1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/bus.h> 36 #include <sys/endian.h> 37 #include <sys/kernel.h> 38 #include <sys/malloc.h> 39 #include <sys/mbuf.h> 40 #include <sys/rman.h> 41 #include <sys/module.h> 42 #include <sys/proc.h> 43 #include <sys/queue.h> 44 #include <sys/socket.h> 45 #include <sys/sockio.h> 46 #include <sys/sysctl.h> 47 #include <sys/taskqueue.h> 48 49 #include <net/bpf.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/if_arp.h> 53 #include <net/ethernet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_types.h> 57 #include <net/if_vlan_var.h> 58 59 #include <netinet/in.h> 60 #include <netinet/in_systm.h> 61 #include <netinet/ip.h> 62 #include <netinet/tcp.h> 63 64 #include <dev/mii/mii.h> 65 #include <dev/mii/miivar.h> 66 67 #include <dev/pci/pcireg.h> 68 #include <dev/pci/pcivar.h> 69 70 #include <machine/bus.h> 71 #include <machine/in_cksum.h> 72 73 #include <dev/jme/if_jmereg.h> 74 #include <dev/jme/if_jmevar.h> 75 76 /* "device miibus" required. See GENERIC if you get errors here. */ 77 #include "miibus_if.h" 78 79 /* Define the following to disable printing Rx errors. */ 80 #undef JME_SHOW_ERRORS 81 82 #define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 83 84 MODULE_DEPEND(jme, pci, 1, 1, 1); 85 MODULE_DEPEND(jme, ether, 1, 1, 1); 86 MODULE_DEPEND(jme, miibus, 1, 1, 1); 87 88 /* Tunables. */ 89 static int msi_disable = 0; 90 static int msix_disable = 0; 91 TUNABLE_INT("hw.jme.msi_disable", &msi_disable); 92 TUNABLE_INT("hw.jme.msix_disable", &msix_disable); 93 94 /* 95 * Devices supported by this driver. 96 */ 97 static struct jme_dev { 98 uint16_t jme_vendorid; 99 uint16_t jme_deviceid; 100 const char *jme_name; 101 } jme_devs[] = { 102 { VENDORID_JMICRON, DEVICEID_JMC250, 103 "JMicron Inc, JMC25x Gigabit Ethernet" }, 104 { VENDORID_JMICRON, DEVICEID_JMC260, 105 "JMicron Inc, JMC26x Fast Ethernet" }, 106 }; 107 108 static int jme_miibus_readreg(device_t, int, int); 109 static int jme_miibus_writereg(device_t, int, int, int); 110 static void jme_miibus_statchg(device_t); 111 static void jme_mediastatus(struct ifnet *, struct ifmediareq *); 112 static int jme_mediachange(struct ifnet *); 113 static int jme_probe(device_t); 114 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); 115 static int jme_eeprom_macaddr(struct jme_softc *); 116 static int jme_efuse_macaddr(struct jme_softc *); 117 static void jme_reg_macaddr(struct jme_softc *); 118 static void jme_set_macaddr(struct jme_softc *, uint8_t *); 119 static void jme_map_intr_vector(struct jme_softc *); 120 static int jme_attach(device_t); 121 static int jme_detach(device_t); 122 static void jme_sysctl_node(struct jme_softc *); 123 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int); 124 static int jme_dma_alloc(struct jme_softc *); 125 static void jme_dma_free(struct jme_softc *); 126 static int jme_shutdown(device_t); 127 static void jme_setlinkspeed(struct jme_softc *); 128 static void jme_setwol(struct jme_softc *); 129 static int jme_suspend(device_t); 130 static int jme_resume(device_t); 131 static int jme_encap(struct jme_softc *, struct mbuf **); 132 static void jme_start(struct ifnet *); 133 static void jme_start_locked(struct ifnet *); 134 static void jme_watchdog(struct jme_softc *); 135 static int jme_ioctl(struct ifnet *, u_long, caddr_t); 136 static void jme_mac_config(struct jme_softc *); 137 static void jme_link_task(void *, int); 138 static int jme_intr(void *); 139 static void jme_int_task(void *, int); 140 static void jme_txeof(struct jme_softc *); 141 static __inline void jme_discard_rxbuf(struct jme_softc *, int); 142 static void jme_rxeof(struct jme_softc *); 143 static int jme_rxintr(struct jme_softc *, int); 144 static void jme_tick(void *); 145 static void jme_reset(struct jme_softc *); 146 static void jme_init(void *); 147 static void jme_init_locked(struct jme_softc *); 148 static void jme_stop(struct jme_softc *); 149 static void jme_stop_tx(struct jme_softc *); 150 static void jme_stop_rx(struct jme_softc *); 151 static int jme_init_rx_ring(struct jme_softc *); 152 static void jme_init_tx_ring(struct jme_softc *); 153 static void jme_init_ssb(struct jme_softc *); 154 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *); 155 static void jme_set_vlan(struct jme_softc *); 156 static void jme_set_filter(struct jme_softc *); 157 static void jme_stats_clear(struct jme_softc *); 158 static void jme_stats_save(struct jme_softc *); 159 static void jme_stats_update(struct jme_softc *); 160 static void jme_phy_down(struct jme_softc *); 161 static void jme_phy_up(struct jme_softc *); 162 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 163 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS); 164 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS); 165 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS); 166 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS); 167 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS); 168 169 170 static device_method_t jme_methods[] = { 171 /* Device interface. */ 172 DEVMETHOD(device_probe, jme_probe), 173 DEVMETHOD(device_attach, jme_attach), 174 DEVMETHOD(device_detach, jme_detach), 175 DEVMETHOD(device_shutdown, jme_shutdown), 176 DEVMETHOD(device_suspend, jme_suspend), 177 DEVMETHOD(device_resume, jme_resume), 178 179 /* MII interface. */ 180 DEVMETHOD(miibus_readreg, jme_miibus_readreg), 181 DEVMETHOD(miibus_writereg, jme_miibus_writereg), 182 DEVMETHOD(miibus_statchg, jme_miibus_statchg), 183 184 { NULL, NULL } 185 }; 186 187 static driver_t jme_driver = { 188 "jme", 189 jme_methods, 190 sizeof(struct jme_softc) 191 }; 192 193 static devclass_t jme_devclass; 194 195 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0); 196 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0); 197 198 static struct resource_spec jme_res_spec_mem[] = { 199 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 200 { -1, 0, 0 } 201 }; 202 203 static struct resource_spec jme_irq_spec_legacy[] = { 204 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 205 { -1, 0, 0 } 206 }; 207 208 static struct resource_spec jme_irq_spec_msi[] = { 209 { SYS_RES_IRQ, 1, RF_ACTIVE }, 210 { -1, 0, 0 } 211 }; 212 213 /* 214 * Read a PHY register on the MII of the JMC250. 215 */ 216 static int 217 jme_miibus_readreg(device_t dev, int phy, int reg) 218 { 219 struct jme_softc *sc; 220 uint32_t val; 221 int i; 222 223 sc = device_get_softc(dev); 224 225 /* For FPGA version, PHY address 0 should be ignored. */ 226 if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0) 227 return (0); 228 229 CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE | 230 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 231 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 232 DELAY(1); 233 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 234 break; 235 } 236 237 if (i == 0) { 238 device_printf(sc->jme_dev, "phy read timeout : %d\n", reg); 239 return (0); 240 } 241 242 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT); 243 } 244 245 /* 246 * Write a PHY register on the MII of the JMC250. 247 */ 248 static int 249 jme_miibus_writereg(device_t dev, int phy, int reg, int val) 250 { 251 struct jme_softc *sc; 252 int i; 253 254 sc = device_get_softc(dev); 255 256 /* For FPGA version, PHY address 0 should be ignored. */ 257 if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0) 258 return (0); 259 260 CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE | 261 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | 262 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 263 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 264 DELAY(1); 265 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 266 break; 267 } 268 269 if (i == 0) 270 device_printf(sc->jme_dev, "phy write timeout : %d\n", reg); 271 272 return (0); 273 } 274 275 /* 276 * Callback from MII layer when media changes. 277 */ 278 static void 279 jme_miibus_statchg(device_t dev) 280 { 281 struct jme_softc *sc; 282 283 sc = device_get_softc(dev); 284 taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task); 285 } 286 287 /* 288 * Get the current interface media status. 289 */ 290 static void 291 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 292 { 293 struct jme_softc *sc; 294 struct mii_data *mii; 295 296 sc = ifp->if_softc; 297 JME_LOCK(sc); 298 if ((ifp->if_flags & IFF_UP) == 0) { 299 JME_UNLOCK(sc); 300 return; 301 } 302 mii = device_get_softc(sc->jme_miibus); 303 304 mii_pollstat(mii); 305 ifmr->ifm_status = mii->mii_media_status; 306 ifmr->ifm_active = mii->mii_media_active; 307 JME_UNLOCK(sc); 308 } 309 310 /* 311 * Set hardware to newly-selected media. 312 */ 313 static int 314 jme_mediachange(struct ifnet *ifp) 315 { 316 struct jme_softc *sc; 317 struct mii_data *mii; 318 struct mii_softc *miisc; 319 int error; 320 321 sc = ifp->if_softc; 322 JME_LOCK(sc); 323 mii = device_get_softc(sc->jme_miibus); 324 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 325 PHY_RESET(miisc); 326 error = mii_mediachg(mii); 327 JME_UNLOCK(sc); 328 329 return (error); 330 } 331 332 static int 333 jme_probe(device_t dev) 334 { 335 struct jme_dev *sp; 336 int i; 337 uint16_t vendor, devid; 338 339 vendor = pci_get_vendor(dev); 340 devid = pci_get_device(dev); 341 sp = jme_devs; 342 for (i = 0; i < nitems(jme_devs); i++, sp++) { 343 if (vendor == sp->jme_vendorid && 344 devid == sp->jme_deviceid) { 345 device_set_desc(dev, sp->jme_name); 346 return (BUS_PROBE_DEFAULT); 347 } 348 } 349 350 return (ENXIO); 351 } 352 353 static int 354 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) 355 { 356 uint32_t reg; 357 int i; 358 359 *val = 0; 360 for (i = JME_TIMEOUT; i > 0; i--) { 361 reg = CSR_READ_4(sc, JME_SMBCSR); 362 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE) 363 break; 364 DELAY(1); 365 } 366 367 if (i == 0) { 368 device_printf(sc->jme_dev, "EEPROM idle timeout!\n"); 369 return (ETIMEDOUT); 370 } 371 372 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK; 373 CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER); 374 for (i = JME_TIMEOUT; i > 0; i--) { 375 DELAY(1); 376 reg = CSR_READ_4(sc, JME_SMBINTF); 377 if ((reg & SMBINTF_CMD_TRIGGER) == 0) 378 break; 379 } 380 381 if (i == 0) { 382 device_printf(sc->jme_dev, "EEPROM read timeout!\n"); 383 return (ETIMEDOUT); 384 } 385 386 reg = CSR_READ_4(sc, JME_SMBINTF); 387 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT; 388 389 return (0); 390 } 391 392 static int 393 jme_eeprom_macaddr(struct jme_softc *sc) 394 { 395 uint8_t eaddr[ETHER_ADDR_LEN]; 396 uint8_t fup, reg, val; 397 uint32_t offset; 398 int match; 399 400 offset = 0; 401 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 402 fup != JME_EEPROM_SIG0) 403 return (ENOENT); 404 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 405 fup != JME_EEPROM_SIG1) 406 return (ENOENT); 407 match = 0; 408 do { 409 if (jme_eeprom_read_byte(sc, offset, &fup) != 0) 410 break; 411 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) == 412 (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) { 413 if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) 414 break; 415 if (reg >= JME_PAR0 && 416 reg < JME_PAR0 + ETHER_ADDR_LEN) { 417 if (jme_eeprom_read_byte(sc, offset + 2, 418 &val) != 0) 419 break; 420 eaddr[reg - JME_PAR0] = val; 421 match++; 422 } 423 } 424 /* Check for the end of EEPROM descriptor. */ 425 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END) 426 break; 427 /* Try next eeprom descriptor. */ 428 offset += JME_EEPROM_DESC_BYTES; 429 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END); 430 431 if (match == ETHER_ADDR_LEN) { 432 bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN); 433 return (0); 434 } 435 436 return (ENOENT); 437 } 438 439 static int 440 jme_efuse_macaddr(struct jme_softc *sc) 441 { 442 uint32_t reg; 443 int i; 444 445 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4); 446 if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) != 447 EFUSE_CTL1_AUTOLAOD_DONE) 448 return (ENOENT); 449 /* Reset eFuse controller. */ 450 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4); 451 reg |= EFUSE_CTL2_RESET; 452 pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4); 453 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4); 454 reg &= ~EFUSE_CTL2_RESET; 455 pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4); 456 457 /* Have eFuse reload station address to MAC controller. */ 458 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4); 459 reg &= ~EFUSE_CTL1_CMD_MASK; 460 reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE; 461 pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4); 462 463 /* 464 * Verify completion of eFuse autload command. It should be 465 * completed within 108us. 466 */ 467 DELAY(110); 468 for (i = 10; i > 0; i--) { 469 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4); 470 if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | 471 EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) { 472 DELAY(20); 473 continue; 474 } 475 if ((reg & EFUSE_CTL1_EXECUTE) == 0) 476 break; 477 /* Station address loading is still in progress. */ 478 DELAY(20); 479 } 480 if (i == 0) { 481 device_printf(sc->jme_dev, "eFuse autoload timed out.\n"); 482 return (ETIMEDOUT); 483 } 484 485 return (0); 486 } 487 488 static void 489 jme_reg_macaddr(struct jme_softc *sc) 490 { 491 uint32_t par0, par1; 492 493 /* Read station address. */ 494 par0 = CSR_READ_4(sc, JME_PAR0); 495 par1 = CSR_READ_4(sc, JME_PAR1); 496 par1 &= 0xFFFF; 497 if ((par0 == 0 && par1 == 0) || 498 (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) { 499 device_printf(sc->jme_dev, 500 "Failed to retrieve Ethernet address.\n"); 501 } else { 502 /* 503 * For controllers that use eFuse, the station address 504 * could also be extracted from JME_PCI_PAR0 and 505 * JME_PCI_PAR1 registers in PCI configuration space. 506 * Each register holds exactly half of station address(24bits) 507 * so use JME_PAR0, JME_PAR1 registers instead. 508 */ 509 sc->jme_eaddr[0] = (par0 >> 0) & 0xFF; 510 sc->jme_eaddr[1] = (par0 >> 8) & 0xFF; 511 sc->jme_eaddr[2] = (par0 >> 16) & 0xFF; 512 sc->jme_eaddr[3] = (par0 >> 24) & 0xFF; 513 sc->jme_eaddr[4] = (par1 >> 0) & 0xFF; 514 sc->jme_eaddr[5] = (par1 >> 8) & 0xFF; 515 } 516 } 517 518 static void 519 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr) 520 { 521 uint32_t val; 522 int i; 523 524 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) { 525 /* 526 * Avoid reprogramming station address if the address 527 * is the same as previous one. Note, reprogrammed 528 * station address is permanent as if it was written 529 * to EEPROM. So if station address was changed by 530 * admistrator it's possible to lose factory configured 531 * address when driver fails to restore its address. 532 * (e.g. reboot or system crash) 533 */ 534 if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) { 535 for (i = 0; i < ETHER_ADDR_LEN; i++) { 536 val = JME_EFUSE_EEPROM_FUNC0 << 537 JME_EFUSE_EEPROM_FUNC_SHIFT; 538 val |= JME_EFUSE_EEPROM_PAGE_BAR1 << 539 JME_EFUSE_EEPROM_PAGE_SHIFT; 540 val |= (JME_PAR0 + i) << 541 JME_EFUSE_EEPROM_ADDR_SHIFT; 542 val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT; 543 pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM, 544 val | JME_EFUSE_EEPROM_WRITE, 4); 545 } 546 } 547 } else { 548 CSR_WRITE_4(sc, JME_PAR0, 549 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); 550 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]); 551 } 552 } 553 554 static void 555 jme_map_intr_vector(struct jme_softc *sc) 556 { 557 uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES]; 558 559 bzero(map, sizeof(map)); 560 561 /* Map Tx interrupts source to MSI/MSIX vector 2. */ 562 map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] |= 563 MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP); 564 map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |= 565 MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP); 566 map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |= 567 MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP); 568 map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |= 569 MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP); 570 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 571 MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP); 572 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 573 MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP); 574 map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |= 575 MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP); 576 map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |= 577 MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP); 578 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |= 579 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL); 580 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |= 581 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO); 582 583 /* Map Rx interrupts source to MSI/MSIX vector 1. */ 584 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] |= 585 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP); 586 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] |= 587 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP); 588 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] |= 589 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP); 590 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] |= 591 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP); 592 map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] |= 593 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY); 594 map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] |= 595 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY); 596 map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] |= 597 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY); 598 map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] |= 599 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY); 600 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] |= 601 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL); 602 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] |= 603 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL); 604 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] |= 605 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL); 606 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] |= 607 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL); 608 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] |= 609 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO); 610 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] |= 611 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO); 612 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] |= 613 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO); 614 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] |= 615 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO); 616 617 /* Map all other interrupts source to MSI/MSIX vector 0. */ 618 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]); 619 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]); 620 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]); 621 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]); 622 } 623 624 static int 625 jme_attach(device_t dev) 626 { 627 struct jme_softc *sc; 628 struct ifnet *ifp; 629 struct mii_softc *miisc; 630 struct mii_data *mii; 631 uint32_t reg; 632 uint16_t burst; 633 int error, i, mii_flags, msic, msixc, pmc; 634 635 error = 0; 636 sc = device_get_softc(dev); 637 sc->jme_dev = dev; 638 639 mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 640 MTX_DEF); 641 callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0); 642 TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc); 643 TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc); 644 645 /* 646 * Map the device. JMC250 supports both memory mapped and I/O 647 * register space access. Because I/O register access should 648 * use different BARs to access registers it's waste of time 649 * to use I/O register spce access. JMC250 uses 16K to map 650 * entire memory space. 651 */ 652 pci_enable_busmaster(dev); 653 sc->jme_res_spec = jme_res_spec_mem; 654 sc->jme_irq_spec = jme_irq_spec_legacy; 655 error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res); 656 if (error != 0) { 657 device_printf(dev, "cannot allocate memory resources.\n"); 658 goto fail; 659 } 660 661 /* Allocate IRQ resources. */ 662 msixc = pci_msix_count(dev); 663 msic = pci_msi_count(dev); 664 if (bootverbose) { 665 device_printf(dev, "MSIX count : %d\n", msixc); 666 device_printf(dev, "MSI count : %d\n", msic); 667 } 668 669 /* Use 1 MSI/MSI-X. */ 670 if (msixc > 1) 671 msixc = 1; 672 if (msic > 1) 673 msic = 1; 674 /* Prefer MSIX over MSI. */ 675 if (msix_disable == 0 || msi_disable == 0) { 676 if (msix_disable == 0 && msixc > 0 && 677 pci_alloc_msix(dev, &msixc) == 0) { 678 if (msixc == 1) { 679 device_printf(dev, "Using %d MSIX messages.\n", 680 msixc); 681 sc->jme_flags |= JME_FLAG_MSIX; 682 sc->jme_irq_spec = jme_irq_spec_msi; 683 } else 684 pci_release_msi(dev); 685 } 686 if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 && 687 msic > 0 && pci_alloc_msi(dev, &msic) == 0) { 688 if (msic == 1) { 689 device_printf(dev, "Using %d MSI messages.\n", 690 msic); 691 sc->jme_flags |= JME_FLAG_MSI; 692 sc->jme_irq_spec = jme_irq_spec_msi; 693 } else 694 pci_release_msi(dev); 695 } 696 /* Map interrupt vector 0, 1 and 2. */ 697 if ((sc->jme_flags & JME_FLAG_MSI) != 0 || 698 (sc->jme_flags & JME_FLAG_MSIX) != 0) 699 jme_map_intr_vector(sc); 700 } 701 702 error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq); 703 if (error != 0) { 704 device_printf(dev, "cannot allocate IRQ resources.\n"); 705 goto fail; 706 } 707 708 sc->jme_rev = pci_get_device(dev); 709 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) { 710 sc->jme_flags |= JME_FLAG_FASTETH; 711 sc->jme_flags |= JME_FLAG_NOJUMBO; 712 } 713 reg = CSR_READ_4(sc, JME_CHIPMODE); 714 sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT; 715 if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) != 716 CHIPMODE_NOT_FPGA) 717 sc->jme_flags |= JME_FLAG_FPGA; 718 if (bootverbose) { 719 device_printf(dev, "PCI device revision : 0x%04x\n", 720 sc->jme_rev); 721 device_printf(dev, "Chip revision : 0x%02x\n", 722 sc->jme_chip_rev); 723 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) 724 device_printf(dev, "FPGA revision : 0x%04x\n", 725 (reg & CHIPMODE_FPGA_REV_MASK) >> 726 CHIPMODE_FPGA_REV_SHIFT); 727 } 728 if (sc->jme_chip_rev == 0xFF) { 729 device_printf(dev, "Unknown chip revision : 0x%02x\n", 730 sc->jme_rev); 731 error = ENXIO; 732 goto fail; 733 } 734 735 /* Identify controller features and bugs. */ 736 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) { 737 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 && 738 CHIPMODE_REVFM(sc->jme_chip_rev) == 2) 739 sc->jme_flags |= JME_FLAG_DMA32BIT; 740 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) 741 sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD; 742 sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK; 743 sc->jme_flags |= JME_FLAG_HWMIB; 744 } 745 746 /* Reset the ethernet controller. */ 747 jme_reset(sc); 748 749 /* Get station address. */ 750 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) { 751 error = jme_efuse_macaddr(sc); 752 if (error == 0) 753 jme_reg_macaddr(sc); 754 } else { 755 error = ENOENT; 756 reg = CSR_READ_4(sc, JME_SMBCSR); 757 if ((reg & SMBCSR_EEPROM_PRESENT) != 0) 758 error = jme_eeprom_macaddr(sc); 759 if (error != 0 && bootverbose) 760 device_printf(sc->jme_dev, 761 "ethernet hardware address not found in EEPROM.\n"); 762 if (error != 0) 763 jme_reg_macaddr(sc); 764 } 765 766 /* 767 * Save PHY address. 768 * Integrated JR0211 has fixed PHY address whereas FPGA version 769 * requires PHY probing to get correct PHY address. 770 */ 771 if ((sc->jme_flags & JME_FLAG_FPGA) == 0) { 772 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) & 773 GPREG0_PHY_ADDR_MASK; 774 if (bootverbose) 775 device_printf(dev, "PHY is at address %d.\n", 776 sc->jme_phyaddr); 777 } else 778 sc->jme_phyaddr = 0; 779 780 /* Set max allowable DMA size. */ 781 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 782 sc->jme_flags |= JME_FLAG_PCIE; 783 burst = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 784 if (bootverbose) { 785 device_printf(dev, "Read request size : %d bytes.\n", 786 128 << ((burst >> 12) & 0x07)); 787 device_printf(dev, "TLP payload size : %d bytes.\n", 788 128 << ((burst >> 5) & 0x07)); 789 } 790 switch ((burst >> 12) & 0x07) { 791 case 0: 792 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128; 793 break; 794 case 1: 795 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256; 796 break; 797 default: 798 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 799 break; 800 } 801 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 802 } else { 803 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 804 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 805 } 806 /* Create coalescing sysctl node. */ 807 jme_sysctl_node(sc); 808 if ((error = jme_dma_alloc(sc)) != 0) 809 goto fail; 810 811 ifp = sc->jme_ifp = if_alloc(IFT_ETHER); 812 if (ifp == NULL) { 813 device_printf(dev, "cannot allocate ifnet structure.\n"); 814 error = ENXIO; 815 goto fail; 816 } 817 818 ifp->if_softc = sc; 819 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 820 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 821 ifp->if_ioctl = jme_ioctl; 822 ifp->if_start = jme_start; 823 ifp->if_init = jme_init; 824 ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1; 825 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 826 IFQ_SET_READY(&ifp->if_snd); 827 /* JMC250 supports Tx/Rx checksum offload as well as TSO. */ 828 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 829 ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO; 830 if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) { 831 sc->jme_flags |= JME_FLAG_PMCAP; 832 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 833 } 834 ifp->if_capenable = ifp->if_capabilities; 835 836 /* Wakeup PHY. */ 837 jme_phy_up(sc); 838 mii_flags = MIIF_DOPAUSE; 839 /* Ask PHY calibration to PHY driver. */ 840 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) 841 mii_flags |= MIIF_MACPRIV0; 842 /* Set up MII bus. */ 843 error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange, 844 jme_mediastatus, BMSR_DEFCAPMASK, 845 sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr, 846 MII_OFFSET_ANY, mii_flags); 847 if (error != 0) { 848 device_printf(dev, "attaching PHYs failed\n"); 849 goto fail; 850 } 851 852 /* 853 * Force PHY to FPGA mode. 854 */ 855 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 856 mii = device_get_softc(sc->jme_miibus); 857 if (mii->mii_instance != 0) { 858 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { 859 if (miisc->mii_phy != 0) { 860 sc->jme_phyaddr = miisc->mii_phy; 861 break; 862 } 863 } 864 if (sc->jme_phyaddr != 0) { 865 device_printf(sc->jme_dev, 866 "FPGA PHY is at %d\n", sc->jme_phyaddr); 867 /* vendor magic. */ 868 jme_miibus_writereg(dev, sc->jme_phyaddr, 27, 869 0x0004); 870 } 871 } 872 } 873 874 ether_ifattach(ifp, sc->jme_eaddr); 875 876 /* VLAN capability setup */ 877 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 878 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 879 ifp->if_capenable = ifp->if_capabilities; 880 881 /* Tell the upper layer(s) we support long frames. */ 882 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 883 884 /* Create local taskq. */ 885 sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK, 886 taskqueue_thread_enqueue, &sc->jme_tq); 887 if (sc->jme_tq == NULL) { 888 device_printf(dev, "could not create taskqueue.\n"); 889 ether_ifdetach(ifp); 890 error = ENXIO; 891 goto fail; 892 } 893 taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq", 894 device_get_nameunit(sc->jme_dev)); 895 896 for (i = 0; i < 1; i++) { 897 error = bus_setup_intr(dev, sc->jme_irq[i], 898 INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc, 899 &sc->jme_intrhand[i]); 900 if (error != 0) 901 break; 902 } 903 904 if (error != 0) { 905 device_printf(dev, "could not set up interrupt handler.\n"); 906 taskqueue_free(sc->jme_tq); 907 sc->jme_tq = NULL; 908 ether_ifdetach(ifp); 909 goto fail; 910 } 911 912 fail: 913 if (error != 0) 914 jme_detach(dev); 915 916 return (error); 917 } 918 919 static int 920 jme_detach(device_t dev) 921 { 922 struct jme_softc *sc; 923 struct ifnet *ifp; 924 int i; 925 926 sc = device_get_softc(dev); 927 928 ifp = sc->jme_ifp; 929 if (device_is_attached(dev)) { 930 JME_LOCK(sc); 931 sc->jme_flags |= JME_FLAG_DETACH; 932 jme_stop(sc); 933 JME_UNLOCK(sc); 934 callout_drain(&sc->jme_tick_ch); 935 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 936 taskqueue_drain(taskqueue_swi, &sc->jme_link_task); 937 /* Restore possibly modified station address. */ 938 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) 939 jme_set_macaddr(sc, sc->jme_eaddr); 940 ether_ifdetach(ifp); 941 } 942 943 if (sc->jme_tq != NULL) { 944 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 945 taskqueue_free(sc->jme_tq); 946 sc->jme_tq = NULL; 947 } 948 949 if (sc->jme_miibus != NULL) { 950 device_delete_child(dev, sc->jme_miibus); 951 sc->jme_miibus = NULL; 952 } 953 bus_generic_detach(dev); 954 jme_dma_free(sc); 955 956 if (ifp != NULL) { 957 if_free(ifp); 958 sc->jme_ifp = NULL; 959 } 960 961 for (i = 0; i < 1; i++) { 962 if (sc->jme_intrhand[i] != NULL) { 963 bus_teardown_intr(dev, sc->jme_irq[i], 964 sc->jme_intrhand[i]); 965 sc->jme_intrhand[i] = NULL; 966 } 967 } 968 969 if (sc->jme_irq[0] != NULL) 970 bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq); 971 if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0) 972 pci_release_msi(dev); 973 if (sc->jme_res[0] != NULL) 974 bus_release_resources(dev, sc->jme_res_spec, sc->jme_res); 975 mtx_destroy(&sc->jme_mtx); 976 977 return (0); 978 } 979 980 #define JME_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 981 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 982 983 static void 984 jme_sysctl_node(struct jme_softc *sc) 985 { 986 struct sysctl_ctx_list *ctx; 987 struct sysctl_oid_list *child, *parent; 988 struct sysctl_oid *tree; 989 struct jme_hw_stats *stats; 990 int error; 991 992 stats = &sc->jme_stats; 993 ctx = device_get_sysctl_ctx(sc->jme_dev); 994 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)); 995 996 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to", 997 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0, 998 sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout"); 999 1000 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt", 1001 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0, 1002 sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet"); 1003 1004 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to", 1005 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0, 1006 sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout"); 1007 1008 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt", 1009 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0, 1010 sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet"); 1011 1012 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 1013 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0, 1014 sysctl_hw_jme_proc_limit, "I", 1015 "max number of Rx events to process"); 1016 1017 /* Pull in device tunables. */ 1018 sc->jme_process_limit = JME_PROC_DEFAULT; 1019 error = resource_int_value(device_get_name(sc->jme_dev), 1020 device_get_unit(sc->jme_dev), "process_limit", 1021 &sc->jme_process_limit); 1022 if (error == 0) { 1023 if (sc->jme_process_limit < JME_PROC_MIN || 1024 sc->jme_process_limit > JME_PROC_MAX) { 1025 device_printf(sc->jme_dev, 1026 "process_limit value out of range; " 1027 "using default: %d\n", JME_PROC_DEFAULT); 1028 sc->jme_process_limit = JME_PROC_DEFAULT; 1029 } 1030 } 1031 1032 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 1033 error = resource_int_value(device_get_name(sc->jme_dev), 1034 device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to); 1035 if (error == 0) { 1036 if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN || 1037 sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) { 1038 device_printf(sc->jme_dev, 1039 "tx_coal_to value out of range; " 1040 "using default: %d\n", PCCTX_COAL_TO_DEFAULT); 1041 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 1042 } 1043 } 1044 1045 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 1046 error = resource_int_value(device_get_name(sc->jme_dev), 1047 device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to); 1048 if (error == 0) { 1049 if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN || 1050 sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) { 1051 device_printf(sc->jme_dev, 1052 "tx_coal_pkt value out of range; " 1053 "using default: %d\n", PCCTX_COAL_PKT_DEFAULT); 1054 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 1055 } 1056 } 1057 1058 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 1059 error = resource_int_value(device_get_name(sc->jme_dev), 1060 device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to); 1061 if (error == 0) { 1062 if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN || 1063 sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) { 1064 device_printf(sc->jme_dev, 1065 "rx_coal_to value out of range; " 1066 "using default: %d\n", PCCRX_COAL_TO_DEFAULT); 1067 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 1068 } 1069 } 1070 1071 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 1072 error = resource_int_value(device_get_name(sc->jme_dev), 1073 device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to); 1074 if (error == 0) { 1075 if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN || 1076 sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) { 1077 device_printf(sc->jme_dev, 1078 "tx_coal_pkt value out of range; " 1079 "using default: %d\n", PCCRX_COAL_PKT_DEFAULT); 1080 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 1081 } 1082 } 1083 1084 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 1085 return; 1086 1087 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 1088 NULL, "JME statistics"); 1089 parent = SYSCTL_CHILDREN(tree); 1090 1091 /* Rx statistics. */ 1092 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 1093 NULL, "Rx MAC statistics"); 1094 child = SYSCTL_CHILDREN(tree); 1095 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1096 &stats->rx_good_frames, "Good frames"); 1097 JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 1098 &stats->rx_crc_errs, "CRC errors"); 1099 JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs", 1100 &stats->rx_mii_errs, "MII errors"); 1101 JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 1102 &stats->rx_fifo_oflows, "FIFO overflows"); 1103 JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty", 1104 &stats->rx_desc_empty, "Descriptor empty"); 1105 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1106 &stats->rx_bad_frames, "Bad frames"); 1107 1108 /* Tx statistics. */ 1109 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 1110 NULL, "Tx MAC statistics"); 1111 child = SYSCTL_CHILDREN(tree); 1112 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1113 &stats->tx_good_frames, "Good frames"); 1114 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1115 &stats->tx_bad_frames, "Bad frames"); 1116 } 1117 1118 #undef JME_SYSCTL_STAT_ADD32 1119 1120 struct jme_dmamap_arg { 1121 bus_addr_t jme_busaddr; 1122 }; 1123 1124 static void 1125 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1126 { 1127 struct jme_dmamap_arg *ctx; 1128 1129 if (error != 0) 1130 return; 1131 1132 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1133 1134 ctx = (struct jme_dmamap_arg *)arg; 1135 ctx->jme_busaddr = segs[0].ds_addr; 1136 } 1137 1138 static int 1139 jme_dma_alloc(struct jme_softc *sc) 1140 { 1141 struct jme_dmamap_arg ctx; 1142 struct jme_txdesc *txd; 1143 struct jme_rxdesc *rxd; 1144 bus_addr_t lowaddr, rx_ring_end, tx_ring_end; 1145 int error, i; 1146 1147 lowaddr = BUS_SPACE_MAXADDR; 1148 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1149 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1150 1151 again: 1152 /* Create parent ring tag. */ 1153 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1154 1, 0, /* algnmnt, boundary */ 1155 lowaddr, /* lowaddr */ 1156 BUS_SPACE_MAXADDR, /* highaddr */ 1157 NULL, NULL, /* filter, filterarg */ 1158 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1159 0, /* nsegments */ 1160 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1161 0, /* flags */ 1162 NULL, NULL, /* lockfunc, lockarg */ 1163 &sc->jme_cdata.jme_ring_tag); 1164 if (error != 0) { 1165 device_printf(sc->jme_dev, 1166 "could not create parent ring DMA tag.\n"); 1167 goto fail; 1168 } 1169 /* Create tag for Tx ring. */ 1170 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1171 JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */ 1172 BUS_SPACE_MAXADDR, /* lowaddr */ 1173 BUS_SPACE_MAXADDR, /* highaddr */ 1174 NULL, NULL, /* filter, filterarg */ 1175 JME_TX_RING_SIZE, /* maxsize */ 1176 1, /* nsegments */ 1177 JME_TX_RING_SIZE, /* maxsegsize */ 1178 0, /* flags */ 1179 NULL, NULL, /* lockfunc, lockarg */ 1180 &sc->jme_cdata.jme_tx_ring_tag); 1181 if (error != 0) { 1182 device_printf(sc->jme_dev, 1183 "could not allocate Tx ring DMA tag.\n"); 1184 goto fail; 1185 } 1186 1187 /* Create tag for Rx ring. */ 1188 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1189 JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */ 1190 lowaddr, /* lowaddr */ 1191 BUS_SPACE_MAXADDR, /* highaddr */ 1192 NULL, NULL, /* filter, filterarg */ 1193 JME_RX_RING_SIZE, /* maxsize */ 1194 1, /* nsegments */ 1195 JME_RX_RING_SIZE, /* maxsegsize */ 1196 0, /* flags */ 1197 NULL, NULL, /* lockfunc, lockarg */ 1198 &sc->jme_cdata.jme_rx_ring_tag); 1199 if (error != 0) { 1200 device_printf(sc->jme_dev, 1201 "could not allocate Rx ring DMA tag.\n"); 1202 goto fail; 1203 } 1204 1205 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1206 error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag, 1207 (void **)&sc->jme_rdata.jme_tx_ring, 1208 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1209 &sc->jme_cdata.jme_tx_ring_map); 1210 if (error != 0) { 1211 device_printf(sc->jme_dev, 1212 "could not allocate DMA'able memory for Tx ring.\n"); 1213 goto fail; 1214 } 1215 1216 ctx.jme_busaddr = 0; 1217 error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag, 1218 sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring, 1219 JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1220 if (error != 0 || ctx.jme_busaddr == 0) { 1221 device_printf(sc->jme_dev, 1222 "could not load DMA'able memory for Tx ring.\n"); 1223 goto fail; 1224 } 1225 sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr; 1226 1227 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1228 error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag, 1229 (void **)&sc->jme_rdata.jme_rx_ring, 1230 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1231 &sc->jme_cdata.jme_rx_ring_map); 1232 if (error != 0) { 1233 device_printf(sc->jme_dev, 1234 "could not allocate DMA'able memory for Rx ring.\n"); 1235 goto fail; 1236 } 1237 1238 ctx.jme_busaddr = 0; 1239 error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag, 1240 sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring, 1241 JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1242 if (error != 0 || ctx.jme_busaddr == 0) { 1243 device_printf(sc->jme_dev, 1244 "could not load DMA'able memory for Rx ring.\n"); 1245 goto fail; 1246 } 1247 sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr; 1248 1249 if (lowaddr != BUS_SPACE_MAXADDR_32BIT) { 1250 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 1251 tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + 1252 JME_TX_RING_SIZE; 1253 rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + 1254 JME_RX_RING_SIZE; 1255 if ((JME_ADDR_HI(tx_ring_end) != 1256 JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) || 1257 (JME_ADDR_HI(rx_ring_end) != 1258 JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) { 1259 device_printf(sc->jme_dev, "4GB boundary crossed, " 1260 "switching to 32bit DMA address mode.\n"); 1261 jme_dma_free(sc); 1262 /* Limit DMA address space to 32bit and try again. */ 1263 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1264 goto again; 1265 } 1266 } 1267 1268 lowaddr = BUS_SPACE_MAXADDR; 1269 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1270 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1271 /* Create parent buffer tag. */ 1272 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1273 1, 0, /* algnmnt, boundary */ 1274 lowaddr, /* lowaddr */ 1275 BUS_SPACE_MAXADDR, /* highaddr */ 1276 NULL, NULL, /* filter, filterarg */ 1277 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1278 0, /* nsegments */ 1279 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1280 0, /* flags */ 1281 NULL, NULL, /* lockfunc, lockarg */ 1282 &sc->jme_cdata.jme_buffer_tag); 1283 if (error != 0) { 1284 device_printf(sc->jme_dev, 1285 "could not create parent buffer DMA tag.\n"); 1286 goto fail; 1287 } 1288 1289 /* Create shadow status block tag. */ 1290 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1291 JME_SSB_ALIGN, 0, /* algnmnt, boundary */ 1292 BUS_SPACE_MAXADDR, /* lowaddr */ 1293 BUS_SPACE_MAXADDR, /* highaddr */ 1294 NULL, NULL, /* filter, filterarg */ 1295 JME_SSB_SIZE, /* maxsize */ 1296 1, /* nsegments */ 1297 JME_SSB_SIZE, /* maxsegsize */ 1298 0, /* flags */ 1299 NULL, NULL, /* lockfunc, lockarg */ 1300 &sc->jme_cdata.jme_ssb_tag); 1301 if (error != 0) { 1302 device_printf(sc->jme_dev, 1303 "could not create shared status block DMA tag.\n"); 1304 goto fail; 1305 } 1306 1307 /* Create tag for Tx buffers. */ 1308 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1309 1, 0, /* algnmnt, boundary */ 1310 BUS_SPACE_MAXADDR, /* lowaddr */ 1311 BUS_SPACE_MAXADDR, /* highaddr */ 1312 NULL, NULL, /* filter, filterarg */ 1313 JME_TSO_MAXSIZE, /* maxsize */ 1314 JME_MAXTXSEGS, /* nsegments */ 1315 JME_TSO_MAXSEGSIZE, /* maxsegsize */ 1316 0, /* flags */ 1317 NULL, NULL, /* lockfunc, lockarg */ 1318 &sc->jme_cdata.jme_tx_tag); 1319 if (error != 0) { 1320 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n"); 1321 goto fail; 1322 } 1323 1324 /* Create tag for Rx buffers. */ 1325 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1326 JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ 1327 BUS_SPACE_MAXADDR, /* lowaddr */ 1328 BUS_SPACE_MAXADDR, /* highaddr */ 1329 NULL, NULL, /* filter, filterarg */ 1330 MCLBYTES, /* maxsize */ 1331 1, /* nsegments */ 1332 MCLBYTES, /* maxsegsize */ 1333 0, /* flags */ 1334 NULL, NULL, /* lockfunc, lockarg */ 1335 &sc->jme_cdata.jme_rx_tag); 1336 if (error != 0) { 1337 device_printf(sc->jme_dev, "could not create Rx DMA tag.\n"); 1338 goto fail; 1339 } 1340 1341 /* 1342 * Allocate DMA'able memory and load the DMA map for shared 1343 * status block. 1344 */ 1345 error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag, 1346 (void **)&sc->jme_rdata.jme_ssb_block, 1347 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1348 &sc->jme_cdata.jme_ssb_map); 1349 if (error != 0) { 1350 device_printf(sc->jme_dev, "could not allocate DMA'able " 1351 "memory for shared status block.\n"); 1352 goto fail; 1353 } 1354 1355 ctx.jme_busaddr = 0; 1356 error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag, 1357 sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block, 1358 JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1359 if (error != 0 || ctx.jme_busaddr == 0) { 1360 device_printf(sc->jme_dev, "could not load DMA'able memory " 1361 "for shared status block.\n"); 1362 goto fail; 1363 } 1364 sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr; 1365 1366 /* Create DMA maps for Tx buffers. */ 1367 for (i = 0; i < JME_TX_RING_CNT; i++) { 1368 txd = &sc->jme_cdata.jme_txdesc[i]; 1369 txd->tx_m = NULL; 1370 txd->tx_dmamap = NULL; 1371 error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0, 1372 &txd->tx_dmamap); 1373 if (error != 0) { 1374 device_printf(sc->jme_dev, 1375 "could not create Tx dmamap.\n"); 1376 goto fail; 1377 } 1378 } 1379 /* Create DMA maps for Rx buffers. */ 1380 if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1381 &sc->jme_cdata.jme_rx_sparemap)) != 0) { 1382 device_printf(sc->jme_dev, 1383 "could not create spare Rx dmamap.\n"); 1384 goto fail; 1385 } 1386 for (i = 0; i < JME_RX_RING_CNT; i++) { 1387 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1388 rxd->rx_m = NULL; 1389 rxd->rx_dmamap = NULL; 1390 error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1391 &rxd->rx_dmamap); 1392 if (error != 0) { 1393 device_printf(sc->jme_dev, 1394 "could not create Rx dmamap.\n"); 1395 goto fail; 1396 } 1397 } 1398 1399 fail: 1400 return (error); 1401 } 1402 1403 static void 1404 jme_dma_free(struct jme_softc *sc) 1405 { 1406 struct jme_txdesc *txd; 1407 struct jme_rxdesc *rxd; 1408 int i; 1409 1410 /* Tx ring */ 1411 if (sc->jme_cdata.jme_tx_ring_tag != NULL) { 1412 if (sc->jme_rdata.jme_tx_ring_paddr) 1413 bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag, 1414 sc->jme_cdata.jme_tx_ring_map); 1415 if (sc->jme_rdata.jme_tx_ring) 1416 bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag, 1417 sc->jme_rdata.jme_tx_ring, 1418 sc->jme_cdata.jme_tx_ring_map); 1419 sc->jme_rdata.jme_tx_ring = NULL; 1420 sc->jme_rdata.jme_tx_ring_paddr = 0; 1421 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag); 1422 sc->jme_cdata.jme_tx_ring_tag = NULL; 1423 } 1424 /* Rx ring */ 1425 if (sc->jme_cdata.jme_rx_ring_tag != NULL) { 1426 if (sc->jme_rdata.jme_rx_ring_paddr) 1427 bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag, 1428 sc->jme_cdata.jme_rx_ring_map); 1429 if (sc->jme_rdata.jme_rx_ring) 1430 bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag, 1431 sc->jme_rdata.jme_rx_ring, 1432 sc->jme_cdata.jme_rx_ring_map); 1433 sc->jme_rdata.jme_rx_ring = NULL; 1434 sc->jme_rdata.jme_rx_ring_paddr = 0; 1435 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag); 1436 sc->jme_cdata.jme_rx_ring_tag = NULL; 1437 } 1438 /* Tx buffers */ 1439 if (sc->jme_cdata.jme_tx_tag != NULL) { 1440 for (i = 0; i < JME_TX_RING_CNT; i++) { 1441 txd = &sc->jme_cdata.jme_txdesc[i]; 1442 if (txd->tx_dmamap != NULL) { 1443 bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag, 1444 txd->tx_dmamap); 1445 txd->tx_dmamap = NULL; 1446 } 1447 } 1448 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag); 1449 sc->jme_cdata.jme_tx_tag = NULL; 1450 } 1451 /* Rx buffers */ 1452 if (sc->jme_cdata.jme_rx_tag != NULL) { 1453 for (i = 0; i < JME_RX_RING_CNT; i++) { 1454 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1455 if (rxd->rx_dmamap != NULL) { 1456 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1457 rxd->rx_dmamap); 1458 rxd->rx_dmamap = NULL; 1459 } 1460 } 1461 if (sc->jme_cdata.jme_rx_sparemap != NULL) { 1462 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1463 sc->jme_cdata.jme_rx_sparemap); 1464 sc->jme_cdata.jme_rx_sparemap = NULL; 1465 } 1466 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag); 1467 sc->jme_cdata.jme_rx_tag = NULL; 1468 } 1469 1470 /* Shared status block. */ 1471 if (sc->jme_cdata.jme_ssb_tag != NULL) { 1472 if (sc->jme_rdata.jme_ssb_block_paddr) 1473 bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag, 1474 sc->jme_cdata.jme_ssb_map); 1475 if (sc->jme_rdata.jme_ssb_block) 1476 bus_dmamem_free(sc->jme_cdata.jme_ssb_tag, 1477 sc->jme_rdata.jme_ssb_block, 1478 sc->jme_cdata.jme_ssb_map); 1479 sc->jme_rdata.jme_ssb_block = NULL; 1480 sc->jme_rdata.jme_ssb_block_paddr = 0; 1481 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag); 1482 sc->jme_cdata.jme_ssb_tag = NULL; 1483 } 1484 1485 if (sc->jme_cdata.jme_buffer_tag != NULL) { 1486 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag); 1487 sc->jme_cdata.jme_buffer_tag = NULL; 1488 } 1489 if (sc->jme_cdata.jme_ring_tag != NULL) { 1490 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag); 1491 sc->jme_cdata.jme_ring_tag = NULL; 1492 } 1493 } 1494 1495 /* 1496 * Make sure the interface is stopped at reboot time. 1497 */ 1498 static int 1499 jme_shutdown(device_t dev) 1500 { 1501 1502 return (jme_suspend(dev)); 1503 } 1504 1505 /* 1506 * Unlike other ethernet controllers, JMC250 requires 1507 * explicit resetting link speed to 10/100Mbps as gigabit 1508 * link will cunsume more power than 375mA. 1509 * Note, we reset the link speed to 10/100Mbps with 1510 * auto-negotiation but we don't know whether that operation 1511 * would succeed or not as we have no control after powering 1512 * off. If the renegotiation fail WOL may not work. Running 1513 * at 1Gbps draws more power than 375mA at 3.3V which is 1514 * specified in PCI specification and that would result in 1515 * complete shutdowning power to ethernet controller. 1516 * 1517 * TODO 1518 * Save current negotiated media speed/duplex/flow-control 1519 * to softc and restore the same link again after resuming. 1520 * PHY handling such as power down/resetting to 100Mbps 1521 * may be better handled in suspend method in phy driver. 1522 */ 1523 static void 1524 jme_setlinkspeed(struct jme_softc *sc) 1525 { 1526 struct mii_data *mii; 1527 int aneg, i; 1528 1529 JME_LOCK_ASSERT(sc); 1530 1531 mii = device_get_softc(sc->jme_miibus); 1532 mii_pollstat(mii); 1533 aneg = 0; 1534 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1535 switch IFM_SUBTYPE(mii->mii_media_active) { 1536 case IFM_10_T: 1537 case IFM_100_TX: 1538 return; 1539 case IFM_1000_T: 1540 aneg++; 1541 default: 1542 break; 1543 } 1544 } 1545 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0); 1546 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR, 1547 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1548 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, 1549 BMCR_AUTOEN | BMCR_STARTNEG); 1550 DELAY(1000); 1551 if (aneg != 0) { 1552 /* Poll link state until jme(4) get a 10/100 link. */ 1553 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1554 mii_pollstat(mii); 1555 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1556 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1557 case IFM_10_T: 1558 case IFM_100_TX: 1559 jme_mac_config(sc); 1560 return; 1561 default: 1562 break; 1563 } 1564 } 1565 JME_UNLOCK(sc); 1566 pause("jmelnk", hz); 1567 JME_LOCK(sc); 1568 } 1569 if (i == MII_ANEGTICKS_GIGE) 1570 device_printf(sc->jme_dev, "establishing link failed, " 1571 "WOL may not work!"); 1572 } 1573 /* 1574 * No link, force MAC to have 100Mbps, full-duplex link. 1575 * This is the last resort and may/may not work. 1576 */ 1577 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1578 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1579 jme_mac_config(sc); 1580 } 1581 1582 static void 1583 jme_setwol(struct jme_softc *sc) 1584 { 1585 struct ifnet *ifp; 1586 uint32_t gpr, pmcs; 1587 uint16_t pmstat; 1588 int pmc; 1589 1590 JME_LOCK_ASSERT(sc); 1591 1592 if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1593 /* Remove Tx MAC/offload clock to save more power. */ 1594 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1595 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1596 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1597 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1598 if ((sc->jme_flags & JME_FLAG_RXCLK) != 0) 1599 CSR_WRITE_4(sc, JME_GPREG1, 1600 CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS); 1601 /* No PME capability, PHY power down. */ 1602 jme_phy_down(sc); 1603 return; 1604 } 1605 1606 ifp = sc->jme_ifp; 1607 gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB; 1608 pmcs = CSR_READ_4(sc, JME_PMCS); 1609 pmcs &= ~PMCS_WOL_ENB_MASK; 1610 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1611 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB; 1612 /* Enable PME message. */ 1613 gpr |= GPREG0_PME_ENB; 1614 /* For gigabit controllers, reset link speed to 10/100. */ 1615 if ((sc->jme_flags & JME_FLAG_FASTETH) == 0) 1616 jme_setlinkspeed(sc); 1617 } 1618 1619 CSR_WRITE_4(sc, JME_PMCS, pmcs); 1620 CSR_WRITE_4(sc, JME_GPREG0, gpr); 1621 /* Remove Tx MAC/offload clock to save more power. */ 1622 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1623 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1624 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1625 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1626 /* Request PME. */ 1627 pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2); 1628 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1629 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1630 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1631 pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1632 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1633 /* No WOL, PHY power down. */ 1634 jme_phy_down(sc); 1635 } 1636 } 1637 1638 static int 1639 jme_suspend(device_t dev) 1640 { 1641 struct jme_softc *sc; 1642 1643 sc = device_get_softc(dev); 1644 1645 JME_LOCK(sc); 1646 jme_stop(sc); 1647 jme_setwol(sc); 1648 JME_UNLOCK(sc); 1649 1650 return (0); 1651 } 1652 1653 static int 1654 jme_resume(device_t dev) 1655 { 1656 struct jme_softc *sc; 1657 struct ifnet *ifp; 1658 uint16_t pmstat; 1659 int pmc; 1660 1661 sc = device_get_softc(dev); 1662 1663 JME_LOCK(sc); 1664 if (pci_find_cap(sc->jme_dev, PCIY_PMG, &pmc) == 0) { 1665 pmstat = pci_read_config(sc->jme_dev, 1666 pmc + PCIR_POWER_STATUS, 2); 1667 /* Disable PME clear PME status. */ 1668 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1669 pci_write_config(sc->jme_dev, 1670 pmc + PCIR_POWER_STATUS, pmstat, 2); 1671 } 1672 /* Wakeup PHY. */ 1673 jme_phy_up(sc); 1674 ifp = sc->jme_ifp; 1675 if ((ifp->if_flags & IFF_UP) != 0) { 1676 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1677 jme_init_locked(sc); 1678 } 1679 1680 JME_UNLOCK(sc); 1681 1682 return (0); 1683 } 1684 1685 static int 1686 jme_encap(struct jme_softc *sc, struct mbuf **m_head) 1687 { 1688 struct jme_txdesc *txd; 1689 struct jme_desc *desc; 1690 struct mbuf *m; 1691 bus_dma_segment_t txsegs[JME_MAXTXSEGS]; 1692 int error, i, nsegs, prod; 1693 uint32_t cflags, tsosegsz; 1694 1695 JME_LOCK_ASSERT(sc); 1696 1697 M_ASSERTPKTHDR((*m_head)); 1698 1699 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1700 /* 1701 * Due to the adherence to NDIS specification JMC250 1702 * assumes upper stack computed TCP pseudo checksum 1703 * without including payload length. This breaks 1704 * checksum offload for TSO case so recompute TCP 1705 * pseudo checksum for JMC250. Hopefully this wouldn't 1706 * be much burden on modern CPUs. 1707 */ 1708 struct ether_header *eh; 1709 struct ip *ip; 1710 struct tcphdr *tcp; 1711 uint32_t ip_off, poff; 1712 1713 if (M_WRITABLE(*m_head) == 0) { 1714 /* Get a writable copy. */ 1715 m = m_dup(*m_head, M_NOWAIT); 1716 m_freem(*m_head); 1717 if (m == NULL) { 1718 *m_head = NULL; 1719 return (ENOBUFS); 1720 } 1721 *m_head = m; 1722 } 1723 ip_off = sizeof(struct ether_header); 1724 m = m_pullup(*m_head, ip_off); 1725 if (m == NULL) { 1726 *m_head = NULL; 1727 return (ENOBUFS); 1728 } 1729 eh = mtod(m, struct ether_header *); 1730 /* Check the existence of VLAN tag. */ 1731 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1732 ip_off = sizeof(struct ether_vlan_header); 1733 m = m_pullup(m, ip_off); 1734 if (m == NULL) { 1735 *m_head = NULL; 1736 return (ENOBUFS); 1737 } 1738 } 1739 m = m_pullup(m, ip_off + sizeof(struct ip)); 1740 if (m == NULL) { 1741 *m_head = NULL; 1742 return (ENOBUFS); 1743 } 1744 ip = (struct ip *)(mtod(m, char *) + ip_off); 1745 poff = ip_off + (ip->ip_hl << 2); 1746 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1747 if (m == NULL) { 1748 *m_head = NULL; 1749 return (ENOBUFS); 1750 } 1751 /* 1752 * Reset IP checksum and recompute TCP pseudo 1753 * checksum that NDIS specification requires. 1754 */ 1755 ip = (struct ip *)(mtod(m, char *) + ip_off); 1756 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1757 ip->ip_sum = 0; 1758 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { 1759 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1760 ip->ip_dst.s_addr, 1761 htons((tcp->th_off << 2) + IPPROTO_TCP)); 1762 /* No need to TSO, force IP checksum offload. */ 1763 (*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO; 1764 (*m_head)->m_pkthdr.csum_flags |= CSUM_IP; 1765 } else 1766 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1767 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1768 *m_head = m; 1769 } 1770 1771 prod = sc->jme_cdata.jme_tx_prod; 1772 txd = &sc->jme_cdata.jme_txdesc[prod]; 1773 1774 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1775 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1776 if (error == EFBIG) { 1777 m = m_collapse(*m_head, M_NOWAIT, JME_MAXTXSEGS); 1778 if (m == NULL) { 1779 m_freem(*m_head); 1780 *m_head = NULL; 1781 return (ENOMEM); 1782 } 1783 *m_head = m; 1784 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1785 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1786 if (error != 0) { 1787 m_freem(*m_head); 1788 *m_head = NULL; 1789 return (error); 1790 } 1791 } else if (error != 0) 1792 return (error); 1793 if (nsegs == 0) { 1794 m_freem(*m_head); 1795 *m_head = NULL; 1796 return (EIO); 1797 } 1798 1799 /* 1800 * Check descriptor overrun. Leave one free descriptor. 1801 * Since we always use 64bit address mode for transmitting, 1802 * each Tx request requires one more dummy descriptor. 1803 */ 1804 if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) { 1805 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 1806 return (ENOBUFS); 1807 } 1808 1809 m = *m_head; 1810 cflags = 0; 1811 tsosegsz = 0; 1812 /* Configure checksum offload and TSO. */ 1813 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1814 tsosegsz = (uint32_t)m->m_pkthdr.tso_segsz << 1815 JME_TD_MSS_SHIFT; 1816 cflags |= JME_TD_TSO; 1817 } else { 1818 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1819 cflags |= JME_TD_IPCSUM; 1820 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1821 cflags |= JME_TD_TCPCSUM; 1822 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1823 cflags |= JME_TD_UDPCSUM; 1824 } 1825 /* Configure VLAN. */ 1826 if ((m->m_flags & M_VLANTAG) != 0) { 1827 cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK); 1828 cflags |= JME_TD_VLAN_TAG; 1829 } 1830 1831 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1832 desc->flags = htole32(cflags); 1833 desc->buflen = htole32(tsosegsz); 1834 desc->addr_hi = htole32(m->m_pkthdr.len); 1835 desc->addr_lo = 0; 1836 sc->jme_cdata.jme_tx_cnt++; 1837 JME_DESC_INC(prod, JME_TX_RING_CNT); 1838 for (i = 0; i < nsegs; i++) { 1839 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1840 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT); 1841 desc->buflen = htole32(txsegs[i].ds_len); 1842 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr)); 1843 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr)); 1844 sc->jme_cdata.jme_tx_cnt++; 1845 JME_DESC_INC(prod, JME_TX_RING_CNT); 1846 } 1847 1848 /* Update producer index. */ 1849 sc->jme_cdata.jme_tx_prod = prod; 1850 /* 1851 * Finally request interrupt and give the first descriptor 1852 * owenership to hardware. 1853 */ 1854 desc = txd->tx_desc; 1855 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR); 1856 1857 txd->tx_m = m; 1858 txd->tx_ndesc = nsegs + 1; 1859 1860 /* Sync descriptors. */ 1861 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 1862 BUS_DMASYNC_PREWRITE); 1863 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 1864 sc->jme_cdata.jme_tx_ring_map, 1865 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1866 1867 return (0); 1868 } 1869 1870 static void 1871 jme_start(struct ifnet *ifp) 1872 { 1873 struct jme_softc *sc; 1874 1875 sc = ifp->if_softc; 1876 JME_LOCK(sc); 1877 jme_start_locked(ifp); 1878 JME_UNLOCK(sc); 1879 } 1880 1881 static void 1882 jme_start_locked(struct ifnet *ifp) 1883 { 1884 struct jme_softc *sc; 1885 struct mbuf *m_head; 1886 int enq; 1887 1888 sc = ifp->if_softc; 1889 1890 JME_LOCK_ASSERT(sc); 1891 1892 if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT) 1893 jme_txeof(sc); 1894 1895 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1896 IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) 1897 return; 1898 1899 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1900 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1901 if (m_head == NULL) 1902 break; 1903 /* 1904 * Pack the data into the transmit ring. If we 1905 * don't have room, set the OACTIVE flag and wait 1906 * for the NIC to drain the ring. 1907 */ 1908 if (jme_encap(sc, &m_head)) { 1909 if (m_head == NULL) 1910 break; 1911 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1912 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1913 break; 1914 } 1915 1916 enq++; 1917 /* 1918 * If there's a BPF listener, bounce a copy of this frame 1919 * to him. 1920 */ 1921 ETHER_BPF_MTAP(ifp, m_head); 1922 } 1923 1924 if (enq > 0) { 1925 /* 1926 * Reading TXCSR takes very long time under heavy load 1927 * so cache TXCSR value and writes the ORed value with 1928 * the kick command to the TXCSR. This saves one register 1929 * access cycle. 1930 */ 1931 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB | 1932 TXCSR_TXQ_N_START(TXCSR_TXQ0)); 1933 /* Set a timeout in case the chip goes out to lunch. */ 1934 sc->jme_watchdog_timer = JME_TX_TIMEOUT; 1935 } 1936 } 1937 1938 static void 1939 jme_watchdog(struct jme_softc *sc) 1940 { 1941 struct ifnet *ifp; 1942 1943 JME_LOCK_ASSERT(sc); 1944 1945 if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer) 1946 return; 1947 1948 ifp = sc->jme_ifp; 1949 if ((sc->jme_flags & JME_FLAG_LINK) == 0) { 1950 if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n"); 1951 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1952 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1953 jme_init_locked(sc); 1954 return; 1955 } 1956 jme_txeof(sc); 1957 if (sc->jme_cdata.jme_tx_cnt == 0) { 1958 if_printf(sc->jme_ifp, 1959 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1960 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1961 jme_start_locked(ifp); 1962 return; 1963 } 1964 1965 if_printf(sc->jme_ifp, "watchdog timeout\n"); 1966 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1967 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1968 jme_init_locked(sc); 1969 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1970 jme_start_locked(ifp); 1971 } 1972 1973 static int 1974 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1975 { 1976 struct jme_softc *sc; 1977 struct ifreq *ifr; 1978 struct mii_data *mii; 1979 uint32_t reg; 1980 int error, mask; 1981 1982 sc = ifp->if_softc; 1983 ifr = (struct ifreq *)data; 1984 error = 0; 1985 switch (cmd) { 1986 case SIOCSIFMTU: 1987 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU || 1988 ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 && 1989 ifr->ifr_mtu > JME_MAX_MTU)) { 1990 error = EINVAL; 1991 break; 1992 } 1993 1994 if (ifp->if_mtu != ifr->ifr_mtu) { 1995 /* 1996 * No special configuration is required when interface 1997 * MTU is changed but availability of TSO/Tx checksum 1998 * offload should be chcked against new MTU size as 1999 * FIFO size is just 2K. 2000 */ 2001 JME_LOCK(sc); 2002 if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) { 2003 ifp->if_capenable &= 2004 ~(IFCAP_TXCSUM | IFCAP_TSO4); 2005 ifp->if_hwassist &= 2006 ~(JME_CSUM_FEATURES | CSUM_TSO); 2007 VLAN_CAPABILITIES(ifp); 2008 } 2009 ifp->if_mtu = ifr->ifr_mtu; 2010 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2011 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2012 jme_init_locked(sc); 2013 } 2014 JME_UNLOCK(sc); 2015 } 2016 break; 2017 case SIOCSIFFLAGS: 2018 JME_LOCK(sc); 2019 if ((ifp->if_flags & IFF_UP) != 0) { 2020 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2021 if (((ifp->if_flags ^ sc->jme_if_flags) 2022 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2023 jme_set_filter(sc); 2024 } else { 2025 if ((sc->jme_flags & JME_FLAG_DETACH) == 0) 2026 jme_init_locked(sc); 2027 } 2028 } else { 2029 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2030 jme_stop(sc); 2031 } 2032 sc->jme_if_flags = ifp->if_flags; 2033 JME_UNLOCK(sc); 2034 break; 2035 case SIOCADDMULTI: 2036 case SIOCDELMULTI: 2037 JME_LOCK(sc); 2038 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2039 jme_set_filter(sc); 2040 JME_UNLOCK(sc); 2041 break; 2042 case SIOCSIFMEDIA: 2043 case SIOCGIFMEDIA: 2044 mii = device_get_softc(sc->jme_miibus); 2045 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2046 break; 2047 case SIOCSIFCAP: 2048 JME_LOCK(sc); 2049 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2050 if ((mask & IFCAP_TXCSUM) != 0 && 2051 ifp->if_mtu < JME_TX_FIFO_SIZE) { 2052 if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 2053 ifp->if_capenable ^= IFCAP_TXCSUM; 2054 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 2055 ifp->if_hwassist |= JME_CSUM_FEATURES; 2056 else 2057 ifp->if_hwassist &= ~JME_CSUM_FEATURES; 2058 } 2059 } 2060 if ((mask & IFCAP_RXCSUM) != 0 && 2061 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { 2062 ifp->if_capenable ^= IFCAP_RXCSUM; 2063 reg = CSR_READ_4(sc, JME_RXMAC); 2064 reg &= ~RXMAC_CSUM_ENB; 2065 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2066 reg |= RXMAC_CSUM_ENB; 2067 CSR_WRITE_4(sc, JME_RXMAC, reg); 2068 } 2069 if ((mask & IFCAP_TSO4) != 0 && 2070 ifp->if_mtu < JME_TX_FIFO_SIZE) { 2071 if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) { 2072 ifp->if_capenable ^= IFCAP_TSO4; 2073 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 2074 ifp->if_hwassist |= CSUM_TSO; 2075 else 2076 ifp->if_hwassist &= ~CSUM_TSO; 2077 } 2078 } 2079 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2080 (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0) 2081 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2082 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2083 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2084 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2085 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2086 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2087 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2088 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2089 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 2090 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2091 jme_set_vlan(sc); 2092 } 2093 JME_UNLOCK(sc); 2094 VLAN_CAPABILITIES(ifp); 2095 break; 2096 default: 2097 error = ether_ioctl(ifp, cmd, data); 2098 break; 2099 } 2100 2101 return (error); 2102 } 2103 2104 static void 2105 jme_mac_config(struct jme_softc *sc) 2106 { 2107 struct mii_data *mii; 2108 uint32_t ghc, gpreg, rxmac, txmac, txpause; 2109 uint32_t txclk; 2110 2111 JME_LOCK_ASSERT(sc); 2112 2113 mii = device_get_softc(sc->jme_miibus); 2114 2115 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2116 DELAY(10); 2117 CSR_WRITE_4(sc, JME_GHC, 0); 2118 ghc = 0; 2119 txclk = 0; 2120 rxmac = CSR_READ_4(sc, JME_RXMAC); 2121 rxmac &= ~RXMAC_FC_ENB; 2122 txmac = CSR_READ_4(sc, JME_TXMAC); 2123 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST); 2124 txpause = CSR_READ_4(sc, JME_TXPFC); 2125 txpause &= ~TXPFC_PAUSE_ENB; 2126 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2127 ghc |= GHC_FULL_DUPLEX; 2128 rxmac &= ~RXMAC_COLL_DET_ENB; 2129 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | 2130 TXMAC_BACKOFF | TXMAC_CARRIER_EXT | 2131 TXMAC_FRAME_BURST); 2132 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2133 txpause |= TXPFC_PAUSE_ENB; 2134 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2135 rxmac |= RXMAC_FC_ENB; 2136 /* Disable retry transmit timer/retry limit. */ 2137 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) & 2138 ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)); 2139 } else { 2140 rxmac |= RXMAC_COLL_DET_ENB; 2141 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF; 2142 /* Enable retry transmit timer/retry limit. */ 2143 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) | 2144 TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB); 2145 } 2146 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */ 2147 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2148 case IFM_10_T: 2149 ghc |= GHC_SPEED_10; 2150 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2151 break; 2152 case IFM_100_TX: 2153 ghc |= GHC_SPEED_100; 2154 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2155 break; 2156 case IFM_1000_T: 2157 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2158 break; 2159 ghc |= GHC_SPEED_1000; 2160 txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000; 2161 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) 2162 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST; 2163 break; 2164 default: 2165 break; 2166 } 2167 if (sc->jme_rev == DEVICEID_JMC250 && 2168 sc->jme_chip_rev == DEVICEREVID_JMC250_A2) { 2169 /* 2170 * Workaround occasional packet loss issue of JMC250 A2 2171 * when it runs on half-duplex media. 2172 */ 2173 gpreg = CSR_READ_4(sc, JME_GPREG1); 2174 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 2175 gpreg &= ~GPREG1_HDPX_FIX; 2176 else 2177 gpreg |= GPREG1_HDPX_FIX; 2178 CSR_WRITE_4(sc, JME_GPREG1, gpreg); 2179 /* Workaround CRC errors at 100Mbps on JMC250 A2. */ 2180 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 2181 /* Extend interface FIFO depth. */ 2182 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2183 0x1B, 0x0000); 2184 } else { 2185 /* Select default interface FIFO depth. */ 2186 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2187 0x1B, 0x0004); 2188 } 2189 } 2190 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 2191 ghc |= txclk; 2192 CSR_WRITE_4(sc, JME_GHC, ghc); 2193 CSR_WRITE_4(sc, JME_RXMAC, rxmac); 2194 CSR_WRITE_4(sc, JME_TXMAC, txmac); 2195 CSR_WRITE_4(sc, JME_TXPFC, txpause); 2196 } 2197 2198 static void 2199 jme_link_task(void *arg, int pending) 2200 { 2201 struct jme_softc *sc; 2202 struct mii_data *mii; 2203 struct ifnet *ifp; 2204 struct jme_txdesc *txd; 2205 bus_addr_t paddr; 2206 int i; 2207 2208 sc = (struct jme_softc *)arg; 2209 2210 JME_LOCK(sc); 2211 mii = device_get_softc(sc->jme_miibus); 2212 ifp = sc->jme_ifp; 2213 if (mii == NULL || ifp == NULL || 2214 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2215 JME_UNLOCK(sc); 2216 return; 2217 } 2218 2219 sc->jme_flags &= ~JME_FLAG_LINK; 2220 if ((mii->mii_media_status & IFM_AVALID) != 0) { 2221 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2222 case IFM_10_T: 2223 case IFM_100_TX: 2224 sc->jme_flags |= JME_FLAG_LINK; 2225 break; 2226 case IFM_1000_T: 2227 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2228 break; 2229 sc->jme_flags |= JME_FLAG_LINK; 2230 break; 2231 default: 2232 break; 2233 } 2234 } 2235 2236 /* 2237 * Disabling Rx/Tx MACs have a side-effect of resetting 2238 * JME_TXNDA/JME_RXNDA register to the first address of 2239 * Tx/Rx descriptor address. So driver should reset its 2240 * internal procucer/consumer pointer and reclaim any 2241 * allocated resources. Note, just saving the value of 2242 * JME_TXNDA and JME_RXNDA registers before stopping MAC 2243 * and restoring JME_TXNDA/JME_RXNDA register is not 2244 * sufficient to make sure correct MAC state because 2245 * stopping MAC operation can take a while and hardware 2246 * might have updated JME_TXNDA/JME_RXNDA registers 2247 * during the stop operation. 2248 */ 2249 /* Block execution of task. */ 2250 taskqueue_block(sc->jme_tq); 2251 /* Disable interrupts and stop driver. */ 2252 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2253 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2254 callout_stop(&sc->jme_tick_ch); 2255 sc->jme_watchdog_timer = 0; 2256 2257 /* Stop receiver/transmitter. */ 2258 jme_stop_rx(sc); 2259 jme_stop_tx(sc); 2260 2261 /* XXX Drain all queued tasks. */ 2262 JME_UNLOCK(sc); 2263 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 2264 JME_LOCK(sc); 2265 2266 if (sc->jme_cdata.jme_rxhead != NULL) 2267 m_freem(sc->jme_cdata.jme_rxhead); 2268 JME_RXCHAIN_RESET(sc); 2269 jme_txeof(sc); 2270 if (sc->jme_cdata.jme_tx_cnt != 0) { 2271 /* Remove queued packets for transmit. */ 2272 for (i = 0; i < JME_TX_RING_CNT; i++) { 2273 txd = &sc->jme_cdata.jme_txdesc[i]; 2274 if (txd->tx_m != NULL) { 2275 bus_dmamap_sync( 2276 sc->jme_cdata.jme_tx_tag, 2277 txd->tx_dmamap, 2278 BUS_DMASYNC_POSTWRITE); 2279 bus_dmamap_unload( 2280 sc->jme_cdata.jme_tx_tag, 2281 txd->tx_dmamap); 2282 m_freem(txd->tx_m); 2283 txd->tx_m = NULL; 2284 txd->tx_ndesc = 0; 2285 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2286 } 2287 } 2288 } 2289 2290 /* 2291 * Reuse configured Rx descriptors and reset 2292 * producer/consumer index. 2293 */ 2294 sc->jme_cdata.jme_rx_cons = 0; 2295 sc->jme_morework = 0; 2296 jme_init_tx_ring(sc); 2297 /* Initialize shadow status block. */ 2298 jme_init_ssb(sc); 2299 2300 /* Program MAC with resolved speed/duplex/flow-control. */ 2301 if ((sc->jme_flags & JME_FLAG_LINK) != 0) { 2302 jme_mac_config(sc); 2303 jme_stats_clear(sc); 2304 2305 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2306 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2307 2308 /* Set Tx ring address to the hardware. */ 2309 paddr = JME_TX_RING_ADDR(sc, 0); 2310 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2311 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2312 2313 /* Set Rx ring address to the hardware. */ 2314 paddr = JME_RX_RING_ADDR(sc, 0); 2315 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2316 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2317 2318 /* Restart receiver/transmitter. */ 2319 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB | 2320 RXCSR_RXQ_START); 2321 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB); 2322 /* Lastly enable TX/RX clock. */ 2323 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 2324 CSR_WRITE_4(sc, JME_GHC, 2325 CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS); 2326 if ((sc->jme_flags & JME_FLAG_RXCLK) != 0) 2327 CSR_WRITE_4(sc, JME_GPREG1, 2328 CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS); 2329 } 2330 2331 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2332 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2333 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2334 /* Unblock execution of task. */ 2335 taskqueue_unblock(sc->jme_tq); 2336 /* Reenable interrupts. */ 2337 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2338 2339 JME_UNLOCK(sc); 2340 } 2341 2342 static int 2343 jme_intr(void *arg) 2344 { 2345 struct jme_softc *sc; 2346 uint32_t status; 2347 2348 sc = (struct jme_softc *)arg; 2349 2350 status = CSR_READ_4(sc, JME_INTR_REQ_STATUS); 2351 if (status == 0 || status == 0xFFFFFFFF) 2352 return (FILTER_STRAY); 2353 /* Disable interrupts. */ 2354 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2355 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2356 2357 return (FILTER_HANDLED); 2358 } 2359 2360 static void 2361 jme_int_task(void *arg, int pending) 2362 { 2363 struct jme_softc *sc; 2364 struct ifnet *ifp; 2365 uint32_t status; 2366 int more; 2367 2368 sc = (struct jme_softc *)arg; 2369 ifp = sc->jme_ifp; 2370 2371 JME_LOCK(sc); 2372 status = CSR_READ_4(sc, JME_INTR_STATUS); 2373 if (sc->jme_morework != 0) { 2374 sc->jme_morework = 0; 2375 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO; 2376 } 2377 if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF) 2378 goto done; 2379 /* Reset PCC counter/timer and Ack interrupts. */ 2380 status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP); 2381 if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 2382 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP; 2383 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 2384 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP; 2385 CSR_WRITE_4(sc, JME_INTR_STATUS, status); 2386 more = 0; 2387 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2388 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) { 2389 more = jme_rxintr(sc, sc->jme_process_limit); 2390 if (more != 0) 2391 sc->jme_morework = 1; 2392 } 2393 if ((status & INTR_RXQ_DESC_EMPTY) != 0) { 2394 /* 2395 * Notify hardware availability of new Rx 2396 * buffers. 2397 * Reading RXCSR takes very long time under 2398 * heavy load so cache RXCSR value and writes 2399 * the ORed value with the kick command to 2400 * the RXCSR. This saves one register access 2401 * cycle. 2402 */ 2403 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | 2404 RXCSR_RX_ENB | RXCSR_RXQ_START); 2405 } 2406 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2407 jme_start_locked(ifp); 2408 } 2409 2410 if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) { 2411 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2412 JME_UNLOCK(sc); 2413 return; 2414 } 2415 done: 2416 JME_UNLOCK(sc); 2417 2418 /* Reenable interrupts. */ 2419 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2420 } 2421 2422 static void 2423 jme_txeof(struct jme_softc *sc) 2424 { 2425 struct ifnet *ifp; 2426 struct jme_txdesc *txd; 2427 uint32_t status; 2428 int cons, nsegs; 2429 2430 JME_LOCK_ASSERT(sc); 2431 2432 ifp = sc->jme_ifp; 2433 2434 cons = sc->jme_cdata.jme_tx_cons; 2435 if (cons == sc->jme_cdata.jme_tx_prod) 2436 return; 2437 2438 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2439 sc->jme_cdata.jme_tx_ring_map, 2440 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2441 2442 /* 2443 * Go through our Tx list and free mbufs for those 2444 * frames which have been transmitted. 2445 */ 2446 for (; cons != sc->jme_cdata.jme_tx_prod;) { 2447 txd = &sc->jme_cdata.jme_txdesc[cons]; 2448 status = le32toh(txd->tx_desc->flags); 2449 if ((status & JME_TD_OWN) == JME_TD_OWN) 2450 break; 2451 2452 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0) 2453 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2454 else { 2455 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2456 if ((status & JME_TD_COLLISION) != 0) 2457 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 2458 le32toh(txd->tx_desc->buflen) & 2459 JME_TD_BUF_LEN_MASK); 2460 } 2461 /* 2462 * Only the first descriptor of multi-descriptor 2463 * transmission is updated so driver have to skip entire 2464 * chained buffers for the transmiited frame. In other 2465 * words, JME_TD_OWN bit is valid only at the first 2466 * descriptor of a multi-descriptor transmission. 2467 */ 2468 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) { 2469 sc->jme_rdata.jme_tx_ring[cons].flags = 0; 2470 JME_DESC_INC(cons, JME_TX_RING_CNT); 2471 } 2472 2473 /* Reclaim transferred mbufs. */ 2474 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 2475 BUS_DMASYNC_POSTWRITE); 2476 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 2477 2478 KASSERT(txd->tx_m != NULL, 2479 ("%s: freeing NULL mbuf!\n", __func__)); 2480 m_freem(txd->tx_m); 2481 txd->tx_m = NULL; 2482 sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc; 2483 KASSERT(sc->jme_cdata.jme_tx_cnt >= 0, 2484 ("%s: Active Tx desc counter was garbled\n", __func__)); 2485 txd->tx_ndesc = 0; 2486 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2487 } 2488 sc->jme_cdata.jme_tx_cons = cons; 2489 /* Unarm watchog timer when there is no pending descriptors in queue. */ 2490 if (sc->jme_cdata.jme_tx_cnt == 0) 2491 sc->jme_watchdog_timer = 0; 2492 2493 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2494 sc->jme_cdata.jme_tx_ring_map, 2495 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2496 } 2497 2498 static __inline void 2499 jme_discard_rxbuf(struct jme_softc *sc, int cons) 2500 { 2501 struct jme_desc *desc; 2502 2503 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2504 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 2505 desc->buflen = htole32(MCLBYTES); 2506 } 2507 2508 /* Receive a frame. */ 2509 static void 2510 jme_rxeof(struct jme_softc *sc) 2511 { 2512 struct ifnet *ifp; 2513 struct jme_desc *desc; 2514 struct jme_rxdesc *rxd; 2515 struct mbuf *mp, *m; 2516 uint32_t flags, status; 2517 int cons, count, nsegs; 2518 2519 JME_LOCK_ASSERT(sc); 2520 2521 ifp = sc->jme_ifp; 2522 2523 cons = sc->jme_cdata.jme_rx_cons; 2524 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2525 flags = le32toh(desc->flags); 2526 status = le32toh(desc->buflen); 2527 nsegs = JME_RX_NSEGS(status); 2528 sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES; 2529 if ((status & JME_RX_ERR_STAT) != 0) { 2530 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2531 jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons); 2532 #ifdef JME_SHOW_ERRORS 2533 device_printf(sc->jme_dev, "%s : receive error = 0x%b\n", 2534 __func__, JME_RX_ERR(status), JME_RX_ERR_BITS); 2535 #endif 2536 sc->jme_cdata.jme_rx_cons += nsegs; 2537 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2538 return; 2539 } 2540 2541 for (count = 0; count < nsegs; count++, 2542 JME_DESC_INC(cons, JME_RX_RING_CNT)) { 2543 rxd = &sc->jme_cdata.jme_rxdesc[cons]; 2544 mp = rxd->rx_m; 2545 /* Add a new receive buffer to the ring. */ 2546 if (jme_newbuf(sc, rxd) != 0) { 2547 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2548 /* Reuse buffer. */ 2549 for (; count < nsegs; count++) { 2550 jme_discard_rxbuf(sc, cons); 2551 JME_DESC_INC(cons, JME_RX_RING_CNT); 2552 } 2553 if (sc->jme_cdata.jme_rxhead != NULL) { 2554 m_freem(sc->jme_cdata.jme_rxhead); 2555 JME_RXCHAIN_RESET(sc); 2556 } 2557 break; 2558 } 2559 2560 /* 2561 * Assume we've received a full sized frame. 2562 * Actual size is fixed when we encounter the end of 2563 * multi-segmented frame. 2564 */ 2565 mp->m_len = MCLBYTES; 2566 2567 /* Chain received mbufs. */ 2568 if (sc->jme_cdata.jme_rxhead == NULL) { 2569 sc->jme_cdata.jme_rxhead = mp; 2570 sc->jme_cdata.jme_rxtail = mp; 2571 } else { 2572 /* 2573 * Receive processor can receive a maximum frame 2574 * size of 65535 bytes. 2575 */ 2576 mp->m_flags &= ~M_PKTHDR; 2577 sc->jme_cdata.jme_rxtail->m_next = mp; 2578 sc->jme_cdata.jme_rxtail = mp; 2579 } 2580 2581 if (count == nsegs - 1) { 2582 /* Last desc. for this frame. */ 2583 m = sc->jme_cdata.jme_rxhead; 2584 m->m_flags |= M_PKTHDR; 2585 m->m_pkthdr.len = sc->jme_cdata.jme_rxlen; 2586 if (nsegs > 1) { 2587 /* Set first mbuf size. */ 2588 m->m_len = MCLBYTES - JME_RX_PAD_BYTES; 2589 /* Set last mbuf size. */ 2590 mp->m_len = sc->jme_cdata.jme_rxlen - 2591 ((MCLBYTES - JME_RX_PAD_BYTES) + 2592 (MCLBYTES * (nsegs - 2))); 2593 } else 2594 m->m_len = sc->jme_cdata.jme_rxlen; 2595 m->m_pkthdr.rcvif = ifp; 2596 2597 /* 2598 * Account for 10bytes auto padding which is used 2599 * to align IP header on 32bit boundary. Also note, 2600 * CRC bytes is automatically removed by the 2601 * hardware. 2602 */ 2603 m->m_data += JME_RX_PAD_BYTES; 2604 2605 /* Set checksum information. */ 2606 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2607 (flags & JME_RD_IPV4) != 0) { 2608 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2609 if ((flags & JME_RD_IPCSUM) != 0) 2610 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2611 if (((flags & JME_RD_MORE_FRAG) == 0) && 2612 ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) == 2613 (JME_RD_TCP | JME_RD_TCPCSUM) || 2614 (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) == 2615 (JME_RD_UDP | JME_RD_UDPCSUM))) { 2616 m->m_pkthdr.csum_flags |= 2617 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2618 m->m_pkthdr.csum_data = 0xffff; 2619 } 2620 } 2621 2622 /* Check for VLAN tagged packets. */ 2623 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2624 (flags & JME_RD_VLAN_TAG) != 0) { 2625 m->m_pkthdr.ether_vtag = 2626 flags & JME_RD_VLAN_MASK; 2627 m->m_flags |= M_VLANTAG; 2628 } 2629 2630 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2631 /* Pass it on. */ 2632 JME_UNLOCK(sc); 2633 (*ifp->if_input)(ifp, m); 2634 JME_LOCK(sc); 2635 2636 /* Reset mbuf chains. */ 2637 JME_RXCHAIN_RESET(sc); 2638 } 2639 } 2640 2641 sc->jme_cdata.jme_rx_cons += nsegs; 2642 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2643 } 2644 2645 static int 2646 jme_rxintr(struct jme_softc *sc, int count) 2647 { 2648 struct jme_desc *desc; 2649 int nsegs, prog, pktlen; 2650 2651 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2652 sc->jme_cdata.jme_rx_ring_map, 2653 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2654 2655 for (prog = 0; count > 0; prog++) { 2656 desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons]; 2657 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN) 2658 break; 2659 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0) 2660 break; 2661 nsegs = JME_RX_NSEGS(le32toh(desc->buflen)); 2662 /* 2663 * Check number of segments against received bytes. 2664 * Non-matching value would indicate that hardware 2665 * is still trying to update Rx descriptors. I'm not 2666 * sure whether this check is needed. 2667 */ 2668 pktlen = JME_RX_BYTES(le32toh(desc->buflen)); 2669 if (nsegs != howmany(pktlen, MCLBYTES)) 2670 break; 2671 prog++; 2672 /* Received a frame. */ 2673 jme_rxeof(sc); 2674 count -= nsegs; 2675 } 2676 2677 if (prog > 0) 2678 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2679 sc->jme_cdata.jme_rx_ring_map, 2680 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2681 2682 return (count > 0 ? 0 : EAGAIN); 2683 } 2684 2685 static void 2686 jme_tick(void *arg) 2687 { 2688 struct jme_softc *sc; 2689 struct mii_data *mii; 2690 2691 sc = (struct jme_softc *)arg; 2692 2693 JME_LOCK_ASSERT(sc); 2694 2695 mii = device_get_softc(sc->jme_miibus); 2696 mii_tick(mii); 2697 /* 2698 * Reclaim Tx buffers that have been completed. It's not 2699 * needed here but it would release allocated mbuf chains 2700 * faster and limit the maximum delay to a hz. 2701 */ 2702 jme_txeof(sc); 2703 jme_stats_update(sc); 2704 jme_watchdog(sc); 2705 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2706 } 2707 2708 static void 2709 jme_reset(struct jme_softc *sc) 2710 { 2711 uint32_t ghc, gpreg; 2712 2713 /* Stop receiver, transmitter. */ 2714 jme_stop_rx(sc); 2715 jme_stop_tx(sc); 2716 2717 /* Reset controller. */ 2718 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2719 CSR_READ_4(sc, JME_GHC); 2720 DELAY(10); 2721 /* 2722 * Workaround Rx FIFO overruns seen under certain conditions. 2723 * Explicitly synchorize TX/RX clock. TX/RX clock should be 2724 * enabled only after enabling TX/RX MACs. 2725 */ 2726 if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) { 2727 /* Disable TX clock. */ 2728 CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS); 2729 /* Disable RX clock. */ 2730 gpreg = CSR_READ_4(sc, JME_GPREG1); 2731 CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS); 2732 gpreg = CSR_READ_4(sc, JME_GPREG1); 2733 /* De-assert RESET but still disable TX clock. */ 2734 CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS); 2735 ghc = CSR_READ_4(sc, JME_GHC); 2736 2737 /* Enable TX clock. */ 2738 CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS); 2739 /* Enable RX clock. */ 2740 CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS); 2741 CSR_READ_4(sc, JME_GPREG1); 2742 2743 /* Disable TX/RX clock again. */ 2744 CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS); 2745 CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS); 2746 } else 2747 CSR_WRITE_4(sc, JME_GHC, 0); 2748 CSR_READ_4(sc, JME_GHC); 2749 DELAY(10); 2750 } 2751 2752 static void 2753 jme_init(void *xsc) 2754 { 2755 struct jme_softc *sc; 2756 2757 sc = (struct jme_softc *)xsc; 2758 JME_LOCK(sc); 2759 jme_init_locked(sc); 2760 JME_UNLOCK(sc); 2761 } 2762 2763 static void 2764 jme_init_locked(struct jme_softc *sc) 2765 { 2766 struct ifnet *ifp; 2767 struct mii_data *mii; 2768 bus_addr_t paddr; 2769 uint32_t reg; 2770 int error; 2771 2772 JME_LOCK_ASSERT(sc); 2773 2774 ifp = sc->jme_ifp; 2775 mii = device_get_softc(sc->jme_miibus); 2776 2777 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2778 return; 2779 /* 2780 * Cancel any pending I/O. 2781 */ 2782 jme_stop(sc); 2783 2784 /* 2785 * Reset the chip to a known state. 2786 */ 2787 jme_reset(sc); 2788 2789 /* Init descriptors. */ 2790 error = jme_init_rx_ring(sc); 2791 if (error != 0) { 2792 device_printf(sc->jme_dev, 2793 "%s: initialization failed: no memory for Rx buffers.\n", 2794 __func__); 2795 jme_stop(sc); 2796 return; 2797 } 2798 jme_init_tx_ring(sc); 2799 /* Initialize shadow status block. */ 2800 jme_init_ssb(sc); 2801 2802 /* Reprogram the station address. */ 2803 jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp)); 2804 2805 /* 2806 * Configure Tx queue. 2807 * Tx priority queue weight value : 0 2808 * Tx FIFO threshold for processing next packet : 16QW 2809 * Maximum Tx DMA length : 512 2810 * Allow Tx DMA burst. 2811 */ 2812 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0); 2813 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN); 2814 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW; 2815 sc->jme_txcsr |= sc->jme_tx_dma_size; 2816 sc->jme_txcsr |= TXCSR_DMA_BURST; 2817 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2818 2819 /* Set Tx descriptor counter. */ 2820 CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT); 2821 2822 /* Set Tx ring address to the hardware. */ 2823 paddr = JME_TX_RING_ADDR(sc, 0); 2824 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2825 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2826 2827 /* Configure TxMAC parameters. */ 2828 reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB; 2829 reg |= TXMAC_THRESH_1_PKT; 2830 reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB; 2831 CSR_WRITE_4(sc, JME_TXMAC, reg); 2832 2833 /* 2834 * Configure Rx queue. 2835 * FIFO full threshold for transmitting Tx pause packet : 128T 2836 * FIFO threshold for processing next packet : 128QW 2837 * Rx queue 0 select 2838 * Max Rx DMA length : 128 2839 * Rx descriptor retry : 32 2840 * Rx descriptor retry time gap : 256ns 2841 * Don't receive runt/bad frame. 2842 */ 2843 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T; 2844 /* 2845 * Since Rx FIFO size is 4K bytes, receiving frames larger 2846 * than 4K bytes will suffer from Rx FIFO overruns. So 2847 * decrease FIFO threshold to reduce the FIFO overruns for 2848 * frames larger than 4000 bytes. 2849 * For best performance of standard MTU sized frames use 2850 * maximum allowable FIFO threshold, 128QW. Note these do 2851 * not hold on chip full mask verion >=2. For these 2852 * controllers 64QW and 128QW are not valid value. 2853 */ 2854 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) 2855 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2856 else { 2857 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2858 ETHER_CRC_LEN) > JME_RX_FIFO_SIZE) 2859 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2860 else 2861 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW; 2862 } 2863 sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0); 2864 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT); 2865 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK; 2866 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2867 2868 /* Set Rx descriptor counter. */ 2869 CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT); 2870 2871 /* Set Rx ring address to the hardware. */ 2872 paddr = JME_RX_RING_ADDR(sc, 0); 2873 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2874 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2875 2876 /* Clear receive filter. */ 2877 CSR_WRITE_4(sc, JME_RXMAC, 0); 2878 /* Set up the receive filter. */ 2879 jme_set_filter(sc); 2880 jme_set_vlan(sc); 2881 2882 /* 2883 * Disable all WOL bits as WOL can interfere normal Rx 2884 * operation. Also clear WOL detection status bits. 2885 */ 2886 reg = CSR_READ_4(sc, JME_PMCS); 2887 reg &= ~PMCS_WOL_ENB_MASK; 2888 CSR_WRITE_4(sc, JME_PMCS, reg); 2889 2890 reg = CSR_READ_4(sc, JME_RXMAC); 2891 /* 2892 * Pad 10bytes right before received frame. This will greatly 2893 * help Rx performance on strict-alignment architectures as 2894 * it does not need to copy the frame to align the payload. 2895 */ 2896 reg |= RXMAC_PAD_10BYTES; 2897 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2898 reg |= RXMAC_CSUM_ENB; 2899 CSR_WRITE_4(sc, JME_RXMAC, reg); 2900 2901 /* Configure general purpose reg0 */ 2902 reg = CSR_READ_4(sc, JME_GPREG0); 2903 reg &= ~GPREG0_PCC_UNIT_MASK; 2904 /* Set PCC timer resolution to micro-seconds unit. */ 2905 reg |= GPREG0_PCC_UNIT_US; 2906 /* 2907 * Disable all shadow register posting as we have to read 2908 * JME_INTR_STATUS register in jme_int_task. Also it seems 2909 * that it's hard to synchronize interrupt status between 2910 * hardware and software with shadow posting due to 2911 * requirements of bus_dmamap_sync(9). 2912 */ 2913 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS | 2914 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS | 2915 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS | 2916 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS; 2917 /* Disable posting of DW0. */ 2918 reg &= ~GPREG0_POST_DW0_ENB; 2919 /* Clear PME message. */ 2920 reg &= ~GPREG0_PME_ENB; 2921 /* Set PHY address. */ 2922 reg &= ~GPREG0_PHY_ADDR_MASK; 2923 reg |= sc->jme_phyaddr; 2924 CSR_WRITE_4(sc, JME_GPREG0, reg); 2925 2926 /* Configure Tx queue 0 packet completion coalescing. */ 2927 reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) & 2928 PCCTX_COAL_TO_MASK; 2929 reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) & 2930 PCCTX_COAL_PKT_MASK; 2931 reg |= PCCTX_COAL_TXQ0; 2932 CSR_WRITE_4(sc, JME_PCCTX, reg); 2933 2934 /* Configure Rx queue 0 packet completion coalescing. */ 2935 reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) & 2936 PCCRX_COAL_TO_MASK; 2937 reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) & 2938 PCCRX_COAL_PKT_MASK; 2939 CSR_WRITE_4(sc, JME_PCCRX0, reg); 2940 2941 /* 2942 * Configure PCD(Packet Completion Deferring). It seems PCD 2943 * generates an interrupt when the time interval between two 2944 * back-to-back incoming/outgoing packet is long enough for 2945 * it to reach its timer value 0. The arrival of new packets 2946 * after timer has started causes the PCD timer to restart. 2947 * Unfortunately, it's not clear how PCD is useful at this 2948 * moment, so just use the same of PCC parameters. 2949 */ 2950 if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) { 2951 sc->jme_rx_pcd_to = sc->jme_rx_coal_to; 2952 if (sc->jme_rx_coal_to > PCDRX_TO_MAX) 2953 sc->jme_rx_pcd_to = PCDRX_TO_MAX; 2954 sc->jme_tx_pcd_to = sc->jme_tx_coal_to; 2955 if (sc->jme_tx_coal_to > PCDTX_TO_MAX) 2956 sc->jme_tx_pcd_to = PCDTX_TO_MAX; 2957 reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT; 2958 reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT; 2959 CSR_WRITE_4(sc, PCDRX_REG(0), reg); 2960 reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT; 2961 reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT; 2962 CSR_WRITE_4(sc, JME_PCDTX, reg); 2963 } 2964 2965 /* Configure shadow status block but don't enable posting. */ 2966 paddr = sc->jme_rdata.jme_ssb_block_paddr; 2967 CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr)); 2968 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr)); 2969 2970 /* Disable Timer 1 and Timer 2. */ 2971 CSR_WRITE_4(sc, JME_TIMER1, 0); 2972 CSR_WRITE_4(sc, JME_TIMER2, 0); 2973 2974 /* Configure retry transmit period, retry limit value. */ 2975 CSR_WRITE_4(sc, JME_TXTRHD, 2976 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) & 2977 TXTRHD_RT_PERIOD_MASK) | 2978 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) & 2979 TXTRHD_RT_LIMIT_SHIFT)); 2980 2981 /* Disable RSS. */ 2982 CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS); 2983 2984 /* Initialize the interrupt mask. */ 2985 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2986 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 2987 2988 /* 2989 * Enabling Tx/Rx DMA engines and Rx queue processing is 2990 * done after detection of valid link in jme_link_task. 2991 */ 2992 2993 sc->jme_flags &= ~JME_FLAG_LINK; 2994 /* Set the current media. */ 2995 mii_mediachg(mii); 2996 2997 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2998 2999 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3000 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3001 } 3002 3003 static void 3004 jme_stop(struct jme_softc *sc) 3005 { 3006 struct ifnet *ifp; 3007 struct jme_txdesc *txd; 3008 struct jme_rxdesc *rxd; 3009 int i; 3010 3011 JME_LOCK_ASSERT(sc); 3012 /* 3013 * Mark the interface down and cancel the watchdog timer. 3014 */ 3015 ifp = sc->jme_ifp; 3016 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3017 sc->jme_flags &= ~JME_FLAG_LINK; 3018 callout_stop(&sc->jme_tick_ch); 3019 sc->jme_watchdog_timer = 0; 3020 3021 /* 3022 * Disable interrupts. 3023 */ 3024 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 3025 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 3026 3027 /* Disable updating shadow status block. */ 3028 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, 3029 CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB); 3030 3031 /* Stop receiver, transmitter. */ 3032 jme_stop_rx(sc); 3033 jme_stop_tx(sc); 3034 3035 /* Reclaim Rx/Tx buffers that have been completed. */ 3036 jme_rxintr(sc, JME_RX_RING_CNT); 3037 if (sc->jme_cdata.jme_rxhead != NULL) 3038 m_freem(sc->jme_cdata.jme_rxhead); 3039 JME_RXCHAIN_RESET(sc); 3040 jme_txeof(sc); 3041 /* 3042 * Free RX and TX mbufs still in the queues. 3043 */ 3044 for (i = 0; i < JME_RX_RING_CNT; i++) { 3045 rxd = &sc->jme_cdata.jme_rxdesc[i]; 3046 if (rxd->rx_m != NULL) { 3047 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, 3048 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3049 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, 3050 rxd->rx_dmamap); 3051 m_freem(rxd->rx_m); 3052 rxd->rx_m = NULL; 3053 } 3054 } 3055 for (i = 0; i < JME_TX_RING_CNT; i++) { 3056 txd = &sc->jme_cdata.jme_txdesc[i]; 3057 if (txd->tx_m != NULL) { 3058 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, 3059 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3060 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, 3061 txd->tx_dmamap); 3062 m_freem(txd->tx_m); 3063 txd->tx_m = NULL; 3064 txd->tx_ndesc = 0; 3065 } 3066 } 3067 jme_stats_update(sc); 3068 jme_stats_save(sc); 3069 } 3070 3071 static void 3072 jme_stop_tx(struct jme_softc *sc) 3073 { 3074 uint32_t reg; 3075 int i; 3076 3077 reg = CSR_READ_4(sc, JME_TXCSR); 3078 if ((reg & TXCSR_TX_ENB) == 0) 3079 return; 3080 reg &= ~TXCSR_TX_ENB; 3081 CSR_WRITE_4(sc, JME_TXCSR, reg); 3082 for (i = JME_TIMEOUT; i > 0; i--) { 3083 DELAY(1); 3084 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0) 3085 break; 3086 } 3087 if (i == 0) 3088 device_printf(sc->jme_dev, "stopping transmitter timeout!\n"); 3089 } 3090 3091 static void 3092 jme_stop_rx(struct jme_softc *sc) 3093 { 3094 uint32_t reg; 3095 int i; 3096 3097 reg = CSR_READ_4(sc, JME_RXCSR); 3098 if ((reg & RXCSR_RX_ENB) == 0) 3099 return; 3100 reg &= ~RXCSR_RX_ENB; 3101 CSR_WRITE_4(sc, JME_RXCSR, reg); 3102 for (i = JME_TIMEOUT; i > 0; i--) { 3103 DELAY(1); 3104 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0) 3105 break; 3106 } 3107 if (i == 0) 3108 device_printf(sc->jme_dev, "stopping recevier timeout!\n"); 3109 } 3110 3111 static void 3112 jme_init_tx_ring(struct jme_softc *sc) 3113 { 3114 struct jme_ring_data *rd; 3115 struct jme_txdesc *txd; 3116 int i; 3117 3118 sc->jme_cdata.jme_tx_prod = 0; 3119 sc->jme_cdata.jme_tx_cons = 0; 3120 sc->jme_cdata.jme_tx_cnt = 0; 3121 3122 rd = &sc->jme_rdata; 3123 bzero(rd->jme_tx_ring, JME_TX_RING_SIZE); 3124 for (i = 0; i < JME_TX_RING_CNT; i++) { 3125 txd = &sc->jme_cdata.jme_txdesc[i]; 3126 txd->tx_m = NULL; 3127 txd->tx_desc = &rd->jme_tx_ring[i]; 3128 txd->tx_ndesc = 0; 3129 } 3130 3131 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 3132 sc->jme_cdata.jme_tx_ring_map, 3133 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3134 } 3135 3136 static void 3137 jme_init_ssb(struct jme_softc *sc) 3138 { 3139 struct jme_ring_data *rd; 3140 3141 rd = &sc->jme_rdata; 3142 bzero(rd->jme_ssb_block, JME_SSB_SIZE); 3143 bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map, 3144 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3145 } 3146 3147 static int 3148 jme_init_rx_ring(struct jme_softc *sc) 3149 { 3150 struct jme_ring_data *rd; 3151 struct jme_rxdesc *rxd; 3152 int i; 3153 3154 sc->jme_cdata.jme_rx_cons = 0; 3155 JME_RXCHAIN_RESET(sc); 3156 sc->jme_morework = 0; 3157 3158 rd = &sc->jme_rdata; 3159 bzero(rd->jme_rx_ring, JME_RX_RING_SIZE); 3160 for (i = 0; i < JME_RX_RING_CNT; i++) { 3161 rxd = &sc->jme_cdata.jme_rxdesc[i]; 3162 rxd->rx_m = NULL; 3163 rxd->rx_desc = &rd->jme_rx_ring[i]; 3164 if (jme_newbuf(sc, rxd) != 0) 3165 return (ENOBUFS); 3166 } 3167 3168 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 3169 sc->jme_cdata.jme_rx_ring_map, 3170 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3171 3172 return (0); 3173 } 3174 3175 static int 3176 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd) 3177 { 3178 struct jme_desc *desc; 3179 struct mbuf *m; 3180 bus_dma_segment_t segs[1]; 3181 bus_dmamap_t map; 3182 int nsegs; 3183 3184 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 3185 if (m == NULL) 3186 return (ENOBUFS); 3187 /* 3188 * JMC250 has 64bit boundary alignment limitation so jme(4) 3189 * takes advantage of 10 bytes padding feature of hardware 3190 * in order not to copy entire frame to align IP header on 3191 * 32bit boundary. 3192 */ 3193 m->m_len = m->m_pkthdr.len = MCLBYTES; 3194 3195 if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag, 3196 sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3197 m_freem(m); 3198 return (ENOBUFS); 3199 } 3200 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3201 3202 if (rxd->rx_m != NULL) { 3203 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3204 BUS_DMASYNC_POSTREAD); 3205 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap); 3206 } 3207 map = rxd->rx_dmamap; 3208 rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap; 3209 sc->jme_cdata.jme_rx_sparemap = map; 3210 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3211 BUS_DMASYNC_PREREAD); 3212 rxd->rx_m = m; 3213 3214 desc = rxd->rx_desc; 3215 desc->buflen = htole32(segs[0].ds_len); 3216 desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr)); 3217 desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr)); 3218 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 3219 3220 return (0); 3221 } 3222 3223 static void 3224 jme_set_vlan(struct jme_softc *sc) 3225 { 3226 struct ifnet *ifp; 3227 uint32_t reg; 3228 3229 JME_LOCK_ASSERT(sc); 3230 3231 ifp = sc->jme_ifp; 3232 reg = CSR_READ_4(sc, JME_RXMAC); 3233 reg &= ~RXMAC_VLAN_ENB; 3234 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3235 reg |= RXMAC_VLAN_ENB; 3236 CSR_WRITE_4(sc, JME_RXMAC, reg); 3237 } 3238 3239 static void 3240 jme_set_filter(struct jme_softc *sc) 3241 { 3242 struct ifnet *ifp; 3243 struct ifmultiaddr *ifma; 3244 uint32_t crc; 3245 uint32_t mchash[2]; 3246 uint32_t rxcfg; 3247 3248 JME_LOCK_ASSERT(sc); 3249 3250 ifp = sc->jme_ifp; 3251 3252 rxcfg = CSR_READ_4(sc, JME_RXMAC); 3253 rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST | 3254 RXMAC_ALLMULTI); 3255 /* Always accept frames destined to our station address. */ 3256 rxcfg |= RXMAC_UNICAST; 3257 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3258 rxcfg |= RXMAC_BROADCAST; 3259 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3260 if ((ifp->if_flags & IFF_PROMISC) != 0) 3261 rxcfg |= RXMAC_PROMISC; 3262 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3263 rxcfg |= RXMAC_ALLMULTI; 3264 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF); 3265 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF); 3266 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3267 return; 3268 } 3269 3270 /* 3271 * Set up the multicast address filter by passing all multicast 3272 * addresses through a CRC generator, and then using the low-order 3273 * 6 bits as an index into the 64 bit multicast hash table. The 3274 * high order bits select the register, while the rest of the bits 3275 * select the bit within the register. 3276 */ 3277 rxcfg |= RXMAC_MULTICAST; 3278 bzero(mchash, sizeof(mchash)); 3279 3280 if_maddr_rlock(ifp); 3281 CK_STAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) { 3282 if (ifma->ifma_addr->sa_family != AF_LINK) 3283 continue; 3284 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3285 ifma->ifma_addr), ETHER_ADDR_LEN); 3286 3287 /* Just want the 6 least significant bits. */ 3288 crc &= 0x3f; 3289 3290 /* Set the corresponding bit in the hash table. */ 3291 mchash[crc >> 5] |= 1 << (crc & 0x1f); 3292 } 3293 if_maddr_runlock(ifp); 3294 3295 CSR_WRITE_4(sc, JME_MAR0, mchash[0]); 3296 CSR_WRITE_4(sc, JME_MAR1, mchash[1]); 3297 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3298 } 3299 3300 static void 3301 jme_stats_clear(struct jme_softc *sc) 3302 { 3303 3304 JME_LOCK_ASSERT(sc); 3305 3306 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3307 return; 3308 3309 /* Disable and clear counters. */ 3310 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3311 /* Activate hw counters. */ 3312 CSR_WRITE_4(sc, JME_STATCSR, 0); 3313 CSR_READ_4(sc, JME_STATCSR); 3314 bzero(&sc->jme_stats, sizeof(struct jme_hw_stats)); 3315 } 3316 3317 static void 3318 jme_stats_save(struct jme_softc *sc) 3319 { 3320 3321 JME_LOCK_ASSERT(sc); 3322 3323 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3324 return; 3325 /* Save current counters. */ 3326 bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats)); 3327 /* Disable and clear counters. */ 3328 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3329 } 3330 3331 static void 3332 jme_stats_update(struct jme_softc *sc) 3333 { 3334 struct jme_hw_stats *stat, *ostat; 3335 uint32_t reg; 3336 3337 JME_LOCK_ASSERT(sc); 3338 3339 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3340 return; 3341 stat = &sc->jme_stats; 3342 ostat = &sc->jme_ostats; 3343 stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD); 3344 stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD); 3345 reg = CSR_READ_4(sc, JME_STAT_CRCMII); 3346 stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >> 3347 STAT_RX_CRC_ERR_SHIFT; 3348 stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >> 3349 STAT_RX_MII_ERR_SHIFT; 3350 reg = CSR_READ_4(sc, JME_STAT_RXERR); 3351 stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >> 3352 STAT_RXERR_OFLOW_SHIFT; 3353 stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >> 3354 STAT_RXERR_MPTY_SHIFT; 3355 reg = CSR_READ_4(sc, JME_STAT_FAIL); 3356 stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT; 3357 stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT; 3358 3359 /* Account for previous counters. */ 3360 stat->rx_good_frames += ostat->rx_good_frames; 3361 stat->rx_crc_errs += ostat->rx_crc_errs; 3362 stat->rx_mii_errs += ostat->rx_mii_errs; 3363 stat->rx_fifo_oflows += ostat->rx_fifo_oflows; 3364 stat->rx_desc_empty += ostat->rx_desc_empty; 3365 stat->rx_bad_frames += ostat->rx_bad_frames; 3366 stat->tx_good_frames += ostat->tx_good_frames; 3367 stat->tx_bad_frames += ostat->tx_bad_frames; 3368 } 3369 3370 static void 3371 jme_phy_down(struct jme_softc *sc) 3372 { 3373 uint32_t reg; 3374 3375 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN); 3376 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) { 3377 reg = CSR_READ_4(sc, JME_PHYPOWDN); 3378 reg |= 0x0000000F; 3379 CSR_WRITE_4(sc, JME_PHYPOWDN, reg); 3380 reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4); 3381 reg &= ~PE1_GIGA_PDOWN_MASK; 3382 reg |= PE1_GIGA_PDOWN_D3; 3383 pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4); 3384 } 3385 } 3386 3387 static void 3388 jme_phy_up(struct jme_softc *sc) 3389 { 3390 uint32_t reg; 3391 uint16_t bmcr; 3392 3393 bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR); 3394 bmcr &= ~BMCR_PDOWN; 3395 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr); 3396 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) { 3397 reg = CSR_READ_4(sc, JME_PHYPOWDN); 3398 reg &= ~0x0000000F; 3399 CSR_WRITE_4(sc, JME_PHYPOWDN, reg); 3400 reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4); 3401 reg &= ~PE1_GIGA_PDOWN_MASK; 3402 reg |= PE1_GIGA_PDOWN_DIS; 3403 pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4); 3404 } 3405 } 3406 3407 static int 3408 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3409 { 3410 int error, value; 3411 3412 if (arg1 == NULL) 3413 return (EINVAL); 3414 value = *(int *)arg1; 3415 error = sysctl_handle_int(oidp, &value, 0, req); 3416 if (error || req->newptr == NULL) 3417 return (error); 3418 if (value < low || value > high) 3419 return (EINVAL); 3420 *(int *)arg1 = value; 3421 3422 return (0); 3423 } 3424 3425 static int 3426 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS) 3427 { 3428 return (sysctl_int_range(oidp, arg1, arg2, req, 3429 PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX)); 3430 } 3431 3432 static int 3433 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS) 3434 { 3435 return (sysctl_int_range(oidp, arg1, arg2, req, 3436 PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX)); 3437 } 3438 3439 static int 3440 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS) 3441 { 3442 return (sysctl_int_range(oidp, arg1, arg2, req, 3443 PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX)); 3444 } 3445 3446 static int 3447 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS) 3448 { 3449 return (sysctl_int_range(oidp, arg1, arg2, req, 3450 PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX)); 3451 } 3452 3453 static int 3454 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS) 3455 { 3456 return (sysctl_int_range(oidp, arg1, arg2, req, 3457 JME_PROC_MIN, JME_PROC_MAX)); 3458 } 3459