xref: /freebsd/sys/dev/lge/if_lge.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/module.h>
79 #include <sys/socket.h>
80 
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 
87 #include <net/bpf.h>
88 
89 #include <vm/vm.h>              /* for vtophys */
90 #include <vm/pmap.h>            /* for vtophys */
91 #include <machine/clock.h>      /* for DELAY */
92 #include <machine/bus_pio.h>
93 #include <machine/bus_memio.h>
94 #include <machine/bus.h>
95 #include <machine/resource.h>
96 #include <sys/bus.h>
97 #include <sys/rman.h>
98 
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101 
102 #include <dev/pci/pcireg.h>
103 #include <dev/pci/pcivar.h>
104 
105 #define LGE_USEIOSPACE
106 
107 #include <dev/lge/if_lgereg.h>
108 
109 /* "controller miibus0" required.  See GENERIC if you get errors here. */
110 #include "miibus_if.h"
111 
112 /*
113  * Various supported device vendors/types and their names.
114  */
115 static struct lge_type lge_devs[] = {
116 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
117 	{ 0, 0, NULL }
118 };
119 
120 static int lge_probe(device_t);
121 static int lge_attach(device_t);
122 static int lge_detach(device_t);
123 
124 static int lge_alloc_jumbo_mem(struct lge_softc *);
125 static void lge_free_jumbo_mem(struct lge_softc *);
126 static void *lge_jalloc(struct lge_softc *);
127 static void lge_jfree(void *, void *);
128 
129 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
130 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
131 static void lge_rxeof(struct lge_softc *, int);
132 static void lge_rxeoc(struct lge_softc *);
133 static void lge_txeof(struct lge_softc *);
134 static void lge_intr(void *);
135 static void lge_tick(void *);
136 static void lge_start(struct ifnet *);
137 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
138 static void lge_init(void *);
139 static void lge_stop(struct lge_softc *);
140 static void lge_watchdog(struct ifnet *);
141 static void lge_shutdown(device_t);
142 static int lge_ifmedia_upd(struct ifnet *);
143 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
144 
145 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
146 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
147 
148 static int lge_miibus_readreg(device_t, int, int);
149 static int lge_miibus_writereg(device_t, int, int, int);
150 static void lge_miibus_statchg(device_t);
151 
152 static void lge_setmulti(struct lge_softc *);
153 static void lge_reset(struct lge_softc *);
154 static int lge_list_rx_init(struct lge_softc *);
155 static int lge_list_tx_init(struct lge_softc *);
156 
157 #ifdef LGE_USEIOSPACE
158 #define LGE_RES			SYS_RES_IOPORT
159 #define LGE_RID			LGE_PCI_LOIO
160 #else
161 #define LGE_RES			SYS_RES_MEMORY
162 #define LGE_RID			LGE_PCI_LOMEM
163 #endif
164 
165 static device_method_t lge_methods[] = {
166 	/* Device interface */
167 	DEVMETHOD(device_probe,		lge_probe),
168 	DEVMETHOD(device_attach,	lge_attach),
169 	DEVMETHOD(device_detach,	lge_detach),
170 	DEVMETHOD(device_shutdown,	lge_shutdown),
171 
172 	/* bus interface */
173 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
174 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
175 
176 	/* MII interface */
177 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
180 
181 	{ 0, 0 }
182 };
183 
184 static driver_t lge_driver = {
185 	"lge",
186 	lge_methods,
187 	sizeof(struct lge_softc)
188 };
189 
190 static devclass_t lge_devclass;
191 
192 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
193 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
194 MODULE_DEPEND(lge, pci, 1, 1, 1);
195 MODULE_DEPEND(lge, ether, 1, 1, 1);
196 MODULE_DEPEND(lge, miibus, 1, 1, 1);
197 
198 #define LGE_SETBIT(sc, reg, x)				\
199 	CSR_WRITE_4(sc, reg,				\
200 		CSR_READ_4(sc, reg) | (x))
201 
202 #define LGE_CLRBIT(sc, reg, x)				\
203 	CSR_WRITE_4(sc, reg,				\
204 		CSR_READ_4(sc, reg) & ~(x))
205 
206 #define SIO_SET(x)					\
207 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
208 
209 #define SIO_CLR(x)					\
210 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
211 
212 /*
213  * Read a word of data stored in the EEPROM at address 'addr.'
214  */
215 static void
216 lge_eeprom_getword(sc, addr, dest)
217 	struct lge_softc	*sc;
218 	int			addr;
219 	u_int16_t		*dest;
220 {
221 	register int		i;
222 	u_int32_t		val;
223 
224 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
225 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
226 
227 	for (i = 0; i < LGE_TIMEOUT; i++)
228 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
229 			break;
230 
231 	if (i == LGE_TIMEOUT) {
232 		printf("lge%d: EEPROM read timed out\n", sc->lge_unit);
233 		return;
234 	}
235 
236 	val = CSR_READ_4(sc, LGE_EEDATA);
237 
238 	if (addr & 1)
239 		*dest = (val >> 16) & 0xFFFF;
240 	else
241 		*dest = val & 0xFFFF;
242 
243 	return;
244 }
245 
246 /*
247  * Read a sequence of words from the EEPROM.
248  */
249 static void
250 lge_read_eeprom(sc, dest, off, cnt, swap)
251 	struct lge_softc	*sc;
252 	caddr_t			dest;
253 	int			off;
254 	int			cnt;
255 	int			swap;
256 {
257 	int			i;
258 	u_int16_t		word = 0, *ptr;
259 
260 	for (i = 0; i < cnt; i++) {
261 		lge_eeprom_getword(sc, off + i, &word);
262 		ptr = (u_int16_t *)(dest + (i * 2));
263 		if (swap)
264 			*ptr = ntohs(word);
265 		else
266 			*ptr = word;
267 	}
268 
269 	return;
270 }
271 
272 static int
273 lge_miibus_readreg(dev, phy, reg)
274 	device_t		dev;
275 	int			phy, reg;
276 {
277 	struct lge_softc	*sc;
278 	int			i;
279 
280 	sc = device_get_softc(dev);
281 
282 	/*
283 	 * If we have a non-PCS PHY, pretend that the internal
284 	 * autoneg stuff at PHY address 0 isn't there so that
285 	 * the miibus code will find only the GMII PHY.
286 	 */
287 	if (sc->lge_pcs == 0 && phy == 0)
288 		return(0);
289 
290 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
291 
292 	for (i = 0; i < LGE_TIMEOUT; i++)
293 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
294 			break;
295 
296 	if (i == LGE_TIMEOUT) {
297 		printf("lge%d: PHY read timed out\n", sc->lge_unit);
298 		return(0);
299 	}
300 
301 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
302 }
303 
304 static int
305 lge_miibus_writereg(dev, phy, reg, data)
306 	device_t		dev;
307 	int			phy, reg, data;
308 {
309 	struct lge_softc	*sc;
310 	int			i;
311 
312 	sc = device_get_softc(dev);
313 
314 	CSR_WRITE_4(sc, LGE_GMIICTL,
315 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
316 
317 	for (i = 0; i < LGE_TIMEOUT; i++)
318 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
319 			break;
320 
321 	if (i == LGE_TIMEOUT) {
322 		printf("lge%d: PHY write timed out\n", sc->lge_unit);
323 		return(0);
324 	}
325 
326 	return(0);
327 }
328 
329 static void
330 lge_miibus_statchg(dev)
331 	device_t		dev;
332 {
333 	struct lge_softc	*sc;
334 	struct mii_data		*mii;
335 
336 	sc = device_get_softc(dev);
337 	mii = device_get_softc(sc->lge_miibus);
338 
339 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
340 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
341 	case IFM_1000_T:
342 	case IFM_1000_SX:
343 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
344 		break;
345 	case IFM_100_TX:
346 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
347 		break;
348 	case IFM_10_T:
349 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
350 		break;
351 	default:
352 		/*
353 		 * Choose something, even if it's wrong. Clearing
354 		 * all the bits will hose autoneg on the internal
355 		 * PHY.
356 		 */
357 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
358 		break;
359 	}
360 
361 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
362 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
363 	} else {
364 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
365 	}
366 
367 	return;
368 }
369 
370 static void
371 lge_setmulti(sc)
372 	struct lge_softc	*sc;
373 {
374 	struct ifnet		*ifp;
375 	struct ifmultiaddr	*ifma;
376 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
377 
378 	ifp = &sc->arpcom.ac_if;
379 
380 	/* Make sure multicast hash table is enabled. */
381 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
382 
383 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
384 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
385 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
386 		return;
387 	}
388 
389 	/* first, zot all the existing hash bits */
390 	CSR_WRITE_4(sc, LGE_MAR0, 0);
391 	CSR_WRITE_4(sc, LGE_MAR1, 0);
392 
393 	/* now program new ones */
394 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
395 		if (ifma->ifma_addr->sa_family != AF_LINK)
396 			continue;
397 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
398 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
399 		if (h < 32)
400 			hashes[0] |= (1 << h);
401 		else
402 			hashes[1] |= (1 << (h - 32));
403 	}
404 
405 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
406 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
407 
408 	return;
409 }
410 
411 static void
412 lge_reset(sc)
413 	struct lge_softc	*sc;
414 {
415 	register int		i;
416 
417 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
418 
419 	for (i = 0; i < LGE_TIMEOUT; i++) {
420 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
421 			break;
422 	}
423 
424 	if (i == LGE_TIMEOUT)
425 		printf("lge%d: reset never completed\n", sc->lge_unit);
426 
427 	/* Wait a little while for the chip to get its brains in order. */
428 	DELAY(1000);
429 
430         return;
431 }
432 
433 /*
434  * Probe for a Level 1 chip. Check the PCI vendor and device
435  * IDs against our list and return a device name if we find a match.
436  */
437 static int
438 lge_probe(dev)
439 	device_t		dev;
440 {
441 	struct lge_type		*t;
442 
443 	t = lge_devs;
444 
445 	while(t->lge_name != NULL) {
446 		if ((pci_get_vendor(dev) == t->lge_vid) &&
447 		    (pci_get_device(dev) == t->lge_did)) {
448 			device_set_desc(dev, t->lge_name);
449 			return(0);
450 		}
451 		t++;
452 	}
453 
454 	return(ENXIO);
455 }
456 
457 /*
458  * Attach the interface. Allocate softc structures, do ifmedia
459  * setup and ethernet/BPF attach.
460  */
461 static int
462 lge_attach(dev)
463 	device_t		dev;
464 {
465 	int			s;
466 	u_char			eaddr[ETHER_ADDR_LEN];
467 	struct lge_softc	*sc;
468 	struct ifnet		*ifp;
469 	int			unit, error = 0, rid;
470 
471 	s = splimp();
472 
473 	sc = device_get_softc(dev);
474 	unit = device_get_unit(dev);
475 	bzero(sc, sizeof(struct lge_softc));
476 	/*
477 	 * Map control/status registers.
478 	 */
479 	pci_enable_busmaster(dev);
480 
481 	rid = LGE_RID;
482 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
483 
484 	if (sc->lge_res == NULL) {
485 		printf("lge%d: couldn't map ports/memory\n", unit);
486 		error = ENXIO;
487 		goto fail;
488 	}
489 
490 	sc->lge_btag = rman_get_bustag(sc->lge_res);
491 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
492 
493 	/* Allocate interrupt */
494 	rid = 0;
495 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
496 	    RF_SHAREABLE | RF_ACTIVE);
497 
498 	if (sc->lge_irq == NULL) {
499 		printf("lge%d: couldn't map interrupt\n", unit);
500 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
501 		error = ENXIO;
502 		goto fail;
503 	}
504 
505 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET,
506 	    lge_intr, sc, &sc->lge_intrhand);
507 
508 	if (error) {
509 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
510 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
511 		printf("lge%d: couldn't set up irq\n", unit);
512 		goto fail;
513 	}
514 
515 	/* Reset the adapter. */
516 	lge_reset(sc);
517 
518 	/*
519 	 * Get station address from the EEPROM.
520 	 */
521 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
522 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
523 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
524 
525 	sc->lge_unit = unit;
526 	callout_handle_init(&sc->lge_stat_ch);
527 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
528 
529 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
530 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
531 
532 	if (sc->lge_ldata == NULL) {
533 		printf("lge%d: no memory for list buffers!\n", unit);
534 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
535 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
536 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
537 		error = ENXIO;
538 		goto fail;
539 	}
540 	bzero(sc->lge_ldata, sizeof(struct lge_list_data));
541 
542 	/* Try to allocate memory for jumbo buffers. */
543 	if (lge_alloc_jumbo_mem(sc)) {
544 		printf("lge%d: jumbo buffer allocation failed\n",
545                     sc->lge_unit);
546 		contigfree(sc->lge_ldata,
547 		    sizeof(struct lge_list_data), M_DEVBUF);
548 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
549 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
550 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
551 		error = ENXIO;
552 		goto fail;
553 	}
554 
555 	ifp = &sc->arpcom.ac_if;
556 	ifp->if_softc = sc;
557 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
558 	ifp->if_mtu = ETHERMTU;
559 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
560 	ifp->if_ioctl = lge_ioctl;
561 	ifp->if_start = lge_start;
562 	ifp->if_watchdog = lge_watchdog;
563 	ifp->if_init = lge_init;
564 	ifp->if_baudrate = 1000000000;
565 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
566 	ifp->if_capabilities = IFCAP_RXCSUM;
567 	ifp->if_capenable = ifp->if_capabilities;
568 
569 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
570 		sc->lge_pcs = 1;
571 	else
572 		sc->lge_pcs = 0;
573 
574 	/*
575 	 * Do MII setup.
576 	 */
577 	if (mii_phy_probe(dev, &sc->lge_miibus,
578 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
579 		printf("lge%d: MII without any PHY!\n", sc->lge_unit);
580 		contigfree(sc->lge_ldata,
581 		    sizeof(struct lge_list_data), M_DEVBUF);
582 		lge_free_jumbo_mem(sc);
583 		bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
584 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
585 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
586 		error = ENXIO;
587 		goto fail;
588 	}
589 
590 	/*
591 	 * Call MI attach routine.
592 	 */
593 	ether_ifattach(ifp, eaddr);
594 	callout_handle_init(&sc->lge_stat_ch);
595 
596 fail:
597 	splx(s);
598 	return(error);
599 }
600 
601 static int
602 lge_detach(dev)
603 	device_t		dev;
604 {
605 	struct lge_softc	*sc;
606 	struct ifnet		*ifp;
607 	int			s;
608 
609 	s = splimp();
610 
611 	sc = device_get_softc(dev);
612 	ifp = &sc->arpcom.ac_if;
613 
614 	lge_reset(sc);
615 	lge_stop(sc);
616 	ether_ifdetach(ifp);
617 
618 	bus_generic_detach(dev);
619 	device_delete_child(dev, sc->lge_miibus);
620 
621 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
622 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
623 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
624 
625 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
626 	lge_free_jumbo_mem(sc);
627 
628 	splx(s);
629 
630 	return(0);
631 }
632 
633 /*
634  * Initialize the transmit descriptors.
635  */
636 static int
637 lge_list_tx_init(sc)
638 	struct lge_softc	*sc;
639 {
640 	struct lge_list_data	*ld;
641 	struct lge_ring_data	*cd;
642 	int			i;
643 
644 	cd = &sc->lge_cdata;
645 	ld = sc->lge_ldata;
646 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
647 		ld->lge_tx_list[i].lge_mbuf = NULL;
648 		ld->lge_tx_list[i].lge_ctl = 0;
649 	}
650 
651 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
652 
653 	return(0);
654 }
655 
656 
657 /*
658  * Initialize the RX descriptors and allocate mbufs for them. Note that
659  * we arralge the descriptors in a closed ring, so that the last descriptor
660  * points back to the first.
661  */
662 static int
663 lge_list_rx_init(sc)
664 	struct lge_softc	*sc;
665 {
666 	struct lge_list_data	*ld;
667 	struct lge_ring_data	*cd;
668 	int			i;
669 
670 	ld = sc->lge_ldata;
671 	cd = &sc->lge_cdata;
672 
673 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
674 
675 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
676 
677 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
678 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
679 			break;
680 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
681 			return(ENOBUFS);
682 	}
683 
684 	/* Clear possible 'rx command queue empty' interrupt. */
685 	CSR_READ_4(sc, LGE_ISR);
686 
687 	return(0);
688 }
689 
690 /*
691  * Initialize an RX descriptor and attach an MBUF cluster.
692  */
693 static int
694 lge_newbuf(sc, c, m)
695 	struct lge_softc	*sc;
696 	struct lge_rx_desc	*c;
697 	struct mbuf		*m;
698 {
699 	struct mbuf		*m_new = NULL;
700 	caddr_t			*buf = NULL;
701 
702 	if (m == NULL) {
703 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
704 		if (m_new == NULL) {
705 			printf("lge%d: no memory for rx list "
706 			    "-- packet dropped!\n", sc->lge_unit);
707 			return(ENOBUFS);
708 		}
709 
710 		/* Allocate the jumbo buffer */
711 		buf = lge_jalloc(sc);
712 		if (buf == NULL) {
713 #ifdef LGE_VERBOSE
714 			printf("lge%d: jumbo allocation failed "
715 			    "-- packet dropped!\n", sc->lge_unit);
716 #endif
717 			m_freem(m_new);
718 			return(ENOBUFS);
719 		}
720 		/* Attach the buffer to the mbuf */
721 		m_new->m_data = (void *)buf;
722 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
723 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
724 		    (struct lge_softc *)sc, 0, EXT_NET_DRV);
725 	} else {
726 		m_new = m;
727 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
728 		m_new->m_data = m_new->m_ext.ext_buf;
729 	}
730 
731 	/*
732 	 * Adjust alignment so packet payload begins on a
733 	 * longword boundary. Mandatory for Alpha, useful on
734 	 * x86 too.
735 	*/
736 	m_adj(m_new, ETHER_ALIGN);
737 
738 	c->lge_mbuf = m_new;
739 	c->lge_fragptr_hi = 0;
740 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
741 	c->lge_fraglen = m_new->m_len;
742 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
743 	c->lge_sts = 0;
744 
745 	/*
746 	 * Put this buffer in the RX command FIFO. To do this,
747 	 * we just write the physical address of the descriptor
748 	 * into the RX descriptor address registers. Note that
749 	 * there are two registers, one high DWORD and one low
750 	 * DWORD, which lets us specify a 64-bit address if
751 	 * desired. We only use a 32-bit address for now.
752 	 * Writing to the low DWORD register is what actually
753 	 * causes the command to be issued, so we do that
754 	 * last.
755 	 */
756 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
757 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
758 
759 	return(0);
760 }
761 
762 static int
763 lge_alloc_jumbo_mem(sc)
764 	struct lge_softc	*sc;
765 {
766 	caddr_t			ptr;
767 	register int		i;
768 	struct lge_jpool_entry   *entry;
769 
770 	/* Grab a big chunk o' storage. */
771 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
772 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
773 
774 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
775 		printf("lge%d: no memory for jumbo buffers!\n", sc->lge_unit);
776 		return(ENOBUFS);
777 	}
778 
779 	SLIST_INIT(&sc->lge_jfree_listhead);
780 	SLIST_INIT(&sc->lge_jinuse_listhead);
781 
782 	/*
783 	 * Now divide it up into 9K pieces and save the addresses
784 	 * in an array.
785 	 */
786 	ptr = sc->lge_cdata.lge_jumbo_buf;
787 	for (i = 0; i < LGE_JSLOTS; i++) {
788 		sc->lge_cdata.lge_jslots[i] = ptr;
789 		ptr += LGE_JLEN;
790 		entry = malloc(sizeof(struct lge_jpool_entry),
791 		    M_DEVBUF, M_NOWAIT);
792 		if (entry == NULL) {
793 			printf("lge%d: no memory for jumbo "
794 			    "buffer queue!\n", sc->lge_unit);
795 			return(ENOBUFS);
796 		}
797 		entry->slot = i;
798 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
799 		    entry, jpool_entries);
800 	}
801 
802 	return(0);
803 }
804 
805 static void
806 lge_free_jumbo_mem(sc)
807 	struct lge_softc	*sc;
808 {
809 	int			i;
810 	struct lge_jpool_entry	*entry;
811 
812 	for (i = 0; i < LGE_JSLOTS; i++) {
813 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
814 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
815 		free(entry, M_DEVBUF);
816 	}
817 
818 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
819 
820 	return;
821 }
822 
823 /*
824  * Allocate a jumbo buffer.
825  */
826 static void *
827 lge_jalloc(sc)
828 	struct lge_softc	*sc;
829 {
830 	struct lge_jpool_entry   *entry;
831 
832 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
833 
834 	if (entry == NULL) {
835 #ifdef LGE_VERBOSE
836 		printf("lge%d: no free jumbo buffers\n", sc->lge_unit);
837 #endif
838 		return(NULL);
839 	}
840 
841 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
842 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
843 	return(sc->lge_cdata.lge_jslots[entry->slot]);
844 }
845 
846 /*
847  * Release a jumbo buffer.
848  */
849 static void
850 lge_jfree(buf, args)
851 	void			*buf;
852 	void			*args;
853 {
854 	struct lge_softc	*sc;
855 	int		        i;
856 	struct lge_jpool_entry   *entry;
857 
858 	/* Extract the softc struct pointer. */
859 	sc = args;
860 
861 	if (sc == NULL)
862 		panic("lge_jfree: can't find softc pointer!");
863 
864 	/* calculate the slot this buffer belongs to */
865 	i = ((vm_offset_t)buf
866 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
867 
868 	if ((i < 0) || (i >= LGE_JSLOTS))
869 		panic("lge_jfree: asked to free buffer that we don't manage!");
870 
871 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
872 	if (entry == NULL)
873 		panic("lge_jfree: buffer not in use!");
874 	entry->slot = i;
875 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
876 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
877 
878 	return;
879 }
880 
881 /*
882  * A frame has been uploaded: pass the resulting mbuf chain up to
883  * the higher level protocols.
884  */
885 static void
886 lge_rxeof(sc, cnt)
887 	struct lge_softc	*sc;
888 	int			cnt;
889 {
890         struct mbuf		*m;
891         struct ifnet		*ifp;
892 	struct lge_rx_desc	*cur_rx;
893 	int			c, i, total_len = 0;
894 	u_int32_t		rxsts, rxctl;
895 
896 	ifp = &sc->arpcom.ac_if;
897 
898 	/* Find out how many frames were processed. */
899 	c = cnt;
900 	i = sc->lge_cdata.lge_rx_cons;
901 
902 	/* Suck them in. */
903 	while(c) {
904 		struct mbuf		*m0 = NULL;
905 
906 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
907 		rxctl = cur_rx->lge_ctl;
908 		rxsts = cur_rx->lge_sts;
909 		m = cur_rx->lge_mbuf;
910 		cur_rx->lge_mbuf = NULL;
911 		total_len = LGE_RXBYTES(cur_rx);
912 		LGE_INC(i, LGE_RX_LIST_CNT);
913 		c--;
914 
915 		/*
916 		 * If an error occurs, update stats, clear the
917 		 * status word and leave the mbuf cluster in place:
918 		 * it should simply get re-used next time this descriptor
919 	 	 * comes up in the ring.
920 		 */
921 		if (rxctl & LGE_RXCTL_ERRMASK) {
922 			ifp->if_ierrors++;
923 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
924 			continue;
925 		}
926 
927 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
928 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
929 			    ifp, NULL);
930 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
931 			if (m0 == NULL) {
932 				printf("lge%d: no receive buffers "
933 				    "available -- packet dropped!\n",
934 				    sc->lge_unit);
935 				ifp->if_ierrors++;
936 				continue;
937 			}
938 			m = m0;
939 		} else {
940 			m->m_pkthdr.rcvif = ifp;
941 			m->m_pkthdr.len = m->m_len = total_len;
942 		}
943 
944 		ifp->if_ipackets++;
945 
946 		/* Do IP checksum checking. */
947 		if (rxsts & LGE_RXSTS_ISIP)
948 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
949 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
950 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
951 		if ((rxsts & LGE_RXSTS_ISTCP &&
952 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
953 		    (rxsts & LGE_RXSTS_ISUDP &&
954 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
955 			m->m_pkthdr.csum_flags |=
956 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
957 			m->m_pkthdr.csum_data = 0xffff;
958 		}
959 
960 		(*ifp->if_input)(ifp, m);
961 	}
962 
963 	sc->lge_cdata.lge_rx_cons = i;
964 
965 	return;
966 }
967 
968 static void
969 lge_rxeoc(sc)
970 	struct lge_softc	*sc;
971 {
972 	struct ifnet		*ifp;
973 
974 	ifp = &sc->arpcom.ac_if;
975 	ifp->if_flags &= ~IFF_RUNNING;
976 	lge_init(sc);
977 	return;
978 }
979 
980 /*
981  * A frame was downloaded to the chip. It's safe for us to clean up
982  * the list buffers.
983  */
984 
985 static void
986 lge_txeof(sc)
987 	struct lge_softc	*sc;
988 {
989 	struct lge_tx_desc	*cur_tx = NULL;
990 	struct ifnet		*ifp;
991 	u_int32_t		idx, txdone;
992 
993 	ifp = &sc->arpcom.ac_if;
994 
995 	/* Clear the timeout timer. */
996 	ifp->if_timer = 0;
997 
998 	/*
999 	 * Go through our tx list and free mbufs for those
1000 	 * frames that have been transmitted.
1001 	 */
1002 	idx = sc->lge_cdata.lge_tx_cons;
1003 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1004 
1005 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1006 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1007 
1008 		ifp->if_opackets++;
1009 		if (cur_tx->lge_mbuf != NULL) {
1010 			m_freem(cur_tx->lge_mbuf);
1011 			cur_tx->lge_mbuf = NULL;
1012 		}
1013 		cur_tx->lge_ctl = 0;
1014 
1015 		txdone--;
1016 		LGE_INC(idx, LGE_TX_LIST_CNT);
1017 		ifp->if_timer = 0;
1018 	}
1019 
1020 	sc->lge_cdata.lge_tx_cons = idx;
1021 
1022 	if (cur_tx != NULL)
1023 		ifp->if_flags &= ~IFF_OACTIVE;
1024 
1025 	return;
1026 }
1027 
1028 static void
1029 lge_tick(xsc)
1030 	void			*xsc;
1031 {
1032 	struct lge_softc	*sc;
1033 	struct mii_data		*mii;
1034 	struct ifnet		*ifp;
1035 	int			s;
1036 
1037 	s = splimp();
1038 
1039 	sc = xsc;
1040 	ifp = &sc->arpcom.ac_if;
1041 
1042 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1043 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1044 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1045 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1046 
1047 	if (!sc->lge_link) {
1048 		mii = device_get_softc(sc->lge_miibus);
1049 		mii_tick(mii);
1050 		if (mii->mii_media_status & IFM_ACTIVE &&
1051 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1052 			sc->lge_link++;
1053 			if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1054 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
1055 				printf("lge%d: gigabit link up\n",
1056 				    sc->lge_unit);
1057 			if (ifp->if_snd.ifq_head != NULL)
1058 				lge_start(ifp);
1059 		}
1060 	}
1061 
1062 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1063 
1064 	splx(s);
1065 
1066 	return;
1067 }
1068 
1069 static void
1070 lge_intr(arg)
1071 	void			*arg;
1072 {
1073 	struct lge_softc	*sc;
1074 	struct ifnet		*ifp;
1075 	u_int32_t		status;
1076 
1077 	sc = arg;
1078 	ifp = &sc->arpcom.ac_if;
1079 
1080 	/* Supress unwanted interrupts */
1081 	if (!(ifp->if_flags & IFF_UP)) {
1082 		lge_stop(sc);
1083 		return;
1084 	}
1085 
1086 	for (;;) {
1087 		/*
1088 		 * Reading the ISR register clears all interrupts, and
1089 		 * clears the 'interrupts enabled' bit in the IMR
1090 		 * register.
1091 		 */
1092 		status = CSR_READ_4(sc, LGE_ISR);
1093 
1094 		if ((status & LGE_INTRS) == 0)
1095 			break;
1096 
1097 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1098 			lge_txeof(sc);
1099 
1100 		if (status & LGE_ISR_RXDMA_DONE)
1101 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1102 
1103 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1104 			lge_rxeoc(sc);
1105 
1106 		if (status & LGE_ISR_PHY_INTR) {
1107 			sc->lge_link = 0;
1108 			untimeout(lge_tick, sc, sc->lge_stat_ch);
1109 			lge_tick(sc);
1110 		}
1111 	}
1112 
1113 	/* Re-enable interrupts. */
1114 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1115 
1116 	if (ifp->if_snd.ifq_head != NULL)
1117 		lge_start(ifp);
1118 
1119 	return;
1120 }
1121 
1122 /*
1123  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1124  * pointers to the fragment pointers.
1125  */
1126 static int
1127 lge_encap(sc, m_head, txidx)
1128 	struct lge_softc	*sc;
1129 	struct mbuf		*m_head;
1130 	u_int32_t		*txidx;
1131 {
1132 	struct lge_frag		*f = NULL;
1133 	struct lge_tx_desc	*cur_tx;
1134 	struct mbuf		*m;
1135 	int			frag = 0, tot_len = 0;
1136 
1137 	/*
1138  	 * Start packing the mbufs in this chain into
1139 	 * the fragment pointers. Stop when we run out
1140  	 * of fragments or hit the end of the mbuf chain.
1141 	 */
1142 	m = m_head;
1143 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1144 	frag = 0;
1145 
1146 	for (m = m_head; m != NULL; m = m->m_next) {
1147 		if (m->m_len != 0) {
1148 			tot_len += m->m_len;
1149 			f = &cur_tx->lge_frags[frag];
1150 			f->lge_fraglen = m->m_len;
1151 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1152 			f->lge_fragptr_hi = 0;
1153 			frag++;
1154 		}
1155 	}
1156 
1157 	if (m != NULL)
1158 		return(ENOBUFS);
1159 
1160 	cur_tx->lge_mbuf = m_head;
1161 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1162 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1163 
1164 	/* Queue for transmit */
1165 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1166 
1167 	return(0);
1168 }
1169 
1170 /*
1171  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1172  * to the mbuf data regions directly in the transmit lists. We also save a
1173  * copy of the pointers since the transmit list fragment pointers are
1174  * physical addresses.
1175  */
1176 
1177 static void
1178 lge_start(ifp)
1179 	struct ifnet		*ifp;
1180 {
1181 	struct lge_softc	*sc;
1182 	struct mbuf		*m_head = NULL;
1183 	u_int32_t		idx;
1184 
1185 	sc = ifp->if_softc;
1186 
1187 	if (!sc->lge_link)
1188 		return;
1189 
1190 	idx = sc->lge_cdata.lge_tx_prod;
1191 
1192 	if (ifp->if_flags & IFF_OACTIVE)
1193 		return;
1194 
1195 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1196 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1197 			break;
1198 
1199 		IF_DEQUEUE(&ifp->if_snd, m_head);
1200 		if (m_head == NULL)
1201 			break;
1202 
1203 		if (lge_encap(sc, m_head, &idx)) {
1204 			IF_PREPEND(&ifp->if_snd, m_head);
1205 			ifp->if_flags |= IFF_OACTIVE;
1206 			break;
1207 		}
1208 
1209 		/*
1210 		 * If there's a BPF listener, bounce a copy of this frame
1211 		 * to him.
1212 		 */
1213 		BPF_MTAP(ifp, m_head);
1214 	}
1215 
1216 	sc->lge_cdata.lge_tx_prod = idx;
1217 
1218 	/*
1219 	 * Set a timeout in case the chip goes out to lunch.
1220 	 */
1221 	ifp->if_timer = 5;
1222 
1223 	return;
1224 }
1225 
1226 static void
1227 lge_init(xsc)
1228 	void			*xsc;
1229 {
1230 	struct lge_softc	*sc = xsc;
1231 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1232 	struct mii_data		*mii;
1233 	int			s;
1234 
1235 	if (ifp->if_flags & IFF_RUNNING)
1236 		return;
1237 
1238 	s = splimp();
1239 
1240 	/*
1241 	 * Cancel pending I/O and free all RX/TX buffers.
1242 	 */
1243 	lge_stop(sc);
1244 	lge_reset(sc);
1245 
1246 	mii = device_get_softc(sc->lge_miibus);
1247 
1248 	/* Set MAC address */
1249 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1250 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1251 
1252 	/* Init circular RX list. */
1253 	if (lge_list_rx_init(sc) == ENOBUFS) {
1254 		printf("lge%d: initialization failed: no "
1255 		    "memory for rx buffers\n", sc->lge_unit);
1256 		lge_stop(sc);
1257 		(void)splx(s);
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * Init tx descriptors.
1263 	 */
1264 	lge_list_tx_init(sc);
1265 
1266 	/* Set initial value for MODE1 register. */
1267 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1268 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1269 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1270 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1271 
1272 	 /* If we want promiscuous mode, set the allframes bit. */
1273 	if (ifp->if_flags & IFF_PROMISC) {
1274 		CSR_WRITE_4(sc, LGE_MODE1,
1275 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1276 	} else {
1277 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1278 	}
1279 
1280 	/*
1281 	 * Set the capture broadcast bit to capture broadcast frames.
1282 	 */
1283 	if (ifp->if_flags & IFF_BROADCAST) {
1284 		CSR_WRITE_4(sc, LGE_MODE1,
1285 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1286 	} else {
1287 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1288 	}
1289 
1290 	/* Packet padding workaround? */
1291 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1292 
1293 	/* No error frames */
1294 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1295 
1296 	/* Receive large frames */
1297 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1298 
1299 	/* Workaround: disable RX/TX flow control */
1300 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1301 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1302 
1303 	/* Make sure to strip CRC from received frames */
1304 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1305 
1306 	/* Turn off magic packet mode */
1307 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1308 
1309 	/* Turn off all VLAN stuff */
1310 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1311 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1312 
1313 	/* Workarond: FIFO overflow */
1314 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1315 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1316 
1317 	/*
1318 	 * Load the multicast filter.
1319 	 */
1320 	lge_setmulti(sc);
1321 
1322 	/*
1323 	 * Enable hardware checksum validation for all received IPv4
1324 	 * packets, do not reject packets with bad checksums.
1325 	 */
1326 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1327 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1328 	    LGE_MODE2_RX_ERRCSUM);
1329 
1330 	/*
1331 	 * Enable the delivery of PHY interrupts based on
1332 	 * link/speed/duplex status chalges.
1333 	 */
1334 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1335 
1336 	/* Enable receiver and transmitter. */
1337 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1338 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1339 
1340 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1341 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1342 
1343 	/*
1344 	 * Enable interrupts.
1345 	 */
1346 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1347 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1348 
1349 	lge_ifmedia_upd(ifp);
1350 
1351 	ifp->if_flags |= IFF_RUNNING;
1352 	ifp->if_flags &= ~IFF_OACTIVE;
1353 
1354 	(void)splx(s);
1355 
1356 	sc->lge_stat_ch = timeout(lge_tick, sc, hz);
1357 
1358 	return;
1359 }
1360 
1361 /*
1362  * Set media options.
1363  */
1364 static int
1365 lge_ifmedia_upd(ifp)
1366 	struct ifnet		*ifp;
1367 {
1368 	struct lge_softc	*sc;
1369 	struct mii_data		*mii;
1370 
1371 	sc = ifp->if_softc;
1372 
1373 	mii = device_get_softc(sc->lge_miibus);
1374 	sc->lge_link = 0;
1375 	if (mii->mii_instance) {
1376 		struct mii_softc	*miisc;
1377 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1378 		    miisc = LIST_NEXT(miisc, mii_list))
1379 			mii_phy_reset(miisc);
1380 	}
1381 	mii_mediachg(mii);
1382 
1383 	return(0);
1384 }
1385 
1386 /*
1387  * Report current media status.
1388  */
1389 static void
1390 lge_ifmedia_sts(ifp, ifmr)
1391 	struct ifnet		*ifp;
1392 	struct ifmediareq	*ifmr;
1393 {
1394 	struct lge_softc	*sc;
1395 	struct mii_data		*mii;
1396 
1397 	sc = ifp->if_softc;
1398 
1399 	mii = device_get_softc(sc->lge_miibus);
1400 	mii_pollstat(mii);
1401 	ifmr->ifm_active = mii->mii_media_active;
1402 	ifmr->ifm_status = mii->mii_media_status;
1403 
1404 	return;
1405 }
1406 
1407 static int
1408 lge_ioctl(ifp, command, data)
1409 	struct ifnet		*ifp;
1410 	u_long			command;
1411 	caddr_t			data;
1412 {
1413 	struct lge_softc	*sc = ifp->if_softc;
1414 	struct ifreq		*ifr = (struct ifreq *) data;
1415 	struct mii_data		*mii;
1416 	int			s, error = 0;
1417 
1418 	s = splimp();
1419 
1420 	switch(command) {
1421 	case SIOCSIFMTU:
1422 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1423 			error = EINVAL;
1424 		else
1425 			ifp->if_mtu = ifr->ifr_mtu;
1426 		break;
1427 	case SIOCSIFFLAGS:
1428 		if (ifp->if_flags & IFF_UP) {
1429 			if (ifp->if_flags & IFF_RUNNING &&
1430 			    ifp->if_flags & IFF_PROMISC &&
1431 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1432 				CSR_WRITE_4(sc, LGE_MODE1,
1433 				    LGE_MODE1_SETRST_CTL1|
1434 				    LGE_MODE1_RX_PROMISC);
1435 			} else if (ifp->if_flags & IFF_RUNNING &&
1436 			    !(ifp->if_flags & IFF_PROMISC) &&
1437 			    sc->lge_if_flags & IFF_PROMISC) {
1438 				CSR_WRITE_4(sc, LGE_MODE1,
1439 				    LGE_MODE1_RX_PROMISC);
1440 			} else {
1441 				ifp->if_flags &= ~IFF_RUNNING;
1442 				lge_init(sc);
1443 			}
1444 		} else {
1445 			if (ifp->if_flags & IFF_RUNNING)
1446 				lge_stop(sc);
1447 		}
1448 		sc->lge_if_flags = ifp->if_flags;
1449 		error = 0;
1450 		break;
1451 	case SIOCADDMULTI:
1452 	case SIOCDELMULTI:
1453 		lge_setmulti(sc);
1454 		error = 0;
1455 		break;
1456 	case SIOCGIFMEDIA:
1457 	case SIOCSIFMEDIA:
1458 		mii = device_get_softc(sc->lge_miibus);
1459 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1460 		break;
1461 	default:
1462 		error = ether_ioctl(ifp, command, data);
1463 		break;
1464 	}
1465 
1466 	(void)splx(s);
1467 
1468 	return(error);
1469 }
1470 
1471 static void
1472 lge_watchdog(ifp)
1473 	struct ifnet		*ifp;
1474 {
1475 	struct lge_softc	*sc;
1476 
1477 	sc = ifp->if_softc;
1478 
1479 	ifp->if_oerrors++;
1480 	printf("lge%d: watchdog timeout\n", sc->lge_unit);
1481 
1482 	lge_stop(sc);
1483 	lge_reset(sc);
1484 	ifp->if_flags &= ~IFF_RUNNING;
1485 	lge_init(sc);
1486 
1487 	if (ifp->if_snd.ifq_head != NULL)
1488 		lge_start(ifp);
1489 
1490 	return;
1491 }
1492 
1493 /*
1494  * Stop the adapter and free any mbufs allocated to the
1495  * RX and TX lists.
1496  */
1497 static void
1498 lge_stop(sc)
1499 	struct lge_softc	*sc;
1500 {
1501 	register int		i;
1502 	struct ifnet		*ifp;
1503 
1504 	ifp = &sc->arpcom.ac_if;
1505 	ifp->if_timer = 0;
1506 	untimeout(lge_tick, sc, sc->lge_stat_ch);
1507 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1508 
1509 	/* Disable receiver and transmitter. */
1510 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1511 	sc->lge_link = 0;
1512 
1513 	/*
1514 	 * Free data in the RX lists.
1515 	 */
1516 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1517 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1518 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1519 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1520 		}
1521 	}
1522 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1523 		sizeof(sc->lge_ldata->lge_rx_list));
1524 
1525 	/*
1526 	 * Free the TX list buffers.
1527 	 */
1528 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1529 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1530 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1531 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1532 		}
1533 	}
1534 
1535 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1536 		sizeof(sc->lge_ldata->lge_tx_list));
1537 
1538 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1539 
1540 	return;
1541 }
1542 
1543 /*
1544  * Stop all chip I/O so that the kernel's probe routines don't
1545  * get confused by errant DMAs when rebooting.
1546  */
1547 static void
1548 lge_shutdown(dev)
1549 	device_t		dev;
1550 {
1551 	struct lge_softc	*sc;
1552 
1553 	sc = device_get_softc(dev);
1554 
1555 	lge_reset(sc);
1556 	lge_stop(sc);
1557 
1558 	return;
1559 }
1560