1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bus.h> 34 #include <sys/endian.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/mbuf.h> 38 #include <sys/rman.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/queue.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/ethernet.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 #include <net/if_vlan_var.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/ip.h> 59 #include <netinet/tcp.h> 60 61 #include <dev/mii/mii.h> 62 #include <dev/mii/miivar.h> 63 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <machine/atomic.h> 68 #include <machine/bus.h> 69 #include <machine/in_cksum.h> 70 71 #include <dev/jme/if_jmereg.h> 72 #include <dev/jme/if_jmevar.h> 73 74 /* "device miibus" required. See GENERIC if you get errors here. */ 75 #include "miibus_if.h" 76 77 /* Define the following to disable printing Rx errors. */ 78 #undef JME_SHOW_ERRORS 79 80 #define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 81 82 MODULE_DEPEND(jme, pci, 1, 1, 1); 83 MODULE_DEPEND(jme, ether, 1, 1, 1); 84 MODULE_DEPEND(jme, miibus, 1, 1, 1); 85 86 /* Tunables. */ 87 static int msi_disable = 0; 88 static int msix_disable = 0; 89 TUNABLE_INT("hw.jme.msi_disable", &msi_disable); 90 TUNABLE_INT("hw.jme.msix_disable", &msix_disable); 91 92 /* 93 * Devices supported by this driver. 94 */ 95 static struct jme_dev { 96 uint16_t jme_vendorid; 97 uint16_t jme_deviceid; 98 const char *jme_name; 99 } jme_devs[] = { 100 { VENDORID_JMICRON, DEVICEID_JMC250, 101 "JMicron Inc, JMC250 Gigabit Ethernet" }, 102 { VENDORID_JMICRON, DEVICEID_JMC260, 103 "JMicron Inc, JMC260 Fast Ethernet" }, 104 }; 105 106 static int jme_miibus_readreg(device_t, int, int); 107 static int jme_miibus_writereg(device_t, int, int, int); 108 static void jme_miibus_statchg(device_t); 109 static void jme_mediastatus(struct ifnet *, struct ifmediareq *); 110 static int jme_mediachange(struct ifnet *); 111 static int jme_probe(device_t); 112 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); 113 static int jme_eeprom_macaddr(struct jme_softc *); 114 static void jme_reg_macaddr(struct jme_softc *); 115 static void jme_map_intr_vector(struct jme_softc *); 116 static int jme_attach(device_t); 117 static int jme_detach(device_t); 118 static void jme_sysctl_node(struct jme_softc *); 119 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int); 120 static int jme_dma_alloc(struct jme_softc *); 121 static void jme_dma_free(struct jme_softc *); 122 static int jme_shutdown(device_t); 123 static void jme_setlinkspeed(struct jme_softc *); 124 static void jme_setwol(struct jme_softc *); 125 static int jme_suspend(device_t); 126 static int jme_resume(device_t); 127 static int jme_encap(struct jme_softc *, struct mbuf **); 128 static void jme_tx_task(void *, int); 129 static void jme_start(struct ifnet *); 130 static void jme_watchdog(struct jme_softc *); 131 static int jme_ioctl(struct ifnet *, u_long, caddr_t); 132 static void jme_mac_config(struct jme_softc *); 133 static void jme_link_task(void *, int); 134 static int jme_intr(void *); 135 static void jme_int_task(void *, int); 136 static void jme_txeof(struct jme_softc *); 137 static __inline void jme_discard_rxbuf(struct jme_softc *, int); 138 static void jme_rxeof(struct jme_softc *); 139 static int jme_rxintr(struct jme_softc *, int); 140 static void jme_tick(void *); 141 static void jme_reset(struct jme_softc *); 142 static void jme_init(void *); 143 static void jme_init_locked(struct jme_softc *); 144 static void jme_stop(struct jme_softc *); 145 static void jme_stop_tx(struct jme_softc *); 146 static void jme_stop_rx(struct jme_softc *); 147 static int jme_init_rx_ring(struct jme_softc *); 148 static void jme_init_tx_ring(struct jme_softc *); 149 static void jme_init_ssb(struct jme_softc *); 150 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *); 151 static void jme_set_vlan(struct jme_softc *); 152 static void jme_set_filter(struct jme_softc *); 153 static void jme_stats_clear(struct jme_softc *); 154 static void jme_stats_save(struct jme_softc *); 155 static void jme_stats_update(struct jme_softc *); 156 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 157 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS); 158 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS); 159 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS); 160 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS); 161 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS); 162 163 164 static device_method_t jme_methods[] = { 165 /* Device interface. */ 166 DEVMETHOD(device_probe, jme_probe), 167 DEVMETHOD(device_attach, jme_attach), 168 DEVMETHOD(device_detach, jme_detach), 169 DEVMETHOD(device_shutdown, jme_shutdown), 170 DEVMETHOD(device_suspend, jme_suspend), 171 DEVMETHOD(device_resume, jme_resume), 172 173 /* MII interface. */ 174 DEVMETHOD(miibus_readreg, jme_miibus_readreg), 175 DEVMETHOD(miibus_writereg, jme_miibus_writereg), 176 DEVMETHOD(miibus_statchg, jme_miibus_statchg), 177 178 { NULL, NULL } 179 }; 180 181 static driver_t jme_driver = { 182 "jme", 183 jme_methods, 184 sizeof(struct jme_softc) 185 }; 186 187 static devclass_t jme_devclass; 188 189 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0); 190 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0); 191 192 static struct resource_spec jme_res_spec_mem[] = { 193 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 194 { -1, 0, 0 } 195 }; 196 197 static struct resource_spec jme_irq_spec_legacy[] = { 198 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 199 { -1, 0, 0 } 200 }; 201 202 static struct resource_spec jme_irq_spec_msi[] = { 203 { SYS_RES_IRQ, 1, RF_ACTIVE }, 204 { SYS_RES_IRQ, 2, RF_ACTIVE }, 205 { SYS_RES_IRQ, 3, RF_ACTIVE }, 206 { SYS_RES_IRQ, 4, RF_ACTIVE }, 207 { SYS_RES_IRQ, 5, RF_ACTIVE }, 208 { SYS_RES_IRQ, 6, RF_ACTIVE }, 209 { SYS_RES_IRQ, 7, RF_ACTIVE }, 210 { SYS_RES_IRQ, 8, RF_ACTIVE }, 211 { -1, 0, 0 } 212 }; 213 214 /* 215 * Read a PHY register on the MII of the JMC250. 216 */ 217 static int 218 jme_miibus_readreg(device_t dev, int phy, int reg) 219 { 220 struct jme_softc *sc; 221 uint32_t val; 222 int i; 223 224 sc = device_get_softc(dev); 225 226 /* For FPGA version, PHY address 0 should be ignored. */ 227 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 228 if (phy == 0) 229 return (0); 230 } else { 231 if (sc->jme_phyaddr != phy) 232 return (0); 233 } 234 235 CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE | 236 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 237 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 238 DELAY(1); 239 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 240 break; 241 } 242 243 if (i == 0) { 244 device_printf(sc->jme_dev, "phy read timeout : %d\n", reg); 245 return (0); 246 } 247 248 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT); 249 } 250 251 /* 252 * Write a PHY register on the MII of the JMC250. 253 */ 254 static int 255 jme_miibus_writereg(device_t dev, int phy, int reg, int val) 256 { 257 struct jme_softc *sc; 258 int i; 259 260 sc = device_get_softc(dev); 261 262 /* For FPGA version, PHY address 0 should be ignored. */ 263 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 264 if (phy == 0) 265 return (0); 266 } else { 267 if (sc->jme_phyaddr != phy) 268 return (0); 269 } 270 271 CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE | 272 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | 273 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 274 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 275 DELAY(1); 276 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 277 break; 278 } 279 280 if (i == 0) 281 device_printf(sc->jme_dev, "phy write timeout : %d\n", reg); 282 283 return (0); 284 } 285 286 /* 287 * Callback from MII layer when media changes. 288 */ 289 static void 290 jme_miibus_statchg(device_t dev) 291 { 292 struct jme_softc *sc; 293 294 sc = device_get_softc(dev); 295 taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task); 296 } 297 298 /* 299 * Get the current interface media status. 300 */ 301 static void 302 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 303 { 304 struct jme_softc *sc; 305 struct mii_data *mii; 306 307 sc = ifp->if_softc; 308 JME_LOCK(sc); 309 mii = device_get_softc(sc->jme_miibus); 310 311 mii_pollstat(mii); 312 ifmr->ifm_status = mii->mii_media_status; 313 ifmr->ifm_active = mii->mii_media_active; 314 JME_UNLOCK(sc); 315 } 316 317 /* 318 * Set hardware to newly-selected media. 319 */ 320 static int 321 jme_mediachange(struct ifnet *ifp) 322 { 323 struct jme_softc *sc; 324 struct mii_data *mii; 325 struct mii_softc *miisc; 326 int error; 327 328 sc = ifp->if_softc; 329 JME_LOCK(sc); 330 mii = device_get_softc(sc->jme_miibus); 331 if (mii->mii_instance != 0) { 332 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 333 mii_phy_reset(miisc); 334 } 335 error = mii_mediachg(mii); 336 JME_UNLOCK(sc); 337 338 return (error); 339 } 340 341 static int 342 jme_probe(device_t dev) 343 { 344 struct jme_dev *sp; 345 int i; 346 uint16_t vendor, devid; 347 348 vendor = pci_get_vendor(dev); 349 devid = pci_get_device(dev); 350 sp = jme_devs; 351 for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]); 352 i++, sp++) { 353 if (vendor == sp->jme_vendorid && 354 devid == sp->jme_deviceid) { 355 device_set_desc(dev, sp->jme_name); 356 return (BUS_PROBE_DEFAULT); 357 } 358 } 359 360 return (ENXIO); 361 } 362 363 static int 364 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) 365 { 366 uint32_t reg; 367 int i; 368 369 *val = 0; 370 for (i = JME_TIMEOUT; i > 0; i--) { 371 reg = CSR_READ_4(sc, JME_SMBCSR); 372 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE) 373 break; 374 DELAY(1); 375 } 376 377 if (i == 0) { 378 device_printf(sc->jme_dev, "EEPROM idle timeout!\n"); 379 return (ETIMEDOUT); 380 } 381 382 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK; 383 CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER); 384 for (i = JME_TIMEOUT; i > 0; i--) { 385 DELAY(1); 386 reg = CSR_READ_4(sc, JME_SMBINTF); 387 if ((reg & SMBINTF_CMD_TRIGGER) == 0) 388 break; 389 } 390 391 if (i == 0) { 392 device_printf(sc->jme_dev, "EEPROM read timeout!\n"); 393 return (ETIMEDOUT); 394 } 395 396 reg = CSR_READ_4(sc, JME_SMBINTF); 397 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT; 398 399 return (0); 400 } 401 402 static int 403 jme_eeprom_macaddr(struct jme_softc *sc) 404 { 405 uint8_t eaddr[ETHER_ADDR_LEN]; 406 uint8_t fup, reg, val; 407 uint32_t offset; 408 int match; 409 410 offset = 0; 411 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 412 fup != JME_EEPROM_SIG0) 413 return (ENOENT); 414 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 415 fup != JME_EEPROM_SIG1) 416 return (ENOENT); 417 match = 0; 418 do { 419 if (jme_eeprom_read_byte(sc, offset, &fup) != 0) 420 break; 421 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) == 422 (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) { 423 if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) 424 break; 425 if (reg >= JME_PAR0 && 426 reg < JME_PAR0 + ETHER_ADDR_LEN) { 427 if (jme_eeprom_read_byte(sc, offset + 2, 428 &val) != 0) 429 break; 430 eaddr[reg - JME_PAR0] = val; 431 match++; 432 } 433 } 434 /* Check for the end of EEPROM descriptor. */ 435 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END) 436 break; 437 /* Try next eeprom descriptor. */ 438 offset += JME_EEPROM_DESC_BYTES; 439 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END); 440 441 if (match == ETHER_ADDR_LEN) { 442 bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN); 443 return (0); 444 } 445 446 return (ENOENT); 447 } 448 449 static void 450 jme_reg_macaddr(struct jme_softc *sc) 451 { 452 uint32_t par0, par1; 453 454 /* Read station address. */ 455 par0 = CSR_READ_4(sc, JME_PAR0); 456 par1 = CSR_READ_4(sc, JME_PAR1); 457 par1 &= 0xFFFF; 458 if ((par0 == 0 && par1 == 0) || 459 (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) { 460 device_printf(sc->jme_dev, 461 "generating fake ethernet address.\n"); 462 par0 = arc4random(); 463 /* Set OUI to JMicron. */ 464 sc->jme_eaddr[0] = 0x00; 465 sc->jme_eaddr[1] = 0x1B; 466 sc->jme_eaddr[2] = 0x8C; 467 sc->jme_eaddr[3] = (par0 >> 16) & 0xff; 468 sc->jme_eaddr[4] = (par0 >> 8) & 0xff; 469 sc->jme_eaddr[5] = par0 & 0xff; 470 } else { 471 sc->jme_eaddr[0] = (par0 >> 0) & 0xFF; 472 sc->jme_eaddr[1] = (par0 >> 8) & 0xFF; 473 sc->jme_eaddr[2] = (par0 >> 16) & 0xFF; 474 sc->jme_eaddr[3] = (par0 >> 24) & 0xFF; 475 sc->jme_eaddr[4] = (par1 >> 0) & 0xFF; 476 sc->jme_eaddr[5] = (par1 >> 8) & 0xFF; 477 } 478 } 479 480 static void 481 jme_map_intr_vector(struct jme_softc *sc) 482 { 483 uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES]; 484 485 bzero(map, sizeof(map)); 486 487 /* Map Tx interrupts source to MSI/MSIX vector 2. */ 488 map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] = 489 MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP); 490 map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |= 491 MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP); 492 map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |= 493 MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP); 494 map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |= 495 MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP); 496 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 497 MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP); 498 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 499 MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP); 500 map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |= 501 MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP); 502 map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |= 503 MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP); 504 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |= 505 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL); 506 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |= 507 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO); 508 509 /* Map Rx interrupts source to MSI/MSIX vector 1. */ 510 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] = 511 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP); 512 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] = 513 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP); 514 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] = 515 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP); 516 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] = 517 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP); 518 map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] = 519 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY); 520 map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] = 521 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY); 522 map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] = 523 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY); 524 map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] = 525 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY); 526 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] = 527 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL); 528 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] = 529 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL); 530 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] = 531 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL); 532 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] = 533 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL); 534 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] = 535 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO); 536 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] = 537 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO); 538 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] = 539 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO); 540 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] = 541 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO); 542 543 /* Map all other interrupts source to MSI/MSIX vector 0. */ 544 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]); 545 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]); 546 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]); 547 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]); 548 } 549 550 static int 551 jme_attach(device_t dev) 552 { 553 struct jme_softc *sc; 554 struct ifnet *ifp; 555 struct mii_softc *miisc; 556 struct mii_data *mii; 557 uint32_t reg; 558 uint16_t burst; 559 int error, i, msic, msixc, pmc; 560 561 error = 0; 562 sc = device_get_softc(dev); 563 sc->jme_dev = dev; 564 565 mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 566 MTX_DEF); 567 callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0); 568 TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc); 569 TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc); 570 571 /* 572 * Map the device. JMC250 supports both memory mapped and I/O 573 * register space access. Because I/O register access should 574 * use different BARs to access registers it's waste of time 575 * to use I/O register spce access. JMC250 uses 16K to map 576 * entire memory space. 577 */ 578 pci_enable_busmaster(dev); 579 sc->jme_res_spec = jme_res_spec_mem; 580 sc->jme_irq_spec = jme_irq_spec_legacy; 581 error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res); 582 if (error != 0) { 583 device_printf(dev, "cannot allocate memory resources.\n"); 584 goto fail; 585 } 586 587 /* Allocate IRQ resources. */ 588 msixc = pci_msix_count(dev); 589 msic = pci_msi_count(dev); 590 if (bootverbose) { 591 device_printf(dev, "MSIX count : %d\n", msixc); 592 device_printf(dev, "MSI count : %d\n", msic); 593 } 594 595 /* Prefer MSIX over MSI. */ 596 if (msix_disable == 0 || msi_disable == 0) { 597 if (msix_disable == 0 && msixc == JME_MSIX_MESSAGES && 598 pci_alloc_msix(dev, &msixc) == 0) { 599 if (msic == JME_MSIX_MESSAGES) { 600 device_printf(dev, "Using %d MSIX messages.\n", 601 msixc); 602 sc->jme_flags |= JME_FLAG_MSIX; 603 sc->jme_irq_spec = jme_irq_spec_msi; 604 } else 605 pci_release_msi(dev); 606 } 607 if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 && 608 msic == JME_MSI_MESSAGES && 609 pci_alloc_msi(dev, &msic) == 0) { 610 if (msic == JME_MSI_MESSAGES) { 611 device_printf(dev, "Using %d MSI messages.\n", 612 msic); 613 sc->jme_flags |= JME_FLAG_MSI; 614 sc->jme_irq_spec = jme_irq_spec_msi; 615 } else 616 pci_release_msi(dev); 617 } 618 /* Map interrupt vector 0, 1 and 2. */ 619 if ((sc->jme_flags & JME_FLAG_MSI) != 0 || 620 (sc->jme_flags & JME_FLAG_MSIX) != 0) 621 jme_map_intr_vector(sc); 622 } 623 624 error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq); 625 if (error != 0) { 626 device_printf(dev, "cannot allocate IRQ resources.\n"); 627 goto fail; 628 } 629 630 sc->jme_rev = pci_get_device(dev); 631 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) { 632 sc->jme_flags |= JME_FLAG_FASTETH; 633 sc->jme_flags |= JME_FLAG_NOJUMBO; 634 } 635 reg = CSR_READ_4(sc, JME_CHIPMODE); 636 sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT; 637 if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) != 638 CHIPMODE_NOT_FPGA) 639 sc->jme_flags |= JME_FLAG_FPGA; 640 if (bootverbose) { 641 device_printf(dev, "PCI device revision : 0x%04x\n", 642 sc->jme_rev); 643 device_printf(dev, "Chip revision : 0x%02x\n", 644 sc->jme_chip_rev); 645 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) 646 device_printf(dev, "FPGA revision : 0x%04x\n", 647 (reg & CHIPMODE_FPGA_REV_MASK) >> 648 CHIPMODE_FPGA_REV_SHIFT); 649 } 650 if (sc->jme_chip_rev == 0xFF) { 651 device_printf(dev, "Unknown chip revision : 0x%02x\n", 652 sc->jme_rev); 653 error = ENXIO; 654 goto fail; 655 } 656 657 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) { 658 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 && 659 CHIPMODE_REVFM(sc->jme_chip_rev) == 2) 660 sc->jme_flags |= JME_FLAG_DMA32BIT; 661 sc->jme_flags |= JME_FLAG_TXCLK; 662 sc->jme_flags |= JME_FLAG_HWMIB; 663 } 664 665 /* Reset the ethernet controller. */ 666 jme_reset(sc); 667 668 /* Get station address. */ 669 reg = CSR_READ_4(sc, JME_SMBCSR); 670 if ((reg & SMBCSR_EEPROM_PRESENT) != 0) 671 error = jme_eeprom_macaddr(sc); 672 if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) { 673 if (error != 0 && (bootverbose)) 674 device_printf(sc->jme_dev, 675 "ethernet hardware address not found in EEPROM.\n"); 676 jme_reg_macaddr(sc); 677 } 678 679 /* 680 * Save PHY address. 681 * Integrated JR0211 has fixed PHY address whereas FPGA version 682 * requires PHY probing to get correct PHY address. 683 */ 684 if ((sc->jme_flags & JME_FLAG_FPGA) == 0) { 685 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) & 686 GPREG0_PHY_ADDR_MASK; 687 if (bootverbose) 688 device_printf(dev, "PHY is at address %d.\n", 689 sc->jme_phyaddr); 690 } else 691 sc->jme_phyaddr = 0; 692 693 /* Set max allowable DMA size. */ 694 if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) { 695 sc->jme_flags |= JME_FLAG_PCIE; 696 burst = pci_read_config(dev, i + 0x08, 2); 697 if (bootverbose) { 698 device_printf(dev, "Read request size : %d bytes.\n", 699 128 << ((burst >> 12) & 0x07)); 700 device_printf(dev, "TLP payload size : %d bytes.\n", 701 128 << ((burst >> 5) & 0x07)); 702 } 703 switch ((burst >> 12) & 0x07) { 704 case 0: 705 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128; 706 break; 707 case 1: 708 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256; 709 break; 710 default: 711 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 712 break; 713 } 714 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 715 } else { 716 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 717 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 718 } 719 /* Create coalescing sysctl node. */ 720 jme_sysctl_node(sc); 721 if ((error = jme_dma_alloc(sc) != 0)) 722 goto fail; 723 724 ifp = sc->jme_ifp = if_alloc(IFT_ETHER); 725 if (ifp == NULL) { 726 device_printf(dev, "cannot allocate ifnet structure.\n"); 727 error = ENXIO; 728 goto fail; 729 } 730 731 ifp->if_softc = sc; 732 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 733 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 734 ifp->if_ioctl = jme_ioctl; 735 ifp->if_start = jme_start; 736 ifp->if_init = jme_init; 737 ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1; 738 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 739 IFQ_SET_READY(&ifp->if_snd); 740 /* JMC250 supports Tx/Rx checksum offload as well as TSO. */ 741 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 742 ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO; 743 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { 744 sc->jme_flags |= JME_FLAG_PMCAP; 745 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 746 } 747 ifp->if_capenable = ifp->if_capabilities; 748 749 /* Set up MII bus. */ 750 if ((error = mii_phy_probe(dev, &sc->jme_miibus, jme_mediachange, 751 jme_mediastatus)) != 0) { 752 device_printf(dev, "no PHY found!\n"); 753 goto fail; 754 } 755 756 /* 757 * Force PHY to FPGA mode. 758 */ 759 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 760 mii = device_get_softc(sc->jme_miibus); 761 if (mii->mii_instance != 0) { 762 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { 763 if (miisc->mii_phy != 0) { 764 sc->jme_phyaddr = miisc->mii_phy; 765 break; 766 } 767 } 768 if (sc->jme_phyaddr != 0) { 769 device_printf(sc->jme_dev, 770 "FPGA PHY is at %d\n", sc->jme_phyaddr); 771 /* vendor magic. */ 772 jme_miibus_writereg(dev, sc->jme_phyaddr, 27, 773 0x0004); 774 } 775 } 776 } 777 778 ether_ifattach(ifp, sc->jme_eaddr); 779 780 /* VLAN capability setup */ 781 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 782 IFCAP_VLAN_HWCSUM; 783 ifp->if_capenable = ifp->if_capabilities; 784 785 /* Tell the upper layer(s) we support long frames. */ 786 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 787 788 /* Create local taskq. */ 789 TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp); 790 sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK, 791 taskqueue_thread_enqueue, &sc->jme_tq); 792 if (sc->jme_tq == NULL) { 793 device_printf(dev, "could not create taskqueue.\n"); 794 ether_ifdetach(ifp); 795 error = ENXIO; 796 goto fail; 797 } 798 taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq", 799 device_get_nameunit(sc->jme_dev)); 800 801 if ((sc->jme_flags & JME_FLAG_MSIX) != 0) 802 msic = JME_MSIX_MESSAGES; 803 else if ((sc->jme_flags & JME_FLAG_MSI) != 0) 804 msic = JME_MSI_MESSAGES; 805 else 806 msic = 1; 807 for (i = 0; i < msic; i++) { 808 error = bus_setup_intr(dev, sc->jme_irq[i], 809 INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc, 810 &sc->jme_intrhand[i]); 811 if (error != 0) 812 break; 813 } 814 815 if (error != 0) { 816 device_printf(dev, "could not set up interrupt handler.\n"); 817 taskqueue_free(sc->jme_tq); 818 sc->jme_tq = NULL; 819 ether_ifdetach(ifp); 820 goto fail; 821 } 822 823 fail: 824 if (error != 0) 825 jme_detach(dev); 826 827 return (error); 828 } 829 830 static int 831 jme_detach(device_t dev) 832 { 833 struct jme_softc *sc; 834 struct ifnet *ifp; 835 int i, msic; 836 837 sc = device_get_softc(dev); 838 839 ifp = sc->jme_ifp; 840 if (device_is_attached(dev)) { 841 JME_LOCK(sc); 842 sc->jme_flags |= JME_FLAG_DETACH; 843 jme_stop(sc); 844 JME_UNLOCK(sc); 845 callout_drain(&sc->jme_tick_ch); 846 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 847 taskqueue_drain(sc->jme_tq, &sc->jme_tx_task); 848 taskqueue_drain(taskqueue_swi, &sc->jme_link_task); 849 ether_ifdetach(ifp); 850 } 851 852 if (sc->jme_tq != NULL) { 853 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 854 taskqueue_free(sc->jme_tq); 855 sc->jme_tq = NULL; 856 } 857 858 if (sc->jme_miibus != NULL) { 859 device_delete_child(dev, sc->jme_miibus); 860 sc->jme_miibus = NULL; 861 } 862 bus_generic_detach(dev); 863 jme_dma_free(sc); 864 865 if (ifp != NULL) { 866 if_free(ifp); 867 sc->jme_ifp = NULL; 868 } 869 870 msic = 1; 871 if ((sc->jme_flags & JME_FLAG_MSIX) != 0) 872 msic = JME_MSIX_MESSAGES; 873 else if ((sc->jme_flags & JME_FLAG_MSI) != 0) 874 msic = JME_MSI_MESSAGES; 875 else 876 msic = 1; 877 for (i = 0; i < msic; i++) { 878 if (sc->jme_intrhand[i] != NULL) { 879 bus_teardown_intr(dev, sc->jme_irq[i], 880 sc->jme_intrhand[i]); 881 sc->jme_intrhand[i] = NULL; 882 } 883 } 884 885 bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq); 886 if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0) 887 pci_release_msi(dev); 888 bus_release_resources(dev, sc->jme_res_spec, sc->jme_res); 889 mtx_destroy(&sc->jme_mtx); 890 891 return (0); 892 } 893 894 #define JME_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 895 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 896 897 static void 898 jme_sysctl_node(struct jme_softc *sc) 899 { 900 struct sysctl_ctx_list *ctx; 901 struct sysctl_oid_list *child, *parent; 902 struct sysctl_oid *tree; 903 struct jme_hw_stats *stats; 904 int error; 905 906 stats = &sc->jme_stats; 907 ctx = device_get_sysctl_ctx(sc->jme_dev); 908 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)); 909 910 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to", 911 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0, 912 sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout"); 913 914 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt", 915 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0, 916 sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet"); 917 918 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to", 919 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0, 920 sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout"); 921 922 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt", 923 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0, 924 sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet"); 925 926 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 927 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0, 928 sysctl_hw_jme_proc_limit, "I", 929 "max number of Rx events to process"); 930 931 /* Pull in device tunables. */ 932 sc->jme_process_limit = JME_PROC_DEFAULT; 933 error = resource_int_value(device_get_name(sc->jme_dev), 934 device_get_unit(sc->jme_dev), "process_limit", 935 &sc->jme_process_limit); 936 if (error == 0) { 937 if (sc->jme_process_limit < JME_PROC_MIN || 938 sc->jme_process_limit > JME_PROC_MAX) { 939 device_printf(sc->jme_dev, 940 "process_limit value out of range; " 941 "using default: %d\n", JME_PROC_DEFAULT); 942 sc->jme_process_limit = JME_PROC_DEFAULT; 943 } 944 } 945 946 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 947 error = resource_int_value(device_get_name(sc->jme_dev), 948 device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to); 949 if (error == 0) { 950 if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN || 951 sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) { 952 device_printf(sc->jme_dev, 953 "tx_coal_to value out of range; " 954 "using default: %d\n", PCCTX_COAL_TO_DEFAULT); 955 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 956 } 957 } 958 959 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 960 error = resource_int_value(device_get_name(sc->jme_dev), 961 device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to); 962 if (error == 0) { 963 if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN || 964 sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) { 965 device_printf(sc->jme_dev, 966 "tx_coal_pkt value out of range; " 967 "using default: %d\n", PCCTX_COAL_PKT_DEFAULT); 968 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 969 } 970 } 971 972 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 973 error = resource_int_value(device_get_name(sc->jme_dev), 974 device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to); 975 if (error == 0) { 976 if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN || 977 sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) { 978 device_printf(sc->jme_dev, 979 "rx_coal_to value out of range; " 980 "using default: %d\n", PCCRX_COAL_TO_DEFAULT); 981 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 982 } 983 } 984 985 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 986 error = resource_int_value(device_get_name(sc->jme_dev), 987 device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to); 988 if (error == 0) { 989 if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN || 990 sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) { 991 device_printf(sc->jme_dev, 992 "tx_coal_pkt value out of range; " 993 "using default: %d\n", PCCRX_COAL_PKT_DEFAULT); 994 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 995 } 996 } 997 998 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 999 return; 1000 1001 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 1002 NULL, "JME statistics"); 1003 parent = SYSCTL_CHILDREN(tree); 1004 1005 /* Rx statistics. */ 1006 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 1007 NULL, "Rx MAC statistics"); 1008 child = SYSCTL_CHILDREN(tree); 1009 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1010 &stats->rx_good_frames, "Good frames"); 1011 JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 1012 &stats->rx_crc_errs, "CRC errors"); 1013 JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs", 1014 &stats->rx_mii_errs, "MII errors"); 1015 JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 1016 &stats->rx_fifo_oflows, "FIFO overflows"); 1017 JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty", 1018 &stats->rx_desc_empty, "Descriptor empty"); 1019 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1020 &stats->rx_bad_frames, "Bad frames"); 1021 1022 /* Tx statistics. */ 1023 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 1024 NULL, "Tx MAC statistics"); 1025 child = SYSCTL_CHILDREN(tree); 1026 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1027 &stats->tx_good_frames, "Good frames"); 1028 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1029 &stats->tx_bad_frames, "Bad frames"); 1030 } 1031 1032 #undef JME_SYSCTL_STAT_ADD32 1033 1034 struct jme_dmamap_arg { 1035 bus_addr_t jme_busaddr; 1036 }; 1037 1038 static void 1039 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1040 { 1041 struct jme_dmamap_arg *ctx; 1042 1043 if (error != 0) 1044 return; 1045 1046 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1047 1048 ctx = (struct jme_dmamap_arg *)arg; 1049 ctx->jme_busaddr = segs[0].ds_addr; 1050 } 1051 1052 static int 1053 jme_dma_alloc(struct jme_softc *sc) 1054 { 1055 struct jme_dmamap_arg ctx; 1056 struct jme_txdesc *txd; 1057 struct jme_rxdesc *rxd; 1058 bus_addr_t lowaddr, rx_ring_end, tx_ring_end; 1059 int error, i; 1060 1061 lowaddr = BUS_SPACE_MAXADDR; 1062 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1063 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1064 1065 again: 1066 /* Create parent ring tag. */ 1067 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1068 1, 0, /* algnmnt, boundary */ 1069 lowaddr, /* lowaddr */ 1070 BUS_SPACE_MAXADDR, /* highaddr */ 1071 NULL, NULL, /* filter, filterarg */ 1072 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1073 0, /* nsegments */ 1074 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1075 0, /* flags */ 1076 NULL, NULL, /* lockfunc, lockarg */ 1077 &sc->jme_cdata.jme_ring_tag); 1078 if (error != 0) { 1079 device_printf(sc->jme_dev, 1080 "could not create parent ring DMA tag.\n"); 1081 goto fail; 1082 } 1083 /* Create tag for Tx ring. */ 1084 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1085 JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */ 1086 BUS_SPACE_MAXADDR, /* lowaddr */ 1087 BUS_SPACE_MAXADDR, /* highaddr */ 1088 NULL, NULL, /* filter, filterarg */ 1089 JME_TX_RING_SIZE, /* maxsize */ 1090 1, /* nsegments */ 1091 JME_TX_RING_SIZE, /* maxsegsize */ 1092 0, /* flags */ 1093 NULL, NULL, /* lockfunc, lockarg */ 1094 &sc->jme_cdata.jme_tx_ring_tag); 1095 if (error != 0) { 1096 device_printf(sc->jme_dev, 1097 "could not allocate Tx ring DMA tag.\n"); 1098 goto fail; 1099 } 1100 1101 /* Create tag for Rx ring. */ 1102 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1103 JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */ 1104 lowaddr, /* lowaddr */ 1105 BUS_SPACE_MAXADDR, /* highaddr */ 1106 NULL, NULL, /* filter, filterarg */ 1107 JME_RX_RING_SIZE, /* maxsize */ 1108 1, /* nsegments */ 1109 JME_RX_RING_SIZE, /* maxsegsize */ 1110 0, /* flags */ 1111 NULL, NULL, /* lockfunc, lockarg */ 1112 &sc->jme_cdata.jme_rx_ring_tag); 1113 if (error != 0) { 1114 device_printf(sc->jme_dev, 1115 "could not allocate Rx ring DMA tag.\n"); 1116 goto fail; 1117 } 1118 1119 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1120 error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag, 1121 (void **)&sc->jme_rdata.jme_tx_ring, 1122 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1123 &sc->jme_cdata.jme_tx_ring_map); 1124 if (error != 0) { 1125 device_printf(sc->jme_dev, 1126 "could not allocate DMA'able memory for Tx ring.\n"); 1127 goto fail; 1128 } 1129 1130 ctx.jme_busaddr = 0; 1131 error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag, 1132 sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring, 1133 JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1134 if (error != 0 || ctx.jme_busaddr == 0) { 1135 device_printf(sc->jme_dev, 1136 "could not load DMA'able memory for Tx ring.\n"); 1137 goto fail; 1138 } 1139 sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr; 1140 1141 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1142 error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag, 1143 (void **)&sc->jme_rdata.jme_rx_ring, 1144 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1145 &sc->jme_cdata.jme_rx_ring_map); 1146 if (error != 0) { 1147 device_printf(sc->jme_dev, 1148 "could not allocate DMA'able memory for Rx ring.\n"); 1149 goto fail; 1150 } 1151 1152 ctx.jme_busaddr = 0; 1153 error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag, 1154 sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring, 1155 JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1156 if (error != 0 || ctx.jme_busaddr == 0) { 1157 device_printf(sc->jme_dev, 1158 "could not load DMA'able memory for Rx ring.\n"); 1159 goto fail; 1160 } 1161 sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr; 1162 1163 if (lowaddr != BUS_SPACE_MAXADDR_32BIT) { 1164 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 1165 tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + 1166 JME_TX_RING_SIZE; 1167 rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + 1168 JME_RX_RING_SIZE; 1169 if ((JME_ADDR_HI(tx_ring_end) != 1170 JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) || 1171 (JME_ADDR_HI(rx_ring_end) != 1172 JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) { 1173 device_printf(sc->jme_dev, "4GB boundary crossed, " 1174 "switching to 32bit DMA address mode.\n"); 1175 jme_dma_free(sc); 1176 /* Limit DMA address space to 32bit and try again. */ 1177 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1178 goto again; 1179 } 1180 } 1181 1182 lowaddr = BUS_SPACE_MAXADDR; 1183 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1184 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1185 /* Create parent buffer tag. */ 1186 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1187 1, 0, /* algnmnt, boundary */ 1188 lowaddr, /* lowaddr */ 1189 BUS_SPACE_MAXADDR, /* highaddr */ 1190 NULL, NULL, /* filter, filterarg */ 1191 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1192 0, /* nsegments */ 1193 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1194 0, /* flags */ 1195 NULL, NULL, /* lockfunc, lockarg */ 1196 &sc->jme_cdata.jme_buffer_tag); 1197 if (error != 0) { 1198 device_printf(sc->jme_dev, 1199 "could not create parent buffer DMA tag.\n"); 1200 goto fail; 1201 } 1202 1203 /* Create shadow status block tag. */ 1204 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1205 JME_SSB_ALIGN, 0, /* algnmnt, boundary */ 1206 BUS_SPACE_MAXADDR, /* lowaddr */ 1207 BUS_SPACE_MAXADDR, /* highaddr */ 1208 NULL, NULL, /* filter, filterarg */ 1209 JME_SSB_SIZE, /* maxsize */ 1210 1, /* nsegments */ 1211 JME_SSB_SIZE, /* maxsegsize */ 1212 0, /* flags */ 1213 NULL, NULL, /* lockfunc, lockarg */ 1214 &sc->jme_cdata.jme_ssb_tag); 1215 if (error != 0) { 1216 device_printf(sc->jme_dev, 1217 "could not create shared status block DMA tag.\n"); 1218 goto fail; 1219 } 1220 1221 /* Create tag for Tx buffers. */ 1222 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1223 1, 0, /* algnmnt, boundary */ 1224 BUS_SPACE_MAXADDR, /* lowaddr */ 1225 BUS_SPACE_MAXADDR, /* highaddr */ 1226 NULL, NULL, /* filter, filterarg */ 1227 JME_TSO_MAXSIZE, /* maxsize */ 1228 JME_MAXTXSEGS, /* nsegments */ 1229 JME_TSO_MAXSEGSIZE, /* maxsegsize */ 1230 0, /* flags */ 1231 NULL, NULL, /* lockfunc, lockarg */ 1232 &sc->jme_cdata.jme_tx_tag); 1233 if (error != 0) { 1234 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n"); 1235 goto fail; 1236 } 1237 1238 /* Create tag for Rx buffers. */ 1239 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1240 JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ 1241 BUS_SPACE_MAXADDR, /* lowaddr */ 1242 BUS_SPACE_MAXADDR, /* highaddr */ 1243 NULL, NULL, /* filter, filterarg */ 1244 MCLBYTES, /* maxsize */ 1245 1, /* nsegments */ 1246 MCLBYTES, /* maxsegsize */ 1247 0, /* flags */ 1248 NULL, NULL, /* lockfunc, lockarg */ 1249 &sc->jme_cdata.jme_rx_tag); 1250 if (error != 0) { 1251 device_printf(sc->jme_dev, "could not create Rx DMA tag.\n"); 1252 goto fail; 1253 } 1254 1255 /* 1256 * Allocate DMA'able memory and load the DMA map for shared 1257 * status block. 1258 */ 1259 error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag, 1260 (void **)&sc->jme_rdata.jme_ssb_block, 1261 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1262 &sc->jme_cdata.jme_ssb_map); 1263 if (error != 0) { 1264 device_printf(sc->jme_dev, "could not allocate DMA'able " 1265 "memory for shared status block.\n"); 1266 goto fail; 1267 } 1268 1269 ctx.jme_busaddr = 0; 1270 error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag, 1271 sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block, 1272 JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1273 if (error != 0 || ctx.jme_busaddr == 0) { 1274 device_printf(sc->jme_dev, "could not load DMA'able memory " 1275 "for shared status block.\n"); 1276 goto fail; 1277 } 1278 sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr; 1279 1280 /* Create DMA maps for Tx buffers. */ 1281 for (i = 0; i < JME_TX_RING_CNT; i++) { 1282 txd = &sc->jme_cdata.jme_txdesc[i]; 1283 txd->tx_m = NULL; 1284 txd->tx_dmamap = NULL; 1285 error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0, 1286 &txd->tx_dmamap); 1287 if (error != 0) { 1288 device_printf(sc->jme_dev, 1289 "could not create Tx dmamap.\n"); 1290 goto fail; 1291 } 1292 } 1293 /* Create DMA maps for Rx buffers. */ 1294 if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1295 &sc->jme_cdata.jme_rx_sparemap)) != 0) { 1296 device_printf(sc->jme_dev, 1297 "could not create spare Rx dmamap.\n"); 1298 goto fail; 1299 } 1300 for (i = 0; i < JME_RX_RING_CNT; i++) { 1301 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1302 rxd->rx_m = NULL; 1303 rxd->rx_dmamap = NULL; 1304 error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1305 &rxd->rx_dmamap); 1306 if (error != 0) { 1307 device_printf(sc->jme_dev, 1308 "could not create Rx dmamap.\n"); 1309 goto fail; 1310 } 1311 } 1312 1313 fail: 1314 return (error); 1315 } 1316 1317 static void 1318 jme_dma_free(struct jme_softc *sc) 1319 { 1320 struct jme_txdesc *txd; 1321 struct jme_rxdesc *rxd; 1322 int i; 1323 1324 /* Tx ring */ 1325 if (sc->jme_cdata.jme_tx_ring_tag != NULL) { 1326 if (sc->jme_cdata.jme_tx_ring_map) 1327 bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag, 1328 sc->jme_cdata.jme_tx_ring_map); 1329 if (sc->jme_cdata.jme_tx_ring_map && 1330 sc->jme_rdata.jme_tx_ring) 1331 bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag, 1332 sc->jme_rdata.jme_tx_ring, 1333 sc->jme_cdata.jme_tx_ring_map); 1334 sc->jme_rdata.jme_tx_ring = NULL; 1335 sc->jme_cdata.jme_tx_ring_map = NULL; 1336 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag); 1337 sc->jme_cdata.jme_tx_ring_tag = NULL; 1338 } 1339 /* Rx ring */ 1340 if (sc->jme_cdata.jme_rx_ring_tag != NULL) { 1341 if (sc->jme_cdata.jme_rx_ring_map) 1342 bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag, 1343 sc->jme_cdata.jme_rx_ring_map); 1344 if (sc->jme_cdata.jme_rx_ring_map && 1345 sc->jme_rdata.jme_rx_ring) 1346 bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag, 1347 sc->jme_rdata.jme_rx_ring, 1348 sc->jme_cdata.jme_rx_ring_map); 1349 sc->jme_rdata.jme_rx_ring = NULL; 1350 sc->jme_cdata.jme_rx_ring_map = NULL; 1351 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag); 1352 sc->jme_cdata.jme_rx_ring_tag = NULL; 1353 } 1354 /* Tx buffers */ 1355 if (sc->jme_cdata.jme_tx_tag != NULL) { 1356 for (i = 0; i < JME_TX_RING_CNT; i++) { 1357 txd = &sc->jme_cdata.jme_txdesc[i]; 1358 if (txd->tx_dmamap != NULL) { 1359 bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag, 1360 txd->tx_dmamap); 1361 txd->tx_dmamap = NULL; 1362 } 1363 } 1364 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag); 1365 sc->jme_cdata.jme_tx_tag = NULL; 1366 } 1367 /* Rx buffers */ 1368 if (sc->jme_cdata.jme_rx_tag != NULL) { 1369 for (i = 0; i < JME_RX_RING_CNT; i++) { 1370 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1371 if (rxd->rx_dmamap != NULL) { 1372 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1373 rxd->rx_dmamap); 1374 rxd->rx_dmamap = NULL; 1375 } 1376 } 1377 if (sc->jme_cdata.jme_rx_sparemap != NULL) { 1378 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1379 sc->jme_cdata.jme_rx_sparemap); 1380 sc->jme_cdata.jme_rx_sparemap = NULL; 1381 } 1382 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag); 1383 sc->jme_cdata.jme_rx_tag = NULL; 1384 } 1385 1386 /* Shared status block. */ 1387 if (sc->jme_cdata.jme_ssb_tag != NULL) { 1388 if (sc->jme_cdata.jme_ssb_map) 1389 bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag, 1390 sc->jme_cdata.jme_ssb_map); 1391 if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block) 1392 bus_dmamem_free(sc->jme_cdata.jme_ssb_tag, 1393 sc->jme_rdata.jme_ssb_block, 1394 sc->jme_cdata.jme_ssb_map); 1395 sc->jme_rdata.jme_ssb_block = NULL; 1396 sc->jme_cdata.jme_ssb_map = NULL; 1397 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag); 1398 sc->jme_cdata.jme_ssb_tag = NULL; 1399 } 1400 1401 if (sc->jme_cdata.jme_buffer_tag != NULL) { 1402 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag); 1403 sc->jme_cdata.jme_buffer_tag = NULL; 1404 } 1405 if (sc->jme_cdata.jme_ring_tag != NULL) { 1406 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag); 1407 sc->jme_cdata.jme_ring_tag = NULL; 1408 } 1409 } 1410 1411 /* 1412 * Make sure the interface is stopped at reboot time. 1413 */ 1414 static int 1415 jme_shutdown(device_t dev) 1416 { 1417 1418 return (jme_suspend(dev)); 1419 } 1420 1421 /* 1422 * Unlike other ethernet controllers, JMC250 requires 1423 * explicit resetting link speed to 10/100Mbps as gigabit 1424 * link will cunsume more power than 375mA. 1425 * Note, we reset the link speed to 10/100Mbps with 1426 * auto-negotiation but we don't know whether that operation 1427 * would succeed or not as we have no control after powering 1428 * off. If the renegotiation fail WOL may not work. Running 1429 * at 1Gbps draws more power than 375mA at 3.3V which is 1430 * specified in PCI specification and that would result in 1431 * complete shutdowning power to ethernet controller. 1432 * 1433 * TODO 1434 * Save current negotiated media speed/duplex/flow-control 1435 * to softc and restore the same link again after resuming. 1436 * PHY handling such as power down/resetting to 100Mbps 1437 * may be better handled in suspend method in phy driver. 1438 */ 1439 static void 1440 jme_setlinkspeed(struct jme_softc *sc) 1441 { 1442 struct mii_data *mii; 1443 int aneg, i; 1444 1445 JME_LOCK_ASSERT(sc); 1446 1447 mii = device_get_softc(sc->jme_miibus); 1448 mii_pollstat(mii); 1449 aneg = 0; 1450 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1451 switch IFM_SUBTYPE(mii->mii_media_active) { 1452 case IFM_10_T: 1453 case IFM_100_TX: 1454 return; 1455 case IFM_1000_T: 1456 aneg++; 1457 default: 1458 break; 1459 } 1460 } 1461 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0); 1462 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR, 1463 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1464 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, 1465 BMCR_AUTOEN | BMCR_STARTNEG); 1466 DELAY(1000); 1467 if (aneg != 0) { 1468 /* Poll link state until jme(4) get a 10/100 link. */ 1469 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1470 mii_pollstat(mii); 1471 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1472 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1473 case IFM_10_T: 1474 case IFM_100_TX: 1475 jme_mac_config(sc); 1476 return; 1477 default: 1478 break; 1479 } 1480 } 1481 JME_UNLOCK(sc); 1482 pause("jmelnk", hz); 1483 JME_LOCK(sc); 1484 } 1485 if (i == MII_ANEGTICKS_GIGE) 1486 device_printf(sc->jme_dev, "establishing link failed, " 1487 "WOL may not work!"); 1488 } 1489 /* 1490 * No link, force MAC to have 100Mbps, full-duplex link. 1491 * This is the last resort and may/may not work. 1492 */ 1493 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1494 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1495 jme_mac_config(sc); 1496 } 1497 1498 static void 1499 jme_setwol(struct jme_softc *sc) 1500 { 1501 struct ifnet *ifp; 1502 uint32_t gpr, pmcs; 1503 uint16_t pmstat; 1504 int pmc; 1505 1506 JME_LOCK_ASSERT(sc); 1507 1508 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1509 /* Remove Tx MAC/offload clock to save more power. */ 1510 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1511 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1512 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1513 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1514 /* No PME capability, PHY power down. */ 1515 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 1516 MII_BMCR, BMCR_PDOWN); 1517 return; 1518 } 1519 1520 ifp = sc->jme_ifp; 1521 gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB; 1522 pmcs = CSR_READ_4(sc, JME_PMCS); 1523 pmcs &= ~PMCS_WOL_ENB_MASK; 1524 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1525 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB; 1526 /* Enable PME message. */ 1527 gpr |= GPREG0_PME_ENB; 1528 /* For gigabit controllers, reset link speed to 10/100. */ 1529 if ((sc->jme_flags & JME_FLAG_FASTETH) == 0) 1530 jme_setlinkspeed(sc); 1531 } 1532 1533 CSR_WRITE_4(sc, JME_PMCS, pmcs); 1534 CSR_WRITE_4(sc, JME_GPREG0, gpr); 1535 /* Remove Tx MAC/offload clock to save more power. */ 1536 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1537 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1538 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1539 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1540 /* Request PME. */ 1541 pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2); 1542 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1543 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1544 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1545 pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1546 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1547 /* No WOL, PHY power down. */ 1548 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 1549 MII_BMCR, BMCR_PDOWN); 1550 } 1551 } 1552 1553 static int 1554 jme_suspend(device_t dev) 1555 { 1556 struct jme_softc *sc; 1557 1558 sc = device_get_softc(dev); 1559 1560 JME_LOCK(sc); 1561 jme_stop(sc); 1562 jme_setwol(sc); 1563 JME_UNLOCK(sc); 1564 1565 return (0); 1566 } 1567 1568 static int 1569 jme_resume(device_t dev) 1570 { 1571 struct jme_softc *sc; 1572 struct ifnet *ifp; 1573 uint16_t pmstat; 1574 int pmc; 1575 1576 sc = device_get_softc(dev); 1577 1578 JME_LOCK(sc); 1579 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1580 pmstat = pci_read_config(sc->jme_dev, 1581 pmc + PCIR_POWER_STATUS, 2); 1582 /* Disable PME clear PME status. */ 1583 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1584 pci_write_config(sc->jme_dev, 1585 pmc + PCIR_POWER_STATUS, pmstat, 2); 1586 } 1587 ifp = sc->jme_ifp; 1588 if ((ifp->if_flags & IFF_UP) != 0) 1589 jme_init_locked(sc); 1590 1591 JME_UNLOCK(sc); 1592 1593 return (0); 1594 } 1595 1596 static int 1597 jme_encap(struct jme_softc *sc, struct mbuf **m_head) 1598 { 1599 struct jme_txdesc *txd; 1600 struct jme_desc *desc; 1601 struct mbuf *m; 1602 bus_dma_segment_t txsegs[JME_MAXTXSEGS]; 1603 int error, i, nsegs, prod; 1604 uint32_t cflags, tso_segsz; 1605 1606 JME_LOCK_ASSERT(sc); 1607 1608 M_ASSERTPKTHDR((*m_head)); 1609 1610 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1611 /* 1612 * Due to the adherence to NDIS specification JMC250 1613 * assumes upper stack computed TCP pseudo checksum 1614 * without including payload length. This breaks 1615 * checksum offload for TSO case so recompute TCP 1616 * pseudo checksum for JMC250. Hopefully this wouldn't 1617 * be much burden on modern CPUs. 1618 */ 1619 struct ether_header *eh; 1620 struct ip *ip; 1621 struct tcphdr *tcp; 1622 uint32_t ip_off, poff; 1623 1624 if (M_WRITABLE(*m_head) == 0) { 1625 /* Get a writable copy. */ 1626 m = m_dup(*m_head, M_DONTWAIT); 1627 m_freem(*m_head); 1628 if (m == NULL) { 1629 *m_head = NULL; 1630 return (ENOBUFS); 1631 } 1632 *m_head = m; 1633 } 1634 ip_off = sizeof(struct ether_header); 1635 m = m_pullup(*m_head, ip_off); 1636 if (m == NULL) { 1637 *m_head = NULL; 1638 return (ENOBUFS); 1639 } 1640 eh = mtod(m, struct ether_header *); 1641 /* Check the existence of VLAN tag. */ 1642 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1643 ip_off = sizeof(struct ether_vlan_header); 1644 m = m_pullup(m, ip_off); 1645 if (m == NULL) { 1646 *m_head = NULL; 1647 return (ENOBUFS); 1648 } 1649 } 1650 m = m_pullup(m, ip_off + sizeof(struct ip)); 1651 if (m == NULL) { 1652 *m_head = NULL; 1653 return (ENOBUFS); 1654 } 1655 ip = (struct ip *)(mtod(m, char *) + ip_off); 1656 poff = ip_off + (ip->ip_hl << 2); 1657 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1658 if (m == NULL) { 1659 *m_head = NULL; 1660 return (ENOBUFS); 1661 } 1662 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1663 /* 1664 * Reset IP checksum and recompute TCP pseudo 1665 * checksum that NDIS specification requires. 1666 */ 1667 ip->ip_sum = 0; 1668 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { 1669 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1670 ip->ip_dst.s_addr, 1671 htons((tcp->th_off << 2) + IPPROTO_TCP)); 1672 /* No need to TSO, force IP checksum offload. */ 1673 (*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO; 1674 (*m_head)->m_pkthdr.csum_flags |= CSUM_IP; 1675 } else 1676 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1677 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1678 *m_head = m; 1679 } 1680 1681 prod = sc->jme_cdata.jme_tx_prod; 1682 txd = &sc->jme_cdata.jme_txdesc[prod]; 1683 1684 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1685 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1686 if (error == EFBIG) { 1687 m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS); 1688 if (m == NULL) { 1689 m_freem(*m_head); 1690 *m_head = NULL; 1691 return (ENOMEM); 1692 } 1693 *m_head = m; 1694 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1695 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1696 if (error != 0) { 1697 m_freem(*m_head); 1698 *m_head = NULL; 1699 return (error); 1700 } 1701 } else if (error != 0) 1702 return (error); 1703 if (nsegs == 0) { 1704 m_freem(*m_head); 1705 *m_head = NULL; 1706 return (EIO); 1707 } 1708 1709 /* 1710 * Check descriptor overrun. Leave one free descriptor. 1711 * Since we always use 64bit address mode for transmitting, 1712 * each Tx request requires one more dummy descriptor. 1713 */ 1714 if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) { 1715 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 1716 return (ENOBUFS); 1717 } 1718 1719 m = *m_head; 1720 cflags = 0; 1721 tso_segsz = 0; 1722 /* Configure checksum offload and TSO. */ 1723 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1724 tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz << 1725 JME_TD_MSS_SHIFT; 1726 cflags |= JME_TD_TSO; 1727 } else { 1728 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1729 cflags |= JME_TD_IPCSUM; 1730 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1731 cflags |= JME_TD_TCPCSUM; 1732 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1733 cflags |= JME_TD_UDPCSUM; 1734 } 1735 /* Configure VLAN. */ 1736 if ((m->m_flags & M_VLANTAG) != 0) { 1737 cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK); 1738 cflags |= JME_TD_VLAN_TAG; 1739 } 1740 1741 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1742 desc->flags = htole32(cflags); 1743 desc->buflen = htole32(tso_segsz); 1744 desc->addr_hi = htole32(m->m_pkthdr.len); 1745 desc->addr_lo = 0; 1746 sc->jme_cdata.jme_tx_cnt++; 1747 JME_DESC_INC(prod, JME_TX_RING_CNT); 1748 for (i = 0; i < nsegs; i++) { 1749 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1750 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT); 1751 desc->buflen = htole32(txsegs[i].ds_len); 1752 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr)); 1753 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr)); 1754 sc->jme_cdata.jme_tx_cnt++; 1755 JME_DESC_INC(prod, JME_TX_RING_CNT); 1756 } 1757 1758 /* Update producer index. */ 1759 sc->jme_cdata.jme_tx_prod = prod; 1760 /* 1761 * Finally request interrupt and give the first descriptor 1762 * owenership to hardware. 1763 */ 1764 desc = txd->tx_desc; 1765 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR); 1766 1767 txd->tx_m = m; 1768 txd->tx_ndesc = nsegs + 1; 1769 1770 /* Sync descriptors. */ 1771 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 1772 BUS_DMASYNC_PREWRITE); 1773 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 1774 sc->jme_cdata.jme_tx_ring_map, 1775 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1776 1777 return (0); 1778 } 1779 1780 static void 1781 jme_tx_task(void *arg, int pending) 1782 { 1783 struct ifnet *ifp; 1784 1785 ifp = (struct ifnet *)arg; 1786 jme_start(ifp); 1787 } 1788 1789 static void 1790 jme_start(struct ifnet *ifp) 1791 { 1792 struct jme_softc *sc; 1793 struct mbuf *m_head; 1794 int enq; 1795 1796 sc = ifp->if_softc; 1797 1798 JME_LOCK(sc); 1799 1800 if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT) 1801 jme_txeof(sc); 1802 1803 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1804 IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) { 1805 JME_UNLOCK(sc); 1806 return; 1807 } 1808 1809 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1810 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1811 if (m_head == NULL) 1812 break; 1813 /* 1814 * Pack the data into the transmit ring. If we 1815 * don't have room, set the OACTIVE flag and wait 1816 * for the NIC to drain the ring. 1817 */ 1818 if (jme_encap(sc, &m_head)) { 1819 if (m_head == NULL) 1820 break; 1821 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1822 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1823 break; 1824 } 1825 1826 enq++; 1827 /* 1828 * If there's a BPF listener, bounce a copy of this frame 1829 * to him. 1830 */ 1831 ETHER_BPF_MTAP(ifp, m_head); 1832 } 1833 1834 if (enq > 0) { 1835 /* 1836 * Reading TXCSR takes very long time under heavy load 1837 * so cache TXCSR value and writes the ORed value with 1838 * the kick command to the TXCSR. This saves one register 1839 * access cycle. 1840 */ 1841 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB | 1842 TXCSR_TXQ_N_START(TXCSR_TXQ0)); 1843 /* Set a timeout in case the chip goes out to lunch. */ 1844 sc->jme_watchdog_timer = JME_TX_TIMEOUT; 1845 } 1846 1847 JME_UNLOCK(sc); 1848 } 1849 1850 static void 1851 jme_watchdog(struct jme_softc *sc) 1852 { 1853 struct ifnet *ifp; 1854 1855 JME_LOCK_ASSERT(sc); 1856 1857 if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer) 1858 return; 1859 1860 ifp = sc->jme_ifp; 1861 if ((sc->jme_flags & JME_FLAG_LINK) == 0) { 1862 if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n"); 1863 ifp->if_oerrors++; 1864 jme_init_locked(sc); 1865 return; 1866 } 1867 jme_txeof(sc); 1868 if (sc->jme_cdata.jme_tx_cnt == 0) { 1869 if_printf(sc->jme_ifp, 1870 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1871 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1872 taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task); 1873 return; 1874 } 1875 1876 if_printf(sc->jme_ifp, "watchdog timeout\n"); 1877 ifp->if_oerrors++; 1878 jme_init_locked(sc); 1879 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1880 taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task); 1881 } 1882 1883 static int 1884 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1885 { 1886 struct jme_softc *sc; 1887 struct ifreq *ifr; 1888 struct mii_data *mii; 1889 uint32_t reg; 1890 int error, mask; 1891 1892 sc = ifp->if_softc; 1893 ifr = (struct ifreq *)data; 1894 error = 0; 1895 switch (cmd) { 1896 case SIOCSIFMTU: 1897 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU || 1898 ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 && 1899 ifr->ifr_mtu > JME_MAX_MTU)) { 1900 error = EINVAL; 1901 break; 1902 } 1903 1904 if (ifp->if_mtu != ifr->ifr_mtu) { 1905 /* 1906 * No special configuration is required when interface 1907 * MTU is changed but availability of TSO/Tx checksum 1908 * offload should be chcked against new MTU size as 1909 * FIFO size is just 2K. 1910 */ 1911 JME_LOCK(sc); 1912 if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) { 1913 ifp->if_capenable &= 1914 ~(IFCAP_TXCSUM | IFCAP_TSO4); 1915 ifp->if_hwassist &= 1916 ~(JME_CSUM_FEATURES | CSUM_TSO); 1917 VLAN_CAPABILITIES(ifp); 1918 } 1919 ifp->if_mtu = ifr->ifr_mtu; 1920 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1921 jme_init_locked(sc); 1922 JME_UNLOCK(sc); 1923 } 1924 break; 1925 case SIOCSIFFLAGS: 1926 JME_LOCK(sc); 1927 if ((ifp->if_flags & IFF_UP) != 0) { 1928 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1929 if (((ifp->if_flags ^ sc->jme_if_flags) 1930 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1931 jme_set_filter(sc); 1932 } else { 1933 if ((sc->jme_flags & JME_FLAG_DETACH) == 0) 1934 jme_init_locked(sc); 1935 } 1936 } else { 1937 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1938 jme_stop(sc); 1939 } 1940 sc->jme_if_flags = ifp->if_flags; 1941 JME_UNLOCK(sc); 1942 break; 1943 case SIOCADDMULTI: 1944 case SIOCDELMULTI: 1945 JME_LOCK(sc); 1946 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1947 jme_set_filter(sc); 1948 JME_UNLOCK(sc); 1949 break; 1950 case SIOCSIFMEDIA: 1951 case SIOCGIFMEDIA: 1952 mii = device_get_softc(sc->jme_miibus); 1953 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1954 break; 1955 case SIOCSIFCAP: 1956 JME_LOCK(sc); 1957 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1958 if ((mask & IFCAP_TXCSUM) != 0 && 1959 ifp->if_mtu < JME_TX_FIFO_SIZE) { 1960 if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1961 ifp->if_capenable ^= IFCAP_TXCSUM; 1962 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 1963 ifp->if_hwassist |= JME_CSUM_FEATURES; 1964 else 1965 ifp->if_hwassist &= ~JME_CSUM_FEATURES; 1966 } 1967 } 1968 if ((mask & IFCAP_RXCSUM) != 0 && 1969 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { 1970 ifp->if_capenable ^= IFCAP_RXCSUM; 1971 reg = CSR_READ_4(sc, JME_RXMAC); 1972 reg &= ~RXMAC_CSUM_ENB; 1973 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1974 reg |= RXMAC_CSUM_ENB; 1975 CSR_WRITE_4(sc, JME_RXMAC, reg); 1976 } 1977 if ((mask & IFCAP_TSO4) != 0 && 1978 ifp->if_mtu < JME_TX_FIFO_SIZE) { 1979 if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) { 1980 ifp->if_capenable ^= IFCAP_TSO4; 1981 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 1982 ifp->if_hwassist |= CSUM_TSO; 1983 else 1984 ifp->if_hwassist &= ~CSUM_TSO; 1985 } 1986 } 1987 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1988 (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0) 1989 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1990 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1991 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 1992 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1993 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1994 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 1995 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1996 jme_set_vlan(sc); 1997 } 1998 JME_UNLOCK(sc); 1999 VLAN_CAPABILITIES(ifp); 2000 break; 2001 default: 2002 error = ether_ioctl(ifp, cmd, data); 2003 break; 2004 } 2005 2006 return (error); 2007 } 2008 2009 static void 2010 jme_mac_config(struct jme_softc *sc) 2011 { 2012 struct mii_data *mii; 2013 uint32_t ghc, gpreg, rxmac, txmac, txpause; 2014 uint32_t txclk; 2015 2016 JME_LOCK_ASSERT(sc); 2017 2018 mii = device_get_softc(sc->jme_miibus); 2019 2020 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2021 DELAY(10); 2022 CSR_WRITE_4(sc, JME_GHC, 0); 2023 ghc = 0; 2024 txclk = 0; 2025 rxmac = CSR_READ_4(sc, JME_RXMAC); 2026 rxmac &= ~RXMAC_FC_ENB; 2027 txmac = CSR_READ_4(sc, JME_TXMAC); 2028 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST); 2029 txpause = CSR_READ_4(sc, JME_TXPFC); 2030 txpause &= ~TXPFC_PAUSE_ENB; 2031 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2032 ghc |= GHC_FULL_DUPLEX; 2033 rxmac &= ~RXMAC_COLL_DET_ENB; 2034 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | 2035 TXMAC_BACKOFF | TXMAC_CARRIER_EXT | 2036 TXMAC_FRAME_BURST); 2037 #ifdef notyet 2038 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2039 txpause |= TXPFC_PAUSE_ENB; 2040 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2041 rxmac |= RXMAC_FC_ENB; 2042 #endif 2043 /* Disable retry transmit timer/retry limit. */ 2044 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) & 2045 ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)); 2046 } else { 2047 rxmac |= RXMAC_COLL_DET_ENB; 2048 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF; 2049 /* Enable retry transmit timer/retry limit. */ 2050 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) | 2051 TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB); 2052 } 2053 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */ 2054 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2055 case IFM_10_T: 2056 ghc |= GHC_SPEED_10; 2057 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2058 break; 2059 case IFM_100_TX: 2060 ghc |= GHC_SPEED_100; 2061 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2062 break; 2063 case IFM_1000_T: 2064 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2065 break; 2066 ghc |= GHC_SPEED_1000; 2067 txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000; 2068 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) 2069 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST; 2070 break; 2071 default: 2072 break; 2073 } 2074 if (sc->jme_rev == DEVICEID_JMC250 && 2075 sc->jme_chip_rev == DEVICEREVID_JMC250_A2) { 2076 /* 2077 * Workaround occasional packet loss issue of JMC250 A2 2078 * when it runs on half-duplex media. 2079 */ 2080 gpreg = CSR_READ_4(sc, JME_GPREG1); 2081 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 2082 gpreg &= ~GPREG1_HDPX_FIX; 2083 else 2084 gpreg |= GPREG1_HDPX_FIX; 2085 CSR_WRITE_4(sc, JME_GPREG1, gpreg); 2086 /* Workaround CRC errors at 100Mbps on JMC250 A2. */ 2087 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 2088 /* Extend interface FIFO depth. */ 2089 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2090 0x1B, 0x0000); 2091 } else { 2092 /* Select default interface FIFO depth. */ 2093 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2094 0x1B, 0x0004); 2095 } 2096 } 2097 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 2098 ghc |= txclk; 2099 CSR_WRITE_4(sc, JME_GHC, ghc); 2100 CSR_WRITE_4(sc, JME_RXMAC, rxmac); 2101 CSR_WRITE_4(sc, JME_TXMAC, txmac); 2102 CSR_WRITE_4(sc, JME_TXPFC, txpause); 2103 } 2104 2105 static void 2106 jme_link_task(void *arg, int pending) 2107 { 2108 struct jme_softc *sc; 2109 struct mii_data *mii; 2110 struct ifnet *ifp; 2111 struct jme_txdesc *txd; 2112 bus_addr_t paddr; 2113 int i; 2114 2115 sc = (struct jme_softc *)arg; 2116 2117 JME_LOCK(sc); 2118 mii = device_get_softc(sc->jme_miibus); 2119 ifp = sc->jme_ifp; 2120 if (mii == NULL || ifp == NULL || 2121 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2122 JME_UNLOCK(sc); 2123 return; 2124 } 2125 2126 sc->jme_flags &= ~JME_FLAG_LINK; 2127 if ((mii->mii_media_status & IFM_AVALID) != 0) { 2128 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2129 case IFM_10_T: 2130 case IFM_100_TX: 2131 sc->jme_flags |= JME_FLAG_LINK; 2132 break; 2133 case IFM_1000_T: 2134 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2135 break; 2136 sc->jme_flags |= JME_FLAG_LINK; 2137 break; 2138 default: 2139 break; 2140 } 2141 } 2142 2143 /* 2144 * Disabling Rx/Tx MACs have a side-effect of resetting 2145 * JME_TXNDA/JME_RXNDA register to the first address of 2146 * Tx/Rx descriptor address. So driver should reset its 2147 * internal procucer/consumer pointer and reclaim any 2148 * allocated resources. Note, just saving the value of 2149 * JME_TXNDA and JME_RXNDA registers before stopping MAC 2150 * and restoring JME_TXNDA/JME_RXNDA register is not 2151 * sufficient to make sure correct MAC state because 2152 * stopping MAC operation can take a while and hardware 2153 * might have updated JME_TXNDA/JME_RXNDA registers 2154 * during the stop operation. 2155 */ 2156 /* Block execution of task. */ 2157 taskqueue_block(sc->jme_tq); 2158 /* Disable interrupts and stop driver. */ 2159 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2160 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2161 callout_stop(&sc->jme_tick_ch); 2162 sc->jme_watchdog_timer = 0; 2163 2164 /* Stop receiver/transmitter. */ 2165 jme_stop_rx(sc); 2166 jme_stop_tx(sc); 2167 2168 /* XXX Drain all queued tasks. */ 2169 JME_UNLOCK(sc); 2170 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 2171 taskqueue_drain(sc->jme_tq, &sc->jme_tx_task); 2172 JME_LOCK(sc); 2173 2174 jme_rxintr(sc, JME_RX_RING_CNT); 2175 if (sc->jme_cdata.jme_rxhead != NULL) 2176 m_freem(sc->jme_cdata.jme_rxhead); 2177 JME_RXCHAIN_RESET(sc); 2178 jme_txeof(sc); 2179 if (sc->jme_cdata.jme_tx_cnt != 0) { 2180 /* Remove queued packets for transmit. */ 2181 for (i = 0; i < JME_TX_RING_CNT; i++) { 2182 txd = &sc->jme_cdata.jme_txdesc[i]; 2183 if (txd->tx_m != NULL) { 2184 bus_dmamap_sync( 2185 sc->jme_cdata.jme_tx_tag, 2186 txd->tx_dmamap, 2187 BUS_DMASYNC_POSTWRITE); 2188 bus_dmamap_unload( 2189 sc->jme_cdata.jme_tx_tag, 2190 txd->tx_dmamap); 2191 m_freem(txd->tx_m); 2192 txd->tx_m = NULL; 2193 txd->tx_ndesc = 0; 2194 ifp->if_oerrors++; 2195 } 2196 } 2197 } 2198 2199 /* 2200 * Reuse configured Rx descriptors and reset 2201 * procuder/consumer index. 2202 */ 2203 sc->jme_cdata.jme_rx_cons = 0; 2204 atomic_set_int(&sc->jme_morework, 0); 2205 jme_init_tx_ring(sc); 2206 /* Initialize shadow status block. */ 2207 jme_init_ssb(sc); 2208 2209 /* Program MAC with resolved speed/duplex/flow-control. */ 2210 if ((sc->jme_flags & JME_FLAG_LINK) != 0) { 2211 jme_mac_config(sc); 2212 jme_stats_clear(sc); 2213 2214 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2215 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2216 2217 /* Set Tx ring address to the hardware. */ 2218 paddr = JME_TX_RING_ADDR(sc, 0); 2219 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2220 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2221 2222 /* Set Rx ring address to the hardware. */ 2223 paddr = JME_RX_RING_ADDR(sc, 0); 2224 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2225 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2226 2227 /* Restart receiver/transmitter. */ 2228 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB | 2229 RXCSR_RXQ_START); 2230 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB); 2231 } 2232 2233 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2234 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2235 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2236 /* Unblock execution of task. */ 2237 taskqueue_unblock(sc->jme_tq); 2238 /* Reenable interrupts. */ 2239 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2240 2241 JME_UNLOCK(sc); 2242 } 2243 2244 static int 2245 jme_intr(void *arg) 2246 { 2247 struct jme_softc *sc; 2248 uint32_t status; 2249 2250 sc = (struct jme_softc *)arg; 2251 2252 status = CSR_READ_4(sc, JME_INTR_REQ_STATUS); 2253 if (status == 0 || status == 0xFFFFFFFF) 2254 return (FILTER_STRAY); 2255 /* Disable interrupts. */ 2256 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2257 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2258 2259 return (FILTER_HANDLED); 2260 } 2261 2262 static void 2263 jme_int_task(void *arg, int pending) 2264 { 2265 struct jme_softc *sc; 2266 struct ifnet *ifp; 2267 uint32_t status; 2268 int more; 2269 2270 sc = (struct jme_softc *)arg; 2271 ifp = sc->jme_ifp; 2272 2273 status = CSR_READ_4(sc, JME_INTR_STATUS); 2274 more = atomic_readandclear_int(&sc->jme_morework); 2275 if (more != 0) { 2276 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO; 2277 more = 0; 2278 } 2279 if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF) 2280 goto done; 2281 /* Reset PCC counter/timer and Ack interrupts. */ 2282 status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP); 2283 if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 2284 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP; 2285 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 2286 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP; 2287 CSR_WRITE_4(sc, JME_INTR_STATUS, status); 2288 more = 0; 2289 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2290 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) { 2291 more = jme_rxintr(sc, sc->jme_process_limit); 2292 if (more != 0) 2293 atomic_set_int(&sc->jme_morework, 1); 2294 } 2295 if ((status & INTR_RXQ_DESC_EMPTY) != 0) { 2296 /* 2297 * Notify hardware availability of new Rx 2298 * buffers. 2299 * Reading RXCSR takes very long time under 2300 * heavy load so cache RXCSR value and writes 2301 * the ORed value with the kick command to 2302 * the RXCSR. This saves one register access 2303 * cycle. 2304 */ 2305 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | 2306 RXCSR_RX_ENB | RXCSR_RXQ_START); 2307 } 2308 /* 2309 * Reclaiming Tx buffers are deferred to make jme(4) run 2310 * without locks held. 2311 */ 2312 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2313 taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task); 2314 } 2315 2316 if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) { 2317 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2318 return; 2319 } 2320 done: 2321 /* Reenable interrupts. */ 2322 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2323 } 2324 2325 static void 2326 jme_txeof(struct jme_softc *sc) 2327 { 2328 struct ifnet *ifp; 2329 struct jme_txdesc *txd; 2330 uint32_t status; 2331 int cons, nsegs; 2332 2333 JME_LOCK_ASSERT(sc); 2334 2335 ifp = sc->jme_ifp; 2336 2337 cons = sc->jme_cdata.jme_tx_cons; 2338 if (cons == sc->jme_cdata.jme_tx_prod) 2339 return; 2340 2341 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2342 sc->jme_cdata.jme_tx_ring_map, 2343 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2344 2345 /* 2346 * Go through our Tx list and free mbufs for those 2347 * frames which have been transmitted. 2348 */ 2349 for (; cons != sc->jme_cdata.jme_tx_prod;) { 2350 txd = &sc->jme_cdata.jme_txdesc[cons]; 2351 status = le32toh(txd->tx_desc->flags); 2352 if ((status & JME_TD_OWN) == JME_TD_OWN) 2353 break; 2354 2355 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0) 2356 ifp->if_oerrors++; 2357 else { 2358 ifp->if_opackets++; 2359 if ((status & JME_TD_COLLISION) != 0) 2360 ifp->if_collisions += 2361 le32toh(txd->tx_desc->buflen) & 2362 JME_TD_BUF_LEN_MASK; 2363 } 2364 /* 2365 * Only the first descriptor of multi-descriptor 2366 * transmission is updated so driver have to skip entire 2367 * chained buffers for the transmiited frame. In other 2368 * words, JME_TD_OWN bit is valid only at the first 2369 * descriptor of a multi-descriptor transmission. 2370 */ 2371 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) { 2372 sc->jme_rdata.jme_tx_ring[cons].flags = 0; 2373 JME_DESC_INC(cons, JME_TX_RING_CNT); 2374 } 2375 2376 /* Reclaim transferred mbufs. */ 2377 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 2378 BUS_DMASYNC_POSTWRITE); 2379 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 2380 2381 KASSERT(txd->tx_m != NULL, 2382 ("%s: freeing NULL mbuf!\n", __func__)); 2383 m_freem(txd->tx_m); 2384 txd->tx_m = NULL; 2385 sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc; 2386 KASSERT(sc->jme_cdata.jme_tx_cnt >= 0, 2387 ("%s: Active Tx desc counter was garbled\n", __func__)); 2388 txd->tx_ndesc = 0; 2389 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2390 } 2391 sc->jme_cdata.jme_tx_cons = cons; 2392 /* Unarm watchog timer when there is no pending descriptors in queue. */ 2393 if (sc->jme_cdata.jme_tx_cnt == 0) 2394 sc->jme_watchdog_timer = 0; 2395 2396 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2397 sc->jme_cdata.jme_tx_ring_map, 2398 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2399 } 2400 2401 static __inline void 2402 jme_discard_rxbuf(struct jme_softc *sc, int cons) 2403 { 2404 struct jme_desc *desc; 2405 2406 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2407 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 2408 desc->buflen = htole32(MCLBYTES); 2409 } 2410 2411 /* Receive a frame. */ 2412 static void 2413 jme_rxeof(struct jme_softc *sc) 2414 { 2415 struct ifnet *ifp; 2416 struct jme_desc *desc; 2417 struct jme_rxdesc *rxd; 2418 struct mbuf *mp, *m; 2419 uint32_t flags, status; 2420 int cons, count, nsegs; 2421 2422 ifp = sc->jme_ifp; 2423 2424 cons = sc->jme_cdata.jme_rx_cons; 2425 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2426 flags = le32toh(desc->flags); 2427 status = le32toh(desc->buflen); 2428 nsegs = JME_RX_NSEGS(status); 2429 sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES; 2430 if ((status & JME_RX_ERR_STAT) != 0) { 2431 ifp->if_ierrors++; 2432 jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons); 2433 #ifdef JME_SHOW_ERRORS 2434 device_printf(sc->jme_dev, "%s : receive error = 0x%b\n", 2435 __func__, JME_RX_ERR(status), JME_RX_ERR_BITS); 2436 #endif 2437 sc->jme_cdata.jme_rx_cons += nsegs; 2438 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2439 return; 2440 } 2441 2442 for (count = 0; count < nsegs; count++, 2443 JME_DESC_INC(cons, JME_RX_RING_CNT)) { 2444 rxd = &sc->jme_cdata.jme_rxdesc[cons]; 2445 mp = rxd->rx_m; 2446 /* Add a new receive buffer to the ring. */ 2447 if (jme_newbuf(sc, rxd) != 0) { 2448 ifp->if_iqdrops++; 2449 /* Reuse buffer. */ 2450 for (; count < nsegs; count++) { 2451 jme_discard_rxbuf(sc, cons); 2452 JME_DESC_INC(cons, JME_RX_RING_CNT); 2453 } 2454 if (sc->jme_cdata.jme_rxhead != NULL) { 2455 m_freem(sc->jme_cdata.jme_rxhead); 2456 JME_RXCHAIN_RESET(sc); 2457 } 2458 break; 2459 } 2460 2461 /* 2462 * Assume we've received a full sized frame. 2463 * Actual size is fixed when we encounter the end of 2464 * multi-segmented frame. 2465 */ 2466 mp->m_len = MCLBYTES; 2467 2468 /* Chain received mbufs. */ 2469 if (sc->jme_cdata.jme_rxhead == NULL) { 2470 sc->jme_cdata.jme_rxhead = mp; 2471 sc->jme_cdata.jme_rxtail = mp; 2472 } else { 2473 /* 2474 * Receive processor can receive a maximum frame 2475 * size of 65535 bytes. 2476 */ 2477 mp->m_flags &= ~M_PKTHDR; 2478 sc->jme_cdata.jme_rxtail->m_next = mp; 2479 sc->jme_cdata.jme_rxtail = mp; 2480 } 2481 2482 if (count == nsegs - 1) { 2483 /* Last desc. for this frame. */ 2484 m = sc->jme_cdata.jme_rxhead; 2485 m->m_flags |= M_PKTHDR; 2486 m->m_pkthdr.len = sc->jme_cdata.jme_rxlen; 2487 if (nsegs > 1) { 2488 /* Set first mbuf size. */ 2489 m->m_len = MCLBYTES - JME_RX_PAD_BYTES; 2490 /* Set last mbuf size. */ 2491 mp->m_len = sc->jme_cdata.jme_rxlen - 2492 ((MCLBYTES - JME_RX_PAD_BYTES) + 2493 (MCLBYTES * (nsegs - 2))); 2494 } else 2495 m->m_len = sc->jme_cdata.jme_rxlen; 2496 m->m_pkthdr.rcvif = ifp; 2497 2498 /* 2499 * Account for 10bytes auto padding which is used 2500 * to align IP header on 32bit boundary. Also note, 2501 * CRC bytes is automatically removed by the 2502 * hardware. 2503 */ 2504 m->m_data += JME_RX_PAD_BYTES; 2505 2506 /* Set checksum information. */ 2507 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2508 (flags & JME_RD_IPV4) != 0) { 2509 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2510 if ((flags & JME_RD_IPCSUM) != 0) 2511 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2512 if (((flags & JME_RD_MORE_FRAG) == 0) && 2513 ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) == 2514 (JME_RD_TCP | JME_RD_TCPCSUM) || 2515 (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) == 2516 (JME_RD_UDP | JME_RD_UDPCSUM))) { 2517 m->m_pkthdr.csum_flags |= 2518 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2519 m->m_pkthdr.csum_data = 0xffff; 2520 } 2521 } 2522 2523 /* Check for VLAN tagged packets. */ 2524 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2525 (flags & JME_RD_VLAN_TAG) != 0) { 2526 m->m_pkthdr.ether_vtag = 2527 flags & JME_RD_VLAN_MASK; 2528 m->m_flags |= M_VLANTAG; 2529 } 2530 2531 ifp->if_ipackets++; 2532 /* Pass it on. */ 2533 (*ifp->if_input)(ifp, m); 2534 2535 /* Reset mbuf chains. */ 2536 JME_RXCHAIN_RESET(sc); 2537 } 2538 } 2539 2540 sc->jme_cdata.jme_rx_cons += nsegs; 2541 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2542 } 2543 2544 static int 2545 jme_rxintr(struct jme_softc *sc, int count) 2546 { 2547 struct jme_desc *desc; 2548 int nsegs, prog, pktlen; 2549 2550 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2551 sc->jme_cdata.jme_rx_ring_map, 2552 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2553 2554 for (prog = 0; count > 0; prog++) { 2555 desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons]; 2556 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN) 2557 break; 2558 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0) 2559 break; 2560 nsegs = JME_RX_NSEGS(le32toh(desc->buflen)); 2561 /* 2562 * Check number of segments against received bytes. 2563 * Non-matching value would indicate that hardware 2564 * is still trying to update Rx descriptors. I'm not 2565 * sure whether this check is needed. 2566 */ 2567 pktlen = JME_RX_BYTES(le32toh(desc->buflen)); 2568 if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES)) 2569 break; 2570 prog++; 2571 /* Received a frame. */ 2572 jme_rxeof(sc); 2573 count -= nsegs; 2574 } 2575 2576 if (prog > 0) 2577 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2578 sc->jme_cdata.jme_rx_ring_map, 2579 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2580 2581 return (count > 0 ? 0 : EAGAIN); 2582 } 2583 2584 static void 2585 jme_tick(void *arg) 2586 { 2587 struct jme_softc *sc; 2588 struct mii_data *mii; 2589 2590 sc = (struct jme_softc *)arg; 2591 2592 JME_LOCK_ASSERT(sc); 2593 2594 mii = device_get_softc(sc->jme_miibus); 2595 mii_tick(mii); 2596 /* 2597 * Reclaim Tx buffers that have been completed. It's not 2598 * needed here but it would release allocated mbuf chains 2599 * faster and limit the maximum delay to a hz. 2600 */ 2601 jme_txeof(sc); 2602 jme_stats_update(sc); 2603 jme_watchdog(sc); 2604 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2605 } 2606 2607 static void 2608 jme_reset(struct jme_softc *sc) 2609 { 2610 2611 /* Stop receiver, transmitter. */ 2612 jme_stop_rx(sc); 2613 jme_stop_tx(sc); 2614 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2615 DELAY(10); 2616 CSR_WRITE_4(sc, JME_GHC, 0); 2617 } 2618 2619 static void 2620 jme_init(void *xsc) 2621 { 2622 struct jme_softc *sc; 2623 2624 sc = (struct jme_softc *)xsc; 2625 JME_LOCK(sc); 2626 jme_init_locked(sc); 2627 JME_UNLOCK(sc); 2628 } 2629 2630 static void 2631 jme_init_locked(struct jme_softc *sc) 2632 { 2633 struct ifnet *ifp; 2634 struct mii_data *mii; 2635 uint8_t eaddr[ETHER_ADDR_LEN]; 2636 bus_addr_t paddr; 2637 uint32_t reg; 2638 int error; 2639 2640 JME_LOCK_ASSERT(sc); 2641 2642 ifp = sc->jme_ifp; 2643 mii = device_get_softc(sc->jme_miibus); 2644 2645 /* 2646 * Cancel any pending I/O. 2647 */ 2648 jme_stop(sc); 2649 2650 /* 2651 * Reset the chip to a known state. 2652 */ 2653 jme_reset(sc); 2654 2655 /* Init descriptors. */ 2656 error = jme_init_rx_ring(sc); 2657 if (error != 0) { 2658 device_printf(sc->jme_dev, 2659 "%s: initialization failed: no memory for Rx buffers.\n", 2660 __func__); 2661 jme_stop(sc); 2662 return; 2663 } 2664 jme_init_tx_ring(sc); 2665 /* Initialize shadow status block. */ 2666 jme_init_ssb(sc); 2667 2668 /* Reprogram the station address. */ 2669 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2670 CSR_WRITE_4(sc, JME_PAR0, 2671 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); 2672 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]); 2673 2674 /* 2675 * Configure Tx queue. 2676 * Tx priority queue weight value : 0 2677 * Tx FIFO threshold for processing next packet : 16QW 2678 * Maximum Tx DMA length : 512 2679 * Allow Tx DMA burst. 2680 */ 2681 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0); 2682 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN); 2683 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW; 2684 sc->jme_txcsr |= sc->jme_tx_dma_size; 2685 sc->jme_txcsr |= TXCSR_DMA_BURST; 2686 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2687 2688 /* Set Tx descriptor counter. */ 2689 CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT); 2690 2691 /* Set Tx ring address to the hardware. */ 2692 paddr = JME_TX_RING_ADDR(sc, 0); 2693 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2694 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2695 2696 /* Configure TxMAC parameters. */ 2697 reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB; 2698 reg |= TXMAC_THRESH_1_PKT; 2699 reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB; 2700 CSR_WRITE_4(sc, JME_TXMAC, reg); 2701 2702 /* 2703 * Configure Rx queue. 2704 * FIFO full threshold for transmitting Tx pause packet : 128T 2705 * FIFO threshold for processing next packet : 128QW 2706 * Rx queue 0 select 2707 * Max Rx DMA length : 128 2708 * Rx descriptor retry : 32 2709 * Rx descriptor retry time gap : 256ns 2710 * Don't receive runt/bad frame. 2711 */ 2712 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T; 2713 /* 2714 * Since Rx FIFO size is 4K bytes, receiving frames larger 2715 * than 4K bytes will suffer from Rx FIFO overruns. So 2716 * decrease FIFO threshold to reduce the FIFO overruns for 2717 * frames larger than 4000 bytes. 2718 * For best performance of standard MTU sized frames use 2719 * maximum allowable FIFO threshold, 128QW. Note these do 2720 * not hold on chip full mask verion >=2. For these 2721 * controllers 64QW and 128QW are not valid value. 2722 */ 2723 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) 2724 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2725 else { 2726 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2727 ETHER_CRC_LEN) > JME_RX_FIFO_SIZE) 2728 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2729 else 2730 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW; 2731 } 2732 sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0); 2733 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT); 2734 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK; 2735 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2736 2737 /* Set Rx descriptor counter. */ 2738 CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT); 2739 2740 /* Set Rx ring address to the hardware. */ 2741 paddr = JME_RX_RING_ADDR(sc, 0); 2742 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2743 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2744 2745 /* Clear receive filter. */ 2746 CSR_WRITE_4(sc, JME_RXMAC, 0); 2747 /* Set up the receive filter. */ 2748 jme_set_filter(sc); 2749 jme_set_vlan(sc); 2750 2751 /* 2752 * Disable all WOL bits as WOL can interfere normal Rx 2753 * operation. Also clear WOL detection status bits. 2754 */ 2755 reg = CSR_READ_4(sc, JME_PMCS); 2756 reg &= ~PMCS_WOL_ENB_MASK; 2757 CSR_WRITE_4(sc, JME_PMCS, reg); 2758 2759 reg = CSR_READ_4(sc, JME_RXMAC); 2760 /* 2761 * Pad 10bytes right before received frame. This will greatly 2762 * help Rx performance on strict-alignment architectures as 2763 * it does not need to copy the frame to align the payload. 2764 */ 2765 reg |= RXMAC_PAD_10BYTES; 2766 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2767 reg |= RXMAC_CSUM_ENB; 2768 CSR_WRITE_4(sc, JME_RXMAC, reg); 2769 2770 /* Configure general purpose reg0 */ 2771 reg = CSR_READ_4(sc, JME_GPREG0); 2772 reg &= ~GPREG0_PCC_UNIT_MASK; 2773 /* Set PCC timer resolution to micro-seconds unit. */ 2774 reg |= GPREG0_PCC_UNIT_US; 2775 /* 2776 * Disable all shadow register posting as we have to read 2777 * JME_INTR_STATUS register in jme_int_task. Also it seems 2778 * that it's hard to synchronize interrupt status between 2779 * hardware and software with shadow posting due to 2780 * requirements of bus_dmamap_sync(9). 2781 */ 2782 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS | 2783 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS | 2784 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS | 2785 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS; 2786 /* Disable posting of DW0. */ 2787 reg &= ~GPREG0_POST_DW0_ENB; 2788 /* Clear PME message. */ 2789 reg &= ~GPREG0_PME_ENB; 2790 /* Set PHY address. */ 2791 reg &= ~GPREG0_PHY_ADDR_MASK; 2792 reg |= sc->jme_phyaddr; 2793 CSR_WRITE_4(sc, JME_GPREG0, reg); 2794 2795 /* Configure Tx queue 0 packet completion coalescing. */ 2796 reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) & 2797 PCCTX_COAL_TO_MASK; 2798 reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) & 2799 PCCTX_COAL_PKT_MASK; 2800 reg |= PCCTX_COAL_TXQ0; 2801 CSR_WRITE_4(sc, JME_PCCTX, reg); 2802 2803 /* Configure Rx queue 0 packet completion coalescing. */ 2804 reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) & 2805 PCCRX_COAL_TO_MASK; 2806 reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) & 2807 PCCRX_COAL_PKT_MASK; 2808 CSR_WRITE_4(sc, JME_PCCRX0, reg); 2809 2810 /* Configure shadow status block but don't enable posting. */ 2811 paddr = sc->jme_rdata.jme_ssb_block_paddr; 2812 CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr)); 2813 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr)); 2814 2815 /* Disable Timer 1 and Timer 2. */ 2816 CSR_WRITE_4(sc, JME_TIMER1, 0); 2817 CSR_WRITE_4(sc, JME_TIMER2, 0); 2818 2819 /* Configure retry transmit period, retry limit value. */ 2820 CSR_WRITE_4(sc, JME_TXTRHD, 2821 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) & 2822 TXTRHD_RT_PERIOD_MASK) | 2823 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) & 2824 TXTRHD_RT_LIMIT_SHIFT)); 2825 2826 /* Disable RSS. */ 2827 CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS); 2828 2829 /* Initialize the interrupt mask. */ 2830 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2831 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 2832 2833 /* 2834 * Enabling Tx/Rx DMA engines and Rx queue processing is 2835 * done after detection of valid link in jme_link_task. 2836 */ 2837 2838 sc->jme_flags &= ~JME_FLAG_LINK; 2839 /* Set the current media. */ 2840 mii_mediachg(mii); 2841 2842 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2843 2844 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2845 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2846 } 2847 2848 static void 2849 jme_stop(struct jme_softc *sc) 2850 { 2851 struct ifnet *ifp; 2852 struct jme_txdesc *txd; 2853 struct jme_rxdesc *rxd; 2854 int i; 2855 2856 JME_LOCK_ASSERT(sc); 2857 /* 2858 * Mark the interface down and cancel the watchdog timer. 2859 */ 2860 ifp = sc->jme_ifp; 2861 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2862 sc->jme_flags &= ~JME_FLAG_LINK; 2863 callout_stop(&sc->jme_tick_ch); 2864 sc->jme_watchdog_timer = 0; 2865 2866 /* 2867 * Disable interrupts. 2868 */ 2869 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2870 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 2871 2872 /* Disable updating shadow status block. */ 2873 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, 2874 CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB); 2875 2876 /* Stop receiver, transmitter. */ 2877 jme_stop_rx(sc); 2878 jme_stop_tx(sc); 2879 2880 /* Reclaim Rx/Tx buffers that have been completed. */ 2881 jme_rxintr(sc, JME_RX_RING_CNT); 2882 if (sc->jme_cdata.jme_rxhead != NULL) 2883 m_freem(sc->jme_cdata.jme_rxhead); 2884 JME_RXCHAIN_RESET(sc); 2885 jme_txeof(sc); 2886 /* 2887 * Free RX and TX mbufs still in the queues. 2888 */ 2889 for (i = 0; i < JME_RX_RING_CNT; i++) { 2890 rxd = &sc->jme_cdata.jme_rxdesc[i]; 2891 if (rxd->rx_m != NULL) { 2892 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, 2893 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2894 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, 2895 rxd->rx_dmamap); 2896 m_freem(rxd->rx_m); 2897 rxd->rx_m = NULL; 2898 } 2899 } 2900 for (i = 0; i < JME_TX_RING_CNT; i++) { 2901 txd = &sc->jme_cdata.jme_txdesc[i]; 2902 if (txd->tx_m != NULL) { 2903 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, 2904 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2905 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, 2906 txd->tx_dmamap); 2907 m_freem(txd->tx_m); 2908 txd->tx_m = NULL; 2909 txd->tx_ndesc = 0; 2910 } 2911 } 2912 jme_stats_update(sc); 2913 jme_stats_save(sc); 2914 } 2915 2916 static void 2917 jme_stop_tx(struct jme_softc *sc) 2918 { 2919 uint32_t reg; 2920 int i; 2921 2922 reg = CSR_READ_4(sc, JME_TXCSR); 2923 if ((reg & TXCSR_TX_ENB) == 0) 2924 return; 2925 reg &= ~TXCSR_TX_ENB; 2926 CSR_WRITE_4(sc, JME_TXCSR, reg); 2927 for (i = JME_TIMEOUT; i > 0; i--) { 2928 DELAY(1); 2929 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0) 2930 break; 2931 } 2932 if (i == 0) 2933 device_printf(sc->jme_dev, "stopping transmitter timeout!\n"); 2934 } 2935 2936 static void 2937 jme_stop_rx(struct jme_softc *sc) 2938 { 2939 uint32_t reg; 2940 int i; 2941 2942 reg = CSR_READ_4(sc, JME_RXCSR); 2943 if ((reg & RXCSR_RX_ENB) == 0) 2944 return; 2945 reg &= ~RXCSR_RX_ENB; 2946 CSR_WRITE_4(sc, JME_RXCSR, reg); 2947 for (i = JME_TIMEOUT; i > 0; i--) { 2948 DELAY(1); 2949 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0) 2950 break; 2951 } 2952 if (i == 0) 2953 device_printf(sc->jme_dev, "stopping recevier timeout!\n"); 2954 } 2955 2956 static void 2957 jme_init_tx_ring(struct jme_softc *sc) 2958 { 2959 struct jme_ring_data *rd; 2960 struct jme_txdesc *txd; 2961 int i; 2962 2963 sc->jme_cdata.jme_tx_prod = 0; 2964 sc->jme_cdata.jme_tx_cons = 0; 2965 sc->jme_cdata.jme_tx_cnt = 0; 2966 2967 rd = &sc->jme_rdata; 2968 bzero(rd->jme_tx_ring, JME_TX_RING_SIZE); 2969 for (i = 0; i < JME_TX_RING_CNT; i++) { 2970 txd = &sc->jme_cdata.jme_txdesc[i]; 2971 txd->tx_m = NULL; 2972 txd->tx_desc = &rd->jme_tx_ring[i]; 2973 txd->tx_ndesc = 0; 2974 } 2975 2976 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2977 sc->jme_cdata.jme_tx_ring_map, 2978 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2979 } 2980 2981 static void 2982 jme_init_ssb(struct jme_softc *sc) 2983 { 2984 struct jme_ring_data *rd; 2985 2986 rd = &sc->jme_rdata; 2987 bzero(rd->jme_ssb_block, JME_SSB_SIZE); 2988 bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map, 2989 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2990 } 2991 2992 static int 2993 jme_init_rx_ring(struct jme_softc *sc) 2994 { 2995 struct jme_ring_data *rd; 2996 struct jme_rxdesc *rxd; 2997 int i; 2998 2999 sc->jme_cdata.jme_rx_cons = 0; 3000 JME_RXCHAIN_RESET(sc); 3001 atomic_set_int(&sc->jme_morework, 0); 3002 3003 rd = &sc->jme_rdata; 3004 bzero(rd->jme_rx_ring, JME_RX_RING_SIZE); 3005 for (i = 0; i < JME_RX_RING_CNT; i++) { 3006 rxd = &sc->jme_cdata.jme_rxdesc[i]; 3007 rxd->rx_m = NULL; 3008 rxd->rx_desc = &rd->jme_rx_ring[i]; 3009 if (jme_newbuf(sc, rxd) != 0) 3010 return (ENOBUFS); 3011 } 3012 3013 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 3014 sc->jme_cdata.jme_rx_ring_map, 3015 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3016 3017 return (0); 3018 } 3019 3020 static int 3021 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd) 3022 { 3023 struct jme_desc *desc; 3024 struct mbuf *m; 3025 bus_dma_segment_t segs[1]; 3026 bus_dmamap_t map; 3027 int nsegs; 3028 3029 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3030 if (m == NULL) 3031 return (ENOBUFS); 3032 /* 3033 * JMC250 has 64bit boundary alignment limitation so jme(4) 3034 * takes advantage of 10 bytes padding feature of hardware 3035 * in order not to copy entire frame to align IP header on 3036 * 32bit boundary. 3037 */ 3038 m->m_len = m->m_pkthdr.len = MCLBYTES; 3039 3040 if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag, 3041 sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3042 m_freem(m); 3043 return (ENOBUFS); 3044 } 3045 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3046 3047 if (rxd->rx_m != NULL) { 3048 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3049 BUS_DMASYNC_POSTREAD); 3050 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap); 3051 } 3052 map = rxd->rx_dmamap; 3053 rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap; 3054 sc->jme_cdata.jme_rx_sparemap = map; 3055 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3056 BUS_DMASYNC_PREREAD); 3057 rxd->rx_m = m; 3058 3059 desc = rxd->rx_desc; 3060 desc->buflen = htole32(segs[0].ds_len); 3061 desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr)); 3062 desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr)); 3063 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 3064 3065 return (0); 3066 } 3067 3068 static void 3069 jme_set_vlan(struct jme_softc *sc) 3070 { 3071 struct ifnet *ifp; 3072 uint32_t reg; 3073 3074 JME_LOCK_ASSERT(sc); 3075 3076 ifp = sc->jme_ifp; 3077 reg = CSR_READ_4(sc, JME_RXMAC); 3078 reg &= ~RXMAC_VLAN_ENB; 3079 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3080 reg |= RXMAC_VLAN_ENB; 3081 CSR_WRITE_4(sc, JME_RXMAC, reg); 3082 } 3083 3084 static void 3085 jme_set_filter(struct jme_softc *sc) 3086 { 3087 struct ifnet *ifp; 3088 struct ifmultiaddr *ifma; 3089 uint32_t crc; 3090 uint32_t mchash[2]; 3091 uint32_t rxcfg; 3092 3093 JME_LOCK_ASSERT(sc); 3094 3095 ifp = sc->jme_ifp; 3096 3097 rxcfg = CSR_READ_4(sc, JME_RXMAC); 3098 rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST | 3099 RXMAC_ALLMULTI); 3100 /* Always accept frames destined to our station address. */ 3101 rxcfg |= RXMAC_UNICAST; 3102 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3103 rxcfg |= RXMAC_BROADCAST; 3104 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3105 if ((ifp->if_flags & IFF_PROMISC) != 0) 3106 rxcfg |= RXMAC_PROMISC; 3107 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3108 rxcfg |= RXMAC_ALLMULTI; 3109 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF); 3110 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF); 3111 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3112 return; 3113 } 3114 3115 /* 3116 * Set up the multicast address filter by passing all multicast 3117 * addresses through a CRC generator, and then using the low-order 3118 * 6 bits as an index into the 64 bit multicast hash table. The 3119 * high order bits select the register, while the rest of the bits 3120 * select the bit within the register. 3121 */ 3122 rxcfg |= RXMAC_MULTICAST; 3123 bzero(mchash, sizeof(mchash)); 3124 3125 IF_ADDR_LOCK(ifp); 3126 TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) { 3127 if (ifma->ifma_addr->sa_family != AF_LINK) 3128 continue; 3129 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3130 ifma->ifma_addr), ETHER_ADDR_LEN); 3131 3132 /* Just want the 6 least significant bits. */ 3133 crc &= 0x3f; 3134 3135 /* Set the corresponding bit in the hash table. */ 3136 mchash[crc >> 5] |= 1 << (crc & 0x1f); 3137 } 3138 IF_ADDR_UNLOCK(ifp); 3139 3140 CSR_WRITE_4(sc, JME_MAR0, mchash[0]); 3141 CSR_WRITE_4(sc, JME_MAR1, mchash[1]); 3142 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3143 } 3144 3145 static void 3146 jme_stats_clear(struct jme_softc *sc) 3147 { 3148 3149 JME_LOCK_ASSERT(sc); 3150 3151 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3152 return; 3153 3154 /* Disable and clear counters. */ 3155 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3156 /* Activate hw counters. */ 3157 CSR_WRITE_4(sc, JME_STATCSR, 0); 3158 CSR_READ_4(sc, JME_STATCSR); 3159 bzero(&sc->jme_stats, sizeof(struct jme_hw_stats)); 3160 } 3161 3162 static void 3163 jme_stats_save(struct jme_softc *sc) 3164 { 3165 3166 JME_LOCK_ASSERT(sc); 3167 3168 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3169 return; 3170 /* Save current counters. */ 3171 bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats)); 3172 /* Disable and clear counters. */ 3173 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3174 } 3175 3176 static void 3177 jme_stats_update(struct jme_softc *sc) 3178 { 3179 struct jme_hw_stats *stat, *ostat; 3180 uint32_t reg; 3181 3182 JME_LOCK_ASSERT(sc); 3183 3184 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3185 return; 3186 stat = &sc->jme_stats; 3187 ostat = &sc->jme_ostats; 3188 stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD); 3189 stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD); 3190 reg = CSR_READ_4(sc, JME_STAT_CRCMII); 3191 stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >> 3192 STAT_RX_CRC_ERR_SHIFT; 3193 stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >> 3194 STAT_RX_MII_ERR_SHIFT; 3195 reg = CSR_READ_4(sc, JME_STAT_RXERR); 3196 stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >> 3197 STAT_RXERR_OFLOW_SHIFT; 3198 stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >> 3199 STAT_RXERR_MPTY_SHIFT; 3200 reg = CSR_READ_4(sc, JME_STAT_FAIL); 3201 stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT; 3202 stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT; 3203 3204 /* Account for previous counters. */ 3205 stat->rx_good_frames += ostat->rx_good_frames; 3206 stat->rx_crc_errs += ostat->rx_crc_errs; 3207 stat->rx_mii_errs += ostat->rx_mii_errs; 3208 stat->rx_fifo_oflows += ostat->rx_fifo_oflows; 3209 stat->rx_desc_empty += ostat->rx_desc_empty; 3210 stat->rx_bad_frames += ostat->rx_bad_frames; 3211 stat->tx_good_frames += ostat->tx_good_frames; 3212 stat->tx_bad_frames += ostat->tx_bad_frames; 3213 } 3214 3215 static int 3216 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3217 { 3218 int error, value; 3219 3220 if (arg1 == NULL) 3221 return (EINVAL); 3222 value = *(int *)arg1; 3223 error = sysctl_handle_int(oidp, &value, 0, req); 3224 if (error || req->newptr == NULL) 3225 return (error); 3226 if (value < low || value > high) 3227 return (EINVAL); 3228 *(int *)arg1 = value; 3229 3230 return (0); 3231 } 3232 3233 static int 3234 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS) 3235 { 3236 return (sysctl_int_range(oidp, arg1, arg2, req, 3237 PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX)); 3238 } 3239 3240 static int 3241 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS) 3242 { 3243 return (sysctl_int_range(oidp, arg1, arg2, req, 3244 PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX)); 3245 } 3246 3247 static int 3248 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS) 3249 { 3250 return (sysctl_int_range(oidp, arg1, arg2, req, 3251 PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX)); 3252 } 3253 3254 static int 3255 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS) 3256 { 3257 return (sysctl_int_range(oidp, arg1, arg2, req, 3258 PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX)); 3259 } 3260 3261 static int 3262 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS) 3263 { 3264 return (sysctl_int_range(oidp, arg1, arg2, req, 3265 JME_PROC_MIN, JME_PROC_MAX)); 3266 } 3267