xref: /freebsd/sys/dev/jme/if_jme.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/bus.h>
34 #include <sys/endian.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/mbuf.h>
38 #include <sys/rman.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 #include <sys/sysctl.h>
45 #include <sys/taskqueue.h>
46 
47 #include <net/bpf.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/ethernet.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_vlan_var.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63 
64 #include <dev/pci/pcireg.h>
65 #include <dev/pci/pcivar.h>
66 
67 #include <machine/atomic.h>
68 #include <machine/bus.h>
69 #include <machine/in_cksum.h>
70 
71 #include <dev/jme/if_jmereg.h>
72 #include <dev/jme/if_jmevar.h>
73 
74 /* "device miibus" required.  See GENERIC if you get errors here. */
75 #include "miibus_if.h"
76 
77 /* Define the following to disable printing Rx errors. */
78 #undef	JME_SHOW_ERRORS
79 
80 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
81 
82 MODULE_DEPEND(jme, pci, 1, 1, 1);
83 MODULE_DEPEND(jme, ether, 1, 1, 1);
84 MODULE_DEPEND(jme, miibus, 1, 1, 1);
85 
86 /* Tunables. */
87 static int msi_disable = 0;
88 static int msix_disable = 0;
89 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
90 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
91 
92 /*
93  * Devices supported by this driver.
94  */
95 static struct jme_dev {
96 	uint16_t	jme_vendorid;
97 	uint16_t	jme_deviceid;
98 	const char	*jme_name;
99 } jme_devs[] = {
100 	{ VENDORID_JMICRON, DEVICEID_JMC250,
101 	    "JMicron Inc, JMC250 Gigabit Ethernet" },
102 	{ VENDORID_JMICRON, DEVICEID_JMC260,
103 	    "JMicron Inc, JMC260 Fast Ethernet" },
104 };
105 
106 static int jme_miibus_readreg(device_t, int, int);
107 static int jme_miibus_writereg(device_t, int, int, int);
108 static void jme_miibus_statchg(device_t);
109 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
110 static int jme_mediachange(struct ifnet *);
111 static int jme_probe(device_t);
112 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
113 static int jme_eeprom_macaddr(struct jme_softc *);
114 static void jme_reg_macaddr(struct jme_softc *);
115 static void jme_map_intr_vector(struct jme_softc *);
116 static int jme_attach(device_t);
117 static int jme_detach(device_t);
118 static void jme_sysctl_node(struct jme_softc *);
119 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
120 static int jme_dma_alloc(struct jme_softc *);
121 static void jme_dma_free(struct jme_softc *);
122 static int jme_shutdown(device_t);
123 static void jme_setlinkspeed(struct jme_softc *);
124 static void jme_setwol(struct jme_softc *);
125 static int jme_suspend(device_t);
126 static int jme_resume(device_t);
127 static int jme_encap(struct jme_softc *, struct mbuf **);
128 static void jme_tx_task(void *, int);
129 static void jme_start(struct ifnet *);
130 static void jme_watchdog(struct jme_softc *);
131 static int jme_ioctl(struct ifnet *, u_long, caddr_t);
132 static void jme_mac_config(struct jme_softc *);
133 static void jme_link_task(void *, int);
134 static int jme_intr(void *);
135 static void jme_int_task(void *, int);
136 static void jme_txeof(struct jme_softc *);
137 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
138 static void jme_rxeof(struct jme_softc *);
139 static int jme_rxintr(struct jme_softc *, int);
140 static void jme_tick(void *);
141 static void jme_reset(struct jme_softc *);
142 static void jme_init(void *);
143 static void jme_init_locked(struct jme_softc *);
144 static void jme_stop(struct jme_softc *);
145 static void jme_stop_tx(struct jme_softc *);
146 static void jme_stop_rx(struct jme_softc *);
147 static int jme_init_rx_ring(struct jme_softc *);
148 static void jme_init_tx_ring(struct jme_softc *);
149 static void jme_init_ssb(struct jme_softc *);
150 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
151 static void jme_set_vlan(struct jme_softc *);
152 static void jme_set_filter(struct jme_softc *);
153 static void jme_stats_clear(struct jme_softc *);
154 static void jme_stats_save(struct jme_softc *);
155 static void jme_stats_update(struct jme_softc *);
156 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
157 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
158 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
159 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
160 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
161 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
162 
163 
164 static device_method_t jme_methods[] = {
165 	/* Device interface. */
166 	DEVMETHOD(device_probe,		jme_probe),
167 	DEVMETHOD(device_attach,	jme_attach),
168 	DEVMETHOD(device_detach,	jme_detach),
169 	DEVMETHOD(device_shutdown,	jme_shutdown),
170 	DEVMETHOD(device_suspend,	jme_suspend),
171 	DEVMETHOD(device_resume,	jme_resume),
172 
173 	/* MII interface. */
174 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
175 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
176 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
177 
178 	{ NULL, NULL }
179 };
180 
181 static driver_t jme_driver = {
182 	"jme",
183 	jme_methods,
184 	sizeof(struct jme_softc)
185 };
186 
187 static devclass_t jme_devclass;
188 
189 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
190 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
191 
192 static struct resource_spec jme_res_spec_mem[] = {
193 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
194 	{ -1,			0,		0 }
195 };
196 
197 static struct resource_spec jme_irq_spec_legacy[] = {
198 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
199 	{ -1,			0,		0 }
200 };
201 
202 static struct resource_spec jme_irq_spec_msi[] = {
203 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
204 	{ SYS_RES_IRQ,		2,		RF_ACTIVE },
205 	{ SYS_RES_IRQ,		3,		RF_ACTIVE },
206 	{ SYS_RES_IRQ,		4,		RF_ACTIVE },
207 	{ SYS_RES_IRQ,		5,		RF_ACTIVE },
208 	{ SYS_RES_IRQ,		6,		RF_ACTIVE },
209 	{ SYS_RES_IRQ,		7,		RF_ACTIVE },
210 	{ SYS_RES_IRQ,		8,		RF_ACTIVE },
211 	{ -1,			0,		0 }
212 };
213 
214 /*
215  *	Read a PHY register on the MII of the JMC250.
216  */
217 static int
218 jme_miibus_readreg(device_t dev, int phy, int reg)
219 {
220 	struct jme_softc *sc;
221 	uint32_t val;
222 	int i;
223 
224 	sc = device_get_softc(dev);
225 
226 	/* For FPGA version, PHY address 0 should be ignored. */
227 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
228 		if (phy == 0)
229 			return (0);
230 	} else {
231 		if (sc->jme_phyaddr != phy)
232 			return (0);
233 	}
234 
235 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
236 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
237 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
238 		DELAY(1);
239 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
240 			break;
241 	}
242 
243 	if (i == 0) {
244 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
245 		return (0);
246 	}
247 
248 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
249 }
250 
251 /*
252  *	Write a PHY register on the MII of the JMC250.
253  */
254 static int
255 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
256 {
257 	struct jme_softc *sc;
258 	int i;
259 
260 	sc = device_get_softc(dev);
261 
262 	/* For FPGA version, PHY address 0 should be ignored. */
263 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
264 		if (phy == 0)
265 			return (0);
266 	} else {
267 		if (sc->jme_phyaddr != phy)
268 			return (0);
269 	}
270 
271 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
272 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
273 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
274 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
275 		DELAY(1);
276 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
277 			break;
278 	}
279 
280 	if (i == 0)
281 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
282 
283 	return (0);
284 }
285 
286 /*
287  *	Callback from MII layer when media changes.
288  */
289 static void
290 jme_miibus_statchg(device_t dev)
291 {
292 	struct jme_softc *sc;
293 
294 	sc = device_get_softc(dev);
295 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
296 }
297 
298 /*
299  *	Get the current interface media status.
300  */
301 static void
302 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
303 {
304 	struct jme_softc *sc;
305 	struct mii_data *mii;
306 
307 	sc = ifp->if_softc;
308 	JME_LOCK(sc);
309 	mii = device_get_softc(sc->jme_miibus);
310 
311 	mii_pollstat(mii);
312 	ifmr->ifm_status = mii->mii_media_status;
313 	ifmr->ifm_active = mii->mii_media_active;
314 	JME_UNLOCK(sc);
315 }
316 
317 /*
318  *	Set hardware to newly-selected media.
319  */
320 static int
321 jme_mediachange(struct ifnet *ifp)
322 {
323 	struct jme_softc *sc;
324 	struct mii_data *mii;
325 	struct mii_softc *miisc;
326 	int error;
327 
328 	sc = ifp->if_softc;
329 	JME_LOCK(sc);
330 	mii = device_get_softc(sc->jme_miibus);
331 	if (mii->mii_instance != 0) {
332 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
333 			mii_phy_reset(miisc);
334 	}
335 	error = mii_mediachg(mii);
336 	JME_UNLOCK(sc);
337 
338 	return (error);
339 }
340 
341 static int
342 jme_probe(device_t dev)
343 {
344 	struct jme_dev *sp;
345 	int i;
346 	uint16_t vendor, devid;
347 
348 	vendor = pci_get_vendor(dev);
349 	devid = pci_get_device(dev);
350 	sp = jme_devs;
351 	for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]);
352 	    i++, sp++) {
353 		if (vendor == sp->jme_vendorid &&
354 		    devid == sp->jme_deviceid) {
355 			device_set_desc(dev, sp->jme_name);
356 			return (BUS_PROBE_DEFAULT);
357 		}
358 	}
359 
360 	return (ENXIO);
361 }
362 
363 static int
364 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
365 {
366 	uint32_t reg;
367 	int i;
368 
369 	*val = 0;
370 	for (i = JME_TIMEOUT; i > 0; i--) {
371 		reg = CSR_READ_4(sc, JME_SMBCSR);
372 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
373 			break;
374 		DELAY(1);
375 	}
376 
377 	if (i == 0) {
378 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
379 		return (ETIMEDOUT);
380 	}
381 
382 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
383 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
384 	for (i = JME_TIMEOUT; i > 0; i--) {
385 		DELAY(1);
386 		reg = CSR_READ_4(sc, JME_SMBINTF);
387 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
388 			break;
389 	}
390 
391 	if (i == 0) {
392 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
393 		return (ETIMEDOUT);
394 	}
395 
396 	reg = CSR_READ_4(sc, JME_SMBINTF);
397 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
398 
399 	return (0);
400 }
401 
402 static int
403 jme_eeprom_macaddr(struct jme_softc *sc)
404 {
405 	uint8_t eaddr[ETHER_ADDR_LEN];
406 	uint8_t fup, reg, val;
407 	uint32_t offset;
408 	int match;
409 
410 	offset = 0;
411 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
412 	    fup != JME_EEPROM_SIG0)
413 		return (ENOENT);
414 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
415 	    fup != JME_EEPROM_SIG1)
416 		return (ENOENT);
417 	match = 0;
418 	do {
419 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
420 			break;
421 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
422 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
423 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
424 				break;
425 			if (reg >= JME_PAR0 &&
426 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
427 				if (jme_eeprom_read_byte(sc, offset + 2,
428 				    &val) != 0)
429 					break;
430 				eaddr[reg - JME_PAR0] = val;
431 				match++;
432 			}
433 		}
434 		/* Check for the end of EEPROM descriptor. */
435 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
436 			break;
437 		/* Try next eeprom descriptor. */
438 		offset += JME_EEPROM_DESC_BYTES;
439 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
440 
441 	if (match == ETHER_ADDR_LEN) {
442 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
443 		return (0);
444 	}
445 
446 	return (ENOENT);
447 }
448 
449 static void
450 jme_reg_macaddr(struct jme_softc *sc)
451 {
452 	uint32_t par0, par1;
453 
454 	/* Read station address. */
455 	par0 = CSR_READ_4(sc, JME_PAR0);
456 	par1 = CSR_READ_4(sc, JME_PAR1);
457 	par1 &= 0xFFFF;
458 	if ((par0 == 0 && par1 == 0) ||
459 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
460 		device_printf(sc->jme_dev,
461 		    "generating fake ethernet address.\n");
462 		par0 = arc4random();
463 		/* Set OUI to JMicron. */
464 		sc->jme_eaddr[0] = 0x00;
465 		sc->jme_eaddr[1] = 0x1B;
466 		sc->jme_eaddr[2] = 0x8C;
467 		sc->jme_eaddr[3] = (par0 >> 16) & 0xff;
468 		sc->jme_eaddr[4] = (par0 >> 8) & 0xff;
469 		sc->jme_eaddr[5] = par0 & 0xff;
470 	} else {
471 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
472 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
473 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
474 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
475 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
476 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
477 	}
478 }
479 
480 static void
481 jme_map_intr_vector(struct jme_softc *sc)
482 {
483 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
484 
485 	bzero(map, sizeof(map));
486 
487 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
488 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] =
489 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
490 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
491 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
492 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
493 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
494 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
495 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
496 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
497 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
498 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
499 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
500 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
501 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
502 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
503 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
504 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
505 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
506 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
507 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
508 
509 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
510 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] =
511 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
512 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] =
513 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
514 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] =
515 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
516 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] =
517 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
518 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] =
519 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
520 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] =
521 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
522 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] =
523 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
524 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] =
525 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
526 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] =
527 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
528 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] =
529 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
530 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] =
531 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
532 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] =
533 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
534 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] =
535 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
536 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] =
537 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
538 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] =
539 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
540 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] =
541 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
542 
543 	/* Map all other interrupts source to MSI/MSIX vector 0. */
544 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
545 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
546 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
547 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
548 }
549 
550 static int
551 jme_attach(device_t dev)
552 {
553 	struct jme_softc *sc;
554 	struct ifnet *ifp;
555 	struct mii_softc *miisc;
556 	struct mii_data *mii;
557 	uint32_t reg;
558 	uint16_t burst;
559 	int error, i, msic, msixc, pmc;
560 
561 	error = 0;
562 	sc = device_get_softc(dev);
563 	sc->jme_dev = dev;
564 
565 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
566 	    MTX_DEF);
567 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
568 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
569 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
570 
571 	/*
572 	 * Map the device. JMC250 supports both memory mapped and I/O
573 	 * register space access. Because I/O register access should
574 	 * use different BARs to access registers it's waste of time
575 	 * to use I/O register spce access. JMC250 uses 16K to map
576 	 * entire memory space.
577 	 */
578 	pci_enable_busmaster(dev);
579 	sc->jme_res_spec = jme_res_spec_mem;
580 	sc->jme_irq_spec = jme_irq_spec_legacy;
581 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
582 	if (error != 0) {
583 		device_printf(dev, "cannot allocate memory resources.\n");
584 		goto fail;
585 	}
586 
587 	/* Allocate IRQ resources. */
588 	msixc = pci_msix_count(dev);
589 	msic = pci_msi_count(dev);
590 	if (bootverbose) {
591 		device_printf(dev, "MSIX count : %d\n", msixc);
592 		device_printf(dev, "MSI count : %d\n", msic);
593 	}
594 
595 	/* Prefer MSIX over MSI. */
596 	if (msix_disable == 0 || msi_disable == 0) {
597 		if (msix_disable == 0 && msixc == JME_MSIX_MESSAGES &&
598 		    pci_alloc_msix(dev, &msixc) == 0) {
599 			if (msic == JME_MSIX_MESSAGES) {
600 				device_printf(dev, "Using %d MSIX messages.\n",
601 				    msixc);
602 				sc->jme_flags |= JME_FLAG_MSIX;
603 				sc->jme_irq_spec = jme_irq_spec_msi;
604 			} else
605 				pci_release_msi(dev);
606 		}
607 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
608 		    msic == JME_MSI_MESSAGES &&
609 		    pci_alloc_msi(dev, &msic) == 0) {
610 			if (msic == JME_MSI_MESSAGES) {
611 				device_printf(dev, "Using %d MSI messages.\n",
612 				    msic);
613 				sc->jme_flags |= JME_FLAG_MSI;
614 				sc->jme_irq_spec = jme_irq_spec_msi;
615 			} else
616 				pci_release_msi(dev);
617 		}
618 		/* Map interrupt vector 0, 1 and 2. */
619 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
620 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
621 			jme_map_intr_vector(sc);
622 	}
623 
624 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
625 	if (error != 0) {
626 		device_printf(dev, "cannot allocate IRQ resources.\n");
627 		goto fail;
628 	}
629 
630 	sc->jme_rev = pci_get_device(dev);
631 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
632 		sc->jme_flags |= JME_FLAG_FASTETH;
633 		sc->jme_flags |= JME_FLAG_NOJUMBO;
634 	}
635 	reg = CSR_READ_4(sc, JME_CHIPMODE);
636 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
637 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
638 	    CHIPMODE_NOT_FPGA)
639 		sc->jme_flags |= JME_FLAG_FPGA;
640 	if (bootverbose) {
641 		device_printf(dev, "PCI device revision : 0x%04x\n",
642 		    sc->jme_rev);
643 		device_printf(dev, "Chip revision : 0x%02x\n",
644 		    sc->jme_chip_rev);
645 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
646 			device_printf(dev, "FPGA revision : 0x%04x\n",
647 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
648 			    CHIPMODE_FPGA_REV_SHIFT);
649 	}
650 	if (sc->jme_chip_rev == 0xFF) {
651 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
652 		    sc->jme_rev);
653 		error = ENXIO;
654 		goto fail;
655 	}
656 
657 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
658 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
659 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
660 			sc->jme_flags |= JME_FLAG_DMA32BIT;
661 		sc->jme_flags |= JME_FLAG_TXCLK;
662 		sc->jme_flags |= JME_FLAG_HWMIB;
663 	}
664 
665 	/* Reset the ethernet controller. */
666 	jme_reset(sc);
667 
668 	/* Get station address. */
669 	reg = CSR_READ_4(sc, JME_SMBCSR);
670 	if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
671 		error = jme_eeprom_macaddr(sc);
672 	if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) {
673 		if (error != 0 && (bootverbose))
674 			device_printf(sc->jme_dev,
675 			    "ethernet hardware address not found in EEPROM.\n");
676 		jme_reg_macaddr(sc);
677 	}
678 
679 	/*
680 	 * Save PHY address.
681 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
682 	 * requires PHY probing to get correct PHY address.
683 	 */
684 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
685 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
686 		    GPREG0_PHY_ADDR_MASK;
687 		if (bootverbose)
688 			device_printf(dev, "PHY is at address %d.\n",
689 			    sc->jme_phyaddr);
690 	} else
691 		sc->jme_phyaddr = 0;
692 
693 	/* Set max allowable DMA size. */
694 	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
695 		sc->jme_flags |= JME_FLAG_PCIE;
696 		burst = pci_read_config(dev, i + 0x08, 2);
697 		if (bootverbose) {
698 			device_printf(dev, "Read request size : %d bytes.\n",
699 			    128 << ((burst >> 12) & 0x07));
700 			device_printf(dev, "TLP payload size : %d bytes.\n",
701 			    128 << ((burst >> 5) & 0x07));
702 		}
703 		switch ((burst >> 12) & 0x07) {
704 		case 0:
705 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
706 			break;
707 		case 1:
708 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
709 			break;
710 		default:
711 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
712 			break;
713 		}
714 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
715 	} else {
716 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
717 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
718 	}
719 	/* Create coalescing sysctl node. */
720 	jme_sysctl_node(sc);
721 	if ((error = jme_dma_alloc(sc) != 0))
722 		goto fail;
723 
724 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
725 	if (ifp == NULL) {
726 		device_printf(dev, "cannot allocate ifnet structure.\n");
727 		error = ENXIO;
728 		goto fail;
729 	}
730 
731 	ifp->if_softc = sc;
732 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
733 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
734 	ifp->if_ioctl = jme_ioctl;
735 	ifp->if_start = jme_start;
736 	ifp->if_init = jme_init;
737 	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
738 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
739 	IFQ_SET_READY(&ifp->if_snd);
740 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
741 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
742 	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
743 	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
744 		sc->jme_flags |= JME_FLAG_PMCAP;
745 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
746 	}
747 	ifp->if_capenable = ifp->if_capabilities;
748 
749 	/* Set up MII bus. */
750 	if ((error = mii_phy_probe(dev, &sc->jme_miibus, jme_mediachange,
751 	    jme_mediastatus)) != 0) {
752 		device_printf(dev, "no PHY found!\n");
753 		goto fail;
754 	}
755 
756 	/*
757 	 * Force PHY to FPGA mode.
758 	 */
759 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
760 		mii = device_get_softc(sc->jme_miibus);
761 		if (mii->mii_instance != 0) {
762 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
763 				if (miisc->mii_phy != 0) {
764 					sc->jme_phyaddr = miisc->mii_phy;
765 					break;
766 				}
767 			}
768 			if (sc->jme_phyaddr != 0) {
769 				device_printf(sc->jme_dev,
770 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
771 				/* vendor magic. */
772 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
773 				    0x0004);
774 			}
775 		}
776 	}
777 
778 	ether_ifattach(ifp, sc->jme_eaddr);
779 
780 	/* VLAN capability setup */
781 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
782 	    IFCAP_VLAN_HWCSUM;
783 	ifp->if_capenable = ifp->if_capabilities;
784 
785 	/* Tell the upper layer(s) we support long frames. */
786 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
787 
788 	/* Create local taskq. */
789 	TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp);
790 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
791 	    taskqueue_thread_enqueue, &sc->jme_tq);
792 	if (sc->jme_tq == NULL) {
793 		device_printf(dev, "could not create taskqueue.\n");
794 		ether_ifdetach(ifp);
795 		error = ENXIO;
796 		goto fail;
797 	}
798 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
799 	    device_get_nameunit(sc->jme_dev));
800 
801 	if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
802 		msic = JME_MSIX_MESSAGES;
803 	else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
804 		msic = JME_MSI_MESSAGES;
805 	else
806 		msic = 1;
807 	for (i = 0; i < msic; i++) {
808 		error = bus_setup_intr(dev, sc->jme_irq[i],
809 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
810 		    &sc->jme_intrhand[i]);
811 		if (error != 0)
812 			break;
813 	}
814 
815 	if (error != 0) {
816 		device_printf(dev, "could not set up interrupt handler.\n");
817 		taskqueue_free(sc->jme_tq);
818 		sc->jme_tq = NULL;
819 		ether_ifdetach(ifp);
820 		goto fail;
821 	}
822 
823 fail:
824 	if (error != 0)
825 		jme_detach(dev);
826 
827 	return (error);
828 }
829 
830 static int
831 jme_detach(device_t dev)
832 {
833 	struct jme_softc *sc;
834 	struct ifnet *ifp;
835 	int i, msic;
836 
837 	sc = device_get_softc(dev);
838 
839 	ifp = sc->jme_ifp;
840 	if (device_is_attached(dev)) {
841 		JME_LOCK(sc);
842 		sc->jme_flags |= JME_FLAG_DETACH;
843 		jme_stop(sc);
844 		JME_UNLOCK(sc);
845 		callout_drain(&sc->jme_tick_ch);
846 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
847 		taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
848 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
849 		ether_ifdetach(ifp);
850 	}
851 
852 	if (sc->jme_tq != NULL) {
853 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
854 		taskqueue_free(sc->jme_tq);
855 		sc->jme_tq = NULL;
856 	}
857 
858 	if (sc->jme_miibus != NULL) {
859 		device_delete_child(dev, sc->jme_miibus);
860 		sc->jme_miibus = NULL;
861 	}
862 	bus_generic_detach(dev);
863 	jme_dma_free(sc);
864 
865 	if (ifp != NULL) {
866 		if_free(ifp);
867 		sc->jme_ifp = NULL;
868 	}
869 
870 	msic = 1;
871 	if ((sc->jme_flags & JME_FLAG_MSIX) != 0)
872 		msic = JME_MSIX_MESSAGES;
873 	else if ((sc->jme_flags & JME_FLAG_MSI) != 0)
874 		msic = JME_MSI_MESSAGES;
875 	else
876 		msic = 1;
877 	for (i = 0; i < msic; i++) {
878 		if (sc->jme_intrhand[i] != NULL) {
879 			bus_teardown_intr(dev, sc->jme_irq[i],
880 			    sc->jme_intrhand[i]);
881 			sc->jme_intrhand[i] = NULL;
882 		}
883 	}
884 
885 	bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
886 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
887 		pci_release_msi(dev);
888 	bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
889 	mtx_destroy(&sc->jme_mtx);
890 
891 	return (0);
892 }
893 
894 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
895 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
896 
897 static void
898 jme_sysctl_node(struct jme_softc *sc)
899 {
900 	struct sysctl_ctx_list *ctx;
901 	struct sysctl_oid_list *child, *parent;
902 	struct sysctl_oid *tree;
903 	struct jme_hw_stats *stats;
904 	int error;
905 
906 	stats = &sc->jme_stats;
907 	ctx = device_get_sysctl_ctx(sc->jme_dev);
908 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
909 
910 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
911 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
912 	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
913 
914 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
915 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
916 	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
917 
918 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
919 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
920 	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
921 
922 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
923 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
924 	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
925 
926 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
927 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
928 	    sysctl_hw_jme_proc_limit, "I",
929 	    "max number of Rx events to process");
930 
931 	/* Pull in device tunables. */
932 	sc->jme_process_limit = JME_PROC_DEFAULT;
933 	error = resource_int_value(device_get_name(sc->jme_dev),
934 	    device_get_unit(sc->jme_dev), "process_limit",
935 	    &sc->jme_process_limit);
936 	if (error == 0) {
937 		if (sc->jme_process_limit < JME_PROC_MIN ||
938 		    sc->jme_process_limit > JME_PROC_MAX) {
939 			device_printf(sc->jme_dev,
940 			    "process_limit value out of range; "
941 			    "using default: %d\n", JME_PROC_DEFAULT);
942 			sc->jme_process_limit = JME_PROC_DEFAULT;
943 		}
944 	}
945 
946 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
947 	error = resource_int_value(device_get_name(sc->jme_dev),
948 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
949 	if (error == 0) {
950 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
951 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
952 			device_printf(sc->jme_dev,
953 			    "tx_coal_to value out of range; "
954 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
955 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
956 		}
957 	}
958 
959 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
960 	error = resource_int_value(device_get_name(sc->jme_dev),
961 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
962 	if (error == 0) {
963 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
964 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
965 			device_printf(sc->jme_dev,
966 			    "tx_coal_pkt value out of range; "
967 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
968 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
969 		}
970 	}
971 
972 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
973 	error = resource_int_value(device_get_name(sc->jme_dev),
974 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
975 	if (error == 0) {
976 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
977 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
978 			device_printf(sc->jme_dev,
979 			    "rx_coal_to value out of range; "
980 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
981 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
982 		}
983 	}
984 
985 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
986 	error = resource_int_value(device_get_name(sc->jme_dev),
987 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
988 	if (error == 0) {
989 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
990 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
991 			device_printf(sc->jme_dev,
992 			    "tx_coal_pkt value out of range; "
993 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
994 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
995 		}
996 	}
997 
998 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
999 		return;
1000 
1001 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1002 	    NULL, "JME statistics");
1003 	parent = SYSCTL_CHILDREN(tree);
1004 
1005 	/* Rx statistics. */
1006 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1007 	    NULL, "Rx MAC statistics");
1008 	child = SYSCTL_CHILDREN(tree);
1009 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1010 	    &stats->rx_good_frames, "Good frames");
1011 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1012 	    &stats->rx_crc_errs, "CRC errors");
1013 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1014 	    &stats->rx_mii_errs, "MII errors");
1015 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1016 	    &stats->rx_fifo_oflows, "FIFO overflows");
1017 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1018 	    &stats->rx_desc_empty, "Descriptor empty");
1019 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1020 	    &stats->rx_bad_frames, "Bad frames");
1021 
1022 	/* Tx statistics. */
1023 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1024 	    NULL, "Tx MAC statistics");
1025 	child = SYSCTL_CHILDREN(tree);
1026 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1027 	    &stats->tx_good_frames, "Good frames");
1028 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1029 	    &stats->tx_bad_frames, "Bad frames");
1030 }
1031 
1032 #undef	JME_SYSCTL_STAT_ADD32
1033 
1034 struct jme_dmamap_arg {
1035 	bus_addr_t	jme_busaddr;
1036 };
1037 
1038 static void
1039 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1040 {
1041 	struct jme_dmamap_arg *ctx;
1042 
1043 	if (error != 0)
1044 		return;
1045 
1046 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1047 
1048 	ctx = (struct jme_dmamap_arg *)arg;
1049 	ctx->jme_busaddr = segs[0].ds_addr;
1050 }
1051 
1052 static int
1053 jme_dma_alloc(struct jme_softc *sc)
1054 {
1055 	struct jme_dmamap_arg ctx;
1056 	struct jme_txdesc *txd;
1057 	struct jme_rxdesc *rxd;
1058 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1059 	int error, i;
1060 
1061 	lowaddr = BUS_SPACE_MAXADDR;
1062 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1063 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1064 
1065 again:
1066 	/* Create parent ring tag. */
1067 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1068 	    1, 0,			/* algnmnt, boundary */
1069 	    lowaddr,			/* lowaddr */
1070 	    BUS_SPACE_MAXADDR,		/* highaddr */
1071 	    NULL, NULL,			/* filter, filterarg */
1072 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1073 	    0,				/* nsegments */
1074 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1075 	    0,				/* flags */
1076 	    NULL, NULL,			/* lockfunc, lockarg */
1077 	    &sc->jme_cdata.jme_ring_tag);
1078 	if (error != 0) {
1079 		device_printf(sc->jme_dev,
1080 		    "could not create parent ring DMA tag.\n");
1081 		goto fail;
1082 	}
1083 	/* Create tag for Tx ring. */
1084 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1085 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1086 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1087 	    BUS_SPACE_MAXADDR,		/* highaddr */
1088 	    NULL, NULL,			/* filter, filterarg */
1089 	    JME_TX_RING_SIZE,		/* maxsize */
1090 	    1,				/* nsegments */
1091 	    JME_TX_RING_SIZE,		/* maxsegsize */
1092 	    0,				/* flags */
1093 	    NULL, NULL,			/* lockfunc, lockarg */
1094 	    &sc->jme_cdata.jme_tx_ring_tag);
1095 	if (error != 0) {
1096 		device_printf(sc->jme_dev,
1097 		    "could not allocate Tx ring DMA tag.\n");
1098 		goto fail;
1099 	}
1100 
1101 	/* Create tag for Rx ring. */
1102 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1103 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1104 	    lowaddr,			/* lowaddr */
1105 	    BUS_SPACE_MAXADDR,		/* highaddr */
1106 	    NULL, NULL,			/* filter, filterarg */
1107 	    JME_RX_RING_SIZE,		/* maxsize */
1108 	    1,				/* nsegments */
1109 	    JME_RX_RING_SIZE,		/* maxsegsize */
1110 	    0,				/* flags */
1111 	    NULL, NULL,			/* lockfunc, lockarg */
1112 	    &sc->jme_cdata.jme_rx_ring_tag);
1113 	if (error != 0) {
1114 		device_printf(sc->jme_dev,
1115 		    "could not allocate Rx ring DMA tag.\n");
1116 		goto fail;
1117 	}
1118 
1119 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1120 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1121 	    (void **)&sc->jme_rdata.jme_tx_ring,
1122 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1123 	    &sc->jme_cdata.jme_tx_ring_map);
1124 	if (error != 0) {
1125 		device_printf(sc->jme_dev,
1126 		    "could not allocate DMA'able memory for Tx ring.\n");
1127 		goto fail;
1128 	}
1129 
1130 	ctx.jme_busaddr = 0;
1131 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1132 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1133 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1134 	if (error != 0 || ctx.jme_busaddr == 0) {
1135 		device_printf(sc->jme_dev,
1136 		    "could not load DMA'able memory for Tx ring.\n");
1137 		goto fail;
1138 	}
1139 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1140 
1141 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1142 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1143 	    (void **)&sc->jme_rdata.jme_rx_ring,
1144 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1145 	    &sc->jme_cdata.jme_rx_ring_map);
1146 	if (error != 0) {
1147 		device_printf(sc->jme_dev,
1148 		    "could not allocate DMA'able memory for Rx ring.\n");
1149 		goto fail;
1150 	}
1151 
1152 	ctx.jme_busaddr = 0;
1153 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1154 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1155 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1156 	if (error != 0 || ctx.jme_busaddr == 0) {
1157 		device_printf(sc->jme_dev,
1158 		    "could not load DMA'able memory for Rx ring.\n");
1159 		goto fail;
1160 	}
1161 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1162 
1163 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1164 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1165 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1166 		    JME_TX_RING_SIZE;
1167 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1168 		    JME_RX_RING_SIZE;
1169 		if ((JME_ADDR_HI(tx_ring_end) !=
1170 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1171 		    (JME_ADDR_HI(rx_ring_end) !=
1172 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1173 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1174 			    "switching to 32bit DMA address mode.\n");
1175 			jme_dma_free(sc);
1176 			/* Limit DMA address space to 32bit and try again. */
1177 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1178 			goto again;
1179 		}
1180 	}
1181 
1182 	lowaddr = BUS_SPACE_MAXADDR;
1183 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1184 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1185 	/* Create parent buffer tag. */
1186 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1187 	    1, 0,			/* algnmnt, boundary */
1188 	    lowaddr,			/* lowaddr */
1189 	    BUS_SPACE_MAXADDR,		/* highaddr */
1190 	    NULL, NULL,			/* filter, filterarg */
1191 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1192 	    0,				/* nsegments */
1193 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1194 	    0,				/* flags */
1195 	    NULL, NULL,			/* lockfunc, lockarg */
1196 	    &sc->jme_cdata.jme_buffer_tag);
1197 	if (error != 0) {
1198 		device_printf(sc->jme_dev,
1199 		    "could not create parent buffer DMA tag.\n");
1200 		goto fail;
1201 	}
1202 
1203 	/* Create shadow status block tag. */
1204 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1205 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1206 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1207 	    BUS_SPACE_MAXADDR,		/* highaddr */
1208 	    NULL, NULL,			/* filter, filterarg */
1209 	    JME_SSB_SIZE,		/* maxsize */
1210 	    1,				/* nsegments */
1211 	    JME_SSB_SIZE,		/* maxsegsize */
1212 	    0,				/* flags */
1213 	    NULL, NULL,			/* lockfunc, lockarg */
1214 	    &sc->jme_cdata.jme_ssb_tag);
1215 	if (error != 0) {
1216 		device_printf(sc->jme_dev,
1217 		    "could not create shared status block DMA tag.\n");
1218 		goto fail;
1219 	}
1220 
1221 	/* Create tag for Tx buffers. */
1222 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1223 	    1, 0,			/* algnmnt, boundary */
1224 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1225 	    BUS_SPACE_MAXADDR,		/* highaddr */
1226 	    NULL, NULL,			/* filter, filterarg */
1227 	    JME_TSO_MAXSIZE,		/* maxsize */
1228 	    JME_MAXTXSEGS,		/* nsegments */
1229 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1230 	    0,				/* flags */
1231 	    NULL, NULL,			/* lockfunc, lockarg */
1232 	    &sc->jme_cdata.jme_tx_tag);
1233 	if (error != 0) {
1234 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1235 		goto fail;
1236 	}
1237 
1238 	/* Create tag for Rx buffers. */
1239 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1240 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1241 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1242 	    BUS_SPACE_MAXADDR,		/* highaddr */
1243 	    NULL, NULL,			/* filter, filterarg */
1244 	    MCLBYTES,			/* maxsize */
1245 	    1,				/* nsegments */
1246 	    MCLBYTES,			/* maxsegsize */
1247 	    0,				/* flags */
1248 	    NULL, NULL,			/* lockfunc, lockarg */
1249 	    &sc->jme_cdata.jme_rx_tag);
1250 	if (error != 0) {
1251 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1252 		goto fail;
1253 	}
1254 
1255 	/*
1256 	 * Allocate DMA'able memory and load the DMA map for shared
1257 	 * status block.
1258 	 */
1259 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1260 	    (void **)&sc->jme_rdata.jme_ssb_block,
1261 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1262 	    &sc->jme_cdata.jme_ssb_map);
1263 	if (error != 0) {
1264 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1265 		    "memory for shared status block.\n");
1266 		goto fail;
1267 	}
1268 
1269 	ctx.jme_busaddr = 0;
1270 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1271 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1272 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1273 	if (error != 0 || ctx.jme_busaddr == 0) {
1274 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1275 		    "for shared status block.\n");
1276 		goto fail;
1277 	}
1278 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1279 
1280 	/* Create DMA maps for Tx buffers. */
1281 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1282 		txd = &sc->jme_cdata.jme_txdesc[i];
1283 		txd->tx_m = NULL;
1284 		txd->tx_dmamap = NULL;
1285 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1286 		    &txd->tx_dmamap);
1287 		if (error != 0) {
1288 			device_printf(sc->jme_dev,
1289 			    "could not create Tx dmamap.\n");
1290 			goto fail;
1291 		}
1292 	}
1293 	/* Create DMA maps for Rx buffers. */
1294 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1295 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1296 		device_printf(sc->jme_dev,
1297 		    "could not create spare Rx dmamap.\n");
1298 		goto fail;
1299 	}
1300 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1301 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1302 		rxd->rx_m = NULL;
1303 		rxd->rx_dmamap = NULL;
1304 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1305 		    &rxd->rx_dmamap);
1306 		if (error != 0) {
1307 			device_printf(sc->jme_dev,
1308 			    "could not create Rx dmamap.\n");
1309 			goto fail;
1310 		}
1311 	}
1312 
1313 fail:
1314 	return (error);
1315 }
1316 
1317 static void
1318 jme_dma_free(struct jme_softc *sc)
1319 {
1320 	struct jme_txdesc *txd;
1321 	struct jme_rxdesc *rxd;
1322 	int i;
1323 
1324 	/* Tx ring */
1325 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1326 		if (sc->jme_cdata.jme_tx_ring_map)
1327 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1328 			    sc->jme_cdata.jme_tx_ring_map);
1329 		if (sc->jme_cdata.jme_tx_ring_map &&
1330 		    sc->jme_rdata.jme_tx_ring)
1331 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1332 			    sc->jme_rdata.jme_tx_ring,
1333 			    sc->jme_cdata.jme_tx_ring_map);
1334 		sc->jme_rdata.jme_tx_ring = NULL;
1335 		sc->jme_cdata.jme_tx_ring_map = NULL;
1336 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1337 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1338 	}
1339 	/* Rx ring */
1340 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1341 		if (sc->jme_cdata.jme_rx_ring_map)
1342 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1343 			    sc->jme_cdata.jme_rx_ring_map);
1344 		if (sc->jme_cdata.jme_rx_ring_map &&
1345 		    sc->jme_rdata.jme_rx_ring)
1346 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1347 			    sc->jme_rdata.jme_rx_ring,
1348 			    sc->jme_cdata.jme_rx_ring_map);
1349 		sc->jme_rdata.jme_rx_ring = NULL;
1350 		sc->jme_cdata.jme_rx_ring_map = NULL;
1351 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1352 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1353 	}
1354 	/* Tx buffers */
1355 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1356 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1357 			txd = &sc->jme_cdata.jme_txdesc[i];
1358 			if (txd->tx_dmamap != NULL) {
1359 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1360 				    txd->tx_dmamap);
1361 				txd->tx_dmamap = NULL;
1362 			}
1363 		}
1364 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1365 		sc->jme_cdata.jme_tx_tag = NULL;
1366 	}
1367 	/* Rx buffers */
1368 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1369 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1370 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1371 			if (rxd->rx_dmamap != NULL) {
1372 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1373 				    rxd->rx_dmamap);
1374 				rxd->rx_dmamap = NULL;
1375 			}
1376 		}
1377 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1378 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1379 			    sc->jme_cdata.jme_rx_sparemap);
1380 			sc->jme_cdata.jme_rx_sparemap = NULL;
1381 		}
1382 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1383 		sc->jme_cdata.jme_rx_tag = NULL;
1384 	}
1385 
1386 	/* Shared status block. */
1387 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1388 		if (sc->jme_cdata.jme_ssb_map)
1389 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1390 			    sc->jme_cdata.jme_ssb_map);
1391 		if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block)
1392 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1393 			    sc->jme_rdata.jme_ssb_block,
1394 			    sc->jme_cdata.jme_ssb_map);
1395 		sc->jme_rdata.jme_ssb_block = NULL;
1396 		sc->jme_cdata.jme_ssb_map = NULL;
1397 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1398 		sc->jme_cdata.jme_ssb_tag = NULL;
1399 	}
1400 
1401 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1402 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1403 		sc->jme_cdata.jme_buffer_tag = NULL;
1404 	}
1405 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1406 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1407 		sc->jme_cdata.jme_ring_tag = NULL;
1408 	}
1409 }
1410 
1411 /*
1412  *	Make sure the interface is stopped at reboot time.
1413  */
1414 static int
1415 jme_shutdown(device_t dev)
1416 {
1417 
1418 	return (jme_suspend(dev));
1419 }
1420 
1421 /*
1422  * Unlike other ethernet controllers, JMC250 requires
1423  * explicit resetting link speed to 10/100Mbps as gigabit
1424  * link will cunsume more power than 375mA.
1425  * Note, we reset the link speed to 10/100Mbps with
1426  * auto-negotiation but we don't know whether that operation
1427  * would succeed or not as we have no control after powering
1428  * off. If the renegotiation fail WOL may not work. Running
1429  * at 1Gbps draws more power than 375mA at 3.3V which is
1430  * specified in PCI specification and that would result in
1431  * complete shutdowning power to ethernet controller.
1432  *
1433  * TODO
1434  *  Save current negotiated media speed/duplex/flow-control
1435  *  to softc and restore the same link again after resuming.
1436  *  PHY handling such as power down/resetting to 100Mbps
1437  *  may be better handled in suspend method in phy driver.
1438  */
1439 static void
1440 jme_setlinkspeed(struct jme_softc *sc)
1441 {
1442 	struct mii_data *mii;
1443 	int aneg, i;
1444 
1445 	JME_LOCK_ASSERT(sc);
1446 
1447 	mii = device_get_softc(sc->jme_miibus);
1448 	mii_pollstat(mii);
1449 	aneg = 0;
1450 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1451 		switch IFM_SUBTYPE(mii->mii_media_active) {
1452 		case IFM_10_T:
1453 		case IFM_100_TX:
1454 			return;
1455 		case IFM_1000_T:
1456 			aneg++;
1457 		default:
1458 			break;
1459 		}
1460 	}
1461 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1462 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1463 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1464 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1465 	    BMCR_AUTOEN | BMCR_STARTNEG);
1466 	DELAY(1000);
1467 	if (aneg != 0) {
1468 		/* Poll link state until jme(4) get a 10/100 link. */
1469 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1470 			mii_pollstat(mii);
1471 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1472 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1473 				case IFM_10_T:
1474 				case IFM_100_TX:
1475 					jme_mac_config(sc);
1476 					return;
1477 				default:
1478 					break;
1479 				}
1480 			}
1481 			JME_UNLOCK(sc);
1482 			pause("jmelnk", hz);
1483 			JME_LOCK(sc);
1484 		}
1485 		if (i == MII_ANEGTICKS_GIGE)
1486 			device_printf(sc->jme_dev, "establishing link failed, "
1487 			    "WOL may not work!");
1488 	}
1489 	/*
1490 	 * No link, force MAC to have 100Mbps, full-duplex link.
1491 	 * This is the last resort and may/may not work.
1492 	 */
1493 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1494 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1495 	jme_mac_config(sc);
1496 }
1497 
1498 static void
1499 jme_setwol(struct jme_softc *sc)
1500 {
1501 	struct ifnet *ifp;
1502 	uint32_t gpr, pmcs;
1503 	uint16_t pmstat;
1504 	int pmc;
1505 
1506 	JME_LOCK_ASSERT(sc);
1507 
1508 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1509 		/* Remove Tx MAC/offload clock to save more power. */
1510 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1511 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1512 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1513 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1514 		/* No PME capability, PHY power down. */
1515 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1516 		    MII_BMCR, BMCR_PDOWN);
1517 		return;
1518 	}
1519 
1520 	ifp = sc->jme_ifp;
1521 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1522 	pmcs = CSR_READ_4(sc, JME_PMCS);
1523 	pmcs &= ~PMCS_WOL_ENB_MASK;
1524 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1525 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1526 		/* Enable PME message. */
1527 		gpr |= GPREG0_PME_ENB;
1528 		/* For gigabit controllers, reset link speed to 10/100. */
1529 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1530 			jme_setlinkspeed(sc);
1531 	}
1532 
1533 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1534 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1535 	/* Remove Tx MAC/offload clock to save more power. */
1536 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1537 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1538 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1539 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1540 	/* Request PME. */
1541 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1542 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1543 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1544 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1545 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1546 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1547 		/* No WOL, PHY power down. */
1548 		jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
1549 		    MII_BMCR, BMCR_PDOWN);
1550 	}
1551 }
1552 
1553 static int
1554 jme_suspend(device_t dev)
1555 {
1556 	struct jme_softc *sc;
1557 
1558 	sc = device_get_softc(dev);
1559 
1560 	JME_LOCK(sc);
1561 	jme_stop(sc);
1562 	jme_setwol(sc);
1563 	JME_UNLOCK(sc);
1564 
1565 	return (0);
1566 }
1567 
1568 static int
1569 jme_resume(device_t dev)
1570 {
1571 	struct jme_softc *sc;
1572 	struct ifnet *ifp;
1573 	uint16_t pmstat;
1574 	int pmc;
1575 
1576 	sc = device_get_softc(dev);
1577 
1578 	JME_LOCK(sc);
1579 	if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1580 		pmstat = pci_read_config(sc->jme_dev,
1581 		    pmc + PCIR_POWER_STATUS, 2);
1582 		/* Disable PME clear PME status. */
1583 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1584 		pci_write_config(sc->jme_dev,
1585 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1586 	}
1587 	ifp = sc->jme_ifp;
1588 	if ((ifp->if_flags & IFF_UP) != 0)
1589 		jme_init_locked(sc);
1590 
1591 	JME_UNLOCK(sc);
1592 
1593 	return (0);
1594 }
1595 
1596 static int
1597 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1598 {
1599 	struct jme_txdesc *txd;
1600 	struct jme_desc *desc;
1601 	struct mbuf *m;
1602 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1603 	int error, i, nsegs, prod;
1604 	uint32_t cflags, tso_segsz;
1605 
1606 	JME_LOCK_ASSERT(sc);
1607 
1608 	M_ASSERTPKTHDR((*m_head));
1609 
1610 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1611 		/*
1612 		 * Due to the adherence to NDIS specification JMC250
1613 		 * assumes upper stack computed TCP pseudo checksum
1614 		 * without including payload length. This breaks
1615 		 * checksum offload for TSO case so recompute TCP
1616 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1617 		 * be much burden on modern CPUs.
1618 		 */
1619 		struct ether_header *eh;
1620 		struct ip *ip;
1621 		struct tcphdr *tcp;
1622 		uint32_t ip_off, poff;
1623 
1624 		if (M_WRITABLE(*m_head) == 0) {
1625 			/* Get a writable copy. */
1626 			m = m_dup(*m_head, M_DONTWAIT);
1627 			m_freem(*m_head);
1628 			if (m == NULL) {
1629 				*m_head = NULL;
1630 				return (ENOBUFS);
1631 			}
1632 			*m_head = m;
1633 		}
1634 		ip_off = sizeof(struct ether_header);
1635 		m = m_pullup(*m_head, ip_off);
1636 		if (m == NULL) {
1637 			*m_head = NULL;
1638 			return (ENOBUFS);
1639 		}
1640 		eh = mtod(m, struct ether_header *);
1641 		/* Check the existence of VLAN tag. */
1642 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1643 			ip_off = sizeof(struct ether_vlan_header);
1644 			m = m_pullup(m, ip_off);
1645 			if (m == NULL) {
1646 				*m_head = NULL;
1647 				return (ENOBUFS);
1648 			}
1649 		}
1650 		m = m_pullup(m, ip_off + sizeof(struct ip));
1651 		if (m == NULL) {
1652 			*m_head = NULL;
1653 			return (ENOBUFS);
1654 		}
1655 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1656 		poff = ip_off + (ip->ip_hl << 2);
1657 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1658 		if (m == NULL) {
1659 			*m_head = NULL;
1660 			return (ENOBUFS);
1661 		}
1662 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1663 		/*
1664 		 * Reset IP checksum and recompute TCP pseudo
1665 		 * checksum that NDIS specification requires.
1666 		 */
1667 		ip->ip_sum = 0;
1668 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1669 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1670 			    ip->ip_dst.s_addr,
1671 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1672 			/* No need to TSO, force IP checksum offload. */
1673 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1674 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1675 		} else
1676 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1677 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1678 		*m_head = m;
1679 	}
1680 
1681 	prod = sc->jme_cdata.jme_tx_prod;
1682 	txd = &sc->jme_cdata.jme_txdesc[prod];
1683 
1684 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1685 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1686 	if (error == EFBIG) {
1687 		m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS);
1688 		if (m == NULL) {
1689 			m_freem(*m_head);
1690 			*m_head = NULL;
1691 			return (ENOMEM);
1692 		}
1693 		*m_head = m;
1694 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1695 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1696 		if (error != 0) {
1697 			m_freem(*m_head);
1698 			*m_head = NULL;
1699 			return (error);
1700 		}
1701 	} else if (error != 0)
1702 		return (error);
1703 	if (nsegs == 0) {
1704 		m_freem(*m_head);
1705 		*m_head = NULL;
1706 		return (EIO);
1707 	}
1708 
1709 	/*
1710 	 * Check descriptor overrun. Leave one free descriptor.
1711 	 * Since we always use 64bit address mode for transmitting,
1712 	 * each Tx request requires one more dummy descriptor.
1713 	 */
1714 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1715 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1716 		return (ENOBUFS);
1717 	}
1718 
1719 	m = *m_head;
1720 	cflags = 0;
1721 	tso_segsz = 0;
1722 	/* Configure checksum offload and TSO. */
1723 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1724 		tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1725 		    JME_TD_MSS_SHIFT;
1726 		cflags |= JME_TD_TSO;
1727 	} else {
1728 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1729 			cflags |= JME_TD_IPCSUM;
1730 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1731 			cflags |= JME_TD_TCPCSUM;
1732 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1733 			cflags |= JME_TD_UDPCSUM;
1734 	}
1735 	/* Configure VLAN. */
1736 	if ((m->m_flags & M_VLANTAG) != 0) {
1737 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1738 		cflags |= JME_TD_VLAN_TAG;
1739 	}
1740 
1741 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1742 	desc->flags = htole32(cflags);
1743 	desc->buflen = htole32(tso_segsz);
1744 	desc->addr_hi = htole32(m->m_pkthdr.len);
1745 	desc->addr_lo = 0;
1746 	sc->jme_cdata.jme_tx_cnt++;
1747 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1748 	for (i = 0; i < nsegs; i++) {
1749 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1750 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1751 		desc->buflen = htole32(txsegs[i].ds_len);
1752 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1753 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1754 		sc->jme_cdata.jme_tx_cnt++;
1755 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1756 	}
1757 
1758 	/* Update producer index. */
1759 	sc->jme_cdata.jme_tx_prod = prod;
1760 	/*
1761 	 * Finally request interrupt and give the first descriptor
1762 	 * owenership to hardware.
1763 	 */
1764 	desc = txd->tx_desc;
1765 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1766 
1767 	txd->tx_m = m;
1768 	txd->tx_ndesc = nsegs + 1;
1769 
1770 	/* Sync descriptors. */
1771 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1772 	    BUS_DMASYNC_PREWRITE);
1773 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1774 	    sc->jme_cdata.jme_tx_ring_map,
1775 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1776 
1777 	return (0);
1778 }
1779 
1780 static void
1781 jme_tx_task(void *arg, int pending)
1782 {
1783 	struct ifnet *ifp;
1784 
1785 	ifp = (struct ifnet *)arg;
1786 	jme_start(ifp);
1787 }
1788 
1789 static void
1790 jme_start(struct ifnet *ifp)
1791 {
1792         struct jme_softc *sc;
1793         struct mbuf *m_head;
1794 	int enq;
1795 
1796 	sc = ifp->if_softc;
1797 
1798 	JME_LOCK(sc);
1799 
1800 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1801 		jme_txeof(sc);
1802 
1803 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1804 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) {
1805 		JME_UNLOCK(sc);
1806 		return;
1807 	}
1808 
1809 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1810 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1811 		if (m_head == NULL)
1812 			break;
1813 		/*
1814 		 * Pack the data into the transmit ring. If we
1815 		 * don't have room, set the OACTIVE flag and wait
1816 		 * for the NIC to drain the ring.
1817 		 */
1818 		if (jme_encap(sc, &m_head)) {
1819 			if (m_head == NULL)
1820 				break;
1821 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1822 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1823 			break;
1824 		}
1825 
1826 		enq++;
1827 		/*
1828 		 * If there's a BPF listener, bounce a copy of this frame
1829 		 * to him.
1830 		 */
1831 		ETHER_BPF_MTAP(ifp, m_head);
1832 	}
1833 
1834 	if (enq > 0) {
1835 		/*
1836 		 * Reading TXCSR takes very long time under heavy load
1837 		 * so cache TXCSR value and writes the ORed value with
1838 		 * the kick command to the TXCSR. This saves one register
1839 		 * access cycle.
1840 		 */
1841 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1842 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1843 		/* Set a timeout in case the chip goes out to lunch. */
1844 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1845 	}
1846 
1847 	JME_UNLOCK(sc);
1848 }
1849 
1850 static void
1851 jme_watchdog(struct jme_softc *sc)
1852 {
1853 	struct ifnet *ifp;
1854 
1855 	JME_LOCK_ASSERT(sc);
1856 
1857 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1858 		return;
1859 
1860 	ifp = sc->jme_ifp;
1861 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1862 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1863 		ifp->if_oerrors++;
1864 		jme_init_locked(sc);
1865 		return;
1866 	}
1867 	jme_txeof(sc);
1868 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1869 		if_printf(sc->jme_ifp,
1870 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1871 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1872 			taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
1873 		return;
1874 	}
1875 
1876 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1877 	ifp->if_oerrors++;
1878 	jme_init_locked(sc);
1879 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1880 		taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
1881 }
1882 
1883 static int
1884 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1885 {
1886 	struct jme_softc *sc;
1887 	struct ifreq *ifr;
1888 	struct mii_data *mii;
1889 	uint32_t reg;
1890 	int error, mask;
1891 
1892 	sc = ifp->if_softc;
1893 	ifr = (struct ifreq *)data;
1894 	error = 0;
1895 	switch (cmd) {
1896 	case SIOCSIFMTU:
1897 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1898 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1899 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1900 			error = EINVAL;
1901 			break;
1902 		}
1903 
1904 		if (ifp->if_mtu != ifr->ifr_mtu) {
1905 			/*
1906 			 * No special configuration is required when interface
1907 			 * MTU is changed but availability of TSO/Tx checksum
1908 			 * offload should be chcked against new MTU size as
1909 			 * FIFO size is just 2K.
1910 			 */
1911 			JME_LOCK(sc);
1912 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
1913 				ifp->if_capenable &=
1914 				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
1915 				ifp->if_hwassist &=
1916 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
1917 				VLAN_CAPABILITIES(ifp);
1918 			}
1919 			ifp->if_mtu = ifr->ifr_mtu;
1920 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1921 				jme_init_locked(sc);
1922 			JME_UNLOCK(sc);
1923 		}
1924 		break;
1925 	case SIOCSIFFLAGS:
1926 		JME_LOCK(sc);
1927 		if ((ifp->if_flags & IFF_UP) != 0) {
1928 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1929 				if (((ifp->if_flags ^ sc->jme_if_flags)
1930 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1931 					jme_set_filter(sc);
1932 			} else {
1933 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
1934 					jme_init_locked(sc);
1935 			}
1936 		} else {
1937 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1938 				jme_stop(sc);
1939 		}
1940 		sc->jme_if_flags = ifp->if_flags;
1941 		JME_UNLOCK(sc);
1942 		break;
1943 	case SIOCADDMULTI:
1944 	case SIOCDELMULTI:
1945 		JME_LOCK(sc);
1946 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1947 			jme_set_filter(sc);
1948 		JME_UNLOCK(sc);
1949 		break;
1950 	case SIOCSIFMEDIA:
1951 	case SIOCGIFMEDIA:
1952 		mii = device_get_softc(sc->jme_miibus);
1953 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1954 		break;
1955 	case SIOCSIFCAP:
1956 		JME_LOCK(sc);
1957 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1958 		if ((mask & IFCAP_TXCSUM) != 0 &&
1959 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
1960 			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
1961 				ifp->if_capenable ^= IFCAP_TXCSUM;
1962 				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
1963 					ifp->if_hwassist |= JME_CSUM_FEATURES;
1964 				else
1965 					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
1966 			}
1967 		}
1968 		if ((mask & IFCAP_RXCSUM) != 0 &&
1969 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
1970 			ifp->if_capenable ^= IFCAP_RXCSUM;
1971 			reg = CSR_READ_4(sc, JME_RXMAC);
1972 			reg &= ~RXMAC_CSUM_ENB;
1973 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1974 				reg |= RXMAC_CSUM_ENB;
1975 			CSR_WRITE_4(sc, JME_RXMAC, reg);
1976 		}
1977 		if ((mask & IFCAP_TSO4) != 0 &&
1978 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
1979 			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
1980 				ifp->if_capenable ^= IFCAP_TSO4;
1981 				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
1982 					ifp->if_hwassist |= CSUM_TSO;
1983 				else
1984 					ifp->if_hwassist &= ~CSUM_TSO;
1985 			}
1986 		}
1987 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1988 		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
1989 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1990 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1991 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1992 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1993 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1994 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
1995 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1996 			jme_set_vlan(sc);
1997 		}
1998 		JME_UNLOCK(sc);
1999 		VLAN_CAPABILITIES(ifp);
2000 		break;
2001 	default:
2002 		error = ether_ioctl(ifp, cmd, data);
2003 		break;
2004 	}
2005 
2006 	return (error);
2007 }
2008 
2009 static void
2010 jme_mac_config(struct jme_softc *sc)
2011 {
2012 	struct mii_data *mii;
2013 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2014 	uint32_t txclk;
2015 
2016 	JME_LOCK_ASSERT(sc);
2017 
2018 	mii = device_get_softc(sc->jme_miibus);
2019 
2020 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2021 	DELAY(10);
2022 	CSR_WRITE_4(sc, JME_GHC, 0);
2023 	ghc = 0;
2024 	txclk = 0;
2025 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2026 	rxmac &= ~RXMAC_FC_ENB;
2027 	txmac = CSR_READ_4(sc, JME_TXMAC);
2028 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2029 	txpause = CSR_READ_4(sc, JME_TXPFC);
2030 	txpause &= ~TXPFC_PAUSE_ENB;
2031 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2032 		ghc |= GHC_FULL_DUPLEX;
2033 		rxmac &= ~RXMAC_COLL_DET_ENB;
2034 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2035 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2036 		    TXMAC_FRAME_BURST);
2037 #ifdef notyet
2038 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2039 			txpause |= TXPFC_PAUSE_ENB;
2040 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2041 			rxmac |= RXMAC_FC_ENB;
2042 #endif
2043 		/* Disable retry transmit timer/retry limit. */
2044 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2045 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2046 	} else {
2047 		rxmac |= RXMAC_COLL_DET_ENB;
2048 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2049 		/* Enable retry transmit timer/retry limit. */
2050 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2051 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2052 	}
2053 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2054 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2055 	case IFM_10_T:
2056 		ghc |= GHC_SPEED_10;
2057 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2058 		break;
2059 	case IFM_100_TX:
2060 		ghc |= GHC_SPEED_100;
2061 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2062 		break;
2063 	case IFM_1000_T:
2064 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2065 			break;
2066 		ghc |= GHC_SPEED_1000;
2067 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2068 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2069 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2070 		break;
2071 	default:
2072 		break;
2073 	}
2074 	if (sc->jme_rev == DEVICEID_JMC250 &&
2075 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2076 		/*
2077 		 * Workaround occasional packet loss issue of JMC250 A2
2078 		 * when it runs on half-duplex media.
2079 		 */
2080 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2081 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2082 			gpreg &= ~GPREG1_HDPX_FIX;
2083 		else
2084 			gpreg |= GPREG1_HDPX_FIX;
2085 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2086 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2087 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2088 			/* Extend interface FIFO depth. */
2089 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2090 			    0x1B, 0x0000);
2091 		} else {
2092 			/* Select default interface FIFO depth. */
2093 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2094 			    0x1B, 0x0004);
2095 		}
2096 	}
2097 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2098 		ghc |= txclk;
2099 	CSR_WRITE_4(sc, JME_GHC, ghc);
2100 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2101 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2102 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2103 }
2104 
2105 static void
2106 jme_link_task(void *arg, int pending)
2107 {
2108 	struct jme_softc *sc;
2109 	struct mii_data *mii;
2110 	struct ifnet *ifp;
2111 	struct jme_txdesc *txd;
2112 	bus_addr_t paddr;
2113 	int i;
2114 
2115 	sc = (struct jme_softc *)arg;
2116 
2117 	JME_LOCK(sc);
2118 	mii = device_get_softc(sc->jme_miibus);
2119 	ifp = sc->jme_ifp;
2120 	if (mii == NULL || ifp == NULL ||
2121 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2122 		JME_UNLOCK(sc);
2123 		return;
2124 	}
2125 
2126 	sc->jme_flags &= ~JME_FLAG_LINK;
2127 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2128 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2129 		case IFM_10_T:
2130 		case IFM_100_TX:
2131 			sc->jme_flags |= JME_FLAG_LINK;
2132 			break;
2133 		case IFM_1000_T:
2134 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2135 				break;
2136 			sc->jme_flags |= JME_FLAG_LINK;
2137 			break;
2138 		default:
2139 			break;
2140 		}
2141 	}
2142 
2143 	/*
2144 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2145 	 * JME_TXNDA/JME_RXNDA register to the first address of
2146 	 * Tx/Rx descriptor address. So driver should reset its
2147 	 * internal procucer/consumer pointer and reclaim any
2148 	 * allocated resources. Note, just saving the value of
2149 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2150 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2151 	 * sufficient to make sure correct MAC state because
2152 	 * stopping MAC operation can take a while and hardware
2153 	 * might have updated JME_TXNDA/JME_RXNDA registers
2154 	 * during the stop operation.
2155 	 */
2156 	/* Block execution of task. */
2157 	taskqueue_block(sc->jme_tq);
2158 	/* Disable interrupts and stop driver. */
2159 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2160 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2161 	callout_stop(&sc->jme_tick_ch);
2162 	sc->jme_watchdog_timer = 0;
2163 
2164 	/* Stop receiver/transmitter. */
2165 	jme_stop_rx(sc);
2166 	jme_stop_tx(sc);
2167 
2168 	/* XXX Drain all queued tasks. */
2169 	JME_UNLOCK(sc);
2170 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2171 	taskqueue_drain(sc->jme_tq, &sc->jme_tx_task);
2172 	JME_LOCK(sc);
2173 
2174 	jme_rxintr(sc, JME_RX_RING_CNT);
2175 	if (sc->jme_cdata.jme_rxhead != NULL)
2176 		m_freem(sc->jme_cdata.jme_rxhead);
2177 	JME_RXCHAIN_RESET(sc);
2178 	jme_txeof(sc);
2179 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2180 		/* Remove queued packets for transmit. */
2181 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2182 			txd = &sc->jme_cdata.jme_txdesc[i];
2183 			if (txd->tx_m != NULL) {
2184 				bus_dmamap_sync(
2185 				    sc->jme_cdata.jme_tx_tag,
2186 				    txd->tx_dmamap,
2187 				    BUS_DMASYNC_POSTWRITE);
2188 				bus_dmamap_unload(
2189 				    sc->jme_cdata.jme_tx_tag,
2190 				    txd->tx_dmamap);
2191 				m_freem(txd->tx_m);
2192 				txd->tx_m = NULL;
2193 				txd->tx_ndesc = 0;
2194 				ifp->if_oerrors++;
2195 			}
2196 		}
2197 	}
2198 
2199 	/*
2200 	 * Reuse configured Rx descriptors and reset
2201 	 * procuder/consumer index.
2202 	 */
2203 	sc->jme_cdata.jme_rx_cons = 0;
2204 	atomic_set_int(&sc->jme_morework, 0);
2205 	jme_init_tx_ring(sc);
2206 	/* Initialize shadow status block. */
2207 	jme_init_ssb(sc);
2208 
2209 	/* Program MAC with resolved speed/duplex/flow-control. */
2210 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2211 		jme_mac_config(sc);
2212 		jme_stats_clear(sc);
2213 
2214 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2215 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2216 
2217 		/* Set Tx ring address to the hardware. */
2218 		paddr = JME_TX_RING_ADDR(sc, 0);
2219 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2220 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2221 
2222 		/* Set Rx ring address to the hardware. */
2223 		paddr = JME_RX_RING_ADDR(sc, 0);
2224 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2225 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2226 
2227 		/* Restart receiver/transmitter. */
2228 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2229 		    RXCSR_RXQ_START);
2230 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2231 	}
2232 
2233 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2234 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2235 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2236 	/* Unblock execution of task. */
2237 	taskqueue_unblock(sc->jme_tq);
2238 	/* Reenable interrupts. */
2239 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2240 
2241 	JME_UNLOCK(sc);
2242 }
2243 
2244 static int
2245 jme_intr(void *arg)
2246 {
2247 	struct jme_softc *sc;
2248 	uint32_t status;
2249 
2250 	sc = (struct jme_softc *)arg;
2251 
2252 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2253 	if (status == 0 || status == 0xFFFFFFFF)
2254 		return (FILTER_STRAY);
2255 	/* Disable interrupts. */
2256 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2257 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2258 
2259 	return (FILTER_HANDLED);
2260 }
2261 
2262 static void
2263 jme_int_task(void *arg, int pending)
2264 {
2265 	struct jme_softc *sc;
2266 	struct ifnet *ifp;
2267 	uint32_t status;
2268 	int more;
2269 
2270 	sc = (struct jme_softc *)arg;
2271 	ifp = sc->jme_ifp;
2272 
2273 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2274 	more = atomic_readandclear_int(&sc->jme_morework);
2275 	if (more != 0) {
2276 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2277 		more = 0;
2278 	}
2279 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2280 		goto done;
2281 	/* Reset PCC counter/timer and Ack interrupts. */
2282 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2283 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2284 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2285 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2286 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2287 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2288 	more = 0;
2289 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2290 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2291 			more = jme_rxintr(sc, sc->jme_process_limit);
2292 			if (more != 0)
2293 				atomic_set_int(&sc->jme_morework, 1);
2294 		}
2295 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2296 			/*
2297 			 * Notify hardware availability of new Rx
2298 			 * buffers.
2299 			 * Reading RXCSR takes very long time under
2300 			 * heavy load so cache RXCSR value and writes
2301 			 * the ORed value with the kick command to
2302 			 * the RXCSR. This saves one register access
2303 			 * cycle.
2304 			 */
2305 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2306 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2307 		}
2308 		/*
2309 		 * Reclaiming Tx buffers are deferred to make jme(4) run
2310 		 * without locks held.
2311 		 */
2312 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2313 			taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task);
2314 	}
2315 
2316 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2317 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2318 		return;
2319 	}
2320 done:
2321 	/* Reenable interrupts. */
2322 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2323 }
2324 
2325 static void
2326 jme_txeof(struct jme_softc *sc)
2327 {
2328 	struct ifnet *ifp;
2329 	struct jme_txdesc *txd;
2330 	uint32_t status;
2331 	int cons, nsegs;
2332 
2333 	JME_LOCK_ASSERT(sc);
2334 
2335 	ifp = sc->jme_ifp;
2336 
2337 	cons = sc->jme_cdata.jme_tx_cons;
2338 	if (cons == sc->jme_cdata.jme_tx_prod)
2339 		return;
2340 
2341 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2342 	    sc->jme_cdata.jme_tx_ring_map,
2343 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2344 
2345 	/*
2346 	 * Go through our Tx list and free mbufs for those
2347 	 * frames which have been transmitted.
2348 	 */
2349 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2350 		txd = &sc->jme_cdata.jme_txdesc[cons];
2351 		status = le32toh(txd->tx_desc->flags);
2352 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2353 			break;
2354 
2355 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2356 			ifp->if_oerrors++;
2357 		else {
2358 			ifp->if_opackets++;
2359 			if ((status & JME_TD_COLLISION) != 0)
2360 				ifp->if_collisions +=
2361 				    le32toh(txd->tx_desc->buflen) &
2362 				    JME_TD_BUF_LEN_MASK;
2363 		}
2364 		/*
2365 		 * Only the first descriptor of multi-descriptor
2366 		 * transmission is updated so driver have to skip entire
2367 		 * chained buffers for the transmiited frame. In other
2368 		 * words, JME_TD_OWN bit is valid only at the first
2369 		 * descriptor of a multi-descriptor transmission.
2370 		 */
2371 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2372 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2373 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2374 		}
2375 
2376 		/* Reclaim transferred mbufs. */
2377 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2378 		    BUS_DMASYNC_POSTWRITE);
2379 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2380 
2381 		KASSERT(txd->tx_m != NULL,
2382 		    ("%s: freeing NULL mbuf!\n", __func__));
2383 		m_freem(txd->tx_m);
2384 		txd->tx_m = NULL;
2385 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2386 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2387 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2388 		txd->tx_ndesc = 0;
2389 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2390 	}
2391 	sc->jme_cdata.jme_tx_cons = cons;
2392 	/* Unarm watchog timer when there is no pending descriptors in queue. */
2393 	if (sc->jme_cdata.jme_tx_cnt == 0)
2394 		sc->jme_watchdog_timer = 0;
2395 
2396 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2397 	    sc->jme_cdata.jme_tx_ring_map,
2398 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2399 }
2400 
2401 static __inline void
2402 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2403 {
2404 	struct jme_desc *desc;
2405 
2406 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2407 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2408 	desc->buflen = htole32(MCLBYTES);
2409 }
2410 
2411 /* Receive a frame. */
2412 static void
2413 jme_rxeof(struct jme_softc *sc)
2414 {
2415 	struct ifnet *ifp;
2416 	struct jme_desc *desc;
2417 	struct jme_rxdesc *rxd;
2418 	struct mbuf *mp, *m;
2419 	uint32_t flags, status;
2420 	int cons, count, nsegs;
2421 
2422 	ifp = sc->jme_ifp;
2423 
2424 	cons = sc->jme_cdata.jme_rx_cons;
2425 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2426 	flags = le32toh(desc->flags);
2427 	status = le32toh(desc->buflen);
2428 	nsegs = JME_RX_NSEGS(status);
2429 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2430 	if ((status & JME_RX_ERR_STAT) != 0) {
2431 		ifp->if_ierrors++;
2432 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2433 #ifdef JME_SHOW_ERRORS
2434 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2435 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2436 #endif
2437 		sc->jme_cdata.jme_rx_cons += nsegs;
2438 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2439 		return;
2440 	}
2441 
2442 	for (count = 0; count < nsegs; count++,
2443 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2444 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2445 		mp = rxd->rx_m;
2446 		/* Add a new receive buffer to the ring. */
2447 		if (jme_newbuf(sc, rxd) != 0) {
2448 			ifp->if_iqdrops++;
2449 			/* Reuse buffer. */
2450 			for (; count < nsegs; count++) {
2451 				jme_discard_rxbuf(sc, cons);
2452 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2453 			}
2454 			if (sc->jme_cdata.jme_rxhead != NULL) {
2455 				m_freem(sc->jme_cdata.jme_rxhead);
2456 				JME_RXCHAIN_RESET(sc);
2457 			}
2458 			break;
2459 		}
2460 
2461 		/*
2462 		 * Assume we've received a full sized frame.
2463 		 * Actual size is fixed when we encounter the end of
2464 		 * multi-segmented frame.
2465 		 */
2466 		mp->m_len = MCLBYTES;
2467 
2468 		/* Chain received mbufs. */
2469 		if (sc->jme_cdata.jme_rxhead == NULL) {
2470 			sc->jme_cdata.jme_rxhead = mp;
2471 			sc->jme_cdata.jme_rxtail = mp;
2472 		} else {
2473 			/*
2474 			 * Receive processor can receive a maximum frame
2475 			 * size of 65535 bytes.
2476 			 */
2477 			mp->m_flags &= ~M_PKTHDR;
2478 			sc->jme_cdata.jme_rxtail->m_next = mp;
2479 			sc->jme_cdata.jme_rxtail = mp;
2480 		}
2481 
2482 		if (count == nsegs - 1) {
2483 			/* Last desc. for this frame. */
2484 			m = sc->jme_cdata.jme_rxhead;
2485 			m->m_flags |= M_PKTHDR;
2486 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2487 			if (nsegs > 1) {
2488 				/* Set first mbuf size. */
2489 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2490 				/* Set last mbuf size. */
2491 				mp->m_len = sc->jme_cdata.jme_rxlen -
2492 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2493 				    (MCLBYTES * (nsegs - 2)));
2494 			} else
2495 				m->m_len = sc->jme_cdata.jme_rxlen;
2496 			m->m_pkthdr.rcvif = ifp;
2497 
2498 			/*
2499 			 * Account for 10bytes auto padding which is used
2500 			 * to align IP header on 32bit boundary. Also note,
2501 			 * CRC bytes is automatically removed by the
2502 			 * hardware.
2503 			 */
2504 			m->m_data += JME_RX_PAD_BYTES;
2505 
2506 			/* Set checksum information. */
2507 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2508 			    (flags & JME_RD_IPV4) != 0) {
2509 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2510 				if ((flags & JME_RD_IPCSUM) != 0)
2511 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2512 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2513 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2514 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2515 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2516 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2517 					m->m_pkthdr.csum_flags |=
2518 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2519 					m->m_pkthdr.csum_data = 0xffff;
2520 				}
2521 			}
2522 
2523 			/* Check for VLAN tagged packets. */
2524 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2525 			    (flags & JME_RD_VLAN_TAG) != 0) {
2526 				m->m_pkthdr.ether_vtag =
2527 				    flags & JME_RD_VLAN_MASK;
2528 				m->m_flags |= M_VLANTAG;
2529 			}
2530 
2531 			ifp->if_ipackets++;
2532 			/* Pass it on. */
2533 			(*ifp->if_input)(ifp, m);
2534 
2535 			/* Reset mbuf chains. */
2536 			JME_RXCHAIN_RESET(sc);
2537 		}
2538 	}
2539 
2540 	sc->jme_cdata.jme_rx_cons += nsegs;
2541 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2542 }
2543 
2544 static int
2545 jme_rxintr(struct jme_softc *sc, int count)
2546 {
2547 	struct jme_desc *desc;
2548 	int nsegs, prog, pktlen;
2549 
2550 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2551 	    sc->jme_cdata.jme_rx_ring_map,
2552 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2553 
2554 	for (prog = 0; count > 0; prog++) {
2555 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2556 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2557 			break;
2558 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2559 			break;
2560 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2561 		/*
2562 		 * Check number of segments against received bytes.
2563 		 * Non-matching value would indicate that hardware
2564 		 * is still trying to update Rx descriptors. I'm not
2565 		 * sure whether this check is needed.
2566 		 */
2567 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2568 		if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES))
2569 			break;
2570 		prog++;
2571 		/* Received a frame. */
2572 		jme_rxeof(sc);
2573 		count -= nsegs;
2574 	}
2575 
2576 	if (prog > 0)
2577 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2578 		    sc->jme_cdata.jme_rx_ring_map,
2579 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2580 
2581 	return (count > 0 ? 0 : EAGAIN);
2582 }
2583 
2584 static void
2585 jme_tick(void *arg)
2586 {
2587 	struct jme_softc *sc;
2588 	struct mii_data *mii;
2589 
2590 	sc = (struct jme_softc *)arg;
2591 
2592 	JME_LOCK_ASSERT(sc);
2593 
2594 	mii = device_get_softc(sc->jme_miibus);
2595 	mii_tick(mii);
2596 	/*
2597 	 * Reclaim Tx buffers that have been completed. It's not
2598 	 * needed here but it would release allocated mbuf chains
2599 	 * faster and limit the maximum delay to a hz.
2600 	 */
2601 	jme_txeof(sc);
2602 	jme_stats_update(sc);
2603 	jme_watchdog(sc);
2604 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2605 }
2606 
2607 static void
2608 jme_reset(struct jme_softc *sc)
2609 {
2610 
2611 	/* Stop receiver, transmitter. */
2612 	jme_stop_rx(sc);
2613 	jme_stop_tx(sc);
2614 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2615 	DELAY(10);
2616 	CSR_WRITE_4(sc, JME_GHC, 0);
2617 }
2618 
2619 static void
2620 jme_init(void *xsc)
2621 {
2622 	struct jme_softc *sc;
2623 
2624 	sc = (struct jme_softc *)xsc;
2625 	JME_LOCK(sc);
2626 	jme_init_locked(sc);
2627 	JME_UNLOCK(sc);
2628 }
2629 
2630 static void
2631 jme_init_locked(struct jme_softc *sc)
2632 {
2633 	struct ifnet *ifp;
2634 	struct mii_data *mii;
2635 	uint8_t eaddr[ETHER_ADDR_LEN];
2636 	bus_addr_t paddr;
2637 	uint32_t reg;
2638 	int error;
2639 
2640 	JME_LOCK_ASSERT(sc);
2641 
2642 	ifp = sc->jme_ifp;
2643 	mii = device_get_softc(sc->jme_miibus);
2644 
2645 	/*
2646 	 * Cancel any pending I/O.
2647 	 */
2648 	jme_stop(sc);
2649 
2650 	/*
2651 	 * Reset the chip to a known state.
2652 	 */
2653 	jme_reset(sc);
2654 
2655 	/* Init descriptors. */
2656 	error = jme_init_rx_ring(sc);
2657         if (error != 0) {
2658                 device_printf(sc->jme_dev,
2659                     "%s: initialization failed: no memory for Rx buffers.\n",
2660 		    __func__);
2661                 jme_stop(sc);
2662 		return;
2663         }
2664 	jme_init_tx_ring(sc);
2665 	/* Initialize shadow status block. */
2666 	jme_init_ssb(sc);
2667 
2668 	/* Reprogram the station address. */
2669 	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2670 	CSR_WRITE_4(sc, JME_PAR0,
2671 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
2672 	CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
2673 
2674 	/*
2675 	 * Configure Tx queue.
2676 	 *  Tx priority queue weight value : 0
2677 	 *  Tx FIFO threshold for processing next packet : 16QW
2678 	 *  Maximum Tx DMA length : 512
2679 	 *  Allow Tx DMA burst.
2680 	 */
2681 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2682 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2683 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2684 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2685 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2686 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2687 
2688 	/* Set Tx descriptor counter. */
2689 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2690 
2691 	/* Set Tx ring address to the hardware. */
2692 	paddr = JME_TX_RING_ADDR(sc, 0);
2693 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2694 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2695 
2696 	/* Configure TxMAC parameters. */
2697 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2698 	reg |= TXMAC_THRESH_1_PKT;
2699 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2700 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2701 
2702 	/*
2703 	 * Configure Rx queue.
2704 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2705 	 *  FIFO threshold for processing next packet : 128QW
2706 	 *  Rx queue 0 select
2707 	 *  Max Rx DMA length : 128
2708 	 *  Rx descriptor retry : 32
2709 	 *  Rx descriptor retry time gap : 256ns
2710 	 *  Don't receive runt/bad frame.
2711 	 */
2712 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2713 	/*
2714 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2715 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2716 	 * decrease FIFO threshold to reduce the FIFO overruns for
2717 	 * frames larger than 4000 bytes.
2718 	 * For best performance of standard MTU sized frames use
2719 	 * maximum allowable FIFO threshold, 128QW. Note these do
2720 	 * not hold on chip full mask verion >=2. For these
2721 	 * controllers 64QW and 128QW are not valid value.
2722 	 */
2723 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2724 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2725 	else {
2726 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2727 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2728 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2729 		else
2730 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2731 	}
2732 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2733 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2734 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2735 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2736 
2737 	/* Set Rx descriptor counter. */
2738 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2739 
2740 	/* Set Rx ring address to the hardware. */
2741 	paddr = JME_RX_RING_ADDR(sc, 0);
2742 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2743 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2744 
2745 	/* Clear receive filter. */
2746 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2747 	/* Set up the receive filter. */
2748 	jme_set_filter(sc);
2749 	jme_set_vlan(sc);
2750 
2751 	/*
2752 	 * Disable all WOL bits as WOL can interfere normal Rx
2753 	 * operation. Also clear WOL detection status bits.
2754 	 */
2755 	reg = CSR_READ_4(sc, JME_PMCS);
2756 	reg &= ~PMCS_WOL_ENB_MASK;
2757 	CSR_WRITE_4(sc, JME_PMCS, reg);
2758 
2759 	reg = CSR_READ_4(sc, JME_RXMAC);
2760 	/*
2761 	 * Pad 10bytes right before received frame. This will greatly
2762 	 * help Rx performance on strict-alignment architectures as
2763 	 * it does not need to copy the frame to align the payload.
2764 	 */
2765 	reg |= RXMAC_PAD_10BYTES;
2766 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2767 		reg |= RXMAC_CSUM_ENB;
2768 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2769 
2770 	/* Configure general purpose reg0 */
2771 	reg = CSR_READ_4(sc, JME_GPREG0);
2772 	reg &= ~GPREG0_PCC_UNIT_MASK;
2773 	/* Set PCC timer resolution to micro-seconds unit. */
2774 	reg |= GPREG0_PCC_UNIT_US;
2775 	/*
2776 	 * Disable all shadow register posting as we have to read
2777 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2778 	 * that it's hard to synchronize interrupt status between
2779 	 * hardware and software with shadow posting due to
2780 	 * requirements of bus_dmamap_sync(9).
2781 	 */
2782 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2783 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2784 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2785 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2786 	/* Disable posting of DW0. */
2787 	reg &= ~GPREG0_POST_DW0_ENB;
2788 	/* Clear PME message. */
2789 	reg &= ~GPREG0_PME_ENB;
2790 	/* Set PHY address. */
2791 	reg &= ~GPREG0_PHY_ADDR_MASK;
2792 	reg |= sc->jme_phyaddr;
2793 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2794 
2795 	/* Configure Tx queue 0 packet completion coalescing. */
2796 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2797 	    PCCTX_COAL_TO_MASK;
2798 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2799 	    PCCTX_COAL_PKT_MASK;
2800 	reg |= PCCTX_COAL_TXQ0;
2801 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2802 
2803 	/* Configure Rx queue 0 packet completion coalescing. */
2804 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2805 	    PCCRX_COAL_TO_MASK;
2806 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2807 	    PCCRX_COAL_PKT_MASK;
2808 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2809 
2810 	/* Configure shadow status block but don't enable posting. */
2811 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2812 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2813 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2814 
2815 	/* Disable Timer 1 and Timer 2. */
2816 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2817 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2818 
2819 	/* Configure retry transmit period, retry limit value. */
2820 	CSR_WRITE_4(sc, JME_TXTRHD,
2821 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2822 	    TXTRHD_RT_PERIOD_MASK) |
2823 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2824 	    TXTRHD_RT_LIMIT_SHIFT));
2825 
2826 	/* Disable RSS. */
2827 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2828 
2829 	/* Initialize the interrupt mask. */
2830 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2831 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2832 
2833 	/*
2834 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2835 	 * done after detection of valid link in jme_link_task.
2836 	 */
2837 
2838 	sc->jme_flags &= ~JME_FLAG_LINK;
2839 	/* Set the current media. */
2840 	mii_mediachg(mii);
2841 
2842 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2843 
2844 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2845 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2846 }
2847 
2848 static void
2849 jme_stop(struct jme_softc *sc)
2850 {
2851 	struct ifnet *ifp;
2852 	struct jme_txdesc *txd;
2853 	struct jme_rxdesc *rxd;
2854 	int i;
2855 
2856 	JME_LOCK_ASSERT(sc);
2857 	/*
2858 	 * Mark the interface down and cancel the watchdog timer.
2859 	 */
2860 	ifp = sc->jme_ifp;
2861 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2862 	sc->jme_flags &= ~JME_FLAG_LINK;
2863 	callout_stop(&sc->jme_tick_ch);
2864 	sc->jme_watchdog_timer = 0;
2865 
2866 	/*
2867 	 * Disable interrupts.
2868 	 */
2869 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2870 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2871 
2872 	/* Disable updating shadow status block. */
2873 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
2874 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
2875 
2876 	/* Stop receiver, transmitter. */
2877 	jme_stop_rx(sc);
2878 	jme_stop_tx(sc);
2879 
2880 	 /* Reclaim Rx/Tx buffers that have been completed. */
2881 	jme_rxintr(sc, JME_RX_RING_CNT);
2882 	if (sc->jme_cdata.jme_rxhead != NULL)
2883 		m_freem(sc->jme_cdata.jme_rxhead);
2884 	JME_RXCHAIN_RESET(sc);
2885 	jme_txeof(sc);
2886 	/*
2887 	 * Free RX and TX mbufs still in the queues.
2888 	 */
2889 	for (i = 0; i < JME_RX_RING_CNT; i++) {
2890 		rxd = &sc->jme_cdata.jme_rxdesc[i];
2891 		if (rxd->rx_m != NULL) {
2892 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
2893 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2894 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
2895 			    rxd->rx_dmamap);
2896 			m_freem(rxd->rx_m);
2897 			rxd->rx_m = NULL;
2898 		}
2899         }
2900 	for (i = 0; i < JME_TX_RING_CNT; i++) {
2901 		txd = &sc->jme_cdata.jme_txdesc[i];
2902 		if (txd->tx_m != NULL) {
2903 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
2904 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2905 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
2906 			    txd->tx_dmamap);
2907 			m_freem(txd->tx_m);
2908 			txd->tx_m = NULL;
2909 			txd->tx_ndesc = 0;
2910 		}
2911         }
2912 	jme_stats_update(sc);
2913 	jme_stats_save(sc);
2914 }
2915 
2916 static void
2917 jme_stop_tx(struct jme_softc *sc)
2918 {
2919 	uint32_t reg;
2920 	int i;
2921 
2922 	reg = CSR_READ_4(sc, JME_TXCSR);
2923 	if ((reg & TXCSR_TX_ENB) == 0)
2924 		return;
2925 	reg &= ~TXCSR_TX_ENB;
2926 	CSR_WRITE_4(sc, JME_TXCSR, reg);
2927 	for (i = JME_TIMEOUT; i > 0; i--) {
2928 		DELAY(1);
2929 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
2930 			break;
2931 	}
2932 	if (i == 0)
2933 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
2934 }
2935 
2936 static void
2937 jme_stop_rx(struct jme_softc *sc)
2938 {
2939 	uint32_t reg;
2940 	int i;
2941 
2942 	reg = CSR_READ_4(sc, JME_RXCSR);
2943 	if ((reg & RXCSR_RX_ENB) == 0)
2944 		return;
2945 	reg &= ~RXCSR_RX_ENB;
2946 	CSR_WRITE_4(sc, JME_RXCSR, reg);
2947 	for (i = JME_TIMEOUT; i > 0; i--) {
2948 		DELAY(1);
2949 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
2950 			break;
2951 	}
2952 	if (i == 0)
2953 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
2954 }
2955 
2956 static void
2957 jme_init_tx_ring(struct jme_softc *sc)
2958 {
2959 	struct jme_ring_data *rd;
2960 	struct jme_txdesc *txd;
2961 	int i;
2962 
2963 	sc->jme_cdata.jme_tx_prod = 0;
2964 	sc->jme_cdata.jme_tx_cons = 0;
2965 	sc->jme_cdata.jme_tx_cnt = 0;
2966 
2967 	rd = &sc->jme_rdata;
2968 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
2969 	for (i = 0; i < JME_TX_RING_CNT; i++) {
2970 		txd = &sc->jme_cdata.jme_txdesc[i];
2971 		txd->tx_m = NULL;
2972 		txd->tx_desc = &rd->jme_tx_ring[i];
2973 		txd->tx_ndesc = 0;
2974 	}
2975 
2976 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2977 	    sc->jme_cdata.jme_tx_ring_map,
2978 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2979 }
2980 
2981 static void
2982 jme_init_ssb(struct jme_softc *sc)
2983 {
2984 	struct jme_ring_data *rd;
2985 
2986 	rd = &sc->jme_rdata;
2987 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
2988 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
2989 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2990 }
2991 
2992 static int
2993 jme_init_rx_ring(struct jme_softc *sc)
2994 {
2995 	struct jme_ring_data *rd;
2996 	struct jme_rxdesc *rxd;
2997 	int i;
2998 
2999 	sc->jme_cdata.jme_rx_cons = 0;
3000 	JME_RXCHAIN_RESET(sc);
3001 	atomic_set_int(&sc->jme_morework, 0);
3002 
3003 	rd = &sc->jme_rdata;
3004 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3005 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3006 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3007 		rxd->rx_m = NULL;
3008 		rxd->rx_desc = &rd->jme_rx_ring[i];
3009 		if (jme_newbuf(sc, rxd) != 0)
3010 			return (ENOBUFS);
3011 	}
3012 
3013 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3014 	    sc->jme_cdata.jme_rx_ring_map,
3015 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3016 
3017 	return (0);
3018 }
3019 
3020 static int
3021 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3022 {
3023 	struct jme_desc *desc;
3024 	struct mbuf *m;
3025 	bus_dma_segment_t segs[1];
3026 	bus_dmamap_t map;
3027 	int nsegs;
3028 
3029 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3030 	if (m == NULL)
3031 		return (ENOBUFS);
3032 	/*
3033 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3034 	 * takes advantage of 10 bytes padding feature of hardware
3035 	 * in order not to copy entire frame to align IP header on
3036 	 * 32bit boundary.
3037 	 */
3038 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3039 
3040 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3041 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3042 		m_freem(m);
3043 		return (ENOBUFS);
3044 	}
3045 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3046 
3047 	if (rxd->rx_m != NULL) {
3048 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3049 		    BUS_DMASYNC_POSTREAD);
3050 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3051 	}
3052 	map = rxd->rx_dmamap;
3053 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3054 	sc->jme_cdata.jme_rx_sparemap = map;
3055 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3056 	    BUS_DMASYNC_PREREAD);
3057 	rxd->rx_m = m;
3058 
3059 	desc = rxd->rx_desc;
3060 	desc->buflen = htole32(segs[0].ds_len);
3061 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3062 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3063 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3064 
3065 	return (0);
3066 }
3067 
3068 static void
3069 jme_set_vlan(struct jme_softc *sc)
3070 {
3071 	struct ifnet *ifp;
3072 	uint32_t reg;
3073 
3074 	JME_LOCK_ASSERT(sc);
3075 
3076 	ifp = sc->jme_ifp;
3077 	reg = CSR_READ_4(sc, JME_RXMAC);
3078 	reg &= ~RXMAC_VLAN_ENB;
3079 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3080 		reg |= RXMAC_VLAN_ENB;
3081 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3082 }
3083 
3084 static void
3085 jme_set_filter(struct jme_softc *sc)
3086 {
3087 	struct ifnet *ifp;
3088 	struct ifmultiaddr *ifma;
3089 	uint32_t crc;
3090 	uint32_t mchash[2];
3091 	uint32_t rxcfg;
3092 
3093 	JME_LOCK_ASSERT(sc);
3094 
3095 	ifp = sc->jme_ifp;
3096 
3097 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3098 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3099 	    RXMAC_ALLMULTI);
3100 	/* Always accept frames destined to our station address. */
3101 	rxcfg |= RXMAC_UNICAST;
3102 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3103 		rxcfg |= RXMAC_BROADCAST;
3104 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3105 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3106 			rxcfg |= RXMAC_PROMISC;
3107 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3108 			rxcfg |= RXMAC_ALLMULTI;
3109 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3110 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3111 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3112 		return;
3113 	}
3114 
3115 	/*
3116 	 * Set up the multicast address filter by passing all multicast
3117 	 * addresses through a CRC generator, and then using the low-order
3118 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3119 	 * high order bits select the register, while the rest of the bits
3120 	 * select the bit within the register.
3121 	 */
3122 	rxcfg |= RXMAC_MULTICAST;
3123 	bzero(mchash, sizeof(mchash));
3124 
3125 	IF_ADDR_LOCK(ifp);
3126 	TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3127 		if (ifma->ifma_addr->sa_family != AF_LINK)
3128 			continue;
3129 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3130 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3131 
3132 		/* Just want the 6 least significant bits. */
3133 		crc &= 0x3f;
3134 
3135 		/* Set the corresponding bit in the hash table. */
3136 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3137 	}
3138 	IF_ADDR_UNLOCK(ifp);
3139 
3140 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3141 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3142 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3143 }
3144 
3145 static void
3146 jme_stats_clear(struct jme_softc *sc)
3147 {
3148 
3149 	JME_LOCK_ASSERT(sc);
3150 
3151 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3152 		return;
3153 
3154 	/* Disable and clear counters. */
3155 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3156 	/* Activate hw counters. */
3157 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3158 	CSR_READ_4(sc, JME_STATCSR);
3159 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3160 }
3161 
3162 static void
3163 jme_stats_save(struct jme_softc *sc)
3164 {
3165 
3166 	JME_LOCK_ASSERT(sc);
3167 
3168 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3169 		return;
3170 	/* Save current counters. */
3171 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3172 	/* Disable and clear counters. */
3173 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3174 }
3175 
3176 static void
3177 jme_stats_update(struct jme_softc *sc)
3178 {
3179 	struct jme_hw_stats *stat, *ostat;
3180 	uint32_t reg;
3181 
3182 	JME_LOCK_ASSERT(sc);
3183 
3184 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3185 		return;
3186 	stat = &sc->jme_stats;
3187 	ostat = &sc->jme_ostats;
3188 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3189 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3190 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3191 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3192 	    STAT_RX_CRC_ERR_SHIFT;
3193 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3194 	    STAT_RX_MII_ERR_SHIFT;
3195 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3196 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3197 	    STAT_RXERR_OFLOW_SHIFT;
3198 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3199 	    STAT_RXERR_MPTY_SHIFT;
3200 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3201 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3202 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3203 
3204 	/* Account for previous counters. */
3205 	stat->rx_good_frames += ostat->rx_good_frames;
3206 	stat->rx_crc_errs += ostat->rx_crc_errs;
3207 	stat->rx_mii_errs += ostat->rx_mii_errs;
3208 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3209 	stat->rx_desc_empty += ostat->rx_desc_empty;
3210 	stat->rx_bad_frames += ostat->rx_bad_frames;
3211 	stat->tx_good_frames += ostat->tx_good_frames;
3212 	stat->tx_bad_frames += ostat->tx_bad_frames;
3213 }
3214 
3215 static int
3216 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3217 {
3218 	int error, value;
3219 
3220 	if (arg1 == NULL)
3221 		return (EINVAL);
3222 	value = *(int *)arg1;
3223 	error = sysctl_handle_int(oidp, &value, 0, req);
3224 	if (error || req->newptr == NULL)
3225 		return (error);
3226 	if (value < low || value > high)
3227 		return (EINVAL);
3228         *(int *)arg1 = value;
3229 
3230         return (0);
3231 }
3232 
3233 static int
3234 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3235 {
3236 	return (sysctl_int_range(oidp, arg1, arg2, req,
3237 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3238 }
3239 
3240 static int
3241 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3242 {
3243 	return (sysctl_int_range(oidp, arg1, arg2, req,
3244 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3245 }
3246 
3247 static int
3248 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3249 {
3250 	return (sysctl_int_range(oidp, arg1, arg2, req,
3251 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3252 }
3253 
3254 static int
3255 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3256 {
3257 	return (sysctl_int_range(oidp, arg1, arg2, req,
3258 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3259 }
3260 
3261 static int
3262 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3263 {
3264 	return (sysctl_int_range(oidp, arg1, arg2, req,
3265 	    JME_PROC_MIN, JME_PROC_MAX));
3266 }
3267