xref: /freebsd/sys/dev/ixgbe/ixgbe_common.c (revision bcce9a2b33a8e9187a63f435726a7a801e89f326)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2017, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 /*$FreeBSD$*/
35 
36 #include "ixgbe_common.h"
37 #include "ixgbe_phy.h"
38 #include "ixgbe_dcb.h"
39 #include "ixgbe_dcb_82599.h"
40 #include "ixgbe_api.h"
41 
42 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
43 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
44 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
45 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
47 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
48 					u16 count);
49 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
50 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
52 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
53 
54 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
55 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
56 					 u16 *san_mac_offset);
57 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
58 					     u16 words, u16 *data);
59 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
60 					      u16 words, u16 *data);
61 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
62 						 u16 offset);
63 
64 /**
65  *  ixgbe_init_ops_generic - Inits function ptrs
66  *  @hw: pointer to the hardware structure
67  *
68  *  Initialize the function pointers.
69  **/
70 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
71 {
72 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
73 	struct ixgbe_mac_info *mac = &hw->mac;
74 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
75 
76 	DEBUGFUNC("ixgbe_init_ops_generic");
77 
78 	/* EEPROM */
79 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
80 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
81 	if (eec & IXGBE_EEC_PRES) {
82 		eeprom->ops.read = ixgbe_read_eerd_generic;
83 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
84 	} else {
85 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
86 		eeprom->ops.read_buffer =
87 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
88 	}
89 	eeprom->ops.write = ixgbe_write_eeprom_generic;
90 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
91 	eeprom->ops.validate_checksum =
92 				      ixgbe_validate_eeprom_checksum_generic;
93 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
94 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
95 
96 	/* MAC */
97 	mac->ops.init_hw = ixgbe_init_hw_generic;
98 	mac->ops.reset_hw = NULL;
99 	mac->ops.start_hw = ixgbe_start_hw_generic;
100 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
101 	mac->ops.get_media_type = NULL;
102 	mac->ops.get_supported_physical_layer = NULL;
103 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
104 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
105 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
106 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
107 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
108 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
109 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
110 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
111 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
112 
113 	/* LEDs */
114 	mac->ops.led_on = ixgbe_led_on_generic;
115 	mac->ops.led_off = ixgbe_led_off_generic;
116 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
117 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
118 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
119 
120 	/* RAR, Multicast, VLAN */
121 	mac->ops.set_rar = ixgbe_set_rar_generic;
122 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
123 	mac->ops.insert_mac_addr = NULL;
124 	mac->ops.set_vmdq = NULL;
125 	mac->ops.clear_vmdq = NULL;
126 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
127 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
128 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
129 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
130 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
131 	mac->ops.clear_vfta = NULL;
132 	mac->ops.set_vfta = NULL;
133 	mac->ops.set_vlvf = NULL;
134 	mac->ops.init_uta_tables = NULL;
135 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
136 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
137 
138 	/* Flow Control */
139 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
140 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
141 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
142 
143 	/* Link */
144 	mac->ops.get_link_capabilities = NULL;
145 	mac->ops.setup_link = NULL;
146 	mac->ops.check_link = NULL;
147 	mac->ops.dmac_config = NULL;
148 	mac->ops.dmac_update_tcs = NULL;
149 	mac->ops.dmac_config_tcs = NULL;
150 
151 	return IXGBE_SUCCESS;
152 }
153 
154 /**
155  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
156  * of flow control
157  * @hw: pointer to hardware structure
158  *
159  * This function returns TRUE if the device supports flow control
160  * autonegotiation, and FALSE if it does not.
161  *
162  **/
163 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
164 {
165 	bool supported = FALSE;
166 	ixgbe_link_speed speed;
167 	bool link_up;
168 
169 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
170 
171 	switch (hw->phy.media_type) {
172 	case ixgbe_media_type_fiber_fixed:
173 	case ixgbe_media_type_fiber_qsfp:
174 	case ixgbe_media_type_fiber:
175 		/* flow control autoneg black list */
176 		switch (hw->device_id) {
177 		case IXGBE_DEV_ID_X550EM_A_SFP:
178 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
179 		case IXGBE_DEV_ID_X550EM_A_QSFP:
180 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
181 			supported = FALSE;
182 			break;
183 		default:
184 			hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
185 			/* if link is down, assume supported */
186 			if (link_up)
187 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
188 				TRUE : FALSE;
189 			else
190 				supported = TRUE;
191 		}
192 
193 		break;
194 	case ixgbe_media_type_backplane:
195 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
196 			supported = FALSE;
197 		else
198 			supported = TRUE;
199 		break;
200 	case ixgbe_media_type_copper:
201 		/* only some copper devices support flow control autoneg */
202 		switch (hw->device_id) {
203 		case IXGBE_DEV_ID_82599_T3_LOM:
204 		case IXGBE_DEV_ID_X540T:
205 		case IXGBE_DEV_ID_X540T1:
206 		case IXGBE_DEV_ID_X540_BYPASS:
207 		case IXGBE_DEV_ID_X550T:
208 		case IXGBE_DEV_ID_X550T1:
209 		case IXGBE_DEV_ID_X550EM_X_10G_T:
210 		case IXGBE_DEV_ID_X550EM_A_10G_T:
211 		case IXGBE_DEV_ID_X550EM_A_1G_T:
212 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
213 			supported = TRUE;
214 			break;
215 		default:
216 			supported = FALSE;
217 		}
218 	default:
219 		break;
220 	}
221 
222 	if (!supported)
223 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
224 			      "Device %x does not support flow control autoneg",
225 			      hw->device_id);
226 
227 	return supported;
228 }
229 
230 /**
231  *  ixgbe_setup_fc_generic - Set up flow control
232  *  @hw: pointer to hardware structure
233  *
234  *  Called at init time to set up flow control.
235  **/
236 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
237 {
238 	s32 ret_val = IXGBE_SUCCESS;
239 	u32 reg = 0, reg_bp = 0;
240 	u16 reg_cu = 0;
241 	bool locked = FALSE;
242 
243 	DEBUGFUNC("ixgbe_setup_fc_generic");
244 
245 	/* Validate the requested mode */
246 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
247 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
248 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
249 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
250 		goto out;
251 	}
252 
253 	/*
254 	 * 10gig parts do not have a word in the EEPROM to determine the
255 	 * default flow control setting, so we explicitly set it to full.
256 	 */
257 	if (hw->fc.requested_mode == ixgbe_fc_default)
258 		hw->fc.requested_mode = ixgbe_fc_full;
259 
260 	/*
261 	 * Set up the 1G and 10G flow control advertisement registers so the
262 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
263 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
264 	 */
265 	switch (hw->phy.media_type) {
266 	case ixgbe_media_type_backplane:
267 		/* some MAC's need RMW protection on AUTOC */
268 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
269 		if (ret_val != IXGBE_SUCCESS)
270 			goto out;
271 
272 		/* fall through - only backplane uses autoc */
273 	case ixgbe_media_type_fiber_fixed:
274 	case ixgbe_media_type_fiber_qsfp:
275 	case ixgbe_media_type_fiber:
276 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
277 
278 		break;
279 	case ixgbe_media_type_copper:
280 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
281 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	/*
288 	 * The possible values of fc.requested_mode are:
289 	 * 0: Flow control is completely disabled
290 	 * 1: Rx flow control is enabled (we can receive pause frames,
291 	 *    but not send pause frames).
292 	 * 2: Tx flow control is enabled (we can send pause frames but
293 	 *    we do not support receiving pause frames).
294 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
295 	 * other: Invalid.
296 	 */
297 	switch (hw->fc.requested_mode) {
298 	case ixgbe_fc_none:
299 		/* Flow control completely disabled by software override. */
300 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
301 		if (hw->phy.media_type == ixgbe_media_type_backplane)
302 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
303 				    IXGBE_AUTOC_ASM_PAUSE);
304 		else if (hw->phy.media_type == ixgbe_media_type_copper)
305 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
306 		break;
307 	case ixgbe_fc_tx_pause:
308 		/*
309 		 * Tx Flow control is enabled, and Rx Flow control is
310 		 * disabled by software override.
311 		 */
312 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
313 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
314 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
315 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
316 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
317 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
318 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
319 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
320 		}
321 		break;
322 	case ixgbe_fc_rx_pause:
323 		/*
324 		 * Rx Flow control is enabled and Tx Flow control is
325 		 * disabled by software override. Since there really
326 		 * isn't a way to advertise that we are capable of RX
327 		 * Pause ONLY, we will advertise that we support both
328 		 * symmetric and asymmetric Rx PAUSE, as such we fall
329 		 * through to the fc_full statement.  Later, we will
330 		 * disable the adapter's ability to send PAUSE frames.
331 		 */
332 	case ixgbe_fc_full:
333 		/* Flow control (both Rx and Tx) is enabled by SW override. */
334 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
335 		if (hw->phy.media_type == ixgbe_media_type_backplane)
336 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
337 				  IXGBE_AUTOC_ASM_PAUSE;
338 		else if (hw->phy.media_type == ixgbe_media_type_copper)
339 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
340 		break;
341 	default:
342 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
343 			     "Flow control param set incorrectly\n");
344 		ret_val = IXGBE_ERR_CONFIG;
345 		goto out;
346 		break;
347 	}
348 
349 	if (hw->mac.type < ixgbe_mac_X540) {
350 		/*
351 		 * Enable auto-negotiation between the MAC & PHY;
352 		 * the MAC will advertise clause 37 flow control.
353 		 */
354 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
355 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
356 
357 		/* Disable AN timeout */
358 		if (hw->fc.strict_ieee)
359 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
360 
361 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
362 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363 	}
364 
365 	/*
366 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
367 	 * and copper. There is no need to set the PCS1GCTL register.
368 	 *
369 	 */
370 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
371 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
372 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
373 		if (ret_val)
374 			goto out;
375 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
376 		    (ixgbe_device_supports_autoneg_fc(hw))) {
377 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
378 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
379 	}
380 
381 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
382 out:
383 	return ret_val;
384 }
385 
386 /**
387  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
388  *  @hw: pointer to hardware structure
389  *
390  *  Starts the hardware by filling the bus info structure and media type, clears
391  *  all on chip counters, initializes receive address registers, multicast
392  *  table, VLAN filter table, calls routine to set up link and flow control
393  *  settings, and leaves transmit and receive units disabled and uninitialized
394  **/
395 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
396 {
397 	s32 ret_val;
398 	u32 ctrl_ext;
399 	u16 device_caps;
400 
401 	DEBUGFUNC("ixgbe_start_hw_generic");
402 
403 	/* Set the media type */
404 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
405 
406 	/* PHY ops initialization must be done in reset_hw() */
407 
408 	/* Clear the VLAN filter table */
409 	hw->mac.ops.clear_vfta(hw);
410 
411 	/* Clear statistics registers */
412 	hw->mac.ops.clear_hw_cntrs(hw);
413 
414 	/* Set No Snoop Disable */
415 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
416 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
417 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
418 	IXGBE_WRITE_FLUSH(hw);
419 
420 	/* Setup flow control */
421 	ret_val = ixgbe_setup_fc(hw);
422 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
423 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
424 		return ret_val;
425 	}
426 
427 	/* Cache bit indicating need for crosstalk fix */
428 	switch (hw->mac.type) {
429 	case ixgbe_mac_82599EB:
430 	case ixgbe_mac_X550EM_x:
431 	case ixgbe_mac_X550EM_a:
432 		hw->mac.ops.get_device_caps(hw, &device_caps);
433 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
434 			hw->need_crosstalk_fix = FALSE;
435 		else
436 			hw->need_crosstalk_fix = TRUE;
437 		break;
438 	default:
439 		hw->need_crosstalk_fix = FALSE;
440 		break;
441 	}
442 
443 	/* Clear adapter stopped flag */
444 	hw->adapter_stopped = FALSE;
445 
446 	return IXGBE_SUCCESS;
447 }
448 
449 /**
450  *  ixgbe_start_hw_gen2 - Init sequence for common device family
451  *  @hw: pointer to hw structure
452  *
453  * Performs the init sequence common to the second generation
454  * of 10 GbE devices.
455  * Devices in the second generation:
456  *     82599
457  *     X540
458  **/
459 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
460 {
461 	u32 i;
462 	u32 regval;
463 
464 	/* Clear the rate limiters */
465 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
466 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
467 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
468 	}
469 	IXGBE_WRITE_FLUSH(hw);
470 
471 	/* Disable relaxed ordering */
472 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
473 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
474 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
475 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
476 	}
477 
478 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
479 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
480 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
481 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
482 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
483 	}
484 
485 	return IXGBE_SUCCESS;
486 }
487 
488 /**
489  *  ixgbe_init_hw_generic - Generic hardware initialization
490  *  @hw: pointer to hardware structure
491  *
492  *  Initialize the hardware by resetting the hardware, filling the bus info
493  *  structure and media type, clears all on chip counters, initializes receive
494  *  address registers, multicast table, VLAN filter table, calls routine to set
495  *  up link and flow control settings, and leaves transmit and receive units
496  *  disabled and uninitialized
497  **/
498 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
499 {
500 	s32 status;
501 
502 	DEBUGFUNC("ixgbe_init_hw_generic");
503 
504 	/* Reset the hardware */
505 	status = hw->mac.ops.reset_hw(hw);
506 
507 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
508 		/* Start the HW */
509 		status = hw->mac.ops.start_hw(hw);
510 	}
511 
512 	/* Initialize the LED link active for LED blink support */
513 	if (hw->mac.ops.init_led_link_act)
514 		hw->mac.ops.init_led_link_act(hw);
515 
516 	if (status != IXGBE_SUCCESS)
517 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
518 
519 	return status;
520 }
521 
522 /**
523  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
524  *  @hw: pointer to hardware structure
525  *
526  *  Clears all hardware statistics counters by reading them from the hardware
527  *  Statistics counters are clear on read.
528  **/
529 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
530 {
531 	u16 i = 0;
532 
533 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
534 
535 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
536 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
537 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
538 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
539 	for (i = 0; i < 8; i++)
540 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
541 
542 	IXGBE_READ_REG(hw, IXGBE_MLFC);
543 	IXGBE_READ_REG(hw, IXGBE_MRFC);
544 	IXGBE_READ_REG(hw, IXGBE_RLEC);
545 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
546 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
547 	if (hw->mac.type >= ixgbe_mac_82599EB) {
548 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
549 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
550 	} else {
551 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
552 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
553 	}
554 
555 	for (i = 0; i < 8; i++) {
556 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
557 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
558 		if (hw->mac.type >= ixgbe_mac_82599EB) {
559 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
560 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
561 		} else {
562 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
563 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
564 		}
565 	}
566 	if (hw->mac.type >= ixgbe_mac_82599EB)
567 		for (i = 0; i < 8; i++)
568 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
569 	IXGBE_READ_REG(hw, IXGBE_PRC64);
570 	IXGBE_READ_REG(hw, IXGBE_PRC127);
571 	IXGBE_READ_REG(hw, IXGBE_PRC255);
572 	IXGBE_READ_REG(hw, IXGBE_PRC511);
573 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
574 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
575 	IXGBE_READ_REG(hw, IXGBE_GPRC);
576 	IXGBE_READ_REG(hw, IXGBE_BPRC);
577 	IXGBE_READ_REG(hw, IXGBE_MPRC);
578 	IXGBE_READ_REG(hw, IXGBE_GPTC);
579 	IXGBE_READ_REG(hw, IXGBE_GORCL);
580 	IXGBE_READ_REG(hw, IXGBE_GORCH);
581 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
582 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
583 	if (hw->mac.type == ixgbe_mac_82598EB)
584 		for (i = 0; i < 8; i++)
585 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
586 	IXGBE_READ_REG(hw, IXGBE_RUC);
587 	IXGBE_READ_REG(hw, IXGBE_RFC);
588 	IXGBE_READ_REG(hw, IXGBE_ROC);
589 	IXGBE_READ_REG(hw, IXGBE_RJC);
590 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
591 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
592 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
593 	IXGBE_READ_REG(hw, IXGBE_TORL);
594 	IXGBE_READ_REG(hw, IXGBE_TORH);
595 	IXGBE_READ_REG(hw, IXGBE_TPR);
596 	IXGBE_READ_REG(hw, IXGBE_TPT);
597 	IXGBE_READ_REG(hw, IXGBE_PTC64);
598 	IXGBE_READ_REG(hw, IXGBE_PTC127);
599 	IXGBE_READ_REG(hw, IXGBE_PTC255);
600 	IXGBE_READ_REG(hw, IXGBE_PTC511);
601 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
602 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
603 	IXGBE_READ_REG(hw, IXGBE_MPTC);
604 	IXGBE_READ_REG(hw, IXGBE_BPTC);
605 	for (i = 0; i < 16; i++) {
606 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
607 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
608 		if (hw->mac.type >= ixgbe_mac_82599EB) {
609 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
610 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
611 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
612 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
613 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
614 		} else {
615 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
616 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
617 		}
618 	}
619 
620 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
621 		if (hw->phy.id == 0)
622 			ixgbe_identify_phy(hw);
623 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
624 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
625 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
626 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
628 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
630 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
631 	}
632 
633 	return IXGBE_SUCCESS;
634 }
635 
636 /**
637  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
638  *  @hw: pointer to hardware structure
639  *  @pba_num: stores the part number string from the EEPROM
640  *  @pba_num_size: part number string buffer length
641  *
642  *  Reads the part number string from the EEPROM.
643  **/
644 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
645 				  u32 pba_num_size)
646 {
647 	s32 ret_val;
648 	u16 data;
649 	u16 pba_ptr;
650 	u16 offset;
651 	u16 length;
652 
653 	DEBUGFUNC("ixgbe_read_pba_string_generic");
654 
655 	if (pba_num == NULL) {
656 		DEBUGOUT("PBA string buffer was null\n");
657 		return IXGBE_ERR_INVALID_ARGUMENT;
658 	}
659 
660 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
661 	if (ret_val) {
662 		DEBUGOUT("NVM Read Error\n");
663 		return ret_val;
664 	}
665 
666 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
667 	if (ret_val) {
668 		DEBUGOUT("NVM Read Error\n");
669 		return ret_val;
670 	}
671 
672 	/*
673 	 * if data is not ptr guard the PBA must be in legacy format which
674 	 * means pba_ptr is actually our second data word for the PBA number
675 	 * and we can decode it into an ascii string
676 	 */
677 	if (data != IXGBE_PBANUM_PTR_GUARD) {
678 		DEBUGOUT("NVM PBA number is not stored as string\n");
679 
680 		/* we will need 11 characters to store the PBA */
681 		if (pba_num_size < 11) {
682 			DEBUGOUT("PBA string buffer too small\n");
683 			return IXGBE_ERR_NO_SPACE;
684 		}
685 
686 		/* extract hex string from data and pba_ptr */
687 		pba_num[0] = (data >> 12) & 0xF;
688 		pba_num[1] = (data >> 8) & 0xF;
689 		pba_num[2] = (data >> 4) & 0xF;
690 		pba_num[3] = data & 0xF;
691 		pba_num[4] = (pba_ptr >> 12) & 0xF;
692 		pba_num[5] = (pba_ptr >> 8) & 0xF;
693 		pba_num[6] = '-';
694 		pba_num[7] = 0;
695 		pba_num[8] = (pba_ptr >> 4) & 0xF;
696 		pba_num[9] = pba_ptr & 0xF;
697 
698 		/* put a null character on the end of our string */
699 		pba_num[10] = '\0';
700 
701 		/* switch all the data but the '-' to hex char */
702 		for (offset = 0; offset < 10; offset++) {
703 			if (pba_num[offset] < 0xA)
704 				pba_num[offset] += '0';
705 			else if (pba_num[offset] < 0x10)
706 				pba_num[offset] += 'A' - 0xA;
707 		}
708 
709 		return IXGBE_SUCCESS;
710 	}
711 
712 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
713 	if (ret_val) {
714 		DEBUGOUT("NVM Read Error\n");
715 		return ret_val;
716 	}
717 
718 	if (length == 0xFFFF || length == 0) {
719 		DEBUGOUT("NVM PBA number section invalid length\n");
720 		return IXGBE_ERR_PBA_SECTION;
721 	}
722 
723 	/* check if pba_num buffer is big enough */
724 	if (pba_num_size  < (((u32)length * 2) - 1)) {
725 		DEBUGOUT("PBA string buffer too small\n");
726 		return IXGBE_ERR_NO_SPACE;
727 	}
728 
729 	/* trim pba length from start of string */
730 	pba_ptr++;
731 	length--;
732 
733 	for (offset = 0; offset < length; offset++) {
734 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
735 		if (ret_val) {
736 			DEBUGOUT("NVM Read Error\n");
737 			return ret_val;
738 		}
739 		pba_num[offset * 2] = (u8)(data >> 8);
740 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
741 	}
742 	pba_num[offset * 2] = '\0';
743 
744 	return IXGBE_SUCCESS;
745 }
746 
747 /**
748  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
749  *  @hw: pointer to hardware structure
750  *  @pba_num: stores the part number from the EEPROM
751  *
752  *  Reads the part number from the EEPROM.
753  **/
754 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
755 {
756 	s32 ret_val;
757 	u16 data;
758 
759 	DEBUGFUNC("ixgbe_read_pba_num_generic");
760 
761 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
762 	if (ret_val) {
763 		DEBUGOUT("NVM Read Error\n");
764 		return ret_val;
765 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
766 		DEBUGOUT("NVM Not supported\n");
767 		return IXGBE_NOT_IMPLEMENTED;
768 	}
769 	*pba_num = (u32)(data << 16);
770 
771 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
772 	if (ret_val) {
773 		DEBUGOUT("NVM Read Error\n");
774 		return ret_val;
775 	}
776 	*pba_num |= data;
777 
778 	return IXGBE_SUCCESS;
779 }
780 
781 /**
782  *  ixgbe_read_pba_raw
783  *  @hw: pointer to the HW structure
784  *  @eeprom_buf: optional pointer to EEPROM image
785  *  @eeprom_buf_size: size of EEPROM image in words
786  *  @max_pba_block_size: PBA block size limit
787  *  @pba: pointer to output PBA structure
788  *
789  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
790  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
791  *
792  **/
793 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
794 		       u32 eeprom_buf_size, u16 max_pba_block_size,
795 		       struct ixgbe_pba *pba)
796 {
797 	s32 ret_val;
798 	u16 pba_block_size;
799 
800 	if (pba == NULL)
801 		return IXGBE_ERR_PARAM;
802 
803 	if (eeprom_buf == NULL) {
804 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
805 						     &pba->word[0]);
806 		if (ret_val)
807 			return ret_val;
808 	} else {
809 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
810 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
811 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
812 		} else {
813 			return IXGBE_ERR_PARAM;
814 		}
815 	}
816 
817 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
818 		if (pba->pba_block == NULL)
819 			return IXGBE_ERR_PARAM;
820 
821 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
822 						   eeprom_buf_size,
823 						   &pba_block_size);
824 		if (ret_val)
825 			return ret_val;
826 
827 		if (pba_block_size > max_pba_block_size)
828 			return IXGBE_ERR_PARAM;
829 
830 		if (eeprom_buf == NULL) {
831 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
832 							     pba_block_size,
833 							     pba->pba_block);
834 			if (ret_val)
835 				return ret_val;
836 		} else {
837 			if (eeprom_buf_size > (u32)(pba->word[1] +
838 					      pba_block_size)) {
839 				memcpy(pba->pba_block,
840 				       &eeprom_buf[pba->word[1]],
841 				       pba_block_size * sizeof(u16));
842 			} else {
843 				return IXGBE_ERR_PARAM;
844 			}
845 		}
846 	}
847 
848 	return IXGBE_SUCCESS;
849 }
850 
851 /**
852  *  ixgbe_write_pba_raw
853  *  @hw: pointer to the HW structure
854  *  @eeprom_buf: optional pointer to EEPROM image
855  *  @eeprom_buf_size: size of EEPROM image in words
856  *  @pba: pointer to PBA structure
857  *
858  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
859  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
860  *
861  **/
862 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
863 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
864 {
865 	s32 ret_val;
866 
867 	if (pba == NULL)
868 		return IXGBE_ERR_PARAM;
869 
870 	if (eeprom_buf == NULL) {
871 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
872 						      &pba->word[0]);
873 		if (ret_val)
874 			return ret_val;
875 	} else {
876 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
877 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
878 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
879 		} else {
880 			return IXGBE_ERR_PARAM;
881 		}
882 	}
883 
884 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
885 		if (pba->pba_block == NULL)
886 			return IXGBE_ERR_PARAM;
887 
888 		if (eeprom_buf == NULL) {
889 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
890 							      pba->pba_block[0],
891 							      pba->pba_block);
892 			if (ret_val)
893 				return ret_val;
894 		} else {
895 			if (eeprom_buf_size > (u32)(pba->word[1] +
896 					      pba->pba_block[0])) {
897 				memcpy(&eeprom_buf[pba->word[1]],
898 				       pba->pba_block,
899 				       pba->pba_block[0] * sizeof(u16));
900 			} else {
901 				return IXGBE_ERR_PARAM;
902 			}
903 		}
904 	}
905 
906 	return IXGBE_SUCCESS;
907 }
908 
909 /**
910  *  ixgbe_get_pba_block_size
911  *  @hw: pointer to the HW structure
912  *  @eeprom_buf: optional pointer to EEPROM image
913  *  @eeprom_buf_size: size of EEPROM image in words
914  *  @pba_data_size: pointer to output variable
915  *
916  *  Returns the size of the PBA block in words. Function operates on EEPROM
917  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
918  *  EEPROM device.
919  *
920  **/
921 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
922 			     u32 eeprom_buf_size, u16 *pba_block_size)
923 {
924 	s32 ret_val;
925 	u16 pba_word[2];
926 	u16 length;
927 
928 	DEBUGFUNC("ixgbe_get_pba_block_size");
929 
930 	if (eeprom_buf == NULL) {
931 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
932 						     &pba_word[0]);
933 		if (ret_val)
934 			return ret_val;
935 	} else {
936 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
937 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
938 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
939 		} else {
940 			return IXGBE_ERR_PARAM;
941 		}
942 	}
943 
944 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
945 		if (eeprom_buf == NULL) {
946 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
947 						      &length);
948 			if (ret_val)
949 				return ret_val;
950 		} else {
951 			if (eeprom_buf_size > pba_word[1])
952 				length = eeprom_buf[pba_word[1] + 0];
953 			else
954 				return IXGBE_ERR_PARAM;
955 		}
956 
957 		if (length == 0xFFFF || length == 0)
958 			return IXGBE_ERR_PBA_SECTION;
959 	} else {
960 		/* PBA number in legacy format, there is no PBA Block. */
961 		length = 0;
962 	}
963 
964 	if (pba_block_size != NULL)
965 		*pba_block_size = length;
966 
967 	return IXGBE_SUCCESS;
968 }
969 
970 /**
971  *  ixgbe_get_mac_addr_generic - Generic get MAC address
972  *  @hw: pointer to hardware structure
973  *  @mac_addr: Adapter MAC address
974  *
975  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
976  *  A reset of the adapter must be performed prior to calling this function
977  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
978  **/
979 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
980 {
981 	u32 rar_high;
982 	u32 rar_low;
983 	u16 i;
984 
985 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
986 
987 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
988 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
989 
990 	for (i = 0; i < 4; i++)
991 		mac_addr[i] = (u8)(rar_low >> (i*8));
992 
993 	for (i = 0; i < 2; i++)
994 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
995 
996 	return IXGBE_SUCCESS;
997 }
998 
999 /**
1000  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
1001  *  @hw: pointer to hardware structure
1002  *  @link_status: the link status returned by the PCI config space
1003  *
1004  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1005  **/
1006 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1007 {
1008 	struct ixgbe_mac_info *mac = &hw->mac;
1009 
1010 	if (hw->bus.type == ixgbe_bus_type_unknown)
1011 		hw->bus.type = ixgbe_bus_type_pci_express;
1012 
1013 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1014 	case IXGBE_PCI_LINK_WIDTH_1:
1015 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1016 		break;
1017 	case IXGBE_PCI_LINK_WIDTH_2:
1018 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1019 		break;
1020 	case IXGBE_PCI_LINK_WIDTH_4:
1021 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1022 		break;
1023 	case IXGBE_PCI_LINK_WIDTH_8:
1024 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1025 		break;
1026 	default:
1027 		hw->bus.width = ixgbe_bus_width_unknown;
1028 		break;
1029 	}
1030 
1031 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1032 	case IXGBE_PCI_LINK_SPEED_2500:
1033 		hw->bus.speed = ixgbe_bus_speed_2500;
1034 		break;
1035 	case IXGBE_PCI_LINK_SPEED_5000:
1036 		hw->bus.speed = ixgbe_bus_speed_5000;
1037 		break;
1038 	case IXGBE_PCI_LINK_SPEED_8000:
1039 		hw->bus.speed = ixgbe_bus_speed_8000;
1040 		break;
1041 	default:
1042 		hw->bus.speed = ixgbe_bus_speed_unknown;
1043 		break;
1044 	}
1045 
1046 	mac->ops.set_lan_id(hw);
1047 }
1048 
1049 /**
1050  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1051  *  @hw: pointer to hardware structure
1052  *
1053  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1054  *  store this data within the ixgbe_hw structure.
1055  **/
1056 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1057 {
1058 	u16 link_status;
1059 
1060 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1061 
1062 	/* Get the negotiated link width and speed from PCI config space */
1063 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1064 
1065 	ixgbe_set_pci_config_data_generic(hw, link_status);
1066 
1067 	return IXGBE_SUCCESS;
1068 }
1069 
1070 /**
1071  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1072  *  @hw: pointer to the HW structure
1073  *
1074  *  Determines the LAN function id by reading memory-mapped registers and swaps
1075  *  the port value if requested, and set MAC instance for devices that share
1076  *  CS4227.
1077  **/
1078 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1079 {
1080 	struct ixgbe_bus_info *bus = &hw->bus;
1081 	u32 reg;
1082 	u16 ee_ctrl_4;
1083 
1084 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1085 
1086 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1087 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1088 	bus->lan_id = (u8)bus->func;
1089 
1090 	/* check for a port swap */
1091 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1092 	if (reg & IXGBE_FACTPS_LFS)
1093 		bus->func ^= 0x1;
1094 
1095 	/* Get MAC instance from EEPROM for configuring CS4227 */
1096 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1097 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1098 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1099 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1100 	}
1101 }
1102 
1103 /**
1104  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1105  *  @hw: pointer to hardware structure
1106  *
1107  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1108  *  disables transmit and receive units. The adapter_stopped flag is used by
1109  *  the shared code and drivers to determine if the adapter is in a stopped
1110  *  state and should not touch the hardware.
1111  **/
1112 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1113 {
1114 	u32 reg_val;
1115 	u16 i;
1116 
1117 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1118 
1119 	/*
1120 	 * Set the adapter_stopped flag so other driver functions stop touching
1121 	 * the hardware
1122 	 */
1123 	hw->adapter_stopped = TRUE;
1124 
1125 	/* Disable the receive unit */
1126 	ixgbe_disable_rx(hw);
1127 
1128 	/* Clear interrupt mask to stop interrupts from being generated */
1129 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1130 
1131 	/* Clear any pending interrupts, flush previous writes */
1132 	IXGBE_READ_REG(hw, IXGBE_EICR);
1133 
1134 	/* Disable the transmit unit.  Each queue must be disabled. */
1135 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1136 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1137 
1138 	/* Disable the receive unit by stopping each queue */
1139 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1140 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1141 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1142 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1143 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1144 	}
1145 
1146 	/* flush all queues disables */
1147 	IXGBE_WRITE_FLUSH(hw);
1148 	msec_delay(2);
1149 
1150 	/*
1151 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1152 	 * access and verify no pending requests
1153 	 */
1154 	return ixgbe_disable_pcie_master(hw);
1155 }
1156 
1157 /**
1158  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1159  *  @hw: pointer to hardware structure
1160  *
1161  *  Store the index for the link active LED. This will be used to support
1162  *  blinking the LED.
1163  **/
1164 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1165 {
1166 	struct ixgbe_mac_info *mac = &hw->mac;
1167 	u32 led_reg, led_mode;
1168 	u8 i;
1169 
1170 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1171 
1172 	/* Get LED link active from the LEDCTL register */
1173 	for (i = 0; i < 4; i++) {
1174 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1175 
1176 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1177 		     IXGBE_LED_LINK_ACTIVE) {
1178 			mac->led_link_act = i;
1179 			return IXGBE_SUCCESS;
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * If LEDCTL register does not have the LED link active set, then use
1185 	 * known MAC defaults.
1186 	 */
1187 	switch (hw->mac.type) {
1188 	case ixgbe_mac_X550EM_a:
1189 	case ixgbe_mac_X550EM_x:
1190 		mac->led_link_act = 1;
1191 		break;
1192 	default:
1193 		mac->led_link_act = 2;
1194 	}
1195 	return IXGBE_SUCCESS;
1196 }
1197 
1198 /**
1199  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1200  *  @hw: pointer to hardware structure
1201  *  @index: led number to turn on
1202  **/
1203 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1204 {
1205 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1206 
1207 	DEBUGFUNC("ixgbe_led_on_generic");
1208 
1209 	if (index > 3)
1210 		return IXGBE_ERR_PARAM;
1211 
1212 	/* To turn on the LED, set mode to ON. */
1213 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1214 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1215 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1216 	IXGBE_WRITE_FLUSH(hw);
1217 
1218 	return IXGBE_SUCCESS;
1219 }
1220 
1221 /**
1222  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1223  *  @hw: pointer to hardware structure
1224  *  @index: led number to turn off
1225  **/
1226 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1227 {
1228 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1229 
1230 	DEBUGFUNC("ixgbe_led_off_generic");
1231 
1232 	if (index > 3)
1233 		return IXGBE_ERR_PARAM;
1234 
1235 	/* To turn off the LED, set mode to OFF. */
1236 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1237 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1238 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1239 	IXGBE_WRITE_FLUSH(hw);
1240 
1241 	return IXGBE_SUCCESS;
1242 }
1243 
1244 /**
1245  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1246  *  @hw: pointer to hardware structure
1247  *
1248  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1249  *  ixgbe_hw struct in order to set up EEPROM access.
1250  **/
1251 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1252 {
1253 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1254 	u32 eec;
1255 	u16 eeprom_size;
1256 
1257 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1258 
1259 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1260 		eeprom->type = ixgbe_eeprom_none;
1261 		/* Set default semaphore delay to 10ms which is a well
1262 		 * tested value */
1263 		eeprom->semaphore_delay = 10;
1264 		/* Clear EEPROM page size, it will be initialized as needed */
1265 		eeprom->word_page_size = 0;
1266 
1267 		/*
1268 		 * Check for EEPROM present first.
1269 		 * If not present leave as none
1270 		 */
1271 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1272 		if (eec & IXGBE_EEC_PRES) {
1273 			eeprom->type = ixgbe_eeprom_spi;
1274 
1275 			/*
1276 			 * SPI EEPROM is assumed here.  This code would need to
1277 			 * change if a future EEPROM is not SPI.
1278 			 */
1279 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1280 					    IXGBE_EEC_SIZE_SHIFT);
1281 			eeprom->word_size = 1 << (eeprom_size +
1282 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1283 		}
1284 
1285 		if (eec & IXGBE_EEC_ADDR_SIZE)
1286 			eeprom->address_bits = 16;
1287 		else
1288 			eeprom->address_bits = 8;
1289 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1290 			  "%d\n", eeprom->type, eeprom->word_size,
1291 			  eeprom->address_bits);
1292 	}
1293 
1294 	return IXGBE_SUCCESS;
1295 }
1296 
1297 /**
1298  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1299  *  @hw: pointer to hardware structure
1300  *  @offset: offset within the EEPROM to write
1301  *  @words: number of word(s)
1302  *  @data: 16 bit word(s) to write to EEPROM
1303  *
1304  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1305  **/
1306 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1307 					       u16 words, u16 *data)
1308 {
1309 	s32 status = IXGBE_SUCCESS;
1310 	u16 i, count;
1311 
1312 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1313 
1314 	hw->eeprom.ops.init_params(hw);
1315 
1316 	if (words == 0) {
1317 		status = IXGBE_ERR_INVALID_ARGUMENT;
1318 		goto out;
1319 	}
1320 
1321 	if (offset + words > hw->eeprom.word_size) {
1322 		status = IXGBE_ERR_EEPROM;
1323 		goto out;
1324 	}
1325 
1326 	/*
1327 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1328 	 * initialization. It is worth to do that when we write large buffer.
1329 	 */
1330 	if ((hw->eeprom.word_page_size == 0) &&
1331 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1332 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1333 
1334 	/*
1335 	 * We cannot hold synchronization semaphores for too long
1336 	 * to avoid other entity starvation. However it is more efficient
1337 	 * to read in bursts than synchronizing access for each word.
1338 	 */
1339 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1340 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1341 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1342 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1343 							    count, &data[i]);
1344 
1345 		if (status != IXGBE_SUCCESS)
1346 			break;
1347 	}
1348 
1349 out:
1350 	return status;
1351 }
1352 
1353 /**
1354  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1355  *  @hw: pointer to hardware structure
1356  *  @offset: offset within the EEPROM to be written to
1357  *  @words: number of word(s)
1358  *  @data: 16 bit word(s) to be written to the EEPROM
1359  *
1360  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1361  *  EEPROM will most likely contain an invalid checksum.
1362  **/
1363 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1364 					      u16 words, u16 *data)
1365 {
1366 	s32 status;
1367 	u16 word;
1368 	u16 page_size;
1369 	u16 i;
1370 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1371 
1372 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1373 
1374 	/* Prepare the EEPROM for writing  */
1375 	status = ixgbe_acquire_eeprom(hw);
1376 
1377 	if (status == IXGBE_SUCCESS) {
1378 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1379 			ixgbe_release_eeprom(hw);
1380 			status = IXGBE_ERR_EEPROM;
1381 		}
1382 	}
1383 
1384 	if (status == IXGBE_SUCCESS) {
1385 		for (i = 0; i < words; i++) {
1386 			ixgbe_standby_eeprom(hw);
1387 
1388 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1389 			ixgbe_shift_out_eeprom_bits(hw,
1390 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1391 						   IXGBE_EEPROM_OPCODE_BITS);
1392 
1393 			ixgbe_standby_eeprom(hw);
1394 
1395 			/*
1396 			 * Some SPI eeproms use the 8th address bit embedded
1397 			 * in the opcode
1398 			 */
1399 			if ((hw->eeprom.address_bits == 8) &&
1400 			    ((offset + i) >= 128))
1401 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1402 
1403 			/* Send the Write command (8-bit opcode + addr) */
1404 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1405 						    IXGBE_EEPROM_OPCODE_BITS);
1406 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1407 						    hw->eeprom.address_bits);
1408 
1409 			page_size = hw->eeprom.word_page_size;
1410 
1411 			/* Send the data in burst via SPI*/
1412 			do {
1413 				word = data[i];
1414 				word = (word >> 8) | (word << 8);
1415 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1416 
1417 				if (page_size == 0)
1418 					break;
1419 
1420 				/* do not wrap around page */
1421 				if (((offset + i) & (page_size - 1)) ==
1422 				    (page_size - 1))
1423 					break;
1424 			} while (++i < words);
1425 
1426 			ixgbe_standby_eeprom(hw);
1427 			msec_delay(10);
1428 		}
1429 		/* Done with writing - release the EEPROM */
1430 		ixgbe_release_eeprom(hw);
1431 	}
1432 
1433 	return status;
1434 }
1435 
1436 /**
1437  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1438  *  @hw: pointer to hardware structure
1439  *  @offset: offset within the EEPROM to be written to
1440  *  @data: 16 bit word to be written to the EEPROM
1441  *
1442  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1443  *  EEPROM will most likely contain an invalid checksum.
1444  **/
1445 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1446 {
1447 	s32 status;
1448 
1449 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1450 
1451 	hw->eeprom.ops.init_params(hw);
1452 
1453 	if (offset >= hw->eeprom.word_size) {
1454 		status = IXGBE_ERR_EEPROM;
1455 		goto out;
1456 	}
1457 
1458 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1459 
1460 out:
1461 	return status;
1462 }
1463 
1464 /**
1465  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1466  *  @hw: pointer to hardware structure
1467  *  @offset: offset within the EEPROM to be read
1468  *  @data: read 16 bit words(s) from EEPROM
1469  *  @words: number of word(s)
1470  *
1471  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1472  **/
1473 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1474 					      u16 words, u16 *data)
1475 {
1476 	s32 status = IXGBE_SUCCESS;
1477 	u16 i, count;
1478 
1479 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1480 
1481 	hw->eeprom.ops.init_params(hw);
1482 
1483 	if (words == 0) {
1484 		status = IXGBE_ERR_INVALID_ARGUMENT;
1485 		goto out;
1486 	}
1487 
1488 	if (offset + words > hw->eeprom.word_size) {
1489 		status = IXGBE_ERR_EEPROM;
1490 		goto out;
1491 	}
1492 
1493 	/*
1494 	 * We cannot hold synchronization semaphores for too long
1495 	 * to avoid other entity starvation. However it is more efficient
1496 	 * to read in bursts than synchronizing access for each word.
1497 	 */
1498 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1499 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1500 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1501 
1502 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1503 							   count, &data[i]);
1504 
1505 		if (status != IXGBE_SUCCESS)
1506 			break;
1507 	}
1508 
1509 out:
1510 	return status;
1511 }
1512 
1513 /**
1514  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1515  *  @hw: pointer to hardware structure
1516  *  @offset: offset within the EEPROM to be read
1517  *  @words: number of word(s)
1518  *  @data: read 16 bit word(s) from EEPROM
1519  *
1520  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1521  **/
1522 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1523 					     u16 words, u16 *data)
1524 {
1525 	s32 status;
1526 	u16 word_in;
1527 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1528 	u16 i;
1529 
1530 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1531 
1532 	/* Prepare the EEPROM for reading  */
1533 	status = ixgbe_acquire_eeprom(hw);
1534 
1535 	if (status == IXGBE_SUCCESS) {
1536 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1537 			ixgbe_release_eeprom(hw);
1538 			status = IXGBE_ERR_EEPROM;
1539 		}
1540 	}
1541 
1542 	if (status == IXGBE_SUCCESS) {
1543 		for (i = 0; i < words; i++) {
1544 			ixgbe_standby_eeprom(hw);
1545 			/*
1546 			 * Some SPI eeproms use the 8th address bit embedded
1547 			 * in the opcode
1548 			 */
1549 			if ((hw->eeprom.address_bits == 8) &&
1550 			    ((offset + i) >= 128))
1551 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1552 
1553 			/* Send the READ command (opcode + addr) */
1554 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1555 						    IXGBE_EEPROM_OPCODE_BITS);
1556 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1557 						    hw->eeprom.address_bits);
1558 
1559 			/* Read the data. */
1560 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1561 			data[i] = (word_in >> 8) | (word_in << 8);
1562 		}
1563 
1564 		/* End this read operation */
1565 		ixgbe_release_eeprom(hw);
1566 	}
1567 
1568 	return status;
1569 }
1570 
1571 /**
1572  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1573  *  @hw: pointer to hardware structure
1574  *  @offset: offset within the EEPROM to be read
1575  *  @data: read 16 bit value from EEPROM
1576  *
1577  *  Reads 16 bit value from EEPROM through bit-bang method
1578  **/
1579 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1580 				       u16 *data)
1581 {
1582 	s32 status;
1583 
1584 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1585 
1586 	hw->eeprom.ops.init_params(hw);
1587 
1588 	if (offset >= hw->eeprom.word_size) {
1589 		status = IXGBE_ERR_EEPROM;
1590 		goto out;
1591 	}
1592 
1593 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1594 
1595 out:
1596 	return status;
1597 }
1598 
1599 /**
1600  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1601  *  @hw: pointer to hardware structure
1602  *  @offset: offset of word in the EEPROM to read
1603  *  @words: number of word(s)
1604  *  @data: 16 bit word(s) from the EEPROM
1605  *
1606  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1607  **/
1608 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1609 				   u16 words, u16 *data)
1610 {
1611 	u32 eerd;
1612 	s32 status = IXGBE_SUCCESS;
1613 	u32 i;
1614 
1615 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1616 
1617 	hw->eeprom.ops.init_params(hw);
1618 
1619 	if (words == 0) {
1620 		status = IXGBE_ERR_INVALID_ARGUMENT;
1621 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1622 		goto out;
1623 	}
1624 
1625 	if (offset >= hw->eeprom.word_size) {
1626 		status = IXGBE_ERR_EEPROM;
1627 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1628 		goto out;
1629 	}
1630 
1631 	for (i = 0; i < words; i++) {
1632 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1633 		       IXGBE_EEPROM_RW_REG_START;
1634 
1635 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1636 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1637 
1638 		if (status == IXGBE_SUCCESS) {
1639 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1640 				   IXGBE_EEPROM_RW_REG_DATA);
1641 		} else {
1642 			DEBUGOUT("Eeprom read timed out\n");
1643 			goto out;
1644 		}
1645 	}
1646 out:
1647 	return status;
1648 }
1649 
1650 /**
1651  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1652  *  @hw: pointer to hardware structure
1653  *  @offset: offset within the EEPROM to be used as a scratch pad
1654  *
1655  *  Discover EEPROM page size by writing marching data at given offset.
1656  *  This function is called only when we are writing a new large buffer
1657  *  at given offset so the data would be overwritten anyway.
1658  **/
1659 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1660 						 u16 offset)
1661 {
1662 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1663 	s32 status = IXGBE_SUCCESS;
1664 	u16 i;
1665 
1666 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1667 
1668 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1669 		data[i] = i;
1670 
1671 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1672 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1673 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1674 	hw->eeprom.word_page_size = 0;
1675 	if (status != IXGBE_SUCCESS)
1676 		goto out;
1677 
1678 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1679 	if (status != IXGBE_SUCCESS)
1680 		goto out;
1681 
1682 	/*
1683 	 * When writing in burst more than the actual page size
1684 	 * EEPROM address wraps around current page.
1685 	 */
1686 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1687 
1688 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1689 		  hw->eeprom.word_page_size);
1690 out:
1691 	return status;
1692 }
1693 
1694 /**
1695  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1696  *  @hw: pointer to hardware structure
1697  *  @offset: offset of  word in the EEPROM to read
1698  *  @data: word read from the EEPROM
1699  *
1700  *  Reads a 16 bit word from the EEPROM using the EERD register.
1701  **/
1702 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1703 {
1704 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1705 }
1706 
1707 /**
1708  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1709  *  @hw: pointer to hardware structure
1710  *  @offset: offset of  word in the EEPROM to write
1711  *  @words: number of word(s)
1712  *  @data: word(s) write to the EEPROM
1713  *
1714  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1715  **/
1716 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1717 				    u16 words, u16 *data)
1718 {
1719 	u32 eewr;
1720 	s32 status = IXGBE_SUCCESS;
1721 	u16 i;
1722 
1723 	DEBUGFUNC("ixgbe_write_eewr_generic");
1724 
1725 	hw->eeprom.ops.init_params(hw);
1726 
1727 	if (words == 0) {
1728 		status = IXGBE_ERR_INVALID_ARGUMENT;
1729 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1730 		goto out;
1731 	}
1732 
1733 	if (offset >= hw->eeprom.word_size) {
1734 		status = IXGBE_ERR_EEPROM;
1735 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1736 		goto out;
1737 	}
1738 
1739 	for (i = 0; i < words; i++) {
1740 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1741 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1742 			IXGBE_EEPROM_RW_REG_START;
1743 
1744 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1745 		if (status != IXGBE_SUCCESS) {
1746 			DEBUGOUT("Eeprom write EEWR timed out\n");
1747 			goto out;
1748 		}
1749 
1750 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1751 
1752 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1753 		if (status != IXGBE_SUCCESS) {
1754 			DEBUGOUT("Eeprom write EEWR timed out\n");
1755 			goto out;
1756 		}
1757 	}
1758 
1759 out:
1760 	return status;
1761 }
1762 
1763 /**
1764  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1765  *  @hw: pointer to hardware structure
1766  *  @offset: offset of  word in the EEPROM to write
1767  *  @data: word write to the EEPROM
1768  *
1769  *  Write a 16 bit word to the EEPROM using the EEWR register.
1770  **/
1771 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1772 {
1773 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1774 }
1775 
1776 /**
1777  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1778  *  @hw: pointer to hardware structure
1779  *  @ee_reg: EEPROM flag for polling
1780  *
1781  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1782  *  read or write is done respectively.
1783  **/
1784 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1785 {
1786 	u32 i;
1787 	u32 reg;
1788 	s32 status = IXGBE_ERR_EEPROM;
1789 
1790 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1791 
1792 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1793 		if (ee_reg == IXGBE_NVM_POLL_READ)
1794 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1795 		else
1796 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1797 
1798 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1799 			status = IXGBE_SUCCESS;
1800 			break;
1801 		}
1802 		usec_delay(5);
1803 	}
1804 
1805 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1806 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1807 			     "EEPROM read/write done polling timed out");
1808 
1809 	return status;
1810 }
1811 
1812 /**
1813  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1814  *  @hw: pointer to hardware structure
1815  *
1816  *  Prepares EEPROM for access using bit-bang method. This function should
1817  *  be called before issuing a command to the EEPROM.
1818  **/
1819 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1820 {
1821 	s32 status = IXGBE_SUCCESS;
1822 	u32 eec;
1823 	u32 i;
1824 
1825 	DEBUGFUNC("ixgbe_acquire_eeprom");
1826 
1827 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1828 	    != IXGBE_SUCCESS)
1829 		status = IXGBE_ERR_SWFW_SYNC;
1830 
1831 	if (status == IXGBE_SUCCESS) {
1832 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1833 
1834 		/* Request EEPROM Access */
1835 		eec |= IXGBE_EEC_REQ;
1836 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1837 
1838 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1839 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1840 			if (eec & IXGBE_EEC_GNT)
1841 				break;
1842 			usec_delay(5);
1843 		}
1844 
1845 		/* Release if grant not acquired */
1846 		if (!(eec & IXGBE_EEC_GNT)) {
1847 			eec &= ~IXGBE_EEC_REQ;
1848 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1849 			DEBUGOUT("Could not acquire EEPROM grant\n");
1850 
1851 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1852 			status = IXGBE_ERR_EEPROM;
1853 		}
1854 
1855 		/* Setup EEPROM for Read/Write */
1856 		if (status == IXGBE_SUCCESS) {
1857 			/* Clear CS and SK */
1858 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1859 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1860 			IXGBE_WRITE_FLUSH(hw);
1861 			usec_delay(1);
1862 		}
1863 	}
1864 	return status;
1865 }
1866 
1867 /**
1868  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1869  *  @hw: pointer to hardware structure
1870  *
1871  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1872  **/
1873 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1874 {
1875 	s32 status = IXGBE_ERR_EEPROM;
1876 	u32 timeout = 2000;
1877 	u32 i;
1878 	u32 swsm;
1879 
1880 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1881 
1882 
1883 	/* Get SMBI software semaphore between device drivers first */
1884 	for (i = 0; i < timeout; i++) {
1885 		/*
1886 		 * If the SMBI bit is 0 when we read it, then the bit will be
1887 		 * set and we have the semaphore
1888 		 */
1889 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1890 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1891 			status = IXGBE_SUCCESS;
1892 			break;
1893 		}
1894 		usec_delay(50);
1895 	}
1896 
1897 	if (i == timeout) {
1898 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1899 			 "not granted.\n");
1900 		/*
1901 		 * this release is particularly important because our attempts
1902 		 * above to get the semaphore may have succeeded, and if there
1903 		 * was a timeout, we should unconditionally clear the semaphore
1904 		 * bits to free the driver to make progress
1905 		 */
1906 		ixgbe_release_eeprom_semaphore(hw);
1907 
1908 		usec_delay(50);
1909 		/*
1910 		 * one last try
1911 		 * If the SMBI bit is 0 when we read it, then the bit will be
1912 		 * set and we have the semaphore
1913 		 */
1914 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1915 		if (!(swsm & IXGBE_SWSM_SMBI))
1916 			status = IXGBE_SUCCESS;
1917 	}
1918 
1919 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1920 	if (status == IXGBE_SUCCESS) {
1921 		for (i = 0; i < timeout; i++) {
1922 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1923 
1924 			/* Set the SW EEPROM semaphore bit to request access */
1925 			swsm |= IXGBE_SWSM_SWESMBI;
1926 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1927 
1928 			/*
1929 			 * If we set the bit successfully then we got the
1930 			 * semaphore.
1931 			 */
1932 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1933 			if (swsm & IXGBE_SWSM_SWESMBI)
1934 				break;
1935 
1936 			usec_delay(50);
1937 		}
1938 
1939 		/*
1940 		 * Release semaphores and return error if SW EEPROM semaphore
1941 		 * was not granted because we don't have access to the EEPROM
1942 		 */
1943 		if (i >= timeout) {
1944 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1945 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1946 			ixgbe_release_eeprom_semaphore(hw);
1947 			status = IXGBE_ERR_EEPROM;
1948 		}
1949 	} else {
1950 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1951 			     "Software semaphore SMBI between device drivers "
1952 			     "not granted.\n");
1953 	}
1954 
1955 	return status;
1956 }
1957 
1958 /**
1959  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1960  *  @hw: pointer to hardware structure
1961  *
1962  *  This function clears hardware semaphore bits.
1963  **/
1964 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1965 {
1966 	u32 swsm;
1967 
1968 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1969 
1970 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1971 
1972 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1973 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1974 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1975 	IXGBE_WRITE_FLUSH(hw);
1976 }
1977 
1978 /**
1979  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1980  *  @hw: pointer to hardware structure
1981  **/
1982 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1983 {
1984 	s32 status = IXGBE_SUCCESS;
1985 	u16 i;
1986 	u8 spi_stat_reg;
1987 
1988 	DEBUGFUNC("ixgbe_ready_eeprom");
1989 
1990 	/*
1991 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1992 	 * EEPROM will signal that the command has been completed by clearing
1993 	 * bit 0 of the internal status register.  If it's not cleared within
1994 	 * 5 milliseconds, then error out.
1995 	 */
1996 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1997 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1998 					    IXGBE_EEPROM_OPCODE_BITS);
1999 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
2000 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
2001 			break;
2002 
2003 		usec_delay(5);
2004 		ixgbe_standby_eeprom(hw);
2005 	}
2006 
2007 	/*
2008 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2009 	 * devices (and only 0-5mSec on 5V devices)
2010 	 */
2011 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2012 		DEBUGOUT("SPI EEPROM Status error\n");
2013 		status = IXGBE_ERR_EEPROM;
2014 	}
2015 
2016 	return status;
2017 }
2018 
2019 /**
2020  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2021  *  @hw: pointer to hardware structure
2022  **/
2023 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2024 {
2025 	u32 eec;
2026 
2027 	DEBUGFUNC("ixgbe_standby_eeprom");
2028 
2029 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2030 
2031 	/* Toggle CS to flush commands */
2032 	eec |= IXGBE_EEC_CS;
2033 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2034 	IXGBE_WRITE_FLUSH(hw);
2035 	usec_delay(1);
2036 	eec &= ~IXGBE_EEC_CS;
2037 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2038 	IXGBE_WRITE_FLUSH(hw);
2039 	usec_delay(1);
2040 }
2041 
2042 /**
2043  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2044  *  @hw: pointer to hardware structure
2045  *  @data: data to send to the EEPROM
2046  *  @count: number of bits to shift out
2047  **/
2048 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2049 					u16 count)
2050 {
2051 	u32 eec;
2052 	u32 mask;
2053 	u32 i;
2054 
2055 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2056 
2057 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2058 
2059 	/*
2060 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2061 	 * one bit at a time.  Determine the starting bit based on count
2062 	 */
2063 	mask = 0x01 << (count - 1);
2064 
2065 	for (i = 0; i < count; i++) {
2066 		/*
2067 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2068 		 * "1", and then raising and then lowering the clock (the SK
2069 		 * bit controls the clock input to the EEPROM).  A "0" is
2070 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2071 		 * raising and then lowering the clock.
2072 		 */
2073 		if (data & mask)
2074 			eec |= IXGBE_EEC_DI;
2075 		else
2076 			eec &= ~IXGBE_EEC_DI;
2077 
2078 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2079 		IXGBE_WRITE_FLUSH(hw);
2080 
2081 		usec_delay(1);
2082 
2083 		ixgbe_raise_eeprom_clk(hw, &eec);
2084 		ixgbe_lower_eeprom_clk(hw, &eec);
2085 
2086 		/*
2087 		 * Shift mask to signify next bit of data to shift in to the
2088 		 * EEPROM
2089 		 */
2090 		mask = mask >> 1;
2091 	}
2092 
2093 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2094 	eec &= ~IXGBE_EEC_DI;
2095 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2096 	IXGBE_WRITE_FLUSH(hw);
2097 }
2098 
2099 /**
2100  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2101  *  @hw: pointer to hardware structure
2102  *  @count: number of bits to shift
2103  **/
2104 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2105 {
2106 	u32 eec;
2107 	u32 i;
2108 	u16 data = 0;
2109 
2110 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2111 
2112 	/*
2113 	 * In order to read a register from the EEPROM, we need to shift
2114 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2115 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2116 	 * the value of the "DO" bit.  During this "shifting in" process the
2117 	 * "DI" bit should always be clear.
2118 	 */
2119 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2120 
2121 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2122 
2123 	for (i = 0; i < count; i++) {
2124 		data = data << 1;
2125 		ixgbe_raise_eeprom_clk(hw, &eec);
2126 
2127 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2128 
2129 		eec &= ~(IXGBE_EEC_DI);
2130 		if (eec & IXGBE_EEC_DO)
2131 			data |= 1;
2132 
2133 		ixgbe_lower_eeprom_clk(hw, &eec);
2134 	}
2135 
2136 	return data;
2137 }
2138 
2139 /**
2140  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2141  *  @hw: pointer to hardware structure
2142  *  @eec: EEC register's current value
2143  **/
2144 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2145 {
2146 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2147 
2148 	/*
2149 	 * Raise the clock input to the EEPROM
2150 	 * (setting the SK bit), then delay
2151 	 */
2152 	*eec = *eec | IXGBE_EEC_SK;
2153 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2154 	IXGBE_WRITE_FLUSH(hw);
2155 	usec_delay(1);
2156 }
2157 
2158 /**
2159  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2160  *  @hw: pointer to hardware structure
2161  *  @eec: EEC's current value
2162  **/
2163 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2164 {
2165 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2166 
2167 	/*
2168 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2169 	 * delay
2170 	 */
2171 	*eec = *eec & ~IXGBE_EEC_SK;
2172 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2173 	IXGBE_WRITE_FLUSH(hw);
2174 	usec_delay(1);
2175 }
2176 
2177 /**
2178  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2179  *  @hw: pointer to hardware structure
2180  **/
2181 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2182 {
2183 	u32 eec;
2184 
2185 	DEBUGFUNC("ixgbe_release_eeprom");
2186 
2187 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2188 
2189 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2190 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2191 
2192 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2193 	IXGBE_WRITE_FLUSH(hw);
2194 
2195 	usec_delay(1);
2196 
2197 	/* Stop requesting EEPROM access */
2198 	eec &= ~IXGBE_EEC_REQ;
2199 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2200 
2201 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2202 
2203 	/* Delay before attempt to obtain semaphore again to allow FW access */
2204 	msec_delay(hw->eeprom.semaphore_delay);
2205 }
2206 
2207 /**
2208  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2209  *  @hw: pointer to hardware structure
2210  *
2211  *  Returns a negative error code on error, or the 16-bit checksum
2212  **/
2213 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2214 {
2215 	u16 i;
2216 	u16 j;
2217 	u16 checksum = 0;
2218 	u16 length = 0;
2219 	u16 pointer = 0;
2220 	u16 word = 0;
2221 
2222 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2223 
2224 	/* Include 0x0-0x3F in the checksum */
2225 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2226 		if (hw->eeprom.ops.read(hw, i, &word)) {
2227 			DEBUGOUT("EEPROM read failed\n");
2228 			return IXGBE_ERR_EEPROM;
2229 		}
2230 		checksum += word;
2231 	}
2232 
2233 	/* Include all data from pointers except for the fw pointer */
2234 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2235 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2236 			DEBUGOUT("EEPROM read failed\n");
2237 			return IXGBE_ERR_EEPROM;
2238 		}
2239 
2240 		/* If the pointer seems invalid */
2241 		if (pointer == 0xFFFF || pointer == 0)
2242 			continue;
2243 
2244 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2245 			DEBUGOUT("EEPROM read failed\n");
2246 			return IXGBE_ERR_EEPROM;
2247 		}
2248 
2249 		if (length == 0xFFFF || length == 0)
2250 			continue;
2251 
2252 		for (j = pointer + 1; j <= pointer + length; j++) {
2253 			if (hw->eeprom.ops.read(hw, j, &word)) {
2254 				DEBUGOUT("EEPROM read failed\n");
2255 				return IXGBE_ERR_EEPROM;
2256 			}
2257 			checksum += word;
2258 		}
2259 	}
2260 
2261 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2262 
2263 	return (s32)checksum;
2264 }
2265 
2266 /**
2267  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2268  *  @hw: pointer to hardware structure
2269  *  @checksum_val: calculated checksum
2270  *
2271  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2272  *  caller does not need checksum_val, the value can be NULL.
2273  **/
2274 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2275 					   u16 *checksum_val)
2276 {
2277 	s32 status;
2278 	u16 checksum;
2279 	u16 read_checksum = 0;
2280 
2281 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2282 
2283 	/* Read the first word from the EEPROM. If this times out or fails, do
2284 	 * not continue or we could be in for a very long wait while every
2285 	 * EEPROM read fails
2286 	 */
2287 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2288 	if (status) {
2289 		DEBUGOUT("EEPROM read failed\n");
2290 		return status;
2291 	}
2292 
2293 	status = hw->eeprom.ops.calc_checksum(hw);
2294 	if (status < 0)
2295 		return status;
2296 
2297 	checksum = (u16)(status & 0xffff);
2298 
2299 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2300 	if (status) {
2301 		DEBUGOUT("EEPROM read failed\n");
2302 		return status;
2303 	}
2304 
2305 	/* Verify read checksum from EEPROM is the same as
2306 	 * calculated checksum
2307 	 */
2308 	if (read_checksum != checksum)
2309 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2310 
2311 	/* If the user cares, return the calculated checksum */
2312 	if (checksum_val)
2313 		*checksum_val = checksum;
2314 
2315 	return status;
2316 }
2317 
2318 /**
2319  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2320  *  @hw: pointer to hardware structure
2321  **/
2322 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2323 {
2324 	s32 status;
2325 	u16 checksum;
2326 
2327 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2328 
2329 	/* Read the first word from the EEPROM. If this times out or fails, do
2330 	 * not continue or we could be in for a very long wait while every
2331 	 * EEPROM read fails
2332 	 */
2333 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2334 	if (status) {
2335 		DEBUGOUT("EEPROM read failed\n");
2336 		return status;
2337 	}
2338 
2339 	status = hw->eeprom.ops.calc_checksum(hw);
2340 	if (status < 0)
2341 		return status;
2342 
2343 	checksum = (u16)(status & 0xffff);
2344 
2345 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2346 
2347 	return status;
2348 }
2349 
2350 /**
2351  *  ixgbe_validate_mac_addr - Validate MAC address
2352  *  @mac_addr: pointer to MAC address.
2353  *
2354  *  Tests a MAC address to ensure it is a valid Individual Address.
2355  **/
2356 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2357 {
2358 	s32 status = IXGBE_SUCCESS;
2359 
2360 	DEBUGFUNC("ixgbe_validate_mac_addr");
2361 
2362 	/* Make sure it is not a multicast address */
2363 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2364 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2365 	/* Not a broadcast address */
2366 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2367 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2368 	/* Reject the zero address */
2369 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2370 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2371 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2372 	}
2373 	return status;
2374 }
2375 
2376 /**
2377  *  ixgbe_set_rar_generic - Set Rx address register
2378  *  @hw: pointer to hardware structure
2379  *  @index: Receive address register to write
2380  *  @addr: Address to put into receive address register
2381  *  @vmdq: VMDq "set" or "pool" index
2382  *  @enable_addr: set flag that address is active
2383  *
2384  *  Puts an ethernet address into a receive address register.
2385  **/
2386 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2387 			  u32 enable_addr)
2388 {
2389 	u32 rar_low, rar_high;
2390 	u32 rar_entries = hw->mac.num_rar_entries;
2391 
2392 	DEBUGFUNC("ixgbe_set_rar_generic");
2393 
2394 	/* Make sure we are using a valid rar index range */
2395 	if (index >= rar_entries) {
2396 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2397 			     "RAR index %d is out of range.\n", index);
2398 		return IXGBE_ERR_INVALID_ARGUMENT;
2399 	}
2400 
2401 	/* setup VMDq pool selection before this RAR gets enabled */
2402 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2403 
2404 	/*
2405 	 * HW expects these in little endian so we reverse the byte
2406 	 * order from network order (big endian) to little endian
2407 	 */
2408 	rar_low = ((u32)addr[0] |
2409 		   ((u32)addr[1] << 8) |
2410 		   ((u32)addr[2] << 16) |
2411 		   ((u32)addr[3] << 24));
2412 	/*
2413 	 * Some parts put the VMDq setting in the extra RAH bits,
2414 	 * so save everything except the lower 16 bits that hold part
2415 	 * of the address and the address valid bit.
2416 	 */
2417 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2418 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2419 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2420 
2421 	if (enable_addr != 0)
2422 		rar_high |= IXGBE_RAH_AV;
2423 
2424 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2425 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2426 
2427 	return IXGBE_SUCCESS;
2428 }
2429 
2430 /**
2431  *  ixgbe_clear_rar_generic - Remove Rx address register
2432  *  @hw: pointer to hardware structure
2433  *  @index: Receive address register to write
2434  *
2435  *  Clears an ethernet address from a receive address register.
2436  **/
2437 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2438 {
2439 	u32 rar_high;
2440 	u32 rar_entries = hw->mac.num_rar_entries;
2441 
2442 	DEBUGFUNC("ixgbe_clear_rar_generic");
2443 
2444 	/* Make sure we are using a valid rar index range */
2445 	if (index >= rar_entries) {
2446 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2447 			     "RAR index %d is out of range.\n", index);
2448 		return IXGBE_ERR_INVALID_ARGUMENT;
2449 	}
2450 
2451 	/*
2452 	 * Some parts put the VMDq setting in the extra RAH bits,
2453 	 * so save everything except the lower 16 bits that hold part
2454 	 * of the address and the address valid bit.
2455 	 */
2456 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2457 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2458 
2459 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2460 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2461 
2462 	/* clear VMDq pool/queue selection for this RAR */
2463 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2464 
2465 	return IXGBE_SUCCESS;
2466 }
2467 
2468 /**
2469  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2470  *  @hw: pointer to hardware structure
2471  *
2472  *  Places the MAC address in receive address register 0 and clears the rest
2473  *  of the receive address registers. Clears the multicast table. Assumes
2474  *  the receiver is in reset when the routine is called.
2475  **/
2476 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2477 {
2478 	u32 i;
2479 	u32 rar_entries = hw->mac.num_rar_entries;
2480 
2481 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2482 
2483 	/*
2484 	 * If the current mac address is valid, assume it is a software override
2485 	 * to the permanent address.
2486 	 * Otherwise, use the permanent address from the eeprom.
2487 	 */
2488 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2489 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2490 		/* Get the MAC address from the RAR0 for later reference */
2491 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2492 
2493 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2494 			  hw->mac.addr[0], hw->mac.addr[1],
2495 			  hw->mac.addr[2]);
2496 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2497 			  hw->mac.addr[4], hw->mac.addr[5]);
2498 	} else {
2499 		/* Setup the receive address. */
2500 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2501 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2502 			  hw->mac.addr[0], hw->mac.addr[1],
2503 			  hw->mac.addr[2]);
2504 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2505 			  hw->mac.addr[4], hw->mac.addr[5]);
2506 
2507 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2508 	}
2509 
2510 	/* clear VMDq pool/queue selection for RAR 0 */
2511 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2512 
2513 	hw->addr_ctrl.overflow_promisc = 0;
2514 
2515 	hw->addr_ctrl.rar_used_count = 1;
2516 
2517 	/* Zero out the other receive addresses. */
2518 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2519 	for (i = 1; i < rar_entries; i++) {
2520 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2521 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2522 	}
2523 
2524 	/* Clear the MTA */
2525 	hw->addr_ctrl.mta_in_use = 0;
2526 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2527 
2528 	DEBUGOUT(" Clearing MTA\n");
2529 	for (i = 0; i < hw->mac.mcft_size; i++)
2530 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2531 
2532 	ixgbe_init_uta_tables(hw);
2533 
2534 	return IXGBE_SUCCESS;
2535 }
2536 
2537 /**
2538  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2539  *  @hw: pointer to hardware structure
2540  *  @addr: new address
2541  *  @vmdq: VMDq "set" or "pool" index
2542  *
2543  *  Adds it to unused receive address register or goes into promiscuous mode.
2544  **/
2545 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2546 {
2547 	u32 rar_entries = hw->mac.num_rar_entries;
2548 	u32 rar;
2549 
2550 	DEBUGFUNC("ixgbe_add_uc_addr");
2551 
2552 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2553 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2554 
2555 	/*
2556 	 * Place this address in the RAR if there is room,
2557 	 * else put the controller into promiscuous mode
2558 	 */
2559 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2560 		rar = hw->addr_ctrl.rar_used_count;
2561 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2562 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2563 		hw->addr_ctrl.rar_used_count++;
2564 	} else {
2565 		hw->addr_ctrl.overflow_promisc++;
2566 	}
2567 
2568 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2569 }
2570 
2571 /**
2572  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2573  *  @hw: pointer to hardware structure
2574  *  @addr_list: the list of new addresses
2575  *  @addr_count: number of addresses
2576  *  @next: iterator function to walk the address list
2577  *
2578  *  The given list replaces any existing list.  Clears the secondary addrs from
2579  *  receive address registers.  Uses unused receive address registers for the
2580  *  first secondary addresses, and falls back to promiscuous mode as needed.
2581  *
2582  *  Drivers using secondary unicast addresses must set user_set_promisc when
2583  *  manually putting the device into promiscuous mode.
2584  **/
2585 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2586 				      u32 addr_count, ixgbe_mc_addr_itr next)
2587 {
2588 	u8 *addr;
2589 	u32 i;
2590 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2591 	u32 uc_addr_in_use;
2592 	u32 fctrl;
2593 	u32 vmdq;
2594 
2595 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2596 
2597 	/*
2598 	 * Clear accounting of old secondary address list,
2599 	 * don't count RAR[0]
2600 	 */
2601 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2602 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2603 	hw->addr_ctrl.overflow_promisc = 0;
2604 
2605 	/* Zero out the other receive addresses */
2606 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2607 	for (i = 0; i < uc_addr_in_use; i++) {
2608 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2609 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2610 	}
2611 
2612 	/* Add the new addresses */
2613 	for (i = 0; i < addr_count; i++) {
2614 		DEBUGOUT(" Adding the secondary addresses:\n");
2615 		addr = next(hw, &addr_list, &vmdq);
2616 		ixgbe_add_uc_addr(hw, addr, vmdq);
2617 	}
2618 
2619 	if (hw->addr_ctrl.overflow_promisc) {
2620 		/* enable promisc if not already in overflow or set by user */
2621 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2622 			DEBUGOUT(" Entering address overflow promisc mode\n");
2623 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2624 			fctrl |= IXGBE_FCTRL_UPE;
2625 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2626 		}
2627 	} else {
2628 		/* only disable if set by overflow, not by user */
2629 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2630 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2631 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2632 			fctrl &= ~IXGBE_FCTRL_UPE;
2633 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2634 		}
2635 	}
2636 
2637 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2638 	return IXGBE_SUCCESS;
2639 }
2640 
2641 /**
2642  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2643  *  @hw: pointer to hardware structure
2644  *  @mc_addr: the multicast address
2645  *
2646  *  Extracts the 12 bits, from a multicast address, to determine which
2647  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2648  *  incoming rx multicast addresses, to determine the bit-vector to check in
2649  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2650  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2651  *  to mc_filter_type.
2652  **/
2653 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2654 {
2655 	u32 vector = 0;
2656 
2657 	DEBUGFUNC("ixgbe_mta_vector");
2658 
2659 	switch (hw->mac.mc_filter_type) {
2660 	case 0:   /* use bits [47:36] of the address */
2661 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2662 		break;
2663 	case 1:   /* use bits [46:35] of the address */
2664 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2665 		break;
2666 	case 2:   /* use bits [45:34] of the address */
2667 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2668 		break;
2669 	case 3:   /* use bits [43:32] of the address */
2670 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2671 		break;
2672 	default:  /* Invalid mc_filter_type */
2673 		DEBUGOUT("MC filter type param set incorrectly\n");
2674 		ASSERT(0);
2675 		break;
2676 	}
2677 
2678 	/* vector can only be 12-bits or boundary will be exceeded */
2679 	vector &= 0xFFF;
2680 	return vector;
2681 }
2682 
2683 /**
2684  *  ixgbe_set_mta - Set bit-vector in multicast table
2685  *  @hw: pointer to hardware structure
2686  *  @mc_addr: Multicast address
2687  *
2688  *  Sets the bit-vector in the multicast table.
2689  **/
2690 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2691 {
2692 	u32 vector;
2693 	u32 vector_bit;
2694 	u32 vector_reg;
2695 
2696 	DEBUGFUNC("ixgbe_set_mta");
2697 
2698 	hw->addr_ctrl.mta_in_use++;
2699 
2700 	vector = ixgbe_mta_vector(hw, mc_addr);
2701 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2702 
2703 	/*
2704 	 * The MTA is a register array of 128 32-bit registers. It is treated
2705 	 * like an array of 4096 bits.  We want to set bit
2706 	 * BitArray[vector_value]. So we figure out what register the bit is
2707 	 * in, read it, OR in the new bit, then write back the new value.  The
2708 	 * register is determined by the upper 7 bits of the vector value and
2709 	 * the bit within that register are determined by the lower 5 bits of
2710 	 * the value.
2711 	 */
2712 	vector_reg = (vector >> 5) & 0x7F;
2713 	vector_bit = vector & 0x1F;
2714 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2715 }
2716 
2717 /**
2718  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2719  *  @hw: pointer to hardware structure
2720  *  @mc_addr_list: the list of new multicast addresses
2721  *  @mc_addr_count: number of addresses
2722  *  @next: iterator function to walk the multicast address list
2723  *  @clear: flag, when set clears the table beforehand
2724  *
2725  *  When the clear flag is set, the given list replaces any existing list.
2726  *  Hashes the given addresses into the multicast table.
2727  **/
2728 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2729 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2730 				      bool clear)
2731 {
2732 	u32 i;
2733 	u32 vmdq;
2734 
2735 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2736 
2737 	/*
2738 	 * Set the new number of MC addresses that we are being requested to
2739 	 * use.
2740 	 */
2741 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2742 	hw->addr_ctrl.mta_in_use = 0;
2743 
2744 	/* Clear mta_shadow */
2745 	if (clear) {
2746 		DEBUGOUT(" Clearing MTA\n");
2747 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2748 	}
2749 
2750 	/* Update mta_shadow */
2751 	for (i = 0; i < mc_addr_count; i++) {
2752 		DEBUGOUT(" Adding the multicast addresses:\n");
2753 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2754 	}
2755 
2756 	/* Enable mta */
2757 	for (i = 0; i < hw->mac.mcft_size; i++)
2758 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2759 				      hw->mac.mta_shadow[i]);
2760 
2761 	if (hw->addr_ctrl.mta_in_use > 0)
2762 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2763 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2764 
2765 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2766 	return IXGBE_SUCCESS;
2767 }
2768 
2769 /**
2770  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2771  *  @hw: pointer to hardware structure
2772  *
2773  *  Enables multicast address in RAR and the use of the multicast hash table.
2774  **/
2775 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2776 {
2777 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2778 
2779 	DEBUGFUNC("ixgbe_enable_mc_generic");
2780 
2781 	if (a->mta_in_use > 0)
2782 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2783 				hw->mac.mc_filter_type);
2784 
2785 	return IXGBE_SUCCESS;
2786 }
2787 
2788 /**
2789  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2790  *  @hw: pointer to hardware structure
2791  *
2792  *  Disables multicast address in RAR and the use of the multicast hash table.
2793  **/
2794 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2795 {
2796 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2797 
2798 	DEBUGFUNC("ixgbe_disable_mc_generic");
2799 
2800 	if (a->mta_in_use > 0)
2801 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2802 
2803 	return IXGBE_SUCCESS;
2804 }
2805 
2806 /**
2807  *  ixgbe_fc_enable_generic - Enable flow control
2808  *  @hw: pointer to hardware structure
2809  *
2810  *  Enable flow control according to the current settings.
2811  **/
2812 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2813 {
2814 	s32 ret_val = IXGBE_SUCCESS;
2815 	u32 mflcn_reg, fccfg_reg;
2816 	u32 reg;
2817 	u32 fcrtl, fcrth;
2818 	int i;
2819 
2820 	DEBUGFUNC("ixgbe_fc_enable_generic");
2821 
2822 	/* Validate the water mark configuration */
2823 	if (!hw->fc.pause_time) {
2824 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2825 		goto out;
2826 	}
2827 
2828 	/* Low water mark of zero causes XOFF floods */
2829 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2830 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2831 		    hw->fc.high_water[i]) {
2832 			if (!hw->fc.low_water[i] ||
2833 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2834 				DEBUGOUT("Invalid water mark configuration\n");
2835 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2836 				goto out;
2837 			}
2838 		}
2839 	}
2840 
2841 	/* Negotiate the fc mode to use */
2842 	hw->mac.ops.fc_autoneg(hw);
2843 
2844 	/* Disable any previous flow control settings */
2845 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2846 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2847 
2848 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2849 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2850 
2851 	/*
2852 	 * The possible values of fc.current_mode are:
2853 	 * 0: Flow control is completely disabled
2854 	 * 1: Rx flow control is enabled (we can receive pause frames,
2855 	 *    but not send pause frames).
2856 	 * 2: Tx flow control is enabled (we can send pause frames but
2857 	 *    we do not support receiving pause frames).
2858 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2859 	 * other: Invalid.
2860 	 */
2861 	switch (hw->fc.current_mode) {
2862 	case ixgbe_fc_none:
2863 		/*
2864 		 * Flow control is disabled by software override or autoneg.
2865 		 * The code below will actually disable it in the HW.
2866 		 */
2867 		break;
2868 	case ixgbe_fc_rx_pause:
2869 		/*
2870 		 * Rx Flow control is enabled and Tx Flow control is
2871 		 * disabled by software override. Since there really
2872 		 * isn't a way to advertise that we are capable of RX
2873 		 * Pause ONLY, we will advertise that we support both
2874 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2875 		 * disable the adapter's ability to send PAUSE frames.
2876 		 */
2877 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2878 		break;
2879 	case ixgbe_fc_tx_pause:
2880 		/*
2881 		 * Tx Flow control is enabled, and Rx Flow control is
2882 		 * disabled by software override.
2883 		 */
2884 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2885 		break;
2886 	case ixgbe_fc_full:
2887 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2888 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2889 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2890 		break;
2891 	default:
2892 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2893 			     "Flow control param set incorrectly\n");
2894 		ret_val = IXGBE_ERR_CONFIG;
2895 		goto out;
2896 		break;
2897 	}
2898 
2899 	/* Set 802.3x based flow control settings. */
2900 	mflcn_reg |= IXGBE_MFLCN_DPF;
2901 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2902 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2903 
2904 
2905 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2906 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2907 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2908 		    hw->fc.high_water[i]) {
2909 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2910 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2911 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2912 		} else {
2913 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2914 			/*
2915 			 * In order to prevent Tx hangs when the internal Tx
2916 			 * switch is enabled we must set the high water mark
2917 			 * to the Rx packet buffer size - 24KB.  This allows
2918 			 * the Tx switch to function even under heavy Rx
2919 			 * workloads.
2920 			 */
2921 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2922 		}
2923 
2924 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2925 	}
2926 
2927 	/* Configure pause time (2 TCs per register) */
2928 	reg = hw->fc.pause_time * 0x00010001;
2929 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2930 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2931 
2932 	/* Configure flow control refresh threshold value */
2933 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2934 
2935 out:
2936 	return ret_val;
2937 }
2938 
2939 /**
2940  *  ixgbe_negotiate_fc - Negotiate flow control
2941  *  @hw: pointer to hardware structure
2942  *  @adv_reg: flow control advertised settings
2943  *  @lp_reg: link partner's flow control settings
2944  *  @adv_sym: symmetric pause bit in advertisement
2945  *  @adv_asm: asymmetric pause bit in advertisement
2946  *  @lp_sym: symmetric pause bit in link partner advertisement
2947  *  @lp_asm: asymmetric pause bit in link partner advertisement
2948  *
2949  *  Find the intersection between advertised settings and link partner's
2950  *  advertised settings
2951  **/
2952 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2953 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2954 {
2955 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2956 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2957 			     "Local or link partner's advertised flow control "
2958 			     "settings are NULL. Local: %x, link partner: %x\n",
2959 			     adv_reg, lp_reg);
2960 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2961 	}
2962 
2963 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2964 		/*
2965 		 * Now we need to check if the user selected Rx ONLY
2966 		 * of pause frames.  In this case, we had to advertise
2967 		 * FULL flow control because we could not advertise RX
2968 		 * ONLY. Hence, we must now check to see if we need to
2969 		 * turn OFF the TRANSMISSION of PAUSE frames.
2970 		 */
2971 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2972 			hw->fc.current_mode = ixgbe_fc_full;
2973 			DEBUGOUT("Flow Control = FULL.\n");
2974 		} else {
2975 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2976 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2977 		}
2978 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2979 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2980 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2981 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2982 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2983 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2984 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2985 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2986 	} else {
2987 		hw->fc.current_mode = ixgbe_fc_none;
2988 		DEBUGOUT("Flow Control = NONE.\n");
2989 	}
2990 	return IXGBE_SUCCESS;
2991 }
2992 
2993 /**
2994  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2995  *  @hw: pointer to hardware structure
2996  *
2997  *  Enable flow control according on 1 gig fiber.
2998  **/
2999 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
3000 {
3001 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3002 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3003 
3004 	/*
3005 	 * On multispeed fiber at 1g, bail out if
3006 	 * - link is up but AN did not complete, or if
3007 	 * - link is up and AN completed but timed out
3008 	 */
3009 
3010 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3011 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3012 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3013 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3014 		goto out;
3015 	}
3016 
3017 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3018 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3019 
3020 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3021 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3022 				      IXGBE_PCS1GANA_ASM_PAUSE,
3023 				      IXGBE_PCS1GANA_SYM_PAUSE,
3024 				      IXGBE_PCS1GANA_ASM_PAUSE);
3025 
3026 out:
3027 	return ret_val;
3028 }
3029 
3030 /**
3031  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3032  *  @hw: pointer to hardware structure
3033  *
3034  *  Enable flow control according to IEEE clause 37.
3035  **/
3036 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3037 {
3038 	u32 links2, anlp1_reg, autoc_reg, links;
3039 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3040 
3041 	/*
3042 	 * On backplane, bail out if
3043 	 * - backplane autoneg was not completed, or if
3044 	 * - we are 82599 and link partner is not AN enabled
3045 	 */
3046 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3047 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3048 		DEBUGOUT("Auto-Negotiation did not complete\n");
3049 		goto out;
3050 	}
3051 
3052 	if (hw->mac.type == ixgbe_mac_82599EB) {
3053 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3054 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3055 			DEBUGOUT("Link partner is not AN enabled\n");
3056 			goto out;
3057 		}
3058 	}
3059 	/*
3060 	 * Read the 10g AN autoc and LP ability registers and resolve
3061 	 * local flow control settings accordingly
3062 	 */
3063 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3064 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3065 
3066 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3067 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3068 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3069 
3070 out:
3071 	return ret_val;
3072 }
3073 
3074 /**
3075  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3076  *  @hw: pointer to hardware structure
3077  *
3078  *  Enable flow control according to IEEE clause 37.
3079  **/
3080 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3081 {
3082 	u16 technology_ability_reg = 0;
3083 	u16 lp_technology_ability_reg = 0;
3084 
3085 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3086 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3087 			     &technology_ability_reg);
3088 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3089 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3090 			     &lp_technology_ability_reg);
3091 
3092 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3093 				  (u32)lp_technology_ability_reg,
3094 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3095 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3096 }
3097 
3098 /**
3099  *  ixgbe_fc_autoneg - Configure flow control
3100  *  @hw: pointer to hardware structure
3101  *
3102  *  Compares our advertised flow control capabilities to those advertised by
3103  *  our link partner, and determines the proper flow control mode to use.
3104  **/
3105 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3106 {
3107 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3108 	ixgbe_link_speed speed;
3109 	bool link_up;
3110 
3111 	DEBUGFUNC("ixgbe_fc_autoneg");
3112 
3113 	/*
3114 	 * AN should have completed when the cable was plugged in.
3115 	 * Look for reasons to bail out.  Bail out if:
3116 	 * - FC autoneg is disabled, or if
3117 	 * - link is not up.
3118 	 */
3119 	if (hw->fc.disable_fc_autoneg) {
3120 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3121 			     "Flow control autoneg is disabled");
3122 		goto out;
3123 	}
3124 
3125 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3126 	if (!link_up) {
3127 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3128 		goto out;
3129 	}
3130 
3131 	switch (hw->phy.media_type) {
3132 	/* Autoneg flow control on fiber adapters */
3133 	case ixgbe_media_type_fiber_fixed:
3134 	case ixgbe_media_type_fiber_qsfp:
3135 	case ixgbe_media_type_fiber:
3136 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3137 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3138 		break;
3139 
3140 	/* Autoneg flow control on backplane adapters */
3141 	case ixgbe_media_type_backplane:
3142 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3143 		break;
3144 
3145 	/* Autoneg flow control on copper adapters */
3146 	case ixgbe_media_type_copper:
3147 		if (ixgbe_device_supports_autoneg_fc(hw))
3148 			ret_val = ixgbe_fc_autoneg_copper(hw);
3149 		break;
3150 
3151 	default:
3152 		break;
3153 	}
3154 
3155 out:
3156 	if (ret_val == IXGBE_SUCCESS) {
3157 		hw->fc.fc_was_autonegged = TRUE;
3158 	} else {
3159 		hw->fc.fc_was_autonegged = FALSE;
3160 		hw->fc.current_mode = hw->fc.requested_mode;
3161 	}
3162 }
3163 
3164 /*
3165  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3166  * @hw: pointer to hardware structure
3167  *
3168  * System-wide timeout range is encoded in PCIe Device Control2 register.
3169  *
3170  * Add 10% to specified maximum and return the number of times to poll for
3171  * completion timeout, in units of 100 microsec.  Never return less than
3172  * 800 = 80 millisec.
3173  */
3174 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3175 {
3176 	s16 devctl2;
3177 	u32 pollcnt;
3178 
3179 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3180 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3181 
3182 	switch (devctl2) {
3183 	case IXGBE_PCIDEVCTRL2_65_130ms:
3184 		pollcnt = 1300;		/* 130 millisec */
3185 		break;
3186 	case IXGBE_PCIDEVCTRL2_260_520ms:
3187 		pollcnt = 5200;		/* 520 millisec */
3188 		break;
3189 	case IXGBE_PCIDEVCTRL2_1_2s:
3190 		pollcnt = 20000;	/* 2 sec */
3191 		break;
3192 	case IXGBE_PCIDEVCTRL2_4_8s:
3193 		pollcnt = 80000;	/* 8 sec */
3194 		break;
3195 	case IXGBE_PCIDEVCTRL2_17_34s:
3196 		pollcnt = 34000;	/* 34 sec */
3197 		break;
3198 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3199 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3200 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3201 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3202 	default:
3203 		pollcnt = 800;		/* 80 millisec minimum */
3204 		break;
3205 	}
3206 
3207 	/* add 10% to spec maximum */
3208 	return (pollcnt * 11) / 10;
3209 }
3210 
3211 /**
3212  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3213  *  @hw: pointer to hardware structure
3214  *
3215  *  Disables PCI-Express master access and verifies there are no pending
3216  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3217  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3218  *  is returned signifying master requests disabled.
3219  **/
3220 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3221 {
3222 	s32 status = IXGBE_SUCCESS;
3223 	u32 i, poll;
3224 	u16 value;
3225 
3226 	DEBUGFUNC("ixgbe_disable_pcie_master");
3227 
3228 	/* Always set this bit to ensure any future transactions are blocked */
3229 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3230 
3231 	/* Exit if master requests are blocked */
3232 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3233 	    IXGBE_REMOVED(hw->hw_addr))
3234 		goto out;
3235 
3236 	/* Poll for master request bit to clear */
3237 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3238 		usec_delay(100);
3239 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3240 			goto out;
3241 	}
3242 
3243 	/*
3244 	 * Two consecutive resets are required via CTRL.RST per datasheet
3245 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3246 	 * of this need.  The first reset prevents new master requests from
3247 	 * being issued by our device.  We then must wait 1usec or more for any
3248 	 * remaining completions from the PCIe bus to trickle in, and then reset
3249 	 * again to clear out any effects they may have had on our device.
3250 	 */
3251 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3252 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3253 
3254 	if (hw->mac.type >= ixgbe_mac_X550)
3255 		goto out;
3256 
3257 	/*
3258 	 * Before proceeding, make sure that the PCIe block does not have
3259 	 * transactions pending.
3260 	 */
3261 	poll = ixgbe_pcie_timeout_poll(hw);
3262 	for (i = 0; i < poll; i++) {
3263 		usec_delay(100);
3264 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3265 		if (IXGBE_REMOVED(hw->hw_addr))
3266 			goto out;
3267 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3268 			goto out;
3269 	}
3270 
3271 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3272 		     "PCIe transaction pending bit also did not clear.\n");
3273 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3274 
3275 out:
3276 	return status;
3277 }
3278 
3279 /**
3280  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3281  *  @hw: pointer to hardware structure
3282  *  @mask: Mask to specify which semaphore to acquire
3283  *
3284  *  Acquires the SWFW semaphore through the GSSR register for the specified
3285  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3286  **/
3287 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3288 {
3289 	u32 gssr = 0;
3290 	u32 swmask = mask;
3291 	u32 fwmask = mask << 5;
3292 	u32 timeout = 200;
3293 	u32 i;
3294 
3295 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3296 
3297 	for (i = 0; i < timeout; i++) {
3298 		/*
3299 		 * SW NVM semaphore bit is used for access to all
3300 		 * SW_FW_SYNC bits (not just NVM)
3301 		 */
3302 		if (ixgbe_get_eeprom_semaphore(hw))
3303 			return IXGBE_ERR_SWFW_SYNC;
3304 
3305 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3306 		if (!(gssr & (fwmask | swmask))) {
3307 			gssr |= swmask;
3308 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3309 			ixgbe_release_eeprom_semaphore(hw);
3310 			return IXGBE_SUCCESS;
3311 		} else {
3312 			/* Resource is currently in use by FW or SW */
3313 			ixgbe_release_eeprom_semaphore(hw);
3314 			msec_delay(5);
3315 		}
3316 	}
3317 
3318 	/* If time expired clear the bits holding the lock and retry */
3319 	if (gssr & (fwmask | swmask))
3320 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3321 
3322 	msec_delay(5);
3323 	return IXGBE_ERR_SWFW_SYNC;
3324 }
3325 
3326 /**
3327  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3328  *  @hw: pointer to hardware structure
3329  *  @mask: Mask to specify which semaphore to release
3330  *
3331  *  Releases the SWFW semaphore through the GSSR register for the specified
3332  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3333  **/
3334 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3335 {
3336 	u32 gssr;
3337 	u32 swmask = mask;
3338 
3339 	DEBUGFUNC("ixgbe_release_swfw_sync");
3340 
3341 	ixgbe_get_eeprom_semaphore(hw);
3342 
3343 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3344 	gssr &= ~swmask;
3345 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3346 
3347 	ixgbe_release_eeprom_semaphore(hw);
3348 }
3349 
3350 /**
3351  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3352  *  @hw: pointer to hardware structure
3353  *
3354  *  Stops the receive data path and waits for the HW to internally empty
3355  *  the Rx security block
3356  **/
3357 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3358 {
3359 #define IXGBE_MAX_SECRX_POLL 40
3360 
3361 	int i;
3362 	int secrxreg;
3363 
3364 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3365 
3366 
3367 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3368 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3369 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3370 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3371 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3372 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3373 			break;
3374 		else
3375 			/* Use interrupt-safe sleep just in case */
3376 			usec_delay(1000);
3377 	}
3378 
3379 	/* For informational purposes only */
3380 	if (i >= IXGBE_MAX_SECRX_POLL)
3381 		DEBUGOUT("Rx unit being enabled before security "
3382 			 "path fully disabled.  Continuing with init.\n");
3383 
3384 	return IXGBE_SUCCESS;
3385 }
3386 
3387 /**
3388  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3389  *  @hw: pointer to hardware structure
3390  *  @locked: bool to indicate whether the SW/FW lock was taken
3391  *  @reg_val: Value we read from AUTOC
3392  *
3393  *  The default case requires no protection so just to the register read.
3394  */
3395 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3396 {
3397 	*locked = FALSE;
3398 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3399 	return IXGBE_SUCCESS;
3400 }
3401 
3402 /**
3403  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3404  * @hw: pointer to hardware structure
3405  * @reg_val: value to write to AUTOC
3406  * @locked: bool to indicate whether the SW/FW lock was already taken by
3407  *           previous read.
3408  *
3409  * The default case requires no protection so just to the register write.
3410  */
3411 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3412 {
3413 	UNREFERENCED_1PARAMETER(locked);
3414 
3415 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3416 	return IXGBE_SUCCESS;
3417 }
3418 
3419 /**
3420  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3421  *  @hw: pointer to hardware structure
3422  *
3423  *  Enables the receive data path.
3424  **/
3425 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3426 {
3427 	u32 secrxreg;
3428 
3429 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3430 
3431 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3432 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3433 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3434 	IXGBE_WRITE_FLUSH(hw);
3435 
3436 	return IXGBE_SUCCESS;
3437 }
3438 
3439 /**
3440  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3441  *  @hw: pointer to hardware structure
3442  *  @regval: register value to write to RXCTRL
3443  *
3444  *  Enables the Rx DMA unit
3445  **/
3446 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3447 {
3448 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3449 
3450 	if (regval & IXGBE_RXCTRL_RXEN)
3451 		ixgbe_enable_rx(hw);
3452 	else
3453 		ixgbe_disable_rx(hw);
3454 
3455 	return IXGBE_SUCCESS;
3456 }
3457 
3458 /**
3459  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3460  *  @hw: pointer to hardware structure
3461  *  @index: led number to blink
3462  **/
3463 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3464 {
3465 	ixgbe_link_speed speed = 0;
3466 	bool link_up = 0;
3467 	u32 autoc_reg = 0;
3468 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3469 	s32 ret_val = IXGBE_SUCCESS;
3470 	bool locked = FALSE;
3471 
3472 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3473 
3474 	if (index > 3)
3475 		return IXGBE_ERR_PARAM;
3476 
3477 	/*
3478 	 * Link must be up to auto-blink the LEDs;
3479 	 * Force it if link is down.
3480 	 */
3481 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3482 
3483 	if (!link_up) {
3484 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3485 		if (ret_val != IXGBE_SUCCESS)
3486 			goto out;
3487 
3488 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3489 		autoc_reg |= IXGBE_AUTOC_FLU;
3490 
3491 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3492 		if (ret_val != IXGBE_SUCCESS)
3493 			goto out;
3494 
3495 		IXGBE_WRITE_FLUSH(hw);
3496 		msec_delay(10);
3497 	}
3498 
3499 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3500 	led_reg |= IXGBE_LED_BLINK(index);
3501 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3502 	IXGBE_WRITE_FLUSH(hw);
3503 
3504 out:
3505 	return ret_val;
3506 }
3507 
3508 /**
3509  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3510  *  @hw: pointer to hardware structure
3511  *  @index: led number to stop blinking
3512  **/
3513 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3514 {
3515 	u32 autoc_reg = 0;
3516 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3517 	s32 ret_val = IXGBE_SUCCESS;
3518 	bool locked = FALSE;
3519 
3520 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3521 
3522 	if (index > 3)
3523 		return IXGBE_ERR_PARAM;
3524 
3525 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3526 	if (ret_val != IXGBE_SUCCESS)
3527 		goto out;
3528 
3529 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3530 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3531 
3532 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3533 	if (ret_val != IXGBE_SUCCESS)
3534 		goto out;
3535 
3536 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3537 	led_reg &= ~IXGBE_LED_BLINK(index);
3538 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3539 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3540 	IXGBE_WRITE_FLUSH(hw);
3541 
3542 out:
3543 	return ret_val;
3544 }
3545 
3546 /**
3547  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3548  *  @hw: pointer to hardware structure
3549  *  @san_mac_offset: SAN MAC address offset
3550  *
3551  *  This function will read the EEPROM location for the SAN MAC address
3552  *  pointer, and returns the value at that location.  This is used in both
3553  *  get and set mac_addr routines.
3554  **/
3555 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3556 					 u16 *san_mac_offset)
3557 {
3558 	s32 ret_val;
3559 
3560 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3561 
3562 	/*
3563 	 * First read the EEPROM pointer to see if the MAC addresses are
3564 	 * available.
3565 	 */
3566 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3567 				      san_mac_offset);
3568 	if (ret_val) {
3569 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3570 			      "eeprom at offset %d failed",
3571 			      IXGBE_SAN_MAC_ADDR_PTR);
3572 	}
3573 
3574 	return ret_val;
3575 }
3576 
3577 /**
3578  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3579  *  @hw: pointer to hardware structure
3580  *  @san_mac_addr: SAN MAC address
3581  *
3582  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3583  *  per-port, so set_lan_id() must be called before reading the addresses.
3584  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3585  *  upon for non-SFP connections, so we must call it here.
3586  **/
3587 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3588 {
3589 	u16 san_mac_data, san_mac_offset;
3590 	u8 i;
3591 	s32 ret_val;
3592 
3593 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3594 
3595 	/*
3596 	 * First read the EEPROM pointer to see if the MAC addresses are
3597 	 * available.  If they're not, no point in calling set_lan_id() here.
3598 	 */
3599 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3600 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3601 		goto san_mac_addr_out;
3602 
3603 	/* make sure we know which port we need to program */
3604 	hw->mac.ops.set_lan_id(hw);
3605 	/* apply the port offset to the address offset */
3606 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3607 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3608 	for (i = 0; i < 3; i++) {
3609 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3610 					      &san_mac_data);
3611 		if (ret_val) {
3612 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3613 				      "eeprom read at offset %d failed",
3614 				      san_mac_offset);
3615 			goto san_mac_addr_out;
3616 		}
3617 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3618 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3619 		san_mac_offset++;
3620 	}
3621 	return IXGBE_SUCCESS;
3622 
3623 san_mac_addr_out:
3624 	/*
3625 	 * No addresses available in this EEPROM.  It's not an
3626 	 * error though, so just wipe the local address and return.
3627 	 */
3628 	for (i = 0; i < 6; i++)
3629 		san_mac_addr[i] = 0xFF;
3630 	return IXGBE_SUCCESS;
3631 }
3632 
3633 /**
3634  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3635  *  @hw: pointer to hardware structure
3636  *  @san_mac_addr: SAN MAC address
3637  *
3638  *  Write a SAN MAC address to the EEPROM.
3639  **/
3640 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3641 {
3642 	s32 ret_val;
3643 	u16 san_mac_data, san_mac_offset;
3644 	u8 i;
3645 
3646 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3647 
3648 	/* Look for SAN mac address pointer.  If not defined, return */
3649 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3650 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3651 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3652 
3653 	/* Make sure we know which port we need to write */
3654 	hw->mac.ops.set_lan_id(hw);
3655 	/* Apply the port offset to the address offset */
3656 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3657 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3658 
3659 	for (i = 0; i < 3; i++) {
3660 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3661 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3662 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3663 		san_mac_offset++;
3664 	}
3665 
3666 	return IXGBE_SUCCESS;
3667 }
3668 
3669 /**
3670  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3671  *  @hw: pointer to hardware structure
3672  *
3673  *  Read PCIe configuration space, and get the MSI-X vector count from
3674  *  the capabilities table.
3675  **/
3676 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3677 {
3678 	u16 msix_count = 1;
3679 	u16 max_msix_count;
3680 	u16 pcie_offset;
3681 
3682 	switch (hw->mac.type) {
3683 	case ixgbe_mac_82598EB:
3684 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3685 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3686 		break;
3687 	case ixgbe_mac_82599EB:
3688 	case ixgbe_mac_X540:
3689 	case ixgbe_mac_X550:
3690 	case ixgbe_mac_X550EM_x:
3691 	case ixgbe_mac_X550EM_a:
3692 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3693 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3694 		break;
3695 	default:
3696 		return msix_count;
3697 	}
3698 
3699 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3700 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3701 	if (IXGBE_REMOVED(hw->hw_addr))
3702 		msix_count = 0;
3703 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3704 
3705 	/* MSI-X count is zero-based in HW */
3706 	msix_count++;
3707 
3708 	if (msix_count > max_msix_count)
3709 		msix_count = max_msix_count;
3710 
3711 	return msix_count;
3712 }
3713 
3714 /**
3715  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3716  *  @hw: pointer to hardware structure
3717  *  @addr: Address to put into receive address register
3718  *  @vmdq: VMDq pool to assign
3719  *
3720  *  Puts an ethernet address into a receive address register, or
3721  *  finds the rar that it is already in; adds to the pool list
3722  **/
3723 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3724 {
3725 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3726 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3727 	u32 rar;
3728 	u32 rar_low, rar_high;
3729 	u32 addr_low, addr_high;
3730 
3731 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3732 
3733 	/* swap bytes for HW little endian */
3734 	addr_low  = addr[0] | (addr[1] << 8)
3735 			    | (addr[2] << 16)
3736 			    | (addr[3] << 24);
3737 	addr_high = addr[4] | (addr[5] << 8);
3738 
3739 	/*
3740 	 * Either find the mac_id in rar or find the first empty space.
3741 	 * rar_highwater points to just after the highest currently used
3742 	 * rar in order to shorten the search.  It grows when we add a new
3743 	 * rar to the top.
3744 	 */
3745 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3746 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3747 
3748 		if (((IXGBE_RAH_AV & rar_high) == 0)
3749 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3750 			first_empty_rar = rar;
3751 		} else if ((rar_high & 0xFFFF) == addr_high) {
3752 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3753 			if (rar_low == addr_low)
3754 				break;    /* found it already in the rars */
3755 		}
3756 	}
3757 
3758 	if (rar < hw->mac.rar_highwater) {
3759 		/* already there so just add to the pool bits */
3760 		ixgbe_set_vmdq(hw, rar, vmdq);
3761 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3762 		/* stick it into first empty RAR slot we found */
3763 		rar = first_empty_rar;
3764 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3765 	} else if (rar == hw->mac.rar_highwater) {
3766 		/* add it to the top of the list and inc the highwater mark */
3767 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3768 		hw->mac.rar_highwater++;
3769 	} else if (rar >= hw->mac.num_rar_entries) {
3770 		return IXGBE_ERR_INVALID_MAC_ADDR;
3771 	}
3772 
3773 	/*
3774 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3775 	 * remains cleared to be sure default pool packets will get delivered
3776 	 */
3777 	if (rar == 0)
3778 		ixgbe_clear_vmdq(hw, rar, 0);
3779 
3780 	return rar;
3781 }
3782 
3783 /**
3784  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3785  *  @hw: pointer to hardware struct
3786  *  @rar: receive address register index to disassociate
3787  *  @vmdq: VMDq pool index to remove from the rar
3788  **/
3789 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3790 {
3791 	u32 mpsar_lo, mpsar_hi;
3792 	u32 rar_entries = hw->mac.num_rar_entries;
3793 
3794 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3795 
3796 	/* Make sure we are using a valid rar index range */
3797 	if (rar >= rar_entries) {
3798 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3799 			     "RAR index %d is out of range.\n", rar);
3800 		return IXGBE_ERR_INVALID_ARGUMENT;
3801 	}
3802 
3803 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3804 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3805 
3806 	if (IXGBE_REMOVED(hw->hw_addr))
3807 		goto done;
3808 
3809 	if (!mpsar_lo && !mpsar_hi)
3810 		goto done;
3811 
3812 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3813 		if (mpsar_lo) {
3814 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3815 			mpsar_lo = 0;
3816 		}
3817 		if (mpsar_hi) {
3818 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3819 			mpsar_hi = 0;
3820 		}
3821 	} else if (vmdq < 32) {
3822 		mpsar_lo &= ~(1 << vmdq);
3823 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3824 	} else {
3825 		mpsar_hi &= ~(1 << (vmdq - 32));
3826 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3827 	}
3828 
3829 	/* was that the last pool using this rar? */
3830 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3831 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3832 		hw->mac.ops.clear_rar(hw, rar);
3833 done:
3834 	return IXGBE_SUCCESS;
3835 }
3836 
3837 /**
3838  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3839  *  @hw: pointer to hardware struct
3840  *  @rar: receive address register index to associate with a VMDq index
3841  *  @vmdq: VMDq pool index
3842  **/
3843 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3844 {
3845 	u32 mpsar;
3846 	u32 rar_entries = hw->mac.num_rar_entries;
3847 
3848 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3849 
3850 	/* Make sure we are using a valid rar index range */
3851 	if (rar >= rar_entries) {
3852 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3853 			     "RAR index %d is out of range.\n", rar);
3854 		return IXGBE_ERR_INVALID_ARGUMENT;
3855 	}
3856 
3857 	if (vmdq < 32) {
3858 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3859 		mpsar |= 1 << vmdq;
3860 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3861 	} else {
3862 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3863 		mpsar |= 1 << (vmdq - 32);
3864 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3865 	}
3866 	return IXGBE_SUCCESS;
3867 }
3868 
3869 /**
3870  *  This function should only be involved in the IOV mode.
3871  *  In IOV mode, Default pool is next pool after the number of
3872  *  VFs advertized and not 0.
3873  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3874  *
3875  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3876  *  @hw: pointer to hardware struct
3877  *  @vmdq: VMDq pool index
3878  **/
3879 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3880 {
3881 	u32 rar = hw->mac.san_mac_rar_index;
3882 
3883 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3884 
3885 	if (vmdq < 32) {
3886 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3887 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3888 	} else {
3889 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3890 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3891 	}
3892 
3893 	return IXGBE_SUCCESS;
3894 }
3895 
3896 /**
3897  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3898  *  @hw: pointer to hardware structure
3899  **/
3900 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3901 {
3902 	int i;
3903 
3904 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3905 	DEBUGOUT(" Clearing UTA\n");
3906 
3907 	for (i = 0; i < 128; i++)
3908 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3909 
3910 	return IXGBE_SUCCESS;
3911 }
3912 
3913 /**
3914  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3915  *  @hw: pointer to hardware structure
3916  *  @vlan: VLAN id to write to VLAN filter
3917  *  @vlvf_bypass: TRUE to find vlanid only, FALSE returns first empty slot if
3918  *		  vlanid not found
3919  *
3920  *
3921  *  return the VLVF index where this VLAN id should be placed
3922  *
3923  **/
3924 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3925 {
3926 	s32 regindex, first_empty_slot;
3927 	u32 bits;
3928 
3929 	/* short cut the special case */
3930 	if (vlan == 0)
3931 		return 0;
3932 
3933 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3934 	 * will simply bypass the VLVF if there are no entries present in the
3935 	 * VLVF that contain our VLAN
3936 	 */
3937 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3938 
3939 	/* add VLAN enable bit for comparison */
3940 	vlan |= IXGBE_VLVF_VIEN;
3941 
3942 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3943 	 * slot found along the way.
3944 	 *
3945 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3946 	 */
3947 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3948 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3949 		if (bits == vlan)
3950 			return regindex;
3951 		if (!first_empty_slot && !bits)
3952 			first_empty_slot = regindex;
3953 	}
3954 
3955 	/* If we are here then we didn't find the VLAN.  Return first empty
3956 	 * slot we found during our search, else error.
3957 	 */
3958 	if (!first_empty_slot)
3959 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3960 
3961 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3962 }
3963 
3964 /**
3965  *  ixgbe_set_vfta_generic - Set VLAN filter table
3966  *  @hw: pointer to hardware structure
3967  *  @vlan: VLAN id to write to VLAN filter
3968  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
3969  *  @vlan_on: boolean flag to turn on/off VLAN
3970  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3971  *
3972  *  Turn on/off specified VLAN in the VLAN filter table.
3973  **/
3974 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3975 			   bool vlan_on, bool vlvf_bypass)
3976 {
3977 	u32 regidx, vfta_delta, vfta;
3978 	s32 ret_val;
3979 
3980 	DEBUGFUNC("ixgbe_set_vfta_generic");
3981 
3982 	if (vlan > 4095 || vind > 63)
3983 		return IXGBE_ERR_PARAM;
3984 
3985 	/*
3986 	 * this is a 2 part operation - first the VFTA, then the
3987 	 * VLVF and VLVFB if VT Mode is set
3988 	 * We don't write the VFTA until we know the VLVF part succeeded.
3989 	 */
3990 
3991 	/* Part 1
3992 	 * The VFTA is a bitstring made up of 128 32-bit registers
3993 	 * that enable the particular VLAN id, much like the MTA:
3994 	 *    bits[11-5]: which register
3995 	 *    bits[4-0]:  which bit in the register
3996 	 */
3997 	regidx = vlan / 32;
3998 	vfta_delta = 1 << (vlan % 32);
3999 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
4000 
4001 	/*
4002 	 * vfta_delta represents the difference between the current value
4003 	 * of vfta and the value we want in the register.  Since the diff
4004 	 * is an XOR mask we can just update the vfta using an XOR
4005 	 */
4006 	vfta_delta &= vlan_on ? ~vfta : vfta;
4007 	vfta ^= vfta_delta;
4008 
4009 	/* Part 2
4010 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4011 	 */
4012 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4013 					 vfta, vlvf_bypass);
4014 	if (ret_val != IXGBE_SUCCESS) {
4015 		if (vlvf_bypass)
4016 			goto vfta_update;
4017 		return ret_val;
4018 	}
4019 
4020 vfta_update:
4021 	/* Update VFTA now that we are ready for traffic */
4022 	if (vfta_delta)
4023 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4024 
4025 	return IXGBE_SUCCESS;
4026 }
4027 
4028 /**
4029  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4030  *  @hw: pointer to hardware structure
4031  *  @vlan: VLAN id to write to VLAN filter
4032  *  @vind: VMDq output index that maps queue to VLAN id in VLVFB
4033  *  @vlan_on: boolean flag to turn on/off VLAN in VLVF
4034  *  @vfta_delta: pointer to the difference between the current value of VFTA
4035  *		 and the desired value
4036  *  @vfta: the desired value of the VFTA
4037  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
4038  *
4039  *  Turn on/off specified bit in VLVF table.
4040  **/
4041 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4042 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4043 			   bool vlvf_bypass)
4044 {
4045 	u32 bits;
4046 	s32 vlvf_index;
4047 
4048 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4049 
4050 	if (vlan > 4095 || vind > 63)
4051 		return IXGBE_ERR_PARAM;
4052 
4053 	/* If VT Mode is set
4054 	 *   Either vlan_on
4055 	 *     make sure the vlan is in VLVF
4056 	 *     set the vind bit in the matching VLVFB
4057 	 *   Or !vlan_on
4058 	 *     clear the pool bit and possibly the vind
4059 	 */
4060 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4061 		return IXGBE_SUCCESS;
4062 
4063 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4064 	if (vlvf_index < 0)
4065 		return vlvf_index;
4066 
4067 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4068 
4069 	/* set the pool bit */
4070 	bits |= 1 << (vind % 32);
4071 	if (vlan_on)
4072 		goto vlvf_update;
4073 
4074 	/* clear the pool bit */
4075 	bits ^= 1 << (vind % 32);
4076 
4077 	if (!bits &&
4078 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4079 		/* Clear VFTA first, then disable VLVF.  Otherwise
4080 		 * we run the risk of stray packets leaking into
4081 		 * the PF via the default pool
4082 		 */
4083 		if (*vfta_delta)
4084 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4085 
4086 		/* disable VLVF and clear remaining bit from pool */
4087 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4088 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4089 
4090 		return IXGBE_SUCCESS;
4091 	}
4092 
4093 	/* If there are still bits set in the VLVFB registers
4094 	 * for the VLAN ID indicated we need to see if the
4095 	 * caller is requesting that we clear the VFTA entry bit.
4096 	 * If the caller has requested that we clear the VFTA
4097 	 * entry bit but there are still pools/VFs using this VLAN
4098 	 * ID entry then ignore the request.  We're not worried
4099 	 * about the case where we're turning the VFTA VLAN ID
4100 	 * entry bit on, only when requested to turn it off as
4101 	 * there may be multiple pools and/or VFs using the
4102 	 * VLAN ID entry.  In that case we cannot clear the
4103 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4104 	 * been cleared.  This will be indicated by "bits" being
4105 	 * zero.
4106 	 */
4107 	*vfta_delta = 0;
4108 
4109 vlvf_update:
4110 	/* record pool change and enable VLAN ID if not already enabled */
4111 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4112 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4113 
4114 	return IXGBE_SUCCESS;
4115 }
4116 
4117 /**
4118  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4119  *  @hw: pointer to hardware structure
4120  *
4121  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4122  **/
4123 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4124 {
4125 	u32 offset;
4126 
4127 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4128 
4129 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4130 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4131 
4132 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4133 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4134 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4135 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4136 	}
4137 
4138 	return IXGBE_SUCCESS;
4139 }
4140 
4141 /**
4142  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4143  *  @hw: pointer to hardware structure
4144  *
4145  *  Contains the logic to identify if we need to verify link for the
4146  *  crosstalk fix
4147  **/
4148 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4149 {
4150 
4151 	/* Does FW say we need the fix */
4152 	if (!hw->need_crosstalk_fix)
4153 		return FALSE;
4154 
4155 	/* Only consider SFP+ PHYs i.e. media type fiber */
4156 	switch (hw->mac.ops.get_media_type(hw)) {
4157 	case ixgbe_media_type_fiber:
4158 	case ixgbe_media_type_fiber_qsfp:
4159 		break;
4160 	default:
4161 		return FALSE;
4162 	}
4163 
4164 	return TRUE;
4165 }
4166 
4167 /**
4168  *  ixgbe_check_mac_link_generic - Determine link and speed status
4169  *  @hw: pointer to hardware structure
4170  *  @speed: pointer to link speed
4171  *  @link_up: TRUE when link is up
4172  *  @link_up_wait_to_complete: bool used to wait for link up or not
4173  *
4174  *  Reads the links register to determine if link is up and the current speed
4175  **/
4176 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4177 				 bool *link_up, bool link_up_wait_to_complete)
4178 {
4179 	u32 links_reg, links_orig;
4180 	u32 i;
4181 
4182 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4183 
4184 	/* If Crosstalk fix enabled do the sanity check of making sure
4185 	 * the SFP+ cage is full.
4186 	 */
4187 	if (ixgbe_need_crosstalk_fix(hw)) {
4188 		u32 sfp_cage_full;
4189 
4190 		switch (hw->mac.type) {
4191 		case ixgbe_mac_82599EB:
4192 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4193 					IXGBE_ESDP_SDP2;
4194 			break;
4195 		case ixgbe_mac_X550EM_x:
4196 		case ixgbe_mac_X550EM_a:
4197 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4198 					IXGBE_ESDP_SDP0;
4199 			break;
4200 		default:
4201 			/* sanity check - No SFP+ devices here */
4202 			sfp_cage_full = FALSE;
4203 			break;
4204 		}
4205 
4206 		if (!sfp_cage_full) {
4207 			*link_up = FALSE;
4208 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4209 			return IXGBE_SUCCESS;
4210 		}
4211 	}
4212 
4213 	/* clear the old state */
4214 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4215 
4216 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4217 
4218 	if (links_orig != links_reg) {
4219 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4220 			  links_orig, links_reg);
4221 	}
4222 
4223 	if (link_up_wait_to_complete) {
4224 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4225 			if (links_reg & IXGBE_LINKS_UP) {
4226 				*link_up = TRUE;
4227 				break;
4228 			} else {
4229 				*link_up = FALSE;
4230 			}
4231 			msec_delay(100);
4232 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4233 		}
4234 	} else {
4235 		if (links_reg & IXGBE_LINKS_UP)
4236 			*link_up = TRUE;
4237 		else
4238 			*link_up = FALSE;
4239 	}
4240 
4241 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4242 	case IXGBE_LINKS_SPEED_10G_82599:
4243 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4244 		if (hw->mac.type >= ixgbe_mac_X550) {
4245 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4246 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4247 		}
4248 		break;
4249 	case IXGBE_LINKS_SPEED_1G_82599:
4250 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4251 		break;
4252 	case IXGBE_LINKS_SPEED_100_82599:
4253 		*speed = IXGBE_LINK_SPEED_100_FULL;
4254 		if (hw->mac.type == ixgbe_mac_X550) {
4255 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4256 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4257 		}
4258 		break;
4259 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4260 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4261 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4262 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4263 			*speed = IXGBE_LINK_SPEED_10_FULL;
4264 		break;
4265 	default:
4266 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4267 	}
4268 
4269 	return IXGBE_SUCCESS;
4270 }
4271 
4272 /**
4273  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4274  *  the EEPROM
4275  *  @hw: pointer to hardware structure
4276  *  @wwnn_prefix: the alternative WWNN prefix
4277  *  @wwpn_prefix: the alternative WWPN prefix
4278  *
4279  *  This function will read the EEPROM from the alternative SAN MAC address
4280  *  block to check the support for the alternative WWNN/WWPN prefix support.
4281  **/
4282 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4283 				 u16 *wwpn_prefix)
4284 {
4285 	u16 offset, caps;
4286 	u16 alt_san_mac_blk_offset;
4287 
4288 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4289 
4290 	/* clear output first */
4291 	*wwnn_prefix = 0xFFFF;
4292 	*wwpn_prefix = 0xFFFF;
4293 
4294 	/* check if alternative SAN MAC is supported */
4295 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4296 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4297 		goto wwn_prefix_err;
4298 
4299 	if ((alt_san_mac_blk_offset == 0) ||
4300 	    (alt_san_mac_blk_offset == 0xFFFF))
4301 		goto wwn_prefix_out;
4302 
4303 	/* check capability in alternative san mac address block */
4304 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4305 	if (hw->eeprom.ops.read(hw, offset, &caps))
4306 		goto wwn_prefix_err;
4307 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4308 		goto wwn_prefix_out;
4309 
4310 	/* get the corresponding prefix for WWNN/WWPN */
4311 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4312 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4313 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4314 			      "eeprom read at offset %d failed", offset);
4315 	}
4316 
4317 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4318 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4319 		goto wwn_prefix_err;
4320 
4321 wwn_prefix_out:
4322 	return IXGBE_SUCCESS;
4323 
4324 wwn_prefix_err:
4325 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4326 		      "eeprom read at offset %d failed", offset);
4327 	return IXGBE_SUCCESS;
4328 }
4329 
4330 /**
4331  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4332  *  @hw: pointer to hardware structure
4333  *  @bs: the fcoe boot status
4334  *
4335  *  This function will read the FCOE boot status from the iSCSI FCOE block
4336  **/
4337 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4338 {
4339 	u16 offset, caps, flags;
4340 	s32 status;
4341 
4342 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4343 
4344 	/* clear output first */
4345 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4346 
4347 	/* check if FCOE IBA block is present */
4348 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4349 	status = hw->eeprom.ops.read(hw, offset, &caps);
4350 	if (status != IXGBE_SUCCESS)
4351 		goto out;
4352 
4353 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4354 		goto out;
4355 
4356 	/* check if iSCSI FCOE block is populated */
4357 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4358 	if (status != IXGBE_SUCCESS)
4359 		goto out;
4360 
4361 	if ((offset == 0) || (offset == 0xFFFF))
4362 		goto out;
4363 
4364 	/* read fcoe flags in iSCSI FCOE block */
4365 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4366 	status = hw->eeprom.ops.read(hw, offset, &flags);
4367 	if (status != IXGBE_SUCCESS)
4368 		goto out;
4369 
4370 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4371 		*bs = ixgbe_fcoe_bootstatus_enabled;
4372 	else
4373 		*bs = ixgbe_fcoe_bootstatus_disabled;
4374 
4375 out:
4376 	return status;
4377 }
4378 
4379 /**
4380  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4381  *  @hw: pointer to hardware structure
4382  *  @enable: enable or disable switch for MAC anti-spoofing
4383  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4384  *
4385  **/
4386 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4387 {
4388 	int vf_target_reg = vf >> 3;
4389 	int vf_target_shift = vf % 8;
4390 	u32 pfvfspoof;
4391 
4392 	if (hw->mac.type == ixgbe_mac_82598EB)
4393 		return;
4394 
4395 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4396 	if (enable)
4397 		pfvfspoof |= (1 << vf_target_shift);
4398 	else
4399 		pfvfspoof &= ~(1 << vf_target_shift);
4400 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4401 }
4402 
4403 /**
4404  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4405  *  @hw: pointer to hardware structure
4406  *  @enable: enable or disable switch for VLAN anti-spoofing
4407  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4408  *
4409  **/
4410 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4411 {
4412 	int vf_target_reg = vf >> 3;
4413 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4414 	u32 pfvfspoof;
4415 
4416 	if (hw->mac.type == ixgbe_mac_82598EB)
4417 		return;
4418 
4419 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4420 	if (enable)
4421 		pfvfspoof |= (1 << vf_target_shift);
4422 	else
4423 		pfvfspoof &= ~(1 << vf_target_shift);
4424 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4425 }
4426 
4427 /**
4428  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4429  *  @hw: pointer to hardware structure
4430  *  @device_caps: the EEPROM word with the extra device capabilities
4431  *
4432  *  This function will read the EEPROM location for the device capabilities,
4433  *  and return the word through device_caps.
4434  **/
4435 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4436 {
4437 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4438 
4439 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4440 
4441 	return IXGBE_SUCCESS;
4442 }
4443 
4444 /**
4445  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4446  *  @hw: pointer to hardware structure
4447  *
4448  **/
4449 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4450 {
4451 	u32 regval;
4452 	u32 i;
4453 
4454 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4455 
4456 	/* Enable relaxed ordering */
4457 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4458 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4459 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4460 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4461 	}
4462 
4463 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4464 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4465 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4466 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4467 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4468 	}
4469 
4470 }
4471 
4472 /**
4473  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4474  *  @buffer: pointer to EEPROM
4475  *  @length: size of EEPROM to calculate a checksum for
4476  *  Calculates the checksum for some buffer on a specified length.  The
4477  *  checksum calculated is returned.
4478  **/
4479 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4480 {
4481 	u32 i;
4482 	u8 sum = 0;
4483 
4484 	DEBUGFUNC("ixgbe_calculate_checksum");
4485 
4486 	if (!buffer)
4487 		return 0;
4488 
4489 	for (i = 0; i < length; i++)
4490 		sum += buffer[i];
4491 
4492 	return (u8) (0 - sum);
4493 }
4494 
4495 /**
4496  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
4497  *  @hw: pointer to the HW structure
4498  *  @buffer: command to write and where the return status will be placed
4499  *  @length: length of buffer, must be multiple of 4 bytes
4500  *  @timeout: time in ms to wait for command completion
4501  *
4502  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4503  *  else returns semaphore error when encountering an error acquiring
4504  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4505  *
4506  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4507  *  by the caller.
4508  **/
4509 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4510 		       u32 timeout)
4511 {
4512 	u32 hicr, i, fwsts;
4513 	u16 dword_len;
4514 
4515 	DEBUGFUNC("ixgbe_hic_unlocked");
4516 
4517 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4518 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4519 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4520 	}
4521 
4522 	/* Set bit 9 of FWSTS clearing FW reset indication */
4523 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4524 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4525 
4526 	/* Check that the host interface is enabled. */
4527 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4528 	if (!(hicr & IXGBE_HICR_EN)) {
4529 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4530 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4531 	}
4532 
4533 	/* Calculate length in DWORDs. We must be DWORD aligned */
4534 	if (length % sizeof(u32)) {
4535 		DEBUGOUT("Buffer length failure, not aligned to dword");
4536 		return IXGBE_ERR_INVALID_ARGUMENT;
4537 	}
4538 
4539 	dword_len = length >> 2;
4540 
4541 	/* The device driver writes the relevant command block
4542 	 * into the ram area.
4543 	 */
4544 	for (i = 0; i < dword_len; i++)
4545 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4546 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4547 
4548 	/* Setting this bit tells the ARC that a new command is pending. */
4549 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4550 
4551 	for (i = 0; i < timeout; i++) {
4552 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4553 		if (!(hicr & IXGBE_HICR_C))
4554 			break;
4555 		msec_delay(1);
4556 	}
4557 
4558 	/* Check command completion */
4559 	if ((timeout && i == timeout) ||
4560 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4561 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4562 			     "Command has failed with no status valid.\n");
4563 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4564 	}
4565 
4566 	return IXGBE_SUCCESS;
4567 }
4568 
4569 /**
4570  *  ixgbe_host_interface_command - Issue command to manageability block
4571  *  @hw: pointer to the HW structure
4572  *  @buffer: contains the command to write and where the return status will
4573  *   be placed
4574  *  @length: length of buffer, must be multiple of 4 bytes
4575  *  @timeout: time in ms to wait for command completion
4576  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4577  *   Needed because FW structures are big endian and decoding of
4578  *   these fields can be 8 bit or 16 bit based on command. Decoding
4579  *   is not easily understood without making a table of commands.
4580  *   So we will leave this up to the caller to read back the data
4581  *   in these cases.
4582  *
4583  *  Communicates with the manageability block. On success return IXGBE_SUCCESS
4584  *  else returns semaphore error when encountering an error acquiring
4585  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4586  **/
4587 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4588 				 u32 length, u32 timeout, bool return_data)
4589 {
4590 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4591 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4592 	u16 buf_len;
4593 	s32 status;
4594 	u32 bi;
4595 	u32 dword_len;
4596 
4597 	DEBUGFUNC("ixgbe_host_interface_command");
4598 
4599 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4600 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4601 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4602 	}
4603 
4604 	/* Take management host interface semaphore */
4605 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4606 	if (status)
4607 		return status;
4608 
4609 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4610 	if (status)
4611 		goto rel_out;
4612 
4613 	if (!return_data)
4614 		goto rel_out;
4615 
4616 	/* Calculate length in DWORDs */
4617 	dword_len = hdr_size >> 2;
4618 
4619 	/* first pull in the header so we know the buffer length */
4620 	for (bi = 0; bi < dword_len; bi++) {
4621 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4622 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4623 	}
4624 
4625 	/*
4626 	 * If there is any thing in data position pull it in
4627 	 * Read Flash command requires reading buffer length from
4628 	 * two byes instead of one byte
4629 	 */
4630 	if (resp->cmd == 0x30) {
4631 		for (; bi < dword_len + 2; bi++) {
4632 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4633 							  bi);
4634 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4635 		}
4636 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4637 				  & 0xF00) | resp->buf_len;
4638 		hdr_size += (2 << 2);
4639 	} else {
4640 		buf_len = resp->buf_len;
4641 	}
4642 	if (!buf_len)
4643 		goto rel_out;
4644 
4645 	if (length < buf_len + hdr_size) {
4646 		DEBUGOUT("Buffer not large enough for reply message.\n");
4647 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4648 		goto rel_out;
4649 	}
4650 
4651 	/* Calculate length in DWORDs, add 3 for odd lengths */
4652 	dword_len = (buf_len + 3) >> 2;
4653 
4654 	/* Pull in the rest of the buffer (bi is where we left off) */
4655 	for (; bi <= dword_len; bi++) {
4656 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4657 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4658 	}
4659 
4660 rel_out:
4661 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4662 
4663 	return status;
4664 }
4665 
4666 /**
4667  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4668  *  @hw: pointer to the HW structure
4669  *  @maj: driver version major number
4670  *  @min: driver version minor number
4671  *  @build: driver version build number
4672  *  @sub: driver version sub build number
4673  *  @len: unused
4674  *  @driver_ver: unused
4675  *
4676  *  Sends driver version number to firmware through the manageability
4677  *  block.  On success return IXGBE_SUCCESS
4678  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4679  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4680  **/
4681 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4682 				 u8 build, u8 sub, u16 len,
4683 				 const char *driver_ver)
4684 {
4685 	struct ixgbe_hic_drv_info fw_cmd;
4686 	int i;
4687 	s32 ret_val = IXGBE_SUCCESS;
4688 
4689 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4690 	UNREFERENCED_2PARAMETER(len, driver_ver);
4691 
4692 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4693 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4694 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4695 	fw_cmd.port_num = (u8)hw->bus.func;
4696 	fw_cmd.ver_maj = maj;
4697 	fw_cmd.ver_min = min;
4698 	fw_cmd.ver_build = build;
4699 	fw_cmd.ver_sub = sub;
4700 	fw_cmd.hdr.checksum = 0;
4701 	fw_cmd.pad = 0;
4702 	fw_cmd.pad2 = 0;
4703 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4704 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4705 
4706 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4707 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4708 						       sizeof(fw_cmd),
4709 						       IXGBE_HI_COMMAND_TIMEOUT,
4710 						       TRUE);
4711 		if (ret_val != IXGBE_SUCCESS)
4712 			continue;
4713 
4714 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4715 		    FW_CEM_RESP_STATUS_SUCCESS)
4716 			ret_val = IXGBE_SUCCESS;
4717 		else
4718 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4719 
4720 		break;
4721 	}
4722 
4723 	return ret_val;
4724 }
4725 
4726 /**
4727  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4728  * @hw: pointer to hardware structure
4729  * @num_pb: number of packet buffers to allocate
4730  * @headroom: reserve n KB of headroom
4731  * @strategy: packet buffer allocation strategy
4732  **/
4733 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4734 			     int strategy)
4735 {
4736 	u32 pbsize = hw->mac.rx_pb_size;
4737 	int i = 0;
4738 	u32 rxpktsize, txpktsize, txpbthresh;
4739 
4740 	/* Reserve headroom */
4741 	pbsize -= headroom;
4742 
4743 	if (!num_pb)
4744 		num_pb = 1;
4745 
4746 	/* Divide remaining packet buffer space amongst the number of packet
4747 	 * buffers requested using supplied strategy.
4748 	 */
4749 	switch (strategy) {
4750 	case PBA_STRATEGY_WEIGHTED:
4751 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4752 		 * buffer with 5/8 of the packet buffer space.
4753 		 */
4754 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4755 		pbsize -= rxpktsize * (num_pb / 2);
4756 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4757 		for (; i < (num_pb / 2); i++)
4758 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4759 		/* fall through - configure remaining packet buffers */
4760 	case PBA_STRATEGY_EQUAL:
4761 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4762 		for (; i < num_pb; i++)
4763 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4764 		break;
4765 	default:
4766 		break;
4767 	}
4768 
4769 	/* Only support an equally distributed Tx packet buffer strategy. */
4770 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4771 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4772 	for (i = 0; i < num_pb; i++) {
4773 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4774 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4775 	}
4776 
4777 	/* Clear unused TCs, if any, to zero buffer size*/
4778 	for (; i < IXGBE_MAX_PB; i++) {
4779 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4780 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4781 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4782 	}
4783 }
4784 
4785 /**
4786  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4787  * @hw: pointer to the hardware structure
4788  *
4789  * The 82599 and x540 MACs can experience issues if TX work is still pending
4790  * when a reset occurs.  This function prevents this by flushing the PCIe
4791  * buffers on the system.
4792  **/
4793 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4794 {
4795 	u32 gcr_ext, hlreg0, i, poll;
4796 	u16 value;
4797 
4798 	/*
4799 	 * If double reset is not requested then all transactions should
4800 	 * already be clear and as such there is no work to do
4801 	 */
4802 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4803 		return;
4804 
4805 	/*
4806 	 * Set loopback enable to prevent any transmits from being sent
4807 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4808 	 * has already been cleared.
4809 	 */
4810 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4811 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4812 
4813 	/* Wait for a last completion before clearing buffers */
4814 	IXGBE_WRITE_FLUSH(hw);
4815 	msec_delay(3);
4816 
4817 	/*
4818 	 * Before proceeding, make sure that the PCIe block does not have
4819 	 * transactions pending.
4820 	 */
4821 	poll = ixgbe_pcie_timeout_poll(hw);
4822 	for (i = 0; i < poll; i++) {
4823 		usec_delay(100);
4824 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4825 		if (IXGBE_REMOVED(hw->hw_addr))
4826 			goto out;
4827 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4828 			goto out;
4829 	}
4830 
4831 out:
4832 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4833 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4834 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4835 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4836 
4837 	/* Flush all writes and allow 20usec for all transactions to clear */
4838 	IXGBE_WRITE_FLUSH(hw);
4839 	usec_delay(20);
4840 
4841 	/* restore previous register values */
4842 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4843 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4844 }
4845 
4846 /**
4847  *  ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
4848  *
4849  *  @hw: pointer to hardware structure
4850  *  @cmd: Command we send to the FW
4851  *  @status: The reply from the FW
4852  *
4853  *  Bit-bangs the cmd to the by_pass FW status points to what is returned.
4854  **/
4855 #define IXGBE_BYPASS_BB_WAIT 1
4856 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
4857 {
4858 	int i;
4859 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
4860 	u32 esdp;
4861 
4862 	if (!status)
4863 		return IXGBE_ERR_PARAM;
4864 
4865 	*status = 0;
4866 
4867 	/* SDP vary by MAC type */
4868 	switch (hw->mac.type) {
4869 	case ixgbe_mac_82599EB:
4870 		sck = IXGBE_ESDP_SDP7;
4871 		sdi = IXGBE_ESDP_SDP0;
4872 		sdo = IXGBE_ESDP_SDP6;
4873 		dir_sck = IXGBE_ESDP_SDP7_DIR;
4874 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4875 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
4876 		break;
4877 	case ixgbe_mac_X540:
4878 		sck = IXGBE_ESDP_SDP2;
4879 		sdi = IXGBE_ESDP_SDP0;
4880 		sdo = IXGBE_ESDP_SDP1;
4881 		dir_sck = IXGBE_ESDP_SDP2_DIR;
4882 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
4883 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
4884 		break;
4885 	default:
4886 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
4887 	}
4888 
4889 	/* Set SDP pins direction */
4890 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4891 	esdp |= dir_sck;	/* SCK as output */
4892 	esdp |= dir_sdi;	/* SDI as output */
4893 	esdp &= ~dir_sdo;	/* SDO as input */
4894 	esdp |= sck;
4895 	esdp |= sdi;
4896 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4897 	IXGBE_WRITE_FLUSH(hw);
4898 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4899 
4900 	/* Generate start condition */
4901 	esdp &= ~sdi;
4902 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4903 	IXGBE_WRITE_FLUSH(hw);
4904 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4905 
4906 	esdp &= ~sck;
4907 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4908 	IXGBE_WRITE_FLUSH(hw);
4909 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4910 
4911 	/* Clock out the new control word and clock in the status */
4912 	for (i = 0; i < 32; i++) {
4913 		if ((cmd >> (31 - i)) & 0x01) {
4914 			esdp |= sdi;
4915 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4916 		} else {
4917 			esdp &= ~sdi;
4918 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4919 		}
4920 		IXGBE_WRITE_FLUSH(hw);
4921 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4922 
4923 		esdp |= sck;
4924 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4925 		IXGBE_WRITE_FLUSH(hw);
4926 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4927 
4928 		esdp &= ~sck;
4929 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4930 		IXGBE_WRITE_FLUSH(hw);
4931 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4932 
4933 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
4934 		if (esdp & sdo)
4935 			*status = (*status << 1) | 0x01;
4936 		else
4937 			*status = (*status << 1) | 0x00;
4938 		msec_delay(IXGBE_BYPASS_BB_WAIT);
4939 	}
4940 
4941 	/* stop condition */
4942 	esdp |= sck;
4943 	esdp &= ~sdi;
4944 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4945 	IXGBE_WRITE_FLUSH(hw);
4946 	msec_delay(IXGBE_BYPASS_BB_WAIT);
4947 
4948 	esdp |= sdi;
4949 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
4950 	IXGBE_WRITE_FLUSH(hw);
4951 
4952 	/* set the page bits to match the cmd that the status it belongs to */
4953 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
4954 
4955 	return IXGBE_SUCCESS;
4956 }
4957 
4958 /**
4959  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
4960  *
4961  * If we send a write we can't be sure it took until we can read back
4962  * that same register.  It can be a problem as some of the feilds may
4963  * for valid reasons change inbetween the time wrote the register and
4964  * we read it again to verify.  So this function check everything we
4965  * can check and then assumes it worked.
4966  *
4967  * @u32 in_reg - The register cmd for the bit-bang read.
4968  * @u32 out_reg - The register returned from a bit-bang read.
4969  **/
4970 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
4971 {
4972 	u32 mask;
4973 
4974 	/* Page must match for all control pages */
4975 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
4976 		return FALSE;
4977 
4978 	switch (in_reg & BYPASS_PAGE_M) {
4979 	case BYPASS_PAGE_CTL0:
4980 		/* All the following can't change since the last write
4981 		 *  - All the event actions
4982 		 *  - The timeout value
4983 		 */
4984 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
4985 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
4986 		       BYPASS_WDTIMEOUT_M |
4987 		       BYPASS_WDT_VALUE_M;
4988 		if ((out_reg & mask) != (in_reg & mask))
4989 			return FALSE;
4990 
4991 		/* 0x0 is never a valid value for bypass status */
4992 		if (!(out_reg & BYPASS_STATUS_OFF_M))
4993 			return FALSE;
4994 		break;
4995 	case BYPASS_PAGE_CTL1:
4996 		/* All the following can't change since the last write
4997 		 *  - time valid bit
4998 		 *  - time we last sent
4999 		 */
5000 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5001 		if ((out_reg & mask) != (in_reg & mask))
5002 			return FALSE;
5003 		break;
5004 	case BYPASS_PAGE_CTL2:
5005 		/* All we can check in this page is control number
5006 		 * which is already done above.
5007 		 */
5008 		break;
5009 	}
5010 
5011 	/* We are as sure as we can be return TRUE */
5012 	return TRUE;
5013 }
5014 
5015 /**
5016  *  ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5017  *
5018  *  @hw: pointer to hardware structure
5019  *  @cmd: The control word we are setting.
5020  *  @event: The event we are setting in the FW.  This also happens to
5021  *	    be the mask for the event we are setting (handy)
5022  *  @action: The action we set the event to in the FW. This is in a
5023  *	     bit field that happens to be what we want to put in
5024  *	     the event spot (also handy)
5025  **/
5026 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5027 			     u32 action)
5028 {
5029 	u32 by_ctl = 0;
5030 	u32 cmd, verify;
5031 	u32 count = 0;
5032 
5033 	/* Get current values */
5034 	cmd = ctrl;	/* just reading only need control number */
5035 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5036 		return IXGBE_ERR_INVALID_ARGUMENT;
5037 
5038 	/* Set to new action */
5039 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5040 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5041 		return IXGBE_ERR_INVALID_ARGUMENT;
5042 
5043 	/* Page 0 force a FW eeprom write which is slow so verify */
5044 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5045 		verify = BYPASS_PAGE_CTL0;
5046 		do {
5047 			if (count++ > 5)
5048 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5049 
5050 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5051 				return IXGBE_ERR_INVALID_ARGUMENT;
5052 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5053 	} else {
5054 		/* We have give the FW time for the write to stick */
5055 		msec_delay(100);
5056 	}
5057 
5058 	return IXGBE_SUCCESS;
5059 }
5060 
5061 /**
5062  *  ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5063  *
5064  *  @hw: pointer to hardware structure
5065  *  @addr: The bypass eeprom address to read.
5066  *  @value: The 8b of data at the address above.
5067  **/
5068 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5069 {
5070 	u32 cmd;
5071 	u32 status;
5072 
5073 
5074 	/* send the request */
5075 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5076 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5077 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5078 		return IXGBE_ERR_INVALID_ARGUMENT;
5079 
5080 	/* We have give the FW time for the write to stick */
5081 	msec_delay(100);
5082 
5083 	/* now read the results */
5084 	cmd &= ~BYPASS_WE;
5085 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5086 		return IXGBE_ERR_INVALID_ARGUMENT;
5087 
5088 	*value = status & BYPASS_CTL2_DATA_M;
5089 
5090 	return IXGBE_SUCCESS;
5091 }
5092 
5093 /**
5094  *  ixgbe_get_orom_version - Return option ROM from EEPROM
5095  *
5096  *  @hw: pointer to hardware structure
5097  *  @nvm_ver: pointer to output structure
5098  *
5099  *  if valid option ROM version, nvm_ver->or_valid set to TRUE
5100  *  else nvm_ver->or_valid is FALSE.
5101  **/
5102 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5103 			    struct ixgbe_nvm_version *nvm_ver)
5104 {
5105 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5106 
5107 	nvm_ver->or_valid = FALSE;
5108 	/* Option Rom may or may not be present.  Start with pointer */
5109 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5110 
5111 	/* make sure offset is valid */
5112 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5113 		return;
5114 
5115 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5116 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5117 
5118 	/* option rom exists and is valid */
5119 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5120 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5121 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5122 		return;
5123 
5124 	nvm_ver->or_valid = TRUE;
5125 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5126 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5127 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5128 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5129 }
5130 
5131 /**
5132  *  ixgbe_get_oem_prod_version - Return OEM Product version
5133  *
5134  *  @hw: pointer to hardware structure
5135  *  @nvm_ver: pointer to output structure
5136  *
5137  *  if valid OEM product version, nvm_ver->oem_valid set to TRUE
5138  *  else nvm_ver->oem_valid is FALSE.
5139  **/
5140 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5141 				struct ixgbe_nvm_version *nvm_ver)
5142 {
5143 	u16 rel_num, prod_ver, mod_len, cap, offset;
5144 
5145 	nvm_ver->oem_valid = FALSE;
5146 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5147 
5148 	/* Return is offset to OEM Product Version block is invalid */
5149 	if (offset == 0x0 && offset == NVM_INVALID_PTR)
5150 		return;
5151 
5152 	/* Read product version block */
5153 	hw->eeprom.ops.read(hw, offset, &mod_len);
5154 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5155 
5156 	/* Return if OEM product version block is invalid */
5157 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5158 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5159 		return;
5160 
5161 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5162 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5163 
5164 	/* Return if version is invalid */
5165 	if ((rel_num | prod_ver) == 0x0 ||
5166 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5167 		return;
5168 
5169 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5170 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5171 	nvm_ver->oem_release = rel_num;
5172 	nvm_ver->oem_valid = TRUE;
5173 }
5174 
5175 /**
5176  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
5177  *
5178  *  @hw: pointer to hardware structure
5179  *  @nvm_ver: pointer to output structure
5180  *
5181  *  word read errors will return 0xFFFF
5182  **/
5183 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5184 {
5185 	u16 etk_id_l, etk_id_h;
5186 
5187 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5188 		etk_id_l = NVM_VER_INVALID;
5189 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5190 		etk_id_h = NVM_VER_INVALID;
5191 
5192 	/* The word order for the version format is determined by high order
5193 	 * word bit 15.
5194 	 */
5195 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5196 		nvm_ver->etk_id = etk_id_h;
5197 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5198 	} else {
5199 		nvm_ver->etk_id = etk_id_l;
5200 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5201 	}
5202 }
5203 
5204 
5205 /**
5206  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5207  * @hw: pointer to hardware structure
5208  * @map: pointer to u8 arr for returning map
5209  *
5210  * Read the rtrup2tc HW register and resolve its content into map
5211  **/
5212 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5213 {
5214 	u32 reg, i;
5215 
5216 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5217 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5218 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5219 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5220 	return;
5221 }
5222 
5223 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5224 {
5225 	u32 pfdtxgswc;
5226 	u32 rxctrl;
5227 
5228 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5229 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5230 		if (hw->mac.type != ixgbe_mac_82598EB) {
5231 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5232 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5233 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5234 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5235 				hw->mac.set_lben = TRUE;
5236 			} else {
5237 				hw->mac.set_lben = FALSE;
5238 			}
5239 		}
5240 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5241 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5242 	}
5243 }
5244 
5245 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5246 {
5247 	u32 pfdtxgswc;
5248 	u32 rxctrl;
5249 
5250 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5251 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5252 
5253 	if (hw->mac.type != ixgbe_mac_82598EB) {
5254 		if (hw->mac.set_lben) {
5255 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5256 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5257 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5258 			hw->mac.set_lben = FALSE;
5259 		}
5260 	}
5261 }
5262 
5263 /**
5264  * ixgbe_mng_present - returns TRUE when management capability is present
5265  * @hw: pointer to hardware structure
5266  */
5267 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5268 {
5269 	u32 fwsm;
5270 
5271 	if (hw->mac.type < ixgbe_mac_82599EB)
5272 		return FALSE;
5273 
5274 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5275 
5276 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5277 }
5278 
5279 /**
5280  * ixgbe_mng_enabled - Is the manageability engine enabled?
5281  * @hw: pointer to hardware structure
5282  *
5283  * Returns TRUE if the manageability engine is enabled.
5284  **/
5285 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5286 {
5287 	u32 fwsm, manc, factps;
5288 
5289 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5290 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5291 		return FALSE;
5292 
5293 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5294 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5295 		return FALSE;
5296 
5297 	if (hw->mac.type <= ixgbe_mac_X540) {
5298 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5299 		if (factps & IXGBE_FACTPS_MNGCG)
5300 			return FALSE;
5301 	}
5302 
5303 	return TRUE;
5304 }
5305 
5306 /**
5307  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5308  *  @hw: pointer to hardware structure
5309  *  @speed: new link speed
5310  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
5311  *
5312  *  Set the link speed in the MAC and/or PHY register and restarts link.
5313  **/
5314 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5315 					  ixgbe_link_speed speed,
5316 					  bool autoneg_wait_to_complete)
5317 {
5318 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5319 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5320 	s32 status = IXGBE_SUCCESS;
5321 	u32 speedcnt = 0;
5322 	u32 i = 0;
5323 	bool autoneg, link_up = FALSE;
5324 
5325 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5326 
5327 	/* Mask off requested but non-supported speeds */
5328 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5329 	if (status != IXGBE_SUCCESS)
5330 		return status;
5331 
5332 	speed &= link_speed;
5333 
5334 	/* Try each speed one by one, highest priority first.  We do this in
5335 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5336 	 */
5337 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5338 		speedcnt++;
5339 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5340 
5341 		/* Set the module link speed */
5342 		switch (hw->phy.media_type) {
5343 		case ixgbe_media_type_fiber_fixed:
5344 		case ixgbe_media_type_fiber:
5345 			ixgbe_set_rate_select_speed(hw,
5346 						    IXGBE_LINK_SPEED_10GB_FULL);
5347 			break;
5348 		case ixgbe_media_type_fiber_qsfp:
5349 			/* QSFP module automatically detects MAC link speed */
5350 			break;
5351 		default:
5352 			DEBUGOUT("Unexpected media type.\n");
5353 			break;
5354 		}
5355 
5356 		/* Allow module to change analog characteristics (1G->10G) */
5357 		msec_delay(40);
5358 
5359 		status = ixgbe_setup_mac_link(hw,
5360 					      IXGBE_LINK_SPEED_10GB_FULL,
5361 					      autoneg_wait_to_complete);
5362 		if (status != IXGBE_SUCCESS)
5363 			return status;
5364 
5365 		/* Flap the Tx laser if it has not already been done */
5366 		ixgbe_flap_tx_laser(hw);
5367 
5368 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5369 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
5370 		 * attempted.  82599 uses the same timing for 10g SFI.
5371 		 */
5372 		for (i = 0; i < 5; i++) {
5373 			/* Wait for the link partner to also set speed */
5374 			msec_delay(100);
5375 
5376 			/* If we have link, just jump out */
5377 			status = ixgbe_check_link(hw, &link_speed,
5378 						  &link_up, FALSE);
5379 			if (status != IXGBE_SUCCESS)
5380 				return status;
5381 
5382 			if (link_up)
5383 				goto out;
5384 		}
5385 	}
5386 
5387 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5388 		speedcnt++;
5389 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5390 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5391 
5392 		/* Set the module link speed */
5393 		switch (hw->phy.media_type) {
5394 		case ixgbe_media_type_fiber_fixed:
5395 		case ixgbe_media_type_fiber:
5396 			ixgbe_set_rate_select_speed(hw,
5397 						    IXGBE_LINK_SPEED_1GB_FULL);
5398 			break;
5399 		case ixgbe_media_type_fiber_qsfp:
5400 			/* QSFP module automatically detects link speed */
5401 			break;
5402 		default:
5403 			DEBUGOUT("Unexpected media type.\n");
5404 			break;
5405 		}
5406 
5407 		/* Allow module to change analog characteristics (10G->1G) */
5408 		msec_delay(40);
5409 
5410 		status = ixgbe_setup_mac_link(hw,
5411 					      IXGBE_LINK_SPEED_1GB_FULL,
5412 					      autoneg_wait_to_complete);
5413 		if (status != IXGBE_SUCCESS)
5414 			return status;
5415 
5416 		/* Flap the Tx laser if it has not already been done */
5417 		ixgbe_flap_tx_laser(hw);
5418 
5419 		/* Wait for the link partner to also set speed */
5420 		msec_delay(100);
5421 
5422 		/* If we have link, just jump out */
5423 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
5424 		if (status != IXGBE_SUCCESS)
5425 			return status;
5426 
5427 		if (link_up)
5428 			goto out;
5429 	}
5430 
5431 	/* We didn't get link.  Configure back to the highest speed we tried,
5432 	 * (if there was more than one).  We call ourselves back with just the
5433 	 * single highest speed that the user requested.
5434 	 */
5435 	if (speedcnt > 1)
5436 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5437 						      highest_link_speed,
5438 						      autoneg_wait_to_complete);
5439 
5440 out:
5441 	/* Set autoneg_advertised value based on input link speed */
5442 	hw->phy.autoneg_advertised = 0;
5443 
5444 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5445 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5446 
5447 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5448 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5449 
5450 	return status;
5451 }
5452 
5453 /**
5454  *  ixgbe_set_soft_rate_select_speed - Set module link speed
5455  *  @hw: pointer to hardware structure
5456  *  @speed: link speed to set
5457  *
5458  *  Set module link speed via the soft rate select.
5459  */
5460 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5461 					ixgbe_link_speed speed)
5462 {
5463 	s32 status;
5464 	u8 rs, eeprom_data;
5465 
5466 	switch (speed) {
5467 	case IXGBE_LINK_SPEED_10GB_FULL:
5468 		/* one bit mask same as setting on */
5469 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5470 		break;
5471 	case IXGBE_LINK_SPEED_1GB_FULL:
5472 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5473 		break;
5474 	default:
5475 		DEBUGOUT("Invalid fixed module speed\n");
5476 		return;
5477 	}
5478 
5479 	/* Set RS0 */
5480 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5481 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5482 					   &eeprom_data);
5483 	if (status) {
5484 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5485 		goto out;
5486 	}
5487 
5488 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5489 
5490 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5491 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5492 					    eeprom_data);
5493 	if (status) {
5494 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5495 		goto out;
5496 	}
5497 
5498 	/* Set RS1 */
5499 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5500 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5501 					   &eeprom_data);
5502 	if (status) {
5503 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5504 		goto out;
5505 	}
5506 
5507 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5508 
5509 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5510 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5511 					    eeprom_data);
5512 	if (status) {
5513 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5514 		goto out;
5515 	}
5516 out:
5517 	return;
5518 }
5519