xref: /freebsd/sys/dev/jme/if_jme.c (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/rman.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_vlan_var.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 #include <machine/in_cksum.h>
69 
70 #include <dev/jme/if_jmereg.h>
71 #include <dev/jme/if_jmevar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 /* Define the following to disable printing Rx errors. */
77 #undef	JME_SHOW_ERRORS
78 
79 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(jme, pci, 1, 1, 1);
82 MODULE_DEPEND(jme, ether, 1, 1, 1);
83 MODULE_DEPEND(jme, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static struct jme_dev {
95 	uint16_t	jme_vendorid;
96 	uint16_t	jme_deviceid;
97 	const char	*jme_name;
98 } jme_devs[] = {
99 	{ VENDORID_JMICRON, DEVICEID_JMC250,
100 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
101 	{ VENDORID_JMICRON, DEVICEID_JMC260,
102 	    "JMicron Inc, JMC26x Fast Ethernet" },
103 };
104 
105 static int jme_miibus_readreg(device_t, int, int);
106 static int jme_miibus_writereg(device_t, int, int, int);
107 static void jme_miibus_statchg(device_t);
108 static void jme_mediastatus(if_t, struct ifmediareq *);
109 static int jme_mediachange(if_t);
110 static int jme_probe(device_t);
111 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
112 static int jme_eeprom_macaddr(struct jme_softc *);
113 static int jme_efuse_macaddr(struct jme_softc *);
114 static void jme_reg_macaddr(struct jme_softc *);
115 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
116 static void jme_map_intr_vector(struct jme_softc *);
117 static int jme_attach(device_t);
118 static int jme_detach(device_t);
119 static void jme_sysctl_node(struct jme_softc *);
120 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
121 static int jme_dma_alloc(struct jme_softc *);
122 static void jme_dma_free(struct jme_softc *);
123 static int jme_shutdown(device_t);
124 static void jme_setlinkspeed(struct jme_softc *);
125 static void jme_setwol(struct jme_softc *);
126 static int jme_suspend(device_t);
127 static int jme_resume(device_t);
128 static int jme_encap(struct jme_softc *, struct mbuf **);
129 static void jme_start(if_t);
130 static void jme_start_locked(if_t);
131 static void jme_watchdog(struct jme_softc *);
132 static int jme_ioctl(if_t, u_long, caddr_t);
133 static void jme_mac_config(struct jme_softc *);
134 static void jme_link_task(void *, int);
135 static int jme_intr(void *);
136 static void jme_int_task(void *, int);
137 static void jme_txeof(struct jme_softc *);
138 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
139 static void jme_rxeof(struct jme_softc *);
140 static int jme_rxintr(struct jme_softc *, int);
141 static void jme_tick(void *);
142 static void jme_reset(struct jme_softc *);
143 static void jme_init(void *);
144 static void jme_init_locked(struct jme_softc *);
145 static void jme_stop(struct jme_softc *);
146 static void jme_stop_tx(struct jme_softc *);
147 static void jme_stop_rx(struct jme_softc *);
148 static int jme_init_rx_ring(struct jme_softc *);
149 static void jme_init_tx_ring(struct jme_softc *);
150 static void jme_init_ssb(struct jme_softc *);
151 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
152 static void jme_set_vlan(struct jme_softc *);
153 static void jme_set_filter(struct jme_softc *);
154 static void jme_stats_clear(struct jme_softc *);
155 static void jme_stats_save(struct jme_softc *);
156 static void jme_stats_update(struct jme_softc *);
157 static void jme_phy_down(struct jme_softc *);
158 static void jme_phy_up(struct jme_softc *);
159 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
160 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
161 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
162 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
163 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
165 
166 
167 static device_method_t jme_methods[] = {
168 	/* Device interface. */
169 	DEVMETHOD(device_probe,		jme_probe),
170 	DEVMETHOD(device_attach,	jme_attach),
171 	DEVMETHOD(device_detach,	jme_detach),
172 	DEVMETHOD(device_shutdown,	jme_shutdown),
173 	DEVMETHOD(device_suspend,	jme_suspend),
174 	DEVMETHOD(device_resume,	jme_resume),
175 
176 	/* MII interface. */
177 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
180 
181 	{ NULL, NULL }
182 };
183 
184 static driver_t jme_driver = {
185 	"jme",
186 	jme_methods,
187 	sizeof(struct jme_softc)
188 };
189 
190 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
191 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
192 
193 static struct resource_spec jme_res_spec_mem[] = {
194 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec jme_irq_spec_legacy[] = {
199 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
200 	{ -1,			0,		0 }
201 };
202 
203 static struct resource_spec jme_irq_spec_msi[] = {
204 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
205 	{ -1,			0,		0 }
206 };
207 
208 /*
209  *	Read a PHY register on the MII of the JMC250.
210  */
211 static int
212 jme_miibus_readreg(device_t dev, int phy, int reg)
213 {
214 	struct jme_softc *sc;
215 	uint32_t val;
216 	int i;
217 
218 	sc = device_get_softc(dev);
219 
220 	/* For FPGA version, PHY address 0 should be ignored. */
221 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
222 		return (0);
223 
224 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
225 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
226 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
227 		DELAY(1);
228 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
229 			break;
230 	}
231 
232 	if (i == 0) {
233 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
234 		return (0);
235 	}
236 
237 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
238 }
239 
240 /*
241  *	Write a PHY register on the MII of the JMC250.
242  */
243 static int
244 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
245 {
246 	struct jme_softc *sc;
247 	int i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* For FPGA version, PHY address 0 should be ignored. */
252 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
253 		return (0);
254 
255 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
256 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
257 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
258 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
259 		DELAY(1);
260 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
261 			break;
262 	}
263 
264 	if (i == 0)
265 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
266 
267 	return (0);
268 }
269 
270 /*
271  *	Callback from MII layer when media changes.
272  */
273 static void
274 jme_miibus_statchg(device_t dev)
275 {
276 	struct jme_softc *sc;
277 
278 	sc = device_get_softc(dev);
279 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
280 }
281 
282 /*
283  *	Get the current interface media status.
284  */
285 static void
286 jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
287 {
288 	struct jme_softc *sc;
289 	struct mii_data *mii;
290 
291 	sc = if_getsoftc(ifp);
292 	JME_LOCK(sc);
293 	if ((if_getflags(ifp) & IFF_UP) == 0) {
294 		JME_UNLOCK(sc);
295 		return;
296 	}
297 	mii = device_get_softc(sc->jme_miibus);
298 
299 	mii_pollstat(mii);
300 	ifmr->ifm_status = mii->mii_media_status;
301 	ifmr->ifm_active = mii->mii_media_active;
302 	JME_UNLOCK(sc);
303 }
304 
305 /*
306  *	Set hardware to newly-selected media.
307  */
308 static int
309 jme_mediachange(if_t ifp)
310 {
311 	struct jme_softc *sc;
312 	struct mii_data *mii;
313 	struct mii_softc *miisc;
314 	int error;
315 
316 	sc = if_getsoftc(ifp);
317 	JME_LOCK(sc);
318 	mii = device_get_softc(sc->jme_miibus);
319 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
320 		PHY_RESET(miisc);
321 	error = mii_mediachg(mii);
322 	JME_UNLOCK(sc);
323 
324 	return (error);
325 }
326 
327 static int
328 jme_probe(device_t dev)
329 {
330 	struct jme_dev *sp;
331 	int i;
332 	uint16_t vendor, devid;
333 
334 	vendor = pci_get_vendor(dev);
335 	devid = pci_get_device(dev);
336 	sp = jme_devs;
337 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
338 		if (vendor == sp->jme_vendorid &&
339 		    devid == sp->jme_deviceid) {
340 			device_set_desc(dev, sp->jme_name);
341 			return (BUS_PROBE_DEFAULT);
342 		}
343 	}
344 
345 	return (ENXIO);
346 }
347 
348 static int
349 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
350 {
351 	uint32_t reg;
352 	int i;
353 
354 	*val = 0;
355 	for (i = JME_TIMEOUT; i > 0; i--) {
356 		reg = CSR_READ_4(sc, JME_SMBCSR);
357 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
358 			break;
359 		DELAY(1);
360 	}
361 
362 	if (i == 0) {
363 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
364 		return (ETIMEDOUT);
365 	}
366 
367 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
368 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
369 	for (i = JME_TIMEOUT; i > 0; i--) {
370 		DELAY(1);
371 		reg = CSR_READ_4(sc, JME_SMBINTF);
372 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
373 			break;
374 	}
375 
376 	if (i == 0) {
377 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
378 		return (ETIMEDOUT);
379 	}
380 
381 	reg = CSR_READ_4(sc, JME_SMBINTF);
382 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
383 
384 	return (0);
385 }
386 
387 static int
388 jme_eeprom_macaddr(struct jme_softc *sc)
389 {
390 	uint8_t eaddr[ETHER_ADDR_LEN];
391 	uint8_t fup, reg, val;
392 	uint32_t offset;
393 	int match;
394 
395 	offset = 0;
396 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
397 	    fup != JME_EEPROM_SIG0)
398 		return (ENOENT);
399 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400 	    fup != JME_EEPROM_SIG1)
401 		return (ENOENT);
402 	match = 0;
403 	do {
404 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
405 			break;
406 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
407 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
408 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
409 				break;
410 			if (reg >= JME_PAR0 &&
411 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
412 				if (jme_eeprom_read_byte(sc, offset + 2,
413 				    &val) != 0)
414 					break;
415 				eaddr[reg - JME_PAR0] = val;
416 				match++;
417 			}
418 		}
419 		/* Check for the end of EEPROM descriptor. */
420 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
421 			break;
422 		/* Try next eeprom descriptor. */
423 		offset += JME_EEPROM_DESC_BYTES;
424 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
425 
426 	if (match == ETHER_ADDR_LEN) {
427 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
428 		return (0);
429 	}
430 
431 	return (ENOENT);
432 }
433 
434 static int
435 jme_efuse_macaddr(struct jme_softc *sc)
436 {
437 	uint32_t reg;
438 	int i;
439 
440 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
441 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
442 	    EFUSE_CTL1_AUTOLAOD_DONE)
443 		return (ENOENT);
444 	/* Reset eFuse controller. */
445 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
446 	reg |= EFUSE_CTL2_RESET;
447 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
448 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449 	reg &= ~EFUSE_CTL2_RESET;
450 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451 
452 	/* Have eFuse reload station address to MAC controller. */
453 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
454 	reg &= ~EFUSE_CTL1_CMD_MASK;
455 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
456 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
457 
458 	/*
459 	 * Verify completion of eFuse autload command.  It should be
460 	 * completed within 108us.
461 	 */
462 	DELAY(110);
463 	for (i = 10; i > 0; i--) {
464 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
465 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
466 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
467 			DELAY(20);
468 			continue;
469 		}
470 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
471 			break;
472 		/* Station address loading is still in progress. */
473 		DELAY(20);
474 	}
475 	if (i == 0) {
476 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
477 		return (ETIMEDOUT);
478 	}
479 
480 	return (0);
481 }
482 
483 static void
484 jme_reg_macaddr(struct jme_softc *sc)
485 {
486 	uint32_t par0, par1;
487 
488 	/* Read station address. */
489 	par0 = CSR_READ_4(sc, JME_PAR0);
490 	par1 = CSR_READ_4(sc, JME_PAR1);
491 	par1 &= 0xFFFF;
492 	if ((par0 == 0 && par1 == 0) ||
493 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
494 		device_printf(sc->jme_dev,
495 		    "Failed to retrieve Ethernet address.\n");
496 	} else {
497 		/*
498 		 * For controllers that use eFuse, the station address
499 		 * could also be extracted from JME_PCI_PAR0 and
500 		 * JME_PCI_PAR1 registers in PCI configuration space.
501 		 * Each register holds exactly half of station address(24bits)
502 		 * so use JME_PAR0, JME_PAR1 registers instead.
503 		 */
504 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
505 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
506 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
507 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
508 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
509 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
510 	}
511 }
512 
513 static void
514 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
515 {
516 	uint32_t val;
517 	int i;
518 
519 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
520 		/*
521 		 * Avoid reprogramming station address if the address
522 		 * is the same as previous one.  Note, reprogrammed
523 		 * station address is permanent as if it was written
524 		 * to EEPROM. So if station address was changed by
525 		 * admistrator it's possible to lose factory configured
526 		 * address when driver fails to restore its address.
527 		 * (e.g. reboot or system crash)
528 		 */
529 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
530 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
531 				val = JME_EFUSE_EEPROM_FUNC0 <<
532 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
533 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
534 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
535 				val |= (JME_PAR0 + i) <<
536 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
537 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
538 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
539 				    val | JME_EFUSE_EEPROM_WRITE, 4);
540 			}
541 		}
542 	} else {
543 		CSR_WRITE_4(sc, JME_PAR0,
544 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
545 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
546 	}
547 }
548 
549 static void
550 jme_map_intr_vector(struct jme_softc *sc)
551 {
552 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
553 
554 	bzero(map, sizeof(map));
555 
556 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
557 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
558 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
559 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
560 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
561 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
562 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
563 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
564 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
565 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
566 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
567 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
568 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
569 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
570 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
571 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
572 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
573 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
574 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
575 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
576 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
577 
578 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
579 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
580 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
581 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
582 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
583 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
584 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
585 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
586 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
587 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
588 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
589 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
590 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
591 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
592 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
593 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
594 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
595 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
596 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
597 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
598 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
599 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
600 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
601 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
602 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
603 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
604 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
605 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
606 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
607 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
608 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
609 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
610 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
611 
612 	/* Map all other interrupts source to MSI/MSIX vector 0. */
613 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
614 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
615 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
617 }
618 
619 static int
620 jme_attach(device_t dev)
621 {
622 	struct jme_softc *sc;
623 	if_t ifp;
624 	struct mii_softc *miisc;
625 	struct mii_data *mii;
626 	uint32_t reg;
627 	uint16_t burst;
628 	int error, i, mii_flags, msic, msixc, pmc;
629 
630 	error = 0;
631 	sc = device_get_softc(dev);
632 	sc->jme_dev = dev;
633 
634 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
635 	    MTX_DEF);
636 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
637 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
638 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
639 
640 	/*
641 	 * Map the device. JMC250 supports both memory mapped and I/O
642 	 * register space access. Because I/O register access should
643 	 * use different BARs to access registers it's waste of time
644 	 * to use I/O register spce access. JMC250 uses 16K to map
645 	 * entire memory space.
646 	 */
647 	pci_enable_busmaster(dev);
648 	sc->jme_res_spec = jme_res_spec_mem;
649 	sc->jme_irq_spec = jme_irq_spec_legacy;
650 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
651 	if (error != 0) {
652 		device_printf(dev, "cannot allocate memory resources.\n");
653 		goto fail;
654 	}
655 
656 	/* Allocate IRQ resources. */
657 	msixc = pci_msix_count(dev);
658 	msic = pci_msi_count(dev);
659 	if (bootverbose) {
660 		device_printf(dev, "MSIX count : %d\n", msixc);
661 		device_printf(dev, "MSI count : %d\n", msic);
662 	}
663 
664 	/* Use 1 MSI/MSI-X. */
665 	if (msixc > 1)
666 		msixc = 1;
667 	if (msic > 1)
668 		msic = 1;
669 	/* Prefer MSIX over MSI. */
670 	if (msix_disable == 0 || msi_disable == 0) {
671 		if (msix_disable == 0 && msixc > 0 &&
672 		    pci_alloc_msix(dev, &msixc) == 0) {
673 			if (msixc == 1) {
674 				device_printf(dev, "Using %d MSIX messages.\n",
675 				    msixc);
676 				sc->jme_flags |= JME_FLAG_MSIX;
677 				sc->jme_irq_spec = jme_irq_spec_msi;
678 			} else
679 				pci_release_msi(dev);
680 		}
681 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
682 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
683 			if (msic == 1) {
684 				device_printf(dev, "Using %d MSI messages.\n",
685 				    msic);
686 				sc->jme_flags |= JME_FLAG_MSI;
687 				sc->jme_irq_spec = jme_irq_spec_msi;
688 			} else
689 				pci_release_msi(dev);
690 		}
691 		/* Map interrupt vector 0, 1 and 2. */
692 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
693 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
694 			jme_map_intr_vector(sc);
695 	}
696 
697 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
698 	if (error != 0) {
699 		device_printf(dev, "cannot allocate IRQ resources.\n");
700 		goto fail;
701 	}
702 
703 	sc->jme_rev = pci_get_device(dev);
704 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
705 		sc->jme_flags |= JME_FLAG_FASTETH;
706 		sc->jme_flags |= JME_FLAG_NOJUMBO;
707 	}
708 	reg = CSR_READ_4(sc, JME_CHIPMODE);
709 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
710 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
711 	    CHIPMODE_NOT_FPGA)
712 		sc->jme_flags |= JME_FLAG_FPGA;
713 	if (bootverbose) {
714 		device_printf(dev, "PCI device revision : 0x%04x\n",
715 		    sc->jme_rev);
716 		device_printf(dev, "Chip revision : 0x%02x\n",
717 		    sc->jme_chip_rev);
718 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
719 			device_printf(dev, "FPGA revision : 0x%04x\n",
720 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
721 			    CHIPMODE_FPGA_REV_SHIFT);
722 	}
723 	if (sc->jme_chip_rev == 0xFF) {
724 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
725 		    sc->jme_rev);
726 		error = ENXIO;
727 		goto fail;
728 	}
729 
730 	/* Identify controller features and bugs. */
731 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
732 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
733 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
734 			sc->jme_flags |= JME_FLAG_DMA32BIT;
735 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
736 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
737 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
738 		sc->jme_flags |= JME_FLAG_HWMIB;
739 	}
740 
741 	/* Reset the ethernet controller. */
742 	jme_reset(sc);
743 
744 	/* Get station address. */
745 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
746 		error = jme_efuse_macaddr(sc);
747 		if (error == 0)
748 			jme_reg_macaddr(sc);
749 	} else {
750 		error = ENOENT;
751 		reg = CSR_READ_4(sc, JME_SMBCSR);
752 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
753 			error = jme_eeprom_macaddr(sc);
754 		if (error != 0 && bootverbose)
755 			device_printf(sc->jme_dev,
756 			    "ethernet hardware address not found in EEPROM.\n");
757 		if (error != 0)
758 			jme_reg_macaddr(sc);
759 	}
760 
761 	/*
762 	 * Save PHY address.
763 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
764 	 * requires PHY probing to get correct PHY address.
765 	 */
766 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
767 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
768 		    GPREG0_PHY_ADDR_MASK;
769 		if (bootverbose)
770 			device_printf(dev, "PHY is at address %d.\n",
771 			    sc->jme_phyaddr);
772 	} else
773 		sc->jme_phyaddr = 0;
774 
775 	/* Set max allowable DMA size. */
776 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
777 		sc->jme_flags |= JME_FLAG_PCIE;
778 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
779 		if (bootverbose) {
780 			device_printf(dev, "Read request size : %d bytes.\n",
781 			    128 << ((burst >> 12) & 0x07));
782 			device_printf(dev, "TLP payload size : %d bytes.\n",
783 			    128 << ((burst >> 5) & 0x07));
784 		}
785 		switch ((burst >> 12) & 0x07) {
786 		case 0:
787 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
788 			break;
789 		case 1:
790 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
791 			break;
792 		default:
793 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
794 			break;
795 		}
796 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
797 	} else {
798 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800 	}
801 	/* Create coalescing sysctl node. */
802 	jme_sysctl_node(sc);
803 	if ((error = jme_dma_alloc(sc)) != 0)
804 		goto fail;
805 
806 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
807 	if (ifp == NULL) {
808 		device_printf(dev, "cannot allocate ifnet structure.\n");
809 		error = ENXIO;
810 		goto fail;
811 	}
812 
813 	if_setsoftc(ifp, sc);
814 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
815 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
816 	if_setioctlfn(ifp, jme_ioctl);
817 	if_setstartfn(ifp, jme_start);
818 	if_setinitfn(ifp, jme_init);
819 	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
820 	if_setsendqready(ifp);
821 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
822 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
823 	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
824 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
825 		sc->jme_flags |= JME_FLAG_PMCAP;
826 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
827 	}
828 	if_setcapenable(ifp, if_getcapabilities(ifp));
829 
830 	/* Wakeup PHY. */
831 	jme_phy_up(sc);
832 	mii_flags = MIIF_DOPAUSE;
833 	/* Ask PHY calibration to PHY driver. */
834 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
835 		mii_flags |= MIIF_MACPRIV0;
836 	/* Set up MII bus. */
837 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
838 	    jme_mediastatus, BMSR_DEFCAPMASK,
839 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
840 	    MII_OFFSET_ANY, mii_flags);
841 	if (error != 0) {
842 		device_printf(dev, "attaching PHYs failed\n");
843 		goto fail;
844 	}
845 
846 	/*
847 	 * Force PHY to FPGA mode.
848 	 */
849 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
850 		mii = device_get_softc(sc->jme_miibus);
851 		if (mii->mii_instance != 0) {
852 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
853 				if (miisc->mii_phy != 0) {
854 					sc->jme_phyaddr = miisc->mii_phy;
855 					break;
856 				}
857 			}
858 			if (sc->jme_phyaddr != 0) {
859 				device_printf(sc->jme_dev,
860 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
861 				/* vendor magic. */
862 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
863 				    0x0004);
864 			}
865 		}
866 	}
867 
868 	ether_ifattach(ifp, sc->jme_eaddr);
869 
870 	/* VLAN capability setup */
871 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
872 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
873 	if_setcapenable(ifp, if_getcapabilities(ifp));
874 
875 	/* Tell the upper layer(s) we support long frames. */
876 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
877 
878 	/* Create local taskq. */
879 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
880 	    taskqueue_thread_enqueue, &sc->jme_tq);
881 	if (sc->jme_tq == NULL) {
882 		device_printf(dev, "could not create taskqueue.\n");
883 		ether_ifdetach(ifp);
884 		error = ENXIO;
885 		goto fail;
886 	}
887 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
888 	    device_get_nameunit(sc->jme_dev));
889 
890 	for (i = 0; i < 1; i++) {
891 		error = bus_setup_intr(dev, sc->jme_irq[i],
892 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
893 		    &sc->jme_intrhand[i]);
894 		if (error != 0)
895 			break;
896 	}
897 
898 	if (error != 0) {
899 		device_printf(dev, "could not set up interrupt handler.\n");
900 		taskqueue_free(sc->jme_tq);
901 		sc->jme_tq = NULL;
902 		ether_ifdetach(ifp);
903 		goto fail;
904 	}
905 
906 fail:
907 	if (error != 0)
908 		jme_detach(dev);
909 
910 	return (error);
911 }
912 
913 static int
914 jme_detach(device_t dev)
915 {
916 	struct jme_softc *sc;
917 	if_t ifp;
918 	int i;
919 
920 	sc = device_get_softc(dev);
921 
922 	ifp = sc->jme_ifp;
923 	if (device_is_attached(dev)) {
924 		JME_LOCK(sc);
925 		sc->jme_flags |= JME_FLAG_DETACH;
926 		jme_stop(sc);
927 		JME_UNLOCK(sc);
928 		callout_drain(&sc->jme_tick_ch);
929 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
930 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
931 		/* Restore possibly modified station address. */
932 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
933 			jme_set_macaddr(sc, sc->jme_eaddr);
934 		ether_ifdetach(ifp);
935 	}
936 
937 	if (sc->jme_tq != NULL) {
938 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
939 		taskqueue_free(sc->jme_tq);
940 		sc->jme_tq = NULL;
941 	}
942 
943 	if (sc->jme_miibus != NULL) {
944 		device_delete_child(dev, sc->jme_miibus);
945 		sc->jme_miibus = NULL;
946 	}
947 	bus_generic_detach(dev);
948 	jme_dma_free(sc);
949 
950 	if (ifp != NULL) {
951 		if_free(ifp);
952 		sc->jme_ifp = NULL;
953 	}
954 
955 	for (i = 0; i < 1; i++) {
956 		if (sc->jme_intrhand[i] != NULL) {
957 			bus_teardown_intr(dev, sc->jme_irq[i],
958 			    sc->jme_intrhand[i]);
959 			sc->jme_intrhand[i] = NULL;
960 		}
961 	}
962 
963 	if (sc->jme_irq[0] != NULL)
964 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
965 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
966 		pci_release_msi(dev);
967 	if (sc->jme_res[0] != NULL)
968 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
969 	mtx_destroy(&sc->jme_mtx);
970 
971 	return (0);
972 }
973 
974 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
975 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
976 
977 static void
978 jme_sysctl_node(struct jme_softc *sc)
979 {
980 	struct sysctl_ctx_list *ctx;
981 	struct sysctl_oid_list *child, *parent;
982 	struct sysctl_oid *tree;
983 	struct jme_hw_stats *stats;
984 	int error;
985 
986 	stats = &sc->jme_stats;
987 	ctx = device_get_sysctl_ctx(sc->jme_dev);
988 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
989 
990 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
991 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
992 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
993 
994 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
995 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
996 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
997 
998 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
999 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
1000 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1001 
1002 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1003 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
1004 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1005 
1006 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1007 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1008 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
1009 	    "max number of Rx events to process");
1010 
1011 	/* Pull in device tunables. */
1012 	sc->jme_process_limit = JME_PROC_DEFAULT;
1013 	error = resource_int_value(device_get_name(sc->jme_dev),
1014 	    device_get_unit(sc->jme_dev), "process_limit",
1015 	    &sc->jme_process_limit);
1016 	if (error == 0) {
1017 		if (sc->jme_process_limit < JME_PROC_MIN ||
1018 		    sc->jme_process_limit > JME_PROC_MAX) {
1019 			device_printf(sc->jme_dev,
1020 			    "process_limit value out of range; "
1021 			    "using default: %d\n", JME_PROC_DEFAULT);
1022 			sc->jme_process_limit = JME_PROC_DEFAULT;
1023 		}
1024 	}
1025 
1026 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1027 	error = resource_int_value(device_get_name(sc->jme_dev),
1028 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1029 	if (error == 0) {
1030 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1031 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1032 			device_printf(sc->jme_dev,
1033 			    "tx_coal_to value out of range; "
1034 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1035 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1036 		}
1037 	}
1038 
1039 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1040 	error = resource_int_value(device_get_name(sc->jme_dev),
1041 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1042 	if (error == 0) {
1043 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1044 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1045 			device_printf(sc->jme_dev,
1046 			    "tx_coal_pkt value out of range; "
1047 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1048 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1049 		}
1050 	}
1051 
1052 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1053 	error = resource_int_value(device_get_name(sc->jme_dev),
1054 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1055 	if (error == 0) {
1056 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1057 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1058 			device_printf(sc->jme_dev,
1059 			    "rx_coal_to value out of range; "
1060 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1061 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1062 		}
1063 	}
1064 
1065 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1066 	error = resource_int_value(device_get_name(sc->jme_dev),
1067 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1068 	if (error == 0) {
1069 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1070 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1071 			device_printf(sc->jme_dev,
1072 			    "tx_coal_pkt value out of range; "
1073 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1074 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1075 		}
1076 	}
1077 
1078 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1079 		return;
1080 
1081 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1082 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1083 	parent = SYSCTL_CHILDREN(tree);
1084 
1085 	/* Rx statistics. */
1086 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1087 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1088 	child = SYSCTL_CHILDREN(tree);
1089 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1090 	    &stats->rx_good_frames, "Good frames");
1091 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1092 	    &stats->rx_crc_errs, "CRC errors");
1093 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1094 	    &stats->rx_mii_errs, "MII errors");
1095 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1096 	    &stats->rx_fifo_oflows, "FIFO overflows");
1097 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1098 	    &stats->rx_desc_empty, "Descriptor empty");
1099 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1100 	    &stats->rx_bad_frames, "Bad frames");
1101 
1102 	/* Tx statistics. */
1103 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1104 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1105 	child = SYSCTL_CHILDREN(tree);
1106 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1107 	    &stats->tx_good_frames, "Good frames");
1108 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1109 	    &stats->tx_bad_frames, "Bad frames");
1110 }
1111 
1112 #undef	JME_SYSCTL_STAT_ADD32
1113 
1114 struct jme_dmamap_arg {
1115 	bus_addr_t	jme_busaddr;
1116 };
1117 
1118 static void
1119 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1120 {
1121 	struct jme_dmamap_arg *ctx;
1122 
1123 	if (error != 0)
1124 		return;
1125 
1126 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1127 
1128 	ctx = (struct jme_dmamap_arg *)arg;
1129 	ctx->jme_busaddr = segs[0].ds_addr;
1130 }
1131 
1132 static int
1133 jme_dma_alloc(struct jme_softc *sc)
1134 {
1135 	struct jme_dmamap_arg ctx;
1136 	struct jme_txdesc *txd;
1137 	struct jme_rxdesc *rxd;
1138 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1139 	int error, i;
1140 
1141 	lowaddr = BUS_SPACE_MAXADDR;
1142 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1143 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1144 
1145 again:
1146 	/* Create parent ring tag. */
1147 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1148 	    1, 0,			/* algnmnt, boundary */
1149 	    lowaddr,			/* lowaddr */
1150 	    BUS_SPACE_MAXADDR,		/* highaddr */
1151 	    NULL, NULL,			/* filter, filterarg */
1152 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1153 	    0,				/* nsegments */
1154 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1155 	    0,				/* flags */
1156 	    NULL, NULL,			/* lockfunc, lockarg */
1157 	    &sc->jme_cdata.jme_ring_tag);
1158 	if (error != 0) {
1159 		device_printf(sc->jme_dev,
1160 		    "could not create parent ring DMA tag.\n");
1161 		goto fail;
1162 	}
1163 	/* Create tag for Tx ring. */
1164 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1165 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1166 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1167 	    BUS_SPACE_MAXADDR,		/* highaddr */
1168 	    NULL, NULL,			/* filter, filterarg */
1169 	    JME_TX_RING_SIZE,		/* maxsize */
1170 	    1,				/* nsegments */
1171 	    JME_TX_RING_SIZE,		/* maxsegsize */
1172 	    0,				/* flags */
1173 	    NULL, NULL,			/* lockfunc, lockarg */
1174 	    &sc->jme_cdata.jme_tx_ring_tag);
1175 	if (error != 0) {
1176 		device_printf(sc->jme_dev,
1177 		    "could not allocate Tx ring DMA tag.\n");
1178 		goto fail;
1179 	}
1180 
1181 	/* Create tag for Rx ring. */
1182 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1183 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1184 	    lowaddr,			/* lowaddr */
1185 	    BUS_SPACE_MAXADDR,		/* highaddr */
1186 	    NULL, NULL,			/* filter, filterarg */
1187 	    JME_RX_RING_SIZE,		/* maxsize */
1188 	    1,				/* nsegments */
1189 	    JME_RX_RING_SIZE,		/* maxsegsize */
1190 	    0,				/* flags */
1191 	    NULL, NULL,			/* lockfunc, lockarg */
1192 	    &sc->jme_cdata.jme_rx_ring_tag);
1193 	if (error != 0) {
1194 		device_printf(sc->jme_dev,
1195 		    "could not allocate Rx ring DMA tag.\n");
1196 		goto fail;
1197 	}
1198 
1199 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1200 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1201 	    (void **)&sc->jme_rdata.jme_tx_ring,
1202 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1203 	    &sc->jme_cdata.jme_tx_ring_map);
1204 	if (error != 0) {
1205 		device_printf(sc->jme_dev,
1206 		    "could not allocate DMA'able memory for Tx ring.\n");
1207 		goto fail;
1208 	}
1209 
1210 	ctx.jme_busaddr = 0;
1211 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1212 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1213 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1214 	if (error != 0 || ctx.jme_busaddr == 0) {
1215 		device_printf(sc->jme_dev,
1216 		    "could not load DMA'able memory for Tx ring.\n");
1217 		goto fail;
1218 	}
1219 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1220 
1221 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1222 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1223 	    (void **)&sc->jme_rdata.jme_rx_ring,
1224 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1225 	    &sc->jme_cdata.jme_rx_ring_map);
1226 	if (error != 0) {
1227 		device_printf(sc->jme_dev,
1228 		    "could not allocate DMA'able memory for Rx ring.\n");
1229 		goto fail;
1230 	}
1231 
1232 	ctx.jme_busaddr = 0;
1233 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1234 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1235 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1236 	if (error != 0 || ctx.jme_busaddr == 0) {
1237 		device_printf(sc->jme_dev,
1238 		    "could not load DMA'able memory for Rx ring.\n");
1239 		goto fail;
1240 	}
1241 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1242 
1243 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1244 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1245 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1246 		    JME_TX_RING_SIZE;
1247 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1248 		    JME_RX_RING_SIZE;
1249 		if ((JME_ADDR_HI(tx_ring_end) !=
1250 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1251 		    (JME_ADDR_HI(rx_ring_end) !=
1252 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1253 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1254 			    "switching to 32bit DMA address mode.\n");
1255 			jme_dma_free(sc);
1256 			/* Limit DMA address space to 32bit and try again. */
1257 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1258 			goto again;
1259 		}
1260 	}
1261 
1262 	lowaddr = BUS_SPACE_MAXADDR;
1263 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1264 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1265 	/* Create parent buffer tag. */
1266 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1267 	    1, 0,			/* algnmnt, boundary */
1268 	    lowaddr,			/* lowaddr */
1269 	    BUS_SPACE_MAXADDR,		/* highaddr */
1270 	    NULL, NULL,			/* filter, filterarg */
1271 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1272 	    0,				/* nsegments */
1273 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1274 	    0,				/* flags */
1275 	    NULL, NULL,			/* lockfunc, lockarg */
1276 	    &sc->jme_cdata.jme_buffer_tag);
1277 	if (error != 0) {
1278 		device_printf(sc->jme_dev,
1279 		    "could not create parent buffer DMA tag.\n");
1280 		goto fail;
1281 	}
1282 
1283 	/* Create shadow status block tag. */
1284 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1285 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1286 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1287 	    BUS_SPACE_MAXADDR,		/* highaddr */
1288 	    NULL, NULL,			/* filter, filterarg */
1289 	    JME_SSB_SIZE,		/* maxsize */
1290 	    1,				/* nsegments */
1291 	    JME_SSB_SIZE,		/* maxsegsize */
1292 	    0,				/* flags */
1293 	    NULL, NULL,			/* lockfunc, lockarg */
1294 	    &sc->jme_cdata.jme_ssb_tag);
1295 	if (error != 0) {
1296 		device_printf(sc->jme_dev,
1297 		    "could not create shared status block DMA tag.\n");
1298 		goto fail;
1299 	}
1300 
1301 	/* Create tag for Tx buffers. */
1302 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1303 	    1, 0,			/* algnmnt, boundary */
1304 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1305 	    BUS_SPACE_MAXADDR,		/* highaddr */
1306 	    NULL, NULL,			/* filter, filterarg */
1307 	    JME_TSO_MAXSIZE,		/* maxsize */
1308 	    JME_MAXTXSEGS,		/* nsegments */
1309 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1310 	    0,				/* flags */
1311 	    NULL, NULL,			/* lockfunc, lockarg */
1312 	    &sc->jme_cdata.jme_tx_tag);
1313 	if (error != 0) {
1314 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1315 		goto fail;
1316 	}
1317 
1318 	/* Create tag for Rx buffers. */
1319 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1320 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1321 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1322 	    BUS_SPACE_MAXADDR,		/* highaddr */
1323 	    NULL, NULL,			/* filter, filterarg */
1324 	    MCLBYTES,			/* maxsize */
1325 	    1,				/* nsegments */
1326 	    MCLBYTES,			/* maxsegsize */
1327 	    0,				/* flags */
1328 	    NULL, NULL,			/* lockfunc, lockarg */
1329 	    &sc->jme_cdata.jme_rx_tag);
1330 	if (error != 0) {
1331 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1332 		goto fail;
1333 	}
1334 
1335 	/*
1336 	 * Allocate DMA'able memory and load the DMA map for shared
1337 	 * status block.
1338 	 */
1339 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1340 	    (void **)&sc->jme_rdata.jme_ssb_block,
1341 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1342 	    &sc->jme_cdata.jme_ssb_map);
1343 	if (error != 0) {
1344 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1345 		    "memory for shared status block.\n");
1346 		goto fail;
1347 	}
1348 
1349 	ctx.jme_busaddr = 0;
1350 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1351 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1352 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1353 	if (error != 0 || ctx.jme_busaddr == 0) {
1354 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1355 		    "for shared status block.\n");
1356 		goto fail;
1357 	}
1358 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1359 
1360 	/* Create DMA maps for Tx buffers. */
1361 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1362 		txd = &sc->jme_cdata.jme_txdesc[i];
1363 		txd->tx_m = NULL;
1364 		txd->tx_dmamap = NULL;
1365 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1366 		    &txd->tx_dmamap);
1367 		if (error != 0) {
1368 			device_printf(sc->jme_dev,
1369 			    "could not create Tx dmamap.\n");
1370 			goto fail;
1371 		}
1372 	}
1373 	/* Create DMA maps for Rx buffers. */
1374 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1375 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1376 		device_printf(sc->jme_dev,
1377 		    "could not create spare Rx dmamap.\n");
1378 		goto fail;
1379 	}
1380 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1381 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1382 		rxd->rx_m = NULL;
1383 		rxd->rx_dmamap = NULL;
1384 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1385 		    &rxd->rx_dmamap);
1386 		if (error != 0) {
1387 			device_printf(sc->jme_dev,
1388 			    "could not create Rx dmamap.\n");
1389 			goto fail;
1390 		}
1391 	}
1392 
1393 fail:
1394 	return (error);
1395 }
1396 
1397 static void
1398 jme_dma_free(struct jme_softc *sc)
1399 {
1400 	struct jme_txdesc *txd;
1401 	struct jme_rxdesc *rxd;
1402 	int i;
1403 
1404 	/* Tx ring */
1405 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1406 		if (sc->jme_rdata.jme_tx_ring_paddr)
1407 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1408 			    sc->jme_cdata.jme_tx_ring_map);
1409 		if (sc->jme_rdata.jme_tx_ring)
1410 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1411 			    sc->jme_rdata.jme_tx_ring,
1412 			    sc->jme_cdata.jme_tx_ring_map);
1413 		sc->jme_rdata.jme_tx_ring = NULL;
1414 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1415 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1416 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1417 	}
1418 	/* Rx ring */
1419 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1420 		if (sc->jme_rdata.jme_rx_ring_paddr)
1421 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1422 			    sc->jme_cdata.jme_rx_ring_map);
1423 		if (sc->jme_rdata.jme_rx_ring)
1424 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1425 			    sc->jme_rdata.jme_rx_ring,
1426 			    sc->jme_cdata.jme_rx_ring_map);
1427 		sc->jme_rdata.jme_rx_ring = NULL;
1428 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1429 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1430 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1431 	}
1432 	/* Tx buffers */
1433 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1434 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1435 			txd = &sc->jme_cdata.jme_txdesc[i];
1436 			if (txd->tx_dmamap != NULL) {
1437 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1438 				    txd->tx_dmamap);
1439 				txd->tx_dmamap = NULL;
1440 			}
1441 		}
1442 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1443 		sc->jme_cdata.jme_tx_tag = NULL;
1444 	}
1445 	/* Rx buffers */
1446 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1447 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1448 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1449 			if (rxd->rx_dmamap != NULL) {
1450 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1451 				    rxd->rx_dmamap);
1452 				rxd->rx_dmamap = NULL;
1453 			}
1454 		}
1455 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1456 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1457 			    sc->jme_cdata.jme_rx_sparemap);
1458 			sc->jme_cdata.jme_rx_sparemap = NULL;
1459 		}
1460 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1461 		sc->jme_cdata.jme_rx_tag = NULL;
1462 	}
1463 
1464 	/* Shared status block. */
1465 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1466 		if (sc->jme_rdata.jme_ssb_block_paddr)
1467 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1468 			    sc->jme_cdata.jme_ssb_map);
1469 		if (sc->jme_rdata.jme_ssb_block)
1470 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1471 			    sc->jme_rdata.jme_ssb_block,
1472 			    sc->jme_cdata.jme_ssb_map);
1473 		sc->jme_rdata.jme_ssb_block = NULL;
1474 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1475 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1476 		sc->jme_cdata.jme_ssb_tag = NULL;
1477 	}
1478 
1479 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1480 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1481 		sc->jme_cdata.jme_buffer_tag = NULL;
1482 	}
1483 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1484 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1485 		sc->jme_cdata.jme_ring_tag = NULL;
1486 	}
1487 }
1488 
1489 /*
1490  *	Make sure the interface is stopped at reboot time.
1491  */
1492 static int
1493 jme_shutdown(device_t dev)
1494 {
1495 
1496 	return (jme_suspend(dev));
1497 }
1498 
1499 /*
1500  * Unlike other ethernet controllers, JMC250 requires
1501  * explicit resetting link speed to 10/100Mbps as gigabit
1502  * link will cunsume more power than 375mA.
1503  * Note, we reset the link speed to 10/100Mbps with
1504  * auto-negotiation but we don't know whether that operation
1505  * would succeed or not as we have no control after powering
1506  * off. If the renegotiation fail WOL may not work. Running
1507  * at 1Gbps draws more power than 375mA at 3.3V which is
1508  * specified in PCI specification and that would result in
1509  * complete shutdowning power to ethernet controller.
1510  *
1511  * TODO
1512  *  Save current negotiated media speed/duplex/flow-control
1513  *  to softc and restore the same link again after resuming.
1514  *  PHY handling such as power down/resetting to 100Mbps
1515  *  may be better handled in suspend method in phy driver.
1516  */
1517 static void
1518 jme_setlinkspeed(struct jme_softc *sc)
1519 {
1520 	struct mii_data *mii;
1521 	int aneg, i;
1522 
1523 	JME_LOCK_ASSERT(sc);
1524 
1525 	mii = device_get_softc(sc->jme_miibus);
1526 	mii_pollstat(mii);
1527 	aneg = 0;
1528 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1529 		switch IFM_SUBTYPE(mii->mii_media_active) {
1530 		case IFM_10_T:
1531 		case IFM_100_TX:
1532 			return;
1533 		case IFM_1000_T:
1534 			aneg++;
1535 		default:
1536 			break;
1537 		}
1538 	}
1539 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1540 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1541 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1542 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1543 	    BMCR_AUTOEN | BMCR_STARTNEG);
1544 	DELAY(1000);
1545 	if (aneg != 0) {
1546 		/* Poll link state until jme(4) get a 10/100 link. */
1547 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1548 			mii_pollstat(mii);
1549 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1550 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1551 				case IFM_10_T:
1552 				case IFM_100_TX:
1553 					jme_mac_config(sc);
1554 					return;
1555 				default:
1556 					break;
1557 				}
1558 			}
1559 			JME_UNLOCK(sc);
1560 			pause("jmelnk", hz);
1561 			JME_LOCK(sc);
1562 		}
1563 		if (i == MII_ANEGTICKS_GIGE)
1564 			device_printf(sc->jme_dev, "establishing link failed, "
1565 			    "WOL may not work!");
1566 	}
1567 	/*
1568 	 * No link, force MAC to have 100Mbps, full-duplex link.
1569 	 * This is the last resort and may/may not work.
1570 	 */
1571 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1572 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1573 	jme_mac_config(sc);
1574 }
1575 
1576 static void
1577 jme_setwol(struct jme_softc *sc)
1578 {
1579 	if_t ifp;
1580 	uint32_t gpr, pmcs;
1581 	uint16_t pmstat;
1582 	int pmc;
1583 
1584 	JME_LOCK_ASSERT(sc);
1585 
1586 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1587 		/* Remove Tx MAC/offload clock to save more power. */
1588 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1589 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1590 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1591 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1592 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1593 			CSR_WRITE_4(sc, JME_GPREG1,
1594 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1595 		/* No PME capability, PHY power down. */
1596 		jme_phy_down(sc);
1597 		return;
1598 	}
1599 
1600 	ifp = sc->jme_ifp;
1601 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1602 	pmcs = CSR_READ_4(sc, JME_PMCS);
1603 	pmcs &= ~PMCS_WOL_ENB_MASK;
1604 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1605 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1606 		/* Enable PME message. */
1607 		gpr |= GPREG0_PME_ENB;
1608 		/* For gigabit controllers, reset link speed to 10/100. */
1609 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1610 			jme_setlinkspeed(sc);
1611 	}
1612 
1613 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1614 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1615 	/* Remove Tx MAC/offload clock to save more power. */
1616 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1617 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1618 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1619 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1620 	/* Request PME. */
1621 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1622 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1623 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1624 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1625 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1626 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1627 		/* No WOL, PHY power down. */
1628 		jme_phy_down(sc);
1629 	}
1630 }
1631 
1632 static int
1633 jme_suspend(device_t dev)
1634 {
1635 	struct jme_softc *sc;
1636 
1637 	sc = device_get_softc(dev);
1638 
1639 	JME_LOCK(sc);
1640 	jme_stop(sc);
1641 	jme_setwol(sc);
1642 	JME_UNLOCK(sc);
1643 
1644 	return (0);
1645 }
1646 
1647 static int
1648 jme_resume(device_t dev)
1649 {
1650 	struct jme_softc *sc;
1651 	if_t ifp;
1652 	uint16_t pmstat;
1653 	int pmc;
1654 
1655 	sc = device_get_softc(dev);
1656 
1657 	JME_LOCK(sc);
1658 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1659 		pmstat = pci_read_config(sc->jme_dev,
1660 		    pmc + PCIR_POWER_STATUS, 2);
1661 		/* Disable PME clear PME status. */
1662 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1663 		pci_write_config(sc->jme_dev,
1664 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1665 	}
1666 	/* Wakeup PHY. */
1667 	jme_phy_up(sc);
1668 	ifp = sc->jme_ifp;
1669 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1670 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1671 		jme_init_locked(sc);
1672 	}
1673 
1674 	JME_UNLOCK(sc);
1675 
1676 	return (0);
1677 }
1678 
1679 static int
1680 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1681 {
1682 	struct jme_txdesc *txd;
1683 	struct jme_desc *desc;
1684 	struct mbuf *m;
1685 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1686 	int error, i, nsegs, prod;
1687 	uint32_t cflags, tsosegsz;
1688 
1689 	JME_LOCK_ASSERT(sc);
1690 
1691 	M_ASSERTPKTHDR((*m_head));
1692 
1693 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1694 		/*
1695 		 * Due to the adherence to NDIS specification JMC250
1696 		 * assumes upper stack computed TCP pseudo checksum
1697 		 * without including payload length. This breaks
1698 		 * checksum offload for TSO case so recompute TCP
1699 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1700 		 * be much burden on modern CPUs.
1701 		 */
1702 		struct ether_header *eh;
1703 		struct ip *ip;
1704 		struct tcphdr *tcp;
1705 		uint32_t ip_off, poff;
1706 
1707 		if (M_WRITABLE(*m_head) == 0) {
1708 			/* Get a writable copy. */
1709 			m = m_dup(*m_head, M_NOWAIT);
1710 			m_freem(*m_head);
1711 			if (m == NULL) {
1712 				*m_head = NULL;
1713 				return (ENOBUFS);
1714 			}
1715 			*m_head = m;
1716 		}
1717 		ip_off = sizeof(struct ether_header);
1718 		m = m_pullup(*m_head, ip_off);
1719 		if (m == NULL) {
1720 			*m_head = NULL;
1721 			return (ENOBUFS);
1722 		}
1723 		eh = mtod(m, struct ether_header *);
1724 		/* Check the existence of VLAN tag. */
1725 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1726 			ip_off = sizeof(struct ether_vlan_header);
1727 			m = m_pullup(m, ip_off);
1728 			if (m == NULL) {
1729 				*m_head = NULL;
1730 				return (ENOBUFS);
1731 			}
1732 		}
1733 		m = m_pullup(m, ip_off + sizeof(struct ip));
1734 		if (m == NULL) {
1735 			*m_head = NULL;
1736 			return (ENOBUFS);
1737 		}
1738 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1739 		poff = ip_off + (ip->ip_hl << 2);
1740 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1741 		if (m == NULL) {
1742 			*m_head = NULL;
1743 			return (ENOBUFS);
1744 		}
1745 		/*
1746 		 * Reset IP checksum and recompute TCP pseudo
1747 		 * checksum that NDIS specification requires.
1748 		 */
1749 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1750 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1751 		ip->ip_sum = 0;
1752 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1753 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1754 			    ip->ip_dst.s_addr,
1755 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1756 			/* No need to TSO, force IP checksum offload. */
1757 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1758 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1759 		} else
1760 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1761 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1762 		*m_head = m;
1763 	}
1764 
1765 	prod = sc->jme_cdata.jme_tx_prod;
1766 	txd = &sc->jme_cdata.jme_txdesc[prod];
1767 
1768 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1769 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1770 	if (error == EFBIG) {
1771 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1772 		if (m == NULL) {
1773 			m_freem(*m_head);
1774 			*m_head = NULL;
1775 			return (ENOMEM);
1776 		}
1777 		*m_head = m;
1778 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1779 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1780 		if (error != 0) {
1781 			m_freem(*m_head);
1782 			*m_head = NULL;
1783 			return (error);
1784 		}
1785 	} else if (error != 0)
1786 		return (error);
1787 	if (nsegs == 0) {
1788 		m_freem(*m_head);
1789 		*m_head = NULL;
1790 		return (EIO);
1791 	}
1792 
1793 	/*
1794 	 * Check descriptor overrun. Leave one free descriptor.
1795 	 * Since we always use 64bit address mode for transmitting,
1796 	 * each Tx request requires one more dummy descriptor.
1797 	 */
1798 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1799 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1800 		return (ENOBUFS);
1801 	}
1802 
1803 	m = *m_head;
1804 	cflags = 0;
1805 	tsosegsz = 0;
1806 	/* Configure checksum offload and TSO. */
1807 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1808 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1809 		    JME_TD_MSS_SHIFT;
1810 		cflags |= JME_TD_TSO;
1811 	} else {
1812 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1813 			cflags |= JME_TD_IPCSUM;
1814 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1815 			cflags |= JME_TD_TCPCSUM;
1816 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1817 			cflags |= JME_TD_UDPCSUM;
1818 	}
1819 	/* Configure VLAN. */
1820 	if ((m->m_flags & M_VLANTAG) != 0) {
1821 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1822 		cflags |= JME_TD_VLAN_TAG;
1823 	}
1824 
1825 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1826 	desc->flags = htole32(cflags);
1827 	desc->buflen = htole32(tsosegsz);
1828 	desc->addr_hi = htole32(m->m_pkthdr.len);
1829 	desc->addr_lo = 0;
1830 	sc->jme_cdata.jme_tx_cnt++;
1831 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1832 	for (i = 0; i < nsegs; i++) {
1833 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1834 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1835 		desc->buflen = htole32(txsegs[i].ds_len);
1836 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1837 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1838 		sc->jme_cdata.jme_tx_cnt++;
1839 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1840 	}
1841 
1842 	/* Update producer index. */
1843 	sc->jme_cdata.jme_tx_prod = prod;
1844 	/*
1845 	 * Finally request interrupt and give the first descriptor
1846 	 * owenership to hardware.
1847 	 */
1848 	desc = txd->tx_desc;
1849 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1850 
1851 	txd->tx_m = m;
1852 	txd->tx_ndesc = nsegs + 1;
1853 
1854 	/* Sync descriptors. */
1855 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1856 	    BUS_DMASYNC_PREWRITE);
1857 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1858 	    sc->jme_cdata.jme_tx_ring_map,
1859 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1860 
1861 	return (0);
1862 }
1863 
1864 static void
1865 jme_start(if_t ifp)
1866 {
1867         struct jme_softc *sc;
1868 
1869 	sc = if_getsoftc(ifp);
1870 	JME_LOCK(sc);
1871 	jme_start_locked(ifp);
1872 	JME_UNLOCK(sc);
1873 }
1874 
1875 static void
1876 jme_start_locked(if_t ifp)
1877 {
1878         struct jme_softc *sc;
1879         struct mbuf *m_head;
1880 	int enq;
1881 
1882 	sc = if_getsoftc(ifp);
1883 
1884 	JME_LOCK_ASSERT(sc);
1885 
1886 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1887 		jme_txeof(sc);
1888 
1889 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1890 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1891 		return;
1892 
1893 	for (enq = 0; !if_sendq_empty(ifp); ) {
1894 		m_head = if_dequeue(ifp);
1895 		if (m_head == NULL)
1896 			break;
1897 		/*
1898 		 * Pack the data into the transmit ring. If we
1899 		 * don't have room, set the OACTIVE flag and wait
1900 		 * for the NIC to drain the ring.
1901 		 */
1902 		if (jme_encap(sc, &m_head)) {
1903 			if (m_head == NULL)
1904 				break;
1905 			if_sendq_prepend(ifp, m_head);
1906 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1907 			break;
1908 		}
1909 
1910 		enq++;
1911 		/*
1912 		 * If there's a BPF listener, bounce a copy of this frame
1913 		 * to him.
1914 		 */
1915 		ETHER_BPF_MTAP(ifp, m_head);
1916 	}
1917 
1918 	if (enq > 0) {
1919 		/*
1920 		 * Reading TXCSR takes very long time under heavy load
1921 		 * so cache TXCSR value and writes the ORed value with
1922 		 * the kick command to the TXCSR. This saves one register
1923 		 * access cycle.
1924 		 */
1925 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1926 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1927 		/* Set a timeout in case the chip goes out to lunch. */
1928 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1929 	}
1930 }
1931 
1932 static void
1933 jme_watchdog(struct jme_softc *sc)
1934 {
1935 	if_t ifp;
1936 
1937 	JME_LOCK_ASSERT(sc);
1938 
1939 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1940 		return;
1941 
1942 	ifp = sc->jme_ifp;
1943 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1944 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1945 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1946 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1947 		jme_init_locked(sc);
1948 		return;
1949 	}
1950 	jme_txeof(sc);
1951 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1952 		if_printf(sc->jme_ifp,
1953 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1954 		if (!if_sendq_empty(ifp))
1955 			jme_start_locked(ifp);
1956 		return;
1957 	}
1958 
1959 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1960 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1961 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1962 	jme_init_locked(sc);
1963 	if (!if_sendq_empty(ifp))
1964 		jme_start_locked(ifp);
1965 }
1966 
1967 static int
1968 jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1969 {
1970 	struct jme_softc *sc;
1971 	struct ifreq *ifr;
1972 	struct mii_data *mii;
1973 	uint32_t reg;
1974 	int error, mask;
1975 
1976 	sc = if_getsoftc(ifp);
1977 	ifr = (struct ifreq *)data;
1978 	error = 0;
1979 	switch (cmd) {
1980 	case SIOCSIFMTU:
1981 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1982 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1983 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1984 			error = EINVAL;
1985 			break;
1986 		}
1987 
1988 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1989 			/*
1990 			 * No special configuration is required when interface
1991 			 * MTU is changed but availability of TSO/Tx checksum
1992 			 * offload should be chcked against new MTU size as
1993 			 * FIFO size is just 2K.
1994 			 */
1995 			JME_LOCK(sc);
1996 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1997 				if_setcapenablebit(ifp, 0,
1998 				    IFCAP_TXCSUM | IFCAP_TSO4);
1999 				if_sethwassistbits(ifp, 0,
2000 				    JME_CSUM_FEATURES | CSUM_TSO);
2001 				VLAN_CAPABILITIES(ifp);
2002 			}
2003 			if_setmtu(ifp, ifr->ifr_mtu);
2004 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2005 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2006 				jme_init_locked(sc);
2007 			}
2008 			JME_UNLOCK(sc);
2009 		}
2010 		break;
2011 	case SIOCSIFFLAGS:
2012 		JME_LOCK(sc);
2013 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2014 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2015 				if (((if_getflags(ifp) ^ sc->jme_if_flags)
2016 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2017 					jme_set_filter(sc);
2018 			} else {
2019 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2020 					jme_init_locked(sc);
2021 			}
2022 		} else {
2023 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2024 				jme_stop(sc);
2025 		}
2026 		sc->jme_if_flags = if_getflags(ifp);
2027 		JME_UNLOCK(sc);
2028 		break;
2029 	case SIOCADDMULTI:
2030 	case SIOCDELMULTI:
2031 		JME_LOCK(sc);
2032 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2033 			jme_set_filter(sc);
2034 		JME_UNLOCK(sc);
2035 		break;
2036 	case SIOCSIFMEDIA:
2037 	case SIOCGIFMEDIA:
2038 		mii = device_get_softc(sc->jme_miibus);
2039 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2040 		break;
2041 	case SIOCSIFCAP:
2042 		JME_LOCK(sc);
2043 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2044 		if ((mask & IFCAP_TXCSUM) != 0 &&
2045 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2046 			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2047 				if_togglecapenable(ifp, IFCAP_TXCSUM);
2048 				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2049 					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2050 				else
2051 					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2052 			}
2053 		}
2054 		if ((mask & IFCAP_RXCSUM) != 0 &&
2055 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2056 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2057 			reg = CSR_READ_4(sc, JME_RXMAC);
2058 			reg &= ~RXMAC_CSUM_ENB;
2059 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2060 				reg |= RXMAC_CSUM_ENB;
2061 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2062 		}
2063 		if ((mask & IFCAP_TSO4) != 0 &&
2064 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2065 			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2066 				if_togglecapenable(ifp, IFCAP_TSO4);
2067 				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2068 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2069 				else
2070 					if_sethwassistbits(ifp, 0, CSUM_TSO);
2071 			}
2072 		}
2073 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2074 		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2075 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2076 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2077 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2078 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2079 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2080 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2081 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2082 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2083 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2084 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2085 			jme_set_vlan(sc);
2086 		}
2087 		JME_UNLOCK(sc);
2088 		VLAN_CAPABILITIES(ifp);
2089 		break;
2090 	default:
2091 		error = ether_ioctl(ifp, cmd, data);
2092 		break;
2093 	}
2094 
2095 	return (error);
2096 }
2097 
2098 static void
2099 jme_mac_config(struct jme_softc *sc)
2100 {
2101 	struct mii_data *mii;
2102 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2103 	uint32_t txclk;
2104 
2105 	JME_LOCK_ASSERT(sc);
2106 
2107 	mii = device_get_softc(sc->jme_miibus);
2108 
2109 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2110 	DELAY(10);
2111 	CSR_WRITE_4(sc, JME_GHC, 0);
2112 	ghc = 0;
2113 	txclk = 0;
2114 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2115 	rxmac &= ~RXMAC_FC_ENB;
2116 	txmac = CSR_READ_4(sc, JME_TXMAC);
2117 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2118 	txpause = CSR_READ_4(sc, JME_TXPFC);
2119 	txpause &= ~TXPFC_PAUSE_ENB;
2120 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2121 		ghc |= GHC_FULL_DUPLEX;
2122 		rxmac &= ~RXMAC_COLL_DET_ENB;
2123 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2124 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2125 		    TXMAC_FRAME_BURST);
2126 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2127 			txpause |= TXPFC_PAUSE_ENB;
2128 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2129 			rxmac |= RXMAC_FC_ENB;
2130 		/* Disable retry transmit timer/retry limit. */
2131 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2132 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2133 	} else {
2134 		rxmac |= RXMAC_COLL_DET_ENB;
2135 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2136 		/* Enable retry transmit timer/retry limit. */
2137 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2138 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2139 	}
2140 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2141 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2142 	case IFM_10_T:
2143 		ghc |= GHC_SPEED_10;
2144 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2145 		break;
2146 	case IFM_100_TX:
2147 		ghc |= GHC_SPEED_100;
2148 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2149 		break;
2150 	case IFM_1000_T:
2151 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2152 			break;
2153 		ghc |= GHC_SPEED_1000;
2154 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2155 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2156 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2157 		break;
2158 	default:
2159 		break;
2160 	}
2161 	if (sc->jme_rev == DEVICEID_JMC250 &&
2162 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2163 		/*
2164 		 * Workaround occasional packet loss issue of JMC250 A2
2165 		 * when it runs on half-duplex media.
2166 		 */
2167 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2168 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2169 			gpreg &= ~GPREG1_HDPX_FIX;
2170 		else
2171 			gpreg |= GPREG1_HDPX_FIX;
2172 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2173 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2174 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2175 			/* Extend interface FIFO depth. */
2176 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2177 			    0x1B, 0x0000);
2178 		} else {
2179 			/* Select default interface FIFO depth. */
2180 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2181 			    0x1B, 0x0004);
2182 		}
2183 	}
2184 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2185 		ghc |= txclk;
2186 	CSR_WRITE_4(sc, JME_GHC, ghc);
2187 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2188 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2189 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2190 }
2191 
2192 static void
2193 jme_link_task(void *arg, int pending)
2194 {
2195 	struct jme_softc *sc;
2196 	struct mii_data *mii;
2197 	if_t ifp;
2198 	struct jme_txdesc *txd;
2199 	bus_addr_t paddr;
2200 	int i;
2201 
2202 	sc = (struct jme_softc *)arg;
2203 
2204 	JME_LOCK(sc);
2205 	mii = device_get_softc(sc->jme_miibus);
2206 	ifp = sc->jme_ifp;
2207 	if (mii == NULL || ifp == NULL ||
2208 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2209 		JME_UNLOCK(sc);
2210 		return;
2211 	}
2212 
2213 	sc->jme_flags &= ~JME_FLAG_LINK;
2214 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2215 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2216 		case IFM_10_T:
2217 		case IFM_100_TX:
2218 			sc->jme_flags |= JME_FLAG_LINK;
2219 			break;
2220 		case IFM_1000_T:
2221 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2222 				break;
2223 			sc->jme_flags |= JME_FLAG_LINK;
2224 			break;
2225 		default:
2226 			break;
2227 		}
2228 	}
2229 
2230 	/*
2231 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2232 	 * JME_TXNDA/JME_RXNDA register to the first address of
2233 	 * Tx/Rx descriptor address. So driver should reset its
2234 	 * internal procucer/consumer pointer and reclaim any
2235 	 * allocated resources. Note, just saving the value of
2236 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2237 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2238 	 * sufficient to make sure correct MAC state because
2239 	 * stopping MAC operation can take a while and hardware
2240 	 * might have updated JME_TXNDA/JME_RXNDA registers
2241 	 * during the stop operation.
2242 	 */
2243 	/* Block execution of task. */
2244 	taskqueue_block(sc->jme_tq);
2245 	/* Disable interrupts and stop driver. */
2246 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2247 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2248 	callout_stop(&sc->jme_tick_ch);
2249 	sc->jme_watchdog_timer = 0;
2250 
2251 	/* Stop receiver/transmitter. */
2252 	jme_stop_rx(sc);
2253 	jme_stop_tx(sc);
2254 
2255 	/* XXX Drain all queued tasks. */
2256 	JME_UNLOCK(sc);
2257 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2258 	JME_LOCK(sc);
2259 
2260 	if (sc->jme_cdata.jme_rxhead != NULL)
2261 		m_freem(sc->jme_cdata.jme_rxhead);
2262 	JME_RXCHAIN_RESET(sc);
2263 	jme_txeof(sc);
2264 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2265 		/* Remove queued packets for transmit. */
2266 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2267 			txd = &sc->jme_cdata.jme_txdesc[i];
2268 			if (txd->tx_m != NULL) {
2269 				bus_dmamap_sync(
2270 				    sc->jme_cdata.jme_tx_tag,
2271 				    txd->tx_dmamap,
2272 				    BUS_DMASYNC_POSTWRITE);
2273 				bus_dmamap_unload(
2274 				    sc->jme_cdata.jme_tx_tag,
2275 				    txd->tx_dmamap);
2276 				m_freem(txd->tx_m);
2277 				txd->tx_m = NULL;
2278 				txd->tx_ndesc = 0;
2279 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2280 			}
2281 		}
2282 	}
2283 
2284 	/*
2285 	 * Reuse configured Rx descriptors and reset
2286 	 * producer/consumer index.
2287 	 */
2288 	sc->jme_cdata.jme_rx_cons = 0;
2289 	sc->jme_morework = 0;
2290 	jme_init_tx_ring(sc);
2291 	/* Initialize shadow status block. */
2292 	jme_init_ssb(sc);
2293 
2294 	/* Program MAC with resolved speed/duplex/flow-control. */
2295 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2296 		jme_mac_config(sc);
2297 		jme_stats_clear(sc);
2298 
2299 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2300 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2301 
2302 		/* Set Tx ring address to the hardware. */
2303 		paddr = JME_TX_RING_ADDR(sc, 0);
2304 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2305 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2306 
2307 		/* Set Rx ring address to the hardware. */
2308 		paddr = JME_RX_RING_ADDR(sc, 0);
2309 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2310 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2311 
2312 		/* Restart receiver/transmitter. */
2313 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2314 		    RXCSR_RXQ_START);
2315 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2316 		/* Lastly enable TX/RX clock. */
2317 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2318 			CSR_WRITE_4(sc, JME_GHC,
2319 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2320 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2321 			CSR_WRITE_4(sc, JME_GPREG1,
2322 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2323 	}
2324 
2325 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2326 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2327 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2328 	/* Unblock execution of task. */
2329 	taskqueue_unblock(sc->jme_tq);
2330 	/* Reenable interrupts. */
2331 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2332 
2333 	JME_UNLOCK(sc);
2334 }
2335 
2336 static int
2337 jme_intr(void *arg)
2338 {
2339 	struct jme_softc *sc;
2340 	uint32_t status;
2341 
2342 	sc = (struct jme_softc *)arg;
2343 
2344 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2345 	if (status == 0 || status == 0xFFFFFFFF)
2346 		return (FILTER_STRAY);
2347 	/* Disable interrupts. */
2348 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2349 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2350 
2351 	return (FILTER_HANDLED);
2352 }
2353 
2354 static void
2355 jme_int_task(void *arg, int pending)
2356 {
2357 	struct jme_softc *sc;
2358 	if_t ifp;
2359 	uint32_t status;
2360 	int more;
2361 
2362 	sc = (struct jme_softc *)arg;
2363 	ifp = sc->jme_ifp;
2364 
2365 	JME_LOCK(sc);
2366 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2367 	if (sc->jme_morework != 0) {
2368 		sc->jme_morework = 0;
2369 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2370 	}
2371 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2372 		goto done;
2373 	/* Reset PCC counter/timer and Ack interrupts. */
2374 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2375 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2376 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2377 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2378 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2379 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2380 	more = 0;
2381 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2382 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2383 			more = jme_rxintr(sc, sc->jme_process_limit);
2384 			if (more != 0)
2385 				sc->jme_morework = 1;
2386 		}
2387 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2388 			/*
2389 			 * Notify hardware availability of new Rx
2390 			 * buffers.
2391 			 * Reading RXCSR takes very long time under
2392 			 * heavy load so cache RXCSR value and writes
2393 			 * the ORed value with the kick command to
2394 			 * the RXCSR. This saves one register access
2395 			 * cycle.
2396 			 */
2397 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2398 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2399 		}
2400 		if (!if_sendq_empty(ifp))
2401 			jme_start_locked(ifp);
2402 	}
2403 
2404 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2405 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2406 		JME_UNLOCK(sc);
2407 		return;
2408 	}
2409 done:
2410 	JME_UNLOCK(sc);
2411 
2412 	/* Reenable interrupts. */
2413 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2414 }
2415 
2416 static void
2417 jme_txeof(struct jme_softc *sc)
2418 {
2419 	if_t ifp;
2420 	struct jme_txdesc *txd;
2421 	uint32_t status;
2422 	int cons, nsegs;
2423 
2424 	JME_LOCK_ASSERT(sc);
2425 
2426 	ifp = sc->jme_ifp;
2427 
2428 	cons = sc->jme_cdata.jme_tx_cons;
2429 	if (cons == sc->jme_cdata.jme_tx_prod)
2430 		return;
2431 
2432 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2433 	    sc->jme_cdata.jme_tx_ring_map,
2434 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2435 
2436 	/*
2437 	 * Go through our Tx list and free mbufs for those
2438 	 * frames which have been transmitted.
2439 	 */
2440 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2441 		txd = &sc->jme_cdata.jme_txdesc[cons];
2442 		status = le32toh(txd->tx_desc->flags);
2443 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2444 			break;
2445 
2446 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2447 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2448 		else {
2449 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2450 			if ((status & JME_TD_COLLISION) != 0)
2451 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2452 				    le32toh(txd->tx_desc->buflen) &
2453 				    JME_TD_BUF_LEN_MASK);
2454 		}
2455 		/*
2456 		 * Only the first descriptor of multi-descriptor
2457 		 * transmission is updated so driver have to skip entire
2458 		 * chained buffers for the transmiited frame. In other
2459 		 * words, JME_TD_OWN bit is valid only at the first
2460 		 * descriptor of a multi-descriptor transmission.
2461 		 */
2462 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2463 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2464 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2465 		}
2466 
2467 		/* Reclaim transferred mbufs. */
2468 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2469 		    BUS_DMASYNC_POSTWRITE);
2470 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2471 
2472 		KASSERT(txd->tx_m != NULL,
2473 		    ("%s: freeing NULL mbuf!\n", __func__));
2474 		m_freem(txd->tx_m);
2475 		txd->tx_m = NULL;
2476 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2477 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2478 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2479 		txd->tx_ndesc = 0;
2480 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2481 	}
2482 	sc->jme_cdata.jme_tx_cons = cons;
2483 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2484 	if (sc->jme_cdata.jme_tx_cnt == 0)
2485 		sc->jme_watchdog_timer = 0;
2486 
2487 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2488 	    sc->jme_cdata.jme_tx_ring_map,
2489 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2490 }
2491 
2492 static __inline void
2493 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2494 {
2495 	struct jme_desc *desc;
2496 
2497 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2498 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2499 	desc->buflen = htole32(MCLBYTES);
2500 }
2501 
2502 /* Receive a frame. */
2503 static void
2504 jme_rxeof(struct jme_softc *sc)
2505 {
2506 	if_t ifp;
2507 	struct jme_desc *desc;
2508 	struct jme_rxdesc *rxd;
2509 	struct mbuf *mp, *m;
2510 	uint32_t flags, status;
2511 	int cons, count, nsegs;
2512 
2513 	JME_LOCK_ASSERT(sc);
2514 
2515 	ifp = sc->jme_ifp;
2516 
2517 	cons = sc->jme_cdata.jme_rx_cons;
2518 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2519 	flags = le32toh(desc->flags);
2520 	status = le32toh(desc->buflen);
2521 	nsegs = JME_RX_NSEGS(status);
2522 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2523 	if ((status & JME_RX_ERR_STAT) != 0) {
2524 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2525 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2526 #ifdef JME_SHOW_ERRORS
2527 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2528 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2529 #endif
2530 		sc->jme_cdata.jme_rx_cons += nsegs;
2531 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2532 		return;
2533 	}
2534 
2535 	for (count = 0; count < nsegs; count++,
2536 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2537 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2538 		mp = rxd->rx_m;
2539 		/* Add a new receive buffer to the ring. */
2540 		if (jme_newbuf(sc, rxd) != 0) {
2541 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2542 			/* Reuse buffer. */
2543 			for (; count < nsegs; count++) {
2544 				jme_discard_rxbuf(sc, cons);
2545 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2546 			}
2547 			if (sc->jme_cdata.jme_rxhead != NULL) {
2548 				m_freem(sc->jme_cdata.jme_rxhead);
2549 				JME_RXCHAIN_RESET(sc);
2550 			}
2551 			break;
2552 		}
2553 
2554 		/*
2555 		 * Assume we've received a full sized frame.
2556 		 * Actual size is fixed when we encounter the end of
2557 		 * multi-segmented frame.
2558 		 */
2559 		mp->m_len = MCLBYTES;
2560 
2561 		/* Chain received mbufs. */
2562 		if (sc->jme_cdata.jme_rxhead == NULL) {
2563 			sc->jme_cdata.jme_rxhead = mp;
2564 			sc->jme_cdata.jme_rxtail = mp;
2565 		} else {
2566 			/*
2567 			 * Receive processor can receive a maximum frame
2568 			 * size of 65535 bytes.
2569 			 */
2570 			mp->m_flags &= ~M_PKTHDR;
2571 			sc->jme_cdata.jme_rxtail->m_next = mp;
2572 			sc->jme_cdata.jme_rxtail = mp;
2573 		}
2574 
2575 		if (count == nsegs - 1) {
2576 			/* Last desc. for this frame. */
2577 			m = sc->jme_cdata.jme_rxhead;
2578 			m->m_flags |= M_PKTHDR;
2579 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2580 			if (nsegs > 1) {
2581 				/* Set first mbuf size. */
2582 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2583 				/* Set last mbuf size. */
2584 				mp->m_len = sc->jme_cdata.jme_rxlen -
2585 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2586 				    (MCLBYTES * (nsegs - 2)));
2587 			} else
2588 				m->m_len = sc->jme_cdata.jme_rxlen;
2589 			m->m_pkthdr.rcvif = ifp;
2590 
2591 			/*
2592 			 * Account for 10bytes auto padding which is used
2593 			 * to align IP header on 32bit boundary. Also note,
2594 			 * CRC bytes is automatically removed by the
2595 			 * hardware.
2596 			 */
2597 			m->m_data += JME_RX_PAD_BYTES;
2598 
2599 			/* Set checksum information. */
2600 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2601 			    (flags & JME_RD_IPV4) != 0) {
2602 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2603 				if ((flags & JME_RD_IPCSUM) != 0)
2604 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2605 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2606 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2607 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2608 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2609 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2610 					m->m_pkthdr.csum_flags |=
2611 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2612 					m->m_pkthdr.csum_data = 0xffff;
2613 				}
2614 			}
2615 
2616 			/* Check for VLAN tagged packets. */
2617 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2618 			    (flags & JME_RD_VLAN_TAG) != 0) {
2619 				m->m_pkthdr.ether_vtag =
2620 				    flags & JME_RD_VLAN_MASK;
2621 				m->m_flags |= M_VLANTAG;
2622 			}
2623 
2624 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2625 			/* Pass it on. */
2626 			JME_UNLOCK(sc);
2627 			if_input(ifp, m);
2628 			JME_LOCK(sc);
2629 
2630 			/* Reset mbuf chains. */
2631 			JME_RXCHAIN_RESET(sc);
2632 		}
2633 	}
2634 
2635 	sc->jme_cdata.jme_rx_cons += nsegs;
2636 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2637 }
2638 
2639 static int
2640 jme_rxintr(struct jme_softc *sc, int count)
2641 {
2642 	struct jme_desc *desc;
2643 	int nsegs, prog, pktlen;
2644 
2645 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2646 	    sc->jme_cdata.jme_rx_ring_map,
2647 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2648 
2649 	for (prog = 0; count > 0; prog++) {
2650 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2651 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2652 			break;
2653 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2654 			break;
2655 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2656 		/*
2657 		 * Check number of segments against received bytes.
2658 		 * Non-matching value would indicate that hardware
2659 		 * is still trying to update Rx descriptors. I'm not
2660 		 * sure whether this check is needed.
2661 		 */
2662 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2663 		if (nsegs != howmany(pktlen, MCLBYTES))
2664 			break;
2665 		prog++;
2666 		/* Received a frame. */
2667 		jme_rxeof(sc);
2668 		count -= nsegs;
2669 	}
2670 
2671 	if (prog > 0)
2672 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2673 		    sc->jme_cdata.jme_rx_ring_map,
2674 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2675 
2676 	return (count > 0 ? 0 : EAGAIN);
2677 }
2678 
2679 static void
2680 jme_tick(void *arg)
2681 {
2682 	struct jme_softc *sc;
2683 	struct mii_data *mii;
2684 
2685 	sc = (struct jme_softc *)arg;
2686 
2687 	JME_LOCK_ASSERT(sc);
2688 
2689 	mii = device_get_softc(sc->jme_miibus);
2690 	mii_tick(mii);
2691 	/*
2692 	 * Reclaim Tx buffers that have been completed. It's not
2693 	 * needed here but it would release allocated mbuf chains
2694 	 * faster and limit the maximum delay to a hz.
2695 	 */
2696 	jme_txeof(sc);
2697 	jme_stats_update(sc);
2698 	jme_watchdog(sc);
2699 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2700 }
2701 
2702 static void
2703 jme_reset(struct jme_softc *sc)
2704 {
2705 	uint32_t ghc, gpreg;
2706 
2707 	/* Stop receiver, transmitter. */
2708 	jme_stop_rx(sc);
2709 	jme_stop_tx(sc);
2710 
2711 	/* Reset controller. */
2712 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2713 	CSR_READ_4(sc, JME_GHC);
2714 	DELAY(10);
2715 	/*
2716 	 * Workaround Rx FIFO overruns seen under certain conditions.
2717 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2718 	 * enabled only after enabling TX/RX MACs.
2719 	 */
2720 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2721 		/* Disable TX clock. */
2722 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2723 		/* Disable RX clock. */
2724 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2725 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2726 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2727 		/* De-assert RESET but still disable TX clock. */
2728 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2729 		ghc = CSR_READ_4(sc, JME_GHC);
2730 
2731 		/* Enable TX clock. */
2732 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2733 		/* Enable RX clock. */
2734 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2735 		CSR_READ_4(sc, JME_GPREG1);
2736 
2737 		/* Disable TX/RX clock again. */
2738 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2739 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2740 	} else
2741 		CSR_WRITE_4(sc, JME_GHC, 0);
2742 	CSR_READ_4(sc, JME_GHC);
2743 	DELAY(10);
2744 }
2745 
2746 static void
2747 jme_init(void *xsc)
2748 {
2749 	struct jme_softc *sc;
2750 
2751 	sc = (struct jme_softc *)xsc;
2752 	JME_LOCK(sc);
2753 	jme_init_locked(sc);
2754 	JME_UNLOCK(sc);
2755 }
2756 
2757 static void
2758 jme_init_locked(struct jme_softc *sc)
2759 {
2760 	if_t ifp;
2761 	struct mii_data *mii;
2762 	bus_addr_t paddr;
2763 	uint32_t reg;
2764 	int error;
2765 
2766 	JME_LOCK_ASSERT(sc);
2767 
2768 	ifp = sc->jme_ifp;
2769 	mii = device_get_softc(sc->jme_miibus);
2770 
2771 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2772 		return;
2773 	/*
2774 	 * Cancel any pending I/O.
2775 	 */
2776 	jme_stop(sc);
2777 
2778 	/*
2779 	 * Reset the chip to a known state.
2780 	 */
2781 	jme_reset(sc);
2782 
2783 	/* Init descriptors. */
2784 	error = jme_init_rx_ring(sc);
2785         if (error != 0) {
2786                 device_printf(sc->jme_dev,
2787                     "%s: initialization failed: no memory for Rx buffers.\n",
2788 		    __func__);
2789                 jme_stop(sc);
2790 		return;
2791         }
2792 	jme_init_tx_ring(sc);
2793 	/* Initialize shadow status block. */
2794 	jme_init_ssb(sc);
2795 
2796 	/* Reprogram the station address. */
2797 	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2798 
2799 	/*
2800 	 * Configure Tx queue.
2801 	 *  Tx priority queue weight value : 0
2802 	 *  Tx FIFO threshold for processing next packet : 16QW
2803 	 *  Maximum Tx DMA length : 512
2804 	 *  Allow Tx DMA burst.
2805 	 */
2806 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2807 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2808 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2809 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2810 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2811 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2812 
2813 	/* Set Tx descriptor counter. */
2814 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2815 
2816 	/* Set Tx ring address to the hardware. */
2817 	paddr = JME_TX_RING_ADDR(sc, 0);
2818 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2819 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2820 
2821 	/* Configure TxMAC parameters. */
2822 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2823 	reg |= TXMAC_THRESH_1_PKT;
2824 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2825 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2826 
2827 	/*
2828 	 * Configure Rx queue.
2829 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2830 	 *  FIFO threshold for processing next packet : 128QW
2831 	 *  Rx queue 0 select
2832 	 *  Max Rx DMA length : 128
2833 	 *  Rx descriptor retry : 32
2834 	 *  Rx descriptor retry time gap : 256ns
2835 	 *  Don't receive runt/bad frame.
2836 	 */
2837 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2838 	/*
2839 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2840 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2841 	 * decrease FIFO threshold to reduce the FIFO overruns for
2842 	 * frames larger than 4000 bytes.
2843 	 * For best performance of standard MTU sized frames use
2844 	 * maximum allowable FIFO threshold, 128QW. Note these do
2845 	 * not hold on chip full mask version >=2. For these
2846 	 * controllers 64QW and 128QW are not valid value.
2847 	 */
2848 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2849 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2850 	else {
2851 		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2852 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2853 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2854 		else
2855 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2856 	}
2857 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2858 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2859 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2860 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2861 
2862 	/* Set Rx descriptor counter. */
2863 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2864 
2865 	/* Set Rx ring address to the hardware. */
2866 	paddr = JME_RX_RING_ADDR(sc, 0);
2867 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2868 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2869 
2870 	/* Clear receive filter. */
2871 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2872 	/* Set up the receive filter. */
2873 	jme_set_filter(sc);
2874 	jme_set_vlan(sc);
2875 
2876 	/*
2877 	 * Disable all WOL bits as WOL can interfere normal Rx
2878 	 * operation. Also clear WOL detection status bits.
2879 	 */
2880 	reg = CSR_READ_4(sc, JME_PMCS);
2881 	reg &= ~PMCS_WOL_ENB_MASK;
2882 	CSR_WRITE_4(sc, JME_PMCS, reg);
2883 
2884 	reg = CSR_READ_4(sc, JME_RXMAC);
2885 	/*
2886 	 * Pad 10bytes right before received frame. This will greatly
2887 	 * help Rx performance on strict-alignment architectures as
2888 	 * it does not need to copy the frame to align the payload.
2889 	 */
2890 	reg |= RXMAC_PAD_10BYTES;
2891 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2892 		reg |= RXMAC_CSUM_ENB;
2893 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2894 
2895 	/* Configure general purpose reg0 */
2896 	reg = CSR_READ_4(sc, JME_GPREG0);
2897 	reg &= ~GPREG0_PCC_UNIT_MASK;
2898 	/* Set PCC timer resolution to micro-seconds unit. */
2899 	reg |= GPREG0_PCC_UNIT_US;
2900 	/*
2901 	 * Disable all shadow register posting as we have to read
2902 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2903 	 * that it's hard to synchronize interrupt status between
2904 	 * hardware and software with shadow posting due to
2905 	 * requirements of bus_dmamap_sync(9).
2906 	 */
2907 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2908 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2909 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2910 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2911 	/* Disable posting of DW0. */
2912 	reg &= ~GPREG0_POST_DW0_ENB;
2913 	/* Clear PME message. */
2914 	reg &= ~GPREG0_PME_ENB;
2915 	/* Set PHY address. */
2916 	reg &= ~GPREG0_PHY_ADDR_MASK;
2917 	reg |= sc->jme_phyaddr;
2918 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2919 
2920 	/* Configure Tx queue 0 packet completion coalescing. */
2921 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2922 	    PCCTX_COAL_TO_MASK;
2923 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2924 	    PCCTX_COAL_PKT_MASK;
2925 	reg |= PCCTX_COAL_TXQ0;
2926 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2927 
2928 	/* Configure Rx queue 0 packet completion coalescing. */
2929 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2930 	    PCCRX_COAL_TO_MASK;
2931 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2932 	    PCCRX_COAL_PKT_MASK;
2933 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2934 
2935 	/*
2936 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2937 	 * generates an interrupt when the time interval between two
2938 	 * back-to-back incoming/outgoing packet is long enough for
2939 	 * it to reach its timer value 0. The arrival of new packets
2940 	 * after timer has started causes the PCD timer to restart.
2941 	 * Unfortunately, it's not clear how PCD is useful at this
2942 	 * moment, so just use the same of PCC parameters.
2943 	 */
2944 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2945 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2946 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2947 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2948 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2949 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2950 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2951 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2952 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2953 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2954 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2955 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2956 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2957 	}
2958 
2959 	/* Configure shadow status block but don't enable posting. */
2960 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2961 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2962 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2963 
2964 	/* Disable Timer 1 and Timer 2. */
2965 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2966 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2967 
2968 	/* Configure retry transmit period, retry limit value. */
2969 	CSR_WRITE_4(sc, JME_TXTRHD,
2970 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2971 	    TXTRHD_RT_PERIOD_MASK) |
2972 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2973 	    TXTRHD_RT_LIMIT_SHIFT));
2974 
2975 	/* Disable RSS. */
2976 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2977 
2978 	/* Initialize the interrupt mask. */
2979 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2980 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2981 
2982 	/*
2983 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2984 	 * done after detection of valid link in jme_link_task.
2985 	 */
2986 
2987 	sc->jme_flags &= ~JME_FLAG_LINK;
2988 	/* Set the current media. */
2989 	mii_mediachg(mii);
2990 
2991 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2992 
2993 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2994 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2995 }
2996 
2997 static void
2998 jme_stop(struct jme_softc *sc)
2999 {
3000 	if_t ifp;
3001 	struct jme_txdesc *txd;
3002 	struct jme_rxdesc *rxd;
3003 	int i;
3004 
3005 	JME_LOCK_ASSERT(sc);
3006 	/*
3007 	 * Mark the interface down and cancel the watchdog timer.
3008 	 */
3009 	ifp = sc->jme_ifp;
3010 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3011 	sc->jme_flags &= ~JME_FLAG_LINK;
3012 	callout_stop(&sc->jme_tick_ch);
3013 	sc->jme_watchdog_timer = 0;
3014 
3015 	/*
3016 	 * Disable interrupts.
3017 	 */
3018 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3019 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3020 
3021 	/* Disable updating shadow status block. */
3022 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3023 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3024 
3025 	/* Stop receiver, transmitter. */
3026 	jme_stop_rx(sc);
3027 	jme_stop_tx(sc);
3028 
3029 	 /* Reclaim Rx/Tx buffers that have been completed. */
3030 	jme_rxintr(sc, JME_RX_RING_CNT);
3031 	if (sc->jme_cdata.jme_rxhead != NULL)
3032 		m_freem(sc->jme_cdata.jme_rxhead);
3033 	JME_RXCHAIN_RESET(sc);
3034 	jme_txeof(sc);
3035 	/*
3036 	 * Free RX and TX mbufs still in the queues.
3037 	 */
3038 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3039 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3040 		if (rxd->rx_m != NULL) {
3041 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3042 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3043 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3044 			    rxd->rx_dmamap);
3045 			m_freem(rxd->rx_m);
3046 			rxd->rx_m = NULL;
3047 		}
3048         }
3049 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3050 		txd = &sc->jme_cdata.jme_txdesc[i];
3051 		if (txd->tx_m != NULL) {
3052 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3053 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3054 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3055 			    txd->tx_dmamap);
3056 			m_freem(txd->tx_m);
3057 			txd->tx_m = NULL;
3058 			txd->tx_ndesc = 0;
3059 		}
3060         }
3061 	jme_stats_update(sc);
3062 	jme_stats_save(sc);
3063 }
3064 
3065 static void
3066 jme_stop_tx(struct jme_softc *sc)
3067 {
3068 	uint32_t reg;
3069 	int i;
3070 
3071 	reg = CSR_READ_4(sc, JME_TXCSR);
3072 	if ((reg & TXCSR_TX_ENB) == 0)
3073 		return;
3074 	reg &= ~TXCSR_TX_ENB;
3075 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3076 	for (i = JME_TIMEOUT; i > 0; i--) {
3077 		DELAY(1);
3078 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3079 			break;
3080 	}
3081 	if (i == 0)
3082 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3083 }
3084 
3085 static void
3086 jme_stop_rx(struct jme_softc *sc)
3087 {
3088 	uint32_t reg;
3089 	int i;
3090 
3091 	reg = CSR_READ_4(sc, JME_RXCSR);
3092 	if ((reg & RXCSR_RX_ENB) == 0)
3093 		return;
3094 	reg &= ~RXCSR_RX_ENB;
3095 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3096 	for (i = JME_TIMEOUT; i > 0; i--) {
3097 		DELAY(1);
3098 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3099 			break;
3100 	}
3101 	if (i == 0)
3102 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3103 }
3104 
3105 static void
3106 jme_init_tx_ring(struct jme_softc *sc)
3107 {
3108 	struct jme_ring_data *rd;
3109 	struct jme_txdesc *txd;
3110 	int i;
3111 
3112 	sc->jme_cdata.jme_tx_prod = 0;
3113 	sc->jme_cdata.jme_tx_cons = 0;
3114 	sc->jme_cdata.jme_tx_cnt = 0;
3115 
3116 	rd = &sc->jme_rdata;
3117 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3118 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3119 		txd = &sc->jme_cdata.jme_txdesc[i];
3120 		txd->tx_m = NULL;
3121 		txd->tx_desc = &rd->jme_tx_ring[i];
3122 		txd->tx_ndesc = 0;
3123 	}
3124 
3125 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3126 	    sc->jme_cdata.jme_tx_ring_map,
3127 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3128 }
3129 
3130 static void
3131 jme_init_ssb(struct jme_softc *sc)
3132 {
3133 	struct jme_ring_data *rd;
3134 
3135 	rd = &sc->jme_rdata;
3136 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3137 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3138 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3139 }
3140 
3141 static int
3142 jme_init_rx_ring(struct jme_softc *sc)
3143 {
3144 	struct jme_ring_data *rd;
3145 	struct jme_rxdesc *rxd;
3146 	int i;
3147 
3148 	sc->jme_cdata.jme_rx_cons = 0;
3149 	JME_RXCHAIN_RESET(sc);
3150 	sc->jme_morework = 0;
3151 
3152 	rd = &sc->jme_rdata;
3153 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3154 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3155 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3156 		rxd->rx_m = NULL;
3157 		rxd->rx_desc = &rd->jme_rx_ring[i];
3158 		if (jme_newbuf(sc, rxd) != 0)
3159 			return (ENOBUFS);
3160 	}
3161 
3162 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3163 	    sc->jme_cdata.jme_rx_ring_map,
3164 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3165 
3166 	return (0);
3167 }
3168 
3169 static int
3170 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3171 {
3172 	struct jme_desc *desc;
3173 	struct mbuf *m;
3174 	bus_dma_segment_t segs[1];
3175 	bus_dmamap_t map;
3176 	int nsegs;
3177 
3178 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3179 	if (m == NULL)
3180 		return (ENOBUFS);
3181 	/*
3182 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3183 	 * takes advantage of 10 bytes padding feature of hardware
3184 	 * in order not to copy entire frame to align IP header on
3185 	 * 32bit boundary.
3186 	 */
3187 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3188 
3189 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3190 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3191 		m_freem(m);
3192 		return (ENOBUFS);
3193 	}
3194 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3195 
3196 	if (rxd->rx_m != NULL) {
3197 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3198 		    BUS_DMASYNC_POSTREAD);
3199 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3200 	}
3201 	map = rxd->rx_dmamap;
3202 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3203 	sc->jme_cdata.jme_rx_sparemap = map;
3204 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3205 	    BUS_DMASYNC_PREREAD);
3206 	rxd->rx_m = m;
3207 
3208 	desc = rxd->rx_desc;
3209 	desc->buflen = htole32(segs[0].ds_len);
3210 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3211 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3212 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3213 
3214 	return (0);
3215 }
3216 
3217 static void
3218 jme_set_vlan(struct jme_softc *sc)
3219 {
3220 	if_t ifp;
3221 	uint32_t reg;
3222 
3223 	JME_LOCK_ASSERT(sc);
3224 
3225 	ifp = sc->jme_ifp;
3226 	reg = CSR_READ_4(sc, JME_RXMAC);
3227 	reg &= ~RXMAC_VLAN_ENB;
3228 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3229 		reg |= RXMAC_VLAN_ENB;
3230 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3231 }
3232 
3233 static u_int
3234 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3235 {
3236 	uint32_t crc, *mchash = arg;
3237 
3238 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3239 
3240 	/* Just want the 6 least significant bits. */
3241 	crc &= 0x3f;
3242 
3243 	/* Set the corresponding bit in the hash table. */
3244 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3245 
3246 	return (1);
3247 }
3248 
3249 static void
3250 jme_set_filter(struct jme_softc *sc)
3251 {
3252 	if_t ifp;
3253 	uint32_t mchash[2];
3254 	uint32_t rxcfg;
3255 
3256 	JME_LOCK_ASSERT(sc);
3257 
3258 	ifp = sc->jme_ifp;
3259 
3260 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3261 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3262 	    RXMAC_ALLMULTI);
3263 	/* Always accept frames destined to our station address. */
3264 	rxcfg |= RXMAC_UNICAST;
3265 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3266 		rxcfg |= RXMAC_BROADCAST;
3267 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3268 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3269 			rxcfg |= RXMAC_PROMISC;
3270 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3271 			rxcfg |= RXMAC_ALLMULTI;
3272 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3273 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3274 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3275 		return;
3276 	}
3277 
3278 	/*
3279 	 * Set up the multicast address filter by passing all multicast
3280 	 * addresses through a CRC generator, and then using the low-order
3281 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3282 	 * high order bits select the register, while the rest of the bits
3283 	 * select the bit within the register.
3284 	 */
3285 	rxcfg |= RXMAC_MULTICAST;
3286 	bzero(mchash, sizeof(mchash));
3287 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3288 
3289 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3290 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3291 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3292 }
3293 
3294 static void
3295 jme_stats_clear(struct jme_softc *sc)
3296 {
3297 
3298 	JME_LOCK_ASSERT(sc);
3299 
3300 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3301 		return;
3302 
3303 	/* Disable and clear counters. */
3304 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3305 	/* Activate hw counters. */
3306 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3307 	CSR_READ_4(sc, JME_STATCSR);
3308 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3309 }
3310 
3311 static void
3312 jme_stats_save(struct jme_softc *sc)
3313 {
3314 
3315 	JME_LOCK_ASSERT(sc);
3316 
3317 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3318 		return;
3319 	/* Save current counters. */
3320 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3321 	/* Disable and clear counters. */
3322 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3323 }
3324 
3325 static void
3326 jme_stats_update(struct jme_softc *sc)
3327 {
3328 	struct jme_hw_stats *stat, *ostat;
3329 	uint32_t reg;
3330 
3331 	JME_LOCK_ASSERT(sc);
3332 
3333 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3334 		return;
3335 	stat = &sc->jme_stats;
3336 	ostat = &sc->jme_ostats;
3337 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3338 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3339 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3340 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3341 	    STAT_RX_CRC_ERR_SHIFT;
3342 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3343 	    STAT_RX_MII_ERR_SHIFT;
3344 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3345 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3346 	    STAT_RXERR_OFLOW_SHIFT;
3347 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3348 	    STAT_RXERR_MPTY_SHIFT;
3349 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3350 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3351 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3352 
3353 	/* Account for previous counters. */
3354 	stat->rx_good_frames += ostat->rx_good_frames;
3355 	stat->rx_crc_errs += ostat->rx_crc_errs;
3356 	stat->rx_mii_errs += ostat->rx_mii_errs;
3357 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3358 	stat->rx_desc_empty += ostat->rx_desc_empty;
3359 	stat->rx_bad_frames += ostat->rx_bad_frames;
3360 	stat->tx_good_frames += ostat->tx_good_frames;
3361 	stat->tx_bad_frames += ostat->tx_bad_frames;
3362 }
3363 
3364 static void
3365 jme_phy_down(struct jme_softc *sc)
3366 {
3367 	uint32_t reg;
3368 
3369 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3370 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3371 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3372 		reg |= 0x0000000F;
3373 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3374 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3375 		reg &= ~PE1_GIGA_PDOWN_MASK;
3376 		reg |= PE1_GIGA_PDOWN_D3;
3377 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3378 	}
3379 }
3380 
3381 static void
3382 jme_phy_up(struct jme_softc *sc)
3383 {
3384 	uint32_t reg;
3385 	uint16_t bmcr;
3386 
3387 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3388 	bmcr &= ~BMCR_PDOWN;
3389 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3390 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3391 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3392 		reg &= ~0x0000000F;
3393 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3394 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3395 		reg &= ~PE1_GIGA_PDOWN_MASK;
3396 		reg |= PE1_GIGA_PDOWN_DIS;
3397 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3398 	}
3399 }
3400 
3401 static int
3402 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3403 {
3404 	int error, value;
3405 
3406 	if (arg1 == NULL)
3407 		return (EINVAL);
3408 	value = *(int *)arg1;
3409 	error = sysctl_handle_int(oidp, &value, 0, req);
3410 	if (error || req->newptr == NULL)
3411 		return (error);
3412 	if (value < low || value > high)
3413 		return (EINVAL);
3414         *(int *)arg1 = value;
3415 
3416         return (0);
3417 }
3418 
3419 static int
3420 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3421 {
3422 	return (sysctl_int_range(oidp, arg1, arg2, req,
3423 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3424 }
3425 
3426 static int
3427 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3428 {
3429 	return (sysctl_int_range(oidp, arg1, arg2, req,
3430 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3431 }
3432 
3433 static int
3434 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3435 {
3436 	return (sysctl_int_range(oidp, arg1, arg2, req,
3437 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3438 }
3439 
3440 static int
3441 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3442 {
3443 	return (sysctl_int_range(oidp, arg1, arg2, req,
3444 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3445 }
3446 
3447 static int
3448 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3449 {
3450 	return (sysctl_int_range(oidp, arg1, arg2, req,
3451 	    JME_PROC_MIN, JME_PROC_MAX));
3452 }
3453