1 /****************************************************************************** 2 3 Copyright (c) 2001-2012, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 #include "ixgbe_common.h" 36 #include "ixgbe_phy.h" 37 #include "ixgbe_api.h" 38 39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); 43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); 44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 45 u16 count); 46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); 47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw); 50 51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); 52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 53 u16 *san_mac_offset); 54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 55 u16 words, u16 *data); 56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 57 u16 words, u16 *data); 58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 59 u16 offset); 60 61 /** 62 * ixgbe_init_ops_generic - Inits function ptrs 63 * @hw: pointer to the hardware structure 64 * 65 * Initialize the function pointers. 66 **/ 67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw) 68 { 69 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 70 struct ixgbe_mac_info *mac = &hw->mac; 71 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 72 73 DEBUGFUNC("ixgbe_init_ops_generic"); 74 75 /* EEPROM */ 76 eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic; 77 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */ 78 if (eec & IXGBE_EEC_PRES) { 79 eeprom->ops.read = &ixgbe_read_eerd_generic; 80 eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic; 81 } else { 82 eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic; 83 eeprom->ops.read_buffer = 84 &ixgbe_read_eeprom_buffer_bit_bang_generic; 85 } 86 eeprom->ops.write = &ixgbe_write_eeprom_generic; 87 eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic; 88 eeprom->ops.validate_checksum = 89 &ixgbe_validate_eeprom_checksum_generic; 90 eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic; 91 eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic; 92 93 /* MAC */ 94 mac->ops.init_hw = &ixgbe_init_hw_generic; 95 mac->ops.reset_hw = NULL; 96 mac->ops.start_hw = &ixgbe_start_hw_generic; 97 mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic; 98 mac->ops.get_media_type = NULL; 99 mac->ops.get_supported_physical_layer = NULL; 100 mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic; 101 mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic; 102 mac->ops.stop_adapter = &ixgbe_stop_adapter_generic; 103 mac->ops.get_bus_info = &ixgbe_get_bus_info_generic; 104 mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie; 105 mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync; 106 mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync; 107 108 /* LEDs */ 109 mac->ops.led_on = &ixgbe_led_on_generic; 110 mac->ops.led_off = &ixgbe_led_off_generic; 111 mac->ops.blink_led_start = &ixgbe_blink_led_start_generic; 112 mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic; 113 114 /* RAR, Multicast, VLAN */ 115 mac->ops.set_rar = &ixgbe_set_rar_generic; 116 mac->ops.clear_rar = &ixgbe_clear_rar_generic; 117 mac->ops.insert_mac_addr = NULL; 118 mac->ops.set_vmdq = NULL; 119 mac->ops.clear_vmdq = NULL; 120 mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic; 121 mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic; 122 mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic; 123 mac->ops.enable_mc = &ixgbe_enable_mc_generic; 124 mac->ops.disable_mc = &ixgbe_disable_mc_generic; 125 mac->ops.clear_vfta = NULL; 126 mac->ops.set_vfta = NULL; 127 mac->ops.set_vlvf = NULL; 128 mac->ops.init_uta_tables = NULL; 129 130 /* Flow Control */ 131 mac->ops.fc_enable = &ixgbe_fc_enable_generic; 132 133 /* Link */ 134 mac->ops.get_link_capabilities = NULL; 135 mac->ops.setup_link = NULL; 136 mac->ops.check_link = NULL; 137 138 return IXGBE_SUCCESS; 139 } 140 141 /** 142 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow 143 * control 144 * @hw: pointer to hardware structure 145 * 146 * There are several phys that do not support autoneg flow control. This 147 * function check the device id to see if the associated phy supports 148 * autoneg flow control. 149 **/ 150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) 151 { 152 153 DEBUGFUNC("ixgbe_device_supports_autoneg_fc"); 154 155 switch (hw->device_id) { 156 case IXGBE_DEV_ID_X540T: 157 case IXGBE_DEV_ID_X540T1: 158 return IXGBE_SUCCESS; 159 case IXGBE_DEV_ID_82599_T3_LOM: 160 return IXGBE_SUCCESS; 161 default: 162 return IXGBE_ERR_FC_NOT_SUPPORTED; 163 } 164 } 165 166 /** 167 * ixgbe_setup_fc - Set up flow control 168 * @hw: pointer to hardware structure 169 * 170 * Called at init time to set up flow control. 171 **/ 172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw) 173 { 174 s32 ret_val = IXGBE_SUCCESS; 175 u32 reg = 0, reg_bp = 0; 176 u16 reg_cu = 0; 177 178 DEBUGFUNC("ixgbe_setup_fc"); 179 180 /* 181 * Validate the requested mode. Strict IEEE mode does not allow 182 * ixgbe_fc_rx_pause because it will cause us to fail at UNH. 183 */ 184 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { 185 DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); 186 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 187 goto out; 188 } 189 190 /* 191 * 10gig parts do not have a word in the EEPROM to determine the 192 * default flow control setting, so we explicitly set it to full. 193 */ 194 if (hw->fc.requested_mode == ixgbe_fc_default) 195 hw->fc.requested_mode = ixgbe_fc_full; 196 197 /* 198 * Set up the 1G and 10G flow control advertisement registers so the 199 * HW will be able to do fc autoneg once the cable is plugged in. If 200 * we link at 10G, the 1G advertisement is harmless and vice versa. 201 */ 202 switch (hw->phy.media_type) { 203 case ixgbe_media_type_fiber: 204 case ixgbe_media_type_backplane: 205 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 206 reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC); 207 break; 208 case ixgbe_media_type_copper: 209 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 210 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu); 211 break; 212 default: 213 break; 214 } 215 216 /* 217 * The possible values of fc.requested_mode are: 218 * 0: Flow control is completely disabled 219 * 1: Rx flow control is enabled (we can receive pause frames, 220 * but not send pause frames). 221 * 2: Tx flow control is enabled (we can send pause frames but 222 * we do not support receiving pause frames). 223 * 3: Both Rx and Tx flow control (symmetric) are enabled. 224 * other: Invalid. 225 */ 226 switch (hw->fc.requested_mode) { 227 case ixgbe_fc_none: 228 /* Flow control completely disabled by software override. */ 229 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); 230 if (hw->phy.media_type == ixgbe_media_type_backplane) 231 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | 232 IXGBE_AUTOC_ASM_PAUSE); 233 else if (hw->phy.media_type == ixgbe_media_type_copper) 234 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); 235 break; 236 case ixgbe_fc_tx_pause: 237 /* 238 * Tx Flow control is enabled, and Rx Flow control is 239 * disabled by software override. 240 */ 241 reg |= IXGBE_PCS1GANA_ASM_PAUSE; 242 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; 243 if (hw->phy.media_type == ixgbe_media_type_backplane) { 244 reg_bp |= IXGBE_AUTOC_ASM_PAUSE; 245 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; 246 } else if (hw->phy.media_type == ixgbe_media_type_copper) { 247 reg_cu |= IXGBE_TAF_ASM_PAUSE; 248 reg_cu &= ~IXGBE_TAF_SYM_PAUSE; 249 } 250 break; 251 case ixgbe_fc_rx_pause: 252 /* 253 * Rx Flow control is enabled and Tx Flow control is 254 * disabled by software override. Since there really 255 * isn't a way to advertise that we are capable of RX 256 * Pause ONLY, we will advertise that we support both 257 * symmetric and asymmetric Rx PAUSE, as such we fall 258 * through to the fc_full statement. Later, we will 259 * disable the adapter's ability to send PAUSE frames. 260 */ 261 case ixgbe_fc_full: 262 /* Flow control (both Rx and Tx) is enabled by SW override. */ 263 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; 264 if (hw->phy.media_type == ixgbe_media_type_backplane) 265 reg_bp |= IXGBE_AUTOC_SYM_PAUSE | 266 IXGBE_AUTOC_ASM_PAUSE; 267 else if (hw->phy.media_type == ixgbe_media_type_copper) 268 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; 269 break; 270 default: 271 DEBUGOUT("Flow control param set incorrectly\n"); 272 ret_val = IXGBE_ERR_CONFIG; 273 goto out; 274 break; 275 } 276 277 if (hw->mac.type != ixgbe_mac_X540) { 278 /* 279 * Enable auto-negotiation between the MAC & PHY; 280 * the MAC will advertise clause 37 flow control. 281 */ 282 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); 283 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); 284 285 /* Disable AN timeout */ 286 if (hw->fc.strict_ieee) 287 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; 288 289 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); 290 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 291 } 292 293 /* 294 * AUTOC restart handles negotiation of 1G and 10G on backplane 295 * and copper. There is no need to set the PCS1GCTL register. 296 * 297 */ 298 if (hw->phy.media_type == ixgbe_media_type_backplane) { 299 reg_bp |= IXGBE_AUTOC_AN_RESTART; 300 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp); 301 } else if ((hw->phy.media_type == ixgbe_media_type_copper) && 302 (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) { 303 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 304 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu); 305 } 306 307 DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); 308 out: 309 return ret_val; 310 } 311 312 /** 313 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx 314 * @hw: pointer to hardware structure 315 * 316 * Starts the hardware by filling the bus info structure and media type, clears 317 * all on chip counters, initializes receive address registers, multicast 318 * table, VLAN filter table, calls routine to set up link and flow control 319 * settings, and leaves transmit and receive units disabled and uninitialized 320 **/ 321 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) 322 { 323 s32 ret_val; 324 u32 ctrl_ext; 325 326 DEBUGFUNC("ixgbe_start_hw_generic"); 327 328 /* Set the media type */ 329 hw->phy.media_type = hw->mac.ops.get_media_type(hw); 330 331 /* PHY ops initialization must be done in reset_hw() */ 332 333 /* Clear the VLAN filter table */ 334 hw->mac.ops.clear_vfta(hw); 335 336 /* Clear statistics registers */ 337 hw->mac.ops.clear_hw_cntrs(hw); 338 339 /* Set No Snoop Disable */ 340 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); 341 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; 342 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); 343 IXGBE_WRITE_FLUSH(hw); 344 345 /* Setup flow control */ 346 ret_val = ixgbe_setup_fc(hw); 347 if (ret_val != IXGBE_SUCCESS) 348 goto out; 349 350 /* Clear adapter stopped flag */ 351 hw->adapter_stopped = FALSE; 352 353 out: 354 return ret_val; 355 } 356 357 /** 358 * ixgbe_start_hw_gen2 - Init sequence for common device family 359 * @hw: pointer to hw structure 360 * 361 * Performs the init sequence common to the second generation 362 * of 10 GbE devices. 363 * Devices in the second generation: 364 * 82599 365 * X540 366 **/ 367 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw) 368 { 369 u32 i; 370 u32 regval; 371 372 /* Clear the rate limiters */ 373 for (i = 0; i < hw->mac.max_tx_queues; i++) { 374 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); 375 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); 376 } 377 IXGBE_WRITE_FLUSH(hw); 378 379 /* Disable relaxed ordering */ 380 for (i = 0; i < hw->mac.max_tx_queues; i++) { 381 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 382 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; 383 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 384 } 385 386 for (i = 0; i < hw->mac.max_rx_queues; i++) { 387 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 388 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | 389 IXGBE_DCA_RXCTRL_HEAD_WRO_EN); 390 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 391 } 392 393 return IXGBE_SUCCESS; 394 } 395 396 /** 397 * ixgbe_init_hw_generic - Generic hardware initialization 398 * @hw: pointer to hardware structure 399 * 400 * Initialize the hardware by resetting the hardware, filling the bus info 401 * structure and media type, clears all on chip counters, initializes receive 402 * address registers, multicast table, VLAN filter table, calls routine to set 403 * up link and flow control settings, and leaves transmit and receive units 404 * disabled and uninitialized 405 **/ 406 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) 407 { 408 s32 status; 409 410 DEBUGFUNC("ixgbe_init_hw_generic"); 411 412 /* Reset the hardware */ 413 status = hw->mac.ops.reset_hw(hw); 414 415 if (status == IXGBE_SUCCESS) { 416 /* Start the HW */ 417 status = hw->mac.ops.start_hw(hw); 418 } 419 420 return status; 421 } 422 423 /** 424 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters 425 * @hw: pointer to hardware structure 426 * 427 * Clears all hardware statistics counters by reading them from the hardware 428 * Statistics counters are clear on read. 429 **/ 430 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) 431 { 432 u16 i = 0; 433 434 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic"); 435 436 IXGBE_READ_REG(hw, IXGBE_CRCERRS); 437 IXGBE_READ_REG(hw, IXGBE_ILLERRC); 438 IXGBE_READ_REG(hw, IXGBE_ERRBC); 439 IXGBE_READ_REG(hw, IXGBE_MSPDC); 440 for (i = 0; i < 8; i++) 441 IXGBE_READ_REG(hw, IXGBE_MPC(i)); 442 443 IXGBE_READ_REG(hw, IXGBE_MLFC); 444 IXGBE_READ_REG(hw, IXGBE_MRFC); 445 IXGBE_READ_REG(hw, IXGBE_RLEC); 446 IXGBE_READ_REG(hw, IXGBE_LXONTXC); 447 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); 448 if (hw->mac.type >= ixgbe_mac_82599EB) { 449 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); 450 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); 451 } else { 452 IXGBE_READ_REG(hw, IXGBE_LXONRXC); 453 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); 454 } 455 456 for (i = 0; i < 8; i++) { 457 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); 458 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); 459 if (hw->mac.type >= ixgbe_mac_82599EB) { 460 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); 461 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); 462 } else { 463 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); 464 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); 465 } 466 } 467 if (hw->mac.type >= ixgbe_mac_82599EB) 468 for (i = 0; i < 8; i++) 469 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); 470 IXGBE_READ_REG(hw, IXGBE_PRC64); 471 IXGBE_READ_REG(hw, IXGBE_PRC127); 472 IXGBE_READ_REG(hw, IXGBE_PRC255); 473 IXGBE_READ_REG(hw, IXGBE_PRC511); 474 IXGBE_READ_REG(hw, IXGBE_PRC1023); 475 IXGBE_READ_REG(hw, IXGBE_PRC1522); 476 IXGBE_READ_REG(hw, IXGBE_GPRC); 477 IXGBE_READ_REG(hw, IXGBE_BPRC); 478 IXGBE_READ_REG(hw, IXGBE_MPRC); 479 IXGBE_READ_REG(hw, IXGBE_GPTC); 480 IXGBE_READ_REG(hw, IXGBE_GORCL); 481 IXGBE_READ_REG(hw, IXGBE_GORCH); 482 IXGBE_READ_REG(hw, IXGBE_GOTCL); 483 IXGBE_READ_REG(hw, IXGBE_GOTCH); 484 if (hw->mac.type == ixgbe_mac_82598EB) 485 for (i = 0; i < 8; i++) 486 IXGBE_READ_REG(hw, IXGBE_RNBC(i)); 487 IXGBE_READ_REG(hw, IXGBE_RUC); 488 IXGBE_READ_REG(hw, IXGBE_RFC); 489 IXGBE_READ_REG(hw, IXGBE_ROC); 490 IXGBE_READ_REG(hw, IXGBE_RJC); 491 IXGBE_READ_REG(hw, IXGBE_MNGPRC); 492 IXGBE_READ_REG(hw, IXGBE_MNGPDC); 493 IXGBE_READ_REG(hw, IXGBE_MNGPTC); 494 IXGBE_READ_REG(hw, IXGBE_TORL); 495 IXGBE_READ_REG(hw, IXGBE_TORH); 496 IXGBE_READ_REG(hw, IXGBE_TPR); 497 IXGBE_READ_REG(hw, IXGBE_TPT); 498 IXGBE_READ_REG(hw, IXGBE_PTC64); 499 IXGBE_READ_REG(hw, IXGBE_PTC127); 500 IXGBE_READ_REG(hw, IXGBE_PTC255); 501 IXGBE_READ_REG(hw, IXGBE_PTC511); 502 IXGBE_READ_REG(hw, IXGBE_PTC1023); 503 IXGBE_READ_REG(hw, IXGBE_PTC1522); 504 IXGBE_READ_REG(hw, IXGBE_MPTC); 505 IXGBE_READ_REG(hw, IXGBE_BPTC); 506 for (i = 0; i < 16; i++) { 507 IXGBE_READ_REG(hw, IXGBE_QPRC(i)); 508 IXGBE_READ_REG(hw, IXGBE_QPTC(i)); 509 if (hw->mac.type >= ixgbe_mac_82599EB) { 510 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); 511 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); 512 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); 513 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); 514 IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); 515 } else { 516 IXGBE_READ_REG(hw, IXGBE_QBRC(i)); 517 IXGBE_READ_REG(hw, IXGBE_QBTC(i)); 518 } 519 } 520 521 if (hw->mac.type == ixgbe_mac_X540) { 522 if (hw->phy.id == 0) 523 ixgbe_identify_phy(hw); 524 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, 525 IXGBE_MDIO_PCS_DEV_TYPE, &i); 526 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, 527 IXGBE_MDIO_PCS_DEV_TYPE, &i); 528 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, 529 IXGBE_MDIO_PCS_DEV_TYPE, &i); 530 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, 531 IXGBE_MDIO_PCS_DEV_TYPE, &i); 532 } 533 534 return IXGBE_SUCCESS; 535 } 536 537 /** 538 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM 539 * @hw: pointer to hardware structure 540 * @pba_num: stores the part number string from the EEPROM 541 * @pba_num_size: part number string buffer length 542 * 543 * Reads the part number string from the EEPROM. 544 **/ 545 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, 546 u32 pba_num_size) 547 { 548 s32 ret_val; 549 u16 data; 550 u16 pba_ptr; 551 u16 offset; 552 u16 length; 553 554 DEBUGFUNC("ixgbe_read_pba_string_generic"); 555 556 if (pba_num == NULL) { 557 DEBUGOUT("PBA string buffer was null\n"); 558 return IXGBE_ERR_INVALID_ARGUMENT; 559 } 560 561 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 562 if (ret_val) { 563 DEBUGOUT("NVM Read Error\n"); 564 return ret_val; 565 } 566 567 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); 568 if (ret_val) { 569 DEBUGOUT("NVM Read Error\n"); 570 return ret_val; 571 } 572 573 /* 574 * if data is not ptr guard the PBA must be in legacy format which 575 * means pba_ptr is actually our second data word for the PBA number 576 * and we can decode it into an ascii string 577 */ 578 if (data != IXGBE_PBANUM_PTR_GUARD) { 579 DEBUGOUT("NVM PBA number is not stored as string\n"); 580 581 /* we will need 11 characters to store the PBA */ 582 if (pba_num_size < 11) { 583 DEBUGOUT("PBA string buffer too small\n"); 584 return IXGBE_ERR_NO_SPACE; 585 } 586 587 /* extract hex string from data and pba_ptr */ 588 pba_num[0] = (data >> 12) & 0xF; 589 pba_num[1] = (data >> 8) & 0xF; 590 pba_num[2] = (data >> 4) & 0xF; 591 pba_num[3] = data & 0xF; 592 pba_num[4] = (pba_ptr >> 12) & 0xF; 593 pba_num[5] = (pba_ptr >> 8) & 0xF; 594 pba_num[6] = '-'; 595 pba_num[7] = 0; 596 pba_num[8] = (pba_ptr >> 4) & 0xF; 597 pba_num[9] = pba_ptr & 0xF; 598 599 /* put a null character on the end of our string */ 600 pba_num[10] = '\0'; 601 602 /* switch all the data but the '-' to hex char */ 603 for (offset = 0; offset < 10; offset++) { 604 if (pba_num[offset] < 0xA) 605 pba_num[offset] += '0'; 606 else if (pba_num[offset] < 0x10) 607 pba_num[offset] += 'A' - 0xA; 608 } 609 610 return IXGBE_SUCCESS; 611 } 612 613 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); 614 if (ret_val) { 615 DEBUGOUT("NVM Read Error\n"); 616 return ret_val; 617 } 618 619 if (length == 0xFFFF || length == 0) { 620 DEBUGOUT("NVM PBA number section invalid length\n"); 621 return IXGBE_ERR_PBA_SECTION; 622 } 623 624 /* check if pba_num buffer is big enough */ 625 if (pba_num_size < (((u32)length * 2) - 1)) { 626 DEBUGOUT("PBA string buffer too small\n"); 627 return IXGBE_ERR_NO_SPACE; 628 } 629 630 /* trim pba length from start of string */ 631 pba_ptr++; 632 length--; 633 634 for (offset = 0; offset < length; offset++) { 635 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); 636 if (ret_val) { 637 DEBUGOUT("NVM Read Error\n"); 638 return ret_val; 639 } 640 pba_num[offset * 2] = (u8)(data >> 8); 641 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); 642 } 643 pba_num[offset * 2] = '\0'; 644 645 return IXGBE_SUCCESS; 646 } 647 648 /** 649 * ixgbe_read_pba_num_generic - Reads part number from EEPROM 650 * @hw: pointer to hardware structure 651 * @pba_num: stores the part number from the EEPROM 652 * 653 * Reads the part number from the EEPROM. 654 **/ 655 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num) 656 { 657 s32 ret_val; 658 u16 data; 659 660 DEBUGFUNC("ixgbe_read_pba_num_generic"); 661 662 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 663 if (ret_val) { 664 DEBUGOUT("NVM Read Error\n"); 665 return ret_val; 666 } else if (data == IXGBE_PBANUM_PTR_GUARD) { 667 DEBUGOUT("NVM Not supported\n"); 668 return IXGBE_NOT_IMPLEMENTED; 669 } 670 *pba_num = (u32)(data << 16); 671 672 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); 673 if (ret_val) { 674 DEBUGOUT("NVM Read Error\n"); 675 return ret_val; 676 } 677 *pba_num |= data; 678 679 return IXGBE_SUCCESS; 680 } 681 682 /** 683 * ixgbe_get_mac_addr_generic - Generic get MAC address 684 * @hw: pointer to hardware structure 685 * @mac_addr: Adapter MAC address 686 * 687 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 688 * A reset of the adapter must be performed prior to calling this function 689 * in order for the MAC address to have been loaded from the EEPROM into RAR0 690 **/ 691 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) 692 { 693 u32 rar_high; 694 u32 rar_low; 695 u16 i; 696 697 DEBUGFUNC("ixgbe_get_mac_addr_generic"); 698 699 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); 700 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); 701 702 for (i = 0; i < 4; i++) 703 mac_addr[i] = (u8)(rar_low >> (i*8)); 704 705 for (i = 0; i < 2; i++) 706 mac_addr[i+4] = (u8)(rar_high >> (i*8)); 707 708 return IXGBE_SUCCESS; 709 } 710 711 /** 712 * ixgbe_get_bus_info_generic - Generic set PCI bus info 713 * @hw: pointer to hardware structure 714 * 715 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure 716 **/ 717 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) 718 { 719 struct ixgbe_mac_info *mac = &hw->mac; 720 u16 link_status; 721 722 DEBUGFUNC("ixgbe_get_bus_info_generic"); 723 724 hw->bus.type = ixgbe_bus_type_pci_express; 725 726 /* Get the negotiated link width and speed from PCI config space */ 727 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS); 728 729 switch (link_status & IXGBE_PCI_LINK_WIDTH) { 730 case IXGBE_PCI_LINK_WIDTH_1: 731 hw->bus.width = ixgbe_bus_width_pcie_x1; 732 break; 733 case IXGBE_PCI_LINK_WIDTH_2: 734 hw->bus.width = ixgbe_bus_width_pcie_x2; 735 break; 736 case IXGBE_PCI_LINK_WIDTH_4: 737 hw->bus.width = ixgbe_bus_width_pcie_x4; 738 break; 739 case IXGBE_PCI_LINK_WIDTH_8: 740 hw->bus.width = ixgbe_bus_width_pcie_x8; 741 break; 742 default: 743 hw->bus.width = ixgbe_bus_width_unknown; 744 break; 745 } 746 747 switch (link_status & IXGBE_PCI_LINK_SPEED) { 748 case IXGBE_PCI_LINK_SPEED_2500: 749 hw->bus.speed = ixgbe_bus_speed_2500; 750 break; 751 case IXGBE_PCI_LINK_SPEED_5000: 752 hw->bus.speed = ixgbe_bus_speed_5000; 753 break; 754 case IXGBE_PCI_LINK_SPEED_8000: 755 hw->bus.speed = ixgbe_bus_speed_8000; 756 break; 757 default: 758 hw->bus.speed = ixgbe_bus_speed_unknown; 759 break; 760 } 761 762 mac->ops.set_lan_id(hw); 763 764 return IXGBE_SUCCESS; 765 } 766 767 /** 768 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 769 * @hw: pointer to the HW structure 770 * 771 * Determines the LAN function id by reading memory-mapped registers 772 * and swaps the port value if requested. 773 **/ 774 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) 775 { 776 struct ixgbe_bus_info *bus = &hw->bus; 777 u32 reg; 778 779 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie"); 780 781 reg = IXGBE_READ_REG(hw, IXGBE_STATUS); 782 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; 783 bus->lan_id = bus->func; 784 785 /* check for a port swap */ 786 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS); 787 if (reg & IXGBE_FACTPS_LFS) 788 bus->func ^= 0x1; 789 } 790 791 /** 792 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units 793 * @hw: pointer to hardware structure 794 * 795 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, 796 * disables transmit and receive units. The adapter_stopped flag is used by 797 * the shared code and drivers to determine if the adapter is in a stopped 798 * state and should not touch the hardware. 799 **/ 800 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) 801 { 802 u32 reg_val; 803 u16 i; 804 805 DEBUGFUNC("ixgbe_stop_adapter_generic"); 806 807 /* 808 * Set the adapter_stopped flag so other driver functions stop touching 809 * the hardware 810 */ 811 hw->adapter_stopped = TRUE; 812 813 /* Disable the receive unit */ 814 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0); 815 816 /* Clear interrupt mask to stop interrupts from being generated */ 817 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); 818 819 /* Clear any pending interrupts, flush previous writes */ 820 IXGBE_READ_REG(hw, IXGBE_EICR); 821 822 /* Disable the transmit unit. Each queue must be disabled. */ 823 for (i = 0; i < hw->mac.max_tx_queues; i++) 824 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); 825 826 /* Disable the receive unit by stopping each queue */ 827 for (i = 0; i < hw->mac.max_rx_queues; i++) { 828 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); 829 reg_val &= ~IXGBE_RXDCTL_ENABLE; 830 reg_val |= IXGBE_RXDCTL_SWFLSH; 831 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); 832 } 833 834 /* flush all queues disables */ 835 IXGBE_WRITE_FLUSH(hw); 836 msec_delay(2); 837 838 /* 839 * Prevent the PCI-E bus from from hanging by disabling PCI-E master 840 * access and verify no pending requests 841 */ 842 return ixgbe_disable_pcie_master(hw); 843 } 844 845 /** 846 * ixgbe_led_on_generic - Turns on the software controllable LEDs. 847 * @hw: pointer to hardware structure 848 * @index: led number to turn on 849 **/ 850 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) 851 { 852 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 853 854 DEBUGFUNC("ixgbe_led_on_generic"); 855 856 /* To turn on the LED, set mode to ON. */ 857 led_reg &= ~IXGBE_LED_MODE_MASK(index); 858 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); 859 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 860 IXGBE_WRITE_FLUSH(hw); 861 862 return IXGBE_SUCCESS; 863 } 864 865 /** 866 * ixgbe_led_off_generic - Turns off the software controllable LEDs. 867 * @hw: pointer to hardware structure 868 * @index: led number to turn off 869 **/ 870 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) 871 { 872 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 873 874 DEBUGFUNC("ixgbe_led_off_generic"); 875 876 /* To turn off the LED, set mode to OFF. */ 877 led_reg &= ~IXGBE_LED_MODE_MASK(index); 878 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); 879 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 880 IXGBE_WRITE_FLUSH(hw); 881 882 return IXGBE_SUCCESS; 883 } 884 885 /** 886 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params 887 * @hw: pointer to hardware structure 888 * 889 * Initializes the EEPROM parameters ixgbe_eeprom_info within the 890 * ixgbe_hw struct in order to set up EEPROM access. 891 **/ 892 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) 893 { 894 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 895 u32 eec; 896 u16 eeprom_size; 897 898 DEBUGFUNC("ixgbe_init_eeprom_params_generic"); 899 900 if (eeprom->type == ixgbe_eeprom_uninitialized) { 901 eeprom->type = ixgbe_eeprom_none; 902 /* Set default semaphore delay to 10ms which is a well 903 * tested value */ 904 eeprom->semaphore_delay = 10; 905 /* Clear EEPROM page size, it will be initialized as needed */ 906 eeprom->word_page_size = 0; 907 908 /* 909 * Check for EEPROM present first. 910 * If not present leave as none 911 */ 912 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 913 if (eec & IXGBE_EEC_PRES) { 914 eeprom->type = ixgbe_eeprom_spi; 915 916 /* 917 * SPI EEPROM is assumed here. This code would need to 918 * change if a future EEPROM is not SPI. 919 */ 920 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> 921 IXGBE_EEC_SIZE_SHIFT); 922 eeprom->word_size = 1 << (eeprom_size + 923 IXGBE_EEPROM_WORD_SIZE_SHIFT); 924 } 925 926 if (eec & IXGBE_EEC_ADDR_SIZE) 927 eeprom->address_bits = 16; 928 else 929 eeprom->address_bits = 8; 930 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: " 931 "%d\n", eeprom->type, eeprom->word_size, 932 eeprom->address_bits); 933 } 934 935 return IXGBE_SUCCESS; 936 } 937 938 /** 939 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang 940 * @hw: pointer to hardware structure 941 * @offset: offset within the EEPROM to write 942 * @words: number of word(s) 943 * @data: 16 bit word(s) to write to EEPROM 944 * 945 * Reads 16 bit word(s) from EEPROM through bit-bang method 946 **/ 947 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 948 u16 words, u16 *data) 949 { 950 s32 status = IXGBE_SUCCESS; 951 u16 i, count; 952 953 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic"); 954 955 hw->eeprom.ops.init_params(hw); 956 957 if (words == 0) { 958 status = IXGBE_ERR_INVALID_ARGUMENT; 959 goto out; 960 } 961 962 if (offset + words > hw->eeprom.word_size) { 963 status = IXGBE_ERR_EEPROM; 964 goto out; 965 } 966 967 /* 968 * The EEPROM page size cannot be queried from the chip. We do lazy 969 * initialization. It is worth to do that when we write large buffer. 970 */ 971 if ((hw->eeprom.word_page_size == 0) && 972 (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) 973 ixgbe_detect_eeprom_page_size_generic(hw, offset); 974 975 /* 976 * We cannot hold synchronization semaphores for too long 977 * to avoid other entity starvation. However it is more efficient 978 * to read in bursts than synchronizing access for each word. 979 */ 980 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 981 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 982 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 983 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, 984 count, &data[i]); 985 986 if (status != IXGBE_SUCCESS) 987 break; 988 } 989 990 out: 991 return status; 992 } 993 994 /** 995 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM 996 * @hw: pointer to hardware structure 997 * @offset: offset within the EEPROM to be written to 998 * @words: number of word(s) 999 * @data: 16 bit word(s) to be written to the EEPROM 1000 * 1001 * If ixgbe_eeprom_update_checksum is not called after this function, the 1002 * EEPROM will most likely contain an invalid checksum. 1003 **/ 1004 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1005 u16 words, u16 *data) 1006 { 1007 s32 status; 1008 u16 word; 1009 u16 page_size; 1010 u16 i; 1011 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; 1012 1013 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang"); 1014 1015 /* Prepare the EEPROM for writing */ 1016 status = ixgbe_acquire_eeprom(hw); 1017 1018 if (status == IXGBE_SUCCESS) { 1019 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1020 ixgbe_release_eeprom(hw); 1021 status = IXGBE_ERR_EEPROM; 1022 } 1023 } 1024 1025 if (status == IXGBE_SUCCESS) { 1026 for (i = 0; i < words; i++) { 1027 ixgbe_standby_eeprom(hw); 1028 1029 /* Send the WRITE ENABLE command (8 bit opcode ) */ 1030 ixgbe_shift_out_eeprom_bits(hw, 1031 IXGBE_EEPROM_WREN_OPCODE_SPI, 1032 IXGBE_EEPROM_OPCODE_BITS); 1033 1034 ixgbe_standby_eeprom(hw); 1035 1036 /* 1037 * Some SPI eeproms use the 8th address bit embedded 1038 * in the opcode 1039 */ 1040 if ((hw->eeprom.address_bits == 8) && 1041 ((offset + i) >= 128)) 1042 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1043 1044 /* Send the Write command (8-bit opcode + addr) */ 1045 ixgbe_shift_out_eeprom_bits(hw, write_opcode, 1046 IXGBE_EEPROM_OPCODE_BITS); 1047 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1048 hw->eeprom.address_bits); 1049 1050 page_size = hw->eeprom.word_page_size; 1051 1052 /* Send the data in burst via SPI*/ 1053 do { 1054 word = data[i]; 1055 word = (word >> 8) | (word << 8); 1056 ixgbe_shift_out_eeprom_bits(hw, word, 16); 1057 1058 if (page_size == 0) 1059 break; 1060 1061 /* do not wrap around page */ 1062 if (((offset + i) & (page_size - 1)) == 1063 (page_size - 1)) 1064 break; 1065 } while (++i < words); 1066 1067 ixgbe_standby_eeprom(hw); 1068 msec_delay(10); 1069 } 1070 /* Done with writing - release the EEPROM */ 1071 ixgbe_release_eeprom(hw); 1072 } 1073 1074 return status; 1075 } 1076 1077 /** 1078 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM 1079 * @hw: pointer to hardware structure 1080 * @offset: offset within the EEPROM to be written to 1081 * @data: 16 bit word to be written to the EEPROM 1082 * 1083 * If ixgbe_eeprom_update_checksum is not called after this function, the 1084 * EEPROM will most likely contain an invalid checksum. 1085 **/ 1086 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1087 { 1088 s32 status; 1089 1090 DEBUGFUNC("ixgbe_write_eeprom_generic"); 1091 1092 hw->eeprom.ops.init_params(hw); 1093 1094 if (offset >= hw->eeprom.word_size) { 1095 status = IXGBE_ERR_EEPROM; 1096 goto out; 1097 } 1098 1099 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); 1100 1101 out: 1102 return status; 1103 } 1104 1105 /** 1106 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang 1107 * @hw: pointer to hardware structure 1108 * @offset: offset within the EEPROM to be read 1109 * @data: read 16 bit words(s) from EEPROM 1110 * @words: number of word(s) 1111 * 1112 * Reads 16 bit word(s) from EEPROM through bit-bang method 1113 **/ 1114 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1115 u16 words, u16 *data) 1116 { 1117 s32 status = IXGBE_SUCCESS; 1118 u16 i, count; 1119 1120 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic"); 1121 1122 hw->eeprom.ops.init_params(hw); 1123 1124 if (words == 0) { 1125 status = IXGBE_ERR_INVALID_ARGUMENT; 1126 goto out; 1127 } 1128 1129 if (offset + words > hw->eeprom.word_size) { 1130 status = IXGBE_ERR_EEPROM; 1131 goto out; 1132 } 1133 1134 /* 1135 * We cannot hold synchronization semaphores for too long 1136 * to avoid other entity starvation. However it is more efficient 1137 * to read in bursts than synchronizing access for each word. 1138 */ 1139 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1140 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1141 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1142 1143 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, 1144 count, &data[i]); 1145 1146 if (status != IXGBE_SUCCESS) 1147 break; 1148 } 1149 1150 out: 1151 return status; 1152 } 1153 1154 /** 1155 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang 1156 * @hw: pointer to hardware structure 1157 * @offset: offset within the EEPROM to be read 1158 * @words: number of word(s) 1159 * @data: read 16 bit word(s) from EEPROM 1160 * 1161 * Reads 16 bit word(s) from EEPROM through bit-bang method 1162 **/ 1163 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1164 u16 words, u16 *data) 1165 { 1166 s32 status; 1167 u16 word_in; 1168 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; 1169 u16 i; 1170 1171 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang"); 1172 1173 /* Prepare the EEPROM for reading */ 1174 status = ixgbe_acquire_eeprom(hw); 1175 1176 if (status == IXGBE_SUCCESS) { 1177 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1178 ixgbe_release_eeprom(hw); 1179 status = IXGBE_ERR_EEPROM; 1180 } 1181 } 1182 1183 if (status == IXGBE_SUCCESS) { 1184 for (i = 0; i < words; i++) { 1185 ixgbe_standby_eeprom(hw); 1186 /* 1187 * Some SPI eeproms use the 8th address bit embedded 1188 * in the opcode 1189 */ 1190 if ((hw->eeprom.address_bits == 8) && 1191 ((offset + i) >= 128)) 1192 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1193 1194 /* Send the READ command (opcode + addr) */ 1195 ixgbe_shift_out_eeprom_bits(hw, read_opcode, 1196 IXGBE_EEPROM_OPCODE_BITS); 1197 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1198 hw->eeprom.address_bits); 1199 1200 /* Read the data. */ 1201 word_in = ixgbe_shift_in_eeprom_bits(hw, 16); 1202 data[i] = (word_in >> 8) | (word_in << 8); 1203 } 1204 1205 /* End this read operation */ 1206 ixgbe_release_eeprom(hw); 1207 } 1208 1209 return status; 1210 } 1211 1212 /** 1213 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang 1214 * @hw: pointer to hardware structure 1215 * @offset: offset within the EEPROM to be read 1216 * @data: read 16 bit value from EEPROM 1217 * 1218 * Reads 16 bit value from EEPROM through bit-bang method 1219 **/ 1220 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1221 u16 *data) 1222 { 1223 s32 status; 1224 1225 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic"); 1226 1227 hw->eeprom.ops.init_params(hw); 1228 1229 if (offset >= hw->eeprom.word_size) { 1230 status = IXGBE_ERR_EEPROM; 1231 goto out; 1232 } 1233 1234 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1235 1236 out: 1237 return status; 1238 } 1239 1240 /** 1241 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD 1242 * @hw: pointer to hardware structure 1243 * @offset: offset of word in the EEPROM to read 1244 * @words: number of word(s) 1245 * @data: 16 bit word(s) from the EEPROM 1246 * 1247 * Reads a 16 bit word(s) from the EEPROM using the EERD register. 1248 **/ 1249 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1250 u16 words, u16 *data) 1251 { 1252 u32 eerd; 1253 s32 status = IXGBE_SUCCESS; 1254 u32 i; 1255 1256 DEBUGFUNC("ixgbe_read_eerd_buffer_generic"); 1257 1258 hw->eeprom.ops.init_params(hw); 1259 1260 if (words == 0) { 1261 status = IXGBE_ERR_INVALID_ARGUMENT; 1262 goto out; 1263 } 1264 1265 if (offset >= hw->eeprom.word_size) { 1266 status = IXGBE_ERR_EEPROM; 1267 goto out; 1268 } 1269 1270 for (i = 0; i < words; i++) { 1271 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) + 1272 IXGBE_EEPROM_RW_REG_START; 1273 1274 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 1275 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); 1276 1277 if (status == IXGBE_SUCCESS) { 1278 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 1279 IXGBE_EEPROM_RW_REG_DATA); 1280 } else { 1281 DEBUGOUT("Eeprom read timed out\n"); 1282 goto out; 1283 } 1284 } 1285 out: 1286 return status; 1287 } 1288 1289 /** 1290 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size 1291 * @hw: pointer to hardware structure 1292 * @offset: offset within the EEPROM to be used as a scratch pad 1293 * 1294 * Discover EEPROM page size by writing marching data at given offset. 1295 * This function is called only when we are writing a new large buffer 1296 * at given offset so the data would be overwritten anyway. 1297 **/ 1298 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 1299 u16 offset) 1300 { 1301 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; 1302 s32 status = IXGBE_SUCCESS; 1303 u16 i; 1304 1305 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic"); 1306 1307 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) 1308 data[i] = i; 1309 1310 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; 1311 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1312 IXGBE_EEPROM_PAGE_SIZE_MAX, data); 1313 hw->eeprom.word_page_size = 0; 1314 if (status != IXGBE_SUCCESS) 1315 goto out; 1316 1317 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1318 if (status != IXGBE_SUCCESS) 1319 goto out; 1320 1321 /* 1322 * When writing in burst more than the actual page size 1323 * EEPROM address wraps around current page. 1324 */ 1325 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; 1326 1327 DEBUGOUT1("Detected EEPROM page size = %d words.", 1328 hw->eeprom.word_page_size); 1329 out: 1330 return status; 1331 } 1332 1333 /** 1334 * ixgbe_read_eerd_generic - Read EEPROM word using EERD 1335 * @hw: pointer to hardware structure 1336 * @offset: offset of word in the EEPROM to read 1337 * @data: word read from the EEPROM 1338 * 1339 * Reads a 16 bit word from the EEPROM using the EERD register. 1340 **/ 1341 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 1342 { 1343 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); 1344 } 1345 1346 /** 1347 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR 1348 * @hw: pointer to hardware structure 1349 * @offset: offset of word in the EEPROM to write 1350 * @words: number of word(s) 1351 * @data: word(s) write to the EEPROM 1352 * 1353 * Write a 16 bit word(s) to the EEPROM using the EEWR register. 1354 **/ 1355 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1356 u16 words, u16 *data) 1357 { 1358 u32 eewr; 1359 s32 status = IXGBE_SUCCESS; 1360 u16 i; 1361 1362 DEBUGFUNC("ixgbe_write_eewr_generic"); 1363 1364 hw->eeprom.ops.init_params(hw); 1365 1366 if (words == 0) { 1367 status = IXGBE_ERR_INVALID_ARGUMENT; 1368 goto out; 1369 } 1370 1371 if (offset >= hw->eeprom.word_size) { 1372 status = IXGBE_ERR_EEPROM; 1373 goto out; 1374 } 1375 1376 for (i = 0; i < words; i++) { 1377 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1378 (data[i] << IXGBE_EEPROM_RW_REG_DATA) | 1379 IXGBE_EEPROM_RW_REG_START; 1380 1381 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1382 if (status != IXGBE_SUCCESS) { 1383 DEBUGOUT("Eeprom write EEWR timed out\n"); 1384 goto out; 1385 } 1386 1387 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); 1388 1389 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1390 if (status != IXGBE_SUCCESS) { 1391 DEBUGOUT("Eeprom write EEWR timed out\n"); 1392 goto out; 1393 } 1394 } 1395 1396 out: 1397 return status; 1398 } 1399 1400 /** 1401 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR 1402 * @hw: pointer to hardware structure 1403 * @offset: offset of word in the EEPROM to write 1404 * @data: word write to the EEPROM 1405 * 1406 * Write a 16 bit word to the EEPROM using the EEWR register. 1407 **/ 1408 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1409 { 1410 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); 1411 } 1412 1413 /** 1414 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status 1415 * @hw: pointer to hardware structure 1416 * @ee_reg: EEPROM flag for polling 1417 * 1418 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the 1419 * read or write is done respectively. 1420 **/ 1421 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) 1422 { 1423 u32 i; 1424 u32 reg; 1425 s32 status = IXGBE_ERR_EEPROM; 1426 1427 DEBUGFUNC("ixgbe_poll_eerd_eewr_done"); 1428 1429 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { 1430 if (ee_reg == IXGBE_NVM_POLL_READ) 1431 reg = IXGBE_READ_REG(hw, IXGBE_EERD); 1432 else 1433 reg = IXGBE_READ_REG(hw, IXGBE_EEWR); 1434 1435 if (reg & IXGBE_EEPROM_RW_REG_DONE) { 1436 status = IXGBE_SUCCESS; 1437 break; 1438 } 1439 usec_delay(5); 1440 } 1441 return status; 1442 } 1443 1444 /** 1445 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang 1446 * @hw: pointer to hardware structure 1447 * 1448 * Prepares EEPROM for access using bit-bang method. This function should 1449 * be called before issuing a command to the EEPROM. 1450 **/ 1451 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) 1452 { 1453 s32 status = IXGBE_SUCCESS; 1454 u32 eec; 1455 u32 i; 1456 1457 DEBUGFUNC("ixgbe_acquire_eeprom"); 1458 1459 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) 1460 != IXGBE_SUCCESS) 1461 status = IXGBE_ERR_SWFW_SYNC; 1462 1463 if (status == IXGBE_SUCCESS) { 1464 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1465 1466 /* Request EEPROM Access */ 1467 eec |= IXGBE_EEC_REQ; 1468 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1469 1470 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { 1471 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1472 if (eec & IXGBE_EEC_GNT) 1473 break; 1474 usec_delay(5); 1475 } 1476 1477 /* Release if grant not acquired */ 1478 if (!(eec & IXGBE_EEC_GNT)) { 1479 eec &= ~IXGBE_EEC_REQ; 1480 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1481 DEBUGOUT("Could not acquire EEPROM grant\n"); 1482 1483 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1484 status = IXGBE_ERR_EEPROM; 1485 } 1486 1487 /* Setup EEPROM for Read/Write */ 1488 if (status == IXGBE_SUCCESS) { 1489 /* Clear CS and SK */ 1490 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); 1491 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1492 IXGBE_WRITE_FLUSH(hw); 1493 usec_delay(1); 1494 } 1495 } 1496 return status; 1497 } 1498 1499 /** 1500 * ixgbe_get_eeprom_semaphore - Get hardware semaphore 1501 * @hw: pointer to hardware structure 1502 * 1503 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method 1504 **/ 1505 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) 1506 { 1507 s32 status = IXGBE_ERR_EEPROM; 1508 u32 timeout = 2000; 1509 u32 i; 1510 u32 swsm; 1511 1512 DEBUGFUNC("ixgbe_get_eeprom_semaphore"); 1513 1514 1515 /* Get SMBI software semaphore between device drivers first */ 1516 for (i = 0; i < timeout; i++) { 1517 /* 1518 * If the SMBI bit is 0 when we read it, then the bit will be 1519 * set and we have the semaphore 1520 */ 1521 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1522 if (!(swsm & IXGBE_SWSM_SMBI)) { 1523 status = IXGBE_SUCCESS; 1524 break; 1525 } 1526 usec_delay(50); 1527 } 1528 1529 if (i == timeout) { 1530 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore " 1531 "not granted.\n"); 1532 /* 1533 * this release is particularly important because our attempts 1534 * above to get the semaphore may have succeeded, and if there 1535 * was a timeout, we should unconditionally clear the semaphore 1536 * bits to free the driver to make progress 1537 */ 1538 ixgbe_release_eeprom_semaphore(hw); 1539 1540 usec_delay(50); 1541 /* 1542 * one last try 1543 * If the SMBI bit is 0 when we read it, then the bit will be 1544 * set and we have the semaphore 1545 */ 1546 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1547 if (!(swsm & IXGBE_SWSM_SMBI)) 1548 status = IXGBE_SUCCESS; 1549 } 1550 1551 /* Now get the semaphore between SW/FW through the SWESMBI bit */ 1552 if (status == IXGBE_SUCCESS) { 1553 for (i = 0; i < timeout; i++) { 1554 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1555 1556 /* Set the SW EEPROM semaphore bit to request access */ 1557 swsm |= IXGBE_SWSM_SWESMBI; 1558 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1559 1560 /* 1561 * If we set the bit successfully then we got the 1562 * semaphore. 1563 */ 1564 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1565 if (swsm & IXGBE_SWSM_SWESMBI) 1566 break; 1567 1568 usec_delay(50); 1569 } 1570 1571 /* 1572 * Release semaphores and return error if SW EEPROM semaphore 1573 * was not granted because we don't have access to the EEPROM 1574 */ 1575 if (i >= timeout) { 1576 DEBUGOUT("SWESMBI Software EEPROM semaphore " 1577 "not granted.\n"); 1578 ixgbe_release_eeprom_semaphore(hw); 1579 status = IXGBE_ERR_EEPROM; 1580 } 1581 } else { 1582 DEBUGOUT("Software semaphore SMBI between device drivers " 1583 "not granted.\n"); 1584 } 1585 1586 return status; 1587 } 1588 1589 /** 1590 * ixgbe_release_eeprom_semaphore - Release hardware semaphore 1591 * @hw: pointer to hardware structure 1592 * 1593 * This function clears hardware semaphore bits. 1594 **/ 1595 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) 1596 { 1597 u32 swsm; 1598 1599 DEBUGFUNC("ixgbe_release_eeprom_semaphore"); 1600 1601 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1602 1603 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ 1604 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); 1605 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1606 IXGBE_WRITE_FLUSH(hw); 1607 } 1608 1609 /** 1610 * ixgbe_ready_eeprom - Polls for EEPROM ready 1611 * @hw: pointer to hardware structure 1612 **/ 1613 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) 1614 { 1615 s32 status = IXGBE_SUCCESS; 1616 u16 i; 1617 u8 spi_stat_reg; 1618 1619 DEBUGFUNC("ixgbe_ready_eeprom"); 1620 1621 /* 1622 * Read "Status Register" repeatedly until the LSB is cleared. The 1623 * EEPROM will signal that the command has been completed by clearing 1624 * bit 0 of the internal status register. If it's not cleared within 1625 * 5 milliseconds, then error out. 1626 */ 1627 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { 1628 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, 1629 IXGBE_EEPROM_OPCODE_BITS); 1630 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); 1631 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) 1632 break; 1633 1634 usec_delay(5); 1635 ixgbe_standby_eeprom(hw); 1636 }; 1637 1638 /* 1639 * On some parts, SPI write time could vary from 0-20mSec on 3.3V 1640 * devices (and only 0-5mSec on 5V devices) 1641 */ 1642 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { 1643 DEBUGOUT("SPI EEPROM Status error\n"); 1644 status = IXGBE_ERR_EEPROM; 1645 } 1646 1647 return status; 1648 } 1649 1650 /** 1651 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state 1652 * @hw: pointer to hardware structure 1653 **/ 1654 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) 1655 { 1656 u32 eec; 1657 1658 DEBUGFUNC("ixgbe_standby_eeprom"); 1659 1660 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1661 1662 /* Toggle CS to flush commands */ 1663 eec |= IXGBE_EEC_CS; 1664 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1665 IXGBE_WRITE_FLUSH(hw); 1666 usec_delay(1); 1667 eec &= ~IXGBE_EEC_CS; 1668 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1669 IXGBE_WRITE_FLUSH(hw); 1670 usec_delay(1); 1671 } 1672 1673 /** 1674 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. 1675 * @hw: pointer to hardware structure 1676 * @data: data to send to the EEPROM 1677 * @count: number of bits to shift out 1678 **/ 1679 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 1680 u16 count) 1681 { 1682 u32 eec; 1683 u32 mask; 1684 u32 i; 1685 1686 DEBUGFUNC("ixgbe_shift_out_eeprom_bits"); 1687 1688 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1689 1690 /* 1691 * Mask is used to shift "count" bits of "data" out to the EEPROM 1692 * one bit at a time. Determine the starting bit based on count 1693 */ 1694 mask = 0x01 << (count - 1); 1695 1696 for (i = 0; i < count; i++) { 1697 /* 1698 * A "1" is shifted out to the EEPROM by setting bit "DI" to a 1699 * "1", and then raising and then lowering the clock (the SK 1700 * bit controls the clock input to the EEPROM). A "0" is 1701 * shifted out to the EEPROM by setting "DI" to "0" and then 1702 * raising and then lowering the clock. 1703 */ 1704 if (data & mask) 1705 eec |= IXGBE_EEC_DI; 1706 else 1707 eec &= ~IXGBE_EEC_DI; 1708 1709 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1710 IXGBE_WRITE_FLUSH(hw); 1711 1712 usec_delay(1); 1713 1714 ixgbe_raise_eeprom_clk(hw, &eec); 1715 ixgbe_lower_eeprom_clk(hw, &eec); 1716 1717 /* 1718 * Shift mask to signify next bit of data to shift in to the 1719 * EEPROM 1720 */ 1721 mask = mask >> 1; 1722 }; 1723 1724 /* We leave the "DI" bit set to "0" when we leave this routine. */ 1725 eec &= ~IXGBE_EEC_DI; 1726 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1727 IXGBE_WRITE_FLUSH(hw); 1728 } 1729 1730 /** 1731 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM 1732 * @hw: pointer to hardware structure 1733 **/ 1734 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) 1735 { 1736 u32 eec; 1737 u32 i; 1738 u16 data = 0; 1739 1740 DEBUGFUNC("ixgbe_shift_in_eeprom_bits"); 1741 1742 /* 1743 * In order to read a register from the EEPROM, we need to shift 1744 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising 1745 * the clock input to the EEPROM (setting the SK bit), and then reading 1746 * the value of the "DO" bit. During this "shifting in" process the 1747 * "DI" bit should always be clear. 1748 */ 1749 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1750 1751 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); 1752 1753 for (i = 0; i < count; i++) { 1754 data = data << 1; 1755 ixgbe_raise_eeprom_clk(hw, &eec); 1756 1757 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1758 1759 eec &= ~(IXGBE_EEC_DI); 1760 if (eec & IXGBE_EEC_DO) 1761 data |= 1; 1762 1763 ixgbe_lower_eeprom_clk(hw, &eec); 1764 } 1765 1766 return data; 1767 } 1768 1769 /** 1770 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. 1771 * @hw: pointer to hardware structure 1772 * @eec: EEC register's current value 1773 **/ 1774 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 1775 { 1776 DEBUGFUNC("ixgbe_raise_eeprom_clk"); 1777 1778 /* 1779 * Raise the clock input to the EEPROM 1780 * (setting the SK bit), then delay 1781 */ 1782 *eec = *eec | IXGBE_EEC_SK; 1783 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); 1784 IXGBE_WRITE_FLUSH(hw); 1785 usec_delay(1); 1786 } 1787 1788 /** 1789 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. 1790 * @hw: pointer to hardware structure 1791 * @eecd: EECD's current value 1792 **/ 1793 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 1794 { 1795 DEBUGFUNC("ixgbe_lower_eeprom_clk"); 1796 1797 /* 1798 * Lower the clock input to the EEPROM (clearing the SK bit), then 1799 * delay 1800 */ 1801 *eec = *eec & ~IXGBE_EEC_SK; 1802 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec); 1803 IXGBE_WRITE_FLUSH(hw); 1804 usec_delay(1); 1805 } 1806 1807 /** 1808 * ixgbe_release_eeprom - Release EEPROM, release semaphores 1809 * @hw: pointer to hardware structure 1810 **/ 1811 static void ixgbe_release_eeprom(struct ixgbe_hw *hw) 1812 { 1813 u32 eec; 1814 1815 DEBUGFUNC("ixgbe_release_eeprom"); 1816 1817 eec = IXGBE_READ_REG(hw, IXGBE_EEC); 1818 1819 eec |= IXGBE_EEC_CS; /* Pull CS high */ 1820 eec &= ~IXGBE_EEC_SK; /* Lower SCK */ 1821 1822 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1823 IXGBE_WRITE_FLUSH(hw); 1824 1825 usec_delay(1); 1826 1827 /* Stop requesting EEPROM access */ 1828 eec &= ~IXGBE_EEC_REQ; 1829 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec); 1830 1831 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1832 1833 /* Delay before attempt to obtain semaphore again to allow FW access */ 1834 msec_delay(hw->eeprom.semaphore_delay); 1835 } 1836 1837 /** 1838 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum 1839 * @hw: pointer to hardware structure 1840 **/ 1841 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) 1842 { 1843 u16 i; 1844 u16 j; 1845 u16 checksum = 0; 1846 u16 length = 0; 1847 u16 pointer = 0; 1848 u16 word = 0; 1849 1850 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic"); 1851 1852 /* Include 0x0-0x3F in the checksum */ 1853 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { 1854 if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) { 1855 DEBUGOUT("EEPROM read failed\n"); 1856 break; 1857 } 1858 checksum += word; 1859 } 1860 1861 /* Include all data from pointers except for the fw pointer */ 1862 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { 1863 hw->eeprom.ops.read(hw, i, &pointer); 1864 1865 /* Make sure the pointer seems valid */ 1866 if (pointer != 0xFFFF && pointer != 0) { 1867 hw->eeprom.ops.read(hw, pointer, &length); 1868 1869 if (length != 0xFFFF && length != 0) { 1870 for (j = pointer+1; j <= pointer+length; j++) { 1871 hw->eeprom.ops.read(hw, j, &word); 1872 checksum += word; 1873 } 1874 } 1875 } 1876 } 1877 1878 checksum = (u16)IXGBE_EEPROM_SUM - checksum; 1879 1880 return checksum; 1881 } 1882 1883 /** 1884 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum 1885 * @hw: pointer to hardware structure 1886 * @checksum_val: calculated checksum 1887 * 1888 * Performs checksum calculation and validates the EEPROM checksum. If the 1889 * caller does not need checksum_val, the value can be NULL. 1890 **/ 1891 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, 1892 u16 *checksum_val) 1893 { 1894 s32 status; 1895 u16 checksum; 1896 u16 read_checksum = 0; 1897 1898 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic"); 1899 1900 /* 1901 * Read the first word from the EEPROM. If this times out or fails, do 1902 * not continue or we could be in for a very long wait while every 1903 * EEPROM read fails 1904 */ 1905 status = hw->eeprom.ops.read(hw, 0, &checksum); 1906 1907 if (status == IXGBE_SUCCESS) { 1908 checksum = hw->eeprom.ops.calc_checksum(hw); 1909 1910 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); 1911 1912 /* 1913 * Verify read checksum from EEPROM is the same as 1914 * calculated checksum 1915 */ 1916 if (read_checksum != checksum) 1917 status = IXGBE_ERR_EEPROM_CHECKSUM; 1918 1919 /* If the user cares, return the calculated checksum */ 1920 if (checksum_val) 1921 *checksum_val = checksum; 1922 } else { 1923 DEBUGOUT("EEPROM read failed\n"); 1924 } 1925 1926 return status; 1927 } 1928 1929 /** 1930 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum 1931 * @hw: pointer to hardware structure 1932 **/ 1933 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) 1934 { 1935 s32 status; 1936 u16 checksum; 1937 1938 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic"); 1939 1940 /* 1941 * Read the first word from the EEPROM. If this times out or fails, do 1942 * not continue or we could be in for a very long wait while every 1943 * EEPROM read fails 1944 */ 1945 status = hw->eeprom.ops.read(hw, 0, &checksum); 1946 1947 if (status == IXGBE_SUCCESS) { 1948 checksum = hw->eeprom.ops.calc_checksum(hw); 1949 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, 1950 checksum); 1951 } else { 1952 DEBUGOUT("EEPROM read failed\n"); 1953 } 1954 1955 return status; 1956 } 1957 1958 /** 1959 * ixgbe_validate_mac_addr - Validate MAC address 1960 * @mac_addr: pointer to MAC address. 1961 * 1962 * Tests a MAC address to ensure it is a valid Individual Address 1963 **/ 1964 s32 ixgbe_validate_mac_addr(u8 *mac_addr) 1965 { 1966 s32 status = IXGBE_SUCCESS; 1967 1968 DEBUGFUNC("ixgbe_validate_mac_addr"); 1969 1970 /* Make sure it is not a multicast address */ 1971 if (IXGBE_IS_MULTICAST(mac_addr)) { 1972 DEBUGOUT("MAC address is multicast\n"); 1973 status = IXGBE_ERR_INVALID_MAC_ADDR; 1974 /* Not a broadcast address */ 1975 } else if (IXGBE_IS_BROADCAST(mac_addr)) { 1976 DEBUGOUT("MAC address is broadcast\n"); 1977 status = IXGBE_ERR_INVALID_MAC_ADDR; 1978 /* Reject the zero address */ 1979 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && 1980 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) { 1981 DEBUGOUT("MAC address is all zeros\n"); 1982 status = IXGBE_ERR_INVALID_MAC_ADDR; 1983 } 1984 return status; 1985 } 1986 1987 /** 1988 * ixgbe_set_rar_generic - Set Rx address register 1989 * @hw: pointer to hardware structure 1990 * @index: Receive address register to write 1991 * @addr: Address to put into receive address register 1992 * @vmdq: VMDq "set" or "pool" index 1993 * @enable_addr: set flag that address is active 1994 * 1995 * Puts an ethernet address into a receive address register. 1996 **/ 1997 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, 1998 u32 enable_addr) 1999 { 2000 u32 rar_low, rar_high; 2001 u32 rar_entries = hw->mac.num_rar_entries; 2002 2003 DEBUGFUNC("ixgbe_set_rar_generic"); 2004 2005 /* Make sure we are using a valid rar index range */ 2006 if (index >= rar_entries) { 2007 DEBUGOUT1("RAR index %d is out of range.\n", index); 2008 return IXGBE_ERR_INVALID_ARGUMENT; 2009 } 2010 2011 /* setup VMDq pool selection before this RAR gets enabled */ 2012 hw->mac.ops.set_vmdq(hw, index, vmdq); 2013 2014 /* 2015 * HW expects these in little endian so we reverse the byte 2016 * order from network order (big endian) to little endian 2017 */ 2018 rar_low = ((u32)addr[0] | 2019 ((u32)addr[1] << 8) | 2020 ((u32)addr[2] << 16) | 2021 ((u32)addr[3] << 24)); 2022 /* 2023 * Some parts put the VMDq setting in the extra RAH bits, 2024 * so save everything except the lower 16 bits that hold part 2025 * of the address and the address valid bit. 2026 */ 2027 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2028 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2029 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); 2030 2031 if (enable_addr != 0) 2032 rar_high |= IXGBE_RAH_AV; 2033 2034 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); 2035 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2036 2037 return IXGBE_SUCCESS; 2038 } 2039 2040 /** 2041 * ixgbe_clear_rar_generic - Remove Rx address register 2042 * @hw: pointer to hardware structure 2043 * @index: Receive address register to write 2044 * 2045 * Clears an ethernet address from a receive address register. 2046 **/ 2047 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) 2048 { 2049 u32 rar_high; 2050 u32 rar_entries = hw->mac.num_rar_entries; 2051 2052 DEBUGFUNC("ixgbe_clear_rar_generic"); 2053 2054 /* Make sure we are using a valid rar index range */ 2055 if (index >= rar_entries) { 2056 DEBUGOUT1("RAR index %d is out of range.\n", index); 2057 return IXGBE_ERR_INVALID_ARGUMENT; 2058 } 2059 2060 /* 2061 * Some parts put the VMDq setting in the extra RAH bits, 2062 * so save everything except the lower 16 bits that hold part 2063 * of the address and the address valid bit. 2064 */ 2065 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2066 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2067 2068 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); 2069 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2070 2071 /* clear VMDq pool/queue selection for this RAR */ 2072 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); 2073 2074 return IXGBE_SUCCESS; 2075 } 2076 2077 /** 2078 * ixgbe_init_rx_addrs_generic - Initializes receive address filters. 2079 * @hw: pointer to hardware structure 2080 * 2081 * Places the MAC address in receive address register 0 and clears the rest 2082 * of the receive address registers. Clears the multicast table. Assumes 2083 * the receiver is in reset when the routine is called. 2084 **/ 2085 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) 2086 { 2087 u32 i; 2088 u32 rar_entries = hw->mac.num_rar_entries; 2089 2090 DEBUGFUNC("ixgbe_init_rx_addrs_generic"); 2091 2092 /* 2093 * If the current mac address is valid, assume it is a software override 2094 * to the permanent address. 2095 * Otherwise, use the permanent address from the eeprom. 2096 */ 2097 if (ixgbe_validate_mac_addr(hw->mac.addr) == 2098 IXGBE_ERR_INVALID_MAC_ADDR) { 2099 /* Get the MAC address from the RAR0 for later reference */ 2100 hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2101 2102 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ", 2103 hw->mac.addr[0], hw->mac.addr[1], 2104 hw->mac.addr[2]); 2105 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2106 hw->mac.addr[4], hw->mac.addr[5]); 2107 } else { 2108 /* Setup the receive address. */ 2109 DEBUGOUT("Overriding MAC Address in RAR[0]\n"); 2110 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", 2111 hw->mac.addr[0], hw->mac.addr[1], 2112 hw->mac.addr[2]); 2113 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2114 hw->mac.addr[4], hw->mac.addr[5]); 2115 2116 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); 2117 2118 /* clear VMDq pool/queue selection for RAR 0 */ 2119 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); 2120 } 2121 hw->addr_ctrl.overflow_promisc = 0; 2122 2123 hw->addr_ctrl.rar_used_count = 1; 2124 2125 /* Zero out the other receive addresses. */ 2126 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1); 2127 for (i = 1; i < rar_entries; i++) { 2128 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); 2129 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); 2130 } 2131 2132 /* Clear the MTA */ 2133 hw->addr_ctrl.mta_in_use = 0; 2134 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2135 2136 DEBUGOUT(" Clearing MTA\n"); 2137 for (i = 0; i < hw->mac.mcft_size; i++) 2138 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 2139 2140 ixgbe_init_uta_tables(hw); 2141 2142 return IXGBE_SUCCESS; 2143 } 2144 2145 /** 2146 * ixgbe_add_uc_addr - Adds a secondary unicast address. 2147 * @hw: pointer to hardware structure 2148 * @addr: new address 2149 * 2150 * Adds it to unused receive address register or goes into promiscuous mode. 2151 **/ 2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 2153 { 2154 u32 rar_entries = hw->mac.num_rar_entries; 2155 u32 rar; 2156 2157 DEBUGFUNC("ixgbe_add_uc_addr"); 2158 2159 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", 2160 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); 2161 2162 /* 2163 * Place this address in the RAR if there is room, 2164 * else put the controller into promiscuous mode 2165 */ 2166 if (hw->addr_ctrl.rar_used_count < rar_entries) { 2167 rar = hw->addr_ctrl.rar_used_count; 2168 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 2169 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar); 2170 hw->addr_ctrl.rar_used_count++; 2171 } else { 2172 hw->addr_ctrl.overflow_promisc++; 2173 } 2174 2175 DEBUGOUT("ixgbe_add_uc_addr Complete\n"); 2176 } 2177 2178 /** 2179 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses 2180 * @hw: pointer to hardware structure 2181 * @addr_list: the list of new addresses 2182 * @addr_count: number of addresses 2183 * @next: iterator function to walk the address list 2184 * 2185 * The given list replaces any existing list. Clears the secondary addrs from 2186 * receive address registers. Uses unused receive address registers for the 2187 * first secondary addresses, and falls back to promiscuous mode as needed. 2188 * 2189 * Drivers using secondary unicast addresses must set user_set_promisc when 2190 * manually putting the device into promiscuous mode. 2191 **/ 2192 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list, 2193 u32 addr_count, ixgbe_mc_addr_itr next) 2194 { 2195 u8 *addr; 2196 u32 i; 2197 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc; 2198 u32 uc_addr_in_use; 2199 u32 fctrl; 2200 u32 vmdq; 2201 2202 DEBUGFUNC("ixgbe_update_uc_addr_list_generic"); 2203 2204 /* 2205 * Clear accounting of old secondary address list, 2206 * don't count RAR[0] 2207 */ 2208 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1; 2209 hw->addr_ctrl.rar_used_count -= uc_addr_in_use; 2210 hw->addr_ctrl.overflow_promisc = 0; 2211 2212 /* Zero out the other receive addresses */ 2213 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1); 2214 for (i = 0; i < uc_addr_in_use; i++) { 2215 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0); 2216 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0); 2217 } 2218 2219 /* Add the new addresses */ 2220 for (i = 0; i < addr_count; i++) { 2221 DEBUGOUT(" Adding the secondary addresses:\n"); 2222 addr = next(hw, &addr_list, &vmdq); 2223 ixgbe_add_uc_addr(hw, addr, vmdq); 2224 } 2225 2226 if (hw->addr_ctrl.overflow_promisc) { 2227 /* enable promisc if not already in overflow or set by user */ 2228 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2229 DEBUGOUT(" Entering address overflow promisc mode\n"); 2230 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2231 fctrl |= IXGBE_FCTRL_UPE; 2232 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2233 } 2234 } else { 2235 /* only disable if set by overflow, not by user */ 2236 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2237 DEBUGOUT(" Leaving address overflow promisc mode\n"); 2238 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2239 fctrl &= ~IXGBE_FCTRL_UPE; 2240 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2241 } 2242 } 2243 2244 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n"); 2245 return IXGBE_SUCCESS; 2246 } 2247 2248 /** 2249 * ixgbe_mta_vector - Determines bit-vector in multicast table to set 2250 * @hw: pointer to hardware structure 2251 * @mc_addr: the multicast address 2252 * 2253 * Extracts the 12 bits, from a multicast address, to determine which 2254 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 2255 * incoming rx multicast addresses, to determine the bit-vector to check in 2256 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 2257 * by the MO field of the MCSTCTRL. The MO field is set during initialization 2258 * to mc_filter_type. 2259 **/ 2260 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) 2261 { 2262 u32 vector = 0; 2263 2264 DEBUGFUNC("ixgbe_mta_vector"); 2265 2266 switch (hw->mac.mc_filter_type) { 2267 case 0: /* use bits [47:36] of the address */ 2268 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 2269 break; 2270 case 1: /* use bits [46:35] of the address */ 2271 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 2272 break; 2273 case 2: /* use bits [45:34] of the address */ 2274 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 2275 break; 2276 case 3: /* use bits [43:32] of the address */ 2277 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 2278 break; 2279 default: /* Invalid mc_filter_type */ 2280 DEBUGOUT("MC filter type param set incorrectly\n"); 2281 ASSERT(0); 2282 break; 2283 } 2284 2285 /* vector can only be 12-bits or boundary will be exceeded */ 2286 vector &= 0xFFF; 2287 return vector; 2288 } 2289 2290 /** 2291 * ixgbe_set_mta - Set bit-vector in multicast table 2292 * @hw: pointer to hardware structure 2293 * @hash_value: Multicast address hash value 2294 * 2295 * Sets the bit-vector in the multicast table. 2296 **/ 2297 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) 2298 { 2299 u32 vector; 2300 u32 vector_bit; 2301 u32 vector_reg; 2302 2303 DEBUGFUNC("ixgbe_set_mta"); 2304 2305 hw->addr_ctrl.mta_in_use++; 2306 2307 vector = ixgbe_mta_vector(hw, mc_addr); 2308 DEBUGOUT1(" bit-vector = 0x%03X\n", vector); 2309 2310 /* 2311 * The MTA is a register array of 128 32-bit registers. It is treated 2312 * like an array of 4096 bits. We want to set bit 2313 * BitArray[vector_value]. So we figure out what register the bit is 2314 * in, read it, OR in the new bit, then write back the new value. The 2315 * register is determined by the upper 7 bits of the vector value and 2316 * the bit within that register are determined by the lower 5 bits of 2317 * the value. 2318 */ 2319 vector_reg = (vector >> 5) & 0x7F; 2320 vector_bit = vector & 0x1F; 2321 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 2322 } 2323 2324 /** 2325 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 2326 * @hw: pointer to hardware structure 2327 * @mc_addr_list: the list of new multicast addresses 2328 * @mc_addr_count: number of addresses 2329 * @next: iterator function to walk the multicast address list 2330 * @clear: flag, when set clears the table beforehand 2331 * 2332 * When the clear flag is set, the given list replaces any existing list. 2333 * Hashes the given addresses into the multicast table. 2334 **/ 2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, 2336 u32 mc_addr_count, ixgbe_mc_addr_itr next, 2337 bool clear) 2338 { 2339 u32 i; 2340 u32 vmdq; 2341 2342 DEBUGFUNC("ixgbe_update_mc_addr_list_generic"); 2343 2344 /* 2345 * Set the new number of MC addresses that we are being requested to 2346 * use. 2347 */ 2348 hw->addr_ctrl.num_mc_addrs = mc_addr_count; 2349 hw->addr_ctrl.mta_in_use = 0; 2350 2351 /* Clear mta_shadow */ 2352 if (clear) { 2353 DEBUGOUT(" Clearing MTA\n"); 2354 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 2355 } 2356 2357 /* Update mta_shadow */ 2358 for (i = 0; i < mc_addr_count; i++) { 2359 DEBUGOUT(" Adding the multicast addresses:\n"); 2360 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); 2361 } 2362 2363 /* Enable mta */ 2364 for (i = 0; i < hw->mac.mcft_size; i++) 2365 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, 2366 hw->mac.mta_shadow[i]); 2367 2368 if (hw->addr_ctrl.mta_in_use > 0) 2369 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, 2370 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); 2371 2372 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n"); 2373 return IXGBE_SUCCESS; 2374 } 2375 2376 /** 2377 * ixgbe_enable_mc_generic - Enable multicast address in RAR 2378 * @hw: pointer to hardware structure 2379 * 2380 * Enables multicast address in RAR and the use of the multicast hash table. 2381 **/ 2382 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) 2383 { 2384 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2385 2386 DEBUGFUNC("ixgbe_enable_mc_generic"); 2387 2388 if (a->mta_in_use > 0) 2389 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | 2390 hw->mac.mc_filter_type); 2391 2392 return IXGBE_SUCCESS; 2393 } 2394 2395 /** 2396 * ixgbe_disable_mc_generic - Disable multicast address in RAR 2397 * @hw: pointer to hardware structure 2398 * 2399 * Disables multicast address in RAR and the use of the multicast hash table. 2400 **/ 2401 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) 2402 { 2403 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2404 2405 DEBUGFUNC("ixgbe_disable_mc_generic"); 2406 2407 if (a->mta_in_use > 0) 2408 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2409 2410 return IXGBE_SUCCESS; 2411 } 2412 2413 /** 2414 * ixgbe_fc_enable_generic - Enable flow control 2415 * @hw: pointer to hardware structure 2416 * 2417 * Enable flow control according to the current settings. 2418 **/ 2419 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) 2420 { 2421 s32 ret_val = IXGBE_SUCCESS; 2422 u32 mflcn_reg, fccfg_reg; 2423 u32 reg; 2424 u32 fcrtl, fcrth; 2425 int i; 2426 2427 DEBUGFUNC("ixgbe_fc_enable_generic"); 2428 2429 /* Validate the water mark configuration */ 2430 if (!hw->fc.pause_time) { 2431 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2432 goto out; 2433 } 2434 2435 /* Low water mark of zero causes XOFF floods */ 2436 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2437 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2438 hw->fc.high_water[i]) { 2439 if (!hw->fc.low_water[i] || 2440 hw->fc.low_water[i] >= hw->fc.high_water[i]) { 2441 DEBUGOUT("Invalid water mark configuration\n"); 2442 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2443 goto out; 2444 } 2445 } 2446 } 2447 2448 /* Negotiate the fc mode to use */ 2449 ixgbe_fc_autoneg(hw); 2450 2451 /* Disable any previous flow control settings */ 2452 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); 2453 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); 2454 2455 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); 2456 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); 2457 2458 /* 2459 * The possible values of fc.current_mode are: 2460 * 0: Flow control is completely disabled 2461 * 1: Rx flow control is enabled (we can receive pause frames, 2462 * but not send pause frames). 2463 * 2: Tx flow control is enabled (we can send pause frames but 2464 * we do not support receiving pause frames). 2465 * 3: Both Rx and Tx flow control (symmetric) are enabled. 2466 * other: Invalid. 2467 */ 2468 switch (hw->fc.current_mode) { 2469 case ixgbe_fc_none: 2470 /* 2471 * Flow control is disabled by software override or autoneg. 2472 * The code below will actually disable it in the HW. 2473 */ 2474 break; 2475 case ixgbe_fc_rx_pause: 2476 /* 2477 * Rx Flow control is enabled and Tx Flow control is 2478 * disabled by software override. Since there really 2479 * isn't a way to advertise that we are capable of RX 2480 * Pause ONLY, we will advertise that we support both 2481 * symmetric and asymmetric Rx PAUSE. Later, we will 2482 * disable the adapter's ability to send PAUSE frames. 2483 */ 2484 mflcn_reg |= IXGBE_MFLCN_RFCE; 2485 break; 2486 case ixgbe_fc_tx_pause: 2487 /* 2488 * Tx Flow control is enabled, and Rx Flow control is 2489 * disabled by software override. 2490 */ 2491 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2492 break; 2493 case ixgbe_fc_full: 2494 /* Flow control (both Rx and Tx) is enabled by SW override. */ 2495 mflcn_reg |= IXGBE_MFLCN_RFCE; 2496 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2497 break; 2498 default: 2499 DEBUGOUT("Flow control param set incorrectly\n"); 2500 ret_val = IXGBE_ERR_CONFIG; 2501 goto out; 2502 break; 2503 } 2504 2505 /* Set 802.3x based flow control settings. */ 2506 mflcn_reg |= IXGBE_MFLCN_DPF; 2507 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); 2508 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); 2509 2510 2511 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2512 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2513 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2514 hw->fc.high_water[i]) { 2515 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE; 2516 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); 2517 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; 2518 } else { 2519 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); 2520 /* 2521 * In order to prevent Tx hangs when the internal Tx 2522 * switch is enabled we must set the high water mark 2523 * to the maximum FCRTH value. This allows the Tx 2524 * switch to function even under heavy Rx workloads. 2525 */ 2526 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32; 2527 } 2528 2529 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); 2530 } 2531 2532 /* Configure pause time (2 TCs per register) */ 2533 reg = hw->fc.pause_time * 0x00010001; 2534 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++) 2535 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); 2536 2537 /* Configure flow control refresh threshold value */ 2538 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); 2539 2540 out: 2541 return ret_val; 2542 } 2543 2544 /** 2545 * ixgbe_negotiate_fc - Negotiate flow control 2546 * @hw: pointer to hardware structure 2547 * @adv_reg: flow control advertised settings 2548 * @lp_reg: link partner's flow control settings 2549 * @adv_sym: symmetric pause bit in advertisement 2550 * @adv_asm: asymmetric pause bit in advertisement 2551 * @lp_sym: symmetric pause bit in link partner advertisement 2552 * @lp_asm: asymmetric pause bit in link partner advertisement 2553 * 2554 * Find the intersection between advertised settings and link partner's 2555 * advertised settings 2556 **/ 2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, 2558 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) 2559 { 2560 if ((!(adv_reg)) || (!(lp_reg))) 2561 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2562 2563 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { 2564 /* 2565 * Now we need to check if the user selected Rx ONLY 2566 * of pause frames. In this case, we had to advertise 2567 * FULL flow control because we could not advertise RX 2568 * ONLY. Hence, we must now check to see if we need to 2569 * turn OFF the TRANSMISSION of PAUSE frames. 2570 */ 2571 if (hw->fc.requested_mode == ixgbe_fc_full) { 2572 hw->fc.current_mode = ixgbe_fc_full; 2573 DEBUGOUT("Flow Control = FULL.\n"); 2574 } else { 2575 hw->fc.current_mode = ixgbe_fc_rx_pause; 2576 DEBUGOUT("Flow Control=RX PAUSE frames only\n"); 2577 } 2578 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && 2579 (lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2580 hw->fc.current_mode = ixgbe_fc_tx_pause; 2581 DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); 2582 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && 2583 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2584 hw->fc.current_mode = ixgbe_fc_rx_pause; 2585 DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); 2586 } else { 2587 hw->fc.current_mode = ixgbe_fc_none; 2588 DEBUGOUT("Flow Control = NONE.\n"); 2589 } 2590 return IXGBE_SUCCESS; 2591 } 2592 2593 /** 2594 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber 2595 * @hw: pointer to hardware structure 2596 * 2597 * Enable flow control according on 1 gig fiber. 2598 **/ 2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) 2600 { 2601 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; 2602 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2603 2604 /* 2605 * On multispeed fiber at 1g, bail out if 2606 * - link is up but AN did not complete, or if 2607 * - link is up and AN completed but timed out 2608 */ 2609 2610 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); 2611 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || 2612 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) 2613 goto out; 2614 2615 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 2616 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); 2617 2618 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, 2619 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, 2620 IXGBE_PCS1GANA_ASM_PAUSE, 2621 IXGBE_PCS1GANA_SYM_PAUSE, 2622 IXGBE_PCS1GANA_ASM_PAUSE); 2623 2624 out: 2625 return ret_val; 2626 } 2627 2628 /** 2629 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 2630 * @hw: pointer to hardware structure 2631 * 2632 * Enable flow control according to IEEE clause 37. 2633 **/ 2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) 2635 { 2636 u32 links2, anlp1_reg, autoc_reg, links; 2637 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2638 2639 /* 2640 * On backplane, bail out if 2641 * - backplane autoneg was not completed, or if 2642 * - we are 82599 and link partner is not AN enabled 2643 */ 2644 links = IXGBE_READ_REG(hw, IXGBE_LINKS); 2645 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) 2646 goto out; 2647 2648 if (hw->mac.type == ixgbe_mac_82599EB) { 2649 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); 2650 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) 2651 goto out; 2652 } 2653 /* 2654 * Read the 10g AN autoc and LP ability registers and resolve 2655 * local flow control settings accordingly 2656 */ 2657 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2658 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); 2659 2660 ret_val = ixgbe_negotiate_fc(hw, autoc_reg, 2661 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, 2662 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); 2663 2664 out: 2665 return ret_val; 2666 } 2667 2668 /** 2669 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 2670 * @hw: pointer to hardware structure 2671 * 2672 * Enable flow control according to IEEE clause 37. 2673 **/ 2674 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) 2675 { 2676 u16 technology_ability_reg = 0; 2677 u16 lp_technology_ability_reg = 0; 2678 2679 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 2680 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 2681 &technology_ability_reg); 2682 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP, 2683 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 2684 &lp_technology_ability_reg); 2685 2686 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, 2687 (u32)lp_technology_ability_reg, 2688 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, 2689 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); 2690 } 2691 2692 /** 2693 * ixgbe_fc_autoneg - Configure flow control 2694 * @hw: pointer to hardware structure 2695 * 2696 * Compares our advertised flow control capabilities to those advertised by 2697 * our link partner, and determines the proper flow control mode to use. 2698 **/ 2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw) 2700 { 2701 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2702 ixgbe_link_speed speed; 2703 bool link_up; 2704 2705 DEBUGFUNC("ixgbe_fc_autoneg"); 2706 2707 /* 2708 * AN should have completed when the cable was plugged in. 2709 * Look for reasons to bail out. Bail out if: 2710 * - FC autoneg is disabled, or if 2711 * - link is not up. 2712 */ 2713 if (hw->fc.disable_fc_autoneg) 2714 goto out; 2715 2716 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); 2717 if (!link_up) 2718 goto out; 2719 2720 switch (hw->phy.media_type) { 2721 /* Autoneg flow control on fiber adapters */ 2722 case ixgbe_media_type_fiber: 2723 if (speed == IXGBE_LINK_SPEED_1GB_FULL) 2724 ret_val = ixgbe_fc_autoneg_fiber(hw); 2725 break; 2726 2727 /* Autoneg flow control on backplane adapters */ 2728 case ixgbe_media_type_backplane: 2729 ret_val = ixgbe_fc_autoneg_backplane(hw); 2730 break; 2731 2732 /* Autoneg flow control on copper adapters */ 2733 case ixgbe_media_type_copper: 2734 if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS) 2735 ret_val = ixgbe_fc_autoneg_copper(hw); 2736 break; 2737 2738 default: 2739 break; 2740 } 2741 2742 out: 2743 if (ret_val == IXGBE_SUCCESS) { 2744 hw->fc.fc_was_autonegged = TRUE; 2745 } else { 2746 hw->fc.fc_was_autonegged = FALSE; 2747 hw->fc.current_mode = hw->fc.requested_mode; 2748 } 2749 } 2750 2751 /** 2752 * ixgbe_disable_pcie_master - Disable PCI-express master access 2753 * @hw: pointer to hardware structure 2754 * 2755 * Disables PCI-Express master access and verifies there are no pending 2756 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable 2757 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS 2758 * is returned signifying master requests disabled. 2759 **/ 2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) 2761 { 2762 s32 status = IXGBE_SUCCESS; 2763 u32 i; 2764 2765 DEBUGFUNC("ixgbe_disable_pcie_master"); 2766 2767 /* Always set this bit to ensure any future transactions are blocked */ 2768 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); 2769 2770 /* Exit if master requets are blocked */ 2771 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 2772 goto out; 2773 2774 /* Poll for master request bit to clear */ 2775 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 2776 usec_delay(100); 2777 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 2778 goto out; 2779 } 2780 2781 /* 2782 * Two consecutive resets are required via CTRL.RST per datasheet 2783 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine 2784 * of this need. The first reset prevents new master requests from 2785 * being issued by our device. We then must wait 1usec or more for any 2786 * remaining completions from the PCIe bus to trickle in, and then reset 2787 * again to clear out any effects they may have had on our device. 2788 */ 2789 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n"); 2790 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 2791 2792 /* 2793 * Before proceeding, make sure that the PCIe block does not have 2794 * transactions pending. 2795 */ 2796 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 2797 usec_delay(100); 2798 if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) & 2799 IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 2800 goto out; 2801 } 2802 2803 DEBUGOUT("PCIe transaction pending bit also did not clear.\n"); 2804 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; 2805 2806 out: 2807 return status; 2808 } 2809 2810 /** 2811 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore 2812 * @hw: pointer to hardware structure 2813 * @mask: Mask to specify which semaphore to acquire 2814 * 2815 * Acquires the SWFW semaphore through the GSSR register for the specified 2816 * function (CSR, PHY0, PHY1, EEPROM, Flash) 2817 **/ 2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask) 2819 { 2820 u32 gssr; 2821 u32 swmask = mask; 2822 u32 fwmask = mask << 5; 2823 s32 timeout = 200; 2824 2825 DEBUGFUNC("ixgbe_acquire_swfw_sync"); 2826 2827 while (timeout) { 2828 /* 2829 * SW EEPROM semaphore bit is used for access to all 2830 * SW_FW_SYNC/GSSR bits (not just EEPROM) 2831 */ 2832 if (ixgbe_get_eeprom_semaphore(hw)) 2833 return IXGBE_ERR_SWFW_SYNC; 2834 2835 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 2836 if (!(gssr & (fwmask | swmask))) 2837 break; 2838 2839 /* 2840 * Firmware currently using resource (fwmask) or other software 2841 * thread currently using resource (swmask) 2842 */ 2843 ixgbe_release_eeprom_semaphore(hw); 2844 msec_delay(5); 2845 timeout--; 2846 } 2847 2848 if (!timeout) { 2849 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); 2850 return IXGBE_ERR_SWFW_SYNC; 2851 } 2852 2853 gssr |= swmask; 2854 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 2855 2856 ixgbe_release_eeprom_semaphore(hw); 2857 return IXGBE_SUCCESS; 2858 } 2859 2860 /** 2861 * ixgbe_release_swfw_sync - Release SWFW semaphore 2862 * @hw: pointer to hardware structure 2863 * @mask: Mask to specify which semaphore to release 2864 * 2865 * Releases the SWFW semaphore through the GSSR register for the specified 2866 * function (CSR, PHY0, PHY1, EEPROM, Flash) 2867 **/ 2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask) 2869 { 2870 u32 gssr; 2871 u32 swmask = mask; 2872 2873 DEBUGFUNC("ixgbe_release_swfw_sync"); 2874 2875 ixgbe_get_eeprom_semaphore(hw); 2876 2877 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 2878 gssr &= ~swmask; 2879 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 2880 2881 ixgbe_release_eeprom_semaphore(hw); 2882 } 2883 2884 /** 2885 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path 2886 * @hw: pointer to hardware structure 2887 * 2888 * Stops the receive data path and waits for the HW to internally empty 2889 * the Rx security block 2890 **/ 2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw) 2892 { 2893 #define IXGBE_MAX_SECRX_POLL 40 2894 2895 int i; 2896 int secrxreg; 2897 2898 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic"); 2899 2900 2901 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 2902 secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 2903 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 2904 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 2905 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 2906 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 2907 break; 2908 else 2909 /* Use interrupt-safe sleep just in case */ 2910 usec_delay(1000); 2911 } 2912 2913 /* For informational purposes only */ 2914 if (i >= IXGBE_MAX_SECRX_POLL) 2915 DEBUGOUT("Rx unit being enabled before security " 2916 "path fully disabled. Continuing with init.\n"); 2917 2918 return IXGBE_SUCCESS; 2919 } 2920 2921 /** 2922 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path 2923 * @hw: pointer to hardware structure 2924 * 2925 * Enables the receive data path. 2926 **/ 2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw) 2928 { 2929 int secrxreg; 2930 2931 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic"); 2932 2933 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 2934 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 2935 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 2936 IXGBE_WRITE_FLUSH(hw); 2937 2938 return IXGBE_SUCCESS; 2939 } 2940 2941 /** 2942 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit 2943 * @hw: pointer to hardware structure 2944 * @regval: register value to write to RXCTRL 2945 * 2946 * Enables the Rx DMA unit 2947 **/ 2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) 2949 { 2950 DEBUGFUNC("ixgbe_enable_rx_dma_generic"); 2951 2952 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); 2953 2954 return IXGBE_SUCCESS; 2955 } 2956 2957 /** 2958 * ixgbe_blink_led_start_generic - Blink LED based on index. 2959 * @hw: pointer to hardware structure 2960 * @index: led number to blink 2961 **/ 2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) 2963 { 2964 ixgbe_link_speed speed = 0; 2965 bool link_up = 0; 2966 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2967 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 2968 2969 DEBUGFUNC("ixgbe_blink_led_start_generic"); 2970 2971 /* 2972 * Link must be up to auto-blink the LEDs; 2973 * Force it if link is down. 2974 */ 2975 hw->mac.ops.check_link(hw, &speed, &link_up, FALSE); 2976 2977 if (!link_up) { 2978 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 2979 autoc_reg |= IXGBE_AUTOC_FLU; 2980 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); 2981 IXGBE_WRITE_FLUSH(hw); 2982 msec_delay(10); 2983 } 2984 2985 led_reg &= ~IXGBE_LED_MODE_MASK(index); 2986 led_reg |= IXGBE_LED_BLINK(index); 2987 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 2988 IXGBE_WRITE_FLUSH(hw); 2989 2990 return IXGBE_SUCCESS; 2991 } 2992 2993 /** 2994 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. 2995 * @hw: pointer to hardware structure 2996 * @index: led number to stop blinking 2997 **/ 2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) 2999 { 3000 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3001 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3002 3003 DEBUGFUNC("ixgbe_blink_led_stop_generic"); 3004 3005 3006 autoc_reg &= ~IXGBE_AUTOC_FLU; 3007 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3008 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); 3009 3010 led_reg &= ~IXGBE_LED_MODE_MASK(index); 3011 led_reg &= ~IXGBE_LED_BLINK(index); 3012 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); 3013 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3014 IXGBE_WRITE_FLUSH(hw); 3015 3016 return IXGBE_SUCCESS; 3017 } 3018 3019 /** 3020 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM 3021 * @hw: pointer to hardware structure 3022 * @san_mac_offset: SAN MAC address offset 3023 * 3024 * This function will read the EEPROM location for the SAN MAC address 3025 * pointer, and returns the value at that location. This is used in both 3026 * get and set mac_addr routines. 3027 **/ 3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 3029 u16 *san_mac_offset) 3030 { 3031 DEBUGFUNC("ixgbe_get_san_mac_addr_offset"); 3032 3033 /* 3034 * First read the EEPROM pointer to see if the MAC addresses are 3035 * available. 3036 */ 3037 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset); 3038 3039 return IXGBE_SUCCESS; 3040 } 3041 3042 /** 3043 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM 3044 * @hw: pointer to hardware structure 3045 * @san_mac_addr: SAN MAC address 3046 * 3047 * Reads the SAN MAC address from the EEPROM, if it's available. This is 3048 * per-port, so set_lan_id() must be called before reading the addresses. 3049 * set_lan_id() is called by identify_sfp(), but this cannot be relied 3050 * upon for non-SFP connections, so we must call it here. 3051 **/ 3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3053 { 3054 u16 san_mac_data, san_mac_offset; 3055 u8 i; 3056 3057 DEBUGFUNC("ixgbe_get_san_mac_addr_generic"); 3058 3059 /* 3060 * First read the EEPROM pointer to see if the MAC addresses are 3061 * available. If they're not, no point in calling set_lan_id() here. 3062 */ 3063 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3064 3065 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { 3066 /* 3067 * No addresses available in this EEPROM. It's not an 3068 * error though, so just wipe the local address and return. 3069 */ 3070 for (i = 0; i < 6; i++) 3071 san_mac_addr[i] = 0xFF; 3072 3073 goto san_mac_addr_out; 3074 } 3075 3076 /* make sure we know which port we need to program */ 3077 hw->mac.ops.set_lan_id(hw); 3078 /* apply the port offset to the address offset */ 3079 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3080 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3081 for (i = 0; i < 3; i++) { 3082 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data); 3083 san_mac_addr[i * 2] = (u8)(san_mac_data); 3084 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); 3085 san_mac_offset++; 3086 } 3087 3088 san_mac_addr_out: 3089 return IXGBE_SUCCESS; 3090 } 3091 3092 /** 3093 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM 3094 * @hw: pointer to hardware structure 3095 * @san_mac_addr: SAN MAC address 3096 * 3097 * Write a SAN MAC address to the EEPROM. 3098 **/ 3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3100 { 3101 s32 status = IXGBE_SUCCESS; 3102 u16 san_mac_data, san_mac_offset; 3103 u8 i; 3104 3105 DEBUGFUNC("ixgbe_set_san_mac_addr_generic"); 3106 3107 /* Look for SAN mac address pointer. If not defined, return */ 3108 ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3109 3110 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { 3111 status = IXGBE_ERR_NO_SAN_ADDR_PTR; 3112 goto san_mac_addr_out; 3113 } 3114 3115 /* Make sure we know which port we need to write */ 3116 hw->mac.ops.set_lan_id(hw); 3117 /* Apply the port offset to the address offset */ 3118 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3119 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3120 3121 for (i = 0; i < 3; i++) { 3122 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8); 3123 san_mac_data |= (u16)(san_mac_addr[i * 2]); 3124 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data); 3125 san_mac_offset++; 3126 } 3127 3128 san_mac_addr_out: 3129 return status; 3130 } 3131 3132 /** 3133 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count 3134 * @hw: pointer to hardware structure 3135 * 3136 * Read PCIe configuration space, and get the MSI-X vector count from 3137 * the capabilities table. 3138 **/ 3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) 3140 { 3141 u16 msix_count = 1; 3142 u16 max_msix_count; 3143 u16 pcie_offset; 3144 3145 switch (hw->mac.type) { 3146 case ixgbe_mac_82598EB: 3147 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; 3148 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; 3149 break; 3150 case ixgbe_mac_82599EB: 3151 case ixgbe_mac_X540: 3152 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; 3153 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; 3154 break; 3155 default: 3156 return msix_count; 3157 } 3158 3159 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic"); 3160 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset); 3161 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; 3162 3163 /* MSI-X count is zero-based in HW */ 3164 msix_count++; 3165 3166 if (msix_count > max_msix_count) 3167 msix_count = max_msix_count; 3168 3169 return msix_count; 3170 } 3171 3172 /** 3173 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address 3174 * @hw: pointer to hardware structure 3175 * @addr: Address to put into receive address register 3176 * @vmdq: VMDq pool to assign 3177 * 3178 * Puts an ethernet address into a receive address register, or 3179 * finds the rar that it is aleady in; adds to the pool list 3180 **/ 3181 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 3182 { 3183 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF; 3184 u32 first_empty_rar = NO_EMPTY_RAR_FOUND; 3185 u32 rar; 3186 u32 rar_low, rar_high; 3187 u32 addr_low, addr_high; 3188 3189 DEBUGFUNC("ixgbe_insert_mac_addr_generic"); 3190 3191 /* swap bytes for HW little endian */ 3192 addr_low = addr[0] | (addr[1] << 8) 3193 | (addr[2] << 16) 3194 | (addr[3] << 24); 3195 addr_high = addr[4] | (addr[5] << 8); 3196 3197 /* 3198 * Either find the mac_id in rar or find the first empty space. 3199 * rar_highwater points to just after the highest currently used 3200 * rar in order to shorten the search. It grows when we add a new 3201 * rar to the top. 3202 */ 3203 for (rar = 0; rar < hw->mac.rar_highwater; rar++) { 3204 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar)); 3205 3206 if (((IXGBE_RAH_AV & rar_high) == 0) 3207 && first_empty_rar == NO_EMPTY_RAR_FOUND) { 3208 first_empty_rar = rar; 3209 } else if ((rar_high & 0xFFFF) == addr_high) { 3210 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar)); 3211 if (rar_low == addr_low) 3212 break; /* found it already in the rars */ 3213 } 3214 } 3215 3216 if (rar < hw->mac.rar_highwater) { 3217 /* already there so just add to the pool bits */ 3218 ixgbe_set_vmdq(hw, rar, vmdq); 3219 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) { 3220 /* stick it into first empty RAR slot we found */ 3221 rar = first_empty_rar; 3222 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3223 } else if (rar == hw->mac.rar_highwater) { 3224 /* add it to the top of the list and inc the highwater mark */ 3225 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3226 hw->mac.rar_highwater++; 3227 } else if (rar >= hw->mac.num_rar_entries) { 3228 return IXGBE_ERR_INVALID_MAC_ADDR; 3229 } 3230 3231 /* 3232 * If we found rar[0], make sure the default pool bit (we use pool 0) 3233 * remains cleared to be sure default pool packets will get delivered 3234 */ 3235 if (rar == 0) 3236 ixgbe_clear_vmdq(hw, rar, 0); 3237 3238 return rar; 3239 } 3240 3241 /** 3242 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address 3243 * @hw: pointer to hardware struct 3244 * @rar: receive address register index to disassociate 3245 * @vmdq: VMDq pool index to remove from the rar 3246 **/ 3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3248 { 3249 u32 mpsar_lo, mpsar_hi; 3250 u32 rar_entries = hw->mac.num_rar_entries; 3251 3252 DEBUGFUNC("ixgbe_clear_vmdq_generic"); 3253 3254 /* Make sure we are using a valid rar index range */ 3255 if (rar >= rar_entries) { 3256 DEBUGOUT1("RAR index %d is out of range.\n", rar); 3257 return IXGBE_ERR_INVALID_ARGUMENT; 3258 } 3259 3260 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3261 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3262 3263 if (!mpsar_lo && !mpsar_hi) 3264 goto done; 3265 3266 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { 3267 if (mpsar_lo) { 3268 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3269 mpsar_lo = 0; 3270 } 3271 if (mpsar_hi) { 3272 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3273 mpsar_hi = 0; 3274 } 3275 } else if (vmdq < 32) { 3276 mpsar_lo &= ~(1 << vmdq); 3277 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); 3278 } else { 3279 mpsar_hi &= ~(1 << (vmdq - 32)); 3280 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); 3281 } 3282 3283 /* was that the last pool using this rar? */ 3284 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 3285 hw->mac.ops.clear_rar(hw, rar); 3286 done: 3287 return IXGBE_SUCCESS; 3288 } 3289 3290 /** 3291 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address 3292 * @hw: pointer to hardware struct 3293 * @rar: receive address register index to associate with a VMDq index 3294 * @vmdq: VMDq pool index 3295 **/ 3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3297 { 3298 u32 mpsar; 3299 u32 rar_entries = hw->mac.num_rar_entries; 3300 3301 DEBUGFUNC("ixgbe_set_vmdq_generic"); 3302 3303 /* Make sure we are using a valid rar index range */ 3304 if (rar >= rar_entries) { 3305 DEBUGOUT1("RAR index %d is out of range.\n", rar); 3306 return IXGBE_ERR_INVALID_ARGUMENT; 3307 } 3308 3309 if (vmdq < 32) { 3310 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3311 mpsar |= 1 << vmdq; 3312 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); 3313 } else { 3314 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3315 mpsar |= 1 << (vmdq - 32); 3316 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); 3317 } 3318 return IXGBE_SUCCESS; 3319 } 3320 3321 /** 3322 * This function should only be involved in the IOV mode. 3323 * In IOV mode, Default pool is next pool after the number of 3324 * VFs advertized and not 0. 3325 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index] 3326 * 3327 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address 3328 * @hw: pointer to hardware struct 3329 * @vmdq: VMDq pool index 3330 **/ 3331 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq) 3332 { 3333 u32 rar = hw->mac.san_mac_rar_index; 3334 3335 DEBUGFUNC("ixgbe_set_vmdq_san_mac"); 3336 3337 if (vmdq < 32) { 3338 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq); 3339 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3340 } else { 3341 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3342 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32)); 3343 } 3344 3345 return IXGBE_SUCCESS; 3346 } 3347 3348 /** 3349 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array 3350 * @hw: pointer to hardware structure 3351 **/ 3352 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) 3353 { 3354 int i; 3355 3356 DEBUGFUNC("ixgbe_init_uta_tables_generic"); 3357 DEBUGOUT(" Clearing UTA\n"); 3358 3359 for (i = 0; i < 128; i++) 3360 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); 3361 3362 return IXGBE_SUCCESS; 3363 } 3364 3365 /** 3366 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot 3367 * @hw: pointer to hardware structure 3368 * @vlan: VLAN id to write to VLAN filter 3369 * 3370 * return the VLVF index where this VLAN id should be placed 3371 * 3372 **/ 3373 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan) 3374 { 3375 u32 bits = 0; 3376 u32 first_empty_slot = 0; 3377 s32 regindex; 3378 3379 /* short cut the special case */ 3380 if (vlan == 0) 3381 return 0; 3382 3383 /* 3384 * Search for the vlan id in the VLVF entries. Save off the first empty 3385 * slot found along the way 3386 */ 3387 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { 3388 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); 3389 if (!bits && !(first_empty_slot)) 3390 first_empty_slot = regindex; 3391 else if ((bits & 0x0FFF) == vlan) 3392 break; 3393 } 3394 3395 /* 3396 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan 3397 * in the VLVF. Else use the first empty VLVF register for this 3398 * vlan id. 3399 */ 3400 if (regindex >= IXGBE_VLVF_ENTRIES) { 3401 if (first_empty_slot) 3402 regindex = first_empty_slot; 3403 else { 3404 DEBUGOUT("No space in VLVF.\n"); 3405 regindex = IXGBE_ERR_NO_SPACE; 3406 } 3407 } 3408 3409 return regindex; 3410 } 3411 3412 /** 3413 * ixgbe_set_vfta_generic - Set VLAN filter table 3414 * @hw: pointer to hardware structure 3415 * @vlan: VLAN id to write to VLAN filter 3416 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 3417 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 3418 * 3419 * Turn on/off specified VLAN in the VLAN filter table. 3420 **/ 3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 3422 bool vlan_on) 3423 { 3424 s32 regindex; 3425 u32 bitindex; 3426 u32 vfta; 3427 u32 targetbit; 3428 s32 ret_val = IXGBE_SUCCESS; 3429 bool vfta_changed = FALSE; 3430 3431 DEBUGFUNC("ixgbe_set_vfta_generic"); 3432 3433 if (vlan > 4095) 3434 return IXGBE_ERR_PARAM; 3435 3436 /* 3437 * this is a 2 part operation - first the VFTA, then the 3438 * VLVF and VLVFB if VT Mode is set 3439 * We don't write the VFTA until we know the VLVF part succeeded. 3440 */ 3441 3442 /* Part 1 3443 * The VFTA is a bitstring made up of 128 32-bit registers 3444 * that enable the particular VLAN id, much like the MTA: 3445 * bits[11-5]: which register 3446 * bits[4-0]: which bit in the register 3447 */ 3448 regindex = (vlan >> 5) & 0x7F; 3449 bitindex = vlan & 0x1F; 3450 targetbit = (1 << bitindex); 3451 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); 3452 3453 if (vlan_on) { 3454 if (!(vfta & targetbit)) { 3455 vfta |= targetbit; 3456 vfta_changed = TRUE; 3457 } 3458 } else { 3459 if ((vfta & targetbit)) { 3460 vfta &= ~targetbit; 3461 vfta_changed = TRUE; 3462 } 3463 } 3464 3465 /* Part 2 3466 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF 3467 */ 3468 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, 3469 &vfta_changed); 3470 if (ret_val != IXGBE_SUCCESS) 3471 return ret_val; 3472 3473 if (vfta_changed) 3474 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta); 3475 3476 return IXGBE_SUCCESS; 3477 } 3478 3479 /** 3480 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter 3481 * @hw: pointer to hardware structure 3482 * @vlan: VLAN id to write to VLAN filter 3483 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 3484 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 3485 * @vfta_changed: pointer to boolean flag which indicates whether VFTA 3486 * should be changed 3487 * 3488 * Turn on/off specified bit in VLVF table. 3489 **/ 3490 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 3491 bool vlan_on, bool *vfta_changed) 3492 { 3493 u32 vt; 3494 3495 DEBUGFUNC("ixgbe_set_vlvf_generic"); 3496 3497 if (vlan > 4095) 3498 return IXGBE_ERR_PARAM; 3499 3500 /* If VT Mode is set 3501 * Either vlan_on 3502 * make sure the vlan is in VLVF 3503 * set the vind bit in the matching VLVFB 3504 * Or !vlan_on 3505 * clear the pool bit and possibly the vind 3506 */ 3507 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL); 3508 if (vt & IXGBE_VT_CTL_VT_ENABLE) { 3509 s32 vlvf_index; 3510 u32 bits; 3511 3512 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan); 3513 if (vlvf_index < 0) 3514 return vlvf_index; 3515 3516 if (vlan_on) { 3517 /* set the pool bit */ 3518 if (vind < 32) { 3519 bits = IXGBE_READ_REG(hw, 3520 IXGBE_VLVFB(vlvf_index * 2)); 3521 bits |= (1 << vind); 3522 IXGBE_WRITE_REG(hw, 3523 IXGBE_VLVFB(vlvf_index * 2), 3524 bits); 3525 } else { 3526 bits = IXGBE_READ_REG(hw, 3527 IXGBE_VLVFB((vlvf_index * 2) + 1)); 3528 bits |= (1 << (vind - 32)); 3529 IXGBE_WRITE_REG(hw, 3530 IXGBE_VLVFB((vlvf_index * 2) + 1), 3531 bits); 3532 } 3533 } else { 3534 /* clear the pool bit */ 3535 if (vind < 32) { 3536 bits = IXGBE_READ_REG(hw, 3537 IXGBE_VLVFB(vlvf_index * 2)); 3538 bits &= ~(1 << vind); 3539 IXGBE_WRITE_REG(hw, 3540 IXGBE_VLVFB(vlvf_index * 2), 3541 bits); 3542 bits |= IXGBE_READ_REG(hw, 3543 IXGBE_VLVFB((vlvf_index * 2) + 1)); 3544 } else { 3545 bits = IXGBE_READ_REG(hw, 3546 IXGBE_VLVFB((vlvf_index * 2) + 1)); 3547 bits &= ~(1 << (vind - 32)); 3548 IXGBE_WRITE_REG(hw, 3549 IXGBE_VLVFB((vlvf_index * 2) + 1), 3550 bits); 3551 bits |= IXGBE_READ_REG(hw, 3552 IXGBE_VLVFB(vlvf_index * 2)); 3553 } 3554 } 3555 3556 /* 3557 * If there are still bits set in the VLVFB registers 3558 * for the VLAN ID indicated we need to see if the 3559 * caller is requesting that we clear the VFTA entry bit. 3560 * If the caller has requested that we clear the VFTA 3561 * entry bit but there are still pools/VFs using this VLAN 3562 * ID entry then ignore the request. We're not worried 3563 * about the case where we're turning the VFTA VLAN ID 3564 * entry bit on, only when requested to turn it off as 3565 * there may be multiple pools and/or VFs using the 3566 * VLAN ID entry. In that case we cannot clear the 3567 * VFTA bit until all pools/VFs using that VLAN ID have also 3568 * been cleared. This will be indicated by "bits" being 3569 * zero. 3570 */ 3571 if (bits) { 3572 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 3573 (IXGBE_VLVF_VIEN | vlan)); 3574 if ((!vlan_on) && (vfta_changed != NULL)) { 3575 /* someone wants to clear the vfta entry 3576 * but some pools/VFs are still using it. 3577 * Ignore it. */ 3578 *vfta_changed = FALSE; 3579 } 3580 } else 3581 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); 3582 } 3583 3584 return IXGBE_SUCCESS; 3585 } 3586 3587 /** 3588 * ixgbe_clear_vfta_generic - Clear VLAN filter table 3589 * @hw: pointer to hardware structure 3590 * 3591 * Clears the VLAN filer table, and the VMDq index associated with the filter 3592 **/ 3593 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) 3594 { 3595 u32 offset; 3596 3597 DEBUGFUNC("ixgbe_clear_vfta_generic"); 3598 3599 for (offset = 0; offset < hw->mac.vft_size; offset++) 3600 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); 3601 3602 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { 3603 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); 3604 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0); 3605 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0); 3606 } 3607 3608 return IXGBE_SUCCESS; 3609 } 3610 3611 /** 3612 * ixgbe_check_mac_link_generic - Determine link and speed status 3613 * @hw: pointer to hardware structure 3614 * @speed: pointer to link speed 3615 * @link_up: TRUE when link is up 3616 * @link_up_wait_to_complete: bool used to wait for link up or not 3617 * 3618 * Reads the links register to determine if link is up and the current speed 3619 **/ 3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 3621 bool *link_up, bool link_up_wait_to_complete) 3622 { 3623 u32 links_reg, links_orig; 3624 u32 i; 3625 3626 DEBUGFUNC("ixgbe_check_mac_link_generic"); 3627 3628 /* clear the old state */ 3629 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); 3630 3631 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 3632 3633 if (links_orig != links_reg) { 3634 DEBUGOUT2("LINKS changed from %08X to %08X\n", 3635 links_orig, links_reg); 3636 } 3637 3638 if (link_up_wait_to_complete) { 3639 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { 3640 if (links_reg & IXGBE_LINKS_UP) { 3641 *link_up = TRUE; 3642 break; 3643 } else { 3644 *link_up = FALSE; 3645 } 3646 msec_delay(100); 3647 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 3648 } 3649 } else { 3650 if (links_reg & IXGBE_LINKS_UP) 3651 *link_up = TRUE; 3652 else 3653 *link_up = FALSE; 3654 } 3655 3656 if ((links_reg & IXGBE_LINKS_SPEED_82599) == 3657 IXGBE_LINKS_SPEED_10G_82599) 3658 *speed = IXGBE_LINK_SPEED_10GB_FULL; 3659 else if ((links_reg & IXGBE_LINKS_SPEED_82599) == 3660 IXGBE_LINKS_SPEED_1G_82599) 3661 *speed = IXGBE_LINK_SPEED_1GB_FULL; 3662 else if ((links_reg & IXGBE_LINKS_SPEED_82599) == 3663 IXGBE_LINKS_SPEED_100_82599) 3664 *speed = IXGBE_LINK_SPEED_100_FULL; 3665 else 3666 *speed = IXGBE_LINK_SPEED_UNKNOWN; 3667 3668 return IXGBE_SUCCESS; 3669 } 3670 3671 /** 3672 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from 3673 * the EEPROM 3674 * @hw: pointer to hardware structure 3675 * @wwnn_prefix: the alternative WWNN prefix 3676 * @wwpn_prefix: the alternative WWPN prefix 3677 * 3678 * This function will read the EEPROM from the alternative SAN MAC address 3679 * block to check the support for the alternative WWNN/WWPN prefix support. 3680 **/ 3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, 3682 u16 *wwpn_prefix) 3683 { 3684 u16 offset, caps; 3685 u16 alt_san_mac_blk_offset; 3686 3687 DEBUGFUNC("ixgbe_get_wwn_prefix_generic"); 3688 3689 /* clear output first */ 3690 *wwnn_prefix = 0xFFFF; 3691 *wwpn_prefix = 0xFFFF; 3692 3693 /* check if alternative SAN MAC is supported */ 3694 hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR, 3695 &alt_san_mac_blk_offset); 3696 3697 if ((alt_san_mac_blk_offset == 0) || 3698 (alt_san_mac_blk_offset == 0xFFFF)) 3699 goto wwn_prefix_out; 3700 3701 /* check capability in alternative san mac address block */ 3702 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; 3703 hw->eeprom.ops.read(hw, offset, &caps); 3704 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) 3705 goto wwn_prefix_out; 3706 3707 /* get the corresponding prefix for WWNN/WWPN */ 3708 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; 3709 hw->eeprom.ops.read(hw, offset, wwnn_prefix); 3710 3711 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; 3712 hw->eeprom.ops.read(hw, offset, wwpn_prefix); 3713 3714 wwn_prefix_out: 3715 return IXGBE_SUCCESS; 3716 } 3717 3718 /** 3719 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM 3720 * @hw: pointer to hardware structure 3721 * @bs: the fcoe boot status 3722 * 3723 * This function will read the FCOE boot status from the iSCSI FCOE block 3724 **/ 3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs) 3726 { 3727 u16 offset, caps, flags; 3728 s32 status; 3729 3730 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic"); 3731 3732 /* clear output first */ 3733 *bs = ixgbe_fcoe_bootstatus_unavailable; 3734 3735 /* check if FCOE IBA block is present */ 3736 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR; 3737 status = hw->eeprom.ops.read(hw, offset, &caps); 3738 if (status != IXGBE_SUCCESS) 3739 goto out; 3740 3741 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE)) 3742 goto out; 3743 3744 /* check if iSCSI FCOE block is populated */ 3745 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset); 3746 if (status != IXGBE_SUCCESS) 3747 goto out; 3748 3749 if ((offset == 0) || (offset == 0xFFFF)) 3750 goto out; 3751 3752 /* read fcoe flags in iSCSI FCOE block */ 3753 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET; 3754 status = hw->eeprom.ops.read(hw, offset, &flags); 3755 if (status != IXGBE_SUCCESS) 3756 goto out; 3757 3758 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE) 3759 *bs = ixgbe_fcoe_bootstatus_enabled; 3760 else 3761 *bs = ixgbe_fcoe_bootstatus_disabled; 3762 3763 out: 3764 return status; 3765 } 3766 3767 /** 3768 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing 3769 * @hw: pointer to hardware structure 3770 * @enable: enable or disable switch for anti-spoofing 3771 * @pf: Physical Function pool - do not enable anti-spoofing for the PF 3772 * 3773 **/ 3774 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf) 3775 { 3776 int j; 3777 int pf_target_reg = pf >> 3; 3778 int pf_target_shift = pf % 8; 3779 u32 pfvfspoof = 0; 3780 3781 if (hw->mac.type == ixgbe_mac_82598EB) 3782 return; 3783 3784 if (enable) 3785 pfvfspoof = IXGBE_SPOOF_MACAS_MASK; 3786 3787 /* 3788 * PFVFSPOOF register array is size 8 with 8 bits assigned to 3789 * MAC anti-spoof enables in each register array element. 3790 */ 3791 for (j = 0; j < pf_target_reg; j++) 3792 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); 3793 3794 /* 3795 * The PF should be allowed to spoof so that it can support 3796 * emulation mode NICs. Do not set the bits assigned to the PF 3797 */ 3798 pfvfspoof &= (1 << pf_target_shift) - 1; 3799 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); 3800 3801 /* 3802 * Remaining pools belong to the PF so they do not need to have 3803 * anti-spoofing enabled. 3804 */ 3805 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++) 3806 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0); 3807 } 3808 3809 /** 3810 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing 3811 * @hw: pointer to hardware structure 3812 * @enable: enable or disable switch for VLAN anti-spoofing 3813 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing 3814 * 3815 **/ 3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 3817 { 3818 int vf_target_reg = vf >> 3; 3819 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; 3820 u32 pfvfspoof; 3821 3822 if (hw->mac.type == ixgbe_mac_82598EB) 3823 return; 3824 3825 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 3826 if (enable) 3827 pfvfspoof |= (1 << vf_target_shift); 3828 else 3829 pfvfspoof &= ~(1 << vf_target_shift); 3830 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 3831 } 3832 3833 /** 3834 * ixgbe_get_device_caps_generic - Get additional device capabilities 3835 * @hw: pointer to hardware structure 3836 * @device_caps: the EEPROM word with the extra device capabilities 3837 * 3838 * This function will read the EEPROM location for the device capabilities, 3839 * and return the word through device_caps. 3840 **/ 3841 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) 3842 { 3843 DEBUGFUNC("ixgbe_get_device_caps_generic"); 3844 3845 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); 3846 3847 return IXGBE_SUCCESS; 3848 } 3849 3850 /** 3851 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering 3852 * @hw: pointer to hardware structure 3853 * 3854 **/ 3855 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw) 3856 { 3857 u32 regval; 3858 u32 i; 3859 3860 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2"); 3861 3862 /* Enable relaxed ordering */ 3863 for (i = 0; i < hw->mac.max_tx_queues; i++) { 3864 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 3865 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN; 3866 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 3867 } 3868 3869 for (i = 0; i < hw->mac.max_rx_queues; i++) { 3870 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 3871 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN | 3872 IXGBE_DCA_RXCTRL_HEAD_WRO_EN; 3873 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 3874 } 3875 3876 } 3877 3878 /** 3879 * ixgbe_calculate_checksum - Calculate checksum for buffer 3880 * @buffer: pointer to EEPROM 3881 * @length: size of EEPROM to calculate a checksum for 3882 * Calculates the checksum for some buffer on a specified length. The 3883 * checksum calculated is returned. 3884 **/ 3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) 3886 { 3887 u32 i; 3888 u8 sum = 0; 3889 3890 DEBUGFUNC("ixgbe_calculate_checksum"); 3891 3892 if (!buffer) 3893 return 0; 3894 3895 for (i = 0; i < length; i++) 3896 sum += buffer[i]; 3897 3898 return (u8) (0 - sum); 3899 } 3900 3901 /** 3902 * ixgbe_host_interface_command - Issue command to manageability block 3903 * @hw: pointer to the HW structure 3904 * @buffer: contains the command to write and where the return status will 3905 * be placed 3906 * @length: length of buffer, must be multiple of 4 bytes 3907 * 3908 * Communicates with the manageability block. On success return IXGBE_SUCCESS 3909 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND. 3910 **/ 3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, 3912 u32 length) 3913 { 3914 u32 hicr, i, bi; 3915 u32 hdr_size = sizeof(struct ixgbe_hic_hdr); 3916 u8 buf_len, dword_len; 3917 3918 s32 ret_val = IXGBE_SUCCESS; 3919 3920 DEBUGFUNC("ixgbe_host_interface_command"); 3921 3922 if (length == 0 || length & 0x3 || 3923 length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 3924 DEBUGOUT("Buffer length failure.\n"); 3925 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3926 goto out; 3927 } 3928 3929 /* Check that the host interface is enabled. */ 3930 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 3931 if ((hicr & IXGBE_HICR_EN) == 0) { 3932 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n"); 3933 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3934 goto out; 3935 } 3936 3937 /* Calculate length in DWORDs */ 3938 dword_len = length >> 2; 3939 3940 /* 3941 * The device driver writes the relevant command block 3942 * into the ram area. 3943 */ 3944 for (i = 0; i < dword_len; i++) 3945 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, 3946 i, IXGBE_CPU_TO_LE32(buffer[i])); 3947 3948 /* Setting this bit tells the ARC that a new command is pending. */ 3949 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); 3950 3951 for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) { 3952 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 3953 if (!(hicr & IXGBE_HICR_C)) 3954 break; 3955 msec_delay(1); 3956 } 3957 3958 /* Check command successful completion. */ 3959 if (i == IXGBE_HI_COMMAND_TIMEOUT || 3960 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) { 3961 DEBUGOUT("Command has failed with no status valid.\n"); 3962 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3963 goto out; 3964 } 3965 3966 /* Calculate length in DWORDs */ 3967 dword_len = hdr_size >> 2; 3968 3969 /* first pull in the header so we know the buffer length */ 3970 for (bi = 0; bi < dword_len; bi++) { 3971 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 3972 IXGBE_LE32_TO_CPUS(&buffer[bi]); 3973 } 3974 3975 /* If there is any thing in data position pull it in */ 3976 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len; 3977 if (buf_len == 0) 3978 goto out; 3979 3980 if (length < (buf_len + hdr_size)) { 3981 DEBUGOUT("Buffer not large enough for reply message.\n"); 3982 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3983 goto out; 3984 } 3985 3986 /* Calculate length in DWORDs, add 3 for odd lengths */ 3987 dword_len = (buf_len + 3) >> 2; 3988 3989 /* Pull in the rest of the buffer (bi is where we left off)*/ 3990 for (; bi <= dword_len; bi++) { 3991 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 3992 IXGBE_LE32_TO_CPUS(&buffer[bi]); 3993 } 3994 3995 out: 3996 return ret_val; 3997 } 3998 3999 /** 4000 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware 4001 * @hw: pointer to the HW structure 4002 * @maj: driver version major number 4003 * @min: driver version minor number 4004 * @build: driver version build number 4005 * @sub: driver version sub build number 4006 * 4007 * Sends driver version number to firmware through the manageability 4008 * block. On success return IXGBE_SUCCESS 4009 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring 4010 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4011 **/ 4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, 4013 u8 build, u8 sub) 4014 { 4015 struct ixgbe_hic_drv_info fw_cmd; 4016 int i; 4017 s32 ret_val = IXGBE_SUCCESS; 4018 4019 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic"); 4020 4021 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) 4022 != IXGBE_SUCCESS) { 4023 ret_val = IXGBE_ERR_SWFW_SYNC; 4024 goto out; 4025 } 4026 4027 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; 4028 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; 4029 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; 4030 fw_cmd.port_num = (u8)hw->bus.func; 4031 fw_cmd.ver_maj = maj; 4032 fw_cmd.ver_min = min; 4033 fw_cmd.ver_build = build; 4034 fw_cmd.ver_sub = sub; 4035 fw_cmd.hdr.checksum = 0; 4036 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, 4037 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); 4038 fw_cmd.pad = 0; 4039 fw_cmd.pad2 = 0; 4040 4041 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { 4042 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, 4043 sizeof(fw_cmd)); 4044 if (ret_val != IXGBE_SUCCESS) 4045 continue; 4046 4047 if (fw_cmd.hdr.cmd_or_resp.ret_status == 4048 FW_CEM_RESP_STATUS_SUCCESS) 4049 ret_val = IXGBE_SUCCESS; 4050 else 4051 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4052 4053 break; 4054 } 4055 4056 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4057 out: 4058 return ret_val; 4059 } 4060 4061 /** 4062 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer 4063 * @hw: pointer to hardware structure 4064 * @num_pb: number of packet buffers to allocate 4065 * @headroom: reserve n KB of headroom 4066 * @strategy: packet buffer allocation strategy 4067 **/ 4068 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom, 4069 int strategy) 4070 { 4071 u32 pbsize = hw->mac.rx_pb_size; 4072 int i = 0; 4073 u32 rxpktsize, txpktsize, txpbthresh; 4074 4075 /* Reserve headroom */ 4076 pbsize -= headroom; 4077 4078 if (!num_pb) 4079 num_pb = 1; 4080 4081 /* Divide remaining packet buffer space amongst the number of packet 4082 * buffers requested using supplied strategy. 4083 */ 4084 switch (strategy) { 4085 case PBA_STRATEGY_WEIGHTED: 4086 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet 4087 * buffer with 5/8 of the packet buffer space. 4088 */ 4089 rxpktsize = (pbsize * 5) / (num_pb * 4); 4090 pbsize -= rxpktsize * (num_pb / 2); 4091 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; 4092 for (; i < (num_pb / 2); i++) 4093 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4094 /* Fall through to configure remaining packet buffers */ 4095 case PBA_STRATEGY_EQUAL: 4096 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; 4097 for (; i < num_pb; i++) 4098 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4099 break; 4100 default: 4101 break; 4102 } 4103 4104 /* Only support an equally distributed Tx packet buffer strategy. */ 4105 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; 4106 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; 4107 for (i = 0; i < num_pb; i++) { 4108 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); 4109 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); 4110 } 4111 4112 /* Clear unused TCs, if any, to zero buffer size*/ 4113 for (; i < IXGBE_MAX_PB; i++) { 4114 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); 4115 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); 4116 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); 4117 } 4118 } 4119 4120 /** 4121 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo 4122 * @hw: pointer to the hardware structure 4123 * 4124 * The 82599 and x540 MACs can experience issues if TX work is still pending 4125 * when a reset occurs. This function prevents this by flushing the PCIe 4126 * buffers on the system. 4127 **/ 4128 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) 4129 { 4130 u32 gcr_ext, hlreg0; 4131 4132 /* 4133 * If double reset is not requested then all transactions should 4134 * already be clear and as such there is no work to do 4135 */ 4136 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) 4137 return; 4138 4139 /* 4140 * Set loopback enable to prevent any transmits from being sent 4141 * should the link come up. This assumes that the RXCTRL.RXEN bit 4142 * has already been cleared. 4143 */ 4144 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); 4145 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); 4146 4147 /* initiate cleaning flow for buffers in the PCIe transaction layer */ 4148 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 4149 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, 4150 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); 4151 4152 /* Flush all writes and allow 20usec for all transactions to clear */ 4153 IXGBE_WRITE_FLUSH(hw); 4154 usec_delay(20); 4155 4156 /* restore previous register values */ 4157 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); 4158 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); 4159 } 4160 4161