1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2020, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 35 #include "ixgbe_common.h" 36 #include "ixgbe_phy.h" 37 #include "ixgbe_dcb.h" 38 #include "ixgbe_dcb_82599.h" 39 #include "ixgbe_api.h" 40 41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); 45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); 46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 47 u16 count); 48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); 49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw); 52 53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); 54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 55 u16 *san_mac_offset); 56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 57 u16 words, u16 *data); 58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 59 u16 words, u16 *data); 60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 61 u16 offset); 62 63 /** 64 * ixgbe_init_ops_generic - Inits function ptrs 65 * @hw: pointer to the hardware structure 66 * 67 * Initialize the function pointers. 68 **/ 69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw) 70 { 71 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 72 struct ixgbe_mac_info *mac = &hw->mac; 73 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 74 75 DEBUGFUNC("ixgbe_init_ops_generic"); 76 77 /* EEPROM */ 78 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic; 79 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */ 80 if (eec & IXGBE_EEC_PRES) { 81 eeprom->ops.read = ixgbe_read_eerd_generic; 82 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic; 83 } else { 84 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic; 85 eeprom->ops.read_buffer = 86 ixgbe_read_eeprom_buffer_bit_bang_generic; 87 } 88 eeprom->ops.write = ixgbe_write_eeprom_generic; 89 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic; 90 eeprom->ops.validate_checksum = 91 ixgbe_validate_eeprom_checksum_generic; 92 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic; 93 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic; 94 95 /* MAC */ 96 mac->ops.init_hw = ixgbe_init_hw_generic; 97 mac->ops.reset_hw = NULL; 98 mac->ops.start_hw = ixgbe_start_hw_generic; 99 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic; 100 mac->ops.get_media_type = NULL; 101 mac->ops.get_supported_physical_layer = NULL; 102 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic; 103 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic; 104 mac->ops.stop_adapter = ixgbe_stop_adapter_generic; 105 mac->ops.get_bus_info = ixgbe_get_bus_info_generic; 106 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie; 107 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync; 108 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync; 109 mac->ops.prot_autoc_read = prot_autoc_read_generic; 110 mac->ops.prot_autoc_write = prot_autoc_write_generic; 111 112 /* LEDs */ 113 mac->ops.led_on = ixgbe_led_on_generic; 114 mac->ops.led_off = ixgbe_led_off_generic; 115 mac->ops.blink_led_start = ixgbe_blink_led_start_generic; 116 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic; 117 mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic; 118 119 /* RAR, Multicast, VLAN */ 120 mac->ops.set_rar = ixgbe_set_rar_generic; 121 mac->ops.clear_rar = ixgbe_clear_rar_generic; 122 mac->ops.insert_mac_addr = NULL; 123 mac->ops.set_vmdq = NULL; 124 mac->ops.clear_vmdq = NULL; 125 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic; 126 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic; 127 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic; 128 mac->ops.enable_mc = ixgbe_enable_mc_generic; 129 mac->ops.disable_mc = ixgbe_disable_mc_generic; 130 mac->ops.clear_vfta = NULL; 131 mac->ops.set_vfta = NULL; 132 mac->ops.set_vlvf = NULL; 133 mac->ops.init_uta_tables = NULL; 134 mac->ops.enable_rx = ixgbe_enable_rx_generic; 135 mac->ops.disable_rx = ixgbe_disable_rx_generic; 136 137 /* Flow Control */ 138 mac->ops.fc_enable = ixgbe_fc_enable_generic; 139 mac->ops.setup_fc = ixgbe_setup_fc_generic; 140 mac->ops.fc_autoneg = ixgbe_fc_autoneg; 141 142 /* Link */ 143 mac->ops.get_link_capabilities = NULL; 144 mac->ops.setup_link = NULL; 145 mac->ops.check_link = NULL; 146 mac->ops.dmac_config = NULL; 147 mac->ops.dmac_update_tcs = NULL; 148 mac->ops.dmac_config_tcs = NULL; 149 150 return IXGBE_SUCCESS; 151 } 152 153 /** 154 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation 155 * of flow control 156 * @hw: pointer to hardware structure 157 * 158 * This function returns true if the device supports flow control 159 * autonegotiation, and false if it does not. 160 * 161 **/ 162 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) 163 { 164 bool supported = false; 165 ixgbe_link_speed speed; 166 bool link_up; 167 168 DEBUGFUNC("ixgbe_device_supports_autoneg_fc"); 169 170 switch (hw->phy.media_type) { 171 case ixgbe_media_type_fiber_fixed: 172 case ixgbe_media_type_fiber_qsfp: 173 case ixgbe_media_type_fiber: 174 /* flow control autoneg black list */ 175 switch (hw->device_id) { 176 case IXGBE_DEV_ID_X550EM_A_SFP: 177 case IXGBE_DEV_ID_X550EM_A_SFP_N: 178 case IXGBE_DEV_ID_X550EM_A_QSFP: 179 case IXGBE_DEV_ID_X550EM_A_QSFP_N: 180 supported = false; 181 break; 182 default: 183 hw->mac.ops.check_link(hw, &speed, &link_up, false); 184 /* if link is down, assume supported */ 185 if (link_up) 186 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ? 187 true : false; 188 else 189 supported = true; 190 } 191 192 break; 193 case ixgbe_media_type_backplane: 194 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI) 195 supported = false; 196 else 197 supported = true; 198 break; 199 case ixgbe_media_type_copper: 200 /* only some copper devices support flow control autoneg */ 201 switch (hw->device_id) { 202 case IXGBE_DEV_ID_82599_T3_LOM: 203 case IXGBE_DEV_ID_X540T: 204 case IXGBE_DEV_ID_X540T1: 205 case IXGBE_DEV_ID_X540_BYPASS: 206 case IXGBE_DEV_ID_X550T: 207 case IXGBE_DEV_ID_X550T1: 208 case IXGBE_DEV_ID_X550EM_X_10G_T: 209 case IXGBE_DEV_ID_X550EM_A_10G_T: 210 case IXGBE_DEV_ID_X550EM_A_1G_T: 211 case IXGBE_DEV_ID_X550EM_A_1G_T_L: 212 supported = true; 213 break; 214 default: 215 supported = false; 216 } 217 default: 218 break; 219 } 220 221 if (!supported) 222 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED, 223 "Device %x does not support flow control autoneg", 224 hw->device_id); 225 226 return supported; 227 } 228 229 /** 230 * ixgbe_setup_fc_generic - Set up flow control 231 * @hw: pointer to hardware structure 232 * 233 * Called at init time to set up flow control. 234 **/ 235 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw) 236 { 237 s32 ret_val = IXGBE_SUCCESS; 238 u32 reg = 0, reg_bp = 0; 239 u16 reg_cu = 0; 240 bool locked = false; 241 242 DEBUGFUNC("ixgbe_setup_fc_generic"); 243 244 /* Validate the requested mode */ 245 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { 246 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED, 247 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); 248 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 249 goto out; 250 } 251 252 /* 253 * 10gig parts do not have a word in the EEPROM to determine the 254 * default flow control setting, so we explicitly set it to full. 255 */ 256 if (hw->fc.requested_mode == ixgbe_fc_default) 257 hw->fc.requested_mode = ixgbe_fc_full; 258 259 /* 260 * Set up the 1G and 10G flow control advertisement registers so the 261 * HW will be able to do fc autoneg once the cable is plugged in. If 262 * we link at 10G, the 1G advertisement is harmless and vice versa. 263 */ 264 switch (hw->phy.media_type) { 265 case ixgbe_media_type_backplane: 266 /* some MAC's need RMW protection on AUTOC */ 267 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp); 268 if (ret_val != IXGBE_SUCCESS) 269 goto out; 270 271 /* only backplane uses autoc */ 272 /* FALLTHROUGH */ 273 case ixgbe_media_type_fiber_fixed: 274 case ixgbe_media_type_fiber_qsfp: 275 case ixgbe_media_type_fiber: 276 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 277 278 break; 279 case ixgbe_media_type_copper: 280 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 281 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu); 282 break; 283 default: 284 break; 285 } 286 287 /* 288 * The possible values of fc.requested_mode are: 289 * 0: Flow control is completely disabled 290 * 1: Rx flow control is enabled (we can receive pause frames, 291 * but not send pause frames). 292 * 2: Tx flow control is enabled (we can send pause frames but 293 * we do not support receiving pause frames). 294 * 3: Both Rx and Tx flow control (symmetric) are enabled. 295 * other: Invalid. 296 */ 297 switch (hw->fc.requested_mode) { 298 case ixgbe_fc_none: 299 /* Flow control completely disabled by software override. */ 300 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); 301 if (hw->phy.media_type == ixgbe_media_type_backplane) 302 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | 303 IXGBE_AUTOC_ASM_PAUSE); 304 else if (hw->phy.media_type == ixgbe_media_type_copper) 305 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); 306 break; 307 case ixgbe_fc_tx_pause: 308 /* 309 * Tx Flow control is enabled, and Rx Flow control is 310 * disabled by software override. 311 */ 312 reg |= IXGBE_PCS1GANA_ASM_PAUSE; 313 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; 314 if (hw->phy.media_type == ixgbe_media_type_backplane) { 315 reg_bp |= IXGBE_AUTOC_ASM_PAUSE; 316 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; 317 } else if (hw->phy.media_type == ixgbe_media_type_copper) { 318 reg_cu |= IXGBE_TAF_ASM_PAUSE; 319 reg_cu &= ~IXGBE_TAF_SYM_PAUSE; 320 } 321 break; 322 case ixgbe_fc_rx_pause: 323 /* 324 * Rx Flow control is enabled and Tx Flow control is 325 * disabled by software override. Since there really 326 * isn't a way to advertise that we are capable of RX 327 * Pause ONLY, we will advertise that we support both 328 * symmetric and asymmetric Rx PAUSE, as such we fall 329 * through to the fc_full statement. Later, we will 330 * disable the adapter's ability to send PAUSE frames. 331 */ 332 case ixgbe_fc_full: 333 /* Flow control (both Rx and Tx) is enabled by SW override. */ 334 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; 335 if (hw->phy.media_type == ixgbe_media_type_backplane) 336 reg_bp |= IXGBE_AUTOC_SYM_PAUSE | 337 IXGBE_AUTOC_ASM_PAUSE; 338 else if (hw->phy.media_type == ixgbe_media_type_copper) 339 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; 340 break; 341 default: 342 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, 343 "Flow control param set incorrectly\n"); 344 ret_val = IXGBE_ERR_CONFIG; 345 goto out; 346 break; 347 } 348 349 if (hw->mac.type < ixgbe_mac_X540) { 350 /* 351 * Enable auto-negotiation between the MAC & PHY; 352 * the MAC will advertise clause 37 flow control. 353 */ 354 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); 355 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); 356 357 /* Disable AN timeout */ 358 if (hw->fc.strict_ieee) 359 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; 360 361 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); 362 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 363 } 364 365 /* 366 * AUTOC restart handles negotiation of 1G and 10G on backplane 367 * and copper. There is no need to set the PCS1GCTL register. 368 * 369 */ 370 if (hw->phy.media_type == ixgbe_media_type_backplane) { 371 reg_bp |= IXGBE_AUTOC_AN_RESTART; 372 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked); 373 if (ret_val) 374 goto out; 375 } else if ((hw->phy.media_type == ixgbe_media_type_copper) && 376 (ixgbe_device_supports_autoneg_fc(hw))) { 377 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 378 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu); 379 } 380 381 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 382 out: 383 return ret_val; 384 } 385 386 /** 387 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx 388 * @hw: pointer to hardware structure 389 * 390 * Starts the hardware by filling the bus info structure and media type, clears 391 * all on chip counters, initializes receive address registers, multicast 392 * table, VLAN filter table, calls routine to set up link and flow control 393 * settings, and leaves transmit and receive units disabled and uninitialized 394 **/ 395 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) 396 { 397 s32 ret_val; 398 u32 ctrl_ext; 399 u16 device_caps; 400 401 DEBUGFUNC("ixgbe_start_hw_generic"); 402 403 /* Set the media type */ 404 hw->phy.media_type = hw->mac.ops.get_media_type(hw); 405 406 /* PHY ops initialization must be done in reset_hw() */ 407 408 /* Clear the VLAN filter table */ 409 hw->mac.ops.clear_vfta(hw); 410 411 /* Clear statistics registers */ 412 hw->mac.ops.clear_hw_cntrs(hw); 413 414 /* Set No Snoop Disable */ 415 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); 416 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; 417 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); 418 IXGBE_WRITE_FLUSH(hw); 419 420 /* Setup flow control */ 421 ret_val = ixgbe_setup_fc(hw); 422 if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) { 423 DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val); 424 return ret_val; 425 } 426 427 /* Cache bit indicating need for crosstalk fix */ 428 switch (hw->mac.type) { 429 case ixgbe_mac_82599EB: 430 case ixgbe_mac_X550EM_x: 431 case ixgbe_mac_X550EM_a: 432 hw->mac.ops.get_device_caps(hw, &device_caps); 433 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR) 434 hw->need_crosstalk_fix = false; 435 else 436 hw->need_crosstalk_fix = true; 437 break; 438 default: 439 hw->need_crosstalk_fix = false; 440 break; 441 } 442 443 /* Clear adapter stopped flag */ 444 hw->adapter_stopped = false; 445 446 return IXGBE_SUCCESS; 447 } 448 449 /** 450 * ixgbe_start_hw_gen2 - Init sequence for common device family 451 * @hw: pointer to hw structure 452 * 453 * Performs the init sequence common to the second generation 454 * of 10 GbE devices. 455 * Devices in the second generation: 456 * 82599 457 * X540 458 **/ 459 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw) 460 { 461 u32 i; 462 u32 regval; 463 464 /* Clear the rate limiters */ 465 for (i = 0; i < hw->mac.max_tx_queues; i++) { 466 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); 467 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); 468 } 469 IXGBE_WRITE_FLUSH(hw); 470 471 /* Disable relaxed ordering */ 472 for (i = 0; i < hw->mac.max_tx_queues; i++) { 473 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 474 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; 475 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 476 } 477 478 for (i = 0; i < hw->mac.max_rx_queues; i++) { 479 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 480 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | 481 IXGBE_DCA_RXCTRL_HEAD_WRO_EN); 482 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 483 } 484 } 485 486 /** 487 * ixgbe_init_hw_generic - Generic hardware initialization 488 * @hw: pointer to hardware structure 489 * 490 * Initialize the hardware by resetting the hardware, filling the bus info 491 * structure and media type, clears all on chip counters, initializes receive 492 * address registers, multicast table, VLAN filter table, calls routine to set 493 * up link and flow control settings, and leaves transmit and receive units 494 * disabled and uninitialized 495 **/ 496 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) 497 { 498 s32 status; 499 500 DEBUGFUNC("ixgbe_init_hw_generic"); 501 502 /* Reset the hardware */ 503 status = hw->mac.ops.reset_hw(hw); 504 505 if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) { 506 /* Start the HW */ 507 status = hw->mac.ops.start_hw(hw); 508 } 509 510 /* Initialize the LED link active for LED blink support */ 511 if (hw->mac.ops.init_led_link_act) 512 hw->mac.ops.init_led_link_act(hw); 513 514 if (status != IXGBE_SUCCESS) 515 DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status); 516 517 return status; 518 } 519 520 /** 521 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters 522 * @hw: pointer to hardware structure 523 * 524 * Clears all hardware statistics counters by reading them from the hardware 525 * Statistics counters are clear on read. 526 **/ 527 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) 528 { 529 u16 i = 0; 530 531 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic"); 532 533 IXGBE_READ_REG(hw, IXGBE_CRCERRS); 534 IXGBE_READ_REG(hw, IXGBE_ILLERRC); 535 IXGBE_READ_REG(hw, IXGBE_ERRBC); 536 IXGBE_READ_REG(hw, IXGBE_MSPDC); 537 for (i = 0; i < 8; i++) 538 IXGBE_READ_REG(hw, IXGBE_MPC(i)); 539 540 IXGBE_READ_REG(hw, IXGBE_MLFC); 541 IXGBE_READ_REG(hw, IXGBE_MRFC); 542 IXGBE_READ_REG(hw, IXGBE_RLEC); 543 IXGBE_READ_REG(hw, IXGBE_LXONTXC); 544 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); 545 if (hw->mac.type >= ixgbe_mac_82599EB) { 546 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); 547 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); 548 } else { 549 IXGBE_READ_REG(hw, IXGBE_LXONRXC); 550 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); 551 } 552 553 for (i = 0; i < 8; i++) { 554 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); 555 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); 556 if (hw->mac.type >= ixgbe_mac_82599EB) { 557 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); 558 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); 559 } else { 560 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); 561 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); 562 } 563 } 564 if (hw->mac.type >= ixgbe_mac_82599EB) 565 for (i = 0; i < 8; i++) 566 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); 567 IXGBE_READ_REG(hw, IXGBE_PRC64); 568 IXGBE_READ_REG(hw, IXGBE_PRC127); 569 IXGBE_READ_REG(hw, IXGBE_PRC255); 570 IXGBE_READ_REG(hw, IXGBE_PRC511); 571 IXGBE_READ_REG(hw, IXGBE_PRC1023); 572 IXGBE_READ_REG(hw, IXGBE_PRC1522); 573 IXGBE_READ_REG(hw, IXGBE_GPRC); 574 IXGBE_READ_REG(hw, IXGBE_BPRC); 575 IXGBE_READ_REG(hw, IXGBE_MPRC); 576 IXGBE_READ_REG(hw, IXGBE_GPTC); 577 IXGBE_READ_REG(hw, IXGBE_GORCL); 578 IXGBE_READ_REG(hw, IXGBE_GORCH); 579 IXGBE_READ_REG(hw, IXGBE_GOTCL); 580 IXGBE_READ_REG(hw, IXGBE_GOTCH); 581 if (hw->mac.type == ixgbe_mac_82598EB) 582 for (i = 0; i < 8; i++) 583 IXGBE_READ_REG(hw, IXGBE_RNBC(i)); 584 IXGBE_READ_REG(hw, IXGBE_RUC); 585 IXGBE_READ_REG(hw, IXGBE_RFC); 586 IXGBE_READ_REG(hw, IXGBE_ROC); 587 IXGBE_READ_REG(hw, IXGBE_RJC); 588 IXGBE_READ_REG(hw, IXGBE_MNGPRC); 589 IXGBE_READ_REG(hw, IXGBE_MNGPDC); 590 IXGBE_READ_REG(hw, IXGBE_MNGPTC); 591 IXGBE_READ_REG(hw, IXGBE_TORL); 592 IXGBE_READ_REG(hw, IXGBE_TORH); 593 IXGBE_READ_REG(hw, IXGBE_TPR); 594 IXGBE_READ_REG(hw, IXGBE_TPT); 595 IXGBE_READ_REG(hw, IXGBE_PTC64); 596 IXGBE_READ_REG(hw, IXGBE_PTC127); 597 IXGBE_READ_REG(hw, IXGBE_PTC255); 598 IXGBE_READ_REG(hw, IXGBE_PTC511); 599 IXGBE_READ_REG(hw, IXGBE_PTC1023); 600 IXGBE_READ_REG(hw, IXGBE_PTC1522); 601 IXGBE_READ_REG(hw, IXGBE_MPTC); 602 IXGBE_READ_REG(hw, IXGBE_BPTC); 603 for (i = 0; i < 16; i++) { 604 IXGBE_READ_REG(hw, IXGBE_QPRC(i)); 605 IXGBE_READ_REG(hw, IXGBE_QPTC(i)); 606 if (hw->mac.type >= ixgbe_mac_82599EB) { 607 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); 608 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); 609 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); 610 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); 611 IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); 612 } else { 613 IXGBE_READ_REG(hw, IXGBE_QBRC(i)); 614 IXGBE_READ_REG(hw, IXGBE_QBTC(i)); 615 } 616 } 617 618 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) { 619 if (hw->phy.id == 0) 620 ixgbe_identify_phy(hw); 621 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, 622 IXGBE_MDIO_PCS_DEV_TYPE, &i); 623 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, 624 IXGBE_MDIO_PCS_DEV_TYPE, &i); 625 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, 626 IXGBE_MDIO_PCS_DEV_TYPE, &i); 627 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, 628 IXGBE_MDIO_PCS_DEV_TYPE, &i); 629 } 630 631 return IXGBE_SUCCESS; 632 } 633 634 /** 635 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM 636 * @hw: pointer to hardware structure 637 * @pba_num: stores the part number string from the EEPROM 638 * @pba_num_size: part number string buffer length 639 * 640 * Reads the part number string from the EEPROM. 641 **/ 642 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, 643 u32 pba_num_size) 644 { 645 s32 ret_val; 646 u16 data; 647 u16 pba_ptr; 648 u16 offset; 649 u16 length; 650 651 DEBUGFUNC("ixgbe_read_pba_string_generic"); 652 653 if (pba_num == NULL) { 654 DEBUGOUT("PBA string buffer was null\n"); 655 return IXGBE_ERR_INVALID_ARGUMENT; 656 } 657 658 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 659 if (ret_val) { 660 DEBUGOUT("NVM Read Error\n"); 661 return ret_val; 662 } 663 664 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); 665 if (ret_val) { 666 DEBUGOUT("NVM Read Error\n"); 667 return ret_val; 668 } 669 670 /* 671 * if data is not ptr guard the PBA must be in legacy format which 672 * means pba_ptr is actually our second data word for the PBA number 673 * and we can decode it into an ascii string 674 */ 675 if (data != IXGBE_PBANUM_PTR_GUARD) { 676 DEBUGOUT("NVM PBA number is not stored as string\n"); 677 678 /* we will need 11 characters to store the PBA */ 679 if (pba_num_size < 11) { 680 DEBUGOUT("PBA string buffer too small\n"); 681 return IXGBE_ERR_NO_SPACE; 682 } 683 684 /* extract hex string from data and pba_ptr */ 685 pba_num[0] = (data >> 12) & 0xF; 686 pba_num[1] = (data >> 8) & 0xF; 687 pba_num[2] = (data >> 4) & 0xF; 688 pba_num[3] = data & 0xF; 689 pba_num[4] = (pba_ptr >> 12) & 0xF; 690 pba_num[5] = (pba_ptr >> 8) & 0xF; 691 pba_num[6] = '-'; 692 pba_num[7] = 0; 693 pba_num[8] = (pba_ptr >> 4) & 0xF; 694 pba_num[9] = pba_ptr & 0xF; 695 696 /* put a null character on the end of our string */ 697 pba_num[10] = '\0'; 698 699 /* switch all the data but the '-' to hex char */ 700 for (offset = 0; offset < 10; offset++) { 701 if (pba_num[offset] < 0xA) 702 pba_num[offset] += '0'; 703 else if (pba_num[offset] < 0x10) 704 pba_num[offset] += 'A' - 0xA; 705 } 706 707 return IXGBE_SUCCESS; 708 } 709 710 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); 711 if (ret_val) { 712 DEBUGOUT("NVM Read Error\n"); 713 return ret_val; 714 } 715 716 if (length == 0xFFFF || length == 0) { 717 DEBUGOUT("NVM PBA number section invalid length\n"); 718 return IXGBE_ERR_PBA_SECTION; 719 } 720 721 /* check if pba_num buffer is big enough */ 722 if (pba_num_size < (((u32)length * 2) - 1)) { 723 DEBUGOUT("PBA string buffer too small\n"); 724 return IXGBE_ERR_NO_SPACE; 725 } 726 727 /* trim pba length from start of string */ 728 pba_ptr++; 729 length--; 730 731 for (offset = 0; offset < length; offset++) { 732 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); 733 if (ret_val) { 734 DEBUGOUT("NVM Read Error\n"); 735 return ret_val; 736 } 737 pba_num[offset * 2] = (u8)(data >> 8); 738 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); 739 } 740 pba_num[offset * 2] = '\0'; 741 742 return IXGBE_SUCCESS; 743 } 744 745 /** 746 * ixgbe_read_pba_num_generic - Reads part number from EEPROM 747 * @hw: pointer to hardware structure 748 * @pba_num: stores the part number from the EEPROM 749 * 750 * Reads the part number from the EEPROM. 751 **/ 752 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num) 753 { 754 s32 ret_val; 755 u16 data; 756 757 DEBUGFUNC("ixgbe_read_pba_num_generic"); 758 759 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 760 if (ret_val) { 761 DEBUGOUT("NVM Read Error\n"); 762 return ret_val; 763 } else if (data == IXGBE_PBANUM_PTR_GUARD) { 764 DEBUGOUT("NVM Not supported\n"); 765 return IXGBE_NOT_IMPLEMENTED; 766 } 767 *pba_num = (u32)(data << 16); 768 769 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); 770 if (ret_val) { 771 DEBUGOUT("NVM Read Error\n"); 772 return ret_val; 773 } 774 *pba_num |= (u32)data; 775 776 return IXGBE_SUCCESS; 777 } 778 779 /** 780 * ixgbe_read_pba_raw 781 * @hw: pointer to the HW structure 782 * @eeprom_buf: optional pointer to EEPROM image 783 * @eeprom_buf_size: size of EEPROM image in words 784 * @max_pba_block_size: PBA block size limit 785 * @pba: pointer to output PBA structure 786 * 787 * Reads PBA from EEPROM image when eeprom_buf is not NULL. 788 * Reads PBA from physical EEPROM device when eeprom_buf is NULL. 789 * 790 **/ 791 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf, 792 u32 eeprom_buf_size, u16 max_pba_block_size, 793 struct ixgbe_pba *pba) 794 { 795 s32 ret_val; 796 u16 pba_block_size; 797 798 if (pba == NULL) 799 return IXGBE_ERR_PARAM; 800 801 if (eeprom_buf == NULL) { 802 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2, 803 &pba->word[0]); 804 if (ret_val) 805 return ret_val; 806 } else { 807 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 808 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR]; 809 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR]; 810 } else { 811 return IXGBE_ERR_PARAM; 812 } 813 } 814 815 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) { 816 if (pba->pba_block == NULL) 817 return IXGBE_ERR_PARAM; 818 819 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf, 820 eeprom_buf_size, 821 &pba_block_size); 822 if (ret_val) 823 return ret_val; 824 825 if (pba_block_size > max_pba_block_size) 826 return IXGBE_ERR_PARAM; 827 828 if (eeprom_buf == NULL) { 829 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1], 830 pba_block_size, 831 pba->pba_block); 832 if (ret_val) 833 return ret_val; 834 } else { 835 if (eeprom_buf_size > (u32)(pba->word[1] + 836 pba_block_size)) { 837 memcpy(pba->pba_block, 838 &eeprom_buf[pba->word[1]], 839 pba_block_size * sizeof(u16)); 840 } else { 841 return IXGBE_ERR_PARAM; 842 } 843 } 844 } 845 846 return IXGBE_SUCCESS; 847 } 848 849 /** 850 * ixgbe_write_pba_raw 851 * @hw: pointer to the HW structure 852 * @eeprom_buf: optional pointer to EEPROM image 853 * @eeprom_buf_size: size of EEPROM image in words 854 * @pba: pointer to PBA structure 855 * 856 * Writes PBA to EEPROM image when eeprom_buf is not NULL. 857 * Writes PBA to physical EEPROM device when eeprom_buf is NULL. 858 * 859 **/ 860 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf, 861 u32 eeprom_buf_size, struct ixgbe_pba *pba) 862 { 863 s32 ret_val; 864 865 if (pba == NULL) 866 return IXGBE_ERR_PARAM; 867 868 if (eeprom_buf == NULL) { 869 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2, 870 &pba->word[0]); 871 if (ret_val) 872 return ret_val; 873 } else { 874 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 875 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0]; 876 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1]; 877 } else { 878 return IXGBE_ERR_PARAM; 879 } 880 } 881 882 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) { 883 if (pba->pba_block == NULL) 884 return IXGBE_ERR_PARAM; 885 886 if (eeprom_buf == NULL) { 887 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1], 888 pba->pba_block[0], 889 pba->pba_block); 890 if (ret_val) 891 return ret_val; 892 } else { 893 if (eeprom_buf_size > (u32)(pba->word[1] + 894 pba->pba_block[0])) { 895 memcpy(&eeprom_buf[pba->word[1]], 896 pba->pba_block, 897 pba->pba_block[0] * sizeof(u16)); 898 } else { 899 return IXGBE_ERR_PARAM; 900 } 901 } 902 } 903 904 return IXGBE_SUCCESS; 905 } 906 907 /** 908 * ixgbe_get_pba_block_size 909 * @hw: pointer to the HW structure 910 * @eeprom_buf: optional pointer to EEPROM image 911 * @eeprom_buf_size: size of EEPROM image in words 912 * @pba_data_size: pointer to output variable 913 * 914 * Returns the size of the PBA block in words. Function operates on EEPROM 915 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical 916 * EEPROM device. 917 * 918 **/ 919 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf, 920 u32 eeprom_buf_size, u16 *pba_block_size) 921 { 922 s32 ret_val; 923 u16 pba_word[2]; 924 u16 length; 925 926 DEBUGFUNC("ixgbe_get_pba_block_size"); 927 928 if (eeprom_buf == NULL) { 929 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2, 930 &pba_word[0]); 931 if (ret_val) 932 return ret_val; 933 } else { 934 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 935 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR]; 936 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR]; 937 } else { 938 return IXGBE_ERR_PARAM; 939 } 940 } 941 942 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) { 943 if (eeprom_buf == NULL) { 944 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0, 945 &length); 946 if (ret_val) 947 return ret_val; 948 } else { 949 if (eeprom_buf_size > pba_word[1]) 950 length = eeprom_buf[pba_word[1] + 0]; 951 else 952 return IXGBE_ERR_PARAM; 953 } 954 955 if (length == 0xFFFF || length == 0) 956 return IXGBE_ERR_PBA_SECTION; 957 } else { 958 /* PBA number in legacy format, there is no PBA Block. */ 959 length = 0; 960 } 961 962 if (pba_block_size != NULL) 963 *pba_block_size = length; 964 965 return IXGBE_SUCCESS; 966 } 967 968 /** 969 * ixgbe_get_mac_addr_generic - Generic get MAC address 970 * @hw: pointer to hardware structure 971 * @mac_addr: Adapter MAC address 972 * 973 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 974 * A reset of the adapter must be performed prior to calling this function 975 * in order for the MAC address to have been loaded from the EEPROM into RAR0 976 **/ 977 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) 978 { 979 u32 rar_high; 980 u32 rar_low; 981 u16 i; 982 983 DEBUGFUNC("ixgbe_get_mac_addr_generic"); 984 985 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); 986 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); 987 988 for (i = 0; i < 4; i++) 989 mac_addr[i] = (u8)(rar_low >> (i*8)); 990 991 for (i = 0; i < 2; i++) 992 mac_addr[i+4] = (u8)(rar_high >> (i*8)); 993 994 return IXGBE_SUCCESS; 995 } 996 997 /** 998 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info 999 * @hw: pointer to hardware structure 1000 * @link_status: the link status returned by the PCI config space 1001 * 1002 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure 1003 **/ 1004 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status) 1005 { 1006 struct ixgbe_mac_info *mac = &hw->mac; 1007 1008 if (hw->bus.type == ixgbe_bus_type_unknown) 1009 hw->bus.type = ixgbe_bus_type_pci_express; 1010 1011 switch (link_status & IXGBE_PCI_LINK_WIDTH) { 1012 case IXGBE_PCI_LINK_WIDTH_1: 1013 hw->bus.width = ixgbe_bus_width_pcie_x1; 1014 break; 1015 case IXGBE_PCI_LINK_WIDTH_2: 1016 hw->bus.width = ixgbe_bus_width_pcie_x2; 1017 break; 1018 case IXGBE_PCI_LINK_WIDTH_4: 1019 hw->bus.width = ixgbe_bus_width_pcie_x4; 1020 break; 1021 case IXGBE_PCI_LINK_WIDTH_8: 1022 hw->bus.width = ixgbe_bus_width_pcie_x8; 1023 break; 1024 default: 1025 hw->bus.width = ixgbe_bus_width_unknown; 1026 break; 1027 } 1028 1029 switch (link_status & IXGBE_PCI_LINK_SPEED) { 1030 case IXGBE_PCI_LINK_SPEED_2500: 1031 hw->bus.speed = ixgbe_bus_speed_2500; 1032 break; 1033 case IXGBE_PCI_LINK_SPEED_5000: 1034 hw->bus.speed = ixgbe_bus_speed_5000; 1035 break; 1036 case IXGBE_PCI_LINK_SPEED_8000: 1037 hw->bus.speed = ixgbe_bus_speed_8000; 1038 break; 1039 default: 1040 hw->bus.speed = ixgbe_bus_speed_unknown; 1041 break; 1042 } 1043 1044 mac->ops.set_lan_id(hw); 1045 } 1046 1047 /** 1048 * ixgbe_get_bus_info_generic - Generic set PCI bus info 1049 * @hw: pointer to hardware structure 1050 * 1051 * Gets the PCI bus info (speed, width, type) then calls helper function to 1052 * store this data within the ixgbe_hw structure. 1053 **/ 1054 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) 1055 { 1056 u16 link_status; 1057 1058 DEBUGFUNC("ixgbe_get_bus_info_generic"); 1059 1060 /* Get the negotiated link width and speed from PCI config space */ 1061 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS); 1062 1063 ixgbe_set_pci_config_data_generic(hw, link_status); 1064 1065 return IXGBE_SUCCESS; 1066 } 1067 1068 /** 1069 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 1070 * @hw: pointer to the HW structure 1071 * 1072 * Determines the LAN function id by reading memory-mapped registers and swaps 1073 * the port value if requested, and set MAC instance for devices that share 1074 * CS4227. 1075 **/ 1076 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) 1077 { 1078 struct ixgbe_bus_info *bus = &hw->bus; 1079 u32 reg; 1080 u16 ee_ctrl_4; 1081 1082 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie"); 1083 1084 reg = IXGBE_READ_REG(hw, IXGBE_STATUS); 1085 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; 1086 bus->lan_id = (u8)bus->func; 1087 1088 /* check for a port swap */ 1089 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw)); 1090 if (reg & IXGBE_FACTPS_LFS) 1091 bus->func ^= 0x1; 1092 1093 /* Get MAC instance from EEPROM for configuring CS4227 */ 1094 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) { 1095 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4); 1096 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >> 1097 IXGBE_EE_CTRL_4_INST_ID_SHIFT; 1098 } 1099 } 1100 1101 /** 1102 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units 1103 * @hw: pointer to hardware structure 1104 * 1105 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, 1106 * disables transmit and receive units. The adapter_stopped flag is used by 1107 * the shared code and drivers to determine if the adapter is in a stopped 1108 * state and should not touch the hardware. 1109 **/ 1110 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) 1111 { 1112 u32 reg_val; 1113 u16 i; 1114 1115 DEBUGFUNC("ixgbe_stop_adapter_generic"); 1116 1117 /* 1118 * Set the adapter_stopped flag so other driver functions stop touching 1119 * the hardware 1120 */ 1121 hw->adapter_stopped = true; 1122 1123 /* Disable the receive unit */ 1124 ixgbe_disable_rx(hw); 1125 1126 /* Clear interrupt mask to stop interrupts from being generated */ 1127 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); 1128 1129 /* Clear any pending interrupts, flush previous writes */ 1130 IXGBE_READ_REG(hw, IXGBE_EICR); 1131 1132 /* Disable the transmit unit. Each queue must be disabled. */ 1133 for (i = 0; i < hw->mac.max_tx_queues; i++) 1134 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); 1135 1136 /* Disable the receive unit by stopping each queue */ 1137 for (i = 0; i < hw->mac.max_rx_queues; i++) { 1138 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); 1139 reg_val &= ~IXGBE_RXDCTL_ENABLE; 1140 reg_val |= IXGBE_RXDCTL_SWFLSH; 1141 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); 1142 } 1143 1144 /* flush all queues disables */ 1145 IXGBE_WRITE_FLUSH(hw); 1146 msec_delay(2); 1147 1148 /* 1149 * Prevent the PCI-E bus from hanging by disabling PCI-E master 1150 * access and verify no pending requests 1151 */ 1152 return ixgbe_disable_pcie_master(hw); 1153 } 1154 1155 /** 1156 * ixgbe_init_led_link_act_generic - Store the LED index link/activity. 1157 * @hw: pointer to hardware structure 1158 * 1159 * Store the index for the link active LED. This will be used to support 1160 * blinking the LED. 1161 **/ 1162 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw) 1163 { 1164 struct ixgbe_mac_info *mac = &hw->mac; 1165 u32 led_reg, led_mode; 1166 u8 i; 1167 1168 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1169 1170 /* Get LED link active from the LEDCTL register */ 1171 for (i = 0; i < 4; i++) { 1172 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i); 1173 1174 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) == 1175 IXGBE_LED_LINK_ACTIVE) { 1176 mac->led_link_act = i; 1177 return IXGBE_SUCCESS; 1178 } 1179 } 1180 1181 /* 1182 * If LEDCTL register does not have the LED link active set, then use 1183 * known MAC defaults. 1184 */ 1185 switch (hw->mac.type) { 1186 case ixgbe_mac_X550EM_a: 1187 case ixgbe_mac_X550EM_x: 1188 mac->led_link_act = 1; 1189 break; 1190 default: 1191 mac->led_link_act = 2; 1192 } 1193 return IXGBE_SUCCESS; 1194 } 1195 1196 /** 1197 * ixgbe_led_on_generic - Turns on the software controllable LEDs. 1198 * @hw: pointer to hardware structure 1199 * @index: led number to turn on 1200 **/ 1201 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) 1202 { 1203 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1204 1205 DEBUGFUNC("ixgbe_led_on_generic"); 1206 1207 if (index > 3) 1208 return IXGBE_ERR_PARAM; 1209 1210 /* To turn on the LED, set mode to ON. */ 1211 led_reg &= ~IXGBE_LED_MODE_MASK(index); 1212 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); 1213 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 1214 IXGBE_WRITE_FLUSH(hw); 1215 1216 return IXGBE_SUCCESS; 1217 } 1218 1219 /** 1220 * ixgbe_led_off_generic - Turns off the software controllable LEDs. 1221 * @hw: pointer to hardware structure 1222 * @index: led number to turn off 1223 **/ 1224 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) 1225 { 1226 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1227 1228 DEBUGFUNC("ixgbe_led_off_generic"); 1229 1230 if (index > 3) 1231 return IXGBE_ERR_PARAM; 1232 1233 /* To turn off the LED, set mode to OFF. */ 1234 led_reg &= ~IXGBE_LED_MODE_MASK(index); 1235 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); 1236 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 1237 IXGBE_WRITE_FLUSH(hw); 1238 1239 return IXGBE_SUCCESS; 1240 } 1241 1242 /** 1243 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params 1244 * @hw: pointer to hardware structure 1245 * 1246 * Initializes the EEPROM parameters ixgbe_eeprom_info within the 1247 * ixgbe_hw struct in order to set up EEPROM access. 1248 **/ 1249 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) 1250 { 1251 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 1252 u32 eec; 1253 u16 eeprom_size; 1254 1255 DEBUGFUNC("ixgbe_init_eeprom_params_generic"); 1256 1257 if (eeprom->type == ixgbe_eeprom_uninitialized) { 1258 eeprom->type = ixgbe_eeprom_none; 1259 /* Set default semaphore delay to 10ms which is a well 1260 * tested value */ 1261 eeprom->semaphore_delay = 10; 1262 /* Clear EEPROM page size, it will be initialized as needed */ 1263 eeprom->word_page_size = 0; 1264 1265 /* 1266 * Check for EEPROM present first. 1267 * If not present leave as none 1268 */ 1269 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1270 if (eec & IXGBE_EEC_PRES) { 1271 eeprom->type = ixgbe_eeprom_spi; 1272 1273 /* 1274 * SPI EEPROM is assumed here. This code would need to 1275 * change if a future EEPROM is not SPI. 1276 */ 1277 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> 1278 IXGBE_EEC_SIZE_SHIFT); 1279 eeprom->word_size = 1 << (eeprom_size + 1280 IXGBE_EEPROM_WORD_SIZE_SHIFT); 1281 } 1282 1283 if (eec & IXGBE_EEC_ADDR_SIZE) 1284 eeprom->address_bits = 16; 1285 else 1286 eeprom->address_bits = 8; 1287 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: " 1288 "%d\n", eeprom->type, eeprom->word_size, 1289 eeprom->address_bits); 1290 } 1291 1292 return IXGBE_SUCCESS; 1293 } 1294 1295 /** 1296 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang 1297 * @hw: pointer to hardware structure 1298 * @offset: offset within the EEPROM to write 1299 * @words: number of word(s) 1300 * @data: 16 bit word(s) to write to EEPROM 1301 * 1302 * Reads 16 bit word(s) from EEPROM through bit-bang method 1303 **/ 1304 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1305 u16 words, u16 *data) 1306 { 1307 s32 status = IXGBE_SUCCESS; 1308 u16 i, count; 1309 1310 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic"); 1311 1312 hw->eeprom.ops.init_params(hw); 1313 1314 if (words == 0) { 1315 status = IXGBE_ERR_INVALID_ARGUMENT; 1316 goto out; 1317 } 1318 1319 if (offset + words > hw->eeprom.word_size) { 1320 status = IXGBE_ERR_EEPROM; 1321 goto out; 1322 } 1323 1324 /* 1325 * The EEPROM page size cannot be queried from the chip. We do lazy 1326 * initialization. It is worth to do that when we write large buffer. 1327 */ 1328 if ((hw->eeprom.word_page_size == 0) && 1329 (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) 1330 ixgbe_detect_eeprom_page_size_generic(hw, offset); 1331 1332 /* 1333 * We cannot hold synchronization semaphores for too long 1334 * to avoid other entity starvation. However it is more efficient 1335 * to read in bursts than synchronizing access for each word. 1336 */ 1337 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1338 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1339 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1340 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, 1341 count, &data[i]); 1342 1343 if (status != IXGBE_SUCCESS) 1344 break; 1345 } 1346 1347 out: 1348 return status; 1349 } 1350 1351 /** 1352 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM 1353 * @hw: pointer to hardware structure 1354 * @offset: offset within the EEPROM to be written to 1355 * @words: number of word(s) 1356 * @data: 16 bit word(s) to be written to the EEPROM 1357 * 1358 * If ixgbe_eeprom_update_checksum is not called after this function, the 1359 * EEPROM will most likely contain an invalid checksum. 1360 **/ 1361 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1362 u16 words, u16 *data) 1363 { 1364 s32 status; 1365 u16 word; 1366 u16 page_size; 1367 u16 i; 1368 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; 1369 1370 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang"); 1371 1372 /* Prepare the EEPROM for writing */ 1373 status = ixgbe_acquire_eeprom(hw); 1374 1375 if (status == IXGBE_SUCCESS) { 1376 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1377 ixgbe_release_eeprom(hw); 1378 status = IXGBE_ERR_EEPROM; 1379 } 1380 } 1381 1382 if (status == IXGBE_SUCCESS) { 1383 for (i = 0; i < words; i++) { 1384 ixgbe_standby_eeprom(hw); 1385 1386 /* Send the WRITE ENABLE command (8 bit opcode ) */ 1387 ixgbe_shift_out_eeprom_bits(hw, 1388 IXGBE_EEPROM_WREN_OPCODE_SPI, 1389 IXGBE_EEPROM_OPCODE_BITS); 1390 1391 ixgbe_standby_eeprom(hw); 1392 1393 /* 1394 * Some SPI eeproms use the 8th address bit embedded 1395 * in the opcode 1396 */ 1397 if ((hw->eeprom.address_bits == 8) && 1398 ((offset + i) >= 128)) 1399 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1400 1401 /* Send the Write command (8-bit opcode + addr) */ 1402 ixgbe_shift_out_eeprom_bits(hw, write_opcode, 1403 IXGBE_EEPROM_OPCODE_BITS); 1404 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1405 hw->eeprom.address_bits); 1406 1407 page_size = hw->eeprom.word_page_size; 1408 1409 /* Send the data in burst via SPI*/ 1410 do { 1411 word = data[i]; 1412 word = (word >> 8) | (word << 8); 1413 ixgbe_shift_out_eeprom_bits(hw, word, 16); 1414 1415 if (page_size == 0) 1416 break; 1417 1418 /* do not wrap around page */ 1419 if (((offset + i) & (page_size - 1)) == 1420 (page_size - 1)) 1421 break; 1422 } while (++i < words); 1423 1424 ixgbe_standby_eeprom(hw); 1425 msec_delay(10); 1426 } 1427 /* Done with writing - release the EEPROM */ 1428 ixgbe_release_eeprom(hw); 1429 } 1430 1431 return status; 1432 } 1433 1434 /** 1435 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM 1436 * @hw: pointer to hardware structure 1437 * @offset: offset within the EEPROM to be written to 1438 * @data: 16 bit word to be written to the EEPROM 1439 * 1440 * If ixgbe_eeprom_update_checksum is not called after this function, the 1441 * EEPROM will most likely contain an invalid checksum. 1442 **/ 1443 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1444 { 1445 s32 status; 1446 1447 DEBUGFUNC("ixgbe_write_eeprom_generic"); 1448 1449 hw->eeprom.ops.init_params(hw); 1450 1451 if (offset >= hw->eeprom.word_size) { 1452 status = IXGBE_ERR_EEPROM; 1453 goto out; 1454 } 1455 1456 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); 1457 1458 out: 1459 return status; 1460 } 1461 1462 /** 1463 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang 1464 * @hw: pointer to hardware structure 1465 * @offset: offset within the EEPROM to be read 1466 * @data: read 16 bit words(s) from EEPROM 1467 * @words: number of word(s) 1468 * 1469 * Reads 16 bit word(s) from EEPROM through bit-bang method 1470 **/ 1471 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1472 u16 words, u16 *data) 1473 { 1474 s32 status = IXGBE_SUCCESS; 1475 u16 i, count; 1476 1477 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic"); 1478 1479 hw->eeprom.ops.init_params(hw); 1480 1481 if (words == 0) { 1482 status = IXGBE_ERR_INVALID_ARGUMENT; 1483 goto out; 1484 } 1485 1486 if (offset + words > hw->eeprom.word_size) { 1487 status = IXGBE_ERR_EEPROM; 1488 goto out; 1489 } 1490 1491 /* 1492 * We cannot hold synchronization semaphores for too long 1493 * to avoid other entity starvation. However it is more efficient 1494 * to read in bursts than synchronizing access for each word. 1495 */ 1496 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1497 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1498 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1499 1500 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, 1501 count, &data[i]); 1502 1503 if (status != IXGBE_SUCCESS) 1504 break; 1505 } 1506 1507 out: 1508 return status; 1509 } 1510 1511 /** 1512 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang 1513 * @hw: pointer to hardware structure 1514 * @offset: offset within the EEPROM to be read 1515 * @words: number of word(s) 1516 * @data: read 16 bit word(s) from EEPROM 1517 * 1518 * Reads 16 bit word(s) from EEPROM through bit-bang method 1519 **/ 1520 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1521 u16 words, u16 *data) 1522 { 1523 s32 status; 1524 u16 word_in; 1525 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; 1526 u16 i; 1527 1528 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang"); 1529 1530 /* Prepare the EEPROM for reading */ 1531 status = ixgbe_acquire_eeprom(hw); 1532 1533 if (status == IXGBE_SUCCESS) { 1534 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1535 ixgbe_release_eeprom(hw); 1536 status = IXGBE_ERR_EEPROM; 1537 } 1538 } 1539 1540 if (status == IXGBE_SUCCESS) { 1541 for (i = 0; i < words; i++) { 1542 ixgbe_standby_eeprom(hw); 1543 /* 1544 * Some SPI eeproms use the 8th address bit embedded 1545 * in the opcode 1546 */ 1547 if ((hw->eeprom.address_bits == 8) && 1548 ((offset + i) >= 128)) 1549 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1550 1551 /* Send the READ command (opcode + addr) */ 1552 ixgbe_shift_out_eeprom_bits(hw, read_opcode, 1553 IXGBE_EEPROM_OPCODE_BITS); 1554 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1555 hw->eeprom.address_bits); 1556 1557 /* Read the data. */ 1558 word_in = ixgbe_shift_in_eeprom_bits(hw, 16); 1559 data[i] = (word_in >> 8) | (word_in << 8); 1560 } 1561 1562 /* End this read operation */ 1563 ixgbe_release_eeprom(hw); 1564 } 1565 1566 return status; 1567 } 1568 1569 /** 1570 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang 1571 * @hw: pointer to hardware structure 1572 * @offset: offset within the EEPROM to be read 1573 * @data: read 16 bit value from EEPROM 1574 * 1575 * Reads 16 bit value from EEPROM through bit-bang method 1576 **/ 1577 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1578 u16 *data) 1579 { 1580 s32 status; 1581 1582 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic"); 1583 1584 hw->eeprom.ops.init_params(hw); 1585 1586 if (offset >= hw->eeprom.word_size) { 1587 status = IXGBE_ERR_EEPROM; 1588 goto out; 1589 } 1590 1591 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1592 1593 out: 1594 return status; 1595 } 1596 1597 /** 1598 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD 1599 * @hw: pointer to hardware structure 1600 * @offset: offset of word in the EEPROM to read 1601 * @words: number of word(s) 1602 * @data: 16 bit word(s) from the EEPROM 1603 * 1604 * Reads a 16 bit word(s) from the EEPROM using the EERD register. 1605 **/ 1606 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1607 u16 words, u16 *data) 1608 { 1609 u32 eerd; 1610 s32 status = IXGBE_SUCCESS; 1611 u32 i; 1612 1613 DEBUGFUNC("ixgbe_read_eerd_buffer_generic"); 1614 1615 hw->eeprom.ops.init_params(hw); 1616 1617 if (words == 0) { 1618 status = IXGBE_ERR_INVALID_ARGUMENT; 1619 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words"); 1620 goto out; 1621 } 1622 1623 if (offset >= hw->eeprom.word_size) { 1624 status = IXGBE_ERR_EEPROM; 1625 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset"); 1626 goto out; 1627 } 1628 1629 for (i = 0; i < words; i++) { 1630 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1631 IXGBE_EEPROM_RW_REG_START; 1632 1633 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 1634 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); 1635 1636 if (status == IXGBE_SUCCESS) { 1637 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 1638 IXGBE_EEPROM_RW_REG_DATA); 1639 } else { 1640 DEBUGOUT("Eeprom read timed out\n"); 1641 goto out; 1642 } 1643 } 1644 out: 1645 return status; 1646 } 1647 1648 /** 1649 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size 1650 * @hw: pointer to hardware structure 1651 * @offset: offset within the EEPROM to be used as a scratch pad 1652 * 1653 * Discover EEPROM page size by writing marching data at given offset. 1654 * This function is called only when we are writing a new large buffer 1655 * at given offset so the data would be overwritten anyway. 1656 **/ 1657 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 1658 u16 offset) 1659 { 1660 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; 1661 s32 status = IXGBE_SUCCESS; 1662 u16 i; 1663 1664 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic"); 1665 1666 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) 1667 data[i] = i; 1668 1669 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; 1670 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1671 IXGBE_EEPROM_PAGE_SIZE_MAX, data); 1672 hw->eeprom.word_page_size = 0; 1673 if (status != IXGBE_SUCCESS) 1674 goto out; 1675 1676 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1677 if (status != IXGBE_SUCCESS) 1678 goto out; 1679 1680 /* 1681 * When writing in burst more than the actual page size 1682 * EEPROM address wraps around current page. 1683 */ 1684 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; 1685 1686 DEBUGOUT1("Detected EEPROM page size = %d words.", 1687 hw->eeprom.word_page_size); 1688 out: 1689 return status; 1690 } 1691 1692 /** 1693 * ixgbe_read_eerd_generic - Read EEPROM word using EERD 1694 * @hw: pointer to hardware structure 1695 * @offset: offset of word in the EEPROM to read 1696 * @data: word read from the EEPROM 1697 * 1698 * Reads a 16 bit word from the EEPROM using the EERD register. 1699 **/ 1700 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 1701 { 1702 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); 1703 } 1704 1705 /** 1706 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR 1707 * @hw: pointer to hardware structure 1708 * @offset: offset of word in the EEPROM to write 1709 * @words: number of word(s) 1710 * @data: word(s) write to the EEPROM 1711 * 1712 * Write a 16 bit word(s) to the EEPROM using the EEWR register. 1713 **/ 1714 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1715 u16 words, u16 *data) 1716 { 1717 u32 eewr; 1718 s32 status = IXGBE_SUCCESS; 1719 u16 i; 1720 1721 DEBUGFUNC("ixgbe_write_eewr_generic"); 1722 1723 hw->eeprom.ops.init_params(hw); 1724 1725 if (words == 0) { 1726 status = IXGBE_ERR_INVALID_ARGUMENT; 1727 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words"); 1728 goto out; 1729 } 1730 1731 if (offset >= hw->eeprom.word_size) { 1732 status = IXGBE_ERR_EEPROM; 1733 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset"); 1734 goto out; 1735 } 1736 1737 for (i = 0; i < words; i++) { 1738 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1739 (data[i] << IXGBE_EEPROM_RW_REG_DATA) | 1740 IXGBE_EEPROM_RW_REG_START; 1741 1742 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1743 if (status != IXGBE_SUCCESS) { 1744 DEBUGOUT("Eeprom write EEWR timed out\n"); 1745 goto out; 1746 } 1747 1748 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); 1749 1750 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1751 if (status != IXGBE_SUCCESS) { 1752 DEBUGOUT("Eeprom write EEWR timed out\n"); 1753 goto out; 1754 } 1755 } 1756 1757 out: 1758 return status; 1759 } 1760 1761 /** 1762 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR 1763 * @hw: pointer to hardware structure 1764 * @offset: offset of word in the EEPROM to write 1765 * @data: word write to the EEPROM 1766 * 1767 * Write a 16 bit word to the EEPROM using the EEWR register. 1768 **/ 1769 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1770 { 1771 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); 1772 } 1773 1774 /** 1775 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status 1776 * @hw: pointer to hardware structure 1777 * @ee_reg: EEPROM flag for polling 1778 * 1779 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the 1780 * read or write is done respectively. 1781 **/ 1782 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) 1783 { 1784 u32 i; 1785 u32 reg; 1786 s32 status = IXGBE_ERR_EEPROM; 1787 1788 DEBUGFUNC("ixgbe_poll_eerd_eewr_done"); 1789 1790 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { 1791 if (ee_reg == IXGBE_NVM_POLL_READ) 1792 reg = IXGBE_READ_REG(hw, IXGBE_EERD); 1793 else 1794 reg = IXGBE_READ_REG(hw, IXGBE_EEWR); 1795 1796 if (reg & IXGBE_EEPROM_RW_REG_DONE) { 1797 status = IXGBE_SUCCESS; 1798 break; 1799 } 1800 usec_delay(5); 1801 } 1802 1803 if (i == IXGBE_EERD_EEWR_ATTEMPTS) 1804 ERROR_REPORT1(IXGBE_ERROR_POLLING, 1805 "EEPROM read/write done polling timed out"); 1806 1807 return status; 1808 } 1809 1810 /** 1811 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang 1812 * @hw: pointer to hardware structure 1813 * 1814 * Prepares EEPROM for access using bit-bang method. This function should 1815 * be called before issuing a command to the EEPROM. 1816 **/ 1817 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) 1818 { 1819 s32 status = IXGBE_SUCCESS; 1820 u32 eec; 1821 u32 i; 1822 1823 DEBUGFUNC("ixgbe_acquire_eeprom"); 1824 1825 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) 1826 != IXGBE_SUCCESS) 1827 status = IXGBE_ERR_SWFW_SYNC; 1828 1829 if (status == IXGBE_SUCCESS) { 1830 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1831 1832 /* Request EEPROM Access */ 1833 eec |= IXGBE_EEC_REQ; 1834 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1835 1836 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { 1837 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1838 if (eec & IXGBE_EEC_GNT) 1839 break; 1840 usec_delay(5); 1841 } 1842 1843 /* Release if grant not acquired */ 1844 if (!(eec & IXGBE_EEC_GNT)) { 1845 eec &= ~IXGBE_EEC_REQ; 1846 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1847 DEBUGOUT("Could not acquire EEPROM grant\n"); 1848 1849 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1850 status = IXGBE_ERR_EEPROM; 1851 } 1852 1853 /* Setup EEPROM for Read/Write */ 1854 if (status == IXGBE_SUCCESS) { 1855 /* Clear CS and SK */ 1856 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); 1857 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1858 IXGBE_WRITE_FLUSH(hw); 1859 usec_delay(1); 1860 } 1861 } 1862 return status; 1863 } 1864 1865 /** 1866 * ixgbe_get_eeprom_semaphore - Get hardware semaphore 1867 * @hw: pointer to hardware structure 1868 * 1869 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method 1870 **/ 1871 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) 1872 { 1873 s32 status = IXGBE_ERR_EEPROM; 1874 u32 timeout = 2000; 1875 u32 i; 1876 u32 swsm; 1877 1878 DEBUGFUNC("ixgbe_get_eeprom_semaphore"); 1879 1880 1881 /* Get SMBI software semaphore between device drivers first */ 1882 for (i = 0; i < timeout; i++) { 1883 /* 1884 * If the SMBI bit is 0 when we read it, then the bit will be 1885 * set and we have the semaphore 1886 */ 1887 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1888 if (!(swsm & IXGBE_SWSM_SMBI)) { 1889 status = IXGBE_SUCCESS; 1890 break; 1891 } 1892 usec_delay(50); 1893 } 1894 1895 if (i == timeout) { 1896 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore " 1897 "not granted.\n"); 1898 /* 1899 * this release is particularly important because our attempts 1900 * above to get the semaphore may have succeeded, and if there 1901 * was a timeout, we should unconditionally clear the semaphore 1902 * bits to free the driver to make progress 1903 */ 1904 ixgbe_release_eeprom_semaphore(hw); 1905 1906 usec_delay(50); 1907 /* 1908 * one last try 1909 * If the SMBI bit is 0 when we read it, then the bit will be 1910 * set and we have the semaphore 1911 */ 1912 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1913 if (!(swsm & IXGBE_SWSM_SMBI)) 1914 status = IXGBE_SUCCESS; 1915 } 1916 1917 /* Now get the semaphore between SW/FW through the SWESMBI bit */ 1918 if (status == IXGBE_SUCCESS) { 1919 for (i = 0; i < timeout; i++) { 1920 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1921 1922 /* Set the SW EEPROM semaphore bit to request access */ 1923 swsm |= IXGBE_SWSM_SWESMBI; 1924 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm); 1925 1926 /* 1927 * If we set the bit successfully then we got the 1928 * semaphore. 1929 */ 1930 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1931 if (swsm & IXGBE_SWSM_SWESMBI) 1932 break; 1933 1934 usec_delay(50); 1935 } 1936 1937 /* 1938 * Release semaphores and return error if SW EEPROM semaphore 1939 * was not granted because we don't have access to the EEPROM 1940 */ 1941 if (i >= timeout) { 1942 ERROR_REPORT1(IXGBE_ERROR_POLLING, 1943 "SWESMBI Software EEPROM semaphore not granted.\n"); 1944 ixgbe_release_eeprom_semaphore(hw); 1945 status = IXGBE_ERR_EEPROM; 1946 } 1947 } else { 1948 ERROR_REPORT1(IXGBE_ERROR_POLLING, 1949 "Software semaphore SMBI between device drivers " 1950 "not granted.\n"); 1951 } 1952 1953 return status; 1954 } 1955 1956 /** 1957 * ixgbe_release_eeprom_semaphore - Release hardware semaphore 1958 * @hw: pointer to hardware structure 1959 * 1960 * This function clears hardware semaphore bits. 1961 **/ 1962 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) 1963 { 1964 u32 swsm; 1965 1966 DEBUGFUNC("ixgbe_release_eeprom_semaphore"); 1967 1968 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1969 1970 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ 1971 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); 1972 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1973 IXGBE_WRITE_FLUSH(hw); 1974 } 1975 1976 /** 1977 * ixgbe_ready_eeprom - Polls for EEPROM ready 1978 * @hw: pointer to hardware structure 1979 **/ 1980 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) 1981 { 1982 s32 status = IXGBE_SUCCESS; 1983 u16 i; 1984 u8 spi_stat_reg; 1985 1986 DEBUGFUNC("ixgbe_ready_eeprom"); 1987 1988 /* 1989 * Read "Status Register" repeatedly until the LSB is cleared. The 1990 * EEPROM will signal that the command has been completed by clearing 1991 * bit 0 of the internal status register. If it's not cleared within 1992 * 5 milliseconds, then error out. 1993 */ 1994 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { 1995 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, 1996 IXGBE_EEPROM_OPCODE_BITS); 1997 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); 1998 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) 1999 break; 2000 2001 usec_delay(5); 2002 ixgbe_standby_eeprom(hw); 2003 } 2004 2005 /* 2006 * On some parts, SPI write time could vary from 0-20mSec on 3.3V 2007 * devices (and only 0-5mSec on 5V devices) 2008 */ 2009 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { 2010 DEBUGOUT("SPI EEPROM Status error\n"); 2011 status = IXGBE_ERR_EEPROM; 2012 } 2013 2014 return status; 2015 } 2016 2017 /** 2018 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state 2019 * @hw: pointer to hardware structure 2020 **/ 2021 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) 2022 { 2023 u32 eec; 2024 2025 DEBUGFUNC("ixgbe_standby_eeprom"); 2026 2027 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2028 2029 /* Toggle CS to flush commands */ 2030 eec |= IXGBE_EEC_CS; 2031 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2032 IXGBE_WRITE_FLUSH(hw); 2033 usec_delay(1); 2034 eec &= ~IXGBE_EEC_CS; 2035 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2036 IXGBE_WRITE_FLUSH(hw); 2037 usec_delay(1); 2038 } 2039 2040 /** 2041 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. 2042 * @hw: pointer to hardware structure 2043 * @data: data to send to the EEPROM 2044 * @count: number of bits to shift out 2045 **/ 2046 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 2047 u16 count) 2048 { 2049 u32 eec; 2050 u32 mask; 2051 u32 i; 2052 2053 DEBUGFUNC("ixgbe_shift_out_eeprom_bits"); 2054 2055 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2056 2057 /* 2058 * Mask is used to shift "count" bits of "data" out to the EEPROM 2059 * one bit at a time. Determine the starting bit based on count 2060 */ 2061 mask = 0x01 << (count - 1); 2062 2063 for (i = 0; i < count; i++) { 2064 /* 2065 * A "1" is shifted out to the EEPROM by setting bit "DI" to a 2066 * "1", and then raising and then lowering the clock (the SK 2067 * bit controls the clock input to the EEPROM). A "0" is 2068 * shifted out to the EEPROM by setting "DI" to "0" and then 2069 * raising and then lowering the clock. 2070 */ 2071 if (data & mask) 2072 eec |= IXGBE_EEC_DI; 2073 else 2074 eec &= ~IXGBE_EEC_DI; 2075 2076 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2077 IXGBE_WRITE_FLUSH(hw); 2078 2079 usec_delay(1); 2080 2081 ixgbe_raise_eeprom_clk(hw, &eec); 2082 ixgbe_lower_eeprom_clk(hw, &eec); 2083 2084 /* 2085 * Shift mask to signify next bit of data to shift in to the 2086 * EEPROM 2087 */ 2088 mask = mask >> 1; 2089 } 2090 2091 /* We leave the "DI" bit set to "0" when we leave this routine. */ 2092 eec &= ~IXGBE_EEC_DI; 2093 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2094 IXGBE_WRITE_FLUSH(hw); 2095 } 2096 2097 /** 2098 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM 2099 * @hw: pointer to hardware structure 2100 * @count: number of bits to shift 2101 **/ 2102 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) 2103 { 2104 u32 eec; 2105 u32 i; 2106 u16 data = 0; 2107 2108 DEBUGFUNC("ixgbe_shift_in_eeprom_bits"); 2109 2110 /* 2111 * In order to read a register from the EEPROM, we need to shift 2112 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising 2113 * the clock input to the EEPROM (setting the SK bit), and then reading 2114 * the value of the "DO" bit. During this "shifting in" process the 2115 * "DI" bit should always be clear. 2116 */ 2117 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2118 2119 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); 2120 2121 for (i = 0; i < count; i++) { 2122 data = data << 1; 2123 ixgbe_raise_eeprom_clk(hw, &eec); 2124 2125 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2126 2127 eec &= ~(IXGBE_EEC_DI); 2128 if (eec & IXGBE_EEC_DO) 2129 data |= 1; 2130 2131 ixgbe_lower_eeprom_clk(hw, &eec); 2132 } 2133 2134 return data; 2135 } 2136 2137 /** 2138 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. 2139 * @hw: pointer to hardware structure 2140 * @eec: EEC register's current value 2141 **/ 2142 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 2143 { 2144 DEBUGFUNC("ixgbe_raise_eeprom_clk"); 2145 2146 /* 2147 * Raise the clock input to the EEPROM 2148 * (setting the SK bit), then delay 2149 */ 2150 *eec = *eec | IXGBE_EEC_SK; 2151 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec); 2152 IXGBE_WRITE_FLUSH(hw); 2153 usec_delay(1); 2154 } 2155 2156 /** 2157 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. 2158 * @hw: pointer to hardware structure 2159 * @eec: EEC's current value 2160 **/ 2161 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 2162 { 2163 DEBUGFUNC("ixgbe_lower_eeprom_clk"); 2164 2165 /* 2166 * Lower the clock input to the EEPROM (clearing the SK bit), then 2167 * delay 2168 */ 2169 *eec = *eec & ~IXGBE_EEC_SK; 2170 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec); 2171 IXGBE_WRITE_FLUSH(hw); 2172 usec_delay(1); 2173 } 2174 2175 /** 2176 * ixgbe_release_eeprom - Release EEPROM, release semaphores 2177 * @hw: pointer to hardware structure 2178 **/ 2179 static void ixgbe_release_eeprom(struct ixgbe_hw *hw) 2180 { 2181 u32 eec; 2182 2183 DEBUGFUNC("ixgbe_release_eeprom"); 2184 2185 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2186 2187 eec |= IXGBE_EEC_CS; /* Pull CS high */ 2188 eec &= ~IXGBE_EEC_SK; /* Lower SCK */ 2189 2190 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2191 IXGBE_WRITE_FLUSH(hw); 2192 2193 usec_delay(1); 2194 2195 /* Stop requesting EEPROM access */ 2196 eec &= ~IXGBE_EEC_REQ; 2197 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2198 2199 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 2200 2201 /* Delay before attempt to obtain semaphore again to allow FW access */ 2202 msec_delay(hw->eeprom.semaphore_delay); 2203 } 2204 2205 /** 2206 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum 2207 * @hw: pointer to hardware structure 2208 * 2209 * Returns a negative error code on error, or the 16-bit checksum 2210 **/ 2211 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) 2212 { 2213 u16 i; 2214 u16 j; 2215 u16 checksum = 0; 2216 u16 length = 0; 2217 u16 pointer = 0; 2218 u16 word = 0; 2219 2220 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic"); 2221 2222 /* Include 0x0-0x3F in the checksum */ 2223 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { 2224 if (hw->eeprom.ops.read(hw, i, &word)) { 2225 DEBUGOUT("EEPROM read failed\n"); 2226 return IXGBE_ERR_EEPROM; 2227 } 2228 checksum += word; 2229 } 2230 2231 /* Include all data from pointers except for the fw pointer */ 2232 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { 2233 if (hw->eeprom.ops.read(hw, i, &pointer)) { 2234 DEBUGOUT("EEPROM read failed\n"); 2235 return IXGBE_ERR_EEPROM; 2236 } 2237 2238 /* If the pointer seems invalid */ 2239 if (pointer == 0xFFFF || pointer == 0) 2240 continue; 2241 2242 if (hw->eeprom.ops.read(hw, pointer, &length)) { 2243 DEBUGOUT("EEPROM read failed\n"); 2244 return IXGBE_ERR_EEPROM; 2245 } 2246 2247 if (length == 0xFFFF || length == 0) 2248 continue; 2249 2250 for (j = pointer + 1; j <= pointer + length; j++) { 2251 if (hw->eeprom.ops.read(hw, j, &word)) { 2252 DEBUGOUT("EEPROM read failed\n"); 2253 return IXGBE_ERR_EEPROM; 2254 } 2255 checksum += word; 2256 } 2257 } 2258 2259 checksum = (u16)IXGBE_EEPROM_SUM - checksum; 2260 2261 return (s32)checksum; 2262 } 2263 2264 /** 2265 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum 2266 * @hw: pointer to hardware structure 2267 * @checksum_val: calculated checksum 2268 * 2269 * Performs checksum calculation and validates the EEPROM checksum. If the 2270 * caller does not need checksum_val, the value can be NULL. 2271 **/ 2272 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, 2273 u16 *checksum_val) 2274 { 2275 s32 status; 2276 u16 checksum; 2277 u16 read_checksum = 0; 2278 2279 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic"); 2280 2281 /* Read the first word from the EEPROM. If this times out or fails, do 2282 * not continue or we could be in for a very long wait while every 2283 * EEPROM read fails 2284 */ 2285 status = hw->eeprom.ops.read(hw, 0, &checksum); 2286 if (status) { 2287 DEBUGOUT("EEPROM read failed\n"); 2288 return status; 2289 } 2290 2291 status = hw->eeprom.ops.calc_checksum(hw); 2292 if (status < 0) 2293 return status; 2294 2295 checksum = (u16)(status & 0xffff); 2296 2297 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); 2298 if (status) { 2299 DEBUGOUT("EEPROM read failed\n"); 2300 return status; 2301 } 2302 2303 /* Verify read checksum from EEPROM is the same as 2304 * calculated checksum 2305 */ 2306 if (read_checksum != checksum) 2307 status = IXGBE_ERR_EEPROM_CHECKSUM; 2308 2309 /* If the user cares, return the calculated checksum */ 2310 if (checksum_val) 2311 *checksum_val = checksum; 2312 2313 return status; 2314 } 2315 2316 /** 2317 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum 2318 * @hw: pointer to hardware structure 2319 **/ 2320 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) 2321 { 2322 s32 status; 2323 u16 checksum; 2324 2325 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic"); 2326 2327 /* Read the first word from the EEPROM. If this times out or fails, do 2328 * not continue or we could be in for a very long wait while every 2329 * EEPROM read fails 2330 */ 2331 status = hw->eeprom.ops.read(hw, 0, &checksum); 2332 if (status) { 2333 DEBUGOUT("EEPROM read failed\n"); 2334 return status; 2335 } 2336 2337 status = hw->eeprom.ops.calc_checksum(hw); 2338 if (status < 0) 2339 return status; 2340 2341 checksum = (u16)(status & 0xffff); 2342 2343 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum); 2344 2345 return status; 2346 } 2347 2348 /** 2349 * ixgbe_validate_mac_addr - Validate MAC address 2350 * @mac_addr: pointer to MAC address. 2351 * 2352 * Tests a MAC address to ensure it is a valid Individual Address. 2353 **/ 2354 s32 ixgbe_validate_mac_addr(u8 *mac_addr) 2355 { 2356 s32 status = IXGBE_SUCCESS; 2357 2358 DEBUGFUNC("ixgbe_validate_mac_addr"); 2359 2360 /* Make sure it is not a multicast address */ 2361 if (IXGBE_IS_MULTICAST(mac_addr)) { 2362 status = IXGBE_ERR_INVALID_MAC_ADDR; 2363 /* Not a broadcast address */ 2364 } else if (IXGBE_IS_BROADCAST(mac_addr)) { 2365 status = IXGBE_ERR_INVALID_MAC_ADDR; 2366 /* Reject the zero address */ 2367 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && 2368 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) { 2369 status = IXGBE_ERR_INVALID_MAC_ADDR; 2370 } 2371 return status; 2372 } 2373 2374 /** 2375 * ixgbe_set_rar_generic - Set Rx address register 2376 * @hw: pointer to hardware structure 2377 * @index: Receive address register to write 2378 * @addr: Address to put into receive address register 2379 * @vmdq: VMDq "set" or "pool" index 2380 * @enable_addr: set flag that address is active 2381 * 2382 * Puts an ethernet address into a receive address register. 2383 **/ 2384 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, 2385 u32 enable_addr) 2386 { 2387 u32 rar_low, rar_high; 2388 u32 rar_entries = hw->mac.num_rar_entries; 2389 2390 DEBUGFUNC("ixgbe_set_rar_generic"); 2391 2392 /* Make sure we are using a valid rar index range */ 2393 if (index >= rar_entries) { 2394 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 2395 "RAR index %d is out of range.\n", index); 2396 return IXGBE_ERR_INVALID_ARGUMENT; 2397 } 2398 2399 /* setup VMDq pool selection before this RAR gets enabled */ 2400 hw->mac.ops.set_vmdq(hw, index, vmdq); 2401 2402 /* 2403 * HW expects these in little endian so we reverse the byte 2404 * order from network order (big endian) to little endian 2405 */ 2406 rar_low = ((u32)addr[0] | 2407 ((u32)addr[1] << 8) | 2408 ((u32)addr[2] << 16) | 2409 ((u32)addr[3] << 24)); 2410 /* 2411 * Some parts put the VMDq setting in the extra RAH bits, 2412 * so save everything except the lower 16 bits that hold part 2413 * of the address and the address valid bit. 2414 */ 2415 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2416 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2417 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); 2418 2419 if (enable_addr != 0) 2420 rar_high |= IXGBE_RAH_AV; 2421 2422 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); 2423 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2424 2425 return IXGBE_SUCCESS; 2426 } 2427 2428 /** 2429 * ixgbe_clear_rar_generic - Remove Rx address register 2430 * @hw: pointer to hardware structure 2431 * @index: Receive address register to write 2432 * 2433 * Clears an ethernet address from a receive address register. 2434 **/ 2435 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) 2436 { 2437 u32 rar_high; 2438 u32 rar_entries = hw->mac.num_rar_entries; 2439 2440 DEBUGFUNC("ixgbe_clear_rar_generic"); 2441 2442 /* Make sure we are using a valid rar index range */ 2443 if (index >= rar_entries) { 2444 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 2445 "RAR index %d is out of range.\n", index); 2446 return IXGBE_ERR_INVALID_ARGUMENT; 2447 } 2448 2449 /* 2450 * Some parts put the VMDq setting in the extra RAH bits, 2451 * so save everything except the lower 16 bits that hold part 2452 * of the address and the address valid bit. 2453 */ 2454 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2455 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2456 2457 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); 2458 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2459 2460 /* clear VMDq pool/queue selection for this RAR */ 2461 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); 2462 2463 return IXGBE_SUCCESS; 2464 } 2465 2466 /** 2467 * ixgbe_init_rx_addrs_generic - Initializes receive address filters. 2468 * @hw: pointer to hardware structure 2469 * 2470 * Places the MAC address in receive address register 0 and clears the rest 2471 * of the receive address registers. Clears the multicast table. Assumes 2472 * the receiver is in reset when the routine is called. 2473 **/ 2474 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) 2475 { 2476 u32 i; 2477 u32 rar_entries = hw->mac.num_rar_entries; 2478 2479 DEBUGFUNC("ixgbe_init_rx_addrs_generic"); 2480 2481 /* 2482 * If the current mac address is valid, assume it is a software override 2483 * to the permanent address. 2484 * Otherwise, use the permanent address from the eeprom. 2485 */ 2486 if (ixgbe_validate_mac_addr(hw->mac.addr) == 2487 IXGBE_ERR_INVALID_MAC_ADDR) { 2488 /* Get the MAC address from the RAR0 for later reference */ 2489 hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2490 2491 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ", 2492 hw->mac.addr[0], hw->mac.addr[1], 2493 hw->mac.addr[2]); 2494 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2495 hw->mac.addr[4], hw->mac.addr[5]); 2496 } else { 2497 /* Setup the receive address. */ 2498 DEBUGOUT("Overriding MAC Address in RAR[0]\n"); 2499 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", 2500 hw->mac.addr[0], hw->mac.addr[1], 2501 hw->mac.addr[2]); 2502 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2503 hw->mac.addr[4], hw->mac.addr[5]); 2504 2505 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); 2506 } 2507 2508 /* clear VMDq pool/queue selection for RAR 0 */ 2509 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); 2510 2511 hw->addr_ctrl.overflow_promisc = 0; 2512 2513 hw->addr_ctrl.rar_used_count = 1; 2514 2515 /* Zero out the other receive addresses. */ 2516 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1); 2517 for (i = 1; i < rar_entries; i++) { 2518 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); 2519 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); 2520 } 2521 2522 /* Clear the MTA */ 2523 hw->addr_ctrl.mta_in_use = 0; 2524 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2525 2526 DEBUGOUT(" Clearing MTA\n"); 2527 for (i = 0; i < hw->mac.mcft_size; i++) 2528 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 2529 2530 ixgbe_init_uta_tables(hw); 2531 2532 return IXGBE_SUCCESS; 2533 } 2534 2535 /** 2536 * ixgbe_add_uc_addr - Adds a secondary unicast address. 2537 * @hw: pointer to hardware structure 2538 * @addr: new address 2539 * @vmdq: VMDq "set" or "pool" index 2540 * 2541 * Adds it to unused receive address register or goes into promiscuous mode. 2542 **/ 2543 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 2544 { 2545 u32 rar_entries = hw->mac.num_rar_entries; 2546 u32 rar; 2547 2548 DEBUGFUNC("ixgbe_add_uc_addr"); 2549 2550 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", 2551 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); 2552 2553 /* 2554 * Place this address in the RAR if there is room, 2555 * else put the controller into promiscuous mode 2556 */ 2557 if (hw->addr_ctrl.rar_used_count < rar_entries) { 2558 rar = hw->addr_ctrl.rar_used_count; 2559 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 2560 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar); 2561 hw->addr_ctrl.rar_used_count++; 2562 } else { 2563 hw->addr_ctrl.overflow_promisc++; 2564 } 2565 2566 DEBUGOUT("ixgbe_add_uc_addr Complete\n"); 2567 } 2568 2569 /** 2570 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses 2571 * @hw: pointer to hardware structure 2572 * @addr_list: the list of new addresses 2573 * @addr_count: number of addresses 2574 * @next: iterator function to walk the address list 2575 * 2576 * The given list replaces any existing list. Clears the secondary addrs from 2577 * receive address registers. Uses unused receive address registers for the 2578 * first secondary addresses, and falls back to promiscuous mode as needed. 2579 * 2580 * Drivers using secondary unicast addresses must set user_set_promisc when 2581 * manually putting the device into promiscuous mode. 2582 **/ 2583 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list, 2584 u32 addr_count, ixgbe_mc_addr_itr next) 2585 { 2586 u8 *addr; 2587 u32 i; 2588 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc; 2589 u32 uc_addr_in_use; 2590 u32 fctrl; 2591 u32 vmdq; 2592 2593 DEBUGFUNC("ixgbe_update_uc_addr_list_generic"); 2594 2595 /* 2596 * Clear accounting of old secondary address list, 2597 * don't count RAR[0] 2598 */ 2599 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1; 2600 hw->addr_ctrl.rar_used_count -= uc_addr_in_use; 2601 hw->addr_ctrl.overflow_promisc = 0; 2602 2603 /* Zero out the other receive addresses */ 2604 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1); 2605 for (i = 0; i < uc_addr_in_use; i++) { 2606 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0); 2607 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0); 2608 } 2609 2610 /* Add the new addresses */ 2611 for (i = 0; i < addr_count; i++) { 2612 DEBUGOUT(" Adding the secondary addresses:\n"); 2613 addr = next(hw, &addr_list, &vmdq); 2614 ixgbe_add_uc_addr(hw, addr, vmdq); 2615 } 2616 2617 if (hw->addr_ctrl.overflow_promisc) { 2618 /* enable promisc if not already in overflow or set by user */ 2619 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2620 DEBUGOUT(" Entering address overflow promisc mode\n"); 2621 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2622 fctrl |= IXGBE_FCTRL_UPE; 2623 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2624 } 2625 } else { 2626 /* only disable if set by overflow, not by user */ 2627 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2628 DEBUGOUT(" Leaving address overflow promisc mode\n"); 2629 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2630 fctrl &= ~IXGBE_FCTRL_UPE; 2631 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2632 } 2633 } 2634 2635 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n"); 2636 return IXGBE_SUCCESS; 2637 } 2638 2639 /** 2640 * ixgbe_mta_vector - Determines bit-vector in multicast table to set 2641 * @hw: pointer to hardware structure 2642 * @mc_addr: the multicast address 2643 * 2644 * Extracts the 12 bits, from a multicast address, to determine which 2645 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 2646 * incoming rx multicast addresses, to determine the bit-vector to check in 2647 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 2648 * by the MO field of the MCSTCTRL. The MO field is set during initialization 2649 * to mc_filter_type. 2650 **/ 2651 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) 2652 { 2653 u32 vector = 0; 2654 2655 DEBUGFUNC("ixgbe_mta_vector"); 2656 2657 switch (hw->mac.mc_filter_type) { 2658 case 0: /* use bits [47:36] of the address */ 2659 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 2660 break; 2661 case 1: /* use bits [46:35] of the address */ 2662 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 2663 break; 2664 case 2: /* use bits [45:34] of the address */ 2665 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 2666 break; 2667 case 3: /* use bits [43:32] of the address */ 2668 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 2669 break; 2670 default: /* Invalid mc_filter_type */ 2671 DEBUGOUT("MC filter type param set incorrectly\n"); 2672 ASSERT(0); 2673 break; 2674 } 2675 2676 /* vector can only be 12-bits or boundary will be exceeded */ 2677 vector &= 0xFFF; 2678 return vector; 2679 } 2680 2681 /** 2682 * ixgbe_set_mta - Set bit-vector in multicast table 2683 * @hw: pointer to hardware structure 2684 * @mc_addr: Multicast address 2685 * 2686 * Sets the bit-vector in the multicast table. 2687 **/ 2688 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) 2689 { 2690 u32 vector; 2691 u32 vector_bit; 2692 u32 vector_reg; 2693 2694 DEBUGFUNC("ixgbe_set_mta"); 2695 2696 hw->addr_ctrl.mta_in_use++; 2697 2698 vector = ixgbe_mta_vector(hw, mc_addr); 2699 DEBUGOUT1(" bit-vector = 0x%03X\n", vector); 2700 2701 /* 2702 * The MTA is a register array of 128 32-bit registers. It is treated 2703 * like an array of 4096 bits. We want to set bit 2704 * BitArray[vector_value]. So we figure out what register the bit is 2705 * in, read it, OR in the new bit, then write back the new value. The 2706 * register is determined by the upper 7 bits of the vector value and 2707 * the bit within that register are determined by the lower 5 bits of 2708 * the value. 2709 */ 2710 vector_reg = (vector >> 5) & 0x7F; 2711 vector_bit = vector & 0x1F; 2712 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 2713 } 2714 2715 /** 2716 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 2717 * @hw: pointer to hardware structure 2718 * @mc_addr_list: the list of new multicast addresses 2719 * @mc_addr_count: number of addresses 2720 * @next: iterator function to walk the multicast address list 2721 * @clear: flag, when set clears the table beforehand 2722 * 2723 * When the clear flag is set, the given list replaces any existing list. 2724 * Hashes the given addresses into the multicast table. 2725 **/ 2726 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, 2727 u32 mc_addr_count, ixgbe_mc_addr_itr next, 2728 bool clear) 2729 { 2730 u32 i; 2731 u32 vmdq; 2732 2733 DEBUGFUNC("ixgbe_update_mc_addr_list_generic"); 2734 2735 /* 2736 * Set the new number of MC addresses that we are being requested to 2737 * use. 2738 */ 2739 hw->addr_ctrl.num_mc_addrs = mc_addr_count; 2740 hw->addr_ctrl.mta_in_use = 0; 2741 2742 /* Clear mta_shadow */ 2743 if (clear) { 2744 DEBUGOUT(" Clearing MTA\n"); 2745 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 2746 } 2747 2748 /* Update mta_shadow */ 2749 for (i = 0; i < mc_addr_count; i++) { 2750 DEBUGOUT(" Adding the multicast addresses:\n"); 2751 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); 2752 } 2753 2754 /* Enable mta */ 2755 for (i = 0; i < hw->mac.mcft_size; i++) 2756 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, 2757 hw->mac.mta_shadow[i]); 2758 2759 if (hw->addr_ctrl.mta_in_use > 0) 2760 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, 2761 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); 2762 2763 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n"); 2764 return IXGBE_SUCCESS; 2765 } 2766 2767 /** 2768 * ixgbe_enable_mc_generic - Enable multicast address in RAR 2769 * @hw: pointer to hardware structure 2770 * 2771 * Enables multicast address in RAR and the use of the multicast hash table. 2772 **/ 2773 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) 2774 { 2775 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2776 2777 DEBUGFUNC("ixgbe_enable_mc_generic"); 2778 2779 if (a->mta_in_use > 0) 2780 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | 2781 hw->mac.mc_filter_type); 2782 2783 return IXGBE_SUCCESS; 2784 } 2785 2786 /** 2787 * ixgbe_disable_mc_generic - Disable multicast address in RAR 2788 * @hw: pointer to hardware structure 2789 * 2790 * Disables multicast address in RAR and the use of the multicast hash table. 2791 **/ 2792 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) 2793 { 2794 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2795 2796 DEBUGFUNC("ixgbe_disable_mc_generic"); 2797 2798 if (a->mta_in_use > 0) 2799 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2800 2801 return IXGBE_SUCCESS; 2802 } 2803 2804 /** 2805 * ixgbe_fc_enable_generic - Enable flow control 2806 * @hw: pointer to hardware structure 2807 * 2808 * Enable flow control according to the current settings. 2809 **/ 2810 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) 2811 { 2812 s32 ret_val = IXGBE_SUCCESS; 2813 u32 mflcn_reg, fccfg_reg; 2814 u32 reg; 2815 u32 fcrtl, fcrth; 2816 int i; 2817 2818 DEBUGFUNC("ixgbe_fc_enable_generic"); 2819 2820 /* Validate the water mark configuration */ 2821 if (!hw->fc.pause_time) { 2822 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2823 goto out; 2824 } 2825 2826 /* Low water mark of zero causes XOFF floods */ 2827 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2828 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2829 hw->fc.high_water[i]) { 2830 if (!hw->fc.low_water[i] || 2831 hw->fc.low_water[i] >= hw->fc.high_water[i]) { 2832 DEBUGOUT("Invalid water mark configuration\n"); 2833 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2834 goto out; 2835 } 2836 } 2837 } 2838 2839 /* Negotiate the fc mode to use */ 2840 hw->mac.ops.fc_autoneg(hw); 2841 2842 /* Disable any previous flow control settings */ 2843 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); 2844 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); 2845 2846 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); 2847 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); 2848 2849 /* 2850 * The possible values of fc.current_mode are: 2851 * 0: Flow control is completely disabled 2852 * 1: Rx flow control is enabled (we can receive pause frames, 2853 * but not send pause frames). 2854 * 2: Tx flow control is enabled (we can send pause frames but 2855 * we do not support receiving pause frames). 2856 * 3: Both Rx and Tx flow control (symmetric) are enabled. 2857 * other: Invalid. 2858 */ 2859 switch (hw->fc.current_mode) { 2860 case ixgbe_fc_none: 2861 /* 2862 * Flow control is disabled by software override or autoneg. 2863 * The code below will actually disable it in the HW. 2864 */ 2865 break; 2866 case ixgbe_fc_rx_pause: 2867 /* 2868 * Rx Flow control is enabled and Tx Flow control is 2869 * disabled by software override. Since there really 2870 * isn't a way to advertise that we are capable of RX 2871 * Pause ONLY, we will advertise that we support both 2872 * symmetric and asymmetric Rx PAUSE. Later, we will 2873 * disable the adapter's ability to send PAUSE frames. 2874 */ 2875 mflcn_reg |= IXGBE_MFLCN_RFCE; 2876 break; 2877 case ixgbe_fc_tx_pause: 2878 /* 2879 * Tx Flow control is enabled, and Rx Flow control is 2880 * disabled by software override. 2881 */ 2882 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2883 break; 2884 case ixgbe_fc_full: 2885 /* Flow control (both Rx and Tx) is enabled by SW override. */ 2886 mflcn_reg |= IXGBE_MFLCN_RFCE; 2887 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2888 break; 2889 default: 2890 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, 2891 "Flow control param set incorrectly\n"); 2892 ret_val = IXGBE_ERR_CONFIG; 2893 goto out; 2894 break; 2895 } 2896 2897 /* Set 802.3x based flow control settings. */ 2898 mflcn_reg |= IXGBE_MFLCN_DPF; 2899 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); 2900 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); 2901 2902 2903 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2904 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2905 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2906 hw->fc.high_water[i]) { 2907 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE; 2908 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); 2909 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; 2910 } else { 2911 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); 2912 /* 2913 * In order to prevent Tx hangs when the internal Tx 2914 * switch is enabled we must set the high water mark 2915 * to the Rx packet buffer size - 24KB. This allows 2916 * the Tx switch to function even under heavy Rx 2917 * workloads. 2918 */ 2919 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576; 2920 } 2921 2922 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); 2923 } 2924 2925 /* Configure pause time (2 TCs per register) */ 2926 reg = hw->fc.pause_time * 0x00010001; 2927 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++) 2928 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); 2929 2930 /* Configure flow control refresh threshold value */ 2931 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); 2932 2933 out: 2934 return ret_val; 2935 } 2936 2937 /** 2938 * ixgbe_negotiate_fc - Negotiate flow control 2939 * @hw: pointer to hardware structure 2940 * @adv_reg: flow control advertised settings 2941 * @lp_reg: link partner's flow control settings 2942 * @adv_sym: symmetric pause bit in advertisement 2943 * @adv_asm: asymmetric pause bit in advertisement 2944 * @lp_sym: symmetric pause bit in link partner advertisement 2945 * @lp_asm: asymmetric pause bit in link partner advertisement 2946 * 2947 * Find the intersection between advertised settings and link partner's 2948 * advertised settings 2949 **/ 2950 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, 2951 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) 2952 { 2953 if ((!(adv_reg)) || (!(lp_reg))) { 2954 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED, 2955 "Local or link partner's advertised flow control " 2956 "settings are NULL. Local: %x, link partner: %x\n", 2957 adv_reg, lp_reg); 2958 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2959 } 2960 2961 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { 2962 /* 2963 * Now we need to check if the user selected Rx ONLY 2964 * of pause frames. In this case, we had to advertise 2965 * FULL flow control because we could not advertise RX 2966 * ONLY. Hence, we must now check to see if we need to 2967 * turn OFF the TRANSMISSION of PAUSE frames. 2968 */ 2969 if (hw->fc.requested_mode == ixgbe_fc_full) { 2970 hw->fc.current_mode = ixgbe_fc_full; 2971 DEBUGOUT("Flow Control = FULL.\n"); 2972 } else { 2973 hw->fc.current_mode = ixgbe_fc_rx_pause; 2974 DEBUGOUT("Flow Control=RX PAUSE frames only\n"); 2975 } 2976 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && 2977 (lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2978 hw->fc.current_mode = ixgbe_fc_tx_pause; 2979 DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); 2980 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && 2981 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2982 hw->fc.current_mode = ixgbe_fc_rx_pause; 2983 DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); 2984 } else { 2985 hw->fc.current_mode = ixgbe_fc_none; 2986 DEBUGOUT("Flow Control = NONE.\n"); 2987 } 2988 return IXGBE_SUCCESS; 2989 } 2990 2991 /** 2992 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber 2993 * @hw: pointer to hardware structure 2994 * 2995 * Enable flow control according on 1 gig fiber. 2996 **/ 2997 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) 2998 { 2999 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; 3000 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3001 3002 /* 3003 * On multispeed fiber at 1g, bail out if 3004 * - link is up but AN did not complete, or if 3005 * - link is up and AN completed but timed out 3006 */ 3007 3008 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); 3009 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || 3010 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) { 3011 DEBUGOUT("Auto-Negotiation did not complete or timed out\n"); 3012 goto out; 3013 } 3014 3015 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 3016 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); 3017 3018 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, 3019 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, 3020 IXGBE_PCS1GANA_ASM_PAUSE, 3021 IXGBE_PCS1GANA_SYM_PAUSE, 3022 IXGBE_PCS1GANA_ASM_PAUSE); 3023 3024 out: 3025 return ret_val; 3026 } 3027 3028 /** 3029 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 3030 * @hw: pointer to hardware structure 3031 * 3032 * Enable flow control according to IEEE clause 37. 3033 **/ 3034 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) 3035 { 3036 u32 links2, anlp1_reg, autoc_reg, links; 3037 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3038 3039 /* 3040 * On backplane, bail out if 3041 * - backplane autoneg was not completed, or if 3042 * - we are 82599 and link partner is not AN enabled 3043 */ 3044 links = IXGBE_READ_REG(hw, IXGBE_LINKS); 3045 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) { 3046 DEBUGOUT("Auto-Negotiation did not complete\n"); 3047 goto out; 3048 } 3049 3050 if (hw->mac.type == ixgbe_mac_82599EB) { 3051 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); 3052 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) { 3053 DEBUGOUT("Link partner is not AN enabled\n"); 3054 goto out; 3055 } 3056 } 3057 /* 3058 * Read the 10g AN autoc and LP ability registers and resolve 3059 * local flow control settings accordingly 3060 */ 3061 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3062 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); 3063 3064 ret_val = ixgbe_negotiate_fc(hw, autoc_reg, 3065 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, 3066 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); 3067 3068 out: 3069 return ret_val; 3070 } 3071 3072 /** 3073 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 3074 * @hw: pointer to hardware structure 3075 * 3076 * Enable flow control according to IEEE clause 37. 3077 **/ 3078 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) 3079 { 3080 u16 technology_ability_reg = 0; 3081 u16 lp_technology_ability_reg = 0; 3082 3083 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 3084 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 3085 &technology_ability_reg); 3086 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP, 3087 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 3088 &lp_technology_ability_reg); 3089 3090 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, 3091 (u32)lp_technology_ability_reg, 3092 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, 3093 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); 3094 } 3095 3096 /** 3097 * ixgbe_fc_autoneg - Configure flow control 3098 * @hw: pointer to hardware structure 3099 * 3100 * Compares our advertised flow control capabilities to those advertised by 3101 * our link partner, and determines the proper flow control mode to use. 3102 **/ 3103 void ixgbe_fc_autoneg(struct ixgbe_hw *hw) 3104 { 3105 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3106 ixgbe_link_speed speed; 3107 bool link_up; 3108 3109 DEBUGFUNC("ixgbe_fc_autoneg"); 3110 3111 /* 3112 * AN should have completed when the cable was plugged in. 3113 * Look for reasons to bail out. Bail out if: 3114 * - FC autoneg is disabled, or if 3115 * - link is not up. 3116 */ 3117 if (hw->fc.disable_fc_autoneg) { 3118 /* TODO: This should be just an informative log */ 3119 ERROR_REPORT1(IXGBE_ERROR_CAUTION, 3120 "Flow control autoneg is disabled"); 3121 goto out; 3122 } 3123 3124 hw->mac.ops.check_link(hw, &speed, &link_up, false); 3125 if (!link_up) { 3126 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down"); 3127 goto out; 3128 } 3129 3130 switch (hw->phy.media_type) { 3131 /* Autoneg flow control on fiber adapters */ 3132 case ixgbe_media_type_fiber_fixed: 3133 case ixgbe_media_type_fiber_qsfp: 3134 case ixgbe_media_type_fiber: 3135 if (speed == IXGBE_LINK_SPEED_1GB_FULL) 3136 ret_val = ixgbe_fc_autoneg_fiber(hw); 3137 break; 3138 3139 /* Autoneg flow control on backplane adapters */ 3140 case ixgbe_media_type_backplane: 3141 ret_val = ixgbe_fc_autoneg_backplane(hw); 3142 break; 3143 3144 /* Autoneg flow control on copper adapters */ 3145 case ixgbe_media_type_copper: 3146 if (ixgbe_device_supports_autoneg_fc(hw)) 3147 ret_val = ixgbe_fc_autoneg_copper(hw); 3148 break; 3149 3150 default: 3151 break; 3152 } 3153 3154 out: 3155 if (ret_val == IXGBE_SUCCESS) { 3156 hw->fc.fc_was_autonegged = true; 3157 } else { 3158 hw->fc.fc_was_autonegged = false; 3159 hw->fc.current_mode = hw->fc.requested_mode; 3160 } 3161 } 3162 3163 /* 3164 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion 3165 * @hw: pointer to hardware structure 3166 * 3167 * System-wide timeout range is encoded in PCIe Device Control2 register. 3168 * 3169 * Add 10% to specified maximum and return the number of times to poll for 3170 * completion timeout, in units of 100 microsec. Never return less than 3171 * 800 = 80 millisec. 3172 */ 3173 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw) 3174 { 3175 s16 devctl2; 3176 u32 pollcnt; 3177 3178 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2); 3179 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK; 3180 3181 switch (devctl2) { 3182 case IXGBE_PCIDEVCTRL2_65_130ms: 3183 pollcnt = 1300; /* 130 millisec */ 3184 break; 3185 case IXGBE_PCIDEVCTRL2_260_520ms: 3186 pollcnt = 5200; /* 520 millisec */ 3187 break; 3188 case IXGBE_PCIDEVCTRL2_1_2s: 3189 pollcnt = 20000; /* 2 sec */ 3190 break; 3191 case IXGBE_PCIDEVCTRL2_4_8s: 3192 pollcnt = 80000; /* 8 sec */ 3193 break; 3194 case IXGBE_PCIDEVCTRL2_17_34s: 3195 pollcnt = 34000; /* 34 sec */ 3196 break; 3197 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */ 3198 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */ 3199 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */ 3200 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */ 3201 default: 3202 pollcnt = 800; /* 80 millisec minimum */ 3203 break; 3204 } 3205 3206 /* add 10% to spec maximum */ 3207 return (pollcnt * 11) / 10; 3208 } 3209 3210 /** 3211 * ixgbe_disable_pcie_master - Disable PCI-express master access 3212 * @hw: pointer to hardware structure 3213 * 3214 * Disables PCI-Express master access and verifies there are no pending 3215 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable 3216 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS 3217 * is returned signifying master requests disabled. 3218 **/ 3219 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) 3220 { 3221 s32 status = IXGBE_SUCCESS; 3222 u32 i, poll; 3223 u16 value; 3224 3225 DEBUGFUNC("ixgbe_disable_pcie_master"); 3226 3227 /* Always set this bit to ensure any future transactions are blocked */ 3228 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); 3229 3230 /* Exit if master requests are blocked */ 3231 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) || 3232 IXGBE_REMOVED(hw->hw_addr)) 3233 goto out; 3234 3235 /* Poll for master request bit to clear */ 3236 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 3237 usec_delay(100); 3238 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 3239 goto out; 3240 } 3241 3242 /* 3243 * Two consecutive resets are required via CTRL.RST per datasheet 3244 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine 3245 * of this need. The first reset prevents new master requests from 3246 * being issued by our device. We then must wait 1usec or more for any 3247 * remaining completions from the PCIe bus to trickle in, and then reset 3248 * again to clear out any effects they may have had on our device. 3249 */ 3250 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n"); 3251 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 3252 3253 if (hw->mac.type >= ixgbe_mac_X550) 3254 goto out; 3255 3256 /* 3257 * Before proceeding, make sure that the PCIe block does not have 3258 * transactions pending. 3259 */ 3260 poll = ixgbe_pcie_timeout_poll(hw); 3261 for (i = 0; i < poll; i++) { 3262 usec_delay(100); 3263 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS); 3264 if (IXGBE_REMOVED(hw->hw_addr)) 3265 goto out; 3266 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 3267 goto out; 3268 } 3269 3270 ERROR_REPORT1(IXGBE_ERROR_POLLING, 3271 "PCIe transaction pending bit also did not clear.\n"); 3272 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; 3273 3274 out: 3275 return status; 3276 } 3277 3278 /** 3279 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore 3280 * @hw: pointer to hardware structure 3281 * @mask: Mask to specify which semaphore to acquire 3282 * 3283 * Acquires the SWFW semaphore through the GSSR register for the specified 3284 * function (CSR, PHY0, PHY1, EEPROM, Flash) 3285 **/ 3286 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask) 3287 { 3288 u32 gssr = 0; 3289 u32 swmask = mask; 3290 u32 fwmask = mask << 5; 3291 u32 timeout = 200; 3292 u32 i; 3293 3294 DEBUGFUNC("ixgbe_acquire_swfw_sync"); 3295 3296 for (i = 0; i < timeout; i++) { 3297 /* 3298 * SW NVM semaphore bit is used for access to all 3299 * SW_FW_SYNC bits (not just NVM) 3300 */ 3301 if (ixgbe_get_eeprom_semaphore(hw)) 3302 return IXGBE_ERR_SWFW_SYNC; 3303 3304 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 3305 if (!(gssr & (fwmask | swmask))) { 3306 gssr |= swmask; 3307 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 3308 ixgbe_release_eeprom_semaphore(hw); 3309 return IXGBE_SUCCESS; 3310 } else { 3311 /* Resource is currently in use by FW or SW */ 3312 ixgbe_release_eeprom_semaphore(hw); 3313 msec_delay(5); 3314 } 3315 } 3316 3317 /* If time expired clear the bits holding the lock and retry */ 3318 if (gssr & (fwmask | swmask)) 3319 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask)); 3320 3321 msec_delay(5); 3322 return IXGBE_ERR_SWFW_SYNC; 3323 } 3324 3325 /** 3326 * ixgbe_release_swfw_sync - Release SWFW semaphore 3327 * @hw: pointer to hardware structure 3328 * @mask: Mask to specify which semaphore to release 3329 * 3330 * Releases the SWFW semaphore through the GSSR register for the specified 3331 * function (CSR, PHY0, PHY1, EEPROM, Flash) 3332 **/ 3333 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask) 3334 { 3335 u32 gssr; 3336 u32 swmask = mask; 3337 3338 DEBUGFUNC("ixgbe_release_swfw_sync"); 3339 3340 ixgbe_get_eeprom_semaphore(hw); 3341 3342 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 3343 gssr &= ~swmask; 3344 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 3345 3346 ixgbe_release_eeprom_semaphore(hw); 3347 } 3348 3349 /** 3350 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path 3351 * @hw: pointer to hardware structure 3352 * 3353 * Stops the receive data path and waits for the HW to internally empty 3354 * the Rx security block 3355 **/ 3356 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw) 3357 { 3358 #define IXGBE_MAX_SECRX_POLL 4000 3359 3360 int i; 3361 int secrxreg; 3362 3363 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic"); 3364 3365 3366 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 3367 secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 3368 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 3369 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 3370 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 3371 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 3372 break; 3373 else 3374 /* Use interrupt-safe sleep just in case */ 3375 usec_delay(10); 3376 } 3377 3378 /* For informational purposes only */ 3379 if (i >= IXGBE_MAX_SECRX_POLL) 3380 DEBUGOUT("Rx unit being enabled before security " 3381 "path fully disabled. Continuing with init.\n"); 3382 3383 return IXGBE_SUCCESS; 3384 } 3385 3386 /** 3387 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read 3388 * @hw: pointer to hardware structure 3389 * @locked: bool to indicate whether the SW/FW lock was taken 3390 * @reg_val: Value we read from AUTOC 3391 * 3392 * The default case requires no protection so just to the register read. 3393 */ 3394 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val) 3395 { 3396 *locked = false; 3397 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3398 return IXGBE_SUCCESS; 3399 } 3400 3401 /** 3402 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write 3403 * @hw: pointer to hardware structure 3404 * @reg_val: value to write to AUTOC 3405 * @locked: bool to indicate whether the SW/FW lock was already taken by 3406 * previous read. 3407 * 3408 * The default case requires no protection so just to the register write. 3409 */ 3410 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked) 3411 { 3412 UNREFERENCED_1PARAMETER(locked); 3413 3414 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val); 3415 return IXGBE_SUCCESS; 3416 } 3417 3418 /** 3419 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path 3420 * @hw: pointer to hardware structure 3421 * 3422 * Enables the receive data path. 3423 **/ 3424 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw) 3425 { 3426 u32 secrxreg; 3427 3428 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic"); 3429 3430 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 3431 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 3432 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 3433 IXGBE_WRITE_FLUSH(hw); 3434 3435 return IXGBE_SUCCESS; 3436 } 3437 3438 /** 3439 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit 3440 * @hw: pointer to hardware structure 3441 * @regval: register value to write to RXCTRL 3442 * 3443 * Enables the Rx DMA unit 3444 **/ 3445 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) 3446 { 3447 DEBUGFUNC("ixgbe_enable_rx_dma_generic"); 3448 3449 if (regval & IXGBE_RXCTRL_RXEN) 3450 ixgbe_enable_rx(hw); 3451 else 3452 ixgbe_disable_rx(hw); 3453 3454 return IXGBE_SUCCESS; 3455 } 3456 3457 /** 3458 * ixgbe_blink_led_start_generic - Blink LED based on index. 3459 * @hw: pointer to hardware structure 3460 * @index: led number to blink 3461 **/ 3462 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) 3463 { 3464 ixgbe_link_speed speed = 0; 3465 bool link_up = 0; 3466 u32 autoc_reg = 0; 3467 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3468 s32 ret_val = IXGBE_SUCCESS; 3469 bool locked = false; 3470 3471 DEBUGFUNC("ixgbe_blink_led_start_generic"); 3472 3473 if (index > 3) 3474 return IXGBE_ERR_PARAM; 3475 3476 /* 3477 * Link must be up to auto-blink the LEDs; 3478 * Force it if link is down. 3479 */ 3480 hw->mac.ops.check_link(hw, &speed, &link_up, false); 3481 3482 if (!link_up) { 3483 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 3484 if (ret_val != IXGBE_SUCCESS) 3485 goto out; 3486 3487 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3488 autoc_reg |= IXGBE_AUTOC_FLU; 3489 3490 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 3491 if (ret_val != IXGBE_SUCCESS) 3492 goto out; 3493 3494 IXGBE_WRITE_FLUSH(hw); 3495 msec_delay(10); 3496 } 3497 3498 led_reg &= ~IXGBE_LED_MODE_MASK(index); 3499 led_reg |= IXGBE_LED_BLINK(index); 3500 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3501 IXGBE_WRITE_FLUSH(hw); 3502 3503 out: 3504 return ret_val; 3505 } 3506 3507 /** 3508 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. 3509 * @hw: pointer to hardware structure 3510 * @index: led number to stop blinking 3511 **/ 3512 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) 3513 { 3514 u32 autoc_reg = 0; 3515 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3516 s32 ret_val = IXGBE_SUCCESS; 3517 bool locked = false; 3518 3519 DEBUGFUNC("ixgbe_blink_led_stop_generic"); 3520 3521 if (index > 3) 3522 return IXGBE_ERR_PARAM; 3523 3524 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 3525 if (ret_val != IXGBE_SUCCESS) 3526 goto out; 3527 3528 autoc_reg &= ~IXGBE_AUTOC_FLU; 3529 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3530 3531 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 3532 if (ret_val != IXGBE_SUCCESS) 3533 goto out; 3534 3535 led_reg &= ~IXGBE_LED_MODE_MASK(index); 3536 led_reg &= ~IXGBE_LED_BLINK(index); 3537 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); 3538 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3539 IXGBE_WRITE_FLUSH(hw); 3540 3541 out: 3542 return ret_val; 3543 } 3544 3545 /** 3546 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM 3547 * @hw: pointer to hardware structure 3548 * @san_mac_offset: SAN MAC address offset 3549 * 3550 * This function will read the EEPROM location for the SAN MAC address 3551 * pointer, and returns the value at that location. This is used in both 3552 * get and set mac_addr routines. 3553 **/ 3554 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 3555 u16 *san_mac_offset) 3556 { 3557 s32 ret_val; 3558 3559 DEBUGFUNC("ixgbe_get_san_mac_addr_offset"); 3560 3561 /* 3562 * First read the EEPROM pointer to see if the MAC addresses are 3563 * available. 3564 */ 3565 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, 3566 san_mac_offset); 3567 if (ret_val) { 3568 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 3569 "eeprom at offset %d failed", 3570 IXGBE_SAN_MAC_ADDR_PTR); 3571 } 3572 3573 return ret_val; 3574 } 3575 3576 /** 3577 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM 3578 * @hw: pointer to hardware structure 3579 * @san_mac_addr: SAN MAC address 3580 * 3581 * Reads the SAN MAC address from the EEPROM, if it's available. This is 3582 * per-port, so set_lan_id() must be called before reading the addresses. 3583 * set_lan_id() is called by identify_sfp(), but this cannot be relied 3584 * upon for non-SFP connections, so we must call it here. 3585 **/ 3586 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3587 { 3588 u16 san_mac_data, san_mac_offset; 3589 u8 i; 3590 s32 ret_val; 3591 3592 DEBUGFUNC("ixgbe_get_san_mac_addr_generic"); 3593 3594 /* 3595 * First read the EEPROM pointer to see if the MAC addresses are 3596 * available. If they're not, no point in calling set_lan_id() here. 3597 */ 3598 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3599 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 3600 goto san_mac_addr_out; 3601 3602 /* make sure we know which port we need to program */ 3603 hw->mac.ops.set_lan_id(hw); 3604 /* apply the port offset to the address offset */ 3605 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3606 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3607 for (i = 0; i < 3; i++) { 3608 ret_val = hw->eeprom.ops.read(hw, san_mac_offset, 3609 &san_mac_data); 3610 if (ret_val) { 3611 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 3612 "eeprom read at offset %d failed", 3613 san_mac_offset); 3614 goto san_mac_addr_out; 3615 } 3616 san_mac_addr[i * 2] = (u8)(san_mac_data); 3617 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); 3618 san_mac_offset++; 3619 } 3620 return IXGBE_SUCCESS; 3621 3622 san_mac_addr_out: 3623 /* 3624 * No addresses available in this EEPROM. It's not an 3625 * error though, so just wipe the local address and return. 3626 */ 3627 for (i = 0; i < 6; i++) 3628 san_mac_addr[i] = 0xFF; 3629 return IXGBE_SUCCESS; 3630 } 3631 3632 /** 3633 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM 3634 * @hw: pointer to hardware structure 3635 * @san_mac_addr: SAN MAC address 3636 * 3637 * Write a SAN MAC address to the EEPROM. 3638 **/ 3639 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3640 { 3641 s32 ret_val; 3642 u16 san_mac_data, san_mac_offset; 3643 u8 i; 3644 3645 DEBUGFUNC("ixgbe_set_san_mac_addr_generic"); 3646 3647 /* Look for SAN mac address pointer. If not defined, return */ 3648 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3649 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 3650 return IXGBE_ERR_NO_SAN_ADDR_PTR; 3651 3652 /* Make sure we know which port we need to write */ 3653 hw->mac.ops.set_lan_id(hw); 3654 /* Apply the port offset to the address offset */ 3655 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3656 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3657 3658 for (i = 0; i < 3; i++) { 3659 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8); 3660 san_mac_data |= (u16)(san_mac_addr[i * 2]); 3661 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data); 3662 san_mac_offset++; 3663 } 3664 3665 return IXGBE_SUCCESS; 3666 } 3667 3668 /** 3669 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count 3670 * @hw: pointer to hardware structure 3671 * 3672 * Read PCIe configuration space, and get the MSI-X vector count from 3673 * the capabilities table. 3674 **/ 3675 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) 3676 { 3677 u16 msix_count = 1; 3678 u16 max_msix_count; 3679 u16 pcie_offset; 3680 3681 switch (hw->mac.type) { 3682 case ixgbe_mac_82598EB: 3683 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; 3684 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; 3685 break; 3686 case ixgbe_mac_82599EB: 3687 case ixgbe_mac_X540: 3688 case ixgbe_mac_X550: 3689 case ixgbe_mac_X550EM_x: 3690 case ixgbe_mac_X550EM_a: 3691 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; 3692 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; 3693 break; 3694 default: 3695 return msix_count; 3696 } 3697 3698 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic"); 3699 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset); 3700 if (IXGBE_REMOVED(hw->hw_addr)) 3701 msix_count = 0; 3702 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; 3703 3704 /* MSI-X count is zero-based in HW */ 3705 msix_count++; 3706 3707 if (msix_count > max_msix_count) 3708 msix_count = max_msix_count; 3709 3710 return msix_count; 3711 } 3712 3713 /** 3714 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address 3715 * @hw: pointer to hardware structure 3716 * @addr: Address to put into receive address register 3717 * @vmdq: VMDq pool to assign 3718 * 3719 * Puts an ethernet address into a receive address register, or 3720 * finds the rar that it is already in; adds to the pool list 3721 **/ 3722 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 3723 { 3724 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF; 3725 u32 first_empty_rar = NO_EMPTY_RAR_FOUND; 3726 u32 rar; 3727 u32 rar_low, rar_high; 3728 u32 addr_low, addr_high; 3729 3730 DEBUGFUNC("ixgbe_insert_mac_addr_generic"); 3731 3732 /* swap bytes for HW little endian */ 3733 addr_low = addr[0] | (addr[1] << 8) 3734 | (addr[2] << 16) 3735 | (addr[3] << 24); 3736 addr_high = addr[4] | (addr[5] << 8); 3737 3738 /* 3739 * Either find the mac_id in rar or find the first empty space. 3740 * rar_highwater points to just after the highest currently used 3741 * rar in order to shorten the search. It grows when we add a new 3742 * rar to the top. 3743 */ 3744 for (rar = 0; rar < hw->mac.rar_highwater; rar++) { 3745 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar)); 3746 3747 if (((IXGBE_RAH_AV & rar_high) == 0) 3748 && first_empty_rar == NO_EMPTY_RAR_FOUND) { 3749 first_empty_rar = rar; 3750 } else if ((rar_high & 0xFFFF) == addr_high) { 3751 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar)); 3752 if (rar_low == addr_low) 3753 break; /* found it already in the rars */ 3754 } 3755 } 3756 3757 if (rar < hw->mac.rar_highwater) { 3758 /* already there so just add to the pool bits */ 3759 ixgbe_set_vmdq(hw, rar, vmdq); 3760 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) { 3761 /* stick it into first empty RAR slot we found */ 3762 rar = first_empty_rar; 3763 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3764 } else if (rar == hw->mac.rar_highwater) { 3765 /* add it to the top of the list and inc the highwater mark */ 3766 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3767 hw->mac.rar_highwater++; 3768 } else if (rar >= hw->mac.num_rar_entries) { 3769 return IXGBE_ERR_INVALID_MAC_ADDR; 3770 } 3771 3772 /* 3773 * If we found rar[0], make sure the default pool bit (we use pool 0) 3774 * remains cleared to be sure default pool packets will get delivered 3775 */ 3776 if (rar == 0) 3777 ixgbe_clear_vmdq(hw, rar, 0); 3778 3779 return rar; 3780 } 3781 3782 /** 3783 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address 3784 * @hw: pointer to hardware struct 3785 * @rar: receive address register index to disassociate 3786 * @vmdq: VMDq pool index to remove from the rar 3787 **/ 3788 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3789 { 3790 u32 mpsar_lo, mpsar_hi; 3791 u32 rar_entries = hw->mac.num_rar_entries; 3792 3793 DEBUGFUNC("ixgbe_clear_vmdq_generic"); 3794 3795 /* Make sure we are using a valid rar index range */ 3796 if (rar >= rar_entries) { 3797 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 3798 "RAR index %d is out of range.\n", rar); 3799 return IXGBE_ERR_INVALID_ARGUMENT; 3800 } 3801 3802 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3803 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3804 3805 if (IXGBE_REMOVED(hw->hw_addr)) 3806 goto done; 3807 3808 if (!mpsar_lo && !mpsar_hi) 3809 goto done; 3810 3811 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { 3812 if (mpsar_lo) { 3813 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3814 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3815 } 3816 if (mpsar_hi) { 3817 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3818 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3819 } 3820 } else if (vmdq < 32) { 3821 mpsar_lo &= ~(1 << vmdq); 3822 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); 3823 } else { 3824 mpsar_hi &= ~(1 << (vmdq - 32)); 3825 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); 3826 } 3827 3828 /* was that the last pool using this rar? */ 3829 if (mpsar_lo == 0 && mpsar_hi == 0 && 3830 rar != 0 && rar != hw->mac.san_mac_rar_index) 3831 hw->mac.ops.clear_rar(hw, rar); 3832 done: 3833 return IXGBE_SUCCESS; 3834 } 3835 3836 /** 3837 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address 3838 * @hw: pointer to hardware struct 3839 * @rar: receive address register index to associate with a VMDq index 3840 * @vmdq: VMDq pool index 3841 **/ 3842 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3843 { 3844 u32 mpsar; 3845 u32 rar_entries = hw->mac.num_rar_entries; 3846 3847 DEBUGFUNC("ixgbe_set_vmdq_generic"); 3848 3849 /* Make sure we are using a valid rar index range */ 3850 if (rar >= rar_entries) { 3851 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 3852 "RAR index %d is out of range.\n", rar); 3853 return IXGBE_ERR_INVALID_ARGUMENT; 3854 } 3855 3856 if (vmdq < 32) { 3857 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3858 mpsar |= 1 << vmdq; 3859 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); 3860 } else { 3861 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3862 mpsar |= 1 << (vmdq - 32); 3863 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); 3864 } 3865 return IXGBE_SUCCESS; 3866 } 3867 3868 /** 3869 * This function should only be involved in the IOV mode. 3870 * In IOV mode, Default pool is next pool after the number of 3871 * VFs advertized and not 0. 3872 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index] 3873 * 3874 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address 3875 * @hw: pointer to hardware struct 3876 * @vmdq: VMDq pool index 3877 **/ 3878 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq) 3879 { 3880 u32 rar = hw->mac.san_mac_rar_index; 3881 3882 DEBUGFUNC("ixgbe_set_vmdq_san_mac"); 3883 3884 if (vmdq < 32) { 3885 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq); 3886 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3887 } else { 3888 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3889 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32)); 3890 } 3891 3892 return IXGBE_SUCCESS; 3893 } 3894 3895 /** 3896 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array 3897 * @hw: pointer to hardware structure 3898 **/ 3899 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) 3900 { 3901 int i; 3902 3903 DEBUGFUNC("ixgbe_init_uta_tables_generic"); 3904 DEBUGOUT(" Clearing UTA\n"); 3905 3906 for (i = 0; i < 128; i++) 3907 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); 3908 3909 return IXGBE_SUCCESS; 3910 } 3911 3912 /** 3913 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot 3914 * @hw: pointer to hardware structure 3915 * @vlan: VLAN id to write to VLAN filter 3916 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if 3917 * vlanid not found 3918 * 3919 * 3920 * return the VLVF index where this VLAN id should be placed 3921 * 3922 **/ 3923 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass) 3924 { 3925 s32 regindex, first_empty_slot; 3926 u32 bits; 3927 3928 /* short cut the special case */ 3929 if (vlan == 0) 3930 return 0; 3931 3932 /* if vlvf_bypass is set we don't want to use an empty slot, we 3933 * will simply bypass the VLVF if there are no entries present in the 3934 * VLVF that contain our VLAN 3935 */ 3936 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0; 3937 3938 /* add VLAN enable bit for comparison */ 3939 vlan |= IXGBE_VLVF_VIEN; 3940 3941 /* Search for the vlan id in the VLVF entries. Save off the first empty 3942 * slot found along the way. 3943 * 3944 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 3945 */ 3946 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) { 3947 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); 3948 if (bits == vlan) 3949 return regindex; 3950 if (!first_empty_slot && !bits) 3951 first_empty_slot = regindex; 3952 } 3953 3954 /* If we are here then we didn't find the VLAN. Return first empty 3955 * slot we found during our search, else error. 3956 */ 3957 if (!first_empty_slot) 3958 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n"); 3959 3960 return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE; 3961 } 3962 3963 /** 3964 * ixgbe_set_vfta_generic - Set VLAN filter table 3965 * @hw: pointer to hardware structure 3966 * @vlan: VLAN id to write to VLAN filter 3967 * @vind: VMDq output index that maps queue to VLAN id in VLVFB 3968 * @vlan_on: boolean flag to turn on/off VLAN 3969 * @vlvf_bypass: boolean flag indicating updating default pool is okay 3970 * 3971 * Turn on/off specified VLAN in the VLAN filter table. 3972 **/ 3973 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 3974 bool vlan_on, bool vlvf_bypass) 3975 { 3976 u32 regidx, vfta_delta, vfta; 3977 s32 ret_val; 3978 3979 DEBUGFUNC("ixgbe_set_vfta_generic"); 3980 3981 if (vlan > 4095 || vind > 63) 3982 return IXGBE_ERR_PARAM; 3983 3984 /* 3985 * this is a 2 part operation - first the VFTA, then the 3986 * VLVF and VLVFB if VT Mode is set 3987 * We don't write the VFTA until we know the VLVF part succeeded. 3988 */ 3989 3990 /* Part 1 3991 * The VFTA is a bitstring made up of 128 32-bit registers 3992 * that enable the particular VLAN id, much like the MTA: 3993 * bits[11-5]: which register 3994 * bits[4-0]: which bit in the register 3995 */ 3996 regidx = vlan / 32; 3997 vfta_delta = 1 << (vlan % 32); 3998 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx)); 3999 4000 /* 4001 * vfta_delta represents the difference between the current value 4002 * of vfta and the value we want in the register. Since the diff 4003 * is an XOR mask we can just update the vfta using an XOR 4004 */ 4005 vfta_delta &= vlan_on ? ~vfta : vfta; 4006 vfta ^= vfta_delta; 4007 4008 /* Part 2 4009 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF 4010 */ 4011 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta, 4012 vfta, vlvf_bypass); 4013 if (ret_val != IXGBE_SUCCESS) { 4014 if (vlvf_bypass) 4015 goto vfta_update; 4016 return ret_val; 4017 } 4018 4019 vfta_update: 4020 /* Update VFTA now that we are ready for traffic */ 4021 if (vfta_delta) 4022 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta); 4023 4024 return IXGBE_SUCCESS; 4025 } 4026 4027 /** 4028 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter 4029 * @hw: pointer to hardware structure 4030 * @vlan: VLAN id to write to VLAN filter 4031 * @vind: VMDq output index that maps queue to VLAN id in VLVFB 4032 * @vlan_on: boolean flag to turn on/off VLAN in VLVF 4033 * @vfta_delta: pointer to the difference between the current value of VFTA 4034 * and the desired value 4035 * @vfta: the desired value of the VFTA 4036 * @vlvf_bypass: boolean flag indicating updating default pool is okay 4037 * 4038 * Turn on/off specified bit in VLVF table. 4039 **/ 4040 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 4041 bool vlan_on, u32 *vfta_delta, u32 vfta, 4042 bool vlvf_bypass) 4043 { 4044 u32 bits; 4045 s32 vlvf_index; 4046 4047 DEBUGFUNC("ixgbe_set_vlvf_generic"); 4048 4049 if (vlan > 4095 || vind > 63) 4050 return IXGBE_ERR_PARAM; 4051 4052 /* If VT Mode is set 4053 * Either vlan_on 4054 * make sure the vlan is in VLVF 4055 * set the vind bit in the matching VLVFB 4056 * Or !vlan_on 4057 * clear the pool bit and possibly the vind 4058 */ 4059 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE)) 4060 return IXGBE_SUCCESS; 4061 4062 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass); 4063 if (vlvf_index < 0) 4064 return vlvf_index; 4065 4066 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32)); 4067 4068 /* set the pool bit */ 4069 bits |= 1 << (vind % 32); 4070 if (vlan_on) 4071 goto vlvf_update; 4072 4073 /* clear the pool bit */ 4074 bits ^= 1 << (vind % 32); 4075 4076 if (!bits && 4077 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) { 4078 /* Clear VFTA first, then disable VLVF. Otherwise 4079 * we run the risk of stray packets leaking into 4080 * the PF via the default pool 4081 */ 4082 if (*vfta_delta) 4083 IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta); 4084 4085 /* disable VLVF and clear remaining bit from pool */ 4086 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); 4087 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0); 4088 4089 return IXGBE_SUCCESS; 4090 } 4091 4092 /* If there are still bits set in the VLVFB registers 4093 * for the VLAN ID indicated we need to see if the 4094 * caller is requesting that we clear the VFTA entry bit. 4095 * If the caller has requested that we clear the VFTA 4096 * entry bit but there are still pools/VFs using this VLAN 4097 * ID entry then ignore the request. We're not worried 4098 * about the case where we're turning the VFTA VLAN ID 4099 * entry bit on, only when requested to turn it off as 4100 * there may be multiple pools and/or VFs using the 4101 * VLAN ID entry. In that case we cannot clear the 4102 * VFTA bit until all pools/VFs using that VLAN ID have also 4103 * been cleared. This will be indicated by "bits" being 4104 * zero. 4105 */ 4106 *vfta_delta = 0; 4107 4108 vlvf_update: 4109 /* record pool change and enable VLAN ID if not already enabled */ 4110 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits); 4111 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan); 4112 4113 return IXGBE_SUCCESS; 4114 } 4115 4116 /** 4117 * ixgbe_clear_vfta_generic - Clear VLAN filter table 4118 * @hw: pointer to hardware structure 4119 * 4120 * Clears the VLAN filter table, and the VMDq index associated with the filter 4121 **/ 4122 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) 4123 { 4124 u32 offset; 4125 4126 DEBUGFUNC("ixgbe_clear_vfta_generic"); 4127 4128 for (offset = 0; offset < hw->mac.vft_size; offset++) 4129 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); 4130 4131 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { 4132 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); 4133 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0); 4134 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0); 4135 } 4136 4137 return IXGBE_SUCCESS; 4138 } 4139 4140 /** 4141 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix 4142 * @hw: pointer to hardware structure 4143 * 4144 * Contains the logic to identify if we need to verify link for the 4145 * crosstalk fix 4146 **/ 4147 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw) 4148 { 4149 4150 /* Does FW say we need the fix */ 4151 if (!hw->need_crosstalk_fix) 4152 return false; 4153 4154 /* Only consider SFP+ PHYs i.e. media type fiber */ 4155 switch (hw->mac.ops.get_media_type(hw)) { 4156 case ixgbe_media_type_fiber: 4157 case ixgbe_media_type_fiber_qsfp: 4158 break; 4159 default: 4160 return false; 4161 } 4162 4163 return true; 4164 } 4165 4166 /** 4167 * ixgbe_check_mac_link_generic - Determine link and speed status 4168 * @hw: pointer to hardware structure 4169 * @speed: pointer to link speed 4170 * @link_up: true when link is up 4171 * @link_up_wait_to_complete: bool used to wait for link up or not 4172 * 4173 * Reads the links register to determine if link is up and the current speed 4174 **/ 4175 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 4176 bool *link_up, bool link_up_wait_to_complete) 4177 { 4178 u32 links_reg, links_orig; 4179 u32 i; 4180 4181 DEBUGFUNC("ixgbe_check_mac_link_generic"); 4182 4183 /* If Crosstalk fix enabled do the sanity check of making sure 4184 * the SFP+ cage is full. 4185 */ 4186 if (ixgbe_need_crosstalk_fix(hw)) { 4187 u32 sfp_cage_full; 4188 4189 switch (hw->mac.type) { 4190 case ixgbe_mac_82599EB: 4191 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) & 4192 IXGBE_ESDP_SDP2; 4193 break; 4194 case ixgbe_mac_X550EM_x: 4195 case ixgbe_mac_X550EM_a: 4196 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) & 4197 IXGBE_ESDP_SDP0; 4198 break; 4199 default: 4200 /* sanity check - No SFP+ devices here */ 4201 sfp_cage_full = false; 4202 break; 4203 } 4204 4205 if (!sfp_cage_full) { 4206 *link_up = false; 4207 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4208 return IXGBE_SUCCESS; 4209 } 4210 } 4211 4212 /* clear the old state */ 4213 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); 4214 4215 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4216 4217 if (links_orig != links_reg) { 4218 DEBUGOUT2("LINKS changed from %08X to %08X\n", 4219 links_orig, links_reg); 4220 } 4221 4222 if (link_up_wait_to_complete) { 4223 for (i = 0; i < hw->mac.max_link_up_time; i++) { 4224 if (links_reg & IXGBE_LINKS_UP) { 4225 *link_up = true; 4226 break; 4227 } else { 4228 *link_up = false; 4229 } 4230 msec_delay(100); 4231 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4232 } 4233 } else { 4234 if (links_reg & IXGBE_LINKS_UP) { 4235 if (ixgbe_need_crosstalk_fix(hw)) { 4236 /* Check the link state again after a delay 4237 * to filter out spurious link up 4238 * notifications. 4239 */ 4240 msec_delay(5); 4241 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4242 if (!(links_reg & IXGBE_LINKS_UP)) { 4243 *link_up = false; 4244 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4245 return IXGBE_SUCCESS; 4246 } 4247 4248 } 4249 *link_up = true; 4250 } else { 4251 *link_up = false; 4252 } 4253 } 4254 4255 switch (links_reg & IXGBE_LINKS_SPEED_82599) { 4256 case IXGBE_LINKS_SPEED_10G_82599: 4257 *speed = IXGBE_LINK_SPEED_10GB_FULL; 4258 if (hw->mac.type >= ixgbe_mac_X550) { 4259 if (links_reg & IXGBE_LINKS_SPEED_NON_STD) 4260 *speed = IXGBE_LINK_SPEED_2_5GB_FULL; 4261 } 4262 break; 4263 case IXGBE_LINKS_SPEED_1G_82599: 4264 *speed = IXGBE_LINK_SPEED_1GB_FULL; 4265 break; 4266 case IXGBE_LINKS_SPEED_100_82599: 4267 *speed = IXGBE_LINK_SPEED_100_FULL; 4268 if (hw->mac.type == ixgbe_mac_X550) { 4269 if (links_reg & IXGBE_LINKS_SPEED_NON_STD) 4270 *speed = IXGBE_LINK_SPEED_5GB_FULL; 4271 } 4272 break; 4273 case IXGBE_LINKS_SPEED_10_X550EM_A: 4274 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4275 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T || 4276 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) 4277 *speed = IXGBE_LINK_SPEED_10_FULL; 4278 break; 4279 default: 4280 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4281 } 4282 4283 return IXGBE_SUCCESS; 4284 } 4285 4286 /** 4287 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from 4288 * the EEPROM 4289 * @hw: pointer to hardware structure 4290 * @wwnn_prefix: the alternative WWNN prefix 4291 * @wwpn_prefix: the alternative WWPN prefix 4292 * 4293 * This function will read the EEPROM from the alternative SAN MAC address 4294 * block to check the support for the alternative WWNN/WWPN prefix support. 4295 **/ 4296 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, 4297 u16 *wwpn_prefix) 4298 { 4299 u16 offset, caps; 4300 u16 alt_san_mac_blk_offset; 4301 4302 DEBUGFUNC("ixgbe_get_wwn_prefix_generic"); 4303 4304 /* clear output first */ 4305 *wwnn_prefix = 0xFFFF; 4306 *wwpn_prefix = 0xFFFF; 4307 4308 /* check if alternative SAN MAC is supported */ 4309 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR; 4310 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset)) 4311 goto wwn_prefix_err; 4312 4313 if ((alt_san_mac_blk_offset == 0) || 4314 (alt_san_mac_blk_offset == 0xFFFF)) 4315 goto wwn_prefix_out; 4316 4317 /* check capability in alternative san mac address block */ 4318 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; 4319 if (hw->eeprom.ops.read(hw, offset, &caps)) 4320 goto wwn_prefix_err; 4321 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) 4322 goto wwn_prefix_out; 4323 4324 /* get the corresponding prefix for WWNN/WWPN */ 4325 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; 4326 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) { 4327 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4328 "eeprom read at offset %d failed", offset); 4329 } 4330 4331 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; 4332 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix)) 4333 goto wwn_prefix_err; 4334 4335 wwn_prefix_out: 4336 return IXGBE_SUCCESS; 4337 4338 wwn_prefix_err: 4339 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4340 "eeprom read at offset %d failed", offset); 4341 return IXGBE_SUCCESS; 4342 } 4343 4344 /** 4345 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM 4346 * @hw: pointer to hardware structure 4347 * @bs: the fcoe boot status 4348 * 4349 * This function will read the FCOE boot status from the iSCSI FCOE block 4350 **/ 4351 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs) 4352 { 4353 u16 offset, caps, flags; 4354 s32 status; 4355 4356 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic"); 4357 4358 /* clear output first */ 4359 *bs = ixgbe_fcoe_bootstatus_unavailable; 4360 4361 /* check if FCOE IBA block is present */ 4362 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR; 4363 status = hw->eeprom.ops.read(hw, offset, &caps); 4364 if (status != IXGBE_SUCCESS) 4365 goto out; 4366 4367 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE)) 4368 goto out; 4369 4370 /* check if iSCSI FCOE block is populated */ 4371 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset); 4372 if (status != IXGBE_SUCCESS) 4373 goto out; 4374 4375 if ((offset == 0) || (offset == 0xFFFF)) 4376 goto out; 4377 4378 /* read fcoe flags in iSCSI FCOE block */ 4379 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET; 4380 status = hw->eeprom.ops.read(hw, offset, &flags); 4381 if (status != IXGBE_SUCCESS) 4382 goto out; 4383 4384 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE) 4385 *bs = ixgbe_fcoe_bootstatus_enabled; 4386 else 4387 *bs = ixgbe_fcoe_bootstatus_disabled; 4388 4389 out: 4390 return status; 4391 } 4392 4393 /** 4394 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing 4395 * @hw: pointer to hardware structure 4396 * @enable: enable or disable switch for MAC anti-spoofing 4397 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing 4398 * 4399 **/ 4400 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 4401 { 4402 int vf_target_reg = vf >> 3; 4403 int vf_target_shift = vf % 8; 4404 u32 pfvfspoof; 4405 4406 if (hw->mac.type == ixgbe_mac_82598EB) 4407 return; 4408 4409 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 4410 if (enable) 4411 pfvfspoof |= (1 << vf_target_shift); 4412 else 4413 pfvfspoof &= ~(1 << vf_target_shift); 4414 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 4415 } 4416 4417 /** 4418 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing 4419 * @hw: pointer to hardware structure 4420 * @enable: enable or disable switch for VLAN anti-spoofing 4421 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing 4422 * 4423 **/ 4424 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 4425 { 4426 int vf_target_reg = vf >> 3; 4427 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; 4428 u32 pfvfspoof; 4429 4430 if (hw->mac.type == ixgbe_mac_82598EB) 4431 return; 4432 4433 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 4434 if (enable) 4435 pfvfspoof |= (1 << vf_target_shift); 4436 else 4437 pfvfspoof &= ~(1 << vf_target_shift); 4438 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 4439 } 4440 4441 /** 4442 * ixgbe_get_device_caps_generic - Get additional device capabilities 4443 * @hw: pointer to hardware structure 4444 * @device_caps: the EEPROM word with the extra device capabilities 4445 * 4446 * This function will read the EEPROM location for the device capabilities, 4447 * and return the word through device_caps. 4448 **/ 4449 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) 4450 { 4451 DEBUGFUNC("ixgbe_get_device_caps_generic"); 4452 4453 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); 4454 4455 return IXGBE_SUCCESS; 4456 } 4457 4458 /** 4459 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering 4460 * @hw: pointer to hardware structure 4461 * 4462 **/ 4463 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw) 4464 { 4465 u32 regval; 4466 u32 i; 4467 4468 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2"); 4469 4470 /* Enable relaxed ordering */ 4471 for (i = 0; i < hw->mac.max_tx_queues; i++) { 4472 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 4473 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN; 4474 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 4475 } 4476 4477 for (i = 0; i < hw->mac.max_rx_queues; i++) { 4478 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 4479 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN | 4480 IXGBE_DCA_RXCTRL_HEAD_WRO_EN; 4481 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 4482 } 4483 4484 } 4485 4486 /** 4487 * ixgbe_calculate_checksum - Calculate checksum for buffer 4488 * @buffer: pointer to EEPROM 4489 * @length: size of EEPROM to calculate a checksum for 4490 * Calculates the checksum for some buffer on a specified length. The 4491 * checksum calculated is returned. 4492 **/ 4493 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) 4494 { 4495 u32 i; 4496 u8 sum = 0; 4497 4498 DEBUGFUNC("ixgbe_calculate_checksum"); 4499 4500 if (!buffer) 4501 return 0; 4502 4503 for (i = 0; i < length; i++) 4504 sum += buffer[i]; 4505 4506 return (u8) (0 - sum); 4507 } 4508 4509 /** 4510 * ixgbe_hic_unlocked - Issue command to manageability block unlocked 4511 * @hw: pointer to the HW structure 4512 * @buffer: command to write and where the return status will be placed 4513 * @length: length of buffer, must be multiple of 4 bytes 4514 * @timeout: time in ms to wait for command completion 4515 * 4516 * Communicates with the manageability block. On success return IXGBE_SUCCESS 4517 * else returns semaphore error when encountering an error acquiring 4518 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4519 * 4520 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held 4521 * by the caller. 4522 **/ 4523 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length, 4524 u32 timeout) 4525 { 4526 u32 hicr, i, fwsts; 4527 u16 dword_len; 4528 4529 DEBUGFUNC("ixgbe_hic_unlocked"); 4530 4531 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 4532 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length); 4533 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4534 } 4535 4536 /* Set bit 9 of FWSTS clearing FW reset indication */ 4537 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS); 4538 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI); 4539 4540 /* Check that the host interface is enabled. */ 4541 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 4542 if (!(hicr & IXGBE_HICR_EN)) { 4543 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n"); 4544 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4545 } 4546 4547 /* Calculate length in DWORDs. We must be DWORD aligned */ 4548 if (length % sizeof(u32)) { 4549 DEBUGOUT("Buffer length failure, not aligned to dword"); 4550 return IXGBE_ERR_INVALID_ARGUMENT; 4551 } 4552 4553 dword_len = length >> 2; 4554 4555 /* The device driver writes the relevant command block 4556 * into the ram area. 4557 */ 4558 for (i = 0; i < dword_len; i++) 4559 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, 4560 i, IXGBE_CPU_TO_LE32(buffer[i])); 4561 4562 /* Setting this bit tells the ARC that a new command is pending. */ 4563 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); 4564 4565 for (i = 0; i < timeout; i++) { 4566 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 4567 if (!(hicr & IXGBE_HICR_C)) 4568 break; 4569 msec_delay(1); 4570 } 4571 4572 /* For each command except "Apply Update" perform 4573 * status checks in the HICR registry. 4574 */ 4575 if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) == 4576 IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD) 4577 return IXGBE_SUCCESS; 4578 4579 /* Check command completion */ 4580 if ((timeout && i == timeout) || 4581 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) { 4582 ERROR_REPORT1(IXGBE_ERROR_CAUTION, 4583 "Command has failed with no status valid.\n"); 4584 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4585 } 4586 4587 return IXGBE_SUCCESS; 4588 } 4589 4590 /** 4591 * ixgbe_host_interface_command - Issue command to manageability block 4592 * @hw: pointer to the HW structure 4593 * @buffer: contains the command to write and where the return status will 4594 * be placed 4595 * @length: length of buffer, must be multiple of 4 bytes 4596 * @timeout: time in ms to wait for command completion 4597 * @return_data: read and return data from the buffer (true) or not (false) 4598 * Needed because FW structures are big endian and decoding of 4599 * these fields can be 8 bit or 16 bit based on command. Decoding 4600 * is not easily understood without making a table of commands. 4601 * So we will leave this up to the caller to read back the data 4602 * in these cases. 4603 * 4604 * Communicates with the manageability block. On success return IXGBE_SUCCESS 4605 * else returns semaphore error when encountering an error acquiring 4606 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4607 **/ 4608 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, 4609 u32 length, u32 timeout, bool return_data) 4610 { 4611 u32 hdr_size = sizeof(struct ixgbe_hic_hdr); 4612 struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer; 4613 u16 buf_len; 4614 s32 status; 4615 u32 bi; 4616 u32 dword_len; 4617 4618 DEBUGFUNC("ixgbe_host_interface_command"); 4619 4620 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 4621 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length); 4622 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4623 } 4624 4625 /* Take management host interface semaphore */ 4626 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4627 if (status) 4628 return status; 4629 4630 status = ixgbe_hic_unlocked(hw, buffer, length, timeout); 4631 if (status) 4632 goto rel_out; 4633 4634 if (!return_data) 4635 goto rel_out; 4636 4637 /* Calculate length in DWORDs */ 4638 dword_len = hdr_size >> 2; 4639 4640 /* first pull in the header so we know the buffer length */ 4641 for (bi = 0; bi < dword_len; bi++) { 4642 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 4643 IXGBE_LE32_TO_CPUS(&buffer[bi]); 4644 } 4645 4646 /* 4647 * If there is any thing in data position pull it in 4648 * Read Flash command requires reading buffer length from 4649 * two byes instead of one byte 4650 */ 4651 if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD || 4652 resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) { 4653 for (; bi < dword_len + 2; bi++) { 4654 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, 4655 bi); 4656 IXGBE_LE32_TO_CPUS(&buffer[bi]); 4657 } 4658 buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3) 4659 & 0xF00) | resp->buf_len; 4660 hdr_size += (2 << 2); 4661 } else { 4662 buf_len = resp->buf_len; 4663 } 4664 if (!buf_len) 4665 goto rel_out; 4666 4667 if (length < buf_len + hdr_size) { 4668 DEBUGOUT("Buffer not large enough for reply message.\n"); 4669 status = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4670 goto rel_out; 4671 } 4672 4673 /* Calculate length in DWORDs, add 3 for odd lengths */ 4674 dword_len = (buf_len + 3) >> 2; 4675 4676 /* Pull in the rest of the buffer (bi is where we left off) */ 4677 for (; bi <= dword_len; bi++) { 4678 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 4679 IXGBE_LE32_TO_CPUS(&buffer[bi]); 4680 } 4681 4682 rel_out: 4683 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4684 4685 return status; 4686 } 4687 4688 /** 4689 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware 4690 * @hw: pointer to the HW structure 4691 * @maj: driver version major number 4692 * @min: driver version minor number 4693 * @build: driver version build number 4694 * @sub: driver version sub build number 4695 * @len: unused 4696 * @driver_ver: unused 4697 * 4698 * Sends driver version number to firmware through the manageability 4699 * block. On success return IXGBE_SUCCESS 4700 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring 4701 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4702 **/ 4703 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, 4704 u8 build, u8 sub, u16 len, 4705 const char *driver_ver) 4706 { 4707 struct ixgbe_hic_drv_info fw_cmd; 4708 int i; 4709 s32 ret_val = IXGBE_SUCCESS; 4710 4711 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic"); 4712 UNREFERENCED_2PARAMETER(len, driver_ver); 4713 4714 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; 4715 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; 4716 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; 4717 fw_cmd.port_num = (u8)hw->bus.func; 4718 fw_cmd.ver_maj = maj; 4719 fw_cmd.ver_min = min; 4720 fw_cmd.ver_build = build; 4721 fw_cmd.ver_sub = sub; 4722 fw_cmd.hdr.checksum = 0; 4723 fw_cmd.pad = 0; 4724 fw_cmd.pad2 = 0; 4725 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, 4726 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); 4727 4728 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { 4729 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, 4730 sizeof(fw_cmd), 4731 IXGBE_HI_COMMAND_TIMEOUT, 4732 true); 4733 if (ret_val != IXGBE_SUCCESS) 4734 continue; 4735 4736 if (fw_cmd.hdr.cmd_or_resp.ret_status == 4737 FW_CEM_RESP_STATUS_SUCCESS) 4738 ret_val = IXGBE_SUCCESS; 4739 else 4740 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4741 4742 break; 4743 } 4744 4745 return ret_val; 4746 } 4747 4748 /** 4749 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer 4750 * @hw: pointer to hardware structure 4751 * @num_pb: number of packet buffers to allocate 4752 * @headroom: reserve n KB of headroom 4753 * @strategy: packet buffer allocation strategy 4754 **/ 4755 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom, 4756 int strategy) 4757 { 4758 u32 pbsize = hw->mac.rx_pb_size; 4759 int i = 0; 4760 u32 rxpktsize, txpktsize, txpbthresh; 4761 4762 /* Reserve headroom */ 4763 pbsize -= headroom; 4764 4765 if (!num_pb) 4766 num_pb = 1; 4767 4768 /* Divide remaining packet buffer space amongst the number of packet 4769 * buffers requested using supplied strategy. 4770 */ 4771 switch (strategy) { 4772 case PBA_STRATEGY_WEIGHTED: 4773 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet 4774 * buffer with 5/8 of the packet buffer space. 4775 */ 4776 rxpktsize = (pbsize * 5) / (num_pb * 4); 4777 pbsize -= rxpktsize * (num_pb / 2); 4778 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; 4779 for (; i < (num_pb / 2); i++) 4780 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4781 /* configure remaining packet buffers */ 4782 /* FALLTHROUGH */ 4783 case PBA_STRATEGY_EQUAL: 4784 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; 4785 for (; i < num_pb; i++) 4786 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4787 break; 4788 default: 4789 break; 4790 } 4791 4792 /* Only support an equally distributed Tx packet buffer strategy. */ 4793 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; 4794 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; 4795 for (i = 0; i < num_pb; i++) { 4796 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); 4797 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); 4798 } 4799 4800 /* Clear unused TCs, if any, to zero buffer size*/ 4801 for (; i < IXGBE_MAX_PB; i++) { 4802 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); 4803 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); 4804 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); 4805 } 4806 } 4807 4808 /** 4809 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo 4810 * @hw: pointer to the hardware structure 4811 * 4812 * The 82599 and x540 MACs can experience issues if TX work is still pending 4813 * when a reset occurs. This function prevents this by flushing the PCIe 4814 * buffers on the system. 4815 **/ 4816 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) 4817 { 4818 u32 gcr_ext, hlreg0, i, poll; 4819 u16 value; 4820 4821 /* 4822 * If double reset is not requested then all transactions should 4823 * already be clear and as such there is no work to do 4824 */ 4825 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) 4826 return; 4827 4828 /* 4829 * Set loopback enable to prevent any transmits from being sent 4830 * should the link come up. This assumes that the RXCTRL.RXEN bit 4831 * has already been cleared. 4832 */ 4833 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); 4834 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); 4835 4836 /* Wait for a last completion before clearing buffers */ 4837 IXGBE_WRITE_FLUSH(hw); 4838 msec_delay(3); 4839 4840 /* 4841 * Before proceeding, make sure that the PCIe block does not have 4842 * transactions pending. 4843 */ 4844 poll = ixgbe_pcie_timeout_poll(hw); 4845 for (i = 0; i < poll; i++) { 4846 usec_delay(100); 4847 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS); 4848 if (IXGBE_REMOVED(hw->hw_addr)) 4849 goto out; 4850 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 4851 goto out; 4852 } 4853 4854 out: 4855 /* initiate cleaning flow for buffers in the PCIe transaction layer */ 4856 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 4857 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, 4858 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); 4859 4860 /* Flush all writes and allow 20usec for all transactions to clear */ 4861 IXGBE_WRITE_FLUSH(hw); 4862 usec_delay(20); 4863 4864 /* restore previous register values */ 4865 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); 4866 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); 4867 } 4868 4869 static const u8 ixgbe_emc_temp_data[4] = { 4870 IXGBE_EMC_INTERNAL_DATA, 4871 IXGBE_EMC_DIODE1_DATA, 4872 IXGBE_EMC_DIODE2_DATA, 4873 IXGBE_EMC_DIODE3_DATA 4874 }; 4875 static const u8 ixgbe_emc_therm_limit[4] = { 4876 IXGBE_EMC_INTERNAL_THERM_LIMIT, 4877 IXGBE_EMC_DIODE1_THERM_LIMIT, 4878 IXGBE_EMC_DIODE2_THERM_LIMIT, 4879 IXGBE_EMC_DIODE3_THERM_LIMIT 4880 }; 4881 4882 /** 4883 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data 4884 * @hw: pointer to hardware structure 4885 * 4886 * Returns the thermal sensor data structure 4887 **/ 4888 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw) 4889 { 4890 s32 status = IXGBE_SUCCESS; 4891 u16 ets_offset; 4892 u16 ets_cfg; 4893 u16 ets_sensor; 4894 u8 num_sensors; 4895 u8 sensor_index; 4896 u8 sensor_location; 4897 u8 i; 4898 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 4899 4900 DEBUGFUNC("ixgbe_get_thermal_sensor_data_generic"); 4901 4902 /* Only support thermal sensors attached to 82599 physical port 0 */ 4903 if ((hw->mac.type != ixgbe_mac_82599EB) || 4904 (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) { 4905 status = IXGBE_NOT_IMPLEMENTED; 4906 goto out; 4907 } 4908 4909 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset); 4910 if (status) 4911 goto out; 4912 4913 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) { 4914 status = IXGBE_NOT_IMPLEMENTED; 4915 goto out; 4916 } 4917 4918 status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg); 4919 if (status) 4920 goto out; 4921 4922 if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT) 4923 != IXGBE_ETS_TYPE_EMC) { 4924 status = IXGBE_NOT_IMPLEMENTED; 4925 goto out; 4926 } 4927 4928 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 4929 if (num_sensors > IXGBE_MAX_SENSORS) 4930 num_sensors = IXGBE_MAX_SENSORS; 4931 4932 for (i = 0; i < num_sensors; i++) { 4933 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i), 4934 &ets_sensor); 4935 if (status) 4936 goto out; 4937 4938 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 4939 IXGBE_ETS_DATA_INDEX_SHIFT); 4940 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 4941 IXGBE_ETS_DATA_LOC_SHIFT); 4942 4943 if (sensor_location != 0) { 4944 status = hw->phy.ops.read_i2c_byte(hw, 4945 ixgbe_emc_temp_data[sensor_index], 4946 IXGBE_I2C_THERMAL_SENSOR_ADDR, 4947 &data->sensor[i].temp); 4948 if (status) 4949 goto out; 4950 } 4951 } 4952 out: 4953 return status; 4954 } 4955 4956 /** 4957 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds 4958 * @hw: pointer to hardware structure 4959 * 4960 * Inits the thermal sensor thresholds according to the NVM map 4961 * and save off the threshold and location values into mac.thermal_sensor_data 4962 **/ 4963 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw) 4964 { 4965 s32 status = IXGBE_SUCCESS; 4966 u16 offset; 4967 u16 ets_offset; 4968 u16 ets_cfg; 4969 u16 ets_sensor; 4970 u8 low_thresh_delta; 4971 u8 num_sensors; 4972 u8 sensor_index; 4973 u8 sensor_location; 4974 u8 therm_limit; 4975 u8 i; 4976 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 4977 4978 DEBUGFUNC("ixgbe_init_thermal_sensor_thresh_generic"); 4979 4980 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data)); 4981 4982 /* Only support thermal sensors attached to 82599 physical port 0 */ 4983 if ((hw->mac.type != ixgbe_mac_82599EB) || 4984 (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) 4985 return IXGBE_NOT_IMPLEMENTED; 4986 4987 offset = IXGBE_ETS_CFG; 4988 if (hw->eeprom.ops.read(hw, offset, &ets_offset)) 4989 goto eeprom_err; 4990 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 4991 return IXGBE_NOT_IMPLEMENTED; 4992 4993 offset = ets_offset; 4994 if (hw->eeprom.ops.read(hw, offset, &ets_cfg)) 4995 goto eeprom_err; 4996 if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT) 4997 != IXGBE_ETS_TYPE_EMC) 4998 return IXGBE_NOT_IMPLEMENTED; 4999 5000 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >> 5001 IXGBE_ETS_LTHRES_DELTA_SHIFT); 5002 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 5003 5004 for (i = 0; i < num_sensors; i++) { 5005 offset = ets_offset + 1 + i; 5006 if (hw->eeprom.ops.read(hw, offset, &ets_sensor)) { 5007 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 5008 "eeprom read at offset %d failed", 5009 offset); 5010 continue; 5011 } 5012 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 5013 IXGBE_ETS_DATA_INDEX_SHIFT); 5014 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 5015 IXGBE_ETS_DATA_LOC_SHIFT); 5016 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK; 5017 5018 hw->phy.ops.write_i2c_byte(hw, 5019 ixgbe_emc_therm_limit[sensor_index], 5020 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit); 5021 5022 if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) { 5023 data->sensor[i].location = sensor_location; 5024 data->sensor[i].caution_thresh = therm_limit; 5025 data->sensor[i].max_op_thresh = therm_limit - 5026 low_thresh_delta; 5027 } 5028 } 5029 return status; 5030 5031 eeprom_err: 5032 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 5033 "eeprom read at offset %d failed", offset); 5034 return IXGBE_NOT_IMPLEMENTED; 5035 } 5036 5037 /** 5038 * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW 5039 * 5040 * @hw: pointer to hardware structure 5041 * @cmd: Command we send to the FW 5042 * @status: The reply from the FW 5043 * 5044 * Bit-bangs the cmd to the by_pass FW status points to what is returned. 5045 **/ 5046 #define IXGBE_BYPASS_BB_WAIT 1 5047 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status) 5048 { 5049 int i; 5050 u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo; 5051 u32 esdp; 5052 5053 if (!status) 5054 return IXGBE_ERR_PARAM; 5055 5056 *status = 0; 5057 5058 /* SDP vary by MAC type */ 5059 switch (hw->mac.type) { 5060 case ixgbe_mac_82599EB: 5061 sck = IXGBE_ESDP_SDP7; 5062 sdi = IXGBE_ESDP_SDP0; 5063 sdo = IXGBE_ESDP_SDP6; 5064 dir_sck = IXGBE_ESDP_SDP7_DIR; 5065 dir_sdi = IXGBE_ESDP_SDP0_DIR; 5066 dir_sdo = IXGBE_ESDP_SDP6_DIR; 5067 break; 5068 case ixgbe_mac_X540: 5069 sck = IXGBE_ESDP_SDP2; 5070 sdi = IXGBE_ESDP_SDP0; 5071 sdo = IXGBE_ESDP_SDP1; 5072 dir_sck = IXGBE_ESDP_SDP2_DIR; 5073 dir_sdi = IXGBE_ESDP_SDP0_DIR; 5074 dir_sdo = IXGBE_ESDP_SDP1_DIR; 5075 break; 5076 default: 5077 return IXGBE_ERR_DEVICE_NOT_SUPPORTED; 5078 } 5079 5080 /* Set SDP pins direction */ 5081 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 5082 esdp |= dir_sck; /* SCK as output */ 5083 esdp |= dir_sdi; /* SDI as output */ 5084 esdp &= ~dir_sdo; /* SDO as input */ 5085 esdp |= sck; 5086 esdp |= sdi; 5087 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5088 IXGBE_WRITE_FLUSH(hw); 5089 msec_delay(IXGBE_BYPASS_BB_WAIT); 5090 5091 /* Generate start condition */ 5092 esdp &= ~sdi; 5093 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5094 IXGBE_WRITE_FLUSH(hw); 5095 msec_delay(IXGBE_BYPASS_BB_WAIT); 5096 5097 esdp &= ~sck; 5098 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5099 IXGBE_WRITE_FLUSH(hw); 5100 msec_delay(IXGBE_BYPASS_BB_WAIT); 5101 5102 /* Clock out the new control word and clock in the status */ 5103 for (i = 0; i < 32; i++) { 5104 if ((cmd >> (31 - i)) & 0x01) { 5105 esdp |= sdi; 5106 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5107 } else { 5108 esdp &= ~sdi; 5109 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5110 } 5111 IXGBE_WRITE_FLUSH(hw); 5112 msec_delay(IXGBE_BYPASS_BB_WAIT); 5113 5114 esdp |= sck; 5115 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5116 IXGBE_WRITE_FLUSH(hw); 5117 msec_delay(IXGBE_BYPASS_BB_WAIT); 5118 5119 esdp &= ~sck; 5120 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5121 IXGBE_WRITE_FLUSH(hw); 5122 msec_delay(IXGBE_BYPASS_BB_WAIT); 5123 5124 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 5125 if (esdp & sdo) 5126 *status = (*status << 1) | 0x01; 5127 else 5128 *status = (*status << 1) | 0x00; 5129 msec_delay(IXGBE_BYPASS_BB_WAIT); 5130 } 5131 5132 /* stop condition */ 5133 esdp |= sck; 5134 esdp &= ~sdi; 5135 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5136 IXGBE_WRITE_FLUSH(hw); 5137 msec_delay(IXGBE_BYPASS_BB_WAIT); 5138 5139 esdp |= sdi; 5140 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5141 IXGBE_WRITE_FLUSH(hw); 5142 5143 /* set the page bits to match the cmd that the status it belongs to */ 5144 *status = (*status & 0x3fffffff) | (cmd & 0xc0000000); 5145 5146 return IXGBE_SUCCESS; 5147 } 5148 5149 /** 5150 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang. 5151 * 5152 * If we send a write we can't be sure it took until we can read back 5153 * that same register. It can be a problem as some of the fields may 5154 * for valid reasons change inbetween the time wrote the register and 5155 * we read it again to verify. So this function check everything we 5156 * can check and then assumes it worked. 5157 * 5158 * @u32 in_reg - The register cmd for the bit-bang read. 5159 * @u32 out_reg - The register returned from a bit-bang read. 5160 **/ 5161 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg) 5162 { 5163 u32 mask; 5164 5165 /* Page must match for all control pages */ 5166 if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M)) 5167 return false; 5168 5169 switch (in_reg & BYPASS_PAGE_M) { 5170 case BYPASS_PAGE_CTL0: 5171 /* All the following can't change since the last write 5172 * - All the event actions 5173 * - The timeout value 5174 */ 5175 mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M | 5176 BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M | 5177 BYPASS_WDTIMEOUT_M | 5178 BYPASS_WDT_VALUE_M; 5179 if ((out_reg & mask) != (in_reg & mask)) 5180 return false; 5181 5182 /* 0x0 is never a valid value for bypass status */ 5183 if (!(out_reg & BYPASS_STATUS_OFF_M)) 5184 return false; 5185 break; 5186 case BYPASS_PAGE_CTL1: 5187 /* All the following can't change since the last write 5188 * - time valid bit 5189 * - time we last sent 5190 */ 5191 mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M; 5192 if ((out_reg & mask) != (in_reg & mask)) 5193 return false; 5194 break; 5195 case BYPASS_PAGE_CTL2: 5196 /* All we can check in this page is control number 5197 * which is already done above. 5198 */ 5199 break; 5200 } 5201 5202 /* We are as sure as we can be return true */ 5203 return true; 5204 } 5205 5206 /** 5207 * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter. 5208 * 5209 * @hw: pointer to hardware structure 5210 * @cmd: The control word we are setting. 5211 * @event: The event we are setting in the FW. This also happens to 5212 * be the mask for the event we are setting (handy) 5213 * @action: The action we set the event to in the FW. This is in a 5214 * bit field that happens to be what we want to put in 5215 * the event spot (also handy) 5216 **/ 5217 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event, 5218 u32 action) 5219 { 5220 u32 by_ctl = 0; 5221 u32 cmd, verify; 5222 u32 count = 0; 5223 5224 /* Get current values */ 5225 cmd = ctrl; /* just reading only need control number */ 5226 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl)) 5227 return IXGBE_ERR_INVALID_ARGUMENT; 5228 5229 /* Set to new action */ 5230 cmd = (by_ctl & ~event) | BYPASS_WE | action; 5231 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl)) 5232 return IXGBE_ERR_INVALID_ARGUMENT; 5233 5234 /* Page 0 force a FW eeprom write which is slow so verify */ 5235 if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) { 5236 verify = BYPASS_PAGE_CTL0; 5237 do { 5238 if (count++ > 5) 5239 return IXGBE_BYPASS_FW_WRITE_FAILURE; 5240 5241 if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl)) 5242 return IXGBE_ERR_INVALID_ARGUMENT; 5243 } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl)); 5244 } else { 5245 /* We have give the FW time for the write to stick */ 5246 msec_delay(100); 5247 } 5248 5249 return IXGBE_SUCCESS; 5250 } 5251 5252 /** 5253 * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres. 5254 * 5255 * @hw: pointer to hardware structure 5256 * @addr: The bypass eeprom address to read. 5257 * @value: The 8b of data at the address above. 5258 **/ 5259 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value) 5260 { 5261 u32 cmd; 5262 u32 status; 5263 5264 5265 /* send the request */ 5266 cmd = BYPASS_PAGE_CTL2 | BYPASS_WE; 5267 cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M; 5268 if (ixgbe_bypass_rw_generic(hw, cmd, &status)) 5269 return IXGBE_ERR_INVALID_ARGUMENT; 5270 5271 /* We have give the FW time for the write to stick */ 5272 msec_delay(100); 5273 5274 /* now read the results */ 5275 cmd &= ~BYPASS_WE; 5276 if (ixgbe_bypass_rw_generic(hw, cmd, &status)) 5277 return IXGBE_ERR_INVALID_ARGUMENT; 5278 5279 *value = status & BYPASS_CTL2_DATA_M; 5280 5281 return IXGBE_SUCCESS; 5282 } 5283 5284 /** 5285 * ixgbe_get_orom_version - Return option ROM from EEPROM 5286 * 5287 * @hw: pointer to hardware structure 5288 * @nvm_ver: pointer to output structure 5289 * 5290 * if valid option ROM version, nvm_ver->or_valid set to true 5291 * else nvm_ver->or_valid is false. 5292 **/ 5293 void ixgbe_get_orom_version(struct ixgbe_hw *hw, 5294 struct ixgbe_nvm_version *nvm_ver) 5295 { 5296 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl; 5297 5298 nvm_ver->or_valid = false; 5299 /* Option Rom may or may not be present. Start with pointer */ 5300 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset); 5301 5302 /* make sure offset is valid */ 5303 if ((offset == 0x0) || (offset == NVM_INVALID_PTR)) 5304 return; 5305 5306 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh); 5307 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl); 5308 5309 /* option rom exists and is valid */ 5310 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 || 5311 eeprom_cfg_blkl == NVM_VER_INVALID || 5312 eeprom_cfg_blkh == NVM_VER_INVALID) 5313 return; 5314 5315 nvm_ver->or_valid = true; 5316 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT; 5317 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) | 5318 (eeprom_cfg_blkh >> NVM_OROM_SHIFT); 5319 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK; 5320 } 5321 5322 /** 5323 * ixgbe_get_oem_prod_version - Return OEM Product version 5324 * 5325 * @hw: pointer to hardware structure 5326 * @nvm_ver: pointer to output structure 5327 * 5328 * if valid OEM product version, nvm_ver->oem_valid set to true 5329 * else nvm_ver->oem_valid is false. 5330 **/ 5331 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw, 5332 struct ixgbe_nvm_version *nvm_ver) 5333 { 5334 u16 rel_num, prod_ver, mod_len, cap, offset; 5335 5336 nvm_ver->oem_valid = false; 5337 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset); 5338 5339 /* Return if offset to OEM Product Version block is invalid */ 5340 if (offset == 0x0 || offset == NVM_INVALID_PTR) 5341 return; 5342 5343 /* Read product version block */ 5344 hw->eeprom.ops.read(hw, offset, &mod_len); 5345 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap); 5346 5347 /* Return if OEM product version block is invalid */ 5348 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN || 5349 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0) 5350 return; 5351 5352 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver); 5353 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num); 5354 5355 /* Return if version is invalid */ 5356 if ((rel_num | prod_ver) == 0x0 || 5357 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID) 5358 return; 5359 5360 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT; 5361 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK; 5362 nvm_ver->oem_release = rel_num; 5363 nvm_ver->oem_valid = true; 5364 } 5365 5366 /** 5367 * ixgbe_get_etk_id - Return Etrack ID from EEPROM 5368 * 5369 * @hw: pointer to hardware structure 5370 * @nvm_ver: pointer to output structure 5371 * 5372 * word read errors will return 0xFFFF 5373 **/ 5374 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver) 5375 { 5376 u16 etk_id_l, etk_id_h; 5377 5378 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l)) 5379 etk_id_l = NVM_VER_INVALID; 5380 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h)) 5381 etk_id_h = NVM_VER_INVALID; 5382 5383 /* The word order for the version format is determined by high order 5384 * word bit 15. 5385 */ 5386 if ((etk_id_h & NVM_ETK_VALID) == 0) { 5387 nvm_ver->etk_id = etk_id_h; 5388 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT); 5389 } else { 5390 nvm_ver->etk_id = etk_id_l; 5391 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT); 5392 } 5393 } 5394 5395 5396 /** 5397 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg 5398 * @hw: pointer to hardware structure 5399 * @map: pointer to u8 arr for returning map 5400 * 5401 * Read the rtrup2tc HW register and resolve its content into map 5402 **/ 5403 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map) 5404 { 5405 u32 reg, i; 5406 5407 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC); 5408 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++) 5409 map[i] = IXGBE_RTRUP2TC_UP_MASK & 5410 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT)); 5411 return; 5412 } 5413 5414 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw) 5415 { 5416 u32 pfdtxgswc; 5417 u32 rxctrl; 5418 5419 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 5420 if (rxctrl & IXGBE_RXCTRL_RXEN) { 5421 if (hw->mac.type != ixgbe_mac_82598EB) { 5422 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 5423 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { 5424 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; 5425 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 5426 hw->mac.set_lben = true; 5427 } else { 5428 hw->mac.set_lben = false; 5429 } 5430 } 5431 rxctrl &= ~IXGBE_RXCTRL_RXEN; 5432 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); 5433 } 5434 } 5435 5436 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw) 5437 { 5438 u32 pfdtxgswc; 5439 u32 rxctrl; 5440 5441 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 5442 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN)); 5443 5444 if (hw->mac.type != ixgbe_mac_82598EB) { 5445 if (hw->mac.set_lben) { 5446 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 5447 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN; 5448 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 5449 hw->mac.set_lben = false; 5450 } 5451 } 5452 } 5453 5454 /** 5455 * ixgbe_mng_present - returns true when management capability is present 5456 * @hw: pointer to hardware structure 5457 */ 5458 bool ixgbe_mng_present(struct ixgbe_hw *hw) 5459 { 5460 u32 fwsm; 5461 5462 if (hw->mac.type < ixgbe_mac_82599EB) 5463 return false; 5464 5465 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw)); 5466 5467 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT); 5468 } 5469 5470 /** 5471 * ixgbe_mng_enabled - Is the manageability engine enabled? 5472 * @hw: pointer to hardware structure 5473 * 5474 * Returns true if the manageability engine is enabled. 5475 **/ 5476 bool ixgbe_mng_enabled(struct ixgbe_hw *hw) 5477 { 5478 u32 fwsm, manc, factps; 5479 5480 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw)); 5481 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT) 5482 return false; 5483 5484 manc = IXGBE_READ_REG(hw, IXGBE_MANC); 5485 if (!(manc & IXGBE_MANC_RCV_TCO_EN)) 5486 return false; 5487 5488 if (hw->mac.type <= ixgbe_mac_X540) { 5489 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw)); 5490 if (factps & IXGBE_FACTPS_MNGCG) 5491 return false; 5492 } 5493 5494 return true; 5495 } 5496 5497 /** 5498 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed 5499 * @hw: pointer to hardware structure 5500 * @speed: new link speed 5501 * @autoneg_wait_to_complete: true when waiting for completion is needed 5502 * 5503 * Set the link speed in the MAC and/or PHY register and restarts link. 5504 **/ 5505 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw, 5506 ixgbe_link_speed speed, 5507 bool autoneg_wait_to_complete) 5508 { 5509 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN; 5510 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN; 5511 s32 status = IXGBE_SUCCESS; 5512 u32 speedcnt = 0; 5513 u32 i = 0; 5514 bool autoneg, link_up = false; 5515 5516 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber"); 5517 5518 /* Mask off requested but non-supported speeds */ 5519 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg); 5520 if (status != IXGBE_SUCCESS) 5521 return status; 5522 5523 speed &= link_speed; 5524 5525 /* Try each speed one by one, highest priority first. We do this in 5526 * software because 10Gb fiber doesn't support speed autonegotiation. 5527 */ 5528 if (speed & IXGBE_LINK_SPEED_10GB_FULL) { 5529 speedcnt++; 5530 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL; 5531 5532 /* Set the module link speed */ 5533 switch (hw->phy.media_type) { 5534 case ixgbe_media_type_fiber_fixed: 5535 case ixgbe_media_type_fiber: 5536 ixgbe_set_rate_select_speed(hw, 5537 IXGBE_LINK_SPEED_10GB_FULL); 5538 break; 5539 case ixgbe_media_type_fiber_qsfp: 5540 /* QSFP module automatically detects MAC link speed */ 5541 break; 5542 default: 5543 DEBUGOUT("Unexpected media type.\n"); 5544 break; 5545 } 5546 5547 /* Allow module to change analog characteristics (1G->10G) */ 5548 msec_delay(40); 5549 5550 status = ixgbe_setup_mac_link(hw, 5551 IXGBE_LINK_SPEED_10GB_FULL, 5552 autoneg_wait_to_complete); 5553 if (status != IXGBE_SUCCESS) 5554 return status; 5555 5556 /* Flap the Tx laser if it has not already been done */ 5557 ixgbe_flap_tx_laser(hw); 5558 5559 /* Wait for the controller to acquire link. Per IEEE 802.3ap, 5560 * Section 73.10.2, we may have to wait up to 1000ms if KR is 5561 * attempted. 82599 uses the same timing for 10g SFI. 5562 */ 5563 for (i = 0; i < 10; i++) { 5564 /* Wait for the link partner to also set speed */ 5565 msec_delay(100); 5566 5567 /* If we have link, just jump out */ 5568 status = ixgbe_check_link(hw, &link_speed, 5569 &link_up, false); 5570 if (status != IXGBE_SUCCESS) 5571 return status; 5572 5573 if (link_up) 5574 goto out; 5575 } 5576 } 5577 5578 if (speed & IXGBE_LINK_SPEED_1GB_FULL) { 5579 speedcnt++; 5580 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN) 5581 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL; 5582 5583 /* Set the module link speed */ 5584 switch (hw->phy.media_type) { 5585 case ixgbe_media_type_fiber_fixed: 5586 case ixgbe_media_type_fiber: 5587 ixgbe_set_rate_select_speed(hw, 5588 IXGBE_LINK_SPEED_1GB_FULL); 5589 break; 5590 case ixgbe_media_type_fiber_qsfp: 5591 /* QSFP module automatically detects link speed */ 5592 break; 5593 default: 5594 DEBUGOUT("Unexpected media type.\n"); 5595 break; 5596 } 5597 5598 /* Allow module to change analog characteristics (10G->1G) */ 5599 msec_delay(40); 5600 5601 status = ixgbe_setup_mac_link(hw, 5602 IXGBE_LINK_SPEED_1GB_FULL, 5603 autoneg_wait_to_complete); 5604 if (status != IXGBE_SUCCESS) 5605 return status; 5606 5607 /* Flap the Tx laser if it has not already been done */ 5608 ixgbe_flap_tx_laser(hw); 5609 5610 /* Wait for the link partner to also set speed */ 5611 msec_delay(100); 5612 5613 /* If we have link, just jump out */ 5614 status = ixgbe_check_link(hw, &link_speed, &link_up, false); 5615 if (status != IXGBE_SUCCESS) 5616 return status; 5617 5618 if (link_up) 5619 goto out; 5620 } 5621 5622 /* We didn't get link. Configure back to the highest speed we tried, 5623 * (if there was more than one). We call ourselves back with just the 5624 * single highest speed that the user requested. 5625 */ 5626 if (speedcnt > 1) 5627 status = ixgbe_setup_mac_link_multispeed_fiber(hw, 5628 highest_link_speed, 5629 autoneg_wait_to_complete); 5630 5631 out: 5632 /* Set autoneg_advertised value based on input link speed */ 5633 hw->phy.autoneg_advertised = 0; 5634 5635 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 5636 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 5637 5638 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 5639 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 5640 5641 return status; 5642 } 5643 5644 /** 5645 * ixgbe_set_soft_rate_select_speed - Set module link speed 5646 * @hw: pointer to hardware structure 5647 * @speed: link speed to set 5648 * 5649 * Set module link speed via the soft rate select. 5650 */ 5651 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw, 5652 ixgbe_link_speed speed) 5653 { 5654 s32 status; 5655 u8 rs, eeprom_data; 5656 5657 switch (speed) { 5658 case IXGBE_LINK_SPEED_10GB_FULL: 5659 /* one bit mask same as setting on */ 5660 rs = IXGBE_SFF_SOFT_RS_SELECT_10G; 5661 break; 5662 case IXGBE_LINK_SPEED_1GB_FULL: 5663 rs = IXGBE_SFF_SOFT_RS_SELECT_1G; 5664 break; 5665 default: 5666 DEBUGOUT("Invalid fixed module speed\n"); 5667 return; 5668 } 5669 5670 /* Set RS0 */ 5671 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, 5672 IXGBE_I2C_EEPROM_DEV_ADDR2, 5673 &eeprom_data); 5674 if (status) { 5675 DEBUGOUT("Failed to read Rx Rate Select RS0\n"); 5676 goto out; 5677 } 5678 5679 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; 5680 5681 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, 5682 IXGBE_I2C_EEPROM_DEV_ADDR2, 5683 eeprom_data); 5684 if (status) { 5685 DEBUGOUT("Failed to write Rx Rate Select RS0\n"); 5686 goto out; 5687 } 5688 5689 /* Set RS1 */ 5690 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, 5691 IXGBE_I2C_EEPROM_DEV_ADDR2, 5692 &eeprom_data); 5693 if (status) { 5694 DEBUGOUT("Failed to read Rx Rate Select RS1\n"); 5695 goto out; 5696 } 5697 5698 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; 5699 5700 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, 5701 IXGBE_I2C_EEPROM_DEV_ADDR2, 5702 eeprom_data); 5703 if (status) { 5704 DEBUGOUT("Failed to write Rx Rate Select RS1\n"); 5705 goto out; 5706 } 5707 out: 5708 return; 5709 } 5710