xref: /freebsd/sys/dev/lge/if_lge.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 
80 #include <net/if.h>
81 #include <net/if_arp.h>
82 #include <net/ethernet.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 
86 #include <net/bpf.h>
87 
88 #include <vm/vm.h>              /* for vtophys */
89 #include <vm/pmap.h>            /* for vtophys */
90 #include <machine/clock.h>      /* for DELAY */
91 #include <machine/bus_pio.h>
92 #include <machine/bus_memio.h>
93 #include <machine/bus.h>
94 #include <machine/resource.h>
95 #include <sys/bus.h>
96 #include <sys/rman.h>
97 
98 #include <dev/mii/mii.h>
99 #include <dev/mii/miivar.h>
100 
101 #include <dev/pci/pcireg.h>
102 #include <dev/pci/pcivar.h>
103 
104 #define LGE_USEIOSPACE
105 
106 #include <dev/lge/if_lgereg.h>
107 
108 /* "controller miibus0" required.  See GENERIC if you get errors here. */
109 #include "miibus_if.h"
110 
111 /*
112  * Various supported device vendors/types and their names.
113  */
114 static struct lge_type lge_devs[] = {
115 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
116 	{ 0, 0, NULL }
117 };
118 
119 static int lge_probe(device_t);
120 static int lge_attach(device_t);
121 static int lge_detach(device_t);
122 
123 static int lge_alloc_jumbo_mem(struct lge_softc *);
124 static void lge_free_jumbo_mem(struct lge_softc *);
125 static void *lge_jalloc(struct lge_softc *);
126 static void lge_jfree(void *, void *);
127 
128 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
129 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
130 static void lge_rxeof(struct lge_softc *, int);
131 static void lge_rxeoc(struct lge_softc *);
132 static void lge_txeof(struct lge_softc *);
133 static void lge_intr(void *);
134 static void lge_tick(void *);
135 static void lge_start(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_stop(struct lge_softc *);
139 static void lge_watchdog(struct ifnet *);
140 static void lge_shutdown(device_t);
141 static int lge_ifmedia_upd(struct ifnet *);
142 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
143 
144 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
145 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
146 
147 static int lge_miibus_readreg(device_t, int, int);
148 static int lge_miibus_writereg(device_t, int, int, int);
149 static void lge_miibus_statchg(device_t);
150 
151 static void lge_setmulti(struct lge_softc *);
152 static u_int32_t lge_mchash(caddr_t);
153 static void lge_reset(struct lge_softc *);
154 static int lge_list_rx_init(struct lge_softc *);
155 static int lge_list_tx_init(struct lge_softc *);
156 
157 #ifdef LGE_USEIOSPACE
158 #define LGE_RES			SYS_RES_IOPORT
159 #define LGE_RID			LGE_PCI_LOIO
160 #else
161 #define LGE_RES			SYS_RES_MEMORY
162 #define LGE_RID			LGE_PCI_LOMEM
163 #endif
164 
165 static device_method_t lge_methods[] = {
166 	/* Device interface */
167 	DEVMETHOD(device_probe,		lge_probe),
168 	DEVMETHOD(device_attach,	lge_attach),
169 	DEVMETHOD(device_detach,	lge_detach),
170 	DEVMETHOD(device_shutdown,	lge_shutdown),
171 
172 	/* bus interface */
173 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
174 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
175 
176 	/* MII interface */
177 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
180 
181 	{ 0, 0 }
182 };
183 
184 static driver_t lge_driver = {
185 	"lge",
186 	lge_methods,
187 	sizeof(struct lge_softc)
188 };
189 
190 static devclass_t lge_devclass;
191 
192 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
193 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
194 MODULE_DEPEND(lge, pci, 1, 1, 1);
195 MODULE_DEPEND(lge, ether, 1, 1, 1);
196 MODULE_DEPEND(lge, miibus, 1, 1, 1);
197 
198 #define LGE_SETBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg,				\
204 		CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
211 
212 /*
213  * Read a word of data stored in the EEPROM at address 'addr.'
214  */
215 static void
216 lge_eeprom_getword(sc, addr, dest)
217 	struct lge_softc	*sc;
218 	int			addr;
219 	u_int16_t		*dest;
220 {
221 	register int		i;
222 	u_int32_t		val;
223 
224 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
225 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
226 
227 	for (i = 0; i < LGE_TIMEOUT; i++)
228 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
229 			break;
230 
231 	if (i == LGE_TIMEOUT) {
232 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
233 		return;
234 	}
235 
236 	val = CSR_READ_4(sc, LGE_EEDATA);
237 
238 	if (addr & 1)
239 		*dest = (val >> 16) & 0xFFFF;
240 	else
241 		*dest = val & 0xFFFF;
242 
243 	return;
244 }
245 
246 /*
247  * Read a sequence of words from the EEPROM.
248  */
249 static void
250 lge_read_eeprom(sc, dest, off, cnt, swap)
251 	struct lge_softc	*sc;
252 	caddr_t			dest;
253 	int			off;
254 	int			cnt;
255 	int			swap;
256 {
257 	int			i;
258 	u_int16_t		word = 0, *ptr;
259 
260 	for (i = 0; i < cnt; i++) {
261 		lge_eeprom_getword(sc, off + i, &word);
262 		ptr = (u_int16_t *)(dest + (i * 2));
263 		if (swap)
264 			*ptr = ntohs(word);
265 		else
266 			*ptr = word;
267 	}
268 
269 	return;
270 }
271 
272 static int
273 lge_miibus_readreg(dev, phy, reg)
274 	device_t		dev;
275 	int			phy, reg;
276 {
277 	struct lge_softc	*sc;
278 	int			i;
279 
280 	sc = device_get_softc(dev);
281 
282 	/*
283 	 * If we have a non-PCS PHY, pretend that the internal
284 	 * autoneg stuff at PHY address 0 isn't there so that
285 	 * the miibus code will find only the GMII PHY.
286 	 */
287 	if (sc->lge_pcs == 0 && phy == 0)
288 		return(0);
289 
290 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
291 
292 	for (i = 0; i < LGE_TIMEOUT; i++)
293 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
294 			break;
295 
296 	if (i == LGE_TIMEOUT) {
297 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
298 		return(0);
299 	}
300 
301 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
302 }
303 
304 static int
305 lge_miibus_writereg(dev, phy, reg, data)
306 	device_t		dev;
307 	int			phy, reg, data;
308 {
309 	struct lge_softc	*sc;
310 	int			i;
311 
312 	sc = device_get_softc(dev);
313 
314 	CSR_WRITE_4(sc, LGE_GMIICTL,
315 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
316 
317 	for (i = 0; i < LGE_TIMEOUT; i++)
318 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
319 			break;
320 
321 	if (i == LGE_TIMEOUT) {
322 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
323 		return(0);
324 	}
325 
326 	return(0);
327 }
328 
329 static void
330 lge_miibus_statchg(dev)
331 	device_t		dev;
332 {
333 	struct lge_softc	*sc;
334 	struct mii_data		*mii;
335 
336 	sc = device_get_softc(dev);
337 	mii = device_get_softc(sc->lge_miibus);
338 
339 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
340 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
341 	case IFM_1000_T:
342 	case IFM_1000_SX:
343 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
344 		break;
345 	case IFM_100_TX:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
347 		break;
348 	case IFM_10_T:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
350 		break;
351 	default:
352 		/*
353 		 * Choose something, even if it's wrong. Clearing
354 		 * all the bits will hose autoneg on the internal
355 		 * PHY.
356 		 */
357 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
358 		break;
359 	}
360 
361 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363 	} else {
364 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
365 	}
366 
367 	return;
368 }
369 
370 static u_int32_t
371 lge_mchash(addr)
372 	caddr_t		addr;
373 {
374 	u_int32_t	crc, carry;
375 	int		idx, bit;
376 	u_int8_t	data;
377 
378 	/* Compute CRC for the address value. */
379 	crc = 0xFFFFFFFF; /* initial value */
380 
381 	for (idx = 0; idx < 6; idx++) {
382 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
383 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
384 			crc <<= 1;
385 			if (carry)
386 				crc = (crc ^ 0x04c11db6) | carry;
387 		}
388 	}
389 
390 	/*
391 	 * return the filter bit position
392 	 */
393 	return((crc >> 26) & 0x0000003F);
394 }
395 
396 static void
397 lge_setmulti(sc)
398 	struct lge_softc	*sc;
399 {
400 	struct ifnet		*ifp;
401 	struct ifmultiaddr	*ifma;
402 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
403 
404 	ifp = &sc->arpcom.ac_if;
405 
406 	/* Make sure multicast hash table is enabled. */
407 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
408 
409 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
410 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
411 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
412 		return;
413 	}
414 
415 	/* first, zot all the existing hash bits */
416 	CSR_WRITE_4(sc, LGE_MAR0, 0);
417 	CSR_WRITE_4(sc, LGE_MAR1, 0);
418 
419 	/* now program new ones */
420 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
421 		if (ifma->ifma_addr->sa_family != AF_LINK)
422 			continue;
423 		h = lge_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
424 		if (h < 32)
425 			hashes[0] |= (1 << h);
426 		else
427 			hashes[1] |= (1 << (h - 32));
428 	}
429 
430 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
431 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
432 
433 	return;
434 }
435 
436 static void
437 lge_reset(sc)
438 	struct lge_softc	*sc;
439 {
440 	register int		i;
441 
442 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
443 
444 	for (i = 0; i < LGE_TIMEOUT; i++) {
445 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
446 			break;
447 	}
448 
449 	if (i == LGE_TIMEOUT)
450 		printf("lge%d: reset never completed\n", sc->lge_unit);
451 
452 	/* Wait a little while for the chip to get its brains in order. */
453 	DELAY(1000);
454 
455         return;
456 }
457 
458 /*
459  * Probe for a Level 1 chip. Check the PCI vendor and device
460  * IDs against our list and return a device name if we find a match.
461  */
462 static int
463 lge_probe(dev)
464 	device_t		dev;
465 {
466 	struct lge_type		*t;
467 
468 	t = lge_devs;
469 
470 	while(t->lge_name != NULL) {
471 		if ((pci_get_vendor(dev) == t->lge_vid) &&
472 		    (pci_get_device(dev) == t->lge_did)) {
473 			device_set_desc(dev, t->lge_name);
474 			return(0);
475 		}
476 		t++;
477 	}
478 
479 	return(ENXIO);
480 }
481 
482 /*
483  * Attach the interface. Allocate softc structures, do ifmedia
484  * setup and ethernet/BPF attach.
485  */
486 static int
487 lge_attach(dev)
488 	device_t		dev;
489 {
490 	int			s;
491 	u_char			eaddr[ETHER_ADDR_LEN];
492 	struct lge_softc	*sc;
493 	struct ifnet		*ifp;
494 	int			unit, error = 0, rid;
495 
496 	s = splimp();
497 
498 	sc = device_get_softc(dev);
499 	unit = device_get_unit(dev);
500 	bzero(sc, sizeof(struct lge_softc));
501 #ifndef BURN_BRIDGES
502 	/*
503 	 * Handle power management nonsense.
504 	 */
505 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
506 		u_int32_t		iobase, membase, irq;
507 
508 		/* Save important PCI config data. */
509 		iobase = pci_read_config(dev, LGE_PCI_LOIO, 4);
510 		membase = pci_read_config(dev, LGE_PCI_LOMEM, 4);
511 		irq = pci_read_config(dev, LGE_PCI_INTLINE, 4);
512 
513 		/* Reset the power state. */
514 		printf("lge%d: chip is in D%d power mode "
515 		    "-- setting to D0\n", unit,
516 		    pci_get_powerstate(dev));
517 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
518 
519 		/* Restore PCI config data. */
520 		pci_write_config(dev, LGE_PCI_LOIO, iobase, 4);
521 		pci_write_config(dev, LGE_PCI_LOMEM, membase, 4);
522 		pci_write_config(dev, LGE_PCI_INTLINE, irq, 4);
523 	}
524 #endif
525 	/*
526 	 * Map control/status registers.
527 	 */
528 	pci_enable_busmaster(dev);
529 
530 	rid = LGE_RID;
531 	sc->lge_res = bus_alloc_resource(dev, LGE_RES, &rid,
532 	    0, ~0, 1, RF_ACTIVE);
533 
534 	if (sc->lge_res == NULL) {
535 		printf("lge%d: couldn't map ports/memory\n", unit);
536 		error = ENXIO;
537 		goto fail;
538 	}
539 
540 	sc->lge_btag = rman_get_bustag(sc->lge_res);
541 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
542 
543 	/* Allocate interrupt */
544 	rid = 0;
545 	sc->lge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
546 	    RF_SHAREABLE | RF_ACTIVE);
547 
548 	if (sc->lge_irq == NULL) {
549 		printf("lge%d: couldn't map interrupt\n", unit);
550 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
551 		error = ENXIO;
552 		goto fail;
553 	}
554 
555 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
556 	    lge_intr, sc, &sc->lge_intrhand);
557 
558 	if (error) {
559 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
560 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
561 		printf("lge%d: couldn't set up irq\n", unit);
562 		goto fail;
563 	}
564 
565 	/* Reset the adapter. */
566 	lge_reset(sc);
567 
568 	/*
569 	 * Get station address from the EEPROM.
570 	 */
571 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
572 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
573 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
574 
575 	/*
576 	 * A Level 1 chip was detected. Inform the world.
577 	 */
578 	printf("lge%d: Ethernet address: %6D\n", unit, eaddr, ":");
579 
580 	sc->lge_unit = unit;
581 	callout_handle_init(&sc->lge_stat_ch);
582 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
583 
584 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
585 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
586 
587 	if (sc->lge_ldata == NULL) {
588 		printf("lge%d: no memory for list buffers!\n", unit);
589 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
590 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
591 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
592 		error = ENXIO;
593 		goto fail;
594 	}
595 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
596 
597 	/* Try to allocate memory for jumbo buffers. */
598 	if (lge_alloc_jumbo_mem(sc)) {
599 		printf("lge%d: jumbo buffer allocation failed\n",
600                     sc->lge_unit);
601 		contigfree(sc->lge_ldata,
602 		    sizeof(struct lge_list_data), M_DEVBUF);
603 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
604 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
605 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
606 		error = ENXIO;
607 		goto fail;
608 	}
609 
610 	ifp = &sc->arpcom.ac_if;
611 	ifp->if_softc = sc;
612 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
613 	ifp->if_mtu = ETHERMTU;
614 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
615 	ifp->if_ioctl = lge_ioctl;
616 	ifp->if_output = ether_output;
617 	ifp->if_start = lge_start;
618 	ifp->if_watchdog = lge_watchdog;
619 	ifp->if_init = lge_init;
620 	ifp->if_baudrate = 1000000000;
621 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
622 	ifp->if_capabilities = IFCAP_RXCSUM;
623 	ifp->if_capenable = ifp->if_capabilities;
624 
625 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
626 		sc->lge_pcs = 1;
627 	else
628 		sc->lge_pcs = 0;
629 
630 	/*
631 	 * Do MII setup.
632 	 */
633 	if (mii_phy_probe(dev, &sc->lge_miibus,
634 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
635 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
636 		contigfree(sc->lge_ldata,
637 		    sizeof(struct lge_list_data), M_DEVBUF);
638 		lge_free_jumbo_mem(sc);
639 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
640 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
641 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
642 		error = ENXIO;
643 		goto fail;
644 	}
645 
646 	/*
647 	 * Call MI attach routine.
648 	 */
649 	ether_ifattach(ifp, eaddr);
650 	callout_handle_init(&sc->lge_stat_ch);
651 
652 fail:
653 	splx(s);
654 	return(error);
655 }
656 
657 static int
658 lge_detach(dev)
659 	device_t		dev;
660 {
661 	struct lge_softc	*sc;
662 	struct ifnet		*ifp;
663 	int			s;
664 
665 	s = splimp();
666 
667 	sc = device_get_softc(dev);
668 	ifp = &sc->arpcom.ac_if;
669 
670 	lge_reset(sc);
671 	lge_stop(sc);
672 	ether_ifdetach(ifp);
673 
674 	bus_generic_detach(dev);
675 	device_delete_child(dev, sc->lge_miibus);
676 
677 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
678 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
679 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
680 
681 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
682 	lge_free_jumbo_mem(sc);
683 
684 	splx(s);
685 
686 	return(0);
687 }
688 
689 /*
690  * Initialize the transmit descriptors.
691  */
692 static int
693 lge_list_tx_init(sc)
694 	struct lge_softc	*sc;
695 {
696 	struct lge_list_data	*ld;
697 	struct lge_ring_data	*cd;
698 	int			i;
699 
700 	cd = &sc->lge_cdata;
701 	ld = sc->lge_ldata;
702 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
703 		ld->lge_tx_list[i].lge_mbuf = NULL;
704 		ld->lge_tx_list[i].lge_ctl = 0;
705 	}
706 
707 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
708 
709 	return(0);
710 }
711 
712 
713 /*
714  * Initialize the RX descriptors and allocate mbufs for them. Note that
715  * we arralge the descriptors in a closed ring, so that the last descriptor
716  * points back to the first.
717  */
718 static int
719 lge_list_rx_init(sc)
720 	struct lge_softc	*sc;
721 {
722 	struct lge_list_data	*ld;
723 	struct lge_ring_data	*cd;
724 	int			i;
725 
726 	ld = sc->lge_ldata;
727 	cd = &sc->lge_cdata;
728 
729 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
730 
731 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
732 
733 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
734 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
735 			break;
736 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
737 			return(ENOBUFS);
738 	}
739 
740 	/* Clear possible 'rx command queue empty' interrupt. */
741 	CSR_READ_4(sc, LGE_ISR);
742 
743 	return(0);
744 }
745 
746 /*
747  * Initialize an RX descriptor and attach an MBUF cluster.
748  */
749 static int
750 lge_newbuf(sc, c, m)
751 	struct lge_softc	*sc;
752 	struct lge_rx_desc	*c;
753 	struct mbuf		*m;
754 {
755 	struct mbuf		*m_new = NULL;
756 	caddr_t			*buf = NULL;
757 
758 	if (m == NULL) {
759 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
760 		if (m_new == NULL) {
761 			printf("lge%d: no memory for rx list "
762 			    "-- packet dropped!\n", sc->lge_unit);
763 			return(ENOBUFS);
764 		}
765 
766 		/* Allocate the jumbo buffer */
767 		buf = lge_jalloc(sc);
768 		if (buf == NULL) {
769 #ifdef LGE_VERBOSE
770 			printf("lge%d: jumbo allocation failed "
771 			    "-- packet dropped!\n", sc->lge_unit);
772 #endif
773 			m_freem(m_new);
774 			return(ENOBUFS);
775 		}
776 		/* Attach the buffer to the mbuf */
777 		m_new->m_data = (void *)buf;
778 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
779 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
780 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
781 	} else {
782 		m_new = m;
783 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
784 		m_new->m_data = m_new->m_ext.ext_buf;
785 	}
786 
787 	/*
788 	 * Adjust alignment so packet payload begins on a
789 	 * longword boundary. Mandatory for Alpha, useful on
790 	 * x86 too.
791 	*/
792 	m_adj(m_new, ETHER_ALIGN);
793 
794 	c->lge_mbuf = m_new;
795 	c->lge_fragptr_hi = 0;
796 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
797 	c->lge_fraglen = m_new->m_len;
798 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
799 	c->lge_sts = 0;
800 
801 	/*
802 	 * Put this buffer in the RX command FIFO. To do this,
803 	 * we just write the physical address of the descriptor
804 	 * into the RX descriptor address registers. Note that
805 	 * there are two registers, one high DWORD and one low
806 	 * DWORD, which lets us specify a 64-bit address if
807 	 * desired. We only use a 32-bit address for now.
808 	 * Writing to the low DWORD register is what actually
809 	 * causes the command to be issued, so we do that
810 	 * last.
811 	 */
812 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
813 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
814 
815 	return(0);
816 }
817 
818 static int
819 lge_alloc_jumbo_mem(sc)
820 	struct lge_softc	*sc;
821 {
822 	caddr_t			ptr;
823 	register int		i;
824 	struct lge_jpool_entry   *entry;
825 
826 	/* Grab a big chunk o' storage. */
827 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
828 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
829 
830 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
831 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
832 		return(ENOBUFS);
833 	}
834 
835 	SLIST_INIT(&sc->lge_jfree_listhead);
836 	SLIST_INIT(&sc->lge_jinuse_listhead);
837 
838 	/*
839 	 * Now divide it up into 9K pieces and save the addresses
840 	 * in an array.
841 	 */
842 	ptr = sc->lge_cdata.lge_jumbo_buf;
843 	for (i = 0; i < LGE_JSLOTS; i++) {
844 		sc->lge_cdata.lge_jslots[i] = ptr;
845 		ptr += LGE_JLEN;
846 		entry = malloc(sizeof(struct lge_jpool_entry),
847 		    M_DEVBUF, M_NOWAIT);
848 		if (entry == NULL) {
849 			printf("lge%d: no memory for jumbo "
850 			    "buffer queue!\n", sc->lge_unit);
851 			return(ENOBUFS);
852 		}
853 		entry->slot = i;
854 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
855 		    entry, jpool_entries);
856 	}
857 
858 	return(0);
859 }
860 
861 static void
862 lge_free_jumbo_mem(sc)
863 	struct lge_softc	*sc;
864 {
865 	int			i;
866 	struct lge_jpool_entry	*entry;
867 
868 	for (i = 0; i < LGE_JSLOTS; i++) {
869 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
870 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
871 		free(entry, M_DEVBUF);
872 	}
873 
874 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
875 
876 	return;
877 }
878 
879 /*
880  * Allocate a jumbo buffer.
881  */
882 static void *
883 lge_jalloc(sc)
884 	struct lge_softc	*sc;
885 {
886 	struct lge_jpool_entry   *entry;
887 
888 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
889 
890 	if (entry == NULL) {
891 #ifdef LGE_VERBOSE
892 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
893 #endif
894 		return(NULL);
895 	}
896 
897 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
898 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
899 	return(sc->lge_cdata.lge_jslots[entry->slot]);
900 }
901 
902 /*
903  * Release a jumbo buffer.
904  */
905 static void
906 lge_jfree(buf, args)
907 	void			*buf;
908 	void			*args;
909 {
910 	struct lge_softc	*sc;
911 	int		        i;
912 	struct lge_jpool_entry   *entry;
913 
914 	/* Extract the softc struct pointer. */
915 	sc = args;
916 
917 	if (sc == NULL)
918 		panic("lge_jfree: can't find softc pointer!");
919 
920 	/* calculate the slot this buffer belongs to */
921 	i = ((vm_offset_t)buf
922 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
923 
924 	if ((i < 0) || (i >= LGE_JSLOTS))
925 		panic("lge_jfree: asked to free buffer that we don't manage!");
926 
927 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
928 	if (entry == NULL)
929 		panic("lge_jfree: buffer not in use!");
930 	entry->slot = i;
931 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
932 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
933 
934 	return;
935 }
936 
937 /*
938  * A frame has been uploaded: pass the resulting mbuf chain up to
939  * the higher level protocols.
940  */
941 static void
942 lge_rxeof(sc, cnt)
943 	struct lge_softc	*sc;
944 	int			cnt;
945 {
946         struct mbuf		*m;
947         struct ifnet		*ifp;
948 	struct lge_rx_desc	*cur_rx;
949 	int			c, i, total_len = 0;
950 	u_int32_t		rxsts, rxctl;
951 
952 	ifp = &sc->arpcom.ac_if;
953 
954 	/* Find out how many frames were processed. */
955 	c = cnt;
956 	i = sc->lge_cdata.lge_rx_cons;
957 
958 	/* Suck them in. */
959 	while(c) {
960 		struct mbuf		*m0 = NULL;
961 
962 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
963 		rxctl = cur_rx->lge_ctl;
964 		rxsts = cur_rx->lge_sts;
965 		m = cur_rx->lge_mbuf;
966 		cur_rx->lge_mbuf = NULL;
967 		total_len = LGE_RXBYTES(cur_rx);
968 		LGE_INC(i, LGE_RX_LIST_CNT);
969 		c--;
970 
971 		/*
972 		 * If an error occurs, update stats, clear the
973 		 * status word and leave the mbuf cluster in place:
974 		 * it should simply get re-used next time this descriptor
975 	 	 * comes up in the ring.
976 		 */
977 		if (rxctl & LGE_RXCTL_ERRMASK) {
978 			ifp->if_ierrors++;
979 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
980 			continue;
981 		}
982 
983 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
984 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
985 			    ifp, NULL);
986 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
987 			if (m0 == NULL) {
988 				printf("lge%d: no receive buffers "
989 				    "available -- packet dropped!\n",
990 				    sc->lge_unit);
991 				ifp->if_ierrors++;
992 				continue;
993 			}
994 			m = m0;
995 		} else {
996 			m->m_pkthdr.rcvif = ifp;
997 			m->m_pkthdr.len = m->m_len = total_len;
998 		}
999 
1000 		ifp->if_ipackets++;
1001 
1002 		/* Do IP checksum checking. */
1003 		if (rxsts & LGE_RXSTS_ISIP)
1004 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1005 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
1006 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1007 		if ((rxsts & LGE_RXSTS_ISTCP &&
1008 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
1009 		    (rxsts & LGE_RXSTS_ISUDP &&
1010 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
1011 			m->m_pkthdr.csum_flags |=
1012 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1013 			m->m_pkthdr.csum_data = 0xffff;
1014 		}
1015 
1016 		(*ifp->if_input)(ifp, m);
1017 	}
1018 
1019 	sc->lge_cdata.lge_rx_cons = i;
1020 
1021 	return;
1022 }
1023 
1024 static void
1025 lge_rxeoc(sc)
1026 	struct lge_softc	*sc;
1027 {
1028 	struct ifnet		*ifp;
1029 
1030 	ifp = &sc->arpcom.ac_if;
1031 	ifp->if_flags &= ~IFF_RUNNING;
1032 	lge_init(sc);
1033 	return;
1034 }
1035 
1036 /*
1037  * A frame was downloaded to the chip. It's safe for us to clean up
1038  * the list buffers.
1039  */
1040 
1041 static void
1042 lge_txeof(sc)
1043 	struct lge_softc	*sc;
1044 {
1045 	struct lge_tx_desc	*cur_tx = NULL;
1046 	struct ifnet		*ifp;
1047 	u_int32_t		idx, txdone;
1048 
1049 	ifp = &sc->arpcom.ac_if;
1050 
1051 	/* Clear the timeout timer. */
1052 	ifp->if_timer = 0;
1053 
1054 	/*
1055 	 * Go through our tx list and free mbufs for those
1056 	 * frames that have been transmitted.
1057 	 */
1058 	idx = sc->lge_cdata.lge_tx_cons;
1059 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1060 
1061 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1062 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1063 
1064 		ifp->if_opackets++;
1065 		if (cur_tx->lge_mbuf != NULL) {
1066 			m_freem(cur_tx->lge_mbuf);
1067 			cur_tx->lge_mbuf = NULL;
1068 		}
1069 		cur_tx->lge_ctl = 0;
1070 
1071 		txdone--;
1072 		LGE_INC(idx, LGE_TX_LIST_CNT);
1073 		ifp->if_timer = 0;
1074 	}
1075 
1076 	sc->lge_cdata.lge_tx_cons = idx;
1077 
1078 	if (cur_tx != NULL)
1079 		ifp->if_flags &= ~IFF_OACTIVE;
1080 
1081 	return;
1082 }
1083 
1084 static void
1085 lge_tick(xsc)
1086 	void			*xsc;
1087 {
1088 	struct lge_softc	*sc;
1089 	struct mii_data		*mii;
1090 	struct ifnet		*ifp;
1091 	int			s;
1092 
1093 	s = splimp();
1094 
1095 	sc = xsc;
1096 	ifp = &sc->arpcom.ac_if;
1097 
1098 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1099 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1100 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1101 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1102 
1103 	if (!sc->lge_link) {
1104 		mii = device_get_softc(sc->lge_miibus);
1105 		mii_tick(mii);
1106 		if (mii->mii_media_status & IFM_ACTIVE &&
1107 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1108 			sc->lge_link++;
1109 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1110 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1111 				printf("lge%d: gigabit link up\n",
1112 				    sc->lge_unit);
1113 			if (ifp->if_snd.ifq_head != NULL)
1114 				lge_start(ifp);
1115 		}
1116 	}
1117 
1118 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1119 
1120 	splx(s);
1121 
1122 	return;
1123 }
1124 
1125 static void
1126 lge_intr(arg)
1127 	void			*arg;
1128 {
1129 	struct lge_softc	*sc;
1130 	struct ifnet		*ifp;
1131 	u_int32_t		status;
1132 
1133 	sc = arg;
1134 	ifp = &sc->arpcom.ac_if;
1135 
1136 	/* Supress unwanted interrupts */
1137 	if (!(ifp->if_flags & IFF_UP)) {
1138 		lge_stop(sc);
1139 		return;
1140 	}
1141 
1142 	for (;;) {
1143 		/*
1144 		 * Reading the ISR register clears all interrupts, and
1145 		 * clears the 'interrupts enabled' bit in the IMR
1146 		 * register.
1147 		 */
1148 		status = CSR_READ_4(sc, LGE_ISR);
1149 
1150 		if ((status & LGE_INTRS) == 0)
1151 			break;
1152 
1153 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1154 			lge_txeof(sc);
1155 
1156 		if (status & LGE_ISR_RXDMA_DONE)
1157 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1158 
1159 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1160 			lge_rxeoc(sc);
1161 
1162 		if (status & LGE_ISR_PHY_INTR) {
1163 			sc->lge_link = 0;
1164 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1165 			lge_tick(sc);
1166 		}
1167 	}
1168 
1169 	/* Re-enable interrupts. */
1170 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1171 
1172 	if (ifp->if_snd.ifq_head != NULL)
1173 		lge_start(ifp);
1174 
1175 	return;
1176 }
1177 
1178 /*
1179  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1180  * pointers to the fragment pointers.
1181  */
1182 static int
1183 lge_encap(sc, m_head, txidx)
1184 	struct lge_softc	*sc;
1185 	struct mbuf		*m_head;
1186 	u_int32_t		*txidx;
1187 {
1188 	struct lge_frag		*f = NULL;
1189 	struct lge_tx_desc	*cur_tx;
1190 	struct mbuf		*m;
1191 	int			frag = 0, tot_len = 0;
1192 
1193 	/*
1194  	 * Start packing the mbufs in this chain into
1195 	 * the fragment pointers. Stop when we run out
1196  	 * of fragments or hit the end of the mbuf chain.
1197 	 */
1198 	m = m_head;
1199 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1200 	frag = 0;
1201 
1202 	for (m = m_head; m != NULL; m = m->m_next) {
1203 		if (m->m_len != 0) {
1204 			tot_len += m->m_len;
1205 			f = &cur_tx->lge_frags[frag];
1206 			f->lge_fraglen = m->m_len;
1207 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1208 			f->lge_fragptr_hi = 0;
1209 			frag++;
1210 		}
1211 	}
1212 
1213 	if (m != NULL)
1214 		return(ENOBUFS);
1215 
1216 	cur_tx->lge_mbuf = m_head;
1217 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1218 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1219 
1220 	/* Queue for transmit */
1221 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1222 
1223 	return(0);
1224 }
1225 
1226 /*
1227  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1228  * to the mbuf data regions directly in the transmit lists. We also save a
1229  * copy of the pointers since the transmit list fragment pointers are
1230  * physical addresses.
1231  */
1232 
1233 static void
1234 lge_start(ifp)
1235 	struct ifnet		*ifp;
1236 {
1237 	struct lge_softc	*sc;
1238 	struct mbuf		*m_head = NULL;
1239 	u_int32_t		idx;
1240 
1241 	sc = ifp->if_softc;
1242 
1243 	if (!sc->lge_link)
1244 		return;
1245 
1246 	idx = sc->lge_cdata.lge_tx_prod;
1247 
1248 	if (ifp->if_flags & IFF_OACTIVE)
1249 		return;
1250 
1251 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1252 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1253 			break;
1254 
1255 		IF_DEQUEUE(&ifp->if_snd, m_head);
1256 		if (m_head == NULL)
1257 			break;
1258 
1259 		if (lge_encap(sc, m_head, &idx)) {
1260 			IF_PREPEND(&ifp->if_snd, m_head);
1261 			ifp->if_flags |= IFF_OACTIVE;
1262 			break;
1263 		}
1264 
1265 		/*
1266 		 * If there's a BPF listener, bounce a copy of this frame
1267 		 * to him.
1268 		 */
1269 		BPF_MTAP(ifp, m_head);
1270 	}
1271 
1272 	sc->lge_cdata.lge_tx_prod = idx;
1273 
1274 	/*
1275 	 * Set a timeout in case the chip goes out to lunch.
1276 	 */
1277 	ifp->if_timer = 5;
1278 
1279 	return;
1280 }
1281 
1282 static void
1283 lge_init(xsc)
1284 	void			*xsc;
1285 {
1286 	struct lge_softc	*sc = xsc;
1287 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1288 	struct mii_data		*mii;
1289 	int			s;
1290 
1291 	if (ifp->if_flags & IFF_RUNNING)
1292 		return;
1293 
1294 	s = splimp();
1295 
1296 	/*
1297 	 * Cancel pending I/O and free all RX/TX buffers.
1298 	 */
1299 	lge_stop(sc);
1300 	lge_reset(sc);
1301 
1302 	mii = device_get_softc(sc->lge_miibus);
1303 
1304 	/* Set MAC address */
1305 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1306 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1307 
1308 	/* Init circular RX list. */
1309 	if (lge_list_rx_init(sc) == ENOBUFS) {
1310 		printf("lge%d: initialization failed: no "
1311 		    "memory for rx buffers\n", sc->lge_unit);
1312 		lge_stop(sc);
1313 		(void)splx(s);
1314 		return;
1315 	}
1316 
1317 	/*
1318 	 * Init tx descriptors.
1319 	 */
1320 	lge_list_tx_init(sc);
1321 
1322 	/* Set initial value for MODE1 register. */
1323 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1324 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1325 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1326 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1327 
1328 	 /* If we want promiscuous mode, set the allframes bit. */
1329 	if (ifp->if_flags & IFF_PROMISC) {
1330 		CSR_WRITE_4(sc, LGE_MODE1,
1331 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1332 	} else {
1333 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1334 	}
1335 
1336 	/*
1337 	 * Set the capture broadcast bit to capture broadcast frames.
1338 	 */
1339 	if (ifp->if_flags & IFF_BROADCAST) {
1340 		CSR_WRITE_4(sc, LGE_MODE1,
1341 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1342 	} else {
1343 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1344 	}
1345 
1346 	/* Packet padding workaround? */
1347 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1348 
1349 	/* No error frames */
1350 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1351 
1352 	/* Receive large frames */
1353 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1354 
1355 	/* Workaround: disable RX/TX flow control */
1356 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1357 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1358 
1359 	/* Make sure to strip CRC from received frames */
1360 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1361 
1362 	/* Turn off magic packet mode */
1363 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1364 
1365 	/* Turn off all VLAN stuff */
1366 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1367 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1368 
1369 	/* Workarond: FIFO overflow */
1370 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1371 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1372 
1373 	/*
1374 	 * Load the multicast filter.
1375 	 */
1376 	lge_setmulti(sc);
1377 
1378 	/*
1379 	 * Enable hardware checksum validation for all received IPv4
1380 	 * packets, do not reject packets with bad checksums.
1381 	 */
1382 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1383 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1384 	    LGE_MODE2_RX_ERRCSUM);
1385 
1386 	/*
1387 	 * Enable the delivery of PHY interrupts based on
1388 	 * link/speed/duplex status chalges.
1389 	 */
1390 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1391 
1392 	/* Enable receiver and transmitter. */
1393 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1394 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1395 
1396 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1397 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1398 
1399 	/*
1400 	 * Enable interrupts.
1401 	 */
1402 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1403 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1404 
1405 	lge_ifmedia_upd(ifp);
1406 
1407 	ifp->if_flags |= IFF_RUNNING;
1408 	ifp->if_flags &= ~IFF_OACTIVE;
1409 
1410 	(void)splx(s);
1411 
1412 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1413 
1414 	return;
1415 }
1416 
1417 /*
1418  * Set media options.
1419  */
1420 static int
1421 lge_ifmedia_upd(ifp)
1422 	struct ifnet		*ifp;
1423 {
1424 	struct lge_softc	*sc;
1425 	struct mii_data		*mii;
1426 
1427 	sc = ifp->if_softc;
1428 
1429 	mii = device_get_softc(sc->lge_miibus);
1430 	sc->lge_link = 0;
1431 	if (mii->mii_instance) {
1432 		struct mii_softc	*miisc;
1433 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1434 		    miisc = LIST_NEXT(miisc, mii_list))
1435 			mii_phy_reset(miisc);
1436 	}
1437 	mii_mediachg(mii);
1438 
1439 	return(0);
1440 }
1441 
1442 /*
1443  * Report current media status.
1444  */
1445 static void
1446 lge_ifmedia_sts(ifp, ifmr)
1447 	struct ifnet		*ifp;
1448 	struct ifmediareq	*ifmr;
1449 {
1450 	struct lge_softc	*sc;
1451 	struct mii_data		*mii;
1452 
1453 	sc = ifp->if_softc;
1454 
1455 	mii = device_get_softc(sc->lge_miibus);
1456 	mii_pollstat(mii);
1457 	ifmr->ifm_active = mii->mii_media_active;
1458 	ifmr->ifm_status = mii->mii_media_status;
1459 
1460 	return;
1461 }
1462 
1463 static int
1464 lge_ioctl(ifp, command, data)
1465 	struct ifnet		*ifp;
1466 	u_long			command;
1467 	caddr_t			data;
1468 {
1469 	struct lge_softc	*sc = ifp->if_softc;
1470 	struct ifreq		*ifr = (struct ifreq *) data;
1471 	struct mii_data		*mii;
1472 	int			s, error = 0;
1473 
1474 	s = splimp();
1475 
1476 	switch(command) {
1477 	case SIOCSIFMTU:
1478 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1479 			error = EINVAL;
1480 		else
1481 			ifp->if_mtu = ifr->ifr_mtu;
1482 		break;
1483 	case SIOCSIFFLAGS:
1484 		if (ifp->if_flags & IFF_UP) {
1485 			if (ifp->if_flags & IFF_RUNNING &&
1486 			    ifp->if_flags & IFF_PROMISC &&
1487 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1488 				CSR_WRITE_4(sc, LGE_MODE1,
1489 				    LGE_MODE1_SETRST_CTL1|
1490 				    LGE_MODE1_RX_PROMISC);
1491 			} else if (ifp->if_flags & IFF_RUNNING &&
1492 			    !(ifp->if_flags & IFF_PROMISC) &&
1493 			    sc->lge_if_flags & IFF_PROMISC) {
1494 				CSR_WRITE_4(sc, LGE_MODE1,
1495 				    LGE_MODE1_RX_PROMISC);
1496 			} else {
1497 				ifp->if_flags &= ~IFF_RUNNING;
1498 				lge_init(sc);
1499 			}
1500 		} else {
1501 			if (ifp->if_flags & IFF_RUNNING)
1502 				lge_stop(sc);
1503 		}
1504 		sc->lge_if_flags = ifp->if_flags;
1505 		error = 0;
1506 		break;
1507 	case SIOCADDMULTI:
1508 	case SIOCDELMULTI:
1509 		lge_setmulti(sc);
1510 		error = 0;
1511 		break;
1512 	case SIOCGIFMEDIA:
1513 	case SIOCSIFMEDIA:
1514 		mii = device_get_softc(sc->lge_miibus);
1515 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1516 		break;
1517 	default:
1518 		error = ether_ioctl(ifp, command, data);
1519 		break;
1520 	}
1521 
1522 	(void)splx(s);
1523 
1524 	return(error);
1525 }
1526 
1527 static void
1528 lge_watchdog(ifp)
1529 	struct ifnet		*ifp;
1530 {
1531 	struct lge_softc	*sc;
1532 
1533 	sc = ifp->if_softc;
1534 
1535 	ifp->if_oerrors++;
1536 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1537 
1538 	lge_stop(sc);
1539 	lge_reset(sc);
1540 	ifp->if_flags &= ~IFF_RUNNING;
1541 	lge_init(sc);
1542 
1543 	if (ifp->if_snd.ifq_head != NULL)
1544 		lge_start(ifp);
1545 
1546 	return;
1547 }
1548 
1549 /*
1550  * Stop the adapter and free any mbufs allocated to the
1551  * RX and TX lists.
1552  */
1553 static void
1554 lge_stop(sc)
1555 	struct lge_softc	*sc;
1556 {
1557 	register int		i;
1558 	struct ifnet		*ifp;
1559 
1560 	ifp = &sc->arpcom.ac_if;
1561 	ifp->if_timer = 0;
1562 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1563 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1564 
1565 	/* Disable receiver and transmitter. */
1566 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1567 	sc->lge_link = 0;
1568 
1569 	/*
1570 	 * Free data in the RX lists.
1571 	 */
1572 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1573 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1574 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1575 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1576 		}
1577 	}
1578 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1579 		sizeof(sc->lge_ldata->lge_rx_list));
1580 
1581 	/*
1582 	 * Free the TX list buffers.
1583 	 */
1584 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1585 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1586 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1587 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1588 		}
1589 	}
1590 
1591 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1592 		sizeof(sc->lge_ldata->lge_tx_list));
1593 
1594 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1595 
1596 	return;
1597 }
1598 
1599 /*
1600  * Stop all chip I/O so that the kernel's probe routines don't
1601  * get confused by errant DMAs when rebooting.
1602  */
1603 static void
1604 lge_shutdown(dev)
1605 	device_t		dev;
1606 {
1607 	struct lge_softc	*sc;
1608 
1609 	sc = device_get_softc(dev);
1610 
1611 	lge_reset(sc);
1612 	lge_stop(sc);
1613 
1614 	return;
1615 }
1616