xref: /freebsd/sys/dev/ixgbe/ixgbe_common.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2012, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_api.h"
38 
39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 					u16 count);
46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
53 					 u16 *san_mac_offset);
54 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					      u16 words, u16 *data);
58 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
59 						 u16 offset);
60 
61 /**
62  *  ixgbe_init_ops_generic - Inits function ptrs
63  *  @hw: pointer to the hardware structure
64  *
65  *  Initialize the function pointers.
66  **/
67 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
68 {
69 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
70 	struct ixgbe_mac_info *mac = &hw->mac;
71 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
72 
73 	DEBUGFUNC("ixgbe_init_ops_generic");
74 
75 	/* EEPROM */
76 	eeprom->ops.init_params = &ixgbe_init_eeprom_params_generic;
77 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
78 	if (eec & IXGBE_EEC_PRES) {
79 		eeprom->ops.read = &ixgbe_read_eerd_generic;
80 		eeprom->ops.read_buffer = &ixgbe_read_eerd_buffer_generic;
81 	} else {
82 		eeprom->ops.read = &ixgbe_read_eeprom_bit_bang_generic;
83 		eeprom->ops.read_buffer =
84 				 &ixgbe_read_eeprom_buffer_bit_bang_generic;
85 	}
86 	eeprom->ops.write = &ixgbe_write_eeprom_generic;
87 	eeprom->ops.write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic;
88 	eeprom->ops.validate_checksum =
89 				      &ixgbe_validate_eeprom_checksum_generic;
90 	eeprom->ops.update_checksum = &ixgbe_update_eeprom_checksum_generic;
91 	eeprom->ops.calc_checksum = &ixgbe_calc_eeprom_checksum_generic;
92 
93 	/* MAC */
94 	mac->ops.init_hw = &ixgbe_init_hw_generic;
95 	mac->ops.reset_hw = NULL;
96 	mac->ops.start_hw = &ixgbe_start_hw_generic;
97 	mac->ops.clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic;
98 	mac->ops.get_media_type = NULL;
99 	mac->ops.get_supported_physical_layer = NULL;
100 	mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_generic;
101 	mac->ops.get_mac_addr = &ixgbe_get_mac_addr_generic;
102 	mac->ops.stop_adapter = &ixgbe_stop_adapter_generic;
103 	mac->ops.get_bus_info = &ixgbe_get_bus_info_generic;
104 	mac->ops.set_lan_id = &ixgbe_set_lan_id_multi_port_pcie;
105 	mac->ops.acquire_swfw_sync = &ixgbe_acquire_swfw_sync;
106 	mac->ops.release_swfw_sync = &ixgbe_release_swfw_sync;
107 
108 	/* LEDs */
109 	mac->ops.led_on = &ixgbe_led_on_generic;
110 	mac->ops.led_off = &ixgbe_led_off_generic;
111 	mac->ops.blink_led_start = &ixgbe_blink_led_start_generic;
112 	mac->ops.blink_led_stop = &ixgbe_blink_led_stop_generic;
113 
114 	/* RAR, Multicast, VLAN */
115 	mac->ops.set_rar = &ixgbe_set_rar_generic;
116 	mac->ops.clear_rar = &ixgbe_clear_rar_generic;
117 	mac->ops.insert_mac_addr = NULL;
118 	mac->ops.set_vmdq = NULL;
119 	mac->ops.clear_vmdq = NULL;
120 	mac->ops.init_rx_addrs = &ixgbe_init_rx_addrs_generic;
121 	mac->ops.update_uc_addr_list = &ixgbe_update_uc_addr_list_generic;
122 	mac->ops.update_mc_addr_list = &ixgbe_update_mc_addr_list_generic;
123 	mac->ops.enable_mc = &ixgbe_enable_mc_generic;
124 	mac->ops.disable_mc = &ixgbe_disable_mc_generic;
125 	mac->ops.clear_vfta = NULL;
126 	mac->ops.set_vfta = NULL;
127 	mac->ops.set_vlvf = NULL;
128 	mac->ops.init_uta_tables = NULL;
129 
130 	/* Flow Control */
131 	mac->ops.fc_enable = &ixgbe_fc_enable_generic;
132 
133 	/* Link */
134 	mac->ops.get_link_capabilities = NULL;
135 	mac->ops.setup_link = NULL;
136 	mac->ops.check_link = NULL;
137 
138 	return IXGBE_SUCCESS;
139 }
140 
141 /**
142  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
143  *  control
144  *  @hw: pointer to hardware structure
145  *
146  *  There are several phys that do not support autoneg flow control. This
147  *  function check the device id to see if the associated phy supports
148  *  autoneg flow control.
149  **/
150 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
151 {
152 
153 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
154 
155 	switch (hw->device_id) {
156 	case IXGBE_DEV_ID_X540T:
157 	case IXGBE_DEV_ID_X540T1:
158 		return IXGBE_SUCCESS;
159 	case IXGBE_DEV_ID_82599_T3_LOM:
160 		return IXGBE_SUCCESS;
161 	default:
162 		return IXGBE_ERR_FC_NOT_SUPPORTED;
163 	}
164 }
165 
166 /**
167  *  ixgbe_setup_fc - Set up flow control
168  *  @hw: pointer to hardware structure
169  *
170  *  Called at init time to set up flow control.
171  **/
172 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
173 {
174 	s32 ret_val = IXGBE_SUCCESS;
175 	u32 reg = 0, reg_bp = 0;
176 	u16 reg_cu = 0;
177 
178 	DEBUGFUNC("ixgbe_setup_fc");
179 
180 	/*
181 	 * Validate the requested mode.  Strict IEEE mode does not allow
182 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
183 	 */
184 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
185 		DEBUGOUT("ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
186 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
187 		goto out;
188 	}
189 
190 	/*
191 	 * 10gig parts do not have a word in the EEPROM to determine the
192 	 * default flow control setting, so we explicitly set it to full.
193 	 */
194 	if (hw->fc.requested_mode == ixgbe_fc_default)
195 		hw->fc.requested_mode = ixgbe_fc_full;
196 
197 	/*
198 	 * Set up the 1G and 10G flow control advertisement registers so the
199 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
200 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
201 	 */
202 	switch (hw->phy.media_type) {
203 	case ixgbe_media_type_fiber:
204 	case ixgbe_media_type_backplane:
205 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
206 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
207 		break;
208 	case ixgbe_media_type_copper:
209 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
210 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
211 		break;
212 	default:
213 		break;
214 	}
215 
216 	/*
217 	 * The possible values of fc.requested_mode are:
218 	 * 0: Flow control is completely disabled
219 	 * 1: Rx flow control is enabled (we can receive pause frames,
220 	 *    but not send pause frames).
221 	 * 2: Tx flow control is enabled (we can send pause frames but
222 	 *    we do not support receiving pause frames).
223 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
224 	 * other: Invalid.
225 	 */
226 	switch (hw->fc.requested_mode) {
227 	case ixgbe_fc_none:
228 		/* Flow control completely disabled by software override. */
229 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
230 		if (hw->phy.media_type == ixgbe_media_type_backplane)
231 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
232 				    IXGBE_AUTOC_ASM_PAUSE);
233 		else if (hw->phy.media_type == ixgbe_media_type_copper)
234 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
235 		break;
236 	case ixgbe_fc_tx_pause:
237 		/*
238 		 * Tx Flow control is enabled, and Rx Flow control is
239 		 * disabled by software override.
240 		 */
241 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
242 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
243 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
244 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
245 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
246 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
247 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
248 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
249 		}
250 		break;
251 	case ixgbe_fc_rx_pause:
252 		/*
253 		 * Rx Flow control is enabled and Tx Flow control is
254 		 * disabled by software override. Since there really
255 		 * isn't a way to advertise that we are capable of RX
256 		 * Pause ONLY, we will advertise that we support both
257 		 * symmetric and asymmetric Rx PAUSE, as such we fall
258 		 * through to the fc_full statement.  Later, we will
259 		 * disable the adapter's ability to send PAUSE frames.
260 		 */
261 	case ixgbe_fc_full:
262 		/* Flow control (both Rx and Tx) is enabled by SW override. */
263 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
264 		if (hw->phy.media_type == ixgbe_media_type_backplane)
265 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
266 				  IXGBE_AUTOC_ASM_PAUSE;
267 		else if (hw->phy.media_type == ixgbe_media_type_copper)
268 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
269 		break;
270 	default:
271 		DEBUGOUT("Flow control param set incorrectly\n");
272 		ret_val = IXGBE_ERR_CONFIG;
273 		goto out;
274 		break;
275 	}
276 
277 	if (hw->mac.type != ixgbe_mac_X540) {
278 		/*
279 		 * Enable auto-negotiation between the MAC & PHY;
280 		 * the MAC will advertise clause 37 flow control.
281 		 */
282 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
283 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
284 
285 		/* Disable AN timeout */
286 		if (hw->fc.strict_ieee)
287 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
288 
289 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
290 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
291 	}
292 
293 	/*
294 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
295 	 * and copper. There is no need to set the PCS1GCTL register.
296 	 *
297 	 */
298 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
299 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
300 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
301 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
302 		    (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)) {
303 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
304 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
305 	}
306 
307 	DEBUGOUT1("Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
308 out:
309 	return ret_val;
310 }
311 
312 /**
313  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
314  *  @hw: pointer to hardware structure
315  *
316  *  Starts the hardware by filling the bus info structure and media type, clears
317  *  all on chip counters, initializes receive address registers, multicast
318  *  table, VLAN filter table, calls routine to set up link and flow control
319  *  settings, and leaves transmit and receive units disabled and uninitialized
320  **/
321 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
322 {
323 	s32 ret_val;
324 	u32 ctrl_ext;
325 
326 	DEBUGFUNC("ixgbe_start_hw_generic");
327 
328 	/* Set the media type */
329 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
330 
331 	/* PHY ops initialization must be done in reset_hw() */
332 
333 	/* Clear the VLAN filter table */
334 	hw->mac.ops.clear_vfta(hw);
335 
336 	/* Clear statistics registers */
337 	hw->mac.ops.clear_hw_cntrs(hw);
338 
339 	/* Set No Snoop Disable */
340 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
341 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
342 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
343 	IXGBE_WRITE_FLUSH(hw);
344 
345 	/* Setup flow control */
346 	ret_val = ixgbe_setup_fc(hw);
347 	if (ret_val != IXGBE_SUCCESS)
348 		goto out;
349 
350 	/* Clear adapter stopped flag */
351 	hw->adapter_stopped = FALSE;
352 
353 out:
354 	return ret_val;
355 }
356 
357 /**
358  *  ixgbe_start_hw_gen2 - Init sequence for common device family
359  *  @hw: pointer to hw structure
360  *
361  * Performs the init sequence common to the second generation
362  * of 10 GbE devices.
363  * Devices in the second generation:
364  *     82599
365  *     X540
366  **/
367 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
368 {
369 	u32 i;
370 	u32 regval;
371 
372 	/* Clear the rate limiters */
373 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
374 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
375 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
376 	}
377 	IXGBE_WRITE_FLUSH(hw);
378 
379 	/* Disable relaxed ordering */
380 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
381 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
382 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
383 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
384 	}
385 
386 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
387 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
388 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
389 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
390 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
391 	}
392 
393 	return IXGBE_SUCCESS;
394 }
395 
396 /**
397  *  ixgbe_init_hw_generic - Generic hardware initialization
398  *  @hw: pointer to hardware structure
399  *
400  *  Initialize the hardware by resetting the hardware, filling the bus info
401  *  structure and media type, clears all on chip counters, initializes receive
402  *  address registers, multicast table, VLAN filter table, calls routine to set
403  *  up link and flow control settings, and leaves transmit and receive units
404  *  disabled and uninitialized
405  **/
406 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
407 {
408 	s32 status;
409 
410 	DEBUGFUNC("ixgbe_init_hw_generic");
411 
412 	/* Reset the hardware */
413 	status = hw->mac.ops.reset_hw(hw);
414 
415 	if (status == IXGBE_SUCCESS) {
416 		/* Start the HW */
417 		status = hw->mac.ops.start_hw(hw);
418 	}
419 
420 	return status;
421 }
422 
423 /**
424  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
425  *  @hw: pointer to hardware structure
426  *
427  *  Clears all hardware statistics counters by reading them from the hardware
428  *  Statistics counters are clear on read.
429  **/
430 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
431 {
432 	u16 i = 0;
433 
434 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
435 
436 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
437 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
438 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
439 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
440 	for (i = 0; i < 8; i++)
441 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
442 
443 	IXGBE_READ_REG(hw, IXGBE_MLFC);
444 	IXGBE_READ_REG(hw, IXGBE_MRFC);
445 	IXGBE_READ_REG(hw, IXGBE_RLEC);
446 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
447 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
448 	if (hw->mac.type >= ixgbe_mac_82599EB) {
449 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
450 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
451 	} else {
452 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
453 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
454 	}
455 
456 	for (i = 0; i < 8; i++) {
457 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
458 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
459 		if (hw->mac.type >= ixgbe_mac_82599EB) {
460 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
461 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
462 		} else {
463 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
464 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
465 		}
466 	}
467 	if (hw->mac.type >= ixgbe_mac_82599EB)
468 		for (i = 0; i < 8; i++)
469 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
470 	IXGBE_READ_REG(hw, IXGBE_PRC64);
471 	IXGBE_READ_REG(hw, IXGBE_PRC127);
472 	IXGBE_READ_REG(hw, IXGBE_PRC255);
473 	IXGBE_READ_REG(hw, IXGBE_PRC511);
474 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
475 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
476 	IXGBE_READ_REG(hw, IXGBE_GPRC);
477 	IXGBE_READ_REG(hw, IXGBE_BPRC);
478 	IXGBE_READ_REG(hw, IXGBE_MPRC);
479 	IXGBE_READ_REG(hw, IXGBE_GPTC);
480 	IXGBE_READ_REG(hw, IXGBE_GORCL);
481 	IXGBE_READ_REG(hw, IXGBE_GORCH);
482 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
483 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
484 	if (hw->mac.type == ixgbe_mac_82598EB)
485 		for (i = 0; i < 8; i++)
486 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
487 	IXGBE_READ_REG(hw, IXGBE_RUC);
488 	IXGBE_READ_REG(hw, IXGBE_RFC);
489 	IXGBE_READ_REG(hw, IXGBE_ROC);
490 	IXGBE_READ_REG(hw, IXGBE_RJC);
491 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
492 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
493 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
494 	IXGBE_READ_REG(hw, IXGBE_TORL);
495 	IXGBE_READ_REG(hw, IXGBE_TORH);
496 	IXGBE_READ_REG(hw, IXGBE_TPR);
497 	IXGBE_READ_REG(hw, IXGBE_TPT);
498 	IXGBE_READ_REG(hw, IXGBE_PTC64);
499 	IXGBE_READ_REG(hw, IXGBE_PTC127);
500 	IXGBE_READ_REG(hw, IXGBE_PTC255);
501 	IXGBE_READ_REG(hw, IXGBE_PTC511);
502 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
503 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
504 	IXGBE_READ_REG(hw, IXGBE_MPTC);
505 	IXGBE_READ_REG(hw, IXGBE_BPTC);
506 	for (i = 0; i < 16; i++) {
507 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
508 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
509 		if (hw->mac.type >= ixgbe_mac_82599EB) {
510 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
511 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
512 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
513 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
514 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
515 		} else {
516 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
517 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
518 		}
519 	}
520 
521 	if (hw->mac.type == ixgbe_mac_X540) {
522 		if (hw->phy.id == 0)
523 			ixgbe_identify_phy(hw);
524 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
525 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
526 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
527 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
528 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
529 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
530 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
531 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
532 	}
533 
534 	return IXGBE_SUCCESS;
535 }
536 
537 /**
538  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
539  *  @hw: pointer to hardware structure
540  *  @pba_num: stores the part number string from the EEPROM
541  *  @pba_num_size: part number string buffer length
542  *
543  *  Reads the part number string from the EEPROM.
544  **/
545 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
546 				  u32 pba_num_size)
547 {
548 	s32 ret_val;
549 	u16 data;
550 	u16 pba_ptr;
551 	u16 offset;
552 	u16 length;
553 
554 	DEBUGFUNC("ixgbe_read_pba_string_generic");
555 
556 	if (pba_num == NULL) {
557 		DEBUGOUT("PBA string buffer was null\n");
558 		return IXGBE_ERR_INVALID_ARGUMENT;
559 	}
560 
561 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
562 	if (ret_val) {
563 		DEBUGOUT("NVM Read Error\n");
564 		return ret_val;
565 	}
566 
567 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
568 	if (ret_val) {
569 		DEBUGOUT("NVM Read Error\n");
570 		return ret_val;
571 	}
572 
573 	/*
574 	 * if data is not ptr guard the PBA must be in legacy format which
575 	 * means pba_ptr is actually our second data word for the PBA number
576 	 * and we can decode it into an ascii string
577 	 */
578 	if (data != IXGBE_PBANUM_PTR_GUARD) {
579 		DEBUGOUT("NVM PBA number is not stored as string\n");
580 
581 		/* we will need 11 characters to store the PBA */
582 		if (pba_num_size < 11) {
583 			DEBUGOUT("PBA string buffer too small\n");
584 			return IXGBE_ERR_NO_SPACE;
585 		}
586 
587 		/* extract hex string from data and pba_ptr */
588 		pba_num[0] = (data >> 12) & 0xF;
589 		pba_num[1] = (data >> 8) & 0xF;
590 		pba_num[2] = (data >> 4) & 0xF;
591 		pba_num[3] = data & 0xF;
592 		pba_num[4] = (pba_ptr >> 12) & 0xF;
593 		pba_num[5] = (pba_ptr >> 8) & 0xF;
594 		pba_num[6] = '-';
595 		pba_num[7] = 0;
596 		pba_num[8] = (pba_ptr >> 4) & 0xF;
597 		pba_num[9] = pba_ptr & 0xF;
598 
599 		/* put a null character on the end of our string */
600 		pba_num[10] = '\0';
601 
602 		/* switch all the data but the '-' to hex char */
603 		for (offset = 0; offset < 10; offset++) {
604 			if (pba_num[offset] < 0xA)
605 				pba_num[offset] += '0';
606 			else if (pba_num[offset] < 0x10)
607 				pba_num[offset] += 'A' - 0xA;
608 		}
609 
610 		return IXGBE_SUCCESS;
611 	}
612 
613 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
614 	if (ret_val) {
615 		DEBUGOUT("NVM Read Error\n");
616 		return ret_val;
617 	}
618 
619 	if (length == 0xFFFF || length == 0) {
620 		DEBUGOUT("NVM PBA number section invalid length\n");
621 		return IXGBE_ERR_PBA_SECTION;
622 	}
623 
624 	/* check if pba_num buffer is big enough */
625 	if (pba_num_size  < (((u32)length * 2) - 1)) {
626 		DEBUGOUT("PBA string buffer too small\n");
627 		return IXGBE_ERR_NO_SPACE;
628 	}
629 
630 	/* trim pba length from start of string */
631 	pba_ptr++;
632 	length--;
633 
634 	for (offset = 0; offset < length; offset++) {
635 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
636 		if (ret_val) {
637 			DEBUGOUT("NVM Read Error\n");
638 			return ret_val;
639 		}
640 		pba_num[offset * 2] = (u8)(data >> 8);
641 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
642 	}
643 	pba_num[offset * 2] = '\0';
644 
645 	return IXGBE_SUCCESS;
646 }
647 
648 /**
649  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
650  *  @hw: pointer to hardware structure
651  *  @pba_num: stores the part number from the EEPROM
652  *
653  *  Reads the part number from the EEPROM.
654  **/
655 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
656 {
657 	s32 ret_val;
658 	u16 data;
659 
660 	DEBUGFUNC("ixgbe_read_pba_num_generic");
661 
662 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
663 	if (ret_val) {
664 		DEBUGOUT("NVM Read Error\n");
665 		return ret_val;
666 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
667 		DEBUGOUT("NVM Not supported\n");
668 		return IXGBE_NOT_IMPLEMENTED;
669 	}
670 	*pba_num = (u32)(data << 16);
671 
672 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
673 	if (ret_val) {
674 		DEBUGOUT("NVM Read Error\n");
675 		return ret_val;
676 	}
677 	*pba_num |= data;
678 
679 	return IXGBE_SUCCESS;
680 }
681 
682 /**
683  *  ixgbe_get_mac_addr_generic - Generic get MAC address
684  *  @hw: pointer to hardware structure
685  *  @mac_addr: Adapter MAC address
686  *
687  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
688  *  A reset of the adapter must be performed prior to calling this function
689  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
690  **/
691 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
692 {
693 	u32 rar_high;
694 	u32 rar_low;
695 	u16 i;
696 
697 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
698 
699 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
700 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
701 
702 	for (i = 0; i < 4; i++)
703 		mac_addr[i] = (u8)(rar_low >> (i*8));
704 
705 	for (i = 0; i < 2; i++)
706 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
707 
708 	return IXGBE_SUCCESS;
709 }
710 
711 /**
712  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
713  *  @hw: pointer to hardware structure
714  *
715  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
716  **/
717 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
718 {
719 	struct ixgbe_mac_info *mac = &hw->mac;
720 	u16 link_status;
721 
722 	DEBUGFUNC("ixgbe_get_bus_info_generic");
723 
724 	hw->bus.type = ixgbe_bus_type_pci_express;
725 
726 	/* Get the negotiated link width and speed from PCI config space */
727 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
728 
729 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
730 	case IXGBE_PCI_LINK_WIDTH_1:
731 		hw->bus.width = ixgbe_bus_width_pcie_x1;
732 		break;
733 	case IXGBE_PCI_LINK_WIDTH_2:
734 		hw->bus.width = ixgbe_bus_width_pcie_x2;
735 		break;
736 	case IXGBE_PCI_LINK_WIDTH_4:
737 		hw->bus.width = ixgbe_bus_width_pcie_x4;
738 		break;
739 	case IXGBE_PCI_LINK_WIDTH_8:
740 		hw->bus.width = ixgbe_bus_width_pcie_x8;
741 		break;
742 	default:
743 		hw->bus.width = ixgbe_bus_width_unknown;
744 		break;
745 	}
746 
747 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
748 	case IXGBE_PCI_LINK_SPEED_2500:
749 		hw->bus.speed = ixgbe_bus_speed_2500;
750 		break;
751 	case IXGBE_PCI_LINK_SPEED_5000:
752 		hw->bus.speed = ixgbe_bus_speed_5000;
753 		break;
754 	case IXGBE_PCI_LINK_SPEED_8000:
755 		hw->bus.speed = ixgbe_bus_speed_8000;
756 		break;
757 	default:
758 		hw->bus.speed = ixgbe_bus_speed_unknown;
759 		break;
760 	}
761 
762 	mac->ops.set_lan_id(hw);
763 
764 	return IXGBE_SUCCESS;
765 }
766 
767 /**
768  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
769  *  @hw: pointer to the HW structure
770  *
771  *  Determines the LAN function id by reading memory-mapped registers
772  *  and swaps the port value if requested.
773  **/
774 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
775 {
776 	struct ixgbe_bus_info *bus = &hw->bus;
777 	u32 reg;
778 
779 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
780 
781 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
782 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
783 	bus->lan_id = bus->func;
784 
785 	/* check for a port swap */
786 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
787 	if (reg & IXGBE_FACTPS_LFS)
788 		bus->func ^= 0x1;
789 }
790 
791 /**
792  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
793  *  @hw: pointer to hardware structure
794  *
795  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
796  *  disables transmit and receive units. The adapter_stopped flag is used by
797  *  the shared code and drivers to determine if the adapter is in a stopped
798  *  state and should not touch the hardware.
799  **/
800 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
801 {
802 	u32 reg_val;
803 	u16 i;
804 
805 	DEBUGFUNC("ixgbe_stop_adapter_generic");
806 
807 	/*
808 	 * Set the adapter_stopped flag so other driver functions stop touching
809 	 * the hardware
810 	 */
811 	hw->adapter_stopped = TRUE;
812 
813 	/* Disable the receive unit */
814 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
815 
816 	/* Clear interrupt mask to stop interrupts from being generated */
817 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
818 
819 	/* Clear any pending interrupts, flush previous writes */
820 	IXGBE_READ_REG(hw, IXGBE_EICR);
821 
822 	/* Disable the transmit unit.  Each queue must be disabled. */
823 	for (i = 0; i < hw->mac.max_tx_queues; i++)
824 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
825 
826 	/* Disable the receive unit by stopping each queue */
827 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
828 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
829 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
830 		reg_val |= IXGBE_RXDCTL_SWFLSH;
831 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
832 	}
833 
834 	/* flush all queues disables */
835 	IXGBE_WRITE_FLUSH(hw);
836 	msec_delay(2);
837 
838 	/*
839 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
840 	 * access and verify no pending requests
841 	 */
842 	return ixgbe_disable_pcie_master(hw);
843 }
844 
845 /**
846  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
847  *  @hw: pointer to hardware structure
848  *  @index: led number to turn on
849  **/
850 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
851 {
852 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
853 
854 	DEBUGFUNC("ixgbe_led_on_generic");
855 
856 	/* To turn on the LED, set mode to ON. */
857 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
858 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
859 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
860 	IXGBE_WRITE_FLUSH(hw);
861 
862 	return IXGBE_SUCCESS;
863 }
864 
865 /**
866  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
867  *  @hw: pointer to hardware structure
868  *  @index: led number to turn off
869  **/
870 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
871 {
872 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
873 
874 	DEBUGFUNC("ixgbe_led_off_generic");
875 
876 	/* To turn off the LED, set mode to OFF. */
877 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
878 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
879 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
880 	IXGBE_WRITE_FLUSH(hw);
881 
882 	return IXGBE_SUCCESS;
883 }
884 
885 /**
886  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
887  *  @hw: pointer to hardware structure
888  *
889  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
890  *  ixgbe_hw struct in order to set up EEPROM access.
891  **/
892 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
893 {
894 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
895 	u32 eec;
896 	u16 eeprom_size;
897 
898 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
899 
900 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
901 		eeprom->type = ixgbe_eeprom_none;
902 		/* Set default semaphore delay to 10ms which is a well
903 		 * tested value */
904 		eeprom->semaphore_delay = 10;
905 		/* Clear EEPROM page size, it will be initialized as needed */
906 		eeprom->word_page_size = 0;
907 
908 		/*
909 		 * Check for EEPROM present first.
910 		 * If not present leave as none
911 		 */
912 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
913 		if (eec & IXGBE_EEC_PRES) {
914 			eeprom->type = ixgbe_eeprom_spi;
915 
916 			/*
917 			 * SPI EEPROM is assumed here.  This code would need to
918 			 * change if a future EEPROM is not SPI.
919 			 */
920 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
921 					    IXGBE_EEC_SIZE_SHIFT);
922 			eeprom->word_size = 1 << (eeprom_size +
923 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
924 		}
925 
926 		if (eec & IXGBE_EEC_ADDR_SIZE)
927 			eeprom->address_bits = 16;
928 		else
929 			eeprom->address_bits = 8;
930 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
931 			  "%d\n", eeprom->type, eeprom->word_size,
932 			  eeprom->address_bits);
933 	}
934 
935 	return IXGBE_SUCCESS;
936 }
937 
938 /**
939  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
940  *  @hw: pointer to hardware structure
941  *  @offset: offset within the EEPROM to write
942  *  @words: number of word(s)
943  *  @data: 16 bit word(s) to write to EEPROM
944  *
945  *  Reads 16 bit word(s) from EEPROM through bit-bang method
946  **/
947 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
948 					       u16 words, u16 *data)
949 {
950 	s32 status = IXGBE_SUCCESS;
951 	u16 i, count;
952 
953 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
954 
955 	hw->eeprom.ops.init_params(hw);
956 
957 	if (words == 0) {
958 		status = IXGBE_ERR_INVALID_ARGUMENT;
959 		goto out;
960 	}
961 
962 	if (offset + words > hw->eeprom.word_size) {
963 		status = IXGBE_ERR_EEPROM;
964 		goto out;
965 	}
966 
967 	/*
968 	 * The EEPROM page size cannot be queried from the chip. We do lazy
969 	 * initialization. It is worth to do that when we write large buffer.
970 	 */
971 	if ((hw->eeprom.word_page_size == 0) &&
972 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
973 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
974 
975 	/*
976 	 * We cannot hold synchronization semaphores for too long
977 	 * to avoid other entity starvation. However it is more efficient
978 	 * to read in bursts than synchronizing access for each word.
979 	 */
980 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
981 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
982 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
983 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
984 							    count, &data[i]);
985 
986 		if (status != IXGBE_SUCCESS)
987 			break;
988 	}
989 
990 out:
991 	return status;
992 }
993 
994 /**
995  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
996  *  @hw: pointer to hardware structure
997  *  @offset: offset within the EEPROM to be written to
998  *  @words: number of word(s)
999  *  @data: 16 bit word(s) to be written to the EEPROM
1000  *
1001  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1002  *  EEPROM will most likely contain an invalid checksum.
1003  **/
1004 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1005 					      u16 words, u16 *data)
1006 {
1007 	s32 status;
1008 	u16 word;
1009 	u16 page_size;
1010 	u16 i;
1011 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1012 
1013 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1014 
1015 	/* Prepare the EEPROM for writing  */
1016 	status = ixgbe_acquire_eeprom(hw);
1017 
1018 	if (status == IXGBE_SUCCESS) {
1019 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1020 			ixgbe_release_eeprom(hw);
1021 			status = IXGBE_ERR_EEPROM;
1022 		}
1023 	}
1024 
1025 	if (status == IXGBE_SUCCESS) {
1026 		for (i = 0; i < words; i++) {
1027 			ixgbe_standby_eeprom(hw);
1028 
1029 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1030 			ixgbe_shift_out_eeprom_bits(hw,
1031 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1032 						   IXGBE_EEPROM_OPCODE_BITS);
1033 
1034 			ixgbe_standby_eeprom(hw);
1035 
1036 			/*
1037 			 * Some SPI eeproms use the 8th address bit embedded
1038 			 * in the opcode
1039 			 */
1040 			if ((hw->eeprom.address_bits == 8) &&
1041 			    ((offset + i) >= 128))
1042 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1043 
1044 			/* Send the Write command (8-bit opcode + addr) */
1045 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1046 						    IXGBE_EEPROM_OPCODE_BITS);
1047 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1048 						    hw->eeprom.address_bits);
1049 
1050 			page_size = hw->eeprom.word_page_size;
1051 
1052 			/* Send the data in burst via SPI*/
1053 			do {
1054 				word = data[i];
1055 				word = (word >> 8) | (word << 8);
1056 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1057 
1058 				if (page_size == 0)
1059 					break;
1060 
1061 				/* do not wrap around page */
1062 				if (((offset + i) & (page_size - 1)) ==
1063 				    (page_size - 1))
1064 					break;
1065 			} while (++i < words);
1066 
1067 			ixgbe_standby_eeprom(hw);
1068 			msec_delay(10);
1069 		}
1070 		/* Done with writing - release the EEPROM */
1071 		ixgbe_release_eeprom(hw);
1072 	}
1073 
1074 	return status;
1075 }
1076 
1077 /**
1078  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1079  *  @hw: pointer to hardware structure
1080  *  @offset: offset within the EEPROM to be written to
1081  *  @data: 16 bit word to be written to the EEPROM
1082  *
1083  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1084  *  EEPROM will most likely contain an invalid checksum.
1085  **/
1086 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1087 {
1088 	s32 status;
1089 
1090 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1091 
1092 	hw->eeprom.ops.init_params(hw);
1093 
1094 	if (offset >= hw->eeprom.word_size) {
1095 		status = IXGBE_ERR_EEPROM;
1096 		goto out;
1097 	}
1098 
1099 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1100 
1101 out:
1102 	return status;
1103 }
1104 
1105 /**
1106  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1107  *  @hw: pointer to hardware structure
1108  *  @offset: offset within the EEPROM to be read
1109  *  @data: read 16 bit words(s) from EEPROM
1110  *  @words: number of word(s)
1111  *
1112  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1113  **/
1114 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1115 					      u16 words, u16 *data)
1116 {
1117 	s32 status = IXGBE_SUCCESS;
1118 	u16 i, count;
1119 
1120 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1121 
1122 	hw->eeprom.ops.init_params(hw);
1123 
1124 	if (words == 0) {
1125 		status = IXGBE_ERR_INVALID_ARGUMENT;
1126 		goto out;
1127 	}
1128 
1129 	if (offset + words > hw->eeprom.word_size) {
1130 		status = IXGBE_ERR_EEPROM;
1131 		goto out;
1132 	}
1133 
1134 	/*
1135 	 * We cannot hold synchronization semaphores for too long
1136 	 * to avoid other entity starvation. However it is more efficient
1137 	 * to read in bursts than synchronizing access for each word.
1138 	 */
1139 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1140 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1141 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1142 
1143 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1144 							   count, &data[i]);
1145 
1146 		if (status != IXGBE_SUCCESS)
1147 			break;
1148 	}
1149 
1150 out:
1151 	return status;
1152 }
1153 
1154 /**
1155  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1156  *  @hw: pointer to hardware structure
1157  *  @offset: offset within the EEPROM to be read
1158  *  @words: number of word(s)
1159  *  @data: read 16 bit word(s) from EEPROM
1160  *
1161  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1162  **/
1163 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1164 					     u16 words, u16 *data)
1165 {
1166 	s32 status;
1167 	u16 word_in;
1168 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1169 	u16 i;
1170 
1171 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1172 
1173 	/* Prepare the EEPROM for reading  */
1174 	status = ixgbe_acquire_eeprom(hw);
1175 
1176 	if (status == IXGBE_SUCCESS) {
1177 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1178 			ixgbe_release_eeprom(hw);
1179 			status = IXGBE_ERR_EEPROM;
1180 		}
1181 	}
1182 
1183 	if (status == IXGBE_SUCCESS) {
1184 		for (i = 0; i < words; i++) {
1185 			ixgbe_standby_eeprom(hw);
1186 			/*
1187 			 * Some SPI eeproms use the 8th address bit embedded
1188 			 * in the opcode
1189 			 */
1190 			if ((hw->eeprom.address_bits == 8) &&
1191 			    ((offset + i) >= 128))
1192 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1193 
1194 			/* Send the READ command (opcode + addr) */
1195 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1196 						    IXGBE_EEPROM_OPCODE_BITS);
1197 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1198 						    hw->eeprom.address_bits);
1199 
1200 			/* Read the data. */
1201 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1202 			data[i] = (word_in >> 8) | (word_in << 8);
1203 		}
1204 
1205 		/* End this read operation */
1206 		ixgbe_release_eeprom(hw);
1207 	}
1208 
1209 	return status;
1210 }
1211 
1212 /**
1213  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1214  *  @hw: pointer to hardware structure
1215  *  @offset: offset within the EEPROM to be read
1216  *  @data: read 16 bit value from EEPROM
1217  *
1218  *  Reads 16 bit value from EEPROM through bit-bang method
1219  **/
1220 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1221 				       u16 *data)
1222 {
1223 	s32 status;
1224 
1225 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1226 
1227 	hw->eeprom.ops.init_params(hw);
1228 
1229 	if (offset >= hw->eeprom.word_size) {
1230 		status = IXGBE_ERR_EEPROM;
1231 		goto out;
1232 	}
1233 
1234 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1235 
1236 out:
1237 	return status;
1238 }
1239 
1240 /**
1241  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1242  *  @hw: pointer to hardware structure
1243  *  @offset: offset of word in the EEPROM to read
1244  *  @words: number of word(s)
1245  *  @data: 16 bit word(s) from the EEPROM
1246  *
1247  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1248  **/
1249 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1250 				   u16 words, u16 *data)
1251 {
1252 	u32 eerd;
1253 	s32 status = IXGBE_SUCCESS;
1254 	u32 i;
1255 
1256 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1257 
1258 	hw->eeprom.ops.init_params(hw);
1259 
1260 	if (words == 0) {
1261 		status = IXGBE_ERR_INVALID_ARGUMENT;
1262 		goto out;
1263 	}
1264 
1265 	if (offset >= hw->eeprom.word_size) {
1266 		status = IXGBE_ERR_EEPROM;
1267 		goto out;
1268 	}
1269 
1270 	for (i = 0; i < words; i++) {
1271 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
1272 		       IXGBE_EEPROM_RW_REG_START;
1273 
1274 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1275 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1276 
1277 		if (status == IXGBE_SUCCESS) {
1278 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1279 				   IXGBE_EEPROM_RW_REG_DATA);
1280 		} else {
1281 			DEBUGOUT("Eeprom read timed out\n");
1282 			goto out;
1283 		}
1284 	}
1285 out:
1286 	return status;
1287 }
1288 
1289 /**
1290  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1291  *  @hw: pointer to hardware structure
1292  *  @offset: offset within the EEPROM to be used as a scratch pad
1293  *
1294  *  Discover EEPROM page size by writing marching data at given offset.
1295  *  This function is called only when we are writing a new large buffer
1296  *  at given offset so the data would be overwritten anyway.
1297  **/
1298 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1299 						 u16 offset)
1300 {
1301 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1302 	s32 status = IXGBE_SUCCESS;
1303 	u16 i;
1304 
1305 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1306 
1307 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1308 		data[i] = i;
1309 
1310 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1311 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1312 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1313 	hw->eeprom.word_page_size = 0;
1314 	if (status != IXGBE_SUCCESS)
1315 		goto out;
1316 
1317 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1318 	if (status != IXGBE_SUCCESS)
1319 		goto out;
1320 
1321 	/*
1322 	 * When writing in burst more than the actual page size
1323 	 * EEPROM address wraps around current page.
1324 	 */
1325 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1326 
1327 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1328 		  hw->eeprom.word_page_size);
1329 out:
1330 	return status;
1331 }
1332 
1333 /**
1334  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1335  *  @hw: pointer to hardware structure
1336  *  @offset: offset of  word in the EEPROM to read
1337  *  @data: word read from the EEPROM
1338  *
1339  *  Reads a 16 bit word from the EEPROM using the EERD register.
1340  **/
1341 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1342 {
1343 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1344 }
1345 
1346 /**
1347  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1348  *  @hw: pointer to hardware structure
1349  *  @offset: offset of  word in the EEPROM to write
1350  *  @words: number of word(s)
1351  *  @data: word(s) write to the EEPROM
1352  *
1353  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1354  **/
1355 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1356 				    u16 words, u16 *data)
1357 {
1358 	u32 eewr;
1359 	s32 status = IXGBE_SUCCESS;
1360 	u16 i;
1361 
1362 	DEBUGFUNC("ixgbe_write_eewr_generic");
1363 
1364 	hw->eeprom.ops.init_params(hw);
1365 
1366 	if (words == 0) {
1367 		status = IXGBE_ERR_INVALID_ARGUMENT;
1368 		goto out;
1369 	}
1370 
1371 	if (offset >= hw->eeprom.word_size) {
1372 		status = IXGBE_ERR_EEPROM;
1373 		goto out;
1374 	}
1375 
1376 	for (i = 0; i < words; i++) {
1377 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1378 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1379 			IXGBE_EEPROM_RW_REG_START;
1380 
1381 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1382 		if (status != IXGBE_SUCCESS) {
1383 			DEBUGOUT("Eeprom write EEWR timed out\n");
1384 			goto out;
1385 		}
1386 
1387 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1388 
1389 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1390 		if (status != IXGBE_SUCCESS) {
1391 			DEBUGOUT("Eeprom write EEWR timed out\n");
1392 			goto out;
1393 		}
1394 	}
1395 
1396 out:
1397 	return status;
1398 }
1399 
1400 /**
1401  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1402  *  @hw: pointer to hardware structure
1403  *  @offset: offset of  word in the EEPROM to write
1404  *  @data: word write to the EEPROM
1405  *
1406  *  Write a 16 bit word to the EEPROM using the EEWR register.
1407  **/
1408 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1409 {
1410 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1411 }
1412 
1413 /**
1414  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1415  *  @hw: pointer to hardware structure
1416  *  @ee_reg: EEPROM flag for polling
1417  *
1418  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1419  *  read or write is done respectively.
1420  **/
1421 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1422 {
1423 	u32 i;
1424 	u32 reg;
1425 	s32 status = IXGBE_ERR_EEPROM;
1426 
1427 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1428 
1429 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1430 		if (ee_reg == IXGBE_NVM_POLL_READ)
1431 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1432 		else
1433 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1434 
1435 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1436 			status = IXGBE_SUCCESS;
1437 			break;
1438 		}
1439 		usec_delay(5);
1440 	}
1441 	return status;
1442 }
1443 
1444 /**
1445  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1446  *  @hw: pointer to hardware structure
1447  *
1448  *  Prepares EEPROM for access using bit-bang method. This function should
1449  *  be called before issuing a command to the EEPROM.
1450  **/
1451 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1452 {
1453 	s32 status = IXGBE_SUCCESS;
1454 	u32 eec;
1455 	u32 i;
1456 
1457 	DEBUGFUNC("ixgbe_acquire_eeprom");
1458 
1459 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1460 	    != IXGBE_SUCCESS)
1461 		status = IXGBE_ERR_SWFW_SYNC;
1462 
1463 	if (status == IXGBE_SUCCESS) {
1464 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1465 
1466 		/* Request EEPROM Access */
1467 		eec |= IXGBE_EEC_REQ;
1468 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1469 
1470 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1471 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1472 			if (eec & IXGBE_EEC_GNT)
1473 				break;
1474 			usec_delay(5);
1475 		}
1476 
1477 		/* Release if grant not acquired */
1478 		if (!(eec & IXGBE_EEC_GNT)) {
1479 			eec &= ~IXGBE_EEC_REQ;
1480 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1481 			DEBUGOUT("Could not acquire EEPROM grant\n");
1482 
1483 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1484 			status = IXGBE_ERR_EEPROM;
1485 		}
1486 
1487 		/* Setup EEPROM for Read/Write */
1488 		if (status == IXGBE_SUCCESS) {
1489 			/* Clear CS and SK */
1490 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1491 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1492 			IXGBE_WRITE_FLUSH(hw);
1493 			usec_delay(1);
1494 		}
1495 	}
1496 	return status;
1497 }
1498 
1499 /**
1500  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1501  *  @hw: pointer to hardware structure
1502  *
1503  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1504  **/
1505 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1506 {
1507 	s32 status = IXGBE_ERR_EEPROM;
1508 	u32 timeout = 2000;
1509 	u32 i;
1510 	u32 swsm;
1511 
1512 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1513 
1514 
1515 	/* Get SMBI software semaphore between device drivers first */
1516 	for (i = 0; i < timeout; i++) {
1517 		/*
1518 		 * If the SMBI bit is 0 when we read it, then the bit will be
1519 		 * set and we have the semaphore
1520 		 */
1521 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1522 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1523 			status = IXGBE_SUCCESS;
1524 			break;
1525 		}
1526 		usec_delay(50);
1527 	}
1528 
1529 	if (i == timeout) {
1530 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1531 			 "not granted.\n");
1532 		/*
1533 		 * this release is particularly important because our attempts
1534 		 * above to get the semaphore may have succeeded, and if there
1535 		 * was a timeout, we should unconditionally clear the semaphore
1536 		 * bits to free the driver to make progress
1537 		 */
1538 		ixgbe_release_eeprom_semaphore(hw);
1539 
1540 		usec_delay(50);
1541 		/*
1542 		 * one last try
1543 		 * If the SMBI bit is 0 when we read it, then the bit will be
1544 		 * set and we have the semaphore
1545 		 */
1546 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1547 		if (!(swsm & IXGBE_SWSM_SMBI))
1548 			status = IXGBE_SUCCESS;
1549 	}
1550 
1551 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1552 	if (status == IXGBE_SUCCESS) {
1553 		for (i = 0; i < timeout; i++) {
1554 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1555 
1556 			/* Set the SW EEPROM semaphore bit to request access */
1557 			swsm |= IXGBE_SWSM_SWESMBI;
1558 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1559 
1560 			/*
1561 			 * If we set the bit successfully then we got the
1562 			 * semaphore.
1563 			 */
1564 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1565 			if (swsm & IXGBE_SWSM_SWESMBI)
1566 				break;
1567 
1568 			usec_delay(50);
1569 		}
1570 
1571 		/*
1572 		 * Release semaphores and return error if SW EEPROM semaphore
1573 		 * was not granted because we don't have access to the EEPROM
1574 		 */
1575 		if (i >= timeout) {
1576 			DEBUGOUT("SWESMBI Software EEPROM semaphore "
1577 				 "not granted.\n");
1578 			ixgbe_release_eeprom_semaphore(hw);
1579 			status = IXGBE_ERR_EEPROM;
1580 		}
1581 	} else {
1582 		DEBUGOUT("Software semaphore SMBI between device drivers "
1583 			 "not granted.\n");
1584 	}
1585 
1586 	return status;
1587 }
1588 
1589 /**
1590  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1591  *  @hw: pointer to hardware structure
1592  *
1593  *  This function clears hardware semaphore bits.
1594  **/
1595 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1596 {
1597 	u32 swsm;
1598 
1599 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1600 
1601 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1602 
1603 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1604 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1605 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1606 	IXGBE_WRITE_FLUSH(hw);
1607 }
1608 
1609 /**
1610  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1611  *  @hw: pointer to hardware structure
1612  **/
1613 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1614 {
1615 	s32 status = IXGBE_SUCCESS;
1616 	u16 i;
1617 	u8 spi_stat_reg;
1618 
1619 	DEBUGFUNC("ixgbe_ready_eeprom");
1620 
1621 	/*
1622 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1623 	 * EEPROM will signal that the command has been completed by clearing
1624 	 * bit 0 of the internal status register.  If it's not cleared within
1625 	 * 5 milliseconds, then error out.
1626 	 */
1627 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1628 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1629 					    IXGBE_EEPROM_OPCODE_BITS);
1630 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1631 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1632 			break;
1633 
1634 		usec_delay(5);
1635 		ixgbe_standby_eeprom(hw);
1636 	};
1637 
1638 	/*
1639 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1640 	 * devices (and only 0-5mSec on 5V devices)
1641 	 */
1642 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1643 		DEBUGOUT("SPI EEPROM Status error\n");
1644 		status = IXGBE_ERR_EEPROM;
1645 	}
1646 
1647 	return status;
1648 }
1649 
1650 /**
1651  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1652  *  @hw: pointer to hardware structure
1653  **/
1654 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1655 {
1656 	u32 eec;
1657 
1658 	DEBUGFUNC("ixgbe_standby_eeprom");
1659 
1660 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1661 
1662 	/* Toggle CS to flush commands */
1663 	eec |= IXGBE_EEC_CS;
1664 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1665 	IXGBE_WRITE_FLUSH(hw);
1666 	usec_delay(1);
1667 	eec &= ~IXGBE_EEC_CS;
1668 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1669 	IXGBE_WRITE_FLUSH(hw);
1670 	usec_delay(1);
1671 }
1672 
1673 /**
1674  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1675  *  @hw: pointer to hardware structure
1676  *  @data: data to send to the EEPROM
1677  *  @count: number of bits to shift out
1678  **/
1679 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1680 					u16 count)
1681 {
1682 	u32 eec;
1683 	u32 mask;
1684 	u32 i;
1685 
1686 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1687 
1688 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1689 
1690 	/*
1691 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1692 	 * one bit at a time.  Determine the starting bit based on count
1693 	 */
1694 	mask = 0x01 << (count - 1);
1695 
1696 	for (i = 0; i < count; i++) {
1697 		/*
1698 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1699 		 * "1", and then raising and then lowering the clock (the SK
1700 		 * bit controls the clock input to the EEPROM).  A "0" is
1701 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1702 		 * raising and then lowering the clock.
1703 		 */
1704 		if (data & mask)
1705 			eec |= IXGBE_EEC_DI;
1706 		else
1707 			eec &= ~IXGBE_EEC_DI;
1708 
1709 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1710 		IXGBE_WRITE_FLUSH(hw);
1711 
1712 		usec_delay(1);
1713 
1714 		ixgbe_raise_eeprom_clk(hw, &eec);
1715 		ixgbe_lower_eeprom_clk(hw, &eec);
1716 
1717 		/*
1718 		 * Shift mask to signify next bit of data to shift in to the
1719 		 * EEPROM
1720 		 */
1721 		mask = mask >> 1;
1722 	};
1723 
1724 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1725 	eec &= ~IXGBE_EEC_DI;
1726 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1727 	IXGBE_WRITE_FLUSH(hw);
1728 }
1729 
1730 /**
1731  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1732  *  @hw: pointer to hardware structure
1733  **/
1734 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1735 {
1736 	u32 eec;
1737 	u32 i;
1738 	u16 data = 0;
1739 
1740 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
1741 
1742 	/*
1743 	 * In order to read a register from the EEPROM, we need to shift
1744 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1745 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1746 	 * the value of the "DO" bit.  During this "shifting in" process the
1747 	 * "DI" bit should always be clear.
1748 	 */
1749 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1750 
1751 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1752 
1753 	for (i = 0; i < count; i++) {
1754 		data = data << 1;
1755 		ixgbe_raise_eeprom_clk(hw, &eec);
1756 
1757 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1758 
1759 		eec &= ~(IXGBE_EEC_DI);
1760 		if (eec & IXGBE_EEC_DO)
1761 			data |= 1;
1762 
1763 		ixgbe_lower_eeprom_clk(hw, &eec);
1764 	}
1765 
1766 	return data;
1767 }
1768 
1769 /**
1770  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1771  *  @hw: pointer to hardware structure
1772  *  @eec: EEC register's current value
1773  **/
1774 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1775 {
1776 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
1777 
1778 	/*
1779 	 * Raise the clock input to the EEPROM
1780 	 * (setting the SK bit), then delay
1781 	 */
1782 	*eec = *eec | IXGBE_EEC_SK;
1783 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1784 	IXGBE_WRITE_FLUSH(hw);
1785 	usec_delay(1);
1786 }
1787 
1788 /**
1789  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1790  *  @hw: pointer to hardware structure
1791  *  @eecd: EECD's current value
1792  **/
1793 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1794 {
1795 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
1796 
1797 	/*
1798 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1799 	 * delay
1800 	 */
1801 	*eec = *eec & ~IXGBE_EEC_SK;
1802 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1803 	IXGBE_WRITE_FLUSH(hw);
1804 	usec_delay(1);
1805 }
1806 
1807 /**
1808  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1809  *  @hw: pointer to hardware structure
1810  **/
1811 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1812 {
1813 	u32 eec;
1814 
1815 	DEBUGFUNC("ixgbe_release_eeprom");
1816 
1817 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1818 
1819 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1820 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1821 
1822 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1823 	IXGBE_WRITE_FLUSH(hw);
1824 
1825 	usec_delay(1);
1826 
1827 	/* Stop requesting EEPROM access */
1828 	eec &= ~IXGBE_EEC_REQ;
1829 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1830 
1831 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1832 
1833 	/* Delay before attempt to obtain semaphore again to allow FW access */
1834 	msec_delay(hw->eeprom.semaphore_delay);
1835 }
1836 
1837 /**
1838  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1839  *  @hw: pointer to hardware structure
1840  **/
1841 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1842 {
1843 	u16 i;
1844 	u16 j;
1845 	u16 checksum = 0;
1846 	u16 length = 0;
1847 	u16 pointer = 0;
1848 	u16 word = 0;
1849 
1850 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
1851 
1852 	/* Include 0x0-0x3F in the checksum */
1853 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1854 		if (hw->eeprom.ops.read(hw, i, &word) != IXGBE_SUCCESS) {
1855 			DEBUGOUT("EEPROM read failed\n");
1856 			break;
1857 		}
1858 		checksum += word;
1859 	}
1860 
1861 	/* Include all data from pointers except for the fw pointer */
1862 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1863 		hw->eeprom.ops.read(hw, i, &pointer);
1864 
1865 		/* Make sure the pointer seems valid */
1866 		if (pointer != 0xFFFF && pointer != 0) {
1867 			hw->eeprom.ops.read(hw, pointer, &length);
1868 
1869 			if (length != 0xFFFF && length != 0) {
1870 				for (j = pointer+1; j <= pointer+length; j++) {
1871 					hw->eeprom.ops.read(hw, j, &word);
1872 					checksum += word;
1873 				}
1874 			}
1875 		}
1876 	}
1877 
1878 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1879 
1880 	return checksum;
1881 }
1882 
1883 /**
1884  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1885  *  @hw: pointer to hardware structure
1886  *  @checksum_val: calculated checksum
1887  *
1888  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1889  *  caller does not need checksum_val, the value can be NULL.
1890  **/
1891 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1892 					   u16 *checksum_val)
1893 {
1894 	s32 status;
1895 	u16 checksum;
1896 	u16 read_checksum = 0;
1897 
1898 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
1899 
1900 	/*
1901 	 * Read the first word from the EEPROM. If this times out or fails, do
1902 	 * not continue or we could be in for a very long wait while every
1903 	 * EEPROM read fails
1904 	 */
1905 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1906 
1907 	if (status == IXGBE_SUCCESS) {
1908 		checksum = hw->eeprom.ops.calc_checksum(hw);
1909 
1910 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1911 
1912 		/*
1913 		 * Verify read checksum from EEPROM is the same as
1914 		 * calculated checksum
1915 		 */
1916 		if (read_checksum != checksum)
1917 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1918 
1919 		/* If the user cares, return the calculated checksum */
1920 		if (checksum_val)
1921 			*checksum_val = checksum;
1922 	} else {
1923 		DEBUGOUT("EEPROM read failed\n");
1924 	}
1925 
1926 	return status;
1927 }
1928 
1929 /**
1930  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1931  *  @hw: pointer to hardware structure
1932  **/
1933 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1934 {
1935 	s32 status;
1936 	u16 checksum;
1937 
1938 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
1939 
1940 	/*
1941 	 * Read the first word from the EEPROM. If this times out or fails, do
1942 	 * not continue or we could be in for a very long wait while every
1943 	 * EEPROM read fails
1944 	 */
1945 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1946 
1947 	if (status == IXGBE_SUCCESS) {
1948 		checksum = hw->eeprom.ops.calc_checksum(hw);
1949 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1950 					      checksum);
1951 	} else {
1952 		DEBUGOUT("EEPROM read failed\n");
1953 	}
1954 
1955 	return status;
1956 }
1957 
1958 /**
1959  *  ixgbe_validate_mac_addr - Validate MAC address
1960  *  @mac_addr: pointer to MAC address.
1961  *
1962  *  Tests a MAC address to ensure it is a valid Individual Address
1963  **/
1964 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1965 {
1966 	s32 status = IXGBE_SUCCESS;
1967 
1968 	DEBUGFUNC("ixgbe_validate_mac_addr");
1969 
1970 	/* Make sure it is not a multicast address */
1971 	if (IXGBE_IS_MULTICAST(mac_addr)) {
1972 		DEBUGOUT("MAC address is multicast\n");
1973 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1974 	/* Not a broadcast address */
1975 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
1976 		DEBUGOUT("MAC address is broadcast\n");
1977 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1978 	/* Reject the zero address */
1979 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1980 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
1981 		DEBUGOUT("MAC address is all zeros\n");
1982 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1983 	}
1984 	return status;
1985 }
1986 
1987 /**
1988  *  ixgbe_set_rar_generic - Set Rx address register
1989  *  @hw: pointer to hardware structure
1990  *  @index: Receive address register to write
1991  *  @addr: Address to put into receive address register
1992  *  @vmdq: VMDq "set" or "pool" index
1993  *  @enable_addr: set flag that address is active
1994  *
1995  *  Puts an ethernet address into a receive address register.
1996  **/
1997 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1998 			  u32 enable_addr)
1999 {
2000 	u32 rar_low, rar_high;
2001 	u32 rar_entries = hw->mac.num_rar_entries;
2002 
2003 	DEBUGFUNC("ixgbe_set_rar_generic");
2004 
2005 	/* Make sure we are using a valid rar index range */
2006 	if (index >= rar_entries) {
2007 		DEBUGOUT1("RAR index %d is out of range.\n", index);
2008 		return IXGBE_ERR_INVALID_ARGUMENT;
2009 	}
2010 
2011 	/* setup VMDq pool selection before this RAR gets enabled */
2012 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2013 
2014 	/*
2015 	 * HW expects these in little endian so we reverse the byte
2016 	 * order from network order (big endian) to little endian
2017 	 */
2018 	rar_low = ((u32)addr[0] |
2019 		   ((u32)addr[1] << 8) |
2020 		   ((u32)addr[2] << 16) |
2021 		   ((u32)addr[3] << 24));
2022 	/*
2023 	 * Some parts put the VMDq setting in the extra RAH bits,
2024 	 * so save everything except the lower 16 bits that hold part
2025 	 * of the address and the address valid bit.
2026 	 */
2027 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2028 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2029 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2030 
2031 	if (enable_addr != 0)
2032 		rar_high |= IXGBE_RAH_AV;
2033 
2034 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2035 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2036 
2037 	return IXGBE_SUCCESS;
2038 }
2039 
2040 /**
2041  *  ixgbe_clear_rar_generic - Remove Rx address register
2042  *  @hw: pointer to hardware structure
2043  *  @index: Receive address register to write
2044  *
2045  *  Clears an ethernet address from a receive address register.
2046  **/
2047 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2048 {
2049 	u32 rar_high;
2050 	u32 rar_entries = hw->mac.num_rar_entries;
2051 
2052 	DEBUGFUNC("ixgbe_clear_rar_generic");
2053 
2054 	/* Make sure we are using a valid rar index range */
2055 	if (index >= rar_entries) {
2056 		DEBUGOUT1("RAR index %d is out of range.\n", index);
2057 		return IXGBE_ERR_INVALID_ARGUMENT;
2058 	}
2059 
2060 	/*
2061 	 * Some parts put the VMDq setting in the extra RAH bits,
2062 	 * so save everything except the lower 16 bits that hold part
2063 	 * of the address and the address valid bit.
2064 	 */
2065 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2066 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2067 
2068 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2069 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2070 
2071 	/* clear VMDq pool/queue selection for this RAR */
2072 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2073 
2074 	return IXGBE_SUCCESS;
2075 }
2076 
2077 /**
2078  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2079  *  @hw: pointer to hardware structure
2080  *
2081  *  Places the MAC address in receive address register 0 and clears the rest
2082  *  of the receive address registers. Clears the multicast table. Assumes
2083  *  the receiver is in reset when the routine is called.
2084  **/
2085 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2086 {
2087 	u32 i;
2088 	u32 rar_entries = hw->mac.num_rar_entries;
2089 
2090 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2091 
2092 	/*
2093 	 * If the current mac address is valid, assume it is a software override
2094 	 * to the permanent address.
2095 	 * Otherwise, use the permanent address from the eeprom.
2096 	 */
2097 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2098 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2099 		/* Get the MAC address from the RAR0 for later reference */
2100 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2101 
2102 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2103 			  hw->mac.addr[0], hw->mac.addr[1],
2104 			  hw->mac.addr[2]);
2105 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2106 			  hw->mac.addr[4], hw->mac.addr[5]);
2107 	} else {
2108 		/* Setup the receive address. */
2109 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2110 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2111 			  hw->mac.addr[0], hw->mac.addr[1],
2112 			  hw->mac.addr[2]);
2113 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2114 			  hw->mac.addr[4], hw->mac.addr[5]);
2115 
2116 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2117 
2118 		/* clear VMDq pool/queue selection for RAR 0 */
2119 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2120 	}
2121 	hw->addr_ctrl.overflow_promisc = 0;
2122 
2123 	hw->addr_ctrl.rar_used_count = 1;
2124 
2125 	/* Zero out the other receive addresses. */
2126 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2127 	for (i = 1; i < rar_entries; i++) {
2128 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2129 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2130 	}
2131 
2132 	/* Clear the MTA */
2133 	hw->addr_ctrl.mta_in_use = 0;
2134 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2135 
2136 	DEBUGOUT(" Clearing MTA\n");
2137 	for (i = 0; i < hw->mac.mcft_size; i++)
2138 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2139 
2140 	ixgbe_init_uta_tables(hw);
2141 
2142 	return IXGBE_SUCCESS;
2143 }
2144 
2145 /**
2146  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2147  *  @hw: pointer to hardware structure
2148  *  @addr: new address
2149  *
2150  *  Adds it to unused receive address register or goes into promiscuous mode.
2151  **/
2152 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2153 {
2154 	u32 rar_entries = hw->mac.num_rar_entries;
2155 	u32 rar;
2156 
2157 	DEBUGFUNC("ixgbe_add_uc_addr");
2158 
2159 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2160 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2161 
2162 	/*
2163 	 * Place this address in the RAR if there is room,
2164 	 * else put the controller into promiscuous mode
2165 	 */
2166 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2167 		rar = hw->addr_ctrl.rar_used_count;
2168 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2169 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2170 		hw->addr_ctrl.rar_used_count++;
2171 	} else {
2172 		hw->addr_ctrl.overflow_promisc++;
2173 	}
2174 
2175 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2176 }
2177 
2178 /**
2179  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2180  *  @hw: pointer to hardware structure
2181  *  @addr_list: the list of new addresses
2182  *  @addr_count: number of addresses
2183  *  @next: iterator function to walk the address list
2184  *
2185  *  The given list replaces any existing list.  Clears the secondary addrs from
2186  *  receive address registers.  Uses unused receive address registers for the
2187  *  first secondary addresses, and falls back to promiscuous mode as needed.
2188  *
2189  *  Drivers using secondary unicast addresses must set user_set_promisc when
2190  *  manually putting the device into promiscuous mode.
2191  **/
2192 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2193 				      u32 addr_count, ixgbe_mc_addr_itr next)
2194 {
2195 	u8 *addr;
2196 	u32 i;
2197 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2198 	u32 uc_addr_in_use;
2199 	u32 fctrl;
2200 	u32 vmdq;
2201 
2202 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2203 
2204 	/*
2205 	 * Clear accounting of old secondary address list,
2206 	 * don't count RAR[0]
2207 	 */
2208 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2209 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2210 	hw->addr_ctrl.overflow_promisc = 0;
2211 
2212 	/* Zero out the other receive addresses */
2213 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2214 	for (i = 0; i < uc_addr_in_use; i++) {
2215 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2216 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2217 	}
2218 
2219 	/* Add the new addresses */
2220 	for (i = 0; i < addr_count; i++) {
2221 		DEBUGOUT(" Adding the secondary addresses:\n");
2222 		addr = next(hw, &addr_list, &vmdq);
2223 		ixgbe_add_uc_addr(hw, addr, vmdq);
2224 	}
2225 
2226 	if (hw->addr_ctrl.overflow_promisc) {
2227 		/* enable promisc if not already in overflow or set by user */
2228 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2229 			DEBUGOUT(" Entering address overflow promisc mode\n");
2230 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2231 			fctrl |= IXGBE_FCTRL_UPE;
2232 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2233 		}
2234 	} else {
2235 		/* only disable if set by overflow, not by user */
2236 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2237 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2238 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2239 			fctrl &= ~IXGBE_FCTRL_UPE;
2240 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2241 		}
2242 	}
2243 
2244 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2245 	return IXGBE_SUCCESS;
2246 }
2247 
2248 /**
2249  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2250  *  @hw: pointer to hardware structure
2251  *  @mc_addr: the multicast address
2252  *
2253  *  Extracts the 12 bits, from a multicast address, to determine which
2254  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2255  *  incoming rx multicast addresses, to determine the bit-vector to check in
2256  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2257  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2258  *  to mc_filter_type.
2259  **/
2260 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2261 {
2262 	u32 vector = 0;
2263 
2264 	DEBUGFUNC("ixgbe_mta_vector");
2265 
2266 	switch (hw->mac.mc_filter_type) {
2267 	case 0:   /* use bits [47:36] of the address */
2268 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2269 		break;
2270 	case 1:   /* use bits [46:35] of the address */
2271 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2272 		break;
2273 	case 2:   /* use bits [45:34] of the address */
2274 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2275 		break;
2276 	case 3:   /* use bits [43:32] of the address */
2277 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2278 		break;
2279 	default:  /* Invalid mc_filter_type */
2280 		DEBUGOUT("MC filter type param set incorrectly\n");
2281 		ASSERT(0);
2282 		break;
2283 	}
2284 
2285 	/* vector can only be 12-bits or boundary will be exceeded */
2286 	vector &= 0xFFF;
2287 	return vector;
2288 }
2289 
2290 /**
2291  *  ixgbe_set_mta - Set bit-vector in multicast table
2292  *  @hw: pointer to hardware structure
2293  *  @hash_value: Multicast address hash value
2294  *
2295  *  Sets the bit-vector in the multicast table.
2296  **/
2297 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2298 {
2299 	u32 vector;
2300 	u32 vector_bit;
2301 	u32 vector_reg;
2302 
2303 	DEBUGFUNC("ixgbe_set_mta");
2304 
2305 	hw->addr_ctrl.mta_in_use++;
2306 
2307 	vector = ixgbe_mta_vector(hw, mc_addr);
2308 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2309 
2310 	/*
2311 	 * The MTA is a register array of 128 32-bit registers. It is treated
2312 	 * like an array of 4096 bits.  We want to set bit
2313 	 * BitArray[vector_value]. So we figure out what register the bit is
2314 	 * in, read it, OR in the new bit, then write back the new value.  The
2315 	 * register is determined by the upper 7 bits of the vector value and
2316 	 * the bit within that register are determined by the lower 5 bits of
2317 	 * the value.
2318 	 */
2319 	vector_reg = (vector >> 5) & 0x7F;
2320 	vector_bit = vector & 0x1F;
2321 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2322 }
2323 
2324 /**
2325  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2326  *  @hw: pointer to hardware structure
2327  *  @mc_addr_list: the list of new multicast addresses
2328  *  @mc_addr_count: number of addresses
2329  *  @next: iterator function to walk the multicast address list
2330  *  @clear: flag, when set clears the table beforehand
2331  *
2332  *  When the clear flag is set, the given list replaces any existing list.
2333  *  Hashes the given addresses into the multicast table.
2334  **/
2335 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2336 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2337 				      bool clear)
2338 {
2339 	u32 i;
2340 	u32 vmdq;
2341 
2342 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2343 
2344 	/*
2345 	 * Set the new number of MC addresses that we are being requested to
2346 	 * use.
2347 	 */
2348 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2349 	hw->addr_ctrl.mta_in_use = 0;
2350 
2351 	/* Clear mta_shadow */
2352 	if (clear) {
2353 		DEBUGOUT(" Clearing MTA\n");
2354 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2355 	}
2356 
2357 	/* Update mta_shadow */
2358 	for (i = 0; i < mc_addr_count; i++) {
2359 		DEBUGOUT(" Adding the multicast addresses:\n");
2360 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2361 	}
2362 
2363 	/* Enable mta */
2364 	for (i = 0; i < hw->mac.mcft_size; i++)
2365 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2366 				      hw->mac.mta_shadow[i]);
2367 
2368 	if (hw->addr_ctrl.mta_in_use > 0)
2369 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2370 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2371 
2372 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2373 	return IXGBE_SUCCESS;
2374 }
2375 
2376 /**
2377  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2378  *  @hw: pointer to hardware structure
2379  *
2380  *  Enables multicast address in RAR and the use of the multicast hash table.
2381  **/
2382 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2383 {
2384 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2385 
2386 	DEBUGFUNC("ixgbe_enable_mc_generic");
2387 
2388 	if (a->mta_in_use > 0)
2389 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2390 				hw->mac.mc_filter_type);
2391 
2392 	return IXGBE_SUCCESS;
2393 }
2394 
2395 /**
2396  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2397  *  @hw: pointer to hardware structure
2398  *
2399  *  Disables multicast address in RAR and the use of the multicast hash table.
2400  **/
2401 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2402 {
2403 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2404 
2405 	DEBUGFUNC("ixgbe_disable_mc_generic");
2406 
2407 	if (a->mta_in_use > 0)
2408 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2409 
2410 	return IXGBE_SUCCESS;
2411 }
2412 
2413 /**
2414  *  ixgbe_fc_enable_generic - Enable flow control
2415  *  @hw: pointer to hardware structure
2416  *
2417  *  Enable flow control according to the current settings.
2418  **/
2419 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2420 {
2421 	s32 ret_val = IXGBE_SUCCESS;
2422 	u32 mflcn_reg, fccfg_reg;
2423 	u32 reg;
2424 	u32 fcrtl, fcrth;
2425 	int i;
2426 
2427 	DEBUGFUNC("ixgbe_fc_enable_generic");
2428 
2429 	/* Validate the water mark configuration */
2430 	if (!hw->fc.pause_time) {
2431 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2432 		goto out;
2433 	}
2434 
2435 	/* Low water mark of zero causes XOFF floods */
2436 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2437 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2438 		    hw->fc.high_water[i]) {
2439 			if (!hw->fc.low_water[i] ||
2440 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2441 				DEBUGOUT("Invalid water mark configuration\n");
2442 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2443 				goto out;
2444 			}
2445 		}
2446 	}
2447 
2448 	/* Negotiate the fc mode to use */
2449 	ixgbe_fc_autoneg(hw);
2450 
2451 	/* Disable any previous flow control settings */
2452 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2453 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2454 
2455 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2456 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2457 
2458 	/*
2459 	 * The possible values of fc.current_mode are:
2460 	 * 0: Flow control is completely disabled
2461 	 * 1: Rx flow control is enabled (we can receive pause frames,
2462 	 *    but not send pause frames).
2463 	 * 2: Tx flow control is enabled (we can send pause frames but
2464 	 *    we do not support receiving pause frames).
2465 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2466 	 * other: Invalid.
2467 	 */
2468 	switch (hw->fc.current_mode) {
2469 	case ixgbe_fc_none:
2470 		/*
2471 		 * Flow control is disabled by software override or autoneg.
2472 		 * The code below will actually disable it in the HW.
2473 		 */
2474 		break;
2475 	case ixgbe_fc_rx_pause:
2476 		/*
2477 		 * Rx Flow control is enabled and Tx Flow control is
2478 		 * disabled by software override. Since there really
2479 		 * isn't a way to advertise that we are capable of RX
2480 		 * Pause ONLY, we will advertise that we support both
2481 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2482 		 * disable the adapter's ability to send PAUSE frames.
2483 		 */
2484 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2485 		break;
2486 	case ixgbe_fc_tx_pause:
2487 		/*
2488 		 * Tx Flow control is enabled, and Rx Flow control is
2489 		 * disabled by software override.
2490 		 */
2491 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2492 		break;
2493 	case ixgbe_fc_full:
2494 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2495 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2496 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2497 		break;
2498 	default:
2499 		DEBUGOUT("Flow control param set incorrectly\n");
2500 		ret_val = IXGBE_ERR_CONFIG;
2501 		goto out;
2502 		break;
2503 	}
2504 
2505 	/* Set 802.3x based flow control settings. */
2506 	mflcn_reg |= IXGBE_MFLCN_DPF;
2507 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2508 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2509 
2510 
2511 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2512 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2513 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2514 		    hw->fc.high_water[i]) {
2515 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2516 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2517 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2518 		} else {
2519 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2520 			/*
2521 			 * In order to prevent Tx hangs when the internal Tx
2522 			 * switch is enabled we must set the high water mark
2523 			 * to the maximum FCRTH value.  This allows the Tx
2524 			 * switch to function even under heavy Rx workloads.
2525 			 */
2526 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2527 		}
2528 
2529 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2530 	}
2531 
2532 	/* Configure pause time (2 TCs per register) */
2533 	reg = hw->fc.pause_time * 0x00010001;
2534 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2535 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2536 
2537 	/* Configure flow control refresh threshold value */
2538 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2539 
2540 out:
2541 	return ret_val;
2542 }
2543 
2544 /**
2545  *  ixgbe_negotiate_fc - Negotiate flow control
2546  *  @hw: pointer to hardware structure
2547  *  @adv_reg: flow control advertised settings
2548  *  @lp_reg: link partner's flow control settings
2549  *  @adv_sym: symmetric pause bit in advertisement
2550  *  @adv_asm: asymmetric pause bit in advertisement
2551  *  @lp_sym: symmetric pause bit in link partner advertisement
2552  *  @lp_asm: asymmetric pause bit in link partner advertisement
2553  *
2554  *  Find the intersection between advertised settings and link partner's
2555  *  advertised settings
2556  **/
2557 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2558 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2559 {
2560 	if ((!(adv_reg)) ||  (!(lp_reg)))
2561 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2562 
2563 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2564 		/*
2565 		 * Now we need to check if the user selected Rx ONLY
2566 		 * of pause frames.  In this case, we had to advertise
2567 		 * FULL flow control because we could not advertise RX
2568 		 * ONLY. Hence, we must now check to see if we need to
2569 		 * turn OFF the TRANSMISSION of PAUSE frames.
2570 		 */
2571 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2572 			hw->fc.current_mode = ixgbe_fc_full;
2573 			DEBUGOUT("Flow Control = FULL.\n");
2574 		} else {
2575 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2576 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2577 		}
2578 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2579 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2580 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2581 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2582 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2583 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2584 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2585 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2586 	} else {
2587 		hw->fc.current_mode = ixgbe_fc_none;
2588 		DEBUGOUT("Flow Control = NONE.\n");
2589 	}
2590 	return IXGBE_SUCCESS;
2591 }
2592 
2593 /**
2594  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2595  *  @hw: pointer to hardware structure
2596  *
2597  *  Enable flow control according on 1 gig fiber.
2598  **/
2599 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2600 {
2601 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2602 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2603 
2604 	/*
2605 	 * On multispeed fiber at 1g, bail out if
2606 	 * - link is up but AN did not complete, or if
2607 	 * - link is up and AN completed but timed out
2608 	 */
2609 
2610 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2611 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2612 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2613 		goto out;
2614 
2615 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2616 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2617 
2618 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2619 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2620 				      IXGBE_PCS1GANA_ASM_PAUSE,
2621 				      IXGBE_PCS1GANA_SYM_PAUSE,
2622 				      IXGBE_PCS1GANA_ASM_PAUSE);
2623 
2624 out:
2625 	return ret_val;
2626 }
2627 
2628 /**
2629  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2630  *  @hw: pointer to hardware structure
2631  *
2632  *  Enable flow control according to IEEE clause 37.
2633  **/
2634 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2635 {
2636 	u32 links2, anlp1_reg, autoc_reg, links;
2637 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2638 
2639 	/*
2640 	 * On backplane, bail out if
2641 	 * - backplane autoneg was not completed, or if
2642 	 * - we are 82599 and link partner is not AN enabled
2643 	 */
2644 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2645 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2646 		goto out;
2647 
2648 	if (hw->mac.type == ixgbe_mac_82599EB) {
2649 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2650 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2651 			goto out;
2652 	}
2653 	/*
2654 	 * Read the 10g AN autoc and LP ability registers and resolve
2655 	 * local flow control settings accordingly
2656 	 */
2657 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2658 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2659 
2660 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2661 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2662 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2663 
2664 out:
2665 	return ret_val;
2666 }
2667 
2668 /**
2669  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2670  *  @hw: pointer to hardware structure
2671  *
2672  *  Enable flow control according to IEEE clause 37.
2673  **/
2674 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2675 {
2676 	u16 technology_ability_reg = 0;
2677 	u16 lp_technology_ability_reg = 0;
2678 
2679 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2680 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2681 			     &technology_ability_reg);
2682 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2683 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2684 			     &lp_technology_ability_reg);
2685 
2686 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2687 				  (u32)lp_technology_ability_reg,
2688 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2689 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2690 }
2691 
2692 /**
2693  *  ixgbe_fc_autoneg - Configure flow control
2694  *  @hw: pointer to hardware structure
2695  *
2696  *  Compares our advertised flow control capabilities to those advertised by
2697  *  our link partner, and determines the proper flow control mode to use.
2698  **/
2699 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2700 {
2701 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2702 	ixgbe_link_speed speed;
2703 	bool link_up;
2704 
2705 	DEBUGFUNC("ixgbe_fc_autoneg");
2706 
2707 	/*
2708 	 * AN should have completed when the cable was plugged in.
2709 	 * Look for reasons to bail out.  Bail out if:
2710 	 * - FC autoneg is disabled, or if
2711 	 * - link is not up.
2712 	 */
2713 	if (hw->fc.disable_fc_autoneg)
2714 		goto out;
2715 
2716 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2717 	if (!link_up)
2718 		goto out;
2719 
2720 	switch (hw->phy.media_type) {
2721 	/* Autoneg flow control on fiber adapters */
2722 	case ixgbe_media_type_fiber:
2723 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2724 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2725 		break;
2726 
2727 	/* Autoneg flow control on backplane adapters */
2728 	case ixgbe_media_type_backplane:
2729 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2730 		break;
2731 
2732 	/* Autoneg flow control on copper adapters */
2733 	case ixgbe_media_type_copper:
2734 		if (ixgbe_device_supports_autoneg_fc(hw) == IXGBE_SUCCESS)
2735 			ret_val = ixgbe_fc_autoneg_copper(hw);
2736 		break;
2737 
2738 	default:
2739 		break;
2740 	}
2741 
2742 out:
2743 	if (ret_val == IXGBE_SUCCESS) {
2744 		hw->fc.fc_was_autonegged = TRUE;
2745 	} else {
2746 		hw->fc.fc_was_autonegged = FALSE;
2747 		hw->fc.current_mode = hw->fc.requested_mode;
2748 	}
2749 }
2750 
2751 /**
2752  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2753  *  @hw: pointer to hardware structure
2754  *
2755  *  Disables PCI-Express master access and verifies there are no pending
2756  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2757  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
2758  *  is returned signifying master requests disabled.
2759  **/
2760 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2761 {
2762 	s32 status = IXGBE_SUCCESS;
2763 	u32 i;
2764 
2765 	DEBUGFUNC("ixgbe_disable_pcie_master");
2766 
2767 	/* Always set this bit to ensure any future transactions are blocked */
2768 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2769 
2770 	/* Exit if master requets are blocked */
2771 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2772 		goto out;
2773 
2774 	/* Poll for master request bit to clear */
2775 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2776 		usec_delay(100);
2777 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2778 			goto out;
2779 	}
2780 
2781 	/*
2782 	 * Two consecutive resets are required via CTRL.RST per datasheet
2783 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2784 	 * of this need.  The first reset prevents new master requests from
2785 	 * being issued by our device.  We then must wait 1usec or more for any
2786 	 * remaining completions from the PCIe bus to trickle in, and then reset
2787 	 * again to clear out any effects they may have had on our device.
2788 	 */
2789 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
2790 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2791 
2792 	/*
2793 	 * Before proceeding, make sure that the PCIe block does not have
2794 	 * transactions pending.
2795 	 */
2796 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2797 		usec_delay(100);
2798 		if (!(IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS) &
2799 		    IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2800 			goto out;
2801 	}
2802 
2803 	DEBUGOUT("PCIe transaction pending bit also did not clear.\n");
2804 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2805 
2806 out:
2807 	return status;
2808 }
2809 
2810 /**
2811  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2812  *  @hw: pointer to hardware structure
2813  *  @mask: Mask to specify which semaphore to acquire
2814  *
2815  *  Acquires the SWFW semaphore through the GSSR register for the specified
2816  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2817  **/
2818 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2819 {
2820 	u32 gssr;
2821 	u32 swmask = mask;
2822 	u32 fwmask = mask << 5;
2823 	s32 timeout = 200;
2824 
2825 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
2826 
2827 	while (timeout) {
2828 		/*
2829 		 * SW EEPROM semaphore bit is used for access to all
2830 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2831 		 */
2832 		if (ixgbe_get_eeprom_semaphore(hw))
2833 			return IXGBE_ERR_SWFW_SYNC;
2834 
2835 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2836 		if (!(gssr & (fwmask | swmask)))
2837 			break;
2838 
2839 		/*
2840 		 * Firmware currently using resource (fwmask) or other software
2841 		 * thread currently using resource (swmask)
2842 		 */
2843 		ixgbe_release_eeprom_semaphore(hw);
2844 		msec_delay(5);
2845 		timeout--;
2846 	}
2847 
2848 	if (!timeout) {
2849 		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
2850 		return IXGBE_ERR_SWFW_SYNC;
2851 	}
2852 
2853 	gssr |= swmask;
2854 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2855 
2856 	ixgbe_release_eeprom_semaphore(hw);
2857 	return IXGBE_SUCCESS;
2858 }
2859 
2860 /**
2861  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2862  *  @hw: pointer to hardware structure
2863  *  @mask: Mask to specify which semaphore to release
2864  *
2865  *  Releases the SWFW semaphore through the GSSR register for the specified
2866  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2867  **/
2868 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2869 {
2870 	u32 gssr;
2871 	u32 swmask = mask;
2872 
2873 	DEBUGFUNC("ixgbe_release_swfw_sync");
2874 
2875 	ixgbe_get_eeprom_semaphore(hw);
2876 
2877 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2878 	gssr &= ~swmask;
2879 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2880 
2881 	ixgbe_release_eeprom_semaphore(hw);
2882 }
2883 
2884 /**
2885  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
2886  *  @hw: pointer to hardware structure
2887  *
2888  *  Stops the receive data path and waits for the HW to internally empty
2889  *  the Rx security block
2890  **/
2891 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
2892 {
2893 #define IXGBE_MAX_SECRX_POLL 40
2894 
2895 	int i;
2896 	int secrxreg;
2897 
2898 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
2899 
2900 
2901 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2902 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2903 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2904 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2905 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2906 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2907 			break;
2908 		else
2909 			/* Use interrupt-safe sleep just in case */
2910 			usec_delay(1000);
2911 	}
2912 
2913 	/* For informational purposes only */
2914 	if (i >= IXGBE_MAX_SECRX_POLL)
2915 		DEBUGOUT("Rx unit being enabled before security "
2916 			 "path fully disabled.  Continuing with init.\n");
2917 
2918 	return IXGBE_SUCCESS;
2919 }
2920 
2921 /**
2922  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
2923  *  @hw: pointer to hardware structure
2924  *
2925  *  Enables the receive data path.
2926  **/
2927 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
2928 {
2929 	int secrxreg;
2930 
2931 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
2932 
2933 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2934 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2935 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2936 	IXGBE_WRITE_FLUSH(hw);
2937 
2938 	return IXGBE_SUCCESS;
2939 }
2940 
2941 /**
2942  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2943  *  @hw: pointer to hardware structure
2944  *  @regval: register value to write to RXCTRL
2945  *
2946  *  Enables the Rx DMA unit
2947  **/
2948 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2949 {
2950 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
2951 
2952 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2953 
2954 	return IXGBE_SUCCESS;
2955 }
2956 
2957 /**
2958  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2959  *  @hw: pointer to hardware structure
2960  *  @index: led number to blink
2961  **/
2962 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2963 {
2964 	ixgbe_link_speed speed = 0;
2965 	bool link_up = 0;
2966 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2967 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2968 
2969 	DEBUGFUNC("ixgbe_blink_led_start_generic");
2970 
2971 	/*
2972 	 * Link must be up to auto-blink the LEDs;
2973 	 * Force it if link is down.
2974 	 */
2975 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
2976 
2977 	if (!link_up) {
2978 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2979 		autoc_reg |= IXGBE_AUTOC_FLU;
2980 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2981 		IXGBE_WRITE_FLUSH(hw);
2982 		msec_delay(10);
2983 	}
2984 
2985 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2986 	led_reg |= IXGBE_LED_BLINK(index);
2987 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2988 	IXGBE_WRITE_FLUSH(hw);
2989 
2990 	return IXGBE_SUCCESS;
2991 }
2992 
2993 /**
2994  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2995  *  @hw: pointer to hardware structure
2996  *  @index: led number to stop blinking
2997  **/
2998 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2999 {
3000 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3001 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3002 
3003 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3004 
3005 
3006 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3007 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3008 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
3009 
3010 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3011 	led_reg &= ~IXGBE_LED_BLINK(index);
3012 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3013 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3014 	IXGBE_WRITE_FLUSH(hw);
3015 
3016 	return IXGBE_SUCCESS;
3017 }
3018 
3019 /**
3020  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3021  *  @hw: pointer to hardware structure
3022  *  @san_mac_offset: SAN MAC address offset
3023  *
3024  *  This function will read the EEPROM location for the SAN MAC address
3025  *  pointer, and returns the value at that location.  This is used in both
3026  *  get and set mac_addr routines.
3027  **/
3028 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3029 					 u16 *san_mac_offset)
3030 {
3031 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3032 
3033 	/*
3034 	 * First read the EEPROM pointer to see if the MAC addresses are
3035 	 * available.
3036 	 */
3037 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
3038 
3039 	return IXGBE_SUCCESS;
3040 }
3041 
3042 /**
3043  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3044  *  @hw: pointer to hardware structure
3045  *  @san_mac_addr: SAN MAC address
3046  *
3047  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3048  *  per-port, so set_lan_id() must be called before reading the addresses.
3049  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3050  *  upon for non-SFP connections, so we must call it here.
3051  **/
3052 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3053 {
3054 	u16 san_mac_data, san_mac_offset;
3055 	u8 i;
3056 
3057 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3058 
3059 	/*
3060 	 * First read the EEPROM pointer to see if the MAC addresses are
3061 	 * available.  If they're not, no point in calling set_lan_id() here.
3062 	 */
3063 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3064 
3065 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3066 		/*
3067 		 * No addresses available in this EEPROM.  It's not an
3068 		 * error though, so just wipe the local address and return.
3069 		 */
3070 		for (i = 0; i < 6; i++)
3071 			san_mac_addr[i] = 0xFF;
3072 
3073 		goto san_mac_addr_out;
3074 	}
3075 
3076 	/* make sure we know which port we need to program */
3077 	hw->mac.ops.set_lan_id(hw);
3078 	/* apply the port offset to the address offset */
3079 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3080 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3081 	for (i = 0; i < 3; i++) {
3082 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
3083 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3084 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3085 		san_mac_offset++;
3086 	}
3087 
3088 san_mac_addr_out:
3089 	return IXGBE_SUCCESS;
3090 }
3091 
3092 /**
3093  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3094  *  @hw: pointer to hardware structure
3095  *  @san_mac_addr: SAN MAC address
3096  *
3097  *  Write a SAN MAC address to the EEPROM.
3098  **/
3099 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3100 {
3101 	s32 status = IXGBE_SUCCESS;
3102 	u16 san_mac_data, san_mac_offset;
3103 	u8 i;
3104 
3105 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3106 
3107 	/* Look for SAN mac address pointer.  If not defined, return */
3108 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3109 
3110 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
3111 		status = IXGBE_ERR_NO_SAN_ADDR_PTR;
3112 		goto san_mac_addr_out;
3113 	}
3114 
3115 	/* Make sure we know which port we need to write */
3116 	hw->mac.ops.set_lan_id(hw);
3117 	/* Apply the port offset to the address offset */
3118 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3119 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3120 
3121 	for (i = 0; i < 3; i++) {
3122 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3123 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3124 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3125 		san_mac_offset++;
3126 	}
3127 
3128 san_mac_addr_out:
3129 	return status;
3130 }
3131 
3132 /**
3133  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3134  *  @hw: pointer to hardware structure
3135  *
3136  *  Read PCIe configuration space, and get the MSI-X vector count from
3137  *  the capabilities table.
3138  **/
3139 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3140 {
3141 	u16 msix_count = 1;
3142 	u16 max_msix_count;
3143 	u16 pcie_offset;
3144 
3145 	switch (hw->mac.type) {
3146 	case ixgbe_mac_82598EB:
3147 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3148 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3149 		break;
3150 	case ixgbe_mac_82599EB:
3151 	case ixgbe_mac_X540:
3152 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3153 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3154 		break;
3155 	default:
3156 		return msix_count;
3157 	}
3158 
3159 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3160 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3161 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3162 
3163 	/* MSI-X count is zero-based in HW */
3164 	msix_count++;
3165 
3166 	if (msix_count > max_msix_count)
3167 		msix_count = max_msix_count;
3168 
3169 	return msix_count;
3170 }
3171 
3172 /**
3173  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3174  *  @hw: pointer to hardware structure
3175  *  @addr: Address to put into receive address register
3176  *  @vmdq: VMDq pool to assign
3177  *
3178  *  Puts an ethernet address into a receive address register, or
3179  *  finds the rar that it is aleady in; adds to the pool list
3180  **/
3181 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3182 {
3183 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3184 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3185 	u32 rar;
3186 	u32 rar_low, rar_high;
3187 	u32 addr_low, addr_high;
3188 
3189 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3190 
3191 	/* swap bytes for HW little endian */
3192 	addr_low  = addr[0] | (addr[1] << 8)
3193 			    | (addr[2] << 16)
3194 			    | (addr[3] << 24);
3195 	addr_high = addr[4] | (addr[5] << 8);
3196 
3197 	/*
3198 	 * Either find the mac_id in rar or find the first empty space.
3199 	 * rar_highwater points to just after the highest currently used
3200 	 * rar in order to shorten the search.  It grows when we add a new
3201 	 * rar to the top.
3202 	 */
3203 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3204 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3205 
3206 		if (((IXGBE_RAH_AV & rar_high) == 0)
3207 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3208 			first_empty_rar = rar;
3209 		} else if ((rar_high & 0xFFFF) == addr_high) {
3210 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3211 			if (rar_low == addr_low)
3212 				break;    /* found it already in the rars */
3213 		}
3214 	}
3215 
3216 	if (rar < hw->mac.rar_highwater) {
3217 		/* already there so just add to the pool bits */
3218 		ixgbe_set_vmdq(hw, rar, vmdq);
3219 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3220 		/* stick it into first empty RAR slot we found */
3221 		rar = first_empty_rar;
3222 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3223 	} else if (rar == hw->mac.rar_highwater) {
3224 		/* add it to the top of the list and inc the highwater mark */
3225 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3226 		hw->mac.rar_highwater++;
3227 	} else if (rar >= hw->mac.num_rar_entries) {
3228 		return IXGBE_ERR_INVALID_MAC_ADDR;
3229 	}
3230 
3231 	/*
3232 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3233 	 * remains cleared to be sure default pool packets will get delivered
3234 	 */
3235 	if (rar == 0)
3236 		ixgbe_clear_vmdq(hw, rar, 0);
3237 
3238 	return rar;
3239 }
3240 
3241 /**
3242  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3243  *  @hw: pointer to hardware struct
3244  *  @rar: receive address register index to disassociate
3245  *  @vmdq: VMDq pool index to remove from the rar
3246  **/
3247 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3248 {
3249 	u32 mpsar_lo, mpsar_hi;
3250 	u32 rar_entries = hw->mac.num_rar_entries;
3251 
3252 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3253 
3254 	/* Make sure we are using a valid rar index range */
3255 	if (rar >= rar_entries) {
3256 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
3257 		return IXGBE_ERR_INVALID_ARGUMENT;
3258 	}
3259 
3260 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3261 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3262 
3263 	if (!mpsar_lo && !mpsar_hi)
3264 		goto done;
3265 
3266 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3267 		if (mpsar_lo) {
3268 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3269 			mpsar_lo = 0;
3270 		}
3271 		if (mpsar_hi) {
3272 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3273 			mpsar_hi = 0;
3274 		}
3275 	} else if (vmdq < 32) {
3276 		mpsar_lo &= ~(1 << vmdq);
3277 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3278 	} else {
3279 		mpsar_hi &= ~(1 << (vmdq - 32));
3280 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3281 	}
3282 
3283 	/* was that the last pool using this rar? */
3284 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3285 		hw->mac.ops.clear_rar(hw, rar);
3286 done:
3287 	return IXGBE_SUCCESS;
3288 }
3289 
3290 /**
3291  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3292  *  @hw: pointer to hardware struct
3293  *  @rar: receive address register index to associate with a VMDq index
3294  *  @vmdq: VMDq pool index
3295  **/
3296 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3297 {
3298 	u32 mpsar;
3299 	u32 rar_entries = hw->mac.num_rar_entries;
3300 
3301 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3302 
3303 	/* Make sure we are using a valid rar index range */
3304 	if (rar >= rar_entries) {
3305 		DEBUGOUT1("RAR index %d is out of range.\n", rar);
3306 		return IXGBE_ERR_INVALID_ARGUMENT;
3307 	}
3308 
3309 	if (vmdq < 32) {
3310 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3311 		mpsar |= 1 << vmdq;
3312 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3313 	} else {
3314 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3315 		mpsar |= 1 << (vmdq - 32);
3316 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3317 	}
3318 	return IXGBE_SUCCESS;
3319 }
3320 
3321 /**
3322  *  This function should only be involved in the IOV mode.
3323  *  In IOV mode, Default pool is next pool after the number of
3324  *  VFs advertized and not 0.
3325  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3326  *
3327  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3328  *  @hw: pointer to hardware struct
3329  *  @vmdq: VMDq pool index
3330  **/
3331 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3332 {
3333 	u32 rar = hw->mac.san_mac_rar_index;
3334 
3335 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3336 
3337 	if (vmdq < 32) {
3338 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3339 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3340 	} else {
3341 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3342 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3343 	}
3344 
3345 	return IXGBE_SUCCESS;
3346 }
3347 
3348 /**
3349  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3350  *  @hw: pointer to hardware structure
3351  **/
3352 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3353 {
3354 	int i;
3355 
3356 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3357 	DEBUGOUT(" Clearing UTA\n");
3358 
3359 	for (i = 0; i < 128; i++)
3360 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3361 
3362 	return IXGBE_SUCCESS;
3363 }
3364 
3365 /**
3366  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3367  *  @hw: pointer to hardware structure
3368  *  @vlan: VLAN id to write to VLAN filter
3369  *
3370  *  return the VLVF index where this VLAN id should be placed
3371  *
3372  **/
3373 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3374 {
3375 	u32 bits = 0;
3376 	u32 first_empty_slot = 0;
3377 	s32 regindex;
3378 
3379 	/* short cut the special case */
3380 	if (vlan == 0)
3381 		return 0;
3382 
3383 	/*
3384 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3385 	  * slot found along the way
3386 	  */
3387 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3388 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3389 		if (!bits && !(first_empty_slot))
3390 			first_empty_slot = regindex;
3391 		else if ((bits & 0x0FFF) == vlan)
3392 			break;
3393 	}
3394 
3395 	/*
3396 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3397 	  * in the VLVF. Else use the first empty VLVF register for this
3398 	  * vlan id.
3399 	  */
3400 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3401 		if (first_empty_slot)
3402 			regindex = first_empty_slot;
3403 		else {
3404 			DEBUGOUT("No space in VLVF.\n");
3405 			regindex = IXGBE_ERR_NO_SPACE;
3406 		}
3407 	}
3408 
3409 	return regindex;
3410 }
3411 
3412 /**
3413  *  ixgbe_set_vfta_generic - Set VLAN filter table
3414  *  @hw: pointer to hardware structure
3415  *  @vlan: VLAN id to write to VLAN filter
3416  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3417  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3418  *
3419  *  Turn on/off specified VLAN in the VLAN filter table.
3420  **/
3421 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3422 			   bool vlan_on)
3423 {
3424 	s32 regindex;
3425 	u32 bitindex;
3426 	u32 vfta;
3427 	u32 targetbit;
3428 	s32 ret_val = IXGBE_SUCCESS;
3429 	bool vfta_changed = FALSE;
3430 
3431 	DEBUGFUNC("ixgbe_set_vfta_generic");
3432 
3433 	if (vlan > 4095)
3434 		return IXGBE_ERR_PARAM;
3435 
3436 	/*
3437 	 * this is a 2 part operation - first the VFTA, then the
3438 	 * VLVF and VLVFB if VT Mode is set
3439 	 * We don't write the VFTA until we know the VLVF part succeeded.
3440 	 */
3441 
3442 	/* Part 1
3443 	 * The VFTA is a bitstring made up of 128 32-bit registers
3444 	 * that enable the particular VLAN id, much like the MTA:
3445 	 *    bits[11-5]: which register
3446 	 *    bits[4-0]:  which bit in the register
3447 	 */
3448 	regindex = (vlan >> 5) & 0x7F;
3449 	bitindex = vlan & 0x1F;
3450 	targetbit = (1 << bitindex);
3451 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3452 
3453 	if (vlan_on) {
3454 		if (!(vfta & targetbit)) {
3455 			vfta |= targetbit;
3456 			vfta_changed = TRUE;
3457 		}
3458 	} else {
3459 		if ((vfta & targetbit)) {
3460 			vfta &= ~targetbit;
3461 			vfta_changed = TRUE;
3462 		}
3463 	}
3464 
3465 	/* Part 2
3466 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3467 	 */
3468 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3469 					 &vfta_changed);
3470 	if (ret_val != IXGBE_SUCCESS)
3471 		return ret_val;
3472 
3473 	if (vfta_changed)
3474 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3475 
3476 	return IXGBE_SUCCESS;
3477 }
3478 
3479 /**
3480  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3481  *  @hw: pointer to hardware structure
3482  *  @vlan: VLAN id to write to VLAN filter
3483  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3484  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3485  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3486  *                 should be changed
3487  *
3488  *  Turn on/off specified bit in VLVF table.
3489  **/
3490 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3491 			    bool vlan_on, bool *vfta_changed)
3492 {
3493 	u32 vt;
3494 
3495 	DEBUGFUNC("ixgbe_set_vlvf_generic");
3496 
3497 	if (vlan > 4095)
3498 		return IXGBE_ERR_PARAM;
3499 
3500 	/* If VT Mode is set
3501 	 *   Either vlan_on
3502 	 *     make sure the vlan is in VLVF
3503 	 *     set the vind bit in the matching VLVFB
3504 	 *   Or !vlan_on
3505 	 *     clear the pool bit and possibly the vind
3506 	 */
3507 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3508 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3509 		s32 vlvf_index;
3510 		u32 bits;
3511 
3512 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3513 		if (vlvf_index < 0)
3514 			return vlvf_index;
3515 
3516 		if (vlan_on) {
3517 			/* set the pool bit */
3518 			if (vind < 32) {
3519 				bits = IXGBE_READ_REG(hw,
3520 						IXGBE_VLVFB(vlvf_index * 2));
3521 				bits |= (1 << vind);
3522 				IXGBE_WRITE_REG(hw,
3523 						IXGBE_VLVFB(vlvf_index * 2),
3524 						bits);
3525 			} else {
3526 				bits = IXGBE_READ_REG(hw,
3527 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3528 				bits |= (1 << (vind - 32));
3529 				IXGBE_WRITE_REG(hw,
3530 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3531 					bits);
3532 			}
3533 		} else {
3534 			/* clear the pool bit */
3535 			if (vind < 32) {
3536 				bits = IXGBE_READ_REG(hw,
3537 						IXGBE_VLVFB(vlvf_index * 2));
3538 				bits &= ~(1 << vind);
3539 				IXGBE_WRITE_REG(hw,
3540 						IXGBE_VLVFB(vlvf_index * 2),
3541 						bits);
3542 				bits |= IXGBE_READ_REG(hw,
3543 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3544 			} else {
3545 				bits = IXGBE_READ_REG(hw,
3546 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3547 				bits &= ~(1 << (vind - 32));
3548 				IXGBE_WRITE_REG(hw,
3549 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3550 					bits);
3551 				bits |= IXGBE_READ_REG(hw,
3552 						IXGBE_VLVFB(vlvf_index * 2));
3553 			}
3554 		}
3555 
3556 		/*
3557 		 * If there are still bits set in the VLVFB registers
3558 		 * for the VLAN ID indicated we need to see if the
3559 		 * caller is requesting that we clear the VFTA entry bit.
3560 		 * If the caller has requested that we clear the VFTA
3561 		 * entry bit but there are still pools/VFs using this VLAN
3562 		 * ID entry then ignore the request.  We're not worried
3563 		 * about the case where we're turning the VFTA VLAN ID
3564 		 * entry bit on, only when requested to turn it off as
3565 		 * there may be multiple pools and/or VFs using the
3566 		 * VLAN ID entry.  In that case we cannot clear the
3567 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3568 		 * been cleared.  This will be indicated by "bits" being
3569 		 * zero.
3570 		 */
3571 		if (bits) {
3572 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3573 					(IXGBE_VLVF_VIEN | vlan));
3574 			if ((!vlan_on) && (vfta_changed != NULL)) {
3575 				/* someone wants to clear the vfta entry
3576 				 * but some pools/VFs are still using it.
3577 				 * Ignore it. */
3578 				*vfta_changed = FALSE;
3579 			}
3580 		} else
3581 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3582 	}
3583 
3584 	return IXGBE_SUCCESS;
3585 }
3586 
3587 /**
3588  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3589  *  @hw: pointer to hardware structure
3590  *
3591  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3592  **/
3593 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3594 {
3595 	u32 offset;
3596 
3597 	DEBUGFUNC("ixgbe_clear_vfta_generic");
3598 
3599 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3600 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3601 
3602 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3603 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3604 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3605 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
3606 	}
3607 
3608 	return IXGBE_SUCCESS;
3609 }
3610 
3611 /**
3612  *  ixgbe_check_mac_link_generic - Determine link and speed status
3613  *  @hw: pointer to hardware structure
3614  *  @speed: pointer to link speed
3615  *  @link_up: TRUE when link is up
3616  *  @link_up_wait_to_complete: bool used to wait for link up or not
3617  *
3618  *  Reads the links register to determine if link is up and the current speed
3619  **/
3620 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3621 				 bool *link_up, bool link_up_wait_to_complete)
3622 {
3623 	u32 links_reg, links_orig;
3624 	u32 i;
3625 
3626 	DEBUGFUNC("ixgbe_check_mac_link_generic");
3627 
3628 	/* clear the old state */
3629 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3630 
3631 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3632 
3633 	if (links_orig != links_reg) {
3634 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
3635 			  links_orig, links_reg);
3636 	}
3637 
3638 	if (link_up_wait_to_complete) {
3639 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3640 			if (links_reg & IXGBE_LINKS_UP) {
3641 				*link_up = TRUE;
3642 				break;
3643 			} else {
3644 				*link_up = FALSE;
3645 			}
3646 			msec_delay(100);
3647 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3648 		}
3649 	} else {
3650 		if (links_reg & IXGBE_LINKS_UP)
3651 			*link_up = TRUE;
3652 		else
3653 			*link_up = FALSE;
3654 	}
3655 
3656 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3657 	    IXGBE_LINKS_SPEED_10G_82599)
3658 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3659 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3660 		 IXGBE_LINKS_SPEED_1G_82599)
3661 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3662 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3663 		 IXGBE_LINKS_SPEED_100_82599)
3664 		*speed = IXGBE_LINK_SPEED_100_FULL;
3665 	else
3666 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3667 
3668 	return IXGBE_SUCCESS;
3669 }
3670 
3671 /**
3672  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3673  *  the EEPROM
3674  *  @hw: pointer to hardware structure
3675  *  @wwnn_prefix: the alternative WWNN prefix
3676  *  @wwpn_prefix: the alternative WWPN prefix
3677  *
3678  *  This function will read the EEPROM from the alternative SAN MAC address
3679  *  block to check the support for the alternative WWNN/WWPN prefix support.
3680  **/
3681 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3682 				 u16 *wwpn_prefix)
3683 {
3684 	u16 offset, caps;
3685 	u16 alt_san_mac_blk_offset;
3686 
3687 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
3688 
3689 	/* clear output first */
3690 	*wwnn_prefix = 0xFFFF;
3691 	*wwpn_prefix = 0xFFFF;
3692 
3693 	/* check if alternative SAN MAC is supported */
3694 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3695 			    &alt_san_mac_blk_offset);
3696 
3697 	if ((alt_san_mac_blk_offset == 0) ||
3698 	    (alt_san_mac_blk_offset == 0xFFFF))
3699 		goto wwn_prefix_out;
3700 
3701 	/* check capability in alternative san mac address block */
3702 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3703 	hw->eeprom.ops.read(hw, offset, &caps);
3704 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3705 		goto wwn_prefix_out;
3706 
3707 	/* get the corresponding prefix for WWNN/WWPN */
3708 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3709 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3710 
3711 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3712 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3713 
3714 wwn_prefix_out:
3715 	return IXGBE_SUCCESS;
3716 }
3717 
3718 /**
3719  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
3720  *  @hw: pointer to hardware structure
3721  *  @bs: the fcoe boot status
3722  *
3723  *  This function will read the FCOE boot status from the iSCSI FCOE block
3724  **/
3725 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
3726 {
3727 	u16 offset, caps, flags;
3728 	s32 status;
3729 
3730 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
3731 
3732 	/* clear output first */
3733 	*bs = ixgbe_fcoe_bootstatus_unavailable;
3734 
3735 	/* check if FCOE IBA block is present */
3736 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
3737 	status = hw->eeprom.ops.read(hw, offset, &caps);
3738 	if (status != IXGBE_SUCCESS)
3739 		goto out;
3740 
3741 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
3742 		goto out;
3743 
3744 	/* check if iSCSI FCOE block is populated */
3745 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
3746 	if (status != IXGBE_SUCCESS)
3747 		goto out;
3748 
3749 	if ((offset == 0) || (offset == 0xFFFF))
3750 		goto out;
3751 
3752 	/* read fcoe flags in iSCSI FCOE block */
3753 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
3754 	status = hw->eeprom.ops.read(hw, offset, &flags);
3755 	if (status != IXGBE_SUCCESS)
3756 		goto out;
3757 
3758 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
3759 		*bs = ixgbe_fcoe_bootstatus_enabled;
3760 	else
3761 		*bs = ixgbe_fcoe_bootstatus_disabled;
3762 
3763 out:
3764 	return status;
3765 }
3766 
3767 /**
3768  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3769  *  @hw: pointer to hardware structure
3770  *  @enable: enable or disable switch for anti-spoofing
3771  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3772  *
3773  **/
3774 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3775 {
3776 	int j;
3777 	int pf_target_reg = pf >> 3;
3778 	int pf_target_shift = pf % 8;
3779 	u32 pfvfspoof = 0;
3780 
3781 	if (hw->mac.type == ixgbe_mac_82598EB)
3782 		return;
3783 
3784 	if (enable)
3785 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3786 
3787 	/*
3788 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3789 	 * MAC anti-spoof enables in each register array element.
3790 	 */
3791 	for (j = 0; j < pf_target_reg; j++)
3792 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3793 
3794 	/*
3795 	 * The PF should be allowed to spoof so that it can support
3796 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3797 	 */
3798 	pfvfspoof &= (1 << pf_target_shift) - 1;
3799 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3800 
3801 	/*
3802 	 * Remaining pools belong to the PF so they do not need to have
3803 	 * anti-spoofing enabled.
3804 	 */
3805 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3806 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3807 }
3808 
3809 /**
3810  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3811  *  @hw: pointer to hardware structure
3812  *  @enable: enable or disable switch for VLAN anti-spoofing
3813  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3814  *
3815  **/
3816 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3817 {
3818 	int vf_target_reg = vf >> 3;
3819 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3820 	u32 pfvfspoof;
3821 
3822 	if (hw->mac.type == ixgbe_mac_82598EB)
3823 		return;
3824 
3825 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3826 	if (enable)
3827 		pfvfspoof |= (1 << vf_target_shift);
3828 	else
3829 		pfvfspoof &= ~(1 << vf_target_shift);
3830 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3831 }
3832 
3833 /**
3834  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3835  *  @hw: pointer to hardware structure
3836  *  @device_caps: the EEPROM word with the extra device capabilities
3837  *
3838  *  This function will read the EEPROM location for the device capabilities,
3839  *  and return the word through device_caps.
3840  **/
3841 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3842 {
3843 	DEBUGFUNC("ixgbe_get_device_caps_generic");
3844 
3845 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3846 
3847 	return IXGBE_SUCCESS;
3848 }
3849 
3850 /**
3851  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
3852  *  @hw: pointer to hardware structure
3853  *
3854  **/
3855 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
3856 {
3857 	u32 regval;
3858 	u32 i;
3859 
3860 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
3861 
3862 	/* Enable relaxed ordering */
3863 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
3864 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
3865 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
3866 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
3867 	}
3868 
3869 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
3870 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
3871 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
3872 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
3873 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
3874 	}
3875 
3876 }
3877 
3878 /**
3879  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3880  *  @buffer: pointer to EEPROM
3881  *  @length: size of EEPROM to calculate a checksum for
3882  *  Calculates the checksum for some buffer on a specified length.  The
3883  *  checksum calculated is returned.
3884  **/
3885 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3886 {
3887 	u32 i;
3888 	u8 sum = 0;
3889 
3890 	DEBUGFUNC("ixgbe_calculate_checksum");
3891 
3892 	if (!buffer)
3893 		return 0;
3894 
3895 	for (i = 0; i < length; i++)
3896 		sum += buffer[i];
3897 
3898 	return (u8) (0 - sum);
3899 }
3900 
3901 /**
3902  *  ixgbe_host_interface_command - Issue command to manageability block
3903  *  @hw: pointer to the HW structure
3904  *  @buffer: contains the command to write and where the return status will
3905  *   be placed
3906  *  @length: length of buffer, must be multiple of 4 bytes
3907  *
3908  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
3909  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3910  **/
3911 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3912 					u32 length)
3913 {
3914 	u32 hicr, i, bi;
3915 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3916 	u8 buf_len, dword_len;
3917 
3918 	s32 ret_val = IXGBE_SUCCESS;
3919 
3920 	DEBUGFUNC("ixgbe_host_interface_command");
3921 
3922 	if (length == 0 || length & 0x3 ||
3923 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3924 		DEBUGOUT("Buffer length failure.\n");
3925 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3926 		goto out;
3927 	}
3928 
3929 	/* Check that the host interface is enabled. */
3930 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3931 	if ((hicr & IXGBE_HICR_EN) == 0) {
3932 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
3933 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3934 		goto out;
3935 	}
3936 
3937 	/* Calculate length in DWORDs */
3938 	dword_len = length >> 2;
3939 
3940 	/*
3941 	 * The device driver writes the relevant command block
3942 	 * into the ram area.
3943 	 */
3944 	for (i = 0; i < dword_len; i++)
3945 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3946 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
3947 
3948 	/* Setting this bit tells the ARC that a new command is pending. */
3949 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3950 
3951 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3952 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3953 		if (!(hicr & IXGBE_HICR_C))
3954 			break;
3955 		msec_delay(1);
3956 	}
3957 
3958 	/* Check command successful completion. */
3959 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3960 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3961 		DEBUGOUT("Command has failed with no status valid.\n");
3962 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3963 		goto out;
3964 	}
3965 
3966 	/* Calculate length in DWORDs */
3967 	dword_len = hdr_size >> 2;
3968 
3969 	/* first pull in the header so we know the buffer length */
3970 	for (bi = 0; bi < dword_len; bi++) {
3971 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3972 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
3973 	}
3974 
3975 	/* If there is any thing in data position pull it in */
3976 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3977 	if (buf_len == 0)
3978 		goto out;
3979 
3980 	if (length < (buf_len + hdr_size)) {
3981 		DEBUGOUT("Buffer not large enough for reply message.\n");
3982 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3983 		goto out;
3984 	}
3985 
3986 	/* Calculate length in DWORDs, add 3 for odd lengths */
3987 	dword_len = (buf_len + 3) >> 2;
3988 
3989 	/* Pull in the rest of the buffer (bi is where we left off)*/
3990 	for (; bi <= dword_len; bi++) {
3991 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3992 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
3993 	}
3994 
3995 out:
3996 	return ret_val;
3997 }
3998 
3999 /**
4000  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4001  *  @hw: pointer to the HW structure
4002  *  @maj: driver version major number
4003  *  @min: driver version minor number
4004  *  @build: driver version build number
4005  *  @sub: driver version sub build number
4006  *
4007  *  Sends driver version number to firmware through the manageability
4008  *  block.  On success return IXGBE_SUCCESS
4009  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4010  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4011  **/
4012 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4013 				 u8 build, u8 sub)
4014 {
4015 	struct ixgbe_hic_drv_info fw_cmd;
4016 	int i;
4017 	s32 ret_val = IXGBE_SUCCESS;
4018 
4019 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4020 
4021 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4022 	    != IXGBE_SUCCESS) {
4023 		ret_val = IXGBE_ERR_SWFW_SYNC;
4024 		goto out;
4025 	}
4026 
4027 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4028 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4029 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4030 	fw_cmd.port_num = (u8)hw->bus.func;
4031 	fw_cmd.ver_maj = maj;
4032 	fw_cmd.ver_min = min;
4033 	fw_cmd.ver_build = build;
4034 	fw_cmd.ver_sub = sub;
4035 	fw_cmd.hdr.checksum = 0;
4036 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4037 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4038 	fw_cmd.pad = 0;
4039 	fw_cmd.pad2 = 0;
4040 
4041 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4042 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4043 						       sizeof(fw_cmd));
4044 		if (ret_val != IXGBE_SUCCESS)
4045 			continue;
4046 
4047 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4048 		    FW_CEM_RESP_STATUS_SUCCESS)
4049 			ret_val = IXGBE_SUCCESS;
4050 		else
4051 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4052 
4053 		break;
4054 	}
4055 
4056 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4057 out:
4058 	return ret_val;
4059 }
4060 
4061 /**
4062  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4063  * @hw: pointer to hardware structure
4064  * @num_pb: number of packet buffers to allocate
4065  * @headroom: reserve n KB of headroom
4066  * @strategy: packet buffer allocation strategy
4067  **/
4068 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4069 			     int strategy)
4070 {
4071 	u32 pbsize = hw->mac.rx_pb_size;
4072 	int i = 0;
4073 	u32 rxpktsize, txpktsize, txpbthresh;
4074 
4075 	/* Reserve headroom */
4076 	pbsize -= headroom;
4077 
4078 	if (!num_pb)
4079 		num_pb = 1;
4080 
4081 	/* Divide remaining packet buffer space amongst the number of packet
4082 	 * buffers requested using supplied strategy.
4083 	 */
4084 	switch (strategy) {
4085 	case PBA_STRATEGY_WEIGHTED:
4086 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4087 		 * buffer with 5/8 of the packet buffer space.
4088 		 */
4089 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4090 		pbsize -= rxpktsize * (num_pb / 2);
4091 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4092 		for (; i < (num_pb / 2); i++)
4093 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4094 		/* Fall through to configure remaining packet buffers */
4095 	case PBA_STRATEGY_EQUAL:
4096 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4097 		for (; i < num_pb; i++)
4098 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4099 		break;
4100 	default:
4101 		break;
4102 	}
4103 
4104 	/* Only support an equally distributed Tx packet buffer strategy. */
4105 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4106 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4107 	for (i = 0; i < num_pb; i++) {
4108 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4109 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4110 	}
4111 
4112 	/* Clear unused TCs, if any, to zero buffer size*/
4113 	for (; i < IXGBE_MAX_PB; i++) {
4114 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4115 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4116 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4117 	}
4118 }
4119 
4120 /**
4121  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4122  * @hw: pointer to the hardware structure
4123  *
4124  * The 82599 and x540 MACs can experience issues if TX work is still pending
4125  * when a reset occurs.  This function prevents this by flushing the PCIe
4126  * buffers on the system.
4127  **/
4128 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4129 {
4130 	u32 gcr_ext, hlreg0;
4131 
4132 	/*
4133 	 * If double reset is not requested then all transactions should
4134 	 * already be clear and as such there is no work to do
4135 	 */
4136 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4137 		return;
4138 
4139 	/*
4140 	 * Set loopback enable to prevent any transmits from being sent
4141 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4142 	 * has already been cleared.
4143 	 */
4144 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4145 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4146 
4147 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4148 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4149 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4150 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4151 
4152 	/* Flush all writes and allow 20usec for all transactions to clear */
4153 	IXGBE_WRITE_FLUSH(hw);
4154 	usec_delay(20);
4155 
4156 	/* restore previous register values */
4157 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4158 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4159 }
4160 
4161