xref: /freebsd/sys/dev/jme/if_jme.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/endian.h>
34 #include <sys/kernel.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/rman.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/taskqueue.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_vlan_var.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/bus.h>
68 #include <machine/in_cksum.h>
69 
70 #include <dev/jme/if_jmereg.h>
71 #include <dev/jme/if_jmevar.h>
72 
73 /* "device miibus" required.  See GENERIC if you get errors here. */
74 #include "miibus_if.h"
75 
76 /* Define the following to disable printing Rx errors. */
77 #undef	JME_SHOW_ERRORS
78 
79 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
80 
81 MODULE_DEPEND(jme, pci, 1, 1, 1);
82 MODULE_DEPEND(jme, ether, 1, 1, 1);
83 MODULE_DEPEND(jme, miibus, 1, 1, 1);
84 
85 /* Tunables. */
86 static int msi_disable = 0;
87 static int msix_disable = 0;
88 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
89 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
90 
91 /*
92  * Devices supported by this driver.
93  */
94 static struct jme_dev {
95 	uint16_t	jme_vendorid;
96 	uint16_t	jme_deviceid;
97 	const char	*jme_name;
98 } jme_devs[] = {
99 	{ VENDORID_JMICRON, DEVICEID_JMC250,
100 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
101 	{ VENDORID_JMICRON, DEVICEID_JMC260,
102 	    "JMicron Inc, JMC26x Fast Ethernet" },
103 };
104 
105 static int jme_miibus_readreg(device_t, int, int);
106 static int jme_miibus_writereg(device_t, int, int, int);
107 static void jme_miibus_statchg(device_t);
108 static void jme_mediastatus(if_t, struct ifmediareq *);
109 static int jme_mediachange(if_t);
110 static int jme_probe(device_t);
111 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
112 static int jme_eeprom_macaddr(struct jme_softc *);
113 static int jme_efuse_macaddr(struct jme_softc *);
114 static void jme_reg_macaddr(struct jme_softc *);
115 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
116 static void jme_map_intr_vector(struct jme_softc *);
117 static int jme_attach(device_t);
118 static int jme_detach(device_t);
119 static void jme_sysctl_node(struct jme_softc *);
120 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
121 static int jme_dma_alloc(struct jme_softc *);
122 static void jme_dma_free(struct jme_softc *);
123 static int jme_shutdown(device_t);
124 static void jme_setlinkspeed(struct jme_softc *);
125 static void jme_setwol(struct jme_softc *);
126 static int jme_suspend(device_t);
127 static int jme_resume(device_t);
128 static int jme_encap(struct jme_softc *, struct mbuf **);
129 static void jme_start(if_t);
130 static void jme_start_locked(if_t);
131 static void jme_watchdog(struct jme_softc *);
132 static int jme_ioctl(if_t, u_long, caddr_t);
133 static void jme_mac_config(struct jme_softc *);
134 static void jme_link_task(void *, int);
135 static int jme_intr(void *);
136 static void jme_int_task(void *, int);
137 static void jme_txeof(struct jme_softc *);
138 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
139 static void jme_rxeof(struct jme_softc *);
140 static int jme_rxintr(struct jme_softc *, int);
141 static void jme_tick(void *);
142 static void jme_reset(struct jme_softc *);
143 static void jme_init(void *);
144 static void jme_init_locked(struct jme_softc *);
145 static void jme_stop(struct jme_softc *);
146 static void jme_stop_tx(struct jme_softc *);
147 static void jme_stop_rx(struct jme_softc *);
148 static int jme_init_rx_ring(struct jme_softc *);
149 static void jme_init_tx_ring(struct jme_softc *);
150 static void jme_init_ssb(struct jme_softc *);
151 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
152 static void jme_set_vlan(struct jme_softc *);
153 static void jme_set_filter(struct jme_softc *);
154 static void jme_stats_clear(struct jme_softc *);
155 static void jme_stats_save(struct jme_softc *);
156 static void jme_stats_update(struct jme_softc *);
157 static void jme_phy_down(struct jme_softc *);
158 static void jme_phy_up(struct jme_softc *);
159 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
160 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
161 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
162 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
163 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
165 
166 
167 static device_method_t jme_methods[] = {
168 	/* Device interface. */
169 	DEVMETHOD(device_probe,		jme_probe),
170 	DEVMETHOD(device_attach,	jme_attach),
171 	DEVMETHOD(device_detach,	jme_detach),
172 	DEVMETHOD(device_shutdown,	jme_shutdown),
173 	DEVMETHOD(device_suspend,	jme_suspend),
174 	DEVMETHOD(device_resume,	jme_resume),
175 
176 	/* MII interface. */
177 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
178 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
179 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
180 
181 	{ NULL, NULL }
182 };
183 
184 static driver_t jme_driver = {
185 	"jme",
186 	jme_methods,
187 	sizeof(struct jme_softc)
188 };
189 
190 DRIVER_MODULE(jme, pci, jme_driver, 0, 0);
191 DRIVER_MODULE(miibus, jme, miibus_driver, 0, 0);
192 
193 static struct resource_spec jme_res_spec_mem[] = {
194 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
195 	{ -1,			0,		0 }
196 };
197 
198 static struct resource_spec jme_irq_spec_legacy[] = {
199 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
200 	{ -1,			0,		0 }
201 };
202 
203 static struct resource_spec jme_irq_spec_msi[] = {
204 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
205 	{ -1,			0,		0 }
206 };
207 
208 /*
209  *	Read a PHY register on the MII of the JMC250.
210  */
211 static int
212 jme_miibus_readreg(device_t dev, int phy, int reg)
213 {
214 	struct jme_softc *sc;
215 	uint32_t val;
216 	int i;
217 
218 	sc = device_get_softc(dev);
219 
220 	/* For FPGA version, PHY address 0 should be ignored. */
221 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
222 		return (0);
223 
224 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
225 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
226 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
227 		DELAY(1);
228 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
229 			break;
230 	}
231 
232 	if (i == 0) {
233 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
234 		return (0);
235 	}
236 
237 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
238 }
239 
240 /*
241  *	Write a PHY register on the MII of the JMC250.
242  */
243 static int
244 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
245 {
246 	struct jme_softc *sc;
247 	int i;
248 
249 	sc = device_get_softc(dev);
250 
251 	/* For FPGA version, PHY address 0 should be ignored. */
252 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
253 		return (0);
254 
255 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
256 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
257 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
258 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
259 		DELAY(1);
260 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
261 			break;
262 	}
263 
264 	if (i == 0)
265 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
266 
267 	return (0);
268 }
269 
270 /*
271  *	Callback from MII layer when media changes.
272  */
273 static void
274 jme_miibus_statchg(device_t dev)
275 {
276 	struct jme_softc *sc;
277 
278 	sc = device_get_softc(dev);
279 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
280 }
281 
282 /*
283  *	Get the current interface media status.
284  */
285 static void
286 jme_mediastatus(if_t ifp, struct ifmediareq *ifmr)
287 {
288 	struct jme_softc *sc;
289 	struct mii_data *mii;
290 
291 	sc = if_getsoftc(ifp);
292 	JME_LOCK(sc);
293 	if ((if_getflags(ifp) & IFF_UP) == 0) {
294 		JME_UNLOCK(sc);
295 		return;
296 	}
297 	mii = device_get_softc(sc->jme_miibus);
298 
299 	mii_pollstat(mii);
300 	ifmr->ifm_status = mii->mii_media_status;
301 	ifmr->ifm_active = mii->mii_media_active;
302 	JME_UNLOCK(sc);
303 }
304 
305 /*
306  *	Set hardware to newly-selected media.
307  */
308 static int
309 jme_mediachange(if_t ifp)
310 {
311 	struct jme_softc *sc;
312 	struct mii_data *mii;
313 	struct mii_softc *miisc;
314 	int error;
315 
316 	sc = if_getsoftc(ifp);
317 	JME_LOCK(sc);
318 	mii = device_get_softc(sc->jme_miibus);
319 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
320 		PHY_RESET(miisc);
321 	error = mii_mediachg(mii);
322 	JME_UNLOCK(sc);
323 
324 	return (error);
325 }
326 
327 static int
328 jme_probe(device_t dev)
329 {
330 	struct jme_dev *sp;
331 	int i;
332 	uint16_t vendor, devid;
333 
334 	vendor = pci_get_vendor(dev);
335 	devid = pci_get_device(dev);
336 	sp = jme_devs;
337 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
338 		if (vendor == sp->jme_vendorid &&
339 		    devid == sp->jme_deviceid) {
340 			device_set_desc(dev, sp->jme_name);
341 			return (BUS_PROBE_DEFAULT);
342 		}
343 	}
344 
345 	return (ENXIO);
346 }
347 
348 static int
349 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
350 {
351 	uint32_t reg;
352 	int i;
353 
354 	*val = 0;
355 	for (i = JME_TIMEOUT; i > 0; i--) {
356 		reg = CSR_READ_4(sc, JME_SMBCSR);
357 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
358 			break;
359 		DELAY(1);
360 	}
361 
362 	if (i == 0) {
363 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
364 		return (ETIMEDOUT);
365 	}
366 
367 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
368 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
369 	for (i = JME_TIMEOUT; i > 0; i--) {
370 		DELAY(1);
371 		reg = CSR_READ_4(sc, JME_SMBINTF);
372 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
373 			break;
374 	}
375 
376 	if (i == 0) {
377 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
378 		return (ETIMEDOUT);
379 	}
380 
381 	reg = CSR_READ_4(sc, JME_SMBINTF);
382 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
383 
384 	return (0);
385 }
386 
387 static int
388 jme_eeprom_macaddr(struct jme_softc *sc)
389 {
390 	uint8_t eaddr[ETHER_ADDR_LEN];
391 	uint8_t fup, reg, val;
392 	uint32_t offset;
393 	int match;
394 
395 	offset = 0;
396 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
397 	    fup != JME_EEPROM_SIG0)
398 		return (ENOENT);
399 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
400 	    fup != JME_EEPROM_SIG1)
401 		return (ENOENT);
402 	match = 0;
403 	do {
404 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
405 			break;
406 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
407 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
408 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
409 				break;
410 			if (reg >= JME_PAR0 &&
411 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
412 				if (jme_eeprom_read_byte(sc, offset + 2,
413 				    &val) != 0)
414 					break;
415 				eaddr[reg - JME_PAR0] = val;
416 				match++;
417 			}
418 		}
419 		/* Check for the end of EEPROM descriptor. */
420 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
421 			break;
422 		/* Try next eeprom descriptor. */
423 		offset += JME_EEPROM_DESC_BYTES;
424 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
425 
426 	if (match == ETHER_ADDR_LEN) {
427 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
428 		return (0);
429 	}
430 
431 	return (ENOENT);
432 }
433 
434 static int
435 jme_efuse_macaddr(struct jme_softc *sc)
436 {
437 	uint32_t reg;
438 	int i;
439 
440 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
441 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
442 	    EFUSE_CTL1_AUTOLAOD_DONE)
443 		return (ENOENT);
444 	/* Reset eFuse controller. */
445 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
446 	reg |= EFUSE_CTL2_RESET;
447 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
448 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
449 	reg &= ~EFUSE_CTL2_RESET;
450 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
451 
452 	/* Have eFuse reload station address to MAC controller. */
453 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
454 	reg &= ~EFUSE_CTL1_CMD_MASK;
455 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
456 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
457 
458 	/*
459 	 * Verify completion of eFuse autload command.  It should be
460 	 * completed within 108us.
461 	 */
462 	DELAY(110);
463 	for (i = 10; i > 0; i--) {
464 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
465 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
466 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
467 			DELAY(20);
468 			continue;
469 		}
470 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
471 			break;
472 		/* Station address loading is still in progress. */
473 		DELAY(20);
474 	}
475 	if (i == 0) {
476 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
477 		return (ETIMEDOUT);
478 	}
479 
480 	return (0);
481 }
482 
483 static void
484 jme_reg_macaddr(struct jme_softc *sc)
485 {
486 	uint32_t par0, par1;
487 
488 	/* Read station address. */
489 	par0 = CSR_READ_4(sc, JME_PAR0);
490 	par1 = CSR_READ_4(sc, JME_PAR1);
491 	par1 &= 0xFFFF;
492 	if ((par0 == 0 && par1 == 0) ||
493 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
494 		device_printf(sc->jme_dev,
495 		    "Failed to retrieve Ethernet address.\n");
496 	} else {
497 		/*
498 		 * For controllers that use eFuse, the station address
499 		 * could also be extracted from JME_PCI_PAR0 and
500 		 * JME_PCI_PAR1 registers in PCI configuration space.
501 		 * Each register holds exactly half of station address(24bits)
502 		 * so use JME_PAR0, JME_PAR1 registers instead.
503 		 */
504 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
505 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
506 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
507 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
508 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
509 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
510 	}
511 }
512 
513 static void
514 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
515 {
516 	uint32_t val;
517 	int i;
518 
519 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
520 		/*
521 		 * Avoid reprogramming station address if the address
522 		 * is the same as previous one.  Note, reprogrammed
523 		 * station address is permanent as if it was written
524 		 * to EEPROM. So if station address was changed by
525 		 * admistrator it's possible to lose factory configured
526 		 * address when driver fails to restore its address.
527 		 * (e.g. reboot or system crash)
528 		 */
529 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
530 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
531 				val = JME_EFUSE_EEPROM_FUNC0 <<
532 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
533 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
534 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
535 				val |= (JME_PAR0 + i) <<
536 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
537 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
538 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
539 				    val | JME_EFUSE_EEPROM_WRITE, 4);
540 			}
541 		}
542 	} else {
543 		CSR_WRITE_4(sc, JME_PAR0,
544 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
545 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
546 	}
547 }
548 
549 static void
550 jme_map_intr_vector(struct jme_softc *sc)
551 {
552 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
553 
554 	bzero(map, sizeof(map));
555 
556 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
557 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
558 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
559 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
560 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
561 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
562 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
563 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
564 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
565 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
566 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
567 	map[MSINUM_REG_INDEX(N_INTR_TXQ5_COMP)] |=
568 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
569 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
570 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
571 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
572 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
573 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
574 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
575 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
576 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
577 
578 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
579 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
580 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
581 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
582 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
583 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
584 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
585 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
586 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
587 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
588 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
589 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
590 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
591 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
592 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
593 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
594 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
595 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
596 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
597 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
598 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
599 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
600 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
601 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
602 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
603 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
604 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
605 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
606 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
607 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
608 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
609 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
610 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
611 
612 	/* Map all other interrupts source to MSI/MSIX vector 0. */
613 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
614 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
615 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
616 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
617 }
618 
619 static int
620 jme_attach(device_t dev)
621 {
622 	struct jme_softc *sc;
623 	if_t ifp;
624 	struct mii_softc *miisc;
625 	struct mii_data *mii;
626 	uint32_t reg;
627 	uint16_t burst;
628 	int error, i, mii_flags, msic, msixc, pmc;
629 
630 	error = 0;
631 	sc = device_get_softc(dev);
632 	sc->jme_dev = dev;
633 
634 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
635 	    MTX_DEF);
636 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
637 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
638 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
639 
640 	/*
641 	 * Map the device. JMC250 supports both memory mapped and I/O
642 	 * register space access. Because I/O register access should
643 	 * use different BARs to access registers it's waste of time
644 	 * to use I/O register spce access. JMC250 uses 16K to map
645 	 * entire memory space.
646 	 */
647 	pci_enable_busmaster(dev);
648 	sc->jme_res_spec = jme_res_spec_mem;
649 	sc->jme_irq_spec = jme_irq_spec_legacy;
650 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
651 	if (error != 0) {
652 		device_printf(dev, "cannot allocate memory resources.\n");
653 		goto fail;
654 	}
655 
656 	/* Allocate IRQ resources. */
657 	msixc = pci_msix_count(dev);
658 	msic = pci_msi_count(dev);
659 	if (bootverbose) {
660 		device_printf(dev, "MSIX count : %d\n", msixc);
661 		device_printf(dev, "MSI count : %d\n", msic);
662 	}
663 
664 	/* Use 1 MSI/MSI-X. */
665 	if (msixc > 1)
666 		msixc = 1;
667 	if (msic > 1)
668 		msic = 1;
669 	/* Prefer MSIX over MSI. */
670 	if (msix_disable == 0 || msi_disable == 0) {
671 		if (msix_disable == 0 && msixc > 0 &&
672 		    pci_alloc_msix(dev, &msixc) == 0) {
673 			if (msixc == 1) {
674 				device_printf(dev, "Using %d MSIX messages.\n",
675 				    msixc);
676 				sc->jme_flags |= JME_FLAG_MSIX;
677 				sc->jme_irq_spec = jme_irq_spec_msi;
678 			} else
679 				pci_release_msi(dev);
680 		}
681 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
682 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
683 			if (msic == 1) {
684 				device_printf(dev, "Using %d MSI messages.\n",
685 				    msic);
686 				sc->jme_flags |= JME_FLAG_MSI;
687 				sc->jme_irq_spec = jme_irq_spec_msi;
688 			} else
689 				pci_release_msi(dev);
690 		}
691 		/* Map interrupt vector 0, 1 and 2. */
692 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
693 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
694 			jme_map_intr_vector(sc);
695 	}
696 
697 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
698 	if (error != 0) {
699 		device_printf(dev, "cannot allocate IRQ resources.\n");
700 		goto fail;
701 	}
702 
703 	sc->jme_rev = pci_get_device(dev);
704 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
705 		sc->jme_flags |= JME_FLAG_FASTETH;
706 		sc->jme_flags |= JME_FLAG_NOJUMBO;
707 	}
708 	reg = CSR_READ_4(sc, JME_CHIPMODE);
709 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
710 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
711 	    CHIPMODE_NOT_FPGA)
712 		sc->jme_flags |= JME_FLAG_FPGA;
713 	if (bootverbose) {
714 		device_printf(dev, "PCI device revision : 0x%04x\n",
715 		    sc->jme_rev);
716 		device_printf(dev, "Chip revision : 0x%02x\n",
717 		    sc->jme_chip_rev);
718 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
719 			device_printf(dev, "FPGA revision : 0x%04x\n",
720 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
721 			    CHIPMODE_FPGA_REV_SHIFT);
722 	}
723 	if (sc->jme_chip_rev == 0xFF) {
724 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
725 		    sc->jme_rev);
726 		error = ENXIO;
727 		goto fail;
728 	}
729 
730 	/* Identify controller features and bugs. */
731 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
732 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
733 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
734 			sc->jme_flags |= JME_FLAG_DMA32BIT;
735 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
736 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
737 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
738 		sc->jme_flags |= JME_FLAG_HWMIB;
739 	}
740 
741 	/* Reset the ethernet controller. */
742 	jme_reset(sc);
743 
744 	/* Get station address. */
745 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
746 		error = jme_efuse_macaddr(sc);
747 		if (error == 0)
748 			jme_reg_macaddr(sc);
749 	} else {
750 		error = ENOENT;
751 		reg = CSR_READ_4(sc, JME_SMBCSR);
752 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
753 			error = jme_eeprom_macaddr(sc);
754 		if (error != 0 && bootverbose)
755 			device_printf(sc->jme_dev,
756 			    "ethernet hardware address not found in EEPROM.\n");
757 		if (error != 0)
758 			jme_reg_macaddr(sc);
759 	}
760 
761 	/*
762 	 * Save PHY address.
763 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
764 	 * requires PHY probing to get correct PHY address.
765 	 */
766 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
767 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
768 		    GPREG0_PHY_ADDR_MASK;
769 		if (bootverbose)
770 			device_printf(dev, "PHY is at address %d.\n",
771 			    sc->jme_phyaddr);
772 	} else
773 		sc->jme_phyaddr = 0;
774 
775 	/* Set max allowable DMA size. */
776 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
777 		sc->jme_flags |= JME_FLAG_PCIE;
778 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
779 		if (bootverbose) {
780 			device_printf(dev, "Read request size : %d bytes.\n",
781 			    128 << ((burst >> 12) & 0x07));
782 			device_printf(dev, "TLP payload size : %d bytes.\n",
783 			    128 << ((burst >> 5) & 0x07));
784 		}
785 		switch ((burst >> 12) & 0x07) {
786 		case 0:
787 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
788 			break;
789 		case 1:
790 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
791 			break;
792 		default:
793 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
794 			break;
795 		}
796 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
797 	} else {
798 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
800 	}
801 	/* Create coalescing sysctl node. */
802 	jme_sysctl_node(sc);
803 	if ((error = jme_dma_alloc(sc)) != 0)
804 		goto fail;
805 
806 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
807 	if_setsoftc(ifp, sc);
808 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
809 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
810 	if_setioctlfn(ifp, jme_ioctl);
811 	if_setstartfn(ifp, jme_start);
812 	if_setinitfn(ifp, jme_init);
813 	if_setsendqlen(ifp, JME_TX_RING_CNT - 1);
814 	if_setsendqready(ifp);
815 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
816 	if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
817 	if_sethwassist(ifp, JME_CSUM_FEATURES | CSUM_TSO);
818 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
819 		sc->jme_flags |= JME_FLAG_PMCAP;
820 		if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
821 	}
822 	if_setcapenable(ifp, if_getcapabilities(ifp));
823 
824 	/* Wakeup PHY. */
825 	jme_phy_up(sc);
826 	mii_flags = MIIF_DOPAUSE;
827 	/* Ask PHY calibration to PHY driver. */
828 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
829 		mii_flags |= MIIF_MACPRIV0;
830 	/* Set up MII bus. */
831 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
832 	    jme_mediastatus, BMSR_DEFCAPMASK,
833 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
834 	    MII_OFFSET_ANY, mii_flags);
835 	if (error != 0) {
836 		device_printf(dev, "attaching PHYs failed\n");
837 		goto fail;
838 	}
839 
840 	/*
841 	 * Force PHY to FPGA mode.
842 	 */
843 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
844 		mii = device_get_softc(sc->jme_miibus);
845 		if (mii->mii_instance != 0) {
846 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
847 				if (miisc->mii_phy != 0) {
848 					sc->jme_phyaddr = miisc->mii_phy;
849 					break;
850 				}
851 			}
852 			if (sc->jme_phyaddr != 0) {
853 				device_printf(sc->jme_dev,
854 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
855 				/* vendor magic. */
856 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
857 				    0x0004);
858 			}
859 		}
860 	}
861 
862 	ether_ifattach(ifp, sc->jme_eaddr);
863 
864 	/* VLAN capability setup */
865 	if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
866 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
867 	if_setcapenable(ifp, if_getcapabilities(ifp));
868 
869 	/* Tell the upper layer(s) we support long frames. */
870 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
871 
872 	/* Create local taskq. */
873 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
874 	    taskqueue_thread_enqueue, &sc->jme_tq);
875 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
876 	    device_get_nameunit(sc->jme_dev));
877 
878 	for (i = 0; i < 1; i++) {
879 		error = bus_setup_intr(dev, sc->jme_irq[i],
880 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
881 		    &sc->jme_intrhand[i]);
882 		if (error != 0)
883 			break;
884 	}
885 
886 	if (error != 0) {
887 		device_printf(dev, "could not set up interrupt handler.\n");
888 		taskqueue_free(sc->jme_tq);
889 		sc->jme_tq = NULL;
890 		ether_ifdetach(ifp);
891 		goto fail;
892 	}
893 
894 fail:
895 	if (error != 0)
896 		jme_detach(dev);
897 
898 	return (error);
899 }
900 
901 static int
902 jme_detach(device_t dev)
903 {
904 	struct jme_softc *sc;
905 	if_t ifp;
906 	int i;
907 
908 	sc = device_get_softc(dev);
909 
910 	ifp = sc->jme_ifp;
911 	if (device_is_attached(dev)) {
912 		JME_LOCK(sc);
913 		sc->jme_flags |= JME_FLAG_DETACH;
914 		jme_stop(sc);
915 		JME_UNLOCK(sc);
916 		callout_drain(&sc->jme_tick_ch);
917 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
918 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
919 		/* Restore possibly modified station address. */
920 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
921 			jme_set_macaddr(sc, sc->jme_eaddr);
922 		ether_ifdetach(ifp);
923 	}
924 
925 	if (sc->jme_tq != NULL) {
926 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
927 		taskqueue_free(sc->jme_tq);
928 		sc->jme_tq = NULL;
929 	}
930 
931 	bus_generic_detach(dev);
932 	jme_dma_free(sc);
933 
934 	if (ifp != NULL) {
935 		if_free(ifp);
936 		sc->jme_ifp = NULL;
937 	}
938 
939 	for (i = 0; i < 1; i++) {
940 		if (sc->jme_intrhand[i] != NULL) {
941 			bus_teardown_intr(dev, sc->jme_irq[i],
942 			    sc->jme_intrhand[i]);
943 			sc->jme_intrhand[i] = NULL;
944 		}
945 	}
946 
947 	if (sc->jme_irq[0] != NULL)
948 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
949 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
950 		pci_release_msi(dev);
951 	if (sc->jme_res[0] != NULL)
952 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
953 	mtx_destroy(&sc->jme_mtx);
954 
955 	return (0);
956 }
957 
958 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
959 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
960 
961 static void
962 jme_sysctl_node(struct jme_softc *sc)
963 {
964 	struct sysctl_ctx_list *ctx;
965 	struct sysctl_oid_list *child, *parent;
966 	struct sysctl_oid *tree;
967 	struct jme_hw_stats *stats;
968 	int error;
969 
970 	stats = &sc->jme_stats;
971 	ctx = device_get_sysctl_ctx(sc->jme_dev);
972 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
973 
974 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
975 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_to,
976 	    0, sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
977 
978 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
979 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_tx_coal_pkt,
980 	    0, sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
981 
982 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
983 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_to,
984 	    0, sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
985 
986 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
987 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->jme_rx_coal_pkt,
988 	    0, sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
989 
990 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
991 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
992 	    &sc->jme_process_limit, 0, sysctl_hw_jme_proc_limit, "I",
993 	    "max number of Rx events to process");
994 
995 	/* Pull in device tunables. */
996 	sc->jme_process_limit = JME_PROC_DEFAULT;
997 	error = resource_int_value(device_get_name(sc->jme_dev),
998 	    device_get_unit(sc->jme_dev), "process_limit",
999 	    &sc->jme_process_limit);
1000 	if (error == 0) {
1001 		if (sc->jme_process_limit < JME_PROC_MIN ||
1002 		    sc->jme_process_limit > JME_PROC_MAX) {
1003 			device_printf(sc->jme_dev,
1004 			    "process_limit value out of range; "
1005 			    "using default: %d\n", JME_PROC_DEFAULT);
1006 			sc->jme_process_limit = JME_PROC_DEFAULT;
1007 		}
1008 	}
1009 
1010 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1011 	error = resource_int_value(device_get_name(sc->jme_dev),
1012 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1013 	if (error == 0) {
1014 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1015 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1016 			device_printf(sc->jme_dev,
1017 			    "tx_coal_to value out of range; "
1018 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1019 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1020 		}
1021 	}
1022 
1023 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1024 	error = resource_int_value(device_get_name(sc->jme_dev),
1025 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1026 	if (error == 0) {
1027 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1028 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1029 			device_printf(sc->jme_dev,
1030 			    "tx_coal_pkt value out of range; "
1031 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1032 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1033 		}
1034 	}
1035 
1036 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1037 	error = resource_int_value(device_get_name(sc->jme_dev),
1038 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1039 	if (error == 0) {
1040 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1041 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1042 			device_printf(sc->jme_dev,
1043 			    "rx_coal_to value out of range; "
1044 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1045 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1046 		}
1047 	}
1048 
1049 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1050 	error = resource_int_value(device_get_name(sc->jme_dev),
1051 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1052 	if (error == 0) {
1053 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1054 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1055 			device_printf(sc->jme_dev,
1056 			    "tx_coal_pkt value out of range; "
1057 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1058 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1059 		}
1060 	}
1061 
1062 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1063 		return;
1064 
1065 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
1066 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "JME statistics");
1067 	parent = SYSCTL_CHILDREN(tree);
1068 
1069 	/* Rx statistics. */
1070 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx",
1071 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Rx MAC statistics");
1072 	child = SYSCTL_CHILDREN(tree);
1073 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1074 	    &stats->rx_good_frames, "Good frames");
1075 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1076 	    &stats->rx_crc_errs, "CRC errors");
1077 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1078 	    &stats->rx_mii_errs, "MII errors");
1079 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1080 	    &stats->rx_fifo_oflows, "FIFO overflows");
1081 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1082 	    &stats->rx_desc_empty, "Descriptor empty");
1083 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1084 	    &stats->rx_bad_frames, "Bad frames");
1085 
1086 	/* Tx statistics. */
1087 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx",
1088 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Tx MAC statistics");
1089 	child = SYSCTL_CHILDREN(tree);
1090 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1091 	    &stats->tx_good_frames, "Good frames");
1092 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1093 	    &stats->tx_bad_frames, "Bad frames");
1094 }
1095 
1096 #undef	JME_SYSCTL_STAT_ADD32
1097 
1098 struct jme_dmamap_arg {
1099 	bus_addr_t	jme_busaddr;
1100 };
1101 
1102 static void
1103 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1104 {
1105 	struct jme_dmamap_arg *ctx;
1106 
1107 	if (error != 0)
1108 		return;
1109 
1110 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1111 
1112 	ctx = (struct jme_dmamap_arg *)arg;
1113 	ctx->jme_busaddr = segs[0].ds_addr;
1114 }
1115 
1116 static int
1117 jme_dma_alloc(struct jme_softc *sc)
1118 {
1119 	struct jme_dmamap_arg ctx;
1120 	struct jme_txdesc *txd;
1121 	struct jme_rxdesc *rxd;
1122 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1123 	int error, i;
1124 
1125 	lowaddr = BUS_SPACE_MAXADDR;
1126 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1127 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1128 
1129 again:
1130 	/* Create parent ring tag. */
1131 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1132 	    1, 0,			/* algnmnt, boundary */
1133 	    lowaddr,			/* lowaddr */
1134 	    BUS_SPACE_MAXADDR,		/* highaddr */
1135 	    NULL, NULL,			/* filter, filterarg */
1136 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1137 	    0,				/* nsegments */
1138 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1139 	    0,				/* flags */
1140 	    NULL, NULL,			/* lockfunc, lockarg */
1141 	    &sc->jme_cdata.jme_ring_tag);
1142 	if (error != 0) {
1143 		device_printf(sc->jme_dev,
1144 		    "could not create parent ring DMA tag.\n");
1145 		goto fail;
1146 	}
1147 	/* Create tag for Tx ring. */
1148 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1149 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1150 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1151 	    BUS_SPACE_MAXADDR,		/* highaddr */
1152 	    NULL, NULL,			/* filter, filterarg */
1153 	    JME_TX_RING_SIZE,		/* maxsize */
1154 	    1,				/* nsegments */
1155 	    JME_TX_RING_SIZE,		/* maxsegsize */
1156 	    0,				/* flags */
1157 	    NULL, NULL,			/* lockfunc, lockarg */
1158 	    &sc->jme_cdata.jme_tx_ring_tag);
1159 	if (error != 0) {
1160 		device_printf(sc->jme_dev,
1161 		    "could not allocate Tx ring DMA tag.\n");
1162 		goto fail;
1163 	}
1164 
1165 	/* Create tag for Rx ring. */
1166 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1167 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1168 	    lowaddr,			/* lowaddr */
1169 	    BUS_SPACE_MAXADDR,		/* highaddr */
1170 	    NULL, NULL,			/* filter, filterarg */
1171 	    JME_RX_RING_SIZE,		/* maxsize */
1172 	    1,				/* nsegments */
1173 	    JME_RX_RING_SIZE,		/* maxsegsize */
1174 	    0,				/* flags */
1175 	    NULL, NULL,			/* lockfunc, lockarg */
1176 	    &sc->jme_cdata.jme_rx_ring_tag);
1177 	if (error != 0) {
1178 		device_printf(sc->jme_dev,
1179 		    "could not allocate Rx ring DMA tag.\n");
1180 		goto fail;
1181 	}
1182 
1183 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1184 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1185 	    (void **)&sc->jme_rdata.jme_tx_ring,
1186 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1187 	    &sc->jme_cdata.jme_tx_ring_map);
1188 	if (error != 0) {
1189 		device_printf(sc->jme_dev,
1190 		    "could not allocate DMA'able memory for Tx ring.\n");
1191 		goto fail;
1192 	}
1193 
1194 	ctx.jme_busaddr = 0;
1195 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1196 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1197 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1198 	if (error != 0 || ctx.jme_busaddr == 0) {
1199 		device_printf(sc->jme_dev,
1200 		    "could not load DMA'able memory for Tx ring.\n");
1201 		goto fail;
1202 	}
1203 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1204 
1205 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1206 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1207 	    (void **)&sc->jme_rdata.jme_rx_ring,
1208 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209 	    &sc->jme_cdata.jme_rx_ring_map);
1210 	if (error != 0) {
1211 		device_printf(sc->jme_dev,
1212 		    "could not allocate DMA'able memory for Rx ring.\n");
1213 		goto fail;
1214 	}
1215 
1216 	ctx.jme_busaddr = 0;
1217 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1218 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1219 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1220 	if (error != 0 || ctx.jme_busaddr == 0) {
1221 		device_printf(sc->jme_dev,
1222 		    "could not load DMA'able memory for Rx ring.\n");
1223 		goto fail;
1224 	}
1225 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1226 
1227 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1228 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1229 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1230 		    JME_TX_RING_SIZE;
1231 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1232 		    JME_RX_RING_SIZE;
1233 		if ((JME_ADDR_HI(tx_ring_end) !=
1234 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1235 		    (JME_ADDR_HI(rx_ring_end) !=
1236 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1237 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1238 			    "switching to 32bit DMA address mode.\n");
1239 			jme_dma_free(sc);
1240 			/* Limit DMA address space to 32bit and try again. */
1241 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1242 			goto again;
1243 		}
1244 	}
1245 
1246 	lowaddr = BUS_SPACE_MAXADDR;
1247 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1248 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1249 	/* Create parent buffer tag. */
1250 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1251 	    1, 0,			/* algnmnt, boundary */
1252 	    lowaddr,			/* lowaddr */
1253 	    BUS_SPACE_MAXADDR,		/* highaddr */
1254 	    NULL, NULL,			/* filter, filterarg */
1255 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1256 	    0,				/* nsegments */
1257 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1258 	    0,				/* flags */
1259 	    NULL, NULL,			/* lockfunc, lockarg */
1260 	    &sc->jme_cdata.jme_buffer_tag);
1261 	if (error != 0) {
1262 		device_printf(sc->jme_dev,
1263 		    "could not create parent buffer DMA tag.\n");
1264 		goto fail;
1265 	}
1266 
1267 	/* Create shadow status block tag. */
1268 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1269 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1270 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1271 	    BUS_SPACE_MAXADDR,		/* highaddr */
1272 	    NULL, NULL,			/* filter, filterarg */
1273 	    JME_SSB_SIZE,		/* maxsize */
1274 	    1,				/* nsegments */
1275 	    JME_SSB_SIZE,		/* maxsegsize */
1276 	    0,				/* flags */
1277 	    NULL, NULL,			/* lockfunc, lockarg */
1278 	    &sc->jme_cdata.jme_ssb_tag);
1279 	if (error != 0) {
1280 		device_printf(sc->jme_dev,
1281 		    "could not create shared status block DMA tag.\n");
1282 		goto fail;
1283 	}
1284 
1285 	/* Create tag for Tx buffers. */
1286 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1287 	    1, 0,			/* algnmnt, boundary */
1288 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1289 	    BUS_SPACE_MAXADDR,		/* highaddr */
1290 	    NULL, NULL,			/* filter, filterarg */
1291 	    JME_TSO_MAXSIZE,		/* maxsize */
1292 	    JME_MAXTXSEGS,		/* nsegments */
1293 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1294 	    0,				/* flags */
1295 	    NULL, NULL,			/* lockfunc, lockarg */
1296 	    &sc->jme_cdata.jme_tx_tag);
1297 	if (error != 0) {
1298 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1299 		goto fail;
1300 	}
1301 
1302 	/* Create tag for Rx buffers. */
1303 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1304 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1305 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1306 	    BUS_SPACE_MAXADDR,		/* highaddr */
1307 	    NULL, NULL,			/* filter, filterarg */
1308 	    MCLBYTES,			/* maxsize */
1309 	    1,				/* nsegments */
1310 	    MCLBYTES,			/* maxsegsize */
1311 	    0,				/* flags */
1312 	    NULL, NULL,			/* lockfunc, lockarg */
1313 	    &sc->jme_cdata.jme_rx_tag);
1314 	if (error != 0) {
1315 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1316 		goto fail;
1317 	}
1318 
1319 	/*
1320 	 * Allocate DMA'able memory and load the DMA map for shared
1321 	 * status block.
1322 	 */
1323 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1324 	    (void **)&sc->jme_rdata.jme_ssb_block,
1325 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1326 	    &sc->jme_cdata.jme_ssb_map);
1327 	if (error != 0) {
1328 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1329 		    "memory for shared status block.\n");
1330 		goto fail;
1331 	}
1332 
1333 	ctx.jme_busaddr = 0;
1334 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1335 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1336 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1337 	if (error != 0 || ctx.jme_busaddr == 0) {
1338 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1339 		    "for shared status block.\n");
1340 		goto fail;
1341 	}
1342 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1343 
1344 	/* Create DMA maps for Tx buffers. */
1345 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1346 		txd = &sc->jme_cdata.jme_txdesc[i];
1347 		txd->tx_m = NULL;
1348 		txd->tx_dmamap = NULL;
1349 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1350 		    &txd->tx_dmamap);
1351 		if (error != 0) {
1352 			device_printf(sc->jme_dev,
1353 			    "could not create Tx dmamap.\n");
1354 			goto fail;
1355 		}
1356 	}
1357 	/* Create DMA maps for Rx buffers. */
1358 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1359 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1360 		device_printf(sc->jme_dev,
1361 		    "could not create spare Rx dmamap.\n");
1362 		goto fail;
1363 	}
1364 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1365 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1366 		rxd->rx_m = NULL;
1367 		rxd->rx_dmamap = NULL;
1368 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1369 		    &rxd->rx_dmamap);
1370 		if (error != 0) {
1371 			device_printf(sc->jme_dev,
1372 			    "could not create Rx dmamap.\n");
1373 			goto fail;
1374 		}
1375 	}
1376 
1377 fail:
1378 	return (error);
1379 }
1380 
1381 static void
1382 jme_dma_free(struct jme_softc *sc)
1383 {
1384 	struct jme_txdesc *txd;
1385 	struct jme_rxdesc *rxd;
1386 	int i;
1387 
1388 	/* Tx ring */
1389 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1390 		if (sc->jme_rdata.jme_tx_ring_paddr)
1391 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1392 			    sc->jme_cdata.jme_tx_ring_map);
1393 		if (sc->jme_rdata.jme_tx_ring)
1394 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1395 			    sc->jme_rdata.jme_tx_ring,
1396 			    sc->jme_cdata.jme_tx_ring_map);
1397 		sc->jme_rdata.jme_tx_ring = NULL;
1398 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1399 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1400 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1401 	}
1402 	/* Rx ring */
1403 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1404 		if (sc->jme_rdata.jme_rx_ring_paddr)
1405 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1406 			    sc->jme_cdata.jme_rx_ring_map);
1407 		if (sc->jme_rdata.jme_rx_ring)
1408 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1409 			    sc->jme_rdata.jme_rx_ring,
1410 			    sc->jme_cdata.jme_rx_ring_map);
1411 		sc->jme_rdata.jme_rx_ring = NULL;
1412 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1413 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1414 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1415 	}
1416 	/* Tx buffers */
1417 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1418 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1419 			txd = &sc->jme_cdata.jme_txdesc[i];
1420 			if (txd->tx_dmamap != NULL) {
1421 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1422 				    txd->tx_dmamap);
1423 				txd->tx_dmamap = NULL;
1424 			}
1425 		}
1426 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1427 		sc->jme_cdata.jme_tx_tag = NULL;
1428 	}
1429 	/* Rx buffers */
1430 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1431 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1432 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1433 			if (rxd->rx_dmamap != NULL) {
1434 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1435 				    rxd->rx_dmamap);
1436 				rxd->rx_dmamap = NULL;
1437 			}
1438 		}
1439 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1440 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1441 			    sc->jme_cdata.jme_rx_sparemap);
1442 			sc->jme_cdata.jme_rx_sparemap = NULL;
1443 		}
1444 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1445 		sc->jme_cdata.jme_rx_tag = NULL;
1446 	}
1447 
1448 	/* Shared status block. */
1449 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1450 		if (sc->jme_rdata.jme_ssb_block_paddr)
1451 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1452 			    sc->jme_cdata.jme_ssb_map);
1453 		if (sc->jme_rdata.jme_ssb_block)
1454 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1455 			    sc->jme_rdata.jme_ssb_block,
1456 			    sc->jme_cdata.jme_ssb_map);
1457 		sc->jme_rdata.jme_ssb_block = NULL;
1458 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1459 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1460 		sc->jme_cdata.jme_ssb_tag = NULL;
1461 	}
1462 
1463 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1464 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1465 		sc->jme_cdata.jme_buffer_tag = NULL;
1466 	}
1467 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1468 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1469 		sc->jme_cdata.jme_ring_tag = NULL;
1470 	}
1471 }
1472 
1473 /*
1474  *	Make sure the interface is stopped at reboot time.
1475  */
1476 static int
1477 jme_shutdown(device_t dev)
1478 {
1479 
1480 	return (jme_suspend(dev));
1481 }
1482 
1483 /*
1484  * Unlike other ethernet controllers, JMC250 requires
1485  * explicit resetting link speed to 10/100Mbps as gigabit
1486  * link will cunsume more power than 375mA.
1487  * Note, we reset the link speed to 10/100Mbps with
1488  * auto-negotiation but we don't know whether that operation
1489  * would succeed or not as we have no control after powering
1490  * off. If the renegotiation fail WOL may not work. Running
1491  * at 1Gbps draws more power than 375mA at 3.3V which is
1492  * specified in PCI specification and that would result in
1493  * complete shutdowning power to ethernet controller.
1494  *
1495  * TODO
1496  *  Save current negotiated media speed/duplex/flow-control
1497  *  to softc and restore the same link again after resuming.
1498  *  PHY handling such as power down/resetting to 100Mbps
1499  *  may be better handled in suspend method in phy driver.
1500  */
1501 static void
1502 jme_setlinkspeed(struct jme_softc *sc)
1503 {
1504 	struct mii_data *mii;
1505 	int aneg, i;
1506 
1507 	JME_LOCK_ASSERT(sc);
1508 
1509 	mii = device_get_softc(sc->jme_miibus);
1510 	mii_pollstat(mii);
1511 	aneg = 0;
1512 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1513 		switch IFM_SUBTYPE(mii->mii_media_active) {
1514 		case IFM_10_T:
1515 		case IFM_100_TX:
1516 			return;
1517 		case IFM_1000_T:
1518 			aneg++;
1519 		default:
1520 			break;
1521 		}
1522 	}
1523 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1524 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1525 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1526 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1527 	    BMCR_AUTOEN | BMCR_STARTNEG);
1528 	DELAY(1000);
1529 	if (aneg != 0) {
1530 		/* Poll link state until jme(4) get a 10/100 link. */
1531 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1532 			mii_pollstat(mii);
1533 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1534 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1535 				case IFM_10_T:
1536 				case IFM_100_TX:
1537 					jme_mac_config(sc);
1538 					return;
1539 				default:
1540 					break;
1541 				}
1542 			}
1543 			JME_UNLOCK(sc);
1544 			pause("jmelnk", hz);
1545 			JME_LOCK(sc);
1546 		}
1547 		if (i == MII_ANEGTICKS_GIGE)
1548 			device_printf(sc->jme_dev, "establishing link failed, "
1549 			    "WOL may not work!");
1550 	}
1551 	/*
1552 	 * No link, force MAC to have 100Mbps, full-duplex link.
1553 	 * This is the last resort and may/may not work.
1554 	 */
1555 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1556 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1557 	jme_mac_config(sc);
1558 }
1559 
1560 static void
1561 jme_setwol(struct jme_softc *sc)
1562 {
1563 	if_t ifp;
1564 	uint32_t gpr, pmcs;
1565 	uint16_t pmstat;
1566 	int pmc;
1567 
1568 	JME_LOCK_ASSERT(sc);
1569 
1570 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1571 		/* Remove Tx MAC/offload clock to save more power. */
1572 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1573 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1574 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1575 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1576 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1577 			CSR_WRITE_4(sc, JME_GPREG1,
1578 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1579 		/* No PME capability, PHY power down. */
1580 		jme_phy_down(sc);
1581 		return;
1582 	}
1583 
1584 	ifp = sc->jme_ifp;
1585 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1586 	pmcs = CSR_READ_4(sc, JME_PMCS);
1587 	pmcs &= ~PMCS_WOL_ENB_MASK;
1588 	if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
1589 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1590 		/* Enable PME message. */
1591 		gpr |= GPREG0_PME_ENB;
1592 		/* For gigabit controllers, reset link speed to 10/100. */
1593 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1594 			jme_setlinkspeed(sc);
1595 	}
1596 
1597 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1598 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1599 	/* Remove Tx MAC/offload clock to save more power. */
1600 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1601 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1602 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1603 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1604 	/* Request PME. */
1605 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1606 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1607 	if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1608 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1609 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1610 	if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1611 		/* No WOL, PHY power down. */
1612 		jme_phy_down(sc);
1613 	}
1614 }
1615 
1616 static int
1617 jme_suspend(device_t dev)
1618 {
1619 	struct jme_softc *sc;
1620 
1621 	sc = device_get_softc(dev);
1622 
1623 	JME_LOCK(sc);
1624 	jme_stop(sc);
1625 	jme_setwol(sc);
1626 	JME_UNLOCK(sc);
1627 
1628 	return (0);
1629 }
1630 
1631 static int
1632 jme_resume(device_t dev)
1633 {
1634 	struct jme_softc *sc;
1635 	if_t ifp;
1636 	uint16_t pmstat;
1637 	int pmc;
1638 
1639 	sc = device_get_softc(dev);
1640 
1641 	JME_LOCK(sc);
1642 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1643 		pmstat = pci_read_config(sc->jme_dev,
1644 		    pmc + PCIR_POWER_STATUS, 2);
1645 		/* Disable PME clear PME status. */
1646 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1647 		pci_write_config(sc->jme_dev,
1648 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1649 	}
1650 	/* Wakeup PHY. */
1651 	jme_phy_up(sc);
1652 	ifp = sc->jme_ifp;
1653 	if ((if_getflags(ifp) & IFF_UP) != 0) {
1654 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1655 		jme_init_locked(sc);
1656 	}
1657 
1658 	JME_UNLOCK(sc);
1659 
1660 	return (0);
1661 }
1662 
1663 static int
1664 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1665 {
1666 	struct jme_txdesc *txd;
1667 	struct jme_desc *desc;
1668 	struct mbuf *m;
1669 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1670 	int error, i, nsegs, prod;
1671 	uint32_t cflags, tsosegsz;
1672 
1673 	JME_LOCK_ASSERT(sc);
1674 
1675 	M_ASSERTPKTHDR((*m_head));
1676 
1677 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1678 		/*
1679 		 * Due to the adherence to NDIS specification JMC250
1680 		 * assumes upper stack computed TCP pseudo checksum
1681 		 * without including payload length. This breaks
1682 		 * checksum offload for TSO case so recompute TCP
1683 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1684 		 * be much burden on modern CPUs.
1685 		 */
1686 		struct ether_header *eh;
1687 		struct ip *ip;
1688 		struct tcphdr *tcp;
1689 		uint32_t ip_off, poff;
1690 
1691 		if (M_WRITABLE(*m_head) == 0) {
1692 			/* Get a writable copy. */
1693 			m = m_dup(*m_head, M_NOWAIT);
1694 			m_freem(*m_head);
1695 			if (m == NULL) {
1696 				*m_head = NULL;
1697 				return (ENOBUFS);
1698 			}
1699 			*m_head = m;
1700 		}
1701 		ip_off = sizeof(struct ether_header);
1702 		m = m_pullup(*m_head, ip_off);
1703 		if (m == NULL) {
1704 			*m_head = NULL;
1705 			return (ENOBUFS);
1706 		}
1707 		eh = mtod(m, struct ether_header *);
1708 		/* Check the existence of VLAN tag. */
1709 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1710 			ip_off = sizeof(struct ether_vlan_header);
1711 			m = m_pullup(m, ip_off);
1712 			if (m == NULL) {
1713 				*m_head = NULL;
1714 				return (ENOBUFS);
1715 			}
1716 		}
1717 		m = m_pullup(m, ip_off + sizeof(struct ip));
1718 		if (m == NULL) {
1719 			*m_head = NULL;
1720 			return (ENOBUFS);
1721 		}
1722 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1723 		poff = ip_off + (ip->ip_hl << 2);
1724 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1725 		if (m == NULL) {
1726 			*m_head = NULL;
1727 			return (ENOBUFS);
1728 		}
1729 		/*
1730 		 * Reset IP checksum and recompute TCP pseudo
1731 		 * checksum that NDIS specification requires.
1732 		 */
1733 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1734 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1735 		ip->ip_sum = 0;
1736 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1737 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1738 			    ip->ip_dst.s_addr,
1739 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1740 			/* No need to TSO, force IP checksum offload. */
1741 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1742 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1743 		} else
1744 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1745 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1746 		*m_head = m;
1747 	}
1748 
1749 	prod = sc->jme_cdata.jme_tx_prod;
1750 	txd = &sc->jme_cdata.jme_txdesc[prod];
1751 
1752 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1753 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1754 	if (error == EFBIG) {
1755 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1756 		if (m == NULL) {
1757 			m_freem(*m_head);
1758 			*m_head = NULL;
1759 			return (ENOMEM);
1760 		}
1761 		*m_head = m;
1762 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1763 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1764 		if (error != 0) {
1765 			m_freem(*m_head);
1766 			*m_head = NULL;
1767 			return (error);
1768 		}
1769 	} else if (error != 0)
1770 		return (error);
1771 	if (nsegs == 0) {
1772 		m_freem(*m_head);
1773 		*m_head = NULL;
1774 		return (EIO);
1775 	}
1776 
1777 	/*
1778 	 * Check descriptor overrun. Leave one free descriptor.
1779 	 * Since we always use 64bit address mode for transmitting,
1780 	 * each Tx request requires one more dummy descriptor.
1781 	 */
1782 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1783 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1784 		return (ENOBUFS);
1785 	}
1786 
1787 	m = *m_head;
1788 	cflags = 0;
1789 	tsosegsz = 0;
1790 	/* Configure checksum offload and TSO. */
1791 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1792 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1793 		    JME_TD_MSS_SHIFT;
1794 		cflags |= JME_TD_TSO;
1795 	} else {
1796 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1797 			cflags |= JME_TD_IPCSUM;
1798 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1799 			cflags |= JME_TD_TCPCSUM;
1800 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1801 			cflags |= JME_TD_UDPCSUM;
1802 	}
1803 	/* Configure VLAN. */
1804 	if ((m->m_flags & M_VLANTAG) != 0) {
1805 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1806 		cflags |= JME_TD_VLAN_TAG;
1807 	}
1808 
1809 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1810 	desc->flags = htole32(cflags);
1811 	desc->buflen = htole32(tsosegsz);
1812 	desc->addr_hi = htole32(m->m_pkthdr.len);
1813 	desc->addr_lo = 0;
1814 	sc->jme_cdata.jme_tx_cnt++;
1815 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1816 	for (i = 0; i < nsegs; i++) {
1817 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1818 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1819 		desc->buflen = htole32(txsegs[i].ds_len);
1820 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1821 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1822 		sc->jme_cdata.jme_tx_cnt++;
1823 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1824 	}
1825 
1826 	/* Update producer index. */
1827 	sc->jme_cdata.jme_tx_prod = prod;
1828 	/*
1829 	 * Finally request interrupt and give the first descriptor
1830 	 * owenership to hardware.
1831 	 */
1832 	desc = txd->tx_desc;
1833 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1834 
1835 	txd->tx_m = m;
1836 	txd->tx_ndesc = nsegs + 1;
1837 
1838 	/* Sync descriptors. */
1839 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1840 	    BUS_DMASYNC_PREWRITE);
1841 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1842 	    sc->jme_cdata.jme_tx_ring_map,
1843 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1844 
1845 	return (0);
1846 }
1847 
1848 static void
1849 jme_start(if_t ifp)
1850 {
1851         struct jme_softc *sc;
1852 
1853 	sc = if_getsoftc(ifp);
1854 	JME_LOCK(sc);
1855 	jme_start_locked(ifp);
1856 	JME_UNLOCK(sc);
1857 }
1858 
1859 static void
1860 jme_start_locked(if_t ifp)
1861 {
1862         struct jme_softc *sc;
1863         struct mbuf *m_head;
1864 	int enq;
1865 
1866 	sc = if_getsoftc(ifp);
1867 
1868 	JME_LOCK_ASSERT(sc);
1869 
1870 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1871 		jme_txeof(sc);
1872 
1873 	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1874 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1875 		return;
1876 
1877 	for (enq = 0; !if_sendq_empty(ifp); ) {
1878 		m_head = if_dequeue(ifp);
1879 		if (m_head == NULL)
1880 			break;
1881 		/*
1882 		 * Pack the data into the transmit ring. If we
1883 		 * don't have room, set the OACTIVE flag and wait
1884 		 * for the NIC to drain the ring.
1885 		 */
1886 		if (jme_encap(sc, &m_head)) {
1887 			if (m_head == NULL)
1888 				break;
1889 			if_sendq_prepend(ifp, m_head);
1890 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1891 			break;
1892 		}
1893 
1894 		enq++;
1895 		/*
1896 		 * If there's a BPF listener, bounce a copy of this frame
1897 		 * to him.
1898 		 */
1899 		ETHER_BPF_MTAP(ifp, m_head);
1900 	}
1901 
1902 	if (enq > 0) {
1903 		/*
1904 		 * Reading TXCSR takes very long time under heavy load
1905 		 * so cache TXCSR value and writes the ORed value with
1906 		 * the kick command to the TXCSR. This saves one register
1907 		 * access cycle.
1908 		 */
1909 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1910 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1911 		/* Set a timeout in case the chip goes out to lunch. */
1912 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1913 	}
1914 }
1915 
1916 static void
1917 jme_watchdog(struct jme_softc *sc)
1918 {
1919 	if_t ifp;
1920 
1921 	JME_LOCK_ASSERT(sc);
1922 
1923 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1924 		return;
1925 
1926 	ifp = sc->jme_ifp;
1927 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1928 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1929 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1930 		if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1931 		jme_init_locked(sc);
1932 		return;
1933 	}
1934 	jme_txeof(sc);
1935 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1936 		if_printf(sc->jme_ifp,
1937 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1938 		if (!if_sendq_empty(ifp))
1939 			jme_start_locked(ifp);
1940 		return;
1941 	}
1942 
1943 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1944 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1945 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1946 	jme_init_locked(sc);
1947 	if (!if_sendq_empty(ifp))
1948 		jme_start_locked(ifp);
1949 }
1950 
1951 static int
1952 jme_ioctl(if_t ifp, u_long cmd, caddr_t data)
1953 {
1954 	struct jme_softc *sc;
1955 	struct ifreq *ifr;
1956 	struct mii_data *mii;
1957 	uint32_t reg;
1958 	int error, mask;
1959 
1960 	sc = if_getsoftc(ifp);
1961 	ifr = (struct ifreq *)data;
1962 	error = 0;
1963 	switch (cmd) {
1964 	case SIOCSIFMTU:
1965 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1966 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1967 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1968 			error = EINVAL;
1969 			break;
1970 		}
1971 
1972 		if (if_getmtu(ifp) != ifr->ifr_mtu) {
1973 			/*
1974 			 * No special configuration is required when interface
1975 			 * MTU is changed but availability of TSO/Tx checksum
1976 			 * offload should be chcked against new MTU size as
1977 			 * FIFO size is just 2K.
1978 			 */
1979 			JME_LOCK(sc);
1980 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1981 				if_setcapenablebit(ifp, 0,
1982 				    IFCAP_TXCSUM | IFCAP_TSO4);
1983 				if_sethwassistbits(ifp, 0,
1984 				    JME_CSUM_FEATURES | CSUM_TSO);
1985 				VLAN_CAPABILITIES(ifp);
1986 			}
1987 			if_setmtu(ifp, ifr->ifr_mtu);
1988 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1989 				if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1990 				jme_init_locked(sc);
1991 			}
1992 			JME_UNLOCK(sc);
1993 		}
1994 		break;
1995 	case SIOCSIFFLAGS:
1996 		JME_LOCK(sc);
1997 		if ((if_getflags(ifp) & IFF_UP) != 0) {
1998 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1999 				if (((if_getflags(ifp) ^ sc->jme_if_flags)
2000 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2001 					jme_set_filter(sc);
2002 			} else {
2003 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2004 					jme_init_locked(sc);
2005 			}
2006 		} else {
2007 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2008 				jme_stop(sc);
2009 		}
2010 		sc->jme_if_flags = if_getflags(ifp);
2011 		JME_UNLOCK(sc);
2012 		break;
2013 	case SIOCADDMULTI:
2014 	case SIOCDELMULTI:
2015 		JME_LOCK(sc);
2016 		if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2017 			jme_set_filter(sc);
2018 		JME_UNLOCK(sc);
2019 		break;
2020 	case SIOCSIFMEDIA:
2021 	case SIOCGIFMEDIA:
2022 		mii = device_get_softc(sc->jme_miibus);
2023 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2024 		break;
2025 	case SIOCSIFCAP:
2026 		JME_LOCK(sc);
2027 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2028 		if ((mask & IFCAP_TXCSUM) != 0 &&
2029 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2030 			if ((IFCAP_TXCSUM & if_getcapabilities(ifp)) != 0) {
2031 				if_togglecapenable(ifp, IFCAP_TXCSUM);
2032 				if ((IFCAP_TXCSUM & if_getcapenable(ifp)) != 0)
2033 					if_sethwassistbits(ifp, JME_CSUM_FEATURES, 0);
2034 				else
2035 					if_sethwassistbits(ifp, 0, JME_CSUM_FEATURES);
2036 			}
2037 		}
2038 		if ((mask & IFCAP_RXCSUM) != 0 &&
2039 		    (IFCAP_RXCSUM & if_getcapabilities(ifp)) != 0) {
2040 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2041 			reg = CSR_READ_4(sc, JME_RXMAC);
2042 			reg &= ~RXMAC_CSUM_ENB;
2043 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2044 				reg |= RXMAC_CSUM_ENB;
2045 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2046 		}
2047 		if ((mask & IFCAP_TSO4) != 0 &&
2048 		    if_getmtu(ifp) < JME_TX_FIFO_SIZE) {
2049 			if ((IFCAP_TSO4 & if_getcapabilities(ifp)) != 0) {
2050 				if_togglecapenable(ifp, IFCAP_TSO4);
2051 				if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0)
2052 					if_sethwassistbits(ifp, CSUM_TSO, 0);
2053 				else
2054 					if_sethwassistbits(ifp, 0, CSUM_TSO);
2055 			}
2056 		}
2057 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2058 		    (IFCAP_WOL_MAGIC & if_getcapabilities(ifp)) != 0)
2059 			if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
2060 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2061 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
2062 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2063 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2064 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
2065 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2066 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2067 		    (IFCAP_VLAN_HWTAGGING & if_getcapabilities(ifp)) != 0) {
2068 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2069 			jme_set_vlan(sc);
2070 		}
2071 		JME_UNLOCK(sc);
2072 		VLAN_CAPABILITIES(ifp);
2073 		break;
2074 	default:
2075 		error = ether_ioctl(ifp, cmd, data);
2076 		break;
2077 	}
2078 
2079 	return (error);
2080 }
2081 
2082 static void
2083 jme_mac_config(struct jme_softc *sc)
2084 {
2085 	struct mii_data *mii;
2086 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2087 	uint32_t txclk;
2088 
2089 	JME_LOCK_ASSERT(sc);
2090 
2091 	mii = device_get_softc(sc->jme_miibus);
2092 
2093 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2094 	DELAY(10);
2095 	CSR_WRITE_4(sc, JME_GHC, 0);
2096 	ghc = 0;
2097 	txclk = 0;
2098 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2099 	rxmac &= ~RXMAC_FC_ENB;
2100 	txmac = CSR_READ_4(sc, JME_TXMAC);
2101 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2102 	txpause = CSR_READ_4(sc, JME_TXPFC);
2103 	txpause &= ~TXPFC_PAUSE_ENB;
2104 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2105 		ghc |= GHC_FULL_DUPLEX;
2106 		rxmac &= ~RXMAC_COLL_DET_ENB;
2107 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2108 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2109 		    TXMAC_FRAME_BURST);
2110 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2111 			txpause |= TXPFC_PAUSE_ENB;
2112 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2113 			rxmac |= RXMAC_FC_ENB;
2114 		/* Disable retry transmit timer/retry limit. */
2115 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2116 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2117 	} else {
2118 		rxmac |= RXMAC_COLL_DET_ENB;
2119 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2120 		/* Enable retry transmit timer/retry limit. */
2121 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2122 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2123 	}
2124 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2125 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2126 	case IFM_10_T:
2127 		ghc |= GHC_SPEED_10;
2128 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2129 		break;
2130 	case IFM_100_TX:
2131 		ghc |= GHC_SPEED_100;
2132 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2133 		break;
2134 	case IFM_1000_T:
2135 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2136 			break;
2137 		ghc |= GHC_SPEED_1000;
2138 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2139 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2140 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2141 		break;
2142 	default:
2143 		break;
2144 	}
2145 	if (sc->jme_rev == DEVICEID_JMC250 &&
2146 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2147 		/*
2148 		 * Workaround occasional packet loss issue of JMC250 A2
2149 		 * when it runs on half-duplex media.
2150 		 */
2151 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2153 			gpreg &= ~GPREG1_HDPX_FIX;
2154 		else
2155 			gpreg |= GPREG1_HDPX_FIX;
2156 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2157 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2158 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2159 			/* Extend interface FIFO depth. */
2160 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2161 			    0x1B, 0x0000);
2162 		} else {
2163 			/* Select default interface FIFO depth. */
2164 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2165 			    0x1B, 0x0004);
2166 		}
2167 	}
2168 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2169 		ghc |= txclk;
2170 	CSR_WRITE_4(sc, JME_GHC, ghc);
2171 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2172 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2173 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2174 }
2175 
2176 static void
2177 jme_link_task(void *arg, int pending)
2178 {
2179 	struct jme_softc *sc;
2180 	struct mii_data *mii;
2181 	if_t ifp;
2182 	struct jme_txdesc *txd;
2183 	bus_addr_t paddr;
2184 	int i;
2185 
2186 	sc = (struct jme_softc *)arg;
2187 
2188 	JME_LOCK(sc);
2189 	mii = device_get_softc(sc->jme_miibus);
2190 	ifp = sc->jme_ifp;
2191 	if (mii == NULL || ifp == NULL ||
2192 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2193 		JME_UNLOCK(sc);
2194 		return;
2195 	}
2196 
2197 	sc->jme_flags &= ~JME_FLAG_LINK;
2198 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2199 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2200 		case IFM_10_T:
2201 		case IFM_100_TX:
2202 			sc->jme_flags |= JME_FLAG_LINK;
2203 			break;
2204 		case IFM_1000_T:
2205 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2206 				break;
2207 			sc->jme_flags |= JME_FLAG_LINK;
2208 			break;
2209 		default:
2210 			break;
2211 		}
2212 	}
2213 
2214 	/*
2215 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2216 	 * JME_TXNDA/JME_RXNDA register to the first address of
2217 	 * Tx/Rx descriptor address. So driver should reset its
2218 	 * internal procucer/consumer pointer and reclaim any
2219 	 * allocated resources. Note, just saving the value of
2220 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2221 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2222 	 * sufficient to make sure correct MAC state because
2223 	 * stopping MAC operation can take a while and hardware
2224 	 * might have updated JME_TXNDA/JME_RXNDA registers
2225 	 * during the stop operation.
2226 	 */
2227 	/* Block execution of task. */
2228 	taskqueue_block(sc->jme_tq);
2229 	/* Disable interrupts and stop driver. */
2230 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2231 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2232 	callout_stop(&sc->jme_tick_ch);
2233 	sc->jme_watchdog_timer = 0;
2234 
2235 	/* Stop receiver/transmitter. */
2236 	jme_stop_rx(sc);
2237 	jme_stop_tx(sc);
2238 
2239 	/* XXX Drain all queued tasks. */
2240 	JME_UNLOCK(sc);
2241 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2242 	JME_LOCK(sc);
2243 
2244 	if (sc->jme_cdata.jme_rxhead != NULL)
2245 		m_freem(sc->jme_cdata.jme_rxhead);
2246 	JME_RXCHAIN_RESET(sc);
2247 	jme_txeof(sc);
2248 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2249 		/* Remove queued packets for transmit. */
2250 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2251 			txd = &sc->jme_cdata.jme_txdesc[i];
2252 			if (txd->tx_m != NULL) {
2253 				bus_dmamap_sync(
2254 				    sc->jme_cdata.jme_tx_tag,
2255 				    txd->tx_dmamap,
2256 				    BUS_DMASYNC_POSTWRITE);
2257 				bus_dmamap_unload(
2258 				    sc->jme_cdata.jme_tx_tag,
2259 				    txd->tx_dmamap);
2260 				m_freem(txd->tx_m);
2261 				txd->tx_m = NULL;
2262 				txd->tx_ndesc = 0;
2263 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2264 			}
2265 		}
2266 	}
2267 
2268 	/*
2269 	 * Reuse configured Rx descriptors and reset
2270 	 * producer/consumer index.
2271 	 */
2272 	sc->jme_cdata.jme_rx_cons = 0;
2273 	sc->jme_morework = 0;
2274 	jme_init_tx_ring(sc);
2275 	/* Initialize shadow status block. */
2276 	jme_init_ssb(sc);
2277 
2278 	/* Program MAC with resolved speed/duplex/flow-control. */
2279 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2280 		jme_mac_config(sc);
2281 		jme_stats_clear(sc);
2282 
2283 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2284 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2285 
2286 		/* Set Tx ring address to the hardware. */
2287 		paddr = JME_TX_RING_ADDR(sc, 0);
2288 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2289 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2290 
2291 		/* Set Rx ring address to the hardware. */
2292 		paddr = JME_RX_RING_ADDR(sc, 0);
2293 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2294 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2295 
2296 		/* Restart receiver/transmitter. */
2297 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2298 		    RXCSR_RXQ_START);
2299 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2300 		/* Lastly enable TX/RX clock. */
2301 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2302 			CSR_WRITE_4(sc, JME_GHC,
2303 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2304 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2305 			CSR_WRITE_4(sc, JME_GPREG1,
2306 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2307 	}
2308 
2309 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2310 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2311 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2312 	/* Unblock execution of task. */
2313 	taskqueue_unblock(sc->jme_tq);
2314 	/* Reenable interrupts. */
2315 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2316 
2317 	JME_UNLOCK(sc);
2318 }
2319 
2320 static int
2321 jme_intr(void *arg)
2322 {
2323 	struct jme_softc *sc;
2324 	uint32_t status;
2325 
2326 	sc = (struct jme_softc *)arg;
2327 
2328 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2329 	if (status == 0 || status == 0xFFFFFFFF)
2330 		return (FILTER_STRAY);
2331 	/* Disable interrupts. */
2332 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2333 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2334 
2335 	return (FILTER_HANDLED);
2336 }
2337 
2338 static void
2339 jme_int_task(void *arg, int pending)
2340 {
2341 	struct jme_softc *sc;
2342 	if_t ifp;
2343 	uint32_t status;
2344 	int more;
2345 
2346 	sc = (struct jme_softc *)arg;
2347 	ifp = sc->jme_ifp;
2348 
2349 	JME_LOCK(sc);
2350 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2351 	if (sc->jme_morework != 0) {
2352 		sc->jme_morework = 0;
2353 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2354 	}
2355 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2356 		goto done;
2357 	/* Reset PCC counter/timer and Ack interrupts. */
2358 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2359 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2360 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2361 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2362 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2363 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2364 	more = 0;
2365 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2366 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2367 			more = jme_rxintr(sc, sc->jme_process_limit);
2368 			if (more != 0)
2369 				sc->jme_morework = 1;
2370 		}
2371 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2372 			/*
2373 			 * Notify hardware availability of new Rx
2374 			 * buffers.
2375 			 * Reading RXCSR takes very long time under
2376 			 * heavy load so cache RXCSR value and writes
2377 			 * the ORed value with the kick command to
2378 			 * the RXCSR. This saves one register access
2379 			 * cycle.
2380 			 */
2381 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2382 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2383 		}
2384 		if (!if_sendq_empty(ifp))
2385 			jme_start_locked(ifp);
2386 	}
2387 
2388 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2389 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2390 		JME_UNLOCK(sc);
2391 		return;
2392 	}
2393 done:
2394 	JME_UNLOCK(sc);
2395 
2396 	/* Reenable interrupts. */
2397 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2398 }
2399 
2400 static void
2401 jme_txeof(struct jme_softc *sc)
2402 {
2403 	if_t ifp;
2404 	struct jme_txdesc *txd;
2405 	uint32_t status;
2406 	int cons, nsegs;
2407 
2408 	JME_LOCK_ASSERT(sc);
2409 
2410 	ifp = sc->jme_ifp;
2411 
2412 	cons = sc->jme_cdata.jme_tx_cons;
2413 	if (cons == sc->jme_cdata.jme_tx_prod)
2414 		return;
2415 
2416 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2417 	    sc->jme_cdata.jme_tx_ring_map,
2418 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2419 
2420 	/*
2421 	 * Go through our Tx list and free mbufs for those
2422 	 * frames which have been transmitted.
2423 	 */
2424 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2425 		txd = &sc->jme_cdata.jme_txdesc[cons];
2426 		status = le32toh(txd->tx_desc->flags);
2427 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2428 			break;
2429 
2430 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2431 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2432 		else {
2433 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2434 			if ((status & JME_TD_COLLISION) != 0)
2435 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2436 				    le32toh(txd->tx_desc->buflen) &
2437 				    JME_TD_BUF_LEN_MASK);
2438 		}
2439 		/*
2440 		 * Only the first descriptor of multi-descriptor
2441 		 * transmission is updated so driver have to skip entire
2442 		 * chained buffers for the transmiited frame. In other
2443 		 * words, JME_TD_OWN bit is valid only at the first
2444 		 * descriptor of a multi-descriptor transmission.
2445 		 */
2446 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2447 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2448 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2449 		}
2450 
2451 		/* Reclaim transferred mbufs. */
2452 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2453 		    BUS_DMASYNC_POSTWRITE);
2454 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2455 
2456 		KASSERT(txd->tx_m != NULL,
2457 		    ("%s: freeing NULL mbuf!\n", __func__));
2458 		m_freem(txd->tx_m);
2459 		txd->tx_m = NULL;
2460 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2461 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2462 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2463 		txd->tx_ndesc = 0;
2464 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2465 	}
2466 	sc->jme_cdata.jme_tx_cons = cons;
2467 	/* Unarm watchdog timer when there is no pending descriptors in queue. */
2468 	if (sc->jme_cdata.jme_tx_cnt == 0)
2469 		sc->jme_watchdog_timer = 0;
2470 
2471 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2472 	    sc->jme_cdata.jme_tx_ring_map,
2473 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2474 }
2475 
2476 static __inline void
2477 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2478 {
2479 	struct jme_desc *desc;
2480 
2481 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2482 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2483 	desc->buflen = htole32(MCLBYTES);
2484 }
2485 
2486 /* Receive a frame. */
2487 static void
2488 jme_rxeof(struct jme_softc *sc)
2489 {
2490 	if_t ifp;
2491 	struct jme_desc *desc;
2492 	struct jme_rxdesc *rxd;
2493 	struct mbuf *mp, *m;
2494 	uint32_t flags, status;
2495 	int cons, count, nsegs;
2496 
2497 	JME_LOCK_ASSERT(sc);
2498 
2499 	ifp = sc->jme_ifp;
2500 
2501 	cons = sc->jme_cdata.jme_rx_cons;
2502 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2503 	flags = le32toh(desc->flags);
2504 	status = le32toh(desc->buflen);
2505 	nsegs = JME_RX_NSEGS(status);
2506 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2507 	if ((status & JME_RX_ERR_STAT) != 0) {
2508 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2509 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2510 #ifdef JME_SHOW_ERRORS
2511 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2512 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2513 #endif
2514 		sc->jme_cdata.jme_rx_cons += nsegs;
2515 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2516 		return;
2517 	}
2518 
2519 	for (count = 0; count < nsegs; count++,
2520 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2521 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2522 		mp = rxd->rx_m;
2523 		/* Add a new receive buffer to the ring. */
2524 		if (jme_newbuf(sc, rxd) != 0) {
2525 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2526 			/* Reuse buffer. */
2527 			for (; count < nsegs; count++) {
2528 				jme_discard_rxbuf(sc, cons);
2529 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2530 			}
2531 			if (sc->jme_cdata.jme_rxhead != NULL) {
2532 				m_freem(sc->jme_cdata.jme_rxhead);
2533 				JME_RXCHAIN_RESET(sc);
2534 			}
2535 			break;
2536 		}
2537 
2538 		/*
2539 		 * Assume we've received a full sized frame.
2540 		 * Actual size is fixed when we encounter the end of
2541 		 * multi-segmented frame.
2542 		 */
2543 		mp->m_len = MCLBYTES;
2544 
2545 		/* Chain received mbufs. */
2546 		if (sc->jme_cdata.jme_rxhead == NULL) {
2547 			sc->jme_cdata.jme_rxhead = mp;
2548 			sc->jme_cdata.jme_rxtail = mp;
2549 		} else {
2550 			/*
2551 			 * Receive processor can receive a maximum frame
2552 			 * size of 65535 bytes.
2553 			 */
2554 			mp->m_flags &= ~M_PKTHDR;
2555 			sc->jme_cdata.jme_rxtail->m_next = mp;
2556 			sc->jme_cdata.jme_rxtail = mp;
2557 		}
2558 
2559 		if (count == nsegs - 1) {
2560 			/* Last desc. for this frame. */
2561 			m = sc->jme_cdata.jme_rxhead;
2562 			m->m_flags |= M_PKTHDR;
2563 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2564 			if (nsegs > 1) {
2565 				/* Set first mbuf size. */
2566 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2567 				/* Set last mbuf size. */
2568 				mp->m_len = sc->jme_cdata.jme_rxlen -
2569 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2570 				    (MCLBYTES * (nsegs - 2)));
2571 			} else
2572 				m->m_len = sc->jme_cdata.jme_rxlen;
2573 			m->m_pkthdr.rcvif = ifp;
2574 
2575 			/*
2576 			 * Account for 10bytes auto padding which is used
2577 			 * to align IP header on 32bit boundary. Also note,
2578 			 * CRC bytes is automatically removed by the
2579 			 * hardware.
2580 			 */
2581 			m->m_data += JME_RX_PAD_BYTES;
2582 
2583 			/* Set checksum information. */
2584 			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2585 			    (flags & JME_RD_IPV4) != 0) {
2586 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2587 				if ((flags & JME_RD_IPCSUM) != 0)
2588 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2589 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2590 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2591 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2592 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2593 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2594 					m->m_pkthdr.csum_flags |=
2595 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2596 					m->m_pkthdr.csum_data = 0xffff;
2597 				}
2598 			}
2599 
2600 			/* Check for VLAN tagged packets. */
2601 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2602 			    (flags & JME_RD_VLAN_TAG) != 0) {
2603 				m->m_pkthdr.ether_vtag =
2604 				    flags & JME_RD_VLAN_MASK;
2605 				m->m_flags |= M_VLANTAG;
2606 			}
2607 
2608 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2609 			/* Pass it on. */
2610 			JME_UNLOCK(sc);
2611 			if_input(ifp, m);
2612 			JME_LOCK(sc);
2613 
2614 			/* Reset mbuf chains. */
2615 			JME_RXCHAIN_RESET(sc);
2616 		}
2617 	}
2618 
2619 	sc->jme_cdata.jme_rx_cons += nsegs;
2620 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2621 }
2622 
2623 static int
2624 jme_rxintr(struct jme_softc *sc, int count)
2625 {
2626 	struct jme_desc *desc;
2627 	int nsegs, prog, pktlen;
2628 
2629 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2630 	    sc->jme_cdata.jme_rx_ring_map,
2631 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2632 
2633 	for (prog = 0; count > 0; prog++) {
2634 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2635 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2636 			break;
2637 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2638 			break;
2639 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2640 		/*
2641 		 * Check number of segments against received bytes.
2642 		 * Non-matching value would indicate that hardware
2643 		 * is still trying to update Rx descriptors. I'm not
2644 		 * sure whether this check is needed.
2645 		 */
2646 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2647 		if (nsegs != howmany(pktlen, MCLBYTES))
2648 			break;
2649 		prog++;
2650 		/* Received a frame. */
2651 		jme_rxeof(sc);
2652 		count -= nsegs;
2653 	}
2654 
2655 	if (prog > 0)
2656 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2657 		    sc->jme_cdata.jme_rx_ring_map,
2658 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2659 
2660 	return (count > 0 ? 0 : EAGAIN);
2661 }
2662 
2663 static void
2664 jme_tick(void *arg)
2665 {
2666 	struct jme_softc *sc;
2667 	struct mii_data *mii;
2668 
2669 	sc = (struct jme_softc *)arg;
2670 
2671 	JME_LOCK_ASSERT(sc);
2672 
2673 	mii = device_get_softc(sc->jme_miibus);
2674 	mii_tick(mii);
2675 	/*
2676 	 * Reclaim Tx buffers that have been completed. It's not
2677 	 * needed here but it would release allocated mbuf chains
2678 	 * faster and limit the maximum delay to a hz.
2679 	 */
2680 	jme_txeof(sc);
2681 	jme_stats_update(sc);
2682 	jme_watchdog(sc);
2683 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2684 }
2685 
2686 static void
2687 jme_reset(struct jme_softc *sc)
2688 {
2689 	uint32_t ghc, gpreg;
2690 
2691 	/* Stop receiver, transmitter. */
2692 	jme_stop_rx(sc);
2693 	jme_stop_tx(sc);
2694 
2695 	/* Reset controller. */
2696 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2697 	CSR_READ_4(sc, JME_GHC);
2698 	DELAY(10);
2699 	/*
2700 	 * Workaround Rx FIFO overruns seen under certain conditions.
2701 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2702 	 * enabled only after enabling TX/RX MACs.
2703 	 */
2704 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2705 		/* Disable TX clock. */
2706 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2707 		/* Disable RX clock. */
2708 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2709 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2710 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2711 		/* De-assert RESET but still disable TX clock. */
2712 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2713 		ghc = CSR_READ_4(sc, JME_GHC);
2714 
2715 		/* Enable TX clock. */
2716 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2717 		/* Enable RX clock. */
2718 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2719 		CSR_READ_4(sc, JME_GPREG1);
2720 
2721 		/* Disable TX/RX clock again. */
2722 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2723 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2724 	} else
2725 		CSR_WRITE_4(sc, JME_GHC, 0);
2726 	CSR_READ_4(sc, JME_GHC);
2727 	DELAY(10);
2728 }
2729 
2730 static void
2731 jme_init(void *xsc)
2732 {
2733 	struct jme_softc *sc;
2734 
2735 	sc = (struct jme_softc *)xsc;
2736 	JME_LOCK(sc);
2737 	jme_init_locked(sc);
2738 	JME_UNLOCK(sc);
2739 }
2740 
2741 static void
2742 jme_init_locked(struct jme_softc *sc)
2743 {
2744 	if_t ifp;
2745 	struct mii_data *mii;
2746 	bus_addr_t paddr;
2747 	uint32_t reg;
2748 	int error;
2749 
2750 	JME_LOCK_ASSERT(sc);
2751 
2752 	ifp = sc->jme_ifp;
2753 	mii = device_get_softc(sc->jme_miibus);
2754 
2755 	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2756 		return;
2757 	/*
2758 	 * Cancel any pending I/O.
2759 	 */
2760 	jme_stop(sc);
2761 
2762 	/*
2763 	 * Reset the chip to a known state.
2764 	 */
2765 	jme_reset(sc);
2766 
2767 	/* Init descriptors. */
2768 	error = jme_init_rx_ring(sc);
2769         if (error != 0) {
2770                 device_printf(sc->jme_dev,
2771                     "%s: initialization failed: no memory for Rx buffers.\n",
2772 		    __func__);
2773                 jme_stop(sc);
2774 		return;
2775         }
2776 	jme_init_tx_ring(sc);
2777 	/* Initialize shadow status block. */
2778 	jme_init_ssb(sc);
2779 
2780 	/* Reprogram the station address. */
2781 	jme_set_macaddr(sc, if_getlladdr(sc->jme_ifp));
2782 
2783 	/*
2784 	 * Configure Tx queue.
2785 	 *  Tx priority queue weight value : 0
2786 	 *  Tx FIFO threshold for processing next packet : 16QW
2787 	 *  Maximum Tx DMA length : 512
2788 	 *  Allow Tx DMA burst.
2789 	 */
2790 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2791 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2792 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2793 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2794 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2795 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2796 
2797 	/* Set Tx descriptor counter. */
2798 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2799 
2800 	/* Set Tx ring address to the hardware. */
2801 	paddr = JME_TX_RING_ADDR(sc, 0);
2802 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2803 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2804 
2805 	/* Configure TxMAC parameters. */
2806 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2807 	reg |= TXMAC_THRESH_1_PKT;
2808 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2809 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2810 
2811 	/*
2812 	 * Configure Rx queue.
2813 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2814 	 *  FIFO threshold for processing next packet : 128QW
2815 	 *  Rx queue 0 select
2816 	 *  Max Rx DMA length : 128
2817 	 *  Rx descriptor retry : 32
2818 	 *  Rx descriptor retry time gap : 256ns
2819 	 *  Don't receive runt/bad frame.
2820 	 */
2821 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2822 	/*
2823 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2824 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2825 	 * decrease FIFO threshold to reduce the FIFO overruns for
2826 	 * frames larger than 4000 bytes.
2827 	 * For best performance of standard MTU sized frames use
2828 	 * maximum allowable FIFO threshold, 128QW. Note these do
2829 	 * not hold on chip full mask version >=2. For these
2830 	 * controllers 64QW and 128QW are not valid value.
2831 	 */
2832 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2833 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2834 	else {
2835 		if ((if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2836 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2837 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2838 		else
2839 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2840 	}
2841 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2842 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2843 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2844 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2845 
2846 	/* Set Rx descriptor counter. */
2847 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2848 
2849 	/* Set Rx ring address to the hardware. */
2850 	paddr = JME_RX_RING_ADDR(sc, 0);
2851 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2852 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2853 
2854 	/* Clear receive filter. */
2855 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2856 	/* Set up the receive filter. */
2857 	jme_set_filter(sc);
2858 	jme_set_vlan(sc);
2859 
2860 	/*
2861 	 * Disable all WOL bits as WOL can interfere normal Rx
2862 	 * operation. Also clear WOL detection status bits.
2863 	 */
2864 	reg = CSR_READ_4(sc, JME_PMCS);
2865 	reg &= ~PMCS_WOL_ENB_MASK;
2866 	CSR_WRITE_4(sc, JME_PMCS, reg);
2867 
2868 	reg = CSR_READ_4(sc, JME_RXMAC);
2869 	/*
2870 	 * Pad 10bytes right before received frame. This will greatly
2871 	 * help Rx performance on strict-alignment architectures as
2872 	 * it does not need to copy the frame to align the payload.
2873 	 */
2874 	reg |= RXMAC_PAD_10BYTES;
2875 	if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2876 		reg |= RXMAC_CSUM_ENB;
2877 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2878 
2879 	/* Configure general purpose reg0 */
2880 	reg = CSR_READ_4(sc, JME_GPREG0);
2881 	reg &= ~GPREG0_PCC_UNIT_MASK;
2882 	/* Set PCC timer resolution to micro-seconds unit. */
2883 	reg |= GPREG0_PCC_UNIT_US;
2884 	/*
2885 	 * Disable all shadow register posting as we have to read
2886 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2887 	 * that it's hard to synchronize interrupt status between
2888 	 * hardware and software with shadow posting due to
2889 	 * requirements of bus_dmamap_sync(9).
2890 	 */
2891 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2892 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2893 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2894 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2895 	/* Disable posting of DW0. */
2896 	reg &= ~GPREG0_POST_DW0_ENB;
2897 	/* Clear PME message. */
2898 	reg &= ~GPREG0_PME_ENB;
2899 	/* Set PHY address. */
2900 	reg &= ~GPREG0_PHY_ADDR_MASK;
2901 	reg |= sc->jme_phyaddr;
2902 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2903 
2904 	/* Configure Tx queue 0 packet completion coalescing. */
2905 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2906 	    PCCTX_COAL_TO_MASK;
2907 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2908 	    PCCTX_COAL_PKT_MASK;
2909 	reg |= PCCTX_COAL_TXQ0;
2910 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2911 
2912 	/* Configure Rx queue 0 packet completion coalescing. */
2913 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2914 	    PCCRX_COAL_TO_MASK;
2915 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2916 	    PCCRX_COAL_PKT_MASK;
2917 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2918 
2919 	/*
2920 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2921 	 * generates an interrupt when the time interval between two
2922 	 * back-to-back incoming/outgoing packet is long enough for
2923 	 * it to reach its timer value 0. The arrival of new packets
2924 	 * after timer has started causes the PCD timer to restart.
2925 	 * Unfortunately, it's not clear how PCD is useful at this
2926 	 * moment, so just use the same of PCC parameters.
2927 	 */
2928 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2929 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2930 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2931 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2932 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2933 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2934 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2935 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2936 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2937 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2938 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2939 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2940 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2941 	}
2942 
2943 	/* Configure shadow status block but don't enable posting. */
2944 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2945 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2946 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2947 
2948 	/* Disable Timer 1 and Timer 2. */
2949 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2950 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2951 
2952 	/* Configure retry transmit period, retry limit value. */
2953 	CSR_WRITE_4(sc, JME_TXTRHD,
2954 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2955 	    TXTRHD_RT_PERIOD_MASK) |
2956 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2957 	    TXTRHD_RT_LIMIT_SHIFT));
2958 
2959 	/* Disable RSS. */
2960 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2961 
2962 	/* Initialize the interrupt mask. */
2963 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2964 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2965 
2966 	/*
2967 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2968 	 * done after detection of valid link in jme_link_task.
2969 	 */
2970 
2971 	sc->jme_flags &= ~JME_FLAG_LINK;
2972 	/* Set the current media. */
2973 	mii_mediachg(mii);
2974 
2975 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2976 
2977 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2978 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2979 }
2980 
2981 static void
2982 jme_stop(struct jme_softc *sc)
2983 {
2984 	if_t ifp;
2985 	struct jme_txdesc *txd;
2986 	struct jme_rxdesc *rxd;
2987 	int i;
2988 
2989 	JME_LOCK_ASSERT(sc);
2990 	/*
2991 	 * Mark the interface down and cancel the watchdog timer.
2992 	 */
2993 	ifp = sc->jme_ifp;
2994 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2995 	sc->jme_flags &= ~JME_FLAG_LINK;
2996 	callout_stop(&sc->jme_tick_ch);
2997 	sc->jme_watchdog_timer = 0;
2998 
2999 	/*
3000 	 * Disable interrupts.
3001 	 */
3002 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3003 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3004 
3005 	/* Disable updating shadow status block. */
3006 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3007 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3008 
3009 	/* Stop receiver, transmitter. */
3010 	jme_stop_rx(sc);
3011 	jme_stop_tx(sc);
3012 
3013 	 /* Reclaim Rx/Tx buffers that have been completed. */
3014 	jme_rxintr(sc, JME_RX_RING_CNT);
3015 	if (sc->jme_cdata.jme_rxhead != NULL)
3016 		m_freem(sc->jme_cdata.jme_rxhead);
3017 	JME_RXCHAIN_RESET(sc);
3018 	jme_txeof(sc);
3019 	/*
3020 	 * Free RX and TX mbufs still in the queues.
3021 	 */
3022 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3023 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3024 		if (rxd->rx_m != NULL) {
3025 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3026 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3027 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3028 			    rxd->rx_dmamap);
3029 			m_freem(rxd->rx_m);
3030 			rxd->rx_m = NULL;
3031 		}
3032         }
3033 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3034 		txd = &sc->jme_cdata.jme_txdesc[i];
3035 		if (txd->tx_m != NULL) {
3036 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3037 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3038 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3039 			    txd->tx_dmamap);
3040 			m_freem(txd->tx_m);
3041 			txd->tx_m = NULL;
3042 			txd->tx_ndesc = 0;
3043 		}
3044         }
3045 	jme_stats_update(sc);
3046 	jme_stats_save(sc);
3047 }
3048 
3049 static void
3050 jme_stop_tx(struct jme_softc *sc)
3051 {
3052 	uint32_t reg;
3053 	int i;
3054 
3055 	reg = CSR_READ_4(sc, JME_TXCSR);
3056 	if ((reg & TXCSR_TX_ENB) == 0)
3057 		return;
3058 	reg &= ~TXCSR_TX_ENB;
3059 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3060 	for (i = JME_TIMEOUT; i > 0; i--) {
3061 		DELAY(1);
3062 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3063 			break;
3064 	}
3065 	if (i == 0)
3066 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3067 }
3068 
3069 static void
3070 jme_stop_rx(struct jme_softc *sc)
3071 {
3072 	uint32_t reg;
3073 	int i;
3074 
3075 	reg = CSR_READ_4(sc, JME_RXCSR);
3076 	if ((reg & RXCSR_RX_ENB) == 0)
3077 		return;
3078 	reg &= ~RXCSR_RX_ENB;
3079 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3080 	for (i = JME_TIMEOUT; i > 0; i--) {
3081 		DELAY(1);
3082 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3083 			break;
3084 	}
3085 	if (i == 0)
3086 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3087 }
3088 
3089 static void
3090 jme_init_tx_ring(struct jme_softc *sc)
3091 {
3092 	struct jme_ring_data *rd;
3093 	struct jme_txdesc *txd;
3094 	int i;
3095 
3096 	sc->jme_cdata.jme_tx_prod = 0;
3097 	sc->jme_cdata.jme_tx_cons = 0;
3098 	sc->jme_cdata.jme_tx_cnt = 0;
3099 
3100 	rd = &sc->jme_rdata;
3101 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3102 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3103 		txd = &sc->jme_cdata.jme_txdesc[i];
3104 		txd->tx_m = NULL;
3105 		txd->tx_desc = &rd->jme_tx_ring[i];
3106 		txd->tx_ndesc = 0;
3107 	}
3108 
3109 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3110 	    sc->jme_cdata.jme_tx_ring_map,
3111 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3112 }
3113 
3114 static void
3115 jme_init_ssb(struct jme_softc *sc)
3116 {
3117 	struct jme_ring_data *rd;
3118 
3119 	rd = &sc->jme_rdata;
3120 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3121 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3122 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3123 }
3124 
3125 static int
3126 jme_init_rx_ring(struct jme_softc *sc)
3127 {
3128 	struct jme_ring_data *rd;
3129 	struct jme_rxdesc *rxd;
3130 	int i;
3131 
3132 	sc->jme_cdata.jme_rx_cons = 0;
3133 	JME_RXCHAIN_RESET(sc);
3134 	sc->jme_morework = 0;
3135 
3136 	rd = &sc->jme_rdata;
3137 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3138 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3139 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3140 		rxd->rx_m = NULL;
3141 		rxd->rx_desc = &rd->jme_rx_ring[i];
3142 		if (jme_newbuf(sc, rxd) != 0)
3143 			return (ENOBUFS);
3144 	}
3145 
3146 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3147 	    sc->jme_cdata.jme_rx_ring_map,
3148 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3149 
3150 	return (0);
3151 }
3152 
3153 static int
3154 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3155 {
3156 	struct jme_desc *desc;
3157 	struct mbuf *m;
3158 	bus_dma_segment_t segs[1];
3159 	bus_dmamap_t map;
3160 	int nsegs;
3161 
3162 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3163 	if (m == NULL)
3164 		return (ENOBUFS);
3165 	/*
3166 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3167 	 * takes advantage of 10 bytes padding feature of hardware
3168 	 * in order not to copy entire frame to align IP header on
3169 	 * 32bit boundary.
3170 	 */
3171 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3172 
3173 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3174 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3175 		m_freem(m);
3176 		return (ENOBUFS);
3177 	}
3178 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3179 
3180 	if (rxd->rx_m != NULL) {
3181 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3182 		    BUS_DMASYNC_POSTREAD);
3183 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3184 	}
3185 	map = rxd->rx_dmamap;
3186 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3187 	sc->jme_cdata.jme_rx_sparemap = map;
3188 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3189 	    BUS_DMASYNC_PREREAD);
3190 	rxd->rx_m = m;
3191 
3192 	desc = rxd->rx_desc;
3193 	desc->buflen = htole32(segs[0].ds_len);
3194 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3195 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3196 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3197 
3198 	return (0);
3199 }
3200 
3201 static void
3202 jme_set_vlan(struct jme_softc *sc)
3203 {
3204 	if_t ifp;
3205 	uint32_t reg;
3206 
3207 	JME_LOCK_ASSERT(sc);
3208 
3209 	ifp = sc->jme_ifp;
3210 	reg = CSR_READ_4(sc, JME_RXMAC);
3211 	reg &= ~RXMAC_VLAN_ENB;
3212 	if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3213 		reg |= RXMAC_VLAN_ENB;
3214 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3215 }
3216 
3217 static u_int
3218 jme_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3219 {
3220 	uint32_t crc, *mchash = arg;
3221 
3222 	crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3223 
3224 	/* Just want the 6 least significant bits. */
3225 	crc &= 0x3f;
3226 
3227 	/* Set the corresponding bit in the hash table. */
3228 	mchash[crc >> 5] |= 1 << (crc & 0x1f);
3229 
3230 	return (1);
3231 }
3232 
3233 static void
3234 jme_set_filter(struct jme_softc *sc)
3235 {
3236 	if_t ifp;
3237 	uint32_t mchash[2];
3238 	uint32_t rxcfg;
3239 
3240 	JME_LOCK_ASSERT(sc);
3241 
3242 	ifp = sc->jme_ifp;
3243 
3244 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3245 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3246 	    RXMAC_ALLMULTI);
3247 	/* Always accept frames destined to our station address. */
3248 	rxcfg |= RXMAC_UNICAST;
3249 	if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3250 		rxcfg |= RXMAC_BROADCAST;
3251 	if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3252 		if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3253 			rxcfg |= RXMAC_PROMISC;
3254 		if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3255 			rxcfg |= RXMAC_ALLMULTI;
3256 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3257 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3258 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3259 		return;
3260 	}
3261 
3262 	/*
3263 	 * Set up the multicast address filter by passing all multicast
3264 	 * addresses through a CRC generator, and then using the low-order
3265 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3266 	 * high order bits select the register, while the rest of the bits
3267 	 * select the bit within the register.
3268 	 */
3269 	rxcfg |= RXMAC_MULTICAST;
3270 	bzero(mchash, sizeof(mchash));
3271 	if_foreach_llmaddr(ifp, jme_hash_maddr, &mchash);
3272 
3273 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3274 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3275 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3276 }
3277 
3278 static void
3279 jme_stats_clear(struct jme_softc *sc)
3280 {
3281 
3282 	JME_LOCK_ASSERT(sc);
3283 
3284 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3285 		return;
3286 
3287 	/* Disable and clear counters. */
3288 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3289 	/* Activate hw counters. */
3290 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3291 	CSR_READ_4(sc, JME_STATCSR);
3292 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3293 }
3294 
3295 static void
3296 jme_stats_save(struct jme_softc *sc)
3297 {
3298 
3299 	JME_LOCK_ASSERT(sc);
3300 
3301 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3302 		return;
3303 	/* Save current counters. */
3304 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3305 	/* Disable and clear counters. */
3306 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3307 }
3308 
3309 static void
3310 jme_stats_update(struct jme_softc *sc)
3311 {
3312 	struct jme_hw_stats *stat, *ostat;
3313 	uint32_t reg;
3314 
3315 	JME_LOCK_ASSERT(sc);
3316 
3317 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3318 		return;
3319 	stat = &sc->jme_stats;
3320 	ostat = &sc->jme_ostats;
3321 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3322 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3323 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3324 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3325 	    STAT_RX_CRC_ERR_SHIFT;
3326 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3327 	    STAT_RX_MII_ERR_SHIFT;
3328 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3329 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3330 	    STAT_RXERR_OFLOW_SHIFT;
3331 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3332 	    STAT_RXERR_MPTY_SHIFT;
3333 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3334 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3335 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3336 
3337 	/* Account for previous counters. */
3338 	stat->rx_good_frames += ostat->rx_good_frames;
3339 	stat->rx_crc_errs += ostat->rx_crc_errs;
3340 	stat->rx_mii_errs += ostat->rx_mii_errs;
3341 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3342 	stat->rx_desc_empty += ostat->rx_desc_empty;
3343 	stat->rx_bad_frames += ostat->rx_bad_frames;
3344 	stat->tx_good_frames += ostat->tx_good_frames;
3345 	stat->tx_bad_frames += ostat->tx_bad_frames;
3346 }
3347 
3348 static void
3349 jme_phy_down(struct jme_softc *sc)
3350 {
3351 	uint32_t reg;
3352 
3353 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3354 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3355 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3356 		reg |= 0x0000000F;
3357 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3358 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3359 		reg &= ~PE1_GIGA_PDOWN_MASK;
3360 		reg |= PE1_GIGA_PDOWN_D3;
3361 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3362 	}
3363 }
3364 
3365 static void
3366 jme_phy_up(struct jme_softc *sc)
3367 {
3368 	uint32_t reg;
3369 	uint16_t bmcr;
3370 
3371 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3372 	bmcr &= ~BMCR_PDOWN;
3373 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3374 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3375 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3376 		reg &= ~0x0000000F;
3377 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3378 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3379 		reg &= ~PE1_GIGA_PDOWN_MASK;
3380 		reg |= PE1_GIGA_PDOWN_DIS;
3381 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3382 	}
3383 }
3384 
3385 static int
3386 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3387 {
3388 	int error, value;
3389 
3390 	if (arg1 == NULL)
3391 		return (EINVAL);
3392 	value = *(int *)arg1;
3393 	error = sysctl_handle_int(oidp, &value, 0, req);
3394 	if (error || req->newptr == NULL)
3395 		return (error);
3396 	if (value < low || value > high)
3397 		return (EINVAL);
3398         *(int *)arg1 = value;
3399 
3400         return (0);
3401 }
3402 
3403 static int
3404 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3405 {
3406 	return (sysctl_int_range(oidp, arg1, arg2, req,
3407 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3408 }
3409 
3410 static int
3411 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3412 {
3413 	return (sysctl_int_range(oidp, arg1, arg2, req,
3414 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3415 }
3416 
3417 static int
3418 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3419 {
3420 	return (sysctl_int_range(oidp, arg1, arg2, req,
3421 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3422 }
3423 
3424 static int
3425 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3426 {
3427 	return (sysctl_int_range(oidp, arg1, arg2, req,
3428 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3429 }
3430 
3431 static int
3432 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3433 {
3434 	return (sysctl_int_range(oidp, arg1, arg2, req,
3435 	    JME_PROC_MIN, JME_PROC_MAX));
3436 }
3437