xref: /freebsd/sys/dev/lge/if_lge.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD$
34  */
35 
36 /*
37  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
38  * documentation not available, but ask me nicely.
39  *
40  * Written by Bill Paul <william.paul@windriver.com>
41  * Wind River Systems
42  */
43 
44 /*
45  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
46  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
47  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
48  * are three supported methods for data transfer between host and
49  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
50  * Propulsion Technology (tm) DMA. The latter mechanism is a form
51  * of double buffer DMA where the packet data is copied to a
52  * pre-allocated DMA buffer who's physical address has been loaded
53  * into a table at device initialization time. The rationale is that
54  * the virtual to physical address translation needed for normal
55  * scatter/gather DMA is more expensive than the data copy needed
56  * for double buffering. This may be true in Windows NT and the like,
57  * but it isn't true for us, at least on the x86 arch. This driver
58  * uses the scatter/gather I/O method for both TX and RX.
59  *
60  * The LXT1001 only supports TCP/IP checksum offload on receive.
61  * Also, the VLAN tagging is done using a 16-entry table which allows
62  * the chip to perform hardware filtering based on VLAN tags. Sadly,
63  * our vlan support doesn't currently play well with this kind of
64  * hardware support.
65  *
66  * Special thanks to:
67  * - Jeff James at Intel, for arranging to have the LXT1001 manual
68  *   released (at long last)
69  * - Beny Chen at D-Link, for actually sending it to me
70  * - Brad Short and Keith Alexis at SMC, for sending me sample
71  *   SMC9462SX and SMC9462TX adapters for testing
72  * - Paul Saab at Y!, for not killing me (though it remains to be seen
73  *   if in fact he did me much of a favor)
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sockio.h>
79 #include <sys/mbuf.h>
80 #include <sys/malloc.h>
81 #include <sys/kernel.h>
82 #include <sys/socket.h>
83 
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 
90 #include <net/bpf.h>
91 
92 #include <vm/vm.h>              /* for vtophys */
93 #include <vm/pmap.h>            /* for vtophys */
94 #include <machine/clock.h>      /* for DELAY */
95 #include <machine/bus_pio.h>
96 #include <machine/bus_memio.h>
97 #include <machine/bus.h>
98 #include <machine/resource.h>
99 #include <sys/bus.h>
100 #include <sys/rman.h>
101 
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104 
105 #include <pci/pcireg.h>
106 #include <pci/pcivar.h>
107 
108 #define LGE_USEIOSPACE
109 
110 #include <dev/lge/if_lgereg.h>
111 
112 /* "controller miibus0" required.  See GENERIC if you get errors here. */
113 #include "miibus_if.h"
114 
115 #ifndef lint
116 static const char rcsid[] =
117   "$FreeBSD$";
118 #endif
119 
120 /*
121  * Various supported device vendors/types and their names.
122  */
123 static struct lge_type lge_devs[] = {
124 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
125 	{ 0, 0, NULL }
126 };
127 
128 static int lge_probe		__P((device_t));
129 static int lge_attach		__P((device_t));
130 static int lge_detach		__P((device_t));
131 
132 static int lge_alloc_jumbo_mem	__P((struct lge_softc *));
133 static void lge_free_jumbo_mem	__P((struct lge_softc *));
134 static void *lge_jalloc		__P((struct lge_softc *));
135 static void lge_jfree		__P((caddr_t, void *));
136 
137 static int lge_newbuf		__P((struct lge_softc *,
138 					struct lge_rx_desc *,
139 					struct mbuf *));
140 static int lge_encap		__P((struct lge_softc *,
141 					struct mbuf *, u_int32_t *));
142 static void lge_rxeof		__P((struct lge_softc *, int));
143 static void lge_rxeoc		__P((struct lge_softc *));
144 static void lge_txeof		__P((struct lge_softc *));
145 static void lge_intr		__P((void *));
146 static void lge_tick		__P((void *));
147 static void lge_start		__P((struct ifnet *));
148 static int lge_ioctl		__P((struct ifnet *, u_long, caddr_t));
149 static void lge_init		__P((void *));
150 static void lge_stop		__P((struct lge_softc *));
151 static void lge_watchdog		__P((struct ifnet *));
152 static void lge_shutdown		__P((device_t));
153 static int lge_ifmedia_upd	__P((struct ifnet *));
154 static void lge_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
155 
156 static void lge_eeprom_getword	__P((struct lge_softc *, int, u_int16_t *));
157 static void lge_read_eeprom	__P((struct lge_softc *, caddr_t, int,
158 							int, int));
159 
160 static int lge_miibus_readreg	__P((device_t, int, int));
161 static int lge_miibus_writereg	__P((device_t, int, int, int));
162 static void lge_miibus_statchg	__P((device_t));
163 
164 static void lge_setmulti	__P((struct lge_softc *));
165 static u_int32_t lge_crc	__P((struct lge_softc *, caddr_t));
166 static void lge_reset		__P((struct lge_softc *));
167 static int lge_list_rx_init	__P((struct lge_softc *));
168 static int lge_list_tx_init	__P((struct lge_softc *));
169 
170 #ifdef LGE_USEIOSPACE
171 #define LGE_RES			SYS_RES_IOPORT
172 #define LGE_RID			LGE_PCI_LOIO
173 #else
174 #define LGE_RES			SYS_RES_MEMORY
175 #define LGE_RID			LGE_PCI_LOMEM
176 #endif
177 
178 static device_method_t lge_methods[] = {
179 	/* Device interface */
180 	DEVMETHOD(device_probe,		lge_probe),
181 	DEVMETHOD(device_attach,	lge_attach),
182 	DEVMETHOD(device_detach,	lge_detach),
183 	DEVMETHOD(device_shutdown,	lge_shutdown),
184 
185 	/* bus interface */
186 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
187 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
188 
189 	/* MII interface */
190 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
191 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
192 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
193 
194 	{ 0, 0 }
195 };
196 
197 static driver_t lge_driver = {
198 	"lge",
199 	lge_methods,
200 	sizeof(struct lge_softc)
201 };
202 
203 static devclass_t lge_devclass;
204 
205 DRIVER_MODULE(if_lge, pci, lge_driver, lge_devclass, 0, 0);
206 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
207 
208 #define LGE_SETBIT(sc, reg, x)				\
209 	CSR_WRITE_4(sc, reg,				\
210 		CSR_READ_4(sc, reg) | (x))
211 
212 #define LGE_CLRBIT(sc, reg, x)				\
213 	CSR_WRITE_4(sc, reg,				\
214 		CSR_READ_4(sc, reg) & ~(x))
215 
216 #define SIO_SET(x)					\
217 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
218 
219 #define SIO_CLR(x)					\
220 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
221 
222 /*
223  * Read a word of data stored in the EEPROM at address 'addr.'
224  */
225 static void lge_eeprom_getword(sc, addr, dest)
226 	struct lge_softc	*sc;
227 	int			addr;
228 	u_int16_t		*dest;
229 {
230 	register int		i;
231 	u_int32_t		val;
232 
233 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
234 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
235 
236 	for (i = 0; i < LGE_TIMEOUT; i++)
237 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
238 			break;
239 
240 	if (i == LGE_TIMEOUT) {
241 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
242 		return;
243 	}
244 
245 	val = CSR_READ_4(sc, LGE_EEDATA);
246 
247 	if (addr & 1)
248 		*dest = (val >> 16) & 0xFFFF;
249 	else
250 		*dest = val & 0xFFFF;
251 
252 	return;
253 }
254 
255 /*
256  * Read a sequence of words from the EEPROM.
257  */
258 static void lge_read_eeprom(sc, dest, off, cnt, swap)
259 	struct lge_softc	*sc;
260 	caddr_t			dest;
261 	int			off;
262 	int			cnt;
263 	int			swap;
264 {
265 	int			i;
266 	u_int16_t		word = 0, *ptr;
267 
268 	for (i = 0; i < cnt; i++) {
269 		lge_eeprom_getword(sc, off + i, &word);
270 		ptr = (u_int16_t *)(dest + (i * 2));
271 		if (swap)
272 			*ptr = ntohs(word);
273 		else
274 			*ptr = word;
275 	}
276 
277 	return;
278 }
279 
280 static int lge_miibus_readreg(dev, phy, reg)
281 	device_t		dev;
282 	int			phy, reg;
283 {
284 	struct lge_softc	*sc;
285 	int			i;
286 
287 	sc = device_get_softc(dev);
288 
289 	/*
290 	 * If we have a non-PCS PHY, pretend that the internal
291 	 * autoneg stuff at PHY address 0 isn't there so that
292 	 * the miibus code will find only the GMII PHY.
293 	 */
294 	if (sc->lge_pcs == 0 && phy == 0)
295 		return(0);
296 
297 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
298 
299 	for (i = 0; i < LGE_TIMEOUT; i++)
300 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
301 			break;
302 
303 	if (i == LGE_TIMEOUT) {
304 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
305 		return(0);
306 	}
307 
308 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
309 }
310 
311 static int lge_miibus_writereg(dev, phy, reg, data)
312 	device_t		dev;
313 	int			phy, reg, data;
314 {
315 	struct lge_softc	*sc;
316 	int			i;
317 
318 	sc = device_get_softc(dev);
319 
320 	CSR_WRITE_4(sc, LGE_GMIICTL,
321 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
322 
323 	for (i = 0; i < LGE_TIMEOUT; i++)
324 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
325 			break;
326 
327 	if (i == LGE_TIMEOUT) {
328 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
329 		return(0);
330 	}
331 
332 	return(0);
333 }
334 
335 static void lge_miibus_statchg(dev)
336 	device_t		dev;
337 {
338 	struct lge_softc	*sc;
339 	struct mii_data		*mii;
340 
341 	sc = device_get_softc(dev);
342 	mii = device_get_softc(sc->lge_miibus);
343 
344 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
345 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
346 	case IFM_1000_TX:
347 	case IFM_1000_SX:
348 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
349 		break;
350 	case IFM_100_TX:
351 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
352 		break;
353 	case IFM_10_T:
354 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
355 		break;
356 	default:
357 		/*
358 		 * Choose something, even if it's wrong. Clearing
359 		 * all the bits will hose autoneg on the internal
360 		 * PHY.
361 		 */
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
363 		break;
364 	}
365 
366 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
367 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
368 	} else {
369 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
370 	}
371 
372 	return;
373 }
374 
375 static u_int32_t lge_crc(sc, addr)
376 	struct lge_softc	*sc;
377 	caddr_t			addr;
378 {
379 	u_int32_t		crc, carry;
380 	int			i, j;
381 	u_int8_t		c;
382 
383 	/* Compute CRC for the address value. */
384 	crc = 0xFFFFFFFF; /* initial value */
385 
386 	for (i = 0; i < 6; i++) {
387 		c = *(addr + i);
388 		for (j = 0; j < 8; j++) {
389 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
390 			crc <<= 1;
391 			c >>= 1;
392 			if (carry)
393 				crc = (crc ^ 0x04c11db6) | carry;
394 		}
395 	}
396 
397 	/*
398 	 * return the filter bit position
399 	 */
400 	return((crc >> 26) & 0x0000003F);
401 }
402 
403 static void lge_setmulti(sc)
404 	struct lge_softc	*sc;
405 {
406 	struct ifnet		*ifp;
407 	struct ifmultiaddr	*ifma;
408 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
409 
410 	ifp = &sc->arpcom.ac_if;
411 
412 	/* Make sure multicast hash table is enabled. */
413 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
414 
415 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
416 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
417 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
418 		return;
419 	}
420 
421 	/* first, zot all the existing hash bits */
422 	CSR_WRITE_4(sc, LGE_MAR0, 0);
423 	CSR_WRITE_4(sc, LGE_MAR1, 0);
424 
425 	/* now program new ones */
426 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
427 		if (ifma->ifma_addr->sa_family != AF_LINK)
428 			continue;
429 		h = lge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
430 		if (h < 32)
431 			hashes[0] |= (1 << h);
432 		else
433 			hashes[1] |= (1 << (h - 32));
434 	}
435 
436 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
437 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
438 
439 	return;
440 }
441 
442 static void lge_reset(sc)
443 	struct lge_softc	*sc;
444 {
445 	register int		i;
446 
447 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
448 
449 	for (i = 0; i < LGE_TIMEOUT; i++) {
450 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
451 			break;
452 	}
453 
454 	if (i == LGE_TIMEOUT)
455 		printf("lge%d: reset never completed\n", sc->lge_unit);
456 
457 	/* Wait a little while for the chip to get its brains in order. */
458 	DELAY(1000);
459 
460         return;
461 }
462 
463 /*
464  * Probe for a Level 1 chip. Check the PCI vendor and device
465  * IDs against our list and return a device name if we find a match.
466  */
467 static int lge_probe(dev)
468 	device_t		dev;
469 {
470 	struct lge_type		*t;
471 
472 	t = lge_devs;
473 
474 	while(t->lge_name != NULL) {
475 		if ((pci_get_vendor(dev) == t->lge_vid) &&
476 		    (pci_get_device(dev) == t->lge_did)) {
477 			device_set_desc(dev, t->lge_name);
478 			return(0);
479 		}
480 		t++;
481 	}
482 
483 	return(ENXIO);
484 }
485 
486 /*
487  * Attach the interface. Allocate softc structures, do ifmedia
488  * setup and ethernet/BPF attach.
489  */
490 static int lge_attach(dev)
491 	device_t		dev;
492 {
493 	int			s;
494 	u_char			eaddr[ETHER_ADDR_LEN];
495 	u_int32_t		command;
496 	struct lge_softc	*sc;
497 	struct ifnet		*ifp;
498 	int			unit, error = 0, rid;
499 
500 	s = splimp();
501 
502 	sc = device_get_softc(dev);
503 	unit = device_get_unit(dev);
504 	bzero(sc, sizeof(struct lge_softc));
505 
506 	/*
507 	 * Handle power management nonsense.
508 	 */
509 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
510 		u_int32_t		iobase, membase, irq;
511 
512 		/* Save important PCI config data. */
513 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
514 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
515 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
516 
517 		/* Reset the power state. */
518 		printf("lge%d: chip is in D%d power mode "
519 		    "-- setting to D0\n", unit,
520 		    pci_get_powerstate(dev));
521 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
522 
523 		/* Restore PCI config data. */
524 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
525 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
526 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
527 	}
528 
529 	/*
530 	 * Map control/status registers.
531 	 */
532 	pci_enable_busmaster(dev);
533 	pci_enable_io(dev, PCIM_CMD_PORTEN);
534 	pci_enable_io(dev, PCIM_CMD_MEMEN);
535 	command = pci_read_config(dev, PCIR_COMMAND, 4);
536 
537 #ifdef LGE_USEIOSPACE
538 	if (!(command & PCIM_CMD_PORTEN)) {
539 		printf("lge%d: failed to enable I/O ports!\n", unit);
540 		error = ENXIO;;
541 		goto fail;
542 	}
543 #else
544 	if (!(command & PCIM_CMD_MEMEN)) {
545 		printf("lge%d: failed to enable memory mapping!\n", unit);
546 		error = ENXIO;;
547 		goto fail;
548 	}
549 #endif
550 
551 	rid = LGE_RID;
552 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
553 	    0, ~0, 1, RF_ACTIVE);
554 
555 	if (sc->lge_res == NULL) {
556 		printf("lge%d: couldn't map ports/memory\n", unit);
557 		error = ENXIO;
558 		goto fail;
559 	}
560 
561 	sc->lge_btag = rman_get_bustag(sc->lge_res);
562 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
563 
564 	/* Allocate interrupt */
565 	rid = 0;
566 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
567 	    RF_SHAREABLE | RF_ACTIVE);
568 
569 	if (sc->lge_irq == NULL) {
570 		printf("lge%d: couldn't map interrupt\n", unit);
571 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
572 		error = ENXIO;
573 		goto fail;
574 	}
575 
576 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
577 	    lge_intr, sc, &sc->lge_intrhand);
578 
579 	if (error) {
580 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
581 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
582 		printf("lge%d: couldn't set up irq\n", unit);
583 		goto fail;
584 	}
585 
586 	/* Reset the adapter. */
587 	lge_reset(sc);
588 
589 	/*
590 	 * Get station address from the EEPROM.
591 	 */
592 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
593 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
594 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
595 
596 	/*
597 	 * A Level 1 chip was detected. Inform the world.
598 	 */
599 	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
600 
601 	sc->lge_unit = unit;
602 	callout_handle_init(&sc->lge_stat_ch);
603 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
604 
605 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
606 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
607 
608 	if (sc->lge_ldata == NULL) {
609 		printf("lge%d: no memory for list buffers!\n", unit);
610 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
611 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
612 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
613 		error = ENXIO;
614 		goto fail;
615 	}
616 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
617 
618 	/* Try to allocate memory for jumbo buffers. */
619 	if (lge_alloc_jumbo_mem(sc)) {
620 		printf("lge%d: jumbo buffer allocation failed\n",
621                     sc->lge_unit);
622 		contigfree(sc->lge_ldata,
623 		    sizeof(struct lge_list_data), M_DEVBUF);
624 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
625 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
626 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
627 		error = ENXIO;
628 		goto fail;
629 	}
630 
631 	ifp = &sc->arpcom.ac_if;
632 	ifp->if_softc = sc;
633 	ifp->if_unit = unit;
634 	ifp->if_name = "lge";
635 	ifp->if_mtu = ETHERMTU;
636 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
637 	ifp->if_ioctl = lge_ioctl;
638 	ifp->if_output = ether_output;
639 	ifp->if_start = lge_start;
640 	ifp->if_watchdog = lge_watchdog;
641 	ifp->if_init = lge_init;
642 	ifp->if_baudrate = 1000000000;
643 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
644 
645 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
646 		sc->lge_pcs = 1;
647 	else
648 		sc->lge_pcs = 0;
649 
650 	/*
651 	 * Do MII setup.
652 	 */
653 	if (mii_phy_probe(dev, &sc->lge_miibus,
654 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
655 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
656 		contigfree(sc->lge_ldata,
657 		    sizeof(struct lge_list_data), M_DEVBUF);
658 		lge_free_jumbo_mem(sc);
659 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
660 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
661 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
662 		error = ENXIO;
663 		goto fail;
664 	}
665 
666 	/*
667 	 * Call MI attach routine.
668 	 */
669 	ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
670 	callout_handle_init(&sc->lge_stat_ch);
671 
672 fail:
673 	splx(s);
674 	return(error);
675 }
676 
677 static int lge_detach(dev)
678 	device_t		dev;
679 {
680 	struct lge_softc	*sc;
681 	struct ifnet		*ifp;
682 	int			s;
683 
684 	s = splimp();
685 
686 	sc = device_get_softc(dev);
687 	ifp = &sc->arpcom.ac_if;
688 
689 	lge_reset(sc);
690 	lge_stop(sc);
691 	ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
692 
693 	bus_generic_detach(dev);
694 	device_delete_child(dev, sc->lge_miibus);
695 
696 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
697 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
698 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
699 
700 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
701 	lge_free_jumbo_mem(sc);
702 
703 	splx(s);
704 
705 	return(0);
706 }
707 
708 /*
709  * Initialize the transmit descriptors.
710  */
711 static int lge_list_tx_init(sc)
712 	struct lge_softc	*sc;
713 {
714 	struct lge_list_data	*ld;
715 	struct lge_ring_data	*cd;
716 	int			i;
717 
718 	cd = &sc->lge_cdata;
719 	ld = sc->lge_ldata;
720 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
721 		ld->lge_tx_list[i].lge_mbuf = NULL;
722 		ld->lge_tx_list[i].lge_ctl = 0;
723 	}
724 
725 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
726 
727 	return(0);
728 }
729 
730 
731 /*
732  * Initialize the RX descriptors and allocate mbufs for them. Note that
733  * we arralge the descriptors in a closed ring, so that the last descriptor
734  * points back to the first.
735  */
736 static int lge_list_rx_init(sc)
737 	struct lge_softc	*sc;
738 {
739 	struct lge_list_data	*ld;
740 	struct lge_ring_data	*cd;
741 	int			i;
742 
743 	ld = sc->lge_ldata;
744 	cd = &sc->lge_cdata;
745 
746 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
747 
748 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
749 
750 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
751 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
752 			break;
753 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
754 			return(ENOBUFS);
755 	}
756 
757 	/* Clear possible 'rx command queue empty' interrupt. */
758 	CSR_READ_4(sc, LGE_ISR);
759 
760 	return(0);
761 }
762 
763 /*
764  * Initialize an RX descriptor and attach an MBUF cluster.
765  */
766 static int lge_newbuf(sc, c, m)
767 	struct lge_softc	*sc;
768 	struct lge_rx_desc	*c;
769 	struct mbuf		*m;
770 {
771 	struct mbuf		*m_new = NULL;
772 	caddr_t			*buf = NULL;
773 
774 	if (m == NULL) {
775 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
776 		if (m_new == NULL) {
777 			printf("lge%d: no memory for rx list "
778 			    "-- packet dropped!\n", sc->lge_unit);
779 			return(ENOBUFS);
780 		}
781 
782 		/* Allocate the jumbo buffer */
783 		buf = lge_jalloc(sc);
784 		if (buf == NULL) {
785 #ifdef LGE_VERBOSE
786 			printf("lge%d: jumbo allocation failed "
787 			    "-- packet dropped!\n", sc->lge_unit);
788 #endif
789 			m_freem(m_new);
790 			return(ENOBUFS);
791 		}
792 		/* Attach the buffer to the mbuf */
793 		m_new->m_data = (void *)buf;
794 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
795 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
796 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
797 	} else {
798 		m_new = m;
799 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
800 		m_new->m_data = m_new->m_ext.ext_buf;
801 	}
802 
803 	/*
804 	 * Adjust alignment so packet payload begins on a
805 	 * longword boundary. Mandatory for Alpha, useful on
806 	 * x86 too.
807 	*/
808 	m_adj(m_new, ETHER_ALIGN);
809 
810 	c->lge_mbuf = m_new;
811 	c->lge_fragptr_hi = 0;
812 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
813 	c->lge_fraglen = m_new->m_len;
814 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
815 	c->lge_sts = 0;
816 
817 	/*
818 	 * Put this buffer in the RX command FIFO. To do this,
819 	 * we just write the physical address of the descriptor
820 	 * into the RX descriptor address registers. Note that
821 	 * there are two registers, one high DWORD and one low
822 	 * DWORD, which lets us specify a 64-bit address if
823 	 * desired. We only use a 32-bit address for now.
824 	 * Writing to the low DWORD register is what actually
825 	 * causes the command to be issued, so we do that
826 	 * last.
827 	 */
828 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
829 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
830 
831 	return(0);
832 }
833 
834 static int lge_alloc_jumbo_mem(sc)
835 	struct lge_softc	*sc;
836 {
837 	caddr_t			ptr;
838 	register int		i;
839 	struct lge_jpool_entry   *entry;
840 
841 	/* Grab a big chunk o' storage. */
842 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
843 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
844 
845 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
846 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
847 		return(ENOBUFS);
848 	}
849 
850 	SLIST_INIT(&sc->lge_jfree_listhead);
851 	SLIST_INIT(&sc->lge_jinuse_listhead);
852 
853 	/*
854 	 * Now divide it up into 9K pieces and save the addresses
855 	 * in an array.
856 	 */
857 	ptr = sc->lge_cdata.lge_jumbo_buf;
858 	for (i = 0; i < LGE_JSLOTS; i++) {
859 		sc->lge_cdata.lge_jslots[i] = ptr;
860 		ptr += LGE_JLEN;
861 		entry = malloc(sizeof(struct lge_jpool_entry),
862 		    M_DEVBUF, M_NOWAIT);
863 		if (entry == NULL) {
864 			printf("lge%d: no memory for jumbo "
865 			    "buffer queue!\n", sc->lge_unit);
866 			return(ENOBUFS);
867 		}
868 		entry->slot = i;
869 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
870 		    entry, jpool_entries);
871 	}
872 
873 	return(0);
874 }
875 
876 static void lge_free_jumbo_mem(sc)
877 	struct lge_softc	*sc;
878 {
879 	int			i;
880 	struct lge_jpool_entry	*entry;
881 
882 	for (i = 0; i < LGE_JSLOTS; i++) {
883 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
884 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
885 		free(entry, M_DEVBUF);
886 	}
887 
888 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
889 
890 	return;
891 }
892 
893 /*
894  * Allocate a jumbo buffer.
895  */
896 static void *lge_jalloc(sc)
897 	struct lge_softc	*sc;
898 {
899 	struct lge_jpool_entry   *entry;
900 
901 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
902 
903 	if (entry == NULL) {
904 #ifdef LGE_VERBOSE
905 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
906 #endif
907 		return(NULL);
908 	}
909 
910 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
911 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
912 	return(sc->lge_cdata.lge_jslots[entry->slot]);
913 }
914 
915 /*
916  * Release a jumbo buffer.
917  */
918 static void lge_jfree(buf, args)
919 	caddr_t			buf;
920 	void			*args;
921 {
922 	struct lge_softc	*sc;
923 	int		        i;
924 	struct lge_jpool_entry   *entry;
925 
926 	/* Extract the softc struct pointer. */
927 	sc = args;
928 
929 	if (sc == NULL)
930 		panic("lge_jfree: can't find softc pointer!");
931 
932 	/* calculate the slot this buffer belongs to */
933 	i = ((vm_offset_t)buf
934 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
935 
936 	if ((i < 0) || (i >= LGE_JSLOTS))
937 		panic("lge_jfree: asked to free buffer that we don't manage!");
938 
939 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
940 	if (entry == NULL)
941 		panic("lge_jfree: buffer not in use!");
942 	entry->slot = i;
943 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
944 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
945 
946 	return;
947 }
948 
949 /*
950  * A frame has been uploaded: pass the resulting mbuf chain up to
951  * the higher level protocols.
952  */
953 static void lge_rxeof(sc, cnt)
954 	struct lge_softc	*sc;
955 	int			cnt;
956 {
957         struct ether_header	*eh;
958         struct mbuf		*m;
959         struct ifnet		*ifp;
960 	struct lge_rx_desc	*cur_rx;
961 	int			c, i, total_len = 0;
962 	u_int32_t		rxsts, rxctl;
963 
964 	ifp = &sc->arpcom.ac_if;
965 
966 	/* Find out how many frames were processed. */
967 	c = cnt;
968 	i = sc->lge_cdata.lge_rx_cons;
969 
970 	/* Suck them in. */
971 	while(c) {
972 		struct mbuf		*m0 = NULL;
973 
974 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
975 		rxctl = cur_rx->lge_ctl;
976 		rxsts = cur_rx->lge_sts;
977 		m = cur_rx->lge_mbuf;
978 		cur_rx->lge_mbuf = NULL;
979 		total_len = LGE_RXBYTES(cur_rx);
980 		LGE_INC(i, LGE_RX_LIST_CNT);
981 		c--;
982 
983 		/*
984 		 * If an error occurs, update stats, clear the
985 		 * status word and leave the mbuf cluster in place:
986 		 * it should simply get re-used next time this descriptor
987 	 	 * comes up in the ring.
988 		 */
989 		if (rxctl & LGE_RXCTL_ERRMASK) {
990 			ifp->if_ierrors++;
991 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
992 			continue;
993 		}
994 
995 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
996 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
997 			    ifp, NULL);
998 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
999 			if (m0 == NULL) {
1000 				printf("lge%d: no receive buffers "
1001 				    "available -- packet dropped!\n",
1002 				    sc->lge_unit);
1003 				ifp->if_ierrors++;
1004 				continue;
1005 			}
1006 			m = m0;
1007 		} else {
1008 			m->m_pkthdr.rcvif = ifp;
1009 			m->m_pkthdr.len = m->m_len = total_len;
1010 		}
1011 
1012 		ifp->if_ipackets++;
1013 		eh = mtod(m, struct ether_header *);
1014 
1015 		/* Remove header from mbuf and pass it on. */
1016 		m_adj(m, sizeof(struct ether_header));
1017 
1018 		/* Do IP checksum checking. */
1019 		if (rxsts & LGE_RXSTS_ISIP)
1020 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1021 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1022 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1023 		if ((rxsts & LGE_RXSTS_ISTCP &&
1024 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1025 		    (rxsts & LGE_RXSTS_ISUDP &&
1026 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1027 			m->m_pkthdr.csum_flags |=
1028 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1029 			m->m_pkthdr.csum_data = 0xffff;
1030 		}
1031 
1032 		ether_input(ifp, eh, m);
1033 	}
1034 
1035 	sc->lge_cdata.lge_rx_cons = i;
1036 
1037 	return;
1038 }
1039 
1040 void lge_rxeoc(sc)
1041 	struct lge_softc	*sc;
1042 {
1043 	struct ifnet		*ifp;
1044 
1045 	ifp = &sc->arpcom.ac_if;
1046 	ifp->if_flags &= ~IFF_RUNNING;
1047 	lge_init(sc);
1048 	return;
1049 }
1050 
1051 /*
1052  * A frame was downloaded to the chip. It's safe for us to clean up
1053  * the list buffers.
1054  */
1055 
1056 static void lge_txeof(sc)
1057 	struct lge_softc	*sc;
1058 {
1059 	struct lge_tx_desc	*cur_tx = NULL;
1060 	struct ifnet		*ifp;
1061 	u_int32_t		idx, txdone;
1062 
1063 	ifp = &sc->arpcom.ac_if;
1064 
1065 	/* Clear the timeout timer. */
1066 	ifp->if_timer = 0;
1067 
1068 	/*
1069 	 * Go through our tx list and free mbufs for those
1070 	 * frames that have been transmitted.
1071 	 */
1072 	idx = sc->lge_cdata.lge_tx_cons;
1073 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1074 
1075 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1076 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1077 
1078 		ifp->if_opackets++;
1079 		if (cur_tx->lge_mbuf != NULL) {
1080 			m_freem(cur_tx->lge_mbuf);
1081 			cur_tx->lge_mbuf = NULL;
1082 		}
1083 		cur_tx->lge_ctl = 0;
1084 
1085 		txdone--;
1086 		LGE_INC(idx, LGE_TX_LIST_CNT);
1087 		ifp->if_timer = 0;
1088 	}
1089 
1090 	sc->lge_cdata.lge_tx_cons = idx;
1091 
1092 	if (cur_tx != NULL)
1093 		ifp->if_flags &= ~IFF_OACTIVE;
1094 
1095 	return;
1096 }
1097 
1098 static void lge_tick(xsc)
1099 	void			*xsc;
1100 {
1101 	struct lge_softc	*sc;
1102 	struct mii_data		*mii;
1103 	struct ifnet		*ifp;
1104 	int			s;
1105 
1106 	s = splimp();
1107 
1108 	sc = xsc;
1109 	ifp = &sc->arpcom.ac_if;
1110 
1111 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1112 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1113 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1114 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1115 
1116 	if (!sc->lge_link) {
1117 		mii = device_get_softc(sc->lge_miibus);
1118 		mii_tick(mii);
1119 		mii_pollstat(mii);
1120 		if (mii->mii_media_status & IFM_ACTIVE &&
1121 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1122 			sc->lge_link++;
1123 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1124 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX)
1125 				printf("lge%d: gigabit link up\n",
1126 				    sc->lge_unit);
1127 			if (ifp->if_snd.ifq_head != NULL)
1128 				lge_start(ifp);
1129 		}
1130 	}
1131 
1132 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1133 
1134 	splx(s);
1135 
1136 	return;
1137 }
1138 
1139 static void lge_intr(arg)
1140 	void			*arg;
1141 {
1142 	struct lge_softc	*sc;
1143 	struct ifnet		*ifp;
1144 	u_int32_t		status;
1145 
1146 	sc = arg;
1147 	ifp = &sc->arpcom.ac_if;
1148 
1149 	/* Supress unwanted interrupts */
1150 	if (!(ifp->if_flags & IFF_UP)) {
1151 		lge_stop(sc);
1152 		return;
1153 	}
1154 
1155 	for (;;) {
1156 		/*
1157 		 * Reading the ISR register clears all interrupts, and
1158 		 * clears the 'interrupts enabled' bit in the IMR
1159 		 * register.
1160 		 */
1161 		status = CSR_READ_4(sc, LGE_ISR);
1162 
1163 		if ((status & LGE_INTRS) == 0)
1164 			break;
1165 
1166 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1167 			lge_txeof(sc);
1168 
1169 		if (status & LGE_ISR_RXDMA_DONE)
1170 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1171 
1172 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1173 			lge_rxeoc(sc);
1174 
1175 		if (status & LGE_ISR_PHY_INTR) {
1176 			sc->lge_link = 0;
1177 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1178 			lge_tick(sc);
1179 		}
1180 	}
1181 
1182 	/* Re-enable interrupts. */
1183 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1184 
1185 	if (ifp->if_snd.ifq_head != NULL)
1186 		lge_start(ifp);
1187 
1188 	return;
1189 }
1190 
1191 /*
1192  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1193  * pointers to the fragment pointers.
1194  */
1195 static int lge_encap(sc, m_head, txidx)
1196 	struct lge_softc	*sc;
1197 	struct mbuf		*m_head;
1198 	u_int32_t		*txidx;
1199 {
1200 	struct lge_frag		*f = NULL;
1201 	struct lge_tx_desc	*cur_tx;
1202 	struct mbuf		*m;
1203 	int			frag = 0, tot_len = 0;
1204 
1205 	/*
1206  	 * Start packing the mbufs in this chain into
1207 	 * the fragment pointers. Stop when we run out
1208  	 * of fragments or hit the end of the mbuf chain.
1209 	 */
1210 	m = m_head;
1211 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1212 	frag = 0;
1213 
1214 	for (m = m_head; m != NULL; m = m->m_next) {
1215 		if (m->m_len != 0) {
1216 			tot_len += m->m_len;
1217 			f = &cur_tx->lge_frags[frag];
1218 			f->lge_fraglen = m->m_len;
1219 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1220 			f->lge_fragptr_hi = 0;
1221 			frag++;
1222 		}
1223 	}
1224 
1225 	if (m != NULL)
1226 		return(ENOBUFS);
1227 
1228 	cur_tx->lge_mbuf = m_head;
1229 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1230 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1231 
1232 	/* Queue for transmit */
1233 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1234 
1235 	return(0);
1236 }
1237 
1238 /*
1239  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1240  * to the mbuf data regions directly in the transmit lists. We also save a
1241  * copy of the pointers since the transmit list fragment pointers are
1242  * physical addresses.
1243  */
1244 
1245 static void lge_start(ifp)
1246 	struct ifnet		*ifp;
1247 {
1248 	struct lge_softc	*sc;
1249 	struct mbuf		*m_head = NULL;
1250 	u_int32_t		idx;
1251 
1252 	sc = ifp->if_softc;
1253 
1254 	if (!sc->lge_link)
1255 		return;
1256 
1257 	idx = sc->lge_cdata.lge_tx_prod;
1258 
1259 	if (ifp->if_flags & IFF_OACTIVE)
1260 		return;
1261 
1262 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1263 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1264 			break;
1265 
1266 		IF_DEQUEUE(&ifp->if_snd, m_head);
1267 		if (m_head == NULL)
1268 			break;
1269 
1270 		if (lge_encap(sc, m_head, &idx)) {
1271 			IF_PREPEND(&ifp->if_snd, m_head);
1272 			ifp->if_flags |= IFF_OACTIVE;
1273 			break;
1274 		}
1275 
1276 		/*
1277 		 * If there's a BPF listener, bounce a copy of this frame
1278 		 * to him.
1279 		 */
1280 		if (ifp->if_bpf)
1281 			bpf_mtap(ifp, m_head);
1282 	}
1283 
1284 	sc->lge_cdata.lge_tx_prod = idx;
1285 
1286 	/*
1287 	 * Set a timeout in case the chip goes out to lunch.
1288 	 */
1289 	ifp->if_timer = 5;
1290 
1291 	return;
1292 }
1293 
1294 static void lge_init(xsc)
1295 	void			*xsc;
1296 {
1297 	struct lge_softc	*sc = xsc;
1298 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1299 	struct mii_data		*mii;
1300 	int			s;
1301 
1302 	if (ifp->if_flags & IFF_RUNNING)
1303 		return;
1304 
1305 	s = splimp();
1306 
1307 	/*
1308 	 * Cancel pending I/O and free all RX/TX buffers.
1309 	 */
1310 	lge_stop(sc);
1311 	lge_reset(sc);
1312 
1313 	mii = device_get_softc(sc->lge_miibus);
1314 
1315 	/* Set MAC address */
1316 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1317 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1318 
1319 	/* Init circular RX list. */
1320 	if (lge_list_rx_init(sc) == ENOBUFS) {
1321 		printf("lge%d: initialization failed: no "
1322 		    "memory for rx buffers\n", sc->lge_unit);
1323 		lge_stop(sc);
1324 		(void)splx(s);
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * Init tx descriptors.
1330 	 */
1331 	lge_list_tx_init(sc);
1332 
1333 	/* Set initial value for MODE1 register. */
1334 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1335 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1336 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1337 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1338 
1339 	 /* If we want promiscuous mode, set the allframes bit. */
1340 	if (ifp->if_flags & IFF_PROMISC) {
1341 		CSR_WRITE_4(sc, LGE_MODE1,
1342 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1343 	} else {
1344 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1345 	}
1346 
1347 	/*
1348 	 * Set the capture broadcast bit to capture broadcast frames.
1349 	 */
1350 	if (ifp->if_flags & IFF_BROADCAST) {
1351 		CSR_WRITE_4(sc, LGE_MODE1,
1352 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1353 	} else {
1354 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1355 	}
1356 
1357 	/* Packet padding workaround? */
1358 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1359 
1360 	/* No error frames */
1361 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1362 
1363 	/* Receive large frames */
1364 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1365 
1366 	/* Workaround: disable RX/TX flow control */
1367 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1368 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1369 
1370 	/* Make sure to strip CRC from received frames */
1371 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1372 
1373 	/* Turn off magic packet mode */
1374 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1375 
1376 	/* Turn off all VLAN stuff */
1377 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1378 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1379 
1380 	/* Workarond: FIFO overflow */
1381 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1382 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1383 
1384 	/*
1385 	 * Load the multicast filter.
1386 	 */
1387 	lge_setmulti(sc);
1388 
1389 	/*
1390 	 * Enable hardware checksum validation for all received IPv4
1391 	 * packets, do not reject packets with bad checksums.
1392 	 */
1393 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1394 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1395 	    LGE_MODE2_RX_ERRCSUM);
1396 
1397 	/*
1398 	 * Enable the delivery of PHY interrupts based on
1399 	 * link/speed/duplex status chalges.
1400 	 */
1401 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1402 
1403 	/* Enable receiver and transmitter. */
1404 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1405 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1406 
1407 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1408 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1409 
1410 	/*
1411 	 * Enable interrupts.
1412 	 */
1413 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1414 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1415 
1416 	lge_ifmedia_upd(ifp);
1417 
1418 	ifp->if_flags |= IFF_RUNNING;
1419 	ifp->if_flags &= ~IFF_OACTIVE;
1420 
1421 	(void)splx(s);
1422 
1423 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1424 
1425 	return;
1426 }
1427 
1428 /*
1429  * Set media options.
1430  */
1431 static int lge_ifmedia_upd(ifp)
1432 	struct ifnet		*ifp;
1433 {
1434 	struct lge_softc	*sc;
1435 	struct mii_data		*mii;
1436 
1437 	sc = ifp->if_softc;
1438 
1439 	mii = device_get_softc(sc->lge_miibus);
1440 	sc->lge_link = 0;
1441 	if (mii->mii_instance) {
1442 		struct mii_softc	*miisc;
1443 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1444 		    miisc = LIST_NEXT(miisc, mii_list))
1445 			mii_phy_reset(miisc);
1446 	}
1447 	mii_mediachg(mii);
1448 
1449 	return(0);
1450 }
1451 
1452 /*
1453  * Report current media status.
1454  */
1455 static void lge_ifmedia_sts(ifp, ifmr)
1456 	struct ifnet		*ifp;
1457 	struct ifmediareq	*ifmr;
1458 {
1459 	struct lge_softc	*sc;
1460 	struct mii_data		*mii;
1461 
1462 	sc = ifp->if_softc;
1463 
1464 	mii = device_get_softc(sc->lge_miibus);
1465 	mii_pollstat(mii);
1466 	ifmr->ifm_active = mii->mii_media_active;
1467 	ifmr->ifm_status = mii->mii_media_status;
1468 
1469 	return;
1470 }
1471 
1472 static int lge_ioctl(ifp, command, data)
1473 	struct ifnet		*ifp;
1474 	u_long			command;
1475 	caddr_t			data;
1476 {
1477 	struct lge_softc	*sc = ifp->if_softc;
1478 	struct ifreq		*ifr = (struct ifreq *) data;
1479 	struct mii_data		*mii;
1480 	int			s, error = 0;
1481 
1482 	s = splimp();
1483 
1484 	switch(command) {
1485 	case SIOCSIFADDR:
1486 	case SIOCGIFADDR:
1487 		error = ether_ioctl(ifp, command, data);
1488 		break;
1489 	case SIOCSIFMTU:
1490 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1491 			error = EINVAL;
1492 		else
1493 			ifp->if_mtu = ifr->ifr_mtu;
1494 		break;
1495 	case SIOCSIFFLAGS:
1496 		if (ifp->if_flags & IFF_UP) {
1497 			if (ifp->if_flags & IFF_RUNNING &&
1498 			    ifp->if_flags & IFF_PROMISC &&
1499 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1500 				CSR_WRITE_4(sc, LGE_MODE1,
1501 				    LGE_MODE1_SETRST_CTL1|
1502 				    LGE_MODE1_RX_PROMISC);
1503 			} else if (ifp->if_flags & IFF_RUNNING &&
1504 			    !(ifp->if_flags & IFF_PROMISC) &&
1505 			    sc->lge_if_flags & IFF_PROMISC) {
1506 				CSR_WRITE_4(sc, LGE_MODE1,
1507 				    LGE_MODE1_RX_PROMISC);
1508 			} else {
1509 				ifp->if_flags &= ~IFF_RUNNING;
1510 				lge_init(sc);
1511 			}
1512 		} else {
1513 			if (ifp->if_flags & IFF_RUNNING)
1514 				lge_stop(sc);
1515 		}
1516 		sc->lge_if_flags = ifp->if_flags;
1517 		error = 0;
1518 		break;
1519 	case SIOCADDMULTI:
1520 	case SIOCDELMULTI:
1521 		lge_setmulti(sc);
1522 		error = 0;
1523 		break;
1524 	case SIOCGIFMEDIA:
1525 	case SIOCSIFMEDIA:
1526 		mii = device_get_softc(sc->lge_miibus);
1527 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1528 		break;
1529 	default:
1530 		error = EINVAL;
1531 		break;
1532 	}
1533 
1534 	(void)splx(s);
1535 
1536 	return(error);
1537 }
1538 
1539 static void lge_watchdog(ifp)
1540 	struct ifnet		*ifp;
1541 {
1542 	struct lge_softc	*sc;
1543 
1544 	sc = ifp->if_softc;
1545 
1546 	ifp->if_oerrors++;
1547 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1548 
1549 	lge_stop(sc);
1550 	lge_reset(sc);
1551 	ifp->if_flags &= ~IFF_RUNNING;
1552 	lge_init(sc);
1553 
1554 	if (ifp->if_snd.ifq_head != NULL)
1555 		lge_start(ifp);
1556 
1557 	return;
1558 }
1559 
1560 /*
1561  * Stop the adapter and free any mbufs allocated to the
1562  * RX and TX lists.
1563  */
1564 static void lge_stop(sc)
1565 	struct lge_softc	*sc;
1566 {
1567 	register int		i;
1568 	struct ifnet		*ifp;
1569 
1570 	ifp = &sc->arpcom.ac_if;
1571 	ifp->if_timer = 0;
1572 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1573 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1574 
1575 	/* Disable receiver and transmitter. */
1576 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1577 	sc->lge_link = 0;
1578 
1579 	/*
1580 	 * Free data in the RX lists.
1581 	 */
1582 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1583 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1584 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1585 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1586 		}
1587 	}
1588 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1589 		sizeof(sc->lge_ldata->lge_rx_list));
1590 
1591 	/*
1592 	 * Free the TX list buffers.
1593 	 */
1594 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1595 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1596 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1597 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1598 		}
1599 	}
1600 
1601 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1602 		sizeof(sc->lge_ldata->lge_tx_list));
1603 
1604 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1605 
1606 	return;
1607 }
1608 
1609 /*
1610  * Stop all chip I/O so that the kernel's probe routines don't
1611  * get confused by errant DMAs when rebooting.
1612  */
1613 static void lge_shutdown(dev)
1614 	device_t		dev;
1615 {
1616 	struct lge_softc	*sc;
1617 
1618 	sc = device_get_softc(dev);
1619 
1620 	lge_reset(sc);
1621 	lge_stop(sc);
1622 
1623 	return;
1624 }
1625