xref: /freebsd/sys/dev/jme/if_jme.c (revision faf139cc5dd3396181c11922bc6685c0c59b7b24)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/rman.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_arp.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 #include <net/if_types.h>
55 #include <net/if_vlan_var.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/tcp.h>
61 
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64 
65 #include <dev/pci/pcireg.h>
66 #include <dev/pci/pcivar.h>
67 
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/jme/if_jmereg.h>
72 #include <dev/jme/if_jmevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 /* Define the following to disable printing Rx errors. */
78 #undef	JME_SHOW_ERRORS
79 
80 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(jme, pci, 1, 1, 1);
83 MODULE_DEPEND(jme, ether, 1, 1, 1);
84 MODULE_DEPEND(jme, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct jme_dev {
96 	uint16_t	jme_vendorid;
97 	uint16_t	jme_deviceid;
98 	const char	*jme_name;
99 } jme_devs[] = {
100 	{ VENDORID_JMICRON, DEVICEID_JMC250,
101 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
102 	{ VENDORID_JMICRON, DEVICEID_JMC260,
103 	    "JMicron Inc, JMC26x Fast Ethernet" },
104 };
105 
106 static int jme_miibus_readreg(device_t, int, int);
107 static int jme_miibus_writereg(device_t, int, int, int);
108 static void jme_miibus_statchg(device_t);
109 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
110 static int jme_mediachange(struct ifnet *);
111 static int jme_probe(device_t);
112 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113 static int jme_eeprom_macaddr(struct jme_softc *);
114 static int jme_efuse_macaddr(struct jme_softc *);
115 static void jme_reg_macaddr(struct jme_softc *);
116 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
117 static void jme_map_intr_vector(struct jme_softc *);
118 static int jme_attach(device_t);
119 static int jme_detach(device_t);
120 static void jme_sysctl_node(struct jme_softc *);
121 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
122 static int jme_dma_alloc(struct jme_softc *);
123 static void jme_dma_free(struct jme_softc *);
124 static int jme_shutdown(device_t);
125 static void jme_setlinkspeed(struct jme_softc *);
126 static void jme_setwol(struct jme_softc *);
127 static int jme_suspend(device_t);
128 static int jme_resume(device_t);
129 static int jme_encap(struct jme_softc *, struct mbuf **);
130 static void jme_start(struct ifnet *);
131 static void jme_start_locked(struct ifnet *);
132 static void jme_watchdog(struct jme_softc *);
133 static int jme_ioctl(struct ifnet *, u_long, caddr_t);
134 static void jme_mac_config(struct jme_softc *);
135 static void jme_link_task(void *, int);
136 static int jme_intr(void *);
137 static void jme_int_task(void *, int);
138 static void jme_txeof(struct jme_softc *);
139 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
140 static void jme_rxeof(struct jme_softc *);
141 static int jme_rxintr(struct jme_softc *, int);
142 static void jme_tick(void *);
143 static void jme_reset(struct jme_softc *);
144 static void jme_init(void *);
145 static void jme_init_locked(struct jme_softc *);
146 static void jme_stop(struct jme_softc *);
147 static void jme_stop_tx(struct jme_softc *);
148 static void jme_stop_rx(struct jme_softc *);
149 static int jme_init_rx_ring(struct jme_softc *);
150 static void jme_init_tx_ring(struct jme_softc *);
151 static void jme_init_ssb(struct jme_softc *);
152 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
153 static void jme_set_vlan(struct jme_softc *);
154 static void jme_set_filter(struct jme_softc *);
155 static void jme_stats_clear(struct jme_softc *);
156 static void jme_stats_save(struct jme_softc *);
157 static void jme_stats_update(struct jme_softc *);
158 static void jme_phy_down(struct jme_softc *);
159 static void jme_phy_up(struct jme_softc *);
160 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
161 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
162 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
163 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
165 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
166 
167 
168 static device_method_t jme_methods[] = {
169 	/* Device interface. */
170 	DEVMETHOD(device_probe,		jme_probe),
171 	DEVMETHOD(device_attach,	jme_attach),
172 	DEVMETHOD(device_detach,	jme_detach),
173 	DEVMETHOD(device_shutdown,	jme_shutdown),
174 	DEVMETHOD(device_suspend,	jme_suspend),
175 	DEVMETHOD(device_resume,	jme_resume),
176 
177 	/* MII interface. */
178 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
179 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
180 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
181 
182 	{ NULL, NULL }
183 };
184 
185 static driver_t jme_driver = {
186 	"jme",
187 	jme_methods,
188 	sizeof(struct jme_softc)
189 };
190 
191 static devclass_t jme_devclass;
192 
193 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
194 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
195 
196 static struct resource_spec jme_res_spec_mem[] = {
197 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static struct resource_spec jme_irq_spec_legacy[] = {
202 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
203 	{ -1,			0,		0 }
204 };
205 
206 static struct resource_spec jme_irq_spec_msi[] = {
207 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
208 	{ -1,			0,		0 }
209 };
210 
211 /*
212  *	Read a PHY register on the MII of the JMC250.
213  */
214 static int
215 jme_miibus_readreg(device_t dev, int phy, int reg)
216 {
217 	struct jme_softc *sc;
218 	uint32_t val;
219 	int i;
220 
221 	sc = device_get_softc(dev);
222 
223 	/* For FPGA version, PHY address 0 should be ignored. */
224 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
225 		return (0);
226 
227 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
228 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
229 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
230 		DELAY(1);
231 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
232 			break;
233 	}
234 
235 	if (i == 0) {
236 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
237 		return (0);
238 	}
239 
240 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
241 }
242 
243 /*
244  *	Write a PHY register on the MII of the JMC250.
245  */
246 static int
247 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
248 {
249 	struct jme_softc *sc;
250 	int i;
251 
252 	sc = device_get_softc(dev);
253 
254 	/* For FPGA version, PHY address 0 should be ignored. */
255 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
256 		return (0);
257 
258 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
259 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
260 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
261 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
262 		DELAY(1);
263 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
264 			break;
265 	}
266 
267 	if (i == 0)
268 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
269 
270 	return (0);
271 }
272 
273 /*
274  *	Callback from MII layer when media changes.
275  */
276 static void
277 jme_miibus_statchg(device_t dev)
278 {
279 	struct jme_softc *sc;
280 
281 	sc = device_get_softc(dev);
282 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
283 }
284 
285 /*
286  *	Get the current interface media status.
287  */
288 static void
289 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
290 {
291 	struct jme_softc *sc;
292 	struct mii_data *mii;
293 
294 	sc = ifp->if_softc;
295 	JME_LOCK(sc);
296 	if ((ifp->if_flags & IFF_UP) == 0) {
297 		JME_UNLOCK(sc);
298 		return;
299 	}
300 	mii = device_get_softc(sc->jme_miibus);
301 
302 	mii_pollstat(mii);
303 	ifmr->ifm_status = mii->mii_media_status;
304 	ifmr->ifm_active = mii->mii_media_active;
305 	JME_UNLOCK(sc);
306 }
307 
308 /*
309  *	Set hardware to newly-selected media.
310  */
311 static int
312 jme_mediachange(struct ifnet *ifp)
313 {
314 	struct jme_softc *sc;
315 	struct mii_data *mii;
316 	struct mii_softc *miisc;
317 	int error;
318 
319 	sc = ifp->if_softc;
320 	JME_LOCK(sc);
321 	mii = device_get_softc(sc->jme_miibus);
322 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
323 		PHY_RESET(miisc);
324 	error = mii_mediachg(mii);
325 	JME_UNLOCK(sc);
326 
327 	return (error);
328 }
329 
330 static int
331 jme_probe(device_t dev)
332 {
333 	struct jme_dev *sp;
334 	int i;
335 	uint16_t vendor, devid;
336 
337 	vendor = pci_get_vendor(dev);
338 	devid = pci_get_device(dev);
339 	sp = jme_devs;
340 	for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
341 	    i++, sp++) {
342 		if (vendor == sp->jme_vendorid &&
343 		    devid == sp->jme_deviceid) {
344 			device_set_desc(dev, sp->jme_name);
345 			return (BUS_PROBE_DEFAULT);
346 		}
347 	}
348 
349 	return (ENXIO);
350 }
351 
352 static int
353 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
354 {
355 	uint32_t reg;
356 	int i;
357 
358 	*val = 0;
359 	for (i = JME_TIMEOUT; i > 0; i--) {
360 		reg = CSR_READ_4(sc, JME_SMBCSR);
361 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
362 			break;
363 		DELAY(1);
364 	}
365 
366 	if (i == 0) {
367 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
368 		return (ETIMEDOUT);
369 	}
370 
371 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
372 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
373 	for (i = JME_TIMEOUT; i > 0; i--) {
374 		DELAY(1);
375 		reg = CSR_READ_4(sc, JME_SMBINTF);
376 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
377 			break;
378 	}
379 
380 	if (i == 0) {
381 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
382 		return (ETIMEDOUT);
383 	}
384 
385 	reg = CSR_READ_4(sc, JME_SMBINTF);
386 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
387 
388 	return (0);
389 }
390 
391 static int
392 jme_eeprom_macaddr(struct jme_softc *sc)
393 {
394 	uint8_t eaddr[ETHER_ADDR_LEN];
395 	uint8_t fup, reg, val;
396 	uint32_t offset;
397 	int match;
398 
399 	offset = 0;
400 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
401 	    fup != JME_EEPROM_SIG0)
402 		return (ENOENT);
403 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
404 	    fup != JME_EEPROM_SIG1)
405 		return (ENOENT);
406 	match = 0;
407 	do {
408 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
409 			break;
410 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
411 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
412 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
413 				break;
414 			if (reg >= JME_PAR0 &&
415 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
416 				if (jme_eeprom_read_byte(sc, offset + 2,
417 				    &val) != 0)
418 					break;
419 				eaddr[reg - JME_PAR0] = val;
420 				match++;
421 			}
422 		}
423 		/* Check for the end of EEPROM descriptor. */
424 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
425 			break;
426 		/* Try next eeprom descriptor. */
427 		offset += JME_EEPROM_DESC_BYTES;
428 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
429 
430 	if (match == ETHER_ADDR_LEN) {
431 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
432 		return (0);
433 	}
434 
435 	return (ENOENT);
436 }
437 
438 static int
439 jme_efuse_macaddr(struct jme_softc *sc)
440 {
441 	uint32_t reg;
442 	int i;
443 
444 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
445 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
446 	    EFUSE_CTL1_AUTOLAOD_DONE)
447 		return (ENOENT);
448 	/* Reset eFuse controller. */
449 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
450 	reg |= EFUSE_CTL2_RESET;
451 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
452 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
453 	reg &= ~EFUSE_CTL2_RESET;
454 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
455 
456 	/* Have eFuse reload station address to MAC controller. */
457 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
458 	reg &= ~EFUSE_CTL1_CMD_MASK;
459 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
460 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
461 
462 	/*
463 	 * Verify completion of eFuse autload command.  It should be
464 	 * completed within 108us.
465 	 */
466 	DELAY(110);
467 	for (i = 10; i > 0; i--) {
468 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
469 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
470 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
471 			DELAY(20);
472 			continue;
473 		}
474 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
475 			break;
476 		/* Station address loading is still in progress. */
477 		DELAY(20);
478 	}
479 	if (i == 0) {
480 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
481 		return (ETIMEDOUT);
482 	}
483 
484 	return (0);
485 }
486 
487 static void
488 jme_reg_macaddr(struct jme_softc *sc)
489 {
490 	uint32_t par0, par1;
491 
492 	/* Read station address. */
493 	par0 = CSR_READ_4(sc, JME_PAR0);
494 	par1 = CSR_READ_4(sc, JME_PAR1);
495 	par1 &= 0xFFFF;
496 	if ((par0 == 0 && par1 == 0) ||
497 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
498 		device_printf(sc->jme_dev,
499 		    "Failed to retrieve Ethernet address.\n");
500 	} else {
501 		/*
502 		 * For controllers that use eFuse, the station address
503 		 * could also be extracted from JME_PCI_PAR0 and
504 		 * JME_PCI_PAR1 registers in PCI configuration space.
505 		 * Each register holds exactly half of station address(24bits)
506 		 * so use JME_PAR0, JME_PAR1 registers instead.
507 		 */
508 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
509 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
510 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
511 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
512 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
513 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
514 	}
515 }
516 
517 static void
518 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
519 {
520 	uint32_t val;
521 	int i;
522 
523 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
524 		/*
525 		 * Avoid reprogramming station address if the address
526 		 * is the same as previous one.  Note, reprogrammed
527 		 * station address is permanent as if it was written
528 		 * to EEPROM. So if station address was changed by
529 		 * admistrator it's possible to lose factory configured
530 		 * address when driver fails to restore its address.
531 		 * (e.g. reboot or system crash)
532 		 */
533 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
534 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
535 				val = JME_EFUSE_EEPROM_FUNC0 <<
536 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
537 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
538 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
539 				val |= (JME_PAR0 + i) <<
540 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
541 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
542 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
543 				    val | JME_EFUSE_EEPROM_WRITE, 4);
544 			}
545 		}
546 	} else {
547 		CSR_WRITE_4(sc, JME_PAR0,
548 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
549 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
550 	}
551 }
552 
553 static void
554 jme_map_intr_vector(struct jme_softc *sc)
555 {
556 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
557 
558 	bzero(map, sizeof(map));
559 
560 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
561 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
562 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
563 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
564 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
565 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
566 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
567 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
568 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
569 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
570 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
571 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
572 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
573 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
574 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
575 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
576 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
577 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
578 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
579 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
580 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
581 
582 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
583 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
584 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
585 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
586 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
587 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
588 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
589 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
590 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
591 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
592 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
593 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
594 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
595 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
596 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
597 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
598 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
599 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
600 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
601 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
602 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
603 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
604 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
605 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
606 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
607 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
608 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
609 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
610 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
611 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
612 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
613 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
614 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
615 
616 	/* Map all other interrupts source to MSI/MSIX vector 0. */
617 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
618 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
619 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
620 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
621 }
622 
623 static int
624 jme_attach(device_t dev)
625 {
626 	struct jme_softc *sc;
627 	struct ifnet *ifp;
628 	struct mii_softc *miisc;
629 	struct mii_data *mii;
630 	uint32_t reg;
631 	uint16_t burst;
632 	int error, i, mii_flags, msic, msixc, pmc;
633 
634 	error = 0;
635 	sc = device_get_softc(dev);
636 	sc->jme_dev = dev;
637 
638 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
639 	    MTX_DEF);
640 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
641 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
642 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
643 
644 	/*
645 	 * Map the device. JMC250 supports both memory mapped and I/O
646 	 * register space access. Because I/O register access should
647 	 * use different BARs to access registers it's waste of time
648 	 * to use I/O register spce access. JMC250 uses 16K to map
649 	 * entire memory space.
650 	 */
651 	pci_enable_busmaster(dev);
652 	sc->jme_res_spec = jme_res_spec_mem;
653 	sc->jme_irq_spec = jme_irq_spec_legacy;
654 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
655 	if (error != 0) {
656 		device_printf(dev, "cannot allocate memory resources.\n");
657 		goto fail;
658 	}
659 
660 	/* Allocate IRQ resources. */
661 	msixc = pci_msix_count(dev);
662 	msic = pci_msi_count(dev);
663 	if (bootverbose) {
664 		device_printf(dev, "MSIX count : %d\n", msixc);
665 		device_printf(dev, "MSI count : %d\n", msic);
666 	}
667 
668 	/* Use 1 MSI/MSI-X. */
669 	if (msixc > 1)
670 		msixc = 1;
671 	if (msic > 1)
672 		msic = 1;
673 	/* Prefer MSIX over MSI. */
674 	if (msix_disable == 0 || msi_disable == 0) {
675 		if (msix_disable == 0 && msixc > 0 &&
676 		    pci_alloc_msix(dev, &msixc) == 0) {
677 			if (msixc == 1) {
678 				device_printf(dev, "Using %d MSIX messages.\n",
679 				    msixc);
680 				sc->jme_flags |= JME_FLAG_MSIX;
681 				sc->jme_irq_spec = jme_irq_spec_msi;
682 			} else
683 				pci_release_msi(dev);
684 		}
685 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
686 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
687 			if (msic == 1) {
688 				device_printf(dev, "Using %d MSI messages.\n",
689 				    msic);
690 				sc->jme_flags |= JME_FLAG_MSI;
691 				sc->jme_irq_spec = jme_irq_spec_msi;
692 			} else
693 				pci_release_msi(dev);
694 		}
695 		/* Map interrupt vector 0, 1 and 2. */
696 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
697 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
698 			jme_map_intr_vector(sc);
699 	}
700 
701 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
702 	if (error != 0) {
703 		device_printf(dev, "cannot allocate IRQ resources.\n");
704 		goto fail;
705 	}
706 
707 	sc->jme_rev = pci_get_device(dev);
708 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
709 		sc->jme_flags |= JME_FLAG_FASTETH;
710 		sc->jme_flags |= JME_FLAG_NOJUMBO;
711 	}
712 	reg = CSR_READ_4(sc, JME_CHIPMODE);
713 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
714 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
715 	    CHIPMODE_NOT_FPGA)
716 		sc->jme_flags |= JME_FLAG_FPGA;
717 	if (bootverbose) {
718 		device_printf(dev, "PCI device revision : 0x%04x\n",
719 		    sc->jme_rev);
720 		device_printf(dev, "Chip revision : 0x%02x\n",
721 		    sc->jme_chip_rev);
722 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
723 			device_printf(dev, "FPGA revision : 0x%04x\n",
724 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
725 			    CHIPMODE_FPGA_REV_SHIFT);
726 	}
727 	if (sc->jme_chip_rev == 0xFF) {
728 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
729 		    sc->jme_rev);
730 		error = ENXIO;
731 		goto fail;
732 	}
733 
734 	/* Identify controller features and bugs. */
735 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
736 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
737 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
738 			sc->jme_flags |= JME_FLAG_DMA32BIT;
739 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
740 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
741 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
742 		sc->jme_flags |= JME_FLAG_HWMIB;
743 	}
744 
745 	/* Reset the ethernet controller. */
746 	jme_reset(sc);
747 
748 	/* Get station address. */
749 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
750 		error = jme_efuse_macaddr(sc);
751 		if (error == 0)
752 			jme_reg_macaddr(sc);
753 	} else {
754 		error = ENOENT;
755 		reg = CSR_READ_4(sc, JME_SMBCSR);
756 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
757 			error = jme_eeprom_macaddr(sc);
758 		if (error != 0 && bootverbose)
759 			device_printf(sc->jme_dev,
760 			    "ethernet hardware address not found in EEPROM.\n");
761 		if (error != 0)
762 			jme_reg_macaddr(sc);
763 	}
764 
765 	/*
766 	 * Save PHY address.
767 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
768 	 * requires PHY probing to get correct PHY address.
769 	 */
770 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
771 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
772 		    GPREG0_PHY_ADDR_MASK;
773 		if (bootverbose)
774 			device_printf(dev, "PHY is at address %d.\n",
775 			    sc->jme_phyaddr);
776 	} else
777 		sc->jme_phyaddr = 0;
778 
779 	/* Set max allowable DMA size. */
780 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
781 		sc->jme_flags |= JME_FLAG_PCIE;
782 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
783 		if (bootverbose) {
784 			device_printf(dev, "Read request size : %d bytes.\n",
785 			    128 << ((burst >> 12) & 0x07));
786 			device_printf(dev, "TLP payload size : %d bytes.\n",
787 			    128 << ((burst >> 5) & 0x07));
788 		}
789 		switch ((burst >> 12) & 0x07) {
790 		case 0:
791 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
792 			break;
793 		case 1:
794 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
795 			break;
796 		default:
797 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
798 			break;
799 		}
800 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
801 	} else {
802 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
803 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
804 	}
805 	/* Create coalescing sysctl node. */
806 	jme_sysctl_node(sc);
807 	if ((error = jme_dma_alloc(sc)) != 0)
808 		goto fail;
809 
810 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
811 	if (ifp == NULL) {
812 		device_printf(dev, "cannot allocate ifnet structure.\n");
813 		error = ENXIO;
814 		goto fail;
815 	}
816 
817 	ifp->if_softc = sc;
818 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
819 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
820 	ifp->if_ioctl = jme_ioctl;
821 	ifp->if_start = jme_start;
822 	ifp->if_init = jme_init;
823 	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
824 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
825 	IFQ_SET_READY(&ifp->if_snd);
826 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
827 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
828 	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
829 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
830 		sc->jme_flags |= JME_FLAG_PMCAP;
831 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
832 	}
833 	ifp->if_capenable = ifp->if_capabilities;
834 
835 	/* Wakeup PHY. */
836 	jme_phy_up(sc);
837 	mii_flags = MIIF_DOPAUSE;
838 	/* Ask PHY calibration to PHY driver. */
839 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
840 		mii_flags |= MIIF_MACPRIV0;
841 	/* Set up MII bus. */
842 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
843 	    jme_mediastatus, BMSR_DEFCAPMASK,
844 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
845 	    MII_OFFSET_ANY, mii_flags);
846 	if (error != 0) {
847 		device_printf(dev, "attaching PHYs failed\n");
848 		goto fail;
849 	}
850 
851 	/*
852 	 * Force PHY to FPGA mode.
853 	 */
854 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
855 		mii = device_get_softc(sc->jme_miibus);
856 		if (mii->mii_instance != 0) {
857 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
858 				if (miisc->mii_phy != 0) {
859 					sc->jme_phyaddr = miisc->mii_phy;
860 					break;
861 				}
862 			}
863 			if (sc->jme_phyaddr != 0) {
864 				device_printf(sc->jme_dev,
865 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
866 				/* vendor magic. */
867 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
868 				    0x0004);
869 			}
870 		}
871 	}
872 
873 	ether_ifattach(ifp, sc->jme_eaddr);
874 
875 	/* VLAN capability setup */
876 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
877 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
878 	ifp->if_capenable = ifp->if_capabilities;
879 
880 	/* Tell the upper layer(s) we support long frames. */
881 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
882 
883 	/* Create local taskq. */
884 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
885 	    taskqueue_thread_enqueue, &sc->jme_tq);
886 	if (sc->jme_tq == NULL) {
887 		device_printf(dev, "could not create taskqueue.\n");
888 		ether_ifdetach(ifp);
889 		error = ENXIO;
890 		goto fail;
891 	}
892 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
893 	    device_get_nameunit(sc->jme_dev));
894 
895 	for (i = 0; i < 1; i++) {
896 		error = bus_setup_intr(dev, sc->jme_irq[i],
897 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
898 		    &sc->jme_intrhand[i]);
899 		if (error != 0)
900 			break;
901 	}
902 
903 	if (error != 0) {
904 		device_printf(dev, "could not set up interrupt handler.\n");
905 		taskqueue_free(sc->jme_tq);
906 		sc->jme_tq = NULL;
907 		ether_ifdetach(ifp);
908 		goto fail;
909 	}
910 
911 fail:
912 	if (error != 0)
913 		jme_detach(dev);
914 
915 	return (error);
916 }
917 
918 static int
919 jme_detach(device_t dev)
920 {
921 	struct jme_softc *sc;
922 	struct ifnet *ifp;
923 	int i;
924 
925 	sc = device_get_softc(dev);
926 
927 	ifp = sc->jme_ifp;
928 	if (device_is_attached(dev)) {
929 		JME_LOCK(sc);
930 		sc->jme_flags |= JME_FLAG_DETACH;
931 		jme_stop(sc);
932 		JME_UNLOCK(sc);
933 		callout_drain(&sc->jme_tick_ch);
934 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
935 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
936 		/* Restore possibly modified station address. */
937 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
938 			jme_set_macaddr(sc, sc->jme_eaddr);
939 		ether_ifdetach(ifp);
940 	}
941 
942 	if (sc->jme_tq != NULL) {
943 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
944 		taskqueue_free(sc->jme_tq);
945 		sc->jme_tq = NULL;
946 	}
947 
948 	if (sc->jme_miibus != NULL) {
949 		device_delete_child(dev, sc->jme_miibus);
950 		sc->jme_miibus = NULL;
951 	}
952 	bus_generic_detach(dev);
953 	jme_dma_free(sc);
954 
955 	if (ifp != NULL) {
956 		if_free(ifp);
957 		sc->jme_ifp = NULL;
958 	}
959 
960 	for (i = 0; i < 1; i++) {
961 		if (sc->jme_intrhand[i] != NULL) {
962 			bus_teardown_intr(dev, sc->jme_irq[i],
963 			    sc->jme_intrhand[i]);
964 			sc->jme_intrhand[i] = NULL;
965 		}
966 	}
967 
968 	if (sc->jme_irq[0] != NULL)
969 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
970 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
971 		pci_release_msi(dev);
972 	if (sc->jme_res[0] != NULL)
973 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
974 	mtx_destroy(&sc->jme_mtx);
975 
976 	return (0);
977 }
978 
979 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
980 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
981 
982 static void
983 jme_sysctl_node(struct jme_softc *sc)
984 {
985 	struct sysctl_ctx_list *ctx;
986 	struct sysctl_oid_list *child, *parent;
987 	struct sysctl_oid *tree;
988 	struct jme_hw_stats *stats;
989 	int error;
990 
991 	stats = &sc->jme_stats;
992 	ctx = device_get_sysctl_ctx(sc->jme_dev);
993 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
994 
995 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
996 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
997 	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
998 
999 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
1000 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
1001 	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1002 
1003 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1004 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
1005 	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1006 
1007 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1008 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
1009 	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1010 
1011 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1012 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
1013 	    sysctl_hw_jme_proc_limit, "I",
1014 	    "max number of Rx events to process");
1015 
1016 	/* Pull in device tunables. */
1017 	sc->jme_process_limit = JME_PROC_DEFAULT;
1018 	error = resource_int_value(device_get_name(sc->jme_dev),
1019 	    device_get_unit(sc->jme_dev), "process_limit",
1020 	    &sc->jme_process_limit);
1021 	if (error == 0) {
1022 		if (sc->jme_process_limit < JME_PROC_MIN ||
1023 		    sc->jme_process_limit > JME_PROC_MAX) {
1024 			device_printf(sc->jme_dev,
1025 			    "process_limit value out of range; "
1026 			    "using default: %d\n", JME_PROC_DEFAULT);
1027 			sc->jme_process_limit = JME_PROC_DEFAULT;
1028 		}
1029 	}
1030 
1031 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1032 	error = resource_int_value(device_get_name(sc->jme_dev),
1033 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1034 	if (error == 0) {
1035 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1036 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1037 			device_printf(sc->jme_dev,
1038 			    "tx_coal_to value out of range; "
1039 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1040 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1041 		}
1042 	}
1043 
1044 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1045 	error = resource_int_value(device_get_name(sc->jme_dev),
1046 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1047 	if (error == 0) {
1048 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1049 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1050 			device_printf(sc->jme_dev,
1051 			    "tx_coal_pkt value out of range; "
1052 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1053 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1054 		}
1055 	}
1056 
1057 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1058 	error = resource_int_value(device_get_name(sc->jme_dev),
1059 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1060 	if (error == 0) {
1061 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1062 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1063 			device_printf(sc->jme_dev,
1064 			    "rx_coal_to value out of range; "
1065 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1066 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1067 		}
1068 	}
1069 
1070 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1071 	error = resource_int_value(device_get_name(sc->jme_dev),
1072 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1073 	if (error == 0) {
1074 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1075 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1076 			device_printf(sc->jme_dev,
1077 			    "tx_coal_pkt value out of range; "
1078 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1079 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1080 		}
1081 	}
1082 
1083 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1084 		return;
1085 
1086 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1087 	    NULL, "JME statistics");
1088 	parent = SYSCTL_CHILDREN(tree);
1089 
1090 	/* Rx statistics. */
1091 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1092 	    NULL, "Rx MAC statistics");
1093 	child = SYSCTL_CHILDREN(tree);
1094 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1095 	    &stats->rx_good_frames, "Good frames");
1096 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1097 	    &stats->rx_crc_errs, "CRC errors");
1098 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1099 	    &stats->rx_mii_errs, "MII errors");
1100 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1101 	    &stats->rx_fifo_oflows, "FIFO overflows");
1102 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1103 	    &stats->rx_desc_empty, "Descriptor empty");
1104 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1105 	    &stats->rx_bad_frames, "Bad frames");
1106 
1107 	/* Tx statistics. */
1108 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1109 	    NULL, "Tx MAC statistics");
1110 	child = SYSCTL_CHILDREN(tree);
1111 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1112 	    &stats->tx_good_frames, "Good frames");
1113 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1114 	    &stats->tx_bad_frames, "Bad frames");
1115 }
1116 
1117 #undef	JME_SYSCTL_STAT_ADD32
1118 
1119 struct jme_dmamap_arg {
1120 	bus_addr_t	jme_busaddr;
1121 };
1122 
1123 static void
1124 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1125 {
1126 	struct jme_dmamap_arg *ctx;
1127 
1128 	if (error != 0)
1129 		return;
1130 
1131 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1132 
1133 	ctx = (struct jme_dmamap_arg *)arg;
1134 	ctx->jme_busaddr = segs[0].ds_addr;
1135 }
1136 
1137 static int
1138 jme_dma_alloc(struct jme_softc *sc)
1139 {
1140 	struct jme_dmamap_arg ctx;
1141 	struct jme_txdesc *txd;
1142 	struct jme_rxdesc *rxd;
1143 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1144 	int error, i;
1145 
1146 	lowaddr = BUS_SPACE_MAXADDR;
1147 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1148 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1149 
1150 again:
1151 	/* Create parent ring tag. */
1152 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1153 	    1, 0,			/* algnmnt, boundary */
1154 	    lowaddr,			/* lowaddr */
1155 	    BUS_SPACE_MAXADDR,		/* highaddr */
1156 	    NULL, NULL,			/* filter, filterarg */
1157 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1158 	    0,				/* nsegments */
1159 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1160 	    0,				/* flags */
1161 	    NULL, NULL,			/* lockfunc, lockarg */
1162 	    &sc->jme_cdata.jme_ring_tag);
1163 	if (error != 0) {
1164 		device_printf(sc->jme_dev,
1165 		    "could not create parent ring DMA tag.\n");
1166 		goto fail;
1167 	}
1168 	/* Create tag for Tx ring. */
1169 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1170 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1171 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1172 	    BUS_SPACE_MAXADDR,		/* highaddr */
1173 	    NULL, NULL,			/* filter, filterarg */
1174 	    JME_TX_RING_SIZE,		/* maxsize */
1175 	    1,				/* nsegments */
1176 	    JME_TX_RING_SIZE,		/* maxsegsize */
1177 	    0,				/* flags */
1178 	    NULL, NULL,			/* lockfunc, lockarg */
1179 	    &sc->jme_cdata.jme_tx_ring_tag);
1180 	if (error != 0) {
1181 		device_printf(sc->jme_dev,
1182 		    "could not allocate Tx ring DMA tag.\n");
1183 		goto fail;
1184 	}
1185 
1186 	/* Create tag for Rx ring. */
1187 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1188 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1189 	    lowaddr,			/* lowaddr */
1190 	    BUS_SPACE_MAXADDR,		/* highaddr */
1191 	    NULL, NULL,			/* filter, filterarg */
1192 	    JME_RX_RING_SIZE,		/* maxsize */
1193 	    1,				/* nsegments */
1194 	    JME_RX_RING_SIZE,		/* maxsegsize */
1195 	    0,				/* flags */
1196 	    NULL, NULL,			/* lockfunc, lockarg */
1197 	    &sc->jme_cdata.jme_rx_ring_tag);
1198 	if (error != 0) {
1199 		device_printf(sc->jme_dev,
1200 		    "could not allocate Rx ring DMA tag.\n");
1201 		goto fail;
1202 	}
1203 
1204 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1205 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1206 	    (void **)&sc->jme_rdata.jme_tx_ring,
1207 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1208 	    &sc->jme_cdata.jme_tx_ring_map);
1209 	if (error != 0) {
1210 		device_printf(sc->jme_dev,
1211 		    "could not allocate DMA'able memory for Tx ring.\n");
1212 		goto fail;
1213 	}
1214 
1215 	ctx.jme_busaddr = 0;
1216 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1217 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1218 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1219 	if (error != 0 || ctx.jme_busaddr == 0) {
1220 		device_printf(sc->jme_dev,
1221 		    "could not load DMA'able memory for Tx ring.\n");
1222 		goto fail;
1223 	}
1224 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1225 
1226 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1227 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1228 	    (void **)&sc->jme_rdata.jme_rx_ring,
1229 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1230 	    &sc->jme_cdata.jme_rx_ring_map);
1231 	if (error != 0) {
1232 		device_printf(sc->jme_dev,
1233 		    "could not allocate DMA'able memory for Rx ring.\n");
1234 		goto fail;
1235 	}
1236 
1237 	ctx.jme_busaddr = 0;
1238 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1239 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1240 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1241 	if (error != 0 || ctx.jme_busaddr == 0) {
1242 		device_printf(sc->jme_dev,
1243 		    "could not load DMA'able memory for Rx ring.\n");
1244 		goto fail;
1245 	}
1246 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1247 
1248 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1249 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1250 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1251 		    JME_TX_RING_SIZE;
1252 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1253 		    JME_RX_RING_SIZE;
1254 		if ((JME_ADDR_HI(tx_ring_end) !=
1255 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1256 		    (JME_ADDR_HI(rx_ring_end) !=
1257 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1258 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1259 			    "switching to 32bit DMA address mode.\n");
1260 			jme_dma_free(sc);
1261 			/* Limit DMA address space to 32bit and try again. */
1262 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1263 			goto again;
1264 		}
1265 	}
1266 
1267 	lowaddr = BUS_SPACE_MAXADDR;
1268 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1269 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1270 	/* Create parent buffer tag. */
1271 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1272 	    1, 0,			/* algnmnt, boundary */
1273 	    lowaddr,			/* lowaddr */
1274 	    BUS_SPACE_MAXADDR,		/* highaddr */
1275 	    NULL, NULL,			/* filter, filterarg */
1276 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1277 	    0,				/* nsegments */
1278 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1279 	    0,				/* flags */
1280 	    NULL, NULL,			/* lockfunc, lockarg */
1281 	    &sc->jme_cdata.jme_buffer_tag);
1282 	if (error != 0) {
1283 		device_printf(sc->jme_dev,
1284 		    "could not create parent buffer DMA tag.\n");
1285 		goto fail;
1286 	}
1287 
1288 	/* Create shadow status block tag. */
1289 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1290 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1291 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1292 	    BUS_SPACE_MAXADDR,		/* highaddr */
1293 	    NULL, NULL,			/* filter, filterarg */
1294 	    JME_SSB_SIZE,		/* maxsize */
1295 	    1,				/* nsegments */
1296 	    JME_SSB_SIZE,		/* maxsegsize */
1297 	    0,				/* flags */
1298 	    NULL, NULL,			/* lockfunc, lockarg */
1299 	    &sc->jme_cdata.jme_ssb_tag);
1300 	if (error != 0) {
1301 		device_printf(sc->jme_dev,
1302 		    "could not create shared status block DMA tag.\n");
1303 		goto fail;
1304 	}
1305 
1306 	/* Create tag for Tx buffers. */
1307 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1308 	    1, 0,			/* algnmnt, boundary */
1309 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1310 	    BUS_SPACE_MAXADDR,		/* highaddr */
1311 	    NULL, NULL,			/* filter, filterarg */
1312 	    JME_TSO_MAXSIZE,		/* maxsize */
1313 	    JME_MAXTXSEGS,		/* nsegments */
1314 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1315 	    0,				/* flags */
1316 	    NULL, NULL,			/* lockfunc, lockarg */
1317 	    &sc->jme_cdata.jme_tx_tag);
1318 	if (error != 0) {
1319 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1320 		goto fail;
1321 	}
1322 
1323 	/* Create tag for Rx buffers. */
1324 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1325 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1326 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1327 	    BUS_SPACE_MAXADDR,		/* highaddr */
1328 	    NULL, NULL,			/* filter, filterarg */
1329 	    MCLBYTES,			/* maxsize */
1330 	    1,				/* nsegments */
1331 	    MCLBYTES,			/* maxsegsize */
1332 	    0,				/* flags */
1333 	    NULL, NULL,			/* lockfunc, lockarg */
1334 	    &sc->jme_cdata.jme_rx_tag);
1335 	if (error != 0) {
1336 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1337 		goto fail;
1338 	}
1339 
1340 	/*
1341 	 * Allocate DMA'able memory and load the DMA map for shared
1342 	 * status block.
1343 	 */
1344 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1345 	    (void **)&sc->jme_rdata.jme_ssb_block,
1346 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1347 	    &sc->jme_cdata.jme_ssb_map);
1348 	if (error != 0) {
1349 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1350 		    "memory for shared status block.\n");
1351 		goto fail;
1352 	}
1353 
1354 	ctx.jme_busaddr = 0;
1355 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1356 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1357 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1358 	if (error != 0 || ctx.jme_busaddr == 0) {
1359 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1360 		    "for shared status block.\n");
1361 		goto fail;
1362 	}
1363 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1364 
1365 	/* Create DMA maps for Tx buffers. */
1366 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1367 		txd = &sc->jme_cdata.jme_txdesc[i];
1368 		txd->tx_m = NULL;
1369 		txd->tx_dmamap = NULL;
1370 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1371 		    &txd->tx_dmamap);
1372 		if (error != 0) {
1373 			device_printf(sc->jme_dev,
1374 			    "could not create Tx dmamap.\n");
1375 			goto fail;
1376 		}
1377 	}
1378 	/* Create DMA maps for Rx buffers. */
1379 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1380 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1381 		device_printf(sc->jme_dev,
1382 		    "could not create spare Rx dmamap.\n");
1383 		goto fail;
1384 	}
1385 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1386 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1387 		rxd->rx_m = NULL;
1388 		rxd->rx_dmamap = NULL;
1389 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1390 		    &rxd->rx_dmamap);
1391 		if (error != 0) {
1392 			device_printf(sc->jme_dev,
1393 			    "could not create Rx dmamap.\n");
1394 			goto fail;
1395 		}
1396 	}
1397 
1398 fail:
1399 	return (error);
1400 }
1401 
1402 static void
1403 jme_dma_free(struct jme_softc *sc)
1404 {
1405 	struct jme_txdesc *txd;
1406 	struct jme_rxdesc *rxd;
1407 	int i;
1408 
1409 	/* Tx ring */
1410 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1411 		if (sc->jme_rdata.jme_tx_ring_paddr)
1412 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1413 			    sc->jme_cdata.jme_tx_ring_map);
1414 		if (sc->jme_rdata.jme_tx_ring)
1415 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1416 			    sc->jme_rdata.jme_tx_ring,
1417 			    sc->jme_cdata.jme_tx_ring_map);
1418 		sc->jme_rdata.jme_tx_ring = NULL;
1419 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1420 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1421 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1422 	}
1423 	/* Rx ring */
1424 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1425 		if (sc->jme_rdata.jme_rx_ring_paddr)
1426 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1427 			    sc->jme_cdata.jme_rx_ring_map);
1428 		if (sc->jme_rdata.jme_rx_ring)
1429 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1430 			    sc->jme_rdata.jme_rx_ring,
1431 			    sc->jme_cdata.jme_rx_ring_map);
1432 		sc->jme_rdata.jme_rx_ring = NULL;
1433 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1434 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1435 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1436 	}
1437 	/* Tx buffers */
1438 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1439 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1440 			txd = &sc->jme_cdata.jme_txdesc[i];
1441 			if (txd->tx_dmamap != NULL) {
1442 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1443 				    txd->tx_dmamap);
1444 				txd->tx_dmamap = NULL;
1445 			}
1446 		}
1447 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1448 		sc->jme_cdata.jme_tx_tag = NULL;
1449 	}
1450 	/* Rx buffers */
1451 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1452 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1453 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1454 			if (rxd->rx_dmamap != NULL) {
1455 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1456 				    rxd->rx_dmamap);
1457 				rxd->rx_dmamap = NULL;
1458 			}
1459 		}
1460 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1461 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1462 			    sc->jme_cdata.jme_rx_sparemap);
1463 			sc->jme_cdata.jme_rx_sparemap = NULL;
1464 		}
1465 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1466 		sc->jme_cdata.jme_rx_tag = NULL;
1467 	}
1468 
1469 	/* Shared status block. */
1470 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1471 		if (sc->jme_rdata.jme_ssb_block_paddr)
1472 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1473 			    sc->jme_cdata.jme_ssb_map);
1474 		if (sc->jme_rdata.jme_ssb_block)
1475 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1476 			    sc->jme_rdata.jme_ssb_block,
1477 			    sc->jme_cdata.jme_ssb_map);
1478 		sc->jme_rdata.jme_ssb_block = NULL;
1479 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1480 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1481 		sc->jme_cdata.jme_ssb_tag = NULL;
1482 	}
1483 
1484 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1485 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1486 		sc->jme_cdata.jme_buffer_tag = NULL;
1487 	}
1488 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1489 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1490 		sc->jme_cdata.jme_ring_tag = NULL;
1491 	}
1492 }
1493 
1494 /*
1495  *	Make sure the interface is stopped at reboot time.
1496  */
1497 static int
1498 jme_shutdown(device_t dev)
1499 {
1500 
1501 	return (jme_suspend(dev));
1502 }
1503 
1504 /*
1505  * Unlike other ethernet controllers, JMC250 requires
1506  * explicit resetting link speed to 10/100Mbps as gigabit
1507  * link will cunsume more power than 375mA.
1508  * Note, we reset the link speed to 10/100Mbps with
1509  * auto-negotiation but we don't know whether that operation
1510  * would succeed or not as we have no control after powering
1511  * off. If the renegotiation fail WOL may not work. Running
1512  * at 1Gbps draws more power than 375mA at 3.3V which is
1513  * specified in PCI specification and that would result in
1514  * complete shutdowning power to ethernet controller.
1515  *
1516  * TODO
1517  *  Save current negotiated media speed/duplex/flow-control
1518  *  to softc and restore the same link again after resuming.
1519  *  PHY handling such as power down/resetting to 100Mbps
1520  *  may be better handled in suspend method in phy driver.
1521  */
1522 static void
1523 jme_setlinkspeed(struct jme_softc *sc)
1524 {
1525 	struct mii_data *mii;
1526 	int aneg, i;
1527 
1528 	JME_LOCK_ASSERT(sc);
1529 
1530 	mii = device_get_softc(sc->jme_miibus);
1531 	mii_pollstat(mii);
1532 	aneg = 0;
1533 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1534 		switch IFM_SUBTYPE(mii->mii_media_active) {
1535 		case IFM_10_T:
1536 		case IFM_100_TX:
1537 			return;
1538 		case IFM_1000_T:
1539 			aneg++;
1540 		default:
1541 			break;
1542 		}
1543 	}
1544 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1545 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1546 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1547 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1548 	    BMCR_AUTOEN | BMCR_STARTNEG);
1549 	DELAY(1000);
1550 	if (aneg != 0) {
1551 		/* Poll link state until jme(4) get a 10/100 link. */
1552 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1553 			mii_pollstat(mii);
1554 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1555 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1556 				case IFM_10_T:
1557 				case IFM_100_TX:
1558 					jme_mac_config(sc);
1559 					return;
1560 				default:
1561 					break;
1562 				}
1563 			}
1564 			JME_UNLOCK(sc);
1565 			pause("jmelnk", hz);
1566 			JME_LOCK(sc);
1567 		}
1568 		if (i == MII_ANEGTICKS_GIGE)
1569 			device_printf(sc->jme_dev, "establishing link failed, "
1570 			    "WOL may not work!");
1571 	}
1572 	/*
1573 	 * No link, force MAC to have 100Mbps, full-duplex link.
1574 	 * This is the last resort and may/may not work.
1575 	 */
1576 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1577 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1578 	jme_mac_config(sc);
1579 }
1580 
1581 static void
1582 jme_setwol(struct jme_softc *sc)
1583 {
1584 	struct ifnet *ifp;
1585 	uint32_t gpr, pmcs;
1586 	uint16_t pmstat;
1587 	int pmc;
1588 
1589 	JME_LOCK_ASSERT(sc);
1590 
1591 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1592 		/* Remove Tx MAC/offload clock to save more power. */
1593 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1594 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1595 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1596 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1597 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1598 			CSR_WRITE_4(sc, JME_GPREG1,
1599 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1600 		/* No PME capability, PHY power down. */
1601 		jme_phy_down(sc);
1602 		return;
1603 	}
1604 
1605 	ifp = sc->jme_ifp;
1606 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1607 	pmcs = CSR_READ_4(sc, JME_PMCS);
1608 	pmcs &= ~PMCS_WOL_ENB_MASK;
1609 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1610 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1611 		/* Enable PME message. */
1612 		gpr |= GPREG0_PME_ENB;
1613 		/* For gigabit controllers, reset link speed to 10/100. */
1614 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1615 			jme_setlinkspeed(sc);
1616 	}
1617 
1618 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1619 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1620 	/* Remove Tx MAC/offload clock to save more power. */
1621 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1622 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1623 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1624 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1625 	/* Request PME. */
1626 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1627 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1628 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1629 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1630 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1631 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1632 		/* No WOL, PHY power down. */
1633 		jme_phy_down(sc);
1634 	}
1635 }
1636 
1637 static int
1638 jme_suspend(device_t dev)
1639 {
1640 	struct jme_softc *sc;
1641 
1642 	sc = device_get_softc(dev);
1643 
1644 	JME_LOCK(sc);
1645 	jme_stop(sc);
1646 	jme_setwol(sc);
1647 	JME_UNLOCK(sc);
1648 
1649 	return (0);
1650 }
1651 
1652 static int
1653 jme_resume(device_t dev)
1654 {
1655 	struct jme_softc *sc;
1656 	struct ifnet *ifp;
1657 	uint16_t pmstat;
1658 	int pmc;
1659 
1660 	sc = device_get_softc(dev);
1661 
1662 	JME_LOCK(sc);
1663 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1664 		pmstat = pci_read_config(sc->jme_dev,
1665 		    pmc + PCIR_POWER_STATUS, 2);
1666 		/* Disable PME clear PME status. */
1667 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1668 		pci_write_config(sc->jme_dev,
1669 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1670 	}
1671 	/* Wakeup PHY. */
1672 	jme_phy_up(sc);
1673 	ifp = sc->jme_ifp;
1674 	if ((ifp->if_flags & IFF_UP) != 0) {
1675 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1676 		jme_init_locked(sc);
1677 	}
1678 
1679 	JME_UNLOCK(sc);
1680 
1681 	return (0);
1682 }
1683 
1684 static int
1685 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1686 {
1687 	struct jme_txdesc *txd;
1688 	struct jme_desc *desc;
1689 	struct mbuf *m;
1690 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1691 	int error, i, nsegs, prod;
1692 	uint32_t cflags, tsosegsz;
1693 
1694 	JME_LOCK_ASSERT(sc);
1695 
1696 	M_ASSERTPKTHDR((*m_head));
1697 
1698 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1699 		/*
1700 		 * Due to the adherence to NDIS specification JMC250
1701 		 * assumes upper stack computed TCP pseudo checksum
1702 		 * without including payload length. This breaks
1703 		 * checksum offload for TSO case so recompute TCP
1704 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1705 		 * be much burden on modern CPUs.
1706 		 */
1707 		struct ether_header *eh;
1708 		struct ip *ip;
1709 		struct tcphdr *tcp;
1710 		uint32_t ip_off, poff;
1711 
1712 		if (M_WRITABLE(*m_head) == 0) {
1713 			/* Get a writable copy. */
1714 			m = m_dup(*m_head, M_NOWAIT);
1715 			m_freem(*m_head);
1716 			if (m == NULL) {
1717 				*m_head = NULL;
1718 				return (ENOBUFS);
1719 			}
1720 			*m_head = m;
1721 		}
1722 		ip_off = sizeof(struct ether_header);
1723 		m = m_pullup(*m_head, ip_off);
1724 		if (m == NULL) {
1725 			*m_head = NULL;
1726 			return (ENOBUFS);
1727 		}
1728 		eh = mtod(m, struct ether_header *);
1729 		/* Check the existence of VLAN tag. */
1730 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1731 			ip_off = sizeof(struct ether_vlan_header);
1732 			m = m_pullup(m, ip_off);
1733 			if (m == NULL) {
1734 				*m_head = NULL;
1735 				return (ENOBUFS);
1736 			}
1737 		}
1738 		m = m_pullup(m, ip_off + sizeof(struct ip));
1739 		if (m == NULL) {
1740 			*m_head = NULL;
1741 			return (ENOBUFS);
1742 		}
1743 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1744 		poff = ip_off + (ip->ip_hl << 2);
1745 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1746 		if (m == NULL) {
1747 			*m_head = NULL;
1748 			return (ENOBUFS);
1749 		}
1750 		/*
1751 		 * Reset IP checksum and recompute TCP pseudo
1752 		 * checksum that NDIS specification requires.
1753 		 */
1754 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1755 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1756 		ip->ip_sum = 0;
1757 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1758 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1759 			    ip->ip_dst.s_addr,
1760 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1761 			/* No need to TSO, force IP checksum offload. */
1762 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1763 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1764 		} else
1765 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1766 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1767 		*m_head = m;
1768 	}
1769 
1770 	prod = sc->jme_cdata.jme_tx_prod;
1771 	txd = &sc->jme_cdata.jme_txdesc[prod];
1772 
1773 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1774 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1775 	if (error == EFBIG) {
1776 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1777 		if (m == NULL) {
1778 			m_freem(*m_head);
1779 			*m_head = NULL;
1780 			return (ENOMEM);
1781 		}
1782 		*m_head = m;
1783 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1784 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1785 		if (error != 0) {
1786 			m_freem(*m_head);
1787 			*m_head = NULL;
1788 			return (error);
1789 		}
1790 	} else if (error != 0)
1791 		return (error);
1792 	if (nsegs == 0) {
1793 		m_freem(*m_head);
1794 		*m_head = NULL;
1795 		return (EIO);
1796 	}
1797 
1798 	/*
1799 	 * Check descriptor overrun. Leave one free descriptor.
1800 	 * Since we always use 64bit address mode for transmitting,
1801 	 * each Tx request requires one more dummy descriptor.
1802 	 */
1803 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1804 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1805 		return (ENOBUFS);
1806 	}
1807 
1808 	m = *m_head;
1809 	cflags = 0;
1810 	tsosegsz = 0;
1811 	/* Configure checksum offload and TSO. */
1812 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1813 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1814 		    JME_TD_MSS_SHIFT;
1815 		cflags |= JME_TD_TSO;
1816 	} else {
1817 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1818 			cflags |= JME_TD_IPCSUM;
1819 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1820 			cflags |= JME_TD_TCPCSUM;
1821 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1822 			cflags |= JME_TD_UDPCSUM;
1823 	}
1824 	/* Configure VLAN. */
1825 	if ((m->m_flags & M_VLANTAG) != 0) {
1826 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1827 		cflags |= JME_TD_VLAN_TAG;
1828 	}
1829 
1830 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1831 	desc->flags = htole32(cflags);
1832 	desc->buflen = htole32(tsosegsz);
1833 	desc->addr_hi = htole32(m->m_pkthdr.len);
1834 	desc->addr_lo = 0;
1835 	sc->jme_cdata.jme_tx_cnt++;
1836 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1837 	for (i = 0; i < nsegs; i++) {
1838 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1839 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1840 		desc->buflen = htole32(txsegs[i].ds_len);
1841 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1842 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1843 		sc->jme_cdata.jme_tx_cnt++;
1844 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1845 	}
1846 
1847 	/* Update producer index. */
1848 	sc->jme_cdata.jme_tx_prod = prod;
1849 	/*
1850 	 * Finally request interrupt and give the first descriptor
1851 	 * owenership to hardware.
1852 	 */
1853 	desc = txd->tx_desc;
1854 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1855 
1856 	txd->tx_m = m;
1857 	txd->tx_ndesc = nsegs + 1;
1858 
1859 	/* Sync descriptors. */
1860 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1861 	    BUS_DMASYNC_PREWRITE);
1862 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1863 	    sc->jme_cdata.jme_tx_ring_map,
1864 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1865 
1866 	return (0);
1867 }
1868 
1869 static void
1870 jme_start(struct ifnet *ifp)
1871 {
1872         struct jme_softc *sc;
1873 
1874 	sc = ifp->if_softc;
1875 	JME_LOCK(sc);
1876 	jme_start_locked(ifp);
1877 	JME_UNLOCK(sc);
1878 }
1879 
1880 static void
1881 jme_start_locked(struct ifnet *ifp)
1882 {
1883         struct jme_softc *sc;
1884         struct mbuf *m_head;
1885 	int enq;
1886 
1887 	sc = ifp->if_softc;
1888 
1889 	JME_LOCK_ASSERT(sc);
1890 
1891 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1892 		jme_txeof(sc);
1893 
1894 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1895 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1896 		return;
1897 
1898 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1899 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1900 		if (m_head == NULL)
1901 			break;
1902 		/*
1903 		 * Pack the data into the transmit ring. If we
1904 		 * don't have room, set the OACTIVE flag and wait
1905 		 * for the NIC to drain the ring.
1906 		 */
1907 		if (jme_encap(sc, &m_head)) {
1908 			if (m_head == NULL)
1909 				break;
1910 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1911 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1912 			break;
1913 		}
1914 
1915 		enq++;
1916 		/*
1917 		 * If there's a BPF listener, bounce a copy of this frame
1918 		 * to him.
1919 		 */
1920 		ETHER_BPF_MTAP(ifp, m_head);
1921 	}
1922 
1923 	if (enq > 0) {
1924 		/*
1925 		 * Reading TXCSR takes very long time under heavy load
1926 		 * so cache TXCSR value and writes the ORed value with
1927 		 * the kick command to the TXCSR. This saves one register
1928 		 * access cycle.
1929 		 */
1930 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1931 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1932 		/* Set a timeout in case the chip goes out to lunch. */
1933 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1934 	}
1935 }
1936 
1937 static void
1938 jme_watchdog(struct jme_softc *sc)
1939 {
1940 	struct ifnet *ifp;
1941 
1942 	JME_LOCK_ASSERT(sc);
1943 
1944 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1945 		return;
1946 
1947 	ifp = sc->jme_ifp;
1948 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1949 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1950 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1951 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1952 		jme_init_locked(sc);
1953 		return;
1954 	}
1955 	jme_txeof(sc);
1956 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1957 		if_printf(sc->jme_ifp,
1958 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1959 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1960 			jme_start_locked(ifp);
1961 		return;
1962 	}
1963 
1964 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1965 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1966 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1967 	jme_init_locked(sc);
1968 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1969 		jme_start_locked(ifp);
1970 }
1971 
1972 static int
1973 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1974 {
1975 	struct jme_softc *sc;
1976 	struct ifreq *ifr;
1977 	struct mii_data *mii;
1978 	uint32_t reg;
1979 	int error, mask;
1980 
1981 	sc = ifp->if_softc;
1982 	ifr = (struct ifreq *)data;
1983 	error = 0;
1984 	switch (cmd) {
1985 	case SIOCSIFMTU:
1986 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1987 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1988 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1989 			error = EINVAL;
1990 			break;
1991 		}
1992 
1993 		if (ifp->if_mtu != ifr->ifr_mtu) {
1994 			/*
1995 			 * No special configuration is required when interface
1996 			 * MTU is changed but availability of TSO/Tx checksum
1997 			 * offload should be chcked against new MTU size as
1998 			 * FIFO size is just 2K.
1999 			 */
2000 			JME_LOCK(sc);
2001 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2002 				ifp->if_capenable &=
2003 				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2004 				ifp->if_hwassist &=
2005 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2006 				VLAN_CAPABILITIES(ifp);
2007 			}
2008 			ifp->if_mtu = ifr->ifr_mtu;
2009 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2010 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2011 				jme_init_locked(sc);
2012 			}
2013 			JME_UNLOCK(sc);
2014 		}
2015 		break;
2016 	case SIOCSIFFLAGS:
2017 		JME_LOCK(sc);
2018 		if ((ifp->if_flags & IFF_UP) != 0) {
2019 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2020 				if (((ifp->if_flags ^ sc->jme_if_flags)
2021 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2022 					jme_set_filter(sc);
2023 			} else {
2024 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2025 					jme_init_locked(sc);
2026 			}
2027 		} else {
2028 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2029 				jme_stop(sc);
2030 		}
2031 		sc->jme_if_flags = ifp->if_flags;
2032 		JME_UNLOCK(sc);
2033 		break;
2034 	case SIOCADDMULTI:
2035 	case SIOCDELMULTI:
2036 		JME_LOCK(sc);
2037 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2038 			jme_set_filter(sc);
2039 		JME_UNLOCK(sc);
2040 		break;
2041 	case SIOCSIFMEDIA:
2042 	case SIOCGIFMEDIA:
2043 		mii = device_get_softc(sc->jme_miibus);
2044 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2045 		break;
2046 	case SIOCSIFCAP:
2047 		JME_LOCK(sc);
2048 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2049 		if ((mask & IFCAP_TXCSUM) != 0 &&
2050 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2051 			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2052 				ifp->if_capenable ^= IFCAP_TXCSUM;
2053 				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2054 					ifp->if_hwassist |= JME_CSUM_FEATURES;
2055 				else
2056 					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2057 			}
2058 		}
2059 		if ((mask & IFCAP_RXCSUM) != 0 &&
2060 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2061 			ifp->if_capenable ^= IFCAP_RXCSUM;
2062 			reg = CSR_READ_4(sc, JME_RXMAC);
2063 			reg &= ~RXMAC_CSUM_ENB;
2064 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2065 				reg |= RXMAC_CSUM_ENB;
2066 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2067 		}
2068 		if ((mask & IFCAP_TSO4) != 0 &&
2069 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2070 			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2071 				ifp->if_capenable ^= IFCAP_TSO4;
2072 				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2073 					ifp->if_hwassist |= CSUM_TSO;
2074 				else
2075 					ifp->if_hwassist &= ~CSUM_TSO;
2076 			}
2077 		}
2078 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2079 		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2080 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2081 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2082 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2083 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2084 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2085 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2086 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2087 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2088 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2089 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2090 			jme_set_vlan(sc);
2091 		}
2092 		JME_UNLOCK(sc);
2093 		VLAN_CAPABILITIES(ifp);
2094 		break;
2095 	default:
2096 		error = ether_ioctl(ifp, cmd, data);
2097 		break;
2098 	}
2099 
2100 	return (error);
2101 }
2102 
2103 static void
2104 jme_mac_config(struct jme_softc *sc)
2105 {
2106 	struct mii_data *mii;
2107 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2108 	uint32_t txclk;
2109 
2110 	JME_LOCK_ASSERT(sc);
2111 
2112 	mii = device_get_softc(sc->jme_miibus);
2113 
2114 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2115 	DELAY(10);
2116 	CSR_WRITE_4(sc, JME_GHC, 0);
2117 	ghc = 0;
2118 	txclk = 0;
2119 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2120 	rxmac &= ~RXMAC_FC_ENB;
2121 	txmac = CSR_READ_4(sc, JME_TXMAC);
2122 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2123 	txpause = CSR_READ_4(sc, JME_TXPFC);
2124 	txpause &= ~TXPFC_PAUSE_ENB;
2125 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2126 		ghc |= GHC_FULL_DUPLEX;
2127 		rxmac &= ~RXMAC_COLL_DET_ENB;
2128 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2129 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2130 		    TXMAC_FRAME_BURST);
2131 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2132 			txpause |= TXPFC_PAUSE_ENB;
2133 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2134 			rxmac |= RXMAC_FC_ENB;
2135 		/* Disable retry transmit timer/retry limit. */
2136 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2137 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2138 	} else {
2139 		rxmac |= RXMAC_COLL_DET_ENB;
2140 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2141 		/* Enable retry transmit timer/retry limit. */
2142 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2143 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2144 	}
2145 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2146 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2147 	case IFM_10_T:
2148 		ghc |= GHC_SPEED_10;
2149 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2150 		break;
2151 	case IFM_100_TX:
2152 		ghc |= GHC_SPEED_100;
2153 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2154 		break;
2155 	case IFM_1000_T:
2156 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2157 			break;
2158 		ghc |= GHC_SPEED_1000;
2159 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2160 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2161 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2162 		break;
2163 	default:
2164 		break;
2165 	}
2166 	if (sc->jme_rev == DEVICEID_JMC250 &&
2167 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2168 		/*
2169 		 * Workaround occasional packet loss issue of JMC250 A2
2170 		 * when it runs on half-duplex media.
2171 		 */
2172 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2173 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2174 			gpreg &= ~GPREG1_HDPX_FIX;
2175 		else
2176 			gpreg |= GPREG1_HDPX_FIX;
2177 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2178 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2179 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2180 			/* Extend interface FIFO depth. */
2181 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2182 			    0x1B, 0x0000);
2183 		} else {
2184 			/* Select default interface FIFO depth. */
2185 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2186 			    0x1B, 0x0004);
2187 		}
2188 	}
2189 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2190 		ghc |= txclk;
2191 	CSR_WRITE_4(sc, JME_GHC, ghc);
2192 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2193 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2194 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2195 }
2196 
2197 static void
2198 jme_link_task(void *arg, int pending)
2199 {
2200 	struct jme_softc *sc;
2201 	struct mii_data *mii;
2202 	struct ifnet *ifp;
2203 	struct jme_txdesc *txd;
2204 	bus_addr_t paddr;
2205 	int i;
2206 
2207 	sc = (struct jme_softc *)arg;
2208 
2209 	JME_LOCK(sc);
2210 	mii = device_get_softc(sc->jme_miibus);
2211 	ifp = sc->jme_ifp;
2212 	if (mii == NULL || ifp == NULL ||
2213 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2214 		JME_UNLOCK(sc);
2215 		return;
2216 	}
2217 
2218 	sc->jme_flags &= ~JME_FLAG_LINK;
2219 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2220 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2221 		case IFM_10_T:
2222 		case IFM_100_TX:
2223 			sc->jme_flags |= JME_FLAG_LINK;
2224 			break;
2225 		case IFM_1000_T:
2226 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2227 				break;
2228 			sc->jme_flags |= JME_FLAG_LINK;
2229 			break;
2230 		default:
2231 			break;
2232 		}
2233 	}
2234 
2235 	/*
2236 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2237 	 * JME_TXNDA/JME_RXNDA register to the first address of
2238 	 * Tx/Rx descriptor address. So driver should reset its
2239 	 * internal procucer/consumer pointer and reclaim any
2240 	 * allocated resources. Note, just saving the value of
2241 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2242 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2243 	 * sufficient to make sure correct MAC state because
2244 	 * stopping MAC operation can take a while and hardware
2245 	 * might have updated JME_TXNDA/JME_RXNDA registers
2246 	 * during the stop operation.
2247 	 */
2248 	/* Block execution of task. */
2249 	taskqueue_block(sc->jme_tq);
2250 	/* Disable interrupts and stop driver. */
2251 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2252 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2253 	callout_stop(&sc->jme_tick_ch);
2254 	sc->jme_watchdog_timer = 0;
2255 
2256 	/* Stop receiver/transmitter. */
2257 	jme_stop_rx(sc);
2258 	jme_stop_tx(sc);
2259 
2260 	/* XXX Drain all queued tasks. */
2261 	JME_UNLOCK(sc);
2262 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2263 	JME_LOCK(sc);
2264 
2265 	if (sc->jme_cdata.jme_rxhead != NULL)
2266 		m_freem(sc->jme_cdata.jme_rxhead);
2267 	JME_RXCHAIN_RESET(sc);
2268 	jme_txeof(sc);
2269 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2270 		/* Remove queued packets for transmit. */
2271 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2272 			txd = &sc->jme_cdata.jme_txdesc[i];
2273 			if (txd->tx_m != NULL) {
2274 				bus_dmamap_sync(
2275 				    sc->jme_cdata.jme_tx_tag,
2276 				    txd->tx_dmamap,
2277 				    BUS_DMASYNC_POSTWRITE);
2278 				bus_dmamap_unload(
2279 				    sc->jme_cdata.jme_tx_tag,
2280 				    txd->tx_dmamap);
2281 				m_freem(txd->tx_m);
2282 				txd->tx_m = NULL;
2283 				txd->tx_ndesc = 0;
2284 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2285 			}
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Reuse configured Rx descriptors and reset
2291 	 * producer/consumer index.
2292 	 */
2293 	sc->jme_cdata.jme_rx_cons = 0;
2294 	sc->jme_morework = 0;
2295 	jme_init_tx_ring(sc);
2296 	/* Initialize shadow status block. */
2297 	jme_init_ssb(sc);
2298 
2299 	/* Program MAC with resolved speed/duplex/flow-control. */
2300 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2301 		jme_mac_config(sc);
2302 		jme_stats_clear(sc);
2303 
2304 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2305 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2306 
2307 		/* Set Tx ring address to the hardware. */
2308 		paddr = JME_TX_RING_ADDR(sc, 0);
2309 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2310 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2311 
2312 		/* Set Rx ring address to the hardware. */
2313 		paddr = JME_RX_RING_ADDR(sc, 0);
2314 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2315 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2316 
2317 		/* Restart receiver/transmitter. */
2318 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2319 		    RXCSR_RXQ_START);
2320 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2321 		/* Lastly enable TX/RX clock. */
2322 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2323 			CSR_WRITE_4(sc, JME_GHC,
2324 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2325 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2326 			CSR_WRITE_4(sc, JME_GPREG1,
2327 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2328 	}
2329 
2330 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2331 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2332 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2333 	/* Unblock execution of task. */
2334 	taskqueue_unblock(sc->jme_tq);
2335 	/* Reenable interrupts. */
2336 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2337 
2338 	JME_UNLOCK(sc);
2339 }
2340 
2341 static int
2342 jme_intr(void *arg)
2343 {
2344 	struct jme_softc *sc;
2345 	uint32_t status;
2346 
2347 	sc = (struct jme_softc *)arg;
2348 
2349 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2350 	if (status == 0 || status == 0xFFFFFFFF)
2351 		return (FILTER_STRAY);
2352 	/* Disable interrupts. */
2353 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2354 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2355 
2356 	return (FILTER_HANDLED);
2357 }
2358 
2359 static void
2360 jme_int_task(void *arg, int pending)
2361 {
2362 	struct jme_softc *sc;
2363 	struct ifnet *ifp;
2364 	uint32_t status;
2365 	int more;
2366 
2367 	sc = (struct jme_softc *)arg;
2368 	ifp = sc->jme_ifp;
2369 
2370 	JME_LOCK(sc);
2371 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2372 	if (sc->jme_morework != 0) {
2373 		sc->jme_morework = 0;
2374 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2375 	}
2376 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2377 		goto done;
2378 	/* Reset PCC counter/timer and Ack interrupts. */
2379 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2380 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2381 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2382 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2383 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2384 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2385 	more = 0;
2386 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2387 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2388 			more = jme_rxintr(sc, sc->jme_process_limit);
2389 			if (more != 0)
2390 				sc->jme_morework = 1;
2391 		}
2392 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2393 			/*
2394 			 * Notify hardware availability of new Rx
2395 			 * buffers.
2396 			 * Reading RXCSR takes very long time under
2397 			 * heavy load so cache RXCSR value and writes
2398 			 * the ORed value with the kick command to
2399 			 * the RXCSR. This saves one register access
2400 			 * cycle.
2401 			 */
2402 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2403 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2404 		}
2405 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2406 			jme_start_locked(ifp);
2407 	}
2408 
2409 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2410 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2411 		JME_UNLOCK(sc);
2412 		return;
2413 	}
2414 done:
2415 	JME_UNLOCK(sc);
2416 
2417 	/* Reenable interrupts. */
2418 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2419 }
2420 
2421 static void
2422 jme_txeof(struct jme_softc *sc)
2423 {
2424 	struct ifnet *ifp;
2425 	struct jme_txdesc *txd;
2426 	uint32_t status;
2427 	int cons, nsegs;
2428 
2429 	JME_LOCK_ASSERT(sc);
2430 
2431 	ifp = sc->jme_ifp;
2432 
2433 	cons = sc->jme_cdata.jme_tx_cons;
2434 	if (cons == sc->jme_cdata.jme_tx_prod)
2435 		return;
2436 
2437 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2438 	    sc->jme_cdata.jme_tx_ring_map,
2439 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2440 
2441 	/*
2442 	 * Go through our Tx list and free mbufs for those
2443 	 * frames which have been transmitted.
2444 	 */
2445 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2446 		txd = &sc->jme_cdata.jme_txdesc[cons];
2447 		status = le32toh(txd->tx_desc->flags);
2448 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2449 			break;
2450 
2451 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2452 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2453 		else {
2454 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2455 			if ((status & JME_TD_COLLISION) != 0)
2456 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2457 				    le32toh(txd->tx_desc->buflen) &
2458 				    JME_TD_BUF_LEN_MASK);
2459 		}
2460 		/*
2461 		 * Only the first descriptor of multi-descriptor
2462 		 * transmission is updated so driver have to skip entire
2463 		 * chained buffers for the transmiited frame. In other
2464 		 * words, JME_TD_OWN bit is valid only at the first
2465 		 * descriptor of a multi-descriptor transmission.
2466 		 */
2467 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2468 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2469 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2470 		}
2471 
2472 		/* Reclaim transferred mbufs. */
2473 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2474 		    BUS_DMASYNC_POSTWRITE);
2475 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2476 
2477 		KASSERT(txd->tx_m != NULL,
2478 		    ("%s: freeing NULL mbuf!\n", __func__));
2479 		m_freem(txd->tx_m);
2480 		txd->tx_m = NULL;
2481 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2482 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2483 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2484 		txd->tx_ndesc = 0;
2485 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2486 	}
2487 	sc->jme_cdata.jme_tx_cons = cons;
2488 	/* Unarm watchog timer when there is no pending descriptors in queue. */
2489 	if (sc->jme_cdata.jme_tx_cnt == 0)
2490 		sc->jme_watchdog_timer = 0;
2491 
2492 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2493 	    sc->jme_cdata.jme_tx_ring_map,
2494 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2495 }
2496 
2497 static __inline void
2498 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2499 {
2500 	struct jme_desc *desc;
2501 
2502 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2503 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2504 	desc->buflen = htole32(MCLBYTES);
2505 }
2506 
2507 /* Receive a frame. */
2508 static void
2509 jme_rxeof(struct jme_softc *sc)
2510 {
2511 	struct ifnet *ifp;
2512 	struct jme_desc *desc;
2513 	struct jme_rxdesc *rxd;
2514 	struct mbuf *mp, *m;
2515 	uint32_t flags, status;
2516 	int cons, count, nsegs;
2517 
2518 	JME_LOCK_ASSERT(sc);
2519 
2520 	ifp = sc->jme_ifp;
2521 
2522 	cons = sc->jme_cdata.jme_rx_cons;
2523 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2524 	flags = le32toh(desc->flags);
2525 	status = le32toh(desc->buflen);
2526 	nsegs = JME_RX_NSEGS(status);
2527 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2528 	if ((status & JME_RX_ERR_STAT) != 0) {
2529 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2530 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2531 #ifdef JME_SHOW_ERRORS
2532 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2533 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2534 #endif
2535 		sc->jme_cdata.jme_rx_cons += nsegs;
2536 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2537 		return;
2538 	}
2539 
2540 	for (count = 0; count < nsegs; count++,
2541 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2542 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2543 		mp = rxd->rx_m;
2544 		/* Add a new receive buffer to the ring. */
2545 		if (jme_newbuf(sc, rxd) != 0) {
2546 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2547 			/* Reuse buffer. */
2548 			for (; count < nsegs; count++) {
2549 				jme_discard_rxbuf(sc, cons);
2550 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2551 			}
2552 			if (sc->jme_cdata.jme_rxhead != NULL) {
2553 				m_freem(sc->jme_cdata.jme_rxhead);
2554 				JME_RXCHAIN_RESET(sc);
2555 			}
2556 			break;
2557 		}
2558 
2559 		/*
2560 		 * Assume we've received a full sized frame.
2561 		 * Actual size is fixed when we encounter the end of
2562 		 * multi-segmented frame.
2563 		 */
2564 		mp->m_len = MCLBYTES;
2565 
2566 		/* Chain received mbufs. */
2567 		if (sc->jme_cdata.jme_rxhead == NULL) {
2568 			sc->jme_cdata.jme_rxhead = mp;
2569 			sc->jme_cdata.jme_rxtail = mp;
2570 		} else {
2571 			/*
2572 			 * Receive processor can receive a maximum frame
2573 			 * size of 65535 bytes.
2574 			 */
2575 			mp->m_flags &= ~M_PKTHDR;
2576 			sc->jme_cdata.jme_rxtail->m_next = mp;
2577 			sc->jme_cdata.jme_rxtail = mp;
2578 		}
2579 
2580 		if (count == nsegs - 1) {
2581 			/* Last desc. for this frame. */
2582 			m = sc->jme_cdata.jme_rxhead;
2583 			m->m_flags |= M_PKTHDR;
2584 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2585 			if (nsegs > 1) {
2586 				/* Set first mbuf size. */
2587 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2588 				/* Set last mbuf size. */
2589 				mp->m_len = sc->jme_cdata.jme_rxlen -
2590 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2591 				    (MCLBYTES * (nsegs - 2)));
2592 			} else
2593 				m->m_len = sc->jme_cdata.jme_rxlen;
2594 			m->m_pkthdr.rcvif = ifp;
2595 
2596 			/*
2597 			 * Account for 10bytes auto padding which is used
2598 			 * to align IP header on 32bit boundary. Also note,
2599 			 * CRC bytes is automatically removed by the
2600 			 * hardware.
2601 			 */
2602 			m->m_data += JME_RX_PAD_BYTES;
2603 
2604 			/* Set checksum information. */
2605 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2606 			    (flags & JME_RD_IPV4) != 0) {
2607 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2608 				if ((flags & JME_RD_IPCSUM) != 0)
2609 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2610 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2611 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2612 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2613 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2614 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2615 					m->m_pkthdr.csum_flags |=
2616 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2617 					m->m_pkthdr.csum_data = 0xffff;
2618 				}
2619 			}
2620 
2621 			/* Check for VLAN tagged packets. */
2622 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2623 			    (flags & JME_RD_VLAN_TAG) != 0) {
2624 				m->m_pkthdr.ether_vtag =
2625 				    flags & JME_RD_VLAN_MASK;
2626 				m->m_flags |= M_VLANTAG;
2627 			}
2628 
2629 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2630 			/* Pass it on. */
2631 			JME_UNLOCK(sc);
2632 			(*ifp->if_input)(ifp, m);
2633 			JME_LOCK(sc);
2634 
2635 			/* Reset mbuf chains. */
2636 			JME_RXCHAIN_RESET(sc);
2637 		}
2638 	}
2639 
2640 	sc->jme_cdata.jme_rx_cons += nsegs;
2641 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2642 }
2643 
2644 static int
2645 jme_rxintr(struct jme_softc *sc, int count)
2646 {
2647 	struct jme_desc *desc;
2648 	int nsegs, prog, pktlen;
2649 
2650 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2651 	    sc->jme_cdata.jme_rx_ring_map,
2652 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2653 
2654 	for (prog = 0; count > 0; prog++) {
2655 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2656 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2657 			break;
2658 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2659 			break;
2660 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2661 		/*
2662 		 * Check number of segments against received bytes.
2663 		 * Non-matching value would indicate that hardware
2664 		 * is still trying to update Rx descriptors. I'm not
2665 		 * sure whether this check is needed.
2666 		 */
2667 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2668 		if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
2669 			break;
2670 		prog++;
2671 		/* Received a frame. */
2672 		jme_rxeof(sc);
2673 		count -= nsegs;
2674 	}
2675 
2676 	if (prog > 0)
2677 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2678 		    sc->jme_cdata.jme_rx_ring_map,
2679 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2680 
2681 	return (count > 0 ? 0 : EAGAIN);
2682 }
2683 
2684 static void
2685 jme_tick(void *arg)
2686 {
2687 	struct jme_softc *sc;
2688 	struct mii_data *mii;
2689 
2690 	sc = (struct jme_softc *)arg;
2691 
2692 	JME_LOCK_ASSERT(sc);
2693 
2694 	mii = device_get_softc(sc->jme_miibus);
2695 	mii_tick(mii);
2696 	/*
2697 	 * Reclaim Tx buffers that have been completed. It's not
2698 	 * needed here but it would release allocated mbuf chains
2699 	 * faster and limit the maximum delay to a hz.
2700 	 */
2701 	jme_txeof(sc);
2702 	jme_stats_update(sc);
2703 	jme_watchdog(sc);
2704 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2705 }
2706 
2707 static void
2708 jme_reset(struct jme_softc *sc)
2709 {
2710 	uint32_t ghc, gpreg;
2711 
2712 	/* Stop receiver, transmitter. */
2713 	jme_stop_rx(sc);
2714 	jme_stop_tx(sc);
2715 
2716 	/* Reset controller. */
2717 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2718 	CSR_READ_4(sc, JME_GHC);
2719 	DELAY(10);
2720 	/*
2721 	 * Workaround Rx FIFO overruns seen under certain conditions.
2722 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2723 	 * enabled only after enabling TX/RX MACs.
2724 	 */
2725 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2726 		/* Disable TX clock. */
2727 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2728 		/* Disable RX clock. */
2729 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2730 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2731 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2732 		/* De-assert RESET but still disable TX clock. */
2733 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2734 		ghc = CSR_READ_4(sc, JME_GHC);
2735 
2736 		/* Enable TX clock. */
2737 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2738 		/* Enable RX clock. */
2739 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2740 		CSR_READ_4(sc, JME_GPREG1);
2741 
2742 		/* Disable TX/RX clock again. */
2743 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2744 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2745 	} else
2746 		CSR_WRITE_4(sc, JME_GHC, 0);
2747 	CSR_READ_4(sc, JME_GHC);
2748 	DELAY(10);
2749 }
2750 
2751 static void
2752 jme_init(void *xsc)
2753 {
2754 	struct jme_softc *sc;
2755 
2756 	sc = (struct jme_softc *)xsc;
2757 	JME_LOCK(sc);
2758 	jme_init_locked(sc);
2759 	JME_UNLOCK(sc);
2760 }
2761 
2762 static void
2763 jme_init_locked(struct jme_softc *sc)
2764 {
2765 	struct ifnet *ifp;
2766 	struct mii_data *mii;
2767 	bus_addr_t paddr;
2768 	uint32_t reg;
2769 	int error;
2770 
2771 	JME_LOCK_ASSERT(sc);
2772 
2773 	ifp = sc->jme_ifp;
2774 	mii = device_get_softc(sc->jme_miibus);
2775 
2776 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2777 		return;
2778 	/*
2779 	 * Cancel any pending I/O.
2780 	 */
2781 	jme_stop(sc);
2782 
2783 	/*
2784 	 * Reset the chip to a known state.
2785 	 */
2786 	jme_reset(sc);
2787 
2788 	/* Init descriptors. */
2789 	error = jme_init_rx_ring(sc);
2790         if (error != 0) {
2791                 device_printf(sc->jme_dev,
2792                     "%s: initialization failed: no memory for Rx buffers.\n",
2793 		    __func__);
2794                 jme_stop(sc);
2795 		return;
2796         }
2797 	jme_init_tx_ring(sc);
2798 	/* Initialize shadow status block. */
2799 	jme_init_ssb(sc);
2800 
2801 	/* Reprogram the station address. */
2802 	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2803 
2804 	/*
2805 	 * Configure Tx queue.
2806 	 *  Tx priority queue weight value : 0
2807 	 *  Tx FIFO threshold for processing next packet : 16QW
2808 	 *  Maximum Tx DMA length : 512
2809 	 *  Allow Tx DMA burst.
2810 	 */
2811 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2812 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2813 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2814 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2815 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2816 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2817 
2818 	/* Set Tx descriptor counter. */
2819 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2820 
2821 	/* Set Tx ring address to the hardware. */
2822 	paddr = JME_TX_RING_ADDR(sc, 0);
2823 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2824 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2825 
2826 	/* Configure TxMAC parameters. */
2827 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2828 	reg |= TXMAC_THRESH_1_PKT;
2829 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2830 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2831 
2832 	/*
2833 	 * Configure Rx queue.
2834 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2835 	 *  FIFO threshold for processing next packet : 128QW
2836 	 *  Rx queue 0 select
2837 	 *  Max Rx DMA length : 128
2838 	 *  Rx descriptor retry : 32
2839 	 *  Rx descriptor retry time gap : 256ns
2840 	 *  Don't receive runt/bad frame.
2841 	 */
2842 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2843 	/*
2844 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2845 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2846 	 * decrease FIFO threshold to reduce the FIFO overruns for
2847 	 * frames larger than 4000 bytes.
2848 	 * For best performance of standard MTU sized frames use
2849 	 * maximum allowable FIFO threshold, 128QW. Note these do
2850 	 * not hold on chip full mask verion >=2. For these
2851 	 * controllers 64QW and 128QW are not valid value.
2852 	 */
2853 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2854 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2855 	else {
2856 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2857 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2858 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2859 		else
2860 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2861 	}
2862 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2863 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2864 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2865 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2866 
2867 	/* Set Rx descriptor counter. */
2868 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2869 
2870 	/* Set Rx ring address to the hardware. */
2871 	paddr = JME_RX_RING_ADDR(sc, 0);
2872 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2873 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2874 
2875 	/* Clear receive filter. */
2876 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2877 	/* Set up the receive filter. */
2878 	jme_set_filter(sc);
2879 	jme_set_vlan(sc);
2880 
2881 	/*
2882 	 * Disable all WOL bits as WOL can interfere normal Rx
2883 	 * operation. Also clear WOL detection status bits.
2884 	 */
2885 	reg = CSR_READ_4(sc, JME_PMCS);
2886 	reg &= ~PMCS_WOL_ENB_MASK;
2887 	CSR_WRITE_4(sc, JME_PMCS, reg);
2888 
2889 	reg = CSR_READ_4(sc, JME_RXMAC);
2890 	/*
2891 	 * Pad 10bytes right before received frame. This will greatly
2892 	 * help Rx performance on strict-alignment architectures as
2893 	 * it does not need to copy the frame to align the payload.
2894 	 */
2895 	reg |= RXMAC_PAD_10BYTES;
2896 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2897 		reg |= RXMAC_CSUM_ENB;
2898 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2899 
2900 	/* Configure general purpose reg0 */
2901 	reg = CSR_READ_4(sc, JME_GPREG0);
2902 	reg &= ~GPREG0_PCC_UNIT_MASK;
2903 	/* Set PCC timer resolution to micro-seconds unit. */
2904 	reg |= GPREG0_PCC_UNIT_US;
2905 	/*
2906 	 * Disable all shadow register posting as we have to read
2907 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2908 	 * that it's hard to synchronize interrupt status between
2909 	 * hardware and software with shadow posting due to
2910 	 * requirements of bus_dmamap_sync(9).
2911 	 */
2912 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2913 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2914 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2915 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2916 	/* Disable posting of DW0. */
2917 	reg &= ~GPREG0_POST_DW0_ENB;
2918 	/* Clear PME message. */
2919 	reg &= ~GPREG0_PME_ENB;
2920 	/* Set PHY address. */
2921 	reg &= ~GPREG0_PHY_ADDR_MASK;
2922 	reg |= sc->jme_phyaddr;
2923 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2924 
2925 	/* Configure Tx queue 0 packet completion coalescing. */
2926 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2927 	    PCCTX_COAL_TO_MASK;
2928 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2929 	    PCCTX_COAL_PKT_MASK;
2930 	reg |= PCCTX_COAL_TXQ0;
2931 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2932 
2933 	/* Configure Rx queue 0 packet completion coalescing. */
2934 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2935 	    PCCRX_COAL_TO_MASK;
2936 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2937 	    PCCRX_COAL_PKT_MASK;
2938 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2939 
2940 	/*
2941 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2942 	 * generates an interrupt when the time interval between two
2943 	 * back-to-back incoming/outgoing packet is long enough for
2944 	 * it to reach its timer value 0. The arrival of new packets
2945 	 * after timer has started causes the PCD timer to restart.
2946 	 * Unfortunately, it's not clear how PCD is useful at this
2947 	 * moment, so just use the same of PCC parameters.
2948 	 */
2949 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2950 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2951 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2952 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2953 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2954 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2955 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2956 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2957 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2958 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2959 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2960 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2961 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2962 	}
2963 
2964 	/* Configure shadow status block but don't enable posting. */
2965 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2966 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2967 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2968 
2969 	/* Disable Timer 1 and Timer 2. */
2970 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2971 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2972 
2973 	/* Configure retry transmit period, retry limit value. */
2974 	CSR_WRITE_4(sc, JME_TXTRHD,
2975 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2976 	    TXTRHD_RT_PERIOD_MASK) |
2977 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2978 	    TXTRHD_RT_LIMIT_SHIFT));
2979 
2980 	/* Disable RSS. */
2981 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2982 
2983 	/* Initialize the interrupt mask. */
2984 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2985 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2986 
2987 	/*
2988 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2989 	 * done after detection of valid link in jme_link_task.
2990 	 */
2991 
2992 	sc->jme_flags &= ~JME_FLAG_LINK;
2993 	/* Set the current media. */
2994 	mii_mediachg(mii);
2995 
2996 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2997 
2998 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2999 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3000 }
3001 
3002 static void
3003 jme_stop(struct jme_softc *sc)
3004 {
3005 	struct ifnet *ifp;
3006 	struct jme_txdesc *txd;
3007 	struct jme_rxdesc *rxd;
3008 	int i;
3009 
3010 	JME_LOCK_ASSERT(sc);
3011 	/*
3012 	 * Mark the interface down and cancel the watchdog timer.
3013 	 */
3014 	ifp = sc->jme_ifp;
3015 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3016 	sc->jme_flags &= ~JME_FLAG_LINK;
3017 	callout_stop(&sc->jme_tick_ch);
3018 	sc->jme_watchdog_timer = 0;
3019 
3020 	/*
3021 	 * Disable interrupts.
3022 	 */
3023 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3024 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3025 
3026 	/* Disable updating shadow status block. */
3027 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3028 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3029 
3030 	/* Stop receiver, transmitter. */
3031 	jme_stop_rx(sc);
3032 	jme_stop_tx(sc);
3033 
3034 	 /* Reclaim Rx/Tx buffers that have been completed. */
3035 	jme_rxintr(sc, JME_RX_RING_CNT);
3036 	if (sc->jme_cdata.jme_rxhead != NULL)
3037 		m_freem(sc->jme_cdata.jme_rxhead);
3038 	JME_RXCHAIN_RESET(sc);
3039 	jme_txeof(sc);
3040 	/*
3041 	 * Free RX and TX mbufs still in the queues.
3042 	 */
3043 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3044 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3045 		if (rxd->rx_m != NULL) {
3046 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3047 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3048 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3049 			    rxd->rx_dmamap);
3050 			m_freem(rxd->rx_m);
3051 			rxd->rx_m = NULL;
3052 		}
3053         }
3054 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3055 		txd = &sc->jme_cdata.jme_txdesc[i];
3056 		if (txd->tx_m != NULL) {
3057 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3058 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3059 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3060 			    txd->tx_dmamap);
3061 			m_freem(txd->tx_m);
3062 			txd->tx_m = NULL;
3063 			txd->tx_ndesc = 0;
3064 		}
3065         }
3066 	jme_stats_update(sc);
3067 	jme_stats_save(sc);
3068 }
3069 
3070 static void
3071 jme_stop_tx(struct jme_softc *sc)
3072 {
3073 	uint32_t reg;
3074 	int i;
3075 
3076 	reg = CSR_READ_4(sc, JME_TXCSR);
3077 	if ((reg & TXCSR_TX_ENB) == 0)
3078 		return;
3079 	reg &= ~TXCSR_TX_ENB;
3080 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3081 	for (i = JME_TIMEOUT; i > 0; i--) {
3082 		DELAY(1);
3083 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3084 			break;
3085 	}
3086 	if (i == 0)
3087 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3088 }
3089 
3090 static void
3091 jme_stop_rx(struct jme_softc *sc)
3092 {
3093 	uint32_t reg;
3094 	int i;
3095 
3096 	reg = CSR_READ_4(sc, JME_RXCSR);
3097 	if ((reg & RXCSR_RX_ENB) == 0)
3098 		return;
3099 	reg &= ~RXCSR_RX_ENB;
3100 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3101 	for (i = JME_TIMEOUT; i > 0; i--) {
3102 		DELAY(1);
3103 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3104 			break;
3105 	}
3106 	if (i == 0)
3107 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3108 }
3109 
3110 static void
3111 jme_init_tx_ring(struct jme_softc *sc)
3112 {
3113 	struct jme_ring_data *rd;
3114 	struct jme_txdesc *txd;
3115 	int i;
3116 
3117 	sc->jme_cdata.jme_tx_prod = 0;
3118 	sc->jme_cdata.jme_tx_cons = 0;
3119 	sc->jme_cdata.jme_tx_cnt = 0;
3120 
3121 	rd = &sc->jme_rdata;
3122 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3123 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3124 		txd = &sc->jme_cdata.jme_txdesc[i];
3125 		txd->tx_m = NULL;
3126 		txd->tx_desc = &rd->jme_tx_ring[i];
3127 		txd->tx_ndesc = 0;
3128 	}
3129 
3130 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3131 	    sc->jme_cdata.jme_tx_ring_map,
3132 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3133 }
3134 
3135 static void
3136 jme_init_ssb(struct jme_softc *sc)
3137 {
3138 	struct jme_ring_data *rd;
3139 
3140 	rd = &sc->jme_rdata;
3141 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3142 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3143 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3144 }
3145 
3146 static int
3147 jme_init_rx_ring(struct jme_softc *sc)
3148 {
3149 	struct jme_ring_data *rd;
3150 	struct jme_rxdesc *rxd;
3151 	int i;
3152 
3153 	sc->jme_cdata.jme_rx_cons = 0;
3154 	JME_RXCHAIN_RESET(sc);
3155 	sc->jme_morework = 0;
3156 
3157 	rd = &sc->jme_rdata;
3158 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3159 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3160 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3161 		rxd->rx_m = NULL;
3162 		rxd->rx_desc = &rd->jme_rx_ring[i];
3163 		if (jme_newbuf(sc, rxd) != 0)
3164 			return (ENOBUFS);
3165 	}
3166 
3167 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3168 	    sc->jme_cdata.jme_rx_ring_map,
3169 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3170 
3171 	return (0);
3172 }
3173 
3174 static int
3175 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3176 {
3177 	struct jme_desc *desc;
3178 	struct mbuf *m;
3179 	bus_dma_segment_t segs[1];
3180 	bus_dmamap_t map;
3181 	int nsegs;
3182 
3183 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3184 	if (m == NULL)
3185 		return (ENOBUFS);
3186 	/*
3187 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3188 	 * takes advantage of 10 bytes padding feature of hardware
3189 	 * in order not to copy entire frame to align IP header on
3190 	 * 32bit boundary.
3191 	 */
3192 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3193 
3194 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3195 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3196 		m_freem(m);
3197 		return (ENOBUFS);
3198 	}
3199 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3200 
3201 	if (rxd->rx_m != NULL) {
3202 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3203 		    BUS_DMASYNC_POSTREAD);
3204 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3205 	}
3206 	map = rxd->rx_dmamap;
3207 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3208 	sc->jme_cdata.jme_rx_sparemap = map;
3209 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3210 	    BUS_DMASYNC_PREREAD);
3211 	rxd->rx_m = m;
3212 
3213 	desc = rxd->rx_desc;
3214 	desc->buflen = htole32(segs[0].ds_len);
3215 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3216 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3217 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3218 
3219 	return (0);
3220 }
3221 
3222 static void
3223 jme_set_vlan(struct jme_softc *sc)
3224 {
3225 	struct ifnet *ifp;
3226 	uint32_t reg;
3227 
3228 	JME_LOCK_ASSERT(sc);
3229 
3230 	ifp = sc->jme_ifp;
3231 	reg = CSR_READ_4(sc, JME_RXMAC);
3232 	reg &= ~RXMAC_VLAN_ENB;
3233 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3234 		reg |= RXMAC_VLAN_ENB;
3235 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3236 }
3237 
3238 static void
3239 jme_set_filter(struct jme_softc *sc)
3240 {
3241 	struct ifnet *ifp;
3242 	struct ifmultiaddr *ifma;
3243 	uint32_t crc;
3244 	uint32_t mchash[2];
3245 	uint32_t rxcfg;
3246 
3247 	JME_LOCK_ASSERT(sc);
3248 
3249 	ifp = sc->jme_ifp;
3250 
3251 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3252 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3253 	    RXMAC_ALLMULTI);
3254 	/* Always accept frames destined to our station address. */
3255 	rxcfg |= RXMAC_UNICAST;
3256 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3257 		rxcfg |= RXMAC_BROADCAST;
3258 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3259 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3260 			rxcfg |= RXMAC_PROMISC;
3261 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3262 			rxcfg |= RXMAC_ALLMULTI;
3263 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3264 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3265 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3266 		return;
3267 	}
3268 
3269 	/*
3270 	 * Set up the multicast address filter by passing all multicast
3271 	 * addresses through a CRC generator, and then using the low-order
3272 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3273 	 * high order bits select the register, while the rest of the bits
3274 	 * select the bit within the register.
3275 	 */
3276 	rxcfg |= RXMAC_MULTICAST;
3277 	bzero(mchash, sizeof(mchash));
3278 
3279 	if_maddr_rlock(ifp);
3280 	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3281 		if (ifma->ifma_addr->sa_family != AF_LINK)
3282 			continue;
3283 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3284 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3285 
3286 		/* Just want the 6 least significant bits. */
3287 		crc &= 0x3f;
3288 
3289 		/* Set the corresponding bit in the hash table. */
3290 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3291 	}
3292 	if_maddr_runlock(ifp);
3293 
3294 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3295 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3296 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3297 }
3298 
3299 static void
3300 jme_stats_clear(struct jme_softc *sc)
3301 {
3302 
3303 	JME_LOCK_ASSERT(sc);
3304 
3305 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3306 		return;
3307 
3308 	/* Disable and clear counters. */
3309 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3310 	/* Activate hw counters. */
3311 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3312 	CSR_READ_4(sc, JME_STATCSR);
3313 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3314 }
3315 
3316 static void
3317 jme_stats_save(struct jme_softc *sc)
3318 {
3319 
3320 	JME_LOCK_ASSERT(sc);
3321 
3322 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3323 		return;
3324 	/* Save current counters. */
3325 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3326 	/* Disable and clear counters. */
3327 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3328 }
3329 
3330 static void
3331 jme_stats_update(struct jme_softc *sc)
3332 {
3333 	struct jme_hw_stats *stat, *ostat;
3334 	uint32_t reg;
3335 
3336 	JME_LOCK_ASSERT(sc);
3337 
3338 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3339 		return;
3340 	stat = &sc->jme_stats;
3341 	ostat = &sc->jme_ostats;
3342 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3343 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3344 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3345 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3346 	    STAT_RX_CRC_ERR_SHIFT;
3347 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3348 	    STAT_RX_MII_ERR_SHIFT;
3349 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3350 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3351 	    STAT_RXERR_OFLOW_SHIFT;
3352 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3353 	    STAT_RXERR_MPTY_SHIFT;
3354 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3355 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3356 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3357 
3358 	/* Account for previous counters. */
3359 	stat->rx_good_frames += ostat->rx_good_frames;
3360 	stat->rx_crc_errs += ostat->rx_crc_errs;
3361 	stat->rx_mii_errs += ostat->rx_mii_errs;
3362 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3363 	stat->rx_desc_empty += ostat->rx_desc_empty;
3364 	stat->rx_bad_frames += ostat->rx_bad_frames;
3365 	stat->tx_good_frames += ostat->tx_good_frames;
3366 	stat->tx_bad_frames += ostat->tx_bad_frames;
3367 }
3368 
3369 static void
3370 jme_phy_down(struct jme_softc *sc)
3371 {
3372 	uint32_t reg;
3373 
3374 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3375 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3376 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3377 		reg |= 0x0000000F;
3378 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3379 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3380 		reg &= ~PE1_GIGA_PDOWN_MASK;
3381 		reg |= PE1_GIGA_PDOWN_D3;
3382 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3383 	}
3384 }
3385 
3386 static void
3387 jme_phy_up(struct jme_softc *sc)
3388 {
3389 	uint32_t reg;
3390 	uint16_t bmcr;
3391 
3392 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3393 	bmcr &= ~BMCR_PDOWN;
3394 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3395 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3396 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3397 		reg &= ~0x0000000F;
3398 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3399 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3400 		reg &= ~PE1_GIGA_PDOWN_MASK;
3401 		reg |= PE1_GIGA_PDOWN_DIS;
3402 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3403 	}
3404 }
3405 
3406 static int
3407 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3408 {
3409 	int error, value;
3410 
3411 	if (arg1 == NULL)
3412 		return (EINVAL);
3413 	value = *(int *)arg1;
3414 	error = sysctl_handle_int(oidp, &value, 0, req);
3415 	if (error || req->newptr == NULL)
3416 		return (error);
3417 	if (value < low || value > high)
3418 		return (EINVAL);
3419         *(int *)arg1 = value;
3420 
3421         return (0);
3422 }
3423 
3424 static int
3425 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3426 {
3427 	return (sysctl_int_range(oidp, arg1, arg2, req,
3428 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3429 }
3430 
3431 static int
3432 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3433 {
3434 	return (sysctl_int_range(oidp, arg1, arg2, req,
3435 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3436 }
3437 
3438 static int
3439 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3440 {
3441 	return (sysctl_int_range(oidp, arg1, arg2, req,
3442 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3443 }
3444 
3445 static int
3446 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3447 {
3448 	return (sysctl_int_range(oidp, arg1, arg2, req,
3449 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3450 }
3451 
3452 static int
3453 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3454 {
3455 	return (sysctl_int_range(oidp, arg1, arg2, req,
3456 	    JME_PROC_MIN, JME_PROC_MAX));
3457 }
3458