xref: /freebsd/sys/dev/ixgbe/ixgbe_common.c (revision f0d5b1bdf075c68ddb1dcfbc5a0eda0214510b5b)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40 
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 					u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52 
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 					 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					     u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					      u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 						 u16 offset);
62 
63 /**
64  * ixgbe_init_ops_generic - Inits function ptrs
65  * @hw: pointer to the hardware structure
66  *
67  * Initialize the function pointers.
68  **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 	struct ixgbe_mac_info *mac = &hw->mac;
73 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74 
75 	DEBUGFUNC("ixgbe_init_ops_generic");
76 
77 	/* EEPROM */
78 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 	if (eec & IXGBE_EEC_PRES) {
81 		eeprom->ops.read = ixgbe_read_eerd_generic;
82 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 	} else {
84 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 		eeprom->ops.read_buffer =
86 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 	}
88 	eeprom->ops.write = ixgbe_write_eeprom_generic;
89 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 	eeprom->ops.validate_checksum =
91 				      ixgbe_validate_eeprom_checksum_generic;
92 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94 
95 	/* MAC */
96 	mac->ops.init_hw = ixgbe_init_hw_generic;
97 	mac->ops.reset_hw = NULL;
98 	mac->ops.start_hw = ixgbe_start_hw_generic;
99 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 	mac->ops.get_media_type = NULL;
101 	mac->ops.get_supported_physical_layer = NULL;
102 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111 
112 	/* LEDs */
113 	mac->ops.led_on = ixgbe_led_on_generic;
114 	mac->ops.led_off = ixgbe_led_off_generic;
115 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
118 
119 	/* RAR, Multicast, VLAN */
120 	mac->ops.set_rar = ixgbe_set_rar_generic;
121 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 	mac->ops.insert_mac_addr = NULL;
123 	mac->ops.set_vmdq = NULL;
124 	mac->ops.clear_vmdq = NULL;
125 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 	mac->ops.clear_vfta = NULL;
131 	mac->ops.set_vfta = NULL;
132 	mac->ops.set_vlvf = NULL;
133 	mac->ops.init_uta_tables = NULL;
134 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 
137 	/* Flow Control */
138 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
141 
142 	/* Link */
143 	mac->ops.get_link_capabilities = NULL;
144 	mac->ops.setup_link = NULL;
145 	mac->ops.check_link = NULL;
146 	mac->ops.dmac_config = NULL;
147 	mac->ops.dmac_update_tcs = NULL;
148 	mac->ops.dmac_config_tcs = NULL;
149 
150 	return IXGBE_SUCCESS;
151 }
152 
153 /**
154  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155  * of flow control
156  * @hw: pointer to hardware structure
157  *
158  * This function returns true if the device supports flow control
159  * autonegotiation, and false if it does not.
160  *
161  **/
162 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
163 {
164 	bool supported = false;
165 	ixgbe_link_speed speed;
166 	bool link_up;
167 
168 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
169 
170 	switch (hw->phy.media_type) {
171 	case ixgbe_media_type_fiber_fixed:
172 	case ixgbe_media_type_fiber_qsfp:
173 	case ixgbe_media_type_fiber:
174 		/* flow control autoneg block list */
175 		switch (hw->device_id) {
176 		case IXGBE_DEV_ID_X550EM_A_SFP:
177 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
178 		case IXGBE_DEV_ID_X550EM_A_QSFP:
179 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180 			supported = false;
181 			break;
182 		default:
183 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
184 			/* if link is down, assume supported */
185 			if (link_up)
186 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
187 				true : false;
188 			else
189 				supported = true;
190 		}
191 
192 		break;
193 	case ixgbe_media_type_backplane:
194 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
195 			supported = false;
196 		else
197 			supported = true;
198 		break;
199 	case ixgbe_media_type_copper:
200 		/* only some copper devices support flow control autoneg */
201 		switch (hw->device_id) {
202 		case IXGBE_DEV_ID_82599_T3_LOM:
203 		case IXGBE_DEV_ID_X540T:
204 		case IXGBE_DEV_ID_X540T1:
205 		case IXGBE_DEV_ID_X540_BYPASS:
206 		case IXGBE_DEV_ID_X550T:
207 		case IXGBE_DEV_ID_X550T1:
208 		case IXGBE_DEV_ID_X550EM_X_10G_T:
209 		case IXGBE_DEV_ID_X550EM_A_10G_T:
210 		case IXGBE_DEV_ID_X550EM_A_1G_T:
211 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
212 			supported = true;
213 			break;
214 		default:
215 			supported = false;
216 		}
217 	default:
218 		break;
219 	}
220 
221 	if (!supported)
222 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
223 			      "Device %x does not support flow control autoneg",
224 			      hw->device_id);
225 
226 	return supported;
227 }
228 
229 /**
230  * ixgbe_setup_fc_generic - Set up flow control
231  * @hw: pointer to hardware structure
232  *
233  * Called at init time to set up flow control.
234  **/
235 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
236 {
237 	s32 ret_val = IXGBE_SUCCESS;
238 	u32 reg = 0, reg_bp = 0;
239 	u16 reg_cu = 0;
240 	bool locked = false;
241 
242 	DEBUGFUNC("ixgbe_setup_fc_generic");
243 
244 	/* Validate the requested mode */
245 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
246 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
247 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
248 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
249 		goto out;
250 	}
251 
252 	/*
253 	 * 10gig parts do not have a word in the EEPROM to determine the
254 	 * default flow control setting, so we explicitly set it to full.
255 	 */
256 	if (hw->fc.requested_mode == ixgbe_fc_default)
257 		hw->fc.requested_mode = ixgbe_fc_full;
258 
259 	/*
260 	 * Set up the 1G and 10G flow control advertisement registers so the
261 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
262 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
263 	 */
264 	switch (hw->phy.media_type) {
265 	case ixgbe_media_type_backplane:
266 		/* some MAC's need RMW protection on AUTOC */
267 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
268 		if (ret_val != IXGBE_SUCCESS)
269 			goto out;
270 
271 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
272 		break;
273 	case ixgbe_media_type_fiber_fixed:
274 	case ixgbe_media_type_fiber_qsfp:
275 	case ixgbe_media_type_fiber:
276 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
277 
278 		break;
279 	case ixgbe_media_type_copper:
280 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
281 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	/*
288 	 * The possible values of fc.requested_mode are:
289 	 * 0: Flow control is completely disabled
290 	 * 1: Rx flow control is enabled (we can receive pause frames,
291 	 *    but not send pause frames).
292 	 * 2: Tx flow control is enabled (we can send pause frames but
293 	 *    we do not support receiving pause frames).
294 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
295 	 * other: Invalid.
296 	 */
297 	switch (hw->fc.requested_mode) {
298 	case ixgbe_fc_none:
299 		/* Flow control completely disabled by software override. */
300 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
301 		if (hw->phy.media_type == ixgbe_media_type_backplane)
302 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
303 				    IXGBE_AUTOC_ASM_PAUSE);
304 		else if (hw->phy.media_type == ixgbe_media_type_copper)
305 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
306 		break;
307 	case ixgbe_fc_tx_pause:
308 		/*
309 		 * Tx Flow control is enabled, and Rx Flow control is
310 		 * disabled by software override.
311 		 */
312 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
313 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
314 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
315 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
316 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
317 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
318 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
319 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
320 		}
321 		break;
322 	case ixgbe_fc_rx_pause:
323 		/*
324 		 * Rx Flow control is enabled and Tx Flow control is
325 		 * disabled by software override. Since there really
326 		 * isn't a way to advertise that we are capable of RX
327 		 * Pause ONLY, we will advertise that we support both
328 		 * symmetric and asymmetric Rx PAUSE, as such we fall
329 		 * through to the fc_full statement.  Later, we will
330 		 * disable the adapter's ability to send PAUSE frames.
331 		 */
332 	case ixgbe_fc_full:
333 		/* Flow control (both Rx and Tx) is enabled by SW override. */
334 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
335 		if (hw->phy.media_type == ixgbe_media_type_backplane)
336 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
337 				  IXGBE_AUTOC_ASM_PAUSE;
338 		else if (hw->phy.media_type == ixgbe_media_type_copper)
339 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
340 		break;
341 	default:
342 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
343 			     "Flow control param set incorrectly\n");
344 		ret_val = IXGBE_ERR_CONFIG;
345 		goto out;
346 		break;
347 	}
348 
349 	if (hw->mac.type < ixgbe_mac_X540) {
350 		/*
351 		 * Enable auto-negotiation between the MAC & PHY;
352 		 * the MAC will advertise clause 37 flow control.
353 		 */
354 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
355 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
356 
357 		/* Disable AN timeout */
358 		if (hw->fc.strict_ieee)
359 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
360 
361 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
362 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363 	}
364 
365 	/*
366 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
367 	 * and copper. There is no need to set the PCS1GCTL register.
368 	 *
369 	 */
370 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
371 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
372 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
373 		if (ret_val)
374 			goto out;
375 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
376 		    (ixgbe_device_supports_autoneg_fc(hw))) {
377 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
378 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
379 	}
380 
381 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
382 out:
383 	return ret_val;
384 }
385 
386 /**
387  * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
388  * @hw: pointer to hardware structure
389  *
390  * Starts the hardware by filling the bus info structure and media type, clears
391  * all on chip counters, initializes receive address registers, multicast
392  * table, VLAN filter table, calls routine to set up link and flow control
393  * settings, and leaves transmit and receive units disabled and uninitialized
394  **/
395 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
396 {
397 	s32 ret_val;
398 	u32 ctrl_ext;
399 	u16 device_caps;
400 
401 	DEBUGFUNC("ixgbe_start_hw_generic");
402 
403 	/* Set the media type */
404 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
405 
406 	/* PHY ops initialization must be done in reset_hw() */
407 
408 	/* Clear the VLAN filter table */
409 	hw->mac.ops.clear_vfta(hw);
410 
411 	/* Clear statistics registers */
412 	hw->mac.ops.clear_hw_cntrs(hw);
413 
414 	/* Set No Snoop Disable */
415 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
416 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
417 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
418 	IXGBE_WRITE_FLUSH(hw);
419 
420 	/* Setup flow control */
421 	ret_val = ixgbe_setup_fc(hw);
422 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
423 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
424 		return ret_val;
425 	}
426 
427 	/* Cache bit indicating need for crosstalk fix */
428 	switch (hw->mac.type) {
429 	case ixgbe_mac_82599EB:
430 	case ixgbe_mac_X550EM_x:
431 	case ixgbe_mac_X550EM_a:
432 		hw->mac.ops.get_device_caps(hw, &device_caps);
433 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
434 			hw->need_crosstalk_fix = false;
435 		else
436 			hw->need_crosstalk_fix = true;
437 		break;
438 	default:
439 		hw->need_crosstalk_fix = false;
440 		break;
441 	}
442 
443 	/* Clear adapter stopped flag */
444 	hw->adapter_stopped = false;
445 
446 	return IXGBE_SUCCESS;
447 }
448 
449 /**
450  * ixgbe_start_hw_gen2 - Init sequence for common device family
451  * @hw: pointer to hw structure
452  *
453  * Performs the init sequence common to the second generation
454  * of 10 GbE devices.
455  * Devices in the second generation:
456  *    82599
457  *    X540
458  **/
459 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
460 {
461 	u32 i;
462 	u32 regval;
463 
464 	/* Clear the rate limiters */
465 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
466 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
467 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
468 	}
469 	IXGBE_WRITE_FLUSH(hw);
470 
471 	/* Disable relaxed ordering */
472 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
473 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
474 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
475 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
476 	}
477 
478 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
479 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
480 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
481 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
482 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
483 	}
484 }
485 
486 /**
487  * ixgbe_init_hw_generic - Generic hardware initialization
488  * @hw: pointer to hardware structure
489  *
490  * Initialize the hardware by resetting the hardware, filling the bus info
491  * structure and media type, clears all on chip counters, initializes receive
492  * address registers, multicast table, VLAN filter table, calls routine to set
493  * up link and flow control settings, and leaves transmit and receive units
494  * disabled and uninitialized
495  **/
496 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
497 {
498 	s32 status;
499 
500 	DEBUGFUNC("ixgbe_init_hw_generic");
501 
502 	/* Reset the hardware */
503 	status = hw->mac.ops.reset_hw(hw);
504 
505 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
506 		/* Start the HW */
507 		status = hw->mac.ops.start_hw(hw);
508 	}
509 
510 	/* Initialize the LED link active for LED blink support */
511 	if (hw->mac.ops.init_led_link_act)
512 		hw->mac.ops.init_led_link_act(hw);
513 
514 	if (status != IXGBE_SUCCESS)
515 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
516 
517 	return status;
518 }
519 
520 /**
521  * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
522  * @hw: pointer to hardware structure
523  *
524  * Clears all hardware statistics counters by reading them from the hardware
525  * Statistics counters are clear on read.
526  **/
527 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
528 {
529 	u16 i = 0;
530 
531 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
532 
533 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
534 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
535 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
536 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
537 	for (i = 0; i < 8; i++)
538 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
539 
540 	IXGBE_READ_REG(hw, IXGBE_MLFC);
541 	IXGBE_READ_REG(hw, IXGBE_MRFC);
542 	IXGBE_READ_REG(hw, IXGBE_RLEC);
543 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
544 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
545 	if (hw->mac.type >= ixgbe_mac_82599EB) {
546 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
547 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
548 	} else {
549 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
550 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
551 	}
552 
553 	for (i = 0; i < 8; i++) {
554 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
555 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
556 		if (hw->mac.type >= ixgbe_mac_82599EB) {
557 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
558 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
559 		} else {
560 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
561 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
562 		}
563 	}
564 	if (hw->mac.type >= ixgbe_mac_82599EB)
565 		for (i = 0; i < 8; i++)
566 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
567 	IXGBE_READ_REG(hw, IXGBE_PRC64);
568 	IXGBE_READ_REG(hw, IXGBE_PRC127);
569 	IXGBE_READ_REG(hw, IXGBE_PRC255);
570 	IXGBE_READ_REG(hw, IXGBE_PRC511);
571 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
572 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
573 	IXGBE_READ_REG(hw, IXGBE_GPRC);
574 	IXGBE_READ_REG(hw, IXGBE_BPRC);
575 	IXGBE_READ_REG(hw, IXGBE_MPRC);
576 	IXGBE_READ_REG(hw, IXGBE_GPTC);
577 	IXGBE_READ_REG(hw, IXGBE_GORCL);
578 	IXGBE_READ_REG(hw, IXGBE_GORCH);
579 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
580 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
581 	if (hw->mac.type == ixgbe_mac_82598EB)
582 		for (i = 0; i < 8; i++)
583 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
584 	IXGBE_READ_REG(hw, IXGBE_RUC);
585 	IXGBE_READ_REG(hw, IXGBE_RFC);
586 	IXGBE_READ_REG(hw, IXGBE_ROC);
587 	IXGBE_READ_REG(hw, IXGBE_RJC);
588 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
589 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
590 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
591 	IXGBE_READ_REG(hw, IXGBE_TORL);
592 	IXGBE_READ_REG(hw, IXGBE_TORH);
593 	IXGBE_READ_REG(hw, IXGBE_TPR);
594 	IXGBE_READ_REG(hw, IXGBE_TPT);
595 	IXGBE_READ_REG(hw, IXGBE_PTC64);
596 	IXGBE_READ_REG(hw, IXGBE_PTC127);
597 	IXGBE_READ_REG(hw, IXGBE_PTC255);
598 	IXGBE_READ_REG(hw, IXGBE_PTC511);
599 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
600 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
601 	IXGBE_READ_REG(hw, IXGBE_MPTC);
602 	IXGBE_READ_REG(hw, IXGBE_BPTC);
603 	for (i = 0; i < 16; i++) {
604 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
605 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
606 		if (hw->mac.type >= ixgbe_mac_82599EB) {
607 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
608 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
609 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
610 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
611 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
612 		} else {
613 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
614 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
615 		}
616 	}
617 
618 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
619 		if (hw->phy.id == 0)
620 			ixgbe_identify_phy(hw);
621 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
622 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
623 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
624 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
625 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
626 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
628 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 	}
630 
631 	return IXGBE_SUCCESS;
632 }
633 
634 /**
635  * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
636  * @hw: pointer to hardware structure
637  * @pba_num: stores the part number string from the EEPROM
638  * @pba_num_size: part number string buffer length
639  *
640  * Reads the part number string from the EEPROM.
641  **/
642 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
643 				  u32 pba_num_size)
644 {
645 	s32 ret_val;
646 	u16 data;
647 	u16 pba_ptr;
648 	u16 offset;
649 	u16 length;
650 
651 	DEBUGFUNC("ixgbe_read_pba_string_generic");
652 
653 	if (pba_num == NULL) {
654 		DEBUGOUT("PBA string buffer was null\n");
655 		return IXGBE_ERR_INVALID_ARGUMENT;
656 	}
657 
658 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
659 	if (ret_val) {
660 		DEBUGOUT("NVM Read Error\n");
661 		return ret_val;
662 	}
663 
664 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
665 	if (ret_val) {
666 		DEBUGOUT("NVM Read Error\n");
667 		return ret_val;
668 	}
669 
670 	/*
671 	 * if data is not ptr guard the PBA must be in legacy format which
672 	 * means pba_ptr is actually our second data word for the PBA number
673 	 * and we can decode it into an ascii string
674 	 */
675 	if (data != IXGBE_PBANUM_PTR_GUARD) {
676 		DEBUGOUT("NVM PBA number is not stored as string\n");
677 
678 		/* we will need 11 characters to store the PBA */
679 		if (pba_num_size < 11) {
680 			DEBUGOUT("PBA string buffer too small\n");
681 			return IXGBE_ERR_NO_SPACE;
682 		}
683 
684 		/* extract hex string from data and pba_ptr */
685 		pba_num[0] = (data >> 12) & 0xF;
686 		pba_num[1] = (data >> 8) & 0xF;
687 		pba_num[2] = (data >> 4) & 0xF;
688 		pba_num[3] = data & 0xF;
689 		pba_num[4] = (pba_ptr >> 12) & 0xF;
690 		pba_num[5] = (pba_ptr >> 8) & 0xF;
691 		pba_num[6] = '-';
692 		pba_num[7] = 0;
693 		pba_num[8] = (pba_ptr >> 4) & 0xF;
694 		pba_num[9] = pba_ptr & 0xF;
695 
696 		/* put a null character on the end of our string */
697 		pba_num[10] = '\0';
698 
699 		/* switch all the data but the '-' to hex char */
700 		for (offset = 0; offset < 10; offset++) {
701 			if (pba_num[offset] < 0xA)
702 				pba_num[offset] += '0';
703 			else if (pba_num[offset] < 0x10)
704 				pba_num[offset] += 'A' - 0xA;
705 		}
706 
707 		return IXGBE_SUCCESS;
708 	}
709 
710 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
711 	if (ret_val) {
712 		DEBUGOUT("NVM Read Error\n");
713 		return ret_val;
714 	}
715 
716 	if (length == 0xFFFF || length == 0 || length > hw->eeprom.word_size) {
717 		DEBUGOUT("NVM PBA number section invalid length\n");
718 		return IXGBE_ERR_PBA_SECTION;
719 	}
720 
721 	/* check if pba_num buffer is big enough */
722 	if (pba_num_size  < (((u32)length * 2) - 1)) {
723 		DEBUGOUT("PBA string buffer too small\n");
724 		return IXGBE_ERR_NO_SPACE;
725 	}
726 
727 	/* trim pba length from start of string */
728 	pba_ptr++;
729 	length--;
730 
731 	for (offset = 0; offset < length; offset++) {
732 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
733 		if (ret_val) {
734 			DEBUGOUT("NVM Read Error\n");
735 			return ret_val;
736 		}
737 		pba_num[offset * 2] = (u8)(data >> 8);
738 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
739 	}
740 	pba_num[offset * 2] = '\0';
741 
742 	return IXGBE_SUCCESS;
743 }
744 
745 /**
746  * ixgbe_read_pba_num_generic - Reads part number from EEPROM
747  * @hw: pointer to hardware structure
748  * @pba_num: stores the part number from the EEPROM
749  *
750  * Reads the part number from the EEPROM.
751  **/
752 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
753 {
754 	s32 ret_val;
755 	u16 data;
756 
757 	DEBUGFUNC("ixgbe_read_pba_num_generic");
758 
759 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
760 	if (ret_val) {
761 		DEBUGOUT("NVM Read Error\n");
762 		return ret_val;
763 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
764 		DEBUGOUT("NVM Not supported\n");
765 		return IXGBE_NOT_IMPLEMENTED;
766 	}
767 	*pba_num = (u32)(data << 16);
768 
769 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
770 	if (ret_val) {
771 		DEBUGOUT("NVM Read Error\n");
772 		return ret_val;
773 	}
774 	*pba_num |= (u32)data;
775 
776 	return IXGBE_SUCCESS;
777 }
778 
779 /**
780  * ixgbe_read_pba_raw
781  * @hw: pointer to the HW structure
782  * @eeprom_buf: optional pointer to EEPROM image
783  * @eeprom_buf_size: size of EEPROM image in words
784  * @max_pba_block_size: PBA block size limit
785  * @pba: pointer to output PBA structure
786  *
787  * Reads PBA from EEPROM image when eeprom_buf is not NULL.
788  * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
789  *
790  **/
791 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
792 		       u32 eeprom_buf_size, u16 max_pba_block_size,
793 		       struct ixgbe_pba *pba)
794 {
795 	s32 ret_val;
796 	u16 pba_block_size;
797 
798 	if (pba == NULL)
799 		return IXGBE_ERR_PARAM;
800 
801 	if (eeprom_buf == NULL) {
802 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
803 						     &pba->word[0]);
804 		if (ret_val)
805 			return ret_val;
806 	} else {
807 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
808 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
809 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
810 		} else {
811 			return IXGBE_ERR_PARAM;
812 		}
813 	}
814 
815 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
816 		if (pba->pba_block == NULL)
817 			return IXGBE_ERR_PARAM;
818 
819 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
820 						   eeprom_buf_size,
821 						   &pba_block_size);
822 		if (ret_val)
823 			return ret_val;
824 
825 		if (pba_block_size > max_pba_block_size)
826 			return IXGBE_ERR_PARAM;
827 
828 		if (eeprom_buf == NULL) {
829 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
830 							     pba_block_size,
831 							     pba->pba_block);
832 			if (ret_val)
833 				return ret_val;
834 		} else {
835 			if (eeprom_buf_size > (u32)(pba->word[1] +
836 					      pba_block_size)) {
837 				memcpy(pba->pba_block,
838 				       &eeprom_buf[pba->word[1]],
839 				       pba_block_size * sizeof(u16));
840 			} else {
841 				return IXGBE_ERR_PARAM;
842 			}
843 		}
844 	}
845 
846 	return IXGBE_SUCCESS;
847 }
848 
849 /**
850  * ixgbe_write_pba_raw
851  * @hw: pointer to the HW structure
852  * @eeprom_buf: optional pointer to EEPROM image
853  * @eeprom_buf_size: size of EEPROM image in words
854  * @pba: pointer to PBA structure
855  *
856  * Writes PBA to EEPROM image when eeprom_buf is not NULL.
857  * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
858  *
859  **/
860 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
861 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
862 {
863 	s32 ret_val;
864 
865 	if (pba == NULL)
866 		return IXGBE_ERR_PARAM;
867 
868 	if (eeprom_buf == NULL) {
869 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
870 						      &pba->word[0]);
871 		if (ret_val)
872 			return ret_val;
873 	} else {
874 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
875 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
876 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
877 		} else {
878 			return IXGBE_ERR_PARAM;
879 		}
880 	}
881 
882 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
883 		if (pba->pba_block == NULL)
884 			return IXGBE_ERR_PARAM;
885 
886 		if (eeprom_buf == NULL) {
887 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
888 							      pba->pba_block[0],
889 							      pba->pba_block);
890 			if (ret_val)
891 				return ret_val;
892 		} else {
893 			if (eeprom_buf_size > (u32)(pba->word[1] +
894 					      pba->pba_block[0])) {
895 				memcpy(&eeprom_buf[pba->word[1]],
896 				       pba->pba_block,
897 				       pba->pba_block[0] * sizeof(u16));
898 			} else {
899 				return IXGBE_ERR_PARAM;
900 			}
901 		}
902 	}
903 
904 	return IXGBE_SUCCESS;
905 }
906 
907 /**
908  * ixgbe_get_pba_block_size
909  * @hw: pointer to the HW structure
910  * @eeprom_buf: optional pointer to EEPROM image
911  * @eeprom_buf_size: size of EEPROM image in words
912  * @pba_data_size: pointer to output variable
913  *
914  * Returns the size of the PBA block in words. Function operates on EEPROM
915  * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
916  * EEPROM device.
917  *
918  **/
919 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
920 			     u32 eeprom_buf_size, u16 *pba_block_size)
921 {
922 	s32 ret_val;
923 	u16 pba_word[2];
924 	u16 length;
925 
926 	DEBUGFUNC("ixgbe_get_pba_block_size");
927 
928 	if (eeprom_buf == NULL) {
929 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
930 						     &pba_word[0]);
931 		if (ret_val)
932 			return ret_val;
933 	} else {
934 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
935 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
936 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
937 		} else {
938 			return IXGBE_ERR_PARAM;
939 		}
940 	}
941 
942 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
943 		if (eeprom_buf == NULL) {
944 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
945 						      &length);
946 			if (ret_val)
947 				return ret_val;
948 		} else {
949 			if (eeprom_buf_size > pba_word[1])
950 				length = eeprom_buf[pba_word[1] + 0];
951 			else
952 				return IXGBE_ERR_PARAM;
953 		}
954 
955 		if (length == 0xFFFF || length == 0)
956 			return IXGBE_ERR_PBA_SECTION;
957 	} else {
958 		/* PBA number in legacy format, there is no PBA Block. */
959 		length = 0;
960 	}
961 
962 	if (pba_block_size != NULL)
963 		*pba_block_size = length;
964 
965 	return IXGBE_SUCCESS;
966 }
967 
968 /**
969  * ixgbe_get_mac_addr_generic - Generic get MAC address
970  * @hw: pointer to hardware structure
971  * @mac_addr: Adapter MAC address
972  *
973  * Reads the adapter's MAC address from first Receive Address Register (RAR0)
974  * A reset of the adapter must be performed prior to calling this function
975  * in order for the MAC address to have been loaded from the EEPROM into RAR0
976  **/
977 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
978 {
979 	u32 rar_high;
980 	u32 rar_low;
981 	u16 i;
982 
983 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
984 
985 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
986 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
987 
988 	for (i = 0; i < 4; i++)
989 		mac_addr[i] = (u8)(rar_low >> (i*8));
990 
991 	for (i = 0; i < 2; i++)
992 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
993 
994 	return IXGBE_SUCCESS;
995 }
996 
997 /**
998  * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
999  * @hw: pointer to hardware structure
1000  * @link_status: the link status returned by the PCI config space
1001  *
1002  * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1003  **/
1004 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1005 {
1006 	struct ixgbe_mac_info *mac = &hw->mac;
1007 
1008 	if (hw->bus.type == ixgbe_bus_type_unknown)
1009 		hw->bus.type = ixgbe_bus_type_pci_express;
1010 
1011 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1012 	case IXGBE_PCI_LINK_WIDTH_1:
1013 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1014 		break;
1015 	case IXGBE_PCI_LINK_WIDTH_2:
1016 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1017 		break;
1018 	case IXGBE_PCI_LINK_WIDTH_4:
1019 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1020 		break;
1021 	case IXGBE_PCI_LINK_WIDTH_8:
1022 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1023 		break;
1024 	default:
1025 		hw->bus.width = ixgbe_bus_width_unknown;
1026 		break;
1027 	}
1028 
1029 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1030 	case IXGBE_PCI_LINK_SPEED_2500:
1031 		hw->bus.speed = ixgbe_bus_speed_2500;
1032 		break;
1033 	case IXGBE_PCI_LINK_SPEED_5000:
1034 		hw->bus.speed = ixgbe_bus_speed_5000;
1035 		break;
1036 	case IXGBE_PCI_LINK_SPEED_8000:
1037 		hw->bus.speed = ixgbe_bus_speed_8000;
1038 		break;
1039 	default:
1040 		hw->bus.speed = ixgbe_bus_speed_unknown;
1041 		break;
1042 	}
1043 
1044 	mac->ops.set_lan_id(hw);
1045 }
1046 
1047 /**
1048  * ixgbe_get_bus_info_generic - Generic set PCI bus info
1049  * @hw: pointer to hardware structure
1050  *
1051  * Gets the PCI bus info (speed, width, type) then calls helper function to
1052  * store this data within the ixgbe_hw structure.
1053  **/
1054 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1055 {
1056 	u16 link_status;
1057 
1058 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1059 
1060 	/* Get the negotiated link width and speed from PCI config space */
1061 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1062 
1063 	ixgbe_set_pci_config_data_generic(hw, link_status);
1064 
1065 	return IXGBE_SUCCESS;
1066 }
1067 
1068 /**
1069  * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1070  * @hw: pointer to the HW structure
1071  *
1072  * Determines the LAN function id by reading memory-mapped registers and swaps
1073  * the port value if requested, and set MAC instance for devices that share
1074  * CS4227.
1075  **/
1076 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1077 {
1078 	struct ixgbe_bus_info *bus = &hw->bus;
1079 	u32 reg;
1080 	u16 ee_ctrl_4;
1081 
1082 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1083 
1084 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1085 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1086 	bus->lan_id = (u8)bus->func;
1087 
1088 	/* check for a port swap */
1089 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1090 	if (reg & IXGBE_FACTPS_LFS)
1091 		bus->func ^= 0x1;
1092 
1093 	/* Get MAC instance from EEPROM for configuring CS4227 */
1094 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1095 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1096 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1097 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1098 	}
1099 }
1100 
1101 /**
1102  * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1103  * @hw: pointer to hardware structure
1104  *
1105  * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1106  * disables transmit and receive units. The adapter_stopped flag is used by
1107  * the shared code and drivers to determine if the adapter is in a stopped
1108  * state and should not touch the hardware.
1109  **/
1110 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1111 {
1112 	u32 reg_val;
1113 	u16 i;
1114 
1115 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1116 
1117 	/*
1118 	 * Set the adapter_stopped flag so other driver functions stop touching
1119 	 * the hardware
1120 	 */
1121 	hw->adapter_stopped = true;
1122 
1123 	/* Disable the receive unit */
1124 	ixgbe_disable_rx(hw);
1125 
1126 	/* Clear interrupt mask to stop interrupts from being generated */
1127 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1128 
1129 	/* Clear any pending interrupts, flush previous writes */
1130 	IXGBE_READ_REG(hw, IXGBE_EICR);
1131 
1132 	/* Disable the transmit unit.  Each queue must be disabled. */
1133 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1134 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1135 
1136 	/* Disable the receive unit by stopping each queue */
1137 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1138 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1139 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1140 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1141 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1142 	}
1143 
1144 	/* flush all queues disables */
1145 	IXGBE_WRITE_FLUSH(hw);
1146 	msec_delay(2);
1147 
1148 	/*
1149 	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
1150 	 * access and verify no pending requests
1151 	 */
1152 	return ixgbe_disable_pcie_primary(hw);
1153 }
1154 
1155 /**
1156  * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1157  * @hw: pointer to hardware structure
1158  *
1159  * Store the index for the link active LED. This will be used to support
1160  * blinking the LED.
1161  **/
1162 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1163 {
1164 	struct ixgbe_mac_info *mac = &hw->mac;
1165 	u32 led_reg, led_mode;
1166 	u8 i;
1167 
1168 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1169 
1170 	/* Get LED link active from the LEDCTL register */
1171 	for (i = 0; i < 4; i++) {
1172 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1173 
1174 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1175 		     IXGBE_LED_LINK_ACTIVE) {
1176 			mac->led_link_act = i;
1177 			return IXGBE_SUCCESS;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * If LEDCTL register does not have the LED link active set, then use
1183 	 * known MAC defaults.
1184 	 */
1185 	switch (hw->mac.type) {
1186 	case ixgbe_mac_X550EM_a:
1187 	case ixgbe_mac_X550EM_x:
1188 		mac->led_link_act = 1;
1189 		break;
1190 	default:
1191 		mac->led_link_act = 2;
1192 	}
1193 	return IXGBE_SUCCESS;
1194 }
1195 
1196 /**
1197  * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1198  * @hw: pointer to hardware structure
1199  * @index: led number to turn on
1200  **/
1201 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1202 {
1203 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1204 
1205 	DEBUGFUNC("ixgbe_led_on_generic");
1206 
1207 	if (index > 3)
1208 		return IXGBE_ERR_PARAM;
1209 
1210 	/* To turn on the LED, set mode to ON. */
1211 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1212 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1213 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1214 	IXGBE_WRITE_FLUSH(hw);
1215 
1216 	return IXGBE_SUCCESS;
1217 }
1218 
1219 /**
1220  * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1221  * @hw: pointer to hardware structure
1222  * @index: led number to turn off
1223  **/
1224 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1225 {
1226 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1227 
1228 	DEBUGFUNC("ixgbe_led_off_generic");
1229 
1230 	if (index > 3)
1231 		return IXGBE_ERR_PARAM;
1232 
1233 	/* To turn off the LED, set mode to OFF. */
1234 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1235 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1236 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1237 	IXGBE_WRITE_FLUSH(hw);
1238 
1239 	return IXGBE_SUCCESS;
1240 }
1241 
1242 /**
1243  * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1244  * @hw: pointer to hardware structure
1245  *
1246  * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1247  * ixgbe_hw struct in order to set up EEPROM access.
1248  **/
1249 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1250 {
1251 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1252 	u32 eec;
1253 	u16 eeprom_size;
1254 
1255 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1256 
1257 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1258 		eeprom->type = ixgbe_eeprom_none;
1259 		/* Set default semaphore delay to 10ms which is a well
1260 		 * tested value */
1261 		eeprom->semaphore_delay = 10;
1262 		/* Clear EEPROM page size, it will be initialized as needed */
1263 		eeprom->word_page_size = 0;
1264 
1265 		/*
1266 		 * Check for EEPROM present first.
1267 		 * If not present leave as none
1268 		 */
1269 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1270 		if (eec & IXGBE_EEC_PRES) {
1271 			eeprom->type = ixgbe_eeprom_spi;
1272 
1273 			/*
1274 			 * SPI EEPROM is assumed here.  This code would need to
1275 			 * change if a future EEPROM is not SPI.
1276 			 */
1277 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1278 					    IXGBE_EEC_SIZE_SHIFT);
1279 			eeprom->word_size = 1 << (eeprom_size +
1280 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1281 		}
1282 
1283 		if (eec & IXGBE_EEC_ADDR_SIZE)
1284 			eeprom->address_bits = 16;
1285 		else
1286 			eeprom->address_bits = 8;
1287 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1288 			  "%d\n", eeprom->type, eeprom->word_size,
1289 			  eeprom->address_bits);
1290 	}
1291 
1292 	return IXGBE_SUCCESS;
1293 }
1294 
1295 /**
1296  * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1297  * @hw: pointer to hardware structure
1298  * @offset: offset within the EEPROM to write
1299  * @words: number of word(s)
1300  * @data: 16 bit word(s) to write to EEPROM
1301  *
1302  * Reads 16 bit word(s) from EEPROM through bit-bang method
1303  **/
1304 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1305 					       u16 words, u16 *data)
1306 {
1307 	s32 status = IXGBE_SUCCESS;
1308 	u16 i, count;
1309 
1310 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1311 
1312 	hw->eeprom.ops.init_params(hw);
1313 
1314 	if (words == 0) {
1315 		status = IXGBE_ERR_INVALID_ARGUMENT;
1316 		goto out;
1317 	}
1318 
1319 	if (offset + words > hw->eeprom.word_size) {
1320 		status = IXGBE_ERR_EEPROM;
1321 		goto out;
1322 	}
1323 
1324 	/*
1325 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1326 	 * initialization. It is worth to do that when we write large buffer.
1327 	 */
1328 	if ((hw->eeprom.word_page_size == 0) &&
1329 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1330 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1331 
1332 	/*
1333 	 * We cannot hold synchronization semaphores for too long
1334 	 * to avoid other entity starvation. However it is more efficient
1335 	 * to read in bursts than synchronizing access for each word.
1336 	 */
1337 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1338 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1339 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1340 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1341 							    count, &data[i]);
1342 
1343 		if (status != IXGBE_SUCCESS)
1344 			break;
1345 	}
1346 
1347 out:
1348 	return status;
1349 }
1350 
1351 /**
1352  * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1353  * @hw: pointer to hardware structure
1354  * @offset: offset within the EEPROM to be written to
1355  * @words: number of word(s)
1356  * @data: 16 bit word(s) to be written to the EEPROM
1357  *
1358  * If ixgbe_eeprom_update_checksum is not called after this function, the
1359  * EEPROM will most likely contain an invalid checksum.
1360  **/
1361 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1362 					      u16 words, u16 *data)
1363 {
1364 	s32 status;
1365 	u16 word;
1366 	u16 page_size;
1367 	u16 i;
1368 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1369 
1370 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1371 
1372 	/* Prepare the EEPROM for writing  */
1373 	status = ixgbe_acquire_eeprom(hw);
1374 
1375 	if (status == IXGBE_SUCCESS) {
1376 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1377 			ixgbe_release_eeprom(hw);
1378 			status = IXGBE_ERR_EEPROM;
1379 		}
1380 	}
1381 
1382 	if (status == IXGBE_SUCCESS) {
1383 		for (i = 0; i < words; i++) {
1384 			ixgbe_standby_eeprom(hw);
1385 
1386 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1387 			ixgbe_shift_out_eeprom_bits(hw,
1388 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1389 						   IXGBE_EEPROM_OPCODE_BITS);
1390 
1391 			ixgbe_standby_eeprom(hw);
1392 
1393 			/*
1394 			 * Some SPI eeproms use the 8th address bit embedded
1395 			 * in the opcode
1396 			 */
1397 			if ((hw->eeprom.address_bits == 8) &&
1398 			    ((offset + i) >= 128))
1399 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1400 
1401 			/* Send the Write command (8-bit opcode + addr) */
1402 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1403 						    IXGBE_EEPROM_OPCODE_BITS);
1404 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1405 						    hw->eeprom.address_bits);
1406 
1407 			page_size = hw->eeprom.word_page_size;
1408 
1409 			/* Send the data in burst via SPI*/
1410 			do {
1411 				word = data[i];
1412 				word = (word >> 8) | (word << 8);
1413 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1414 
1415 				if (page_size == 0)
1416 					break;
1417 
1418 				/* do not wrap around page */
1419 				if (((offset + i) & (page_size - 1)) ==
1420 				    (page_size - 1))
1421 					break;
1422 			} while (++i < words);
1423 
1424 			ixgbe_standby_eeprom(hw);
1425 			msec_delay(10);
1426 		}
1427 		/* Done with writing - release the EEPROM */
1428 		ixgbe_release_eeprom(hw);
1429 	}
1430 
1431 	return status;
1432 }
1433 
1434 /**
1435  * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1436  * @hw: pointer to hardware structure
1437  * @offset: offset within the EEPROM to be written to
1438  * @data: 16 bit word to be written to the EEPROM
1439  *
1440  * If ixgbe_eeprom_update_checksum is not called after this function, the
1441  * EEPROM will most likely contain an invalid checksum.
1442  **/
1443 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1444 {
1445 	s32 status;
1446 
1447 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1448 
1449 	hw->eeprom.ops.init_params(hw);
1450 
1451 	if (offset >= hw->eeprom.word_size) {
1452 		status = IXGBE_ERR_EEPROM;
1453 		goto out;
1454 	}
1455 
1456 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1457 
1458 out:
1459 	return status;
1460 }
1461 
1462 /**
1463  * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1464  * @hw: pointer to hardware structure
1465  * @offset: offset within the EEPROM to be read
1466  * @data: read 16 bit words(s) from EEPROM
1467  * @words: number of word(s)
1468  *
1469  * Reads 16 bit word(s) from EEPROM through bit-bang method
1470  **/
1471 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1472 					      u16 words, u16 *data)
1473 {
1474 	s32 status = IXGBE_SUCCESS;
1475 	u16 i, count;
1476 
1477 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1478 
1479 	hw->eeprom.ops.init_params(hw);
1480 
1481 	if (words == 0) {
1482 		status = IXGBE_ERR_INVALID_ARGUMENT;
1483 		goto out;
1484 	}
1485 
1486 	if (offset + words > hw->eeprom.word_size) {
1487 		status = IXGBE_ERR_EEPROM;
1488 		goto out;
1489 	}
1490 
1491 	/*
1492 	 * We cannot hold synchronization semaphores for too long
1493 	 * to avoid other entity starvation. However it is more efficient
1494 	 * to read in bursts than synchronizing access for each word.
1495 	 */
1496 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1497 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1498 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1499 
1500 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1501 							   count, &data[i]);
1502 
1503 		if (status != IXGBE_SUCCESS)
1504 			break;
1505 	}
1506 
1507 out:
1508 	return status;
1509 }
1510 
1511 /**
1512  * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1513  * @hw: pointer to hardware structure
1514  * @offset: offset within the EEPROM to be read
1515  * @words: number of word(s)
1516  * @data: read 16 bit word(s) from EEPROM
1517  *
1518  * Reads 16 bit word(s) from EEPROM through bit-bang method
1519  **/
1520 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1521 					     u16 words, u16 *data)
1522 {
1523 	s32 status;
1524 	u16 word_in;
1525 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1526 	u16 i;
1527 
1528 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1529 
1530 	/* Prepare the EEPROM for reading  */
1531 	status = ixgbe_acquire_eeprom(hw);
1532 
1533 	if (status == IXGBE_SUCCESS) {
1534 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1535 			ixgbe_release_eeprom(hw);
1536 			status = IXGBE_ERR_EEPROM;
1537 		}
1538 	}
1539 
1540 	if (status == IXGBE_SUCCESS) {
1541 		for (i = 0; i < words; i++) {
1542 			ixgbe_standby_eeprom(hw);
1543 			/*
1544 			 * Some SPI eeproms use the 8th address bit embedded
1545 			 * in the opcode
1546 			 */
1547 			if ((hw->eeprom.address_bits == 8) &&
1548 			    ((offset + i) >= 128))
1549 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1550 
1551 			/* Send the READ command (opcode + addr) */
1552 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1553 						    IXGBE_EEPROM_OPCODE_BITS);
1554 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1555 						    hw->eeprom.address_bits);
1556 
1557 			/* Read the data. */
1558 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1559 			data[i] = (word_in >> 8) | (word_in << 8);
1560 		}
1561 
1562 		/* End this read operation */
1563 		ixgbe_release_eeprom(hw);
1564 	}
1565 
1566 	return status;
1567 }
1568 
1569 /**
1570  * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1571  * @hw: pointer to hardware structure
1572  * @offset: offset within the EEPROM to be read
1573  * @data: read 16 bit value from EEPROM
1574  *
1575  * Reads 16 bit value from EEPROM through bit-bang method
1576  **/
1577 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1578 				       u16 *data)
1579 {
1580 	s32 status;
1581 
1582 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1583 
1584 	hw->eeprom.ops.init_params(hw);
1585 
1586 	if (offset >= hw->eeprom.word_size) {
1587 		status = IXGBE_ERR_EEPROM;
1588 		goto out;
1589 	}
1590 
1591 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1592 
1593 out:
1594 	return status;
1595 }
1596 
1597 /**
1598  * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1599  * @hw: pointer to hardware structure
1600  * @offset: offset of word in the EEPROM to read
1601  * @words: number of word(s)
1602  * @data: 16 bit word(s) from the EEPROM
1603  *
1604  * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1605  **/
1606 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1607 				   u16 words, u16 *data)
1608 {
1609 	u32 eerd;
1610 	s32 status = IXGBE_SUCCESS;
1611 	u32 i;
1612 
1613 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1614 
1615 	hw->eeprom.ops.init_params(hw);
1616 
1617 	if (words == 0) {
1618 		status = IXGBE_ERR_INVALID_ARGUMENT;
1619 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1620 		goto out;
1621 	}
1622 
1623 	if (offset >= hw->eeprom.word_size) {
1624 		status = IXGBE_ERR_EEPROM;
1625 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1626 		goto out;
1627 	}
1628 
1629 	for (i = 0; i < words; i++) {
1630 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1631 		       IXGBE_EEPROM_RW_REG_START;
1632 
1633 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1634 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1635 
1636 		if (status == IXGBE_SUCCESS) {
1637 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1638 				   IXGBE_EEPROM_RW_REG_DATA);
1639 		} else {
1640 			DEBUGOUT("Eeprom read timed out\n");
1641 			goto out;
1642 		}
1643 	}
1644 out:
1645 	return status;
1646 }
1647 
1648 /**
1649  * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1650  * @hw: pointer to hardware structure
1651  * @offset: offset within the EEPROM to be used as a scratch pad
1652  *
1653  * Discover EEPROM page size by writing marching data at given offset.
1654  * This function is called only when we are writing a new large buffer
1655  * at given offset so the data would be overwritten anyway.
1656  **/
1657 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1658 						 u16 offset)
1659 {
1660 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1661 	s32 status = IXGBE_SUCCESS;
1662 	u16 i;
1663 
1664 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1665 
1666 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1667 		data[i] = i;
1668 
1669 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1670 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1671 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1672 	hw->eeprom.word_page_size = 0;
1673 	if (status != IXGBE_SUCCESS)
1674 		goto out;
1675 
1676 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1677 	if (status != IXGBE_SUCCESS)
1678 		goto out;
1679 
1680 	/*
1681 	 * When writing in burst more than the actual page size
1682 	 * EEPROM address wraps around current page.
1683 	 */
1684 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1685 
1686 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1687 		  hw->eeprom.word_page_size);
1688 out:
1689 	return status;
1690 }
1691 
1692 /**
1693  * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1694  * @hw: pointer to hardware structure
1695  * @offset: offset of  word in the EEPROM to read
1696  * @data: word read from the EEPROM
1697  *
1698  * Reads a 16 bit word from the EEPROM using the EERD register.
1699  **/
1700 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1701 {
1702 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1703 }
1704 
1705 /**
1706  * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1707  * @hw: pointer to hardware structure
1708  * @offset: offset of  word in the EEPROM to write
1709  * @words: number of word(s)
1710  * @data: word(s) write to the EEPROM
1711  *
1712  * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1713  **/
1714 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1715 				    u16 words, u16 *data)
1716 {
1717 	u32 eewr;
1718 	s32 status = IXGBE_SUCCESS;
1719 	u16 i;
1720 
1721 	DEBUGFUNC("ixgbe_write_eewr_generic");
1722 
1723 	hw->eeprom.ops.init_params(hw);
1724 
1725 	if (words == 0) {
1726 		status = IXGBE_ERR_INVALID_ARGUMENT;
1727 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1728 		goto out;
1729 	}
1730 
1731 	if (offset >= hw->eeprom.word_size) {
1732 		status = IXGBE_ERR_EEPROM;
1733 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1734 		goto out;
1735 	}
1736 
1737 	for (i = 0; i < words; i++) {
1738 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1739 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1740 			IXGBE_EEPROM_RW_REG_START;
1741 
1742 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1743 		if (status != IXGBE_SUCCESS) {
1744 			DEBUGOUT("Eeprom write EEWR timed out\n");
1745 			goto out;
1746 		}
1747 
1748 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1749 
1750 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1751 		if (status != IXGBE_SUCCESS) {
1752 			DEBUGOUT("Eeprom write EEWR timed out\n");
1753 			goto out;
1754 		}
1755 	}
1756 
1757 out:
1758 	return status;
1759 }
1760 
1761 /**
1762  * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1763  * @hw: pointer to hardware structure
1764  * @offset: offset of  word in the EEPROM to write
1765  * @data: word write to the EEPROM
1766  *
1767  * Write a 16 bit word to the EEPROM using the EEWR register.
1768  **/
1769 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1770 {
1771 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1772 }
1773 
1774 /**
1775  * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1776  * @hw: pointer to hardware structure
1777  * @ee_reg: EEPROM flag for polling
1778  *
1779  * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1780  * read or write is done respectively.
1781  **/
1782 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1783 {
1784 	u32 i;
1785 	u32 reg;
1786 	s32 status = IXGBE_ERR_EEPROM;
1787 
1788 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1789 
1790 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1791 		if (ee_reg == IXGBE_NVM_POLL_READ)
1792 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1793 		else
1794 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1795 
1796 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1797 			status = IXGBE_SUCCESS;
1798 			break;
1799 		}
1800 		usec_delay(5);
1801 	}
1802 
1803 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1804 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1805 			     "EEPROM read/write done polling timed out");
1806 
1807 	return status;
1808 }
1809 
1810 /**
1811  * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1812  * @hw: pointer to hardware structure
1813  *
1814  * Prepares EEPROM for access using bit-bang method. This function should
1815  * be called before issuing a command to the EEPROM.
1816  **/
1817 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1818 {
1819 	s32 status = IXGBE_SUCCESS;
1820 	u32 eec;
1821 	u32 i;
1822 
1823 	DEBUGFUNC("ixgbe_acquire_eeprom");
1824 
1825 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1826 	    != IXGBE_SUCCESS)
1827 		status = IXGBE_ERR_SWFW_SYNC;
1828 
1829 	if (status == IXGBE_SUCCESS) {
1830 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1831 
1832 		/* Request EEPROM Access */
1833 		eec |= IXGBE_EEC_REQ;
1834 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1835 
1836 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1837 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1838 			if (eec & IXGBE_EEC_GNT)
1839 				break;
1840 			usec_delay(5);
1841 		}
1842 
1843 		/* Release if grant not acquired */
1844 		if (!(eec & IXGBE_EEC_GNT)) {
1845 			eec &= ~IXGBE_EEC_REQ;
1846 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1847 			DEBUGOUT("Could not acquire EEPROM grant\n");
1848 
1849 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1850 			status = IXGBE_ERR_EEPROM;
1851 		}
1852 
1853 		/* Setup EEPROM for Read/Write */
1854 		if (status == IXGBE_SUCCESS) {
1855 			/* Clear CS and SK */
1856 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1857 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1858 			IXGBE_WRITE_FLUSH(hw);
1859 			usec_delay(1);
1860 		}
1861 	}
1862 	return status;
1863 }
1864 
1865 /**
1866  * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1867  * @hw: pointer to hardware structure
1868  *
1869  * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1870  **/
1871 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1872 {
1873 	s32 status = IXGBE_ERR_EEPROM;
1874 	u32 timeout = 2000;
1875 	u32 i;
1876 	u32 swsm;
1877 
1878 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1879 
1880 
1881 	/* Get SMBI software semaphore between device drivers first */
1882 	for (i = 0; i < timeout; i++) {
1883 		/*
1884 		 * If the SMBI bit is 0 when we read it, then the bit will be
1885 		 * set and we have the semaphore
1886 		 */
1887 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1888 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1889 			status = IXGBE_SUCCESS;
1890 			break;
1891 		}
1892 		usec_delay(50);
1893 	}
1894 
1895 	if (i == timeout) {
1896 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1897 			 "not granted.\n");
1898 		/*
1899 		 * this release is particularly important because our attempts
1900 		 * above to get the semaphore may have succeeded, and if there
1901 		 * was a timeout, we should unconditionally clear the semaphore
1902 		 * bits to free the driver to make progress
1903 		 */
1904 		ixgbe_release_eeprom_semaphore(hw);
1905 
1906 		usec_delay(50);
1907 		/*
1908 		 * one last try
1909 		 * If the SMBI bit is 0 when we read it, then the bit will be
1910 		 * set and we have the semaphore
1911 		 */
1912 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 		if (!(swsm & IXGBE_SWSM_SMBI))
1914 			status = IXGBE_SUCCESS;
1915 	}
1916 
1917 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1918 	if (status == IXGBE_SUCCESS) {
1919 		for (i = 0; i < timeout; i++) {
1920 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1921 
1922 			/* Set the SW EEPROM semaphore bit to request access */
1923 			swsm |= IXGBE_SWSM_SWESMBI;
1924 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1925 
1926 			/*
1927 			 * If we set the bit successfully then we got the
1928 			 * semaphore.
1929 			 */
1930 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1931 			if (swsm & IXGBE_SWSM_SWESMBI)
1932 				break;
1933 
1934 			usec_delay(50);
1935 		}
1936 
1937 		/*
1938 		 * Release semaphores and return error if SW EEPROM semaphore
1939 		 * was not granted because we don't have access to the EEPROM
1940 		 */
1941 		if (i >= timeout) {
1942 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1943 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1944 			ixgbe_release_eeprom_semaphore(hw);
1945 			status = IXGBE_ERR_EEPROM;
1946 		}
1947 	} else {
1948 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1949 			     "Software semaphore SMBI between device drivers "
1950 			     "not granted.\n");
1951 	}
1952 
1953 	return status;
1954 }
1955 
1956 /**
1957  * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1958  * @hw: pointer to hardware structure
1959  *
1960  * This function clears hardware semaphore bits.
1961  **/
1962 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1963 {
1964 	u32 swsm;
1965 
1966 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1967 
1968 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1969 
1970 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1971 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1972 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1973 	IXGBE_WRITE_FLUSH(hw);
1974 }
1975 
1976 /**
1977  * ixgbe_ready_eeprom - Polls for EEPROM ready
1978  * @hw: pointer to hardware structure
1979  **/
1980 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1981 {
1982 	s32 status = IXGBE_SUCCESS;
1983 	u16 i;
1984 	u8 spi_stat_reg;
1985 
1986 	DEBUGFUNC("ixgbe_ready_eeprom");
1987 
1988 	/*
1989 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1990 	 * EEPROM will signal that the command has been completed by clearing
1991 	 * bit 0 of the internal status register.  If it's not cleared within
1992 	 * 5 milliseconds, then error out.
1993 	 */
1994 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1995 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1996 					    IXGBE_EEPROM_OPCODE_BITS);
1997 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1998 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1999 			break;
2000 
2001 		usec_delay(5);
2002 		ixgbe_standby_eeprom(hw);
2003 	}
2004 
2005 	/*
2006 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2007 	 * devices (and only 0-5mSec on 5V devices)
2008 	 */
2009 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2010 		DEBUGOUT("SPI EEPROM Status error\n");
2011 		status = IXGBE_ERR_EEPROM;
2012 	}
2013 
2014 	return status;
2015 }
2016 
2017 /**
2018  * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2019  * @hw: pointer to hardware structure
2020  **/
2021 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2022 {
2023 	u32 eec;
2024 
2025 	DEBUGFUNC("ixgbe_standby_eeprom");
2026 
2027 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2028 
2029 	/* Toggle CS to flush commands */
2030 	eec |= IXGBE_EEC_CS;
2031 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032 	IXGBE_WRITE_FLUSH(hw);
2033 	usec_delay(1);
2034 	eec &= ~IXGBE_EEC_CS;
2035 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036 	IXGBE_WRITE_FLUSH(hw);
2037 	usec_delay(1);
2038 }
2039 
2040 /**
2041  * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2042  * @hw: pointer to hardware structure
2043  * @data: data to send to the EEPROM
2044  * @count: number of bits to shift out
2045  **/
2046 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2047 					u16 count)
2048 {
2049 	u32 eec;
2050 	u32 mask;
2051 	u32 i;
2052 
2053 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2054 
2055 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2056 
2057 	/*
2058 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2059 	 * one bit at a time.  Determine the starting bit based on count
2060 	 */
2061 	mask = 0x01 << (count - 1);
2062 
2063 	for (i = 0; i < count; i++) {
2064 		/*
2065 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2066 		 * "1", and then raising and then lowering the clock (the SK
2067 		 * bit controls the clock input to the EEPROM).  A "0" is
2068 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2069 		 * raising and then lowering the clock.
2070 		 */
2071 		if (data & mask)
2072 			eec |= IXGBE_EEC_DI;
2073 		else
2074 			eec &= ~IXGBE_EEC_DI;
2075 
2076 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2077 		IXGBE_WRITE_FLUSH(hw);
2078 
2079 		usec_delay(1);
2080 
2081 		ixgbe_raise_eeprom_clk(hw, &eec);
2082 		ixgbe_lower_eeprom_clk(hw, &eec);
2083 
2084 		/*
2085 		 * Shift mask to signify next bit of data to shift in to the
2086 		 * EEPROM
2087 		 */
2088 		mask = mask >> 1;
2089 	}
2090 
2091 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2092 	eec &= ~IXGBE_EEC_DI;
2093 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2094 	IXGBE_WRITE_FLUSH(hw);
2095 }
2096 
2097 /**
2098  * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2099  * @hw: pointer to hardware structure
2100  * @count: number of bits to shift
2101  **/
2102 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2103 {
2104 	u32 eec;
2105 	u32 i;
2106 	u16 data = 0;
2107 
2108 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2109 
2110 	/*
2111 	 * In order to read a register from the EEPROM, we need to shift
2112 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2113 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2114 	 * the value of the "DO" bit.  During this "shifting in" process the
2115 	 * "DI" bit should always be clear.
2116 	 */
2117 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2118 
2119 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2120 
2121 	for (i = 0; i < count; i++) {
2122 		data = data << 1;
2123 		ixgbe_raise_eeprom_clk(hw, &eec);
2124 
2125 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2126 
2127 		eec &= ~(IXGBE_EEC_DI);
2128 		if (eec & IXGBE_EEC_DO)
2129 			data |= 1;
2130 
2131 		ixgbe_lower_eeprom_clk(hw, &eec);
2132 	}
2133 
2134 	return data;
2135 }
2136 
2137 /**
2138  * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2139  * @hw: pointer to hardware structure
2140  * @eec: EEC register's current value
2141  **/
2142 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2143 {
2144 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2145 
2146 	/*
2147 	 * Raise the clock input to the EEPROM
2148 	 * (setting the SK bit), then delay
2149 	 */
2150 	*eec = *eec | IXGBE_EEC_SK;
2151 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2152 	IXGBE_WRITE_FLUSH(hw);
2153 	usec_delay(1);
2154 }
2155 
2156 /**
2157  * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2158  * @hw: pointer to hardware structure
2159  * @eec: EEC's current value
2160  **/
2161 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2162 {
2163 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2164 
2165 	/*
2166 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2167 	 * delay
2168 	 */
2169 	*eec = *eec & ~IXGBE_EEC_SK;
2170 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2171 	IXGBE_WRITE_FLUSH(hw);
2172 	usec_delay(1);
2173 }
2174 
2175 /**
2176  * ixgbe_release_eeprom - Release EEPROM, release semaphores
2177  * @hw: pointer to hardware structure
2178  **/
2179 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2180 {
2181 	u32 eec;
2182 
2183 	DEBUGFUNC("ixgbe_release_eeprom");
2184 
2185 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2186 
2187 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2188 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2189 
2190 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2191 	IXGBE_WRITE_FLUSH(hw);
2192 
2193 	usec_delay(1);
2194 
2195 	/* Stop requesting EEPROM access */
2196 	eec &= ~IXGBE_EEC_REQ;
2197 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2198 
2199 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2200 
2201 	/* Delay before attempt to obtain semaphore again to allow FW access */
2202 	msec_delay(hw->eeprom.semaphore_delay);
2203 }
2204 
2205 /**
2206  * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2207  * @hw: pointer to hardware structure
2208  *
2209  * Returns a negative error code on error, or the 16-bit checksum
2210  **/
2211 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2212 {
2213 	u16 i;
2214 	u16 j;
2215 	u16 checksum = 0;
2216 	u16 length = 0;
2217 	u16 pointer = 0;
2218 	u16 word = 0;
2219 
2220 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2221 
2222 	/* Include 0x0-0x3F in the checksum */
2223 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2224 		if (hw->eeprom.ops.read(hw, i, &word)) {
2225 			DEBUGOUT("EEPROM read failed\n");
2226 			return IXGBE_ERR_EEPROM;
2227 		}
2228 		checksum += word;
2229 	}
2230 
2231 	/* Include all data from pointers except for the fw pointer */
2232 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2233 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2234 			DEBUGOUT("EEPROM read failed\n");
2235 			return IXGBE_ERR_EEPROM;
2236 		}
2237 
2238 		/* If the pointer seems invalid */
2239 		if (pointer == 0xFFFF || pointer == 0)
2240 			continue;
2241 
2242 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2243 			DEBUGOUT("EEPROM read failed\n");
2244 			return IXGBE_ERR_EEPROM;
2245 		}
2246 
2247 		if (length == 0xFFFF || length == 0)
2248 			continue;
2249 
2250 		for (j = pointer + 1; j <= pointer + length; j++) {
2251 			if (hw->eeprom.ops.read(hw, j, &word)) {
2252 				DEBUGOUT("EEPROM read failed\n");
2253 				return IXGBE_ERR_EEPROM;
2254 			}
2255 			checksum += word;
2256 		}
2257 	}
2258 
2259 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2260 
2261 	return (s32)checksum;
2262 }
2263 
2264 /**
2265  * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2266  * @hw: pointer to hardware structure
2267  * @checksum_val: calculated checksum
2268  *
2269  * Performs checksum calculation and validates the EEPROM checksum.  If the
2270  * caller does not need checksum_val, the value can be NULL.
2271  **/
2272 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2273 					   u16 *checksum_val)
2274 {
2275 	s32 status;
2276 	u16 checksum;
2277 	u16 read_checksum = 0;
2278 
2279 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2280 
2281 	/* Read the first word from the EEPROM. If this times out or fails, do
2282 	 * not continue or we could be in for a very long wait while every
2283 	 * EEPROM read fails
2284 	 */
2285 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2286 	if (status) {
2287 		DEBUGOUT("EEPROM read failed\n");
2288 		return status;
2289 	}
2290 
2291 	status = hw->eeprom.ops.calc_checksum(hw);
2292 	if (status < 0)
2293 		return status;
2294 
2295 	checksum = (u16)(status & 0xffff);
2296 
2297 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2298 	if (status) {
2299 		DEBUGOUT("EEPROM read failed\n");
2300 		return status;
2301 	}
2302 
2303 	/* Verify read checksum from EEPROM is the same as
2304 	 * calculated checksum
2305 	 */
2306 	if (read_checksum != checksum)
2307 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2308 
2309 	/* If the user cares, return the calculated checksum */
2310 	if (checksum_val)
2311 		*checksum_val = checksum;
2312 
2313 	return status;
2314 }
2315 
2316 /**
2317  * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2318  * @hw: pointer to hardware structure
2319  **/
2320 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2321 {
2322 	s32 status;
2323 	u16 checksum;
2324 
2325 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2326 
2327 	/* Read the first word from the EEPROM. If this times out or fails, do
2328 	 * not continue or we could be in for a very long wait while every
2329 	 * EEPROM read fails
2330 	 */
2331 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2332 	if (status) {
2333 		DEBUGOUT("EEPROM read failed\n");
2334 		return status;
2335 	}
2336 
2337 	status = hw->eeprom.ops.calc_checksum(hw);
2338 	if (status < 0)
2339 		return status;
2340 
2341 	checksum = (u16)(status & 0xffff);
2342 
2343 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2344 
2345 	return status;
2346 }
2347 
2348 /**
2349  * ixgbe_validate_mac_addr - Validate MAC address
2350  * @mac_addr: pointer to MAC address.
2351  *
2352  * Tests a MAC address to ensure it is a valid Individual Address.
2353  **/
2354 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2355 {
2356 	s32 status = IXGBE_SUCCESS;
2357 
2358 	DEBUGFUNC("ixgbe_validate_mac_addr");
2359 
2360 	/* Make sure it is not a multicast address */
2361 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2362 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2363 	/* Not a broadcast address */
2364 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2365 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2366 	/* Reject the zero address */
2367 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2368 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2369 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2370 	}
2371 	return status;
2372 }
2373 
2374 /**
2375  * ixgbe_set_rar_generic - Set Rx address register
2376  * @hw: pointer to hardware structure
2377  * @index: Receive address register to write
2378  * @addr: Address to put into receive address register
2379  * @vmdq: VMDq "set" or "pool" index
2380  * @enable_addr: set flag that address is active
2381  *
2382  * Puts an ethernet address into a receive address register.
2383  **/
2384 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2385 			  u32 enable_addr)
2386 {
2387 	u32 rar_low, rar_high;
2388 	u32 rar_entries = hw->mac.num_rar_entries;
2389 
2390 	DEBUGFUNC("ixgbe_set_rar_generic");
2391 
2392 	/* Make sure we are using a valid rar index range */
2393 	if (index >= rar_entries) {
2394 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2395 			     "RAR index %d is out of range.\n", index);
2396 		return IXGBE_ERR_INVALID_ARGUMENT;
2397 	}
2398 
2399 	/* setup VMDq pool selection before this RAR gets enabled */
2400 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2401 
2402 	/*
2403 	 * HW expects these in little endian so we reverse the byte
2404 	 * order from network order (big endian) to little endian
2405 	 */
2406 	rar_low = ((u32)addr[0] |
2407 		   ((u32)addr[1] << 8) |
2408 		   ((u32)addr[2] << 16) |
2409 		   ((u32)addr[3] << 24));
2410 	/*
2411 	 * Some parts put the VMDq setting in the extra RAH bits,
2412 	 * so save everything except the lower 16 bits that hold part
2413 	 * of the address and the address valid bit.
2414 	 */
2415 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2416 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2417 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2418 
2419 	if (enable_addr != 0)
2420 		rar_high |= IXGBE_RAH_AV;
2421 
2422 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2423 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2424 
2425 	return IXGBE_SUCCESS;
2426 }
2427 
2428 /**
2429  * ixgbe_clear_rar_generic - Remove Rx address register
2430  * @hw: pointer to hardware structure
2431  * @index: Receive address register to write
2432  *
2433  * Clears an ethernet address from a receive address register.
2434  **/
2435 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2436 {
2437 	u32 rar_high;
2438 	u32 rar_entries = hw->mac.num_rar_entries;
2439 
2440 	DEBUGFUNC("ixgbe_clear_rar_generic");
2441 
2442 	/* Make sure we are using a valid rar index range */
2443 	if (index >= rar_entries) {
2444 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2445 			     "RAR index %d is out of range.\n", index);
2446 		return IXGBE_ERR_INVALID_ARGUMENT;
2447 	}
2448 
2449 	/*
2450 	 * Some parts put the VMDq setting in the extra RAH bits,
2451 	 * so save everything except the lower 16 bits that hold part
2452 	 * of the address and the address valid bit.
2453 	 */
2454 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2455 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2456 
2457 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2458 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2459 
2460 	/* clear VMDq pool/queue selection for this RAR */
2461 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2462 
2463 	return IXGBE_SUCCESS;
2464 }
2465 
2466 /**
2467  * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2468  * @hw: pointer to hardware structure
2469  *
2470  * Places the MAC address in receive address register 0 and clears the rest
2471  * of the receive address registers. Clears the multicast table. Assumes
2472  * the receiver is in reset when the routine is called.
2473  **/
2474 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2475 {
2476 	u32 i;
2477 	u32 rar_entries = hw->mac.num_rar_entries;
2478 
2479 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2480 
2481 	/*
2482 	 * If the current mac address is valid, assume it is a software override
2483 	 * to the permanent address.
2484 	 * Otherwise, use the permanent address from the eeprom.
2485 	 */
2486 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2487 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2488 		/* Get the MAC address from the RAR0 for later reference */
2489 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2490 
2491 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2492 			  hw->mac.addr[0], hw->mac.addr[1],
2493 			  hw->mac.addr[2]);
2494 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2495 			  hw->mac.addr[4], hw->mac.addr[5]);
2496 	} else {
2497 		/* Setup the receive address. */
2498 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2499 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2500 			  hw->mac.addr[0], hw->mac.addr[1],
2501 			  hw->mac.addr[2]);
2502 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2503 			  hw->mac.addr[4], hw->mac.addr[5]);
2504 
2505 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2506 	}
2507 
2508 	/* clear VMDq pool/queue selection for RAR 0 */
2509 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2510 
2511 	hw->addr_ctrl.overflow_promisc = 0;
2512 
2513 	hw->addr_ctrl.rar_used_count = 1;
2514 
2515 	/* Zero out the other receive addresses. */
2516 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2517 	for (i = 1; i < rar_entries; i++) {
2518 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2519 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2520 	}
2521 
2522 	/* Clear the MTA */
2523 	hw->addr_ctrl.mta_in_use = 0;
2524 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2525 
2526 	DEBUGOUT(" Clearing MTA\n");
2527 	for (i = 0; i < hw->mac.mcft_size; i++)
2528 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2529 
2530 	ixgbe_init_uta_tables(hw);
2531 
2532 	return IXGBE_SUCCESS;
2533 }
2534 
2535 /**
2536  * ixgbe_add_uc_addr - Adds a secondary unicast address.
2537  * @hw: pointer to hardware structure
2538  * @addr: new address
2539  * @vmdq: VMDq "set" or "pool" index
2540  *
2541  * Adds it to unused receive address register or goes into promiscuous mode.
2542  **/
2543 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2544 {
2545 	u32 rar_entries = hw->mac.num_rar_entries;
2546 	u32 rar;
2547 
2548 	DEBUGFUNC("ixgbe_add_uc_addr");
2549 
2550 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2551 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2552 
2553 	/*
2554 	 * Place this address in the RAR if there is room,
2555 	 * else put the controller into promiscuous mode
2556 	 */
2557 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2558 		rar = hw->addr_ctrl.rar_used_count;
2559 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2560 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2561 		hw->addr_ctrl.rar_used_count++;
2562 	} else {
2563 		hw->addr_ctrl.overflow_promisc++;
2564 	}
2565 
2566 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2567 }
2568 
2569 /**
2570  * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2571  * @hw: pointer to hardware structure
2572  * @addr_list: the list of new addresses
2573  * @addr_count: number of addresses
2574  * @next: iterator function to walk the address list
2575  *
2576  * The given list replaces any existing list.  Clears the secondary addrs from
2577  * receive address registers.  Uses unused receive address registers for the
2578  * first secondary addresses, and falls back to promiscuous mode as needed.
2579  *
2580  * Drivers using secondary unicast addresses must set user_set_promisc when
2581  * manually putting the device into promiscuous mode.
2582  **/
2583 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2584 				      u32 addr_count, ixgbe_mc_addr_itr next)
2585 {
2586 	u8 *addr;
2587 	u32 i;
2588 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2589 	u32 uc_addr_in_use;
2590 	u32 fctrl;
2591 	u32 vmdq;
2592 
2593 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2594 
2595 	/*
2596 	 * Clear accounting of old secondary address list,
2597 	 * don't count RAR[0]
2598 	 */
2599 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2600 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2601 	hw->addr_ctrl.overflow_promisc = 0;
2602 
2603 	/* Zero out the other receive addresses */
2604 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2605 	for (i = 0; i < uc_addr_in_use; i++) {
2606 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2607 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2608 	}
2609 
2610 	/* Add the new addresses */
2611 	for (i = 0; i < addr_count; i++) {
2612 		DEBUGOUT(" Adding the secondary addresses:\n");
2613 		addr = next(hw, &addr_list, &vmdq);
2614 		ixgbe_add_uc_addr(hw, addr, vmdq);
2615 	}
2616 
2617 	if (hw->addr_ctrl.overflow_promisc) {
2618 		/* enable promisc if not already in overflow or set by user */
2619 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2620 			DEBUGOUT(" Entering address overflow promisc mode\n");
2621 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2622 			fctrl |= IXGBE_FCTRL_UPE;
2623 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2624 		}
2625 	} else {
2626 		/* only disable if set by overflow, not by user */
2627 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2628 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2629 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2630 			fctrl &= ~IXGBE_FCTRL_UPE;
2631 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2632 		}
2633 	}
2634 
2635 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2636 	return IXGBE_SUCCESS;
2637 }
2638 
2639 /**
2640  * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2641  * @hw: pointer to hardware structure
2642  * @mc_addr: the multicast address
2643  *
2644  * Extracts the 12 bits, from a multicast address, to determine which
2645  * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2646  * incoming rx multicast addresses, to determine the bit-vector to check in
2647  * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2648  * by the MO field of the MCSTCTRL. The MO field is set during initialization
2649  * to mc_filter_type.
2650  **/
2651 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2652 {
2653 	u32 vector = 0;
2654 
2655 	DEBUGFUNC("ixgbe_mta_vector");
2656 
2657 	switch (hw->mac.mc_filter_type) {
2658 	case 0:   /* use bits [47:36] of the address */
2659 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2660 		break;
2661 	case 1:   /* use bits [46:35] of the address */
2662 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2663 		break;
2664 	case 2:   /* use bits [45:34] of the address */
2665 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2666 		break;
2667 	case 3:   /* use bits [43:32] of the address */
2668 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2669 		break;
2670 	default:  /* Invalid mc_filter_type */
2671 		DEBUGOUT("MC filter type param set incorrectly\n");
2672 		ASSERT(0);
2673 		break;
2674 	}
2675 
2676 	/* vector can only be 12-bits or boundary will be exceeded */
2677 	vector &= 0xFFF;
2678 	return vector;
2679 }
2680 
2681 /**
2682  * ixgbe_set_mta - Set bit-vector in multicast table
2683  * @hw: pointer to hardware structure
2684  * @mc_addr: Multicast address
2685  *
2686  * Sets the bit-vector in the multicast table.
2687  **/
2688 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2689 {
2690 	u32 vector;
2691 	u32 vector_bit;
2692 	u32 vector_reg;
2693 
2694 	DEBUGFUNC("ixgbe_set_mta");
2695 
2696 	hw->addr_ctrl.mta_in_use++;
2697 
2698 	vector = ixgbe_mta_vector(hw, mc_addr);
2699 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2700 
2701 	/*
2702 	 * The MTA is a register array of 128 32-bit registers. It is treated
2703 	 * like an array of 4096 bits.  We want to set bit
2704 	 * BitArray[vector_value]. So we figure out what register the bit is
2705 	 * in, read it, OR in the new bit, then write back the new value.  The
2706 	 * register is determined by the upper 7 bits of the vector value and
2707 	 * the bit within that register are determined by the lower 5 bits of
2708 	 * the value.
2709 	 */
2710 	vector_reg = (vector >> 5) & 0x7F;
2711 	vector_bit = vector & 0x1F;
2712 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2713 }
2714 
2715 /**
2716  * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2717  * @hw: pointer to hardware structure
2718  * @mc_addr_list: the list of new multicast addresses
2719  * @mc_addr_count: number of addresses
2720  * @next: iterator function to walk the multicast address list
2721  * @clear: flag, when set clears the table beforehand
2722  *
2723  * When the clear flag is set, the given list replaces any existing list.
2724  * Hashes the given addresses into the multicast table.
2725  **/
2726 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2727 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2728 				      bool clear)
2729 {
2730 	u32 i;
2731 	u32 vmdq;
2732 
2733 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2734 
2735 	/*
2736 	 * Set the new number of MC addresses that we are being requested to
2737 	 * use.
2738 	 */
2739 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2740 	hw->addr_ctrl.mta_in_use = 0;
2741 
2742 	/* Clear mta_shadow */
2743 	if (clear) {
2744 		DEBUGOUT(" Clearing MTA\n");
2745 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2746 	}
2747 
2748 	/* Update mta_shadow */
2749 	for (i = 0; i < mc_addr_count; i++) {
2750 		DEBUGOUT(" Adding the multicast addresses:\n");
2751 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2752 	}
2753 
2754 	/* Enable mta */
2755 	for (i = 0; i < hw->mac.mcft_size; i++)
2756 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2757 				      hw->mac.mta_shadow[i]);
2758 
2759 	if (hw->addr_ctrl.mta_in_use > 0)
2760 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2761 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2762 
2763 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2764 	return IXGBE_SUCCESS;
2765 }
2766 
2767 /**
2768  * ixgbe_enable_mc_generic - Enable multicast address in RAR
2769  * @hw: pointer to hardware structure
2770  *
2771  * Enables multicast address in RAR and the use of the multicast hash table.
2772  **/
2773 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2774 {
2775 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2776 
2777 	DEBUGFUNC("ixgbe_enable_mc_generic");
2778 
2779 	if (a->mta_in_use > 0)
2780 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2781 				hw->mac.mc_filter_type);
2782 
2783 	return IXGBE_SUCCESS;
2784 }
2785 
2786 /**
2787  * ixgbe_disable_mc_generic - Disable multicast address in RAR
2788  * @hw: pointer to hardware structure
2789  *
2790  * Disables multicast address in RAR and the use of the multicast hash table.
2791  **/
2792 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2793 {
2794 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2795 
2796 	DEBUGFUNC("ixgbe_disable_mc_generic");
2797 
2798 	if (a->mta_in_use > 0)
2799 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2800 
2801 	return IXGBE_SUCCESS;
2802 }
2803 
2804 /**
2805  * ixgbe_fc_enable_generic - Enable flow control
2806  * @hw: pointer to hardware structure
2807  *
2808  * Enable flow control according to the current settings.
2809  **/
2810 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2811 {
2812 	s32 ret_val = IXGBE_SUCCESS;
2813 	u32 mflcn_reg, fccfg_reg;
2814 	u32 reg;
2815 	u32 fcrtl, fcrth;
2816 	int i;
2817 
2818 	DEBUGFUNC("ixgbe_fc_enable_generic");
2819 
2820 	/* Validate the water mark configuration */
2821 	if (!hw->fc.pause_time) {
2822 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2823 		goto out;
2824 	}
2825 
2826 	/* Low water mark of zero causes XOFF floods */
2827 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2828 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2829 		    hw->fc.high_water[i]) {
2830 			if (!hw->fc.low_water[i] ||
2831 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2832 				DEBUGOUT("Invalid water mark configuration\n");
2833 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2834 				goto out;
2835 			}
2836 		}
2837 	}
2838 
2839 	/* Negotiate the fc mode to use */
2840 	hw->mac.ops.fc_autoneg(hw);
2841 
2842 	/* Disable any previous flow control settings */
2843 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2844 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2845 
2846 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2847 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2848 
2849 	/*
2850 	 * The possible values of fc.current_mode are:
2851 	 * 0: Flow control is completely disabled
2852 	 * 1: Rx flow control is enabled (we can receive pause frames,
2853 	 *    but not send pause frames).
2854 	 * 2: Tx flow control is enabled (we can send pause frames but
2855 	 *    we do not support receiving pause frames).
2856 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2857 	 * other: Invalid.
2858 	 */
2859 	switch (hw->fc.current_mode) {
2860 	case ixgbe_fc_none:
2861 		/*
2862 		 * Flow control is disabled by software override or autoneg.
2863 		 * The code below will actually disable it in the HW.
2864 		 */
2865 		break;
2866 	case ixgbe_fc_rx_pause:
2867 		/*
2868 		 * Rx Flow control is enabled and Tx Flow control is
2869 		 * disabled by software override. Since there really
2870 		 * isn't a way to advertise that we are capable of RX
2871 		 * Pause ONLY, we will advertise that we support both
2872 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2873 		 * disable the adapter's ability to send PAUSE frames.
2874 		 */
2875 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2876 		break;
2877 	case ixgbe_fc_tx_pause:
2878 		/*
2879 		 * Tx Flow control is enabled, and Rx Flow control is
2880 		 * disabled by software override.
2881 		 */
2882 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2883 		break;
2884 	case ixgbe_fc_full:
2885 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2886 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2887 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2888 		break;
2889 	default:
2890 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2891 			     "Flow control param set incorrectly\n");
2892 		ret_val = IXGBE_ERR_CONFIG;
2893 		goto out;
2894 		break;
2895 	}
2896 
2897 	/* Set 802.3x based flow control settings. */
2898 	mflcn_reg |= IXGBE_MFLCN_DPF;
2899 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2900 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2901 
2902 
2903 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2904 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2905 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2906 		    hw->fc.high_water[i]) {
2907 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2908 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2909 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2910 		} else {
2911 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2912 			/*
2913 			 * In order to prevent Tx hangs when the internal Tx
2914 			 * switch is enabled we must set the high water mark
2915 			 * to the Rx packet buffer size - 24KB.  This allows
2916 			 * the Tx switch to function even under heavy Rx
2917 			 * workloads.
2918 			 */
2919 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2920 		}
2921 
2922 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2923 	}
2924 
2925 	/* Configure pause time (2 TCs per register) */
2926 	reg = hw->fc.pause_time * 0x00010001;
2927 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2928 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2929 
2930 	/* Configure flow control refresh threshold value */
2931 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2932 
2933 out:
2934 	return ret_val;
2935 }
2936 
2937 /**
2938  * ixgbe_negotiate_fc - Negotiate flow control
2939  * @hw: pointer to hardware structure
2940  * @adv_reg: flow control advertised settings
2941  * @lp_reg: link partner's flow control settings
2942  * @adv_sym: symmetric pause bit in advertisement
2943  * @adv_asm: asymmetric pause bit in advertisement
2944  * @lp_sym: symmetric pause bit in link partner advertisement
2945  * @lp_asm: asymmetric pause bit in link partner advertisement
2946  *
2947  * Find the intersection between advertised settings and link partner's
2948  * advertised settings
2949  **/
2950 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2951 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2952 {
2953 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2954 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2955 			     "Local or link partner's advertised flow control "
2956 			     "settings are NULL. Local: %x, link partner: %x\n",
2957 			     adv_reg, lp_reg);
2958 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2959 	}
2960 
2961 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2962 		/*
2963 		 * Now we need to check if the user selected Rx ONLY
2964 		 * of pause frames.  In this case, we had to advertise
2965 		 * FULL flow control because we could not advertise RX
2966 		 * ONLY. Hence, we must now check to see if we need to
2967 		 * turn OFF the TRANSMISSION of PAUSE frames.
2968 		 */
2969 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2970 			hw->fc.current_mode = ixgbe_fc_full;
2971 			DEBUGOUT("Flow Control = FULL.\n");
2972 		} else {
2973 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2974 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2975 		}
2976 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2977 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2978 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2979 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2980 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2981 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2982 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2983 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2984 	} else {
2985 		hw->fc.current_mode = ixgbe_fc_none;
2986 		DEBUGOUT("Flow Control = NONE.\n");
2987 	}
2988 	return IXGBE_SUCCESS;
2989 }
2990 
2991 /**
2992  * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2993  * @hw: pointer to hardware structure
2994  *
2995  * Enable flow control according on 1 gig fiber.
2996  **/
2997 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2998 {
2999 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3000 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3001 
3002 	/*
3003 	 * On multispeed fiber at 1g, bail out if
3004 	 * - link is up but AN did not complete, or if
3005 	 * - link is up and AN completed but timed out
3006 	 */
3007 
3008 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3009 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3010 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3011 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3012 		goto out;
3013 	}
3014 
3015 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3016 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3017 
3018 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3019 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3020 				      IXGBE_PCS1GANA_ASM_PAUSE,
3021 				      IXGBE_PCS1GANA_SYM_PAUSE,
3022 				      IXGBE_PCS1GANA_ASM_PAUSE);
3023 
3024 out:
3025 	return ret_val;
3026 }
3027 
3028 /**
3029  * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3030  * @hw: pointer to hardware structure
3031  *
3032  * Enable flow control according to IEEE clause 37.
3033  **/
3034 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3035 {
3036 	u32 links2, anlp1_reg, autoc_reg, links;
3037 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3038 
3039 	/*
3040 	 * On backplane, bail out if
3041 	 * - backplane autoneg was not completed, or if
3042 	 * - we are 82599 and link partner is not AN enabled
3043 	 */
3044 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3045 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3046 		DEBUGOUT("Auto-Negotiation did not complete\n");
3047 		goto out;
3048 	}
3049 
3050 	if (hw->mac.type == ixgbe_mac_82599EB) {
3051 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3052 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3053 			DEBUGOUT("Link partner is not AN enabled\n");
3054 			goto out;
3055 		}
3056 	}
3057 	/*
3058 	 * Read the 10g AN autoc and LP ability registers and resolve
3059 	 * local flow control settings accordingly
3060 	 */
3061 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3062 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3063 
3064 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3065 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3066 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3067 
3068 out:
3069 	return ret_val;
3070 }
3071 
3072 /**
3073  * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3074  * @hw: pointer to hardware structure
3075  *
3076  * Enable flow control according to IEEE clause 37.
3077  **/
3078 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3079 {
3080 	u16 technology_ability_reg = 0;
3081 	u16 lp_technology_ability_reg = 0;
3082 
3083 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3084 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3085 			     &technology_ability_reg);
3086 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3087 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3088 			     &lp_technology_ability_reg);
3089 
3090 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3091 				  (u32)lp_technology_ability_reg,
3092 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3093 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3094 }
3095 
3096 /**
3097  * ixgbe_fc_autoneg - Configure flow control
3098  * @hw: pointer to hardware structure
3099  *
3100  * Compares our advertised flow control capabilities to those advertised by
3101  * our link partner, and determines the proper flow control mode to use.
3102  **/
3103 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3104 {
3105 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3106 	ixgbe_link_speed speed;
3107 	bool link_up;
3108 
3109 	DEBUGFUNC("ixgbe_fc_autoneg");
3110 
3111 	/*
3112 	 * AN should have completed when the cable was plugged in.
3113 	 * Look for reasons to bail out.  Bail out if:
3114 	 * - FC autoneg is disabled, or if
3115 	 * - link is not up.
3116 	 */
3117 	if (hw->fc.disable_fc_autoneg) {
3118 		/* TODO: This should be just an informative log */
3119 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3120 			      "Flow control autoneg is disabled");
3121 		goto out;
3122 	}
3123 
3124 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
3125 	if (!link_up) {
3126 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3127 		goto out;
3128 	}
3129 
3130 	switch (hw->phy.media_type) {
3131 	/* Autoneg flow control on fiber adapters */
3132 	case ixgbe_media_type_fiber_fixed:
3133 	case ixgbe_media_type_fiber_qsfp:
3134 	case ixgbe_media_type_fiber:
3135 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3136 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3137 		break;
3138 
3139 	/* Autoneg flow control on backplane adapters */
3140 	case ixgbe_media_type_backplane:
3141 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3142 		break;
3143 
3144 	/* Autoneg flow control on copper adapters */
3145 	case ixgbe_media_type_copper:
3146 		if (ixgbe_device_supports_autoneg_fc(hw))
3147 			ret_val = ixgbe_fc_autoneg_copper(hw);
3148 		break;
3149 
3150 	default:
3151 		break;
3152 	}
3153 
3154 out:
3155 	if (ret_val == IXGBE_SUCCESS) {
3156 		hw->fc.fc_was_autonegged = true;
3157 	} else {
3158 		hw->fc.fc_was_autonegged = false;
3159 		hw->fc.current_mode = hw->fc.requested_mode;
3160 	}
3161 }
3162 
3163 /*
3164  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3165  * @hw: pointer to hardware structure
3166  *
3167  * System-wide timeout range is encoded in PCIe Device Control2 register.
3168  *
3169  * Add 10% to specified maximum and return the number of times to poll for
3170  * completion timeout, in units of 100 microsec.  Never return less than
3171  * 800 = 80 millisec.
3172  */
3173 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3174 {
3175 	s16 devctl2;
3176 	u32 pollcnt;
3177 
3178 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3179 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3180 
3181 	switch (devctl2) {
3182 	case IXGBE_PCIDEVCTRL2_65_130ms:
3183 		pollcnt = 1300;		/* 130 millisec */
3184 		break;
3185 	case IXGBE_PCIDEVCTRL2_260_520ms:
3186 		pollcnt = 5200;		/* 520 millisec */
3187 		break;
3188 	case IXGBE_PCIDEVCTRL2_1_2s:
3189 		pollcnt = 20000;	/* 2 sec */
3190 		break;
3191 	case IXGBE_PCIDEVCTRL2_4_8s:
3192 		pollcnt = 80000;	/* 8 sec */
3193 		break;
3194 	case IXGBE_PCIDEVCTRL2_17_34s:
3195 		pollcnt = 34000;	/* 34 sec */
3196 		break;
3197 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3198 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3199 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3200 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3201 	default:
3202 		pollcnt = 800;		/* 80 millisec minimum */
3203 		break;
3204 	}
3205 
3206 	/* add 10% to spec maximum */
3207 	return (pollcnt * 11) / 10;
3208 }
3209 
3210 /**
3211  * ixgbe_disable_pcie_primary - Disable PCI-express primary access
3212  * @hw: pointer to hardware structure
3213  *
3214  * Disables PCI-Express primary access and verifies there are no pending
3215  * requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable
3216  * bit hasn't caused the primary requests to be disabled, else IXGBE_SUCCESS
3217  * is returned signifying primary requests disabled.
3218  **/
3219 s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
3220 {
3221 	s32 status = IXGBE_SUCCESS;
3222 	u32 i, poll;
3223 	u16 value;
3224 
3225 	DEBUGFUNC("ixgbe_disable_pcie_primary");
3226 
3227 	/* Always set this bit to ensure any future transactions are blocked */
3228 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3229 
3230 	/* Exit if primary requests are blocked */
3231 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3232 	    IXGBE_REMOVED(hw->hw_addr))
3233 		goto out;
3234 
3235 	/* Poll for primary request bit to clear */
3236 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
3237 		usec_delay(100);
3238 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3239 			goto out;
3240 	}
3241 
3242 	/*
3243 	 * Two consecutive resets are required via CTRL.RST per datasheet
3244 	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
3245 	 * of this need. The first reset prevents new primary requests from
3246 	 * being issued by our device.  We then must wait 1usec or more for any
3247 	 * remaining completions from the PCIe bus to trickle in, and then reset
3248 	 * again to clear out any effects they may have had on our device.
3249 	 */
3250 	DEBUGOUT("GIO Primary Disable bit didn't clear - requesting resets\n");
3251 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3252 
3253 	if (hw->mac.type >= ixgbe_mac_X550)
3254 		goto out;
3255 
3256 	/*
3257 	 * Before proceeding, make sure that the PCIe block does not have
3258 	 * transactions pending.
3259 	 */
3260 	poll = ixgbe_pcie_timeout_poll(hw);
3261 	for (i = 0; i < poll; i++) {
3262 		usec_delay(100);
3263 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3264 		if (IXGBE_REMOVED(hw->hw_addr))
3265 			goto out;
3266 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3267 			goto out;
3268 	}
3269 
3270 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3271 		     "PCIe transaction pending bit also did not clear.\n");
3272 	status = IXGBE_ERR_PRIMARY_REQUESTS_PENDING;
3273 
3274 out:
3275 	return status;
3276 }
3277 
3278 /**
3279  * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3280  * @hw: pointer to hardware structure
3281  * @mask: Mask to specify which semaphore to acquire
3282  *
3283  * Acquires the SWFW semaphore through the GSSR register for the specified
3284  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3285  **/
3286 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3287 {
3288 	u32 gssr = 0;
3289 	u32 swmask = mask;
3290 	u32 fwmask = mask << 5;
3291 	u32 timeout = 200;
3292 	u32 i;
3293 
3294 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3295 
3296 	for (i = 0; i < timeout; i++) {
3297 		/*
3298 		 * SW NVM semaphore bit is used for access to all
3299 		 * SW_FW_SYNC bits (not just NVM)
3300 		 */
3301 		if (ixgbe_get_eeprom_semaphore(hw))
3302 			return IXGBE_ERR_SWFW_SYNC;
3303 
3304 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3305 		if (!(gssr & (fwmask | swmask))) {
3306 			gssr |= swmask;
3307 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3308 			ixgbe_release_eeprom_semaphore(hw);
3309 			return IXGBE_SUCCESS;
3310 		} else {
3311 			/* Resource is currently in use by FW or SW */
3312 			ixgbe_release_eeprom_semaphore(hw);
3313 			msec_delay(5);
3314 		}
3315 	}
3316 
3317 	/* If time expired clear the bits holding the lock and retry */
3318 	if (gssr & (fwmask | swmask))
3319 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3320 
3321 	msec_delay(5);
3322 	return IXGBE_ERR_SWFW_SYNC;
3323 }
3324 
3325 /**
3326  * ixgbe_release_swfw_sync - Release SWFW semaphore
3327  * @hw: pointer to hardware structure
3328  * @mask: Mask to specify which semaphore to release
3329  *
3330  * Releases the SWFW semaphore through the GSSR register for the specified
3331  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3332  **/
3333 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3334 {
3335 	u32 gssr;
3336 	u32 swmask = mask;
3337 
3338 	DEBUGFUNC("ixgbe_release_swfw_sync");
3339 
3340 	ixgbe_get_eeprom_semaphore(hw);
3341 
3342 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3343 	gssr &= ~swmask;
3344 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3345 
3346 	ixgbe_release_eeprom_semaphore(hw);
3347 }
3348 
3349 /**
3350  * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3351  * @hw: pointer to hardware structure
3352  *
3353  * Stops the receive data path and waits for the HW to internally empty
3354  * the Rx security block
3355  **/
3356 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3357 {
3358 #define IXGBE_MAX_SECRX_POLL 4000
3359 
3360 	int i;
3361 	int secrxreg;
3362 
3363 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3364 
3365 
3366 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3367 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3368 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3369 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3370 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3371 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3372 			break;
3373 		else
3374 			/* Use interrupt-safe sleep just in case */
3375 			usec_delay(10);
3376 	}
3377 
3378 	/* For informational purposes only */
3379 	if (i >= IXGBE_MAX_SECRX_POLL)
3380 		DEBUGOUT("Rx unit being enabled before security "
3381 			 "path fully disabled.  Continuing with init.\n");
3382 
3383 	return IXGBE_SUCCESS;
3384 }
3385 
3386 /**
3387  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3388  * @hw: pointer to hardware structure
3389  * @locked: bool to indicate whether the SW/FW lock was taken
3390  * @reg_val: Value we read from AUTOC
3391  *
3392  * The default case requires no protection so just to the register read.
3393  */
3394 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3395 {
3396 	*locked = false;
3397 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3398 	return IXGBE_SUCCESS;
3399 }
3400 
3401 /**
3402  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3403  * @hw: pointer to hardware structure
3404  * @reg_val: value to write to AUTOC
3405  * @locked: bool to indicate whether the SW/FW lock was already taken by
3406  *          previous read.
3407  *
3408  * The default case requires no protection so just to the register write.
3409  */
3410 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3411 {
3412 	UNREFERENCED_1PARAMETER(locked);
3413 
3414 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3415 	return IXGBE_SUCCESS;
3416 }
3417 
3418 /**
3419  * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3420  * @hw: pointer to hardware structure
3421  *
3422  * Enables the receive data path.
3423  **/
3424 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3425 {
3426 	u32 secrxreg;
3427 
3428 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3429 
3430 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3431 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3432 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3433 	IXGBE_WRITE_FLUSH(hw);
3434 
3435 	return IXGBE_SUCCESS;
3436 }
3437 
3438 /**
3439  * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3440  * @hw: pointer to hardware structure
3441  * @regval: register value to write to RXCTRL
3442  *
3443  * Enables the Rx DMA unit
3444  **/
3445 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3446 {
3447 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3448 
3449 	if (regval & IXGBE_RXCTRL_RXEN)
3450 		ixgbe_enable_rx(hw);
3451 	else
3452 		ixgbe_disable_rx(hw);
3453 
3454 	return IXGBE_SUCCESS;
3455 }
3456 
3457 /**
3458  * ixgbe_blink_led_start_generic - Blink LED based on index.
3459  * @hw: pointer to hardware structure
3460  * @index: led number to blink
3461  **/
3462 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3463 {
3464 	ixgbe_link_speed speed = 0;
3465 	bool link_up = 0;
3466 	u32 autoc_reg = 0;
3467 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3468 	s32 ret_val = IXGBE_SUCCESS;
3469 	bool locked = false;
3470 
3471 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3472 
3473 	if (index > 3)
3474 		return IXGBE_ERR_PARAM;
3475 
3476 	/*
3477 	 * Link must be up to auto-blink the LEDs;
3478 	 * Force it if link is down.
3479 	 */
3480 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
3481 
3482 	if (!link_up) {
3483 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3484 		if (ret_val != IXGBE_SUCCESS)
3485 			goto out;
3486 
3487 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3488 		autoc_reg |= IXGBE_AUTOC_FLU;
3489 
3490 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3491 		if (ret_val != IXGBE_SUCCESS)
3492 			goto out;
3493 
3494 		IXGBE_WRITE_FLUSH(hw);
3495 		msec_delay(10);
3496 	}
3497 
3498 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3499 	led_reg |= IXGBE_LED_BLINK(index);
3500 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3501 	IXGBE_WRITE_FLUSH(hw);
3502 
3503 out:
3504 	return ret_val;
3505 }
3506 
3507 /**
3508  * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3509  * @hw: pointer to hardware structure
3510  * @index: led number to stop blinking
3511  **/
3512 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3513 {
3514 	u32 autoc_reg = 0;
3515 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3516 	s32 ret_val = IXGBE_SUCCESS;
3517 	bool locked = false;
3518 
3519 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3520 
3521 	if (index > 3)
3522 		return IXGBE_ERR_PARAM;
3523 
3524 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3525 	if (ret_val != IXGBE_SUCCESS)
3526 		goto out;
3527 
3528 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3529 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3530 
3531 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3532 	if (ret_val != IXGBE_SUCCESS)
3533 		goto out;
3534 
3535 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3536 	led_reg &= ~IXGBE_LED_BLINK(index);
3537 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3538 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3539 	IXGBE_WRITE_FLUSH(hw);
3540 
3541 out:
3542 	return ret_val;
3543 }
3544 
3545 /**
3546  * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3547  * @hw: pointer to hardware structure
3548  * @san_mac_offset: SAN MAC address offset
3549  *
3550  * This function will read the EEPROM location for the SAN MAC address
3551  * pointer, and returns the value at that location.  This is used in both
3552  * get and set mac_addr routines.
3553  **/
3554 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3555 					 u16 *san_mac_offset)
3556 {
3557 	s32 ret_val;
3558 
3559 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3560 
3561 	/*
3562 	 * First read the EEPROM pointer to see if the MAC addresses are
3563 	 * available.
3564 	 */
3565 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3566 				      san_mac_offset);
3567 	if (ret_val) {
3568 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3569 			      "eeprom at offset %d failed",
3570 			      IXGBE_SAN_MAC_ADDR_PTR);
3571 	}
3572 
3573 	return ret_val;
3574 }
3575 
3576 /**
3577  * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3578  * @hw: pointer to hardware structure
3579  * @san_mac_addr: SAN MAC address
3580  *
3581  * Reads the SAN MAC address from the EEPROM, if it's available.  This is
3582  * per-port, so set_lan_id() must be called before reading the addresses.
3583  * set_lan_id() is called by identify_sfp(), but this cannot be relied
3584  * upon for non-SFP connections, so we must call it here.
3585  **/
3586 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3587 {
3588 	u16 san_mac_data, san_mac_offset;
3589 	u8 i;
3590 	s32 ret_val;
3591 
3592 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3593 
3594 	/*
3595 	 * First read the EEPROM pointer to see if the MAC addresses are
3596 	 * available.  If they're not, no point in calling set_lan_id() here.
3597 	 */
3598 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3599 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3600 		goto san_mac_addr_out;
3601 
3602 	/* make sure we know which port we need to program */
3603 	hw->mac.ops.set_lan_id(hw);
3604 	/* apply the port offset to the address offset */
3605 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3606 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3607 	for (i = 0; i < 3; i++) {
3608 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3609 					      &san_mac_data);
3610 		if (ret_val) {
3611 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3612 				      "eeprom read at offset %d failed",
3613 				      san_mac_offset);
3614 			goto san_mac_addr_out;
3615 		}
3616 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3617 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3618 		san_mac_offset++;
3619 	}
3620 	return IXGBE_SUCCESS;
3621 
3622 san_mac_addr_out:
3623 	/*
3624 	 * No addresses available in this EEPROM.  It's not an
3625 	 * error though, so just wipe the local address and return.
3626 	 */
3627 	for (i = 0; i < 6; i++)
3628 		san_mac_addr[i] = 0xFF;
3629 	return IXGBE_SUCCESS;
3630 }
3631 
3632 /**
3633  * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3634  * @hw: pointer to hardware structure
3635  * @san_mac_addr: SAN MAC address
3636  *
3637  * Write a SAN MAC address to the EEPROM.
3638  **/
3639 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3640 {
3641 	s32 ret_val;
3642 	u16 san_mac_data, san_mac_offset;
3643 	u8 i;
3644 
3645 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3646 
3647 	/* Look for SAN mac address pointer.  If not defined, return */
3648 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3649 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3650 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3651 
3652 	/* Make sure we know which port we need to write */
3653 	hw->mac.ops.set_lan_id(hw);
3654 	/* Apply the port offset to the address offset */
3655 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3656 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3657 
3658 	for (i = 0; i < 3; i++) {
3659 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3660 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3661 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3662 		san_mac_offset++;
3663 	}
3664 
3665 	return IXGBE_SUCCESS;
3666 }
3667 
3668 /**
3669  * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3670  * @hw: pointer to hardware structure
3671  *
3672  * Read PCIe configuration space, and get the MSI-X vector count from
3673  * the capabilities table.
3674  **/
3675 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3676 {
3677 	u16 msix_count = 1;
3678 	u16 max_msix_count;
3679 	u16 pcie_offset;
3680 
3681 	switch (hw->mac.type) {
3682 	case ixgbe_mac_82598EB:
3683 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3684 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3685 		break;
3686 	case ixgbe_mac_82599EB:
3687 	case ixgbe_mac_X540:
3688 	case ixgbe_mac_X550:
3689 	case ixgbe_mac_X550EM_x:
3690 	case ixgbe_mac_X550EM_a:
3691 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3692 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3693 		break;
3694 	default:
3695 		return msix_count;
3696 	}
3697 
3698 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3699 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3700 	if (IXGBE_REMOVED(hw->hw_addr))
3701 		msix_count = 0;
3702 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3703 
3704 	/* MSI-X count is zero-based in HW */
3705 	msix_count++;
3706 
3707 	if (msix_count > max_msix_count)
3708 		msix_count = max_msix_count;
3709 
3710 	return msix_count;
3711 }
3712 
3713 /**
3714  * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3715  * @hw: pointer to hardware structure
3716  * @addr: Address to put into receive address register
3717  * @vmdq: VMDq pool to assign
3718  *
3719  * Puts an ethernet address into a receive address register, or
3720  * finds the rar that it is already in; adds to the pool list
3721  **/
3722 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3723 {
3724 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3725 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3726 	u32 rar;
3727 	u32 rar_low, rar_high;
3728 	u32 addr_low, addr_high;
3729 
3730 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3731 
3732 	/* swap bytes for HW little endian */
3733 	addr_low  = addr[0] | (addr[1] << 8)
3734 			    | (addr[2] << 16)
3735 			    | (addr[3] << 24);
3736 	addr_high = addr[4] | (addr[5] << 8);
3737 
3738 	/*
3739 	 * Either find the mac_id in rar or find the first empty space.
3740 	 * rar_highwater points to just after the highest currently used
3741 	 * rar in order to shorten the search.  It grows when we add a new
3742 	 * rar to the top.
3743 	 */
3744 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3745 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3746 
3747 		if (((IXGBE_RAH_AV & rar_high) == 0)
3748 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3749 			first_empty_rar = rar;
3750 		} else if ((rar_high & 0xFFFF) == addr_high) {
3751 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3752 			if (rar_low == addr_low)
3753 				break;    /* found it already in the rars */
3754 		}
3755 	}
3756 
3757 	if (rar < hw->mac.rar_highwater) {
3758 		/* already there so just add to the pool bits */
3759 		ixgbe_set_vmdq(hw, rar, vmdq);
3760 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3761 		/* stick it into first empty RAR slot we found */
3762 		rar = first_empty_rar;
3763 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3764 	} else if (rar == hw->mac.rar_highwater) {
3765 		/* add it to the top of the list and inc the highwater mark */
3766 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3767 		hw->mac.rar_highwater++;
3768 	} else if (rar >= hw->mac.num_rar_entries) {
3769 		return IXGBE_ERR_INVALID_MAC_ADDR;
3770 	}
3771 
3772 	/*
3773 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3774 	 * remains cleared to be sure default pool packets will get delivered
3775 	 */
3776 	if (rar == 0)
3777 		ixgbe_clear_vmdq(hw, rar, 0);
3778 
3779 	return rar;
3780 }
3781 
3782 /**
3783  * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3784  * @hw: pointer to hardware struct
3785  * @rar: receive address register index to disassociate
3786  * @vmdq: VMDq pool index to remove from the rar
3787  **/
3788 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3789 {
3790 	u32 mpsar_lo, mpsar_hi;
3791 	u32 rar_entries = hw->mac.num_rar_entries;
3792 
3793 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3794 
3795 	/* Make sure we are using a valid rar index range */
3796 	if (rar >= rar_entries) {
3797 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3798 			     "RAR index %d is out of range.\n", rar);
3799 		return IXGBE_ERR_INVALID_ARGUMENT;
3800 	}
3801 
3802 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3803 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3804 
3805 	if (IXGBE_REMOVED(hw->hw_addr))
3806 		goto done;
3807 
3808 	if (!mpsar_lo && !mpsar_hi)
3809 		goto done;
3810 
3811 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3812 		if (mpsar_lo) {
3813 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3814 			mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3815 		}
3816 		if (mpsar_hi) {
3817 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3818 			mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3819 		}
3820 	} else if (vmdq < 32) {
3821 		mpsar_lo &= ~(1 << vmdq);
3822 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3823 	} else {
3824 		mpsar_hi &= ~(1 << (vmdq - 32));
3825 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3826 	}
3827 
3828 	/* was that the last pool using this rar? */
3829 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3830 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3831 		hw->mac.ops.clear_rar(hw, rar);
3832 done:
3833 	return IXGBE_SUCCESS;
3834 }
3835 
3836 /**
3837  * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3838  * @hw: pointer to hardware struct
3839  * @rar: receive address register index to associate with a VMDq index
3840  * @vmdq: VMDq pool index
3841  **/
3842 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3843 {
3844 	u32 mpsar;
3845 	u32 rar_entries = hw->mac.num_rar_entries;
3846 
3847 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3848 
3849 	/* Make sure we are using a valid rar index range */
3850 	if (rar >= rar_entries) {
3851 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3852 			     "RAR index %d is out of range.\n", rar);
3853 		return IXGBE_ERR_INVALID_ARGUMENT;
3854 	}
3855 
3856 	if (vmdq < 32) {
3857 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3858 		mpsar |= 1 << vmdq;
3859 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3860 	} else {
3861 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3862 		mpsar |= 1 << (vmdq - 32);
3863 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3864 	}
3865 	return IXGBE_SUCCESS;
3866 }
3867 
3868 /**
3869  * ixgbe_set_vmdq_san_mac_generic - Associate default VMDq pool index with
3870  * a rx address
3871  * @hw: pointer to hardware struct
3872  * @vmdq: VMDq pool index
3873  *
3874  * This function should only be involved in the IOV mode.
3875  * In IOV mode, Default pool is next pool after the number of
3876  * VFs advertized and not 0.
3877  * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3878  **/
3879 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3880 {
3881 	u32 rar = hw->mac.san_mac_rar_index;
3882 
3883 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3884 
3885 	if (vmdq < 32) {
3886 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3887 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3888 	} else {
3889 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3890 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3891 	}
3892 
3893 	return IXGBE_SUCCESS;
3894 }
3895 
3896 /**
3897  * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3898  * @hw: pointer to hardware structure
3899  **/
3900 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3901 {
3902 	int i;
3903 
3904 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3905 	DEBUGOUT(" Clearing UTA\n");
3906 
3907 	for (i = 0; i < 128; i++)
3908 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3909 
3910 	return IXGBE_SUCCESS;
3911 }
3912 
3913 /**
3914  * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3915  * @hw: pointer to hardware structure
3916  * @vlan: VLAN id to write to VLAN filter
3917  * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3918  *		  vlanid not found
3919  *
3920  *
3921  * return the VLVF index where this VLAN id should be placed
3922  *
3923  **/
3924 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3925 {
3926 	s32 regindex, first_empty_slot;
3927 	u32 bits;
3928 
3929 	/* short cut the special case */
3930 	if (vlan == 0)
3931 		return 0;
3932 
3933 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3934 	 * will simply bypass the VLVF if there are no entries present in the
3935 	 * VLVF that contain our VLAN
3936 	 */
3937 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3938 
3939 	/* add VLAN enable bit for comparison */
3940 	vlan |= IXGBE_VLVF_VIEN;
3941 
3942 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3943 	 * slot found along the way.
3944 	 *
3945 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3946 	 */
3947 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3948 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3949 		if (bits == vlan)
3950 			return regindex;
3951 		if (!first_empty_slot && !bits)
3952 			first_empty_slot = regindex;
3953 	}
3954 
3955 	/* If we are here then we didn't find the VLAN.  Return first empty
3956 	 * slot we found during our search, else error.
3957 	 */
3958 	if (!first_empty_slot)
3959 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3960 
3961 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3962 }
3963 
3964 /**
3965  * ixgbe_set_vfta_generic - Set VLAN filter table
3966  * @hw: pointer to hardware structure
3967  * @vlan: VLAN id to write to VLAN filter
3968  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3969  * @vlan_on: boolean flag to turn on/off VLAN
3970  * @vlvf_bypass: boolean flag indicating updating default pool is okay
3971  *
3972  * Turn on/off specified VLAN in the VLAN filter table.
3973  **/
3974 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3975 			   bool vlan_on, bool vlvf_bypass)
3976 {
3977 	u32 regidx, vfta_delta, vfta;
3978 	s32 ret_val;
3979 
3980 	DEBUGFUNC("ixgbe_set_vfta_generic");
3981 
3982 	if (vlan > 4095 || vind > 63)
3983 		return IXGBE_ERR_PARAM;
3984 
3985 	/*
3986 	 * this is a 2 part operation - first the VFTA, then the
3987 	 * VLVF and VLVFB if VT Mode is set
3988 	 * We don't write the VFTA until we know the VLVF part succeeded.
3989 	 */
3990 
3991 	/* Part 1
3992 	 * The VFTA is a bitstring made up of 128 32-bit registers
3993 	 * that enable the particular VLAN id, much like the MTA:
3994 	 *    bits[11-5]: which register
3995 	 *    bits[4-0]:  which bit in the register
3996 	 */
3997 	regidx = vlan / 32;
3998 	vfta_delta = 1 << (vlan % 32);
3999 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4000 
4001 	/*
4002 	 * vfta_delta represents the difference between the current value
4003 	 * of vfta and the value we want in the register.  Since the diff
4004 	 * is an XOR mask we can just update the vfta using an XOR
4005 	 */
4006 	vfta_delta &= vlan_on ? ~vfta : vfta;
4007 	vfta ^= vfta_delta;
4008 
4009 	/* Part 2
4010 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4011 	 */
4012 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4013 					 vfta, vlvf_bypass);
4014 	if (ret_val != IXGBE_SUCCESS) {
4015 		if (vlvf_bypass)
4016 			goto vfta_update;
4017 		return ret_val;
4018 	}
4019 
4020 vfta_update:
4021 	/* Update VFTA now that we are ready for traffic */
4022 	if (vfta_delta)
4023 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4024 
4025 	return IXGBE_SUCCESS;
4026 }
4027 
4028 /**
4029  * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4030  * @hw: pointer to hardware structure
4031  * @vlan: VLAN id to write to VLAN filter
4032  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4033  * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4034  * @vfta_delta: pointer to the difference between the current value of VFTA
4035  *		 and the desired value
4036  * @vfta: the desired value of the VFTA
4037  * @vlvf_bypass: boolean flag indicating updating default pool is okay
4038  *
4039  * Turn on/off specified bit in VLVF table.
4040  **/
4041 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4042 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4043 			   bool vlvf_bypass)
4044 {
4045 	u32 bits;
4046 	s32 vlvf_index;
4047 
4048 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4049 
4050 	if (vlan > 4095 || vind > 63)
4051 		return IXGBE_ERR_PARAM;
4052 
4053 	/* If VT Mode is set
4054 	 *   Either vlan_on
4055 	 *     make sure the vlan is in VLVF
4056 	 *     set the vind bit in the matching VLVFB
4057 	 *   Or !vlan_on
4058 	 *     clear the pool bit and possibly the vind
4059 	 */
4060 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4061 		return IXGBE_SUCCESS;
4062 
4063 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4064 	if (vlvf_index < 0)
4065 		return vlvf_index;
4066 
4067 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4068 
4069 	/* set the pool bit */
4070 	bits |= 1 << (vind % 32);
4071 	if (vlan_on)
4072 		goto vlvf_update;
4073 
4074 	/* clear the pool bit */
4075 	bits ^= 1 << (vind % 32);
4076 
4077 	if (!bits &&
4078 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4079 		/* Clear VFTA first, then disable VLVF.  Otherwise
4080 		 * we run the risk of stray packets leaking into
4081 		 * the PF via the default pool
4082 		 */
4083 		if (*vfta_delta)
4084 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4085 
4086 		/* disable VLVF and clear remaining bit from pool */
4087 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4088 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4089 
4090 		return IXGBE_SUCCESS;
4091 	}
4092 
4093 	/* If there are still bits set in the VLVFB registers
4094 	 * for the VLAN ID indicated we need to see if the
4095 	 * caller is requesting that we clear the VFTA entry bit.
4096 	 * If the caller has requested that we clear the VFTA
4097 	 * entry bit but there are still pools/VFs using this VLAN
4098 	 * ID entry then ignore the request.  We're not worried
4099 	 * about the case where we're turning the VFTA VLAN ID
4100 	 * entry bit on, only when requested to turn it off as
4101 	 * there may be multiple pools and/or VFs using the
4102 	 * VLAN ID entry.  In that case we cannot clear the
4103 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4104 	 * been cleared.  This will be indicated by "bits" being
4105 	 * zero.
4106 	 */
4107 	*vfta_delta = 0;
4108 
4109 vlvf_update:
4110 	/* record pool change and enable VLAN ID if not already enabled */
4111 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4112 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4113 
4114 	return IXGBE_SUCCESS;
4115 }
4116 
4117 /**
4118  * ixgbe_clear_vfta_generic - Clear VLAN filter table
4119  * @hw: pointer to hardware structure
4120  *
4121  * Clears the VLAN filter table, and the VMDq index associated with the filter
4122  **/
4123 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4124 {
4125 	u32 offset;
4126 
4127 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4128 
4129 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4130 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4131 
4132 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4133 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4134 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4135 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4136 	}
4137 
4138 	return IXGBE_SUCCESS;
4139 }
4140 
4141 /**
4142  * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4143  * @hw: pointer to hardware structure
4144  *
4145  * Contains the logic to identify if we need to verify link for the
4146  * crosstalk fix
4147  **/
4148 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4149 {
4150 
4151 	/* Does FW say we need the fix */
4152 	if (!hw->need_crosstalk_fix)
4153 		return false;
4154 
4155 	/* Only consider SFP+ PHYs i.e. media type fiber */
4156 	switch (hw->mac.ops.get_media_type(hw)) {
4157 	case ixgbe_media_type_fiber:
4158 	case ixgbe_media_type_fiber_qsfp:
4159 		break;
4160 	default:
4161 		return false;
4162 	}
4163 
4164 	return true;
4165 }
4166 
4167 /**
4168  * ixgbe_check_mac_link_generic - Determine link and speed status
4169  * @hw: pointer to hardware structure
4170  * @speed: pointer to link speed
4171  * @link_up: true when link is up
4172  * @link_up_wait_to_complete: bool used to wait for link up or not
4173  *
4174  * Reads the links register to determine if link is up and the current speed
4175  **/
4176 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4177 				 bool *link_up, bool link_up_wait_to_complete)
4178 {
4179 	u32 links_reg, links_orig;
4180 	u32 i;
4181 
4182 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4183 
4184 	/* If Crosstalk fix enabled do the sanity check of making sure
4185 	 * the SFP+ cage is full.
4186 	 */
4187 	if (ixgbe_need_crosstalk_fix(hw)) {
4188 		u32 sfp_cage_full;
4189 
4190 		switch (hw->mac.type) {
4191 		case ixgbe_mac_82599EB:
4192 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4193 					IXGBE_ESDP_SDP2;
4194 			break;
4195 		case ixgbe_mac_X550EM_x:
4196 		case ixgbe_mac_X550EM_a:
4197 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4198 					IXGBE_ESDP_SDP0;
4199 			break;
4200 		default:
4201 			/* sanity check - No SFP+ devices here */
4202 			sfp_cage_full = false;
4203 			break;
4204 		}
4205 
4206 		if (!sfp_cage_full) {
4207 			*link_up = false;
4208 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4209 			return IXGBE_SUCCESS;
4210 		}
4211 	}
4212 
4213 	/* clear the old state */
4214 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4215 
4216 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4217 
4218 	if (links_orig != links_reg) {
4219 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4220 			  links_orig, links_reg);
4221 	}
4222 
4223 	if (link_up_wait_to_complete) {
4224 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4225 			if (links_reg & IXGBE_LINKS_UP) {
4226 				*link_up = true;
4227 				break;
4228 			} else {
4229 				*link_up = false;
4230 			}
4231 			msec_delay(100);
4232 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4233 		}
4234 	} else {
4235 		if (links_reg & IXGBE_LINKS_UP) {
4236 			if (ixgbe_need_crosstalk_fix(hw)) {
4237 				/* Check the link state again after a delay
4238 				 * to filter out spurious link up
4239 				 * notifications.
4240 				 */
4241 				msec_delay(5);
4242 				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4243 				if (!(links_reg & IXGBE_LINKS_UP)) {
4244 					*link_up = false;
4245 					*speed = IXGBE_LINK_SPEED_UNKNOWN;
4246 					return IXGBE_SUCCESS;
4247 				}
4248 
4249 			}
4250 			*link_up = true;
4251 		} else {
4252 			*link_up = false;
4253 		}
4254 	}
4255 
4256 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4257 	case IXGBE_LINKS_SPEED_10G_82599:
4258 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4259 		if (hw->mac.type >= ixgbe_mac_X550) {
4260 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4261 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4262 		}
4263 		break;
4264 	case IXGBE_LINKS_SPEED_1G_82599:
4265 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4266 		break;
4267 	case IXGBE_LINKS_SPEED_100_82599:
4268 		*speed = IXGBE_LINK_SPEED_100_FULL;
4269 		if (hw->mac.type == ixgbe_mac_X550) {
4270 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4271 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4272 		}
4273 		break;
4274 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4275 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4276 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4277 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4278 			*speed = IXGBE_LINK_SPEED_10_FULL;
4279 		break;
4280 	default:
4281 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4282 	}
4283 
4284 	return IXGBE_SUCCESS;
4285 }
4286 
4287 /**
4288  * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4289  * the EEPROM
4290  * @hw: pointer to hardware structure
4291  * @wwnn_prefix: the alternative WWNN prefix
4292  * @wwpn_prefix: the alternative WWPN prefix
4293  *
4294  * This function will read the EEPROM from the alternative SAN MAC address
4295  * block to check the support for the alternative WWNN/WWPN prefix support.
4296  **/
4297 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4298 				 u16 *wwpn_prefix)
4299 {
4300 	u16 offset, caps;
4301 	u16 alt_san_mac_blk_offset;
4302 
4303 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4304 
4305 	/* clear output first */
4306 	*wwnn_prefix = 0xFFFF;
4307 	*wwpn_prefix = 0xFFFF;
4308 
4309 	/* check if alternative SAN MAC is supported */
4310 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4311 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4312 		goto wwn_prefix_err;
4313 
4314 	if ((alt_san_mac_blk_offset == 0) ||
4315 	    (alt_san_mac_blk_offset == 0xFFFF))
4316 		goto wwn_prefix_out;
4317 
4318 	/* check capability in alternative san mac address block */
4319 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4320 	if (hw->eeprom.ops.read(hw, offset, &caps))
4321 		goto wwn_prefix_err;
4322 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4323 		goto wwn_prefix_out;
4324 
4325 	/* get the corresponding prefix for WWNN/WWPN */
4326 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4327 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4328 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4329 			      "eeprom read at offset %d failed", offset);
4330 	}
4331 
4332 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4333 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4334 		goto wwn_prefix_err;
4335 
4336 wwn_prefix_out:
4337 	return IXGBE_SUCCESS;
4338 
4339 wwn_prefix_err:
4340 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4341 		      "eeprom read at offset %d failed", offset);
4342 	return IXGBE_SUCCESS;
4343 }
4344 
4345 /**
4346  * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4347  * @hw: pointer to hardware structure
4348  * @bs: the fcoe boot status
4349  *
4350  * This function will read the FCOE boot status from the iSCSI FCOE block
4351  **/
4352 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4353 {
4354 	u16 offset, caps, flags;
4355 	s32 status;
4356 
4357 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4358 
4359 	/* clear output first */
4360 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4361 
4362 	/* check if FCOE IBA block is present */
4363 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4364 	status = hw->eeprom.ops.read(hw, offset, &caps);
4365 	if (status != IXGBE_SUCCESS)
4366 		goto out;
4367 
4368 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4369 		goto out;
4370 
4371 	/* check if iSCSI FCOE block is populated */
4372 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4373 	if (status != IXGBE_SUCCESS)
4374 		goto out;
4375 
4376 	if ((offset == 0) || (offset == 0xFFFF))
4377 		goto out;
4378 
4379 	/* read fcoe flags in iSCSI FCOE block */
4380 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4381 	status = hw->eeprom.ops.read(hw, offset, &flags);
4382 	if (status != IXGBE_SUCCESS)
4383 		goto out;
4384 
4385 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4386 		*bs = ixgbe_fcoe_bootstatus_enabled;
4387 	else
4388 		*bs = ixgbe_fcoe_bootstatus_disabled;
4389 
4390 out:
4391 	return status;
4392 }
4393 
4394 /**
4395  * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4396  * @hw: pointer to hardware structure
4397  * @enable: enable or disable switch for MAC anti-spoofing
4398  * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4399  *
4400  **/
4401 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4402 {
4403 	int vf_target_reg = vf >> 3;
4404 	int vf_target_shift = vf % 8;
4405 	u32 pfvfspoof;
4406 
4407 	if (hw->mac.type == ixgbe_mac_82598EB)
4408 		return;
4409 
4410 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4411 	if (enable)
4412 		pfvfspoof |= (1 << vf_target_shift);
4413 	else
4414 		pfvfspoof &= ~(1 << vf_target_shift);
4415 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4416 }
4417 
4418 /**
4419  * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4420  * @hw: pointer to hardware structure
4421  * @enable: enable or disable switch for VLAN anti-spoofing
4422  * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4423  *
4424  **/
4425 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4426 {
4427 	int vf_target_reg = vf >> 3;
4428 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4429 	u32 pfvfspoof;
4430 
4431 	if (hw->mac.type == ixgbe_mac_82598EB)
4432 		return;
4433 
4434 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4435 	if (enable)
4436 		pfvfspoof |= (1 << vf_target_shift);
4437 	else
4438 		pfvfspoof &= ~(1 << vf_target_shift);
4439 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4440 }
4441 
4442 /**
4443  * ixgbe_get_device_caps_generic - Get additional device capabilities
4444  * @hw: pointer to hardware structure
4445  * @device_caps: the EEPROM word with the extra device capabilities
4446  *
4447  * This function will read the EEPROM location for the device capabilities,
4448  * and return the word through device_caps.
4449  **/
4450 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4451 {
4452 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4453 
4454 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4455 
4456 	return IXGBE_SUCCESS;
4457 }
4458 
4459 /**
4460  * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4461  * @hw: pointer to hardware structure
4462  *
4463  **/
4464 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4465 {
4466 	u32 regval;
4467 	u32 i;
4468 
4469 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4470 
4471 	/* Enable relaxed ordering */
4472 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4473 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4474 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4475 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4476 	}
4477 
4478 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4479 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4480 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4481 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4482 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4483 	}
4484 
4485 }
4486 
4487 /**
4488  * ixgbe_calculate_checksum - Calculate checksum for buffer
4489  * @buffer: pointer to EEPROM
4490  * @length: size of EEPROM to calculate a checksum for
4491  * Calculates the checksum for some buffer on a specified length.  The
4492  * checksum calculated is returned.
4493  **/
4494 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4495 {
4496 	u32 i;
4497 	u8 sum = 0;
4498 
4499 	DEBUGFUNC("ixgbe_calculate_checksum");
4500 
4501 	if (!buffer)
4502 		return 0;
4503 
4504 	for (i = 0; i < length; i++)
4505 		sum += buffer[i];
4506 
4507 	return (u8) (0 - sum);
4508 }
4509 
4510 /**
4511  * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4512  * @hw: pointer to the HW structure
4513  * @buffer: command to write and where the return status will be placed
4514  * @length: length of buffer, must be multiple of 4 bytes
4515  * @timeout: time in ms to wait for command completion
4516  *
4517  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4518  * else returns semaphore error when encountering an error acquiring
4519  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4520  *
4521  * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4522  * by the caller.
4523  **/
4524 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4525 		       u32 timeout)
4526 {
4527 	u32 hicr, i, fwsts;
4528 	u16 dword_len;
4529 
4530 	DEBUGFUNC("ixgbe_hic_unlocked");
4531 
4532 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4533 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4534 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4535 	}
4536 
4537 	/* Set bit 9 of FWSTS clearing FW reset indication */
4538 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4539 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4540 
4541 	/* Check that the host interface is enabled. */
4542 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4543 	if (!(hicr & IXGBE_HICR_EN)) {
4544 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4545 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4546 	}
4547 
4548 	/* Calculate length in DWORDs. We must be DWORD aligned */
4549 	if (length % sizeof(u32)) {
4550 		DEBUGOUT("Buffer length failure, not aligned to dword");
4551 		return IXGBE_ERR_INVALID_ARGUMENT;
4552 	}
4553 
4554 	dword_len = length >> 2;
4555 
4556 	/* The device driver writes the relevant command block
4557 	 * into the ram area.
4558 	 */
4559 	for (i = 0; i < dword_len; i++)
4560 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4561 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4562 
4563 	/* Setting this bit tells the ARC that a new command is pending. */
4564 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4565 
4566 	for (i = 0; i < timeout; i++) {
4567 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4568 		if (!(hicr & IXGBE_HICR_C))
4569 			break;
4570 		msec_delay(1);
4571 	}
4572 
4573 	/* For each command except "Apply Update" perform
4574 	 * status checks in the HICR registry.
4575 	 */
4576 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4577 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4578 		return IXGBE_SUCCESS;
4579 
4580 	/* Check command completion */
4581 	if ((timeout && i == timeout) ||
4582 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4583 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4584 			      "Command has failed with no status valid.\n");
4585 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4586 	}
4587 
4588 	return IXGBE_SUCCESS;
4589 }
4590 
4591 /**
4592  * ixgbe_host_interface_command - Issue command to manageability block
4593  * @hw: pointer to the HW structure
4594  * @buffer: contains the command to write and where the return status will
4595  *  be placed
4596  * @length: length of buffer, must be multiple of 4 bytes
4597  * @timeout: time in ms to wait for command completion
4598  * @return_data: read and return data from the buffer (true) or not (false)
4599  *  Needed because FW structures are big endian and decoding of
4600  *  these fields can be 8 bit or 16 bit based on command. Decoding
4601  *  is not easily understood without making a table of commands.
4602  *  So we will leave this up to the caller to read back the data
4603  *  in these cases.
4604  *
4605  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4606  * else returns semaphore error when encountering an error acquiring
4607  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4608  **/
4609 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4610 				 u32 length, u32 timeout, bool return_data)
4611 {
4612 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4613 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4614 	u16 buf_len;
4615 	s32 status;
4616 	u32 bi;
4617 	u32 dword_len;
4618 
4619 	DEBUGFUNC("ixgbe_host_interface_command");
4620 
4621 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4622 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4623 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4624 	}
4625 
4626 	/* Take management host interface semaphore */
4627 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4628 	if (status)
4629 		return status;
4630 
4631 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4632 	if (status)
4633 		goto rel_out;
4634 
4635 	if (!return_data)
4636 		goto rel_out;
4637 
4638 	/* Calculate length in DWORDs */
4639 	dword_len = hdr_size >> 2;
4640 
4641 	/* first pull in the header so we know the buffer length */
4642 	for (bi = 0; bi < dword_len; bi++) {
4643 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4644 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4645 	}
4646 
4647 	/*
4648 	 * If there is any thing in data position pull it in
4649 	 * Read Flash command requires reading buffer length from
4650 	 * two byes instead of one byte
4651 	 */
4652 	if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4653 	    resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4654 		for (; bi < dword_len + 2; bi++) {
4655 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4656 							  bi);
4657 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4658 		}
4659 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4660 				  & 0xF00) | resp->buf_len;
4661 		hdr_size += (2 << 2);
4662 	} else {
4663 		buf_len = resp->buf_len;
4664 	}
4665 	if (!buf_len)
4666 		goto rel_out;
4667 
4668 	if (length < buf_len + hdr_size) {
4669 		DEBUGOUT("Buffer not large enough for reply message.\n");
4670 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4671 		goto rel_out;
4672 	}
4673 
4674 	/* Calculate length in DWORDs, add 3 for odd lengths */
4675 	dword_len = (buf_len + 3) >> 2;
4676 
4677 	/* Pull in the rest of the buffer (bi is where we left off) */
4678 	for (; bi <= dword_len; bi++) {
4679 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4680 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4681 	}
4682 
4683 rel_out:
4684 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4685 
4686 	return status;
4687 }
4688 
4689 /**
4690  * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4691  * @hw: pointer to the HW structure
4692  * @maj: driver version major number
4693  * @min: driver version minor number
4694  * @build: driver version build number
4695  * @sub: driver version sub build number
4696  * @len: unused
4697  * @driver_ver: unused
4698  *
4699  * Sends driver version number to firmware through the manageability
4700  * block.  On success return IXGBE_SUCCESS
4701  * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4702  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4703  **/
4704 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4705 				 u8 build, u8 sub, u16 len,
4706 				 const char *driver_ver)
4707 {
4708 	struct ixgbe_hic_drv_info fw_cmd;
4709 	int i;
4710 	s32 ret_val = IXGBE_SUCCESS;
4711 
4712 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4713 	UNREFERENCED_2PARAMETER(len, driver_ver);
4714 
4715 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4716 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4717 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4718 	fw_cmd.port_num = (u8)hw->bus.func;
4719 	fw_cmd.ver_maj = maj;
4720 	fw_cmd.ver_min = min;
4721 	fw_cmd.ver_build = build;
4722 	fw_cmd.ver_sub = sub;
4723 	fw_cmd.hdr.checksum = 0;
4724 	fw_cmd.pad = 0;
4725 	fw_cmd.pad2 = 0;
4726 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4727 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4728 
4729 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4730 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4731 						       sizeof(fw_cmd),
4732 						       IXGBE_HI_COMMAND_TIMEOUT,
4733 						       true);
4734 		if (ret_val != IXGBE_SUCCESS)
4735 			continue;
4736 
4737 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4738 		    FW_CEM_RESP_STATUS_SUCCESS)
4739 			ret_val = IXGBE_SUCCESS;
4740 		else
4741 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4742 
4743 		break;
4744 	}
4745 
4746 	return ret_val;
4747 }
4748 
4749 /**
4750  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4751  * @hw: pointer to hardware structure
4752  * @num_pb: number of packet buffers to allocate
4753  * @headroom: reserve n KB of headroom
4754  * @strategy: packet buffer allocation strategy
4755  **/
4756 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4757 			     int strategy)
4758 {
4759 	u32 pbsize = hw->mac.rx_pb_size;
4760 	int i = 0;
4761 	u32 rxpktsize, txpktsize, txpbthresh;
4762 
4763 	/* Reserve headroom */
4764 	pbsize -= headroom;
4765 
4766 	if (!num_pb)
4767 		num_pb = 1;
4768 
4769 	/* Divide remaining packet buffer space amongst the number of packet
4770 	 * buffers requested using supplied strategy.
4771 	 */
4772 	switch (strategy) {
4773 	case PBA_STRATEGY_WEIGHTED:
4774 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4775 		 * buffer with 5/8 of the packet buffer space.
4776 		 */
4777 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4778 		pbsize -= rxpktsize * (num_pb / 2);
4779 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4780 		for (; i < (num_pb / 2); i++)
4781 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4782 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4783 		for (; i < num_pb; i++)
4784 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4785 		break;
4786 	case PBA_STRATEGY_EQUAL:
4787 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4788 		for (; i < num_pb; i++)
4789 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4790 		break;
4791 	default:
4792 		break;
4793 	}
4794 
4795 	/* Only support an equally distributed Tx packet buffer strategy. */
4796 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4797 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4798 	for (i = 0; i < num_pb; i++) {
4799 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4800 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4801 	}
4802 
4803 	/* Clear unused TCs, if any, to zero buffer size*/
4804 	for (; i < IXGBE_MAX_PB; i++) {
4805 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4806 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4807 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4808 	}
4809 }
4810 
4811 /**
4812  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4813  * @hw: pointer to the hardware structure
4814  *
4815  * The 82599 and x540 MACs can experience issues if TX work is still pending
4816  * when a reset occurs.  This function prevents this by flushing the PCIe
4817  * buffers on the system.
4818  **/
4819 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4820 {
4821 	u32 gcr_ext, hlreg0, i, poll;
4822 	u16 value;
4823 
4824 	/*
4825 	 * If double reset is not requested then all transactions should
4826 	 * already be clear and as such there is no work to do
4827 	 */
4828 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4829 		return;
4830 
4831 	/*
4832 	 * Set loopback enable to prevent any transmits from being sent
4833 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4834 	 * has already been cleared.
4835 	 */
4836 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4837 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4838 
4839 	/* Wait for a last completion before clearing buffers */
4840 	IXGBE_WRITE_FLUSH(hw);
4841 	msec_delay(3);
4842 
4843 	/*
4844 	 * Before proceeding, make sure that the PCIe block does not have
4845 	 * transactions pending.
4846 	 */
4847 	poll = ixgbe_pcie_timeout_poll(hw);
4848 	for (i = 0; i < poll; i++) {
4849 		usec_delay(100);
4850 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4851 		if (IXGBE_REMOVED(hw->hw_addr))
4852 			goto out;
4853 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4854 			goto out;
4855 	}
4856 
4857 out:
4858 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4859 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4860 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4861 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4862 
4863 	/* Flush all writes and allow 20usec for all transactions to clear */
4864 	IXGBE_WRITE_FLUSH(hw);
4865 	usec_delay(20);
4866 
4867 	/* restore previous register values */
4868 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4869 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4870 }
4871 
4872 static const u8 ixgbe_emc_temp_data[4] = {
4873 	IXGBE_EMC_INTERNAL_DATA,
4874 	IXGBE_EMC_DIODE1_DATA,
4875 	IXGBE_EMC_DIODE2_DATA,
4876 	IXGBE_EMC_DIODE3_DATA
4877 };
4878 static const u8 ixgbe_emc_therm_limit[4] = {
4879 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
4880 	IXGBE_EMC_DIODE1_THERM_LIMIT,
4881 	IXGBE_EMC_DIODE2_THERM_LIMIT,
4882 	IXGBE_EMC_DIODE3_THERM_LIMIT
4883 };
4884 
4885 /**
4886  * ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
4887  * @hw: pointer to hardware structure
4888  *
4889  * Returns the thermal sensor data structure
4890  **/
4891 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
4892 {
4893 	s32 status = IXGBE_SUCCESS;
4894 	u16 ets_offset;
4895 	u16 ets_cfg;
4896 	u16 ets_sensor;
4897 	u8  num_sensors;
4898 	u8  sensor_index;
4899 	u8  sensor_location;
4900 	u8  i;
4901 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4902 
4903 	DEBUGFUNC("ixgbe_get_thermal_sensor_data_generic");
4904 
4905 	/* Only support thermal sensors attached to 82599 physical port 0 */
4906 	if ((hw->mac.type != ixgbe_mac_82599EB) ||
4907 	    (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
4908 		status = IXGBE_NOT_IMPLEMENTED;
4909 		goto out;
4910 	}
4911 
4912 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
4913 	if (status)
4914 		goto out;
4915 
4916 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) {
4917 		status = IXGBE_NOT_IMPLEMENTED;
4918 		goto out;
4919 	}
4920 
4921 	status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
4922 	if (status)
4923 		goto out;
4924 
4925 	if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
4926 		!= IXGBE_ETS_TYPE_EMC) {
4927 		status = IXGBE_NOT_IMPLEMENTED;
4928 		goto out;
4929 	}
4930 
4931 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4932 	if (num_sensors > IXGBE_MAX_SENSORS)
4933 		num_sensors = IXGBE_MAX_SENSORS;
4934 
4935 	for (i = 0; i < num_sensors; i++) {
4936 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
4937 					     &ets_sensor);
4938 		if (status)
4939 			goto out;
4940 
4941 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4942 				IXGBE_ETS_DATA_INDEX_SHIFT);
4943 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4944 				   IXGBE_ETS_DATA_LOC_SHIFT);
4945 
4946 		if (sensor_location != 0) {
4947 			status = hw->phy.ops.read_i2c_byte(hw,
4948 					ixgbe_emc_temp_data[sensor_index],
4949 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
4950 					&data->sensor[i].temp);
4951 			if (status)
4952 				goto out;
4953 		}
4954 	}
4955 out:
4956 	return status;
4957 }
4958 
4959 /**
4960  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
4961  * @hw: pointer to hardware structure
4962  *
4963  * Inits the thermal sensor thresholds according to the NVM map
4964  * and save off the threshold and location values into mac.thermal_sensor_data
4965  **/
4966 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
4967 {
4968 	s32 status = IXGBE_SUCCESS;
4969 	u16 offset;
4970 	u16 ets_offset;
4971 	u16 ets_cfg;
4972 	u16 ets_sensor;
4973 	u8  low_thresh_delta;
4974 	u8  num_sensors;
4975 	u8  sensor_index;
4976 	u8  sensor_location;
4977 	u8  therm_limit;
4978 	u8  i;
4979 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4980 
4981 	DEBUGFUNC("ixgbe_init_thermal_sensor_thresh_generic");
4982 
4983 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
4984 
4985 	/* Only support thermal sensors attached to 82599 physical port 0 */
4986 	if ((hw->mac.type != ixgbe_mac_82599EB) ||
4987 	    (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
4988 		return IXGBE_NOT_IMPLEMENTED;
4989 
4990 	offset = IXGBE_ETS_CFG;
4991 	if (hw->eeprom.ops.read(hw, offset, &ets_offset))
4992 		goto eeprom_err;
4993 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
4994 		return IXGBE_NOT_IMPLEMENTED;
4995 
4996 	offset = ets_offset;
4997 	if (hw->eeprom.ops.read(hw, offset, &ets_cfg))
4998 		goto eeprom_err;
4999 	if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
5000 		!= IXGBE_ETS_TYPE_EMC)
5001 		return IXGBE_NOT_IMPLEMENTED;
5002 
5003 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
5004 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
5005 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
5006 
5007 	for (i = 0; i < num_sensors; i++) {
5008 		offset = ets_offset + 1 + i;
5009 		if (hw->eeprom.ops.read(hw, offset, &ets_sensor)) {
5010 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
5011 				      "eeprom read at offset %d failed",
5012 				      offset);
5013 			continue;
5014 		}
5015 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
5016 				IXGBE_ETS_DATA_INDEX_SHIFT);
5017 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
5018 				   IXGBE_ETS_DATA_LOC_SHIFT);
5019 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
5020 
5021 		hw->phy.ops.write_i2c_byte(hw,
5022 			ixgbe_emc_therm_limit[sensor_index],
5023 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
5024 
5025 		if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) {
5026 			data->sensor[i].location = sensor_location;
5027 			data->sensor[i].caution_thresh = therm_limit;
5028 			data->sensor[i].max_op_thresh = therm_limit -
5029 							low_thresh_delta;
5030 		}
5031 	}
5032 	return status;
5033 
5034 eeprom_err:
5035 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
5036 		      "eeprom read at offset %d failed", offset);
5037 	return IXGBE_NOT_IMPLEMENTED;
5038 }
5039 
5040 /**
5041  * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
5042  *
5043  * @hw: pointer to hardware structure
5044  * @cmd: Command we send to the FW
5045  * @status: The reply from the FW
5046  *
5047  * Bit-bangs the cmd to the by_pass FW status points to what is returned.
5048  **/
5049 #define IXGBE_BYPASS_BB_WAIT 1
5050 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
5051 {
5052 	int i;
5053 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
5054 	u32 esdp;
5055 
5056 	if (!status)
5057 		return IXGBE_ERR_PARAM;
5058 
5059 	*status = 0;
5060 
5061 	/* SDP vary by MAC type */
5062 	switch (hw->mac.type) {
5063 	case ixgbe_mac_82599EB:
5064 		sck = IXGBE_ESDP_SDP7;
5065 		sdi = IXGBE_ESDP_SDP0;
5066 		sdo = IXGBE_ESDP_SDP6;
5067 		dir_sck = IXGBE_ESDP_SDP7_DIR;
5068 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
5069 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
5070 		break;
5071 	case ixgbe_mac_X540:
5072 		sck = IXGBE_ESDP_SDP2;
5073 		sdi = IXGBE_ESDP_SDP0;
5074 		sdo = IXGBE_ESDP_SDP1;
5075 		dir_sck = IXGBE_ESDP_SDP2_DIR;
5076 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
5077 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
5078 		break;
5079 	default:
5080 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
5081 	}
5082 
5083 	/* Set SDP pins direction */
5084 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5085 	esdp |= dir_sck;	/* SCK as output */
5086 	esdp |= dir_sdi;	/* SDI as output */
5087 	esdp &= ~dir_sdo;	/* SDO as input */
5088 	esdp |= sck;
5089 	esdp |= sdi;
5090 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5091 	IXGBE_WRITE_FLUSH(hw);
5092 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5093 
5094 	/* Generate start condition */
5095 	esdp &= ~sdi;
5096 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5097 	IXGBE_WRITE_FLUSH(hw);
5098 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5099 
5100 	esdp &= ~sck;
5101 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5102 	IXGBE_WRITE_FLUSH(hw);
5103 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5104 
5105 	/* Clock out the new control word and clock in the status */
5106 	for (i = 0; i < 32; i++) {
5107 		if ((cmd >> (31 - i)) & 0x01) {
5108 			esdp |= sdi;
5109 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5110 		} else {
5111 			esdp &= ~sdi;
5112 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5113 		}
5114 		IXGBE_WRITE_FLUSH(hw);
5115 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5116 
5117 		esdp |= sck;
5118 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5119 		IXGBE_WRITE_FLUSH(hw);
5120 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5121 
5122 		esdp &= ~sck;
5123 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5124 		IXGBE_WRITE_FLUSH(hw);
5125 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5126 
5127 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5128 		if (esdp & sdo)
5129 			*status = (*status << 1) | 0x01;
5130 		else
5131 			*status = (*status << 1) | 0x00;
5132 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5133 	}
5134 
5135 	/* stop condition */
5136 	esdp |= sck;
5137 	esdp &= ~sdi;
5138 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5139 	IXGBE_WRITE_FLUSH(hw);
5140 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5141 
5142 	esdp |= sdi;
5143 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5144 	IXGBE_WRITE_FLUSH(hw);
5145 
5146 	/* set the page bits to match the cmd that the status it belongs to */
5147 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5148 
5149 	return IXGBE_SUCCESS;
5150 }
5151 
5152 /**
5153  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5154  *
5155  * If we send a write we can't be sure it took until we can read back
5156  * that same register.  It can be a problem as some of the fields may
5157  * for valid reasons change inbetween the time wrote the register and
5158  * we read it again to verify.  So this function check everything we
5159  * can check and then assumes it worked.
5160  *
5161  * @u32 in_reg - The register cmd for the bit-bang read.
5162  * @u32 out_reg - The register returned from a bit-bang read.
5163  **/
5164 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5165 {
5166 	u32 mask;
5167 
5168 	/* Page must match for all control pages */
5169 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5170 		return false;
5171 
5172 	switch (in_reg & BYPASS_PAGE_M) {
5173 	case BYPASS_PAGE_CTL0:
5174 		/* All the following can't change since the last write
5175 		 *  - All the event actions
5176 		 *  - The timeout value
5177 		 */
5178 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5179 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5180 		       BYPASS_WDTIMEOUT_M |
5181 		       BYPASS_WDT_VALUE_M;
5182 		if ((out_reg & mask) != (in_reg & mask))
5183 			return false;
5184 
5185 		/* 0x0 is never a valid value for bypass status */
5186 		if (!(out_reg & BYPASS_STATUS_OFF_M))
5187 			return false;
5188 		break;
5189 	case BYPASS_PAGE_CTL1:
5190 		/* All the following can't change since the last write
5191 		 *  - time valid bit
5192 		 *  - time we last sent
5193 		 */
5194 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5195 		if ((out_reg & mask) != (in_reg & mask))
5196 			return false;
5197 		break;
5198 	case BYPASS_PAGE_CTL2:
5199 		/* All we can check in this page is control number
5200 		 * which is already done above.
5201 		 */
5202 		break;
5203 	}
5204 
5205 	/* We are as sure as we can be return true */
5206 	return true;
5207 }
5208 
5209 /**
5210  * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5211  *
5212  * @hw: pointer to hardware structure
5213  * @cmd: The control word we are setting.
5214  * @event: The event we are setting in the FW.  This also happens to
5215  *	    be the mask for the event we are setting (handy)
5216  * @action: The action we set the event to in the FW. This is in a
5217  *	     bit field that happens to be what we want to put in
5218  *	     the event spot (also handy)
5219  **/
5220 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5221 			     u32 action)
5222 {
5223 	u32 by_ctl = 0;
5224 	u32 cmd, verify;
5225 	u32 count = 0;
5226 
5227 	/* Get current values */
5228 	cmd = ctrl;	/* just reading only need control number */
5229 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5230 		return IXGBE_ERR_INVALID_ARGUMENT;
5231 
5232 	/* Set to new action */
5233 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5234 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5235 		return IXGBE_ERR_INVALID_ARGUMENT;
5236 
5237 	/* Page 0 force a FW eeprom write which is slow so verify */
5238 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5239 		verify = BYPASS_PAGE_CTL0;
5240 		do {
5241 			if (count++ > 5)
5242 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5243 
5244 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5245 				return IXGBE_ERR_INVALID_ARGUMENT;
5246 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5247 	} else {
5248 		/* We have give the FW time for the write to stick */
5249 		msec_delay(100);
5250 	}
5251 
5252 	return IXGBE_SUCCESS;
5253 }
5254 
5255 /**
5256  * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5257  *
5258  * @hw: pointer to hardware structure
5259  * @addr: The bypass eeprom address to read.
5260  * @value: The 8b of data at the address above.
5261  **/
5262 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5263 {
5264 	u32 cmd;
5265 	u32 status;
5266 
5267 
5268 	/* send the request */
5269 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5270 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5271 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5272 		return IXGBE_ERR_INVALID_ARGUMENT;
5273 
5274 	/* We have give the FW time for the write to stick */
5275 	msec_delay(100);
5276 
5277 	/* now read the results */
5278 	cmd &= ~BYPASS_WE;
5279 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5280 		return IXGBE_ERR_INVALID_ARGUMENT;
5281 
5282 	*value = status & BYPASS_CTL2_DATA_M;
5283 
5284 	return IXGBE_SUCCESS;
5285 }
5286 
5287 /**
5288  * ixgbe_get_orom_version - Return option ROM from EEPROM
5289  *
5290  * @hw: pointer to hardware structure
5291  * @nvm_ver: pointer to output structure
5292  *
5293  * if valid option ROM version, nvm_ver->or_valid set to true
5294  * else nvm_ver->or_valid is false.
5295  **/
5296 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5297 			    struct ixgbe_nvm_version *nvm_ver)
5298 {
5299 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5300 
5301 	nvm_ver->or_valid = false;
5302 	/* Option Rom may or may not be present.  Start with pointer */
5303 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5304 
5305 	/* make sure offset is valid */
5306 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5307 		return;
5308 
5309 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5310 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5311 
5312 	/* option rom exists and is valid */
5313 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5314 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5315 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5316 		return;
5317 
5318 	nvm_ver->or_valid = true;
5319 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5320 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5321 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5322 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5323 }
5324 
5325 /**
5326  * ixgbe_get_oem_prod_version - Return OEM Product version
5327  *
5328  * @hw: pointer to hardware structure
5329  * @nvm_ver: pointer to output structure
5330  *
5331  * if valid OEM product version, nvm_ver->oem_valid set to true
5332  * else nvm_ver->oem_valid is false.
5333  **/
5334 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5335 				struct ixgbe_nvm_version *nvm_ver)
5336 {
5337 	u16 rel_num, prod_ver, mod_len, cap, offset;
5338 
5339 	nvm_ver->oem_valid = false;
5340 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5341 
5342 	/* Return if offset to OEM Product Version block is invalid */
5343 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
5344 		return;
5345 
5346 	/* Read product version block */
5347 	hw->eeprom.ops.read(hw, offset, &mod_len);
5348 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5349 
5350 	/* Return if OEM product version block is invalid */
5351 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5352 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5353 		return;
5354 
5355 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5356 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5357 
5358 	/* Return if version is invalid */
5359 	if ((rel_num | prod_ver) == 0x0 ||
5360 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5361 		return;
5362 
5363 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5364 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5365 	nvm_ver->oem_release = rel_num;
5366 	nvm_ver->oem_valid = true;
5367 }
5368 
5369 /**
5370  * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5371  *
5372  * @hw: pointer to hardware structure
5373  * @nvm_ver: pointer to output structure
5374  *
5375  * word read errors will return 0xFFFF
5376  **/
5377 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5378 {
5379 	u16 etk_id_l, etk_id_h;
5380 
5381 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5382 		etk_id_l = NVM_VER_INVALID;
5383 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5384 		etk_id_h = NVM_VER_INVALID;
5385 
5386 	/* The word order for the version format is determined by high order
5387 	 * word bit 15.
5388 	 */
5389 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5390 		nvm_ver->etk_id = etk_id_h;
5391 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5392 	} else {
5393 		nvm_ver->etk_id = etk_id_l;
5394 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5395 	}
5396 }
5397 
5398 
5399 /**
5400  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5401  * @hw: pointer to hardware structure
5402  * @map: pointer to u8 arr for returning map
5403  *
5404  * Read the rtrup2tc HW register and resolve its content into map
5405  **/
5406 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5407 {
5408 	u32 reg, i;
5409 
5410 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5411 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5412 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5413 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5414 	return;
5415 }
5416 
5417 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5418 {
5419 	u32 pfdtxgswc;
5420 	u32 rxctrl;
5421 
5422 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5423 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5424 		if (hw->mac.type != ixgbe_mac_82598EB) {
5425 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5426 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5427 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5428 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5429 				hw->mac.set_lben = true;
5430 			} else {
5431 				hw->mac.set_lben = false;
5432 			}
5433 		}
5434 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5435 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5436 	}
5437 }
5438 
5439 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5440 {
5441 	u32 pfdtxgswc;
5442 	u32 rxctrl;
5443 
5444 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5445 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5446 
5447 	if (hw->mac.type != ixgbe_mac_82598EB) {
5448 		if (hw->mac.set_lben) {
5449 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5450 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5451 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5452 			hw->mac.set_lben = false;
5453 		}
5454 	}
5455 }
5456 
5457 /**
5458  * ixgbe_mng_present - returns true when management capability is present
5459  * @hw: pointer to hardware structure
5460  */
5461 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5462 {
5463 	u32 fwsm;
5464 
5465 	if (hw->mac.type < ixgbe_mac_82599EB)
5466 		return false;
5467 
5468 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5469 
5470 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5471 }
5472 
5473 /**
5474  * ixgbe_mng_enabled - Is the manageability engine enabled?
5475  * @hw: pointer to hardware structure
5476  *
5477  * Returns true if the manageability engine is enabled.
5478  **/
5479 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5480 {
5481 	u32 fwsm, manc, factps;
5482 
5483 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5484 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5485 		return false;
5486 
5487 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5488 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5489 		return false;
5490 
5491 	if (hw->mac.type <= ixgbe_mac_X540) {
5492 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5493 		if (factps & IXGBE_FACTPS_MNGCG)
5494 			return false;
5495 	}
5496 
5497 	return true;
5498 }
5499 
5500 /**
5501  * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5502  * @hw: pointer to hardware structure
5503  * @speed: new link speed
5504  * @autoneg_wait_to_complete: true when waiting for completion is needed
5505  *
5506  * Set the link speed in the MAC and/or PHY register and restarts link.
5507  **/
5508 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5509 					  ixgbe_link_speed speed,
5510 					  bool autoneg_wait_to_complete)
5511 {
5512 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5513 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5514 	s32 status = IXGBE_SUCCESS;
5515 	u32 speedcnt = 0;
5516 	u32 i = 0;
5517 	bool autoneg, link_up = false;
5518 
5519 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5520 
5521 	/* Mask off requested but non-supported speeds */
5522 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5523 	if (status != IXGBE_SUCCESS)
5524 		return status;
5525 
5526 	speed &= link_speed;
5527 
5528 	/* Try each speed one by one, highest priority first.  We do this in
5529 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5530 	 */
5531 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5532 		speedcnt++;
5533 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5534 
5535 		/* Set the module link speed */
5536 		switch (hw->phy.media_type) {
5537 		case ixgbe_media_type_fiber_fixed:
5538 		case ixgbe_media_type_fiber:
5539 			ixgbe_set_rate_select_speed(hw,
5540 						    IXGBE_LINK_SPEED_10GB_FULL);
5541 			break;
5542 		case ixgbe_media_type_fiber_qsfp:
5543 			/* QSFP module automatically detects MAC link speed */
5544 			break;
5545 		default:
5546 			DEBUGOUT("Unexpected media type.\n");
5547 			break;
5548 		}
5549 
5550 		/* Allow module to change analog characteristics (1G->10G) */
5551 		msec_delay(40);
5552 
5553 		status = ixgbe_setup_mac_link(hw,
5554 					      IXGBE_LINK_SPEED_10GB_FULL,
5555 					      autoneg_wait_to_complete);
5556 		if (status != IXGBE_SUCCESS)
5557 			return status;
5558 
5559 		/* Flap the Tx laser if it has not already been done */
5560 		ixgbe_flap_tx_laser(hw);
5561 
5562 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5563 		 * Section 73.10.2, we may have to wait up to 1000ms if KR is
5564 		 * attempted.  82599 uses the same timing for 10g SFI.
5565 		 */
5566 		for (i = 0; i < 10; i++) {
5567 			/* Wait for the link partner to also set speed */
5568 			msec_delay(100);
5569 
5570 			/* If we have link, just jump out */
5571 			status = ixgbe_check_link(hw, &link_speed,
5572 						  &link_up, false);
5573 			if (status != IXGBE_SUCCESS)
5574 				return status;
5575 
5576 			if (link_up)
5577 				goto out;
5578 		}
5579 	}
5580 
5581 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5582 		speedcnt++;
5583 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5584 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5585 
5586 		/* Set the module link speed */
5587 		switch (hw->phy.media_type) {
5588 		case ixgbe_media_type_fiber_fixed:
5589 		case ixgbe_media_type_fiber:
5590 			ixgbe_set_rate_select_speed(hw,
5591 						    IXGBE_LINK_SPEED_1GB_FULL);
5592 			break;
5593 		case ixgbe_media_type_fiber_qsfp:
5594 			/* QSFP module automatically detects link speed */
5595 			break;
5596 		default:
5597 			DEBUGOUT("Unexpected media type.\n");
5598 			break;
5599 		}
5600 
5601 		/* Allow module to change analog characteristics (10G->1G) */
5602 		msec_delay(40);
5603 
5604 		status = ixgbe_setup_mac_link(hw,
5605 					      IXGBE_LINK_SPEED_1GB_FULL,
5606 					      autoneg_wait_to_complete);
5607 		if (status != IXGBE_SUCCESS)
5608 			return status;
5609 
5610 		/* Flap the Tx laser if it has not already been done */
5611 		ixgbe_flap_tx_laser(hw);
5612 
5613 		/* Wait for the link partner to also set speed */
5614 		msec_delay(100);
5615 
5616 		/* If we have link, just jump out */
5617 		status = ixgbe_check_link(hw, &link_speed, &link_up, false);
5618 		if (status != IXGBE_SUCCESS)
5619 			return status;
5620 
5621 		if (link_up)
5622 			goto out;
5623 	}
5624 
5625 	/* We didn't get link.  Configure back to the highest speed we tried,
5626 	 * (if there was more than one).  We call ourselves back with just the
5627 	 * single highest speed that the user requested.
5628 	 */
5629 	if (speedcnt > 1)
5630 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5631 						      highest_link_speed,
5632 						      autoneg_wait_to_complete);
5633 
5634 out:
5635 	/* Set autoneg_advertised value based on input link speed */
5636 	hw->phy.autoneg_advertised = 0;
5637 
5638 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5639 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5640 
5641 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5642 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5643 
5644 	return status;
5645 }
5646 
5647 /**
5648  * ixgbe_set_soft_rate_select_speed - Set module link speed
5649  * @hw: pointer to hardware structure
5650  * @speed: link speed to set
5651  *
5652  * Set module link speed via the soft rate select.
5653  */
5654 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5655 					ixgbe_link_speed speed)
5656 {
5657 	s32 status;
5658 	u8 rs, eeprom_data;
5659 
5660 	switch (speed) {
5661 	case IXGBE_LINK_SPEED_10GB_FULL:
5662 		/* one bit mask same as setting on */
5663 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5664 		break;
5665 	case IXGBE_LINK_SPEED_1GB_FULL:
5666 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5667 		break;
5668 	default:
5669 		DEBUGOUT("Invalid fixed module speed\n");
5670 		return;
5671 	}
5672 
5673 	/* Set RS0 */
5674 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5675 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5676 					   &eeprom_data);
5677 	if (status) {
5678 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5679 		goto out;
5680 	}
5681 
5682 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5683 
5684 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5685 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5686 					    eeprom_data);
5687 	if (status) {
5688 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5689 		goto out;
5690 	}
5691 
5692 	/* Set RS1 */
5693 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5694 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5695 					   &eeprom_data);
5696 	if (status) {
5697 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5698 		goto out;
5699 	}
5700 
5701 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5702 
5703 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5704 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5705 					    eeprom_data);
5706 	if (status) {
5707 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5708 		goto out;
5709 	}
5710 out:
5711 	return;
5712 }
5713