1 /*- 2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/bus.h> 34 #include <sys/endian.h> 35 #include <sys/kernel.h> 36 #include <sys/malloc.h> 37 #include <sys/mbuf.h> 38 #include <sys/rman.h> 39 #include <sys/module.h> 40 #include <sys/proc.h> 41 #include <sys/queue.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/sysctl.h> 45 #include <sys/taskqueue.h> 46 47 #include <net/bpf.h> 48 #include <net/if.h> 49 #include <net/if_arp.h> 50 #include <net/ethernet.h> 51 #include <net/if_dl.h> 52 #include <net/if_media.h> 53 #include <net/if_types.h> 54 #include <net/if_vlan_var.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/ip.h> 59 #include <netinet/tcp.h> 60 61 #include <dev/mii/mii.h> 62 #include <dev/mii/miivar.h> 63 64 #include <dev/pci/pcireg.h> 65 #include <dev/pci/pcivar.h> 66 67 #include <machine/bus.h> 68 #include <machine/in_cksum.h> 69 70 #include <dev/jme/if_jmereg.h> 71 #include <dev/jme/if_jmevar.h> 72 73 /* "device miibus" required. See GENERIC if you get errors here. */ 74 #include "miibus_if.h" 75 76 /* Define the following to disable printing Rx errors. */ 77 #undef JME_SHOW_ERRORS 78 79 #define JME_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 80 81 MODULE_DEPEND(jme, pci, 1, 1, 1); 82 MODULE_DEPEND(jme, ether, 1, 1, 1); 83 MODULE_DEPEND(jme, miibus, 1, 1, 1); 84 85 /* Tunables. */ 86 static int msi_disable = 0; 87 static int msix_disable = 0; 88 TUNABLE_INT("hw.jme.msi_disable", &msi_disable); 89 TUNABLE_INT("hw.jme.msix_disable", &msix_disable); 90 91 /* 92 * Devices supported by this driver. 93 */ 94 static struct jme_dev { 95 uint16_t jme_vendorid; 96 uint16_t jme_deviceid; 97 const char *jme_name; 98 } jme_devs[] = { 99 { VENDORID_JMICRON, DEVICEID_JMC250, 100 "JMicron Inc, JMC25x Gigabit Ethernet" }, 101 { VENDORID_JMICRON, DEVICEID_JMC260, 102 "JMicron Inc, JMC26x Fast Ethernet" }, 103 }; 104 105 static int jme_miibus_readreg(device_t, int, int); 106 static int jme_miibus_writereg(device_t, int, int, int); 107 static void jme_miibus_statchg(device_t); 108 static void jme_mediastatus(struct ifnet *, struct ifmediareq *); 109 static int jme_mediachange(struct ifnet *); 110 static int jme_probe(device_t); 111 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *); 112 static int jme_eeprom_macaddr(struct jme_softc *); 113 static int jme_efuse_macaddr(struct jme_softc *); 114 static void jme_reg_macaddr(struct jme_softc *); 115 static void jme_set_macaddr(struct jme_softc *, uint8_t *); 116 static void jme_map_intr_vector(struct jme_softc *); 117 static int jme_attach(device_t); 118 static int jme_detach(device_t); 119 static void jme_sysctl_node(struct jme_softc *); 120 static void jme_dmamap_cb(void *, bus_dma_segment_t *, int, int); 121 static int jme_dma_alloc(struct jme_softc *); 122 static void jme_dma_free(struct jme_softc *); 123 static int jme_shutdown(device_t); 124 static void jme_setlinkspeed(struct jme_softc *); 125 static void jme_setwol(struct jme_softc *); 126 static int jme_suspend(device_t); 127 static int jme_resume(device_t); 128 static int jme_encap(struct jme_softc *, struct mbuf **); 129 static void jme_start(struct ifnet *); 130 static void jme_start_locked(struct ifnet *); 131 static void jme_watchdog(struct jme_softc *); 132 static int jme_ioctl(struct ifnet *, u_long, caddr_t); 133 static void jme_mac_config(struct jme_softc *); 134 static void jme_link_task(void *, int); 135 static int jme_intr(void *); 136 static void jme_int_task(void *, int); 137 static void jme_txeof(struct jme_softc *); 138 static __inline void jme_discard_rxbuf(struct jme_softc *, int); 139 static void jme_rxeof(struct jme_softc *); 140 static int jme_rxintr(struct jme_softc *, int); 141 static void jme_tick(void *); 142 static void jme_reset(struct jme_softc *); 143 static void jme_init(void *); 144 static void jme_init_locked(struct jme_softc *); 145 static void jme_stop(struct jme_softc *); 146 static void jme_stop_tx(struct jme_softc *); 147 static void jme_stop_rx(struct jme_softc *); 148 static int jme_init_rx_ring(struct jme_softc *); 149 static void jme_init_tx_ring(struct jme_softc *); 150 static void jme_init_ssb(struct jme_softc *); 151 static int jme_newbuf(struct jme_softc *, struct jme_rxdesc *); 152 static void jme_set_vlan(struct jme_softc *); 153 static void jme_set_filter(struct jme_softc *); 154 static void jme_stats_clear(struct jme_softc *); 155 static void jme_stats_save(struct jme_softc *); 156 static void jme_stats_update(struct jme_softc *); 157 static void jme_phy_down(struct jme_softc *); 158 static void jme_phy_up(struct jme_softc *); 159 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int); 160 static int sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS); 161 static int sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS); 162 static int sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS); 163 static int sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS); 164 static int sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS); 165 166 167 static device_method_t jme_methods[] = { 168 /* Device interface. */ 169 DEVMETHOD(device_probe, jme_probe), 170 DEVMETHOD(device_attach, jme_attach), 171 DEVMETHOD(device_detach, jme_detach), 172 DEVMETHOD(device_shutdown, jme_shutdown), 173 DEVMETHOD(device_suspend, jme_suspend), 174 DEVMETHOD(device_resume, jme_resume), 175 176 /* MII interface. */ 177 DEVMETHOD(miibus_readreg, jme_miibus_readreg), 178 DEVMETHOD(miibus_writereg, jme_miibus_writereg), 179 DEVMETHOD(miibus_statchg, jme_miibus_statchg), 180 181 { NULL, NULL } 182 }; 183 184 static driver_t jme_driver = { 185 "jme", 186 jme_methods, 187 sizeof(struct jme_softc) 188 }; 189 190 static devclass_t jme_devclass; 191 192 DRIVER_MODULE(jme, pci, jme_driver, jme_devclass, 0, 0); 193 DRIVER_MODULE(miibus, jme, miibus_driver, miibus_devclass, 0, 0); 194 195 static struct resource_spec jme_res_spec_mem[] = { 196 { SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, 197 { -1, 0, 0 } 198 }; 199 200 static struct resource_spec jme_irq_spec_legacy[] = { 201 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 202 { -1, 0, 0 } 203 }; 204 205 static struct resource_spec jme_irq_spec_msi[] = { 206 { SYS_RES_IRQ, 1, RF_ACTIVE }, 207 { -1, 0, 0 } 208 }; 209 210 /* 211 * Read a PHY register on the MII of the JMC250. 212 */ 213 static int 214 jme_miibus_readreg(device_t dev, int phy, int reg) 215 { 216 struct jme_softc *sc; 217 uint32_t val; 218 int i; 219 220 sc = device_get_softc(dev); 221 222 /* For FPGA version, PHY address 0 should be ignored. */ 223 if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0) 224 return (0); 225 226 CSR_WRITE_4(sc, JME_SMI, SMI_OP_READ | SMI_OP_EXECUTE | 227 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 228 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 229 DELAY(1); 230 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 231 break; 232 } 233 234 if (i == 0) { 235 device_printf(sc->jme_dev, "phy read timeout : %d\n", reg); 236 return (0); 237 } 238 239 return ((val & SMI_DATA_MASK) >> SMI_DATA_SHIFT); 240 } 241 242 /* 243 * Write a PHY register on the MII of the JMC250. 244 */ 245 static int 246 jme_miibus_writereg(device_t dev, int phy, int reg, int val) 247 { 248 struct jme_softc *sc; 249 int i; 250 251 sc = device_get_softc(dev); 252 253 /* For FPGA version, PHY address 0 should be ignored. */ 254 if ((sc->jme_flags & JME_FLAG_FPGA) != 0 && phy == 0) 255 return (0); 256 257 CSR_WRITE_4(sc, JME_SMI, SMI_OP_WRITE | SMI_OP_EXECUTE | 258 ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | 259 SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg)); 260 for (i = JME_PHY_TIMEOUT; i > 0; i--) { 261 DELAY(1); 262 if (((val = CSR_READ_4(sc, JME_SMI)) & SMI_OP_EXECUTE) == 0) 263 break; 264 } 265 266 if (i == 0) 267 device_printf(sc->jme_dev, "phy write timeout : %d\n", reg); 268 269 return (0); 270 } 271 272 /* 273 * Callback from MII layer when media changes. 274 */ 275 static void 276 jme_miibus_statchg(device_t dev) 277 { 278 struct jme_softc *sc; 279 280 sc = device_get_softc(dev); 281 taskqueue_enqueue(taskqueue_swi, &sc->jme_link_task); 282 } 283 284 /* 285 * Get the current interface media status. 286 */ 287 static void 288 jme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 289 { 290 struct jme_softc *sc; 291 struct mii_data *mii; 292 293 sc = ifp->if_softc; 294 JME_LOCK(sc); 295 if ((ifp->if_flags & IFF_UP) == 0) { 296 JME_UNLOCK(sc); 297 return; 298 } 299 mii = device_get_softc(sc->jme_miibus); 300 301 mii_pollstat(mii); 302 ifmr->ifm_status = mii->mii_media_status; 303 ifmr->ifm_active = mii->mii_media_active; 304 JME_UNLOCK(sc); 305 } 306 307 /* 308 * Set hardware to newly-selected media. 309 */ 310 static int 311 jme_mediachange(struct ifnet *ifp) 312 { 313 struct jme_softc *sc; 314 struct mii_data *mii; 315 struct mii_softc *miisc; 316 int error; 317 318 sc = ifp->if_softc; 319 JME_LOCK(sc); 320 mii = device_get_softc(sc->jme_miibus); 321 if (mii->mii_instance != 0) { 322 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 323 mii_phy_reset(miisc); 324 } 325 error = mii_mediachg(mii); 326 JME_UNLOCK(sc); 327 328 return (error); 329 } 330 331 static int 332 jme_probe(device_t dev) 333 { 334 struct jme_dev *sp; 335 int i; 336 uint16_t vendor, devid; 337 338 vendor = pci_get_vendor(dev); 339 devid = pci_get_device(dev); 340 sp = jme_devs; 341 for (i = 0; i < sizeof(jme_devs) / sizeof(jme_devs[0]); 342 i++, sp++) { 343 if (vendor == sp->jme_vendorid && 344 devid == sp->jme_deviceid) { 345 device_set_desc(dev, sp->jme_name); 346 return (BUS_PROBE_DEFAULT); 347 } 348 } 349 350 return (ENXIO); 351 } 352 353 static int 354 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val) 355 { 356 uint32_t reg; 357 int i; 358 359 *val = 0; 360 for (i = JME_TIMEOUT; i > 0; i--) { 361 reg = CSR_READ_4(sc, JME_SMBCSR); 362 if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE) 363 break; 364 DELAY(1); 365 } 366 367 if (i == 0) { 368 device_printf(sc->jme_dev, "EEPROM idle timeout!\n"); 369 return (ETIMEDOUT); 370 } 371 372 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK; 373 CSR_WRITE_4(sc, JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER); 374 for (i = JME_TIMEOUT; i > 0; i--) { 375 DELAY(1); 376 reg = CSR_READ_4(sc, JME_SMBINTF); 377 if ((reg & SMBINTF_CMD_TRIGGER) == 0) 378 break; 379 } 380 381 if (i == 0) { 382 device_printf(sc->jme_dev, "EEPROM read timeout!\n"); 383 return (ETIMEDOUT); 384 } 385 386 reg = CSR_READ_4(sc, JME_SMBINTF); 387 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT; 388 389 return (0); 390 } 391 392 static int 393 jme_eeprom_macaddr(struct jme_softc *sc) 394 { 395 uint8_t eaddr[ETHER_ADDR_LEN]; 396 uint8_t fup, reg, val; 397 uint32_t offset; 398 int match; 399 400 offset = 0; 401 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 402 fup != JME_EEPROM_SIG0) 403 return (ENOENT); 404 if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 || 405 fup != JME_EEPROM_SIG1) 406 return (ENOENT); 407 match = 0; 408 do { 409 if (jme_eeprom_read_byte(sc, offset, &fup) != 0) 410 break; 411 if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1) == 412 (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) { 413 if (jme_eeprom_read_byte(sc, offset + 1, ®) != 0) 414 break; 415 if (reg >= JME_PAR0 && 416 reg < JME_PAR0 + ETHER_ADDR_LEN) { 417 if (jme_eeprom_read_byte(sc, offset + 2, 418 &val) != 0) 419 break; 420 eaddr[reg - JME_PAR0] = val; 421 match++; 422 } 423 } 424 /* Check for the end of EEPROM descriptor. */ 425 if ((fup & JME_EEPROM_DESC_END) == JME_EEPROM_DESC_END) 426 break; 427 /* Try next eeprom descriptor. */ 428 offset += JME_EEPROM_DESC_BYTES; 429 } while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END); 430 431 if (match == ETHER_ADDR_LEN) { 432 bcopy(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN); 433 return (0); 434 } 435 436 return (ENOENT); 437 } 438 439 static int 440 jme_efuse_macaddr(struct jme_softc *sc) 441 { 442 uint32_t reg; 443 int i; 444 445 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4); 446 if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | EFUSE_CTL1_AUTOLAOD_DONE)) != 447 EFUSE_CTL1_AUTOLAOD_DONE) 448 return (ENOENT); 449 /* Reset eFuse controller. */ 450 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4); 451 reg |= EFUSE_CTL2_RESET; 452 pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4); 453 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL2, 4); 454 reg &= ~EFUSE_CTL2_RESET; 455 pci_write_config(sc->jme_dev, JME_EFUSE_CTL2, reg, 4); 456 457 /* Have eFuse reload station address to MAC controller. */ 458 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4); 459 reg &= ~EFUSE_CTL1_CMD_MASK; 460 reg |= EFUSE_CTL1_CMD_AUTOLOAD | EFUSE_CTL1_EXECUTE; 461 pci_write_config(sc->jme_dev, JME_EFUSE_CTL1, reg, 4); 462 463 /* 464 * Verify completion of eFuse autload command. It should be 465 * completed within 108us. 466 */ 467 DELAY(110); 468 for (i = 10; i > 0; i--) { 469 reg = pci_read_config(sc->jme_dev, JME_EFUSE_CTL1, 4); 470 if ((reg & (EFUSE_CTL1_AUTOLOAD_ERR | 471 EFUSE_CTL1_AUTOLAOD_DONE)) != EFUSE_CTL1_AUTOLAOD_DONE) { 472 DELAY(20); 473 continue; 474 } 475 if ((reg & EFUSE_CTL1_EXECUTE) == 0) 476 break; 477 /* Station address loading is still in progress. */ 478 DELAY(20); 479 } 480 if (i == 0) { 481 device_printf(sc->jme_dev, "eFuse autoload timed out.\n"); 482 return (ETIMEDOUT); 483 } 484 485 return (0); 486 } 487 488 static void 489 jme_reg_macaddr(struct jme_softc *sc) 490 { 491 uint32_t par0, par1; 492 493 /* Read station address. */ 494 par0 = CSR_READ_4(sc, JME_PAR0); 495 par1 = CSR_READ_4(sc, JME_PAR1); 496 par1 &= 0xFFFF; 497 if ((par0 == 0 && par1 == 0) || 498 (par0 == 0xFFFFFFFF && par1 == 0xFFFF)) { 499 device_printf(sc->jme_dev, 500 "Failed to retrieve Ethernet address.\n"); 501 } else { 502 /* 503 * For controllers that use eFuse, the station address 504 * could also be extracted from JME_PCI_PAR0 and 505 * JME_PCI_PAR1 registers in PCI configuration space. 506 * Each register holds exactly half of station address(24bits) 507 * so use JME_PAR0, JME_PAR1 registers instead. 508 */ 509 sc->jme_eaddr[0] = (par0 >> 0) & 0xFF; 510 sc->jme_eaddr[1] = (par0 >> 8) & 0xFF; 511 sc->jme_eaddr[2] = (par0 >> 16) & 0xFF; 512 sc->jme_eaddr[3] = (par0 >> 24) & 0xFF; 513 sc->jme_eaddr[4] = (par1 >> 0) & 0xFF; 514 sc->jme_eaddr[5] = (par1 >> 8) & 0xFF; 515 } 516 } 517 518 static void 519 jme_set_macaddr(struct jme_softc *sc, uint8_t *eaddr) 520 { 521 uint32_t val; 522 int i; 523 524 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) { 525 /* 526 * Avoid reprogramming station address if the address 527 * is the same as previous one. Note, reprogrammed 528 * station address is permanent as if it was written 529 * to EEPROM. So if station address was changed by 530 * admistrator it's possible to lose factory configured 531 * address when driver fails to restore its address. 532 * (e.g. reboot or system crash) 533 */ 534 if (bcmp(eaddr, sc->jme_eaddr, ETHER_ADDR_LEN) != 0) { 535 for (i = 0; i < ETHER_ADDR_LEN; i++) { 536 val = JME_EFUSE_EEPROM_FUNC0 << 537 JME_EFUSE_EEPROM_FUNC_SHIFT; 538 val |= JME_EFUSE_EEPROM_PAGE_BAR1 << 539 JME_EFUSE_EEPROM_PAGE_SHIFT; 540 val |= (JME_PAR0 + i) << 541 JME_EFUSE_EEPROM_ADDR_SHIFT; 542 val |= eaddr[i] << JME_EFUSE_EEPROM_DATA_SHIFT; 543 pci_write_config(sc->jme_dev, JME_EFUSE_EEPROM, 544 val | JME_EFUSE_EEPROM_WRITE, 4); 545 } 546 } 547 } else { 548 CSR_WRITE_4(sc, JME_PAR0, 549 eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]); 550 CSR_WRITE_4(sc, JME_PAR1, eaddr[5] << 8 | eaddr[4]); 551 } 552 } 553 554 static void 555 jme_map_intr_vector(struct jme_softc *sc) 556 { 557 uint32_t map[MSINUM_NUM_INTR_SOURCE / JME_MSI_MESSAGES]; 558 559 bzero(map, sizeof(map)); 560 561 /* Map Tx interrupts source to MSI/MSIX vector 2. */ 562 map[MSINUM_REG_INDEX(N_INTR_TXQ0_COMP)] = 563 MSINUM_INTR_SOURCE(2, N_INTR_TXQ0_COMP); 564 map[MSINUM_REG_INDEX(N_INTR_TXQ1_COMP)] |= 565 MSINUM_INTR_SOURCE(2, N_INTR_TXQ1_COMP); 566 map[MSINUM_REG_INDEX(N_INTR_TXQ2_COMP)] |= 567 MSINUM_INTR_SOURCE(2, N_INTR_TXQ2_COMP); 568 map[MSINUM_REG_INDEX(N_INTR_TXQ3_COMP)] |= 569 MSINUM_INTR_SOURCE(2, N_INTR_TXQ3_COMP); 570 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 571 MSINUM_INTR_SOURCE(2, N_INTR_TXQ4_COMP); 572 map[MSINUM_REG_INDEX(N_INTR_TXQ4_COMP)] |= 573 MSINUM_INTR_SOURCE(2, N_INTR_TXQ5_COMP); 574 map[MSINUM_REG_INDEX(N_INTR_TXQ6_COMP)] |= 575 MSINUM_INTR_SOURCE(2, N_INTR_TXQ6_COMP); 576 map[MSINUM_REG_INDEX(N_INTR_TXQ7_COMP)] |= 577 MSINUM_INTR_SOURCE(2, N_INTR_TXQ7_COMP); 578 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL)] |= 579 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL); 580 map[MSINUM_REG_INDEX(N_INTR_TXQ_COAL_TO)] |= 581 MSINUM_INTR_SOURCE(2, N_INTR_TXQ_COAL_TO); 582 583 /* Map Rx interrupts source to MSI/MSIX vector 1. */ 584 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COMP)] = 585 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COMP); 586 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COMP)] = 587 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COMP); 588 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COMP)] = 589 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COMP); 590 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COMP)] = 591 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COMP); 592 map[MSINUM_REG_INDEX(N_INTR_RXQ0_DESC_EMPTY)] = 593 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_DESC_EMPTY); 594 map[MSINUM_REG_INDEX(N_INTR_RXQ1_DESC_EMPTY)] = 595 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_DESC_EMPTY); 596 map[MSINUM_REG_INDEX(N_INTR_RXQ2_DESC_EMPTY)] = 597 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_DESC_EMPTY); 598 map[MSINUM_REG_INDEX(N_INTR_RXQ3_DESC_EMPTY)] = 599 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_DESC_EMPTY); 600 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL)] = 601 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL); 602 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL)] = 603 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL); 604 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL)] = 605 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL); 606 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL)] = 607 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL); 608 map[MSINUM_REG_INDEX(N_INTR_RXQ0_COAL_TO)] = 609 MSINUM_INTR_SOURCE(1, N_INTR_RXQ0_COAL_TO); 610 map[MSINUM_REG_INDEX(N_INTR_RXQ1_COAL_TO)] = 611 MSINUM_INTR_SOURCE(1, N_INTR_RXQ1_COAL_TO); 612 map[MSINUM_REG_INDEX(N_INTR_RXQ2_COAL_TO)] = 613 MSINUM_INTR_SOURCE(1, N_INTR_RXQ2_COAL_TO); 614 map[MSINUM_REG_INDEX(N_INTR_RXQ3_COAL_TO)] = 615 MSINUM_INTR_SOURCE(1, N_INTR_RXQ3_COAL_TO); 616 617 /* Map all other interrupts source to MSI/MSIX vector 0. */ 618 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 0, map[0]); 619 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 1, map[1]); 620 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 2, map[2]); 621 CSR_WRITE_4(sc, JME_MSINUM_BASE + sizeof(uint32_t) * 3, map[3]); 622 } 623 624 static int 625 jme_attach(device_t dev) 626 { 627 struct jme_softc *sc; 628 struct ifnet *ifp; 629 struct mii_softc *miisc; 630 struct mii_data *mii; 631 uint32_t reg; 632 uint16_t burst; 633 int error, i, mii_flags, msic, msixc, pmc; 634 635 error = 0; 636 sc = device_get_softc(dev); 637 sc->jme_dev = dev; 638 639 mtx_init(&sc->jme_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 640 MTX_DEF); 641 callout_init_mtx(&sc->jme_tick_ch, &sc->jme_mtx, 0); 642 TASK_INIT(&sc->jme_int_task, 0, jme_int_task, sc); 643 TASK_INIT(&sc->jme_link_task, 0, jme_link_task, sc); 644 645 /* 646 * Map the device. JMC250 supports both memory mapped and I/O 647 * register space access. Because I/O register access should 648 * use different BARs to access registers it's waste of time 649 * to use I/O register spce access. JMC250 uses 16K to map 650 * entire memory space. 651 */ 652 pci_enable_busmaster(dev); 653 sc->jme_res_spec = jme_res_spec_mem; 654 sc->jme_irq_spec = jme_irq_spec_legacy; 655 error = bus_alloc_resources(dev, sc->jme_res_spec, sc->jme_res); 656 if (error != 0) { 657 device_printf(dev, "cannot allocate memory resources.\n"); 658 goto fail; 659 } 660 661 /* Allocate IRQ resources. */ 662 msixc = pci_msix_count(dev); 663 msic = pci_msi_count(dev); 664 if (bootverbose) { 665 device_printf(dev, "MSIX count : %d\n", msixc); 666 device_printf(dev, "MSI count : %d\n", msic); 667 } 668 669 /* Use 1 MSI/MSI-X. */ 670 if (msixc > 1) 671 msixc = 1; 672 if (msic > 1) 673 msic = 1; 674 /* Prefer MSIX over MSI. */ 675 if (msix_disable == 0 || msi_disable == 0) { 676 if (msix_disable == 0 && msixc > 0 && 677 pci_alloc_msix(dev, &msixc) == 0) { 678 if (msixc == 1) { 679 device_printf(dev, "Using %d MSIX messages.\n", 680 msixc); 681 sc->jme_flags |= JME_FLAG_MSIX; 682 sc->jme_irq_spec = jme_irq_spec_msi; 683 } else 684 pci_release_msi(dev); 685 } 686 if (msi_disable == 0 && (sc->jme_flags & JME_FLAG_MSIX) == 0 && 687 msic > 0 && pci_alloc_msi(dev, &msic) == 0) { 688 if (msic == 1) { 689 device_printf(dev, "Using %d MSI messages.\n", 690 msic); 691 sc->jme_flags |= JME_FLAG_MSI; 692 sc->jme_irq_spec = jme_irq_spec_msi; 693 } else 694 pci_release_msi(dev); 695 } 696 /* Map interrupt vector 0, 1 and 2. */ 697 if ((sc->jme_flags & JME_FLAG_MSI) != 0 || 698 (sc->jme_flags & JME_FLAG_MSIX) != 0) 699 jme_map_intr_vector(sc); 700 } 701 702 error = bus_alloc_resources(dev, sc->jme_irq_spec, sc->jme_irq); 703 if (error != 0) { 704 device_printf(dev, "cannot allocate IRQ resources.\n"); 705 goto fail; 706 } 707 708 sc->jme_rev = pci_get_device(dev); 709 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260) { 710 sc->jme_flags |= JME_FLAG_FASTETH; 711 sc->jme_flags |= JME_FLAG_NOJUMBO; 712 } 713 reg = CSR_READ_4(sc, JME_CHIPMODE); 714 sc->jme_chip_rev = (reg & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT; 715 if (((reg & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) != 716 CHIPMODE_NOT_FPGA) 717 sc->jme_flags |= JME_FLAG_FPGA; 718 if (bootverbose) { 719 device_printf(dev, "PCI device revision : 0x%04x\n", 720 sc->jme_rev); 721 device_printf(dev, "Chip revision : 0x%02x\n", 722 sc->jme_chip_rev); 723 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) 724 device_printf(dev, "FPGA revision : 0x%04x\n", 725 (reg & CHIPMODE_FPGA_REV_MASK) >> 726 CHIPMODE_FPGA_REV_SHIFT); 727 } 728 if (sc->jme_chip_rev == 0xFF) { 729 device_printf(dev, "Unknown chip revision : 0x%02x\n", 730 sc->jme_rev); 731 error = ENXIO; 732 goto fail; 733 } 734 735 /* Identify controller features and bugs. */ 736 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) { 737 if ((sc->jme_rev & DEVICEID_JMC2XX_MASK) == DEVICEID_JMC260 && 738 CHIPMODE_REVFM(sc->jme_chip_rev) == 2) 739 sc->jme_flags |= JME_FLAG_DMA32BIT; 740 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) 741 sc->jme_flags |= JME_FLAG_EFUSE | JME_FLAG_PCCPCD; 742 sc->jme_flags |= JME_FLAG_TXCLK | JME_FLAG_RXCLK; 743 sc->jme_flags |= JME_FLAG_HWMIB; 744 } 745 746 /* Reset the ethernet controller. */ 747 jme_reset(sc); 748 749 /* Get station address. */ 750 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) { 751 error = jme_efuse_macaddr(sc); 752 if (error == 0) 753 jme_reg_macaddr(sc); 754 } else { 755 error = ENOENT; 756 reg = CSR_READ_4(sc, JME_SMBCSR); 757 if ((reg & SMBCSR_EEPROM_PRESENT) != 0) 758 error = jme_eeprom_macaddr(sc); 759 if (error != 0 && bootverbose) 760 device_printf(sc->jme_dev, 761 "ethernet hardware address not found in EEPROM.\n"); 762 if (error != 0) 763 jme_reg_macaddr(sc); 764 } 765 766 /* 767 * Save PHY address. 768 * Integrated JR0211 has fixed PHY address whereas FPGA version 769 * requires PHY probing to get correct PHY address. 770 */ 771 if ((sc->jme_flags & JME_FLAG_FPGA) == 0) { 772 sc->jme_phyaddr = CSR_READ_4(sc, JME_GPREG0) & 773 GPREG0_PHY_ADDR_MASK; 774 if (bootverbose) 775 device_printf(dev, "PHY is at address %d.\n", 776 sc->jme_phyaddr); 777 } else 778 sc->jme_phyaddr = 0; 779 780 /* Set max allowable DMA size. */ 781 if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) { 782 sc->jme_flags |= JME_FLAG_PCIE; 783 burst = pci_read_config(dev, i + PCIR_EXPRESS_DEVICE_CTL, 2); 784 if (bootverbose) { 785 device_printf(dev, "Read request size : %d bytes.\n", 786 128 << ((burst >> 12) & 0x07)); 787 device_printf(dev, "TLP payload size : %d bytes.\n", 788 128 << ((burst >> 5) & 0x07)); 789 } 790 switch ((burst >> 12) & 0x07) { 791 case 0: 792 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_128; 793 break; 794 case 1: 795 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_256; 796 break; 797 default: 798 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 799 break; 800 } 801 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 802 } else { 803 sc->jme_tx_dma_size = TXCSR_DMA_SIZE_512; 804 sc->jme_rx_dma_size = RXCSR_DMA_SIZE_128; 805 } 806 /* Create coalescing sysctl node. */ 807 jme_sysctl_node(sc); 808 if ((error = jme_dma_alloc(sc) != 0)) 809 goto fail; 810 811 ifp = sc->jme_ifp = if_alloc(IFT_ETHER); 812 if (ifp == NULL) { 813 device_printf(dev, "cannot allocate ifnet structure.\n"); 814 error = ENXIO; 815 goto fail; 816 } 817 818 ifp->if_softc = sc; 819 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 820 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 821 ifp->if_ioctl = jme_ioctl; 822 ifp->if_start = jme_start; 823 ifp->if_init = jme_init; 824 ifp->if_snd.ifq_drv_maxlen = JME_TX_RING_CNT - 1; 825 IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen); 826 IFQ_SET_READY(&ifp->if_snd); 827 /* JMC250 supports Tx/Rx checksum offload as well as TSO. */ 828 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 829 ifp->if_hwassist = JME_CSUM_FEATURES | CSUM_TSO; 830 if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) { 831 sc->jme_flags |= JME_FLAG_PMCAP; 832 ifp->if_capabilities |= IFCAP_WOL_MAGIC; 833 } 834 ifp->if_capenable = ifp->if_capabilities; 835 836 /* Wakeup PHY. */ 837 jme_phy_up(sc); 838 mii_flags = MIIF_DOPAUSE; 839 /* Ask PHY calibration to PHY driver. */ 840 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) 841 mii_flags |= MIIF_MACPRIV0; 842 /* Set up MII bus. */ 843 error = mii_attach(dev, &sc->jme_miibus, ifp, jme_mediachange, 844 jme_mediastatus, BMSR_DEFCAPMASK, 845 sc->jme_flags & JME_FLAG_FPGA ? MII_PHY_ANY : sc->jme_phyaddr, 846 MII_OFFSET_ANY, mii_flags); 847 if (error != 0) { 848 device_printf(dev, "attaching PHYs failed\n"); 849 goto fail; 850 } 851 852 /* 853 * Force PHY to FPGA mode. 854 */ 855 if ((sc->jme_flags & JME_FLAG_FPGA) != 0) { 856 mii = device_get_softc(sc->jme_miibus); 857 if (mii->mii_instance != 0) { 858 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) { 859 if (miisc->mii_phy != 0) { 860 sc->jme_phyaddr = miisc->mii_phy; 861 break; 862 } 863 } 864 if (sc->jme_phyaddr != 0) { 865 device_printf(sc->jme_dev, 866 "FPGA PHY is at %d\n", sc->jme_phyaddr); 867 /* vendor magic. */ 868 jme_miibus_writereg(dev, sc->jme_phyaddr, 27, 869 0x0004); 870 } 871 } 872 } 873 874 ether_ifattach(ifp, sc->jme_eaddr); 875 876 /* VLAN capability setup */ 877 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | 878 IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO; 879 ifp->if_capenable = ifp->if_capabilities; 880 881 /* Tell the upper layer(s) we support long frames. */ 882 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 883 884 /* Create local taskq. */ 885 sc->jme_tq = taskqueue_create_fast("jme_taskq", M_WAITOK, 886 taskqueue_thread_enqueue, &sc->jme_tq); 887 if (sc->jme_tq == NULL) { 888 device_printf(dev, "could not create taskqueue.\n"); 889 ether_ifdetach(ifp); 890 error = ENXIO; 891 goto fail; 892 } 893 taskqueue_start_threads(&sc->jme_tq, 1, PI_NET, "%s taskq", 894 device_get_nameunit(sc->jme_dev)); 895 896 for (i = 0; i < 1; i++) { 897 error = bus_setup_intr(dev, sc->jme_irq[i], 898 INTR_TYPE_NET | INTR_MPSAFE, jme_intr, NULL, sc, 899 &sc->jme_intrhand[i]); 900 if (error != 0) 901 break; 902 } 903 904 if (error != 0) { 905 device_printf(dev, "could not set up interrupt handler.\n"); 906 taskqueue_free(sc->jme_tq); 907 sc->jme_tq = NULL; 908 ether_ifdetach(ifp); 909 goto fail; 910 } 911 912 fail: 913 if (error != 0) 914 jme_detach(dev); 915 916 return (error); 917 } 918 919 static int 920 jme_detach(device_t dev) 921 { 922 struct jme_softc *sc; 923 struct ifnet *ifp; 924 int i; 925 926 sc = device_get_softc(dev); 927 928 ifp = sc->jme_ifp; 929 if (device_is_attached(dev)) { 930 JME_LOCK(sc); 931 sc->jme_flags |= JME_FLAG_DETACH; 932 jme_stop(sc); 933 JME_UNLOCK(sc); 934 callout_drain(&sc->jme_tick_ch); 935 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 936 taskqueue_drain(taskqueue_swi, &sc->jme_link_task); 937 /* Restore possibly modified station address. */ 938 if ((sc->jme_flags & JME_FLAG_EFUSE) != 0) 939 jme_set_macaddr(sc, sc->jme_eaddr); 940 ether_ifdetach(ifp); 941 } 942 943 if (sc->jme_tq != NULL) { 944 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 945 taskqueue_free(sc->jme_tq); 946 sc->jme_tq = NULL; 947 } 948 949 if (sc->jme_miibus != NULL) { 950 device_delete_child(dev, sc->jme_miibus); 951 sc->jme_miibus = NULL; 952 } 953 bus_generic_detach(dev); 954 jme_dma_free(sc); 955 956 if (ifp != NULL) { 957 if_free(ifp); 958 sc->jme_ifp = NULL; 959 } 960 961 for (i = 0; i < 1; i++) { 962 if (sc->jme_intrhand[i] != NULL) { 963 bus_teardown_intr(dev, sc->jme_irq[i], 964 sc->jme_intrhand[i]); 965 sc->jme_intrhand[i] = NULL; 966 } 967 } 968 969 if (sc->jme_irq[0] != NULL) 970 bus_release_resources(dev, sc->jme_irq_spec, sc->jme_irq); 971 if ((sc->jme_flags & (JME_FLAG_MSIX | JME_FLAG_MSI)) != 0) 972 pci_release_msi(dev); 973 if (sc->jme_res[0] != NULL) 974 bus_release_resources(dev, sc->jme_res_spec, sc->jme_res); 975 mtx_destroy(&sc->jme_mtx); 976 977 return (0); 978 } 979 980 #define JME_SYSCTL_STAT_ADD32(c, h, n, p, d) \ 981 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d) 982 983 static void 984 jme_sysctl_node(struct jme_softc *sc) 985 { 986 struct sysctl_ctx_list *ctx; 987 struct sysctl_oid_list *child, *parent; 988 struct sysctl_oid *tree; 989 struct jme_hw_stats *stats; 990 int error; 991 992 stats = &sc->jme_stats; 993 ctx = device_get_sysctl_ctx(sc->jme_dev); 994 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->jme_dev)); 995 996 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_to", 997 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_to, 0, 998 sysctl_hw_jme_tx_coal_to, "I", "jme tx coalescing timeout"); 999 1000 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_coal_pkt", 1001 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_tx_coal_pkt, 0, 1002 sysctl_hw_jme_tx_coal_pkt, "I", "jme tx coalescing packet"); 1003 1004 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_to", 1005 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_to, 0, 1006 sysctl_hw_jme_rx_coal_to, "I", "jme rx coalescing timeout"); 1007 1008 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_coal_pkt", 1009 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_rx_coal_pkt, 0, 1010 sysctl_hw_jme_rx_coal_pkt, "I", "jme rx coalescing packet"); 1011 1012 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit", 1013 CTLTYPE_INT | CTLFLAG_RW, &sc->jme_process_limit, 0, 1014 sysctl_hw_jme_proc_limit, "I", 1015 "max number of Rx events to process"); 1016 1017 /* Pull in device tunables. */ 1018 sc->jme_process_limit = JME_PROC_DEFAULT; 1019 error = resource_int_value(device_get_name(sc->jme_dev), 1020 device_get_unit(sc->jme_dev), "process_limit", 1021 &sc->jme_process_limit); 1022 if (error == 0) { 1023 if (sc->jme_process_limit < JME_PROC_MIN || 1024 sc->jme_process_limit > JME_PROC_MAX) { 1025 device_printf(sc->jme_dev, 1026 "process_limit value out of range; " 1027 "using default: %d\n", JME_PROC_DEFAULT); 1028 sc->jme_process_limit = JME_PROC_DEFAULT; 1029 } 1030 } 1031 1032 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 1033 error = resource_int_value(device_get_name(sc->jme_dev), 1034 device_get_unit(sc->jme_dev), "tx_coal_to", &sc->jme_tx_coal_to); 1035 if (error == 0) { 1036 if (sc->jme_tx_coal_to < PCCTX_COAL_TO_MIN || 1037 sc->jme_tx_coal_to > PCCTX_COAL_TO_MAX) { 1038 device_printf(sc->jme_dev, 1039 "tx_coal_to value out of range; " 1040 "using default: %d\n", PCCTX_COAL_TO_DEFAULT); 1041 sc->jme_tx_coal_to = PCCTX_COAL_TO_DEFAULT; 1042 } 1043 } 1044 1045 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 1046 error = resource_int_value(device_get_name(sc->jme_dev), 1047 device_get_unit(sc->jme_dev), "tx_coal_pkt", &sc->jme_tx_coal_to); 1048 if (error == 0) { 1049 if (sc->jme_tx_coal_pkt < PCCTX_COAL_PKT_MIN || 1050 sc->jme_tx_coal_pkt > PCCTX_COAL_PKT_MAX) { 1051 device_printf(sc->jme_dev, 1052 "tx_coal_pkt value out of range; " 1053 "using default: %d\n", PCCTX_COAL_PKT_DEFAULT); 1054 sc->jme_tx_coal_pkt = PCCTX_COAL_PKT_DEFAULT; 1055 } 1056 } 1057 1058 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 1059 error = resource_int_value(device_get_name(sc->jme_dev), 1060 device_get_unit(sc->jme_dev), "rx_coal_to", &sc->jme_rx_coal_to); 1061 if (error == 0) { 1062 if (sc->jme_rx_coal_to < PCCRX_COAL_TO_MIN || 1063 sc->jme_rx_coal_to > PCCRX_COAL_TO_MAX) { 1064 device_printf(sc->jme_dev, 1065 "rx_coal_to value out of range; " 1066 "using default: %d\n", PCCRX_COAL_TO_DEFAULT); 1067 sc->jme_rx_coal_to = PCCRX_COAL_TO_DEFAULT; 1068 } 1069 } 1070 1071 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 1072 error = resource_int_value(device_get_name(sc->jme_dev), 1073 device_get_unit(sc->jme_dev), "rx_coal_pkt", &sc->jme_rx_coal_to); 1074 if (error == 0) { 1075 if (sc->jme_rx_coal_pkt < PCCRX_COAL_PKT_MIN || 1076 sc->jme_rx_coal_pkt > PCCRX_COAL_PKT_MAX) { 1077 device_printf(sc->jme_dev, 1078 "tx_coal_pkt value out of range; " 1079 "using default: %d\n", PCCRX_COAL_PKT_DEFAULT); 1080 sc->jme_rx_coal_pkt = PCCRX_COAL_PKT_DEFAULT; 1081 } 1082 } 1083 1084 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 1085 return; 1086 1087 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD, 1088 NULL, "JME statistics"); 1089 parent = SYSCTL_CHILDREN(tree); 1090 1091 /* Rx statistics. */ 1092 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD, 1093 NULL, "Rx MAC statistics"); 1094 child = SYSCTL_CHILDREN(tree); 1095 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1096 &stats->rx_good_frames, "Good frames"); 1097 JME_SYSCTL_STAT_ADD32(ctx, child, "crc_errs", 1098 &stats->rx_crc_errs, "CRC errors"); 1099 JME_SYSCTL_STAT_ADD32(ctx, child, "mii_errs", 1100 &stats->rx_mii_errs, "MII errors"); 1101 JME_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows", 1102 &stats->rx_fifo_oflows, "FIFO overflows"); 1103 JME_SYSCTL_STAT_ADD32(ctx, child, "desc_empty", 1104 &stats->rx_desc_empty, "Descriptor empty"); 1105 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1106 &stats->rx_bad_frames, "Bad frames"); 1107 1108 /* Tx statistics. */ 1109 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD, 1110 NULL, "Tx MAC statistics"); 1111 child = SYSCTL_CHILDREN(tree); 1112 JME_SYSCTL_STAT_ADD32(ctx, child, "good_frames", 1113 &stats->tx_good_frames, "Good frames"); 1114 JME_SYSCTL_STAT_ADD32(ctx, child, "bad_frames", 1115 &stats->tx_bad_frames, "Bad frames"); 1116 } 1117 1118 #undef JME_SYSCTL_STAT_ADD32 1119 1120 struct jme_dmamap_arg { 1121 bus_addr_t jme_busaddr; 1122 }; 1123 1124 static void 1125 jme_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1126 { 1127 struct jme_dmamap_arg *ctx; 1128 1129 if (error != 0) 1130 return; 1131 1132 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 1133 1134 ctx = (struct jme_dmamap_arg *)arg; 1135 ctx->jme_busaddr = segs[0].ds_addr; 1136 } 1137 1138 static int 1139 jme_dma_alloc(struct jme_softc *sc) 1140 { 1141 struct jme_dmamap_arg ctx; 1142 struct jme_txdesc *txd; 1143 struct jme_rxdesc *rxd; 1144 bus_addr_t lowaddr, rx_ring_end, tx_ring_end; 1145 int error, i; 1146 1147 lowaddr = BUS_SPACE_MAXADDR; 1148 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1149 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1150 1151 again: 1152 /* Create parent ring tag. */ 1153 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1154 1, 0, /* algnmnt, boundary */ 1155 lowaddr, /* lowaddr */ 1156 BUS_SPACE_MAXADDR, /* highaddr */ 1157 NULL, NULL, /* filter, filterarg */ 1158 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1159 0, /* nsegments */ 1160 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1161 0, /* flags */ 1162 NULL, NULL, /* lockfunc, lockarg */ 1163 &sc->jme_cdata.jme_ring_tag); 1164 if (error != 0) { 1165 device_printf(sc->jme_dev, 1166 "could not create parent ring DMA tag.\n"); 1167 goto fail; 1168 } 1169 /* Create tag for Tx ring. */ 1170 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1171 JME_TX_RING_ALIGN, 0, /* algnmnt, boundary */ 1172 BUS_SPACE_MAXADDR, /* lowaddr */ 1173 BUS_SPACE_MAXADDR, /* highaddr */ 1174 NULL, NULL, /* filter, filterarg */ 1175 JME_TX_RING_SIZE, /* maxsize */ 1176 1, /* nsegments */ 1177 JME_TX_RING_SIZE, /* maxsegsize */ 1178 0, /* flags */ 1179 NULL, NULL, /* lockfunc, lockarg */ 1180 &sc->jme_cdata.jme_tx_ring_tag); 1181 if (error != 0) { 1182 device_printf(sc->jme_dev, 1183 "could not allocate Tx ring DMA tag.\n"); 1184 goto fail; 1185 } 1186 1187 /* Create tag for Rx ring. */ 1188 error = bus_dma_tag_create(sc->jme_cdata.jme_ring_tag,/* parent */ 1189 JME_RX_RING_ALIGN, 0, /* algnmnt, boundary */ 1190 lowaddr, /* lowaddr */ 1191 BUS_SPACE_MAXADDR, /* highaddr */ 1192 NULL, NULL, /* filter, filterarg */ 1193 JME_RX_RING_SIZE, /* maxsize */ 1194 1, /* nsegments */ 1195 JME_RX_RING_SIZE, /* maxsegsize */ 1196 0, /* flags */ 1197 NULL, NULL, /* lockfunc, lockarg */ 1198 &sc->jme_cdata.jme_rx_ring_tag); 1199 if (error != 0) { 1200 device_printf(sc->jme_dev, 1201 "could not allocate Rx ring DMA tag.\n"); 1202 goto fail; 1203 } 1204 1205 /* Allocate DMA'able memory and load the DMA map for Tx ring. */ 1206 error = bus_dmamem_alloc(sc->jme_cdata.jme_tx_ring_tag, 1207 (void **)&sc->jme_rdata.jme_tx_ring, 1208 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1209 &sc->jme_cdata.jme_tx_ring_map); 1210 if (error != 0) { 1211 device_printf(sc->jme_dev, 1212 "could not allocate DMA'able memory for Tx ring.\n"); 1213 goto fail; 1214 } 1215 1216 ctx.jme_busaddr = 0; 1217 error = bus_dmamap_load(sc->jme_cdata.jme_tx_ring_tag, 1218 sc->jme_cdata.jme_tx_ring_map, sc->jme_rdata.jme_tx_ring, 1219 JME_TX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1220 if (error != 0 || ctx.jme_busaddr == 0) { 1221 device_printf(sc->jme_dev, 1222 "could not load DMA'able memory for Tx ring.\n"); 1223 goto fail; 1224 } 1225 sc->jme_rdata.jme_tx_ring_paddr = ctx.jme_busaddr; 1226 1227 /* Allocate DMA'able memory and load the DMA map for Rx ring. */ 1228 error = bus_dmamem_alloc(sc->jme_cdata.jme_rx_ring_tag, 1229 (void **)&sc->jme_rdata.jme_rx_ring, 1230 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1231 &sc->jme_cdata.jme_rx_ring_map); 1232 if (error != 0) { 1233 device_printf(sc->jme_dev, 1234 "could not allocate DMA'able memory for Rx ring.\n"); 1235 goto fail; 1236 } 1237 1238 ctx.jme_busaddr = 0; 1239 error = bus_dmamap_load(sc->jme_cdata.jme_rx_ring_tag, 1240 sc->jme_cdata.jme_rx_ring_map, sc->jme_rdata.jme_rx_ring, 1241 JME_RX_RING_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1242 if (error != 0 || ctx.jme_busaddr == 0) { 1243 device_printf(sc->jme_dev, 1244 "could not load DMA'able memory for Rx ring.\n"); 1245 goto fail; 1246 } 1247 sc->jme_rdata.jme_rx_ring_paddr = ctx.jme_busaddr; 1248 1249 if (lowaddr != BUS_SPACE_MAXADDR_32BIT) { 1250 /* Tx/Rx descriptor queue should reside within 4GB boundary. */ 1251 tx_ring_end = sc->jme_rdata.jme_tx_ring_paddr + 1252 JME_TX_RING_SIZE; 1253 rx_ring_end = sc->jme_rdata.jme_rx_ring_paddr + 1254 JME_RX_RING_SIZE; 1255 if ((JME_ADDR_HI(tx_ring_end) != 1256 JME_ADDR_HI(sc->jme_rdata.jme_tx_ring_paddr)) || 1257 (JME_ADDR_HI(rx_ring_end) != 1258 JME_ADDR_HI(sc->jme_rdata.jme_rx_ring_paddr))) { 1259 device_printf(sc->jme_dev, "4GB boundary crossed, " 1260 "switching to 32bit DMA address mode.\n"); 1261 jme_dma_free(sc); 1262 /* Limit DMA address space to 32bit and try again. */ 1263 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1264 goto again; 1265 } 1266 } 1267 1268 lowaddr = BUS_SPACE_MAXADDR; 1269 if ((sc->jme_flags & JME_FLAG_DMA32BIT) != 0) 1270 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1271 /* Create parent buffer tag. */ 1272 error = bus_dma_tag_create(bus_get_dma_tag(sc->jme_dev),/* parent */ 1273 1, 0, /* algnmnt, boundary */ 1274 lowaddr, /* lowaddr */ 1275 BUS_SPACE_MAXADDR, /* highaddr */ 1276 NULL, NULL, /* filter, filterarg */ 1277 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 1278 0, /* nsegments */ 1279 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1280 0, /* flags */ 1281 NULL, NULL, /* lockfunc, lockarg */ 1282 &sc->jme_cdata.jme_buffer_tag); 1283 if (error != 0) { 1284 device_printf(sc->jme_dev, 1285 "could not create parent buffer DMA tag.\n"); 1286 goto fail; 1287 } 1288 1289 /* Create shadow status block tag. */ 1290 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1291 JME_SSB_ALIGN, 0, /* algnmnt, boundary */ 1292 BUS_SPACE_MAXADDR, /* lowaddr */ 1293 BUS_SPACE_MAXADDR, /* highaddr */ 1294 NULL, NULL, /* filter, filterarg */ 1295 JME_SSB_SIZE, /* maxsize */ 1296 1, /* nsegments */ 1297 JME_SSB_SIZE, /* maxsegsize */ 1298 0, /* flags */ 1299 NULL, NULL, /* lockfunc, lockarg */ 1300 &sc->jme_cdata.jme_ssb_tag); 1301 if (error != 0) { 1302 device_printf(sc->jme_dev, 1303 "could not create shared status block DMA tag.\n"); 1304 goto fail; 1305 } 1306 1307 /* Create tag for Tx buffers. */ 1308 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1309 1, 0, /* algnmnt, boundary */ 1310 BUS_SPACE_MAXADDR, /* lowaddr */ 1311 BUS_SPACE_MAXADDR, /* highaddr */ 1312 NULL, NULL, /* filter, filterarg */ 1313 JME_TSO_MAXSIZE, /* maxsize */ 1314 JME_MAXTXSEGS, /* nsegments */ 1315 JME_TSO_MAXSEGSIZE, /* maxsegsize */ 1316 0, /* flags */ 1317 NULL, NULL, /* lockfunc, lockarg */ 1318 &sc->jme_cdata.jme_tx_tag); 1319 if (error != 0) { 1320 device_printf(sc->jme_dev, "could not create Tx DMA tag.\n"); 1321 goto fail; 1322 } 1323 1324 /* Create tag for Rx buffers. */ 1325 error = bus_dma_tag_create(sc->jme_cdata.jme_buffer_tag,/* parent */ 1326 JME_RX_BUF_ALIGN, 0, /* algnmnt, boundary */ 1327 BUS_SPACE_MAXADDR, /* lowaddr */ 1328 BUS_SPACE_MAXADDR, /* highaddr */ 1329 NULL, NULL, /* filter, filterarg */ 1330 MCLBYTES, /* maxsize */ 1331 1, /* nsegments */ 1332 MCLBYTES, /* maxsegsize */ 1333 0, /* flags */ 1334 NULL, NULL, /* lockfunc, lockarg */ 1335 &sc->jme_cdata.jme_rx_tag); 1336 if (error != 0) { 1337 device_printf(sc->jme_dev, "could not create Rx DMA tag.\n"); 1338 goto fail; 1339 } 1340 1341 /* 1342 * Allocate DMA'able memory and load the DMA map for shared 1343 * status block. 1344 */ 1345 error = bus_dmamem_alloc(sc->jme_cdata.jme_ssb_tag, 1346 (void **)&sc->jme_rdata.jme_ssb_block, 1347 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT, 1348 &sc->jme_cdata.jme_ssb_map); 1349 if (error != 0) { 1350 device_printf(sc->jme_dev, "could not allocate DMA'able " 1351 "memory for shared status block.\n"); 1352 goto fail; 1353 } 1354 1355 ctx.jme_busaddr = 0; 1356 error = bus_dmamap_load(sc->jme_cdata.jme_ssb_tag, 1357 sc->jme_cdata.jme_ssb_map, sc->jme_rdata.jme_ssb_block, 1358 JME_SSB_SIZE, jme_dmamap_cb, &ctx, BUS_DMA_NOWAIT); 1359 if (error != 0 || ctx.jme_busaddr == 0) { 1360 device_printf(sc->jme_dev, "could not load DMA'able memory " 1361 "for shared status block.\n"); 1362 goto fail; 1363 } 1364 sc->jme_rdata.jme_ssb_block_paddr = ctx.jme_busaddr; 1365 1366 /* Create DMA maps for Tx buffers. */ 1367 for (i = 0; i < JME_TX_RING_CNT; i++) { 1368 txd = &sc->jme_cdata.jme_txdesc[i]; 1369 txd->tx_m = NULL; 1370 txd->tx_dmamap = NULL; 1371 error = bus_dmamap_create(sc->jme_cdata.jme_tx_tag, 0, 1372 &txd->tx_dmamap); 1373 if (error != 0) { 1374 device_printf(sc->jme_dev, 1375 "could not create Tx dmamap.\n"); 1376 goto fail; 1377 } 1378 } 1379 /* Create DMA maps for Rx buffers. */ 1380 if ((error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1381 &sc->jme_cdata.jme_rx_sparemap)) != 0) { 1382 device_printf(sc->jme_dev, 1383 "could not create spare Rx dmamap.\n"); 1384 goto fail; 1385 } 1386 for (i = 0; i < JME_RX_RING_CNT; i++) { 1387 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1388 rxd->rx_m = NULL; 1389 rxd->rx_dmamap = NULL; 1390 error = bus_dmamap_create(sc->jme_cdata.jme_rx_tag, 0, 1391 &rxd->rx_dmamap); 1392 if (error != 0) { 1393 device_printf(sc->jme_dev, 1394 "could not create Rx dmamap.\n"); 1395 goto fail; 1396 } 1397 } 1398 1399 fail: 1400 return (error); 1401 } 1402 1403 static void 1404 jme_dma_free(struct jme_softc *sc) 1405 { 1406 struct jme_txdesc *txd; 1407 struct jme_rxdesc *rxd; 1408 int i; 1409 1410 /* Tx ring */ 1411 if (sc->jme_cdata.jme_tx_ring_tag != NULL) { 1412 if (sc->jme_cdata.jme_tx_ring_map) 1413 bus_dmamap_unload(sc->jme_cdata.jme_tx_ring_tag, 1414 sc->jme_cdata.jme_tx_ring_map); 1415 if (sc->jme_cdata.jme_tx_ring_map && 1416 sc->jme_rdata.jme_tx_ring) 1417 bus_dmamem_free(sc->jme_cdata.jme_tx_ring_tag, 1418 sc->jme_rdata.jme_tx_ring, 1419 sc->jme_cdata.jme_tx_ring_map); 1420 sc->jme_rdata.jme_tx_ring = NULL; 1421 sc->jme_cdata.jme_tx_ring_map = NULL; 1422 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_ring_tag); 1423 sc->jme_cdata.jme_tx_ring_tag = NULL; 1424 } 1425 /* Rx ring */ 1426 if (sc->jme_cdata.jme_rx_ring_tag != NULL) { 1427 if (sc->jme_cdata.jme_rx_ring_map) 1428 bus_dmamap_unload(sc->jme_cdata.jme_rx_ring_tag, 1429 sc->jme_cdata.jme_rx_ring_map); 1430 if (sc->jme_cdata.jme_rx_ring_map && 1431 sc->jme_rdata.jme_rx_ring) 1432 bus_dmamem_free(sc->jme_cdata.jme_rx_ring_tag, 1433 sc->jme_rdata.jme_rx_ring, 1434 sc->jme_cdata.jme_rx_ring_map); 1435 sc->jme_rdata.jme_rx_ring = NULL; 1436 sc->jme_cdata.jme_rx_ring_map = NULL; 1437 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_ring_tag); 1438 sc->jme_cdata.jme_rx_ring_tag = NULL; 1439 } 1440 /* Tx buffers */ 1441 if (sc->jme_cdata.jme_tx_tag != NULL) { 1442 for (i = 0; i < JME_TX_RING_CNT; i++) { 1443 txd = &sc->jme_cdata.jme_txdesc[i]; 1444 if (txd->tx_dmamap != NULL) { 1445 bus_dmamap_destroy(sc->jme_cdata.jme_tx_tag, 1446 txd->tx_dmamap); 1447 txd->tx_dmamap = NULL; 1448 } 1449 } 1450 bus_dma_tag_destroy(sc->jme_cdata.jme_tx_tag); 1451 sc->jme_cdata.jme_tx_tag = NULL; 1452 } 1453 /* Rx buffers */ 1454 if (sc->jme_cdata.jme_rx_tag != NULL) { 1455 for (i = 0; i < JME_RX_RING_CNT; i++) { 1456 rxd = &sc->jme_cdata.jme_rxdesc[i]; 1457 if (rxd->rx_dmamap != NULL) { 1458 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1459 rxd->rx_dmamap); 1460 rxd->rx_dmamap = NULL; 1461 } 1462 } 1463 if (sc->jme_cdata.jme_rx_sparemap != NULL) { 1464 bus_dmamap_destroy(sc->jme_cdata.jme_rx_tag, 1465 sc->jme_cdata.jme_rx_sparemap); 1466 sc->jme_cdata.jme_rx_sparemap = NULL; 1467 } 1468 bus_dma_tag_destroy(sc->jme_cdata.jme_rx_tag); 1469 sc->jme_cdata.jme_rx_tag = NULL; 1470 } 1471 1472 /* Shared status block. */ 1473 if (sc->jme_cdata.jme_ssb_tag != NULL) { 1474 if (sc->jme_cdata.jme_ssb_map) 1475 bus_dmamap_unload(sc->jme_cdata.jme_ssb_tag, 1476 sc->jme_cdata.jme_ssb_map); 1477 if (sc->jme_cdata.jme_ssb_map && sc->jme_rdata.jme_ssb_block) 1478 bus_dmamem_free(sc->jme_cdata.jme_ssb_tag, 1479 sc->jme_rdata.jme_ssb_block, 1480 sc->jme_cdata.jme_ssb_map); 1481 sc->jme_rdata.jme_ssb_block = NULL; 1482 sc->jme_cdata.jme_ssb_map = NULL; 1483 bus_dma_tag_destroy(sc->jme_cdata.jme_ssb_tag); 1484 sc->jme_cdata.jme_ssb_tag = NULL; 1485 } 1486 1487 if (sc->jme_cdata.jme_buffer_tag != NULL) { 1488 bus_dma_tag_destroy(sc->jme_cdata.jme_buffer_tag); 1489 sc->jme_cdata.jme_buffer_tag = NULL; 1490 } 1491 if (sc->jme_cdata.jme_ring_tag != NULL) { 1492 bus_dma_tag_destroy(sc->jme_cdata.jme_ring_tag); 1493 sc->jme_cdata.jme_ring_tag = NULL; 1494 } 1495 } 1496 1497 /* 1498 * Make sure the interface is stopped at reboot time. 1499 */ 1500 static int 1501 jme_shutdown(device_t dev) 1502 { 1503 1504 return (jme_suspend(dev)); 1505 } 1506 1507 /* 1508 * Unlike other ethernet controllers, JMC250 requires 1509 * explicit resetting link speed to 10/100Mbps as gigabit 1510 * link will cunsume more power than 375mA. 1511 * Note, we reset the link speed to 10/100Mbps with 1512 * auto-negotiation but we don't know whether that operation 1513 * would succeed or not as we have no control after powering 1514 * off. If the renegotiation fail WOL may not work. Running 1515 * at 1Gbps draws more power than 375mA at 3.3V which is 1516 * specified in PCI specification and that would result in 1517 * complete shutdowning power to ethernet controller. 1518 * 1519 * TODO 1520 * Save current negotiated media speed/duplex/flow-control 1521 * to softc and restore the same link again after resuming. 1522 * PHY handling such as power down/resetting to 100Mbps 1523 * may be better handled in suspend method in phy driver. 1524 */ 1525 static void 1526 jme_setlinkspeed(struct jme_softc *sc) 1527 { 1528 struct mii_data *mii; 1529 int aneg, i; 1530 1531 JME_LOCK_ASSERT(sc); 1532 1533 mii = device_get_softc(sc->jme_miibus); 1534 mii_pollstat(mii); 1535 aneg = 0; 1536 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1537 switch IFM_SUBTYPE(mii->mii_media_active) { 1538 case IFM_10_T: 1539 case IFM_100_TX: 1540 return; 1541 case IFM_1000_T: 1542 aneg++; 1543 default: 1544 break; 1545 } 1546 } 1547 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_100T2CR, 0); 1548 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_ANAR, 1549 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 1550 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, 1551 BMCR_AUTOEN | BMCR_STARTNEG); 1552 DELAY(1000); 1553 if (aneg != 0) { 1554 /* Poll link state until jme(4) get a 10/100 link. */ 1555 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 1556 mii_pollstat(mii); 1557 if ((mii->mii_media_status & IFM_AVALID) != 0) { 1558 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1559 case IFM_10_T: 1560 case IFM_100_TX: 1561 jme_mac_config(sc); 1562 return; 1563 default: 1564 break; 1565 } 1566 } 1567 JME_UNLOCK(sc); 1568 pause("jmelnk", hz); 1569 JME_LOCK(sc); 1570 } 1571 if (i == MII_ANEGTICKS_GIGE) 1572 device_printf(sc->jme_dev, "establishing link failed, " 1573 "WOL may not work!"); 1574 } 1575 /* 1576 * No link, force MAC to have 100Mbps, full-duplex link. 1577 * This is the last resort and may/may not work. 1578 */ 1579 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 1580 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 1581 jme_mac_config(sc); 1582 } 1583 1584 static void 1585 jme_setwol(struct jme_softc *sc) 1586 { 1587 struct ifnet *ifp; 1588 uint32_t gpr, pmcs; 1589 uint16_t pmstat; 1590 int pmc; 1591 1592 JME_LOCK_ASSERT(sc); 1593 1594 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1595 /* Remove Tx MAC/offload clock to save more power. */ 1596 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1597 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1598 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1599 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1600 if ((sc->jme_flags & JME_FLAG_RXCLK) != 0) 1601 CSR_WRITE_4(sc, JME_GPREG1, 1602 CSR_READ_4(sc, JME_GPREG1) | GPREG1_RX_MAC_CLK_DIS); 1603 /* No PME capability, PHY power down. */ 1604 jme_phy_down(sc); 1605 return; 1606 } 1607 1608 ifp = sc->jme_ifp; 1609 gpr = CSR_READ_4(sc, JME_GPREG0) & ~GPREG0_PME_ENB; 1610 pmcs = CSR_READ_4(sc, JME_PMCS); 1611 pmcs &= ~PMCS_WOL_ENB_MASK; 1612 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) { 1613 pmcs |= PMCS_MAGIC_FRAME | PMCS_MAGIC_FRAME_ENB; 1614 /* Enable PME message. */ 1615 gpr |= GPREG0_PME_ENB; 1616 /* For gigabit controllers, reset link speed to 10/100. */ 1617 if ((sc->jme_flags & JME_FLAG_FASTETH) == 0) 1618 jme_setlinkspeed(sc); 1619 } 1620 1621 CSR_WRITE_4(sc, JME_PMCS, pmcs); 1622 CSR_WRITE_4(sc, JME_GPREG0, gpr); 1623 /* Remove Tx MAC/offload clock to save more power. */ 1624 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 1625 CSR_WRITE_4(sc, JME_GHC, CSR_READ_4(sc, JME_GHC) & 1626 ~(GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100 | 1627 GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000)); 1628 /* Request PME. */ 1629 pmstat = pci_read_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, 2); 1630 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 1631 if ((ifp->if_capenable & IFCAP_WOL) != 0) 1632 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 1633 pci_write_config(sc->jme_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 1634 if ((ifp->if_capenable & IFCAP_WOL) == 0) { 1635 /* No WOL, PHY power down. */ 1636 jme_phy_down(sc); 1637 } 1638 } 1639 1640 static int 1641 jme_suspend(device_t dev) 1642 { 1643 struct jme_softc *sc; 1644 1645 sc = device_get_softc(dev); 1646 1647 JME_LOCK(sc); 1648 jme_stop(sc); 1649 jme_setwol(sc); 1650 JME_UNLOCK(sc); 1651 1652 return (0); 1653 } 1654 1655 static int 1656 jme_resume(device_t dev) 1657 { 1658 struct jme_softc *sc; 1659 struct ifnet *ifp; 1660 uint16_t pmstat; 1661 int pmc; 1662 1663 sc = device_get_softc(dev); 1664 1665 JME_LOCK(sc); 1666 if (pci_find_extcap(sc->jme_dev, PCIY_PMG, &pmc) != 0) { 1667 pmstat = pci_read_config(sc->jme_dev, 1668 pmc + PCIR_POWER_STATUS, 2); 1669 /* Disable PME clear PME status. */ 1670 pmstat &= ~PCIM_PSTAT_PMEENABLE; 1671 pci_write_config(sc->jme_dev, 1672 pmc + PCIR_POWER_STATUS, pmstat, 2); 1673 } 1674 /* Wakeup PHY. */ 1675 jme_phy_up(sc); 1676 ifp = sc->jme_ifp; 1677 if ((ifp->if_flags & IFF_UP) != 0) { 1678 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1679 jme_init_locked(sc); 1680 } 1681 1682 JME_UNLOCK(sc); 1683 1684 return (0); 1685 } 1686 1687 static int 1688 jme_encap(struct jme_softc *sc, struct mbuf **m_head) 1689 { 1690 struct jme_txdesc *txd; 1691 struct jme_desc *desc; 1692 struct mbuf *m; 1693 bus_dma_segment_t txsegs[JME_MAXTXSEGS]; 1694 int error, i, nsegs, prod; 1695 uint32_t cflags, tso_segsz; 1696 1697 JME_LOCK_ASSERT(sc); 1698 1699 M_ASSERTPKTHDR((*m_head)); 1700 1701 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1702 /* 1703 * Due to the adherence to NDIS specification JMC250 1704 * assumes upper stack computed TCP pseudo checksum 1705 * without including payload length. This breaks 1706 * checksum offload for TSO case so recompute TCP 1707 * pseudo checksum for JMC250. Hopefully this wouldn't 1708 * be much burden on modern CPUs. 1709 */ 1710 struct ether_header *eh; 1711 struct ip *ip; 1712 struct tcphdr *tcp; 1713 uint32_t ip_off, poff; 1714 1715 if (M_WRITABLE(*m_head) == 0) { 1716 /* Get a writable copy. */ 1717 m = m_dup(*m_head, M_DONTWAIT); 1718 m_freem(*m_head); 1719 if (m == NULL) { 1720 *m_head = NULL; 1721 return (ENOBUFS); 1722 } 1723 *m_head = m; 1724 } 1725 ip_off = sizeof(struct ether_header); 1726 m = m_pullup(*m_head, ip_off); 1727 if (m == NULL) { 1728 *m_head = NULL; 1729 return (ENOBUFS); 1730 } 1731 eh = mtod(m, struct ether_header *); 1732 /* Check the existence of VLAN tag. */ 1733 if (eh->ether_type == htons(ETHERTYPE_VLAN)) { 1734 ip_off = sizeof(struct ether_vlan_header); 1735 m = m_pullup(m, ip_off); 1736 if (m == NULL) { 1737 *m_head = NULL; 1738 return (ENOBUFS); 1739 } 1740 } 1741 m = m_pullup(m, ip_off + sizeof(struct ip)); 1742 if (m == NULL) { 1743 *m_head = NULL; 1744 return (ENOBUFS); 1745 } 1746 ip = (struct ip *)(mtod(m, char *) + ip_off); 1747 poff = ip_off + (ip->ip_hl << 2); 1748 m = m_pullup(m, poff + sizeof(struct tcphdr)); 1749 if (m == NULL) { 1750 *m_head = NULL; 1751 return (ENOBUFS); 1752 } 1753 /* 1754 * Reset IP checksum and recompute TCP pseudo 1755 * checksum that NDIS specification requires. 1756 */ 1757 ip = (struct ip *)(mtod(m, char *) + ip_off); 1758 tcp = (struct tcphdr *)(mtod(m, char *) + poff); 1759 ip->ip_sum = 0; 1760 if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) { 1761 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1762 ip->ip_dst.s_addr, 1763 htons((tcp->th_off << 2) + IPPROTO_TCP)); 1764 /* No need to TSO, force IP checksum offload. */ 1765 (*m_head)->m_pkthdr.csum_flags &= ~CSUM_TSO; 1766 (*m_head)->m_pkthdr.csum_flags |= CSUM_IP; 1767 } else 1768 tcp->th_sum = in_pseudo(ip->ip_src.s_addr, 1769 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 1770 *m_head = m; 1771 } 1772 1773 prod = sc->jme_cdata.jme_tx_prod; 1774 txd = &sc->jme_cdata.jme_txdesc[prod]; 1775 1776 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1777 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1778 if (error == EFBIG) { 1779 m = m_collapse(*m_head, M_DONTWAIT, JME_MAXTXSEGS); 1780 if (m == NULL) { 1781 m_freem(*m_head); 1782 *m_head = NULL; 1783 return (ENOMEM); 1784 } 1785 *m_head = m; 1786 error = bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_tx_tag, 1787 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0); 1788 if (error != 0) { 1789 m_freem(*m_head); 1790 *m_head = NULL; 1791 return (error); 1792 } 1793 } else if (error != 0) 1794 return (error); 1795 if (nsegs == 0) { 1796 m_freem(*m_head); 1797 *m_head = NULL; 1798 return (EIO); 1799 } 1800 1801 /* 1802 * Check descriptor overrun. Leave one free descriptor. 1803 * Since we always use 64bit address mode for transmitting, 1804 * each Tx request requires one more dummy descriptor. 1805 */ 1806 if (sc->jme_cdata.jme_tx_cnt + nsegs + 1 > JME_TX_RING_CNT - 1) { 1807 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 1808 return (ENOBUFS); 1809 } 1810 1811 m = *m_head; 1812 cflags = 0; 1813 tso_segsz = 0; 1814 /* Configure checksum offload and TSO. */ 1815 if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 1816 tso_segsz = (uint32_t)m->m_pkthdr.tso_segsz << 1817 JME_TD_MSS_SHIFT; 1818 cflags |= JME_TD_TSO; 1819 } else { 1820 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) 1821 cflags |= JME_TD_IPCSUM; 1822 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0) 1823 cflags |= JME_TD_TCPCSUM; 1824 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0) 1825 cflags |= JME_TD_UDPCSUM; 1826 } 1827 /* Configure VLAN. */ 1828 if ((m->m_flags & M_VLANTAG) != 0) { 1829 cflags |= (m->m_pkthdr.ether_vtag & JME_TD_VLAN_MASK); 1830 cflags |= JME_TD_VLAN_TAG; 1831 } 1832 1833 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1834 desc->flags = htole32(cflags); 1835 desc->buflen = htole32(tso_segsz); 1836 desc->addr_hi = htole32(m->m_pkthdr.len); 1837 desc->addr_lo = 0; 1838 sc->jme_cdata.jme_tx_cnt++; 1839 JME_DESC_INC(prod, JME_TX_RING_CNT); 1840 for (i = 0; i < nsegs; i++) { 1841 desc = &sc->jme_rdata.jme_tx_ring[prod]; 1842 desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT); 1843 desc->buflen = htole32(txsegs[i].ds_len); 1844 desc->addr_hi = htole32(JME_ADDR_HI(txsegs[i].ds_addr)); 1845 desc->addr_lo = htole32(JME_ADDR_LO(txsegs[i].ds_addr)); 1846 sc->jme_cdata.jme_tx_cnt++; 1847 JME_DESC_INC(prod, JME_TX_RING_CNT); 1848 } 1849 1850 /* Update producer index. */ 1851 sc->jme_cdata.jme_tx_prod = prod; 1852 /* 1853 * Finally request interrupt and give the first descriptor 1854 * owenership to hardware. 1855 */ 1856 desc = txd->tx_desc; 1857 desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR); 1858 1859 txd->tx_m = m; 1860 txd->tx_ndesc = nsegs + 1; 1861 1862 /* Sync descriptors. */ 1863 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 1864 BUS_DMASYNC_PREWRITE); 1865 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 1866 sc->jme_cdata.jme_tx_ring_map, 1867 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1868 1869 return (0); 1870 } 1871 1872 static void 1873 jme_start(struct ifnet *ifp) 1874 { 1875 struct jme_softc *sc; 1876 1877 sc = ifp->if_softc; 1878 JME_LOCK(sc); 1879 jme_start_locked(ifp); 1880 JME_UNLOCK(sc); 1881 } 1882 1883 static void 1884 jme_start_locked(struct ifnet *ifp) 1885 { 1886 struct jme_softc *sc; 1887 struct mbuf *m_head; 1888 int enq; 1889 1890 sc = ifp->if_softc; 1891 1892 JME_LOCK_ASSERT(sc); 1893 1894 if (sc->jme_cdata.jme_tx_cnt >= JME_TX_DESC_HIWAT) 1895 jme_txeof(sc); 1896 1897 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1898 IFF_DRV_RUNNING || (sc->jme_flags & JME_FLAG_LINK) == 0) 1899 return; 1900 1901 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) { 1902 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1903 if (m_head == NULL) 1904 break; 1905 /* 1906 * Pack the data into the transmit ring. If we 1907 * don't have room, set the OACTIVE flag and wait 1908 * for the NIC to drain the ring. 1909 */ 1910 if (jme_encap(sc, &m_head)) { 1911 if (m_head == NULL) 1912 break; 1913 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1914 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1915 break; 1916 } 1917 1918 enq++; 1919 /* 1920 * If there's a BPF listener, bounce a copy of this frame 1921 * to him. 1922 */ 1923 ETHER_BPF_MTAP(ifp, m_head); 1924 } 1925 1926 if (enq > 0) { 1927 /* 1928 * Reading TXCSR takes very long time under heavy load 1929 * so cache TXCSR value and writes the ORed value with 1930 * the kick command to the TXCSR. This saves one register 1931 * access cycle. 1932 */ 1933 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB | 1934 TXCSR_TXQ_N_START(TXCSR_TXQ0)); 1935 /* Set a timeout in case the chip goes out to lunch. */ 1936 sc->jme_watchdog_timer = JME_TX_TIMEOUT; 1937 } 1938 } 1939 1940 static void 1941 jme_watchdog(struct jme_softc *sc) 1942 { 1943 struct ifnet *ifp; 1944 1945 JME_LOCK_ASSERT(sc); 1946 1947 if (sc->jme_watchdog_timer == 0 || --sc->jme_watchdog_timer) 1948 return; 1949 1950 ifp = sc->jme_ifp; 1951 if ((sc->jme_flags & JME_FLAG_LINK) == 0) { 1952 if_printf(sc->jme_ifp, "watchdog timeout (missed link)\n"); 1953 ifp->if_oerrors++; 1954 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1955 jme_init_locked(sc); 1956 return; 1957 } 1958 jme_txeof(sc); 1959 if (sc->jme_cdata.jme_tx_cnt == 0) { 1960 if_printf(sc->jme_ifp, 1961 "watchdog timeout (missed Tx interrupts) -- recovering\n"); 1962 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1963 jme_start_locked(ifp); 1964 return; 1965 } 1966 1967 if_printf(sc->jme_ifp, "watchdog timeout\n"); 1968 ifp->if_oerrors++; 1969 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1970 jme_init_locked(sc); 1971 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1972 jme_start_locked(ifp); 1973 } 1974 1975 static int 1976 jme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1977 { 1978 struct jme_softc *sc; 1979 struct ifreq *ifr; 1980 struct mii_data *mii; 1981 uint32_t reg; 1982 int error, mask; 1983 1984 sc = ifp->if_softc; 1985 ifr = (struct ifreq *)data; 1986 error = 0; 1987 switch (cmd) { 1988 case SIOCSIFMTU: 1989 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > JME_JUMBO_MTU || 1990 ((sc->jme_flags & JME_FLAG_NOJUMBO) != 0 && 1991 ifr->ifr_mtu > JME_MAX_MTU)) { 1992 error = EINVAL; 1993 break; 1994 } 1995 1996 if (ifp->if_mtu != ifr->ifr_mtu) { 1997 /* 1998 * No special configuration is required when interface 1999 * MTU is changed but availability of TSO/Tx checksum 2000 * offload should be chcked against new MTU size as 2001 * FIFO size is just 2K. 2002 */ 2003 JME_LOCK(sc); 2004 if (ifr->ifr_mtu >= JME_TX_FIFO_SIZE) { 2005 ifp->if_capenable &= 2006 ~(IFCAP_TXCSUM | IFCAP_TSO4); 2007 ifp->if_hwassist &= 2008 ~(JME_CSUM_FEATURES | CSUM_TSO); 2009 VLAN_CAPABILITIES(ifp); 2010 } 2011 ifp->if_mtu = ifr->ifr_mtu; 2012 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2013 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2014 jme_init_locked(sc); 2015 } 2016 JME_UNLOCK(sc); 2017 } 2018 break; 2019 case SIOCSIFFLAGS: 2020 JME_LOCK(sc); 2021 if ((ifp->if_flags & IFF_UP) != 0) { 2022 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2023 if (((ifp->if_flags ^ sc->jme_if_flags) 2024 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2025 jme_set_filter(sc); 2026 } else { 2027 if ((sc->jme_flags & JME_FLAG_DETACH) == 0) 2028 jme_init_locked(sc); 2029 } 2030 } else { 2031 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2032 jme_stop(sc); 2033 } 2034 sc->jme_if_flags = ifp->if_flags; 2035 JME_UNLOCK(sc); 2036 break; 2037 case SIOCADDMULTI: 2038 case SIOCDELMULTI: 2039 JME_LOCK(sc); 2040 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2041 jme_set_filter(sc); 2042 JME_UNLOCK(sc); 2043 break; 2044 case SIOCSIFMEDIA: 2045 case SIOCGIFMEDIA: 2046 mii = device_get_softc(sc->jme_miibus); 2047 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2048 break; 2049 case SIOCSIFCAP: 2050 JME_LOCK(sc); 2051 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2052 if ((mask & IFCAP_TXCSUM) != 0 && 2053 ifp->if_mtu < JME_TX_FIFO_SIZE) { 2054 if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) { 2055 ifp->if_capenable ^= IFCAP_TXCSUM; 2056 if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) 2057 ifp->if_hwassist |= JME_CSUM_FEATURES; 2058 else 2059 ifp->if_hwassist &= ~JME_CSUM_FEATURES; 2060 } 2061 } 2062 if ((mask & IFCAP_RXCSUM) != 0 && 2063 (IFCAP_RXCSUM & ifp->if_capabilities) != 0) { 2064 ifp->if_capenable ^= IFCAP_RXCSUM; 2065 reg = CSR_READ_4(sc, JME_RXMAC); 2066 reg &= ~RXMAC_CSUM_ENB; 2067 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2068 reg |= RXMAC_CSUM_ENB; 2069 CSR_WRITE_4(sc, JME_RXMAC, reg); 2070 } 2071 if ((mask & IFCAP_TSO4) != 0 && 2072 ifp->if_mtu < JME_TX_FIFO_SIZE) { 2073 if ((IFCAP_TSO4 & ifp->if_capabilities) != 0) { 2074 ifp->if_capenable ^= IFCAP_TSO4; 2075 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 2076 ifp->if_hwassist |= CSUM_TSO; 2077 else 2078 ifp->if_hwassist &= ~CSUM_TSO; 2079 } 2080 } 2081 if ((mask & IFCAP_WOL_MAGIC) != 0 && 2082 (IFCAP_WOL_MAGIC & ifp->if_capabilities) != 0) 2083 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2084 if ((mask & IFCAP_VLAN_HWCSUM) != 0 && 2085 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0) 2086 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2087 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2088 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2089 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2090 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2091 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) { 2092 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2093 jme_set_vlan(sc); 2094 } 2095 JME_UNLOCK(sc); 2096 VLAN_CAPABILITIES(ifp); 2097 break; 2098 default: 2099 error = ether_ioctl(ifp, cmd, data); 2100 break; 2101 } 2102 2103 return (error); 2104 } 2105 2106 static void 2107 jme_mac_config(struct jme_softc *sc) 2108 { 2109 struct mii_data *mii; 2110 uint32_t ghc, gpreg, rxmac, txmac, txpause; 2111 uint32_t txclk; 2112 2113 JME_LOCK_ASSERT(sc); 2114 2115 mii = device_get_softc(sc->jme_miibus); 2116 2117 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2118 DELAY(10); 2119 CSR_WRITE_4(sc, JME_GHC, 0); 2120 ghc = 0; 2121 txclk = 0; 2122 rxmac = CSR_READ_4(sc, JME_RXMAC); 2123 rxmac &= ~RXMAC_FC_ENB; 2124 txmac = CSR_READ_4(sc, JME_TXMAC); 2125 txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST); 2126 txpause = CSR_READ_4(sc, JME_TXPFC); 2127 txpause &= ~TXPFC_PAUSE_ENB; 2128 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2129 ghc |= GHC_FULL_DUPLEX; 2130 rxmac &= ~RXMAC_COLL_DET_ENB; 2131 txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | 2132 TXMAC_BACKOFF | TXMAC_CARRIER_EXT | 2133 TXMAC_FRAME_BURST); 2134 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2135 txpause |= TXPFC_PAUSE_ENB; 2136 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2137 rxmac |= RXMAC_FC_ENB; 2138 /* Disable retry transmit timer/retry limit. */ 2139 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) & 2140 ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB)); 2141 } else { 2142 rxmac |= RXMAC_COLL_DET_ENB; 2143 txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF; 2144 /* Enable retry transmit timer/retry limit. */ 2145 CSR_WRITE_4(sc, JME_TXTRHD, CSR_READ_4(sc, JME_TXTRHD) | 2146 TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB); 2147 } 2148 /* Reprogram Tx/Rx MACs with resolved speed/duplex. */ 2149 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2150 case IFM_10_T: 2151 ghc |= GHC_SPEED_10; 2152 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2153 break; 2154 case IFM_100_TX: 2155 ghc |= GHC_SPEED_100; 2156 txclk |= GHC_TX_OFFLD_CLK_100 | GHC_TX_MAC_CLK_100; 2157 break; 2158 case IFM_1000_T: 2159 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2160 break; 2161 ghc |= GHC_SPEED_1000; 2162 txclk |= GHC_TX_OFFLD_CLK_1000 | GHC_TX_MAC_CLK_1000; 2163 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0) 2164 txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST; 2165 break; 2166 default: 2167 break; 2168 } 2169 if (sc->jme_rev == DEVICEID_JMC250 && 2170 sc->jme_chip_rev == DEVICEREVID_JMC250_A2) { 2171 /* 2172 * Workaround occasional packet loss issue of JMC250 A2 2173 * when it runs on half-duplex media. 2174 */ 2175 gpreg = CSR_READ_4(sc, JME_GPREG1); 2176 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 2177 gpreg &= ~GPREG1_HDPX_FIX; 2178 else 2179 gpreg |= GPREG1_HDPX_FIX; 2180 CSR_WRITE_4(sc, JME_GPREG1, gpreg); 2181 /* Workaround CRC errors at 100Mbps on JMC250 A2. */ 2182 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 2183 /* Extend interface FIFO depth. */ 2184 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2185 0x1B, 0x0000); 2186 } else { 2187 /* Select default interface FIFO depth. */ 2188 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, 2189 0x1B, 0x0004); 2190 } 2191 } 2192 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 2193 ghc |= txclk; 2194 CSR_WRITE_4(sc, JME_GHC, ghc); 2195 CSR_WRITE_4(sc, JME_RXMAC, rxmac); 2196 CSR_WRITE_4(sc, JME_TXMAC, txmac); 2197 CSR_WRITE_4(sc, JME_TXPFC, txpause); 2198 } 2199 2200 static void 2201 jme_link_task(void *arg, int pending) 2202 { 2203 struct jme_softc *sc; 2204 struct mii_data *mii; 2205 struct ifnet *ifp; 2206 struct jme_txdesc *txd; 2207 bus_addr_t paddr; 2208 int i; 2209 2210 sc = (struct jme_softc *)arg; 2211 2212 JME_LOCK(sc); 2213 mii = device_get_softc(sc->jme_miibus); 2214 ifp = sc->jme_ifp; 2215 if (mii == NULL || ifp == NULL || 2216 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2217 JME_UNLOCK(sc); 2218 return; 2219 } 2220 2221 sc->jme_flags &= ~JME_FLAG_LINK; 2222 if ((mii->mii_media_status & IFM_AVALID) != 0) { 2223 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2224 case IFM_10_T: 2225 case IFM_100_TX: 2226 sc->jme_flags |= JME_FLAG_LINK; 2227 break; 2228 case IFM_1000_T: 2229 if ((sc->jme_flags & JME_FLAG_FASTETH) != 0) 2230 break; 2231 sc->jme_flags |= JME_FLAG_LINK; 2232 break; 2233 default: 2234 break; 2235 } 2236 } 2237 2238 /* 2239 * Disabling Rx/Tx MACs have a side-effect of resetting 2240 * JME_TXNDA/JME_RXNDA register to the first address of 2241 * Tx/Rx descriptor address. So driver should reset its 2242 * internal procucer/consumer pointer and reclaim any 2243 * allocated resources. Note, just saving the value of 2244 * JME_TXNDA and JME_RXNDA registers before stopping MAC 2245 * and restoring JME_TXNDA/JME_RXNDA register is not 2246 * sufficient to make sure correct MAC state because 2247 * stopping MAC operation can take a while and hardware 2248 * might have updated JME_TXNDA/JME_RXNDA registers 2249 * during the stop operation. 2250 */ 2251 /* Block execution of task. */ 2252 taskqueue_block(sc->jme_tq); 2253 /* Disable interrupts and stop driver. */ 2254 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2255 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2256 callout_stop(&sc->jme_tick_ch); 2257 sc->jme_watchdog_timer = 0; 2258 2259 /* Stop receiver/transmitter. */ 2260 jme_stop_rx(sc); 2261 jme_stop_tx(sc); 2262 2263 /* XXX Drain all queued tasks. */ 2264 JME_UNLOCK(sc); 2265 taskqueue_drain(sc->jme_tq, &sc->jme_int_task); 2266 JME_LOCK(sc); 2267 2268 if (sc->jme_cdata.jme_rxhead != NULL) 2269 m_freem(sc->jme_cdata.jme_rxhead); 2270 JME_RXCHAIN_RESET(sc); 2271 jme_txeof(sc); 2272 if (sc->jme_cdata.jme_tx_cnt != 0) { 2273 /* Remove queued packets for transmit. */ 2274 for (i = 0; i < JME_TX_RING_CNT; i++) { 2275 txd = &sc->jme_cdata.jme_txdesc[i]; 2276 if (txd->tx_m != NULL) { 2277 bus_dmamap_sync( 2278 sc->jme_cdata.jme_tx_tag, 2279 txd->tx_dmamap, 2280 BUS_DMASYNC_POSTWRITE); 2281 bus_dmamap_unload( 2282 sc->jme_cdata.jme_tx_tag, 2283 txd->tx_dmamap); 2284 m_freem(txd->tx_m); 2285 txd->tx_m = NULL; 2286 txd->tx_ndesc = 0; 2287 ifp->if_oerrors++; 2288 } 2289 } 2290 } 2291 2292 /* 2293 * Reuse configured Rx descriptors and reset 2294 * producer/consumer index. 2295 */ 2296 sc->jme_cdata.jme_rx_cons = 0; 2297 sc->jme_morework = 0; 2298 jme_init_tx_ring(sc); 2299 /* Initialize shadow status block. */ 2300 jme_init_ssb(sc); 2301 2302 /* Program MAC with resolved speed/duplex/flow-control. */ 2303 if ((sc->jme_flags & JME_FLAG_LINK) != 0) { 2304 jme_mac_config(sc); 2305 jme_stats_clear(sc); 2306 2307 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2308 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2309 2310 /* Set Tx ring address to the hardware. */ 2311 paddr = JME_TX_RING_ADDR(sc, 0); 2312 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2313 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2314 2315 /* Set Rx ring address to the hardware. */ 2316 paddr = JME_RX_RING_ADDR(sc, 0); 2317 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2318 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2319 2320 /* Restart receiver/transmitter. */ 2321 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | RXCSR_RX_ENB | 2322 RXCSR_RXQ_START); 2323 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr | TXCSR_TX_ENB); 2324 /* Lastly enable TX/RX clock. */ 2325 if ((sc->jme_flags & JME_FLAG_TXCLK) != 0) 2326 CSR_WRITE_4(sc, JME_GHC, 2327 CSR_READ_4(sc, JME_GHC) & ~GHC_TX_MAC_CLK_DIS); 2328 if ((sc->jme_flags & JME_FLAG_RXCLK) != 0) 2329 CSR_WRITE_4(sc, JME_GPREG1, 2330 CSR_READ_4(sc, JME_GPREG1) & ~GPREG1_RX_MAC_CLK_DIS); 2331 } 2332 2333 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2334 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2335 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2336 /* Unblock execution of task. */ 2337 taskqueue_unblock(sc->jme_tq); 2338 /* Reenable interrupts. */ 2339 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2340 2341 JME_UNLOCK(sc); 2342 } 2343 2344 static int 2345 jme_intr(void *arg) 2346 { 2347 struct jme_softc *sc; 2348 uint32_t status; 2349 2350 sc = (struct jme_softc *)arg; 2351 2352 status = CSR_READ_4(sc, JME_INTR_REQ_STATUS); 2353 if (status == 0 || status == 0xFFFFFFFF) 2354 return (FILTER_STRAY); 2355 /* Disable interrupts. */ 2356 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 2357 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2358 2359 return (FILTER_HANDLED); 2360 } 2361 2362 static void 2363 jme_int_task(void *arg, int pending) 2364 { 2365 struct jme_softc *sc; 2366 struct ifnet *ifp; 2367 uint32_t status; 2368 int more; 2369 2370 sc = (struct jme_softc *)arg; 2371 ifp = sc->jme_ifp; 2372 2373 JME_LOCK(sc); 2374 status = CSR_READ_4(sc, JME_INTR_STATUS); 2375 if (sc->jme_morework != 0) { 2376 sc->jme_morework = 0; 2377 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO; 2378 } 2379 if ((status & JME_INTRS) == 0 || status == 0xFFFFFFFF) 2380 goto done; 2381 /* Reset PCC counter/timer and Ack interrupts. */ 2382 status &= ~(INTR_TXQ_COMP | INTR_RXQ_COMP); 2383 if ((status & (INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0) 2384 status |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP; 2385 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) 2386 status |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP; 2387 CSR_WRITE_4(sc, JME_INTR_STATUS, status); 2388 more = 0; 2389 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2390 if ((status & (INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0) { 2391 more = jme_rxintr(sc, sc->jme_process_limit); 2392 if (more != 0) 2393 sc->jme_morework = 1; 2394 } 2395 if ((status & INTR_RXQ_DESC_EMPTY) != 0) { 2396 /* 2397 * Notify hardware availability of new Rx 2398 * buffers. 2399 * Reading RXCSR takes very long time under 2400 * heavy load so cache RXCSR value and writes 2401 * the ORed value with the kick command to 2402 * the RXCSR. This saves one register access 2403 * cycle. 2404 */ 2405 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr | 2406 RXCSR_RX_ENB | RXCSR_RXQ_START); 2407 } 2408 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2409 jme_start_locked(ifp); 2410 } 2411 2412 if (more != 0 || (CSR_READ_4(sc, JME_INTR_STATUS) & JME_INTRS) != 0) { 2413 taskqueue_enqueue(sc->jme_tq, &sc->jme_int_task); 2414 JME_UNLOCK(sc); 2415 return; 2416 } 2417 done: 2418 JME_UNLOCK(sc); 2419 2420 /* Reenable interrupts. */ 2421 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2422 } 2423 2424 static void 2425 jme_txeof(struct jme_softc *sc) 2426 { 2427 struct ifnet *ifp; 2428 struct jme_txdesc *txd; 2429 uint32_t status; 2430 int cons, nsegs; 2431 2432 JME_LOCK_ASSERT(sc); 2433 2434 ifp = sc->jme_ifp; 2435 2436 cons = sc->jme_cdata.jme_tx_cons; 2437 if (cons == sc->jme_cdata.jme_tx_prod) 2438 return; 2439 2440 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2441 sc->jme_cdata.jme_tx_ring_map, 2442 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2443 2444 /* 2445 * Go through our Tx list and free mbufs for those 2446 * frames which have been transmitted. 2447 */ 2448 for (; cons != sc->jme_cdata.jme_tx_prod;) { 2449 txd = &sc->jme_cdata.jme_txdesc[cons]; 2450 status = le32toh(txd->tx_desc->flags); 2451 if ((status & JME_TD_OWN) == JME_TD_OWN) 2452 break; 2453 2454 if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0) 2455 ifp->if_oerrors++; 2456 else { 2457 ifp->if_opackets++; 2458 if ((status & JME_TD_COLLISION) != 0) 2459 ifp->if_collisions += 2460 le32toh(txd->tx_desc->buflen) & 2461 JME_TD_BUF_LEN_MASK; 2462 } 2463 /* 2464 * Only the first descriptor of multi-descriptor 2465 * transmission is updated so driver have to skip entire 2466 * chained buffers for the transmiited frame. In other 2467 * words, JME_TD_OWN bit is valid only at the first 2468 * descriptor of a multi-descriptor transmission. 2469 */ 2470 for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) { 2471 sc->jme_rdata.jme_tx_ring[cons].flags = 0; 2472 JME_DESC_INC(cons, JME_TX_RING_CNT); 2473 } 2474 2475 /* Reclaim transferred mbufs. */ 2476 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap, 2477 BUS_DMASYNC_POSTWRITE); 2478 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, txd->tx_dmamap); 2479 2480 KASSERT(txd->tx_m != NULL, 2481 ("%s: freeing NULL mbuf!\n", __func__)); 2482 m_freem(txd->tx_m); 2483 txd->tx_m = NULL; 2484 sc->jme_cdata.jme_tx_cnt -= txd->tx_ndesc; 2485 KASSERT(sc->jme_cdata.jme_tx_cnt >= 0, 2486 ("%s: Active Tx desc counter was garbled\n", __func__)); 2487 txd->tx_ndesc = 0; 2488 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2489 } 2490 sc->jme_cdata.jme_tx_cons = cons; 2491 /* Unarm watchog timer when there is no pending descriptors in queue. */ 2492 if (sc->jme_cdata.jme_tx_cnt == 0) 2493 sc->jme_watchdog_timer = 0; 2494 2495 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 2496 sc->jme_cdata.jme_tx_ring_map, 2497 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2498 } 2499 2500 static __inline void 2501 jme_discard_rxbuf(struct jme_softc *sc, int cons) 2502 { 2503 struct jme_desc *desc; 2504 2505 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2506 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 2507 desc->buflen = htole32(MCLBYTES); 2508 } 2509 2510 /* Receive a frame. */ 2511 static void 2512 jme_rxeof(struct jme_softc *sc) 2513 { 2514 struct ifnet *ifp; 2515 struct jme_desc *desc; 2516 struct jme_rxdesc *rxd; 2517 struct mbuf *mp, *m; 2518 uint32_t flags, status; 2519 int cons, count, nsegs; 2520 2521 JME_LOCK_ASSERT(sc); 2522 2523 ifp = sc->jme_ifp; 2524 2525 cons = sc->jme_cdata.jme_rx_cons; 2526 desc = &sc->jme_rdata.jme_rx_ring[cons]; 2527 flags = le32toh(desc->flags); 2528 status = le32toh(desc->buflen); 2529 nsegs = JME_RX_NSEGS(status); 2530 sc->jme_cdata.jme_rxlen = JME_RX_BYTES(status) - JME_RX_PAD_BYTES; 2531 if ((status & JME_RX_ERR_STAT) != 0) { 2532 ifp->if_ierrors++; 2533 jme_discard_rxbuf(sc, sc->jme_cdata.jme_rx_cons); 2534 #ifdef JME_SHOW_ERRORS 2535 device_printf(sc->jme_dev, "%s : receive error = 0x%b\n", 2536 __func__, JME_RX_ERR(status), JME_RX_ERR_BITS); 2537 #endif 2538 sc->jme_cdata.jme_rx_cons += nsegs; 2539 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2540 return; 2541 } 2542 2543 for (count = 0; count < nsegs; count++, 2544 JME_DESC_INC(cons, JME_RX_RING_CNT)) { 2545 rxd = &sc->jme_cdata.jme_rxdesc[cons]; 2546 mp = rxd->rx_m; 2547 /* Add a new receive buffer to the ring. */ 2548 if (jme_newbuf(sc, rxd) != 0) { 2549 ifp->if_iqdrops++; 2550 /* Reuse buffer. */ 2551 for (; count < nsegs; count++) { 2552 jme_discard_rxbuf(sc, cons); 2553 JME_DESC_INC(cons, JME_RX_RING_CNT); 2554 } 2555 if (sc->jme_cdata.jme_rxhead != NULL) { 2556 m_freem(sc->jme_cdata.jme_rxhead); 2557 JME_RXCHAIN_RESET(sc); 2558 } 2559 break; 2560 } 2561 2562 /* 2563 * Assume we've received a full sized frame. 2564 * Actual size is fixed when we encounter the end of 2565 * multi-segmented frame. 2566 */ 2567 mp->m_len = MCLBYTES; 2568 2569 /* Chain received mbufs. */ 2570 if (sc->jme_cdata.jme_rxhead == NULL) { 2571 sc->jme_cdata.jme_rxhead = mp; 2572 sc->jme_cdata.jme_rxtail = mp; 2573 } else { 2574 /* 2575 * Receive processor can receive a maximum frame 2576 * size of 65535 bytes. 2577 */ 2578 mp->m_flags &= ~M_PKTHDR; 2579 sc->jme_cdata.jme_rxtail->m_next = mp; 2580 sc->jme_cdata.jme_rxtail = mp; 2581 } 2582 2583 if (count == nsegs - 1) { 2584 /* Last desc. for this frame. */ 2585 m = sc->jme_cdata.jme_rxhead; 2586 m->m_flags |= M_PKTHDR; 2587 m->m_pkthdr.len = sc->jme_cdata.jme_rxlen; 2588 if (nsegs > 1) { 2589 /* Set first mbuf size. */ 2590 m->m_len = MCLBYTES - JME_RX_PAD_BYTES; 2591 /* Set last mbuf size. */ 2592 mp->m_len = sc->jme_cdata.jme_rxlen - 2593 ((MCLBYTES - JME_RX_PAD_BYTES) + 2594 (MCLBYTES * (nsegs - 2))); 2595 } else 2596 m->m_len = sc->jme_cdata.jme_rxlen; 2597 m->m_pkthdr.rcvif = ifp; 2598 2599 /* 2600 * Account for 10bytes auto padding which is used 2601 * to align IP header on 32bit boundary. Also note, 2602 * CRC bytes is automatically removed by the 2603 * hardware. 2604 */ 2605 m->m_data += JME_RX_PAD_BYTES; 2606 2607 /* Set checksum information. */ 2608 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 && 2609 (flags & JME_RD_IPV4) != 0) { 2610 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 2611 if ((flags & JME_RD_IPCSUM) != 0) 2612 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 2613 if (((flags & JME_RD_MORE_FRAG) == 0) && 2614 ((flags & (JME_RD_TCP | JME_RD_TCPCSUM)) == 2615 (JME_RD_TCP | JME_RD_TCPCSUM) || 2616 (flags & (JME_RD_UDP | JME_RD_UDPCSUM)) == 2617 (JME_RD_UDP | JME_RD_UDPCSUM))) { 2618 m->m_pkthdr.csum_flags |= 2619 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2620 m->m_pkthdr.csum_data = 0xffff; 2621 } 2622 } 2623 2624 /* Check for VLAN tagged packets. */ 2625 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 2626 (flags & JME_RD_VLAN_TAG) != 0) { 2627 m->m_pkthdr.ether_vtag = 2628 flags & JME_RD_VLAN_MASK; 2629 m->m_flags |= M_VLANTAG; 2630 } 2631 2632 ifp->if_ipackets++; 2633 /* Pass it on. */ 2634 JME_UNLOCK(sc); 2635 (*ifp->if_input)(ifp, m); 2636 JME_LOCK(sc); 2637 2638 /* Reset mbuf chains. */ 2639 JME_RXCHAIN_RESET(sc); 2640 } 2641 } 2642 2643 sc->jme_cdata.jme_rx_cons += nsegs; 2644 sc->jme_cdata.jme_rx_cons %= JME_RX_RING_CNT; 2645 } 2646 2647 static int 2648 jme_rxintr(struct jme_softc *sc, int count) 2649 { 2650 struct jme_desc *desc; 2651 int nsegs, prog, pktlen; 2652 2653 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2654 sc->jme_cdata.jme_rx_ring_map, 2655 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2656 2657 for (prog = 0; count > 0; prog++) { 2658 desc = &sc->jme_rdata.jme_rx_ring[sc->jme_cdata.jme_rx_cons]; 2659 if ((le32toh(desc->flags) & JME_RD_OWN) == JME_RD_OWN) 2660 break; 2661 if ((le32toh(desc->buflen) & JME_RD_VALID) == 0) 2662 break; 2663 nsegs = JME_RX_NSEGS(le32toh(desc->buflen)); 2664 /* 2665 * Check number of segments against received bytes. 2666 * Non-matching value would indicate that hardware 2667 * is still trying to update Rx descriptors. I'm not 2668 * sure whether this check is needed. 2669 */ 2670 pktlen = JME_RX_BYTES(le32toh(desc->buflen)); 2671 if (nsegs != ((pktlen + (MCLBYTES - 1)) / MCLBYTES)) 2672 break; 2673 prog++; 2674 /* Received a frame. */ 2675 jme_rxeof(sc); 2676 count -= nsegs; 2677 } 2678 2679 if (prog > 0) 2680 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 2681 sc->jme_cdata.jme_rx_ring_map, 2682 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2683 2684 return (count > 0 ? 0 : EAGAIN); 2685 } 2686 2687 static void 2688 jme_tick(void *arg) 2689 { 2690 struct jme_softc *sc; 2691 struct mii_data *mii; 2692 2693 sc = (struct jme_softc *)arg; 2694 2695 JME_LOCK_ASSERT(sc); 2696 2697 mii = device_get_softc(sc->jme_miibus); 2698 mii_tick(mii); 2699 /* 2700 * Reclaim Tx buffers that have been completed. It's not 2701 * needed here but it would release allocated mbuf chains 2702 * faster and limit the maximum delay to a hz. 2703 */ 2704 jme_txeof(sc); 2705 jme_stats_update(sc); 2706 jme_watchdog(sc); 2707 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 2708 } 2709 2710 static void 2711 jme_reset(struct jme_softc *sc) 2712 { 2713 uint32_t ghc, gpreg; 2714 2715 /* Stop receiver, transmitter. */ 2716 jme_stop_rx(sc); 2717 jme_stop_tx(sc); 2718 2719 /* Reset controller. */ 2720 CSR_WRITE_4(sc, JME_GHC, GHC_RESET); 2721 CSR_READ_4(sc, JME_GHC); 2722 DELAY(10); 2723 /* 2724 * Workaround Rx FIFO overruns seen under certain conditions. 2725 * Explicitly synchorize TX/RX clock. TX/RX clock should be 2726 * enabled only after enabling TX/RX MACs. 2727 */ 2728 if ((sc->jme_flags & (JME_FLAG_TXCLK | JME_FLAG_RXCLK)) != 0) { 2729 /* Disable TX clock. */ 2730 CSR_WRITE_4(sc, JME_GHC, GHC_RESET | GHC_TX_MAC_CLK_DIS); 2731 /* Disable RX clock. */ 2732 gpreg = CSR_READ_4(sc, JME_GPREG1); 2733 CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS); 2734 gpreg = CSR_READ_4(sc, JME_GPREG1); 2735 /* De-assert RESET but still disable TX clock. */ 2736 CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS); 2737 ghc = CSR_READ_4(sc, JME_GHC); 2738 2739 /* Enable TX clock. */ 2740 CSR_WRITE_4(sc, JME_GHC, ghc & ~GHC_TX_MAC_CLK_DIS); 2741 /* Enable RX clock. */ 2742 CSR_WRITE_4(sc, JME_GPREG1, gpreg & ~GPREG1_RX_MAC_CLK_DIS); 2743 CSR_READ_4(sc, JME_GPREG1); 2744 2745 /* Disable TX/RX clock again. */ 2746 CSR_WRITE_4(sc, JME_GHC, GHC_TX_MAC_CLK_DIS); 2747 CSR_WRITE_4(sc, JME_GPREG1, gpreg | GPREG1_RX_MAC_CLK_DIS); 2748 } else 2749 CSR_WRITE_4(sc, JME_GHC, 0); 2750 CSR_READ_4(sc, JME_GHC); 2751 DELAY(10); 2752 } 2753 2754 static void 2755 jme_init(void *xsc) 2756 { 2757 struct jme_softc *sc; 2758 2759 sc = (struct jme_softc *)xsc; 2760 JME_LOCK(sc); 2761 jme_init_locked(sc); 2762 JME_UNLOCK(sc); 2763 } 2764 2765 static void 2766 jme_init_locked(struct jme_softc *sc) 2767 { 2768 struct ifnet *ifp; 2769 struct mii_data *mii; 2770 bus_addr_t paddr; 2771 uint32_t reg; 2772 int error; 2773 2774 JME_LOCK_ASSERT(sc); 2775 2776 ifp = sc->jme_ifp; 2777 mii = device_get_softc(sc->jme_miibus); 2778 2779 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2780 return; 2781 /* 2782 * Cancel any pending I/O. 2783 */ 2784 jme_stop(sc); 2785 2786 /* 2787 * Reset the chip to a known state. 2788 */ 2789 jme_reset(sc); 2790 2791 /* Init descriptors. */ 2792 error = jme_init_rx_ring(sc); 2793 if (error != 0) { 2794 device_printf(sc->jme_dev, 2795 "%s: initialization failed: no memory for Rx buffers.\n", 2796 __func__); 2797 jme_stop(sc); 2798 return; 2799 } 2800 jme_init_tx_ring(sc); 2801 /* Initialize shadow status block. */ 2802 jme_init_ssb(sc); 2803 2804 /* Reprogram the station address. */ 2805 jme_set_macaddr(sc, IF_LLADDR(sc->jme_ifp)); 2806 2807 /* 2808 * Configure Tx queue. 2809 * Tx priority queue weight value : 0 2810 * Tx FIFO threshold for processing next packet : 16QW 2811 * Maximum Tx DMA length : 512 2812 * Allow Tx DMA burst. 2813 */ 2814 sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0); 2815 sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN); 2816 sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW; 2817 sc->jme_txcsr |= sc->jme_tx_dma_size; 2818 sc->jme_txcsr |= TXCSR_DMA_BURST; 2819 CSR_WRITE_4(sc, JME_TXCSR, sc->jme_txcsr); 2820 2821 /* Set Tx descriptor counter. */ 2822 CSR_WRITE_4(sc, JME_TXQDC, JME_TX_RING_CNT); 2823 2824 /* Set Tx ring address to the hardware. */ 2825 paddr = JME_TX_RING_ADDR(sc, 0); 2826 CSR_WRITE_4(sc, JME_TXDBA_HI, JME_ADDR_HI(paddr)); 2827 CSR_WRITE_4(sc, JME_TXDBA_LO, JME_ADDR_LO(paddr)); 2828 2829 /* Configure TxMAC parameters. */ 2830 reg = TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB; 2831 reg |= TXMAC_THRESH_1_PKT; 2832 reg |= TXMAC_CRC_ENB | TXMAC_PAD_ENB; 2833 CSR_WRITE_4(sc, JME_TXMAC, reg); 2834 2835 /* 2836 * Configure Rx queue. 2837 * FIFO full threshold for transmitting Tx pause packet : 128T 2838 * FIFO threshold for processing next packet : 128QW 2839 * Rx queue 0 select 2840 * Max Rx DMA length : 128 2841 * Rx descriptor retry : 32 2842 * Rx descriptor retry time gap : 256ns 2843 * Don't receive runt/bad frame. 2844 */ 2845 sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T; 2846 /* 2847 * Since Rx FIFO size is 4K bytes, receiving frames larger 2848 * than 4K bytes will suffer from Rx FIFO overruns. So 2849 * decrease FIFO threshold to reduce the FIFO overruns for 2850 * frames larger than 4000 bytes. 2851 * For best performance of standard MTU sized frames use 2852 * maximum allowable FIFO threshold, 128QW. Note these do 2853 * not hold on chip full mask verion >=2. For these 2854 * controllers 64QW and 128QW are not valid value. 2855 */ 2856 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 2) 2857 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2858 else { 2859 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + 2860 ETHER_CRC_LEN) > JME_RX_FIFO_SIZE) 2861 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW; 2862 else 2863 sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW; 2864 } 2865 sc->jme_rxcsr |= sc->jme_rx_dma_size | RXCSR_RXQ_N_SEL(RXCSR_RXQ0); 2866 sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT); 2867 sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK; 2868 CSR_WRITE_4(sc, JME_RXCSR, sc->jme_rxcsr); 2869 2870 /* Set Rx descriptor counter. */ 2871 CSR_WRITE_4(sc, JME_RXQDC, JME_RX_RING_CNT); 2872 2873 /* Set Rx ring address to the hardware. */ 2874 paddr = JME_RX_RING_ADDR(sc, 0); 2875 CSR_WRITE_4(sc, JME_RXDBA_HI, JME_ADDR_HI(paddr)); 2876 CSR_WRITE_4(sc, JME_RXDBA_LO, JME_ADDR_LO(paddr)); 2877 2878 /* Clear receive filter. */ 2879 CSR_WRITE_4(sc, JME_RXMAC, 0); 2880 /* Set up the receive filter. */ 2881 jme_set_filter(sc); 2882 jme_set_vlan(sc); 2883 2884 /* 2885 * Disable all WOL bits as WOL can interfere normal Rx 2886 * operation. Also clear WOL detection status bits. 2887 */ 2888 reg = CSR_READ_4(sc, JME_PMCS); 2889 reg &= ~PMCS_WOL_ENB_MASK; 2890 CSR_WRITE_4(sc, JME_PMCS, reg); 2891 2892 reg = CSR_READ_4(sc, JME_RXMAC); 2893 /* 2894 * Pad 10bytes right before received frame. This will greatly 2895 * help Rx performance on strict-alignment architectures as 2896 * it does not need to copy the frame to align the payload. 2897 */ 2898 reg |= RXMAC_PAD_10BYTES; 2899 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2900 reg |= RXMAC_CSUM_ENB; 2901 CSR_WRITE_4(sc, JME_RXMAC, reg); 2902 2903 /* Configure general purpose reg0 */ 2904 reg = CSR_READ_4(sc, JME_GPREG0); 2905 reg &= ~GPREG0_PCC_UNIT_MASK; 2906 /* Set PCC timer resolution to micro-seconds unit. */ 2907 reg |= GPREG0_PCC_UNIT_US; 2908 /* 2909 * Disable all shadow register posting as we have to read 2910 * JME_INTR_STATUS register in jme_int_task. Also it seems 2911 * that it's hard to synchronize interrupt status between 2912 * hardware and software with shadow posting due to 2913 * requirements of bus_dmamap_sync(9). 2914 */ 2915 reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS | 2916 GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS | 2917 GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS | 2918 GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS; 2919 /* Disable posting of DW0. */ 2920 reg &= ~GPREG0_POST_DW0_ENB; 2921 /* Clear PME message. */ 2922 reg &= ~GPREG0_PME_ENB; 2923 /* Set PHY address. */ 2924 reg &= ~GPREG0_PHY_ADDR_MASK; 2925 reg |= sc->jme_phyaddr; 2926 CSR_WRITE_4(sc, JME_GPREG0, reg); 2927 2928 /* Configure Tx queue 0 packet completion coalescing. */ 2929 reg = (sc->jme_tx_coal_to << PCCTX_COAL_TO_SHIFT) & 2930 PCCTX_COAL_TO_MASK; 2931 reg |= (sc->jme_tx_coal_pkt << PCCTX_COAL_PKT_SHIFT) & 2932 PCCTX_COAL_PKT_MASK; 2933 reg |= PCCTX_COAL_TXQ0; 2934 CSR_WRITE_4(sc, JME_PCCTX, reg); 2935 2936 /* Configure Rx queue 0 packet completion coalescing. */ 2937 reg = (sc->jme_rx_coal_to << PCCRX_COAL_TO_SHIFT) & 2938 PCCRX_COAL_TO_MASK; 2939 reg |= (sc->jme_rx_coal_pkt << PCCRX_COAL_PKT_SHIFT) & 2940 PCCRX_COAL_PKT_MASK; 2941 CSR_WRITE_4(sc, JME_PCCRX0, reg); 2942 2943 /* 2944 * Configure PCD(Packet Completion Deferring). It seems PCD 2945 * generates an interrupt when the time interval between two 2946 * back-to-back incoming/outgoing packet is long enough for 2947 * it to reach its timer value 0. The arrival of new packets 2948 * after timer has started causes the PCD timer to restart. 2949 * Unfortunately, it's not clear how PCD is useful at this 2950 * moment, so just use the same of PCC parameters. 2951 */ 2952 if ((sc->jme_flags & JME_FLAG_PCCPCD) != 0) { 2953 sc->jme_rx_pcd_to = sc->jme_rx_coal_to; 2954 if (sc->jme_rx_coal_to > PCDRX_TO_MAX) 2955 sc->jme_rx_pcd_to = PCDRX_TO_MAX; 2956 sc->jme_tx_pcd_to = sc->jme_tx_coal_to; 2957 if (sc->jme_tx_coal_to > PCDTX_TO_MAX) 2958 sc->jme_tx_pcd_to = PCDTX_TO_MAX; 2959 reg = sc->jme_rx_pcd_to << PCDRX0_TO_THROTTLE_SHIFT; 2960 reg |= sc->jme_rx_pcd_to << PCDRX0_TO_SHIFT; 2961 CSR_WRITE_4(sc, PCDRX_REG(0), reg); 2962 reg = sc->jme_tx_pcd_to << PCDTX_TO_THROTTLE_SHIFT; 2963 reg |= sc->jme_tx_pcd_to << PCDTX_TO_SHIFT; 2964 CSR_WRITE_4(sc, JME_PCDTX, reg); 2965 } 2966 2967 /* Configure shadow status block but don't enable posting. */ 2968 paddr = sc->jme_rdata.jme_ssb_block_paddr; 2969 CSR_WRITE_4(sc, JME_SHBASE_ADDR_HI, JME_ADDR_HI(paddr)); 2970 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, JME_ADDR_LO(paddr)); 2971 2972 /* Disable Timer 1 and Timer 2. */ 2973 CSR_WRITE_4(sc, JME_TIMER1, 0); 2974 CSR_WRITE_4(sc, JME_TIMER2, 0); 2975 2976 /* Configure retry transmit period, retry limit value. */ 2977 CSR_WRITE_4(sc, JME_TXTRHD, 2978 ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) & 2979 TXTRHD_RT_PERIOD_MASK) | 2980 ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) & 2981 TXTRHD_RT_LIMIT_SHIFT)); 2982 2983 /* Disable RSS. */ 2984 CSR_WRITE_4(sc, JME_RSSC, RSSC_DIS_RSS); 2985 2986 /* Initialize the interrupt mask. */ 2987 CSR_WRITE_4(sc, JME_INTR_MASK_SET, JME_INTRS); 2988 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 2989 2990 /* 2991 * Enabling Tx/Rx DMA engines and Rx queue processing is 2992 * done after detection of valid link in jme_link_task. 2993 */ 2994 2995 sc->jme_flags &= ~JME_FLAG_LINK; 2996 /* Set the current media. */ 2997 mii_mediachg(mii); 2998 2999 callout_reset(&sc->jme_tick_ch, hz, jme_tick, sc); 3000 3001 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3002 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3003 } 3004 3005 static void 3006 jme_stop(struct jme_softc *sc) 3007 { 3008 struct ifnet *ifp; 3009 struct jme_txdesc *txd; 3010 struct jme_rxdesc *rxd; 3011 int i; 3012 3013 JME_LOCK_ASSERT(sc); 3014 /* 3015 * Mark the interface down and cancel the watchdog timer. 3016 */ 3017 ifp = sc->jme_ifp; 3018 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3019 sc->jme_flags &= ~JME_FLAG_LINK; 3020 callout_stop(&sc->jme_tick_ch); 3021 sc->jme_watchdog_timer = 0; 3022 3023 /* 3024 * Disable interrupts. 3025 */ 3026 CSR_WRITE_4(sc, JME_INTR_MASK_CLR, JME_INTRS); 3027 CSR_WRITE_4(sc, JME_INTR_STATUS, 0xFFFFFFFF); 3028 3029 /* Disable updating shadow status block. */ 3030 CSR_WRITE_4(sc, JME_SHBASE_ADDR_LO, 3031 CSR_READ_4(sc, JME_SHBASE_ADDR_LO) & ~SHBASE_POST_ENB); 3032 3033 /* Stop receiver, transmitter. */ 3034 jme_stop_rx(sc); 3035 jme_stop_tx(sc); 3036 3037 /* Reclaim Rx/Tx buffers that have been completed. */ 3038 jme_rxintr(sc, JME_RX_RING_CNT); 3039 if (sc->jme_cdata.jme_rxhead != NULL) 3040 m_freem(sc->jme_cdata.jme_rxhead); 3041 JME_RXCHAIN_RESET(sc); 3042 jme_txeof(sc); 3043 /* 3044 * Free RX and TX mbufs still in the queues. 3045 */ 3046 for (i = 0; i < JME_RX_RING_CNT; i++) { 3047 rxd = &sc->jme_cdata.jme_rxdesc[i]; 3048 if (rxd->rx_m != NULL) { 3049 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, 3050 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3051 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, 3052 rxd->rx_dmamap); 3053 m_freem(rxd->rx_m); 3054 rxd->rx_m = NULL; 3055 } 3056 } 3057 for (i = 0; i < JME_TX_RING_CNT; i++) { 3058 txd = &sc->jme_cdata.jme_txdesc[i]; 3059 if (txd->tx_m != NULL) { 3060 bus_dmamap_sync(sc->jme_cdata.jme_tx_tag, 3061 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3062 bus_dmamap_unload(sc->jme_cdata.jme_tx_tag, 3063 txd->tx_dmamap); 3064 m_freem(txd->tx_m); 3065 txd->tx_m = NULL; 3066 txd->tx_ndesc = 0; 3067 } 3068 } 3069 jme_stats_update(sc); 3070 jme_stats_save(sc); 3071 } 3072 3073 static void 3074 jme_stop_tx(struct jme_softc *sc) 3075 { 3076 uint32_t reg; 3077 int i; 3078 3079 reg = CSR_READ_4(sc, JME_TXCSR); 3080 if ((reg & TXCSR_TX_ENB) == 0) 3081 return; 3082 reg &= ~TXCSR_TX_ENB; 3083 CSR_WRITE_4(sc, JME_TXCSR, reg); 3084 for (i = JME_TIMEOUT; i > 0; i--) { 3085 DELAY(1); 3086 if ((CSR_READ_4(sc, JME_TXCSR) & TXCSR_TX_ENB) == 0) 3087 break; 3088 } 3089 if (i == 0) 3090 device_printf(sc->jme_dev, "stopping transmitter timeout!\n"); 3091 } 3092 3093 static void 3094 jme_stop_rx(struct jme_softc *sc) 3095 { 3096 uint32_t reg; 3097 int i; 3098 3099 reg = CSR_READ_4(sc, JME_RXCSR); 3100 if ((reg & RXCSR_RX_ENB) == 0) 3101 return; 3102 reg &= ~RXCSR_RX_ENB; 3103 CSR_WRITE_4(sc, JME_RXCSR, reg); 3104 for (i = JME_TIMEOUT; i > 0; i--) { 3105 DELAY(1); 3106 if ((CSR_READ_4(sc, JME_RXCSR) & RXCSR_RX_ENB) == 0) 3107 break; 3108 } 3109 if (i == 0) 3110 device_printf(sc->jme_dev, "stopping recevier timeout!\n"); 3111 } 3112 3113 static void 3114 jme_init_tx_ring(struct jme_softc *sc) 3115 { 3116 struct jme_ring_data *rd; 3117 struct jme_txdesc *txd; 3118 int i; 3119 3120 sc->jme_cdata.jme_tx_prod = 0; 3121 sc->jme_cdata.jme_tx_cons = 0; 3122 sc->jme_cdata.jme_tx_cnt = 0; 3123 3124 rd = &sc->jme_rdata; 3125 bzero(rd->jme_tx_ring, JME_TX_RING_SIZE); 3126 for (i = 0; i < JME_TX_RING_CNT; i++) { 3127 txd = &sc->jme_cdata.jme_txdesc[i]; 3128 txd->tx_m = NULL; 3129 txd->tx_desc = &rd->jme_tx_ring[i]; 3130 txd->tx_ndesc = 0; 3131 } 3132 3133 bus_dmamap_sync(sc->jme_cdata.jme_tx_ring_tag, 3134 sc->jme_cdata.jme_tx_ring_map, 3135 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3136 } 3137 3138 static void 3139 jme_init_ssb(struct jme_softc *sc) 3140 { 3141 struct jme_ring_data *rd; 3142 3143 rd = &sc->jme_rdata; 3144 bzero(rd->jme_ssb_block, JME_SSB_SIZE); 3145 bus_dmamap_sync(sc->jme_cdata.jme_ssb_tag, sc->jme_cdata.jme_ssb_map, 3146 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3147 } 3148 3149 static int 3150 jme_init_rx_ring(struct jme_softc *sc) 3151 { 3152 struct jme_ring_data *rd; 3153 struct jme_rxdesc *rxd; 3154 int i; 3155 3156 sc->jme_cdata.jme_rx_cons = 0; 3157 JME_RXCHAIN_RESET(sc); 3158 sc->jme_morework = 0; 3159 3160 rd = &sc->jme_rdata; 3161 bzero(rd->jme_rx_ring, JME_RX_RING_SIZE); 3162 for (i = 0; i < JME_RX_RING_CNT; i++) { 3163 rxd = &sc->jme_cdata.jme_rxdesc[i]; 3164 rxd->rx_m = NULL; 3165 rxd->rx_desc = &rd->jme_rx_ring[i]; 3166 if (jme_newbuf(sc, rxd) != 0) 3167 return (ENOBUFS); 3168 } 3169 3170 bus_dmamap_sync(sc->jme_cdata.jme_rx_ring_tag, 3171 sc->jme_cdata.jme_rx_ring_map, 3172 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3173 3174 return (0); 3175 } 3176 3177 static int 3178 jme_newbuf(struct jme_softc *sc, struct jme_rxdesc *rxd) 3179 { 3180 struct jme_desc *desc; 3181 struct mbuf *m; 3182 bus_dma_segment_t segs[1]; 3183 bus_dmamap_t map; 3184 int nsegs; 3185 3186 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 3187 if (m == NULL) 3188 return (ENOBUFS); 3189 /* 3190 * JMC250 has 64bit boundary alignment limitation so jme(4) 3191 * takes advantage of 10 bytes padding feature of hardware 3192 * in order not to copy entire frame to align IP header on 3193 * 32bit boundary. 3194 */ 3195 m->m_len = m->m_pkthdr.len = MCLBYTES; 3196 3197 if (bus_dmamap_load_mbuf_sg(sc->jme_cdata.jme_rx_tag, 3198 sc->jme_cdata.jme_rx_sparemap, m, segs, &nsegs, 0) != 0) { 3199 m_freem(m); 3200 return (ENOBUFS); 3201 } 3202 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 3203 3204 if (rxd->rx_m != NULL) { 3205 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3206 BUS_DMASYNC_POSTREAD); 3207 bus_dmamap_unload(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap); 3208 } 3209 map = rxd->rx_dmamap; 3210 rxd->rx_dmamap = sc->jme_cdata.jme_rx_sparemap; 3211 sc->jme_cdata.jme_rx_sparemap = map; 3212 bus_dmamap_sync(sc->jme_cdata.jme_rx_tag, rxd->rx_dmamap, 3213 BUS_DMASYNC_PREREAD); 3214 rxd->rx_m = m; 3215 3216 desc = rxd->rx_desc; 3217 desc->buflen = htole32(segs[0].ds_len); 3218 desc->addr_lo = htole32(JME_ADDR_LO(segs[0].ds_addr)); 3219 desc->addr_hi = htole32(JME_ADDR_HI(segs[0].ds_addr)); 3220 desc->flags = htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT); 3221 3222 return (0); 3223 } 3224 3225 static void 3226 jme_set_vlan(struct jme_softc *sc) 3227 { 3228 struct ifnet *ifp; 3229 uint32_t reg; 3230 3231 JME_LOCK_ASSERT(sc); 3232 3233 ifp = sc->jme_ifp; 3234 reg = CSR_READ_4(sc, JME_RXMAC); 3235 reg &= ~RXMAC_VLAN_ENB; 3236 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3237 reg |= RXMAC_VLAN_ENB; 3238 CSR_WRITE_4(sc, JME_RXMAC, reg); 3239 } 3240 3241 static void 3242 jme_set_filter(struct jme_softc *sc) 3243 { 3244 struct ifnet *ifp; 3245 struct ifmultiaddr *ifma; 3246 uint32_t crc; 3247 uint32_t mchash[2]; 3248 uint32_t rxcfg; 3249 3250 JME_LOCK_ASSERT(sc); 3251 3252 ifp = sc->jme_ifp; 3253 3254 rxcfg = CSR_READ_4(sc, JME_RXMAC); 3255 rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST | 3256 RXMAC_ALLMULTI); 3257 /* Always accept frames destined to our station address. */ 3258 rxcfg |= RXMAC_UNICAST; 3259 if ((ifp->if_flags & IFF_BROADCAST) != 0) 3260 rxcfg |= RXMAC_BROADCAST; 3261 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { 3262 if ((ifp->if_flags & IFF_PROMISC) != 0) 3263 rxcfg |= RXMAC_PROMISC; 3264 if ((ifp->if_flags & IFF_ALLMULTI) != 0) 3265 rxcfg |= RXMAC_ALLMULTI; 3266 CSR_WRITE_4(sc, JME_MAR0, 0xFFFFFFFF); 3267 CSR_WRITE_4(sc, JME_MAR1, 0xFFFFFFFF); 3268 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3269 return; 3270 } 3271 3272 /* 3273 * Set up the multicast address filter by passing all multicast 3274 * addresses through a CRC generator, and then using the low-order 3275 * 6 bits as an index into the 64 bit multicast hash table. The 3276 * high order bits select the register, while the rest of the bits 3277 * select the bit within the register. 3278 */ 3279 rxcfg |= RXMAC_MULTICAST; 3280 bzero(mchash, sizeof(mchash)); 3281 3282 if_maddr_rlock(ifp); 3283 TAILQ_FOREACH(ifma, &sc->jme_ifp->if_multiaddrs, ifma_link) { 3284 if (ifma->ifma_addr->sa_family != AF_LINK) 3285 continue; 3286 crc = ether_crc32_be(LLADDR((struct sockaddr_dl *) 3287 ifma->ifma_addr), ETHER_ADDR_LEN); 3288 3289 /* Just want the 6 least significant bits. */ 3290 crc &= 0x3f; 3291 3292 /* Set the corresponding bit in the hash table. */ 3293 mchash[crc >> 5] |= 1 << (crc & 0x1f); 3294 } 3295 if_maddr_runlock(ifp); 3296 3297 CSR_WRITE_4(sc, JME_MAR0, mchash[0]); 3298 CSR_WRITE_4(sc, JME_MAR1, mchash[1]); 3299 CSR_WRITE_4(sc, JME_RXMAC, rxcfg); 3300 } 3301 3302 static void 3303 jme_stats_clear(struct jme_softc *sc) 3304 { 3305 3306 JME_LOCK_ASSERT(sc); 3307 3308 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3309 return; 3310 3311 /* Disable and clear counters. */ 3312 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3313 /* Activate hw counters. */ 3314 CSR_WRITE_4(sc, JME_STATCSR, 0); 3315 CSR_READ_4(sc, JME_STATCSR); 3316 bzero(&sc->jme_stats, sizeof(struct jme_hw_stats)); 3317 } 3318 3319 static void 3320 jme_stats_save(struct jme_softc *sc) 3321 { 3322 3323 JME_LOCK_ASSERT(sc); 3324 3325 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3326 return; 3327 /* Save current counters. */ 3328 bcopy(&sc->jme_stats, &sc->jme_ostats, sizeof(struct jme_hw_stats)); 3329 /* Disable and clear counters. */ 3330 CSR_WRITE_4(sc, JME_STATCSR, 0xFFFFFFFF); 3331 } 3332 3333 static void 3334 jme_stats_update(struct jme_softc *sc) 3335 { 3336 struct jme_hw_stats *stat, *ostat; 3337 uint32_t reg; 3338 3339 JME_LOCK_ASSERT(sc); 3340 3341 if ((sc->jme_flags & JME_FLAG_HWMIB) == 0) 3342 return; 3343 stat = &sc->jme_stats; 3344 ostat = &sc->jme_ostats; 3345 stat->tx_good_frames = CSR_READ_4(sc, JME_STAT_TXGOOD); 3346 stat->rx_good_frames = CSR_READ_4(sc, JME_STAT_RXGOOD); 3347 reg = CSR_READ_4(sc, JME_STAT_CRCMII); 3348 stat->rx_crc_errs = (reg & STAT_RX_CRC_ERR_MASK) >> 3349 STAT_RX_CRC_ERR_SHIFT; 3350 stat->rx_mii_errs = (reg & STAT_RX_MII_ERR_MASK) >> 3351 STAT_RX_MII_ERR_SHIFT; 3352 reg = CSR_READ_4(sc, JME_STAT_RXERR); 3353 stat->rx_fifo_oflows = (reg & STAT_RXERR_OFLOW_MASK) >> 3354 STAT_RXERR_OFLOW_SHIFT; 3355 stat->rx_desc_empty = (reg & STAT_RXERR_MPTY_MASK) >> 3356 STAT_RXERR_MPTY_SHIFT; 3357 reg = CSR_READ_4(sc, JME_STAT_FAIL); 3358 stat->rx_bad_frames = (reg & STAT_FAIL_RX_MASK) >> STAT_FAIL_RX_SHIFT; 3359 stat->tx_bad_frames = (reg & STAT_FAIL_TX_MASK) >> STAT_FAIL_TX_SHIFT; 3360 3361 /* Account for previous counters. */ 3362 stat->rx_good_frames += ostat->rx_good_frames; 3363 stat->rx_crc_errs += ostat->rx_crc_errs; 3364 stat->rx_mii_errs += ostat->rx_mii_errs; 3365 stat->rx_fifo_oflows += ostat->rx_fifo_oflows; 3366 stat->rx_desc_empty += ostat->rx_desc_empty; 3367 stat->rx_bad_frames += ostat->rx_bad_frames; 3368 stat->tx_good_frames += ostat->tx_good_frames; 3369 stat->tx_bad_frames += ostat->tx_bad_frames; 3370 } 3371 3372 static void 3373 jme_phy_down(struct jme_softc *sc) 3374 { 3375 uint32_t reg; 3376 3377 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, BMCR_PDOWN); 3378 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) { 3379 reg = CSR_READ_4(sc, JME_PHYPOWDN); 3380 reg |= 0x0000000F; 3381 CSR_WRITE_4(sc, JME_PHYPOWDN, reg); 3382 reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4); 3383 reg &= ~PE1_GIGA_PDOWN_MASK; 3384 reg |= PE1_GIGA_PDOWN_D3; 3385 pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4); 3386 } 3387 } 3388 3389 static void 3390 jme_phy_up(struct jme_softc *sc) 3391 { 3392 uint32_t reg; 3393 uint16_t bmcr; 3394 3395 bmcr = jme_miibus_readreg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR); 3396 bmcr &= ~BMCR_PDOWN; 3397 jme_miibus_writereg(sc->jme_dev, sc->jme_phyaddr, MII_BMCR, bmcr); 3398 if (CHIPMODE_REVFM(sc->jme_chip_rev) >= 5) { 3399 reg = CSR_READ_4(sc, JME_PHYPOWDN); 3400 reg &= ~0x0000000F; 3401 CSR_WRITE_4(sc, JME_PHYPOWDN, reg); 3402 reg = pci_read_config(sc->jme_dev, JME_PCI_PE1, 4); 3403 reg &= ~PE1_GIGA_PDOWN_MASK; 3404 reg |= PE1_GIGA_PDOWN_DIS; 3405 pci_write_config(sc->jme_dev, JME_PCI_PE1, reg, 4); 3406 } 3407 } 3408 3409 static int 3410 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 3411 { 3412 int error, value; 3413 3414 if (arg1 == NULL) 3415 return (EINVAL); 3416 value = *(int *)arg1; 3417 error = sysctl_handle_int(oidp, &value, 0, req); 3418 if (error || req->newptr == NULL) 3419 return (error); 3420 if (value < low || value > high) 3421 return (EINVAL); 3422 *(int *)arg1 = value; 3423 3424 return (0); 3425 } 3426 3427 static int 3428 sysctl_hw_jme_tx_coal_to(SYSCTL_HANDLER_ARGS) 3429 { 3430 return (sysctl_int_range(oidp, arg1, arg2, req, 3431 PCCTX_COAL_TO_MIN, PCCTX_COAL_TO_MAX)); 3432 } 3433 3434 static int 3435 sysctl_hw_jme_tx_coal_pkt(SYSCTL_HANDLER_ARGS) 3436 { 3437 return (sysctl_int_range(oidp, arg1, arg2, req, 3438 PCCTX_COAL_PKT_MIN, PCCTX_COAL_PKT_MAX)); 3439 } 3440 3441 static int 3442 sysctl_hw_jme_rx_coal_to(SYSCTL_HANDLER_ARGS) 3443 { 3444 return (sysctl_int_range(oidp, arg1, arg2, req, 3445 PCCRX_COAL_TO_MIN, PCCRX_COAL_TO_MAX)); 3446 } 3447 3448 static int 3449 sysctl_hw_jme_rx_coal_pkt(SYSCTL_HANDLER_ARGS) 3450 { 3451 return (sysctl_int_range(oidp, arg1, arg2, req, 3452 PCCRX_COAL_PKT_MIN, PCCRX_COAL_PKT_MAX)); 3453 } 3454 3455 static int 3456 sysctl_hw_jme_proc_limit(SYSCTL_HANDLER_ARGS) 3457 { 3458 return (sysctl_int_range(oidp, arg1, arg2, req, 3459 JME_PROC_MIN, JME_PROC_MAX)); 3460 } 3461