1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bus.h> 34 #include <sys/endian.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/mbuf.h> 38 #include <sys/rman.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/queue.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/ethernet.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 #include <net/if_vlan_var.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/ip.h> 59 #include <netinet/tcp.h> 60 61 #include <dev/mii/mii.h> 62 #include <dev/mii/miivar.h> 63 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <machine/atomic.h> 68 #include <machine/bus.h> 69 #include <machine/in_cksum.h> 70 71 #include <dev/jme/if_jmereg.h> 72 #include <dev/jme/if_jmevar.h> 73 74 /* "device miibus" required. See GENERIC if you get errors here. */ 75 #include "miibus_if.h" 76 77 /* Define the following to disable printing Rx errors. */ 78 #undef JME_SHOW_ERRORS 79 80 #define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 81 82 MODULE_DEPEND(jme, pci, 1, 1, 1); 83 MODULE_DEPEND(jme, ether, 1, 1, 1); 84 MODULE_DEPEND(jme, miibus, 1, 1, 1); 85 86 /* Tunables. */ 87 static int msi_disable = 0; 88 static int msix_disable = 0; 89 TUNABLE_INT("hw.jme.msi_disable", &msi_disable); 90 TUNABLE_INT("hw.jme.msix_disable", &msix_disable); 91 92 /* 93 * Devices supported by this driver. 94 */ 95 static struct jme_dev { 96 uint16_t jme_vendorid; 97 uint16_t jme_deviceid; 98 const char *jme_name; 99 } jme_devs[] = { 100 { VENDORID_JMICRON, DEVICEID_JMC250, 101 "JMicron Inc, JMC250 Gigabit Ethernet" }, 102 { VENDORID_JMICRON, DEVICEID_JMC260, 103 "JMicron Inc, JMC260 Fast Ethernet" }, 104 }; 105 106 static int jme_miibus_readreg(device_t, int, int); 107 static int jme_miibus_writereg(device_t, int, int, int); 108 static void jme_miibus_statchg(device_t); 109 static void jme_mediastatus(struct ifnet *, struct ifmediareq *); 110 static int jme_mediachange(struct ifnet *); 111 static int jme_probe(device_t); 112 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); 113 static int jme_eeprom_macaddr(struct jme_softc *); 114 static void jme_reg_macaddr(struct jme_softc *); 115 static void jme_map_intr_vector(struct jme_softc *); 116 static int jme_attach(device_t); 117 static int jme_detach(device_t); 118 static void jme_sysctl_node(struct jme_softc *); 119 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int); 120 static int jme_dma_alloc(struct jme_softc *); 121 static void jme_dma_free(struct jme_softc *); 122 static int jme_shutdown(device_t); 123 static void jme_setlinkspeed(struct jme_softc *); 124 static void jme_setwol(struct jme_softc *); 125 static int jme_suspend(device_t); 126 static int jme_resume(device_t); 127 static int jme_encap(struct jme_softc *, struct mbuf **); 128 static void jme_tx_task(void *, int); 129 static void jme_start(struct ifnet *); 130 static void jme_watchdog(struct jme_softc *); 131 static int jme_ioctl(struct ifnet *, u_long, caddr_t); 132 static void jme_mac_config(struct jme_softc *); 133 static void jme_link_task(void *, int); 134 static int jme_intr(void *); 135 static void jme_int_task(void *, int); 136 static void jme_txeof(struct jme_softc *); 137 static __inline void jme_discard_rxbuf(struct jme_softc *, int); 138 static void jme_rxeof(struct jme_softc *); 139 static int jme_rxintr(struct jme_softc *, int); 140 static void jme_tick(void *); 141 static void jme_reset(struct jme_softc *); 142 static void jme_init(void *); 143 static void jme_init_locked(struct jme_softc *); 144 static void jme_stop(struct jme_softc *); 145 static void jme_stop_tx(struct jme_softc *); 146 static void jme_stop_rx(struct jme_softc *); 147 static int jme_init_rx_ring(struct jme_softc *); 148 static void jme_init_tx_ring(struct jme_softc *); 149 static void jme_init_ssb(struct jme_softc *); 150 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *); 151 static void jme_set_vlan(struct jme_softc *); 152 static void jme_set_filter(struct jme_softc *); 153 static void jme_stats_clear(struct jme_softc *); 154 static void jme_stats_save(struct jme_softc *); 155 static void jme_stats_update(struct jme_softc *); 156 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 157 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS); 158 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS); 159 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS); 160 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS); 161 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS); 162 163 164 static device_method_t jme_methods[] = { 165 /* Device interface. */ 166 DEVMETHOD(device_probe, jme_probe), 167 DEVMETHOD(device_attach, jme_attach), 168 DEVMETHOD(device_detach, jme_detach), 169 DEVMETHOD(device_shutdown, jme_shutdown), 170 DEVMETHOD(device_suspend, jme_suspend), 171 DEVMETHOD(device_resume, jme_resume), 172 173 /* MII interface. */ 174 DEVMETHOD(miibus_readreg, jme_miibus_readreg), 175 DEVMETHOD(miibus_writereg, jme_miibus_writereg), 176 DEVMETHOD(miibus_statchg, jme_miibus_statchg), 177 178 { NULL, NULL } 179 }; 180 181 static driver_t jme_driver = { 182 "jme", 183 jme_methods, 184 sizeof(struct jme_softc) 185 }; 186 187 static devclass_t jme_devclass; 188 189 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0); 190 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0); 191 192 static struct resource_spec jme_res_spec_mem[] = { 193 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 194 { -1, 0, 0 } 195 }; 196 197 static struct resource_spec jme_irq_spec_legacy[] = { 198 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 199 { -1, 0, 0 } 200 }; 201 202 static struct resource_spec jme_irq_spec_msi[] = { 203 { SYS_RES_IRQ, 1, RF_ACTIVE }, 204 { SYS_RES_IRQ, 2, RF_ACTIVE }, 205 { SYS_RES_IRQ, 3, RF_ACTIVE }, 206 { SYS_RES_IRQ, 4, RF_ACTIVE }, 207 { SYS_RES_IRQ, 5, RF_ACTIVE }, 208 { SYS_RES_IRQ, 6, RF_ACTIVE }, 209 { SYS_RES_IRQ, 7, RF_ACTIVE }, 210 { SYS_RES_IRQ, 8, RF_ACTIVE }, 211 { -1, 0, 0 } 212 }; 213 214 /* 215 * Read a PHY register on the MII of the JMC250. 216 */ 217 static int 218 jme_miibus_readreg(device_t dev, int phy, int reg) 219 { 220 struct jme_softc *sc; 221 uint32_t val; 222 int i; 223 224 sc = device_get_softc(dev); 225 226 /* For FPGA version, PHY address 0 should be ignored. */ 227 if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0) 228 return (0); 229 230 CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE | 231 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 232 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 233 DELAY(1); 234 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 235 break; 236 } 237 238 if (i == 0) { 239 device_printf(sc->jme_dev, "phy read timeout : %d\n", reg); 240 return (0); 241 } 242 243 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT); 244 } 245 246 /* 247 * Write a PHY register on the MII of the JMC250. 248 */ 249 static int 250 jme_miibus_writereg(device_t dev, int phy, int reg, int val) 251 { 252 struct jme_softc *sc; 253 int i; 254 255 sc = device_get_softc(dev); 256 257 /* For FPGA version, PHY address 0 should be ignored. */ 258 if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0) 259 return (0); 260 261 CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE | 262 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | 263 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 264 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 265 DELAY(1); 266 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 267 break; 268 } 269 270 if (i == 0) 271 device_printf(sc->jme_dev, "phy write timeout : %d\n", reg); 272 273 return (0); 274 } 275 276 /* 277 * Callback from MII layer when media changes. 278 */ 279 static void 280 jme_miibus_statchg(device_t dev) 281 { 282 struct jme_softc *sc; 283 284 sc = device_get_softc(dev); 285 taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task); 286 } 287 288 /* 289 * Get the current interface media status. 290 */ 291 static void 292 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 293 { 294 struct jme_softc *sc; 295 struct mii_data *mii; 296 297 sc = ifp->if_softc; 298 JME_LOCK(sc); 299 if ((ifp->if_flags & IFF_UP) == 0) { 300 JME_UNLOCK(sc); 301 return; 302 } 303 mii = device_get_softc(sc->jme_miibus); 304 305 mii_pollstat(mii); 306 ifmr->ifm_status = mii->mii_media_status; 307 ifmr->ifm_active = mii->mii_media_active; 308 JME_UNLOCK(sc); 309 } 310 311 /* 312 * Set hardware to newly-selected media. 313 */ 314 static int 315 jme_mediachange(struct ifnet *ifp) 316 { 317 struct jme_softc *sc; 318 struct mii_data *mii; 319 struct mii_softc *miisc; 320 int error; 321 322 sc = ifp->if_softc; 323 JME_LOCK(sc); 324 mii = device_get_softc(sc->jme_miibus); 325 if (mii->mii_instance != 0) { 326 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 327 mii_phy_reset(miisc); 328 } 329 error = mii_mediachg(mii); 330 JME_UNLOCK(sc); 331 332 return (error); 333 } 334 335 static int 336 jme_probe(device_t dev) 337 { 338 struct jme_dev *sp; 339 int i; 340 uint16_t vendor, devid; 341 342 vendor = pci_get_vendor(dev); 343 devid = pci_get_device(dev); 344 sp = jme_devs; 345 for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]); 346 i++, sp++) { 347 if (vendor == sp->jme_vendorid && 348 devid == sp->jme_deviceid) { 349 device_set_desc(dev, sp->jme_name); 350 return (BUS_PROBE_DEFAULT); 351 } 352 } 353 354 return (ENXIO); 355 } 356 357 static int 358 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) 359 { 360 uint32_t reg; 361 int i; 362 363 *val = 0; 364 for (i = JME_TIMEOUT; i > 0; i--) { 365 reg = CSR_READ_4(sc, JME_SMBCSR); 366 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE) 367 break; 368 DELAY(1); 369 } 370 371 if (i == 0) { 372 device_printf(sc->jme_dev, "EEPROM idle timeout!\n"); 373 return (ETIMEDOUT); 374 } 375 376 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK; 377 CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER); 378 for (i = JME_TIMEOUT; i > 0; i--) { 379 DELAY(1); 380 reg = CSR_READ_4(sc, JME_SMBINTF); 381 if ((reg & SMBINTF_CMD_TRIGGER) == 0) 382 break; 383 } 384 385 if (i == 0) { 386 device_printf(sc->jme_dev, "EEPROM read timeout!\n"); 387 return (ETIMEDOUT); 388 } 389 390 reg = CSR_READ_4(sc, JME_SMBINTF); 391 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT; 392 393 return (0); 394 } 395 396 static int 397 jme_eeprom_macaddr(struct jme_softc *sc) 398 { 399 uint8_t eaddr[ETHER_ADDR_LEN]; 400 uint8_t fup, reg, val; 401 uint32_t offset; 402 int match; 403 404 offset = 0; 405 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 406 fup != JME_EEPROM_SIG0) 407 return (ENOENT); 408 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 409 fup != JME_EEPROM_SIG1) 410 return (ENOENT); 411 match = 0; 412 do { 413 if (jme_eeprom_read_byte(sc, offset, &fup) != 0) 414 break; 415 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) == 416 (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) { 417 if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) 418 break; 419 if (reg >= JME_PAR0 && 420 reg < JME_PAR0 + ETHER_ADDR_LEN) { 421 if (jme_eeprom_read_byte(sc, offset + 2, 422 &val) != 0) 423 break; 424 eaddr[reg - JME_PAR0] = val; 425 match++; 426 } 427 } 428 /* Check for the end of EEPROM descriptor. */ 429 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END) 430 break; 431 /* Try next eeprom descriptor. */ 432 offset += JME_EEPROM_DESC_BYTES; 433 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END); 434 435 if (match == ETHER_ADDR_LEN) { 436 bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN); 437 return (0); 438 } 439 440 return (ENOENT); 441 } 442 443 static void 444 jme_reg_macaddr(struct jme_softc *sc) 445 { 446 uint32_t par0, par1; 447 448 /* Read station address. */ 449 par0 = CSR_READ_4(sc, JME_PAR0); 450 par1 = CSR_READ_4(sc, JME_PAR1); 451 par1 &= 0xFFFF; 452 if ((par0 == 0 && par1 == 0) || 453 (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) { 454 device_printf(sc->jme_dev, 455 "Failed to retrieve Ethernet address.\n"); 456 } else { 457 sc->jme_eaddr[0] = (par0 >> 0) & 0xFF; 458 sc->jme_eaddr[1] = (par0 >> 8) & 0xFF; 459 sc->jme_eaddr[2] = (par0 >> 16) & 0xFF; 460 sc->jme_eaddr[3] = (par0 >> 24) & 0xFF; 461 sc->jme_eaddr[4] = (par1 >> 0) & 0xFF; 462 sc->jme_eaddr[5] = (par1 >> 8) & 0xFF; 463 } 464 } 465 466 static void 467 jme_map_intr_vector(struct jme_softc *sc) 468 { 469 uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES]; 470 471 bzero(map, sizeof(map)); 472 473 /* Map Tx interrupts source to MSI/MSIX vector 2. */ 474 map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] = 475 MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP); 476 map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |= 477 MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP); 478 map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |= 479 MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP); 480 map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |= 481 MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP); 482 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 483 MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP); 484 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 485 MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP); 486 map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |= 487 MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP); 488 map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |= 489 MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP); 490 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |= 491 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL); 492 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |= 493 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO); 494 495 /* Map Rx interrupts source to MSI/MSIX vector 1. */ 496 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] = 497 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP); 498 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] = 499 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP); 500 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] = 501 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP); 502 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] = 503 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP); 504 map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] = 505 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY); 506 map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] = 507 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY); 508 map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] = 509 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY); 510 map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] = 511 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY); 512 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] = 513 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL); 514 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] = 515 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL); 516 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] = 517 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL); 518 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] = 519 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL); 520 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] = 521 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO); 522 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] = 523 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO); 524 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] = 525 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO); 526 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] = 527 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO); 528 529 /* Map all other interrupts source to MSI/MSIX vector 0. */ 530 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]); 531 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]); 532 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]); 533 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]); 534 } 535 536 static int 537 jme_attach(device_t dev) 538 { 539 struct jme_softc *sc; 540 struct ifnet *ifp; 541 struct mii_softc *miisc; 542 struct mii_data *mii; 543 uint32_t reg; 544 uint16_t burst; 545 int error, i, msic, msixc, pmc; 546 547 error = 0; 548 sc = device_get_softc(dev); 549 sc->jme_dev = dev; 550 551 mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 552 MTX_DEF); 553 callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0); 554 TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc); 555 TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc); 556 557 /* 558 * Map the device. JMC250 supports both memory mapped and I/O 559 * register space access. Because I/O register access should 560 * use different BARs to access registers it's waste of time 561 * to use I/O register spce access. JMC250 uses 16K to map 562 * entire memory space. 563 */ 564 pci_enable_busmaster(dev); 565 sc->jme_res_spec = jme_res_spec_mem; 566 sc->jme_irq_spec = jme_irq_spec_legacy; 567 error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res); 568 if (error != 0) { 569 device_printf(dev, "cannot allocate memory resources.\n"); 570 goto fail; 571 } 572 573 /* Allocate IRQ resources. */ 574 msixc = pci_msix_count(dev); 575 msic = pci_msi_count(dev); 576 if (bootverbose) { 577 device_printf(dev, "MSIX count : %d\n", msixc); 578 device_printf(dev, "MSI count : %d\n", msic); 579 } 580 581 /* Prefer MSIX over MSI. */ 582 if (msix_disable == 0 || msi_disable == 0) { 583 if (msix_disable == 0 && msixc == JME_MSIX_MESSAGES && 584 pci_alloc_msix(dev, &msixc) == 0) { 585 if (msic == JME_MSIX_MESSAGES) { 586 device_printf(dev, "Using %d MSIX messages.\n", 587 msixc); 588 sc->jme_flags |= JME_FLAG_MSIX; 589 sc->jme_irq_spec = jme_irq_spec_msi; 590 } else 591 pci_release_msi(dev); 592 } 593 if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 && 594 msic == JME_MSI_MESSAGES && 595 pci_alloc_msi(dev, &msic) == 0) { 596 if (msic == JME_MSI_MESSAGES) { 597 device_printf(dev, "Using %d MSI messages.\n", 598 msic); 599 sc->jme_flags |= JME_FLAG_MSI; 600 sc->jme_irq_spec = jme_irq_spec_msi; 601 } else 602 pci_release_msi(dev); 603 } 604 /* Map interrupt vector 0, 1 and 2. */ 605 if ((sc->jme_flags & JME_FLAG_MSI) != 0 || 606 (sc->jme_flags & JME_FLAG_MSIX) != 0) 607 jme_map_intr_vector(sc); 608 } 609 610 error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq); 611 if (error != 0) { 612 device_printf(dev, "cannot allocate IRQ resources.\n"); 613 goto fail; 614 } 615 616 sc->jme_rev = pci_get_device(dev); 617 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) { 618 sc->jme_flags |= JME_FLAG_FASTETH; 619 sc->jme_flags |= JME_FLAG_NOJUMBO; 620 } 621 reg = CSR_READ_4(sc, JME_CHIPMODE); 622 sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT; 623 if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) != 624 CHIPMODE_NOT_FPGA) 625 sc->jme_flags |= JME_FLAG_FPGA; 626 if (bootverbose) { 627 device_printf(dev, "PCI device revision : 0x%04x\n", 628 sc->jme_rev); 629 device_printf(dev, "Chip revision : 0x%02x\n", 630 sc->jme_chip_rev); 631 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) 632 device_printf(dev, "FPGA revision : 0x%04x\n", 633 (reg & CHIPMODE_FPGA_REV_MASK) >> 634 CHIPMODE_FPGA_REV_SHIFT); 635 } 636 if (sc->jme_chip_rev == 0xFF) { 637 device_printf(dev, "Unknown chip revision : 0x%02x\n", 638 sc->jme_rev); 639 error = ENXIO; 640 goto fail; 641 } 642 643 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) { 644 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 && 645 CHIPMODE_REVFM(sc->jme_chip_rev) == 2) 646 sc->jme_flags |= JME_FLAG_DMA32BIT; 647 sc->jme_flags |= JME_FLAG_TXCLK; 648 sc->jme_flags |= JME_FLAG_HWMIB; 649 } 650 651 /* Reset the ethernet controller. */ 652 jme_reset(sc); 653 654 /* Get station address. */ 655 reg = CSR_READ_4(sc, JME_SMBCSR); 656 if ((reg & SMBCSR_EEPROM_PRESENT) != 0) 657 error = jme_eeprom_macaddr(sc); 658 if (error != 0 || (reg & SMBCSR_EEPROM_PRESENT) == 0) { 659 if (error != 0 && (bootverbose)) 660 device_printf(sc->jme_dev, 661 "ethernet hardware address not found in EEPROM.\n"); 662 jme_reg_macaddr(sc); 663 } 664 665 /* 666 * Save PHY address. 667 * Integrated JR0211 has fixed PHY address whereas FPGA version 668 * requires PHY probing to get correct PHY address. 669 */ 670 if ((sc->jme_flags & JME_FLAG_FPGA) == 0) { 671 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) & 672 GPREG0_PHY_ADDR_MASK; 673 if (bootverbose) 674 device_printf(dev, "PHY is at address %d.\n", 675 sc->jme_phyaddr); 676 } else 677 sc->jme_phyaddr = 0; 678 679 /* Set max allowable DMA size. */ 680 if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) { 681 sc->jme_flags |= JME_FLAG_PCIE; 682 burst = pci_read_config(dev, i + 0x08, 2); 683 if (bootverbose) { 684 device_printf(dev, "Read request size : %d bytes.\n", 685 128 << ((burst >> 12) & 0x07)); 686 device_printf(dev, "TLP payload size : %d bytes.\n", 687 128 << ((burst >> 5) & 0x07)); 688 } 689 switch ((burst >> 12) & 0x07) { 690 case 0: 691 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128; 692 break; 693 case 1: 694 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256; 695 break; 696 default: 697 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 698 break; 699 } 700 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 701 } else { 702 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 703 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 704 } 705 /* Create coalescing sysctl node. */ 706 jme_sysctl_node(sc); 707 if ((error = jme_dma_alloc(sc) != 0)) 708 goto fail; 709 710 ifp = sc->jme_ifp = if_alloc(IFT_ETHER); 711 if (ifp == NULL) { 712 device_printf(dev, "cannot allocate ifnet structure.\n"); 713 error = ENXIO; 714 goto fail; 715 } 716 717 ifp->if_softc = sc; 718 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 719 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 720 ifp->if_ioctl = jme_ioctl; 721 ifp->if_start = jme_start; 722 ifp->if_init = jme_init; 723 ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1; 724 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 725 IFQ_SET_READY(&ifp->if_snd); 726 /* JMC250 supports Tx/Rx checksum offload as well as TSO. */ 727 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 728 ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO; 729 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { 730 sc->jme_flags |= JME_FLAG_PMCAP; 731 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 732 } 733 ifp->if_capenable = ifp->if_capabilities; 734 735 /* Set up MII bus. */ 736 error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange, 737 jme_mediastatus, BMSR_DEFCAPMASK, sc->jme_phyaddr, MII_OFFSET_ANY, 738 0); 739 if (error != 0) { 740 device_printf(dev, "attaching PHYs failed\n"); 741 goto fail; 742 } 743 744 /* 745 * Force PHY to FPGA mode. 746 */ 747 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 748 mii = device_get_softc(sc->jme_miibus); 749 if (mii->mii_instance != 0) { 750 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { 751 if (miisc->mii_phy != 0) { 752 sc->jme_phyaddr = miisc->mii_phy; 753 break; 754 } 755 } 756 if (sc->jme_phyaddr != 0) { 757 device_printf(sc->jme_dev, 758 "FPGA PHY is at %d\n", sc->jme_phyaddr); 759 /* vendor magic. */ 760 jme_miibus_writereg(dev, sc->jme_phyaddr, 27, 761 0x0004); 762 } 763 } 764 } 765 766 ether_ifattach(ifp, sc->jme_eaddr); 767 768 /* VLAN capability setup */ 769 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 770 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 771 ifp->if_capenable = ifp->if_capabilities; 772 773 /* Tell the upper layer(s) we support long frames. */ 774 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 775 776 /* Create local taskq. */ 777 TASK_INIT(&sc->jme_tx_task, 1, jme_tx_task, ifp); 778 sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK, 779 taskqueue_thread_enqueue, &sc->jme_tq); 780 if (sc->jme_tq == NULL) { 781 device_printf(dev, "could not create taskqueue.\n"); 782 ether_ifdetach(ifp); 783 error = ENXIO; 784 goto fail; 785 } 786 taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq", 787 device_get_nameunit(sc->jme_dev)); 788 789 if ((sc->jme_flags & JME_FLAG_MSIX) != 0) 790 msic = JME_MSIX_MESSAGES; 791 else if ((sc->jme_flags & JME_FLAG_MSI) != 0) 792 msic = JME_MSI_MESSAGES; 793 else 794 msic = 1; 795 for (i = 0; i < msic; i++) { 796 error = bus_setup_intr(dev, sc->jme_irq[i], 797 INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc, 798 &sc->jme_intrhand[i]); 799 if (error != 0) 800 break; 801 } 802 803 if (error != 0) { 804 device_printf(dev, "could not set up interrupt handler.\n"); 805 taskqueue_free(sc->jme_tq); 806 sc->jme_tq = NULL; 807 ether_ifdetach(ifp); 808 goto fail; 809 } 810 811 fail: 812 if (error != 0) 813 jme_detach(dev); 814 815 return (error); 816 } 817 818 static int 819 jme_detach(device_t dev) 820 { 821 struct jme_softc *sc; 822 struct ifnet *ifp; 823 int i, msic; 824 825 sc = device_get_softc(dev); 826 827 ifp = sc->jme_ifp; 828 if (device_is_attached(dev)) { 829 JME_LOCK(sc); 830 sc->jme_flags |= JME_FLAG_DETACH; 831 jme_stop(sc); 832 JME_UNLOCK(sc); 833 callout_drain(&sc->jme_tick_ch); 834 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 835 taskqueue_drain(sc->jme_tq, &sc->jme_tx_task); 836 taskqueue_drain(taskqueue_swi, &sc->jme_link_task); 837 ether_ifdetach(ifp); 838 } 839 840 if (sc->jme_tq != NULL) { 841 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 842 taskqueue_free(sc->jme_tq); 843 sc->jme_tq = NULL; 844 } 845 846 if (sc->jme_miibus != NULL) { 847 device_delete_child(dev, sc->jme_miibus); 848 sc->jme_miibus = NULL; 849 } 850 bus_generic_detach(dev); 851 jme_dma_free(sc); 852 853 if (ifp != NULL) { 854 if_free(ifp); 855 sc->jme_ifp = NULL; 856 } 857 858 msic = 1; 859 if ((sc->jme_flags & JME_FLAG_MSIX) != 0) 860 msic = JME_MSIX_MESSAGES; 861 else if ((sc->jme_flags & JME_FLAG_MSI) != 0) 862 msic = JME_MSI_MESSAGES; 863 else 864 msic = 1; 865 for (i = 0; i < msic; i++) { 866 if (sc->jme_intrhand[i] != NULL) { 867 bus_teardown_intr(dev, sc->jme_irq[i], 868 sc->jme_intrhand[i]); 869 sc->jme_intrhand[i] = NULL; 870 } 871 } 872 873 bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq); 874 if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0) 875 pci_release_msi(dev); 876 bus_release_resources(dev, sc->jme_res_spec, sc->jme_res); 877 mtx_destroy(&sc->jme_mtx); 878 879 return (0); 880 } 881 882 #define JME_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 883 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 884 885 static void 886 jme_sysctl_node(struct jme_softc *sc) 887 { 888 struct sysctl_ctx_list *ctx; 889 struct sysctl_oid_list *child, *parent; 890 struct sysctl_oid *tree; 891 struct jme_hw_stats *stats; 892 int error; 893 894 stats = &sc->jme_stats; 895 ctx = device_get_sysctl_ctx(sc->jme_dev); 896 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)); 897 898 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to", 899 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0, 900 sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout"); 901 902 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt", 903 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0, 904 sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet"); 905 906 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to", 907 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0, 908 sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout"); 909 910 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt", 911 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0, 912 sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet"); 913 914 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 915 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0, 916 sysctl_hw_jme_proc_limit, "I", 917 "max number of Rx events to process"); 918 919 /* Pull in device tunables. */ 920 sc->jme_process_limit = JME_PROC_DEFAULT; 921 error = resource_int_value(device_get_name(sc->jme_dev), 922 device_get_unit(sc->jme_dev), "process_limit", 923 &sc->jme_process_limit); 924 if (error == 0) { 925 if (sc->jme_process_limit < JME_PROC_MIN || 926 sc->jme_process_limit > JME_PROC_MAX) { 927 device_printf(sc->jme_dev, 928 "process_limit value out of range; " 929 "using default: %d\n", JME_PROC_DEFAULT); 930 sc->jme_process_limit = JME_PROC_DEFAULT; 931 } 932 } 933 934 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 935 error = resource_int_value(device_get_name(sc->jme_dev), 936 device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to); 937 if (error == 0) { 938 if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN || 939 sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) { 940 device_printf(sc->jme_dev, 941 "tx_coal_to value out of range; " 942 "using default: %d\n", PCCTX_COAL_TO_DEFAULT); 943 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 944 } 945 } 946 947 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 948 error = resource_int_value(device_get_name(sc->jme_dev), 949 device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to); 950 if (error == 0) { 951 if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN || 952 sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) { 953 device_printf(sc->jme_dev, 954 "tx_coal_pkt value out of range; " 955 "using default: %d\n", PCCTX_COAL_PKT_DEFAULT); 956 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 957 } 958 } 959 960 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 961 error = resource_int_value(device_get_name(sc->jme_dev), 962 device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to); 963 if (error == 0) { 964 if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN || 965 sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) { 966 device_printf(sc->jme_dev, 967 "rx_coal_to value out of range; " 968 "using default: %d\n", PCCRX_COAL_TO_DEFAULT); 969 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 970 } 971 } 972 973 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 974 error = resource_int_value(device_get_name(sc->jme_dev), 975 device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to); 976 if (error == 0) { 977 if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN || 978 sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) { 979 device_printf(sc->jme_dev, 980 "tx_coal_pkt value out of range; " 981 "using default: %d\n", PCCRX_COAL_PKT_DEFAULT); 982 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 983 } 984 } 985 986 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 987 return; 988 989 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 990 NULL, "JME statistics"); 991 parent = SYSCTL_CHILDREN(tree); 992 993 /* Rx statistics. */ 994 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 995 NULL, "Rx MAC statistics"); 996 child = SYSCTL_CHILDREN(tree); 997 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 998 &stats->rx_good_frames, "Good frames"); 999 JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 1000 &stats->rx_crc_errs, "CRC errors"); 1001 JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs", 1002 &stats->rx_mii_errs, "MII errors"); 1003 JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 1004 &stats->rx_fifo_oflows, "FIFO overflows"); 1005 JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty", 1006 &stats->rx_desc_empty, "Descriptor empty"); 1007 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1008 &stats->rx_bad_frames, "Bad frames"); 1009 1010 /* Tx statistics. */ 1011 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 1012 NULL, "Tx MAC statistics"); 1013 child = SYSCTL_CHILDREN(tree); 1014 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1015 &stats->tx_good_frames, "Good frames"); 1016 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1017 &stats->tx_bad_frames, "Bad frames"); 1018 } 1019 1020 #undef JME_SYSCTL_STAT_ADD32 1021 1022 struct jme_dmamap_arg { 1023 bus_addr_t jme_busaddr; 1024 }; 1025 1026 static void 1027 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1028 { 1029 struct jme_dmamap_arg *ctx; 1030 1031 if (error != 0) 1032 return; 1033 1034 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1035 1036 ctx = (struct jme_dmamap_arg *)arg; 1037 ctx->jme_busaddr = segs[0].ds_addr; 1038 } 1039 1040 static int 1041 jme_dma_alloc(struct jme_softc *sc) 1042 { 1043 struct jme_dmamap_arg ctx; 1044 struct jme_txdesc *txd; 1045 struct jme_rxdesc *rxd; 1046 bus_addr_t lowaddr, rx_ring_end, tx_ring_end; 1047 int error, i; 1048 1049 lowaddr = BUS_SPACE_MAXADDR; 1050 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1051 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1052 1053 again: 1054 /* Create parent ring tag. */ 1055 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1056 1, 0, /* algnmnt, boundary */ 1057 lowaddr, /* lowaddr */ 1058 BUS_SPACE_MAXADDR, /* highaddr */ 1059 NULL, NULL, /* filter, filterarg */ 1060 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1061 0, /* nsegments */ 1062 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1063 0, /* flags */ 1064 NULL, NULL, /* lockfunc, lockarg */ 1065 &sc->jme_cdata.jme_ring_tag); 1066 if (error != 0) { 1067 device_printf(sc->jme_dev, 1068 "could not create parent ring DMA tag.\n"); 1069 goto fail; 1070 } 1071 /* Create tag for Tx ring. */ 1072 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1073 JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */ 1074 BUS_SPACE_MAXADDR, /* lowaddr */ 1075 BUS_SPACE_MAXADDR, /* highaddr */ 1076 NULL, NULL, /* filter, filterarg */ 1077 JME_TX_RING_SIZE, /* maxsize */ 1078 1, /* nsegments */ 1079 JME_TX_RING_SIZE, /* maxsegsize */ 1080 0, /* flags */ 1081 NULL, NULL, /* lockfunc, lockarg */ 1082 &sc->jme_cdata.jme_tx_ring_tag); 1083 if (error != 0) { 1084 device_printf(sc->jme_dev, 1085 "could not allocate Tx ring DMA tag.\n"); 1086 goto fail; 1087 } 1088 1089 /* Create tag for Rx ring. */ 1090 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1091 JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */ 1092 lowaddr, /* lowaddr */ 1093 BUS_SPACE_MAXADDR, /* highaddr */ 1094 NULL, NULL, /* filter, filterarg */ 1095 JME_RX_RING_SIZE, /* maxsize */ 1096 1, /* nsegments */ 1097 JME_RX_RING_SIZE, /* maxsegsize */ 1098 0, /* flags */ 1099 NULL, NULL, /* lockfunc, lockarg */ 1100 &sc->jme_cdata.jme_rx_ring_tag); 1101 if (error != 0) { 1102 device_printf(sc->jme_dev, 1103 "could not allocate Rx ring DMA tag.\n"); 1104 goto fail; 1105 } 1106 1107 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1108 error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag, 1109 (void **)&sc->jme_rdata.jme_tx_ring, 1110 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1111 &sc->jme_cdata.jme_tx_ring_map); 1112 if (error != 0) { 1113 device_printf(sc->jme_dev, 1114 "could not allocate DMA'able memory for Tx ring.\n"); 1115 goto fail; 1116 } 1117 1118 ctx.jme_busaddr = 0; 1119 error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag, 1120 sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring, 1121 JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1122 if (error != 0 || ctx.jme_busaddr == 0) { 1123 device_printf(sc->jme_dev, 1124 "could not load DMA'able memory for Tx ring.\n"); 1125 goto fail; 1126 } 1127 sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr; 1128 1129 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1130 error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag, 1131 (void **)&sc->jme_rdata.jme_rx_ring, 1132 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1133 &sc->jme_cdata.jme_rx_ring_map); 1134 if (error != 0) { 1135 device_printf(sc->jme_dev, 1136 "could not allocate DMA'able memory for Rx ring.\n"); 1137 goto fail; 1138 } 1139 1140 ctx.jme_busaddr = 0; 1141 error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag, 1142 sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring, 1143 JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1144 if (error != 0 || ctx.jme_busaddr == 0) { 1145 device_printf(sc->jme_dev, 1146 "could not load DMA'able memory for Rx ring.\n"); 1147 goto fail; 1148 } 1149 sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr; 1150 1151 if (lowaddr != BUS_SPACE_MAXADDR_32BIT) { 1152 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 1153 tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + 1154 JME_TX_RING_SIZE; 1155 rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + 1156 JME_RX_RING_SIZE; 1157 if ((JME_ADDR_HI(tx_ring_end) != 1158 JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) || 1159 (JME_ADDR_HI(rx_ring_end) != 1160 JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) { 1161 device_printf(sc->jme_dev, "4GB boundary crossed, " 1162 "switching to 32bit DMA address mode.\n"); 1163 jme_dma_free(sc); 1164 /* Limit DMA address space to 32bit and try again. */ 1165 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1166 goto again; 1167 } 1168 } 1169 1170 lowaddr = BUS_SPACE_MAXADDR; 1171 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1172 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1173 /* Create parent buffer tag. */ 1174 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1175 1, 0, /* algnmnt, boundary */ 1176 lowaddr, /* lowaddr */ 1177 BUS_SPACE_MAXADDR, /* highaddr */ 1178 NULL, NULL, /* filter, filterarg */ 1179 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1180 0, /* nsegments */ 1181 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1182 0, /* flags */ 1183 NULL, NULL, /* lockfunc, lockarg */ 1184 &sc->jme_cdata.jme_buffer_tag); 1185 if (error != 0) { 1186 device_printf(sc->jme_dev, 1187 "could not create parent buffer DMA tag.\n"); 1188 goto fail; 1189 } 1190 1191 /* Create shadow status block tag. */ 1192 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1193 JME_SSB_ALIGN, 0, /* algnmnt, boundary */ 1194 BUS_SPACE_MAXADDR, /* lowaddr */ 1195 BUS_SPACE_MAXADDR, /* highaddr */ 1196 NULL, NULL, /* filter, filterarg */ 1197 JME_SSB_SIZE, /* maxsize */ 1198 1, /* nsegments */ 1199 JME_SSB_SIZE, /* maxsegsize */ 1200 0, /* flags */ 1201 NULL, NULL, /* lockfunc, lockarg */ 1202 &sc->jme_cdata.jme_ssb_tag); 1203 if (error != 0) { 1204 device_printf(sc->jme_dev, 1205 "could not create shared status block DMA tag.\n"); 1206 goto fail; 1207 } 1208 1209 /* Create tag for Tx buffers. */ 1210 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1211 1, 0, /* algnmnt, boundary */ 1212 BUS_SPACE_MAXADDR, /* lowaddr */ 1213 BUS_SPACE_MAXADDR, /* highaddr */ 1214 NULL, NULL, /* filter, filterarg */ 1215 JME_TSO_MAXSIZE, /* maxsize */ 1216 JME_MAXTXSEGS, /* nsegments */ 1217 JME_TSO_MAXSEGSIZE, /* maxsegsize */ 1218 0, /* flags */ 1219 NULL, NULL, /* lockfunc, lockarg */ 1220 &sc->jme_cdata.jme_tx_tag); 1221 if (error != 0) { 1222 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n"); 1223 goto fail; 1224 } 1225 1226 /* Create tag for Rx buffers. */ 1227 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1228 JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ 1229 BUS_SPACE_MAXADDR, /* lowaddr */ 1230 BUS_SPACE_MAXADDR, /* highaddr */ 1231 NULL, NULL, /* filter, filterarg */ 1232 MCLBYTES, /* maxsize */ 1233 1, /* nsegments */ 1234 MCLBYTES, /* maxsegsize */ 1235 0, /* flags */ 1236 NULL, NULL, /* lockfunc, lockarg */ 1237 &sc->jme_cdata.jme_rx_tag); 1238 if (error != 0) { 1239 device_printf(sc->jme_dev, "could not create Rx DMA tag.\n"); 1240 goto fail; 1241 } 1242 1243 /* 1244 * Allocate DMA'able memory and load the DMA map for shared 1245 * status block. 1246 */ 1247 error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag, 1248 (void **)&sc->jme_rdata.jme_ssb_block, 1249 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1250 &sc->jme_cdata.jme_ssb_map); 1251 if (error != 0) { 1252 device_printf(sc->jme_dev, "could not allocate DMA'able " 1253 "memory for shared status block.\n"); 1254 goto fail; 1255 } 1256 1257 ctx.jme_busaddr = 0; 1258 error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag, 1259 sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block, 1260 JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1261 if (error != 0 || ctx.jme_busaddr == 0) { 1262 device_printf(sc->jme_dev, "could not load DMA'able memory " 1263 "for shared status block.\n"); 1264 goto fail; 1265 } 1266 sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr; 1267 1268 /* Create DMA maps for Tx buffers. */ 1269 for (i = 0; i < JME_TX_RING_CNT; i++) { 1270 txd = &sc->jme_cdata.jme_txdesc[i]; 1271 txd->tx_m = NULL; 1272 txd->tx_dmamap = NULL; 1273 error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0, 1274 &txd->tx_dmamap); 1275 if (error != 0) { 1276 device_printf(sc->jme_dev, 1277 "could not create Tx dmamap.\n"); 1278 goto fail; 1279 } 1280 } 1281 /* Create DMA maps for Rx buffers. */ 1282 if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1283 &sc->jme_cdata.jme_rx_sparemap)) != 0) { 1284 device_printf(sc->jme_dev, 1285 "could not create spare Rx dmamap.\n"); 1286 goto fail; 1287 } 1288 for (i = 0; i < JME_RX_RING_CNT; i++) { 1289 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1290 rxd->rx_m = NULL; 1291 rxd->rx_dmamap = NULL; 1292 error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1293 &rxd->rx_dmamap); 1294 if (error != 0) { 1295 device_printf(sc->jme_dev, 1296 "could not create Rx dmamap.\n"); 1297 goto fail; 1298 } 1299 } 1300 1301 fail: 1302 return (error); 1303 } 1304 1305 static void 1306 jme_dma_free(struct jme_softc *sc) 1307 { 1308 struct jme_txdesc *txd; 1309 struct jme_rxdesc *rxd; 1310 int i; 1311 1312 /* Tx ring */ 1313 if (sc->jme_cdata.jme_tx_ring_tag != NULL) { 1314 if (sc->jme_cdata.jme_tx_ring_map) 1315 bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag, 1316 sc->jme_cdata.jme_tx_ring_map); 1317 if (sc->jme_cdata.jme_tx_ring_map && 1318 sc->jme_rdata.jme_tx_ring) 1319 bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag, 1320 sc->jme_rdata.jme_tx_ring, 1321 sc->jme_cdata.jme_tx_ring_map); 1322 sc->jme_rdata.jme_tx_ring = NULL; 1323 sc->jme_cdata.jme_tx_ring_map = NULL; 1324 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag); 1325 sc->jme_cdata.jme_tx_ring_tag = NULL; 1326 } 1327 /* Rx ring */ 1328 if (sc->jme_cdata.jme_rx_ring_tag != NULL) { 1329 if (sc->jme_cdata.jme_rx_ring_map) 1330 bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag, 1331 sc->jme_cdata.jme_rx_ring_map); 1332 if (sc->jme_cdata.jme_rx_ring_map && 1333 sc->jme_rdata.jme_rx_ring) 1334 bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag, 1335 sc->jme_rdata.jme_rx_ring, 1336 sc->jme_cdata.jme_rx_ring_map); 1337 sc->jme_rdata.jme_rx_ring = NULL; 1338 sc->jme_cdata.jme_rx_ring_map = NULL; 1339 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag); 1340 sc->jme_cdata.jme_rx_ring_tag = NULL; 1341 } 1342 /* Tx buffers */ 1343 if (sc->jme_cdata.jme_tx_tag != NULL) { 1344 for (i = 0; i < JME_TX_RING_CNT; i++) { 1345 txd = &sc->jme_cdata.jme_txdesc[i]; 1346 if (txd->tx_dmamap != NULL) { 1347 bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag, 1348 txd->tx_dmamap); 1349 txd->tx_dmamap = NULL; 1350 } 1351 } 1352 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag); 1353 sc->jme_cdata.jme_tx_tag = NULL; 1354 } 1355 /* Rx buffers */ 1356 if (sc->jme_cdata.jme_rx_tag != NULL) { 1357 for (i = 0; i < JME_RX_RING_CNT; i++) { 1358 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1359 if (rxd->rx_dmamap != NULL) { 1360 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1361 rxd->rx_dmamap); 1362 rxd->rx_dmamap = NULL; 1363 } 1364 } 1365 if (sc->jme_cdata.jme_rx_sparemap != NULL) { 1366 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1367 sc->jme_cdata.jme_rx_sparemap); 1368 sc->jme_cdata.jme_rx_sparemap = NULL; 1369 } 1370 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag); 1371 sc->jme_cdata.jme_rx_tag = NULL; 1372 } 1373 1374 /* Shared status block. */ 1375 if (sc->jme_cdata.jme_ssb_tag != NULL) { 1376 if (sc->jme_cdata.jme_ssb_map) 1377 bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag, 1378 sc->jme_cdata.jme_ssb_map); 1379 if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block) 1380 bus_dmamem_free(sc->jme_cdata.jme_ssb_tag, 1381 sc->jme_rdata.jme_ssb_block, 1382 sc->jme_cdata.jme_ssb_map); 1383 sc->jme_rdata.jme_ssb_block = NULL; 1384 sc->jme_cdata.jme_ssb_map = NULL; 1385 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag); 1386 sc->jme_cdata.jme_ssb_tag = NULL; 1387 } 1388 1389 if (sc->jme_cdata.jme_buffer_tag != NULL) { 1390 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag); 1391 sc->jme_cdata.jme_buffer_tag = NULL; 1392 } 1393 if (sc->jme_cdata.jme_ring_tag != NULL) { 1394 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag); 1395 sc->jme_cdata.jme_ring_tag = NULL; 1396 } 1397 } 1398 1399 /* 1400 * Make sure the interface is stopped at reboot time. 1401 */ 1402 static int 1403 jme_shutdown(device_t dev) 1404 { 1405 1406 return (jme_suspend(dev)); 1407 } 1408 1409 /* 1410 * Unlike other ethernet controllers, JMC250 requires 1411 * explicit resetting link speed to 10/100Mbps as gigabit 1412 * link will cunsume more power than 375mA. 1413 * Note, we reset the link speed to 10/100Mbps with 1414 * auto-negotiation but we don't know whether that operation 1415 * would succeed or not as we have no control after powering 1416 * off. If the renegotiation fail WOL may not work. Running 1417 * at 1Gbps draws more power than 375mA at 3.3V which is 1418 * specified in PCI specification and that would result in 1419 * complete shutdowning power to ethernet controller. 1420 * 1421 * TODO 1422 * Save current negotiated media speed/duplex/flow-control 1423 * to softc and restore the same link again after resuming. 1424 * PHY handling such as power down/resetting to 100Mbps 1425 * may be better handled in suspend method in phy driver. 1426 */ 1427 static void 1428 jme_setlinkspeed(struct jme_softc *sc) 1429 { 1430 struct mii_data *mii; 1431 int aneg, i; 1432 1433 JME_LOCK_ASSERT(sc); 1434 1435 mii = device_get_softc(sc->jme_miibus); 1436 mii_pollstat(mii); 1437 aneg = 0; 1438 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1439 switch IFM_SUBTYPE(mii->mii_media_active) { 1440 case IFM_10_T: 1441 case IFM_100_TX: 1442 return; 1443 case IFM_1000_T: 1444 aneg++; 1445 default: 1446 break; 1447 } 1448 } 1449 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0); 1450 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR, 1451 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1452 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, 1453 BMCR_AUTOEN | BMCR_STARTNEG); 1454 DELAY(1000); 1455 if (aneg != 0) { 1456 /* Poll link state until jme(4) get a 10/100 link. */ 1457 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1458 mii_pollstat(mii); 1459 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1460 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1461 case IFM_10_T: 1462 case IFM_100_TX: 1463 jme_mac_config(sc); 1464 return; 1465 default: 1466 break; 1467 } 1468 } 1469 JME_UNLOCK(sc); 1470 pause("jmelnk", hz); 1471 JME_LOCK(sc); 1472 } 1473 if (i == MII_ANEGTICKS_GIGE) 1474 device_printf(sc->jme_dev, "establishing link failed, " 1475 "WOL may not work!"); 1476 } 1477 /* 1478 * No link, force MAC to have 100Mbps, full-duplex link. 1479 * This is the last resort and may/may not work. 1480 */ 1481 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1482 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1483 jme_mac_config(sc); 1484 } 1485 1486 static void 1487 jme_setwol(struct jme_softc *sc) 1488 { 1489 struct ifnet *ifp; 1490 uint32_t gpr, pmcs; 1491 uint16_t pmstat; 1492 int pmc; 1493 1494 JME_LOCK_ASSERT(sc); 1495 1496 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1497 /* Remove Tx MAC/offload clock to save more power. */ 1498 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1499 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1500 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1501 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1502 /* No PME capability, PHY power down. */ 1503 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 1504 MII_BMCR, BMCR_PDOWN); 1505 return; 1506 } 1507 1508 ifp = sc->jme_ifp; 1509 gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB; 1510 pmcs = CSR_READ_4(sc, JME_PMCS); 1511 pmcs &= ~PMCS_WOL_ENB_MASK; 1512 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1513 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB; 1514 /* Enable PME message. */ 1515 gpr |= GPREG0_PME_ENB; 1516 /* For gigabit controllers, reset link speed to 10/100. */ 1517 if ((sc->jme_flags & JME_FLAG_FASTETH) == 0) 1518 jme_setlinkspeed(sc); 1519 } 1520 1521 CSR_WRITE_4(sc, JME_PMCS, pmcs); 1522 CSR_WRITE_4(sc, JME_GPREG0, gpr); 1523 /* Remove Tx MAC/offload clock to save more power. */ 1524 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1525 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1526 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1527 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1528 /* Request PME. */ 1529 pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2); 1530 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1531 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1532 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1533 pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1534 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1535 /* No WOL, PHY power down. */ 1536 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 1537 MII_BMCR, BMCR_PDOWN); 1538 } 1539 } 1540 1541 static int 1542 jme_suspend(device_t dev) 1543 { 1544 struct jme_softc *sc; 1545 1546 sc = device_get_softc(dev); 1547 1548 JME_LOCK(sc); 1549 jme_stop(sc); 1550 jme_setwol(sc); 1551 JME_UNLOCK(sc); 1552 1553 return (0); 1554 } 1555 1556 static int 1557 jme_resume(device_t dev) 1558 { 1559 struct jme_softc *sc; 1560 struct ifnet *ifp; 1561 uint16_t pmstat; 1562 int pmc; 1563 1564 sc = device_get_softc(dev); 1565 1566 JME_LOCK(sc); 1567 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1568 pmstat = pci_read_config(sc->jme_dev, 1569 pmc + PCIR_POWER_STATUS, 2); 1570 /* Disable PME clear PME status. */ 1571 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1572 pci_write_config(sc->jme_dev, 1573 pmc + PCIR_POWER_STATUS, pmstat, 2); 1574 } 1575 ifp = sc->jme_ifp; 1576 if ((ifp->if_flags & IFF_UP) != 0) { 1577 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1578 jme_init_locked(sc); 1579 } 1580 1581 JME_UNLOCK(sc); 1582 1583 return (0); 1584 } 1585 1586 static int 1587 jme_encap(struct jme_softc *sc, struct mbuf **m_head) 1588 { 1589 struct jme_txdesc *txd; 1590 struct jme_desc *desc; 1591 struct mbuf *m; 1592 bus_dma_segment_t txsegs[JME_MAXTXSEGS]; 1593 int error, i, nsegs, prod; 1594 uint32_t cflags, tso_segsz; 1595 1596 JME_LOCK_ASSERT(sc); 1597 1598 M_ASSERTPKTHDR((*m_head)); 1599 1600 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1601 /* 1602 * Due to the adherence to NDIS specification JMC250 1603 * assumes upper stack computed TCP pseudo checksum 1604 * without including payload length. This breaks 1605 * checksum offload for TSO case so recompute TCP 1606 * pseudo checksum for JMC250. Hopefully this wouldn't 1607 * be much burden on modern CPUs. 1608 */ 1609 struct ether_header *eh; 1610 struct ip *ip; 1611 struct tcphdr *tcp; 1612 uint32_t ip_off, poff; 1613 1614 if (M_WRITABLE(*m_head) == 0) { 1615 /* Get a writable copy. */ 1616 m = m_dup(*m_head, M_DONTWAIT); 1617 m_freem(*m_head); 1618 if (m == NULL) { 1619 *m_head = NULL; 1620 return (ENOBUFS); 1621 } 1622 *m_head = m; 1623 } 1624 ip_off = sizeof(struct ether_header); 1625 m = m_pullup(*m_head, ip_off); 1626 if (m == NULL) { 1627 *m_head = NULL; 1628 return (ENOBUFS); 1629 } 1630 eh = mtod(m, struct ether_header *); 1631 /* Check the existence of VLAN tag. */ 1632 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1633 ip_off = sizeof(struct ether_vlan_header); 1634 m = m_pullup(m, ip_off); 1635 if (m == NULL) { 1636 *m_head = NULL; 1637 return (ENOBUFS); 1638 } 1639 } 1640 m = m_pullup(m, ip_off + sizeof(struct ip)); 1641 if (m == NULL) { 1642 *m_head = NULL; 1643 return (ENOBUFS); 1644 } 1645 ip = (struct ip *)(mtod(m, char *) + ip_off); 1646 poff = ip_off + (ip->ip_hl << 2); 1647 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1648 if (m == NULL) { 1649 *m_head = NULL; 1650 return (ENOBUFS); 1651 } 1652 /* 1653 * Reset IP checksum and recompute TCP pseudo 1654 * checksum that NDIS specification requires. 1655 */ 1656 ip = (struct ip *)(mtod(m, char *) + ip_off); 1657 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1658 ip->ip_sum = 0; 1659 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { 1660 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1661 ip->ip_dst.s_addr, 1662 htons((tcp->th_off << 2) + IPPROTO_TCP)); 1663 /* No need to TSO, force IP checksum offload. */ 1664 (*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO; 1665 (*m_head)->m_pkthdr.csum_flags |= CSUM_IP; 1666 } else 1667 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1668 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1669 *m_head = m; 1670 } 1671 1672 prod = sc->jme_cdata.jme_tx_prod; 1673 txd = &sc->jme_cdata.jme_txdesc[prod]; 1674 1675 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1676 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1677 if (error == EFBIG) { 1678 m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS); 1679 if (m == NULL) { 1680 m_freem(*m_head); 1681 *m_head = NULL; 1682 return (ENOMEM); 1683 } 1684 *m_head = m; 1685 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1686 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1687 if (error != 0) { 1688 m_freem(*m_head); 1689 *m_head = NULL; 1690 return (error); 1691 } 1692 } else if (error != 0) 1693 return (error); 1694 if (nsegs == 0) { 1695 m_freem(*m_head); 1696 *m_head = NULL; 1697 return (EIO); 1698 } 1699 1700 /* 1701 * Check descriptor overrun. Leave one free descriptor. 1702 * Since we always use 64bit address mode for transmitting, 1703 * each Tx request requires one more dummy descriptor. 1704 */ 1705 if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) { 1706 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 1707 return (ENOBUFS); 1708 } 1709 1710 m = *m_head; 1711 cflags = 0; 1712 tso_segsz = 0; 1713 /* Configure checksum offload and TSO. */ 1714 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1715 tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz << 1716 JME_TD_MSS_SHIFT; 1717 cflags |= JME_TD_TSO; 1718 } else { 1719 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1720 cflags |= JME_TD_IPCSUM; 1721 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1722 cflags |= JME_TD_TCPCSUM; 1723 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1724 cflags |= JME_TD_UDPCSUM; 1725 } 1726 /* Configure VLAN. */ 1727 if ((m->m_flags & M_VLANTAG) != 0) { 1728 cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK); 1729 cflags |= JME_TD_VLAN_TAG; 1730 } 1731 1732 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1733 desc->flags = htole32(cflags); 1734 desc->buflen = htole32(tso_segsz); 1735 desc->addr_hi = htole32(m->m_pkthdr.len); 1736 desc->addr_lo = 0; 1737 sc->jme_cdata.jme_tx_cnt++; 1738 JME_DESC_INC(prod, JME_TX_RING_CNT); 1739 for (i = 0; i < nsegs; i++) { 1740 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1741 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT); 1742 desc->buflen = htole32(txsegs[i].ds_len); 1743 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr)); 1744 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr)); 1745 sc->jme_cdata.jme_tx_cnt++; 1746 JME_DESC_INC(prod, JME_TX_RING_CNT); 1747 } 1748 1749 /* Update producer index. */ 1750 sc->jme_cdata.jme_tx_prod = prod; 1751 /* 1752 * Finally request interrupt and give the first descriptor 1753 * owenership to hardware. 1754 */ 1755 desc = txd->tx_desc; 1756 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR); 1757 1758 txd->tx_m = m; 1759 txd->tx_ndesc = nsegs + 1; 1760 1761 /* Sync descriptors. */ 1762 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 1763 BUS_DMASYNC_PREWRITE); 1764 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 1765 sc->jme_cdata.jme_tx_ring_map, 1766 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1767 1768 return (0); 1769 } 1770 1771 static void 1772 jme_tx_task(void *arg, int pending) 1773 { 1774 struct ifnet *ifp; 1775 1776 ifp = (struct ifnet *)arg; 1777 jme_start(ifp); 1778 } 1779 1780 static void 1781 jme_start(struct ifnet *ifp) 1782 { 1783 struct jme_softc *sc; 1784 struct mbuf *m_head; 1785 int enq; 1786 1787 sc = ifp->if_softc; 1788 1789 JME_LOCK(sc); 1790 1791 if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT) 1792 jme_txeof(sc); 1793 1794 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1795 IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) { 1796 JME_UNLOCK(sc); 1797 return; 1798 } 1799 1800 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1801 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1802 if (m_head == NULL) 1803 break; 1804 /* 1805 * Pack the data into the transmit ring. If we 1806 * don't have room, set the OACTIVE flag and wait 1807 * for the NIC to drain the ring. 1808 */ 1809 if (jme_encap(sc, &m_head)) { 1810 if (m_head == NULL) 1811 break; 1812 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1813 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1814 break; 1815 } 1816 1817 enq++; 1818 /* 1819 * If there's a BPF listener, bounce a copy of this frame 1820 * to him. 1821 */ 1822 ETHER_BPF_MTAP(ifp, m_head); 1823 } 1824 1825 if (enq > 0) { 1826 /* 1827 * Reading TXCSR takes very long time under heavy load 1828 * so cache TXCSR value and writes the ORed value with 1829 * the kick command to the TXCSR. This saves one register 1830 * access cycle. 1831 */ 1832 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB | 1833 TXCSR_TXQ_N_START(TXCSR_TXQ0)); 1834 /* Set a timeout in case the chip goes out to lunch. */ 1835 sc->jme_watchdog_timer = JME_TX_TIMEOUT; 1836 } 1837 1838 JME_UNLOCK(sc); 1839 } 1840 1841 static void 1842 jme_watchdog(struct jme_softc *sc) 1843 { 1844 struct ifnet *ifp; 1845 1846 JME_LOCK_ASSERT(sc); 1847 1848 if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer) 1849 return; 1850 1851 ifp = sc->jme_ifp; 1852 if ((sc->jme_flags & JME_FLAG_LINK) == 0) { 1853 if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n"); 1854 ifp->if_oerrors++; 1855 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1856 jme_init_locked(sc); 1857 return; 1858 } 1859 jme_txeof(sc); 1860 if (sc->jme_cdata.jme_tx_cnt == 0) { 1861 if_printf(sc->jme_ifp, 1862 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1863 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1864 taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task); 1865 return; 1866 } 1867 1868 if_printf(sc->jme_ifp, "watchdog timeout\n"); 1869 ifp->if_oerrors++; 1870 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1871 jme_init_locked(sc); 1872 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1873 taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task); 1874 } 1875 1876 static int 1877 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1878 { 1879 struct jme_softc *sc; 1880 struct ifreq *ifr; 1881 struct mii_data *mii; 1882 uint32_t reg; 1883 int error, mask; 1884 1885 sc = ifp->if_softc; 1886 ifr = (struct ifreq *)data; 1887 error = 0; 1888 switch (cmd) { 1889 case SIOCSIFMTU: 1890 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU || 1891 ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 && 1892 ifr->ifr_mtu > JME_MAX_MTU)) { 1893 error = EINVAL; 1894 break; 1895 } 1896 1897 if (ifp->if_mtu != ifr->ifr_mtu) { 1898 /* 1899 * No special configuration is required when interface 1900 * MTU is changed but availability of TSO/Tx checksum 1901 * offload should be chcked against new MTU size as 1902 * FIFO size is just 2K. 1903 */ 1904 JME_LOCK(sc); 1905 if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) { 1906 ifp->if_capenable &= 1907 ~(IFCAP_TXCSUM | IFCAP_TSO4); 1908 ifp->if_hwassist &= 1909 ~(JME_CSUM_FEATURES | CSUM_TSO); 1910 VLAN_CAPABILITIES(ifp); 1911 } 1912 ifp->if_mtu = ifr->ifr_mtu; 1913 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1914 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1915 jme_init_locked(sc); 1916 } 1917 JME_UNLOCK(sc); 1918 } 1919 break; 1920 case SIOCSIFFLAGS: 1921 JME_LOCK(sc); 1922 if ((ifp->if_flags & IFF_UP) != 0) { 1923 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 1924 if (((ifp->if_flags ^ sc->jme_if_flags) 1925 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 1926 jme_set_filter(sc); 1927 } else { 1928 if ((sc->jme_flags & JME_FLAG_DETACH) == 0) 1929 jme_init_locked(sc); 1930 } 1931 } else { 1932 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1933 jme_stop(sc); 1934 } 1935 sc->jme_if_flags = ifp->if_flags; 1936 JME_UNLOCK(sc); 1937 break; 1938 case SIOCADDMULTI: 1939 case SIOCDELMULTI: 1940 JME_LOCK(sc); 1941 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1942 jme_set_filter(sc); 1943 JME_UNLOCK(sc); 1944 break; 1945 case SIOCSIFMEDIA: 1946 case SIOCGIFMEDIA: 1947 mii = device_get_softc(sc->jme_miibus); 1948 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 1949 break; 1950 case SIOCSIFCAP: 1951 JME_LOCK(sc); 1952 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1953 if ((mask & IFCAP_TXCSUM) != 0 && 1954 ifp->if_mtu < JME_TX_FIFO_SIZE) { 1955 if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 1956 ifp->if_capenable ^= IFCAP_TXCSUM; 1957 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 1958 ifp->if_hwassist |= JME_CSUM_FEATURES; 1959 else 1960 ifp->if_hwassist &= ~JME_CSUM_FEATURES; 1961 } 1962 } 1963 if ((mask & IFCAP_RXCSUM) != 0 && 1964 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { 1965 ifp->if_capenable ^= IFCAP_RXCSUM; 1966 reg = CSR_READ_4(sc, JME_RXMAC); 1967 reg &= ~RXMAC_CSUM_ENB; 1968 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1969 reg |= RXMAC_CSUM_ENB; 1970 CSR_WRITE_4(sc, JME_RXMAC, reg); 1971 } 1972 if ((mask & IFCAP_TSO4) != 0 && 1973 ifp->if_mtu < JME_TX_FIFO_SIZE) { 1974 if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) { 1975 ifp->if_capenable ^= IFCAP_TSO4; 1976 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 1977 ifp->if_hwassist |= CSUM_TSO; 1978 else 1979 ifp->if_hwassist &= ~CSUM_TSO; 1980 } 1981 } 1982 if ((mask & IFCAP_WOL_MAGIC) != 0 && 1983 (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0) 1984 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1985 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 1986 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 1987 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 1988 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 1989 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 1990 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 1991 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 1992 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 1993 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 1994 jme_set_vlan(sc); 1995 } 1996 JME_UNLOCK(sc); 1997 VLAN_CAPABILITIES(ifp); 1998 break; 1999 default: 2000 error = ether_ioctl(ifp, cmd, data); 2001 break; 2002 } 2003 2004 return (error); 2005 } 2006 2007 static void 2008 jme_mac_config(struct jme_softc *sc) 2009 { 2010 struct mii_data *mii; 2011 uint32_t ghc, gpreg, rxmac, txmac, txpause; 2012 uint32_t txclk; 2013 2014 JME_LOCK_ASSERT(sc); 2015 2016 mii = device_get_softc(sc->jme_miibus); 2017 2018 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2019 DELAY(10); 2020 CSR_WRITE_4(sc, JME_GHC, 0); 2021 ghc = 0; 2022 txclk = 0; 2023 rxmac = CSR_READ_4(sc, JME_RXMAC); 2024 rxmac &= ~RXMAC_FC_ENB; 2025 txmac = CSR_READ_4(sc, JME_TXMAC); 2026 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST); 2027 txpause = CSR_READ_4(sc, JME_TXPFC); 2028 txpause &= ~TXPFC_PAUSE_ENB; 2029 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2030 ghc |= GHC_FULL_DUPLEX; 2031 rxmac &= ~RXMAC_COLL_DET_ENB; 2032 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | 2033 TXMAC_BACKOFF | TXMAC_CARRIER_EXT | 2034 TXMAC_FRAME_BURST); 2035 #ifdef notyet 2036 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2037 txpause |= TXPFC_PAUSE_ENB; 2038 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2039 rxmac |= RXMAC_FC_ENB; 2040 #endif 2041 /* Disable retry transmit timer/retry limit. */ 2042 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) & 2043 ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)); 2044 } else { 2045 rxmac |= RXMAC_COLL_DET_ENB; 2046 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF; 2047 /* Enable retry transmit timer/retry limit. */ 2048 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) | 2049 TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB); 2050 } 2051 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */ 2052 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2053 case IFM_10_T: 2054 ghc |= GHC_SPEED_10; 2055 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2056 break; 2057 case IFM_100_TX: 2058 ghc |= GHC_SPEED_100; 2059 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2060 break; 2061 case IFM_1000_T: 2062 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2063 break; 2064 ghc |= GHC_SPEED_1000; 2065 txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000; 2066 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) 2067 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST; 2068 break; 2069 default: 2070 break; 2071 } 2072 if (sc->jme_rev == DEVICEID_JMC250 && 2073 sc->jme_chip_rev == DEVICEREVID_JMC250_A2) { 2074 /* 2075 * Workaround occasional packet loss issue of JMC250 A2 2076 * when it runs on half-duplex media. 2077 */ 2078 gpreg = CSR_READ_4(sc, JME_GPREG1); 2079 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 2080 gpreg &= ~GPREG1_HDPX_FIX; 2081 else 2082 gpreg |= GPREG1_HDPX_FIX; 2083 CSR_WRITE_4(sc, JME_GPREG1, gpreg); 2084 /* Workaround CRC errors at 100Mbps on JMC250 A2. */ 2085 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 2086 /* Extend interface FIFO depth. */ 2087 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2088 0x1B, 0x0000); 2089 } else { 2090 /* Select default interface FIFO depth. */ 2091 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2092 0x1B, 0x0004); 2093 } 2094 } 2095 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 2096 ghc |= txclk; 2097 CSR_WRITE_4(sc, JME_GHC, ghc); 2098 CSR_WRITE_4(sc, JME_RXMAC, rxmac); 2099 CSR_WRITE_4(sc, JME_TXMAC, txmac); 2100 CSR_WRITE_4(sc, JME_TXPFC, txpause); 2101 } 2102 2103 static void 2104 jme_link_task(void *arg, int pending) 2105 { 2106 struct jme_softc *sc; 2107 struct mii_data *mii; 2108 struct ifnet *ifp; 2109 struct jme_txdesc *txd; 2110 bus_addr_t paddr; 2111 int i; 2112 2113 sc = (struct jme_softc *)arg; 2114 2115 JME_LOCK(sc); 2116 mii = device_get_softc(sc->jme_miibus); 2117 ifp = sc->jme_ifp; 2118 if (mii == NULL || ifp == NULL || 2119 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2120 JME_UNLOCK(sc); 2121 return; 2122 } 2123 2124 sc->jme_flags &= ~JME_FLAG_LINK; 2125 if ((mii->mii_media_status & IFM_AVALID) != 0) { 2126 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2127 case IFM_10_T: 2128 case IFM_100_TX: 2129 sc->jme_flags |= JME_FLAG_LINK; 2130 break; 2131 case IFM_1000_T: 2132 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2133 break; 2134 sc->jme_flags |= JME_FLAG_LINK; 2135 break; 2136 default: 2137 break; 2138 } 2139 } 2140 2141 /* 2142 * Disabling Rx/Tx MACs have a side-effect of resetting 2143 * JME_TXNDA/JME_RXNDA register to the first address of 2144 * Tx/Rx descriptor address. So driver should reset its 2145 * internal procucer/consumer pointer and reclaim any 2146 * allocated resources. Note, just saving the value of 2147 * JME_TXNDA and JME_RXNDA registers before stopping MAC 2148 * and restoring JME_TXNDA/JME_RXNDA register is not 2149 * sufficient to make sure correct MAC state because 2150 * stopping MAC operation can take a while and hardware 2151 * might have updated JME_TXNDA/JME_RXNDA registers 2152 * during the stop operation. 2153 */ 2154 /* Block execution of task. */ 2155 taskqueue_block(sc->jme_tq); 2156 /* Disable interrupts and stop driver. */ 2157 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2158 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2159 callout_stop(&sc->jme_tick_ch); 2160 sc->jme_watchdog_timer = 0; 2161 2162 /* Stop receiver/transmitter. */ 2163 jme_stop_rx(sc); 2164 jme_stop_tx(sc); 2165 2166 /* XXX Drain all queued tasks. */ 2167 JME_UNLOCK(sc); 2168 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 2169 taskqueue_drain(sc->jme_tq, &sc->jme_tx_task); 2170 JME_LOCK(sc); 2171 2172 jme_rxintr(sc, JME_RX_RING_CNT); 2173 if (sc->jme_cdata.jme_rxhead != NULL) 2174 m_freem(sc->jme_cdata.jme_rxhead); 2175 JME_RXCHAIN_RESET(sc); 2176 jme_txeof(sc); 2177 if (sc->jme_cdata.jme_tx_cnt != 0) { 2178 /* Remove queued packets for transmit. */ 2179 for (i = 0; i < JME_TX_RING_CNT; i++) { 2180 txd = &sc->jme_cdata.jme_txdesc[i]; 2181 if (txd->tx_m != NULL) { 2182 bus_dmamap_sync( 2183 sc->jme_cdata.jme_tx_tag, 2184 txd->tx_dmamap, 2185 BUS_DMASYNC_POSTWRITE); 2186 bus_dmamap_unload( 2187 sc->jme_cdata.jme_tx_tag, 2188 txd->tx_dmamap); 2189 m_freem(txd->tx_m); 2190 txd->tx_m = NULL; 2191 txd->tx_ndesc = 0; 2192 ifp->if_oerrors++; 2193 } 2194 } 2195 } 2196 2197 /* 2198 * Reuse configured Rx descriptors and reset 2199 * procuder/consumer index. 2200 */ 2201 sc->jme_cdata.jme_rx_cons = 0; 2202 atomic_set_int(&sc->jme_morework, 0); 2203 jme_init_tx_ring(sc); 2204 /* Initialize shadow status block. */ 2205 jme_init_ssb(sc); 2206 2207 /* Program MAC with resolved speed/duplex/flow-control. */ 2208 if ((sc->jme_flags & JME_FLAG_LINK) != 0) { 2209 jme_mac_config(sc); 2210 jme_stats_clear(sc); 2211 2212 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2213 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2214 2215 /* Set Tx ring address to the hardware. */ 2216 paddr = JME_TX_RING_ADDR(sc, 0); 2217 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2218 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2219 2220 /* Set Rx ring address to the hardware. */ 2221 paddr = JME_RX_RING_ADDR(sc, 0); 2222 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2223 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2224 2225 /* Restart receiver/transmitter. */ 2226 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB | 2227 RXCSR_RXQ_START); 2228 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB); 2229 } 2230 2231 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2232 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2233 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2234 /* Unblock execution of task. */ 2235 taskqueue_unblock(sc->jme_tq); 2236 /* Reenable interrupts. */ 2237 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2238 2239 JME_UNLOCK(sc); 2240 } 2241 2242 static int 2243 jme_intr(void *arg) 2244 { 2245 struct jme_softc *sc; 2246 uint32_t status; 2247 2248 sc = (struct jme_softc *)arg; 2249 2250 status = CSR_READ_4(sc, JME_INTR_REQ_STATUS); 2251 if (status == 0 || status == 0xFFFFFFFF) 2252 return (FILTER_STRAY); 2253 /* Disable interrupts. */ 2254 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2255 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2256 2257 return (FILTER_HANDLED); 2258 } 2259 2260 static void 2261 jme_int_task(void *arg, int pending) 2262 { 2263 struct jme_softc *sc; 2264 struct ifnet *ifp; 2265 uint32_t status; 2266 int more; 2267 2268 sc = (struct jme_softc *)arg; 2269 ifp = sc->jme_ifp; 2270 2271 status = CSR_READ_4(sc, JME_INTR_STATUS); 2272 more = atomic_readandclear_int(&sc->jme_morework); 2273 if (more != 0) { 2274 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO; 2275 more = 0; 2276 } 2277 if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF) 2278 goto done; 2279 /* Reset PCC counter/timer and Ack interrupts. */ 2280 status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP); 2281 if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 2282 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP; 2283 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 2284 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP; 2285 CSR_WRITE_4(sc, JME_INTR_STATUS, status); 2286 more = 0; 2287 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2288 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) { 2289 more = jme_rxintr(sc, sc->jme_process_limit); 2290 if (more != 0) 2291 atomic_set_int(&sc->jme_morework, 1); 2292 } 2293 if ((status & INTR_RXQ_DESC_EMPTY) != 0) { 2294 /* 2295 * Notify hardware availability of new Rx 2296 * buffers. 2297 * Reading RXCSR takes very long time under 2298 * heavy load so cache RXCSR value and writes 2299 * the ORed value with the kick command to 2300 * the RXCSR. This saves one register access 2301 * cycle. 2302 */ 2303 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | 2304 RXCSR_RX_ENB | RXCSR_RXQ_START); 2305 } 2306 /* 2307 * Reclaiming Tx buffers are deferred to make jme(4) run 2308 * without locks held. 2309 */ 2310 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2311 taskqueue_enqueue(sc->jme_tq, &sc->jme_tx_task); 2312 } 2313 2314 if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) { 2315 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2316 return; 2317 } 2318 done: 2319 /* Reenable interrupts. */ 2320 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2321 } 2322 2323 static void 2324 jme_txeof(struct jme_softc *sc) 2325 { 2326 struct ifnet *ifp; 2327 struct jme_txdesc *txd; 2328 uint32_t status; 2329 int cons, nsegs; 2330 2331 JME_LOCK_ASSERT(sc); 2332 2333 ifp = sc->jme_ifp; 2334 2335 cons = sc->jme_cdata.jme_tx_cons; 2336 if (cons == sc->jme_cdata.jme_tx_prod) 2337 return; 2338 2339 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2340 sc->jme_cdata.jme_tx_ring_map, 2341 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2342 2343 /* 2344 * Go through our Tx list and free mbufs for those 2345 * frames which have been transmitted. 2346 */ 2347 for (; cons != sc->jme_cdata.jme_tx_prod;) { 2348 txd = &sc->jme_cdata.jme_txdesc[cons]; 2349 status = le32toh(txd->tx_desc->flags); 2350 if ((status & JME_TD_OWN) == JME_TD_OWN) 2351 break; 2352 2353 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0) 2354 ifp->if_oerrors++; 2355 else { 2356 ifp->if_opackets++; 2357 if ((status & JME_TD_COLLISION) != 0) 2358 ifp->if_collisions += 2359 le32toh(txd->tx_desc->buflen) & 2360 JME_TD_BUF_LEN_MASK; 2361 } 2362 /* 2363 * Only the first descriptor of multi-descriptor 2364 * transmission is updated so driver have to skip entire 2365 * chained buffers for the transmiited frame. In other 2366 * words, JME_TD_OWN bit is valid only at the first 2367 * descriptor of a multi-descriptor transmission. 2368 */ 2369 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) { 2370 sc->jme_rdata.jme_tx_ring[cons].flags = 0; 2371 JME_DESC_INC(cons, JME_TX_RING_CNT); 2372 } 2373 2374 /* Reclaim transferred mbufs. */ 2375 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 2376 BUS_DMASYNC_POSTWRITE); 2377 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 2378 2379 KASSERT(txd->tx_m != NULL, 2380 ("%s: freeing NULL mbuf!\n", __func__)); 2381 m_freem(txd->tx_m); 2382 txd->tx_m = NULL; 2383 sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc; 2384 KASSERT(sc->jme_cdata.jme_tx_cnt >= 0, 2385 ("%s: Active Tx desc counter was garbled\n", __func__)); 2386 txd->tx_ndesc = 0; 2387 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2388 } 2389 sc->jme_cdata.jme_tx_cons = cons; 2390 /* Unarm watchog timer when there is no pending descriptors in queue. */ 2391 if (sc->jme_cdata.jme_tx_cnt == 0) 2392 sc->jme_watchdog_timer = 0; 2393 2394 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2395 sc->jme_cdata.jme_tx_ring_map, 2396 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2397 } 2398 2399 static __inline void 2400 jme_discard_rxbuf(struct jme_softc *sc, int cons) 2401 { 2402 struct jme_desc *desc; 2403 2404 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2405 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 2406 desc->buflen = htole32(MCLBYTES); 2407 } 2408 2409 /* Receive a frame. */ 2410 static void 2411 jme_rxeof(struct jme_softc *sc) 2412 { 2413 struct ifnet *ifp; 2414 struct jme_desc *desc; 2415 struct jme_rxdesc *rxd; 2416 struct mbuf *mp, *m; 2417 uint32_t flags, status; 2418 int cons, count, nsegs; 2419 2420 ifp = sc->jme_ifp; 2421 2422 cons = sc->jme_cdata.jme_rx_cons; 2423 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2424 flags = le32toh(desc->flags); 2425 status = le32toh(desc->buflen); 2426 nsegs = JME_RX_NSEGS(status); 2427 sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES; 2428 if ((status & JME_RX_ERR_STAT) != 0) { 2429 ifp->if_ierrors++; 2430 jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons); 2431 #ifdef JME_SHOW_ERRORS 2432 device_printf(sc->jme_dev, "%s : receive error = 0x%b\n", 2433 __func__, JME_RX_ERR(status), JME_RX_ERR_BITS); 2434 #endif 2435 sc->jme_cdata.jme_rx_cons += nsegs; 2436 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2437 return; 2438 } 2439 2440 for (count = 0; count < nsegs; count++, 2441 JME_DESC_INC(cons, JME_RX_RING_CNT)) { 2442 rxd = &sc->jme_cdata.jme_rxdesc[cons]; 2443 mp = rxd->rx_m; 2444 /* Add a new receive buffer to the ring. */ 2445 if (jme_newbuf(sc, rxd) != 0) { 2446 ifp->if_iqdrops++; 2447 /* Reuse buffer. */ 2448 for (; count < nsegs; count++) { 2449 jme_discard_rxbuf(sc, cons); 2450 JME_DESC_INC(cons, JME_RX_RING_CNT); 2451 } 2452 if (sc->jme_cdata.jme_rxhead != NULL) { 2453 m_freem(sc->jme_cdata.jme_rxhead); 2454 JME_RXCHAIN_RESET(sc); 2455 } 2456 break; 2457 } 2458 2459 /* 2460 * Assume we've received a full sized frame. 2461 * Actual size is fixed when we encounter the end of 2462 * multi-segmented frame. 2463 */ 2464 mp->m_len = MCLBYTES; 2465 2466 /* Chain received mbufs. */ 2467 if (sc->jme_cdata.jme_rxhead == NULL) { 2468 sc->jme_cdata.jme_rxhead = mp; 2469 sc->jme_cdata.jme_rxtail = mp; 2470 } else { 2471 /* 2472 * Receive processor can receive a maximum frame 2473 * size of 65535 bytes. 2474 */ 2475 mp->m_flags &= ~M_PKTHDR; 2476 sc->jme_cdata.jme_rxtail->m_next = mp; 2477 sc->jme_cdata.jme_rxtail = mp; 2478 } 2479 2480 if (count == nsegs - 1) { 2481 /* Last desc. for this frame. */ 2482 m = sc->jme_cdata.jme_rxhead; 2483 m->m_flags |= M_PKTHDR; 2484 m->m_pkthdr.len = sc->jme_cdata.jme_rxlen; 2485 if (nsegs > 1) { 2486 /* Set first mbuf size. */ 2487 m->m_len = MCLBYTES - JME_RX_PAD_BYTES; 2488 /* Set last mbuf size. */ 2489 mp->m_len = sc->jme_cdata.jme_rxlen - 2490 ((MCLBYTES - JME_RX_PAD_BYTES) + 2491 (MCLBYTES * (nsegs - 2))); 2492 } else 2493 m->m_len = sc->jme_cdata.jme_rxlen; 2494 m->m_pkthdr.rcvif = ifp; 2495 2496 /* 2497 * Account for 10bytes auto padding which is used 2498 * to align IP header on 32bit boundary. Also note, 2499 * CRC bytes is automatically removed by the 2500 * hardware. 2501 */ 2502 m->m_data += JME_RX_PAD_BYTES; 2503 2504 /* Set checksum information. */ 2505 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2506 (flags & JME_RD_IPV4) != 0) { 2507 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2508 if ((flags & JME_RD_IPCSUM) != 0) 2509 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2510 if (((flags & JME_RD_MORE_FRAG) == 0) && 2511 ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) == 2512 (JME_RD_TCP | JME_RD_TCPCSUM) || 2513 (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) == 2514 (JME_RD_UDP | JME_RD_UDPCSUM))) { 2515 m->m_pkthdr.csum_flags |= 2516 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2517 m->m_pkthdr.csum_data = 0xffff; 2518 } 2519 } 2520 2521 /* Check for VLAN tagged packets. */ 2522 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2523 (flags & JME_RD_VLAN_TAG) != 0) { 2524 m->m_pkthdr.ether_vtag = 2525 flags & JME_RD_VLAN_MASK; 2526 m->m_flags |= M_VLANTAG; 2527 } 2528 2529 ifp->if_ipackets++; 2530 /* Pass it on. */ 2531 (*ifp->if_input)(ifp, m); 2532 2533 /* Reset mbuf chains. */ 2534 JME_RXCHAIN_RESET(sc); 2535 } 2536 } 2537 2538 sc->jme_cdata.jme_rx_cons += nsegs; 2539 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2540 } 2541 2542 static int 2543 jme_rxintr(struct jme_softc *sc, int count) 2544 { 2545 struct jme_desc *desc; 2546 int nsegs, prog, pktlen; 2547 2548 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2549 sc->jme_cdata.jme_rx_ring_map, 2550 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2551 2552 for (prog = 0; count > 0; prog++) { 2553 desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons]; 2554 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN) 2555 break; 2556 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0) 2557 break; 2558 nsegs = JME_RX_NSEGS(le32toh(desc->buflen)); 2559 /* 2560 * Check number of segments against received bytes. 2561 * Non-matching value would indicate that hardware 2562 * is still trying to update Rx descriptors. I'm not 2563 * sure whether this check is needed. 2564 */ 2565 pktlen = JME_RX_BYTES(le32toh(desc->buflen)); 2566 if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES)) 2567 break; 2568 prog++; 2569 /* Received a frame. */ 2570 jme_rxeof(sc); 2571 count -= nsegs; 2572 } 2573 2574 if (prog > 0) 2575 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2576 sc->jme_cdata.jme_rx_ring_map, 2577 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2578 2579 return (count > 0 ? 0 : EAGAIN); 2580 } 2581 2582 static void 2583 jme_tick(void *arg) 2584 { 2585 struct jme_softc *sc; 2586 struct mii_data *mii; 2587 2588 sc = (struct jme_softc *)arg; 2589 2590 JME_LOCK_ASSERT(sc); 2591 2592 mii = device_get_softc(sc->jme_miibus); 2593 mii_tick(mii); 2594 /* 2595 * Reclaim Tx buffers that have been completed. It's not 2596 * needed here but it would release allocated mbuf chains 2597 * faster and limit the maximum delay to a hz. 2598 */ 2599 jme_txeof(sc); 2600 jme_stats_update(sc); 2601 jme_watchdog(sc); 2602 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2603 } 2604 2605 static void 2606 jme_reset(struct jme_softc *sc) 2607 { 2608 2609 /* Stop receiver, transmitter. */ 2610 jme_stop_rx(sc); 2611 jme_stop_tx(sc); 2612 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2613 DELAY(10); 2614 CSR_WRITE_4(sc, JME_GHC, 0); 2615 } 2616 2617 static void 2618 jme_init(void *xsc) 2619 { 2620 struct jme_softc *sc; 2621 2622 sc = (struct jme_softc *)xsc; 2623 JME_LOCK(sc); 2624 jme_init_locked(sc); 2625 JME_UNLOCK(sc); 2626 } 2627 2628 static void 2629 jme_init_locked(struct jme_softc *sc) 2630 { 2631 struct ifnet *ifp; 2632 struct mii_data *mii; 2633 uint8_t eaddr[ETHER_ADDR_LEN]; 2634 bus_addr_t paddr; 2635 uint32_t reg; 2636 int error; 2637 2638 JME_LOCK_ASSERT(sc); 2639 2640 ifp = sc->jme_ifp; 2641 mii = device_get_softc(sc->jme_miibus); 2642 2643 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2644 return; 2645 /* 2646 * Cancel any pending I/O. 2647 */ 2648 jme_stop(sc); 2649 2650 /* 2651 * Reset the chip to a known state. 2652 */ 2653 jme_reset(sc); 2654 2655 /* Init descriptors. */ 2656 error = jme_init_rx_ring(sc); 2657 if (error != 0) { 2658 device_printf(sc->jme_dev, 2659 "%s: initialization failed: no memory for Rx buffers.\n", 2660 __func__); 2661 jme_stop(sc); 2662 return; 2663 } 2664 jme_init_tx_ring(sc); 2665 /* Initialize shadow status block. */ 2666 jme_init_ssb(sc); 2667 2668 /* Reprogram the station address. */ 2669 bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN); 2670 CSR_WRITE_4(sc, JME_PAR0, 2671 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); 2672 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]); 2673 2674 /* 2675 * Configure Tx queue. 2676 * Tx priority queue weight value : 0 2677 * Tx FIFO threshold for processing next packet : 16QW 2678 * Maximum Tx DMA length : 512 2679 * Allow Tx DMA burst. 2680 */ 2681 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0); 2682 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN); 2683 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW; 2684 sc->jme_txcsr |= sc->jme_tx_dma_size; 2685 sc->jme_txcsr |= TXCSR_DMA_BURST; 2686 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2687 2688 /* Set Tx descriptor counter. */ 2689 CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT); 2690 2691 /* Set Tx ring address to the hardware. */ 2692 paddr = JME_TX_RING_ADDR(sc, 0); 2693 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2694 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2695 2696 /* Configure TxMAC parameters. */ 2697 reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB; 2698 reg |= TXMAC_THRESH_1_PKT; 2699 reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB; 2700 CSR_WRITE_4(sc, JME_TXMAC, reg); 2701 2702 /* 2703 * Configure Rx queue. 2704 * FIFO full threshold for transmitting Tx pause packet : 128T 2705 * FIFO threshold for processing next packet : 128QW 2706 * Rx queue 0 select 2707 * Max Rx DMA length : 128 2708 * Rx descriptor retry : 32 2709 * Rx descriptor retry time gap : 256ns 2710 * Don't receive runt/bad frame. 2711 */ 2712 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T; 2713 /* 2714 * Since Rx FIFO size is 4K bytes, receiving frames larger 2715 * than 4K bytes will suffer from Rx FIFO overruns. So 2716 * decrease FIFO threshold to reduce the FIFO overruns for 2717 * frames larger than 4000 bytes. 2718 * For best performance of standard MTU sized frames use 2719 * maximum allowable FIFO threshold, 128QW. Note these do 2720 * not hold on chip full mask verion >=2. For these 2721 * controllers 64QW and 128QW are not valid value. 2722 */ 2723 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) 2724 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2725 else { 2726 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2727 ETHER_CRC_LEN) > JME_RX_FIFO_SIZE) 2728 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2729 else 2730 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW; 2731 } 2732 sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0); 2733 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT); 2734 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK; 2735 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2736 2737 /* Set Rx descriptor counter. */ 2738 CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT); 2739 2740 /* Set Rx ring address to the hardware. */ 2741 paddr = JME_RX_RING_ADDR(sc, 0); 2742 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2743 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2744 2745 /* Clear receive filter. */ 2746 CSR_WRITE_4(sc, JME_RXMAC, 0); 2747 /* Set up the receive filter. */ 2748 jme_set_filter(sc); 2749 jme_set_vlan(sc); 2750 2751 /* 2752 * Disable all WOL bits as WOL can interfere normal Rx 2753 * operation. Also clear WOL detection status bits. 2754 */ 2755 reg = CSR_READ_4(sc, JME_PMCS); 2756 reg &= ~PMCS_WOL_ENB_MASK; 2757 CSR_WRITE_4(sc, JME_PMCS, reg); 2758 2759 reg = CSR_READ_4(sc, JME_RXMAC); 2760 /* 2761 * Pad 10bytes right before received frame. This will greatly 2762 * help Rx performance on strict-alignment architectures as 2763 * it does not need to copy the frame to align the payload. 2764 */ 2765 reg |= RXMAC_PAD_10BYTES; 2766 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2767 reg |= RXMAC_CSUM_ENB; 2768 CSR_WRITE_4(sc, JME_RXMAC, reg); 2769 2770 /* Configure general purpose reg0 */ 2771 reg = CSR_READ_4(sc, JME_GPREG0); 2772 reg &= ~GPREG0_PCC_UNIT_MASK; 2773 /* Set PCC timer resolution to micro-seconds unit. */ 2774 reg |= GPREG0_PCC_UNIT_US; 2775 /* 2776 * Disable all shadow register posting as we have to read 2777 * JME_INTR_STATUS register in jme_int_task. Also it seems 2778 * that it's hard to synchronize interrupt status between 2779 * hardware and software with shadow posting due to 2780 * requirements of bus_dmamap_sync(9). 2781 */ 2782 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS | 2783 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS | 2784 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS | 2785 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS; 2786 /* Disable posting of DW0. */ 2787 reg &= ~GPREG0_POST_DW0_ENB; 2788 /* Clear PME message. */ 2789 reg &= ~GPREG0_PME_ENB; 2790 /* Set PHY address. */ 2791 reg &= ~GPREG0_PHY_ADDR_MASK; 2792 reg |= sc->jme_phyaddr; 2793 CSR_WRITE_4(sc, JME_GPREG0, reg); 2794 2795 /* Configure Tx queue 0 packet completion coalescing. */ 2796 reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) & 2797 PCCTX_COAL_TO_MASK; 2798 reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) & 2799 PCCTX_COAL_PKT_MASK; 2800 reg |= PCCTX_COAL_TXQ0; 2801 CSR_WRITE_4(sc, JME_PCCTX, reg); 2802 2803 /* Configure Rx queue 0 packet completion coalescing. */ 2804 reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) & 2805 PCCRX_COAL_TO_MASK; 2806 reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) & 2807 PCCRX_COAL_PKT_MASK; 2808 CSR_WRITE_4(sc, JME_PCCRX0, reg); 2809 2810 /* Configure shadow status block but don't enable posting. */ 2811 paddr = sc->jme_rdata.jme_ssb_block_paddr; 2812 CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr)); 2813 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr)); 2814 2815 /* Disable Timer 1 and Timer 2. */ 2816 CSR_WRITE_4(sc, JME_TIMER1, 0); 2817 CSR_WRITE_4(sc, JME_TIMER2, 0); 2818 2819 /* Configure retry transmit period, retry limit value. */ 2820 CSR_WRITE_4(sc, JME_TXTRHD, 2821 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) & 2822 TXTRHD_RT_PERIOD_MASK) | 2823 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) & 2824 TXTRHD_RT_LIMIT_SHIFT)); 2825 2826 /* Disable RSS. */ 2827 CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS); 2828 2829 /* Initialize the interrupt mask. */ 2830 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2831 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 2832 2833 /* 2834 * Enabling Tx/Rx DMA engines and Rx queue processing is 2835 * done after detection of valid link in jme_link_task. 2836 */ 2837 2838 sc->jme_flags &= ~JME_FLAG_LINK; 2839 /* Set the current media. */ 2840 mii_mediachg(mii); 2841 2842 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2843 2844 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2845 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2846 } 2847 2848 static void 2849 jme_stop(struct jme_softc *sc) 2850 { 2851 struct ifnet *ifp; 2852 struct jme_txdesc *txd; 2853 struct jme_rxdesc *rxd; 2854 int i; 2855 2856 JME_LOCK_ASSERT(sc); 2857 /* 2858 * Mark the interface down and cancel the watchdog timer. 2859 */ 2860 ifp = sc->jme_ifp; 2861 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2862 sc->jme_flags &= ~JME_FLAG_LINK; 2863 callout_stop(&sc->jme_tick_ch); 2864 sc->jme_watchdog_timer = 0; 2865 2866 /* 2867 * Disable interrupts. 2868 */ 2869 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2870 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 2871 2872 /* Disable updating shadow status block. */ 2873 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, 2874 CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB); 2875 2876 /* Stop receiver, transmitter. */ 2877 jme_stop_rx(sc); 2878 jme_stop_tx(sc); 2879 2880 /* Reclaim Rx/Tx buffers that have been completed. */ 2881 jme_rxintr(sc, JME_RX_RING_CNT); 2882 if (sc->jme_cdata.jme_rxhead != NULL) 2883 m_freem(sc->jme_cdata.jme_rxhead); 2884 JME_RXCHAIN_RESET(sc); 2885 jme_txeof(sc); 2886 /* 2887 * Free RX and TX mbufs still in the queues. 2888 */ 2889 for (i = 0; i < JME_RX_RING_CNT; i++) { 2890 rxd = &sc->jme_cdata.jme_rxdesc[i]; 2891 if (rxd->rx_m != NULL) { 2892 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, 2893 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2894 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, 2895 rxd->rx_dmamap); 2896 m_freem(rxd->rx_m); 2897 rxd->rx_m = NULL; 2898 } 2899 } 2900 for (i = 0; i < JME_TX_RING_CNT; i++) { 2901 txd = &sc->jme_cdata.jme_txdesc[i]; 2902 if (txd->tx_m != NULL) { 2903 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, 2904 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2905 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, 2906 txd->tx_dmamap); 2907 m_freem(txd->tx_m); 2908 txd->tx_m = NULL; 2909 txd->tx_ndesc = 0; 2910 } 2911 } 2912 jme_stats_update(sc); 2913 jme_stats_save(sc); 2914 } 2915 2916 static void 2917 jme_stop_tx(struct jme_softc *sc) 2918 { 2919 uint32_t reg; 2920 int i; 2921 2922 reg = CSR_READ_4(sc, JME_TXCSR); 2923 if ((reg & TXCSR_TX_ENB) == 0) 2924 return; 2925 reg &= ~TXCSR_TX_ENB; 2926 CSR_WRITE_4(sc, JME_TXCSR, reg); 2927 for (i = JME_TIMEOUT; i > 0; i--) { 2928 DELAY(1); 2929 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0) 2930 break; 2931 } 2932 if (i == 0) 2933 device_printf(sc->jme_dev, "stopping transmitter timeout!\n"); 2934 } 2935 2936 static void 2937 jme_stop_rx(struct jme_softc *sc) 2938 { 2939 uint32_t reg; 2940 int i; 2941 2942 reg = CSR_READ_4(sc, JME_RXCSR); 2943 if ((reg & RXCSR_RX_ENB) == 0) 2944 return; 2945 reg &= ~RXCSR_RX_ENB; 2946 CSR_WRITE_4(sc, JME_RXCSR, reg); 2947 for (i = JME_TIMEOUT; i > 0; i--) { 2948 DELAY(1); 2949 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0) 2950 break; 2951 } 2952 if (i == 0) 2953 device_printf(sc->jme_dev, "stopping recevier timeout!\n"); 2954 } 2955 2956 static void 2957 jme_init_tx_ring(struct jme_softc *sc) 2958 { 2959 struct jme_ring_data *rd; 2960 struct jme_txdesc *txd; 2961 int i; 2962 2963 sc->jme_cdata.jme_tx_prod = 0; 2964 sc->jme_cdata.jme_tx_cons = 0; 2965 sc->jme_cdata.jme_tx_cnt = 0; 2966 2967 rd = &sc->jme_rdata; 2968 bzero(rd->jme_tx_ring, JME_TX_RING_SIZE); 2969 for (i = 0; i < JME_TX_RING_CNT; i++) { 2970 txd = &sc->jme_cdata.jme_txdesc[i]; 2971 txd->tx_m = NULL; 2972 txd->tx_desc = &rd->jme_tx_ring[i]; 2973 txd->tx_ndesc = 0; 2974 } 2975 2976 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2977 sc->jme_cdata.jme_tx_ring_map, 2978 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2979 } 2980 2981 static void 2982 jme_init_ssb(struct jme_softc *sc) 2983 { 2984 struct jme_ring_data *rd; 2985 2986 rd = &sc->jme_rdata; 2987 bzero(rd->jme_ssb_block, JME_SSB_SIZE); 2988 bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map, 2989 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2990 } 2991 2992 static int 2993 jme_init_rx_ring(struct jme_softc *sc) 2994 { 2995 struct jme_ring_data *rd; 2996 struct jme_rxdesc *rxd; 2997 int i; 2998 2999 sc->jme_cdata.jme_rx_cons = 0; 3000 JME_RXCHAIN_RESET(sc); 3001 atomic_set_int(&sc->jme_morework, 0); 3002 3003 rd = &sc->jme_rdata; 3004 bzero(rd->jme_rx_ring, JME_RX_RING_SIZE); 3005 for (i = 0; i < JME_RX_RING_CNT; i++) { 3006 rxd = &sc->jme_cdata.jme_rxdesc[i]; 3007 rxd->rx_m = NULL; 3008 rxd->rx_desc = &rd->jme_rx_ring[i]; 3009 if (jme_newbuf(sc, rxd) != 0) 3010 return (ENOBUFS); 3011 } 3012 3013 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 3014 sc->jme_cdata.jme_rx_ring_map, 3015 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3016 3017 return (0); 3018 } 3019 3020 static int 3021 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd) 3022 { 3023 struct jme_desc *desc; 3024 struct mbuf *m; 3025 bus_dma_segment_t segs[1]; 3026 bus_dmamap_t map; 3027 int nsegs; 3028 3029 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3030 if (m == NULL) 3031 return (ENOBUFS); 3032 /* 3033 * JMC250 has 64bit boundary alignment limitation so jme(4) 3034 * takes advantage of 10 bytes padding feature of hardware 3035 * in order not to copy entire frame to align IP header on 3036 * 32bit boundary. 3037 */ 3038 m->m_len = m->m_pkthdr.len = MCLBYTES; 3039 3040 if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag, 3041 sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3042 m_freem(m); 3043 return (ENOBUFS); 3044 } 3045 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3046 3047 if (rxd->rx_m != NULL) { 3048 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3049 BUS_DMASYNC_POSTREAD); 3050 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap); 3051 } 3052 map = rxd->rx_dmamap; 3053 rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap; 3054 sc->jme_cdata.jme_rx_sparemap = map; 3055 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3056 BUS_DMASYNC_PREREAD); 3057 rxd->rx_m = m; 3058 3059 desc = rxd->rx_desc; 3060 desc->buflen = htole32(segs[0].ds_len); 3061 desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr)); 3062 desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr)); 3063 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 3064 3065 return (0); 3066 } 3067 3068 static void 3069 jme_set_vlan(struct jme_softc *sc) 3070 { 3071 struct ifnet *ifp; 3072 uint32_t reg; 3073 3074 JME_LOCK_ASSERT(sc); 3075 3076 ifp = sc->jme_ifp; 3077 reg = CSR_READ_4(sc, JME_RXMAC); 3078 reg &= ~RXMAC_VLAN_ENB; 3079 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3080 reg |= RXMAC_VLAN_ENB; 3081 CSR_WRITE_4(sc, JME_RXMAC, reg); 3082 } 3083 3084 static void 3085 jme_set_filter(struct jme_softc *sc) 3086 { 3087 struct ifnet *ifp; 3088 struct ifmultiaddr *ifma; 3089 uint32_t crc; 3090 uint32_t mchash[2]; 3091 uint32_t rxcfg; 3092 3093 JME_LOCK_ASSERT(sc); 3094 3095 ifp = sc->jme_ifp; 3096 3097 rxcfg = CSR_READ_4(sc, JME_RXMAC); 3098 rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST | 3099 RXMAC_ALLMULTI); 3100 /* Always accept frames destined to our station address. */ 3101 rxcfg |= RXMAC_UNICAST; 3102 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3103 rxcfg |= RXMAC_BROADCAST; 3104 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3105 if ((ifp->if_flags & IFF_PROMISC) != 0) 3106 rxcfg |= RXMAC_PROMISC; 3107 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3108 rxcfg |= RXMAC_ALLMULTI; 3109 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF); 3110 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF); 3111 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3112 return; 3113 } 3114 3115 /* 3116 * Set up the multicast address filter by passing all multicast 3117 * addresses through a CRC generator, and then using the low-order 3118 * 6 bits as an index into the 64 bit multicast hash table. The 3119 * high order bits select the register, while the rest of the bits 3120 * select the bit within the register. 3121 */ 3122 rxcfg |= RXMAC_MULTICAST; 3123 bzero(mchash, sizeof(mchash)); 3124 3125 if_maddr_rlock(ifp); 3126 TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) { 3127 if (ifma->ifma_addr->sa_family != AF_LINK) 3128 continue; 3129 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3130 ifma->ifma_addr), ETHER_ADDR_LEN); 3131 3132 /* Just want the 6 least significant bits. */ 3133 crc &= 0x3f; 3134 3135 /* Set the corresponding bit in the hash table. */ 3136 mchash[crc >> 5] |= 1 << (crc & 0x1f); 3137 } 3138 if_maddr_runlock(ifp); 3139 3140 CSR_WRITE_4(sc, JME_MAR0, mchash[0]); 3141 CSR_WRITE_4(sc, JME_MAR1, mchash[1]); 3142 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3143 } 3144 3145 static void 3146 jme_stats_clear(struct jme_softc *sc) 3147 { 3148 3149 JME_LOCK_ASSERT(sc); 3150 3151 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3152 return; 3153 3154 /* Disable and clear counters. */ 3155 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3156 /* Activate hw counters. */ 3157 CSR_WRITE_4(sc, JME_STATCSR, 0); 3158 CSR_READ_4(sc, JME_STATCSR); 3159 bzero(&sc->jme_stats, sizeof(struct jme_hw_stats)); 3160 } 3161 3162 static void 3163 jme_stats_save(struct jme_softc *sc) 3164 { 3165 3166 JME_LOCK_ASSERT(sc); 3167 3168 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3169 return; 3170 /* Save current counters. */ 3171 bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats)); 3172 /* Disable and clear counters. */ 3173 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3174 } 3175 3176 static void 3177 jme_stats_update(struct jme_softc *sc) 3178 { 3179 struct jme_hw_stats *stat, *ostat; 3180 uint32_t reg; 3181 3182 JME_LOCK_ASSERT(sc); 3183 3184 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3185 return; 3186 stat = &sc->jme_stats; 3187 ostat = &sc->jme_ostats; 3188 stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD); 3189 stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD); 3190 reg = CSR_READ_4(sc, JME_STAT_CRCMII); 3191 stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >> 3192 STAT_RX_CRC_ERR_SHIFT; 3193 stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >> 3194 STAT_RX_MII_ERR_SHIFT; 3195 reg = CSR_READ_4(sc, JME_STAT_RXERR); 3196 stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >> 3197 STAT_RXERR_OFLOW_SHIFT; 3198 stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >> 3199 STAT_RXERR_MPTY_SHIFT; 3200 reg = CSR_READ_4(sc, JME_STAT_FAIL); 3201 stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT; 3202 stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT; 3203 3204 /* Account for previous counters. */ 3205 stat->rx_good_frames += ostat->rx_good_frames; 3206 stat->rx_crc_errs += ostat->rx_crc_errs; 3207 stat->rx_mii_errs += ostat->rx_mii_errs; 3208 stat->rx_fifo_oflows += ostat->rx_fifo_oflows; 3209 stat->rx_desc_empty += ostat->rx_desc_empty; 3210 stat->rx_bad_frames += ostat->rx_bad_frames; 3211 stat->tx_good_frames += ostat->tx_good_frames; 3212 stat->tx_bad_frames += ostat->tx_bad_frames; 3213 } 3214 3215 static int 3216 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3217 { 3218 int error, value; 3219 3220 if (arg1 == NULL) 3221 return (EINVAL); 3222 value = *(int *)arg1; 3223 error = sysctl_handle_int(oidp, &value, 0, req); 3224 if (error || req->newptr == NULL) 3225 return (error); 3226 if (value < low || value > high) 3227 return (EINVAL); 3228 *(int *)arg1 = value; 3229 3230 return (0); 3231 } 3232 3233 static int 3234 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS) 3235 { 3236 return (sysctl_int_range(oidp, arg1, arg2, req, 3237 PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX)); 3238 } 3239 3240 static int 3241 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS) 3242 { 3243 return (sysctl_int_range(oidp, arg1, arg2, req, 3244 PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX)); 3245 } 3246 3247 static int 3248 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS) 3249 { 3250 return (sysctl_int_range(oidp, arg1, arg2, req, 3251 PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX)); 3252 } 3253 3254 static int 3255 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS) 3256 { 3257 return (sysctl_int_range(oidp, arg1, arg2, req, 3258 PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX)); 3259 } 3260 3261 static int 3262 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS) 3263 { 3264 return (sysctl_int_range(oidp, arg1, arg2, req, 3265 JME_PROC_MIN, JME_PROC_MAX)); 3266 } 3267