xref: /freebsd/sys/dev/lge/if_lge.c (revision 13014ca04aad1931d41958b56f71a2c65b9a7a2c)
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2000, 2001
4  *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *	This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 /*
38  * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39  * documentation not available, but ask me nicely.
40  *
41  * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42  * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43  * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44  * are three supported methods for data transfer between host and
45  * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46  * Propulsion Technology (tm) DMA. The latter mechanism is a form
47  * of double buffer DMA where the packet data is copied to a
48  * pre-allocated DMA buffer who's physical address has been loaded
49  * into a table at device initialization time. The rationale is that
50  * the virtual to physical address translation needed for normal
51  * scatter/gather DMA is more expensive than the data copy needed
52  * for double buffering. This may be true in Windows NT and the like,
53  * but it isn't true for us, at least on the x86 arch. This driver
54  * uses the scatter/gather I/O method for both TX and RX.
55  *
56  * The LXT1001 only supports TCP/IP checksum offload on receive.
57  * Also, the VLAN tagging is done using a 16-entry table which allows
58  * the chip to perform hardware filtering based on VLAN tags. Sadly,
59  * our vlan support doesn't currently play well with this kind of
60  * hardware support.
61  *
62  * Special thanks to:
63  * - Jeff James at Intel, for arranging to have the LXT1001 manual
64  *   released (at long last)
65  * - Beny Chen at D-Link, for actually sending it to me
66  * - Brad Short and Keith Alexis at SMC, for sending me sample
67  *   SMC9462SX and SMC9462TX adapters for testing
68  * - Paul Saab at Y!, for not killing me (though it remains to be seen
69  *   if in fact he did me much of a favor)
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/sockio.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/module.h>
79 #include <sys/socket.h>
80 
81 #include <net/if.h>
82 #include <net/if_arp.h>
83 #include <net/ethernet.h>
84 #include <net/if_dl.h>
85 #include <net/if_media.h>
86 #include <net/if_types.h>
87 
88 #include <net/bpf.h>
89 
90 #include <vm/vm.h>              /* for vtophys */
91 #include <vm/pmap.h>            /* for vtophys */
92 #include <machine/bus.h>
93 #include <machine/resource.h>
94 #include <sys/bus.h>
95 #include <sys/rman.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 
103 #define LGE_USEIOSPACE
104 
105 #include <dev/lge/if_lgereg.h>
106 
107 /* "device miibus" required.  See GENERIC if you get errors here. */
108 #include "miibus_if.h"
109 
110 /*
111  * Various supported device vendors/types and their names.
112  */
113 static struct lge_type lge_devs[] = {
114 	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
115 	{ 0, 0, NULL }
116 };
117 
118 static int lge_probe(device_t);
119 static int lge_attach(device_t);
120 static int lge_detach(device_t);
121 
122 static int lge_alloc_jumbo_mem(struct lge_softc *);
123 static void lge_free_jumbo_mem(struct lge_softc *);
124 static void *lge_jalloc(struct lge_softc *);
125 static void lge_jfree(void *, void *);
126 
127 static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
128 static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
129 static void lge_rxeof(struct lge_softc *, int);
130 static void lge_rxeoc(struct lge_softc *);
131 static void lge_txeof(struct lge_softc *);
132 static void lge_intr(void *);
133 static void lge_tick(void *);
134 static void lge_start(struct ifnet *);
135 static void lge_start_locked(struct ifnet *);
136 static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137 static void lge_init(void *);
138 static void lge_init_locked(struct lge_softc *);
139 static void lge_stop(struct lge_softc *);
140 static void lge_watchdog(struct ifnet *);
141 static int lge_shutdown(device_t);
142 static int lge_ifmedia_upd(struct ifnet *);
143 static void lge_ifmedia_upd_locked(struct ifnet *);
144 static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145 
146 static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
147 static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
148 
149 static int lge_miibus_readreg(device_t, int, int);
150 static int lge_miibus_writereg(device_t, int, int, int);
151 static void lge_miibus_statchg(device_t);
152 
153 static void lge_setmulti(struct lge_softc *);
154 static void lge_reset(struct lge_softc *);
155 static int lge_list_rx_init(struct lge_softc *);
156 static int lge_list_tx_init(struct lge_softc *);
157 
158 #ifdef LGE_USEIOSPACE
159 #define LGE_RES			SYS_RES_IOPORT
160 #define LGE_RID			LGE_PCI_LOIO
161 #else
162 #define LGE_RES			SYS_RES_MEMORY
163 #define LGE_RID			LGE_PCI_LOMEM
164 #endif
165 
166 static device_method_t lge_methods[] = {
167 	/* Device interface */
168 	DEVMETHOD(device_probe,		lge_probe),
169 	DEVMETHOD(device_attach,	lge_attach),
170 	DEVMETHOD(device_detach,	lge_detach),
171 	DEVMETHOD(device_shutdown,	lge_shutdown),
172 
173 	/* bus interface */
174 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
175 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
176 
177 	/* MII interface */
178 	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
179 	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
180 	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
181 
182 	{ 0, 0 }
183 };
184 
185 static driver_t lge_driver = {
186 	"lge",
187 	lge_methods,
188 	sizeof(struct lge_softc)
189 };
190 
191 static devclass_t lge_devclass;
192 
193 DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
194 DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
195 MODULE_DEPEND(lge, pci, 1, 1, 1);
196 MODULE_DEPEND(lge, ether, 1, 1, 1);
197 MODULE_DEPEND(lge, miibus, 1, 1, 1);
198 
199 #define LGE_SETBIT(sc, reg, x)				\
200 	CSR_WRITE_4(sc, reg,				\
201 		CSR_READ_4(sc, reg) | (x))
202 
203 #define LGE_CLRBIT(sc, reg, x)				\
204 	CSR_WRITE_4(sc, reg,				\
205 		CSR_READ_4(sc, reg) & ~(x))
206 
207 #define SIO_SET(x)					\
208 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
209 
210 #define SIO_CLR(x)					\
211 	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
212 
213 /*
214  * Read a word of data stored in the EEPROM at address 'addr.'
215  */
216 static void
217 lge_eeprom_getword(sc, addr, dest)
218 	struct lge_softc	*sc;
219 	int			addr;
220 	u_int16_t		*dest;
221 {
222 	register int		i;
223 	u_int32_t		val;
224 
225 	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
226 	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
227 
228 	for (i = 0; i < LGE_TIMEOUT; i++)
229 		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
230 			break;
231 
232 	if (i == LGE_TIMEOUT) {
233 		device_printf(sc->lge_dev, "EEPROM read timed out\n");
234 		return;
235 	}
236 
237 	val = CSR_READ_4(sc, LGE_EEDATA);
238 
239 	if (addr & 1)
240 		*dest = (val >> 16) & 0xFFFF;
241 	else
242 		*dest = val & 0xFFFF;
243 
244 	return;
245 }
246 
247 /*
248  * Read a sequence of words from the EEPROM.
249  */
250 static void
251 lge_read_eeprom(sc, dest, off, cnt, swap)
252 	struct lge_softc	*sc;
253 	caddr_t			dest;
254 	int			off;
255 	int			cnt;
256 	int			swap;
257 {
258 	int			i;
259 	u_int16_t		word = 0, *ptr;
260 
261 	for (i = 0; i < cnt; i++) {
262 		lge_eeprom_getword(sc, off + i, &word);
263 		ptr = (u_int16_t *)(dest + (i * 2));
264 		if (swap)
265 			*ptr = ntohs(word);
266 		else
267 			*ptr = word;
268 	}
269 
270 	return;
271 }
272 
273 static int
274 lge_miibus_readreg(dev, phy, reg)
275 	device_t		dev;
276 	int			phy, reg;
277 {
278 	struct lge_softc	*sc;
279 	int			i;
280 
281 	sc = device_get_softc(dev);
282 
283 	/*
284 	 * If we have a non-PCS PHY, pretend that the internal
285 	 * autoneg stuff at PHY address 0 isn't there so that
286 	 * the miibus code will find only the GMII PHY.
287 	 */
288 	if (sc->lge_pcs == 0 && phy == 0)
289 		return(0);
290 
291 	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
292 
293 	for (i = 0; i < LGE_TIMEOUT; i++)
294 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
295 			break;
296 
297 	if (i == LGE_TIMEOUT) {
298 		device_printf(sc->lge_dev, "PHY read timed out\n");
299 		return(0);
300 	}
301 
302 	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
303 }
304 
305 static int
306 lge_miibus_writereg(dev, phy, reg, data)
307 	device_t		dev;
308 	int			phy, reg, data;
309 {
310 	struct lge_softc	*sc;
311 	int			i;
312 
313 	sc = device_get_softc(dev);
314 
315 	CSR_WRITE_4(sc, LGE_GMIICTL,
316 	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
317 
318 	for (i = 0; i < LGE_TIMEOUT; i++)
319 		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
320 			break;
321 
322 	if (i == LGE_TIMEOUT) {
323 		device_printf(sc->lge_dev, "PHY write timed out\n");
324 		return(0);
325 	}
326 
327 	return(0);
328 }
329 
330 static void
331 lge_miibus_statchg(dev)
332 	device_t		dev;
333 {
334 	struct lge_softc	*sc;
335 	struct mii_data		*mii;
336 
337 	sc = device_get_softc(dev);
338 	mii = device_get_softc(sc->lge_miibus);
339 
340 	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
341 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
342 	case IFM_1000_T:
343 	case IFM_1000_SX:
344 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
345 		break;
346 	case IFM_100_TX:
347 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
348 		break;
349 	case IFM_10_T:
350 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
351 		break;
352 	default:
353 		/*
354 		 * Choose something, even if it's wrong. Clearing
355 		 * all the bits will hose autoneg on the internal
356 		 * PHY.
357 		 */
358 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
359 		break;
360 	}
361 
362 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
363 		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
364 	} else {
365 		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
366 	}
367 
368 	return;
369 }
370 
371 static void
372 lge_setmulti(sc)
373 	struct lge_softc	*sc;
374 {
375 	struct ifnet		*ifp;
376 	struct ifmultiaddr	*ifma;
377 	u_int32_t		h = 0, hashes[2] = { 0, 0 };
378 
379 	ifp = sc->lge_ifp;
380 	LGE_LOCK_ASSERT(sc);
381 
382 	/* Make sure multicast hash table is enabled. */
383 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
384 
385 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
386 		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
387 		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
388 		return;
389 	}
390 
391 	/* first, zot all the existing hash bits */
392 	CSR_WRITE_4(sc, LGE_MAR0, 0);
393 	CSR_WRITE_4(sc, LGE_MAR1, 0);
394 
395 	/* now program new ones */
396 	IF_ADDR_LOCK(ifp);
397 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
398 		if (ifma->ifma_addr->sa_family != AF_LINK)
399 			continue;
400 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
401 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
402 		if (h < 32)
403 			hashes[0] |= (1 << h);
404 		else
405 			hashes[1] |= (1 << (h - 32));
406 	}
407 	IF_ADDR_UNLOCK(ifp);
408 
409 	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
410 	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
411 
412 	return;
413 }
414 
415 static void
416 lge_reset(sc)
417 	struct lge_softc	*sc;
418 {
419 	register int		i;
420 
421 	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
422 
423 	for (i = 0; i < LGE_TIMEOUT; i++) {
424 		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
425 			break;
426 	}
427 
428 	if (i == LGE_TIMEOUT)
429 		device_printf(sc->lge_dev, "reset never completed\n");
430 
431 	/* Wait a little while for the chip to get its brains in order. */
432 	DELAY(1000);
433 
434         return;
435 }
436 
437 /*
438  * Probe for a Level 1 chip. Check the PCI vendor and device
439  * IDs against our list and return a device name if we find a match.
440  */
441 static int
442 lge_probe(dev)
443 	device_t		dev;
444 {
445 	struct lge_type		*t;
446 
447 	t = lge_devs;
448 
449 	while(t->lge_name != NULL) {
450 		if ((pci_get_vendor(dev) == t->lge_vid) &&
451 		    (pci_get_device(dev) == t->lge_did)) {
452 			device_set_desc(dev, t->lge_name);
453 			return(BUS_PROBE_DEFAULT);
454 		}
455 		t++;
456 	}
457 
458 	return(ENXIO);
459 }
460 
461 /*
462  * Attach the interface. Allocate softc structures, do ifmedia
463  * setup and ethernet/BPF attach.
464  */
465 static int
466 lge_attach(dev)
467 	device_t		dev;
468 {
469 	u_char			eaddr[ETHER_ADDR_LEN];
470 	struct lge_softc	*sc;
471 	struct ifnet		*ifp = NULL;
472 	int			error = 0, rid;
473 
474 	sc = device_get_softc(dev);
475 	sc->lge_dev = dev;
476 
477 	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
478 	    MTX_DEF);
479 	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
480 
481 	/*
482 	 * Map control/status registers.
483 	 */
484 	pci_enable_busmaster(dev);
485 
486 	rid = LGE_RID;
487 	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
488 
489 	if (sc->lge_res == NULL) {
490 		device_printf(dev, "couldn't map ports/memory\n");
491 		error = ENXIO;
492 		goto fail;
493 	}
494 
495 	sc->lge_btag = rman_get_bustag(sc->lge_res);
496 	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
497 
498 	/* Allocate interrupt */
499 	rid = 0;
500 	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
501 	    RF_SHAREABLE | RF_ACTIVE);
502 
503 	if (sc->lge_irq == NULL) {
504 		device_printf(dev, "couldn't map interrupt\n");
505 		error = ENXIO;
506 		goto fail;
507 	}
508 
509 	/* Reset the adapter. */
510 	lge_reset(sc);
511 
512 	/*
513 	 * Get station address from the EEPROM.
514 	 */
515 	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
516 	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
517 	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
518 
519 	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
520 	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
521 
522 	if (sc->lge_ldata == NULL) {
523 		device_printf(dev, "no memory for list buffers!\n");
524 		error = ENXIO;
525 		goto fail;
526 	}
527 
528 	/* Try to allocate memory for jumbo buffers. */
529 	if (lge_alloc_jumbo_mem(sc)) {
530 		device_printf(dev, "jumbo buffer allocation failed\n");
531 		error = ENXIO;
532 		goto fail;
533 	}
534 
535 	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
536 	if (ifp == NULL) {
537 		device_printf(dev, "can not if_alloc()\n");
538 		error = ENOSPC;
539 		goto fail;
540 	}
541 	ifp->if_softc = sc;
542 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
543 	ifp->if_mtu = ETHERMTU;
544 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
545 	ifp->if_ioctl = lge_ioctl;
546 	ifp->if_start = lge_start;
547 	ifp->if_watchdog = lge_watchdog;
548 	ifp->if_init = lge_init;
549 	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
550 	ifp->if_capabilities = IFCAP_RXCSUM;
551 	ifp->if_capenable = ifp->if_capabilities;
552 
553 	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
554 		sc->lge_pcs = 1;
555 	else
556 		sc->lge_pcs = 0;
557 
558 	/*
559 	 * Do MII setup.
560 	 */
561 	if (mii_phy_probe(dev, &sc->lge_miibus,
562 	    lge_ifmedia_upd, lge_ifmedia_sts)) {
563 		device_printf(dev, "MII without any PHY!\n");
564 		error = ENXIO;
565 		goto fail;
566 	}
567 
568 	/*
569 	 * Call MI attach routine.
570 	 */
571 	ether_ifattach(ifp, eaddr);
572 
573 	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
574 	    NULL, lge_intr, sc, &sc->lge_intrhand);
575 
576 	if (error) {
577 		ether_ifdetach(ifp);
578 		device_printf(dev, "couldn't set up irq\n");
579 		goto fail;
580 	}
581 	return (0);
582 
583 fail:
584 	lge_free_jumbo_mem(sc);
585 	if (sc->lge_ldata)
586 		contigfree(sc->lge_ldata,
587 		    sizeof(struct lge_list_data), M_DEVBUF);
588 	if (ifp)
589 		if_free(ifp);
590 	if (sc->lge_irq)
591 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
592 	if (sc->lge_res)
593 		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
594 	mtx_destroy(&sc->lge_mtx);
595 	return(error);
596 }
597 
598 static int
599 lge_detach(dev)
600 	device_t		dev;
601 {
602 	struct lge_softc	*sc;
603 	struct ifnet		*ifp;
604 
605 	sc = device_get_softc(dev);
606 	ifp = sc->lge_ifp;
607 
608 	LGE_LOCK(sc);
609 	lge_reset(sc);
610 	lge_stop(sc);
611 	LGE_UNLOCK(sc);
612 	callout_drain(&sc->lge_stat_callout);
613 	ether_ifdetach(ifp);
614 
615 	bus_generic_detach(dev);
616 	device_delete_child(dev, sc->lge_miibus);
617 
618 	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
619 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
620 	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
621 
622 	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
623 	if_free(ifp);
624 	lge_free_jumbo_mem(sc);
625 	mtx_destroy(&sc->lge_mtx);
626 
627 	return(0);
628 }
629 
630 /*
631  * Initialize the transmit descriptors.
632  */
633 static int
634 lge_list_tx_init(sc)
635 	struct lge_softc	*sc;
636 {
637 	struct lge_list_data	*ld;
638 	struct lge_ring_data	*cd;
639 	int			i;
640 
641 	cd = &sc->lge_cdata;
642 	ld = sc->lge_ldata;
643 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
644 		ld->lge_tx_list[i].lge_mbuf = NULL;
645 		ld->lge_tx_list[i].lge_ctl = 0;
646 	}
647 
648 	cd->lge_tx_prod = cd->lge_tx_cons = 0;
649 
650 	return(0);
651 }
652 
653 
654 /*
655  * Initialize the RX descriptors and allocate mbufs for them. Note that
656  * we arralge the descriptors in a closed ring, so that the last descriptor
657  * points back to the first.
658  */
659 static int
660 lge_list_rx_init(sc)
661 	struct lge_softc	*sc;
662 {
663 	struct lge_list_data	*ld;
664 	struct lge_ring_data	*cd;
665 	int			i;
666 
667 	ld = sc->lge_ldata;
668 	cd = &sc->lge_cdata;
669 
670 	cd->lge_rx_prod = cd->lge_rx_cons = 0;
671 
672 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
673 
674 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
675 		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
676 			break;
677 		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
678 			return(ENOBUFS);
679 	}
680 
681 	/* Clear possible 'rx command queue empty' interrupt. */
682 	CSR_READ_4(sc, LGE_ISR);
683 
684 	return(0);
685 }
686 
687 /*
688  * Initialize an RX descriptor and attach an MBUF cluster.
689  */
690 static int
691 lge_newbuf(sc, c, m)
692 	struct lge_softc	*sc;
693 	struct lge_rx_desc	*c;
694 	struct mbuf		*m;
695 {
696 	struct mbuf		*m_new = NULL;
697 	caddr_t			*buf = NULL;
698 
699 	if (m == NULL) {
700 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
701 		if (m_new == NULL) {
702 			device_printf(sc->lge_dev, "no memory for rx list "
703 			    "-- packet dropped!\n");
704 			return(ENOBUFS);
705 		}
706 
707 		/* Allocate the jumbo buffer */
708 		buf = lge_jalloc(sc);
709 		if (buf == NULL) {
710 #ifdef LGE_VERBOSE
711 			device_printf(sc->lge_dev, "jumbo allocation failed "
712 			    "-- packet dropped!\n");
713 #endif
714 			m_freem(m_new);
715 			return(ENOBUFS);
716 		}
717 		/* Attach the buffer to the mbuf */
718 		m_new->m_data = (void *)buf;
719 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
720 		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
721 		    buf, (struct lge_softc *)sc, 0, EXT_NET_DRV);
722 	} else {
723 		m_new = m;
724 		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
725 		m_new->m_data = m_new->m_ext.ext_buf;
726 	}
727 
728 	/*
729 	 * Adjust alignment so packet payload begins on a
730 	 * longword boundary. Mandatory for Alpha, useful on
731 	 * x86 too.
732 	*/
733 	m_adj(m_new, ETHER_ALIGN);
734 
735 	c->lge_mbuf = m_new;
736 	c->lge_fragptr_hi = 0;
737 	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
738 	c->lge_fraglen = m_new->m_len;
739 	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
740 	c->lge_sts = 0;
741 
742 	/*
743 	 * Put this buffer in the RX command FIFO. To do this,
744 	 * we just write the physical address of the descriptor
745 	 * into the RX descriptor address registers. Note that
746 	 * there are two registers, one high DWORD and one low
747 	 * DWORD, which lets us specify a 64-bit address if
748 	 * desired. We only use a 32-bit address for now.
749 	 * Writing to the low DWORD register is what actually
750 	 * causes the command to be issued, so we do that
751 	 * last.
752 	 */
753 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
754 	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
755 
756 	return(0);
757 }
758 
759 static int
760 lge_alloc_jumbo_mem(sc)
761 	struct lge_softc	*sc;
762 {
763 	caddr_t			ptr;
764 	register int		i;
765 	struct lge_jpool_entry   *entry;
766 
767 	/* Grab a big chunk o' storage. */
768 	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
769 	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
770 
771 	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
772 		device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
773 		return(ENOBUFS);
774 	}
775 
776 	SLIST_INIT(&sc->lge_jfree_listhead);
777 	SLIST_INIT(&sc->lge_jinuse_listhead);
778 
779 	/*
780 	 * Now divide it up into 9K pieces and save the addresses
781 	 * in an array.
782 	 */
783 	ptr = sc->lge_cdata.lge_jumbo_buf;
784 	for (i = 0; i < LGE_JSLOTS; i++) {
785 		sc->lge_cdata.lge_jslots[i] = ptr;
786 		ptr += LGE_JLEN;
787 		entry = malloc(sizeof(struct lge_jpool_entry),
788 		    M_DEVBUF, M_NOWAIT);
789 		if (entry == NULL) {
790 			device_printf(sc->lge_dev, "no memory for jumbo "
791 			    "buffer queue!\n");
792 			return(ENOBUFS);
793 		}
794 		entry->slot = i;
795 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
796 		    entry, jpool_entries);
797 	}
798 
799 	return(0);
800 }
801 
802 static void
803 lge_free_jumbo_mem(sc)
804 	struct lge_softc	*sc;
805 {
806 	struct lge_jpool_entry	*entry;
807 
808 	if (sc->lge_cdata.lge_jumbo_buf == NULL)
809 		return;
810 
811 	while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) {
812 		device_printf(sc->lge_dev,
813 		    "asked to free buffer that is in use!\n");
814 		SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
815 		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry,
816 		    jpool_entries);
817 	}
818 	while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) {
819 		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
820 		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
821 		free(entry, M_DEVBUF);
822 	}
823 
824 	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
825 
826 	return;
827 }
828 
829 /*
830  * Allocate a jumbo buffer.
831  */
832 static void *
833 lge_jalloc(sc)
834 	struct lge_softc	*sc;
835 {
836 	struct lge_jpool_entry   *entry;
837 
838 	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
839 
840 	if (entry == NULL) {
841 #ifdef LGE_VERBOSE
842 		device_printf(sc->lge_dev, "no free jumbo buffers\n");
843 #endif
844 		return(NULL);
845 	}
846 
847 	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
848 	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
849 	return(sc->lge_cdata.lge_jslots[entry->slot]);
850 }
851 
852 /*
853  * Release a jumbo buffer.
854  */
855 static void
856 lge_jfree(buf, args)
857 	void			*buf;
858 	void			*args;
859 {
860 	struct lge_softc	*sc;
861 	int		        i;
862 	struct lge_jpool_entry   *entry;
863 
864 	/* Extract the softc struct pointer. */
865 	sc = args;
866 
867 	if (sc == NULL)
868 		panic("lge_jfree: can't find softc pointer!");
869 
870 	/* calculate the slot this buffer belongs to */
871 	i = ((vm_offset_t)buf
872 	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
873 
874 	if ((i < 0) || (i >= LGE_JSLOTS))
875 		panic("lge_jfree: asked to free buffer that we don't manage!");
876 
877 	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
878 	if (entry == NULL)
879 		panic("lge_jfree: buffer not in use!");
880 	entry->slot = i;
881 	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
882 	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
883 
884 	return;
885 }
886 
887 /*
888  * A frame has been uploaded: pass the resulting mbuf chain up to
889  * the higher level protocols.
890  */
891 static void
892 lge_rxeof(sc, cnt)
893 	struct lge_softc	*sc;
894 	int			cnt;
895 {
896         struct mbuf		*m;
897         struct ifnet		*ifp;
898 	struct lge_rx_desc	*cur_rx;
899 	int			c, i, total_len = 0;
900 	u_int32_t		rxsts, rxctl;
901 
902 	ifp = sc->lge_ifp;
903 
904 	/* Find out how many frames were processed. */
905 	c = cnt;
906 	i = sc->lge_cdata.lge_rx_cons;
907 
908 	/* Suck them in. */
909 	while(c) {
910 		struct mbuf		*m0 = NULL;
911 
912 		cur_rx = &sc->lge_ldata->lge_rx_list[i];
913 		rxctl = cur_rx->lge_ctl;
914 		rxsts = cur_rx->lge_sts;
915 		m = cur_rx->lge_mbuf;
916 		cur_rx->lge_mbuf = NULL;
917 		total_len = LGE_RXBYTES(cur_rx);
918 		LGE_INC(i, LGE_RX_LIST_CNT);
919 		c--;
920 
921 		/*
922 		 * If an error occurs, update stats, clear the
923 		 * status word and leave the mbuf cluster in place:
924 		 * it should simply get re-used next time this descriptor
925 	 	 * comes up in the ring.
926 		 */
927 		if (rxctl & LGE_RXCTL_ERRMASK) {
928 			ifp->if_ierrors++;
929 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
930 			continue;
931 		}
932 
933 		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
934 			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
935 			    ifp, NULL);
936 			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
937 			if (m0 == NULL) {
938 				device_printf(sc->lge_dev, "no receive buffers "
939 				    "available -- packet dropped!\n");
940 				ifp->if_ierrors++;
941 				continue;
942 			}
943 			m = m0;
944 		} else {
945 			m->m_pkthdr.rcvif = ifp;
946 			m->m_pkthdr.len = m->m_len = total_len;
947 		}
948 
949 		ifp->if_ipackets++;
950 
951 		/* Do IP checksum checking. */
952 		if (rxsts & LGE_RXSTS_ISIP)
953 			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
954 		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
955 			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
956 		if ((rxsts & LGE_RXSTS_ISTCP &&
957 		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
958 		    (rxsts & LGE_RXSTS_ISUDP &&
959 		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
960 			m->m_pkthdr.csum_flags |=
961 			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
962 			m->m_pkthdr.csum_data = 0xffff;
963 		}
964 
965 		LGE_UNLOCK(sc);
966 		(*ifp->if_input)(ifp, m);
967 		LGE_LOCK(sc);
968 	}
969 
970 	sc->lge_cdata.lge_rx_cons = i;
971 
972 	return;
973 }
974 
975 static void
976 lge_rxeoc(sc)
977 	struct lge_softc	*sc;
978 {
979 	struct ifnet		*ifp;
980 
981 	ifp = sc->lge_ifp;
982 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
983 	lge_init_locked(sc);
984 	return;
985 }
986 
987 /*
988  * A frame was downloaded to the chip. It's safe for us to clean up
989  * the list buffers.
990  */
991 
992 static void
993 lge_txeof(sc)
994 	struct lge_softc	*sc;
995 {
996 	struct lge_tx_desc	*cur_tx = NULL;
997 	struct ifnet		*ifp;
998 	u_int32_t		idx, txdone;
999 
1000 	ifp = sc->lge_ifp;
1001 
1002 	/* Clear the timeout timer. */
1003 	ifp->if_timer = 0;
1004 
1005 	/*
1006 	 * Go through our tx list and free mbufs for those
1007 	 * frames that have been transmitted.
1008 	 */
1009 	idx = sc->lge_cdata.lge_tx_cons;
1010 	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1011 
1012 	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1013 		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1014 
1015 		ifp->if_opackets++;
1016 		if (cur_tx->lge_mbuf != NULL) {
1017 			m_freem(cur_tx->lge_mbuf);
1018 			cur_tx->lge_mbuf = NULL;
1019 		}
1020 		cur_tx->lge_ctl = 0;
1021 
1022 		txdone--;
1023 		LGE_INC(idx, LGE_TX_LIST_CNT);
1024 		ifp->if_timer = 0;
1025 	}
1026 
1027 	sc->lge_cdata.lge_tx_cons = idx;
1028 
1029 	if (cur_tx != NULL)
1030 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1031 
1032 	return;
1033 }
1034 
1035 static void
1036 lge_tick(xsc)
1037 	void			*xsc;
1038 {
1039 	struct lge_softc	*sc;
1040 	struct mii_data		*mii;
1041 	struct ifnet		*ifp;
1042 
1043 	sc = xsc;
1044 	ifp = sc->lge_ifp;
1045 	LGE_LOCK_ASSERT(sc);
1046 
1047 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1048 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1049 	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1050 	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1051 
1052 	if (!sc->lge_link) {
1053 		mii = device_get_softc(sc->lge_miibus);
1054 		mii_tick(mii);
1055 		if (mii->mii_media_status & IFM_ACTIVE &&
1056 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1057 			sc->lge_link++;
1058 			if (bootverbose &&
1059 		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1060 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1061 				device_printf(sc->lge_dev, "gigabit link up\n");
1062 			if (ifp->if_snd.ifq_head != NULL)
1063 				lge_start_locked(ifp);
1064 		}
1065 	}
1066 
1067 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1068 
1069 	return;
1070 }
1071 
1072 static void
1073 lge_intr(arg)
1074 	void			*arg;
1075 {
1076 	struct lge_softc	*sc;
1077 	struct ifnet		*ifp;
1078 	u_int32_t		status;
1079 
1080 	sc = arg;
1081 	ifp = sc->lge_ifp;
1082 	LGE_LOCK(sc);
1083 
1084 	/* Supress unwanted interrupts */
1085 	if (!(ifp->if_flags & IFF_UP)) {
1086 		lge_stop(sc);
1087 		LGE_UNLOCK(sc);
1088 		return;
1089 	}
1090 
1091 	for (;;) {
1092 		/*
1093 		 * Reading the ISR register clears all interrupts, and
1094 		 * clears the 'interrupts enabled' bit in the IMR
1095 		 * register.
1096 		 */
1097 		status = CSR_READ_4(sc, LGE_ISR);
1098 
1099 		if ((status & LGE_INTRS) == 0)
1100 			break;
1101 
1102 		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1103 			lge_txeof(sc);
1104 
1105 		if (status & LGE_ISR_RXDMA_DONE)
1106 			lge_rxeof(sc, LGE_RX_DMACNT(status));
1107 
1108 		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1109 			lge_rxeoc(sc);
1110 
1111 		if (status & LGE_ISR_PHY_INTR) {
1112 			sc->lge_link = 0;
1113 			callout_stop(&sc->lge_stat_callout);
1114 			lge_tick(sc);
1115 		}
1116 	}
1117 
1118 	/* Re-enable interrupts. */
1119 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1120 
1121 	if (ifp->if_snd.ifq_head != NULL)
1122 		lge_start_locked(ifp);
1123 
1124 	LGE_UNLOCK(sc);
1125 	return;
1126 }
1127 
1128 /*
1129  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1130  * pointers to the fragment pointers.
1131  */
1132 static int
1133 lge_encap(sc, m_head, txidx)
1134 	struct lge_softc	*sc;
1135 	struct mbuf		*m_head;
1136 	u_int32_t		*txidx;
1137 {
1138 	struct lge_frag		*f = NULL;
1139 	struct lge_tx_desc	*cur_tx;
1140 	struct mbuf		*m;
1141 	int			frag = 0, tot_len = 0;
1142 
1143 	/*
1144  	 * Start packing the mbufs in this chain into
1145 	 * the fragment pointers. Stop when we run out
1146  	 * of fragments or hit the end of the mbuf chain.
1147 	 */
1148 	m = m_head;
1149 	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1150 	frag = 0;
1151 
1152 	for (m = m_head; m != NULL; m = m->m_next) {
1153 		if (m->m_len != 0) {
1154 			tot_len += m->m_len;
1155 			f = &cur_tx->lge_frags[frag];
1156 			f->lge_fraglen = m->m_len;
1157 			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1158 			f->lge_fragptr_hi = 0;
1159 			frag++;
1160 		}
1161 	}
1162 
1163 	if (m != NULL)
1164 		return(ENOBUFS);
1165 
1166 	cur_tx->lge_mbuf = m_head;
1167 	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1168 	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1169 
1170 	/* Queue for transmit */
1171 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1172 
1173 	return(0);
1174 }
1175 
1176 /*
1177  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1178  * to the mbuf data regions directly in the transmit lists. We also save a
1179  * copy of the pointers since the transmit list fragment pointers are
1180  * physical addresses.
1181  */
1182 
1183 static void
1184 lge_start(ifp)
1185 	struct ifnet		*ifp;
1186 {
1187 	struct lge_softc	*sc;
1188 
1189 	sc = ifp->if_softc;
1190 	LGE_LOCK(sc);
1191 	lge_start_locked(ifp);
1192 	LGE_UNLOCK(sc);
1193 }
1194 
1195 static void
1196 lge_start_locked(ifp)
1197 	struct ifnet		*ifp;
1198 {
1199 	struct lge_softc	*sc;
1200 	struct mbuf		*m_head = NULL;
1201 	u_int32_t		idx;
1202 
1203 	sc = ifp->if_softc;
1204 
1205 	if (!sc->lge_link)
1206 		return;
1207 
1208 	idx = sc->lge_cdata.lge_tx_prod;
1209 
1210 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1211 		return;
1212 
1213 	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1214 		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1215 			break;
1216 
1217 		IF_DEQUEUE(&ifp->if_snd, m_head);
1218 		if (m_head == NULL)
1219 			break;
1220 
1221 		if (lge_encap(sc, m_head, &idx)) {
1222 			IF_PREPEND(&ifp->if_snd, m_head);
1223 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1224 			break;
1225 		}
1226 
1227 		/*
1228 		 * If there's a BPF listener, bounce a copy of this frame
1229 		 * to him.
1230 		 */
1231 		BPF_MTAP(ifp, m_head);
1232 	}
1233 
1234 	sc->lge_cdata.lge_tx_prod = idx;
1235 
1236 	/*
1237 	 * Set a timeout in case the chip goes out to lunch.
1238 	 */
1239 	ifp->if_timer = 5;
1240 
1241 	return;
1242 }
1243 
1244 static void
1245 lge_init(xsc)
1246 	void			*xsc;
1247 {
1248 	struct lge_softc	*sc = xsc;
1249 
1250 	LGE_LOCK(sc);
1251 	lge_init_locked(sc);
1252 	LGE_UNLOCK(sc);
1253 }
1254 
1255 static void
1256 lge_init_locked(sc)
1257 	struct lge_softc	*sc;
1258 {
1259 	struct ifnet		*ifp = sc->lge_ifp;
1260 	struct mii_data		*mii;
1261 
1262 	LGE_LOCK_ASSERT(sc);
1263 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1264 		return;
1265 
1266 	/*
1267 	 * Cancel pending I/O and free all RX/TX buffers.
1268 	 */
1269 	lge_stop(sc);
1270 	lge_reset(sc);
1271 
1272 	mii = device_get_softc(sc->lge_miibus);
1273 
1274 	/* Set MAC address */
1275 	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1276 	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1277 
1278 	/* Init circular RX list. */
1279 	if (lge_list_rx_init(sc) == ENOBUFS) {
1280 		device_printf(sc->lge_dev, "initialization failed: no "
1281 		    "memory for rx buffers\n");
1282 		lge_stop(sc);
1283 		return;
1284 	}
1285 
1286 	/*
1287 	 * Init tx descriptors.
1288 	 */
1289 	lge_list_tx_init(sc);
1290 
1291 	/* Set initial value for MODE1 register. */
1292 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1293 	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1294 	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1295 	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1296 
1297 	 /* If we want promiscuous mode, set the allframes bit. */
1298 	if (ifp->if_flags & IFF_PROMISC) {
1299 		CSR_WRITE_4(sc, LGE_MODE1,
1300 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1301 	} else {
1302 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1303 	}
1304 
1305 	/*
1306 	 * Set the capture broadcast bit to capture broadcast frames.
1307 	 */
1308 	if (ifp->if_flags & IFF_BROADCAST) {
1309 		CSR_WRITE_4(sc, LGE_MODE1,
1310 		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1311 	} else {
1312 		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1313 	}
1314 
1315 	/* Packet padding workaround? */
1316 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1317 
1318 	/* No error frames */
1319 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1320 
1321 	/* Receive large frames */
1322 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1323 
1324 	/* Workaround: disable RX/TX flow control */
1325 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1326 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1327 
1328 	/* Make sure to strip CRC from received frames */
1329 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1330 
1331 	/* Turn off magic packet mode */
1332 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1333 
1334 	/* Turn off all VLAN stuff */
1335 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1336 	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1337 
1338 	/* Workarond: FIFO overflow */
1339 	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1340 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1341 
1342 	/*
1343 	 * Load the multicast filter.
1344 	 */
1345 	lge_setmulti(sc);
1346 
1347 	/*
1348 	 * Enable hardware checksum validation for all received IPv4
1349 	 * packets, do not reject packets with bad checksums.
1350 	 */
1351 	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1352 	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1353 	    LGE_MODE2_RX_ERRCSUM);
1354 
1355 	/*
1356 	 * Enable the delivery of PHY interrupts based on
1357 	 * link/speed/duplex status chalges.
1358 	 */
1359 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1360 
1361 	/* Enable receiver and transmitter. */
1362 	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1363 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1364 
1365 	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1366 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1367 
1368 	/*
1369 	 * Enable interrupts.
1370 	 */
1371 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1372 	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1373 
1374 	lge_ifmedia_upd_locked(ifp);
1375 
1376 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1377 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1378 
1379 	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1380 
1381 	return;
1382 }
1383 
1384 /*
1385  * Set media options.
1386  */
1387 static int
1388 lge_ifmedia_upd(ifp)
1389 	struct ifnet		*ifp;
1390 {
1391 	struct lge_softc	*sc;
1392 
1393 	sc = ifp->if_softc;
1394 	LGE_LOCK(sc);
1395 	lge_ifmedia_upd_locked(ifp);
1396 	LGE_UNLOCK(sc);
1397 
1398 	return(0);
1399 }
1400 
1401 static void
1402 lge_ifmedia_upd_locked(ifp)
1403 	struct ifnet		*ifp;
1404 {
1405 	struct lge_softc	*sc;
1406 	struct mii_data		*mii;
1407 
1408 	sc = ifp->if_softc;
1409 
1410 	LGE_LOCK_ASSERT(sc);
1411 	mii = device_get_softc(sc->lge_miibus);
1412 	sc->lge_link = 0;
1413 	if (mii->mii_instance) {
1414 		struct mii_softc	*miisc;
1415 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
1416 		    miisc = LIST_NEXT(miisc, mii_list))
1417 			mii_phy_reset(miisc);
1418 	}
1419 	mii_mediachg(mii);
1420 }
1421 
1422 /*
1423  * Report current media status.
1424  */
1425 static void
1426 lge_ifmedia_sts(ifp, ifmr)
1427 	struct ifnet		*ifp;
1428 	struct ifmediareq	*ifmr;
1429 {
1430 	struct lge_softc	*sc;
1431 	struct mii_data		*mii;
1432 
1433 	sc = ifp->if_softc;
1434 
1435 	LGE_LOCK(sc);
1436 	mii = device_get_softc(sc->lge_miibus);
1437 	mii_pollstat(mii);
1438 	LGE_UNLOCK(sc);
1439 	ifmr->ifm_active = mii->mii_media_active;
1440 	ifmr->ifm_status = mii->mii_media_status;
1441 
1442 	return;
1443 }
1444 
1445 static int
1446 lge_ioctl(ifp, command, data)
1447 	struct ifnet		*ifp;
1448 	u_long			command;
1449 	caddr_t			data;
1450 {
1451 	struct lge_softc	*sc = ifp->if_softc;
1452 	struct ifreq		*ifr = (struct ifreq *) data;
1453 	struct mii_data		*mii;
1454 	int			error = 0;
1455 
1456 	switch(command) {
1457 	case SIOCSIFMTU:
1458 		LGE_LOCK(sc);
1459 		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1460 			error = EINVAL;
1461 		else
1462 			ifp->if_mtu = ifr->ifr_mtu;
1463 		LGE_UNLOCK(sc);
1464 		break;
1465 	case SIOCSIFFLAGS:
1466 		LGE_LOCK(sc);
1467 		if (ifp->if_flags & IFF_UP) {
1468 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1469 			    ifp->if_flags & IFF_PROMISC &&
1470 			    !(sc->lge_if_flags & IFF_PROMISC)) {
1471 				CSR_WRITE_4(sc, LGE_MODE1,
1472 				    LGE_MODE1_SETRST_CTL1|
1473 				    LGE_MODE1_RX_PROMISC);
1474 			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1475 			    !(ifp->if_flags & IFF_PROMISC) &&
1476 			    sc->lge_if_flags & IFF_PROMISC) {
1477 				CSR_WRITE_4(sc, LGE_MODE1,
1478 				    LGE_MODE1_RX_PROMISC);
1479 			} else {
1480 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1481 				lge_init_locked(sc);
1482 			}
1483 		} else {
1484 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1485 				lge_stop(sc);
1486 		}
1487 		sc->lge_if_flags = ifp->if_flags;
1488 		LGE_UNLOCK(sc);
1489 		error = 0;
1490 		break;
1491 	case SIOCADDMULTI:
1492 	case SIOCDELMULTI:
1493 		LGE_LOCK(sc);
1494 		lge_setmulti(sc);
1495 		LGE_UNLOCK(sc);
1496 		error = 0;
1497 		break;
1498 	case SIOCGIFMEDIA:
1499 	case SIOCSIFMEDIA:
1500 		mii = device_get_softc(sc->lge_miibus);
1501 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1502 		break;
1503 	default:
1504 		error = ether_ioctl(ifp, command, data);
1505 		break;
1506 	}
1507 
1508 	return(error);
1509 }
1510 
1511 static void
1512 lge_watchdog(ifp)
1513 	struct ifnet		*ifp;
1514 {
1515 	struct lge_softc	*sc;
1516 
1517 	sc = ifp->if_softc;
1518 
1519 	LGE_LOCK(sc);
1520 	ifp->if_oerrors++;
1521 	if_printf(ifp, "watchdog timeout\n");
1522 
1523 	lge_stop(sc);
1524 	lge_reset(sc);
1525 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1526 	lge_init_locked(sc);
1527 
1528 	if (ifp->if_snd.ifq_head != NULL)
1529 		lge_start_locked(ifp);
1530 	LGE_UNLOCK(sc);
1531 
1532 	return;
1533 }
1534 
1535 /*
1536  * Stop the adapter and free any mbufs allocated to the
1537  * RX and TX lists.
1538  */
1539 static void
1540 lge_stop(sc)
1541 	struct lge_softc	*sc;
1542 {
1543 	register int		i;
1544 	struct ifnet		*ifp;
1545 
1546 	LGE_LOCK_ASSERT(sc);
1547 	ifp = sc->lge_ifp;
1548 	ifp->if_timer = 0;
1549 	callout_stop(&sc->lge_stat_callout);
1550 	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1551 
1552 	/* Disable receiver and transmitter. */
1553 	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1554 	sc->lge_link = 0;
1555 
1556 	/*
1557 	 * Free data in the RX lists.
1558 	 */
1559 	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1560 		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1561 			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1562 			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1563 		}
1564 	}
1565 	bzero((char *)&sc->lge_ldata->lge_rx_list,
1566 		sizeof(sc->lge_ldata->lge_rx_list));
1567 
1568 	/*
1569 	 * Free the TX list buffers.
1570 	 */
1571 	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1572 		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1573 			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1574 			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1575 		}
1576 	}
1577 
1578 	bzero((char *)&sc->lge_ldata->lge_tx_list,
1579 		sizeof(sc->lge_ldata->lge_tx_list));
1580 
1581 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1582 
1583 	return;
1584 }
1585 
1586 /*
1587  * Stop all chip I/O so that the kernel's probe routines don't
1588  * get confused by errant DMAs when rebooting.
1589  */
1590 static int
1591 lge_shutdown(dev)
1592 	device_t		dev;
1593 {
1594 	struct lge_softc	*sc;
1595 
1596 	sc = device_get_softc(dev);
1597 
1598 	LGE_LOCK(sc);
1599 	lge_reset(sc);
1600 	lge_stop(sc);
1601 	LGE_UNLOCK(sc);
1602 
1603 	return (0);
1604 }
1605