xref: /freebsd/sys/dev/jme/if_jme.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/proc.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/jme/if_jmereg.h>
74 #include <dev/jme/if_jmevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* Define the following to disable printing Rx errors. */
80 #undef	JME_SHOW_ERRORS
81 
82 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
83 
84 MODULE_DEPEND(jme, pci, 1, 1, 1);
85 MODULE_DEPEND(jme, ether, 1, 1, 1);
86 MODULE_DEPEND(jme, miibus, 1, 1, 1);
87 
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
93 
94 /*
95  * Devices supported by this driver.
96  */
97 static struct jme_dev {
98 	uint16_t	jme_vendorid;
99 	uint16_t	jme_deviceid;
100 	const char	*jme_name;
101 } jme_devs[] = {
102 	{ VENDORID_JMICRON, DEVICEID_JMC250,
103 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
104 	{ VENDORID_JMICRON, DEVICEID_JMC260,
105 	    "JMicron Inc, JMC26x Fast Ethernet" },
106 };
107 
108 static int jme_miibus_readreg(device_t, int, int);
109 static int jme_miibus_writereg(device_t, int, int, int);
110 static void jme_miibus_statchg(device_t);
111 static void jme_mediastatus(if_t, struct ifmediareq *);
112 static int jme_mediachange(if_t);
113 static int jme_probe(device_t);
114 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
115 static int jme_eeprom_macaddr(struct jme_softc *);
116 static int jme_efuse_macaddr(struct jme_softc *);
117 static void jme_reg_macaddr(struct jme_softc *);
118 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
119 static void jme_map_intr_vector(struct jme_softc *);
120 static int jme_attach(device_t);
121 static int jme_detach(device_t);
122 static void jme_sysctl_node(struct jme_softc *);
123 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124 static int jme_dma_alloc(struct jme_softc *);
125 static void jme_dma_free(struct jme_softc *);
126 static int jme_shutdown(device_t);
127 static void jme_setlinkspeed(struct jme_softc *);
128 static void jme_setwol(struct jme_softc *);
129 static int jme_suspend(device_t);
130 static int jme_resume(device_t);
131 static int jme_encap(struct jme_softc *, struct mbuf **);
132 static void jme_start(if_t);
133 static void jme_start_locked(if_t);
134 static void jme_watchdog(struct jme_softc *);
135 static int jme_ioctl(if_t, u_long, caddr_t);
136 static void jme_mac_config(struct jme_softc *);
137 static void jme_link_task(void *, int);
138 static int jme_intr(void *);
139 static void jme_int_task(void *, int);
140 static void jme_txeof(struct jme_softc *);
141 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
142 static void jme_rxeof(struct jme_softc *);
143 static int jme_rxintr(struct jme_softc *, int);
144 static void jme_tick(void *);
145 static void jme_reset(struct jme_softc *);
146 static void jme_init(void *);
147 static void jme_init_locked(struct jme_softc *);
148 static void jme_stop(struct jme_softc *);
149 static void jme_stop_tx(struct jme_softc *);
150 static void jme_stop_rx(struct jme_softc *);
151 static int jme_init_rx_ring(struct jme_softc *);
152 static void jme_init_tx_ring(struct jme_softc *);
153 static void jme_init_ssb(struct jme_softc *);
154 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
155 static void jme_set_vlan(struct jme_softc *);
156 static void jme_set_filter(struct jme_softc *);
157 static void jme_stats_clear(struct jme_softc *);
158 static void jme_stats_save(struct jme_softc *);
159 static void jme_stats_update(struct jme_softc *);
160 static void jme_phy_down(struct jme_softc *);
161 static void jme_phy_up(struct jme_softc *);
162 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
163 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
165 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
166 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
167 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
168 
169 
170 static device_method_t jme_methods[] = {
171 	/* Device interface. */
172 	DEVMETHOD(device_probe,		jme_probe),
173 	DEVMETHOD(device_attach,	jme_attach),
174 	DEVMETHOD(device_detach,	jme_detach),
175 	DEVMETHOD(device_shutdown,	jme_shutdown),
176 	DEVMETHOD(device_suspend,	jme_suspend),
177 	DEVMETHOD(device_resume,	jme_resume),
178 
179 	/* MII interface. */
180 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
182 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
183 
184 	{ NULL, NULL }
185 };
186 
187 static driver_t jme_driver = {
188 	"jme",
189 	jme_methods,
190 	sizeof(struct jme_softc)
191 };
192 
193 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
194 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
195 
196 static struct resource_spec jme_res_spec_mem[] = {
197 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
198 	{ -1,			0,		0 }
199 };
200 
201 static struct resource_spec jme_irq_spec_legacy[] = {
202 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
203 	{ -1,			0,		0 }
204 };
205 
206 static struct resource_spec jme_irq_spec_msi[] = {
207 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
208 	{ -1,			0,		0 }
209 };
210 
211 /*
212  *	Read a PHY register on the MII of the JMC250.
213  */
214 static int
215 jme_miibus_readreg(device_t dev, int phy, int reg)
216 {
217 	struct jme_softc *sc;
218 	uint32_t val;
219 	int i;
220 
221 	sc = device_get_softc(dev);
222 
223 	/* For FPGA version, PHY address 0 should be ignored. */
224 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
225 		return (0);
226 
227 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
228 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
229 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
230 		DELAY(1);
231 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
232 			break;
233 	}
234 
235 	if (i == 0) {
236 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
237 		return (0);
238 	}
239 
240 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
241 }
242 
243 /*
244  *	Write a PHY register on the MII of the JMC250.
245  */
246 static int
247 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
248 {
249 	struct jme_softc *sc;
250 	int i;
251 
252 	sc = device_get_softc(dev);
253 
254 	/* For FPGA version, PHY address 0 should be ignored. */
255 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
256 		return (0);
257 
258 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
259 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
260 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
261 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
262 		DELAY(1);
263 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
264 			break;
265 	}
266 
267 	if (i == 0)
268 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
269 
270 	return (0);
271 }
272 
273 /*
274  *	Callback from MII layer when media changes.
275  */
276 static void
277 jme_miibus_statchg(device_t dev)
278 {
279 	struct jme_softc *sc;
280 
281 	sc = device_get_softc(dev);
282 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
283 }
284 
285 /*
286  *	Get the current interface media status.
287  */
288 static void
289 jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
290 {
291 	struct jme_softc *sc;
292 	struct mii_data *mii;
293 
294 	sc = if_getsoftc(ifp);
295 	JME_LOCK(sc);
296 	if ((if_getflags(ifp) & IFF_UP) == 0) {
297 		JME_UNLOCK(sc);
298 		return;
299 	}
300 	mii = device_get_softc(sc->jme_miibus);
301 
302 	mii_pollstat(mii);
303 	ifmr->ifm_status = mii->mii_media_status;
304 	ifmr->ifm_active = mii->mii_media_active;
305 	JME_UNLOCK(sc);
306 }
307 
308 /*
309  *	Set hardware to newly-selected media.
310  */
311 static int
312 jme_mediachange(if_t ifp)
313 {
314 	struct jme_softc *sc;
315 	struct mii_data *mii;
316 	struct mii_softc *miisc;
317 	int error;
318 
319 	sc = if_getsoftc(ifp);
320 	JME_LOCK(sc);
321 	mii = device_get_softc(sc->jme_miibus);
322 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
323 		PHY_RESET(miisc);
324 	error = mii_mediachg(mii);
325 	JME_UNLOCK(sc);
326 
327 	return (error);
328 }
329 
330 static int
331 jme_probe(device_t dev)
332 {
333 	struct jme_dev *sp;
334 	int i;
335 	uint16_t vendor, devid;
336 
337 	vendor = pci_get_vendor(dev);
338 	devid = pci_get_device(dev);
339 	sp = jme_devs;
340 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
341 		if (vendor == sp->jme_vendorid &&
342 		    devid == sp->jme_deviceid) {
343 			device_set_desc(dev, sp->jme_name);
344 			return (BUS_PROBE_DEFAULT);
345 		}
346 	}
347 
348 	return (ENXIO);
349 }
350 
351 static int
352 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
353 {
354 	uint32_t reg;
355 	int i;
356 
357 	*val = 0;
358 	for (i = JME_TIMEOUT; i > 0; i--) {
359 		reg = CSR_READ_4(sc, JME_SMBCSR);
360 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
361 			break;
362 		DELAY(1);
363 	}
364 
365 	if (i == 0) {
366 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
367 		return (ETIMEDOUT);
368 	}
369 
370 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
371 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
372 	for (i = JME_TIMEOUT; i > 0; i--) {
373 		DELAY(1);
374 		reg = CSR_READ_4(sc, JME_SMBINTF);
375 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
376 			break;
377 	}
378 
379 	if (i == 0) {
380 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
381 		return (ETIMEDOUT);
382 	}
383 
384 	reg = CSR_READ_4(sc, JME_SMBINTF);
385 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
386 
387 	return (0);
388 }
389 
390 static int
391 jme_eeprom_macaddr(struct jme_softc *sc)
392 {
393 	uint8_t eaddr[ETHER_ADDR_LEN];
394 	uint8_t fup, reg, val;
395 	uint32_t offset;
396 	int match;
397 
398 	offset = 0;
399 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400 	    fup != JME_EEPROM_SIG0)
401 		return (ENOENT);
402 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
403 	    fup != JME_EEPROM_SIG1)
404 		return (ENOENT);
405 	match = 0;
406 	do {
407 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
408 			break;
409 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
410 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
411 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
412 				break;
413 			if (reg >= JME_PAR0 &&
414 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
415 				if (jme_eeprom_read_byte(sc, offset + 2,
416 				    &val) != 0)
417 					break;
418 				eaddr[reg - JME_PAR0] = val;
419 				match++;
420 			}
421 		}
422 		/* Check for the end of EEPROM descriptor. */
423 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
424 			break;
425 		/* Try next eeprom descriptor. */
426 		offset += JME_EEPROM_DESC_BYTES;
427 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
428 
429 	if (match == ETHER_ADDR_LEN) {
430 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
431 		return (0);
432 	}
433 
434 	return (ENOENT);
435 }
436 
437 static int
438 jme_efuse_macaddr(struct jme_softc *sc)
439 {
440 	uint32_t reg;
441 	int i;
442 
443 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
444 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
445 	    EFUSE_CTL1_AUTOLAOD_DONE)
446 		return (ENOENT);
447 	/* Reset eFuse controller. */
448 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449 	reg |= EFUSE_CTL2_RESET;
450 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
452 	reg &= ~EFUSE_CTL2_RESET;
453 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
454 
455 	/* Have eFuse reload station address to MAC controller. */
456 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
457 	reg &= ~EFUSE_CTL1_CMD_MASK;
458 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
459 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
460 
461 	/*
462 	 * Verify completion of eFuse autload command.  It should be
463 	 * completed within 108us.
464 	 */
465 	DELAY(110);
466 	for (i = 10; i > 0; i--) {
467 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
468 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
469 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
470 			DELAY(20);
471 			continue;
472 		}
473 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
474 			break;
475 		/* Station address loading is still in progress. */
476 		DELAY(20);
477 	}
478 	if (i == 0) {
479 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
480 		return (ETIMEDOUT);
481 	}
482 
483 	return (0);
484 }
485 
486 static void
487 jme_reg_macaddr(struct jme_softc *sc)
488 {
489 	uint32_t par0, par1;
490 
491 	/* Read station address. */
492 	par0 = CSR_READ_4(sc, JME_PAR0);
493 	par1 = CSR_READ_4(sc, JME_PAR1);
494 	par1 &= 0xFFFF;
495 	if ((par0 == 0 && par1 == 0) ||
496 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
497 		device_printf(sc->jme_dev,
498 		    "Failed to retrieve Ethernet address.\n");
499 	} else {
500 		/*
501 		 * For controllers that use eFuse, the station address
502 		 * could also be extracted from JME_PCI_PAR0 and
503 		 * JME_PCI_PAR1 registers in PCI configuration space.
504 		 * Each register holds exactly half of station address(24bits)
505 		 * so use JME_PAR0, JME_PAR1 registers instead.
506 		 */
507 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
508 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
509 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
510 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
511 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
512 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
513 	}
514 }
515 
516 static void
517 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
518 {
519 	uint32_t val;
520 	int i;
521 
522 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
523 		/*
524 		 * Avoid reprogramming station address if the address
525 		 * is the same as previous one.  Note, reprogrammed
526 		 * station address is permanent as if it was written
527 		 * to EEPROM. So if station address was changed by
528 		 * admistrator it's possible to lose factory configured
529 		 * address when driver fails to restore its address.
530 		 * (e.g. reboot or system crash)
531 		 */
532 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
533 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
534 				val = JME_EFUSE_EEPROM_FUNC0 <<
535 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
536 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
537 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
538 				val |= (JME_PAR0 + i) <<
539 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
540 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
541 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
542 				    val | JME_EFUSE_EEPROM_WRITE, 4);
543 			}
544 		}
545 	} else {
546 		CSR_WRITE_4(sc, JME_PAR0,
547 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
548 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
549 	}
550 }
551 
552 static void
553 jme_map_intr_vector(struct jme_softc *sc)
554 {
555 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
556 
557 	bzero(map, sizeof(map));
558 
559 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
560 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
561 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
562 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
563 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
564 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
565 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
566 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
567 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
568 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
569 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
570 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
571 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
572 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
573 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
574 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
575 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
576 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
577 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
578 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
579 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
580 
581 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
582 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
583 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
584 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
585 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
586 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
587 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
588 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
589 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
590 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
591 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
592 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
593 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
594 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
595 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
596 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
597 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
598 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
599 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
600 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
601 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
602 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
603 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
604 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
605 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
606 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
607 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
608 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
609 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
610 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
611 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
612 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
613 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
614 
615 	/* Map all other interrupts source to MSI/MSIX vector 0. */
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
617 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
618 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
619 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
620 }
621 
622 static int
623 jme_attach(device_t dev)
624 {
625 	struct jme_softc *sc;
626 	if_t ifp;
627 	struct mii_softc *miisc;
628 	struct mii_data *mii;
629 	uint32_t reg;
630 	uint16_t burst;
631 	int error, i, mii_flags, msic, msixc, pmc;
632 
633 	error = 0;
634 	sc = device_get_softc(dev);
635 	sc->jme_dev = dev;
636 
637 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
638 	    MTX_DEF);
639 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
640 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
641 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
642 
643 	/*
644 	 * Map the device. JMC250 supports both memory mapped and I/O
645 	 * register space access. Because I/O register access should
646 	 * use different BARs to access registers it's waste of time
647 	 * to use I/O register spce access. JMC250 uses 16K to map
648 	 * entire memory space.
649 	 */
650 	pci_enable_busmaster(dev);
651 	sc->jme_res_spec = jme_res_spec_mem;
652 	sc->jme_irq_spec = jme_irq_spec_legacy;
653 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
654 	if (error != 0) {
655 		device_printf(dev, "cannot allocate memory resources.\n");
656 		goto fail;
657 	}
658 
659 	/* Allocate IRQ resources. */
660 	msixc = pci_msix_count(dev);
661 	msic = pci_msi_count(dev);
662 	if (bootverbose) {
663 		device_printf(dev, "MSIX count : %d\n", msixc);
664 		device_printf(dev, "MSI count : %d\n", msic);
665 	}
666 
667 	/* Use 1 MSI/MSI-X. */
668 	if (msixc > 1)
669 		msixc = 1;
670 	if (msic > 1)
671 		msic = 1;
672 	/* Prefer MSIX over MSI. */
673 	if (msix_disable == 0 || msi_disable == 0) {
674 		if (msix_disable == 0 && msixc > 0 &&
675 		    pci_alloc_msix(dev, &msixc) == 0) {
676 			if (msixc == 1) {
677 				device_printf(dev, "Using %d MSIX messages.\n",
678 				    msixc);
679 				sc->jme_flags |= JME_FLAG_MSIX;
680 				sc->jme_irq_spec = jme_irq_spec_msi;
681 			} else
682 				pci_release_msi(dev);
683 		}
684 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
685 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
686 			if (msic == 1) {
687 				device_printf(dev, "Using %d MSI messages.\n",
688 				    msic);
689 				sc->jme_flags |= JME_FLAG_MSI;
690 				sc->jme_irq_spec = jme_irq_spec_msi;
691 			} else
692 				pci_release_msi(dev);
693 		}
694 		/* Map interrupt vector 0, 1 and 2. */
695 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
696 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
697 			jme_map_intr_vector(sc);
698 	}
699 
700 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
701 	if (error != 0) {
702 		device_printf(dev, "cannot allocate IRQ resources.\n");
703 		goto fail;
704 	}
705 
706 	sc->jme_rev = pci_get_device(dev);
707 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
708 		sc->jme_flags |= JME_FLAG_FASTETH;
709 		sc->jme_flags |= JME_FLAG_NOJUMBO;
710 	}
711 	reg = CSR_READ_4(sc, JME_CHIPMODE);
712 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
713 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
714 	    CHIPMODE_NOT_FPGA)
715 		sc->jme_flags |= JME_FLAG_FPGA;
716 	if (bootverbose) {
717 		device_printf(dev, "PCI device revision : 0x%04x\n",
718 		    sc->jme_rev);
719 		device_printf(dev, "Chip revision : 0x%02x\n",
720 		    sc->jme_chip_rev);
721 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
722 			device_printf(dev, "FPGA revision : 0x%04x\n",
723 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
724 			    CHIPMODE_FPGA_REV_SHIFT);
725 	}
726 	if (sc->jme_chip_rev == 0xFF) {
727 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
728 		    sc->jme_rev);
729 		error = ENXIO;
730 		goto fail;
731 	}
732 
733 	/* Identify controller features and bugs. */
734 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
735 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
736 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
737 			sc->jme_flags |= JME_FLAG_DMA32BIT;
738 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
739 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
740 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
741 		sc->jme_flags |= JME_FLAG_HWMIB;
742 	}
743 
744 	/* Reset the ethernet controller. */
745 	jme_reset(sc);
746 
747 	/* Get station address. */
748 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
749 		error = jme_efuse_macaddr(sc);
750 		if (error == 0)
751 			jme_reg_macaddr(sc);
752 	} else {
753 		error = ENOENT;
754 		reg = CSR_READ_4(sc, JME_SMBCSR);
755 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
756 			error = jme_eeprom_macaddr(sc);
757 		if (error != 0 && bootverbose)
758 			device_printf(sc->jme_dev,
759 			    "ethernet hardware address not found in EEPROM.\n");
760 		if (error != 0)
761 			jme_reg_macaddr(sc);
762 	}
763 
764 	/*
765 	 * Save PHY address.
766 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
767 	 * requires PHY probing to get correct PHY address.
768 	 */
769 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
770 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
771 		    GPREG0_PHY_ADDR_MASK;
772 		if (bootverbose)
773 			device_printf(dev, "PHY is at address %d.\n",
774 			    sc->jme_phyaddr);
775 	} else
776 		sc->jme_phyaddr = 0;
777 
778 	/* Set max allowable DMA size. */
779 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
780 		sc->jme_flags |= JME_FLAG_PCIE;
781 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
782 		if (bootverbose) {
783 			device_printf(dev, "Read request size : %d bytes.\n",
784 			    128 << ((burst >> 12) & 0x07));
785 			device_printf(dev, "TLP payload size : %d bytes.\n",
786 			    128 << ((burst >> 5) & 0x07));
787 		}
788 		switch ((burst >> 12) & 0x07) {
789 		case 0:
790 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
791 			break;
792 		case 1:
793 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
794 			break;
795 		default:
796 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
797 			break;
798 		}
799 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800 	} else {
801 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
802 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
803 	}
804 	/* Create coalescing sysctl node. */
805 	jme_sysctl_node(sc);
806 	if ((error = jme_dma_alloc(sc)) != 0)
807 		goto fail;
808 
809 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
810 	if (ifp == NULL) {
811 		device_printf(dev, "cannot allocate ifnet structure.\n");
812 		error = ENXIO;
813 		goto fail;
814 	}
815 
816 	if_setsoftc(ifp, sc);
817 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
818 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
819 	if_setioctlfn(ifp, jme_ioctl);
820 	if_setstartfn(ifp, jme_start);
821 	if_setinitfn(ifp, jme_init);
822 	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
823 	if_setsendqready(ifp);
824 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
825 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
826 	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
827 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
828 		sc->jme_flags |= JME_FLAG_PMCAP;
829 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
830 	}
831 	if_setcapenable(ifp, if_getcapabilities(ifp));
832 
833 	/* Wakeup PHY. */
834 	jme_phy_up(sc);
835 	mii_flags = MIIF_DOPAUSE;
836 	/* Ask PHY calibration to PHY driver. */
837 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
838 		mii_flags |= MIIF_MACPRIV0;
839 	/* Set up MII bus. */
840 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
841 	    jme_mediastatus, BMSR_DEFCAPMASK,
842 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
843 	    MII_OFFSET_ANY, mii_flags);
844 	if (error != 0) {
845 		device_printf(dev, "attaching PHYs failed\n");
846 		goto fail;
847 	}
848 
849 	/*
850 	 * Force PHY to FPGA mode.
851 	 */
852 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
853 		mii = device_get_softc(sc->jme_miibus);
854 		if (mii->mii_instance != 0) {
855 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
856 				if (miisc->mii_phy != 0) {
857 					sc->jme_phyaddr = miisc->mii_phy;
858 					break;
859 				}
860 			}
861 			if (sc->jme_phyaddr != 0) {
862 				device_printf(sc->jme_dev,
863 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
864 				/* vendor magic. */
865 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
866 				    0x0004);
867 			}
868 		}
869 	}
870 
871 	ether_ifattach(ifp, sc->jme_eaddr);
872 
873 	/* VLAN capability setup */
874 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
875 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
876 	if_setcapenable(ifp, if_getcapabilities(ifp));
877 
878 	/* Tell the upper layer(s) we support long frames. */
879 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
880 
881 	/* Create local taskq. */
882 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
883 	    taskqueue_thread_enqueue, &sc->jme_tq);
884 	if (sc->jme_tq == NULL) {
885 		device_printf(dev, "could not create taskqueue.\n");
886 		ether_ifdetach(ifp);
887 		error = ENXIO;
888 		goto fail;
889 	}
890 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
891 	    device_get_nameunit(sc->jme_dev));
892 
893 	for (i = 0; i < 1; i++) {
894 		error = bus_setup_intr(dev, sc->jme_irq[i],
895 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
896 		    &sc->jme_intrhand[i]);
897 		if (error != 0)
898 			break;
899 	}
900 
901 	if (error != 0) {
902 		device_printf(dev, "could not set up interrupt handler.\n");
903 		taskqueue_free(sc->jme_tq);
904 		sc->jme_tq = NULL;
905 		ether_ifdetach(ifp);
906 		goto fail;
907 	}
908 
909 fail:
910 	if (error != 0)
911 		jme_detach(dev);
912 
913 	return (error);
914 }
915 
916 static int
917 jme_detach(device_t dev)
918 {
919 	struct jme_softc *sc;
920 	if_t ifp;
921 	int i;
922 
923 	sc = device_get_softc(dev);
924 
925 	ifp = sc->jme_ifp;
926 	if (device_is_attached(dev)) {
927 		JME_LOCK(sc);
928 		sc->jme_flags |= JME_FLAG_DETACH;
929 		jme_stop(sc);
930 		JME_UNLOCK(sc);
931 		callout_drain(&sc->jme_tick_ch);
932 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
933 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
934 		/* Restore possibly modified station address. */
935 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
936 			jme_set_macaddr(sc, sc->jme_eaddr);
937 		ether_ifdetach(ifp);
938 	}
939 
940 	if (sc->jme_tq != NULL) {
941 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
942 		taskqueue_free(sc->jme_tq);
943 		sc->jme_tq = NULL;
944 	}
945 
946 	if (sc->jme_miibus != NULL) {
947 		device_delete_child(dev, sc->jme_miibus);
948 		sc->jme_miibus = NULL;
949 	}
950 	bus_generic_detach(dev);
951 	jme_dma_free(sc);
952 
953 	if (ifp != NULL) {
954 		if_free(ifp);
955 		sc->jme_ifp = NULL;
956 	}
957 
958 	for (i = 0; i < 1; i++) {
959 		if (sc->jme_intrhand[i] != NULL) {
960 			bus_teardown_intr(dev, sc->jme_irq[i],
961 			    sc->jme_intrhand[i]);
962 			sc->jme_intrhand[i] = NULL;
963 		}
964 	}
965 
966 	if (sc->jme_irq[0] != NULL)
967 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
968 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
969 		pci_release_msi(dev);
970 	if (sc->jme_res[0] != NULL)
971 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
972 	mtx_destroy(&sc->jme_mtx);
973 
974 	return (0);
975 }
976 
977 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
978 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
979 
980 static void
981 jme_sysctl_node(struct jme_softc *sc)
982 {
983 	struct sysctl_ctx_list *ctx;
984 	struct sysctl_oid_list *child, *parent;
985 	struct sysctl_oid *tree;
986 	struct jme_hw_stats *stats;
987 	int error;
988 
989 	stats = &sc->jme_stats;
990 	ctx = device_get_sysctl_ctx(sc->jme_dev);
991 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
992 
993 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
994 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
995 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
996 
997 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
998 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
999 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1000 
1001 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1002 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
1003 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1004 
1005 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1006 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
1007 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1008 
1009 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1010 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1011 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
1012 	    "max number of Rx events to process");
1013 
1014 	/* Pull in device tunables. */
1015 	sc->jme_process_limit = JME_PROC_DEFAULT;
1016 	error = resource_int_value(device_get_name(sc->jme_dev),
1017 	    device_get_unit(sc->jme_dev), "process_limit",
1018 	    &sc->jme_process_limit);
1019 	if (error == 0) {
1020 		if (sc->jme_process_limit < JME_PROC_MIN ||
1021 		    sc->jme_process_limit > JME_PROC_MAX) {
1022 			device_printf(sc->jme_dev,
1023 			    "process_limit value out of range; "
1024 			    "using default: %d\n", JME_PROC_DEFAULT);
1025 			sc->jme_process_limit = JME_PROC_DEFAULT;
1026 		}
1027 	}
1028 
1029 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1030 	error = resource_int_value(device_get_name(sc->jme_dev),
1031 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1032 	if (error == 0) {
1033 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1034 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1035 			device_printf(sc->jme_dev,
1036 			    "tx_coal_to value out of range; "
1037 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1038 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1039 		}
1040 	}
1041 
1042 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1043 	error = resource_int_value(device_get_name(sc->jme_dev),
1044 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1045 	if (error == 0) {
1046 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1047 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1048 			device_printf(sc->jme_dev,
1049 			    "tx_coal_pkt value out of range; "
1050 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1051 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1052 		}
1053 	}
1054 
1055 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1056 	error = resource_int_value(device_get_name(sc->jme_dev),
1057 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1058 	if (error == 0) {
1059 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1060 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1061 			device_printf(sc->jme_dev,
1062 			    "rx_coal_to value out of range; "
1063 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1064 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1065 		}
1066 	}
1067 
1068 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1069 	error = resource_int_value(device_get_name(sc->jme_dev),
1070 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1071 	if (error == 0) {
1072 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1073 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1074 			device_printf(sc->jme_dev,
1075 			    "tx_coal_pkt value out of range; "
1076 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1077 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1078 		}
1079 	}
1080 
1081 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1082 		return;
1083 
1084 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1085 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1086 	parent = SYSCTL_CHILDREN(tree);
1087 
1088 	/* Rx statistics. */
1089 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1090 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1091 	child = SYSCTL_CHILDREN(tree);
1092 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1093 	    &stats->rx_good_frames, "Good frames");
1094 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1095 	    &stats->rx_crc_errs, "CRC errors");
1096 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1097 	    &stats->rx_mii_errs, "MII errors");
1098 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1099 	    &stats->rx_fifo_oflows, "FIFO overflows");
1100 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1101 	    &stats->rx_desc_empty, "Descriptor empty");
1102 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1103 	    &stats->rx_bad_frames, "Bad frames");
1104 
1105 	/* Tx statistics. */
1106 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1107 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1108 	child = SYSCTL_CHILDREN(tree);
1109 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1110 	    &stats->tx_good_frames, "Good frames");
1111 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1112 	    &stats->tx_bad_frames, "Bad frames");
1113 }
1114 
1115 #undef	JME_SYSCTL_STAT_ADD32
1116 
1117 struct jme_dmamap_arg {
1118 	bus_addr_t	jme_busaddr;
1119 };
1120 
1121 static void
1122 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1123 {
1124 	struct jme_dmamap_arg *ctx;
1125 
1126 	if (error != 0)
1127 		return;
1128 
1129 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1130 
1131 	ctx = (struct jme_dmamap_arg *)arg;
1132 	ctx->jme_busaddr = segs[0].ds_addr;
1133 }
1134 
1135 static int
1136 jme_dma_alloc(struct jme_softc *sc)
1137 {
1138 	struct jme_dmamap_arg ctx;
1139 	struct jme_txdesc *txd;
1140 	struct jme_rxdesc *rxd;
1141 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1142 	int error, i;
1143 
1144 	lowaddr = BUS_SPACE_MAXADDR;
1145 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1146 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1147 
1148 again:
1149 	/* Create parent ring tag. */
1150 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1151 	    1, 0,			/* algnmnt, boundary */
1152 	    lowaddr,			/* lowaddr */
1153 	    BUS_SPACE_MAXADDR,		/* highaddr */
1154 	    NULL, NULL,			/* filter, filterarg */
1155 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1156 	    0,				/* nsegments */
1157 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1158 	    0,				/* flags */
1159 	    NULL, NULL,			/* lockfunc, lockarg */
1160 	    &sc->jme_cdata.jme_ring_tag);
1161 	if (error != 0) {
1162 		device_printf(sc->jme_dev,
1163 		    "could not create parent ring DMA tag.\n");
1164 		goto fail;
1165 	}
1166 	/* Create tag for Tx ring. */
1167 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1168 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1169 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1170 	    BUS_SPACE_MAXADDR,		/* highaddr */
1171 	    NULL, NULL,			/* filter, filterarg */
1172 	    JME_TX_RING_SIZE,		/* maxsize */
1173 	    1,				/* nsegments */
1174 	    JME_TX_RING_SIZE,		/* maxsegsize */
1175 	    0,				/* flags */
1176 	    NULL, NULL,			/* lockfunc, lockarg */
1177 	    &sc->jme_cdata.jme_tx_ring_tag);
1178 	if (error != 0) {
1179 		device_printf(sc->jme_dev,
1180 		    "could not allocate Tx ring DMA tag.\n");
1181 		goto fail;
1182 	}
1183 
1184 	/* Create tag for Rx ring. */
1185 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1186 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1187 	    lowaddr,			/* lowaddr */
1188 	    BUS_SPACE_MAXADDR,		/* highaddr */
1189 	    NULL, NULL,			/* filter, filterarg */
1190 	    JME_RX_RING_SIZE,		/* maxsize */
1191 	    1,				/* nsegments */
1192 	    JME_RX_RING_SIZE,		/* maxsegsize */
1193 	    0,				/* flags */
1194 	    NULL, NULL,			/* lockfunc, lockarg */
1195 	    &sc->jme_cdata.jme_rx_ring_tag);
1196 	if (error != 0) {
1197 		device_printf(sc->jme_dev,
1198 		    "could not allocate Rx ring DMA tag.\n");
1199 		goto fail;
1200 	}
1201 
1202 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1203 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1204 	    (void **)&sc->jme_rdata.jme_tx_ring,
1205 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1206 	    &sc->jme_cdata.jme_tx_ring_map);
1207 	if (error != 0) {
1208 		device_printf(sc->jme_dev,
1209 		    "could not allocate DMA'able memory for Tx ring.\n");
1210 		goto fail;
1211 	}
1212 
1213 	ctx.jme_busaddr = 0;
1214 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1215 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1216 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1217 	if (error != 0 || ctx.jme_busaddr == 0) {
1218 		device_printf(sc->jme_dev,
1219 		    "could not load DMA'able memory for Tx ring.\n");
1220 		goto fail;
1221 	}
1222 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1223 
1224 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1225 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1226 	    (void **)&sc->jme_rdata.jme_rx_ring,
1227 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1228 	    &sc->jme_cdata.jme_rx_ring_map);
1229 	if (error != 0) {
1230 		device_printf(sc->jme_dev,
1231 		    "could not allocate DMA'able memory for Rx ring.\n");
1232 		goto fail;
1233 	}
1234 
1235 	ctx.jme_busaddr = 0;
1236 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1237 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1238 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1239 	if (error != 0 || ctx.jme_busaddr == 0) {
1240 		device_printf(sc->jme_dev,
1241 		    "could not load DMA'able memory for Rx ring.\n");
1242 		goto fail;
1243 	}
1244 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1245 
1246 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1247 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1248 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1249 		    JME_TX_RING_SIZE;
1250 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1251 		    JME_RX_RING_SIZE;
1252 		if ((JME_ADDR_HI(tx_ring_end) !=
1253 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1254 		    (JME_ADDR_HI(rx_ring_end) !=
1255 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1256 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1257 			    "switching to 32bit DMA address mode.\n");
1258 			jme_dma_free(sc);
1259 			/* Limit DMA address space to 32bit and try again. */
1260 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1261 			goto again;
1262 		}
1263 	}
1264 
1265 	lowaddr = BUS_SPACE_MAXADDR;
1266 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1267 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1268 	/* Create parent buffer tag. */
1269 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1270 	    1, 0,			/* algnmnt, boundary */
1271 	    lowaddr,			/* lowaddr */
1272 	    BUS_SPACE_MAXADDR,		/* highaddr */
1273 	    NULL, NULL,			/* filter, filterarg */
1274 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1275 	    0,				/* nsegments */
1276 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1277 	    0,				/* flags */
1278 	    NULL, NULL,			/* lockfunc, lockarg */
1279 	    &sc->jme_cdata.jme_buffer_tag);
1280 	if (error != 0) {
1281 		device_printf(sc->jme_dev,
1282 		    "could not create parent buffer DMA tag.\n");
1283 		goto fail;
1284 	}
1285 
1286 	/* Create shadow status block tag. */
1287 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1288 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1289 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1290 	    BUS_SPACE_MAXADDR,		/* highaddr */
1291 	    NULL, NULL,			/* filter, filterarg */
1292 	    JME_SSB_SIZE,		/* maxsize */
1293 	    1,				/* nsegments */
1294 	    JME_SSB_SIZE,		/* maxsegsize */
1295 	    0,				/* flags */
1296 	    NULL, NULL,			/* lockfunc, lockarg */
1297 	    &sc->jme_cdata.jme_ssb_tag);
1298 	if (error != 0) {
1299 		device_printf(sc->jme_dev,
1300 		    "could not create shared status block DMA tag.\n");
1301 		goto fail;
1302 	}
1303 
1304 	/* Create tag for Tx buffers. */
1305 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1306 	    1, 0,			/* algnmnt, boundary */
1307 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1308 	    BUS_SPACE_MAXADDR,		/* highaddr */
1309 	    NULL, NULL,			/* filter, filterarg */
1310 	    JME_TSO_MAXSIZE,		/* maxsize */
1311 	    JME_MAXTXSEGS,		/* nsegments */
1312 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1313 	    0,				/* flags */
1314 	    NULL, NULL,			/* lockfunc, lockarg */
1315 	    &sc->jme_cdata.jme_tx_tag);
1316 	if (error != 0) {
1317 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1318 		goto fail;
1319 	}
1320 
1321 	/* Create tag for Rx buffers. */
1322 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1323 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1324 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1325 	    BUS_SPACE_MAXADDR,		/* highaddr */
1326 	    NULL, NULL,			/* filter, filterarg */
1327 	    MCLBYTES,			/* maxsize */
1328 	    1,				/* nsegments */
1329 	    MCLBYTES,			/* maxsegsize */
1330 	    0,				/* flags */
1331 	    NULL, NULL,			/* lockfunc, lockarg */
1332 	    &sc->jme_cdata.jme_rx_tag);
1333 	if (error != 0) {
1334 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1335 		goto fail;
1336 	}
1337 
1338 	/*
1339 	 * Allocate DMA'able memory and load the DMA map for shared
1340 	 * status block.
1341 	 */
1342 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1343 	    (void **)&sc->jme_rdata.jme_ssb_block,
1344 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1345 	    &sc->jme_cdata.jme_ssb_map);
1346 	if (error != 0) {
1347 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1348 		    "memory for shared status block.\n");
1349 		goto fail;
1350 	}
1351 
1352 	ctx.jme_busaddr = 0;
1353 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1354 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1355 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1356 	if (error != 0 || ctx.jme_busaddr == 0) {
1357 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1358 		    "for shared status block.\n");
1359 		goto fail;
1360 	}
1361 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1362 
1363 	/* Create DMA maps for Tx buffers. */
1364 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1365 		txd = &sc->jme_cdata.jme_txdesc[i];
1366 		txd->tx_m = NULL;
1367 		txd->tx_dmamap = NULL;
1368 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1369 		    &txd->tx_dmamap);
1370 		if (error != 0) {
1371 			device_printf(sc->jme_dev,
1372 			    "could not create Tx dmamap.\n");
1373 			goto fail;
1374 		}
1375 	}
1376 	/* Create DMA maps for Rx buffers. */
1377 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1378 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1379 		device_printf(sc->jme_dev,
1380 		    "could not create spare Rx dmamap.\n");
1381 		goto fail;
1382 	}
1383 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1384 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1385 		rxd->rx_m = NULL;
1386 		rxd->rx_dmamap = NULL;
1387 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1388 		    &rxd->rx_dmamap);
1389 		if (error != 0) {
1390 			device_printf(sc->jme_dev,
1391 			    "could not create Rx dmamap.\n");
1392 			goto fail;
1393 		}
1394 	}
1395 
1396 fail:
1397 	return (error);
1398 }
1399 
1400 static void
1401 jme_dma_free(struct jme_softc *sc)
1402 {
1403 	struct jme_txdesc *txd;
1404 	struct jme_rxdesc *rxd;
1405 	int i;
1406 
1407 	/* Tx ring */
1408 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1409 		if (sc->jme_rdata.jme_tx_ring_paddr)
1410 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1411 			    sc->jme_cdata.jme_tx_ring_map);
1412 		if (sc->jme_rdata.jme_tx_ring)
1413 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1414 			    sc->jme_rdata.jme_tx_ring,
1415 			    sc->jme_cdata.jme_tx_ring_map);
1416 		sc->jme_rdata.jme_tx_ring = NULL;
1417 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1418 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1419 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1420 	}
1421 	/* Rx ring */
1422 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1423 		if (sc->jme_rdata.jme_rx_ring_paddr)
1424 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1425 			    sc->jme_cdata.jme_rx_ring_map);
1426 		if (sc->jme_rdata.jme_rx_ring)
1427 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1428 			    sc->jme_rdata.jme_rx_ring,
1429 			    sc->jme_cdata.jme_rx_ring_map);
1430 		sc->jme_rdata.jme_rx_ring = NULL;
1431 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1432 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1433 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1434 	}
1435 	/* Tx buffers */
1436 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1437 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1438 			txd = &sc->jme_cdata.jme_txdesc[i];
1439 			if (txd->tx_dmamap != NULL) {
1440 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1441 				    txd->tx_dmamap);
1442 				txd->tx_dmamap = NULL;
1443 			}
1444 		}
1445 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1446 		sc->jme_cdata.jme_tx_tag = NULL;
1447 	}
1448 	/* Rx buffers */
1449 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1450 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1451 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1452 			if (rxd->rx_dmamap != NULL) {
1453 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1454 				    rxd->rx_dmamap);
1455 				rxd->rx_dmamap = NULL;
1456 			}
1457 		}
1458 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1459 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1460 			    sc->jme_cdata.jme_rx_sparemap);
1461 			sc->jme_cdata.jme_rx_sparemap = NULL;
1462 		}
1463 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1464 		sc->jme_cdata.jme_rx_tag = NULL;
1465 	}
1466 
1467 	/* Shared status block. */
1468 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1469 		if (sc->jme_rdata.jme_ssb_block_paddr)
1470 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1471 			    sc->jme_cdata.jme_ssb_map);
1472 		if (sc->jme_rdata.jme_ssb_block)
1473 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1474 			    sc->jme_rdata.jme_ssb_block,
1475 			    sc->jme_cdata.jme_ssb_map);
1476 		sc->jme_rdata.jme_ssb_block = NULL;
1477 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1478 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1479 		sc->jme_cdata.jme_ssb_tag = NULL;
1480 	}
1481 
1482 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1483 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1484 		sc->jme_cdata.jme_buffer_tag = NULL;
1485 	}
1486 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1487 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1488 		sc->jme_cdata.jme_ring_tag = NULL;
1489 	}
1490 }
1491 
1492 /*
1493  *	Make sure the interface is stopped at reboot time.
1494  */
1495 static int
1496 jme_shutdown(device_t dev)
1497 {
1498 
1499 	return (jme_suspend(dev));
1500 }
1501 
1502 /*
1503  * Unlike other ethernet controllers, JMC250 requires
1504  * explicit resetting link speed to 10/100Mbps as gigabit
1505  * link will cunsume more power than 375mA.
1506  * Note, we reset the link speed to 10/100Mbps with
1507  * auto-negotiation but we don't know whether that operation
1508  * would succeed or not as we have no control after powering
1509  * off. If the renegotiation fail WOL may not work. Running
1510  * at 1Gbps draws more power than 375mA at 3.3V which is
1511  * specified in PCI specification and that would result in
1512  * complete shutdowning power to ethernet controller.
1513  *
1514  * TODO
1515  *  Save current negotiated media speed/duplex/flow-control
1516  *  to softc and restore the same link again after resuming.
1517  *  PHY handling such as power down/resetting to 100Mbps
1518  *  may be better handled in suspend method in phy driver.
1519  */
1520 static void
1521 jme_setlinkspeed(struct jme_softc *sc)
1522 {
1523 	struct mii_data *mii;
1524 	int aneg, i;
1525 
1526 	JME_LOCK_ASSERT(sc);
1527 
1528 	mii = device_get_softc(sc->jme_miibus);
1529 	mii_pollstat(mii);
1530 	aneg = 0;
1531 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1532 		switch IFM_SUBTYPE(mii->mii_media_active) {
1533 		case IFM_10_T:
1534 		case IFM_100_TX:
1535 			return;
1536 		case IFM_1000_T:
1537 			aneg++;
1538 		default:
1539 			break;
1540 		}
1541 	}
1542 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1543 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1544 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1545 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1546 	    BMCR_AUTOEN | BMCR_STARTNEG);
1547 	DELAY(1000);
1548 	if (aneg != 0) {
1549 		/* Poll link state until jme(4) get a 10/100 link. */
1550 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1551 			mii_pollstat(mii);
1552 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1553 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1554 				case IFM_10_T:
1555 				case IFM_100_TX:
1556 					jme_mac_config(sc);
1557 					return;
1558 				default:
1559 					break;
1560 				}
1561 			}
1562 			JME_UNLOCK(sc);
1563 			pause("jmelnk", hz);
1564 			JME_LOCK(sc);
1565 		}
1566 		if (i == MII_ANEGTICKS_GIGE)
1567 			device_printf(sc->jme_dev, "establishing link failed, "
1568 			    "WOL may not work!");
1569 	}
1570 	/*
1571 	 * No link, force MAC to have 100Mbps, full-duplex link.
1572 	 * This is the last resort and may/may not work.
1573 	 */
1574 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1575 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1576 	jme_mac_config(sc);
1577 }
1578 
1579 static void
1580 jme_setwol(struct jme_softc *sc)
1581 {
1582 	if_t ifp;
1583 	uint32_t gpr, pmcs;
1584 	uint16_t pmstat;
1585 	int pmc;
1586 
1587 	JME_LOCK_ASSERT(sc);
1588 
1589 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1590 		/* Remove Tx MAC/offload clock to save more power. */
1591 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1592 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1593 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1594 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1595 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1596 			CSR_WRITE_4(sc, JME_GPREG1,
1597 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1598 		/* No PME capability, PHY power down. */
1599 		jme_phy_down(sc);
1600 		return;
1601 	}
1602 
1603 	ifp = sc->jme_ifp;
1604 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1605 	pmcs = CSR_READ_4(sc, JME_PMCS);
1606 	pmcs &= ~PMCS_WOL_ENB_MASK;
1607 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1608 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1609 		/* Enable PME message. */
1610 		gpr |= GPREG0_PME_ENB;
1611 		/* For gigabit controllers, reset link speed to 10/100. */
1612 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1613 			jme_setlinkspeed(sc);
1614 	}
1615 
1616 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1617 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1618 	/* Remove Tx MAC/offload clock to save more power. */
1619 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1620 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1621 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1622 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1623 	/* Request PME. */
1624 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1625 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1626 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1627 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1628 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1629 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1630 		/* No WOL, PHY power down. */
1631 		jme_phy_down(sc);
1632 	}
1633 }
1634 
1635 static int
1636 jme_suspend(device_t dev)
1637 {
1638 	struct jme_softc *sc;
1639 
1640 	sc = device_get_softc(dev);
1641 
1642 	JME_LOCK(sc);
1643 	jme_stop(sc);
1644 	jme_setwol(sc);
1645 	JME_UNLOCK(sc);
1646 
1647 	return (0);
1648 }
1649 
1650 static int
1651 jme_resume(device_t dev)
1652 {
1653 	struct jme_softc *sc;
1654 	if_t ifp;
1655 	uint16_t pmstat;
1656 	int pmc;
1657 
1658 	sc = device_get_softc(dev);
1659 
1660 	JME_LOCK(sc);
1661 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1662 		pmstat = pci_read_config(sc->jme_dev,
1663 		    pmc + PCIR_POWER_STATUS, 2);
1664 		/* Disable PME clear PME status. */
1665 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1666 		pci_write_config(sc->jme_dev,
1667 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1668 	}
1669 	/* Wakeup PHY. */
1670 	jme_phy_up(sc);
1671 	ifp = sc->jme_ifp;
1672 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1673 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1674 		jme_init_locked(sc);
1675 	}
1676 
1677 	JME_UNLOCK(sc);
1678 
1679 	return (0);
1680 }
1681 
1682 static int
1683 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1684 {
1685 	struct jme_txdesc *txd;
1686 	struct jme_desc *desc;
1687 	struct mbuf *m;
1688 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1689 	int error, i, nsegs, prod;
1690 	uint32_t cflags, tsosegsz;
1691 
1692 	JME_LOCK_ASSERT(sc);
1693 
1694 	M_ASSERTPKTHDR((*m_head));
1695 
1696 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1697 		/*
1698 		 * Due to the adherence to NDIS specification JMC250
1699 		 * assumes upper stack computed TCP pseudo checksum
1700 		 * without including payload length. This breaks
1701 		 * checksum offload for TSO case so recompute TCP
1702 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1703 		 * be much burden on modern CPUs.
1704 		 */
1705 		struct ether_header *eh;
1706 		struct ip *ip;
1707 		struct tcphdr *tcp;
1708 		uint32_t ip_off, poff;
1709 
1710 		if (M_WRITABLE(*m_head) == 0) {
1711 			/* Get a writable copy. */
1712 			m = m_dup(*m_head, M_NOWAIT);
1713 			m_freem(*m_head);
1714 			if (m == NULL) {
1715 				*m_head = NULL;
1716 				return (ENOBUFS);
1717 			}
1718 			*m_head = m;
1719 		}
1720 		ip_off = sizeof(struct ether_header);
1721 		m = m_pullup(*m_head, ip_off);
1722 		if (m == NULL) {
1723 			*m_head = NULL;
1724 			return (ENOBUFS);
1725 		}
1726 		eh = mtod(m, struct ether_header *);
1727 		/* Check the existence of VLAN tag. */
1728 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1729 			ip_off = sizeof(struct ether_vlan_header);
1730 			m = m_pullup(m, ip_off);
1731 			if (m == NULL) {
1732 				*m_head = NULL;
1733 				return (ENOBUFS);
1734 			}
1735 		}
1736 		m = m_pullup(m, ip_off + sizeof(struct ip));
1737 		if (m == NULL) {
1738 			*m_head = NULL;
1739 			return (ENOBUFS);
1740 		}
1741 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1742 		poff = ip_off + (ip->ip_hl << 2);
1743 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1744 		if (m == NULL) {
1745 			*m_head = NULL;
1746 			return (ENOBUFS);
1747 		}
1748 		/*
1749 		 * Reset IP checksum and recompute TCP pseudo
1750 		 * checksum that NDIS specification requires.
1751 		 */
1752 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1753 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1754 		ip->ip_sum = 0;
1755 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1756 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1757 			    ip->ip_dst.s_addr,
1758 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1759 			/* No need to TSO, force IP checksum offload. */
1760 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1761 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1762 		} else
1763 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1764 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1765 		*m_head = m;
1766 	}
1767 
1768 	prod = sc->jme_cdata.jme_tx_prod;
1769 	txd = &sc->jme_cdata.jme_txdesc[prod];
1770 
1771 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1772 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1773 	if (error == EFBIG) {
1774 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1775 		if (m == NULL) {
1776 			m_freem(*m_head);
1777 			*m_head = NULL;
1778 			return (ENOMEM);
1779 		}
1780 		*m_head = m;
1781 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1782 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1783 		if (error != 0) {
1784 			m_freem(*m_head);
1785 			*m_head = NULL;
1786 			return (error);
1787 		}
1788 	} else if (error != 0)
1789 		return (error);
1790 	if (nsegs == 0) {
1791 		m_freem(*m_head);
1792 		*m_head = NULL;
1793 		return (EIO);
1794 	}
1795 
1796 	/*
1797 	 * Check descriptor overrun. Leave one free descriptor.
1798 	 * Since we always use 64bit address mode for transmitting,
1799 	 * each Tx request requires one more dummy descriptor.
1800 	 */
1801 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1802 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1803 		return (ENOBUFS);
1804 	}
1805 
1806 	m = *m_head;
1807 	cflags = 0;
1808 	tsosegsz = 0;
1809 	/* Configure checksum offload and TSO. */
1810 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1811 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1812 		    JME_TD_MSS_SHIFT;
1813 		cflags |= JME_TD_TSO;
1814 	} else {
1815 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1816 			cflags |= JME_TD_IPCSUM;
1817 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1818 			cflags |= JME_TD_TCPCSUM;
1819 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1820 			cflags |= JME_TD_UDPCSUM;
1821 	}
1822 	/* Configure VLAN. */
1823 	if ((m->m_flags & M_VLANTAG) != 0) {
1824 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1825 		cflags |= JME_TD_VLAN_TAG;
1826 	}
1827 
1828 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1829 	desc->flags = htole32(cflags);
1830 	desc->buflen = htole32(tsosegsz);
1831 	desc->addr_hi = htole32(m->m_pkthdr.len);
1832 	desc->addr_lo = 0;
1833 	sc->jme_cdata.jme_tx_cnt++;
1834 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1835 	for (i = 0; i < nsegs; i++) {
1836 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1837 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1838 		desc->buflen = htole32(txsegs[i].ds_len);
1839 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1840 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1841 		sc->jme_cdata.jme_tx_cnt++;
1842 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1843 	}
1844 
1845 	/* Update producer index. */
1846 	sc->jme_cdata.jme_tx_prod = prod;
1847 	/*
1848 	 * Finally request interrupt and give the first descriptor
1849 	 * owenership to hardware.
1850 	 */
1851 	desc = txd->tx_desc;
1852 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1853 
1854 	txd->tx_m = m;
1855 	txd->tx_ndesc = nsegs + 1;
1856 
1857 	/* Sync descriptors. */
1858 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1859 	    BUS_DMASYNC_PREWRITE);
1860 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1861 	    sc->jme_cdata.jme_tx_ring_map,
1862 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1863 
1864 	return (0);
1865 }
1866 
1867 static void
1868 jme_start(if_t ifp)
1869 {
1870         struct jme_softc *sc;
1871 
1872 	sc = if_getsoftc(ifp);
1873 	JME_LOCK(sc);
1874 	jme_start_locked(ifp);
1875 	JME_UNLOCK(sc);
1876 }
1877 
1878 static void
1879 jme_start_locked(if_t ifp)
1880 {
1881         struct jme_softc *sc;
1882         struct mbuf *m_head;
1883 	int enq;
1884 
1885 	sc = if_getsoftc(ifp);
1886 
1887 	JME_LOCK_ASSERT(sc);
1888 
1889 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1890 		jme_txeof(sc);
1891 
1892 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1893 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1894 		return;
1895 
1896 	for (enq = 0; !if_sendq_empty(ifp); ) {
1897 		m_head = if_dequeue(ifp);
1898 		if (m_head == NULL)
1899 			break;
1900 		/*
1901 		 * Pack the data into the transmit ring. If we
1902 		 * don't have room, set the OACTIVE flag and wait
1903 		 * for the NIC to drain the ring.
1904 		 */
1905 		if (jme_encap(sc, &m_head)) {
1906 			if (m_head == NULL)
1907 				break;
1908 			if_sendq_prepend(ifp, m_head);
1909 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1910 			break;
1911 		}
1912 
1913 		enq++;
1914 		/*
1915 		 * If there's a BPF listener, bounce a copy of this frame
1916 		 * to him.
1917 		 */
1918 		ETHER_BPF_MTAP(ifp, m_head);
1919 	}
1920 
1921 	if (enq > 0) {
1922 		/*
1923 		 * Reading TXCSR takes very long time under heavy load
1924 		 * so cache TXCSR value and writes the ORed value with
1925 		 * the kick command to the TXCSR. This saves one register
1926 		 * access cycle.
1927 		 */
1928 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1929 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1930 		/* Set a timeout in case the chip goes out to lunch. */
1931 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1932 	}
1933 }
1934 
1935 static void
1936 jme_watchdog(struct jme_softc *sc)
1937 {
1938 	if_t ifp;
1939 
1940 	JME_LOCK_ASSERT(sc);
1941 
1942 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1943 		return;
1944 
1945 	ifp = sc->jme_ifp;
1946 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1947 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1948 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1949 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1950 		jme_init_locked(sc);
1951 		return;
1952 	}
1953 	jme_txeof(sc);
1954 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1955 		if_printf(sc->jme_ifp,
1956 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1957 		if (!if_sendq_empty(ifp))
1958 			jme_start_locked(ifp);
1959 		return;
1960 	}
1961 
1962 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1963 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1964 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1965 	jme_init_locked(sc);
1966 	if (!if_sendq_empty(ifp))
1967 		jme_start_locked(ifp);
1968 }
1969 
1970 static int
1971 jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1972 {
1973 	struct jme_softc *sc;
1974 	struct ifreq *ifr;
1975 	struct mii_data *mii;
1976 	uint32_t reg;
1977 	int error, mask;
1978 
1979 	sc = if_getsoftc(ifp);
1980 	ifr = (struct ifreq *)data;
1981 	error = 0;
1982 	switch (cmd) {
1983 	case SIOCSIFMTU:
1984 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1985 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1986 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1987 			error = EINVAL;
1988 			break;
1989 		}
1990 
1991 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1992 			/*
1993 			 * No special configuration is required when interface
1994 			 * MTU is changed but availability of TSO/Tx checksum
1995 			 * offload should be chcked against new MTU size as
1996 			 * FIFO size is just 2K.
1997 			 */
1998 			JME_LOCK(sc);
1999 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2000 				if_setcapenablebit(ifp, 0,
2001 				    IFCAP_TXCSUM | IFCAP_TSO4);
2002 				if_sethwassistbits(ifp, 0,
2003 				    JME_CSUM_FEATURES | CSUM_TSO);
2004 				VLAN_CAPABILITIES(ifp);
2005 			}
2006 			if_setmtu(ifp, ifr->ifr_mtu);
2007 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2008 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2009 				jme_init_locked(sc);
2010 			}
2011 			JME_UNLOCK(sc);
2012 		}
2013 		break;
2014 	case SIOCSIFFLAGS:
2015 		JME_LOCK(sc);
2016 		if ((if_getflags(ifp) & IFF_UP) != 0) {
2017 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2018 				if (((if_getflags(ifp) ^ sc->jme_if_flags)
2019 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2020 					jme_set_filter(sc);
2021 			} else {
2022 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2023 					jme_init_locked(sc);
2024 			}
2025 		} else {
2026 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2027 				jme_stop(sc);
2028 		}
2029 		sc->jme_if_flags = if_getflags(ifp);
2030 		JME_UNLOCK(sc);
2031 		break;
2032 	case SIOCADDMULTI:
2033 	case SIOCDELMULTI:
2034 		JME_LOCK(sc);
2035 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2036 			jme_set_filter(sc);
2037 		JME_UNLOCK(sc);
2038 		break;
2039 	case SIOCSIFMEDIA:
2040 	case SIOCGIFMEDIA:
2041 		mii = device_get_softc(sc->jme_miibus);
2042 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2043 		break;
2044 	case SIOCSIFCAP:
2045 		JME_LOCK(sc);
2046 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2047 		if ((mask & IFCAP_TXCSUM) != 0 &&
2048 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2049 			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2050 				if_togglecapenable(ifp, IFCAP_TXCSUM);
2051 				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2052 					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2053 				else
2054 					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2055 			}
2056 		}
2057 		if ((mask & IFCAP_RXCSUM) != 0 &&
2058 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2059 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2060 			reg = CSR_READ_4(sc, JME_RXMAC);
2061 			reg &= ~RXMAC_CSUM_ENB;
2062 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2063 				reg |= RXMAC_CSUM_ENB;
2064 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2065 		}
2066 		if ((mask & IFCAP_TSO4) != 0 &&
2067 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2068 			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2069 				if_togglecapenable(ifp, IFCAP_TSO4);
2070 				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2071 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2072 				else
2073 					if_sethwassistbits(ifp, 0, CSUM_TSO);
2074 			}
2075 		}
2076 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2077 		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2078 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2079 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2080 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2081 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2082 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2083 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2084 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2085 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2086 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2087 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2088 			jme_set_vlan(sc);
2089 		}
2090 		JME_UNLOCK(sc);
2091 		VLAN_CAPABILITIES(ifp);
2092 		break;
2093 	default:
2094 		error = ether_ioctl(ifp, cmd, data);
2095 		break;
2096 	}
2097 
2098 	return (error);
2099 }
2100 
2101 static void
2102 jme_mac_config(struct jme_softc *sc)
2103 {
2104 	struct mii_data *mii;
2105 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2106 	uint32_t txclk;
2107 
2108 	JME_LOCK_ASSERT(sc);
2109 
2110 	mii = device_get_softc(sc->jme_miibus);
2111 
2112 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2113 	DELAY(10);
2114 	CSR_WRITE_4(sc, JME_GHC, 0);
2115 	ghc = 0;
2116 	txclk = 0;
2117 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2118 	rxmac &= ~RXMAC_FC_ENB;
2119 	txmac = CSR_READ_4(sc, JME_TXMAC);
2120 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2121 	txpause = CSR_READ_4(sc, JME_TXPFC);
2122 	txpause &= ~TXPFC_PAUSE_ENB;
2123 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2124 		ghc |= GHC_FULL_DUPLEX;
2125 		rxmac &= ~RXMAC_COLL_DET_ENB;
2126 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2127 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2128 		    TXMAC_FRAME_BURST);
2129 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2130 			txpause |= TXPFC_PAUSE_ENB;
2131 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2132 			rxmac |= RXMAC_FC_ENB;
2133 		/* Disable retry transmit timer/retry limit. */
2134 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2135 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2136 	} else {
2137 		rxmac |= RXMAC_COLL_DET_ENB;
2138 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2139 		/* Enable retry transmit timer/retry limit. */
2140 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2141 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2142 	}
2143 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2144 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2145 	case IFM_10_T:
2146 		ghc |= GHC_SPEED_10;
2147 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2148 		break;
2149 	case IFM_100_TX:
2150 		ghc |= GHC_SPEED_100;
2151 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2152 		break;
2153 	case IFM_1000_T:
2154 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2155 			break;
2156 		ghc |= GHC_SPEED_1000;
2157 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2158 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2159 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2160 		break;
2161 	default:
2162 		break;
2163 	}
2164 	if (sc->jme_rev == DEVICEID_JMC250 &&
2165 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2166 		/*
2167 		 * Workaround occasional packet loss issue of JMC250 A2
2168 		 * when it runs on half-duplex media.
2169 		 */
2170 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2171 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2172 			gpreg &= ~GPREG1_HDPX_FIX;
2173 		else
2174 			gpreg |= GPREG1_HDPX_FIX;
2175 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2176 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2177 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2178 			/* Extend interface FIFO depth. */
2179 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2180 			    0x1B, 0x0000);
2181 		} else {
2182 			/* Select default interface FIFO depth. */
2183 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2184 			    0x1B, 0x0004);
2185 		}
2186 	}
2187 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2188 		ghc |= txclk;
2189 	CSR_WRITE_4(sc, JME_GHC, ghc);
2190 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2191 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2192 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2193 }
2194 
2195 static void
2196 jme_link_task(void *arg, int pending)
2197 {
2198 	struct jme_softc *sc;
2199 	struct mii_data *mii;
2200 	if_t ifp;
2201 	struct jme_txdesc *txd;
2202 	bus_addr_t paddr;
2203 	int i;
2204 
2205 	sc = (struct jme_softc *)arg;
2206 
2207 	JME_LOCK(sc);
2208 	mii = device_get_softc(sc->jme_miibus);
2209 	ifp = sc->jme_ifp;
2210 	if (mii == NULL || ifp == NULL ||
2211 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2212 		JME_UNLOCK(sc);
2213 		return;
2214 	}
2215 
2216 	sc->jme_flags &= ~JME_FLAG_LINK;
2217 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2218 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2219 		case IFM_10_T:
2220 		case IFM_100_TX:
2221 			sc->jme_flags |= JME_FLAG_LINK;
2222 			break;
2223 		case IFM_1000_T:
2224 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2225 				break;
2226 			sc->jme_flags |= JME_FLAG_LINK;
2227 			break;
2228 		default:
2229 			break;
2230 		}
2231 	}
2232 
2233 	/*
2234 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2235 	 * JME_TXNDA/JME_RXNDA register to the first address of
2236 	 * Tx/Rx descriptor address. So driver should reset its
2237 	 * internal procucer/consumer pointer and reclaim any
2238 	 * allocated resources. Note, just saving the value of
2239 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2240 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2241 	 * sufficient to make sure correct MAC state because
2242 	 * stopping MAC operation can take a while and hardware
2243 	 * might have updated JME_TXNDA/JME_RXNDA registers
2244 	 * during the stop operation.
2245 	 */
2246 	/* Block execution of task. */
2247 	taskqueue_block(sc->jme_tq);
2248 	/* Disable interrupts and stop driver. */
2249 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2250 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2251 	callout_stop(&sc->jme_tick_ch);
2252 	sc->jme_watchdog_timer = 0;
2253 
2254 	/* Stop receiver/transmitter. */
2255 	jme_stop_rx(sc);
2256 	jme_stop_tx(sc);
2257 
2258 	/* XXX Drain all queued tasks. */
2259 	JME_UNLOCK(sc);
2260 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2261 	JME_LOCK(sc);
2262 
2263 	if (sc->jme_cdata.jme_rxhead != NULL)
2264 		m_freem(sc->jme_cdata.jme_rxhead);
2265 	JME_RXCHAIN_RESET(sc);
2266 	jme_txeof(sc);
2267 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2268 		/* Remove queued packets for transmit. */
2269 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2270 			txd = &sc->jme_cdata.jme_txdesc[i];
2271 			if (txd->tx_m != NULL) {
2272 				bus_dmamap_sync(
2273 				    sc->jme_cdata.jme_tx_tag,
2274 				    txd->tx_dmamap,
2275 				    BUS_DMASYNC_POSTWRITE);
2276 				bus_dmamap_unload(
2277 				    sc->jme_cdata.jme_tx_tag,
2278 				    txd->tx_dmamap);
2279 				m_freem(txd->tx_m);
2280 				txd->tx_m = NULL;
2281 				txd->tx_ndesc = 0;
2282 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2283 			}
2284 		}
2285 	}
2286 
2287 	/*
2288 	 * Reuse configured Rx descriptors and reset
2289 	 * producer/consumer index.
2290 	 */
2291 	sc->jme_cdata.jme_rx_cons = 0;
2292 	sc->jme_morework = 0;
2293 	jme_init_tx_ring(sc);
2294 	/* Initialize shadow status block. */
2295 	jme_init_ssb(sc);
2296 
2297 	/* Program MAC with resolved speed/duplex/flow-control. */
2298 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2299 		jme_mac_config(sc);
2300 		jme_stats_clear(sc);
2301 
2302 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2303 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2304 
2305 		/* Set Tx ring address to the hardware. */
2306 		paddr = JME_TX_RING_ADDR(sc, 0);
2307 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2308 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2309 
2310 		/* Set Rx ring address to the hardware. */
2311 		paddr = JME_RX_RING_ADDR(sc, 0);
2312 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2313 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2314 
2315 		/* Restart receiver/transmitter. */
2316 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2317 		    RXCSR_RXQ_START);
2318 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2319 		/* Lastly enable TX/RX clock. */
2320 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2321 			CSR_WRITE_4(sc, JME_GHC,
2322 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2323 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2324 			CSR_WRITE_4(sc, JME_GPREG1,
2325 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2326 	}
2327 
2328 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2329 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2330 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2331 	/* Unblock execution of task. */
2332 	taskqueue_unblock(sc->jme_tq);
2333 	/* Reenable interrupts. */
2334 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2335 
2336 	JME_UNLOCK(sc);
2337 }
2338 
2339 static int
2340 jme_intr(void *arg)
2341 {
2342 	struct jme_softc *sc;
2343 	uint32_t status;
2344 
2345 	sc = (struct jme_softc *)arg;
2346 
2347 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2348 	if (status == 0 || status == 0xFFFFFFFF)
2349 		return (FILTER_STRAY);
2350 	/* Disable interrupts. */
2351 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2352 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2353 
2354 	return (FILTER_HANDLED);
2355 }
2356 
2357 static void
2358 jme_int_task(void *arg, int pending)
2359 {
2360 	struct jme_softc *sc;
2361 	if_t ifp;
2362 	uint32_t status;
2363 	int more;
2364 
2365 	sc = (struct jme_softc *)arg;
2366 	ifp = sc->jme_ifp;
2367 
2368 	JME_LOCK(sc);
2369 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2370 	if (sc->jme_morework != 0) {
2371 		sc->jme_morework = 0;
2372 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2373 	}
2374 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2375 		goto done;
2376 	/* Reset PCC counter/timer and Ack interrupts. */
2377 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2378 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2379 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2380 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2381 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2382 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2383 	more = 0;
2384 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2385 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2386 			more = jme_rxintr(sc, sc->jme_process_limit);
2387 			if (more != 0)
2388 				sc->jme_morework = 1;
2389 		}
2390 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2391 			/*
2392 			 * Notify hardware availability of new Rx
2393 			 * buffers.
2394 			 * Reading RXCSR takes very long time under
2395 			 * heavy load so cache RXCSR value and writes
2396 			 * the ORed value with the kick command to
2397 			 * the RXCSR. This saves one register access
2398 			 * cycle.
2399 			 */
2400 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2401 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2402 		}
2403 		if (!if_sendq_empty(ifp))
2404 			jme_start_locked(ifp);
2405 	}
2406 
2407 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2408 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2409 		JME_UNLOCK(sc);
2410 		return;
2411 	}
2412 done:
2413 	JME_UNLOCK(sc);
2414 
2415 	/* Reenable interrupts. */
2416 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2417 }
2418 
2419 static void
2420 jme_txeof(struct jme_softc *sc)
2421 {
2422 	if_t ifp;
2423 	struct jme_txdesc *txd;
2424 	uint32_t status;
2425 	int cons, nsegs;
2426 
2427 	JME_LOCK_ASSERT(sc);
2428 
2429 	ifp = sc->jme_ifp;
2430 
2431 	cons = sc->jme_cdata.jme_tx_cons;
2432 	if (cons == sc->jme_cdata.jme_tx_prod)
2433 		return;
2434 
2435 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2436 	    sc->jme_cdata.jme_tx_ring_map,
2437 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2438 
2439 	/*
2440 	 * Go through our Tx list and free mbufs for those
2441 	 * frames which have been transmitted.
2442 	 */
2443 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2444 		txd = &sc->jme_cdata.jme_txdesc[cons];
2445 		status = le32toh(txd->tx_desc->flags);
2446 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2447 			break;
2448 
2449 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2450 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2451 		else {
2452 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2453 			if ((status & JME_TD_COLLISION) != 0)
2454 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2455 				    le32toh(txd->tx_desc->buflen) &
2456 				    JME_TD_BUF_LEN_MASK);
2457 		}
2458 		/*
2459 		 * Only the first descriptor of multi-descriptor
2460 		 * transmission is updated so driver have to skip entire
2461 		 * chained buffers for the transmiited frame. In other
2462 		 * words, JME_TD_OWN bit is valid only at the first
2463 		 * descriptor of a multi-descriptor transmission.
2464 		 */
2465 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2466 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2467 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2468 		}
2469 
2470 		/* Reclaim transferred mbufs. */
2471 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2472 		    BUS_DMASYNC_POSTWRITE);
2473 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2474 
2475 		KASSERT(txd->tx_m != NULL,
2476 		    ("%s: freeing NULL mbuf!\n", __func__));
2477 		m_freem(txd->tx_m);
2478 		txd->tx_m = NULL;
2479 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2480 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2481 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2482 		txd->tx_ndesc = 0;
2483 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2484 	}
2485 	sc->jme_cdata.jme_tx_cons = cons;
2486 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2487 	if (sc->jme_cdata.jme_tx_cnt == 0)
2488 		sc->jme_watchdog_timer = 0;
2489 
2490 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2491 	    sc->jme_cdata.jme_tx_ring_map,
2492 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2493 }
2494 
2495 static __inline void
2496 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2497 {
2498 	struct jme_desc *desc;
2499 
2500 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2501 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2502 	desc->buflen = htole32(MCLBYTES);
2503 }
2504 
2505 /* Receive a frame. */
2506 static void
2507 jme_rxeof(struct jme_softc *sc)
2508 {
2509 	if_t ifp;
2510 	struct jme_desc *desc;
2511 	struct jme_rxdesc *rxd;
2512 	struct mbuf *mp, *m;
2513 	uint32_t flags, status;
2514 	int cons, count, nsegs;
2515 
2516 	JME_LOCK_ASSERT(sc);
2517 
2518 	ifp = sc->jme_ifp;
2519 
2520 	cons = sc->jme_cdata.jme_rx_cons;
2521 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2522 	flags = le32toh(desc->flags);
2523 	status = le32toh(desc->buflen);
2524 	nsegs = JME_RX_NSEGS(status);
2525 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2526 	if ((status & JME_RX_ERR_STAT) != 0) {
2527 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2528 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2529 #ifdef JME_SHOW_ERRORS
2530 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2531 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2532 #endif
2533 		sc->jme_cdata.jme_rx_cons += nsegs;
2534 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2535 		return;
2536 	}
2537 
2538 	for (count = 0; count < nsegs; count++,
2539 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2540 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2541 		mp = rxd->rx_m;
2542 		/* Add a new receive buffer to the ring. */
2543 		if (jme_newbuf(sc, rxd) != 0) {
2544 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2545 			/* Reuse buffer. */
2546 			for (; count < nsegs; count++) {
2547 				jme_discard_rxbuf(sc, cons);
2548 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2549 			}
2550 			if (sc->jme_cdata.jme_rxhead != NULL) {
2551 				m_freem(sc->jme_cdata.jme_rxhead);
2552 				JME_RXCHAIN_RESET(sc);
2553 			}
2554 			break;
2555 		}
2556 
2557 		/*
2558 		 * Assume we've received a full sized frame.
2559 		 * Actual size is fixed when we encounter the end of
2560 		 * multi-segmented frame.
2561 		 */
2562 		mp->m_len = MCLBYTES;
2563 
2564 		/* Chain received mbufs. */
2565 		if (sc->jme_cdata.jme_rxhead == NULL) {
2566 			sc->jme_cdata.jme_rxhead = mp;
2567 			sc->jme_cdata.jme_rxtail = mp;
2568 		} else {
2569 			/*
2570 			 * Receive processor can receive a maximum frame
2571 			 * size of 65535 bytes.
2572 			 */
2573 			mp->m_flags &= ~M_PKTHDR;
2574 			sc->jme_cdata.jme_rxtail->m_next = mp;
2575 			sc->jme_cdata.jme_rxtail = mp;
2576 		}
2577 
2578 		if (count == nsegs - 1) {
2579 			/* Last desc. for this frame. */
2580 			m = sc->jme_cdata.jme_rxhead;
2581 			m->m_flags |= M_PKTHDR;
2582 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2583 			if (nsegs > 1) {
2584 				/* Set first mbuf size. */
2585 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2586 				/* Set last mbuf size. */
2587 				mp->m_len = sc->jme_cdata.jme_rxlen -
2588 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2589 				    (MCLBYTES * (nsegs - 2)));
2590 			} else
2591 				m->m_len = sc->jme_cdata.jme_rxlen;
2592 			m->m_pkthdr.rcvif = ifp;
2593 
2594 			/*
2595 			 * Account for 10bytes auto padding which is used
2596 			 * to align IP header on 32bit boundary. Also note,
2597 			 * CRC bytes is automatically removed by the
2598 			 * hardware.
2599 			 */
2600 			m->m_data += JME_RX_PAD_BYTES;
2601 
2602 			/* Set checksum information. */
2603 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2604 			    (flags & JME_RD_IPV4) != 0) {
2605 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2606 				if ((flags & JME_RD_IPCSUM) != 0)
2607 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2608 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2609 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2610 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2611 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2612 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2613 					m->m_pkthdr.csum_flags |=
2614 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2615 					m->m_pkthdr.csum_data = 0xffff;
2616 				}
2617 			}
2618 
2619 			/* Check for VLAN tagged packets. */
2620 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2621 			    (flags & JME_RD_VLAN_TAG) != 0) {
2622 				m->m_pkthdr.ether_vtag =
2623 				    flags & JME_RD_VLAN_MASK;
2624 				m->m_flags |= M_VLANTAG;
2625 			}
2626 
2627 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2628 			/* Pass it on. */
2629 			JME_UNLOCK(sc);
2630 			if_input(ifp, m);
2631 			JME_LOCK(sc);
2632 
2633 			/* Reset mbuf chains. */
2634 			JME_RXCHAIN_RESET(sc);
2635 		}
2636 	}
2637 
2638 	sc->jme_cdata.jme_rx_cons += nsegs;
2639 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2640 }
2641 
2642 static int
2643 jme_rxintr(struct jme_softc *sc, int count)
2644 {
2645 	struct jme_desc *desc;
2646 	int nsegs, prog, pktlen;
2647 
2648 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2649 	    sc->jme_cdata.jme_rx_ring_map,
2650 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2651 
2652 	for (prog = 0; count > 0; prog++) {
2653 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2654 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2655 			break;
2656 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2657 			break;
2658 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2659 		/*
2660 		 * Check number of segments against received bytes.
2661 		 * Non-matching value would indicate that hardware
2662 		 * is still trying to update Rx descriptors. I'm not
2663 		 * sure whether this check is needed.
2664 		 */
2665 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2666 		if (nsegs != howmany(pktlen, MCLBYTES))
2667 			break;
2668 		prog++;
2669 		/* Received a frame. */
2670 		jme_rxeof(sc);
2671 		count -= nsegs;
2672 	}
2673 
2674 	if (prog > 0)
2675 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2676 		    sc->jme_cdata.jme_rx_ring_map,
2677 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2678 
2679 	return (count > 0 ? 0 : EAGAIN);
2680 }
2681 
2682 static void
2683 jme_tick(void *arg)
2684 {
2685 	struct jme_softc *sc;
2686 	struct mii_data *mii;
2687 
2688 	sc = (struct jme_softc *)arg;
2689 
2690 	JME_LOCK_ASSERT(sc);
2691 
2692 	mii = device_get_softc(sc->jme_miibus);
2693 	mii_tick(mii);
2694 	/*
2695 	 * Reclaim Tx buffers that have been completed. It's not
2696 	 * needed here but it would release allocated mbuf chains
2697 	 * faster and limit the maximum delay to a hz.
2698 	 */
2699 	jme_txeof(sc);
2700 	jme_stats_update(sc);
2701 	jme_watchdog(sc);
2702 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2703 }
2704 
2705 static void
2706 jme_reset(struct jme_softc *sc)
2707 {
2708 	uint32_t ghc, gpreg;
2709 
2710 	/* Stop receiver, transmitter. */
2711 	jme_stop_rx(sc);
2712 	jme_stop_tx(sc);
2713 
2714 	/* Reset controller. */
2715 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2716 	CSR_READ_4(sc, JME_GHC);
2717 	DELAY(10);
2718 	/*
2719 	 * Workaround Rx FIFO overruns seen under certain conditions.
2720 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2721 	 * enabled only after enabling TX/RX MACs.
2722 	 */
2723 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2724 		/* Disable TX clock. */
2725 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2726 		/* Disable RX clock. */
2727 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2728 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2729 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2730 		/* De-assert RESET but still disable TX clock. */
2731 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2732 		ghc = CSR_READ_4(sc, JME_GHC);
2733 
2734 		/* Enable TX clock. */
2735 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2736 		/* Enable RX clock. */
2737 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2738 		CSR_READ_4(sc, JME_GPREG1);
2739 
2740 		/* Disable TX/RX clock again. */
2741 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2742 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2743 	} else
2744 		CSR_WRITE_4(sc, JME_GHC, 0);
2745 	CSR_READ_4(sc, JME_GHC);
2746 	DELAY(10);
2747 }
2748 
2749 static void
2750 jme_init(void *xsc)
2751 {
2752 	struct jme_softc *sc;
2753 
2754 	sc = (struct jme_softc *)xsc;
2755 	JME_LOCK(sc);
2756 	jme_init_locked(sc);
2757 	JME_UNLOCK(sc);
2758 }
2759 
2760 static void
2761 jme_init_locked(struct jme_softc *sc)
2762 {
2763 	if_t ifp;
2764 	struct mii_data *mii;
2765 	bus_addr_t paddr;
2766 	uint32_t reg;
2767 	int error;
2768 
2769 	JME_LOCK_ASSERT(sc);
2770 
2771 	ifp = sc->jme_ifp;
2772 	mii = device_get_softc(sc->jme_miibus);
2773 
2774 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2775 		return;
2776 	/*
2777 	 * Cancel any pending I/O.
2778 	 */
2779 	jme_stop(sc);
2780 
2781 	/*
2782 	 * Reset the chip to a known state.
2783 	 */
2784 	jme_reset(sc);
2785 
2786 	/* Init descriptors. */
2787 	error = jme_init_rx_ring(sc);
2788         if (error != 0) {
2789                 device_printf(sc->jme_dev,
2790                     "%s: initialization failed: no memory for Rx buffers.\n",
2791 		    __func__);
2792                 jme_stop(sc);
2793 		return;
2794         }
2795 	jme_init_tx_ring(sc);
2796 	/* Initialize shadow status block. */
2797 	jme_init_ssb(sc);
2798 
2799 	/* Reprogram the station address. */
2800 	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2801 
2802 	/*
2803 	 * Configure Tx queue.
2804 	 *  Tx priority queue weight value : 0
2805 	 *  Tx FIFO threshold for processing next packet : 16QW
2806 	 *  Maximum Tx DMA length : 512
2807 	 *  Allow Tx DMA burst.
2808 	 */
2809 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2810 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2811 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2812 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2813 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2814 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2815 
2816 	/* Set Tx descriptor counter. */
2817 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2818 
2819 	/* Set Tx ring address to the hardware. */
2820 	paddr = JME_TX_RING_ADDR(sc, 0);
2821 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2822 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2823 
2824 	/* Configure TxMAC parameters. */
2825 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2826 	reg |= TXMAC_THRESH_1_PKT;
2827 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2828 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2829 
2830 	/*
2831 	 * Configure Rx queue.
2832 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2833 	 *  FIFO threshold for processing next packet : 128QW
2834 	 *  Rx queue 0 select
2835 	 *  Max Rx DMA length : 128
2836 	 *  Rx descriptor retry : 32
2837 	 *  Rx descriptor retry time gap : 256ns
2838 	 *  Don't receive runt/bad frame.
2839 	 */
2840 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2841 	/*
2842 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2843 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2844 	 * decrease FIFO threshold to reduce the FIFO overruns for
2845 	 * frames larger than 4000 bytes.
2846 	 * For best performance of standard MTU sized frames use
2847 	 * maximum allowable FIFO threshold, 128QW. Note these do
2848 	 * not hold on chip full mask version >=2. For these
2849 	 * controllers 64QW and 128QW are not valid value.
2850 	 */
2851 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2852 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2853 	else {
2854 		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2855 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2856 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2857 		else
2858 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2859 	}
2860 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2861 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2862 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2863 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2864 
2865 	/* Set Rx descriptor counter. */
2866 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2867 
2868 	/* Set Rx ring address to the hardware. */
2869 	paddr = JME_RX_RING_ADDR(sc, 0);
2870 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2871 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2872 
2873 	/* Clear receive filter. */
2874 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2875 	/* Set up the receive filter. */
2876 	jme_set_filter(sc);
2877 	jme_set_vlan(sc);
2878 
2879 	/*
2880 	 * Disable all WOL bits as WOL can interfere normal Rx
2881 	 * operation. Also clear WOL detection status bits.
2882 	 */
2883 	reg = CSR_READ_4(sc, JME_PMCS);
2884 	reg &= ~PMCS_WOL_ENB_MASK;
2885 	CSR_WRITE_4(sc, JME_PMCS, reg);
2886 
2887 	reg = CSR_READ_4(sc, JME_RXMAC);
2888 	/*
2889 	 * Pad 10bytes right before received frame. This will greatly
2890 	 * help Rx performance on strict-alignment architectures as
2891 	 * it does not need to copy the frame to align the payload.
2892 	 */
2893 	reg |= RXMAC_PAD_10BYTES;
2894 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2895 		reg |= RXMAC_CSUM_ENB;
2896 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2897 
2898 	/* Configure general purpose reg0 */
2899 	reg = CSR_READ_4(sc, JME_GPREG0);
2900 	reg &= ~GPREG0_PCC_UNIT_MASK;
2901 	/* Set PCC timer resolution to micro-seconds unit. */
2902 	reg |= GPREG0_PCC_UNIT_US;
2903 	/*
2904 	 * Disable all shadow register posting as we have to read
2905 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2906 	 * that it's hard to synchronize interrupt status between
2907 	 * hardware and software with shadow posting due to
2908 	 * requirements of bus_dmamap_sync(9).
2909 	 */
2910 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2911 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2912 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2913 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2914 	/* Disable posting of DW0. */
2915 	reg &= ~GPREG0_POST_DW0_ENB;
2916 	/* Clear PME message. */
2917 	reg &= ~GPREG0_PME_ENB;
2918 	/* Set PHY address. */
2919 	reg &= ~GPREG0_PHY_ADDR_MASK;
2920 	reg |= sc->jme_phyaddr;
2921 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2922 
2923 	/* Configure Tx queue 0 packet completion coalescing. */
2924 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2925 	    PCCTX_COAL_TO_MASK;
2926 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2927 	    PCCTX_COAL_PKT_MASK;
2928 	reg |= PCCTX_COAL_TXQ0;
2929 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2930 
2931 	/* Configure Rx queue 0 packet completion coalescing. */
2932 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2933 	    PCCRX_COAL_TO_MASK;
2934 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2935 	    PCCRX_COAL_PKT_MASK;
2936 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2937 
2938 	/*
2939 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2940 	 * generates an interrupt when the time interval between two
2941 	 * back-to-back incoming/outgoing packet is long enough for
2942 	 * it to reach its timer value 0. The arrival of new packets
2943 	 * after timer has started causes the PCD timer to restart.
2944 	 * Unfortunately, it's not clear how PCD is useful at this
2945 	 * moment, so just use the same of PCC parameters.
2946 	 */
2947 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2948 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2949 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2950 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2951 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2952 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2953 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2954 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2955 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2956 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2957 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2958 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2959 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2960 	}
2961 
2962 	/* Configure shadow status block but don't enable posting. */
2963 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2964 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2965 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2966 
2967 	/* Disable Timer 1 and Timer 2. */
2968 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2969 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2970 
2971 	/* Configure retry transmit period, retry limit value. */
2972 	CSR_WRITE_4(sc, JME_TXTRHD,
2973 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2974 	    TXTRHD_RT_PERIOD_MASK) |
2975 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2976 	    TXTRHD_RT_LIMIT_SHIFT));
2977 
2978 	/* Disable RSS. */
2979 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2980 
2981 	/* Initialize the interrupt mask. */
2982 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2983 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2984 
2985 	/*
2986 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2987 	 * done after detection of valid link in jme_link_task.
2988 	 */
2989 
2990 	sc->jme_flags &= ~JME_FLAG_LINK;
2991 	/* Set the current media. */
2992 	mii_mediachg(mii);
2993 
2994 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2995 
2996 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2997 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2998 }
2999 
3000 static void
3001 jme_stop(struct jme_softc *sc)
3002 {
3003 	if_t ifp;
3004 	struct jme_txdesc *txd;
3005 	struct jme_rxdesc *rxd;
3006 	int i;
3007 
3008 	JME_LOCK_ASSERT(sc);
3009 	/*
3010 	 * Mark the interface down and cancel the watchdog timer.
3011 	 */
3012 	ifp = sc->jme_ifp;
3013 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
3014 	sc->jme_flags &= ~JME_FLAG_LINK;
3015 	callout_stop(&sc->jme_tick_ch);
3016 	sc->jme_watchdog_timer = 0;
3017 
3018 	/*
3019 	 * Disable interrupts.
3020 	 */
3021 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3022 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3023 
3024 	/* Disable updating shadow status block. */
3025 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3026 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3027 
3028 	/* Stop receiver, transmitter. */
3029 	jme_stop_rx(sc);
3030 	jme_stop_tx(sc);
3031 
3032 	 /* Reclaim Rx/Tx buffers that have been completed. */
3033 	jme_rxintr(sc, JME_RX_RING_CNT);
3034 	if (sc->jme_cdata.jme_rxhead != NULL)
3035 		m_freem(sc->jme_cdata.jme_rxhead);
3036 	JME_RXCHAIN_RESET(sc);
3037 	jme_txeof(sc);
3038 	/*
3039 	 * Free RX and TX mbufs still in the queues.
3040 	 */
3041 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3042 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3043 		if (rxd->rx_m != NULL) {
3044 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3045 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3046 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3047 			    rxd->rx_dmamap);
3048 			m_freem(rxd->rx_m);
3049 			rxd->rx_m = NULL;
3050 		}
3051         }
3052 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3053 		txd = &sc->jme_cdata.jme_txdesc[i];
3054 		if (txd->tx_m != NULL) {
3055 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3056 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3057 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3058 			    txd->tx_dmamap);
3059 			m_freem(txd->tx_m);
3060 			txd->tx_m = NULL;
3061 			txd->tx_ndesc = 0;
3062 		}
3063         }
3064 	jme_stats_update(sc);
3065 	jme_stats_save(sc);
3066 }
3067 
3068 static void
3069 jme_stop_tx(struct jme_softc *sc)
3070 {
3071 	uint32_t reg;
3072 	int i;
3073 
3074 	reg = CSR_READ_4(sc, JME_TXCSR);
3075 	if ((reg & TXCSR_TX_ENB) == 0)
3076 		return;
3077 	reg &= ~TXCSR_TX_ENB;
3078 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3079 	for (i = JME_TIMEOUT; i > 0; i--) {
3080 		DELAY(1);
3081 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3082 			break;
3083 	}
3084 	if (i == 0)
3085 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3086 }
3087 
3088 static void
3089 jme_stop_rx(struct jme_softc *sc)
3090 {
3091 	uint32_t reg;
3092 	int i;
3093 
3094 	reg = CSR_READ_4(sc, JME_RXCSR);
3095 	if ((reg & RXCSR_RX_ENB) == 0)
3096 		return;
3097 	reg &= ~RXCSR_RX_ENB;
3098 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3099 	for (i = JME_TIMEOUT; i > 0; i--) {
3100 		DELAY(1);
3101 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3102 			break;
3103 	}
3104 	if (i == 0)
3105 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3106 }
3107 
3108 static void
3109 jme_init_tx_ring(struct jme_softc *sc)
3110 {
3111 	struct jme_ring_data *rd;
3112 	struct jme_txdesc *txd;
3113 	int i;
3114 
3115 	sc->jme_cdata.jme_tx_prod = 0;
3116 	sc->jme_cdata.jme_tx_cons = 0;
3117 	sc->jme_cdata.jme_tx_cnt = 0;
3118 
3119 	rd = &sc->jme_rdata;
3120 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3121 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3122 		txd = &sc->jme_cdata.jme_txdesc[i];
3123 		txd->tx_m = NULL;
3124 		txd->tx_desc = &rd->jme_tx_ring[i];
3125 		txd->tx_ndesc = 0;
3126 	}
3127 
3128 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3129 	    sc->jme_cdata.jme_tx_ring_map,
3130 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3131 }
3132 
3133 static void
3134 jme_init_ssb(struct jme_softc *sc)
3135 {
3136 	struct jme_ring_data *rd;
3137 
3138 	rd = &sc->jme_rdata;
3139 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3140 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3141 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3142 }
3143 
3144 static int
3145 jme_init_rx_ring(struct jme_softc *sc)
3146 {
3147 	struct jme_ring_data *rd;
3148 	struct jme_rxdesc *rxd;
3149 	int i;
3150 
3151 	sc->jme_cdata.jme_rx_cons = 0;
3152 	JME_RXCHAIN_RESET(sc);
3153 	sc->jme_morework = 0;
3154 
3155 	rd = &sc->jme_rdata;
3156 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3157 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3158 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3159 		rxd->rx_m = NULL;
3160 		rxd->rx_desc = &rd->jme_rx_ring[i];
3161 		if (jme_newbuf(sc, rxd) != 0)
3162 			return (ENOBUFS);
3163 	}
3164 
3165 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3166 	    sc->jme_cdata.jme_rx_ring_map,
3167 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3168 
3169 	return (0);
3170 }
3171 
3172 static int
3173 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3174 {
3175 	struct jme_desc *desc;
3176 	struct mbuf *m;
3177 	bus_dma_segment_t segs[1];
3178 	bus_dmamap_t map;
3179 	int nsegs;
3180 
3181 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3182 	if (m == NULL)
3183 		return (ENOBUFS);
3184 	/*
3185 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3186 	 * takes advantage of 10 bytes padding feature of hardware
3187 	 * in order not to copy entire frame to align IP header on
3188 	 * 32bit boundary.
3189 	 */
3190 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3191 
3192 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3193 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3194 		m_freem(m);
3195 		return (ENOBUFS);
3196 	}
3197 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3198 
3199 	if (rxd->rx_m != NULL) {
3200 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3201 		    BUS_DMASYNC_POSTREAD);
3202 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3203 	}
3204 	map = rxd->rx_dmamap;
3205 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3206 	sc->jme_cdata.jme_rx_sparemap = map;
3207 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3208 	    BUS_DMASYNC_PREREAD);
3209 	rxd->rx_m = m;
3210 
3211 	desc = rxd->rx_desc;
3212 	desc->buflen = htole32(segs[0].ds_len);
3213 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3214 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3215 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3216 
3217 	return (0);
3218 }
3219 
3220 static void
3221 jme_set_vlan(struct jme_softc *sc)
3222 {
3223 	if_t ifp;
3224 	uint32_t reg;
3225 
3226 	JME_LOCK_ASSERT(sc);
3227 
3228 	ifp = sc->jme_ifp;
3229 	reg = CSR_READ_4(sc, JME_RXMAC);
3230 	reg &= ~RXMAC_VLAN_ENB;
3231 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3232 		reg |= RXMAC_VLAN_ENB;
3233 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3234 }
3235 
3236 static u_int
3237 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3238 {
3239 	uint32_t crc, *mchash = arg;
3240 
3241 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3242 
3243 	/* Just want the 6 least significant bits. */
3244 	crc &= 0x3f;
3245 
3246 	/* Set the corresponding bit in the hash table. */
3247 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3248 
3249 	return (1);
3250 }
3251 
3252 static void
3253 jme_set_filter(struct jme_softc *sc)
3254 {
3255 	if_t ifp;
3256 	uint32_t mchash[2];
3257 	uint32_t rxcfg;
3258 
3259 	JME_LOCK_ASSERT(sc);
3260 
3261 	ifp = sc->jme_ifp;
3262 
3263 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3264 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3265 	    RXMAC_ALLMULTI);
3266 	/* Always accept frames destined to our station address. */
3267 	rxcfg |= RXMAC_UNICAST;
3268 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3269 		rxcfg |= RXMAC_BROADCAST;
3270 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3271 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3272 			rxcfg |= RXMAC_PROMISC;
3273 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3274 			rxcfg |= RXMAC_ALLMULTI;
3275 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3276 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3277 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3278 		return;
3279 	}
3280 
3281 	/*
3282 	 * Set up the multicast address filter by passing all multicast
3283 	 * addresses through a CRC generator, and then using the low-order
3284 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3285 	 * high order bits select the register, while the rest of the bits
3286 	 * select the bit within the register.
3287 	 */
3288 	rxcfg |= RXMAC_MULTICAST;
3289 	bzero(mchash, sizeof(mchash));
3290 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3291 
3292 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3293 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3294 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3295 }
3296 
3297 static void
3298 jme_stats_clear(struct jme_softc *sc)
3299 {
3300 
3301 	JME_LOCK_ASSERT(sc);
3302 
3303 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3304 		return;
3305 
3306 	/* Disable and clear counters. */
3307 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3308 	/* Activate hw counters. */
3309 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3310 	CSR_READ_4(sc, JME_STATCSR);
3311 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3312 }
3313 
3314 static void
3315 jme_stats_save(struct jme_softc *sc)
3316 {
3317 
3318 	JME_LOCK_ASSERT(sc);
3319 
3320 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3321 		return;
3322 	/* Save current counters. */
3323 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3324 	/* Disable and clear counters. */
3325 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3326 }
3327 
3328 static void
3329 jme_stats_update(struct jme_softc *sc)
3330 {
3331 	struct jme_hw_stats *stat, *ostat;
3332 	uint32_t reg;
3333 
3334 	JME_LOCK_ASSERT(sc);
3335 
3336 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3337 		return;
3338 	stat = &sc->jme_stats;
3339 	ostat = &sc->jme_ostats;
3340 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3341 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3342 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3343 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3344 	    STAT_RX_CRC_ERR_SHIFT;
3345 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3346 	    STAT_RX_MII_ERR_SHIFT;
3347 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3348 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3349 	    STAT_RXERR_OFLOW_SHIFT;
3350 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3351 	    STAT_RXERR_MPTY_SHIFT;
3352 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3353 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3354 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3355 
3356 	/* Account for previous counters. */
3357 	stat->rx_good_frames += ostat->rx_good_frames;
3358 	stat->rx_crc_errs += ostat->rx_crc_errs;
3359 	stat->rx_mii_errs += ostat->rx_mii_errs;
3360 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3361 	stat->rx_desc_empty += ostat->rx_desc_empty;
3362 	stat->rx_bad_frames += ostat->rx_bad_frames;
3363 	stat->tx_good_frames += ostat->tx_good_frames;
3364 	stat->tx_bad_frames += ostat->tx_bad_frames;
3365 }
3366 
3367 static void
3368 jme_phy_down(struct jme_softc *sc)
3369 {
3370 	uint32_t reg;
3371 
3372 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3373 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3374 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3375 		reg |= 0x0000000F;
3376 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3377 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3378 		reg &= ~PE1_GIGA_PDOWN_MASK;
3379 		reg |= PE1_GIGA_PDOWN_D3;
3380 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3381 	}
3382 }
3383 
3384 static void
3385 jme_phy_up(struct jme_softc *sc)
3386 {
3387 	uint32_t reg;
3388 	uint16_t bmcr;
3389 
3390 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3391 	bmcr &= ~BMCR_PDOWN;
3392 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3393 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3394 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3395 		reg &= ~0x0000000F;
3396 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3397 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3398 		reg &= ~PE1_GIGA_PDOWN_MASK;
3399 		reg |= PE1_GIGA_PDOWN_DIS;
3400 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3401 	}
3402 }
3403 
3404 static int
3405 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3406 {
3407 	int error, value;
3408 
3409 	if (arg1 == NULL)
3410 		return (EINVAL);
3411 	value = *(int *)arg1;
3412 	error = sysctl_handle_int(oidp, &value, 0, req);
3413 	if (error || req->newptr == NULL)
3414 		return (error);
3415 	if (value < low || value > high)
3416 		return (EINVAL);
3417         *(int *)arg1 = value;
3418 
3419         return (0);
3420 }
3421 
3422 static int
3423 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3424 {
3425 	return (sysctl_int_range(oidp, arg1, arg2, req,
3426 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3427 }
3428 
3429 static int
3430 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3431 {
3432 	return (sysctl_int_range(oidp, arg1, arg2, req,
3433 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3434 }
3435 
3436 static int
3437 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3438 {
3439 	return (sysctl_int_range(oidp, arg1, arg2, req,
3440 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3441 }
3442 
3443 static int
3444 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3445 {
3446 	return (sysctl_int_range(oidp, arg1, arg2, req,
3447 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3448 }
3449 
3450 static int
3451 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3452 {
3453 	return (sysctl_int_range(oidp, arg1, arg2, req,
3454 	    JME_PROC_MIN, JME_PROC_MAX));
3455 }
3456