1 /*- 2 * Copyright (c) 2001 Wind River Systems 3 * Copyright (c) 1997, 1998, 1999, 2000, 2001 4 * Bill Paul <william.paul@windriver.com>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 /* 38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public 39 * documentation not available, but ask me nicely. 40 * 41 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. 42 * It's a 64-bit PCI part that supports TCP/IP checksum offload, 43 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There 44 * are three supported methods for data transfer between host and 45 * NIC: programmed I/O, traditional scatter/gather DMA and Packet 46 * Propulsion Technology (tm) DMA. The latter mechanism is a form 47 * of double buffer DMA where the packet data is copied to a 48 * pre-allocated DMA buffer who's physical address has been loaded 49 * into a table at device initialization time. The rationale is that 50 * the virtual to physical address translation needed for normal 51 * scatter/gather DMA is more expensive than the data copy needed 52 * for double buffering. This may be true in Windows NT and the like, 53 * but it isn't true for us, at least on the x86 arch. This driver 54 * uses the scatter/gather I/O method for both TX and RX. 55 * 56 * The LXT1001 only supports TCP/IP checksum offload on receive. 57 * Also, the VLAN tagging is done using a 16-entry table which allows 58 * the chip to perform hardware filtering based on VLAN tags. Sadly, 59 * our vlan support doesn't currently play well with this kind of 60 * hardware support. 61 * 62 * Special thanks to: 63 * - Jeff James at Intel, for arranging to have the LXT1001 manual 64 * released (at long last) 65 * - Beny Chen at D-Link, for actually sending it to me 66 * - Brad Short and Keith Alexis at SMC, for sending me sample 67 * SMC9462SX and SMC9462TX adapters for testing 68 * - Paul Saab at Y!, for not killing me (though it remains to be seen 69 * if in fact he did me much of a favor) 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/sockio.h> 75 #include <sys/mbuf.h> 76 #include <sys/malloc.h> 77 #include <sys/kernel.h> 78 #include <sys/module.h> 79 #include <sys/socket.h> 80 81 #include <net/if.h> 82 #include <net/if_arp.h> 83 #include <net/ethernet.h> 84 #include <net/if_dl.h> 85 #include <net/if_media.h> 86 #include <net/if_types.h> 87 88 #include <net/bpf.h> 89 90 #include <vm/vm.h> /* for vtophys */ 91 #include <vm/pmap.h> /* for vtophys */ 92 #include <machine/bus.h> 93 #include <machine/resource.h> 94 #include <sys/bus.h> 95 #include <sys/rman.h> 96 97 #include <dev/mii/mii.h> 98 #include <dev/mii/miivar.h> 99 100 #include <dev/pci/pcireg.h> 101 #include <dev/pci/pcivar.h> 102 103 #define LGE_USEIOSPACE 104 105 #include <dev/lge/if_lgereg.h> 106 107 /* "device miibus" required. See GENERIC if you get errors here. */ 108 #include "miibus_if.h" 109 110 /* 111 * Various supported device vendors/types and their names. 112 */ 113 static const struct lge_type lge_devs[] = { 114 { LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" }, 115 { 0, 0, NULL } 116 }; 117 118 static int lge_probe(device_t); 119 static int lge_attach(device_t); 120 static int lge_detach(device_t); 121 122 static int lge_alloc_jumbo_mem(struct lge_softc *); 123 static void lge_free_jumbo_mem(struct lge_softc *); 124 static void *lge_jalloc(struct lge_softc *); 125 static int lge_jfree(struct mbuf *, void *, void *); 126 127 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *); 128 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *); 129 static void lge_rxeof(struct lge_softc *, int); 130 static void lge_rxeoc(struct lge_softc *); 131 static void lge_txeof(struct lge_softc *); 132 static void lge_intr(void *); 133 static void lge_tick(void *); 134 static void lge_start(struct ifnet *); 135 static void lge_start_locked(struct ifnet *); 136 static int lge_ioctl(struct ifnet *, u_long, caddr_t); 137 static void lge_init(void *); 138 static void lge_init_locked(struct lge_softc *); 139 static void lge_stop(struct lge_softc *); 140 static void lge_watchdog(struct lge_softc *); 141 static int lge_shutdown(device_t); 142 static int lge_ifmedia_upd(struct ifnet *); 143 static void lge_ifmedia_upd_locked(struct ifnet *); 144 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 145 146 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *); 147 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int); 148 149 static int lge_miibus_readreg(device_t, int, int); 150 static int lge_miibus_writereg(device_t, int, int, int); 151 static void lge_miibus_statchg(device_t); 152 153 static void lge_setmulti(struct lge_softc *); 154 static void lge_reset(struct lge_softc *); 155 static int lge_list_rx_init(struct lge_softc *); 156 static int lge_list_tx_init(struct lge_softc *); 157 158 #ifdef LGE_USEIOSPACE 159 #define LGE_RES SYS_RES_IOPORT 160 #define LGE_RID LGE_PCI_LOIO 161 #else 162 #define LGE_RES SYS_RES_MEMORY 163 #define LGE_RID LGE_PCI_LOMEM 164 #endif 165 166 static device_method_t lge_methods[] = { 167 /* Device interface */ 168 DEVMETHOD(device_probe, lge_probe), 169 DEVMETHOD(device_attach, lge_attach), 170 DEVMETHOD(device_detach, lge_detach), 171 DEVMETHOD(device_shutdown, lge_shutdown), 172 173 /* MII interface */ 174 DEVMETHOD(miibus_readreg, lge_miibus_readreg), 175 DEVMETHOD(miibus_writereg, lge_miibus_writereg), 176 DEVMETHOD(miibus_statchg, lge_miibus_statchg), 177 178 DEVMETHOD_END 179 }; 180 181 static driver_t lge_driver = { 182 "lge", 183 lge_methods, 184 sizeof(struct lge_softc) 185 }; 186 187 static devclass_t lge_devclass; 188 189 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0); 190 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0); 191 MODULE_DEPEND(lge, pci, 1, 1, 1); 192 MODULE_DEPEND(lge, ether, 1, 1, 1); 193 MODULE_DEPEND(lge, miibus, 1, 1, 1); 194 195 #define LGE_SETBIT(sc, reg, x) \ 196 CSR_WRITE_4(sc, reg, \ 197 CSR_READ_4(sc, reg) | (x)) 198 199 #define LGE_CLRBIT(sc, reg, x) \ 200 CSR_WRITE_4(sc, reg, \ 201 CSR_READ_4(sc, reg) & ~(x)) 202 203 #define SIO_SET(x) \ 204 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x) 205 206 #define SIO_CLR(x) \ 207 CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x) 208 209 /* 210 * Read a word of data stored in the EEPROM at address 'addr.' 211 */ 212 static void 213 lge_eeprom_getword(sc, addr, dest) 214 struct lge_softc *sc; 215 int addr; 216 u_int16_t *dest; 217 { 218 register int i; 219 u_int32_t val; 220 221 CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| 222 LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8)); 223 224 for (i = 0; i < LGE_TIMEOUT; i++) 225 if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ)) 226 break; 227 228 if (i == LGE_TIMEOUT) { 229 device_printf(sc->lge_dev, "EEPROM read timed out\n"); 230 return; 231 } 232 233 val = CSR_READ_4(sc, LGE_EEDATA); 234 235 if (addr & 1) 236 *dest = (val >> 16) & 0xFFFF; 237 else 238 *dest = val & 0xFFFF; 239 240 return; 241 } 242 243 /* 244 * Read a sequence of words from the EEPROM. 245 */ 246 static void 247 lge_read_eeprom(sc, dest, off, cnt, swap) 248 struct lge_softc *sc; 249 caddr_t dest; 250 int off; 251 int cnt; 252 int swap; 253 { 254 int i; 255 u_int16_t word = 0, *ptr; 256 257 for (i = 0; i < cnt; i++) { 258 lge_eeprom_getword(sc, off + i, &word); 259 ptr = (u_int16_t *)(dest + (i * 2)); 260 if (swap) 261 *ptr = ntohs(word); 262 else 263 *ptr = word; 264 } 265 266 return; 267 } 268 269 static int 270 lge_miibus_readreg(dev, phy, reg) 271 device_t dev; 272 int phy, reg; 273 { 274 struct lge_softc *sc; 275 int i; 276 277 sc = device_get_softc(dev); 278 279 /* 280 * If we have a non-PCS PHY, pretend that the internal 281 * autoneg stuff at PHY address 0 isn't there so that 282 * the miibus code will find only the GMII PHY. 283 */ 284 if (sc->lge_pcs == 0 && phy == 0) 285 return(0); 286 287 CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); 288 289 for (i = 0; i < LGE_TIMEOUT; i++) 290 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 291 break; 292 293 if (i == LGE_TIMEOUT) { 294 device_printf(sc->lge_dev, "PHY read timed out\n"); 295 return(0); 296 } 297 298 return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); 299 } 300 301 static int 302 lge_miibus_writereg(dev, phy, reg, data) 303 device_t dev; 304 int phy, reg, data; 305 { 306 struct lge_softc *sc; 307 int i; 308 309 sc = device_get_softc(dev); 310 311 CSR_WRITE_4(sc, LGE_GMIICTL, 312 (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); 313 314 for (i = 0; i < LGE_TIMEOUT; i++) 315 if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) 316 break; 317 318 if (i == LGE_TIMEOUT) { 319 device_printf(sc->lge_dev, "PHY write timed out\n"); 320 return(0); 321 } 322 323 return(0); 324 } 325 326 static void 327 lge_miibus_statchg(dev) 328 device_t dev; 329 { 330 struct lge_softc *sc; 331 struct mii_data *mii; 332 333 sc = device_get_softc(dev); 334 mii = device_get_softc(sc->lge_miibus); 335 336 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); 337 switch (IFM_SUBTYPE(mii->mii_media_active)) { 338 case IFM_1000_T: 339 case IFM_1000_SX: 340 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 341 break; 342 case IFM_100_TX: 343 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); 344 break; 345 case IFM_10_T: 346 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); 347 break; 348 default: 349 /* 350 * Choose something, even if it's wrong. Clearing 351 * all the bits will hose autoneg on the internal 352 * PHY. 353 */ 354 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); 355 break; 356 } 357 358 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { 359 LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 360 } else { 361 LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); 362 } 363 364 return; 365 } 366 367 static void 368 lge_setmulti(sc) 369 struct lge_softc *sc; 370 { 371 struct ifnet *ifp; 372 struct ifmultiaddr *ifma; 373 u_int32_t h = 0, hashes[2] = { 0, 0 }; 374 375 ifp = sc->lge_ifp; 376 LGE_LOCK_ASSERT(sc); 377 378 /* Make sure multicast hash table is enabled. */ 379 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST); 380 381 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 382 CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); 383 CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); 384 return; 385 } 386 387 /* first, zot all the existing hash bits */ 388 CSR_WRITE_4(sc, LGE_MAR0, 0); 389 CSR_WRITE_4(sc, LGE_MAR1, 0); 390 391 /* now program new ones */ 392 if_maddr_rlock(ifp); 393 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 394 if (ifma->ifma_addr->sa_family != AF_LINK) 395 continue; 396 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 397 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 398 if (h < 32) 399 hashes[0] |= (1 << h); 400 else 401 hashes[1] |= (1 << (h - 32)); 402 } 403 if_maddr_runlock(ifp); 404 405 CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); 406 CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); 407 408 return; 409 } 410 411 static void 412 lge_reset(sc) 413 struct lge_softc *sc; 414 { 415 register int i; 416 417 LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST); 418 419 for (i = 0; i < LGE_TIMEOUT; i++) { 420 if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST)) 421 break; 422 } 423 424 if (i == LGE_TIMEOUT) 425 device_printf(sc->lge_dev, "reset never completed\n"); 426 427 /* Wait a little while for the chip to get its brains in order. */ 428 DELAY(1000); 429 430 return; 431 } 432 433 /* 434 * Probe for a Level 1 chip. Check the PCI vendor and device 435 * IDs against our list and return a device name if we find a match. 436 */ 437 static int 438 lge_probe(dev) 439 device_t dev; 440 { 441 const struct lge_type *t; 442 443 t = lge_devs; 444 445 while(t->lge_name != NULL) { 446 if ((pci_get_vendor(dev) == t->lge_vid) && 447 (pci_get_device(dev) == t->lge_did)) { 448 device_set_desc(dev, t->lge_name); 449 return(BUS_PROBE_DEFAULT); 450 } 451 t++; 452 } 453 454 return(ENXIO); 455 } 456 457 /* 458 * Attach the interface. Allocate softc structures, do ifmedia 459 * setup and ethernet/BPF attach. 460 */ 461 static int 462 lge_attach(dev) 463 device_t dev; 464 { 465 u_char eaddr[ETHER_ADDR_LEN]; 466 struct lge_softc *sc; 467 struct ifnet *ifp = NULL; 468 int error = 0, rid; 469 470 sc = device_get_softc(dev); 471 sc->lge_dev = dev; 472 473 mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 474 MTX_DEF); 475 callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0); 476 477 /* 478 * Map control/status registers. 479 */ 480 pci_enable_busmaster(dev); 481 482 rid = LGE_RID; 483 sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE); 484 485 if (sc->lge_res == NULL) { 486 device_printf(dev, "couldn't map ports/memory\n"); 487 error = ENXIO; 488 goto fail; 489 } 490 491 sc->lge_btag = rman_get_bustag(sc->lge_res); 492 sc->lge_bhandle = rman_get_bushandle(sc->lge_res); 493 494 /* Allocate interrupt */ 495 rid = 0; 496 sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 497 RF_SHAREABLE | RF_ACTIVE); 498 499 if (sc->lge_irq == NULL) { 500 device_printf(dev, "couldn't map interrupt\n"); 501 error = ENXIO; 502 goto fail; 503 } 504 505 /* Reset the adapter. */ 506 lge_reset(sc); 507 508 /* 509 * Get station address from the EEPROM. 510 */ 511 lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0); 512 lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0); 513 lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0); 514 515 sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF, 516 M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0); 517 518 if (sc->lge_ldata == NULL) { 519 device_printf(dev, "no memory for list buffers!\n"); 520 error = ENXIO; 521 goto fail; 522 } 523 524 /* Try to allocate memory for jumbo buffers. */ 525 if (lge_alloc_jumbo_mem(sc)) { 526 device_printf(dev, "jumbo buffer allocation failed\n"); 527 error = ENXIO; 528 goto fail; 529 } 530 531 ifp = sc->lge_ifp = if_alloc(IFT_ETHER); 532 if (ifp == NULL) { 533 device_printf(dev, "can not if_alloc()\n"); 534 error = ENOSPC; 535 goto fail; 536 } 537 ifp->if_softc = sc; 538 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 539 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 540 ifp->if_ioctl = lge_ioctl; 541 ifp->if_start = lge_start; 542 ifp->if_init = lge_init; 543 ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1; 544 ifp->if_capabilities = IFCAP_RXCSUM; 545 ifp->if_capenable = ifp->if_capabilities; 546 547 if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) 548 sc->lge_pcs = 1; 549 else 550 sc->lge_pcs = 0; 551 552 /* 553 * Do MII setup. 554 */ 555 error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd, 556 lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0); 557 if (error != 0) { 558 device_printf(dev, "attaching PHYs failed\n"); 559 goto fail; 560 } 561 562 /* 563 * Call MI attach routine. 564 */ 565 ether_ifattach(ifp, eaddr); 566 567 error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE, 568 NULL, lge_intr, sc, &sc->lge_intrhand); 569 570 if (error) { 571 ether_ifdetach(ifp); 572 device_printf(dev, "couldn't set up irq\n"); 573 goto fail; 574 } 575 return (0); 576 577 fail: 578 lge_free_jumbo_mem(sc); 579 if (sc->lge_ldata) 580 contigfree(sc->lge_ldata, 581 sizeof(struct lge_list_data), M_DEVBUF); 582 if (ifp) 583 if_free(ifp); 584 if (sc->lge_irq) 585 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 586 if (sc->lge_res) 587 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 588 mtx_destroy(&sc->lge_mtx); 589 return(error); 590 } 591 592 static int 593 lge_detach(dev) 594 device_t dev; 595 { 596 struct lge_softc *sc; 597 struct ifnet *ifp; 598 599 sc = device_get_softc(dev); 600 ifp = sc->lge_ifp; 601 602 LGE_LOCK(sc); 603 lge_reset(sc); 604 lge_stop(sc); 605 LGE_UNLOCK(sc); 606 callout_drain(&sc->lge_stat_callout); 607 ether_ifdetach(ifp); 608 609 bus_generic_detach(dev); 610 device_delete_child(dev, sc->lge_miibus); 611 612 bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand); 613 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq); 614 bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res); 615 616 contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF); 617 if_free(ifp); 618 lge_free_jumbo_mem(sc); 619 mtx_destroy(&sc->lge_mtx); 620 621 return(0); 622 } 623 624 /* 625 * Initialize the transmit descriptors. 626 */ 627 static int 628 lge_list_tx_init(sc) 629 struct lge_softc *sc; 630 { 631 struct lge_list_data *ld; 632 struct lge_ring_data *cd; 633 int i; 634 635 cd = &sc->lge_cdata; 636 ld = sc->lge_ldata; 637 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 638 ld->lge_tx_list[i].lge_mbuf = NULL; 639 ld->lge_tx_list[i].lge_ctl = 0; 640 } 641 642 cd->lge_tx_prod = cd->lge_tx_cons = 0; 643 644 return(0); 645 } 646 647 648 /* 649 * Initialize the RX descriptors and allocate mbufs for them. Note that 650 * we arralge the descriptors in a closed ring, so that the last descriptor 651 * points back to the first. 652 */ 653 static int 654 lge_list_rx_init(sc) 655 struct lge_softc *sc; 656 { 657 struct lge_list_data *ld; 658 struct lge_ring_data *cd; 659 int i; 660 661 ld = sc->lge_ldata; 662 cd = &sc->lge_cdata; 663 664 cd->lge_rx_prod = cd->lge_rx_cons = 0; 665 666 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 667 668 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 669 if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) 670 break; 671 if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) 672 return(ENOBUFS); 673 } 674 675 /* Clear possible 'rx command queue empty' interrupt. */ 676 CSR_READ_4(sc, LGE_ISR); 677 678 return(0); 679 } 680 681 /* 682 * Initialize an RX descriptor and attach an MBUF cluster. 683 */ 684 static int 685 lge_newbuf(sc, c, m) 686 struct lge_softc *sc; 687 struct lge_rx_desc *c; 688 struct mbuf *m; 689 { 690 struct mbuf *m_new = NULL; 691 caddr_t *buf = NULL; 692 693 if (m == NULL) { 694 MGETHDR(m_new, M_NOWAIT, MT_DATA); 695 if (m_new == NULL) { 696 device_printf(sc->lge_dev, "no memory for rx list " 697 "-- packet dropped!\n"); 698 return(ENOBUFS); 699 } 700 701 /* Allocate the jumbo buffer */ 702 buf = lge_jalloc(sc); 703 if (buf == NULL) { 704 #ifdef LGE_VERBOSE 705 device_printf(sc->lge_dev, "jumbo allocation failed " 706 "-- packet dropped!\n"); 707 #endif 708 m_freem(m_new); 709 return(ENOBUFS); 710 } 711 /* Attach the buffer to the mbuf */ 712 m_new->m_data = (void *)buf; 713 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 714 MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree, 715 buf, (struct lge_softc *)sc, 0, EXT_NET_DRV); 716 } else { 717 m_new = m; 718 m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; 719 m_new->m_data = m_new->m_ext.ext_buf; 720 } 721 722 /* 723 * Adjust alignment so packet payload begins on a 724 * longword boundary. Mandatory for Alpha, useful on 725 * x86 too. 726 */ 727 m_adj(m_new, ETHER_ALIGN); 728 729 c->lge_mbuf = m_new; 730 c->lge_fragptr_hi = 0; 731 c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); 732 c->lge_fraglen = m_new->m_len; 733 c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); 734 c->lge_sts = 0; 735 736 /* 737 * Put this buffer in the RX command FIFO. To do this, 738 * we just write the physical address of the descriptor 739 * into the RX descriptor address registers. Note that 740 * there are two registers, one high DWORD and one low 741 * DWORD, which lets us specify a 64-bit address if 742 * desired. We only use a 32-bit address for now. 743 * Writing to the low DWORD register is what actually 744 * causes the command to be issued, so we do that 745 * last. 746 */ 747 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); 748 LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); 749 750 return(0); 751 } 752 753 static int 754 lge_alloc_jumbo_mem(sc) 755 struct lge_softc *sc; 756 { 757 caddr_t ptr; 758 register int i; 759 struct lge_jpool_entry *entry; 760 761 /* Grab a big chunk o' storage. */ 762 sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF, 763 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); 764 765 if (sc->lge_cdata.lge_jumbo_buf == NULL) { 766 device_printf(sc->lge_dev, "no memory for jumbo buffers!\n"); 767 return(ENOBUFS); 768 } 769 770 SLIST_INIT(&sc->lge_jfree_listhead); 771 SLIST_INIT(&sc->lge_jinuse_listhead); 772 773 /* 774 * Now divide it up into 9K pieces and save the addresses 775 * in an array. 776 */ 777 ptr = sc->lge_cdata.lge_jumbo_buf; 778 for (i = 0; i < LGE_JSLOTS; i++) { 779 sc->lge_cdata.lge_jslots[i] = ptr; 780 ptr += LGE_JLEN; 781 entry = malloc(sizeof(struct lge_jpool_entry), 782 M_DEVBUF, M_NOWAIT); 783 if (entry == NULL) { 784 device_printf(sc->lge_dev, "no memory for jumbo " 785 "buffer queue!\n"); 786 return(ENOBUFS); 787 } 788 entry->slot = i; 789 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, 790 entry, jpool_entries); 791 } 792 793 return(0); 794 } 795 796 static void 797 lge_free_jumbo_mem(sc) 798 struct lge_softc *sc; 799 { 800 struct lge_jpool_entry *entry; 801 802 if (sc->lge_cdata.lge_jumbo_buf == NULL) 803 return; 804 805 while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) { 806 device_printf(sc->lge_dev, 807 "asked to free buffer that is in use!\n"); 808 SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); 809 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, 810 jpool_entries); 811 } 812 while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) { 813 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 814 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 815 free(entry, M_DEVBUF); 816 } 817 818 contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF); 819 820 return; 821 } 822 823 /* 824 * Allocate a jumbo buffer. 825 */ 826 static void * 827 lge_jalloc(sc) 828 struct lge_softc *sc; 829 { 830 struct lge_jpool_entry *entry; 831 832 entry = SLIST_FIRST(&sc->lge_jfree_listhead); 833 834 if (entry == NULL) { 835 #ifdef LGE_VERBOSE 836 device_printf(sc->lge_dev, "no free jumbo buffers\n"); 837 #endif 838 return(NULL); 839 } 840 841 SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries); 842 SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries); 843 return(sc->lge_cdata.lge_jslots[entry->slot]); 844 } 845 846 /* 847 * Release a jumbo buffer. 848 */ 849 static int 850 lge_jfree(struct mbuf *m, void *buf, void *args) 851 { 852 struct lge_softc *sc; 853 int i; 854 struct lge_jpool_entry *entry; 855 856 /* Extract the softc struct pointer. */ 857 sc = args; 858 859 if (sc == NULL) 860 panic("lge_jfree: can't find softc pointer!"); 861 862 /* calculate the slot this buffer belongs to */ 863 i = ((vm_offset_t)buf 864 - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN; 865 866 if ((i < 0) || (i >= LGE_JSLOTS)) 867 panic("lge_jfree: asked to free buffer that we don't manage!"); 868 869 entry = SLIST_FIRST(&sc->lge_jinuse_listhead); 870 if (entry == NULL) 871 panic("lge_jfree: buffer not in use!"); 872 entry->slot = i; 873 SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries); 874 SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); 875 876 return (EXT_FREE_OK); 877 } 878 879 /* 880 * A frame has been uploaded: pass the resulting mbuf chain up to 881 * the higher level protocols. 882 */ 883 static void 884 lge_rxeof(sc, cnt) 885 struct lge_softc *sc; 886 int cnt; 887 { 888 struct mbuf *m; 889 struct ifnet *ifp; 890 struct lge_rx_desc *cur_rx; 891 int c, i, total_len = 0; 892 u_int32_t rxsts, rxctl; 893 894 ifp = sc->lge_ifp; 895 896 /* Find out how many frames were processed. */ 897 c = cnt; 898 i = sc->lge_cdata.lge_rx_cons; 899 900 /* Suck them in. */ 901 while(c) { 902 struct mbuf *m0 = NULL; 903 904 cur_rx = &sc->lge_ldata->lge_rx_list[i]; 905 rxctl = cur_rx->lge_ctl; 906 rxsts = cur_rx->lge_sts; 907 m = cur_rx->lge_mbuf; 908 cur_rx->lge_mbuf = NULL; 909 total_len = LGE_RXBYTES(cur_rx); 910 LGE_INC(i, LGE_RX_LIST_CNT); 911 c--; 912 913 /* 914 * If an error occurs, update stats, clear the 915 * status word and leave the mbuf cluster in place: 916 * it should simply get re-used next time this descriptor 917 * comes up in the ring. 918 */ 919 if (rxctl & LGE_RXCTL_ERRMASK) { 920 ifp->if_ierrors++; 921 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 922 continue; 923 } 924 925 if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { 926 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, 927 ifp, NULL); 928 lge_newbuf(sc, &LGE_RXTAIL(sc), m); 929 if (m0 == NULL) { 930 device_printf(sc->lge_dev, "no receive buffers " 931 "available -- packet dropped!\n"); 932 ifp->if_ierrors++; 933 continue; 934 } 935 m = m0; 936 } else { 937 m->m_pkthdr.rcvif = ifp; 938 m->m_pkthdr.len = m->m_len = total_len; 939 } 940 941 ifp->if_ipackets++; 942 943 /* Do IP checksum checking. */ 944 if (rxsts & LGE_RXSTS_ISIP) 945 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 946 if (!(rxsts & LGE_RXSTS_IPCSUMERR)) 947 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 948 if ((rxsts & LGE_RXSTS_ISTCP && 949 !(rxsts & LGE_RXSTS_TCPCSUMERR)) || 950 (rxsts & LGE_RXSTS_ISUDP && 951 !(rxsts & LGE_RXSTS_UDPCSUMERR))) { 952 m->m_pkthdr.csum_flags |= 953 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 954 m->m_pkthdr.csum_data = 0xffff; 955 } 956 957 LGE_UNLOCK(sc); 958 (*ifp->if_input)(ifp, m); 959 LGE_LOCK(sc); 960 } 961 962 sc->lge_cdata.lge_rx_cons = i; 963 964 return; 965 } 966 967 static void 968 lge_rxeoc(sc) 969 struct lge_softc *sc; 970 { 971 struct ifnet *ifp; 972 973 ifp = sc->lge_ifp; 974 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 975 lge_init_locked(sc); 976 return; 977 } 978 979 /* 980 * A frame was downloaded to the chip. It's safe for us to clean up 981 * the list buffers. 982 */ 983 984 static void 985 lge_txeof(sc) 986 struct lge_softc *sc; 987 { 988 struct lge_tx_desc *cur_tx = NULL; 989 struct ifnet *ifp; 990 u_int32_t idx, txdone; 991 992 ifp = sc->lge_ifp; 993 994 /* Clear the timeout timer. */ 995 sc->lge_timer = 0; 996 997 /* 998 * Go through our tx list and free mbufs for those 999 * frames that have been transmitted. 1000 */ 1001 idx = sc->lge_cdata.lge_tx_cons; 1002 txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); 1003 1004 while (idx != sc->lge_cdata.lge_tx_prod && txdone) { 1005 cur_tx = &sc->lge_ldata->lge_tx_list[idx]; 1006 1007 ifp->if_opackets++; 1008 if (cur_tx->lge_mbuf != NULL) { 1009 m_freem(cur_tx->lge_mbuf); 1010 cur_tx->lge_mbuf = NULL; 1011 } 1012 cur_tx->lge_ctl = 0; 1013 1014 txdone--; 1015 LGE_INC(idx, LGE_TX_LIST_CNT); 1016 sc->lge_timer = 0; 1017 } 1018 1019 sc->lge_cdata.lge_tx_cons = idx; 1020 1021 if (cur_tx != NULL) 1022 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1023 1024 return; 1025 } 1026 1027 static void 1028 lge_tick(xsc) 1029 void *xsc; 1030 { 1031 struct lge_softc *sc; 1032 struct mii_data *mii; 1033 struct ifnet *ifp; 1034 1035 sc = xsc; 1036 ifp = sc->lge_ifp; 1037 LGE_LOCK_ASSERT(sc); 1038 1039 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); 1040 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1041 CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); 1042 ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); 1043 1044 if (!sc->lge_link) { 1045 mii = device_get_softc(sc->lge_miibus); 1046 mii_tick(mii); 1047 if (mii->mii_media_status & IFM_ACTIVE && 1048 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1049 sc->lge_link++; 1050 if (bootverbose && 1051 (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| 1052 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)) 1053 device_printf(sc->lge_dev, "gigabit link up\n"); 1054 if (ifp->if_snd.ifq_head != NULL) 1055 lge_start_locked(ifp); 1056 } 1057 } 1058 1059 if (sc->lge_timer != 0 && --sc->lge_timer == 0) 1060 lge_watchdog(sc); 1061 callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc); 1062 1063 return; 1064 } 1065 1066 static void 1067 lge_intr(arg) 1068 void *arg; 1069 { 1070 struct lge_softc *sc; 1071 struct ifnet *ifp; 1072 u_int32_t status; 1073 1074 sc = arg; 1075 ifp = sc->lge_ifp; 1076 LGE_LOCK(sc); 1077 1078 /* Supress unwanted interrupts */ 1079 if (!(ifp->if_flags & IFF_UP)) { 1080 lge_stop(sc); 1081 LGE_UNLOCK(sc); 1082 return; 1083 } 1084 1085 for (;;) { 1086 /* 1087 * Reading the ISR register clears all interrupts, and 1088 * clears the 'interrupts enabled' bit in the IMR 1089 * register. 1090 */ 1091 status = CSR_READ_4(sc, LGE_ISR); 1092 1093 if ((status & LGE_INTRS) == 0) 1094 break; 1095 1096 if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) 1097 lge_txeof(sc); 1098 1099 if (status & LGE_ISR_RXDMA_DONE) 1100 lge_rxeof(sc, LGE_RX_DMACNT(status)); 1101 1102 if (status & LGE_ISR_RXCMDFIFO_EMPTY) 1103 lge_rxeoc(sc); 1104 1105 if (status & LGE_ISR_PHY_INTR) { 1106 sc->lge_link = 0; 1107 callout_stop(&sc->lge_stat_callout); 1108 lge_tick(sc); 1109 } 1110 } 1111 1112 /* Re-enable interrupts. */ 1113 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); 1114 1115 if (ifp->if_snd.ifq_head != NULL) 1116 lge_start_locked(ifp); 1117 1118 LGE_UNLOCK(sc); 1119 return; 1120 } 1121 1122 /* 1123 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1124 * pointers to the fragment pointers. 1125 */ 1126 static int 1127 lge_encap(sc, m_head, txidx) 1128 struct lge_softc *sc; 1129 struct mbuf *m_head; 1130 u_int32_t *txidx; 1131 { 1132 struct lge_frag *f = NULL; 1133 struct lge_tx_desc *cur_tx; 1134 struct mbuf *m; 1135 int frag = 0, tot_len = 0; 1136 1137 /* 1138 * Start packing the mbufs in this chain into 1139 * the fragment pointers. Stop when we run out 1140 * of fragments or hit the end of the mbuf chain. 1141 */ 1142 m = m_head; 1143 cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; 1144 frag = 0; 1145 1146 for (m = m_head; m != NULL; m = m->m_next) { 1147 if (m->m_len != 0) { 1148 tot_len += m->m_len; 1149 f = &cur_tx->lge_frags[frag]; 1150 f->lge_fraglen = m->m_len; 1151 f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); 1152 f->lge_fragptr_hi = 0; 1153 frag++; 1154 } 1155 } 1156 1157 if (m != NULL) 1158 return(ENOBUFS); 1159 1160 cur_tx->lge_mbuf = m_head; 1161 cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; 1162 LGE_INC((*txidx), LGE_TX_LIST_CNT); 1163 1164 /* Queue for transmit */ 1165 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); 1166 1167 return(0); 1168 } 1169 1170 /* 1171 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1172 * to the mbuf data regions directly in the transmit lists. We also save a 1173 * copy of the pointers since the transmit list fragment pointers are 1174 * physical addresses. 1175 */ 1176 1177 static void 1178 lge_start(ifp) 1179 struct ifnet *ifp; 1180 { 1181 struct lge_softc *sc; 1182 1183 sc = ifp->if_softc; 1184 LGE_LOCK(sc); 1185 lge_start_locked(ifp); 1186 LGE_UNLOCK(sc); 1187 } 1188 1189 static void 1190 lge_start_locked(ifp) 1191 struct ifnet *ifp; 1192 { 1193 struct lge_softc *sc; 1194 struct mbuf *m_head = NULL; 1195 u_int32_t idx; 1196 1197 sc = ifp->if_softc; 1198 1199 if (!sc->lge_link) 1200 return; 1201 1202 idx = sc->lge_cdata.lge_tx_prod; 1203 1204 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) 1205 return; 1206 1207 while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { 1208 if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) 1209 break; 1210 1211 IF_DEQUEUE(&ifp->if_snd, m_head); 1212 if (m_head == NULL) 1213 break; 1214 1215 if (lge_encap(sc, m_head, &idx)) { 1216 IF_PREPEND(&ifp->if_snd, m_head); 1217 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1218 break; 1219 } 1220 1221 /* 1222 * If there's a BPF listener, bounce a copy of this frame 1223 * to him. 1224 */ 1225 BPF_MTAP(ifp, m_head); 1226 } 1227 1228 sc->lge_cdata.lge_tx_prod = idx; 1229 1230 /* 1231 * Set a timeout in case the chip goes out to lunch. 1232 */ 1233 sc->lge_timer = 5; 1234 1235 return; 1236 } 1237 1238 static void 1239 lge_init(xsc) 1240 void *xsc; 1241 { 1242 struct lge_softc *sc = xsc; 1243 1244 LGE_LOCK(sc); 1245 lge_init_locked(sc); 1246 LGE_UNLOCK(sc); 1247 } 1248 1249 static void 1250 lge_init_locked(sc) 1251 struct lge_softc *sc; 1252 { 1253 struct ifnet *ifp = sc->lge_ifp; 1254 1255 LGE_LOCK_ASSERT(sc); 1256 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1257 return; 1258 1259 /* 1260 * Cancel pending I/O and free all RX/TX buffers. 1261 */ 1262 lge_stop(sc); 1263 lge_reset(sc); 1264 1265 /* Set MAC address */ 1266 CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0])); 1267 CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4])); 1268 1269 /* Init circular RX list. */ 1270 if (lge_list_rx_init(sc) == ENOBUFS) { 1271 device_printf(sc->lge_dev, "initialization failed: no " 1272 "memory for rx buffers\n"); 1273 lge_stop(sc); 1274 return; 1275 } 1276 1277 /* 1278 * Init tx descriptors. 1279 */ 1280 lge_list_tx_init(sc); 1281 1282 /* Set initial value for MODE1 register. */ 1283 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST| 1284 LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD| 1285 LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0| 1286 LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2); 1287 1288 /* If we want promiscuous mode, set the allframes bit. */ 1289 if (ifp->if_flags & IFF_PROMISC) { 1290 CSR_WRITE_4(sc, LGE_MODE1, 1291 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC); 1292 } else { 1293 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); 1294 } 1295 1296 /* 1297 * Set the capture broadcast bit to capture broadcast frames. 1298 */ 1299 if (ifp->if_flags & IFF_BROADCAST) { 1300 CSR_WRITE_4(sc, LGE_MODE1, 1301 LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST); 1302 } else { 1303 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); 1304 } 1305 1306 /* Packet padding workaround? */ 1307 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); 1308 1309 /* No error frames */ 1310 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); 1311 1312 /* Receive large frames */ 1313 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS); 1314 1315 /* Workaround: disable RX/TX flow control */ 1316 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); 1317 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); 1318 1319 /* Make sure to strip CRC from received frames */ 1320 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); 1321 1322 /* Turn off magic packet mode */ 1323 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); 1324 1325 /* Turn off all VLAN stuff */ 1326 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX| 1327 LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT); 1328 1329 /* Workarond: FIFO overflow */ 1330 CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); 1331 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); 1332 1333 /* 1334 * Load the multicast filter. 1335 */ 1336 lge_setmulti(sc); 1337 1338 /* 1339 * Enable hardware checksum validation for all received IPv4 1340 * packets, do not reject packets with bad checksums. 1341 */ 1342 CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM| 1343 LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM| 1344 LGE_MODE2_RX_ERRCSUM); 1345 1346 /* 1347 * Enable the delivery of PHY interrupts based on 1348 * link/speed/duplex status chalges. 1349 */ 1350 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL); 1351 1352 /* Enable receiver and transmitter. */ 1353 CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); 1354 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB); 1355 1356 CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); 1357 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB); 1358 1359 /* 1360 * Enable interrupts. 1361 */ 1362 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0| 1363 LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS); 1364 1365 lge_ifmedia_upd_locked(ifp); 1366 1367 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1368 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1369 1370 callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc); 1371 1372 return; 1373 } 1374 1375 /* 1376 * Set media options. 1377 */ 1378 static int 1379 lge_ifmedia_upd(ifp) 1380 struct ifnet *ifp; 1381 { 1382 struct lge_softc *sc; 1383 1384 sc = ifp->if_softc; 1385 LGE_LOCK(sc); 1386 lge_ifmedia_upd_locked(ifp); 1387 LGE_UNLOCK(sc); 1388 1389 return(0); 1390 } 1391 1392 static void 1393 lge_ifmedia_upd_locked(ifp) 1394 struct ifnet *ifp; 1395 { 1396 struct lge_softc *sc; 1397 struct mii_data *mii; 1398 struct mii_softc *miisc; 1399 1400 sc = ifp->if_softc; 1401 1402 LGE_LOCK_ASSERT(sc); 1403 mii = device_get_softc(sc->lge_miibus); 1404 sc->lge_link = 0; 1405 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1406 PHY_RESET(miisc); 1407 mii_mediachg(mii); 1408 } 1409 1410 /* 1411 * Report current media status. 1412 */ 1413 static void 1414 lge_ifmedia_sts(ifp, ifmr) 1415 struct ifnet *ifp; 1416 struct ifmediareq *ifmr; 1417 { 1418 struct lge_softc *sc; 1419 struct mii_data *mii; 1420 1421 sc = ifp->if_softc; 1422 1423 LGE_LOCK(sc); 1424 mii = device_get_softc(sc->lge_miibus); 1425 mii_pollstat(mii); 1426 ifmr->ifm_active = mii->mii_media_active; 1427 ifmr->ifm_status = mii->mii_media_status; 1428 LGE_UNLOCK(sc); 1429 1430 return; 1431 } 1432 1433 static int 1434 lge_ioctl(ifp, command, data) 1435 struct ifnet *ifp; 1436 u_long command; 1437 caddr_t data; 1438 { 1439 struct lge_softc *sc = ifp->if_softc; 1440 struct ifreq *ifr = (struct ifreq *) data; 1441 struct mii_data *mii; 1442 int error = 0; 1443 1444 switch(command) { 1445 case SIOCSIFMTU: 1446 LGE_LOCK(sc); 1447 if (ifr->ifr_mtu > LGE_JUMBO_MTU) 1448 error = EINVAL; 1449 else 1450 ifp->if_mtu = ifr->ifr_mtu; 1451 LGE_UNLOCK(sc); 1452 break; 1453 case SIOCSIFFLAGS: 1454 LGE_LOCK(sc); 1455 if (ifp->if_flags & IFF_UP) { 1456 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1457 ifp->if_flags & IFF_PROMISC && 1458 !(sc->lge_if_flags & IFF_PROMISC)) { 1459 CSR_WRITE_4(sc, LGE_MODE1, 1460 LGE_MODE1_SETRST_CTL1| 1461 LGE_MODE1_RX_PROMISC); 1462 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1463 !(ifp->if_flags & IFF_PROMISC) && 1464 sc->lge_if_flags & IFF_PROMISC) { 1465 CSR_WRITE_4(sc, LGE_MODE1, 1466 LGE_MODE1_RX_PROMISC); 1467 } else { 1468 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1469 lge_init_locked(sc); 1470 } 1471 } else { 1472 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1473 lge_stop(sc); 1474 } 1475 sc->lge_if_flags = ifp->if_flags; 1476 LGE_UNLOCK(sc); 1477 error = 0; 1478 break; 1479 case SIOCADDMULTI: 1480 case SIOCDELMULTI: 1481 LGE_LOCK(sc); 1482 lge_setmulti(sc); 1483 LGE_UNLOCK(sc); 1484 error = 0; 1485 break; 1486 case SIOCGIFMEDIA: 1487 case SIOCSIFMEDIA: 1488 mii = device_get_softc(sc->lge_miibus); 1489 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1490 break; 1491 default: 1492 error = ether_ioctl(ifp, command, data); 1493 break; 1494 } 1495 1496 return(error); 1497 } 1498 1499 static void 1500 lge_watchdog(sc) 1501 struct lge_softc *sc; 1502 { 1503 struct ifnet *ifp; 1504 1505 LGE_LOCK_ASSERT(sc); 1506 ifp = sc->lge_ifp; 1507 1508 ifp->if_oerrors++; 1509 if_printf(ifp, "watchdog timeout\n"); 1510 1511 lge_stop(sc); 1512 lge_reset(sc); 1513 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1514 lge_init_locked(sc); 1515 1516 if (ifp->if_snd.ifq_head != NULL) 1517 lge_start_locked(ifp); 1518 } 1519 1520 /* 1521 * Stop the adapter and free any mbufs allocated to the 1522 * RX and TX lists. 1523 */ 1524 static void 1525 lge_stop(sc) 1526 struct lge_softc *sc; 1527 { 1528 register int i; 1529 struct ifnet *ifp; 1530 1531 LGE_LOCK_ASSERT(sc); 1532 ifp = sc->lge_ifp; 1533 sc->lge_timer = 0; 1534 callout_stop(&sc->lge_stat_callout); 1535 CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); 1536 1537 /* Disable receiver and transmitter. */ 1538 CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); 1539 sc->lge_link = 0; 1540 1541 /* 1542 * Free data in the RX lists. 1543 */ 1544 for (i = 0; i < LGE_RX_LIST_CNT; i++) { 1545 if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { 1546 m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); 1547 sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; 1548 } 1549 } 1550 bzero((char *)&sc->lge_ldata->lge_rx_list, 1551 sizeof(sc->lge_ldata->lge_rx_list)); 1552 1553 /* 1554 * Free the TX list buffers. 1555 */ 1556 for (i = 0; i < LGE_TX_LIST_CNT; i++) { 1557 if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { 1558 m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); 1559 sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; 1560 } 1561 } 1562 1563 bzero((char *)&sc->lge_ldata->lge_tx_list, 1564 sizeof(sc->lge_ldata->lge_tx_list)); 1565 1566 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1567 1568 return; 1569 } 1570 1571 /* 1572 * Stop all chip I/O so that the kernel's probe routines don't 1573 * get confused by errant DMAs when rebooting. 1574 */ 1575 static int 1576 lge_shutdown(dev) 1577 device_t dev; 1578 { 1579 struct lge_softc *sc; 1580 1581 sc = device_get_softc(dev); 1582 1583 LGE_LOCK(sc); 1584 lge_reset(sc); 1585 lge_stop(sc); 1586 LGE_UNLOCK(sc); 1587 1588 return (0); 1589 } 1590