xref: /freebsd/sys/dev/jme/if_jme.c (revision 6829dae12bb055451fa467da4589c43bd03b1e64)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/rman.h>
41 #include <sys/module.h>
42 #include <sys/proc.h>
43 #include <sys/queue.h>
44 #include <sys/socket.h>
45 #include <sys/sockio.h>
46 #include <sys/sysctl.h>
47 #include <sys/taskqueue.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_arp.h>
53 #include <net/ethernet.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/if_types.h>
57 #include <net/if_vlan_var.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/ip.h>
62 #include <netinet/tcp.h>
63 
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66 
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 
70 #include <machine/bus.h>
71 #include <machine/in_cksum.h>
72 
73 #include <dev/jme/if_jmereg.h>
74 #include <dev/jme/if_jmevar.h>
75 
76 /* "device miibus" required.  See GENERIC if you get errors here. */
77 #include "miibus_if.h"
78 
79 /* Define the following to disable printing Rx errors. */
80 #undef	JME_SHOW_ERRORS
81 
82 #define	JME_CSUM_FEATURES	(CSUM_IP | CSUM_TCP | CSUM_UDP)
83 
84 MODULE_DEPEND(jme, pci, 1, 1, 1);
85 MODULE_DEPEND(jme, ether, 1, 1, 1);
86 MODULE_DEPEND(jme, miibus, 1, 1, 1);
87 
88 /* Tunables. */
89 static int msi_disable = 0;
90 static int msix_disable = 0;
91 TUNABLE_INT("hw.jme.msi_disable", &msi_disable);
92 TUNABLE_INT("hw.jme.msix_disable", &msix_disable);
93 
94 /*
95  * Devices supported by this driver.
96  */
97 static struct jme_dev {
98 	uint16_t	jme_vendorid;
99 	uint16_t	jme_deviceid;
100 	const char	*jme_name;
101 } jme_devs[] = {
102 	{ VENDORID_JMICRON, DEVICEID_JMC250,
103 	    "JMicron Inc, JMC25x Gigabit Ethernet" },
104 	{ VENDORID_JMICRON, DEVICEID_JMC260,
105 	    "JMicron Inc, JMC26x Fast Ethernet" },
106 };
107 
108 static int jme_miibus_readreg(device_t, int, int);
109 static int jme_miibus_writereg(device_t, int, int, int);
110 static void jme_miibus_statchg(device_t);
111 static void jme_mediastatus(struct ifnet *, struct ifmediareq *);
112 static int jme_mediachange(struct ifnet *);
113 static int jme_probe(device_t);
114 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
115 static int jme_eeprom_macaddr(struct jme_softc *);
116 static int jme_efuse_macaddr(struct jme_softc *);
117 static void jme_reg_macaddr(struct jme_softc *);
118 static void jme_set_macaddr(struct jme_softc *, uint8_t *);
119 static void jme_map_intr_vector(struct jme_softc *);
120 static int jme_attach(device_t);
121 static int jme_detach(device_t);
122 static void jme_sysctl_node(struct jme_softc *);
123 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int);
124 static int jme_dma_alloc(struct jme_softc *);
125 static void jme_dma_free(struct jme_softc *);
126 static int jme_shutdown(device_t);
127 static void jme_setlinkspeed(struct jme_softc *);
128 static void jme_setwol(struct jme_softc *);
129 static int jme_suspend(device_t);
130 static int jme_resume(device_t);
131 static int jme_encap(struct jme_softc *, struct mbuf **);
132 static void jme_start(struct ifnet *);
133 static void jme_start_locked(struct ifnet *);
134 static void jme_watchdog(struct jme_softc *);
135 static int jme_ioctl(struct ifnet *, u_long, caddr_t);
136 static void jme_mac_config(struct jme_softc *);
137 static void jme_link_task(void *, int);
138 static int jme_intr(void *);
139 static void jme_int_task(void *, int);
140 static void jme_txeof(struct jme_softc *);
141 static __inline void jme_discard_rxbuf(struct jme_softc *, int);
142 static void jme_rxeof(struct jme_softc *);
143 static int jme_rxintr(struct jme_softc *, int);
144 static void jme_tick(void *);
145 static void jme_reset(struct jme_softc *);
146 static void jme_init(void *);
147 static void jme_init_locked(struct jme_softc *);
148 static void jme_stop(struct jme_softc *);
149 static void jme_stop_tx(struct jme_softc *);
150 static void jme_stop_rx(struct jme_softc *);
151 static int jme_init_rx_ring(struct jme_softc *);
152 static void jme_init_tx_ring(struct jme_softc *);
153 static void jme_init_ssb(struct jme_softc *);
154 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *);
155 static void jme_set_vlan(struct jme_softc *);
156 static void jme_set_filter(struct jme_softc *);
157 static void jme_stats_clear(struct jme_softc *);
158 static void jme_stats_save(struct jme_softc *);
159 static void jme_stats_update(struct jme_softc *);
160 static void jme_phy_down(struct jme_softc *);
161 static void jme_phy_up(struct jme_softc *);
162 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
163 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS);
164 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS);
165 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS);
166 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS);
167 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS);
168 
169 
170 static device_method_t jme_methods[] = {
171 	/* Device interface. */
172 	DEVMETHOD(device_probe,		jme_probe),
173 	DEVMETHOD(device_attach,	jme_attach),
174 	DEVMETHOD(device_detach,	jme_detach),
175 	DEVMETHOD(device_shutdown,	jme_shutdown),
176 	DEVMETHOD(device_suspend,	jme_suspend),
177 	DEVMETHOD(device_resume,	jme_resume),
178 
179 	/* MII interface. */
180 	DEVMETHOD(miibus_readreg,	jme_miibus_readreg),
181 	DEVMETHOD(miibus_writereg,	jme_miibus_writereg),
182 	DEVMETHOD(miibus_statchg,	jme_miibus_statchg),
183 
184 	{ NULL, NULL }
185 };
186 
187 static driver_t jme_driver = {
188 	"jme",
189 	jme_methods,
190 	sizeof(struct jme_softc)
191 };
192 
193 static devclass_t jme_devclass;
194 
195 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0);
196 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0);
197 
198 static struct resource_spec jme_res_spec_mem[] = {
199 	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
200 	{ -1,			0,		0 }
201 };
202 
203 static struct resource_spec jme_irq_spec_legacy[] = {
204 	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
205 	{ -1,			0,		0 }
206 };
207 
208 static struct resource_spec jme_irq_spec_msi[] = {
209 	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
210 	{ -1,			0,		0 }
211 };
212 
213 /*
214  *	Read a PHY register on the MII of the JMC250.
215  */
216 static int
217 jme_miibus_readreg(device_t dev, int phy, int reg)
218 {
219 	struct jme_softc *sc;
220 	uint32_t val;
221 	int i;
222 
223 	sc = device_get_softc(dev);
224 
225 	/* For FPGA version, PHY address 0 should be ignored. */
226 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
227 		return (0);
228 
229 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE |
230 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
231 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
232 		DELAY(1);
233 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
234 			break;
235 	}
236 
237 	if (i == 0) {
238 		device_printf(sc->jme_dev, "phy read timeout : %d\n", reg);
239 		return (0);
240 	}
241 
242 	return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT);
243 }
244 
245 /*
246  *	Write a PHY register on the MII of the JMC250.
247  */
248 static int
249 jme_miibus_writereg(device_t dev, int phy, int reg, int val)
250 {
251 	struct jme_softc *sc;
252 	int i;
253 
254 	sc = device_get_softc(dev);
255 
256 	/* For FPGA version, PHY address 0 should be ignored. */
257 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0)
258 		return (0);
259 
260 	CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE |
261 	    ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
262 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
263 	for (i = JME_PHY_TIMEOUT; i > 0; i--) {
264 		DELAY(1);
265 		if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0)
266 			break;
267 	}
268 
269 	if (i == 0)
270 		device_printf(sc->jme_dev, "phy write timeout : %d\n", reg);
271 
272 	return (0);
273 }
274 
275 /*
276  *	Callback from MII layer when media changes.
277  */
278 static void
279 jme_miibus_statchg(device_t dev)
280 {
281 	struct jme_softc *sc;
282 
283 	sc = device_get_softc(dev);
284 	taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task);
285 }
286 
287 /*
288  *	Get the current interface media status.
289  */
290 static void
291 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
292 {
293 	struct jme_softc *sc;
294 	struct mii_data *mii;
295 
296 	sc = ifp->if_softc;
297 	JME_LOCK(sc);
298 	if ((ifp->if_flags & IFF_UP) == 0) {
299 		JME_UNLOCK(sc);
300 		return;
301 	}
302 	mii = device_get_softc(sc->jme_miibus);
303 
304 	mii_pollstat(mii);
305 	ifmr->ifm_status = mii->mii_media_status;
306 	ifmr->ifm_active = mii->mii_media_active;
307 	JME_UNLOCK(sc);
308 }
309 
310 /*
311  *	Set hardware to newly-selected media.
312  */
313 static int
314 jme_mediachange(struct ifnet *ifp)
315 {
316 	struct jme_softc *sc;
317 	struct mii_data *mii;
318 	struct mii_softc *miisc;
319 	int error;
320 
321 	sc = ifp->if_softc;
322 	JME_LOCK(sc);
323 	mii = device_get_softc(sc->jme_miibus);
324 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
325 		PHY_RESET(miisc);
326 	error = mii_mediachg(mii);
327 	JME_UNLOCK(sc);
328 
329 	return (error);
330 }
331 
332 static int
333 jme_probe(device_t dev)
334 {
335 	struct jme_dev *sp;
336 	int i;
337 	uint16_t vendor, devid;
338 
339 	vendor = pci_get_vendor(dev);
340 	devid = pci_get_device(dev);
341 	sp = jme_devs;
342 	for (i = 0; i < nitems(jme_devs); i++, sp++) {
343 		if (vendor == sp->jme_vendorid &&
344 		    devid == sp->jme_deviceid) {
345 			device_set_desc(dev, sp->jme_name);
346 			return (BUS_PROBE_DEFAULT);
347 		}
348 	}
349 
350 	return (ENXIO);
351 }
352 
353 static int
354 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
355 {
356 	uint32_t reg;
357 	int i;
358 
359 	*val = 0;
360 	for (i = JME_TIMEOUT; i > 0; i--) {
361 		reg = CSR_READ_4(sc, JME_SMBCSR);
362 		if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
363 			break;
364 		DELAY(1);
365 	}
366 
367 	if (i == 0) {
368 		device_printf(sc->jme_dev, "EEPROM idle timeout!\n");
369 		return (ETIMEDOUT);
370 	}
371 
372 	reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
373 	CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
374 	for (i = JME_TIMEOUT; i > 0; i--) {
375 		DELAY(1);
376 		reg = CSR_READ_4(sc, JME_SMBINTF);
377 		if ((reg & SMBINTF_CMD_TRIGGER) == 0)
378 			break;
379 	}
380 
381 	if (i == 0) {
382 		device_printf(sc->jme_dev, "EEPROM read timeout!\n");
383 		return (ETIMEDOUT);
384 	}
385 
386 	reg = CSR_READ_4(sc, JME_SMBINTF);
387 	*val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
388 
389 	return (0);
390 }
391 
392 static int
393 jme_eeprom_macaddr(struct jme_softc *sc)
394 {
395 	uint8_t eaddr[ETHER_ADDR_LEN];
396 	uint8_t fup, reg, val;
397 	uint32_t offset;
398 	int match;
399 
400 	offset = 0;
401 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
402 	    fup != JME_EEPROM_SIG0)
403 		return (ENOENT);
404 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
405 	    fup != JME_EEPROM_SIG1)
406 		return (ENOENT);
407 	match = 0;
408 	do {
409 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
410 			break;
411 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) ==
412 		    (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
413 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
414 				break;
415 			if (reg >= JME_PAR0 &&
416 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
417 				if (jme_eeprom_read_byte(sc, offset + 2,
418 				    &val) != 0)
419 					break;
420 				eaddr[reg - JME_PAR0] = val;
421 				match++;
422 			}
423 		}
424 		/* Check for the end of EEPROM descriptor. */
425 		if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END)
426 			break;
427 		/* Try next eeprom descriptor. */
428 		offset += JME_EEPROM_DESC_BYTES;
429 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
430 
431 	if (match == ETHER_ADDR_LEN) {
432 		bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN);
433 		return (0);
434 	}
435 
436 	return (ENOENT);
437 }
438 
439 static int
440 jme_efuse_macaddr(struct jme_softc *sc)
441 {
442 	uint32_t reg;
443 	int i;
444 
445 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
446 	if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) !=
447 	    EFUSE_CTL1_AUTOLAOD_DONE)
448 		return (ENOENT);
449 	/* Reset eFuse controller. */
450 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
451 	reg |= EFUSE_CTL2_RESET;
452 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
453 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4);
454 	reg &= ~EFUSE_CTL2_RESET;
455 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4);
456 
457 	/* Have eFuse reload station address to MAC controller. */
458 	reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
459 	reg &= ~EFUSE_CTL1_CMD_MASK;
460 	reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE;
461 	pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4);
462 
463 	/*
464 	 * Verify completion of eFuse autload command.  It should be
465 	 * completed within 108us.
466 	 */
467 	DELAY(110);
468 	for (i = 10; i > 0; i--) {
469 		reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4);
470 		if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR |
471 		    EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) {
472 			DELAY(20);
473 			continue;
474 		}
475 		if ((reg & EFUSE_CTL1_EXECUTE) == 0)
476 			break;
477 		/* Station address loading is still in progress. */
478 		DELAY(20);
479 	}
480 	if (i == 0) {
481 		device_printf(sc->jme_dev, "eFuse autoload timed out.\n");
482 		return (ETIMEDOUT);
483 	}
484 
485 	return (0);
486 }
487 
488 static void
489 jme_reg_macaddr(struct jme_softc *sc)
490 {
491 	uint32_t par0, par1;
492 
493 	/* Read station address. */
494 	par0 = CSR_READ_4(sc, JME_PAR0);
495 	par1 = CSR_READ_4(sc, JME_PAR1);
496 	par1 &= 0xFFFF;
497 	if ((par0 == 0 && par1 == 0) ||
498 	    (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) {
499 		device_printf(sc->jme_dev,
500 		    "Failed to retrieve Ethernet address.\n");
501 	} else {
502 		/*
503 		 * For controllers that use eFuse, the station address
504 		 * could also be extracted from JME_PCI_PAR0 and
505 		 * JME_PCI_PAR1 registers in PCI configuration space.
506 		 * Each register holds exactly half of station address(24bits)
507 		 * so use JME_PAR0, JME_PAR1 registers instead.
508 		 */
509 		sc->jme_eaddr[0] = (par0 >> 0) & 0xFF;
510 		sc->jme_eaddr[1] = (par0 >> 8) & 0xFF;
511 		sc->jme_eaddr[2] = (par0 >> 16) & 0xFF;
512 		sc->jme_eaddr[3] = (par0 >> 24) & 0xFF;
513 		sc->jme_eaddr[4] = (par1 >> 0) & 0xFF;
514 		sc->jme_eaddr[5] = (par1 >> 8) & 0xFF;
515 	}
516 }
517 
518 static void
519 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr)
520 {
521 	uint32_t val;
522 	int i;
523 
524 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
525 		/*
526 		 * Avoid reprogramming station address if the address
527 		 * is the same as previous one.  Note, reprogrammed
528 		 * station address is permanent as if it was written
529 		 * to EEPROM. So if station address was changed by
530 		 * admistrator it's possible to lose factory configured
531 		 * address when driver fails to restore its address.
532 		 * (e.g. reboot or system crash)
533 		 */
534 		if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) {
535 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
536 				val = JME_EFUSE_EEPROM_FUNC0 <<
537 				    JME_EFUSE_EEPROM_FUNC_SHIFT;
538 				val |= JME_EFUSE_EEPROM_PAGE_BAR1 <<
539 				    JME_EFUSE_EEPROM_PAGE_SHIFT;
540 				val |= (JME_PAR0 + i) <<
541 				    JME_EFUSE_EEPROM_ADDR_SHIFT;
542 				val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT;
543 				pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM,
544 				    val | JME_EFUSE_EEPROM_WRITE, 4);
545 			}
546 		}
547 	} else {
548 		CSR_WRITE_4(sc, JME_PAR0,
549 		    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
550 		CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]);
551 	}
552 }
553 
554 static void
555 jme_map_intr_vector(struct jme_softc *sc)
556 {
557 	uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES];
558 
559 	bzero(map, sizeof(map));
560 
561 	/* Map Tx interrupts source to MSI/MSIX vector 2. */
562 	map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] |=
563 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP);
564 	map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |=
565 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP);
566 	map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |=
567 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP);
568 	map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |=
569 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP);
570 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
571 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP);
572 	map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |=
573 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP);
574 	map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |=
575 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP);
576 	map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |=
577 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP);
578 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |=
579 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL);
580 	map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |=
581 	    MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO);
582 
583 	/* Map Rx interrupts source to MSI/MSIX vector 1. */
584 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] |=
585 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP);
586 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] |=
587 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP);
588 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] |=
589 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP);
590 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] |=
591 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP);
592 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] |=
593 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY);
594 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] |=
595 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY);
596 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] |=
597 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY);
598 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] |=
599 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY);
600 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] |=
601 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL);
602 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] |=
603 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL);
604 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] |=
605 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL);
606 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] |=
607 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL);
608 	map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] |=
609 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO);
610 	map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] |=
611 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO);
612 	map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] |=
613 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO);
614 	map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] |=
615 	    MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO);
616 
617 	/* Map all other interrupts source to MSI/MSIX vector 0. */
618 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]);
619 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]);
620 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]);
621 	CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]);
622 }
623 
624 static int
625 jme_attach(device_t dev)
626 {
627 	struct jme_softc *sc;
628 	struct ifnet *ifp;
629 	struct mii_softc *miisc;
630 	struct mii_data *mii;
631 	uint32_t reg;
632 	uint16_t burst;
633 	int error, i, mii_flags, msic, msixc, pmc;
634 
635 	error = 0;
636 	sc = device_get_softc(dev);
637 	sc->jme_dev = dev;
638 
639 	mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
640 	    MTX_DEF);
641 	callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0);
642 	TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc);
643 	TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc);
644 
645 	/*
646 	 * Map the device. JMC250 supports both memory mapped and I/O
647 	 * register space access. Because I/O register access should
648 	 * use different BARs to access registers it's waste of time
649 	 * to use I/O register spce access. JMC250 uses 16K to map
650 	 * entire memory space.
651 	 */
652 	pci_enable_busmaster(dev);
653 	sc->jme_res_spec = jme_res_spec_mem;
654 	sc->jme_irq_spec = jme_irq_spec_legacy;
655 	error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res);
656 	if (error != 0) {
657 		device_printf(dev, "cannot allocate memory resources.\n");
658 		goto fail;
659 	}
660 
661 	/* Allocate IRQ resources. */
662 	msixc = pci_msix_count(dev);
663 	msic = pci_msi_count(dev);
664 	if (bootverbose) {
665 		device_printf(dev, "MSIX count : %d\n", msixc);
666 		device_printf(dev, "MSI count : %d\n", msic);
667 	}
668 
669 	/* Use 1 MSI/MSI-X. */
670 	if (msixc > 1)
671 		msixc = 1;
672 	if (msic > 1)
673 		msic = 1;
674 	/* Prefer MSIX over MSI. */
675 	if (msix_disable == 0 || msi_disable == 0) {
676 		if (msix_disable == 0 && msixc > 0 &&
677 		    pci_alloc_msix(dev, &msixc) == 0) {
678 			if (msixc == 1) {
679 				device_printf(dev, "Using %d MSIX messages.\n",
680 				    msixc);
681 				sc->jme_flags |= JME_FLAG_MSIX;
682 				sc->jme_irq_spec = jme_irq_spec_msi;
683 			} else
684 				pci_release_msi(dev);
685 		}
686 		if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 &&
687 		    msic > 0 && pci_alloc_msi(dev, &msic) == 0) {
688 			if (msic == 1) {
689 				device_printf(dev, "Using %d MSI messages.\n",
690 				    msic);
691 				sc->jme_flags |= JME_FLAG_MSI;
692 				sc->jme_irq_spec = jme_irq_spec_msi;
693 			} else
694 				pci_release_msi(dev);
695 		}
696 		/* Map interrupt vector 0, 1 and 2. */
697 		if ((sc->jme_flags & JME_FLAG_MSI) != 0 ||
698 		    (sc->jme_flags & JME_FLAG_MSIX) != 0)
699 			jme_map_intr_vector(sc);
700 	}
701 
702 	error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq);
703 	if (error != 0) {
704 		device_printf(dev, "cannot allocate IRQ resources.\n");
705 		goto fail;
706 	}
707 
708 	sc->jme_rev = pci_get_device(dev);
709 	if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) {
710 		sc->jme_flags |= JME_FLAG_FASTETH;
711 		sc->jme_flags |= JME_FLAG_NOJUMBO;
712 	}
713 	reg = CSR_READ_4(sc, JME_CHIPMODE);
714 	sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
715 	if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
716 	    CHIPMODE_NOT_FPGA)
717 		sc->jme_flags |= JME_FLAG_FPGA;
718 	if (bootverbose) {
719 		device_printf(dev, "PCI device revision : 0x%04x\n",
720 		    sc->jme_rev);
721 		device_printf(dev, "Chip revision : 0x%02x\n",
722 		    sc->jme_chip_rev);
723 		if ((sc->jme_flags & JME_FLAG_FPGA) != 0)
724 			device_printf(dev, "FPGA revision : 0x%04x\n",
725 			    (reg & CHIPMODE_FPGA_REV_MASK) >>
726 			    CHIPMODE_FPGA_REV_SHIFT);
727 	}
728 	if (sc->jme_chip_rev == 0xFF) {
729 		device_printf(dev, "Unknown chip revision : 0x%02x\n",
730 		    sc->jme_rev);
731 		error = ENXIO;
732 		goto fail;
733 	}
734 
735 	/* Identify controller features and bugs. */
736 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) {
737 		if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 &&
738 		    CHIPMODE_REVFM(sc->jme_chip_rev) == 2)
739 			sc->jme_flags |= JME_FLAG_DMA32BIT;
740 		if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
741 			sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD;
742 		sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK;
743 		sc->jme_flags |= JME_FLAG_HWMIB;
744 	}
745 
746 	/* Reset the ethernet controller. */
747 	jme_reset(sc);
748 
749 	/* Get station address. */
750 	if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) {
751 		error = jme_efuse_macaddr(sc);
752 		if (error == 0)
753 			jme_reg_macaddr(sc);
754 	} else {
755 		error = ENOENT;
756 		reg = CSR_READ_4(sc, JME_SMBCSR);
757 		if ((reg & SMBCSR_EEPROM_PRESENT) != 0)
758 			error = jme_eeprom_macaddr(sc);
759 		if (error != 0 && bootverbose)
760 			device_printf(sc->jme_dev,
761 			    "ethernet hardware address not found in EEPROM.\n");
762 		if (error != 0)
763 			jme_reg_macaddr(sc);
764 	}
765 
766 	/*
767 	 * Save PHY address.
768 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
769 	 * requires PHY probing to get correct PHY address.
770 	 */
771 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
772 		sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) &
773 		    GPREG0_PHY_ADDR_MASK;
774 		if (bootverbose)
775 			device_printf(dev, "PHY is at address %d.\n",
776 			    sc->jme_phyaddr);
777 	} else
778 		sc->jme_phyaddr = 0;
779 
780 	/* Set max allowable DMA size. */
781 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
782 		sc->jme_flags |= JME_FLAG_PCIE;
783 		burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
784 		if (bootverbose) {
785 			device_printf(dev, "Read request size : %d bytes.\n",
786 			    128 << ((burst >> 12) & 0x07));
787 			device_printf(dev, "TLP payload size : %d bytes.\n",
788 			    128 << ((burst >> 5) & 0x07));
789 		}
790 		switch ((burst >> 12) & 0x07) {
791 		case 0:
792 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128;
793 			break;
794 		case 1:
795 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256;
796 			break;
797 		default:
798 			sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
799 			break;
800 		}
801 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
802 	} else {
803 		sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512;
804 		sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128;
805 	}
806 	/* Create coalescing sysctl node. */
807 	jme_sysctl_node(sc);
808 	if ((error = jme_dma_alloc(sc)) != 0)
809 		goto fail;
810 
811 	ifp = sc->jme_ifp = if_alloc(IFT_ETHER);
812 	if (ifp == NULL) {
813 		device_printf(dev, "cannot allocate ifnet structure.\n");
814 		error = ENXIO;
815 		goto fail;
816 	}
817 
818 	ifp->if_softc = sc;
819 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
820 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
821 	ifp->if_ioctl = jme_ioctl;
822 	ifp->if_start = jme_start;
823 	ifp->if_init = jme_init;
824 	ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1;
825 	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
826 	IFQ_SET_READY(&ifp->if_snd);
827 	/* JMC250 supports Tx/Rx checksum offload as well as TSO. */
828 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
829 	ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO;
830 	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
831 		sc->jme_flags |= JME_FLAG_PMCAP;
832 		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
833 	}
834 	ifp->if_capenable = ifp->if_capabilities;
835 
836 	/* Wakeup PHY. */
837 	jme_phy_up(sc);
838 	mii_flags = MIIF_DOPAUSE;
839 	/* Ask PHY calibration to PHY driver. */
840 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5)
841 		mii_flags |= MIIF_MACPRIV0;
842 	/* Set up MII bus. */
843 	error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange,
844 	    jme_mediastatus, BMSR_DEFCAPMASK,
845 	    sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr,
846 	    MII_OFFSET_ANY, mii_flags);
847 	if (error != 0) {
848 		device_printf(dev, "attaching PHYs failed\n");
849 		goto fail;
850 	}
851 
852 	/*
853 	 * Force PHY to FPGA mode.
854 	 */
855 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
856 		mii = device_get_softc(sc->jme_miibus);
857 		if (mii->mii_instance != 0) {
858 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
859 				if (miisc->mii_phy != 0) {
860 					sc->jme_phyaddr = miisc->mii_phy;
861 					break;
862 				}
863 			}
864 			if (sc->jme_phyaddr != 0) {
865 				device_printf(sc->jme_dev,
866 				    "FPGA PHY is at %d\n", sc->jme_phyaddr);
867 				/* vendor magic. */
868 				jme_miibus_writereg(dev, sc->jme_phyaddr, 27,
869 				    0x0004);
870 			}
871 		}
872 	}
873 
874 	ether_ifattach(ifp, sc->jme_eaddr);
875 
876 	/* VLAN capability setup */
877 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
878 	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
879 	ifp->if_capenable = ifp->if_capabilities;
880 
881 	/* Tell the upper layer(s) we support long frames. */
882 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
883 
884 	/* Create local taskq. */
885 	sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK,
886 	    taskqueue_thread_enqueue, &sc->jme_tq);
887 	if (sc->jme_tq == NULL) {
888 		device_printf(dev, "could not create taskqueue.\n");
889 		ether_ifdetach(ifp);
890 		error = ENXIO;
891 		goto fail;
892 	}
893 	taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq",
894 	    device_get_nameunit(sc->jme_dev));
895 
896 	for (i = 0; i < 1; i++) {
897 		error = bus_setup_intr(dev, sc->jme_irq[i],
898 		    INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc,
899 		    &sc->jme_intrhand[i]);
900 		if (error != 0)
901 			break;
902 	}
903 
904 	if (error != 0) {
905 		device_printf(dev, "could not set up interrupt handler.\n");
906 		taskqueue_free(sc->jme_tq);
907 		sc->jme_tq = NULL;
908 		ether_ifdetach(ifp);
909 		goto fail;
910 	}
911 
912 fail:
913 	if (error != 0)
914 		jme_detach(dev);
915 
916 	return (error);
917 }
918 
919 static int
920 jme_detach(device_t dev)
921 {
922 	struct jme_softc *sc;
923 	struct ifnet *ifp;
924 	int i;
925 
926 	sc = device_get_softc(dev);
927 
928 	ifp = sc->jme_ifp;
929 	if (device_is_attached(dev)) {
930 		JME_LOCK(sc);
931 		sc->jme_flags |= JME_FLAG_DETACH;
932 		jme_stop(sc);
933 		JME_UNLOCK(sc);
934 		callout_drain(&sc->jme_tick_ch);
935 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
936 		taskqueue_drain(taskqueue_swi, &sc->jme_link_task);
937 		/* Restore possibly modified station address. */
938 		if ((sc->jme_flags & JME_FLAG_EFUSE) != 0)
939 			jme_set_macaddr(sc, sc->jme_eaddr);
940 		ether_ifdetach(ifp);
941 	}
942 
943 	if (sc->jme_tq != NULL) {
944 		taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
945 		taskqueue_free(sc->jme_tq);
946 		sc->jme_tq = NULL;
947 	}
948 
949 	if (sc->jme_miibus != NULL) {
950 		device_delete_child(dev, sc->jme_miibus);
951 		sc->jme_miibus = NULL;
952 	}
953 	bus_generic_detach(dev);
954 	jme_dma_free(sc);
955 
956 	if (ifp != NULL) {
957 		if_free(ifp);
958 		sc->jme_ifp = NULL;
959 	}
960 
961 	for (i = 0; i < 1; i++) {
962 		if (sc->jme_intrhand[i] != NULL) {
963 			bus_teardown_intr(dev, sc->jme_irq[i],
964 			    sc->jme_intrhand[i]);
965 			sc->jme_intrhand[i] = NULL;
966 		}
967 	}
968 
969 	if (sc->jme_irq[0] != NULL)
970 		bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq);
971 	if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0)
972 		pci_release_msi(dev);
973 	if (sc->jme_res[0] != NULL)
974 		bus_release_resources(dev, sc->jme_res_spec, sc->jme_res);
975 	mtx_destroy(&sc->jme_mtx);
976 
977 	return (0);
978 }
979 
980 #define	JME_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
981 	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
982 
983 static void
984 jme_sysctl_node(struct jme_softc *sc)
985 {
986 	struct sysctl_ctx_list *ctx;
987 	struct sysctl_oid_list *child, *parent;
988 	struct sysctl_oid *tree;
989 	struct jme_hw_stats *stats;
990 	int error;
991 
992 	stats = &sc->jme_stats;
993 	ctx = device_get_sysctl_ctx(sc->jme_dev);
994 	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev));
995 
996 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to",
997 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0,
998 	    sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout");
999 
1000 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt",
1001 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0,
1002 	    sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet");
1003 
1004 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to",
1005 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0,
1006 	    sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout");
1007 
1008 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt",
1009 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0,
1010 	    sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet");
1011 
1012 	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
1013 	    CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0,
1014 	    sysctl_hw_jme_proc_limit, "I",
1015 	    "max number of Rx events to process");
1016 
1017 	/* Pull in device tunables. */
1018 	sc->jme_process_limit = JME_PROC_DEFAULT;
1019 	error = resource_int_value(device_get_name(sc->jme_dev),
1020 	    device_get_unit(sc->jme_dev), "process_limit",
1021 	    &sc->jme_process_limit);
1022 	if (error == 0) {
1023 		if (sc->jme_process_limit < JME_PROC_MIN ||
1024 		    sc->jme_process_limit > JME_PROC_MAX) {
1025 			device_printf(sc->jme_dev,
1026 			    "process_limit value out of range; "
1027 			    "using default: %d\n", JME_PROC_DEFAULT);
1028 			sc->jme_process_limit = JME_PROC_DEFAULT;
1029 		}
1030 	}
1031 
1032 	sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1033 	error = resource_int_value(device_get_name(sc->jme_dev),
1034 	    device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to);
1035 	if (error == 0) {
1036 		if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN ||
1037 		    sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) {
1038 			device_printf(sc->jme_dev,
1039 			    "tx_coal_to value out of range; "
1040 			    "using default: %d\n", PCCTX_COAL_TO_DEFAULT);
1041 			sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT;
1042 		}
1043 	}
1044 
1045 	sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1046 	error = resource_int_value(device_get_name(sc->jme_dev),
1047 	    device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to);
1048 	if (error == 0) {
1049 		if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN ||
1050 		    sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) {
1051 			device_printf(sc->jme_dev,
1052 			    "tx_coal_pkt value out of range; "
1053 			    "using default: %d\n", PCCTX_COAL_PKT_DEFAULT);
1054 			sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT;
1055 		}
1056 	}
1057 
1058 	sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1059 	error = resource_int_value(device_get_name(sc->jme_dev),
1060 	    device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to);
1061 	if (error == 0) {
1062 		if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN ||
1063 		    sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) {
1064 			device_printf(sc->jme_dev,
1065 			    "rx_coal_to value out of range; "
1066 			    "using default: %d\n", PCCRX_COAL_TO_DEFAULT);
1067 			sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT;
1068 		}
1069 	}
1070 
1071 	sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1072 	error = resource_int_value(device_get_name(sc->jme_dev),
1073 	    device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to);
1074 	if (error == 0) {
1075 		if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN ||
1076 		    sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) {
1077 			device_printf(sc->jme_dev,
1078 			    "tx_coal_pkt value out of range; "
1079 			    "using default: %d\n", PCCRX_COAL_PKT_DEFAULT);
1080 			sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT;
1081 		}
1082 	}
1083 
1084 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
1085 		return;
1086 
1087 	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
1088 	    NULL, "JME statistics");
1089 	parent = SYSCTL_CHILDREN(tree);
1090 
1091 	/* Rx statistics. */
1092 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
1093 	    NULL, "Rx MAC statistics");
1094 	child = SYSCTL_CHILDREN(tree);
1095 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1096 	    &stats->rx_good_frames, "Good frames");
1097 	JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
1098 	    &stats->rx_crc_errs, "CRC errors");
1099 	JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs",
1100 	    &stats->rx_mii_errs, "MII errors");
1101 	JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
1102 	    &stats->rx_fifo_oflows, "FIFO overflows");
1103 	JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty",
1104 	    &stats->rx_desc_empty, "Descriptor empty");
1105 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1106 	    &stats->rx_bad_frames, "Bad frames");
1107 
1108 	/* Tx statistics. */
1109 	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
1110 	    NULL, "Tx MAC statistics");
1111 	child = SYSCTL_CHILDREN(tree);
1112 	JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
1113 	    &stats->tx_good_frames, "Good frames");
1114 	JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames",
1115 	    &stats->tx_bad_frames, "Bad frames");
1116 }
1117 
1118 #undef	JME_SYSCTL_STAT_ADD32
1119 
1120 struct jme_dmamap_arg {
1121 	bus_addr_t	jme_busaddr;
1122 };
1123 
1124 static void
1125 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1126 {
1127 	struct jme_dmamap_arg *ctx;
1128 
1129 	if (error != 0)
1130 		return;
1131 
1132 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1133 
1134 	ctx = (struct jme_dmamap_arg *)arg;
1135 	ctx->jme_busaddr = segs[0].ds_addr;
1136 }
1137 
1138 static int
1139 jme_dma_alloc(struct jme_softc *sc)
1140 {
1141 	struct jme_dmamap_arg ctx;
1142 	struct jme_txdesc *txd;
1143 	struct jme_rxdesc *rxd;
1144 	bus_addr_t lowaddr, rx_ring_end, tx_ring_end;
1145 	int error, i;
1146 
1147 	lowaddr = BUS_SPACE_MAXADDR;
1148 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1149 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1150 
1151 again:
1152 	/* Create parent ring tag. */
1153 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1154 	    1, 0,			/* algnmnt, boundary */
1155 	    lowaddr,			/* lowaddr */
1156 	    BUS_SPACE_MAXADDR,		/* highaddr */
1157 	    NULL, NULL,			/* filter, filterarg */
1158 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1159 	    0,				/* nsegments */
1160 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1161 	    0,				/* flags */
1162 	    NULL, NULL,			/* lockfunc, lockarg */
1163 	    &sc->jme_cdata.jme_ring_tag);
1164 	if (error != 0) {
1165 		device_printf(sc->jme_dev,
1166 		    "could not create parent ring DMA tag.\n");
1167 		goto fail;
1168 	}
1169 	/* Create tag for Tx ring. */
1170 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1171 	    JME_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
1172 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1173 	    BUS_SPACE_MAXADDR,		/* highaddr */
1174 	    NULL, NULL,			/* filter, filterarg */
1175 	    JME_TX_RING_SIZE,		/* maxsize */
1176 	    1,				/* nsegments */
1177 	    JME_TX_RING_SIZE,		/* maxsegsize */
1178 	    0,				/* flags */
1179 	    NULL, NULL,			/* lockfunc, lockarg */
1180 	    &sc->jme_cdata.jme_tx_ring_tag);
1181 	if (error != 0) {
1182 		device_printf(sc->jme_dev,
1183 		    "could not allocate Tx ring DMA tag.\n");
1184 		goto fail;
1185 	}
1186 
1187 	/* Create tag for Rx ring. */
1188 	error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */
1189 	    JME_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
1190 	    lowaddr,			/* lowaddr */
1191 	    BUS_SPACE_MAXADDR,		/* highaddr */
1192 	    NULL, NULL,			/* filter, filterarg */
1193 	    JME_RX_RING_SIZE,		/* maxsize */
1194 	    1,				/* nsegments */
1195 	    JME_RX_RING_SIZE,		/* maxsegsize */
1196 	    0,				/* flags */
1197 	    NULL, NULL,			/* lockfunc, lockarg */
1198 	    &sc->jme_cdata.jme_rx_ring_tag);
1199 	if (error != 0) {
1200 		device_printf(sc->jme_dev,
1201 		    "could not allocate Rx ring DMA tag.\n");
1202 		goto fail;
1203 	}
1204 
1205 	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1206 	error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag,
1207 	    (void **)&sc->jme_rdata.jme_tx_ring,
1208 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1209 	    &sc->jme_cdata.jme_tx_ring_map);
1210 	if (error != 0) {
1211 		device_printf(sc->jme_dev,
1212 		    "could not allocate DMA'able memory for Tx ring.\n");
1213 		goto fail;
1214 	}
1215 
1216 	ctx.jme_busaddr = 0;
1217 	error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag,
1218 	    sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring,
1219 	    JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1220 	if (error != 0 || ctx.jme_busaddr == 0) {
1221 		device_printf(sc->jme_dev,
1222 		    "could not load DMA'able memory for Tx ring.\n");
1223 		goto fail;
1224 	}
1225 	sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr;
1226 
1227 	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
1228 	error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag,
1229 	    (void **)&sc->jme_rdata.jme_rx_ring,
1230 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1231 	    &sc->jme_cdata.jme_rx_ring_map);
1232 	if (error != 0) {
1233 		device_printf(sc->jme_dev,
1234 		    "could not allocate DMA'able memory for Rx ring.\n");
1235 		goto fail;
1236 	}
1237 
1238 	ctx.jme_busaddr = 0;
1239 	error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag,
1240 	    sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring,
1241 	    JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1242 	if (error != 0 || ctx.jme_busaddr == 0) {
1243 		device_printf(sc->jme_dev,
1244 		    "could not load DMA'able memory for Rx ring.\n");
1245 		goto fail;
1246 	}
1247 	sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr;
1248 
1249 	if (lowaddr != BUS_SPACE_MAXADDR_32BIT) {
1250 		/* Tx/Rx descriptor queue should reside within 4GB boundary. */
1251 		tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr +
1252 		    JME_TX_RING_SIZE;
1253 		rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr +
1254 		    JME_RX_RING_SIZE;
1255 		if ((JME_ADDR_HI(tx_ring_end) !=
1256 		    JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) ||
1257 		    (JME_ADDR_HI(rx_ring_end) !=
1258 		     JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) {
1259 			device_printf(sc->jme_dev, "4GB boundary crossed, "
1260 			    "switching to 32bit DMA address mode.\n");
1261 			jme_dma_free(sc);
1262 			/* Limit DMA address space to 32bit and try again. */
1263 			lowaddr = BUS_SPACE_MAXADDR_32BIT;
1264 			goto again;
1265 		}
1266 	}
1267 
1268 	lowaddr = BUS_SPACE_MAXADDR;
1269 	if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0)
1270 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1271 	/* Create parent buffer tag. */
1272 	error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */
1273 	    1, 0,			/* algnmnt, boundary */
1274 	    lowaddr,			/* lowaddr */
1275 	    BUS_SPACE_MAXADDR,		/* highaddr */
1276 	    NULL, NULL,			/* filter, filterarg */
1277 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1278 	    0,				/* nsegments */
1279 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1280 	    0,				/* flags */
1281 	    NULL, NULL,			/* lockfunc, lockarg */
1282 	    &sc->jme_cdata.jme_buffer_tag);
1283 	if (error != 0) {
1284 		device_printf(sc->jme_dev,
1285 		    "could not create parent buffer DMA tag.\n");
1286 		goto fail;
1287 	}
1288 
1289 	/* Create shadow status block tag. */
1290 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1291 	    JME_SSB_ALIGN, 0,		/* algnmnt, boundary */
1292 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1293 	    BUS_SPACE_MAXADDR,		/* highaddr */
1294 	    NULL, NULL,			/* filter, filterarg */
1295 	    JME_SSB_SIZE,		/* maxsize */
1296 	    1,				/* nsegments */
1297 	    JME_SSB_SIZE,		/* maxsegsize */
1298 	    0,				/* flags */
1299 	    NULL, NULL,			/* lockfunc, lockarg */
1300 	    &sc->jme_cdata.jme_ssb_tag);
1301 	if (error != 0) {
1302 		device_printf(sc->jme_dev,
1303 		    "could not create shared status block DMA tag.\n");
1304 		goto fail;
1305 	}
1306 
1307 	/* Create tag for Tx buffers. */
1308 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1309 	    1, 0,			/* algnmnt, boundary */
1310 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1311 	    BUS_SPACE_MAXADDR,		/* highaddr */
1312 	    NULL, NULL,			/* filter, filterarg */
1313 	    JME_TSO_MAXSIZE,		/* maxsize */
1314 	    JME_MAXTXSEGS,		/* nsegments */
1315 	    JME_TSO_MAXSEGSIZE,		/* maxsegsize */
1316 	    0,				/* flags */
1317 	    NULL, NULL,			/* lockfunc, lockarg */
1318 	    &sc->jme_cdata.jme_tx_tag);
1319 	if (error != 0) {
1320 		device_printf(sc->jme_dev, "could not create Tx DMA tag.\n");
1321 		goto fail;
1322 	}
1323 
1324 	/* Create tag for Rx buffers. */
1325 	error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */
1326 	    JME_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
1327 	    BUS_SPACE_MAXADDR,		/* lowaddr */
1328 	    BUS_SPACE_MAXADDR,		/* highaddr */
1329 	    NULL, NULL,			/* filter, filterarg */
1330 	    MCLBYTES,			/* maxsize */
1331 	    1,				/* nsegments */
1332 	    MCLBYTES,			/* maxsegsize */
1333 	    0,				/* flags */
1334 	    NULL, NULL,			/* lockfunc, lockarg */
1335 	    &sc->jme_cdata.jme_rx_tag);
1336 	if (error != 0) {
1337 		device_printf(sc->jme_dev, "could not create Rx DMA tag.\n");
1338 		goto fail;
1339 	}
1340 
1341 	/*
1342 	 * Allocate DMA'able memory and load the DMA map for shared
1343 	 * status block.
1344 	 */
1345 	error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag,
1346 	    (void **)&sc->jme_rdata.jme_ssb_block,
1347 	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1348 	    &sc->jme_cdata.jme_ssb_map);
1349 	if (error != 0) {
1350 		device_printf(sc->jme_dev, "could not allocate DMA'able "
1351 		    "memory for shared status block.\n");
1352 		goto fail;
1353 	}
1354 
1355 	ctx.jme_busaddr = 0;
1356 	error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag,
1357 	    sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block,
1358 	    JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
1359 	if (error != 0 || ctx.jme_busaddr == 0) {
1360 		device_printf(sc->jme_dev, "could not load DMA'able memory "
1361 		    "for shared status block.\n");
1362 		goto fail;
1363 	}
1364 	sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr;
1365 
1366 	/* Create DMA maps for Tx buffers. */
1367 	for (i = 0; i < JME_TX_RING_CNT; i++) {
1368 		txd = &sc->jme_cdata.jme_txdesc[i];
1369 		txd->tx_m = NULL;
1370 		txd->tx_dmamap = NULL;
1371 		error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0,
1372 		    &txd->tx_dmamap);
1373 		if (error != 0) {
1374 			device_printf(sc->jme_dev,
1375 			    "could not create Tx dmamap.\n");
1376 			goto fail;
1377 		}
1378 	}
1379 	/* Create DMA maps for Rx buffers. */
1380 	if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1381 	    &sc->jme_cdata.jme_rx_sparemap)) != 0) {
1382 		device_printf(sc->jme_dev,
1383 		    "could not create spare Rx dmamap.\n");
1384 		goto fail;
1385 	}
1386 	for (i = 0; i < JME_RX_RING_CNT; i++) {
1387 		rxd = &sc->jme_cdata.jme_rxdesc[i];
1388 		rxd->rx_m = NULL;
1389 		rxd->rx_dmamap = NULL;
1390 		error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0,
1391 		    &rxd->rx_dmamap);
1392 		if (error != 0) {
1393 			device_printf(sc->jme_dev,
1394 			    "could not create Rx dmamap.\n");
1395 			goto fail;
1396 		}
1397 	}
1398 
1399 fail:
1400 	return (error);
1401 }
1402 
1403 static void
1404 jme_dma_free(struct jme_softc *sc)
1405 {
1406 	struct jme_txdesc *txd;
1407 	struct jme_rxdesc *rxd;
1408 	int i;
1409 
1410 	/* Tx ring */
1411 	if (sc->jme_cdata.jme_tx_ring_tag != NULL) {
1412 		if (sc->jme_rdata.jme_tx_ring_paddr)
1413 			bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag,
1414 			    sc->jme_cdata.jme_tx_ring_map);
1415 		if (sc->jme_rdata.jme_tx_ring)
1416 			bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag,
1417 			    sc->jme_rdata.jme_tx_ring,
1418 			    sc->jme_cdata.jme_tx_ring_map);
1419 		sc->jme_rdata.jme_tx_ring = NULL;
1420 		sc->jme_rdata.jme_tx_ring_paddr = 0;
1421 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag);
1422 		sc->jme_cdata.jme_tx_ring_tag = NULL;
1423 	}
1424 	/* Rx ring */
1425 	if (sc->jme_cdata.jme_rx_ring_tag != NULL) {
1426 		if (sc->jme_rdata.jme_rx_ring_paddr)
1427 			bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag,
1428 			    sc->jme_cdata.jme_rx_ring_map);
1429 		if (sc->jme_rdata.jme_rx_ring)
1430 			bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag,
1431 			    sc->jme_rdata.jme_rx_ring,
1432 			    sc->jme_cdata.jme_rx_ring_map);
1433 		sc->jme_rdata.jme_rx_ring = NULL;
1434 		sc->jme_rdata.jme_rx_ring_paddr = 0;
1435 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag);
1436 		sc->jme_cdata.jme_rx_ring_tag = NULL;
1437 	}
1438 	/* Tx buffers */
1439 	if (sc->jme_cdata.jme_tx_tag != NULL) {
1440 		for (i = 0; i < JME_TX_RING_CNT; i++) {
1441 			txd = &sc->jme_cdata.jme_txdesc[i];
1442 			if (txd->tx_dmamap != NULL) {
1443 				bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag,
1444 				    txd->tx_dmamap);
1445 				txd->tx_dmamap = NULL;
1446 			}
1447 		}
1448 		bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag);
1449 		sc->jme_cdata.jme_tx_tag = NULL;
1450 	}
1451 	/* Rx buffers */
1452 	if (sc->jme_cdata.jme_rx_tag != NULL) {
1453 		for (i = 0; i < JME_RX_RING_CNT; i++) {
1454 			rxd = &sc->jme_cdata.jme_rxdesc[i];
1455 			if (rxd->rx_dmamap != NULL) {
1456 				bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1457 				    rxd->rx_dmamap);
1458 				rxd->rx_dmamap = NULL;
1459 			}
1460 		}
1461 		if (sc->jme_cdata.jme_rx_sparemap != NULL) {
1462 			bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag,
1463 			    sc->jme_cdata.jme_rx_sparemap);
1464 			sc->jme_cdata.jme_rx_sparemap = NULL;
1465 		}
1466 		bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag);
1467 		sc->jme_cdata.jme_rx_tag = NULL;
1468 	}
1469 
1470 	/* Shared status block. */
1471 	if (sc->jme_cdata.jme_ssb_tag != NULL) {
1472 		if (sc->jme_rdata.jme_ssb_block_paddr)
1473 			bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag,
1474 			    sc->jme_cdata.jme_ssb_map);
1475 		if (sc->jme_rdata.jme_ssb_block)
1476 			bus_dmamem_free(sc->jme_cdata.jme_ssb_tag,
1477 			    sc->jme_rdata.jme_ssb_block,
1478 			    sc->jme_cdata.jme_ssb_map);
1479 		sc->jme_rdata.jme_ssb_block = NULL;
1480 		sc->jme_rdata.jme_ssb_block_paddr = 0;
1481 		bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag);
1482 		sc->jme_cdata.jme_ssb_tag = NULL;
1483 	}
1484 
1485 	if (sc->jme_cdata.jme_buffer_tag != NULL) {
1486 		bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag);
1487 		sc->jme_cdata.jme_buffer_tag = NULL;
1488 	}
1489 	if (sc->jme_cdata.jme_ring_tag != NULL) {
1490 		bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag);
1491 		sc->jme_cdata.jme_ring_tag = NULL;
1492 	}
1493 }
1494 
1495 /*
1496  *	Make sure the interface is stopped at reboot time.
1497  */
1498 static int
1499 jme_shutdown(device_t dev)
1500 {
1501 
1502 	return (jme_suspend(dev));
1503 }
1504 
1505 /*
1506  * Unlike other ethernet controllers, JMC250 requires
1507  * explicit resetting link speed to 10/100Mbps as gigabit
1508  * link will cunsume more power than 375mA.
1509  * Note, we reset the link speed to 10/100Mbps with
1510  * auto-negotiation but we don't know whether that operation
1511  * would succeed or not as we have no control after powering
1512  * off. If the renegotiation fail WOL may not work. Running
1513  * at 1Gbps draws more power than 375mA at 3.3V which is
1514  * specified in PCI specification and that would result in
1515  * complete shutdowning power to ethernet controller.
1516  *
1517  * TODO
1518  *  Save current negotiated media speed/duplex/flow-control
1519  *  to softc and restore the same link again after resuming.
1520  *  PHY handling such as power down/resetting to 100Mbps
1521  *  may be better handled in suspend method in phy driver.
1522  */
1523 static void
1524 jme_setlinkspeed(struct jme_softc *sc)
1525 {
1526 	struct mii_data *mii;
1527 	int aneg, i;
1528 
1529 	JME_LOCK_ASSERT(sc);
1530 
1531 	mii = device_get_softc(sc->jme_miibus);
1532 	mii_pollstat(mii);
1533 	aneg = 0;
1534 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1535 		switch IFM_SUBTYPE(mii->mii_media_active) {
1536 		case IFM_10_T:
1537 		case IFM_100_TX:
1538 			return;
1539 		case IFM_1000_T:
1540 			aneg++;
1541 		default:
1542 			break;
1543 		}
1544 	}
1545 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0);
1546 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR,
1547 	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1548 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR,
1549 	    BMCR_AUTOEN | BMCR_STARTNEG);
1550 	DELAY(1000);
1551 	if (aneg != 0) {
1552 		/* Poll link state until jme(4) get a 10/100 link. */
1553 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1554 			mii_pollstat(mii);
1555 			if ((mii->mii_media_status & IFM_AVALID) != 0) {
1556 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
1557 				case IFM_10_T:
1558 				case IFM_100_TX:
1559 					jme_mac_config(sc);
1560 					return;
1561 				default:
1562 					break;
1563 				}
1564 			}
1565 			JME_UNLOCK(sc);
1566 			pause("jmelnk", hz);
1567 			JME_LOCK(sc);
1568 		}
1569 		if (i == MII_ANEGTICKS_GIGE)
1570 			device_printf(sc->jme_dev, "establishing link failed, "
1571 			    "WOL may not work!");
1572 	}
1573 	/*
1574 	 * No link, force MAC to have 100Mbps, full-duplex link.
1575 	 * This is the last resort and may/may not work.
1576 	 */
1577 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1578 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1579 	jme_mac_config(sc);
1580 }
1581 
1582 static void
1583 jme_setwol(struct jme_softc *sc)
1584 {
1585 	struct ifnet *ifp;
1586 	uint32_t gpr, pmcs;
1587 	uint16_t pmstat;
1588 	int pmc;
1589 
1590 	JME_LOCK_ASSERT(sc);
1591 
1592 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) {
1593 		/* Remove Tx MAC/offload clock to save more power. */
1594 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1595 			CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1596 			    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1597 			    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1598 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
1599 			CSR_WRITE_4(sc, JME_GPREG1,
1600 			    CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS);
1601 		/* No PME capability, PHY power down. */
1602 		jme_phy_down(sc);
1603 		return;
1604 	}
1605 
1606 	ifp = sc->jme_ifp;
1607 	gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB;
1608 	pmcs = CSR_READ_4(sc, JME_PMCS);
1609 	pmcs &= ~PMCS_WOL_ENB_MASK;
1610 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) {
1611 		pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB;
1612 		/* Enable PME message. */
1613 		gpr |= GPREG0_PME_ENB;
1614 		/* For gigabit controllers, reset link speed to 10/100. */
1615 		if ((sc->jme_flags & JME_FLAG_FASTETH) == 0)
1616 			jme_setlinkspeed(sc);
1617 	}
1618 
1619 	CSR_WRITE_4(sc, JME_PMCS, pmcs);
1620 	CSR_WRITE_4(sc, JME_GPREG0, gpr);
1621 	/* Remove Tx MAC/offload clock to save more power. */
1622 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
1623 		CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) &
1624 		    ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 |
1625 		    GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000));
1626 	/* Request PME. */
1627 	pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2);
1628 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1629 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1630 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1631 	pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1632 	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1633 		/* No WOL, PHY power down. */
1634 		jme_phy_down(sc);
1635 	}
1636 }
1637 
1638 static int
1639 jme_suspend(device_t dev)
1640 {
1641 	struct jme_softc *sc;
1642 
1643 	sc = device_get_softc(dev);
1644 
1645 	JME_LOCK(sc);
1646 	jme_stop(sc);
1647 	jme_setwol(sc);
1648 	JME_UNLOCK(sc);
1649 
1650 	return (0);
1651 }
1652 
1653 static int
1654 jme_resume(device_t dev)
1655 {
1656 	struct jme_softc *sc;
1657 	struct ifnet *ifp;
1658 	uint16_t pmstat;
1659 	int pmc;
1660 
1661 	sc = device_get_softc(dev);
1662 
1663 	JME_LOCK(sc);
1664 	if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) {
1665 		pmstat = pci_read_config(sc->jme_dev,
1666 		    pmc + PCIR_POWER_STATUS, 2);
1667 		/* Disable PME clear PME status. */
1668 		pmstat &= ~PCIM_PSTAT_PMEENABLE;
1669 		pci_write_config(sc->jme_dev,
1670 		    pmc + PCIR_POWER_STATUS, pmstat, 2);
1671 	}
1672 	/* Wakeup PHY. */
1673 	jme_phy_up(sc);
1674 	ifp = sc->jme_ifp;
1675 	if ((ifp->if_flags & IFF_UP) != 0) {
1676 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1677 		jme_init_locked(sc);
1678 	}
1679 
1680 	JME_UNLOCK(sc);
1681 
1682 	return (0);
1683 }
1684 
1685 static int
1686 jme_encap(struct jme_softc *sc, struct mbuf **m_head)
1687 {
1688 	struct jme_txdesc *txd;
1689 	struct jme_desc *desc;
1690 	struct mbuf *m;
1691 	bus_dma_segment_t txsegs[JME_MAXTXSEGS];
1692 	int error, i, nsegs, prod;
1693 	uint32_t cflags, tsosegsz;
1694 
1695 	JME_LOCK_ASSERT(sc);
1696 
1697 	M_ASSERTPKTHDR((*m_head));
1698 
1699 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1700 		/*
1701 		 * Due to the adherence to NDIS specification JMC250
1702 		 * assumes upper stack computed TCP pseudo checksum
1703 		 * without including payload length. This breaks
1704 		 * checksum offload for TSO case so recompute TCP
1705 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1706 		 * be much burden on modern CPUs.
1707 		 */
1708 		struct ether_header *eh;
1709 		struct ip *ip;
1710 		struct tcphdr *tcp;
1711 		uint32_t ip_off, poff;
1712 
1713 		if (M_WRITABLE(*m_head) == 0) {
1714 			/* Get a writable copy. */
1715 			m = m_dup(*m_head, M_NOWAIT);
1716 			m_freem(*m_head);
1717 			if (m == NULL) {
1718 				*m_head = NULL;
1719 				return (ENOBUFS);
1720 			}
1721 			*m_head = m;
1722 		}
1723 		ip_off = sizeof(struct ether_header);
1724 		m = m_pullup(*m_head, ip_off);
1725 		if (m == NULL) {
1726 			*m_head = NULL;
1727 			return (ENOBUFS);
1728 		}
1729 		eh = mtod(m, struct ether_header *);
1730 		/* Check the existence of VLAN tag. */
1731 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1732 			ip_off = sizeof(struct ether_vlan_header);
1733 			m = m_pullup(m, ip_off);
1734 			if (m == NULL) {
1735 				*m_head = NULL;
1736 				return (ENOBUFS);
1737 			}
1738 		}
1739 		m = m_pullup(m, ip_off + sizeof(struct ip));
1740 		if (m == NULL) {
1741 			*m_head = NULL;
1742 			return (ENOBUFS);
1743 		}
1744 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1745 		poff = ip_off + (ip->ip_hl << 2);
1746 		m = m_pullup(m, poff + sizeof(struct tcphdr));
1747 		if (m == NULL) {
1748 			*m_head = NULL;
1749 			return (ENOBUFS);
1750 		}
1751 		/*
1752 		 * Reset IP checksum and recompute TCP pseudo
1753 		 * checksum that NDIS specification requires.
1754 		 */
1755 		ip = (struct ip *)(mtod(m, char *) + ip_off);
1756 		tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1757 		ip->ip_sum = 0;
1758 		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1759 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1760 			    ip->ip_dst.s_addr,
1761 			    htons((tcp->th_off << 2) + IPPROTO_TCP));
1762 			/* No need to TSO, force IP checksum offload. */
1763 			(*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO;
1764 			(*m_head)->m_pkthdr.csum_flags |= CSUM_IP;
1765 		} else
1766 			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1767 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1768 		*m_head = m;
1769 	}
1770 
1771 	prod = sc->jme_cdata.jme_tx_prod;
1772 	txd = &sc->jme_cdata.jme_txdesc[prod];
1773 
1774 	error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1775 	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1776 	if (error == EFBIG) {
1777 		m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS);
1778 		if (m == NULL) {
1779 			m_freem(*m_head);
1780 			*m_head = NULL;
1781 			return (ENOMEM);
1782 		}
1783 		*m_head = m;
1784 		error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag,
1785 		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1786 		if (error != 0) {
1787 			m_freem(*m_head);
1788 			*m_head = NULL;
1789 			return (error);
1790 		}
1791 	} else if (error != 0)
1792 		return (error);
1793 	if (nsegs == 0) {
1794 		m_freem(*m_head);
1795 		*m_head = NULL;
1796 		return (EIO);
1797 	}
1798 
1799 	/*
1800 	 * Check descriptor overrun. Leave one free descriptor.
1801 	 * Since we always use 64bit address mode for transmitting,
1802 	 * each Tx request requires one more dummy descriptor.
1803 	 */
1804 	if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) {
1805 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
1806 		return (ENOBUFS);
1807 	}
1808 
1809 	m = *m_head;
1810 	cflags = 0;
1811 	tsosegsz = 0;
1812 	/* Configure checksum offload and TSO. */
1813 	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1814 		tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz <<
1815 		    JME_TD_MSS_SHIFT;
1816 		cflags |= JME_TD_TSO;
1817 	} else {
1818 		if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1819 			cflags |= JME_TD_IPCSUM;
1820 		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1821 			cflags |= JME_TD_TCPCSUM;
1822 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1823 			cflags |= JME_TD_UDPCSUM;
1824 	}
1825 	/* Configure VLAN. */
1826 	if ((m->m_flags & M_VLANTAG) != 0) {
1827 		cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK);
1828 		cflags |= JME_TD_VLAN_TAG;
1829 	}
1830 
1831 	desc = &sc->jme_rdata.jme_tx_ring[prod];
1832 	desc->flags = htole32(cflags);
1833 	desc->buflen = htole32(tsosegsz);
1834 	desc->addr_hi = htole32(m->m_pkthdr.len);
1835 	desc->addr_lo = 0;
1836 	sc->jme_cdata.jme_tx_cnt++;
1837 	JME_DESC_INC(prod, JME_TX_RING_CNT);
1838 	for (i = 0; i < nsegs; i++) {
1839 		desc = &sc->jme_rdata.jme_tx_ring[prod];
1840 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1841 		desc->buflen = htole32(txsegs[i].ds_len);
1842 		desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr));
1843 		desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr));
1844 		sc->jme_cdata.jme_tx_cnt++;
1845 		JME_DESC_INC(prod, JME_TX_RING_CNT);
1846 	}
1847 
1848 	/* Update producer index. */
1849 	sc->jme_cdata.jme_tx_prod = prod;
1850 	/*
1851 	 * Finally request interrupt and give the first descriptor
1852 	 * owenership to hardware.
1853 	 */
1854 	desc = txd->tx_desc;
1855 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1856 
1857 	txd->tx_m = m;
1858 	txd->tx_ndesc = nsegs + 1;
1859 
1860 	/* Sync descriptors. */
1861 	bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
1862 	    BUS_DMASYNC_PREWRITE);
1863 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
1864 	    sc->jme_cdata.jme_tx_ring_map,
1865 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1866 
1867 	return (0);
1868 }
1869 
1870 static void
1871 jme_start(struct ifnet *ifp)
1872 {
1873         struct jme_softc *sc;
1874 
1875 	sc = ifp->if_softc;
1876 	JME_LOCK(sc);
1877 	jme_start_locked(ifp);
1878 	JME_UNLOCK(sc);
1879 }
1880 
1881 static void
1882 jme_start_locked(struct ifnet *ifp)
1883 {
1884         struct jme_softc *sc;
1885         struct mbuf *m_head;
1886 	int enq;
1887 
1888 	sc = ifp->if_softc;
1889 
1890 	JME_LOCK_ASSERT(sc);
1891 
1892 	if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT)
1893 		jme_txeof(sc);
1894 
1895 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1896 	    IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0)
1897 		return;
1898 
1899 	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1900 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1901 		if (m_head == NULL)
1902 			break;
1903 		/*
1904 		 * Pack the data into the transmit ring. If we
1905 		 * don't have room, set the OACTIVE flag and wait
1906 		 * for the NIC to drain the ring.
1907 		 */
1908 		if (jme_encap(sc, &m_head)) {
1909 			if (m_head == NULL)
1910 				break;
1911 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1912 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1913 			break;
1914 		}
1915 
1916 		enq++;
1917 		/*
1918 		 * If there's a BPF listener, bounce a copy of this frame
1919 		 * to him.
1920 		 */
1921 		ETHER_BPF_MTAP(ifp, m_head);
1922 	}
1923 
1924 	if (enq > 0) {
1925 		/*
1926 		 * Reading TXCSR takes very long time under heavy load
1927 		 * so cache TXCSR value and writes the ORed value with
1928 		 * the kick command to the TXCSR. This saves one register
1929 		 * access cycle.
1930 		 */
1931 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB |
1932 		    TXCSR_TXQ_N_START(TXCSR_TXQ0));
1933 		/* Set a timeout in case the chip goes out to lunch. */
1934 		sc->jme_watchdog_timer = JME_TX_TIMEOUT;
1935 	}
1936 }
1937 
1938 static void
1939 jme_watchdog(struct jme_softc *sc)
1940 {
1941 	struct ifnet *ifp;
1942 
1943 	JME_LOCK_ASSERT(sc);
1944 
1945 	if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer)
1946 		return;
1947 
1948 	ifp = sc->jme_ifp;
1949 	if ((sc->jme_flags & JME_FLAG_LINK) == 0) {
1950 		if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n");
1951 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1952 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1953 		jme_init_locked(sc);
1954 		return;
1955 	}
1956 	jme_txeof(sc);
1957 	if (sc->jme_cdata.jme_tx_cnt == 0) {
1958 		if_printf(sc->jme_ifp,
1959 		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1960 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1961 			jme_start_locked(ifp);
1962 		return;
1963 	}
1964 
1965 	if_printf(sc->jme_ifp, "watchdog timeout\n");
1966 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1967 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1968 	jme_init_locked(sc);
1969 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1970 		jme_start_locked(ifp);
1971 }
1972 
1973 static int
1974 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1975 {
1976 	struct jme_softc *sc;
1977 	struct ifreq *ifr;
1978 	struct mii_data *mii;
1979 	uint32_t reg;
1980 	int error, mask;
1981 
1982 	sc = ifp->if_softc;
1983 	ifr = (struct ifreq *)data;
1984 	error = 0;
1985 	switch (cmd) {
1986 	case SIOCSIFMTU:
1987 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU ||
1988 		    ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 &&
1989 		    ifr->ifr_mtu > JME_MAX_MTU)) {
1990 			error = EINVAL;
1991 			break;
1992 		}
1993 
1994 		if (ifp->if_mtu != ifr->ifr_mtu) {
1995 			/*
1996 			 * No special configuration is required when interface
1997 			 * MTU is changed but availability of TSO/Tx checksum
1998 			 * offload should be chcked against new MTU size as
1999 			 * FIFO size is just 2K.
2000 			 */
2001 			JME_LOCK(sc);
2002 			if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) {
2003 				ifp->if_capenable &=
2004 				    ~(IFCAP_TXCSUM | IFCAP_TSO4);
2005 				ifp->if_hwassist &=
2006 				    ~(JME_CSUM_FEATURES | CSUM_TSO);
2007 				VLAN_CAPABILITIES(ifp);
2008 			}
2009 			ifp->if_mtu = ifr->ifr_mtu;
2010 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2011 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2012 				jme_init_locked(sc);
2013 			}
2014 			JME_UNLOCK(sc);
2015 		}
2016 		break;
2017 	case SIOCSIFFLAGS:
2018 		JME_LOCK(sc);
2019 		if ((ifp->if_flags & IFF_UP) != 0) {
2020 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2021 				if (((ifp->if_flags ^ sc->jme_if_flags)
2022 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2023 					jme_set_filter(sc);
2024 			} else {
2025 				if ((sc->jme_flags & JME_FLAG_DETACH) == 0)
2026 					jme_init_locked(sc);
2027 			}
2028 		} else {
2029 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2030 				jme_stop(sc);
2031 		}
2032 		sc->jme_if_flags = ifp->if_flags;
2033 		JME_UNLOCK(sc);
2034 		break;
2035 	case SIOCADDMULTI:
2036 	case SIOCDELMULTI:
2037 		JME_LOCK(sc);
2038 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2039 			jme_set_filter(sc);
2040 		JME_UNLOCK(sc);
2041 		break;
2042 	case SIOCSIFMEDIA:
2043 	case SIOCGIFMEDIA:
2044 		mii = device_get_softc(sc->jme_miibus);
2045 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2046 		break;
2047 	case SIOCSIFCAP:
2048 		JME_LOCK(sc);
2049 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2050 		if ((mask & IFCAP_TXCSUM) != 0 &&
2051 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2052 			if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
2053 				ifp->if_capenable ^= IFCAP_TXCSUM;
2054 				if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
2055 					ifp->if_hwassist |= JME_CSUM_FEATURES;
2056 				else
2057 					ifp->if_hwassist &= ~JME_CSUM_FEATURES;
2058 			}
2059 		}
2060 		if ((mask & IFCAP_RXCSUM) != 0 &&
2061 		    (IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
2062 			ifp->if_capenable ^= IFCAP_RXCSUM;
2063 			reg = CSR_READ_4(sc, JME_RXMAC);
2064 			reg &= ~RXMAC_CSUM_ENB;
2065 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2066 				reg |= RXMAC_CSUM_ENB;
2067 			CSR_WRITE_4(sc, JME_RXMAC, reg);
2068 		}
2069 		if ((mask & IFCAP_TSO4) != 0 &&
2070 		    ifp->if_mtu < JME_TX_FIFO_SIZE) {
2071 			if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) {
2072 				ifp->if_capenable ^= IFCAP_TSO4;
2073 				if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2074 					ifp->if_hwassist |= CSUM_TSO;
2075 				else
2076 					ifp->if_hwassist &= ~CSUM_TSO;
2077 			}
2078 		}
2079 		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2080 		    (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0)
2081 			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2082 		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2083 		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2084 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2085 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2086 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2087 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2088 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2089 		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2090 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2091 			jme_set_vlan(sc);
2092 		}
2093 		JME_UNLOCK(sc);
2094 		VLAN_CAPABILITIES(ifp);
2095 		break;
2096 	default:
2097 		error = ether_ioctl(ifp, cmd, data);
2098 		break;
2099 	}
2100 
2101 	return (error);
2102 }
2103 
2104 static void
2105 jme_mac_config(struct jme_softc *sc)
2106 {
2107 	struct mii_data *mii;
2108 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
2109 	uint32_t txclk;
2110 
2111 	JME_LOCK_ASSERT(sc);
2112 
2113 	mii = device_get_softc(sc->jme_miibus);
2114 
2115 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2116 	DELAY(10);
2117 	CSR_WRITE_4(sc, JME_GHC, 0);
2118 	ghc = 0;
2119 	txclk = 0;
2120 	rxmac = CSR_READ_4(sc, JME_RXMAC);
2121 	rxmac &= ~RXMAC_FC_ENB;
2122 	txmac = CSR_READ_4(sc, JME_TXMAC);
2123 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
2124 	txpause = CSR_READ_4(sc, JME_TXPFC);
2125 	txpause &= ~TXPFC_PAUSE_ENB;
2126 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2127 		ghc |= GHC_FULL_DUPLEX;
2128 		rxmac &= ~RXMAC_COLL_DET_ENB;
2129 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
2130 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
2131 		    TXMAC_FRAME_BURST);
2132 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2133 			txpause |= TXPFC_PAUSE_ENB;
2134 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2135 			rxmac |= RXMAC_FC_ENB;
2136 		/* Disable retry transmit timer/retry limit. */
2137 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) &
2138 		    ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
2139 	} else {
2140 		rxmac |= RXMAC_COLL_DET_ENB;
2141 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
2142 		/* Enable retry transmit timer/retry limit. */
2143 		CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) |
2144 		    TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
2145 	}
2146 		/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
2147 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2148 	case IFM_10_T:
2149 		ghc |= GHC_SPEED_10;
2150 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2151 		break;
2152 	case IFM_100_TX:
2153 		ghc |= GHC_SPEED_100;
2154 		txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100;
2155 		break;
2156 	case IFM_1000_T:
2157 		if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2158 			break;
2159 		ghc |= GHC_SPEED_1000;
2160 		txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000;
2161 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
2162 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
2163 		break;
2164 	default:
2165 		break;
2166 	}
2167 	if (sc->jme_rev == DEVICEID_JMC250 &&
2168 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
2169 		/*
2170 		 * Workaround occasional packet loss issue of JMC250 A2
2171 		 * when it runs on half-duplex media.
2172 		 */
2173 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2174 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
2175 			gpreg &= ~GPREG1_HDPX_FIX;
2176 		else
2177 			gpreg |= GPREG1_HDPX_FIX;
2178 		CSR_WRITE_4(sc, JME_GPREG1, gpreg);
2179 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
2180 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
2181 			/* Extend interface FIFO depth. */
2182 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2183 			    0x1B, 0x0000);
2184 		} else {
2185 			/* Select default interface FIFO depth. */
2186 			jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr,
2187 			    0x1B, 0x0004);
2188 		}
2189 	}
2190 	if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2191 		ghc |= txclk;
2192 	CSR_WRITE_4(sc, JME_GHC, ghc);
2193 	CSR_WRITE_4(sc, JME_RXMAC, rxmac);
2194 	CSR_WRITE_4(sc, JME_TXMAC, txmac);
2195 	CSR_WRITE_4(sc, JME_TXPFC, txpause);
2196 }
2197 
2198 static void
2199 jme_link_task(void *arg, int pending)
2200 {
2201 	struct jme_softc *sc;
2202 	struct mii_data *mii;
2203 	struct ifnet *ifp;
2204 	struct jme_txdesc *txd;
2205 	bus_addr_t paddr;
2206 	int i;
2207 
2208 	sc = (struct jme_softc *)arg;
2209 
2210 	JME_LOCK(sc);
2211 	mii = device_get_softc(sc->jme_miibus);
2212 	ifp = sc->jme_ifp;
2213 	if (mii == NULL || ifp == NULL ||
2214 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2215 		JME_UNLOCK(sc);
2216 		return;
2217 	}
2218 
2219 	sc->jme_flags &= ~JME_FLAG_LINK;
2220 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2221 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2222 		case IFM_10_T:
2223 		case IFM_100_TX:
2224 			sc->jme_flags |= JME_FLAG_LINK;
2225 			break;
2226 		case IFM_1000_T:
2227 			if ((sc->jme_flags & JME_FLAG_FASTETH) != 0)
2228 				break;
2229 			sc->jme_flags |= JME_FLAG_LINK;
2230 			break;
2231 		default:
2232 			break;
2233 		}
2234 	}
2235 
2236 	/*
2237 	 * Disabling Rx/Tx MACs have a side-effect of resetting
2238 	 * JME_TXNDA/JME_RXNDA register to the first address of
2239 	 * Tx/Rx descriptor address. So driver should reset its
2240 	 * internal procucer/consumer pointer and reclaim any
2241 	 * allocated resources. Note, just saving the value of
2242 	 * JME_TXNDA and JME_RXNDA registers before stopping MAC
2243 	 * and restoring JME_TXNDA/JME_RXNDA register is not
2244 	 * sufficient to make sure correct MAC state because
2245 	 * stopping MAC operation can take a while and hardware
2246 	 * might have updated JME_TXNDA/JME_RXNDA registers
2247 	 * during the stop operation.
2248 	 */
2249 	/* Block execution of task. */
2250 	taskqueue_block(sc->jme_tq);
2251 	/* Disable interrupts and stop driver. */
2252 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2253 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2254 	callout_stop(&sc->jme_tick_ch);
2255 	sc->jme_watchdog_timer = 0;
2256 
2257 	/* Stop receiver/transmitter. */
2258 	jme_stop_rx(sc);
2259 	jme_stop_tx(sc);
2260 
2261 	/* XXX Drain all queued tasks. */
2262 	JME_UNLOCK(sc);
2263 	taskqueue_drain(sc->jme_tq, &sc->jme_int_task);
2264 	JME_LOCK(sc);
2265 
2266 	if (sc->jme_cdata.jme_rxhead != NULL)
2267 		m_freem(sc->jme_cdata.jme_rxhead);
2268 	JME_RXCHAIN_RESET(sc);
2269 	jme_txeof(sc);
2270 	if (sc->jme_cdata.jme_tx_cnt != 0) {
2271 		/* Remove queued packets for transmit. */
2272 		for (i = 0; i < JME_TX_RING_CNT; i++) {
2273 			txd = &sc->jme_cdata.jme_txdesc[i];
2274 			if (txd->tx_m != NULL) {
2275 				bus_dmamap_sync(
2276 				    sc->jme_cdata.jme_tx_tag,
2277 				    txd->tx_dmamap,
2278 				    BUS_DMASYNC_POSTWRITE);
2279 				bus_dmamap_unload(
2280 				    sc->jme_cdata.jme_tx_tag,
2281 				    txd->tx_dmamap);
2282 				m_freem(txd->tx_m);
2283 				txd->tx_m = NULL;
2284 				txd->tx_ndesc = 0;
2285 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2286 			}
2287 		}
2288 	}
2289 
2290 	/*
2291 	 * Reuse configured Rx descriptors and reset
2292 	 * producer/consumer index.
2293 	 */
2294 	sc->jme_cdata.jme_rx_cons = 0;
2295 	sc->jme_morework = 0;
2296 	jme_init_tx_ring(sc);
2297 	/* Initialize shadow status block. */
2298 	jme_init_ssb(sc);
2299 
2300 	/* Program MAC with resolved speed/duplex/flow-control. */
2301 	if ((sc->jme_flags & JME_FLAG_LINK) != 0) {
2302 		jme_mac_config(sc);
2303 		jme_stats_clear(sc);
2304 
2305 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2306 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2307 
2308 		/* Set Tx ring address to the hardware. */
2309 		paddr = JME_TX_RING_ADDR(sc, 0);
2310 		CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2311 		CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2312 
2313 		/* Set Rx ring address to the hardware. */
2314 		paddr = JME_RX_RING_ADDR(sc, 0);
2315 		CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2316 		CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2317 
2318 		/* Restart receiver/transmitter. */
2319 		CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB |
2320 		    RXCSR_RXQ_START);
2321 		CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB);
2322 		/* Lastly enable TX/RX clock. */
2323 		if ((sc->jme_flags & JME_FLAG_TXCLK) != 0)
2324 			CSR_WRITE_4(sc, JME_GHC,
2325 			    CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS);
2326 		if ((sc->jme_flags & JME_FLAG_RXCLK) != 0)
2327 			CSR_WRITE_4(sc, JME_GPREG1,
2328 			    CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS);
2329 	}
2330 
2331 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2332 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2333 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2334 	/* Unblock execution of task. */
2335 	taskqueue_unblock(sc->jme_tq);
2336 	/* Reenable interrupts. */
2337 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2338 
2339 	JME_UNLOCK(sc);
2340 }
2341 
2342 static int
2343 jme_intr(void *arg)
2344 {
2345 	struct jme_softc *sc;
2346 	uint32_t status;
2347 
2348 	sc = (struct jme_softc *)arg;
2349 
2350 	status = CSR_READ_4(sc, JME_INTR_REQ_STATUS);
2351 	if (status == 0 || status == 0xFFFFFFFF)
2352 		return (FILTER_STRAY);
2353 	/* Disable interrupts. */
2354 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
2355 	taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2356 
2357 	return (FILTER_HANDLED);
2358 }
2359 
2360 static void
2361 jme_int_task(void *arg, int pending)
2362 {
2363 	struct jme_softc *sc;
2364 	struct ifnet *ifp;
2365 	uint32_t status;
2366 	int more;
2367 
2368 	sc = (struct jme_softc *)arg;
2369 	ifp = sc->jme_ifp;
2370 
2371 	JME_LOCK(sc);
2372 	status = CSR_READ_4(sc, JME_INTR_STATUS);
2373 	if (sc->jme_morework != 0) {
2374 		sc->jme_morework = 0;
2375 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO;
2376 	}
2377 	if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF)
2378 		goto done;
2379 	/* Reset PCC counter/timer and Ack interrupts. */
2380 	status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP);
2381 	if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
2382 		status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
2383 	if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
2384 		status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
2385 	CSR_WRITE_4(sc, JME_INTR_STATUS, status);
2386 	more = 0;
2387 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2388 		if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) {
2389 			more = jme_rxintr(sc, sc->jme_process_limit);
2390 			if (more != 0)
2391 				sc->jme_morework = 1;
2392 		}
2393 		if ((status & INTR_RXQ_DESC_EMPTY) != 0) {
2394 			/*
2395 			 * Notify hardware availability of new Rx
2396 			 * buffers.
2397 			 * Reading RXCSR takes very long time under
2398 			 * heavy load so cache RXCSR value and writes
2399 			 * the ORed value with the kick command to
2400 			 * the RXCSR. This saves one register access
2401 			 * cycle.
2402 			 */
2403 			CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr |
2404 			    RXCSR_RX_ENB | RXCSR_RXQ_START);
2405 		}
2406 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2407 			jme_start_locked(ifp);
2408 	}
2409 
2410 	if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) {
2411 		taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task);
2412 		JME_UNLOCK(sc);
2413 		return;
2414 	}
2415 done:
2416 	JME_UNLOCK(sc);
2417 
2418 	/* Reenable interrupts. */
2419 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2420 }
2421 
2422 static void
2423 jme_txeof(struct jme_softc *sc)
2424 {
2425 	struct ifnet *ifp;
2426 	struct jme_txdesc *txd;
2427 	uint32_t status;
2428 	int cons, nsegs;
2429 
2430 	JME_LOCK_ASSERT(sc);
2431 
2432 	ifp = sc->jme_ifp;
2433 
2434 	cons = sc->jme_cdata.jme_tx_cons;
2435 	if (cons == sc->jme_cdata.jme_tx_prod)
2436 		return;
2437 
2438 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2439 	    sc->jme_cdata.jme_tx_ring_map,
2440 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2441 
2442 	/*
2443 	 * Go through our Tx list and free mbufs for those
2444 	 * frames which have been transmitted.
2445 	 */
2446 	for (; cons != sc->jme_cdata.jme_tx_prod;) {
2447 		txd = &sc->jme_cdata.jme_txdesc[cons];
2448 		status = le32toh(txd->tx_desc->flags);
2449 		if ((status & JME_TD_OWN) == JME_TD_OWN)
2450 			break;
2451 
2452 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
2453 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2454 		else {
2455 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
2456 			if ((status & JME_TD_COLLISION) != 0)
2457 				if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
2458 				    le32toh(txd->tx_desc->buflen) &
2459 				    JME_TD_BUF_LEN_MASK);
2460 		}
2461 		/*
2462 		 * Only the first descriptor of multi-descriptor
2463 		 * transmission is updated so driver have to skip entire
2464 		 * chained buffers for the transmiited frame. In other
2465 		 * words, JME_TD_OWN bit is valid only at the first
2466 		 * descriptor of a multi-descriptor transmission.
2467 		 */
2468 		for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
2469 			sc->jme_rdata.jme_tx_ring[cons].flags = 0;
2470 			JME_DESC_INC(cons, JME_TX_RING_CNT);
2471 		}
2472 
2473 		/* Reclaim transferred mbufs. */
2474 		bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap,
2475 		    BUS_DMASYNC_POSTWRITE);
2476 		bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap);
2477 
2478 		KASSERT(txd->tx_m != NULL,
2479 		    ("%s: freeing NULL mbuf!\n", __func__));
2480 		m_freem(txd->tx_m);
2481 		txd->tx_m = NULL;
2482 		sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc;
2483 		KASSERT(sc->jme_cdata.jme_tx_cnt >= 0,
2484 		    ("%s: Active Tx desc counter was garbled\n", __func__));
2485 		txd->tx_ndesc = 0;
2486 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2487 	}
2488 	sc->jme_cdata.jme_tx_cons = cons;
2489 	/* Unarm watchog timer when there is no pending descriptors in queue. */
2490 	if (sc->jme_cdata.jme_tx_cnt == 0)
2491 		sc->jme_watchdog_timer = 0;
2492 
2493 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
2494 	    sc->jme_cdata.jme_tx_ring_map,
2495 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2496 }
2497 
2498 static __inline void
2499 jme_discard_rxbuf(struct jme_softc *sc, int cons)
2500 {
2501 	struct jme_desc *desc;
2502 
2503 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2504 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
2505 	desc->buflen = htole32(MCLBYTES);
2506 }
2507 
2508 /* Receive a frame. */
2509 static void
2510 jme_rxeof(struct jme_softc *sc)
2511 {
2512 	struct ifnet *ifp;
2513 	struct jme_desc *desc;
2514 	struct jme_rxdesc *rxd;
2515 	struct mbuf *mp, *m;
2516 	uint32_t flags, status;
2517 	int cons, count, nsegs;
2518 
2519 	JME_LOCK_ASSERT(sc);
2520 
2521 	ifp = sc->jme_ifp;
2522 
2523 	cons = sc->jme_cdata.jme_rx_cons;
2524 	desc = &sc->jme_rdata.jme_rx_ring[cons];
2525 	flags = le32toh(desc->flags);
2526 	status = le32toh(desc->buflen);
2527 	nsegs = JME_RX_NSEGS(status);
2528 	sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES;
2529 	if ((status & JME_RX_ERR_STAT) != 0) {
2530 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2531 		jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons);
2532 #ifdef JME_SHOW_ERRORS
2533 		device_printf(sc->jme_dev, "%s : receive error = 0x%b\n",
2534 		    __func__, JME_RX_ERR(status), JME_RX_ERR_BITS);
2535 #endif
2536 		sc->jme_cdata.jme_rx_cons += nsegs;
2537 		sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2538 		return;
2539 	}
2540 
2541 	for (count = 0; count < nsegs; count++,
2542 	    JME_DESC_INC(cons, JME_RX_RING_CNT)) {
2543 		rxd = &sc->jme_cdata.jme_rxdesc[cons];
2544 		mp = rxd->rx_m;
2545 		/* Add a new receive buffer to the ring. */
2546 		if (jme_newbuf(sc, rxd) != 0) {
2547 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2548 			/* Reuse buffer. */
2549 			for (; count < nsegs; count++) {
2550 				jme_discard_rxbuf(sc, cons);
2551 				JME_DESC_INC(cons, JME_RX_RING_CNT);
2552 			}
2553 			if (sc->jme_cdata.jme_rxhead != NULL) {
2554 				m_freem(sc->jme_cdata.jme_rxhead);
2555 				JME_RXCHAIN_RESET(sc);
2556 			}
2557 			break;
2558 		}
2559 
2560 		/*
2561 		 * Assume we've received a full sized frame.
2562 		 * Actual size is fixed when we encounter the end of
2563 		 * multi-segmented frame.
2564 		 */
2565 		mp->m_len = MCLBYTES;
2566 
2567 		/* Chain received mbufs. */
2568 		if (sc->jme_cdata.jme_rxhead == NULL) {
2569 			sc->jme_cdata.jme_rxhead = mp;
2570 			sc->jme_cdata.jme_rxtail = mp;
2571 		} else {
2572 			/*
2573 			 * Receive processor can receive a maximum frame
2574 			 * size of 65535 bytes.
2575 			 */
2576 			mp->m_flags &= ~M_PKTHDR;
2577 			sc->jme_cdata.jme_rxtail->m_next = mp;
2578 			sc->jme_cdata.jme_rxtail = mp;
2579 		}
2580 
2581 		if (count == nsegs - 1) {
2582 			/* Last desc. for this frame. */
2583 			m = sc->jme_cdata.jme_rxhead;
2584 			m->m_flags |= M_PKTHDR;
2585 			m->m_pkthdr.len = sc->jme_cdata.jme_rxlen;
2586 			if (nsegs > 1) {
2587 				/* Set first mbuf size. */
2588 				m->m_len = MCLBYTES - JME_RX_PAD_BYTES;
2589 				/* Set last mbuf size. */
2590 				mp->m_len = sc->jme_cdata.jme_rxlen -
2591 				    ((MCLBYTES - JME_RX_PAD_BYTES) +
2592 				    (MCLBYTES * (nsegs - 2)));
2593 			} else
2594 				m->m_len = sc->jme_cdata.jme_rxlen;
2595 			m->m_pkthdr.rcvif = ifp;
2596 
2597 			/*
2598 			 * Account for 10bytes auto padding which is used
2599 			 * to align IP header on 32bit boundary. Also note,
2600 			 * CRC bytes is automatically removed by the
2601 			 * hardware.
2602 			 */
2603 			m->m_data += JME_RX_PAD_BYTES;
2604 
2605 			/* Set checksum information. */
2606 			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2607 			    (flags & JME_RD_IPV4) != 0) {
2608 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2609 				if ((flags & JME_RD_IPCSUM) != 0)
2610 					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2611 				if (((flags & JME_RD_MORE_FRAG) == 0) &&
2612 				    ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) ==
2613 				    (JME_RD_TCP | JME_RD_TCPCSUM) ||
2614 				    (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) ==
2615 				    (JME_RD_UDP | JME_RD_UDPCSUM))) {
2616 					m->m_pkthdr.csum_flags |=
2617 					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2618 					m->m_pkthdr.csum_data = 0xffff;
2619 				}
2620 			}
2621 
2622 			/* Check for VLAN tagged packets. */
2623 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2624 			    (flags & JME_RD_VLAN_TAG) != 0) {
2625 				m->m_pkthdr.ether_vtag =
2626 				    flags & JME_RD_VLAN_MASK;
2627 				m->m_flags |= M_VLANTAG;
2628 			}
2629 
2630 			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
2631 			/* Pass it on. */
2632 			JME_UNLOCK(sc);
2633 			(*ifp->if_input)(ifp, m);
2634 			JME_LOCK(sc);
2635 
2636 			/* Reset mbuf chains. */
2637 			JME_RXCHAIN_RESET(sc);
2638 		}
2639 	}
2640 
2641 	sc->jme_cdata.jme_rx_cons += nsegs;
2642 	sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT;
2643 }
2644 
2645 static int
2646 jme_rxintr(struct jme_softc *sc, int count)
2647 {
2648 	struct jme_desc *desc;
2649 	int nsegs, prog, pktlen;
2650 
2651 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2652 	    sc->jme_cdata.jme_rx_ring_map,
2653 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2654 
2655 	for (prog = 0; count > 0; prog++) {
2656 		desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons];
2657 		if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN)
2658 			break;
2659 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
2660 			break;
2661 		nsegs = JME_RX_NSEGS(le32toh(desc->buflen));
2662 		/*
2663 		 * Check number of segments against received bytes.
2664 		 * Non-matching value would indicate that hardware
2665 		 * is still trying to update Rx descriptors. I'm not
2666 		 * sure whether this check is needed.
2667 		 */
2668 		pktlen = JME_RX_BYTES(le32toh(desc->buflen));
2669 		if (nsegs != howmany(pktlen, MCLBYTES))
2670 			break;
2671 		prog++;
2672 		/* Received a frame. */
2673 		jme_rxeof(sc);
2674 		count -= nsegs;
2675 	}
2676 
2677 	if (prog > 0)
2678 		bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
2679 		    sc->jme_cdata.jme_rx_ring_map,
2680 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2681 
2682 	return (count > 0 ? 0 : EAGAIN);
2683 }
2684 
2685 static void
2686 jme_tick(void *arg)
2687 {
2688 	struct jme_softc *sc;
2689 	struct mii_data *mii;
2690 
2691 	sc = (struct jme_softc *)arg;
2692 
2693 	JME_LOCK_ASSERT(sc);
2694 
2695 	mii = device_get_softc(sc->jme_miibus);
2696 	mii_tick(mii);
2697 	/*
2698 	 * Reclaim Tx buffers that have been completed. It's not
2699 	 * needed here but it would release allocated mbuf chains
2700 	 * faster and limit the maximum delay to a hz.
2701 	 */
2702 	jme_txeof(sc);
2703 	jme_stats_update(sc);
2704 	jme_watchdog(sc);
2705 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2706 }
2707 
2708 static void
2709 jme_reset(struct jme_softc *sc)
2710 {
2711 	uint32_t ghc, gpreg;
2712 
2713 	/* Stop receiver, transmitter. */
2714 	jme_stop_rx(sc);
2715 	jme_stop_tx(sc);
2716 
2717 	/* Reset controller. */
2718 	CSR_WRITE_4(sc, JME_GHC, GHC_RESET);
2719 	CSR_READ_4(sc, JME_GHC);
2720 	DELAY(10);
2721 	/*
2722 	 * Workaround Rx FIFO overruns seen under certain conditions.
2723 	 * Explicitly synchorize TX/RX clock.  TX/RX clock should be
2724 	 * enabled only after enabling TX/RX MACs.
2725 	 */
2726 	if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) {
2727 		/* Disable TX clock. */
2728 		CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS);
2729 		/* Disable RX clock. */
2730 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2731 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2732 		gpreg = CSR_READ_4(sc, JME_GPREG1);
2733 		/* De-assert RESET but still disable TX clock. */
2734 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2735 		ghc = CSR_READ_4(sc, JME_GHC);
2736 
2737 		/* Enable TX clock. */
2738 		CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS);
2739 		/* Enable RX clock. */
2740 		CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS);
2741 		CSR_READ_4(sc, JME_GPREG1);
2742 
2743 		/* Disable TX/RX clock again. */
2744 		CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS);
2745 		CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS);
2746 	} else
2747 		CSR_WRITE_4(sc, JME_GHC, 0);
2748 	CSR_READ_4(sc, JME_GHC);
2749 	DELAY(10);
2750 }
2751 
2752 static void
2753 jme_init(void *xsc)
2754 {
2755 	struct jme_softc *sc;
2756 
2757 	sc = (struct jme_softc *)xsc;
2758 	JME_LOCK(sc);
2759 	jme_init_locked(sc);
2760 	JME_UNLOCK(sc);
2761 }
2762 
2763 static void
2764 jme_init_locked(struct jme_softc *sc)
2765 {
2766 	struct ifnet *ifp;
2767 	struct mii_data *mii;
2768 	bus_addr_t paddr;
2769 	uint32_t reg;
2770 	int error;
2771 
2772 	JME_LOCK_ASSERT(sc);
2773 
2774 	ifp = sc->jme_ifp;
2775 	mii = device_get_softc(sc->jme_miibus);
2776 
2777 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2778 		return;
2779 	/*
2780 	 * Cancel any pending I/O.
2781 	 */
2782 	jme_stop(sc);
2783 
2784 	/*
2785 	 * Reset the chip to a known state.
2786 	 */
2787 	jme_reset(sc);
2788 
2789 	/* Init descriptors. */
2790 	error = jme_init_rx_ring(sc);
2791         if (error != 0) {
2792                 device_printf(sc->jme_dev,
2793                     "%s: initialization failed: no memory for Rx buffers.\n",
2794 		    __func__);
2795                 jme_stop(sc);
2796 		return;
2797         }
2798 	jme_init_tx_ring(sc);
2799 	/* Initialize shadow status block. */
2800 	jme_init_ssb(sc);
2801 
2802 	/* Reprogram the station address. */
2803 	jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp));
2804 
2805 	/*
2806 	 * Configure Tx queue.
2807 	 *  Tx priority queue weight value : 0
2808 	 *  Tx FIFO threshold for processing next packet : 16QW
2809 	 *  Maximum Tx DMA length : 512
2810 	 *  Allow Tx DMA burst.
2811 	 */
2812 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
2813 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
2814 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
2815 	sc->jme_txcsr |= sc->jme_tx_dma_size;
2816 	sc->jme_txcsr |= TXCSR_DMA_BURST;
2817 	CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr);
2818 
2819 	/* Set Tx descriptor counter. */
2820 	CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT);
2821 
2822 	/* Set Tx ring address to the hardware. */
2823 	paddr = JME_TX_RING_ADDR(sc, 0);
2824 	CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr));
2825 	CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr));
2826 
2827 	/* Configure TxMAC parameters. */
2828 	reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB;
2829 	reg |= TXMAC_THRESH_1_PKT;
2830 	reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB;
2831 	CSR_WRITE_4(sc, JME_TXMAC, reg);
2832 
2833 	/*
2834 	 * Configure Rx queue.
2835 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
2836 	 *  FIFO threshold for processing next packet : 128QW
2837 	 *  Rx queue 0 select
2838 	 *  Max Rx DMA length : 128
2839 	 *  Rx descriptor retry : 32
2840 	 *  Rx descriptor retry time gap : 256ns
2841 	 *  Don't receive runt/bad frame.
2842 	 */
2843 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
2844 	/*
2845 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
2846 	 * than 4K bytes will suffer from Rx FIFO overruns. So
2847 	 * decrease FIFO threshold to reduce the FIFO overruns for
2848 	 * frames larger than 4000 bytes.
2849 	 * For best performance of standard MTU sized frames use
2850 	 * maximum allowable FIFO threshold, 128QW. Note these do
2851 	 * not hold on chip full mask verion >=2. For these
2852 	 * controllers 64QW and 128QW are not valid value.
2853 	 */
2854 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2)
2855 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2856 	else {
2857 		if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2858 		    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
2859 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
2860 		else
2861 			sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
2862 	}
2863 	sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
2864 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
2865 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
2866 	CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr);
2867 
2868 	/* Set Rx descriptor counter. */
2869 	CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT);
2870 
2871 	/* Set Rx ring address to the hardware. */
2872 	paddr = JME_RX_RING_ADDR(sc, 0);
2873 	CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr));
2874 	CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr));
2875 
2876 	/* Clear receive filter. */
2877 	CSR_WRITE_4(sc, JME_RXMAC, 0);
2878 	/* Set up the receive filter. */
2879 	jme_set_filter(sc);
2880 	jme_set_vlan(sc);
2881 
2882 	/*
2883 	 * Disable all WOL bits as WOL can interfere normal Rx
2884 	 * operation. Also clear WOL detection status bits.
2885 	 */
2886 	reg = CSR_READ_4(sc, JME_PMCS);
2887 	reg &= ~PMCS_WOL_ENB_MASK;
2888 	CSR_WRITE_4(sc, JME_PMCS, reg);
2889 
2890 	reg = CSR_READ_4(sc, JME_RXMAC);
2891 	/*
2892 	 * Pad 10bytes right before received frame. This will greatly
2893 	 * help Rx performance on strict-alignment architectures as
2894 	 * it does not need to copy the frame to align the payload.
2895 	 */
2896 	reg |= RXMAC_PAD_10BYTES;
2897 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2898 		reg |= RXMAC_CSUM_ENB;
2899 	CSR_WRITE_4(sc, JME_RXMAC, reg);
2900 
2901 	/* Configure general purpose reg0 */
2902 	reg = CSR_READ_4(sc, JME_GPREG0);
2903 	reg &= ~GPREG0_PCC_UNIT_MASK;
2904 	/* Set PCC timer resolution to micro-seconds unit. */
2905 	reg |= GPREG0_PCC_UNIT_US;
2906 	/*
2907 	 * Disable all shadow register posting as we have to read
2908 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
2909 	 * that it's hard to synchronize interrupt status between
2910 	 * hardware and software with shadow posting due to
2911 	 * requirements of bus_dmamap_sync(9).
2912 	 */
2913 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
2914 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
2915 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
2916 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
2917 	/* Disable posting of DW0. */
2918 	reg &= ~GPREG0_POST_DW0_ENB;
2919 	/* Clear PME message. */
2920 	reg &= ~GPREG0_PME_ENB;
2921 	/* Set PHY address. */
2922 	reg &= ~GPREG0_PHY_ADDR_MASK;
2923 	reg |= sc->jme_phyaddr;
2924 	CSR_WRITE_4(sc, JME_GPREG0, reg);
2925 
2926 	/* Configure Tx queue 0 packet completion coalescing. */
2927 	reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) &
2928 	    PCCTX_COAL_TO_MASK;
2929 	reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) &
2930 	    PCCTX_COAL_PKT_MASK;
2931 	reg |= PCCTX_COAL_TXQ0;
2932 	CSR_WRITE_4(sc, JME_PCCTX, reg);
2933 
2934 	/* Configure Rx queue 0 packet completion coalescing. */
2935 	reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) &
2936 	    PCCRX_COAL_TO_MASK;
2937 	reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) &
2938 	    PCCRX_COAL_PKT_MASK;
2939 	CSR_WRITE_4(sc, JME_PCCRX0, reg);
2940 
2941 	/*
2942 	 * Configure PCD(Packet Completion Deferring).  It seems PCD
2943 	 * generates an interrupt when the time interval between two
2944 	 * back-to-back incoming/outgoing packet is long enough for
2945 	 * it to reach its timer value 0. The arrival of new packets
2946 	 * after timer has started causes the PCD timer to restart.
2947 	 * Unfortunately, it's not clear how PCD is useful at this
2948 	 * moment, so just use the same of PCC parameters.
2949 	 */
2950 	if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) {
2951 		sc->jme_rx_pcd_to = sc->jme_rx_coal_to;
2952 		if (sc->jme_rx_coal_to > PCDRX_TO_MAX)
2953 			sc->jme_rx_pcd_to = PCDRX_TO_MAX;
2954 		sc->jme_tx_pcd_to = sc->jme_tx_coal_to;
2955 		if (sc->jme_tx_coal_to > PCDTX_TO_MAX)
2956 			sc->jme_tx_pcd_to = PCDTX_TO_MAX;
2957 		reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT;
2958 		reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT;
2959 		CSR_WRITE_4(sc, PCDRX_REG(0), reg);
2960 		reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT;
2961 		reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT;
2962 		CSR_WRITE_4(sc, JME_PCDTX, reg);
2963 	}
2964 
2965 	/* Configure shadow status block but don't enable posting. */
2966 	paddr = sc->jme_rdata.jme_ssb_block_paddr;
2967 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr));
2968 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr));
2969 
2970 	/* Disable Timer 1 and Timer 2. */
2971 	CSR_WRITE_4(sc, JME_TIMER1, 0);
2972 	CSR_WRITE_4(sc, JME_TIMER2, 0);
2973 
2974 	/* Configure retry transmit period, retry limit value. */
2975 	CSR_WRITE_4(sc, JME_TXTRHD,
2976 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
2977 	    TXTRHD_RT_PERIOD_MASK) |
2978 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
2979 	    TXTRHD_RT_LIMIT_SHIFT));
2980 
2981 	/* Disable RSS. */
2982 	CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS);
2983 
2984 	/* Initialize the interrupt mask. */
2985 	CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS);
2986 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
2987 
2988 	/*
2989 	 * Enabling Tx/Rx DMA engines and Rx queue processing is
2990 	 * done after detection of valid link in jme_link_task.
2991 	 */
2992 
2993 	sc->jme_flags &= ~JME_FLAG_LINK;
2994 	/* Set the current media. */
2995 	mii_mediachg(mii);
2996 
2997 	callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc);
2998 
2999 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3000 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3001 }
3002 
3003 static void
3004 jme_stop(struct jme_softc *sc)
3005 {
3006 	struct ifnet *ifp;
3007 	struct jme_txdesc *txd;
3008 	struct jme_rxdesc *rxd;
3009 	int i;
3010 
3011 	JME_LOCK_ASSERT(sc);
3012 	/*
3013 	 * Mark the interface down and cancel the watchdog timer.
3014 	 */
3015 	ifp = sc->jme_ifp;
3016 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3017 	sc->jme_flags &= ~JME_FLAG_LINK;
3018 	callout_stop(&sc->jme_tick_ch);
3019 	sc->jme_watchdog_timer = 0;
3020 
3021 	/*
3022 	 * Disable interrupts.
3023 	 */
3024 	CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS);
3025 	CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF);
3026 
3027 	/* Disable updating shadow status block. */
3028 	CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO,
3029 	    CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB);
3030 
3031 	/* Stop receiver, transmitter. */
3032 	jme_stop_rx(sc);
3033 	jme_stop_tx(sc);
3034 
3035 	 /* Reclaim Rx/Tx buffers that have been completed. */
3036 	jme_rxintr(sc, JME_RX_RING_CNT);
3037 	if (sc->jme_cdata.jme_rxhead != NULL)
3038 		m_freem(sc->jme_cdata.jme_rxhead);
3039 	JME_RXCHAIN_RESET(sc);
3040 	jme_txeof(sc);
3041 	/*
3042 	 * Free RX and TX mbufs still in the queues.
3043 	 */
3044 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3045 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3046 		if (rxd->rx_m != NULL) {
3047 			bus_dmamap_sync(sc->jme_cdata.jme_rx_tag,
3048 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3049 			bus_dmamap_unload(sc->jme_cdata.jme_rx_tag,
3050 			    rxd->rx_dmamap);
3051 			m_freem(rxd->rx_m);
3052 			rxd->rx_m = NULL;
3053 		}
3054         }
3055 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3056 		txd = &sc->jme_cdata.jme_txdesc[i];
3057 		if (txd->tx_m != NULL) {
3058 			bus_dmamap_sync(sc->jme_cdata.jme_tx_tag,
3059 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3060 			bus_dmamap_unload(sc->jme_cdata.jme_tx_tag,
3061 			    txd->tx_dmamap);
3062 			m_freem(txd->tx_m);
3063 			txd->tx_m = NULL;
3064 			txd->tx_ndesc = 0;
3065 		}
3066         }
3067 	jme_stats_update(sc);
3068 	jme_stats_save(sc);
3069 }
3070 
3071 static void
3072 jme_stop_tx(struct jme_softc *sc)
3073 {
3074 	uint32_t reg;
3075 	int i;
3076 
3077 	reg = CSR_READ_4(sc, JME_TXCSR);
3078 	if ((reg & TXCSR_TX_ENB) == 0)
3079 		return;
3080 	reg &= ~TXCSR_TX_ENB;
3081 	CSR_WRITE_4(sc, JME_TXCSR, reg);
3082 	for (i = JME_TIMEOUT; i > 0; i--) {
3083 		DELAY(1);
3084 		if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0)
3085 			break;
3086 	}
3087 	if (i == 0)
3088 		device_printf(sc->jme_dev, "stopping transmitter timeout!\n");
3089 }
3090 
3091 static void
3092 jme_stop_rx(struct jme_softc *sc)
3093 {
3094 	uint32_t reg;
3095 	int i;
3096 
3097 	reg = CSR_READ_4(sc, JME_RXCSR);
3098 	if ((reg & RXCSR_RX_ENB) == 0)
3099 		return;
3100 	reg &= ~RXCSR_RX_ENB;
3101 	CSR_WRITE_4(sc, JME_RXCSR, reg);
3102 	for (i = JME_TIMEOUT; i > 0; i--) {
3103 		DELAY(1);
3104 		if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0)
3105 			break;
3106 	}
3107 	if (i == 0)
3108 		device_printf(sc->jme_dev, "stopping recevier timeout!\n");
3109 }
3110 
3111 static void
3112 jme_init_tx_ring(struct jme_softc *sc)
3113 {
3114 	struct jme_ring_data *rd;
3115 	struct jme_txdesc *txd;
3116 	int i;
3117 
3118 	sc->jme_cdata.jme_tx_prod = 0;
3119 	sc->jme_cdata.jme_tx_cons = 0;
3120 	sc->jme_cdata.jme_tx_cnt = 0;
3121 
3122 	rd = &sc->jme_rdata;
3123 	bzero(rd->jme_tx_ring, JME_TX_RING_SIZE);
3124 	for (i = 0; i < JME_TX_RING_CNT; i++) {
3125 		txd = &sc->jme_cdata.jme_txdesc[i];
3126 		txd->tx_m = NULL;
3127 		txd->tx_desc = &rd->jme_tx_ring[i];
3128 		txd->tx_ndesc = 0;
3129 	}
3130 
3131 	bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag,
3132 	    sc->jme_cdata.jme_tx_ring_map,
3133 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3134 }
3135 
3136 static void
3137 jme_init_ssb(struct jme_softc *sc)
3138 {
3139 	struct jme_ring_data *rd;
3140 
3141 	rd = &sc->jme_rdata;
3142 	bzero(rd->jme_ssb_block, JME_SSB_SIZE);
3143 	bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map,
3144 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3145 }
3146 
3147 static int
3148 jme_init_rx_ring(struct jme_softc *sc)
3149 {
3150 	struct jme_ring_data *rd;
3151 	struct jme_rxdesc *rxd;
3152 	int i;
3153 
3154 	sc->jme_cdata.jme_rx_cons = 0;
3155 	JME_RXCHAIN_RESET(sc);
3156 	sc->jme_morework = 0;
3157 
3158 	rd = &sc->jme_rdata;
3159 	bzero(rd->jme_rx_ring, JME_RX_RING_SIZE);
3160 	for (i = 0; i < JME_RX_RING_CNT; i++) {
3161 		rxd = &sc->jme_cdata.jme_rxdesc[i];
3162 		rxd->rx_m = NULL;
3163 		rxd->rx_desc = &rd->jme_rx_ring[i];
3164 		if (jme_newbuf(sc, rxd) != 0)
3165 			return (ENOBUFS);
3166 	}
3167 
3168 	bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag,
3169 	    sc->jme_cdata.jme_rx_ring_map,
3170 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3171 
3172 	return (0);
3173 }
3174 
3175 static int
3176 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd)
3177 {
3178 	struct jme_desc *desc;
3179 	struct mbuf *m;
3180 	bus_dma_segment_t segs[1];
3181 	bus_dmamap_t map;
3182 	int nsegs;
3183 
3184 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3185 	if (m == NULL)
3186 		return (ENOBUFS);
3187 	/*
3188 	 * JMC250 has 64bit boundary alignment limitation so jme(4)
3189 	 * takes advantage of 10 bytes padding feature of hardware
3190 	 * in order not to copy entire frame to align IP header on
3191 	 * 32bit boundary.
3192 	 */
3193 	m->m_len = m->m_pkthdr.len = MCLBYTES;
3194 
3195 	if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag,
3196 	    sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3197 		m_freem(m);
3198 		return (ENOBUFS);
3199 	}
3200 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3201 
3202 	if (rxd->rx_m != NULL) {
3203 		bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3204 		    BUS_DMASYNC_POSTREAD);
3205 		bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap);
3206 	}
3207 	map = rxd->rx_dmamap;
3208 	rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap;
3209 	sc->jme_cdata.jme_rx_sparemap = map;
3210 	bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap,
3211 	    BUS_DMASYNC_PREREAD);
3212 	rxd->rx_m = m;
3213 
3214 	desc = rxd->rx_desc;
3215 	desc->buflen = htole32(segs[0].ds_len);
3216 	desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr));
3217 	desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr));
3218 	desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
3219 
3220 	return (0);
3221 }
3222 
3223 static void
3224 jme_set_vlan(struct jme_softc *sc)
3225 {
3226 	struct ifnet *ifp;
3227 	uint32_t reg;
3228 
3229 	JME_LOCK_ASSERT(sc);
3230 
3231 	ifp = sc->jme_ifp;
3232 	reg = CSR_READ_4(sc, JME_RXMAC);
3233 	reg &= ~RXMAC_VLAN_ENB;
3234 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3235 		reg |= RXMAC_VLAN_ENB;
3236 	CSR_WRITE_4(sc, JME_RXMAC, reg);
3237 }
3238 
3239 static void
3240 jme_set_filter(struct jme_softc *sc)
3241 {
3242 	struct ifnet *ifp;
3243 	struct ifmultiaddr *ifma;
3244 	uint32_t crc;
3245 	uint32_t mchash[2];
3246 	uint32_t rxcfg;
3247 
3248 	JME_LOCK_ASSERT(sc);
3249 
3250 	ifp = sc->jme_ifp;
3251 
3252 	rxcfg = CSR_READ_4(sc, JME_RXMAC);
3253 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
3254 	    RXMAC_ALLMULTI);
3255 	/* Always accept frames destined to our station address. */
3256 	rxcfg |= RXMAC_UNICAST;
3257 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3258 		rxcfg |= RXMAC_BROADCAST;
3259 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3260 		if ((ifp->if_flags & IFF_PROMISC) != 0)
3261 			rxcfg |= RXMAC_PROMISC;
3262 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3263 			rxcfg |= RXMAC_ALLMULTI;
3264 		CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF);
3265 		CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF);
3266 		CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3267 		return;
3268 	}
3269 
3270 	/*
3271 	 * Set up the multicast address filter by passing all multicast
3272 	 * addresses through a CRC generator, and then using the low-order
3273 	 * 6 bits as an index into the 64 bit multicast hash table.  The
3274 	 * high order bits select the register, while the rest of the bits
3275 	 * select the bit within the register.
3276 	 */
3277 	rxcfg |= RXMAC_MULTICAST;
3278 	bzero(mchash, sizeof(mchash));
3279 
3280 	if_maddr_rlock(ifp);
3281 	CK_STAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) {
3282 		if (ifma->ifma_addr->sa_family != AF_LINK)
3283 			continue;
3284 		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3285 		    ifma->ifma_addr), ETHER_ADDR_LEN);
3286 
3287 		/* Just want the 6 least significant bits. */
3288 		crc &= 0x3f;
3289 
3290 		/* Set the corresponding bit in the hash table. */
3291 		mchash[crc >> 5] |= 1 << (crc & 0x1f);
3292 	}
3293 	if_maddr_runlock(ifp);
3294 
3295 	CSR_WRITE_4(sc, JME_MAR0, mchash[0]);
3296 	CSR_WRITE_4(sc, JME_MAR1, mchash[1]);
3297 	CSR_WRITE_4(sc, JME_RXMAC, rxcfg);
3298 }
3299 
3300 static void
3301 jme_stats_clear(struct jme_softc *sc)
3302 {
3303 
3304 	JME_LOCK_ASSERT(sc);
3305 
3306 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3307 		return;
3308 
3309 	/* Disable and clear counters. */
3310 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3311 	/* Activate hw counters. */
3312 	CSR_WRITE_4(sc, JME_STATCSR, 0);
3313 	CSR_READ_4(sc, JME_STATCSR);
3314 	bzero(&sc->jme_stats, sizeof(struct jme_hw_stats));
3315 }
3316 
3317 static void
3318 jme_stats_save(struct jme_softc *sc)
3319 {
3320 
3321 	JME_LOCK_ASSERT(sc);
3322 
3323 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3324 		return;
3325 	/* Save current counters. */
3326 	bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats));
3327 	/* Disable and clear counters. */
3328 	CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF);
3329 }
3330 
3331 static void
3332 jme_stats_update(struct jme_softc *sc)
3333 {
3334 	struct jme_hw_stats *stat, *ostat;
3335 	uint32_t reg;
3336 
3337 	JME_LOCK_ASSERT(sc);
3338 
3339 	if ((sc->jme_flags & JME_FLAG_HWMIB) == 0)
3340 		return;
3341 	stat = &sc->jme_stats;
3342 	ostat = &sc->jme_ostats;
3343 	stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD);
3344 	stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD);
3345 	reg = CSR_READ_4(sc, JME_STAT_CRCMII);
3346 	stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >>
3347 	    STAT_RX_CRC_ERR_SHIFT;
3348 	stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >>
3349 	    STAT_RX_MII_ERR_SHIFT;
3350 	reg = CSR_READ_4(sc, JME_STAT_RXERR);
3351 	stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >>
3352 	    STAT_RXERR_OFLOW_SHIFT;
3353 	stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >>
3354 	    STAT_RXERR_MPTY_SHIFT;
3355 	reg = CSR_READ_4(sc, JME_STAT_FAIL);
3356 	stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT;
3357 	stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT;
3358 
3359 	/* Account for previous counters. */
3360 	stat->rx_good_frames += ostat->rx_good_frames;
3361 	stat->rx_crc_errs += ostat->rx_crc_errs;
3362 	stat->rx_mii_errs += ostat->rx_mii_errs;
3363 	stat->rx_fifo_oflows += ostat->rx_fifo_oflows;
3364 	stat->rx_desc_empty += ostat->rx_desc_empty;
3365 	stat->rx_bad_frames += ostat->rx_bad_frames;
3366 	stat->tx_good_frames += ostat->tx_good_frames;
3367 	stat->tx_bad_frames += ostat->tx_bad_frames;
3368 }
3369 
3370 static void
3371 jme_phy_down(struct jme_softc *sc)
3372 {
3373 	uint32_t reg;
3374 
3375 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN);
3376 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3377 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3378 		reg |= 0x0000000F;
3379 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3380 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3381 		reg &= ~PE1_GIGA_PDOWN_MASK;
3382 		reg |= PE1_GIGA_PDOWN_D3;
3383 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3384 	}
3385 }
3386 
3387 static void
3388 jme_phy_up(struct jme_softc *sc)
3389 {
3390 	uint32_t reg;
3391 	uint16_t bmcr;
3392 
3393 	bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR);
3394 	bmcr &= ~BMCR_PDOWN;
3395 	jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr);
3396 	if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) {
3397 		reg = CSR_READ_4(sc, JME_PHYPOWDN);
3398 		reg &= ~0x0000000F;
3399 		CSR_WRITE_4(sc, JME_PHYPOWDN, reg);
3400 		reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4);
3401 		reg &= ~PE1_GIGA_PDOWN_MASK;
3402 		reg |= PE1_GIGA_PDOWN_DIS;
3403 		pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4);
3404 	}
3405 }
3406 
3407 static int
3408 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3409 {
3410 	int error, value;
3411 
3412 	if (arg1 == NULL)
3413 		return (EINVAL);
3414 	value = *(int *)arg1;
3415 	error = sysctl_handle_int(oidp, &value, 0, req);
3416 	if (error || req->newptr == NULL)
3417 		return (error);
3418 	if (value < low || value > high)
3419 		return (EINVAL);
3420         *(int *)arg1 = value;
3421 
3422         return (0);
3423 }
3424 
3425 static int
3426 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS)
3427 {
3428 	return (sysctl_int_range(oidp, arg1, arg2, req,
3429 	    PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX));
3430 }
3431 
3432 static int
3433 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS)
3434 {
3435 	return (sysctl_int_range(oidp, arg1, arg2, req,
3436 	    PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX));
3437 }
3438 
3439 static int
3440 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS)
3441 {
3442 	return (sysctl_int_range(oidp, arg1, arg2, req,
3443 	    PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX));
3444 }
3445 
3446 static int
3447 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS)
3448 {
3449 	return (sysctl_int_range(oidp, arg1, arg2, req,
3450 	    PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX));
3451 }
3452 
3453 static int
3454 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS)
3455 {
3456 	return (sysctl_int_range(oidp, arg1, arg2, req,
3457 	    JME_PROC_MIN, JME_PROC_MAX));
3458 }
3459