *sc; 766 { 767 caddr_t ptr; 768 register int i; 769 struct lge_jpool_entry *entry; 770 771 /* Grab a big chunk o' storage. */ 772 sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF, 773 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 774 775 if (sc->lge_cdata.lge_jumbo_buf == NULL) { 776 printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit); 777 return(ENOBUFS); 778 } 779 780 SLIST_INIT(&sc->lge_jfree_listhead); 781 SLIST_INIT(&sc->lge_jinuse_listhead); 782 783 /* 784 * Now divide it up into 9K pieces and save the addresses 785 * in an array. 786 */ 787 ptr = sc->lge_cdata.lge_jumbo_buf; 788 for (i = 0; i < LGE_JSLOTS; i++) { 789 sc->lge_cdata.lge_jslots[i] = ptr; 790 ptr += LGE_JLEN; 791 entry = malloc(sizeof(struct lge_jpool_entry), 792 M_DEVBUF, M_NOWAIT); 793 if (entry == NULL) { 794 printf("lge%d: no memory for jumbo " 795 "buffer queue!\n", sc->lge_unit); 796 return(ENOBUFS); 797 } 798 entry->slot = i; 799 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, 800 entry, jpool_entries); 801 } 802 803 return(0); 804 } 805 806 static void 807 lge_free_jumbo_mem(sc) 808 struct lge_softc *sc; 809 { 810 int i; 811 struct lge_jpool_entry *entry; 812 813 for (i = 0; i < LGE_JSLOTS; i++) { 814 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 815 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 816 free(entry, M_DEVBUF); 817 } 818 819 contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF); 820 821 return; 822 } 823 824 /* 825 * Allocate a jumbo buffer. 826 */ 827 static void * 828 lge_jalloc(sc) 829 struct lge_softc *sc; 830 { 831 struct lge_jpool_entry *entry; 832 833 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 834 835 if (entry == NULL) { 836 #ifdef LGE_VERBOSE 837 printf("lge%d: no free jumbo buffers\n", sc->lge_unit); 838 #endif 839 return(NULL); 840 } 841 842 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 843 SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries); 844 return(sc->lge_cdata.lge_jslots[entry->slot]); 845 } 846 847 /* 848 * Release a jumbo buffer. 849 */ 850 static void 851 lge_jfree(buf, args) 852 void *buf; 853 void *args; 854 { 855 struct lge_softc *sc; 856 int i; 857 struct lge_jpool_entry *entry; 858 859 /* Extract the softc struct pointer. */ 860 sc = args; 861 862 if (sc == NULL) 863 panic("lge_jfree: can't find softc pointer!"); 864 865 /* calculate the slot this buffer belongs to */ 866 i = ((vm_offset_t)buf 867 - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN; 868 869 if ((i < 0) || (i >= LGE_JSLOTS)) 870 panic("lge_jfree: asked to free buffer that we don't manage!"); 871 872 entry = SLIST_FIRST(&sc->lge_jinuse_listhead); 873 if (entry == NULL) 874 panic("lge_jfree: buffer not in use!"); 875 entry->slot = i; 876 SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); 877 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); 878 879 return; 880 } 881 882 /* 883 * A frame has been uploaded: pass the resulting mbuf chain up to 884 * the higher level protocols. 885 */ 886 static void 887 lge_rxeof(sc, cnt) 888 struct lge_softc *sc; 889 int cnt; 890 { 891 struct mbuf *m; 892 struct ifnet *ifp; 893 struct lge_rx_desc *cur_rx; 894 int c, i, total_len = 0; 895 u_int32_t rxsts, rxctl; 896 897 ifp = &sc->arpcom.ac_if; 898 899 /* Find out how many frames were processed. */ 900 c = cnt; 901 i = sc->lge_cdata.lge_rx_cons; 902 903 /* Suck them in. */ 904 while(c) { 905 struct mbuf *m0 = NULL; 906 907 cur_rx = &sc->lge_ldata->lge_rx_list[i]; 908 rxctl = cur_rx->lge_ctl; 909 rxsts = cur_rx->lge_sts; 910 m = cur_rx->lge_mbuf; 911 cur_rx->lge_mbuf = NULL; 912 total_len = LGE_RXBYTES(cur_rx); 913 LGE_INC(i, LGE_RX_LIST_CNT); 914 c--; 915 916 /* 917 * If an error occurs, update stats, clear the 918 * status word and leave the mbuf cluster in place: 919 * it should simply get re-used next time this descriptor 920 * comes up in the ring. 921 */ 922 if (rxctl & LGE_RXCTL_ERRMASK) { 923 ifp->if_ierrors++; 924 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 925 continue; 926 } 927 928 if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { 929 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 930 ifp, NULL); 931 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 932 if (m0 == NULL) { 933 printf("lge%d: no receive buffers " 934 "available -- packet dropped!\n", 935 sc->lge_unit); 936 ifp->if_ierrors++; 937 continue; 938 } 939 m = m0; 940 } else { 941 m->m_pkthdr.rcvif = ifp; 942 m->m_pkthdr.len = m->m_len = total_len; 943 } 944 945 ifp->if_ipackets++; 946 947 /* Do IP checksum checking. */ 948 if (rxsts & LGE_RXSTS_ISIP) 949 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 950 if (!(rxsts & LGE_RXSTS_IPCSUMERR)) 951 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 952 if ((rxsts & LGE_RXSTS_ISTCP && 953 !(rxsts & LGE_RXSTS_TCPCSUMERR)) || 954 (rxsts & LGE_RXSTS_ISUDP && 955 !(rxsts & LGE_RXSTS_UDPCSUMERR))) { 956 m->m_pkthdr.csum_flags |= 957 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 958 m->m_pkthdr.csum_data = 0xffff; 959 } 960 961 (*ifp->if_input)(ifp, m); 962 } 963 964 sc->lge_cdata.lge_rx_cons = i; 965 966 return; 967 } 968 969 static void 970 lge_rxeoc(sc) 971 struct lge_softc *sc; 972 { 973 struct ifnet *ifp; 974 975 ifp = &sc->arpcom.ac_if; 976 ifp->if_flags &= ~IFF_RUNNING; 977 lge_init(sc); 978 return; 979 } 980 981 /* 982 * A frame was downloaded to the chip. It's safe for us to clean up 983 * the list buffers. 984 */ 985 986 static void 987 lge_txeof(sc) 988 struct lge_softc *sc; 989 { 990 struct lge_tx_desc *cur_tx = NULL; 991 struct ifnet *ifp; 992 u_int32_t idx, txdone; 993 994 ifp = &sc->arpcom.ac_if; 995 996 /* Clear the timeout timer. */ 997 ifp->if_timer = 0; 998 999 /* 1000 * Go through our tx list and free mbufs for those 1001 * frames that have been transmitted. 1002 */ 1003 idx = sc->lge_cdata.lge_tx_cons; 1004 txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); 1005 1006 while (idx != sc->lge_cdata.lge_tx_prod && txdone) { 1007 cur_tx = &sc->lge_ldata->lge_tx_list[idx]; 1008 1009 ifp->if_opackets++; 1010 if (cur_tx->lge_mbuf != NULL) { 1011 m_freem(cur_tx->lge_mbuf); 1012 cur_tx->lge_mbuf = NULL; 1013 } 1014 cur_tx->lge_ctl = 0; 1015 1016 txdone--; 1017 LGE_INC(idx, LGE_TX_LIST_CNT); 1018 ifp->if_timer = 0; 1019 } 1020 1021 sc->lge_cdata.lge_tx_cons = idx; 1022 1023 if (cur_tx != NULL) 1024 ifp->if_flags &= ~IFF_OACTIVE; 1025 1026 return; 1027 } 1028 1029 static void 1030 lge_tick(xsc) 1031 void *xsc; 1032 { 1033 struct lge_softc *sc; 1034 struct mii_data *mii; 1035 struct ifnet *ifp; 1036 int s; 1037 1038 s = splimp(); 1039 1040 sc = xsc; 1041 ifp = &sc->arpcom.ac_if; 1042 1043 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); 1044 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1045 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); 1046 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1047 1048 if (!sc->lge_link) { 1049 mii = device_get_softc(sc->lge_miibus); 1050 mii_tick(mii); 1051 if (mii->mii_media_status & IFM_ACTIVE && 1052 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1053 sc->lge_link++; 1054 if (bootverbose && 1055 (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| 1056 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)) 1057 printf("lge%d: gigabit link up\n", 1058 sc->lge_unit); 1059 if (ifp->if_snd.ifq_head != NULL) 1060 lge_start(ifp); 1061 } 1062 } 1063 1064 sc->lge_stat_ch = timeout(lge_tick, sc, hz); 1065 1066 splx(s); 1067 1068 return; 1069 } 1070 1071 static void 1072 lge_intr(arg) 1073 void *arg; 1074 { 1075 struct lge_softc *sc; 1076 struct ifnet *ifp; 1077 u_int32_t status; 1078 1079 sc = arg; 1080 ifp = &sc->arpcom.ac_if; 1081 1082 /* Supress unwanted interrupts */ 1083 if (!(ifp->if_flags & IFF_UP)) { 1084 lge_stop(sc); 1085 return; 1086 } 1087 1088 for (;;) { 1089 /* 1090 * Reading the ISR register clears all interrupts, and 1091 * clears the 'interrupts enabled' bit in the IMR 1092 * register. 1093 */ 1094 status = CSR_READ_4(sc, LGE_ISR); 1095 1096 if ((status & LGE_INTRS) == 0) 1097 break; 1098 1099 if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) 1100 lge_txeof(sc); 1101 1102 if (status & LGE_ISR_RXDMA_DONE) 1103 lge_rxeof(sc, LGE_RX_DMACNT(status)); 1104 1105 if (status & LGE_ISR_RXCMDFIFO_EMPTY) 1106 lge_rxeoc(sc); 1107 1108 if (status & LGE_ISR_PHY_INTR) { 1109 sc->lge_link = 0; 1110 untimeout(lge_tick, sc, sc->lge_stat_ch); 1111 lge_tick(sc); 1112 } 1113 } 1114 1115 /* Re-enable interrupts. */ 1116 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); 1117 1118 if (ifp->if_snd.ifq_head != NULL) 1119 lge_start(ifp); 1120 1121 return; 1122 } 1123 1124 /* 1125 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1126 * pointers to the fragment pointers. 1127 */ 1128 static int 1129 lge_encap(sc, m_head, txidx) 1130 struct lge_softc *sc; 1131 struct mbuf *m_head; 1132 u_int32_t *txidx; 1133 { 1134 struct lge_frag *f = NULL; 1135 struct lge_tx_desc *cur_tx; 1136 struct mbuf *m; 1137 int frag = 0, tot_len = 0; 1138 1139 /* 1140 * Start packing the mbufs in this chain into 1141 * the fragment pointers. Stop when we run out 1142 * of fragments or hit the end of the mbuf chain. 1143 */ 1144 m = m_head; 1145 cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; 1146 frag = 0; 1147 1148 for (m = m_head; m != NULL; m = m->m_next) { 1149 if (m->m_len != 0) { 1150 tot_len += m->m_len; 1151 f = &cur_tx->lge_frags[frag]; 1152 f->lge_fraglen = m->m_len; 1153 f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); 1154 f->lge_fragptr_hi = 0; 1155 frag++; 1156 } 1157 } 1158 1159 if (m != NULL) 1160 return(ENOBUFS); 1161 1162 cur_tx->lge_mbuf = m_head; 1163 cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; 1164 LGE_INC((*txidx), LGE_TX_LIST_CNT); 1165 1166 /* Queue for transmit */ 1167 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); 1168 1169 return(0); 1170 } 1171 1172 /* 1173 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1174 * to the mbuf data regions directly in the transmit lists. We also save a 1175 * copy of the pointers since the transmit list fragment pointers are 1176 * physical addresses. 1177 */ 1178 1179 static void 1180 lge_start(ifp) 1181 struct ifnet *ifp; 1182 { 1183 struct lge_softc *sc; 1184 struct mbuf *m_head = NULL; 1185 u_int32_t idx; 1186 1187 sc = ifp->if_softc; 1188 1189 if (!sc->lge_link) 1190 return; 1191 1192 idx = sc->lge_cdata.lge_tx_prod; 1193 1194 if (ifp->if_flags & IFF_OACTIVE) 1195 return; 1196 1197 while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { 1198 if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) 1199 break; 1200 1201 IF_DEQUEUE(&ifp->if_snd, m_head); 1202 if (m_head == NULL) 1203 break; 1204 1205 if (lge_encap(sc, m_head, &idx)) { 1206 IF_PREPEND(&ifp->if_snd, m_head); 1207 ifp->if_flags |= IFF_OACTIVE; 1208 break; 1209 } 1210 1211 /* 1212 * If there's a BPF listener, bounce a copy of this frame 1213 * to him. 1214 */ 1215 BPF_MTAP(ifp, m_head); 1216 } 1217 1218 sc->lge_cdata.lge_tx_prod = idx; 1219 1220 /* 1221 * Set a timeout in case the chip goes out to lunch. 1222 */ 1223 ifp->if_timer = 5; 1224 1225 return; 1226 } 1227 1228 static void 1229 lge_init(xsc) 1230 void *xsc; 1231 { 1232 struct lge_softc *sc = xsc; 1233 struct ifnet *ifp = &sc->arpcom.ac_if; 1234 struct mii_data *mii; 1235 int s; 1236 1237 if (ifp->if_flags & IFF_RUNNING) 1238 return; 1239 1240 s = splimp(); 1241 1242 /* 1243 * Cancel pending I/O and free all RX/TX buffers. 1244 */ 1245 lge_stop(sc); 1246 lge_reset(sc); 1247 1248 mii = device_get_softc(sc->lge_miibus); 1249 1250 /* Set MAC address */ 1251 CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); 1252 CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); 1253 1254 /* Init circular RX list. */ 1255 if (lge_list_rx_init(sc) == ENOBUFS) { 1256 printf("lge%d: initialization failed: no " 1257 "memory for rx buffers\n", sc->lge_unit); 1258 lge_stop(sc); 1259 (void)splx(s); 1260 return; 1261 } 1262 1263 /* 1264 * Init tx descriptors. 1265 */ 1266 lge_list_tx_init(sc); 1267 1268 /* Set initial value for MODE1 register. */ 1269 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST| 1270 LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD| 1271 LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0| 1272 LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2); 1273 1274 /* If we want promiscuous mode, set the allframes bit. */ 1275 if (ifp->if_flags & IFF_PROMISC) { 1276 CSR_WRITE_4(sc, LGE_MODE1, 1277 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC); 1278 } else { 1279 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); 1280 } 1281 1282 /* 1283 * Set the capture broadcast bit to capture broadcast frames. 1284 */ 1285 if (ifp->if_flags & IFF_BROADCAST) { 1286 CSR_WRITE_4(sc, LGE_MODE1, 1287 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST); 1288 } else { 1289 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); 1290 } 1291 1292 /* Packet padding workaround? */ 1293 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); 1294 1295 /* No error frames */ 1296 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); 1297 1298 /* Receive large frames */ 1299 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS); 1300 1301 /* Workaround: disable RX/TX flow control */ 1302 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); 1303 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); 1304 1305 /* Make sure to strip CRC from received frames */ 1306 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); 1307 1308 /* Turn off magic packet mode */ 1309 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); 1310 1311 /* Turn off all VLAN stuff */ 1312 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX| 1313 LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT); 1314 1315 /* Workarond: FIFO overflow */ 1316 CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); 1317 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); 1318 1319 /* 1320 * Load the multicast filter. 1321 */ 1322 lge_setmulti(sc); 1323 1324 /* 1325 * Enable hardware checksum validation for all received IPv4 1326 * packets, do not reject packets with bad checksums. 1327 */ 1328 CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM| 1329 LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM| 1330 LGE_MODE2_RX_ERRCSUM); 1331 1332 /* 1333 * Enable the delivery of PHY interrupts based on 1334 * link/speed/duplex status chalges. 1335 */ 1336 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL); 1337 1338 /* Enable receiver and transmitter. */ 1339 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 1340 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB); 1341 1342 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); 1343 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB); 1344 1345 /* 1346 * Enable interrupts. 1347 */ 1348 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0| 1349 LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS); 1350 1351 lge_ifmedia_upd(ifp); 1352 1353 ifp->if_flags |= IFF_RUNNING; 1354 ifp->if_flags &= ~IFF_OACTIVE; 1355 1356 (void)splx(s); 1357 1358 sc->lge_stat_ch = timeout(lge_tick, sc, hz); 1359 1360 return; 1361 } 1362 1363 /* 1364 * Set media options. 1365 */ 1366 static int 1367 lge_ifmedia_upd(ifp) 1368 struct ifnet *ifp; 1369 { 1370 struct lge_softc *sc; 1371 struct mii_data *mii; 1372 1373 sc = ifp->if_softc; 1374 1375 mii = device_get_softc(sc->lge_miibus); 1376 sc->lge_link = 0; 1377 if (mii->mii_instance) { 1378 struct mii_softc *miisc; 1379 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; 1380 miisc = LIST_NEXT(miisc, mii_list)) 1381 mii_phy_reset(miisc); 1382 } 1383 mii_mediachg(mii); 1384 1385 return(0); 1386 } 1387 1388 /* 1389 * Report current media status. 1390 */ 1391 static void 1392 lge_ifmedia_sts(ifp, ifmr) 1393 struct ifnet *ifp; 1394 struct ifmediareq *ifmr; 1395 { 1396 struct lge_softc *sc; 1397 struct mii_data *mii; 1398 1399 sc = ifp->if_softc; 1400 1401 mii = device_get_softc(sc->lge_miibus); 1402 mii_pollstat(mii); 1403 ifmr->ifm_active = mii->mii_media_active; 1404 ifmr->ifm_status = mii->mii_media_status; 1405 1406 return; 1407 } 1408 1409 static int 1410 lge_ioctl(ifp, command, data) 1411 struct ifnet *ifp; 1412 u_long command; 1413 caddr_t data; 1414 { 1415 struct lge_softc *sc = ifp->if_softc; 1416 struct ifreq *ifr = (struct ifreq *) data; 1417 struct mii_data *mii; 1418 int s, error = 0; 1419 1420 s = splimp(); 1421 1422 switch(command) { 1423 case SIOCSIFMTU: 1424 if (ifr->ifr_mtu > LGE_JUMBO_MTU) 1425 error = EINVAL; 1426 else 1427 ifp->if_mtu = ifr->ifr_mtu; 1428 break; 1429 case SIOCSIFFLAGS: 1430 if (ifp->if_flags & IFF_UP) { 1431 if (ifp->if_flags & IFF_RUNNING && 1432 ifp->if_flags & IFF_PROMISC && 1433 !(sc->lge_if_flags & IFF_PROMISC)) { 1434 CSR_WRITE_4(sc, LGE_MODE1, 1435 LGE_MODE1_SETRST_CTL1| 1436 LGE_MODE1_RX_PROMISC); 1437 } else if (ifp->if_flags & IFF_RUNNING && 1438 !(ifp->if_flags & IFF_PROMISC) && 1439 sc->lge_if_flags & IFF_PROMISC) { 1440 CSR_WRITE_4(sc, LGE_MODE1, 1441 LGE_MODE1_RX_PROMISC); 1442 } else { 1443 ifp->if_flags &= ~IFF_RUNNING; 1444 lge_init(sc); 1445 } 1446 } else { 1447 if (ifp->if_flags & IFF_RUNNING) 1448 lge_stop(sc); 1449 } 1450 sc->lge_if_flags = ifp->if_flags; 1451 error = 0; 1452 break; 1453 case SIOCADDMULTI: 1454 case SIOCDELMULTI: 1455 lge_setmulti(sc); 1456 error = 0; 1457 break; 1458 case SIOCGIFMEDIA: 1459 case SIOCSIFMEDIA: 1460 mii = device_get_softc(sc->lge_miibus); 1461 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1462 break; 1463 default: 1464 error = ether_ioctl(ifp, command, data); 1465 break; 1466 } 1467 1468 (void)splx(s); 1469 1470 return(error); 1471 } 1472 1473 static void 1474 lge_watchdog(ifp) 1475 struct ifnet *ifp; 1476 { 1477 struct lge_softc *sc; 1478 1479 sc = ifp->if_softc; 1480 1481 ifp->if_oerrors++; 1482 printf("lge%d: watchdog timeout\n", sc->lge_unit); 1483 1484 lge_stop(sc); 1485 lge_reset(sc); 1486 ifp->if_flags &= ~IFF_RUNNING; 1487 lge_init(sc); 1488 1489 if (ifp->if_snd.ifq_head != NULL) 1490 lge_start(ifp); 1491 1492 return; 1493 } 1494 1495 /* 1496 * Stop the adapter and free any mbufs allocated to the 1497 * RX and TX lists. 1498 */ 1499 static void 1500 lge_stop(sc) 1501 struct lge_softc *sc; 1502 { 1503 register int i; 1504 struct ifnet *ifp; 1505 1506 ifp = &sc->arpcom.ac_if; 1507 ifp->if_timer = 0; 1508 untimeout(lge_tick, sc, sc->lge_stat_ch); 1509 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); 1510 1511 /* Disable receiver and transmitter. */ 1512 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); 1513 sc->lge_link = 0; 1514 1515 /* 1516 * Free data in the RX lists. 1517 */ 1518 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 1519 if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { 1520 m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); 1521 sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; 1522 } 1523 } 1524 bzero((char *)&sc->lge_ldata->lge_rx_list, 1525 sizeof(sc->lge_ldata->lge_rx_list)); 1526 1527 /* 1528 * Free the TX list buffers. 1529 */ 1530 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 1531 if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { 1532 m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); 1533 sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; 1534 } 1535 } 1536 1537 bzero((char *)&sc->lge_ldata->lge_tx_list, 1538 sizeof(sc->lge_ldata->lge_tx_list)); 1539 1540 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1541 1542 return; 1543 } 1544 1545 /* 1546 * Stop all chip I/O so that the kernel's probe routines don't 1547 * get confused by errant DMAs when rebooting. 1548 */ 1549 static void 1550 lge_shutdown(dev) 1551 device_t dev; 1552 { 1553 struct lge_softc *sc; 1554 1555 sc = device_get_softc(dev); 1556 1557 lge_reset(sc); 1558 lge_stop(sc); 1559 1560 return; 1561 } 1562