xref: /freebsd/sys/dev/ixgbe/ixgbe_common.c (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 /******************************************************************************
2   SPDX-License-Identifier: BSD-3-Clause
3 
4   Copyright (c) 2001-2020, Intel Corporation
5   All rights reserved.
6 
7   Redistribution and use in source and binary forms, with or without
8   modification, are permitted provided that the following conditions are met:
9 
10    1. Redistributions of source code must retain the above copyright notice,
11       this list of conditions and the following disclaimer.
12 
13    2. Redistributions in binary form must reproduce the above copyright
14       notice, this list of conditions and the following disclaimer in the
15       documentation and/or other materials provided with the distribution.
16 
17    3. Neither the name of the Intel Corporation nor the names of its
18       contributors may be used to endorse or promote products derived from
19       this software without specific prior written permission.
20 
21   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31   POSSIBILITY OF SUCH DAMAGE.
32 
33 ******************************************************************************/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40 
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 					u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52 
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 					 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					     u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					      u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 						 u16 offset);
62 
63 /**
64  * ixgbe_init_ops_generic - Inits function ptrs
65  * @hw: pointer to the hardware structure
66  *
67  * Initialize the function pointers.
68  **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 	struct ixgbe_mac_info *mac = &hw->mac;
73 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74 
75 	DEBUGFUNC("ixgbe_init_ops_generic");
76 
77 	/* EEPROM */
78 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 	if (eec & IXGBE_EEC_PRES) {
81 		eeprom->ops.read = ixgbe_read_eerd_generic;
82 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 	} else {
84 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 		eeprom->ops.read_buffer =
86 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 	}
88 	eeprom->ops.write = ixgbe_write_eeprom_generic;
89 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 	eeprom->ops.validate_checksum =
91 				      ixgbe_validate_eeprom_checksum_generic;
92 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94 
95 	/* MAC */
96 	mac->ops.init_hw = ixgbe_init_hw_generic;
97 	mac->ops.reset_hw = NULL;
98 	mac->ops.start_hw = ixgbe_start_hw_generic;
99 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 	mac->ops.get_media_type = NULL;
101 	mac->ops.get_supported_physical_layer = NULL;
102 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111 
112 	/* LEDs */
113 	mac->ops.led_on = ixgbe_led_on_generic;
114 	mac->ops.led_off = ixgbe_led_off_generic;
115 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 	mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
118 
119 	/* RAR, Multicast, VLAN */
120 	mac->ops.set_rar = ixgbe_set_rar_generic;
121 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
122 	mac->ops.insert_mac_addr = NULL;
123 	mac->ops.set_vmdq = NULL;
124 	mac->ops.clear_vmdq = NULL;
125 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
126 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
127 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
128 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
129 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
130 	mac->ops.clear_vfta = NULL;
131 	mac->ops.set_vfta = NULL;
132 	mac->ops.set_vlvf = NULL;
133 	mac->ops.init_uta_tables = NULL;
134 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
135 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
136 
137 	/* Flow Control */
138 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
139 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
140 	mac->ops.fc_autoneg = ixgbe_fc_autoneg;
141 
142 	/* Link */
143 	mac->ops.get_link_capabilities = NULL;
144 	mac->ops.setup_link = NULL;
145 	mac->ops.check_link = NULL;
146 	mac->ops.dmac_config = NULL;
147 	mac->ops.dmac_update_tcs = NULL;
148 	mac->ops.dmac_config_tcs = NULL;
149 
150 	return IXGBE_SUCCESS;
151 }
152 
153 /**
154  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
155  * of flow control
156  * @hw: pointer to hardware structure
157  *
158  * This function returns true if the device supports flow control
159  * autonegotiation, and false if it does not.
160  *
161  **/
162 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
163 {
164 	bool supported = false;
165 	ixgbe_link_speed speed;
166 	bool link_up;
167 
168 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
169 
170 	switch (hw->phy.media_type) {
171 	case ixgbe_media_type_fiber_fixed:
172 	case ixgbe_media_type_fiber_qsfp:
173 	case ixgbe_media_type_fiber:
174 		/* flow control autoneg black list */
175 		switch (hw->device_id) {
176 		case IXGBE_DEV_ID_X550EM_A_SFP:
177 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
178 		case IXGBE_DEV_ID_X550EM_A_QSFP:
179 		case IXGBE_DEV_ID_X550EM_A_QSFP_N:
180 			supported = false;
181 			break;
182 		default:
183 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
184 			/* if link is down, assume supported */
185 			if (link_up)
186 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
187 				true : false;
188 			else
189 				supported = true;
190 		}
191 
192 		break;
193 	case ixgbe_media_type_backplane:
194 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
195 			supported = false;
196 		else
197 			supported = true;
198 		break;
199 	case ixgbe_media_type_copper:
200 		/* only some copper devices support flow control autoneg */
201 		switch (hw->device_id) {
202 		case IXGBE_DEV_ID_82599_T3_LOM:
203 		case IXGBE_DEV_ID_X540T:
204 		case IXGBE_DEV_ID_X540T1:
205 		case IXGBE_DEV_ID_X540_BYPASS:
206 		case IXGBE_DEV_ID_X550T:
207 		case IXGBE_DEV_ID_X550T1:
208 		case IXGBE_DEV_ID_X550EM_X_10G_T:
209 		case IXGBE_DEV_ID_X550EM_A_10G_T:
210 		case IXGBE_DEV_ID_X550EM_A_1G_T:
211 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
212 			supported = true;
213 			break;
214 		default:
215 			supported = false;
216 		}
217 	default:
218 		break;
219 	}
220 
221 	if (!supported)
222 		ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
223 			      "Device %x does not support flow control autoneg",
224 			      hw->device_id);
225 
226 	return supported;
227 }
228 
229 /**
230  * ixgbe_setup_fc_generic - Set up flow control
231  * @hw: pointer to hardware structure
232  *
233  * Called at init time to set up flow control.
234  **/
235 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
236 {
237 	s32 ret_val = IXGBE_SUCCESS;
238 	u32 reg = 0, reg_bp = 0;
239 	u16 reg_cu = 0;
240 	bool locked = false;
241 
242 	DEBUGFUNC("ixgbe_setup_fc_generic");
243 
244 	/* Validate the requested mode */
245 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
246 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
247 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
248 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
249 		goto out;
250 	}
251 
252 	/*
253 	 * 10gig parts do not have a word in the EEPROM to determine the
254 	 * default flow control setting, so we explicitly set it to full.
255 	 */
256 	if (hw->fc.requested_mode == ixgbe_fc_default)
257 		hw->fc.requested_mode = ixgbe_fc_full;
258 
259 	/*
260 	 * Set up the 1G and 10G flow control advertisement registers so the
261 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
262 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
263 	 */
264 	switch (hw->phy.media_type) {
265 	case ixgbe_media_type_backplane:
266 		/* some MAC's need RMW protection on AUTOC */
267 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
268 		if (ret_val != IXGBE_SUCCESS)
269 			goto out;
270 
271 		/* only backplane uses autoc */
272 		/* FALLTHROUGH */
273 	case ixgbe_media_type_fiber_fixed:
274 	case ixgbe_media_type_fiber_qsfp:
275 	case ixgbe_media_type_fiber:
276 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
277 
278 		break;
279 	case ixgbe_media_type_copper:
280 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
281 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	/*
288 	 * The possible values of fc.requested_mode are:
289 	 * 0: Flow control is completely disabled
290 	 * 1: Rx flow control is enabled (we can receive pause frames,
291 	 *    but not send pause frames).
292 	 * 2: Tx flow control is enabled (we can send pause frames but
293 	 *    we do not support receiving pause frames).
294 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
295 	 * other: Invalid.
296 	 */
297 	switch (hw->fc.requested_mode) {
298 	case ixgbe_fc_none:
299 		/* Flow control completely disabled by software override. */
300 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
301 		if (hw->phy.media_type == ixgbe_media_type_backplane)
302 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
303 				    IXGBE_AUTOC_ASM_PAUSE);
304 		else if (hw->phy.media_type == ixgbe_media_type_copper)
305 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
306 		break;
307 	case ixgbe_fc_tx_pause:
308 		/*
309 		 * Tx Flow control is enabled, and Rx Flow control is
310 		 * disabled by software override.
311 		 */
312 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
313 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
314 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
315 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
316 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
317 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
318 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
319 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
320 		}
321 		break;
322 	case ixgbe_fc_rx_pause:
323 		/*
324 		 * Rx Flow control is enabled and Tx Flow control is
325 		 * disabled by software override. Since there really
326 		 * isn't a way to advertise that we are capable of RX
327 		 * Pause ONLY, we will advertise that we support both
328 		 * symmetric and asymmetric Rx PAUSE, as such we fall
329 		 * through to the fc_full statement.  Later, we will
330 		 * disable the adapter's ability to send PAUSE frames.
331 		 */
332 	case ixgbe_fc_full:
333 		/* Flow control (both Rx and Tx) is enabled by SW override. */
334 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
335 		if (hw->phy.media_type == ixgbe_media_type_backplane)
336 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
337 				  IXGBE_AUTOC_ASM_PAUSE;
338 		else if (hw->phy.media_type == ixgbe_media_type_copper)
339 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
340 		break;
341 	default:
342 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
343 			     "Flow control param set incorrectly\n");
344 		ret_val = IXGBE_ERR_CONFIG;
345 		goto out;
346 		break;
347 	}
348 
349 	if (hw->mac.type < ixgbe_mac_X540) {
350 		/*
351 		 * Enable auto-negotiation between the MAC & PHY;
352 		 * the MAC will advertise clause 37 flow control.
353 		 */
354 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
355 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
356 
357 		/* Disable AN timeout */
358 		if (hw->fc.strict_ieee)
359 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
360 
361 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
362 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
363 	}
364 
365 	/*
366 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
367 	 * and copper. There is no need to set the PCS1GCTL register.
368 	 *
369 	 */
370 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
371 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
372 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
373 		if (ret_val)
374 			goto out;
375 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
376 		    (ixgbe_device_supports_autoneg_fc(hw))) {
377 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
378 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
379 	}
380 
381 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
382 out:
383 	return ret_val;
384 }
385 
386 /**
387  * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
388  * @hw: pointer to hardware structure
389  *
390  * Starts the hardware by filling the bus info structure and media type, clears
391  * all on chip counters, initializes receive address registers, multicast
392  * table, VLAN filter table, calls routine to set up link and flow control
393  * settings, and leaves transmit and receive units disabled and uninitialized
394  **/
395 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
396 {
397 	s32 ret_val;
398 	u32 ctrl_ext;
399 	u16 device_caps;
400 
401 	DEBUGFUNC("ixgbe_start_hw_generic");
402 
403 	/* Set the media type */
404 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
405 
406 	/* PHY ops initialization must be done in reset_hw() */
407 
408 	/* Clear the VLAN filter table */
409 	hw->mac.ops.clear_vfta(hw);
410 
411 	/* Clear statistics registers */
412 	hw->mac.ops.clear_hw_cntrs(hw);
413 
414 	/* Set No Snoop Disable */
415 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
416 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
417 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
418 	IXGBE_WRITE_FLUSH(hw);
419 
420 	/* Setup flow control */
421 	ret_val = ixgbe_setup_fc(hw);
422 	if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
423 		DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
424 		return ret_val;
425 	}
426 
427 	/* Cache bit indicating need for crosstalk fix */
428 	switch (hw->mac.type) {
429 	case ixgbe_mac_82599EB:
430 	case ixgbe_mac_X550EM_x:
431 	case ixgbe_mac_X550EM_a:
432 		hw->mac.ops.get_device_caps(hw, &device_caps);
433 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
434 			hw->need_crosstalk_fix = false;
435 		else
436 			hw->need_crosstalk_fix = true;
437 		break;
438 	default:
439 		hw->need_crosstalk_fix = false;
440 		break;
441 	}
442 
443 	/* Clear adapter stopped flag */
444 	hw->adapter_stopped = false;
445 
446 	return IXGBE_SUCCESS;
447 }
448 
449 /**
450  * ixgbe_start_hw_gen2 - Init sequence for common device family
451  * @hw: pointer to hw structure
452  *
453  * Performs the init sequence common to the second generation
454  * of 10 GbE devices.
455  * Devices in the second generation:
456  *    82599
457  *    X540
458  **/
459 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
460 {
461 	u32 i;
462 	u32 regval;
463 
464 	/* Clear the rate limiters */
465 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
466 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
467 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
468 	}
469 	IXGBE_WRITE_FLUSH(hw);
470 
471 	/* Disable relaxed ordering */
472 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
473 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
474 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
475 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
476 	}
477 
478 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
479 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
480 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
481 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
482 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
483 	}
484 }
485 
486 /**
487  * ixgbe_init_hw_generic - Generic hardware initialization
488  * @hw: pointer to hardware structure
489  *
490  * Initialize the hardware by resetting the hardware, filling the bus info
491  * structure and media type, clears all on chip counters, initializes receive
492  * address registers, multicast table, VLAN filter table, calls routine to set
493  * up link and flow control settings, and leaves transmit and receive units
494  * disabled and uninitialized
495  **/
496 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
497 {
498 	s32 status;
499 
500 	DEBUGFUNC("ixgbe_init_hw_generic");
501 
502 	/* Reset the hardware */
503 	status = hw->mac.ops.reset_hw(hw);
504 
505 	if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
506 		/* Start the HW */
507 		status = hw->mac.ops.start_hw(hw);
508 	}
509 
510 	/* Initialize the LED link active for LED blink support */
511 	if (hw->mac.ops.init_led_link_act)
512 		hw->mac.ops.init_led_link_act(hw);
513 
514 	if (status != IXGBE_SUCCESS)
515 		DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
516 
517 	return status;
518 }
519 
520 /**
521  * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
522  * @hw: pointer to hardware structure
523  *
524  * Clears all hardware statistics counters by reading them from the hardware
525  * Statistics counters are clear on read.
526  **/
527 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
528 {
529 	u16 i = 0;
530 
531 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
532 
533 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
534 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
535 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
536 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
537 	for (i = 0; i < 8; i++)
538 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
539 
540 	IXGBE_READ_REG(hw, IXGBE_MLFC);
541 	IXGBE_READ_REG(hw, IXGBE_MRFC);
542 	IXGBE_READ_REG(hw, IXGBE_RLEC);
543 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
544 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
545 	if (hw->mac.type >= ixgbe_mac_82599EB) {
546 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
547 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
548 	} else {
549 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
550 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
551 	}
552 
553 	for (i = 0; i < 8; i++) {
554 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
555 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
556 		if (hw->mac.type >= ixgbe_mac_82599EB) {
557 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
558 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
559 		} else {
560 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
561 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
562 		}
563 	}
564 	if (hw->mac.type >= ixgbe_mac_82599EB)
565 		for (i = 0; i < 8; i++)
566 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
567 	IXGBE_READ_REG(hw, IXGBE_PRC64);
568 	IXGBE_READ_REG(hw, IXGBE_PRC127);
569 	IXGBE_READ_REG(hw, IXGBE_PRC255);
570 	IXGBE_READ_REG(hw, IXGBE_PRC511);
571 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
572 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
573 	IXGBE_READ_REG(hw, IXGBE_GPRC);
574 	IXGBE_READ_REG(hw, IXGBE_BPRC);
575 	IXGBE_READ_REG(hw, IXGBE_MPRC);
576 	IXGBE_READ_REG(hw, IXGBE_GPTC);
577 	IXGBE_READ_REG(hw, IXGBE_GORCL);
578 	IXGBE_READ_REG(hw, IXGBE_GORCH);
579 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
580 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
581 	if (hw->mac.type == ixgbe_mac_82598EB)
582 		for (i = 0; i < 8; i++)
583 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
584 	IXGBE_READ_REG(hw, IXGBE_RUC);
585 	IXGBE_READ_REG(hw, IXGBE_RFC);
586 	IXGBE_READ_REG(hw, IXGBE_ROC);
587 	IXGBE_READ_REG(hw, IXGBE_RJC);
588 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
589 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
590 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
591 	IXGBE_READ_REG(hw, IXGBE_TORL);
592 	IXGBE_READ_REG(hw, IXGBE_TORH);
593 	IXGBE_READ_REG(hw, IXGBE_TPR);
594 	IXGBE_READ_REG(hw, IXGBE_TPT);
595 	IXGBE_READ_REG(hw, IXGBE_PTC64);
596 	IXGBE_READ_REG(hw, IXGBE_PTC127);
597 	IXGBE_READ_REG(hw, IXGBE_PTC255);
598 	IXGBE_READ_REG(hw, IXGBE_PTC511);
599 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
600 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
601 	IXGBE_READ_REG(hw, IXGBE_MPTC);
602 	IXGBE_READ_REG(hw, IXGBE_BPTC);
603 	for (i = 0; i < 16; i++) {
604 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
605 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
606 		if (hw->mac.type >= ixgbe_mac_82599EB) {
607 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
608 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
609 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
610 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
611 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
612 		} else {
613 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
614 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
615 		}
616 	}
617 
618 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
619 		if (hw->phy.id == 0)
620 			ixgbe_identify_phy(hw);
621 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
622 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
623 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
624 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
625 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
626 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
627 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
628 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
629 	}
630 
631 	return IXGBE_SUCCESS;
632 }
633 
634 /**
635  * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
636  * @hw: pointer to hardware structure
637  * @pba_num: stores the part number string from the EEPROM
638  * @pba_num_size: part number string buffer length
639  *
640  * Reads the part number string from the EEPROM.
641  **/
642 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
643 				  u32 pba_num_size)
644 {
645 	s32 ret_val;
646 	u16 data;
647 	u16 pba_ptr;
648 	u16 offset;
649 	u16 length;
650 
651 	DEBUGFUNC("ixgbe_read_pba_string_generic");
652 
653 	if (pba_num == NULL) {
654 		DEBUGOUT("PBA string buffer was null\n");
655 		return IXGBE_ERR_INVALID_ARGUMENT;
656 	}
657 
658 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
659 	if (ret_val) {
660 		DEBUGOUT("NVM Read Error\n");
661 		return ret_val;
662 	}
663 
664 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
665 	if (ret_val) {
666 		DEBUGOUT("NVM Read Error\n");
667 		return ret_val;
668 	}
669 
670 	/*
671 	 * if data is not ptr guard the PBA must be in legacy format which
672 	 * means pba_ptr is actually our second data word for the PBA number
673 	 * and we can decode it into an ascii string
674 	 */
675 	if (data != IXGBE_PBANUM_PTR_GUARD) {
676 		DEBUGOUT("NVM PBA number is not stored as string\n");
677 
678 		/* we will need 11 characters to store the PBA */
679 		if (pba_num_size < 11) {
680 			DEBUGOUT("PBA string buffer too small\n");
681 			return IXGBE_ERR_NO_SPACE;
682 		}
683 
684 		/* extract hex string from data and pba_ptr */
685 		pba_num[0] = (data >> 12) & 0xF;
686 		pba_num[1] = (data >> 8) & 0xF;
687 		pba_num[2] = (data >> 4) & 0xF;
688 		pba_num[3] = data & 0xF;
689 		pba_num[4] = (pba_ptr >> 12) & 0xF;
690 		pba_num[5] = (pba_ptr >> 8) & 0xF;
691 		pba_num[6] = '-';
692 		pba_num[7] = 0;
693 		pba_num[8] = (pba_ptr >> 4) & 0xF;
694 		pba_num[9] = pba_ptr & 0xF;
695 
696 		/* put a null character on the end of our string */
697 		pba_num[10] = '\0';
698 
699 		/* switch all the data but the '-' to hex char */
700 		for (offset = 0; offset < 10; offset++) {
701 			if (pba_num[offset] < 0xA)
702 				pba_num[offset] += '0';
703 			else if (pba_num[offset] < 0x10)
704 				pba_num[offset] += 'A' - 0xA;
705 		}
706 
707 		return IXGBE_SUCCESS;
708 	}
709 
710 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
711 	if (ret_val) {
712 		DEBUGOUT("NVM Read Error\n");
713 		return ret_val;
714 	}
715 
716 	if (length == 0xFFFF || length == 0) {
717 		DEBUGOUT("NVM PBA number section invalid length\n");
718 		return IXGBE_ERR_PBA_SECTION;
719 	}
720 
721 	/* check if pba_num buffer is big enough */
722 	if (pba_num_size  < (((u32)length * 2) - 1)) {
723 		DEBUGOUT("PBA string buffer too small\n");
724 		return IXGBE_ERR_NO_SPACE;
725 	}
726 
727 	/* trim pba length from start of string */
728 	pba_ptr++;
729 	length--;
730 
731 	for (offset = 0; offset < length; offset++) {
732 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
733 		if (ret_val) {
734 			DEBUGOUT("NVM Read Error\n");
735 			return ret_val;
736 		}
737 		pba_num[offset * 2] = (u8)(data >> 8);
738 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
739 	}
740 	pba_num[offset * 2] = '\0';
741 
742 	return IXGBE_SUCCESS;
743 }
744 
745 /**
746  * ixgbe_read_pba_num_generic - Reads part number from EEPROM
747  * @hw: pointer to hardware structure
748  * @pba_num: stores the part number from the EEPROM
749  *
750  * Reads the part number from the EEPROM.
751  **/
752 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
753 {
754 	s32 ret_val;
755 	u16 data;
756 
757 	DEBUGFUNC("ixgbe_read_pba_num_generic");
758 
759 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
760 	if (ret_val) {
761 		DEBUGOUT("NVM Read Error\n");
762 		return ret_val;
763 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
764 		DEBUGOUT("NVM Not supported\n");
765 		return IXGBE_NOT_IMPLEMENTED;
766 	}
767 	*pba_num = (u32)(data << 16);
768 
769 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
770 	if (ret_val) {
771 		DEBUGOUT("NVM Read Error\n");
772 		return ret_val;
773 	}
774 	*pba_num |= (u32)data;
775 
776 	return IXGBE_SUCCESS;
777 }
778 
779 /**
780  * ixgbe_read_pba_raw
781  * @hw: pointer to the HW structure
782  * @eeprom_buf: optional pointer to EEPROM image
783  * @eeprom_buf_size: size of EEPROM image in words
784  * @max_pba_block_size: PBA block size limit
785  * @pba: pointer to output PBA structure
786  *
787  * Reads PBA from EEPROM image when eeprom_buf is not NULL.
788  * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
789  *
790  **/
791 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
792 		       u32 eeprom_buf_size, u16 max_pba_block_size,
793 		       struct ixgbe_pba *pba)
794 {
795 	s32 ret_val;
796 	u16 pba_block_size;
797 
798 	if (pba == NULL)
799 		return IXGBE_ERR_PARAM;
800 
801 	if (eeprom_buf == NULL) {
802 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
803 						     &pba->word[0]);
804 		if (ret_val)
805 			return ret_val;
806 	} else {
807 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
808 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
809 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
810 		} else {
811 			return IXGBE_ERR_PARAM;
812 		}
813 	}
814 
815 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
816 		if (pba->pba_block == NULL)
817 			return IXGBE_ERR_PARAM;
818 
819 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
820 						   eeprom_buf_size,
821 						   &pba_block_size);
822 		if (ret_val)
823 			return ret_val;
824 
825 		if (pba_block_size > max_pba_block_size)
826 			return IXGBE_ERR_PARAM;
827 
828 		if (eeprom_buf == NULL) {
829 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
830 							     pba_block_size,
831 							     pba->pba_block);
832 			if (ret_val)
833 				return ret_val;
834 		} else {
835 			if (eeprom_buf_size > (u32)(pba->word[1] +
836 					      pba_block_size)) {
837 				memcpy(pba->pba_block,
838 				       &eeprom_buf[pba->word[1]],
839 				       pba_block_size * sizeof(u16));
840 			} else {
841 				return IXGBE_ERR_PARAM;
842 			}
843 		}
844 	}
845 
846 	return IXGBE_SUCCESS;
847 }
848 
849 /**
850  * ixgbe_write_pba_raw
851  * @hw: pointer to the HW structure
852  * @eeprom_buf: optional pointer to EEPROM image
853  * @eeprom_buf_size: size of EEPROM image in words
854  * @pba: pointer to PBA structure
855  *
856  * Writes PBA to EEPROM image when eeprom_buf is not NULL.
857  * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
858  *
859  **/
860 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
861 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
862 {
863 	s32 ret_val;
864 
865 	if (pba == NULL)
866 		return IXGBE_ERR_PARAM;
867 
868 	if (eeprom_buf == NULL) {
869 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
870 						      &pba->word[0]);
871 		if (ret_val)
872 			return ret_val;
873 	} else {
874 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
875 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
876 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
877 		} else {
878 			return IXGBE_ERR_PARAM;
879 		}
880 	}
881 
882 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
883 		if (pba->pba_block == NULL)
884 			return IXGBE_ERR_PARAM;
885 
886 		if (eeprom_buf == NULL) {
887 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
888 							      pba->pba_block[0],
889 							      pba->pba_block);
890 			if (ret_val)
891 				return ret_val;
892 		} else {
893 			if (eeprom_buf_size > (u32)(pba->word[1] +
894 					      pba->pba_block[0])) {
895 				memcpy(&eeprom_buf[pba->word[1]],
896 				       pba->pba_block,
897 				       pba->pba_block[0] * sizeof(u16));
898 			} else {
899 				return IXGBE_ERR_PARAM;
900 			}
901 		}
902 	}
903 
904 	return IXGBE_SUCCESS;
905 }
906 
907 /**
908  * ixgbe_get_pba_block_size
909  * @hw: pointer to the HW structure
910  * @eeprom_buf: optional pointer to EEPROM image
911  * @eeprom_buf_size: size of EEPROM image in words
912  * @pba_data_size: pointer to output variable
913  *
914  * Returns the size of the PBA block in words. Function operates on EEPROM
915  * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
916  * EEPROM device.
917  *
918  **/
919 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
920 			     u32 eeprom_buf_size, u16 *pba_block_size)
921 {
922 	s32 ret_val;
923 	u16 pba_word[2];
924 	u16 length;
925 
926 	DEBUGFUNC("ixgbe_get_pba_block_size");
927 
928 	if (eeprom_buf == NULL) {
929 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
930 						     &pba_word[0]);
931 		if (ret_val)
932 			return ret_val;
933 	} else {
934 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
935 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
936 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
937 		} else {
938 			return IXGBE_ERR_PARAM;
939 		}
940 	}
941 
942 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
943 		if (eeprom_buf == NULL) {
944 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
945 						      &length);
946 			if (ret_val)
947 				return ret_val;
948 		} else {
949 			if (eeprom_buf_size > pba_word[1])
950 				length = eeprom_buf[pba_word[1] + 0];
951 			else
952 				return IXGBE_ERR_PARAM;
953 		}
954 
955 		if (length == 0xFFFF || length == 0)
956 			return IXGBE_ERR_PBA_SECTION;
957 	} else {
958 		/* PBA number in legacy format, there is no PBA Block. */
959 		length = 0;
960 	}
961 
962 	if (pba_block_size != NULL)
963 		*pba_block_size = length;
964 
965 	return IXGBE_SUCCESS;
966 }
967 
968 /**
969  * ixgbe_get_mac_addr_generic - Generic get MAC address
970  * @hw: pointer to hardware structure
971  * @mac_addr: Adapter MAC address
972  *
973  * Reads the adapter's MAC address from first Receive Address Register (RAR0)
974  * A reset of the adapter must be performed prior to calling this function
975  * in order for the MAC address to have been loaded from the EEPROM into RAR0
976  **/
977 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
978 {
979 	u32 rar_high;
980 	u32 rar_low;
981 	u16 i;
982 
983 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
984 
985 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
986 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
987 
988 	for (i = 0; i < 4; i++)
989 		mac_addr[i] = (u8)(rar_low >> (i*8));
990 
991 	for (i = 0; i < 2; i++)
992 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
993 
994 	return IXGBE_SUCCESS;
995 }
996 
997 /**
998  * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
999  * @hw: pointer to hardware structure
1000  * @link_status: the link status returned by the PCI config space
1001  *
1002  * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
1003  **/
1004 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
1005 {
1006 	struct ixgbe_mac_info *mac = &hw->mac;
1007 
1008 	if (hw->bus.type == ixgbe_bus_type_unknown)
1009 		hw->bus.type = ixgbe_bus_type_pci_express;
1010 
1011 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
1012 	case IXGBE_PCI_LINK_WIDTH_1:
1013 		hw->bus.width = ixgbe_bus_width_pcie_x1;
1014 		break;
1015 	case IXGBE_PCI_LINK_WIDTH_2:
1016 		hw->bus.width = ixgbe_bus_width_pcie_x2;
1017 		break;
1018 	case IXGBE_PCI_LINK_WIDTH_4:
1019 		hw->bus.width = ixgbe_bus_width_pcie_x4;
1020 		break;
1021 	case IXGBE_PCI_LINK_WIDTH_8:
1022 		hw->bus.width = ixgbe_bus_width_pcie_x8;
1023 		break;
1024 	default:
1025 		hw->bus.width = ixgbe_bus_width_unknown;
1026 		break;
1027 	}
1028 
1029 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
1030 	case IXGBE_PCI_LINK_SPEED_2500:
1031 		hw->bus.speed = ixgbe_bus_speed_2500;
1032 		break;
1033 	case IXGBE_PCI_LINK_SPEED_5000:
1034 		hw->bus.speed = ixgbe_bus_speed_5000;
1035 		break;
1036 	case IXGBE_PCI_LINK_SPEED_8000:
1037 		hw->bus.speed = ixgbe_bus_speed_8000;
1038 		break;
1039 	default:
1040 		hw->bus.speed = ixgbe_bus_speed_unknown;
1041 		break;
1042 	}
1043 
1044 	mac->ops.set_lan_id(hw);
1045 }
1046 
1047 /**
1048  * ixgbe_get_bus_info_generic - Generic set PCI bus info
1049  * @hw: pointer to hardware structure
1050  *
1051  * Gets the PCI bus info (speed, width, type) then calls helper function to
1052  * store this data within the ixgbe_hw structure.
1053  **/
1054 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1055 {
1056 	u16 link_status;
1057 
1058 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1059 
1060 	/* Get the negotiated link width and speed from PCI config space */
1061 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1062 
1063 	ixgbe_set_pci_config_data_generic(hw, link_status);
1064 
1065 	return IXGBE_SUCCESS;
1066 }
1067 
1068 /**
1069  * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1070  * @hw: pointer to the HW structure
1071  *
1072  * Determines the LAN function id by reading memory-mapped registers and swaps
1073  * the port value if requested, and set MAC instance for devices that share
1074  * CS4227.
1075  **/
1076 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1077 {
1078 	struct ixgbe_bus_info *bus = &hw->bus;
1079 	u32 reg;
1080 	u16 ee_ctrl_4;
1081 
1082 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1083 
1084 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1085 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1086 	bus->lan_id = (u8)bus->func;
1087 
1088 	/* check for a port swap */
1089 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1090 	if (reg & IXGBE_FACTPS_LFS)
1091 		bus->func ^= 0x1;
1092 
1093 	/* Get MAC instance from EEPROM for configuring CS4227 */
1094 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1095 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1096 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1097 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1098 	}
1099 }
1100 
1101 /**
1102  * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1103  * @hw: pointer to hardware structure
1104  *
1105  * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1106  * disables transmit and receive units. The adapter_stopped flag is used by
1107  * the shared code and drivers to determine if the adapter is in a stopped
1108  * state and should not touch the hardware.
1109  **/
1110 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1111 {
1112 	u32 reg_val;
1113 	u16 i;
1114 
1115 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1116 
1117 	/*
1118 	 * Set the adapter_stopped flag so other driver functions stop touching
1119 	 * the hardware
1120 	 */
1121 	hw->adapter_stopped = true;
1122 
1123 	/* Disable the receive unit */
1124 	ixgbe_disable_rx(hw);
1125 
1126 	/* Clear interrupt mask to stop interrupts from being generated */
1127 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1128 
1129 	/* Clear any pending interrupts, flush previous writes */
1130 	IXGBE_READ_REG(hw, IXGBE_EICR);
1131 
1132 	/* Disable the transmit unit.  Each queue must be disabled. */
1133 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1134 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1135 
1136 	/* Disable the receive unit by stopping each queue */
1137 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1138 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1139 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1140 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1141 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1142 	}
1143 
1144 	/* flush all queues disables */
1145 	IXGBE_WRITE_FLUSH(hw);
1146 	msec_delay(2);
1147 
1148 	/*
1149 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1150 	 * access and verify no pending requests
1151 	 */
1152 	return ixgbe_disable_pcie_master(hw);
1153 }
1154 
1155 /**
1156  * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1157  * @hw: pointer to hardware structure
1158  *
1159  * Store the index for the link active LED. This will be used to support
1160  * blinking the LED.
1161  **/
1162 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1163 {
1164 	struct ixgbe_mac_info *mac = &hw->mac;
1165 	u32 led_reg, led_mode;
1166 	u8 i;
1167 
1168 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1169 
1170 	/* Get LED link active from the LEDCTL register */
1171 	for (i = 0; i < 4; i++) {
1172 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1173 
1174 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1175 		     IXGBE_LED_LINK_ACTIVE) {
1176 			mac->led_link_act = i;
1177 			return IXGBE_SUCCESS;
1178 		}
1179 	}
1180 
1181 	/*
1182 	 * If LEDCTL register does not have the LED link active set, then use
1183 	 * known MAC defaults.
1184 	 */
1185 	switch (hw->mac.type) {
1186 	case ixgbe_mac_X550EM_a:
1187 	case ixgbe_mac_X550EM_x:
1188 		mac->led_link_act = 1;
1189 		break;
1190 	default:
1191 		mac->led_link_act = 2;
1192 	}
1193 	return IXGBE_SUCCESS;
1194 }
1195 
1196 /**
1197  * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1198  * @hw: pointer to hardware structure
1199  * @index: led number to turn on
1200  **/
1201 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1202 {
1203 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1204 
1205 	DEBUGFUNC("ixgbe_led_on_generic");
1206 
1207 	if (index > 3)
1208 		return IXGBE_ERR_PARAM;
1209 
1210 	/* To turn on the LED, set mode to ON. */
1211 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1212 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1213 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1214 	IXGBE_WRITE_FLUSH(hw);
1215 
1216 	return IXGBE_SUCCESS;
1217 }
1218 
1219 /**
1220  * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1221  * @hw: pointer to hardware structure
1222  * @index: led number to turn off
1223  **/
1224 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1225 {
1226 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1227 
1228 	DEBUGFUNC("ixgbe_led_off_generic");
1229 
1230 	if (index > 3)
1231 		return IXGBE_ERR_PARAM;
1232 
1233 	/* To turn off the LED, set mode to OFF. */
1234 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1235 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1236 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1237 	IXGBE_WRITE_FLUSH(hw);
1238 
1239 	return IXGBE_SUCCESS;
1240 }
1241 
1242 /**
1243  * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1244  * @hw: pointer to hardware structure
1245  *
1246  * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1247  * ixgbe_hw struct in order to set up EEPROM access.
1248  **/
1249 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1250 {
1251 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1252 	u32 eec;
1253 	u16 eeprom_size;
1254 
1255 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1256 
1257 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1258 		eeprom->type = ixgbe_eeprom_none;
1259 		/* Set default semaphore delay to 10ms which is a well
1260 		 * tested value */
1261 		eeprom->semaphore_delay = 10;
1262 		/* Clear EEPROM page size, it will be initialized as needed */
1263 		eeprom->word_page_size = 0;
1264 
1265 		/*
1266 		 * Check for EEPROM present first.
1267 		 * If not present leave as none
1268 		 */
1269 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1270 		if (eec & IXGBE_EEC_PRES) {
1271 			eeprom->type = ixgbe_eeprom_spi;
1272 
1273 			/*
1274 			 * SPI EEPROM is assumed here.  This code would need to
1275 			 * change if a future EEPROM is not SPI.
1276 			 */
1277 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1278 					    IXGBE_EEC_SIZE_SHIFT);
1279 			eeprom->word_size = 1 << (eeprom_size +
1280 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1281 		}
1282 
1283 		if (eec & IXGBE_EEC_ADDR_SIZE)
1284 			eeprom->address_bits = 16;
1285 		else
1286 			eeprom->address_bits = 8;
1287 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1288 			  "%d\n", eeprom->type, eeprom->word_size,
1289 			  eeprom->address_bits);
1290 	}
1291 
1292 	return IXGBE_SUCCESS;
1293 }
1294 
1295 /**
1296  * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1297  * @hw: pointer to hardware structure
1298  * @offset: offset within the EEPROM to write
1299  * @words: number of word(s)
1300  * @data: 16 bit word(s) to write to EEPROM
1301  *
1302  * Reads 16 bit word(s) from EEPROM through bit-bang method
1303  **/
1304 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1305 					       u16 words, u16 *data)
1306 {
1307 	s32 status = IXGBE_SUCCESS;
1308 	u16 i, count;
1309 
1310 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1311 
1312 	hw->eeprom.ops.init_params(hw);
1313 
1314 	if (words == 0) {
1315 		status = IXGBE_ERR_INVALID_ARGUMENT;
1316 		goto out;
1317 	}
1318 
1319 	if (offset + words > hw->eeprom.word_size) {
1320 		status = IXGBE_ERR_EEPROM;
1321 		goto out;
1322 	}
1323 
1324 	/*
1325 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1326 	 * initialization. It is worth to do that when we write large buffer.
1327 	 */
1328 	if ((hw->eeprom.word_page_size == 0) &&
1329 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1330 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1331 
1332 	/*
1333 	 * We cannot hold synchronization semaphores for too long
1334 	 * to avoid other entity starvation. However it is more efficient
1335 	 * to read in bursts than synchronizing access for each word.
1336 	 */
1337 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1338 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1339 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1340 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1341 							    count, &data[i]);
1342 
1343 		if (status != IXGBE_SUCCESS)
1344 			break;
1345 	}
1346 
1347 out:
1348 	return status;
1349 }
1350 
1351 /**
1352  * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1353  * @hw: pointer to hardware structure
1354  * @offset: offset within the EEPROM to be written to
1355  * @words: number of word(s)
1356  * @data: 16 bit word(s) to be written to the EEPROM
1357  *
1358  * If ixgbe_eeprom_update_checksum is not called after this function, the
1359  * EEPROM will most likely contain an invalid checksum.
1360  **/
1361 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1362 					      u16 words, u16 *data)
1363 {
1364 	s32 status;
1365 	u16 word;
1366 	u16 page_size;
1367 	u16 i;
1368 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1369 
1370 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1371 
1372 	/* Prepare the EEPROM for writing  */
1373 	status = ixgbe_acquire_eeprom(hw);
1374 
1375 	if (status == IXGBE_SUCCESS) {
1376 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1377 			ixgbe_release_eeprom(hw);
1378 			status = IXGBE_ERR_EEPROM;
1379 		}
1380 	}
1381 
1382 	if (status == IXGBE_SUCCESS) {
1383 		for (i = 0; i < words; i++) {
1384 			ixgbe_standby_eeprom(hw);
1385 
1386 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1387 			ixgbe_shift_out_eeprom_bits(hw,
1388 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1389 						   IXGBE_EEPROM_OPCODE_BITS);
1390 
1391 			ixgbe_standby_eeprom(hw);
1392 
1393 			/*
1394 			 * Some SPI eeproms use the 8th address bit embedded
1395 			 * in the opcode
1396 			 */
1397 			if ((hw->eeprom.address_bits == 8) &&
1398 			    ((offset + i) >= 128))
1399 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1400 
1401 			/* Send the Write command (8-bit opcode + addr) */
1402 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1403 						    IXGBE_EEPROM_OPCODE_BITS);
1404 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1405 						    hw->eeprom.address_bits);
1406 
1407 			page_size = hw->eeprom.word_page_size;
1408 
1409 			/* Send the data in burst via SPI*/
1410 			do {
1411 				word = data[i];
1412 				word = (word >> 8) | (word << 8);
1413 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1414 
1415 				if (page_size == 0)
1416 					break;
1417 
1418 				/* do not wrap around page */
1419 				if (((offset + i) & (page_size - 1)) ==
1420 				    (page_size - 1))
1421 					break;
1422 			} while (++i < words);
1423 
1424 			ixgbe_standby_eeprom(hw);
1425 			msec_delay(10);
1426 		}
1427 		/* Done with writing - release the EEPROM */
1428 		ixgbe_release_eeprom(hw);
1429 	}
1430 
1431 	return status;
1432 }
1433 
1434 /**
1435  * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1436  * @hw: pointer to hardware structure
1437  * @offset: offset within the EEPROM to be written to
1438  * @data: 16 bit word to be written to the EEPROM
1439  *
1440  * If ixgbe_eeprom_update_checksum is not called after this function, the
1441  * EEPROM will most likely contain an invalid checksum.
1442  **/
1443 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1444 {
1445 	s32 status;
1446 
1447 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1448 
1449 	hw->eeprom.ops.init_params(hw);
1450 
1451 	if (offset >= hw->eeprom.word_size) {
1452 		status = IXGBE_ERR_EEPROM;
1453 		goto out;
1454 	}
1455 
1456 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1457 
1458 out:
1459 	return status;
1460 }
1461 
1462 /**
1463  * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1464  * @hw: pointer to hardware structure
1465  * @offset: offset within the EEPROM to be read
1466  * @data: read 16 bit words(s) from EEPROM
1467  * @words: number of word(s)
1468  *
1469  * Reads 16 bit word(s) from EEPROM through bit-bang method
1470  **/
1471 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1472 					      u16 words, u16 *data)
1473 {
1474 	s32 status = IXGBE_SUCCESS;
1475 	u16 i, count;
1476 
1477 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1478 
1479 	hw->eeprom.ops.init_params(hw);
1480 
1481 	if (words == 0) {
1482 		status = IXGBE_ERR_INVALID_ARGUMENT;
1483 		goto out;
1484 	}
1485 
1486 	if (offset + words > hw->eeprom.word_size) {
1487 		status = IXGBE_ERR_EEPROM;
1488 		goto out;
1489 	}
1490 
1491 	/*
1492 	 * We cannot hold synchronization semaphores for too long
1493 	 * to avoid other entity starvation. However it is more efficient
1494 	 * to read in bursts than synchronizing access for each word.
1495 	 */
1496 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1497 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1498 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1499 
1500 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1501 							   count, &data[i]);
1502 
1503 		if (status != IXGBE_SUCCESS)
1504 			break;
1505 	}
1506 
1507 out:
1508 	return status;
1509 }
1510 
1511 /**
1512  * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1513  * @hw: pointer to hardware structure
1514  * @offset: offset within the EEPROM to be read
1515  * @words: number of word(s)
1516  * @data: read 16 bit word(s) from EEPROM
1517  *
1518  * Reads 16 bit word(s) from EEPROM through bit-bang method
1519  **/
1520 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1521 					     u16 words, u16 *data)
1522 {
1523 	s32 status;
1524 	u16 word_in;
1525 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1526 	u16 i;
1527 
1528 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1529 
1530 	/* Prepare the EEPROM for reading  */
1531 	status = ixgbe_acquire_eeprom(hw);
1532 
1533 	if (status == IXGBE_SUCCESS) {
1534 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1535 			ixgbe_release_eeprom(hw);
1536 			status = IXGBE_ERR_EEPROM;
1537 		}
1538 	}
1539 
1540 	if (status == IXGBE_SUCCESS) {
1541 		for (i = 0; i < words; i++) {
1542 			ixgbe_standby_eeprom(hw);
1543 			/*
1544 			 * Some SPI eeproms use the 8th address bit embedded
1545 			 * in the opcode
1546 			 */
1547 			if ((hw->eeprom.address_bits == 8) &&
1548 			    ((offset + i) >= 128))
1549 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1550 
1551 			/* Send the READ command (opcode + addr) */
1552 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1553 						    IXGBE_EEPROM_OPCODE_BITS);
1554 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1555 						    hw->eeprom.address_bits);
1556 
1557 			/* Read the data. */
1558 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1559 			data[i] = (word_in >> 8) | (word_in << 8);
1560 		}
1561 
1562 		/* End this read operation */
1563 		ixgbe_release_eeprom(hw);
1564 	}
1565 
1566 	return status;
1567 }
1568 
1569 /**
1570  * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1571  * @hw: pointer to hardware structure
1572  * @offset: offset within the EEPROM to be read
1573  * @data: read 16 bit value from EEPROM
1574  *
1575  * Reads 16 bit value from EEPROM through bit-bang method
1576  **/
1577 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1578 				       u16 *data)
1579 {
1580 	s32 status;
1581 
1582 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1583 
1584 	hw->eeprom.ops.init_params(hw);
1585 
1586 	if (offset >= hw->eeprom.word_size) {
1587 		status = IXGBE_ERR_EEPROM;
1588 		goto out;
1589 	}
1590 
1591 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1592 
1593 out:
1594 	return status;
1595 }
1596 
1597 /**
1598  * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1599  * @hw: pointer to hardware structure
1600  * @offset: offset of word in the EEPROM to read
1601  * @words: number of word(s)
1602  * @data: 16 bit word(s) from the EEPROM
1603  *
1604  * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1605  **/
1606 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1607 				   u16 words, u16 *data)
1608 {
1609 	u32 eerd;
1610 	s32 status = IXGBE_SUCCESS;
1611 	u32 i;
1612 
1613 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1614 
1615 	hw->eeprom.ops.init_params(hw);
1616 
1617 	if (words == 0) {
1618 		status = IXGBE_ERR_INVALID_ARGUMENT;
1619 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1620 		goto out;
1621 	}
1622 
1623 	if (offset >= hw->eeprom.word_size) {
1624 		status = IXGBE_ERR_EEPROM;
1625 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1626 		goto out;
1627 	}
1628 
1629 	for (i = 0; i < words; i++) {
1630 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1631 		       IXGBE_EEPROM_RW_REG_START;
1632 
1633 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1634 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1635 
1636 		if (status == IXGBE_SUCCESS) {
1637 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1638 				   IXGBE_EEPROM_RW_REG_DATA);
1639 		} else {
1640 			DEBUGOUT("Eeprom read timed out\n");
1641 			goto out;
1642 		}
1643 	}
1644 out:
1645 	return status;
1646 }
1647 
1648 /**
1649  * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1650  * @hw: pointer to hardware structure
1651  * @offset: offset within the EEPROM to be used as a scratch pad
1652  *
1653  * Discover EEPROM page size by writing marching data at given offset.
1654  * This function is called only when we are writing a new large buffer
1655  * at given offset so the data would be overwritten anyway.
1656  **/
1657 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1658 						 u16 offset)
1659 {
1660 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1661 	s32 status = IXGBE_SUCCESS;
1662 	u16 i;
1663 
1664 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1665 
1666 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1667 		data[i] = i;
1668 
1669 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1670 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1671 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1672 	hw->eeprom.word_page_size = 0;
1673 	if (status != IXGBE_SUCCESS)
1674 		goto out;
1675 
1676 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1677 	if (status != IXGBE_SUCCESS)
1678 		goto out;
1679 
1680 	/*
1681 	 * When writing in burst more than the actual page size
1682 	 * EEPROM address wraps around current page.
1683 	 */
1684 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1685 
1686 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1687 		  hw->eeprom.word_page_size);
1688 out:
1689 	return status;
1690 }
1691 
1692 /**
1693  * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1694  * @hw: pointer to hardware structure
1695  * @offset: offset of  word in the EEPROM to read
1696  * @data: word read from the EEPROM
1697  *
1698  * Reads a 16 bit word from the EEPROM using the EERD register.
1699  **/
1700 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1701 {
1702 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1703 }
1704 
1705 /**
1706  * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1707  * @hw: pointer to hardware structure
1708  * @offset: offset of  word in the EEPROM to write
1709  * @words: number of word(s)
1710  * @data: word(s) write to the EEPROM
1711  *
1712  * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1713  **/
1714 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1715 				    u16 words, u16 *data)
1716 {
1717 	u32 eewr;
1718 	s32 status = IXGBE_SUCCESS;
1719 	u16 i;
1720 
1721 	DEBUGFUNC("ixgbe_write_eewr_generic");
1722 
1723 	hw->eeprom.ops.init_params(hw);
1724 
1725 	if (words == 0) {
1726 		status = IXGBE_ERR_INVALID_ARGUMENT;
1727 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1728 		goto out;
1729 	}
1730 
1731 	if (offset >= hw->eeprom.word_size) {
1732 		status = IXGBE_ERR_EEPROM;
1733 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1734 		goto out;
1735 	}
1736 
1737 	for (i = 0; i < words; i++) {
1738 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1739 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1740 			IXGBE_EEPROM_RW_REG_START;
1741 
1742 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1743 		if (status != IXGBE_SUCCESS) {
1744 			DEBUGOUT("Eeprom write EEWR timed out\n");
1745 			goto out;
1746 		}
1747 
1748 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1749 
1750 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1751 		if (status != IXGBE_SUCCESS) {
1752 			DEBUGOUT("Eeprom write EEWR timed out\n");
1753 			goto out;
1754 		}
1755 	}
1756 
1757 out:
1758 	return status;
1759 }
1760 
1761 /**
1762  * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1763  * @hw: pointer to hardware structure
1764  * @offset: offset of  word in the EEPROM to write
1765  * @data: word write to the EEPROM
1766  *
1767  * Write a 16 bit word to the EEPROM using the EEWR register.
1768  **/
1769 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1770 {
1771 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1772 }
1773 
1774 /**
1775  * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1776  * @hw: pointer to hardware structure
1777  * @ee_reg: EEPROM flag for polling
1778  *
1779  * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1780  * read or write is done respectively.
1781  **/
1782 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1783 {
1784 	u32 i;
1785 	u32 reg;
1786 	s32 status = IXGBE_ERR_EEPROM;
1787 
1788 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1789 
1790 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1791 		if (ee_reg == IXGBE_NVM_POLL_READ)
1792 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1793 		else
1794 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1795 
1796 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1797 			status = IXGBE_SUCCESS;
1798 			break;
1799 		}
1800 		usec_delay(5);
1801 	}
1802 
1803 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1804 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1805 			     "EEPROM read/write done polling timed out");
1806 
1807 	return status;
1808 }
1809 
1810 /**
1811  * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1812  * @hw: pointer to hardware structure
1813  *
1814  * Prepares EEPROM for access using bit-bang method. This function should
1815  * be called before issuing a command to the EEPROM.
1816  **/
1817 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1818 {
1819 	s32 status = IXGBE_SUCCESS;
1820 	u32 eec;
1821 	u32 i;
1822 
1823 	DEBUGFUNC("ixgbe_acquire_eeprom");
1824 
1825 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1826 	    != IXGBE_SUCCESS)
1827 		status = IXGBE_ERR_SWFW_SYNC;
1828 
1829 	if (status == IXGBE_SUCCESS) {
1830 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1831 
1832 		/* Request EEPROM Access */
1833 		eec |= IXGBE_EEC_REQ;
1834 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1835 
1836 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1837 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1838 			if (eec & IXGBE_EEC_GNT)
1839 				break;
1840 			usec_delay(5);
1841 		}
1842 
1843 		/* Release if grant not acquired */
1844 		if (!(eec & IXGBE_EEC_GNT)) {
1845 			eec &= ~IXGBE_EEC_REQ;
1846 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1847 			DEBUGOUT("Could not acquire EEPROM grant\n");
1848 
1849 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1850 			status = IXGBE_ERR_EEPROM;
1851 		}
1852 
1853 		/* Setup EEPROM for Read/Write */
1854 		if (status == IXGBE_SUCCESS) {
1855 			/* Clear CS and SK */
1856 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1857 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1858 			IXGBE_WRITE_FLUSH(hw);
1859 			usec_delay(1);
1860 		}
1861 	}
1862 	return status;
1863 }
1864 
1865 /**
1866  * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1867  * @hw: pointer to hardware structure
1868  *
1869  * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1870  **/
1871 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1872 {
1873 	s32 status = IXGBE_ERR_EEPROM;
1874 	u32 timeout = 2000;
1875 	u32 i;
1876 	u32 swsm;
1877 
1878 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1879 
1880 
1881 	/* Get SMBI software semaphore between device drivers first */
1882 	for (i = 0; i < timeout; i++) {
1883 		/*
1884 		 * If the SMBI bit is 0 when we read it, then the bit will be
1885 		 * set and we have the semaphore
1886 		 */
1887 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1888 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1889 			status = IXGBE_SUCCESS;
1890 			break;
1891 		}
1892 		usec_delay(50);
1893 	}
1894 
1895 	if (i == timeout) {
1896 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1897 			 "not granted.\n");
1898 		/*
1899 		 * this release is particularly important because our attempts
1900 		 * above to get the semaphore may have succeeded, and if there
1901 		 * was a timeout, we should unconditionally clear the semaphore
1902 		 * bits to free the driver to make progress
1903 		 */
1904 		ixgbe_release_eeprom_semaphore(hw);
1905 
1906 		usec_delay(50);
1907 		/*
1908 		 * one last try
1909 		 * If the SMBI bit is 0 when we read it, then the bit will be
1910 		 * set and we have the semaphore
1911 		 */
1912 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1913 		if (!(swsm & IXGBE_SWSM_SMBI))
1914 			status = IXGBE_SUCCESS;
1915 	}
1916 
1917 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1918 	if (status == IXGBE_SUCCESS) {
1919 		for (i = 0; i < timeout; i++) {
1920 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1921 
1922 			/* Set the SW EEPROM semaphore bit to request access */
1923 			swsm |= IXGBE_SWSM_SWESMBI;
1924 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1925 
1926 			/*
1927 			 * If we set the bit successfully then we got the
1928 			 * semaphore.
1929 			 */
1930 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1931 			if (swsm & IXGBE_SWSM_SWESMBI)
1932 				break;
1933 
1934 			usec_delay(50);
1935 		}
1936 
1937 		/*
1938 		 * Release semaphores and return error if SW EEPROM semaphore
1939 		 * was not granted because we don't have access to the EEPROM
1940 		 */
1941 		if (i >= timeout) {
1942 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1943 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1944 			ixgbe_release_eeprom_semaphore(hw);
1945 			status = IXGBE_ERR_EEPROM;
1946 		}
1947 	} else {
1948 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1949 			     "Software semaphore SMBI between device drivers "
1950 			     "not granted.\n");
1951 	}
1952 
1953 	return status;
1954 }
1955 
1956 /**
1957  * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1958  * @hw: pointer to hardware structure
1959  *
1960  * This function clears hardware semaphore bits.
1961  **/
1962 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1963 {
1964 	u32 swsm;
1965 
1966 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1967 
1968 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1969 
1970 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1971 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1972 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1973 	IXGBE_WRITE_FLUSH(hw);
1974 }
1975 
1976 /**
1977  * ixgbe_ready_eeprom - Polls for EEPROM ready
1978  * @hw: pointer to hardware structure
1979  **/
1980 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1981 {
1982 	s32 status = IXGBE_SUCCESS;
1983 	u16 i;
1984 	u8 spi_stat_reg;
1985 
1986 	DEBUGFUNC("ixgbe_ready_eeprom");
1987 
1988 	/*
1989 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1990 	 * EEPROM will signal that the command has been completed by clearing
1991 	 * bit 0 of the internal status register.  If it's not cleared within
1992 	 * 5 milliseconds, then error out.
1993 	 */
1994 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1995 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1996 					    IXGBE_EEPROM_OPCODE_BITS);
1997 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1998 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1999 			break;
2000 
2001 		usec_delay(5);
2002 		ixgbe_standby_eeprom(hw);
2003 	}
2004 
2005 	/*
2006 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
2007 	 * devices (and only 0-5mSec on 5V devices)
2008 	 */
2009 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
2010 		DEBUGOUT("SPI EEPROM Status error\n");
2011 		status = IXGBE_ERR_EEPROM;
2012 	}
2013 
2014 	return status;
2015 }
2016 
2017 /**
2018  * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
2019  * @hw: pointer to hardware structure
2020  **/
2021 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
2022 {
2023 	u32 eec;
2024 
2025 	DEBUGFUNC("ixgbe_standby_eeprom");
2026 
2027 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2028 
2029 	/* Toggle CS to flush commands */
2030 	eec |= IXGBE_EEC_CS;
2031 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2032 	IXGBE_WRITE_FLUSH(hw);
2033 	usec_delay(1);
2034 	eec &= ~IXGBE_EEC_CS;
2035 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2036 	IXGBE_WRITE_FLUSH(hw);
2037 	usec_delay(1);
2038 }
2039 
2040 /**
2041  * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2042  * @hw: pointer to hardware structure
2043  * @data: data to send to the EEPROM
2044  * @count: number of bits to shift out
2045  **/
2046 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2047 					u16 count)
2048 {
2049 	u32 eec;
2050 	u32 mask;
2051 	u32 i;
2052 
2053 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2054 
2055 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2056 
2057 	/*
2058 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
2059 	 * one bit at a time.  Determine the starting bit based on count
2060 	 */
2061 	mask = 0x01 << (count - 1);
2062 
2063 	for (i = 0; i < count; i++) {
2064 		/*
2065 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2066 		 * "1", and then raising and then lowering the clock (the SK
2067 		 * bit controls the clock input to the EEPROM).  A "0" is
2068 		 * shifted out to the EEPROM by setting "DI" to "0" and then
2069 		 * raising and then lowering the clock.
2070 		 */
2071 		if (data & mask)
2072 			eec |= IXGBE_EEC_DI;
2073 		else
2074 			eec &= ~IXGBE_EEC_DI;
2075 
2076 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2077 		IXGBE_WRITE_FLUSH(hw);
2078 
2079 		usec_delay(1);
2080 
2081 		ixgbe_raise_eeprom_clk(hw, &eec);
2082 		ixgbe_lower_eeprom_clk(hw, &eec);
2083 
2084 		/*
2085 		 * Shift mask to signify next bit of data to shift in to the
2086 		 * EEPROM
2087 		 */
2088 		mask = mask >> 1;
2089 	}
2090 
2091 	/* We leave the "DI" bit set to "0" when we leave this routine. */
2092 	eec &= ~IXGBE_EEC_DI;
2093 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2094 	IXGBE_WRITE_FLUSH(hw);
2095 }
2096 
2097 /**
2098  * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2099  * @hw: pointer to hardware structure
2100  * @count: number of bits to shift
2101  **/
2102 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2103 {
2104 	u32 eec;
2105 	u32 i;
2106 	u16 data = 0;
2107 
2108 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2109 
2110 	/*
2111 	 * In order to read a register from the EEPROM, we need to shift
2112 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2113 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2114 	 * the value of the "DO" bit.  During this "shifting in" process the
2115 	 * "DI" bit should always be clear.
2116 	 */
2117 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2118 
2119 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2120 
2121 	for (i = 0; i < count; i++) {
2122 		data = data << 1;
2123 		ixgbe_raise_eeprom_clk(hw, &eec);
2124 
2125 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2126 
2127 		eec &= ~(IXGBE_EEC_DI);
2128 		if (eec & IXGBE_EEC_DO)
2129 			data |= 1;
2130 
2131 		ixgbe_lower_eeprom_clk(hw, &eec);
2132 	}
2133 
2134 	return data;
2135 }
2136 
2137 /**
2138  * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2139  * @hw: pointer to hardware structure
2140  * @eec: EEC register's current value
2141  **/
2142 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2143 {
2144 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2145 
2146 	/*
2147 	 * Raise the clock input to the EEPROM
2148 	 * (setting the SK bit), then delay
2149 	 */
2150 	*eec = *eec | IXGBE_EEC_SK;
2151 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2152 	IXGBE_WRITE_FLUSH(hw);
2153 	usec_delay(1);
2154 }
2155 
2156 /**
2157  * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2158  * @hw: pointer to hardware structure
2159  * @eec: EEC's current value
2160  **/
2161 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2162 {
2163 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2164 
2165 	/*
2166 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2167 	 * delay
2168 	 */
2169 	*eec = *eec & ~IXGBE_EEC_SK;
2170 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2171 	IXGBE_WRITE_FLUSH(hw);
2172 	usec_delay(1);
2173 }
2174 
2175 /**
2176  * ixgbe_release_eeprom - Release EEPROM, release semaphores
2177  * @hw: pointer to hardware structure
2178  **/
2179 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2180 {
2181 	u32 eec;
2182 
2183 	DEBUGFUNC("ixgbe_release_eeprom");
2184 
2185 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2186 
2187 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2188 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2189 
2190 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2191 	IXGBE_WRITE_FLUSH(hw);
2192 
2193 	usec_delay(1);
2194 
2195 	/* Stop requesting EEPROM access */
2196 	eec &= ~IXGBE_EEC_REQ;
2197 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2198 
2199 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2200 
2201 	/* Delay before attempt to obtain semaphore again to allow FW access */
2202 	msec_delay(hw->eeprom.semaphore_delay);
2203 }
2204 
2205 /**
2206  * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2207  * @hw: pointer to hardware structure
2208  *
2209  * Returns a negative error code on error, or the 16-bit checksum
2210  **/
2211 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2212 {
2213 	u16 i;
2214 	u16 j;
2215 	u16 checksum = 0;
2216 	u16 length = 0;
2217 	u16 pointer = 0;
2218 	u16 word = 0;
2219 
2220 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2221 
2222 	/* Include 0x0-0x3F in the checksum */
2223 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2224 		if (hw->eeprom.ops.read(hw, i, &word)) {
2225 			DEBUGOUT("EEPROM read failed\n");
2226 			return IXGBE_ERR_EEPROM;
2227 		}
2228 		checksum += word;
2229 	}
2230 
2231 	/* Include all data from pointers except for the fw pointer */
2232 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2233 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2234 			DEBUGOUT("EEPROM read failed\n");
2235 			return IXGBE_ERR_EEPROM;
2236 		}
2237 
2238 		/* If the pointer seems invalid */
2239 		if (pointer == 0xFFFF || pointer == 0)
2240 			continue;
2241 
2242 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2243 			DEBUGOUT("EEPROM read failed\n");
2244 			return IXGBE_ERR_EEPROM;
2245 		}
2246 
2247 		if (length == 0xFFFF || length == 0)
2248 			continue;
2249 
2250 		for (j = pointer + 1; j <= pointer + length; j++) {
2251 			if (hw->eeprom.ops.read(hw, j, &word)) {
2252 				DEBUGOUT("EEPROM read failed\n");
2253 				return IXGBE_ERR_EEPROM;
2254 			}
2255 			checksum += word;
2256 		}
2257 	}
2258 
2259 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2260 
2261 	return (s32)checksum;
2262 }
2263 
2264 /**
2265  * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2266  * @hw: pointer to hardware structure
2267  * @checksum_val: calculated checksum
2268  *
2269  * Performs checksum calculation and validates the EEPROM checksum.  If the
2270  * caller does not need checksum_val, the value can be NULL.
2271  **/
2272 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2273 					   u16 *checksum_val)
2274 {
2275 	s32 status;
2276 	u16 checksum;
2277 	u16 read_checksum = 0;
2278 
2279 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2280 
2281 	/* Read the first word from the EEPROM. If this times out or fails, do
2282 	 * not continue or we could be in for a very long wait while every
2283 	 * EEPROM read fails
2284 	 */
2285 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2286 	if (status) {
2287 		DEBUGOUT("EEPROM read failed\n");
2288 		return status;
2289 	}
2290 
2291 	status = hw->eeprom.ops.calc_checksum(hw);
2292 	if (status < 0)
2293 		return status;
2294 
2295 	checksum = (u16)(status & 0xffff);
2296 
2297 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2298 	if (status) {
2299 		DEBUGOUT("EEPROM read failed\n");
2300 		return status;
2301 	}
2302 
2303 	/* Verify read checksum from EEPROM is the same as
2304 	 * calculated checksum
2305 	 */
2306 	if (read_checksum != checksum)
2307 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2308 
2309 	/* If the user cares, return the calculated checksum */
2310 	if (checksum_val)
2311 		*checksum_val = checksum;
2312 
2313 	return status;
2314 }
2315 
2316 /**
2317  * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2318  * @hw: pointer to hardware structure
2319  **/
2320 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2321 {
2322 	s32 status;
2323 	u16 checksum;
2324 
2325 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2326 
2327 	/* Read the first word from the EEPROM. If this times out or fails, do
2328 	 * not continue or we could be in for a very long wait while every
2329 	 * EEPROM read fails
2330 	 */
2331 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2332 	if (status) {
2333 		DEBUGOUT("EEPROM read failed\n");
2334 		return status;
2335 	}
2336 
2337 	status = hw->eeprom.ops.calc_checksum(hw);
2338 	if (status < 0)
2339 		return status;
2340 
2341 	checksum = (u16)(status & 0xffff);
2342 
2343 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2344 
2345 	return status;
2346 }
2347 
2348 /**
2349  * ixgbe_validate_mac_addr - Validate MAC address
2350  * @mac_addr: pointer to MAC address.
2351  *
2352  * Tests a MAC address to ensure it is a valid Individual Address.
2353  **/
2354 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2355 {
2356 	s32 status = IXGBE_SUCCESS;
2357 
2358 	DEBUGFUNC("ixgbe_validate_mac_addr");
2359 
2360 	/* Make sure it is not a multicast address */
2361 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2362 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2363 	/* Not a broadcast address */
2364 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2365 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2366 	/* Reject the zero address */
2367 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2368 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2369 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2370 	}
2371 	return status;
2372 }
2373 
2374 /**
2375  * ixgbe_set_rar_generic - Set Rx address register
2376  * @hw: pointer to hardware structure
2377  * @index: Receive address register to write
2378  * @addr: Address to put into receive address register
2379  * @vmdq: VMDq "set" or "pool" index
2380  * @enable_addr: set flag that address is active
2381  *
2382  * Puts an ethernet address into a receive address register.
2383  **/
2384 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2385 			  u32 enable_addr)
2386 {
2387 	u32 rar_low, rar_high;
2388 	u32 rar_entries = hw->mac.num_rar_entries;
2389 
2390 	DEBUGFUNC("ixgbe_set_rar_generic");
2391 
2392 	/* Make sure we are using a valid rar index range */
2393 	if (index >= rar_entries) {
2394 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2395 			     "RAR index %d is out of range.\n", index);
2396 		return IXGBE_ERR_INVALID_ARGUMENT;
2397 	}
2398 
2399 	/* setup VMDq pool selection before this RAR gets enabled */
2400 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2401 
2402 	/*
2403 	 * HW expects these in little endian so we reverse the byte
2404 	 * order from network order (big endian) to little endian
2405 	 */
2406 	rar_low = ((u32)addr[0] |
2407 		   ((u32)addr[1] << 8) |
2408 		   ((u32)addr[2] << 16) |
2409 		   ((u32)addr[3] << 24));
2410 	/*
2411 	 * Some parts put the VMDq setting in the extra RAH bits,
2412 	 * so save everything except the lower 16 bits that hold part
2413 	 * of the address and the address valid bit.
2414 	 */
2415 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2416 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2417 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2418 
2419 	if (enable_addr != 0)
2420 		rar_high |= IXGBE_RAH_AV;
2421 
2422 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2423 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2424 
2425 	return IXGBE_SUCCESS;
2426 }
2427 
2428 /**
2429  * ixgbe_clear_rar_generic - Remove Rx address register
2430  * @hw: pointer to hardware structure
2431  * @index: Receive address register to write
2432  *
2433  * Clears an ethernet address from a receive address register.
2434  **/
2435 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2436 {
2437 	u32 rar_high;
2438 	u32 rar_entries = hw->mac.num_rar_entries;
2439 
2440 	DEBUGFUNC("ixgbe_clear_rar_generic");
2441 
2442 	/* Make sure we are using a valid rar index range */
2443 	if (index >= rar_entries) {
2444 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2445 			     "RAR index %d is out of range.\n", index);
2446 		return IXGBE_ERR_INVALID_ARGUMENT;
2447 	}
2448 
2449 	/*
2450 	 * Some parts put the VMDq setting in the extra RAH bits,
2451 	 * so save everything except the lower 16 bits that hold part
2452 	 * of the address and the address valid bit.
2453 	 */
2454 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2455 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2456 
2457 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2458 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2459 
2460 	/* clear VMDq pool/queue selection for this RAR */
2461 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2462 
2463 	return IXGBE_SUCCESS;
2464 }
2465 
2466 /**
2467  * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2468  * @hw: pointer to hardware structure
2469  *
2470  * Places the MAC address in receive address register 0 and clears the rest
2471  * of the receive address registers. Clears the multicast table. Assumes
2472  * the receiver is in reset when the routine is called.
2473  **/
2474 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2475 {
2476 	u32 i;
2477 	u32 rar_entries = hw->mac.num_rar_entries;
2478 
2479 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2480 
2481 	/*
2482 	 * If the current mac address is valid, assume it is a software override
2483 	 * to the permanent address.
2484 	 * Otherwise, use the permanent address from the eeprom.
2485 	 */
2486 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2487 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2488 		/* Get the MAC address from the RAR0 for later reference */
2489 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2490 
2491 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2492 			  hw->mac.addr[0], hw->mac.addr[1],
2493 			  hw->mac.addr[2]);
2494 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2495 			  hw->mac.addr[4], hw->mac.addr[5]);
2496 	} else {
2497 		/* Setup the receive address. */
2498 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2499 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2500 			  hw->mac.addr[0], hw->mac.addr[1],
2501 			  hw->mac.addr[2]);
2502 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2503 			  hw->mac.addr[4], hw->mac.addr[5]);
2504 
2505 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2506 	}
2507 
2508 	/* clear VMDq pool/queue selection for RAR 0 */
2509 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2510 
2511 	hw->addr_ctrl.overflow_promisc = 0;
2512 
2513 	hw->addr_ctrl.rar_used_count = 1;
2514 
2515 	/* Zero out the other receive addresses. */
2516 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2517 	for (i = 1; i < rar_entries; i++) {
2518 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2519 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2520 	}
2521 
2522 	/* Clear the MTA */
2523 	hw->addr_ctrl.mta_in_use = 0;
2524 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2525 
2526 	DEBUGOUT(" Clearing MTA\n");
2527 	for (i = 0; i < hw->mac.mcft_size; i++)
2528 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2529 
2530 	ixgbe_init_uta_tables(hw);
2531 
2532 	return IXGBE_SUCCESS;
2533 }
2534 
2535 /**
2536  * ixgbe_add_uc_addr - Adds a secondary unicast address.
2537  * @hw: pointer to hardware structure
2538  * @addr: new address
2539  * @vmdq: VMDq "set" or "pool" index
2540  *
2541  * Adds it to unused receive address register or goes into promiscuous mode.
2542  **/
2543 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2544 {
2545 	u32 rar_entries = hw->mac.num_rar_entries;
2546 	u32 rar;
2547 
2548 	DEBUGFUNC("ixgbe_add_uc_addr");
2549 
2550 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2551 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2552 
2553 	/*
2554 	 * Place this address in the RAR if there is room,
2555 	 * else put the controller into promiscuous mode
2556 	 */
2557 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2558 		rar = hw->addr_ctrl.rar_used_count;
2559 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2560 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2561 		hw->addr_ctrl.rar_used_count++;
2562 	} else {
2563 		hw->addr_ctrl.overflow_promisc++;
2564 	}
2565 
2566 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2567 }
2568 
2569 /**
2570  * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2571  * @hw: pointer to hardware structure
2572  * @addr_list: the list of new addresses
2573  * @addr_count: number of addresses
2574  * @next: iterator function to walk the address list
2575  *
2576  * The given list replaces any existing list.  Clears the secondary addrs from
2577  * receive address registers.  Uses unused receive address registers for the
2578  * first secondary addresses, and falls back to promiscuous mode as needed.
2579  *
2580  * Drivers using secondary unicast addresses must set user_set_promisc when
2581  * manually putting the device into promiscuous mode.
2582  **/
2583 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2584 				      u32 addr_count, ixgbe_mc_addr_itr next)
2585 {
2586 	u8 *addr;
2587 	u32 i;
2588 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2589 	u32 uc_addr_in_use;
2590 	u32 fctrl;
2591 	u32 vmdq;
2592 
2593 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2594 
2595 	/*
2596 	 * Clear accounting of old secondary address list,
2597 	 * don't count RAR[0]
2598 	 */
2599 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2600 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2601 	hw->addr_ctrl.overflow_promisc = 0;
2602 
2603 	/* Zero out the other receive addresses */
2604 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2605 	for (i = 0; i < uc_addr_in_use; i++) {
2606 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2607 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2608 	}
2609 
2610 	/* Add the new addresses */
2611 	for (i = 0; i < addr_count; i++) {
2612 		DEBUGOUT(" Adding the secondary addresses:\n");
2613 		addr = next(hw, &addr_list, &vmdq);
2614 		ixgbe_add_uc_addr(hw, addr, vmdq);
2615 	}
2616 
2617 	if (hw->addr_ctrl.overflow_promisc) {
2618 		/* enable promisc if not already in overflow or set by user */
2619 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2620 			DEBUGOUT(" Entering address overflow promisc mode\n");
2621 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2622 			fctrl |= IXGBE_FCTRL_UPE;
2623 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2624 		}
2625 	} else {
2626 		/* only disable if set by overflow, not by user */
2627 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2628 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2629 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2630 			fctrl &= ~IXGBE_FCTRL_UPE;
2631 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2632 		}
2633 	}
2634 
2635 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2636 	return IXGBE_SUCCESS;
2637 }
2638 
2639 /**
2640  * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2641  * @hw: pointer to hardware structure
2642  * @mc_addr: the multicast address
2643  *
2644  * Extracts the 12 bits, from a multicast address, to determine which
2645  * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2646  * incoming rx multicast addresses, to determine the bit-vector to check in
2647  * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2648  * by the MO field of the MCSTCTRL. The MO field is set during initialization
2649  * to mc_filter_type.
2650  **/
2651 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2652 {
2653 	u32 vector = 0;
2654 
2655 	DEBUGFUNC("ixgbe_mta_vector");
2656 
2657 	switch (hw->mac.mc_filter_type) {
2658 	case 0:   /* use bits [47:36] of the address */
2659 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2660 		break;
2661 	case 1:   /* use bits [46:35] of the address */
2662 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2663 		break;
2664 	case 2:   /* use bits [45:34] of the address */
2665 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2666 		break;
2667 	case 3:   /* use bits [43:32] of the address */
2668 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2669 		break;
2670 	default:  /* Invalid mc_filter_type */
2671 		DEBUGOUT("MC filter type param set incorrectly\n");
2672 		ASSERT(0);
2673 		break;
2674 	}
2675 
2676 	/* vector can only be 12-bits or boundary will be exceeded */
2677 	vector &= 0xFFF;
2678 	return vector;
2679 }
2680 
2681 /**
2682  * ixgbe_set_mta - Set bit-vector in multicast table
2683  * @hw: pointer to hardware structure
2684  * @mc_addr: Multicast address
2685  *
2686  * Sets the bit-vector in the multicast table.
2687  **/
2688 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2689 {
2690 	u32 vector;
2691 	u32 vector_bit;
2692 	u32 vector_reg;
2693 
2694 	DEBUGFUNC("ixgbe_set_mta");
2695 
2696 	hw->addr_ctrl.mta_in_use++;
2697 
2698 	vector = ixgbe_mta_vector(hw, mc_addr);
2699 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2700 
2701 	/*
2702 	 * The MTA is a register array of 128 32-bit registers. It is treated
2703 	 * like an array of 4096 bits.  We want to set bit
2704 	 * BitArray[vector_value]. So we figure out what register the bit is
2705 	 * in, read it, OR in the new bit, then write back the new value.  The
2706 	 * register is determined by the upper 7 bits of the vector value and
2707 	 * the bit within that register are determined by the lower 5 bits of
2708 	 * the value.
2709 	 */
2710 	vector_reg = (vector >> 5) & 0x7F;
2711 	vector_bit = vector & 0x1F;
2712 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2713 }
2714 
2715 /**
2716  * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2717  * @hw: pointer to hardware structure
2718  * @mc_addr_list: the list of new multicast addresses
2719  * @mc_addr_count: number of addresses
2720  * @next: iterator function to walk the multicast address list
2721  * @clear: flag, when set clears the table beforehand
2722  *
2723  * When the clear flag is set, the given list replaces any existing list.
2724  * Hashes the given addresses into the multicast table.
2725  **/
2726 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2727 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2728 				      bool clear)
2729 {
2730 	u32 i;
2731 	u32 vmdq;
2732 
2733 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2734 
2735 	/*
2736 	 * Set the new number of MC addresses that we are being requested to
2737 	 * use.
2738 	 */
2739 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2740 	hw->addr_ctrl.mta_in_use = 0;
2741 
2742 	/* Clear mta_shadow */
2743 	if (clear) {
2744 		DEBUGOUT(" Clearing MTA\n");
2745 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2746 	}
2747 
2748 	/* Update mta_shadow */
2749 	for (i = 0; i < mc_addr_count; i++) {
2750 		DEBUGOUT(" Adding the multicast addresses:\n");
2751 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2752 	}
2753 
2754 	/* Enable mta */
2755 	for (i = 0; i < hw->mac.mcft_size; i++)
2756 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2757 				      hw->mac.mta_shadow[i]);
2758 
2759 	if (hw->addr_ctrl.mta_in_use > 0)
2760 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2761 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2762 
2763 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2764 	return IXGBE_SUCCESS;
2765 }
2766 
2767 /**
2768  * ixgbe_enable_mc_generic - Enable multicast address in RAR
2769  * @hw: pointer to hardware structure
2770  *
2771  * Enables multicast address in RAR and the use of the multicast hash table.
2772  **/
2773 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2774 {
2775 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2776 
2777 	DEBUGFUNC("ixgbe_enable_mc_generic");
2778 
2779 	if (a->mta_in_use > 0)
2780 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2781 				hw->mac.mc_filter_type);
2782 
2783 	return IXGBE_SUCCESS;
2784 }
2785 
2786 /**
2787  * ixgbe_disable_mc_generic - Disable multicast address in RAR
2788  * @hw: pointer to hardware structure
2789  *
2790  * Disables multicast address in RAR and the use of the multicast hash table.
2791  **/
2792 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2793 {
2794 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2795 
2796 	DEBUGFUNC("ixgbe_disable_mc_generic");
2797 
2798 	if (a->mta_in_use > 0)
2799 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2800 
2801 	return IXGBE_SUCCESS;
2802 }
2803 
2804 /**
2805  * ixgbe_fc_enable_generic - Enable flow control
2806  * @hw: pointer to hardware structure
2807  *
2808  * Enable flow control according to the current settings.
2809  **/
2810 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2811 {
2812 	s32 ret_val = IXGBE_SUCCESS;
2813 	u32 mflcn_reg, fccfg_reg;
2814 	u32 reg;
2815 	u32 fcrtl, fcrth;
2816 	int i;
2817 
2818 	DEBUGFUNC("ixgbe_fc_enable_generic");
2819 
2820 	/* Validate the water mark configuration */
2821 	if (!hw->fc.pause_time) {
2822 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2823 		goto out;
2824 	}
2825 
2826 	/* Low water mark of zero causes XOFF floods */
2827 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2828 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2829 		    hw->fc.high_water[i]) {
2830 			if (!hw->fc.low_water[i] ||
2831 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2832 				DEBUGOUT("Invalid water mark configuration\n");
2833 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2834 				goto out;
2835 			}
2836 		}
2837 	}
2838 
2839 	/* Negotiate the fc mode to use */
2840 	hw->mac.ops.fc_autoneg(hw);
2841 
2842 	/* Disable any previous flow control settings */
2843 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2844 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2845 
2846 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2847 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2848 
2849 	/*
2850 	 * The possible values of fc.current_mode are:
2851 	 * 0: Flow control is completely disabled
2852 	 * 1: Rx flow control is enabled (we can receive pause frames,
2853 	 *    but not send pause frames).
2854 	 * 2: Tx flow control is enabled (we can send pause frames but
2855 	 *    we do not support receiving pause frames).
2856 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2857 	 * other: Invalid.
2858 	 */
2859 	switch (hw->fc.current_mode) {
2860 	case ixgbe_fc_none:
2861 		/*
2862 		 * Flow control is disabled by software override or autoneg.
2863 		 * The code below will actually disable it in the HW.
2864 		 */
2865 		break;
2866 	case ixgbe_fc_rx_pause:
2867 		/*
2868 		 * Rx Flow control is enabled and Tx Flow control is
2869 		 * disabled by software override. Since there really
2870 		 * isn't a way to advertise that we are capable of RX
2871 		 * Pause ONLY, we will advertise that we support both
2872 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2873 		 * disable the adapter's ability to send PAUSE frames.
2874 		 */
2875 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2876 		break;
2877 	case ixgbe_fc_tx_pause:
2878 		/*
2879 		 * Tx Flow control is enabled, and Rx Flow control is
2880 		 * disabled by software override.
2881 		 */
2882 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2883 		break;
2884 	case ixgbe_fc_full:
2885 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2886 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2887 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2888 		break;
2889 	default:
2890 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2891 			     "Flow control param set incorrectly\n");
2892 		ret_val = IXGBE_ERR_CONFIG;
2893 		goto out;
2894 		break;
2895 	}
2896 
2897 	/* Set 802.3x based flow control settings. */
2898 	mflcn_reg |= IXGBE_MFLCN_DPF;
2899 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2900 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2901 
2902 
2903 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2904 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2905 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2906 		    hw->fc.high_water[i]) {
2907 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2908 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2909 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2910 		} else {
2911 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2912 			/*
2913 			 * In order to prevent Tx hangs when the internal Tx
2914 			 * switch is enabled we must set the high water mark
2915 			 * to the Rx packet buffer size - 24KB.  This allows
2916 			 * the Tx switch to function even under heavy Rx
2917 			 * workloads.
2918 			 */
2919 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2920 		}
2921 
2922 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2923 	}
2924 
2925 	/* Configure pause time (2 TCs per register) */
2926 	reg = hw->fc.pause_time * 0x00010001;
2927 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2928 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2929 
2930 	/* Configure flow control refresh threshold value */
2931 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2932 
2933 out:
2934 	return ret_val;
2935 }
2936 
2937 /**
2938  * ixgbe_negotiate_fc - Negotiate flow control
2939  * @hw: pointer to hardware structure
2940  * @adv_reg: flow control advertised settings
2941  * @lp_reg: link partner's flow control settings
2942  * @adv_sym: symmetric pause bit in advertisement
2943  * @adv_asm: asymmetric pause bit in advertisement
2944  * @lp_sym: symmetric pause bit in link partner advertisement
2945  * @lp_asm: asymmetric pause bit in link partner advertisement
2946  *
2947  * Find the intersection between advertised settings and link partner's
2948  * advertised settings
2949  **/
2950 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2951 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2952 {
2953 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2954 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2955 			     "Local or link partner's advertised flow control "
2956 			     "settings are NULL. Local: %x, link partner: %x\n",
2957 			     adv_reg, lp_reg);
2958 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2959 	}
2960 
2961 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2962 		/*
2963 		 * Now we need to check if the user selected Rx ONLY
2964 		 * of pause frames.  In this case, we had to advertise
2965 		 * FULL flow control because we could not advertise RX
2966 		 * ONLY. Hence, we must now check to see if we need to
2967 		 * turn OFF the TRANSMISSION of PAUSE frames.
2968 		 */
2969 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2970 			hw->fc.current_mode = ixgbe_fc_full;
2971 			DEBUGOUT("Flow Control = FULL.\n");
2972 		} else {
2973 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2974 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2975 		}
2976 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2977 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2978 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2979 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2980 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2981 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2982 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2983 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2984 	} else {
2985 		hw->fc.current_mode = ixgbe_fc_none;
2986 		DEBUGOUT("Flow Control = NONE.\n");
2987 	}
2988 	return IXGBE_SUCCESS;
2989 }
2990 
2991 /**
2992  * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2993  * @hw: pointer to hardware structure
2994  *
2995  * Enable flow control according on 1 gig fiber.
2996  **/
2997 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2998 {
2999 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
3000 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3001 
3002 	/*
3003 	 * On multispeed fiber at 1g, bail out if
3004 	 * - link is up but AN did not complete, or if
3005 	 * - link is up and AN completed but timed out
3006 	 */
3007 
3008 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
3009 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
3010 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
3011 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
3012 		goto out;
3013 	}
3014 
3015 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
3016 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
3017 
3018 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
3019 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
3020 				      IXGBE_PCS1GANA_ASM_PAUSE,
3021 				      IXGBE_PCS1GANA_SYM_PAUSE,
3022 				      IXGBE_PCS1GANA_ASM_PAUSE);
3023 
3024 out:
3025 	return ret_val;
3026 }
3027 
3028 /**
3029  * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
3030  * @hw: pointer to hardware structure
3031  *
3032  * Enable flow control according to IEEE clause 37.
3033  **/
3034 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
3035 {
3036 	u32 links2, anlp1_reg, autoc_reg, links;
3037 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3038 
3039 	/*
3040 	 * On backplane, bail out if
3041 	 * - backplane autoneg was not completed, or if
3042 	 * - we are 82599 and link partner is not AN enabled
3043 	 */
3044 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3045 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3046 		DEBUGOUT("Auto-Negotiation did not complete\n");
3047 		goto out;
3048 	}
3049 
3050 	if (hw->mac.type == ixgbe_mac_82599EB) {
3051 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3052 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3053 			DEBUGOUT("Link partner is not AN enabled\n");
3054 			goto out;
3055 		}
3056 	}
3057 	/*
3058 	 * Read the 10g AN autoc and LP ability registers and resolve
3059 	 * local flow control settings accordingly
3060 	 */
3061 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3062 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3063 
3064 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3065 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3066 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3067 
3068 out:
3069 	return ret_val;
3070 }
3071 
3072 /**
3073  * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3074  * @hw: pointer to hardware structure
3075  *
3076  * Enable flow control according to IEEE clause 37.
3077  **/
3078 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3079 {
3080 	u16 technology_ability_reg = 0;
3081 	u16 lp_technology_ability_reg = 0;
3082 
3083 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3084 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3085 			     &technology_ability_reg);
3086 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3087 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3088 			     &lp_technology_ability_reg);
3089 
3090 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3091 				  (u32)lp_technology_ability_reg,
3092 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3093 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3094 }
3095 
3096 /**
3097  * ixgbe_fc_autoneg - Configure flow control
3098  * @hw: pointer to hardware structure
3099  *
3100  * Compares our advertised flow control capabilities to those advertised by
3101  * our link partner, and determines the proper flow control mode to use.
3102  **/
3103 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3104 {
3105 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3106 	ixgbe_link_speed speed;
3107 	bool link_up;
3108 
3109 	DEBUGFUNC("ixgbe_fc_autoneg");
3110 
3111 	/*
3112 	 * AN should have completed when the cable was plugged in.
3113 	 * Look for reasons to bail out.  Bail out if:
3114 	 * - FC autoneg is disabled, or if
3115 	 * - link is not up.
3116 	 */
3117 	if (hw->fc.disable_fc_autoneg) {
3118 		/* TODO: This should be just an informative log */
3119 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3120 			      "Flow control autoneg is disabled");
3121 		goto out;
3122 	}
3123 
3124 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
3125 	if (!link_up) {
3126 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3127 		goto out;
3128 	}
3129 
3130 	switch (hw->phy.media_type) {
3131 	/* Autoneg flow control on fiber adapters */
3132 	case ixgbe_media_type_fiber_fixed:
3133 	case ixgbe_media_type_fiber_qsfp:
3134 	case ixgbe_media_type_fiber:
3135 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3136 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3137 		break;
3138 
3139 	/* Autoneg flow control on backplane adapters */
3140 	case ixgbe_media_type_backplane:
3141 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3142 		break;
3143 
3144 	/* Autoneg flow control on copper adapters */
3145 	case ixgbe_media_type_copper:
3146 		if (ixgbe_device_supports_autoneg_fc(hw))
3147 			ret_val = ixgbe_fc_autoneg_copper(hw);
3148 		break;
3149 
3150 	default:
3151 		break;
3152 	}
3153 
3154 out:
3155 	if (ret_val == IXGBE_SUCCESS) {
3156 		hw->fc.fc_was_autonegged = true;
3157 	} else {
3158 		hw->fc.fc_was_autonegged = false;
3159 		hw->fc.current_mode = hw->fc.requested_mode;
3160 	}
3161 }
3162 
3163 /*
3164  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3165  * @hw: pointer to hardware structure
3166  *
3167  * System-wide timeout range is encoded in PCIe Device Control2 register.
3168  *
3169  * Add 10% to specified maximum and return the number of times to poll for
3170  * completion timeout, in units of 100 microsec.  Never return less than
3171  * 800 = 80 millisec.
3172  */
3173 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3174 {
3175 	s16 devctl2;
3176 	u32 pollcnt;
3177 
3178 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3179 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3180 
3181 	switch (devctl2) {
3182 	case IXGBE_PCIDEVCTRL2_65_130ms:
3183 		pollcnt = 1300;		/* 130 millisec */
3184 		break;
3185 	case IXGBE_PCIDEVCTRL2_260_520ms:
3186 		pollcnt = 5200;		/* 520 millisec */
3187 		break;
3188 	case IXGBE_PCIDEVCTRL2_1_2s:
3189 		pollcnt = 20000;	/* 2 sec */
3190 		break;
3191 	case IXGBE_PCIDEVCTRL2_4_8s:
3192 		pollcnt = 80000;	/* 8 sec */
3193 		break;
3194 	case IXGBE_PCIDEVCTRL2_17_34s:
3195 		pollcnt = 34000;	/* 34 sec */
3196 		break;
3197 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3198 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3199 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3200 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3201 	default:
3202 		pollcnt = 800;		/* 80 millisec minimum */
3203 		break;
3204 	}
3205 
3206 	/* add 10% to spec maximum */
3207 	return (pollcnt * 11) / 10;
3208 }
3209 
3210 /**
3211  * ixgbe_disable_pcie_master - Disable PCI-express master access
3212  * @hw: pointer to hardware structure
3213  *
3214  * Disables PCI-Express master access and verifies there are no pending
3215  * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3216  * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3217  * is returned signifying master requests disabled.
3218  **/
3219 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3220 {
3221 	s32 status = IXGBE_SUCCESS;
3222 	u32 i, poll;
3223 	u16 value;
3224 
3225 	DEBUGFUNC("ixgbe_disable_pcie_master");
3226 
3227 	/* Always set this bit to ensure any future transactions are blocked */
3228 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3229 
3230 	/* Exit if master requests are blocked */
3231 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3232 	    IXGBE_REMOVED(hw->hw_addr))
3233 		goto out;
3234 
3235 	/* Poll for master request bit to clear */
3236 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3237 		usec_delay(100);
3238 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3239 			goto out;
3240 	}
3241 
3242 	/*
3243 	 * Two consecutive resets are required via CTRL.RST per datasheet
3244 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3245 	 * of this need.  The first reset prevents new master requests from
3246 	 * being issued by our device.  We then must wait 1usec or more for any
3247 	 * remaining completions from the PCIe bus to trickle in, and then reset
3248 	 * again to clear out any effects they may have had on our device.
3249 	 */
3250 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3251 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3252 
3253 	if (hw->mac.type >= ixgbe_mac_X550)
3254 		goto out;
3255 
3256 	/*
3257 	 * Before proceeding, make sure that the PCIe block does not have
3258 	 * transactions pending.
3259 	 */
3260 	poll = ixgbe_pcie_timeout_poll(hw);
3261 	for (i = 0; i < poll; i++) {
3262 		usec_delay(100);
3263 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3264 		if (IXGBE_REMOVED(hw->hw_addr))
3265 			goto out;
3266 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3267 			goto out;
3268 	}
3269 
3270 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3271 		     "PCIe transaction pending bit also did not clear.\n");
3272 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3273 
3274 out:
3275 	return status;
3276 }
3277 
3278 /**
3279  * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3280  * @hw: pointer to hardware structure
3281  * @mask: Mask to specify which semaphore to acquire
3282  *
3283  * Acquires the SWFW semaphore through the GSSR register for the specified
3284  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3285  **/
3286 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3287 {
3288 	u32 gssr = 0;
3289 	u32 swmask = mask;
3290 	u32 fwmask = mask << 5;
3291 	u32 timeout = 200;
3292 	u32 i;
3293 
3294 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3295 
3296 	for (i = 0; i < timeout; i++) {
3297 		/*
3298 		 * SW NVM semaphore bit is used for access to all
3299 		 * SW_FW_SYNC bits (not just NVM)
3300 		 */
3301 		if (ixgbe_get_eeprom_semaphore(hw))
3302 			return IXGBE_ERR_SWFW_SYNC;
3303 
3304 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3305 		if (!(gssr & (fwmask | swmask))) {
3306 			gssr |= swmask;
3307 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3308 			ixgbe_release_eeprom_semaphore(hw);
3309 			return IXGBE_SUCCESS;
3310 		} else {
3311 			/* Resource is currently in use by FW or SW */
3312 			ixgbe_release_eeprom_semaphore(hw);
3313 			msec_delay(5);
3314 		}
3315 	}
3316 
3317 	/* If time expired clear the bits holding the lock and retry */
3318 	if (gssr & (fwmask | swmask))
3319 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3320 
3321 	msec_delay(5);
3322 	return IXGBE_ERR_SWFW_SYNC;
3323 }
3324 
3325 /**
3326  * ixgbe_release_swfw_sync - Release SWFW semaphore
3327  * @hw: pointer to hardware structure
3328  * @mask: Mask to specify which semaphore to release
3329  *
3330  * Releases the SWFW semaphore through the GSSR register for the specified
3331  * function (CSR, PHY0, PHY1, EEPROM, Flash)
3332  **/
3333 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3334 {
3335 	u32 gssr;
3336 	u32 swmask = mask;
3337 
3338 	DEBUGFUNC("ixgbe_release_swfw_sync");
3339 
3340 	ixgbe_get_eeprom_semaphore(hw);
3341 
3342 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3343 	gssr &= ~swmask;
3344 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3345 
3346 	ixgbe_release_eeprom_semaphore(hw);
3347 }
3348 
3349 /**
3350  * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3351  * @hw: pointer to hardware structure
3352  *
3353  * Stops the receive data path and waits for the HW to internally empty
3354  * the Rx security block
3355  **/
3356 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3357 {
3358 #define IXGBE_MAX_SECRX_POLL 4000
3359 
3360 	int i;
3361 	int secrxreg;
3362 
3363 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3364 
3365 
3366 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3367 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3368 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3369 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3370 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3371 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3372 			break;
3373 		else
3374 			/* Use interrupt-safe sleep just in case */
3375 			usec_delay(10);
3376 	}
3377 
3378 	/* For informational purposes only */
3379 	if (i >= IXGBE_MAX_SECRX_POLL)
3380 		DEBUGOUT("Rx unit being enabled before security "
3381 			 "path fully disabled.  Continuing with init.\n");
3382 
3383 	return IXGBE_SUCCESS;
3384 }
3385 
3386 /**
3387  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3388  * @hw: pointer to hardware structure
3389  * @locked: bool to indicate whether the SW/FW lock was taken
3390  * @reg_val: Value we read from AUTOC
3391  *
3392  * The default case requires no protection so just to the register read.
3393  */
3394 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3395 {
3396 	*locked = false;
3397 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3398 	return IXGBE_SUCCESS;
3399 }
3400 
3401 /**
3402  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3403  * @hw: pointer to hardware structure
3404  * @reg_val: value to write to AUTOC
3405  * @locked: bool to indicate whether the SW/FW lock was already taken by
3406  *          previous read.
3407  *
3408  * The default case requires no protection so just to the register write.
3409  */
3410 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3411 {
3412 	UNREFERENCED_1PARAMETER(locked);
3413 
3414 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3415 	return IXGBE_SUCCESS;
3416 }
3417 
3418 /**
3419  * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3420  * @hw: pointer to hardware structure
3421  *
3422  * Enables the receive data path.
3423  **/
3424 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3425 {
3426 	u32 secrxreg;
3427 
3428 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3429 
3430 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3431 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3432 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3433 	IXGBE_WRITE_FLUSH(hw);
3434 
3435 	return IXGBE_SUCCESS;
3436 }
3437 
3438 /**
3439  * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3440  * @hw: pointer to hardware structure
3441  * @regval: register value to write to RXCTRL
3442  *
3443  * Enables the Rx DMA unit
3444  **/
3445 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3446 {
3447 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3448 
3449 	if (regval & IXGBE_RXCTRL_RXEN)
3450 		ixgbe_enable_rx(hw);
3451 	else
3452 		ixgbe_disable_rx(hw);
3453 
3454 	return IXGBE_SUCCESS;
3455 }
3456 
3457 /**
3458  * ixgbe_blink_led_start_generic - Blink LED based on index.
3459  * @hw: pointer to hardware structure
3460  * @index: led number to blink
3461  **/
3462 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3463 {
3464 	ixgbe_link_speed speed = 0;
3465 	bool link_up = 0;
3466 	u32 autoc_reg = 0;
3467 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3468 	s32 ret_val = IXGBE_SUCCESS;
3469 	bool locked = false;
3470 
3471 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3472 
3473 	if (index > 3)
3474 		return IXGBE_ERR_PARAM;
3475 
3476 	/*
3477 	 * Link must be up to auto-blink the LEDs;
3478 	 * Force it if link is down.
3479 	 */
3480 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
3481 
3482 	if (!link_up) {
3483 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3484 		if (ret_val != IXGBE_SUCCESS)
3485 			goto out;
3486 
3487 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3488 		autoc_reg |= IXGBE_AUTOC_FLU;
3489 
3490 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3491 		if (ret_val != IXGBE_SUCCESS)
3492 			goto out;
3493 
3494 		IXGBE_WRITE_FLUSH(hw);
3495 		msec_delay(10);
3496 	}
3497 
3498 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3499 	led_reg |= IXGBE_LED_BLINK(index);
3500 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3501 	IXGBE_WRITE_FLUSH(hw);
3502 
3503 out:
3504 	return ret_val;
3505 }
3506 
3507 /**
3508  * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3509  * @hw: pointer to hardware structure
3510  * @index: led number to stop blinking
3511  **/
3512 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3513 {
3514 	u32 autoc_reg = 0;
3515 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3516 	s32 ret_val = IXGBE_SUCCESS;
3517 	bool locked = false;
3518 
3519 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3520 
3521 	if (index > 3)
3522 		return IXGBE_ERR_PARAM;
3523 
3524 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3525 	if (ret_val != IXGBE_SUCCESS)
3526 		goto out;
3527 
3528 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3529 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3530 
3531 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3532 	if (ret_val != IXGBE_SUCCESS)
3533 		goto out;
3534 
3535 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3536 	led_reg &= ~IXGBE_LED_BLINK(index);
3537 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3538 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3539 	IXGBE_WRITE_FLUSH(hw);
3540 
3541 out:
3542 	return ret_val;
3543 }
3544 
3545 /**
3546  * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3547  * @hw: pointer to hardware structure
3548  * @san_mac_offset: SAN MAC address offset
3549  *
3550  * This function will read the EEPROM location for the SAN MAC address
3551  * pointer, and returns the value at that location.  This is used in both
3552  * get and set mac_addr routines.
3553  **/
3554 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3555 					 u16 *san_mac_offset)
3556 {
3557 	s32 ret_val;
3558 
3559 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3560 
3561 	/*
3562 	 * First read the EEPROM pointer to see if the MAC addresses are
3563 	 * available.
3564 	 */
3565 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3566 				      san_mac_offset);
3567 	if (ret_val) {
3568 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3569 			      "eeprom at offset %d failed",
3570 			      IXGBE_SAN_MAC_ADDR_PTR);
3571 	}
3572 
3573 	return ret_val;
3574 }
3575 
3576 /**
3577  * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3578  * @hw: pointer to hardware structure
3579  * @san_mac_addr: SAN MAC address
3580  *
3581  * Reads the SAN MAC address from the EEPROM, if it's available.  This is
3582  * per-port, so set_lan_id() must be called before reading the addresses.
3583  * set_lan_id() is called by identify_sfp(), but this cannot be relied
3584  * upon for non-SFP connections, so we must call it here.
3585  **/
3586 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3587 {
3588 	u16 san_mac_data, san_mac_offset;
3589 	u8 i;
3590 	s32 ret_val;
3591 
3592 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3593 
3594 	/*
3595 	 * First read the EEPROM pointer to see if the MAC addresses are
3596 	 * available.  If they're not, no point in calling set_lan_id() here.
3597 	 */
3598 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3599 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3600 		goto san_mac_addr_out;
3601 
3602 	/* make sure we know which port we need to program */
3603 	hw->mac.ops.set_lan_id(hw);
3604 	/* apply the port offset to the address offset */
3605 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3606 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3607 	for (i = 0; i < 3; i++) {
3608 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3609 					      &san_mac_data);
3610 		if (ret_val) {
3611 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3612 				      "eeprom read at offset %d failed",
3613 				      san_mac_offset);
3614 			goto san_mac_addr_out;
3615 		}
3616 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3617 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3618 		san_mac_offset++;
3619 	}
3620 	return IXGBE_SUCCESS;
3621 
3622 san_mac_addr_out:
3623 	/*
3624 	 * No addresses available in this EEPROM.  It's not an
3625 	 * error though, so just wipe the local address and return.
3626 	 */
3627 	for (i = 0; i < 6; i++)
3628 		san_mac_addr[i] = 0xFF;
3629 	return IXGBE_SUCCESS;
3630 }
3631 
3632 /**
3633  * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3634  * @hw: pointer to hardware structure
3635  * @san_mac_addr: SAN MAC address
3636  *
3637  * Write a SAN MAC address to the EEPROM.
3638  **/
3639 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3640 {
3641 	s32 ret_val;
3642 	u16 san_mac_data, san_mac_offset;
3643 	u8 i;
3644 
3645 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3646 
3647 	/* Look for SAN mac address pointer.  If not defined, return */
3648 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3649 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3650 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3651 
3652 	/* Make sure we know which port we need to write */
3653 	hw->mac.ops.set_lan_id(hw);
3654 	/* Apply the port offset to the address offset */
3655 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3656 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3657 
3658 	for (i = 0; i < 3; i++) {
3659 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3660 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3661 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3662 		san_mac_offset++;
3663 	}
3664 
3665 	return IXGBE_SUCCESS;
3666 }
3667 
3668 /**
3669  * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3670  * @hw: pointer to hardware structure
3671  *
3672  * Read PCIe configuration space, and get the MSI-X vector count from
3673  * the capabilities table.
3674  **/
3675 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3676 {
3677 	u16 msix_count = 1;
3678 	u16 max_msix_count;
3679 	u16 pcie_offset;
3680 
3681 	switch (hw->mac.type) {
3682 	case ixgbe_mac_82598EB:
3683 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3684 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3685 		break;
3686 	case ixgbe_mac_82599EB:
3687 	case ixgbe_mac_X540:
3688 	case ixgbe_mac_X550:
3689 	case ixgbe_mac_X550EM_x:
3690 	case ixgbe_mac_X550EM_a:
3691 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3692 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3693 		break;
3694 	default:
3695 		return msix_count;
3696 	}
3697 
3698 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3699 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3700 	if (IXGBE_REMOVED(hw->hw_addr))
3701 		msix_count = 0;
3702 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3703 
3704 	/* MSI-X count is zero-based in HW */
3705 	msix_count++;
3706 
3707 	if (msix_count > max_msix_count)
3708 		msix_count = max_msix_count;
3709 
3710 	return msix_count;
3711 }
3712 
3713 /**
3714  * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3715  * @hw: pointer to hardware structure
3716  * @addr: Address to put into receive address register
3717  * @vmdq: VMDq pool to assign
3718  *
3719  * Puts an ethernet address into a receive address register, or
3720  * finds the rar that it is already in; adds to the pool list
3721  **/
3722 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3723 {
3724 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3725 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3726 	u32 rar;
3727 	u32 rar_low, rar_high;
3728 	u32 addr_low, addr_high;
3729 
3730 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3731 
3732 	/* swap bytes for HW little endian */
3733 	addr_low  = addr[0] | (addr[1] << 8)
3734 			    | (addr[2] << 16)
3735 			    | (addr[3] << 24);
3736 	addr_high = addr[4] | (addr[5] << 8);
3737 
3738 	/*
3739 	 * Either find the mac_id in rar or find the first empty space.
3740 	 * rar_highwater points to just after the highest currently used
3741 	 * rar in order to shorten the search.  It grows when we add a new
3742 	 * rar to the top.
3743 	 */
3744 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3745 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3746 
3747 		if (((IXGBE_RAH_AV & rar_high) == 0)
3748 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3749 			first_empty_rar = rar;
3750 		} else if ((rar_high & 0xFFFF) == addr_high) {
3751 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3752 			if (rar_low == addr_low)
3753 				break;    /* found it already in the rars */
3754 		}
3755 	}
3756 
3757 	if (rar < hw->mac.rar_highwater) {
3758 		/* already there so just add to the pool bits */
3759 		ixgbe_set_vmdq(hw, rar, vmdq);
3760 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3761 		/* stick it into first empty RAR slot we found */
3762 		rar = first_empty_rar;
3763 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3764 	} else if (rar == hw->mac.rar_highwater) {
3765 		/* add it to the top of the list and inc the highwater mark */
3766 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3767 		hw->mac.rar_highwater++;
3768 	} else if (rar >= hw->mac.num_rar_entries) {
3769 		return IXGBE_ERR_INVALID_MAC_ADDR;
3770 	}
3771 
3772 	/*
3773 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3774 	 * remains cleared to be sure default pool packets will get delivered
3775 	 */
3776 	if (rar == 0)
3777 		ixgbe_clear_vmdq(hw, rar, 0);
3778 
3779 	return rar;
3780 }
3781 
3782 /**
3783  * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3784  * @hw: pointer to hardware struct
3785  * @rar: receive address register index to disassociate
3786  * @vmdq: VMDq pool index to remove from the rar
3787  **/
3788 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3789 {
3790 	u32 mpsar_lo, mpsar_hi;
3791 	u32 rar_entries = hw->mac.num_rar_entries;
3792 
3793 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3794 
3795 	/* Make sure we are using a valid rar index range */
3796 	if (rar >= rar_entries) {
3797 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3798 			     "RAR index %d is out of range.\n", rar);
3799 		return IXGBE_ERR_INVALID_ARGUMENT;
3800 	}
3801 
3802 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3803 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3804 
3805 	if (IXGBE_REMOVED(hw->hw_addr))
3806 		goto done;
3807 
3808 	if (!mpsar_lo && !mpsar_hi)
3809 		goto done;
3810 
3811 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3812 		if (mpsar_lo) {
3813 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3814 			mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3815 		}
3816 		if (mpsar_hi) {
3817 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3818 			mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3819 		}
3820 	} else if (vmdq < 32) {
3821 		mpsar_lo &= ~(1 << vmdq);
3822 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3823 	} else {
3824 		mpsar_hi &= ~(1 << (vmdq - 32));
3825 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3826 	}
3827 
3828 	/* was that the last pool using this rar? */
3829 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3830 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3831 		hw->mac.ops.clear_rar(hw, rar);
3832 done:
3833 	return IXGBE_SUCCESS;
3834 }
3835 
3836 /**
3837  * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3838  * @hw: pointer to hardware struct
3839  * @rar: receive address register index to associate with a VMDq index
3840  * @vmdq: VMDq pool index
3841  **/
3842 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3843 {
3844 	u32 mpsar;
3845 	u32 rar_entries = hw->mac.num_rar_entries;
3846 
3847 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3848 
3849 	/* Make sure we are using a valid rar index range */
3850 	if (rar >= rar_entries) {
3851 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3852 			     "RAR index %d is out of range.\n", rar);
3853 		return IXGBE_ERR_INVALID_ARGUMENT;
3854 	}
3855 
3856 	if (vmdq < 32) {
3857 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3858 		mpsar |= 1 << vmdq;
3859 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3860 	} else {
3861 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3862 		mpsar |= 1 << (vmdq - 32);
3863 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3864 	}
3865 	return IXGBE_SUCCESS;
3866 }
3867 
3868 /**
3869  * This function should only be involved in the IOV mode.
3870  * In IOV mode, Default pool is next pool after the number of
3871  * VFs advertized and not 0.
3872  * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3873  *
3874  * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3875  * @hw: pointer to hardware struct
3876  * @vmdq: VMDq pool index
3877  **/
3878 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3879 {
3880 	u32 rar = hw->mac.san_mac_rar_index;
3881 
3882 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3883 
3884 	if (vmdq < 32) {
3885 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3886 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3887 	} else {
3888 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3889 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3890 	}
3891 
3892 	return IXGBE_SUCCESS;
3893 }
3894 
3895 /**
3896  * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3897  * @hw: pointer to hardware structure
3898  **/
3899 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3900 {
3901 	int i;
3902 
3903 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3904 	DEBUGOUT(" Clearing UTA\n");
3905 
3906 	for (i = 0; i < 128; i++)
3907 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3908 
3909 	return IXGBE_SUCCESS;
3910 }
3911 
3912 /**
3913  * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3914  * @hw: pointer to hardware structure
3915  * @vlan: VLAN id to write to VLAN filter
3916  * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3917  *		  vlanid not found
3918  *
3919  *
3920  * return the VLVF index where this VLAN id should be placed
3921  *
3922  **/
3923 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3924 {
3925 	s32 regindex, first_empty_slot;
3926 	u32 bits;
3927 
3928 	/* short cut the special case */
3929 	if (vlan == 0)
3930 		return 0;
3931 
3932 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3933 	 * will simply bypass the VLVF if there are no entries present in the
3934 	 * VLVF that contain our VLAN
3935 	 */
3936 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3937 
3938 	/* add VLAN enable bit for comparison */
3939 	vlan |= IXGBE_VLVF_VIEN;
3940 
3941 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3942 	 * slot found along the way.
3943 	 *
3944 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3945 	 */
3946 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3947 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3948 		if (bits == vlan)
3949 			return regindex;
3950 		if (!first_empty_slot && !bits)
3951 			first_empty_slot = regindex;
3952 	}
3953 
3954 	/* If we are here then we didn't find the VLAN.  Return first empty
3955 	 * slot we found during our search, else error.
3956 	 */
3957 	if (!first_empty_slot)
3958 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3959 
3960 	return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3961 }
3962 
3963 /**
3964  * ixgbe_set_vfta_generic - Set VLAN filter table
3965  * @hw: pointer to hardware structure
3966  * @vlan: VLAN id to write to VLAN filter
3967  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3968  * @vlan_on: boolean flag to turn on/off VLAN
3969  * @vlvf_bypass: boolean flag indicating updating default pool is okay
3970  *
3971  * Turn on/off specified VLAN in the VLAN filter table.
3972  **/
3973 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3974 			   bool vlan_on, bool vlvf_bypass)
3975 {
3976 	u32 regidx, vfta_delta, vfta;
3977 	s32 ret_val;
3978 
3979 	DEBUGFUNC("ixgbe_set_vfta_generic");
3980 
3981 	if (vlan > 4095 || vind > 63)
3982 		return IXGBE_ERR_PARAM;
3983 
3984 	/*
3985 	 * this is a 2 part operation - first the VFTA, then the
3986 	 * VLVF and VLVFB if VT Mode is set
3987 	 * We don't write the VFTA until we know the VLVF part succeeded.
3988 	 */
3989 
3990 	/* Part 1
3991 	 * The VFTA is a bitstring made up of 128 32-bit registers
3992 	 * that enable the particular VLAN id, much like the MTA:
3993 	 *    bits[11-5]: which register
3994 	 *    bits[4-0]:  which bit in the register
3995 	 */
3996 	regidx = vlan / 32;
3997 	vfta_delta = 1 << (vlan % 32);
3998 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3999 
4000 	/*
4001 	 * vfta_delta represents the difference between the current value
4002 	 * of vfta and the value we want in the register.  Since the diff
4003 	 * is an XOR mask we can just update the vfta using an XOR
4004 	 */
4005 	vfta_delta &= vlan_on ? ~vfta : vfta;
4006 	vfta ^= vfta_delta;
4007 
4008 	/* Part 2
4009 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
4010 	 */
4011 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
4012 					 vfta, vlvf_bypass);
4013 	if (ret_val != IXGBE_SUCCESS) {
4014 		if (vlvf_bypass)
4015 			goto vfta_update;
4016 		return ret_val;
4017 	}
4018 
4019 vfta_update:
4020 	/* Update VFTA now that we are ready for traffic */
4021 	if (vfta_delta)
4022 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
4023 
4024 	return IXGBE_SUCCESS;
4025 }
4026 
4027 /**
4028  * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
4029  * @hw: pointer to hardware structure
4030  * @vlan: VLAN id to write to VLAN filter
4031  * @vind: VMDq output index that maps queue to VLAN id in VLVFB
4032  * @vlan_on: boolean flag to turn on/off VLAN in VLVF
4033  * @vfta_delta: pointer to the difference between the current value of VFTA
4034  *		 and the desired value
4035  * @vfta: the desired value of the VFTA
4036  * @vlvf_bypass: boolean flag indicating updating default pool is okay
4037  *
4038  * Turn on/off specified bit in VLVF table.
4039  **/
4040 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4041 			   bool vlan_on, u32 *vfta_delta, u32 vfta,
4042 			   bool vlvf_bypass)
4043 {
4044 	u32 bits;
4045 	s32 vlvf_index;
4046 
4047 	DEBUGFUNC("ixgbe_set_vlvf_generic");
4048 
4049 	if (vlan > 4095 || vind > 63)
4050 		return IXGBE_ERR_PARAM;
4051 
4052 	/* If VT Mode is set
4053 	 *   Either vlan_on
4054 	 *     make sure the vlan is in VLVF
4055 	 *     set the vind bit in the matching VLVFB
4056 	 *   Or !vlan_on
4057 	 *     clear the pool bit and possibly the vind
4058 	 */
4059 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4060 		return IXGBE_SUCCESS;
4061 
4062 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4063 	if (vlvf_index < 0)
4064 		return vlvf_index;
4065 
4066 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4067 
4068 	/* set the pool bit */
4069 	bits |= 1 << (vind % 32);
4070 	if (vlan_on)
4071 		goto vlvf_update;
4072 
4073 	/* clear the pool bit */
4074 	bits ^= 1 << (vind % 32);
4075 
4076 	if (!bits &&
4077 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4078 		/* Clear VFTA first, then disable VLVF.  Otherwise
4079 		 * we run the risk of stray packets leaking into
4080 		 * the PF via the default pool
4081 		 */
4082 		if (*vfta_delta)
4083 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4084 
4085 		/* disable VLVF and clear remaining bit from pool */
4086 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4087 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4088 
4089 		return IXGBE_SUCCESS;
4090 	}
4091 
4092 	/* If there are still bits set in the VLVFB registers
4093 	 * for the VLAN ID indicated we need to see if the
4094 	 * caller is requesting that we clear the VFTA entry bit.
4095 	 * If the caller has requested that we clear the VFTA
4096 	 * entry bit but there are still pools/VFs using this VLAN
4097 	 * ID entry then ignore the request.  We're not worried
4098 	 * about the case where we're turning the VFTA VLAN ID
4099 	 * entry bit on, only when requested to turn it off as
4100 	 * there may be multiple pools and/or VFs using the
4101 	 * VLAN ID entry.  In that case we cannot clear the
4102 	 * VFTA bit until all pools/VFs using that VLAN ID have also
4103 	 * been cleared.  This will be indicated by "bits" being
4104 	 * zero.
4105 	 */
4106 	*vfta_delta = 0;
4107 
4108 vlvf_update:
4109 	/* record pool change and enable VLAN ID if not already enabled */
4110 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4111 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4112 
4113 	return IXGBE_SUCCESS;
4114 }
4115 
4116 /**
4117  * ixgbe_clear_vfta_generic - Clear VLAN filter table
4118  * @hw: pointer to hardware structure
4119  *
4120  * Clears the VLAN filter table, and the VMDq index associated with the filter
4121  **/
4122 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4123 {
4124 	u32 offset;
4125 
4126 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4127 
4128 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4129 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4130 
4131 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4132 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4133 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4134 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4135 	}
4136 
4137 	return IXGBE_SUCCESS;
4138 }
4139 
4140 /**
4141  * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4142  * @hw: pointer to hardware structure
4143  *
4144  * Contains the logic to identify if we need to verify link for the
4145  * crosstalk fix
4146  **/
4147 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4148 {
4149 
4150 	/* Does FW say we need the fix */
4151 	if (!hw->need_crosstalk_fix)
4152 		return false;
4153 
4154 	/* Only consider SFP+ PHYs i.e. media type fiber */
4155 	switch (hw->mac.ops.get_media_type(hw)) {
4156 	case ixgbe_media_type_fiber:
4157 	case ixgbe_media_type_fiber_qsfp:
4158 		break;
4159 	default:
4160 		return false;
4161 	}
4162 
4163 	return true;
4164 }
4165 
4166 /**
4167  * ixgbe_check_mac_link_generic - Determine link and speed status
4168  * @hw: pointer to hardware structure
4169  * @speed: pointer to link speed
4170  * @link_up: true when link is up
4171  * @link_up_wait_to_complete: bool used to wait for link up or not
4172  *
4173  * Reads the links register to determine if link is up and the current speed
4174  **/
4175 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4176 				 bool *link_up, bool link_up_wait_to_complete)
4177 {
4178 	u32 links_reg, links_orig;
4179 	u32 i;
4180 
4181 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4182 
4183 	/* If Crosstalk fix enabled do the sanity check of making sure
4184 	 * the SFP+ cage is full.
4185 	 */
4186 	if (ixgbe_need_crosstalk_fix(hw)) {
4187 		u32 sfp_cage_full;
4188 
4189 		switch (hw->mac.type) {
4190 		case ixgbe_mac_82599EB:
4191 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4192 					IXGBE_ESDP_SDP2;
4193 			break;
4194 		case ixgbe_mac_X550EM_x:
4195 		case ixgbe_mac_X550EM_a:
4196 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4197 					IXGBE_ESDP_SDP0;
4198 			break;
4199 		default:
4200 			/* sanity check - No SFP+ devices here */
4201 			sfp_cage_full = false;
4202 			break;
4203 		}
4204 
4205 		if (!sfp_cage_full) {
4206 			*link_up = false;
4207 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
4208 			return IXGBE_SUCCESS;
4209 		}
4210 	}
4211 
4212 	/* clear the old state */
4213 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4214 
4215 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4216 
4217 	if (links_orig != links_reg) {
4218 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4219 			  links_orig, links_reg);
4220 	}
4221 
4222 	if (link_up_wait_to_complete) {
4223 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4224 			if (links_reg & IXGBE_LINKS_UP) {
4225 				*link_up = true;
4226 				break;
4227 			} else {
4228 				*link_up = false;
4229 			}
4230 			msec_delay(100);
4231 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4232 		}
4233 	} else {
4234 		if (links_reg & IXGBE_LINKS_UP) {
4235 			if (ixgbe_need_crosstalk_fix(hw)) {
4236 				/* Check the link state again after a delay
4237 				 * to filter out spurious link up
4238 				 * notifications.
4239 				 */
4240 				msec_delay(5);
4241 				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4242 				if (!(links_reg & IXGBE_LINKS_UP)) {
4243 					*link_up = false;
4244 					*speed = IXGBE_LINK_SPEED_UNKNOWN;
4245 					return IXGBE_SUCCESS;
4246 				}
4247 
4248 			}
4249 			*link_up = true;
4250 		} else {
4251 			*link_up = false;
4252 		}
4253 	}
4254 
4255 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4256 	case IXGBE_LINKS_SPEED_10G_82599:
4257 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4258 		if (hw->mac.type >= ixgbe_mac_X550) {
4259 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4260 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4261 		}
4262 		break;
4263 	case IXGBE_LINKS_SPEED_1G_82599:
4264 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4265 		break;
4266 	case IXGBE_LINKS_SPEED_100_82599:
4267 		*speed = IXGBE_LINK_SPEED_100_FULL;
4268 		if (hw->mac.type == ixgbe_mac_X550) {
4269 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4270 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4271 		}
4272 		break;
4273 	case IXGBE_LINKS_SPEED_10_X550EM_A:
4274 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4275 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4276 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4277 			*speed = IXGBE_LINK_SPEED_10_FULL;
4278 		break;
4279 	default:
4280 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4281 	}
4282 
4283 	return IXGBE_SUCCESS;
4284 }
4285 
4286 /**
4287  * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4288  * the EEPROM
4289  * @hw: pointer to hardware structure
4290  * @wwnn_prefix: the alternative WWNN prefix
4291  * @wwpn_prefix: the alternative WWPN prefix
4292  *
4293  * This function will read the EEPROM from the alternative SAN MAC address
4294  * block to check the support for the alternative WWNN/WWPN prefix support.
4295  **/
4296 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4297 				 u16 *wwpn_prefix)
4298 {
4299 	u16 offset, caps;
4300 	u16 alt_san_mac_blk_offset;
4301 
4302 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4303 
4304 	/* clear output first */
4305 	*wwnn_prefix = 0xFFFF;
4306 	*wwpn_prefix = 0xFFFF;
4307 
4308 	/* check if alternative SAN MAC is supported */
4309 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4310 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4311 		goto wwn_prefix_err;
4312 
4313 	if ((alt_san_mac_blk_offset == 0) ||
4314 	    (alt_san_mac_blk_offset == 0xFFFF))
4315 		goto wwn_prefix_out;
4316 
4317 	/* check capability in alternative san mac address block */
4318 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4319 	if (hw->eeprom.ops.read(hw, offset, &caps))
4320 		goto wwn_prefix_err;
4321 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4322 		goto wwn_prefix_out;
4323 
4324 	/* get the corresponding prefix for WWNN/WWPN */
4325 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4326 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4327 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4328 			      "eeprom read at offset %d failed", offset);
4329 	}
4330 
4331 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4332 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4333 		goto wwn_prefix_err;
4334 
4335 wwn_prefix_out:
4336 	return IXGBE_SUCCESS;
4337 
4338 wwn_prefix_err:
4339 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4340 		      "eeprom read at offset %d failed", offset);
4341 	return IXGBE_SUCCESS;
4342 }
4343 
4344 /**
4345  * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4346  * @hw: pointer to hardware structure
4347  * @bs: the fcoe boot status
4348  *
4349  * This function will read the FCOE boot status from the iSCSI FCOE block
4350  **/
4351 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4352 {
4353 	u16 offset, caps, flags;
4354 	s32 status;
4355 
4356 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4357 
4358 	/* clear output first */
4359 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4360 
4361 	/* check if FCOE IBA block is present */
4362 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4363 	status = hw->eeprom.ops.read(hw, offset, &caps);
4364 	if (status != IXGBE_SUCCESS)
4365 		goto out;
4366 
4367 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4368 		goto out;
4369 
4370 	/* check if iSCSI FCOE block is populated */
4371 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4372 	if (status != IXGBE_SUCCESS)
4373 		goto out;
4374 
4375 	if ((offset == 0) || (offset == 0xFFFF))
4376 		goto out;
4377 
4378 	/* read fcoe flags in iSCSI FCOE block */
4379 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4380 	status = hw->eeprom.ops.read(hw, offset, &flags);
4381 	if (status != IXGBE_SUCCESS)
4382 		goto out;
4383 
4384 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4385 		*bs = ixgbe_fcoe_bootstatus_enabled;
4386 	else
4387 		*bs = ixgbe_fcoe_bootstatus_disabled;
4388 
4389 out:
4390 	return status;
4391 }
4392 
4393 /**
4394  * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4395  * @hw: pointer to hardware structure
4396  * @enable: enable or disable switch for MAC anti-spoofing
4397  * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4398  *
4399  **/
4400 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4401 {
4402 	int vf_target_reg = vf >> 3;
4403 	int vf_target_shift = vf % 8;
4404 	u32 pfvfspoof;
4405 
4406 	if (hw->mac.type == ixgbe_mac_82598EB)
4407 		return;
4408 
4409 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4410 	if (enable)
4411 		pfvfspoof |= (1 << vf_target_shift);
4412 	else
4413 		pfvfspoof &= ~(1 << vf_target_shift);
4414 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4415 }
4416 
4417 /**
4418  * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4419  * @hw: pointer to hardware structure
4420  * @enable: enable or disable switch for VLAN anti-spoofing
4421  * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4422  *
4423  **/
4424 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4425 {
4426 	int vf_target_reg = vf >> 3;
4427 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4428 	u32 pfvfspoof;
4429 
4430 	if (hw->mac.type == ixgbe_mac_82598EB)
4431 		return;
4432 
4433 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4434 	if (enable)
4435 		pfvfspoof |= (1 << vf_target_shift);
4436 	else
4437 		pfvfspoof &= ~(1 << vf_target_shift);
4438 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4439 }
4440 
4441 /**
4442  * ixgbe_get_device_caps_generic - Get additional device capabilities
4443  * @hw: pointer to hardware structure
4444  * @device_caps: the EEPROM word with the extra device capabilities
4445  *
4446  * This function will read the EEPROM location for the device capabilities,
4447  * and return the word through device_caps.
4448  **/
4449 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4450 {
4451 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4452 
4453 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4454 
4455 	return IXGBE_SUCCESS;
4456 }
4457 
4458 /**
4459  * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4460  * @hw: pointer to hardware structure
4461  *
4462  **/
4463 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4464 {
4465 	u32 regval;
4466 	u32 i;
4467 
4468 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4469 
4470 	/* Enable relaxed ordering */
4471 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4472 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4473 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4474 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4475 	}
4476 
4477 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4478 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4479 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4480 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4481 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4482 	}
4483 
4484 }
4485 
4486 /**
4487  * ixgbe_calculate_checksum - Calculate checksum for buffer
4488  * @buffer: pointer to EEPROM
4489  * @length: size of EEPROM to calculate a checksum for
4490  * Calculates the checksum for some buffer on a specified length.  The
4491  * checksum calculated is returned.
4492  **/
4493 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4494 {
4495 	u32 i;
4496 	u8 sum = 0;
4497 
4498 	DEBUGFUNC("ixgbe_calculate_checksum");
4499 
4500 	if (!buffer)
4501 		return 0;
4502 
4503 	for (i = 0; i < length; i++)
4504 		sum += buffer[i];
4505 
4506 	return (u8) (0 - sum);
4507 }
4508 
4509 /**
4510  * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4511  * @hw: pointer to the HW structure
4512  * @buffer: command to write and where the return status will be placed
4513  * @length: length of buffer, must be multiple of 4 bytes
4514  * @timeout: time in ms to wait for command completion
4515  *
4516  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4517  * else returns semaphore error when encountering an error acquiring
4518  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4519  *
4520  * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4521  * by the caller.
4522  **/
4523 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4524 		       u32 timeout)
4525 {
4526 	u32 hicr, i, fwsts;
4527 	u16 dword_len;
4528 
4529 	DEBUGFUNC("ixgbe_hic_unlocked");
4530 
4531 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4532 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4533 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4534 	}
4535 
4536 	/* Set bit 9 of FWSTS clearing FW reset indication */
4537 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4538 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4539 
4540 	/* Check that the host interface is enabled. */
4541 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4542 	if (!(hicr & IXGBE_HICR_EN)) {
4543 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4544 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4545 	}
4546 
4547 	/* Calculate length in DWORDs. We must be DWORD aligned */
4548 	if (length % sizeof(u32)) {
4549 		DEBUGOUT("Buffer length failure, not aligned to dword");
4550 		return IXGBE_ERR_INVALID_ARGUMENT;
4551 	}
4552 
4553 	dword_len = length >> 2;
4554 
4555 	/* The device driver writes the relevant command block
4556 	 * into the ram area.
4557 	 */
4558 	for (i = 0; i < dword_len; i++)
4559 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4560 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4561 
4562 	/* Setting this bit tells the ARC that a new command is pending. */
4563 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4564 
4565 	for (i = 0; i < timeout; i++) {
4566 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4567 		if (!(hicr & IXGBE_HICR_C))
4568 			break;
4569 		msec_delay(1);
4570 	}
4571 
4572 	/* For each command except "Apply Update" perform
4573 	 * status checks in the HICR registry.
4574 	 */
4575 	if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4576 	    IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4577 		return IXGBE_SUCCESS;
4578 
4579 	/* Check command completion */
4580 	if ((timeout && i == timeout) ||
4581 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4582 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4583 			      "Command has failed with no status valid.\n");
4584 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4585 	}
4586 
4587 	return IXGBE_SUCCESS;
4588 }
4589 
4590 /**
4591  * ixgbe_host_interface_command - Issue command to manageability block
4592  * @hw: pointer to the HW structure
4593  * @buffer: contains the command to write and where the return status will
4594  *  be placed
4595  * @length: length of buffer, must be multiple of 4 bytes
4596  * @timeout: time in ms to wait for command completion
4597  * @return_data: read and return data from the buffer (true) or not (false)
4598  *  Needed because FW structures are big endian and decoding of
4599  *  these fields can be 8 bit or 16 bit based on command. Decoding
4600  *  is not easily understood without making a table of commands.
4601  *  So we will leave this up to the caller to read back the data
4602  *  in these cases.
4603  *
4604  * Communicates with the manageability block. On success return IXGBE_SUCCESS
4605  * else returns semaphore error when encountering an error acquiring
4606  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4607  **/
4608 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4609 				 u32 length, u32 timeout, bool return_data)
4610 {
4611 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4612 	struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4613 	u16 buf_len;
4614 	s32 status;
4615 	u32 bi;
4616 	u32 dword_len;
4617 
4618 	DEBUGFUNC("ixgbe_host_interface_command");
4619 
4620 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4621 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4622 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4623 	}
4624 
4625 	/* Take management host interface semaphore */
4626 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4627 	if (status)
4628 		return status;
4629 
4630 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4631 	if (status)
4632 		goto rel_out;
4633 
4634 	if (!return_data)
4635 		goto rel_out;
4636 
4637 	/* Calculate length in DWORDs */
4638 	dword_len = hdr_size >> 2;
4639 
4640 	/* first pull in the header so we know the buffer length */
4641 	for (bi = 0; bi < dword_len; bi++) {
4642 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4643 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4644 	}
4645 
4646 	/*
4647 	 * If there is any thing in data position pull it in
4648 	 * Read Flash command requires reading buffer length from
4649 	 * two byes instead of one byte
4650 	 */
4651 	if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4652 	    resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4653 		for (; bi < dword_len + 2; bi++) {
4654 			buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4655 							  bi);
4656 			IXGBE_LE32_TO_CPUS(&buffer[bi]);
4657 		}
4658 		buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4659 				  & 0xF00) | resp->buf_len;
4660 		hdr_size += (2 << 2);
4661 	} else {
4662 		buf_len = resp->buf_len;
4663 	}
4664 	if (!buf_len)
4665 		goto rel_out;
4666 
4667 	if (length < buf_len + hdr_size) {
4668 		DEBUGOUT("Buffer not large enough for reply message.\n");
4669 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4670 		goto rel_out;
4671 	}
4672 
4673 	/* Calculate length in DWORDs, add 3 for odd lengths */
4674 	dword_len = (buf_len + 3) >> 2;
4675 
4676 	/* Pull in the rest of the buffer (bi is where we left off) */
4677 	for (; bi <= dword_len; bi++) {
4678 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4679 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4680 	}
4681 
4682 rel_out:
4683 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4684 
4685 	return status;
4686 }
4687 
4688 /**
4689  * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4690  * @hw: pointer to the HW structure
4691  * @maj: driver version major number
4692  * @min: driver version minor number
4693  * @build: driver version build number
4694  * @sub: driver version sub build number
4695  * @len: unused
4696  * @driver_ver: unused
4697  *
4698  * Sends driver version number to firmware through the manageability
4699  * block.  On success return IXGBE_SUCCESS
4700  * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4701  * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4702  **/
4703 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4704 				 u8 build, u8 sub, u16 len,
4705 				 const char *driver_ver)
4706 {
4707 	struct ixgbe_hic_drv_info fw_cmd;
4708 	int i;
4709 	s32 ret_val = IXGBE_SUCCESS;
4710 
4711 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4712 	UNREFERENCED_2PARAMETER(len, driver_ver);
4713 
4714 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4715 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4716 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4717 	fw_cmd.port_num = (u8)hw->bus.func;
4718 	fw_cmd.ver_maj = maj;
4719 	fw_cmd.ver_min = min;
4720 	fw_cmd.ver_build = build;
4721 	fw_cmd.ver_sub = sub;
4722 	fw_cmd.hdr.checksum = 0;
4723 	fw_cmd.pad = 0;
4724 	fw_cmd.pad2 = 0;
4725 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4726 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4727 
4728 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4729 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4730 						       sizeof(fw_cmd),
4731 						       IXGBE_HI_COMMAND_TIMEOUT,
4732 						       true);
4733 		if (ret_val != IXGBE_SUCCESS)
4734 			continue;
4735 
4736 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4737 		    FW_CEM_RESP_STATUS_SUCCESS)
4738 			ret_val = IXGBE_SUCCESS;
4739 		else
4740 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4741 
4742 		break;
4743 	}
4744 
4745 	return ret_val;
4746 }
4747 
4748 /**
4749  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4750  * @hw: pointer to hardware structure
4751  * @num_pb: number of packet buffers to allocate
4752  * @headroom: reserve n KB of headroom
4753  * @strategy: packet buffer allocation strategy
4754  **/
4755 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4756 			     int strategy)
4757 {
4758 	u32 pbsize = hw->mac.rx_pb_size;
4759 	int i = 0;
4760 	u32 rxpktsize, txpktsize, txpbthresh;
4761 
4762 	/* Reserve headroom */
4763 	pbsize -= headroom;
4764 
4765 	if (!num_pb)
4766 		num_pb = 1;
4767 
4768 	/* Divide remaining packet buffer space amongst the number of packet
4769 	 * buffers requested using supplied strategy.
4770 	 */
4771 	switch (strategy) {
4772 	case PBA_STRATEGY_WEIGHTED:
4773 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4774 		 * buffer with 5/8 of the packet buffer space.
4775 		 */
4776 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4777 		pbsize -= rxpktsize * (num_pb / 2);
4778 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4779 		for (; i < (num_pb / 2); i++)
4780 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4781 		/* configure remaining packet buffers */
4782 		/* FALLTHROUGH */
4783 	case PBA_STRATEGY_EQUAL:
4784 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4785 		for (; i < num_pb; i++)
4786 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4787 		break;
4788 	default:
4789 		break;
4790 	}
4791 
4792 	/* Only support an equally distributed Tx packet buffer strategy. */
4793 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4794 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4795 	for (i = 0; i < num_pb; i++) {
4796 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4797 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4798 	}
4799 
4800 	/* Clear unused TCs, if any, to zero buffer size*/
4801 	for (; i < IXGBE_MAX_PB; i++) {
4802 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4803 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4804 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4805 	}
4806 }
4807 
4808 /**
4809  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4810  * @hw: pointer to the hardware structure
4811  *
4812  * The 82599 and x540 MACs can experience issues if TX work is still pending
4813  * when a reset occurs.  This function prevents this by flushing the PCIe
4814  * buffers on the system.
4815  **/
4816 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4817 {
4818 	u32 gcr_ext, hlreg0, i, poll;
4819 	u16 value;
4820 
4821 	/*
4822 	 * If double reset is not requested then all transactions should
4823 	 * already be clear and as such there is no work to do
4824 	 */
4825 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4826 		return;
4827 
4828 	/*
4829 	 * Set loopback enable to prevent any transmits from being sent
4830 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4831 	 * has already been cleared.
4832 	 */
4833 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4834 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4835 
4836 	/* Wait for a last completion before clearing buffers */
4837 	IXGBE_WRITE_FLUSH(hw);
4838 	msec_delay(3);
4839 
4840 	/*
4841 	 * Before proceeding, make sure that the PCIe block does not have
4842 	 * transactions pending.
4843 	 */
4844 	poll = ixgbe_pcie_timeout_poll(hw);
4845 	for (i = 0; i < poll; i++) {
4846 		usec_delay(100);
4847 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4848 		if (IXGBE_REMOVED(hw->hw_addr))
4849 			goto out;
4850 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4851 			goto out;
4852 	}
4853 
4854 out:
4855 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4856 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4857 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4858 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4859 
4860 	/* Flush all writes and allow 20usec for all transactions to clear */
4861 	IXGBE_WRITE_FLUSH(hw);
4862 	usec_delay(20);
4863 
4864 	/* restore previous register values */
4865 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4866 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4867 }
4868 
4869 static const u8 ixgbe_emc_temp_data[4] = {
4870 	IXGBE_EMC_INTERNAL_DATA,
4871 	IXGBE_EMC_DIODE1_DATA,
4872 	IXGBE_EMC_DIODE2_DATA,
4873 	IXGBE_EMC_DIODE3_DATA
4874 };
4875 static const u8 ixgbe_emc_therm_limit[4] = {
4876 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
4877 	IXGBE_EMC_DIODE1_THERM_LIMIT,
4878 	IXGBE_EMC_DIODE2_THERM_LIMIT,
4879 	IXGBE_EMC_DIODE3_THERM_LIMIT
4880 };
4881 
4882 /**
4883  * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
4884  * @hw: pointer to hardware structure
4885  *
4886  * Returns the thermal sensor data structure
4887  **/
4888 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
4889 {
4890 	s32 status = IXGBE_SUCCESS;
4891 	u16 ets_offset;
4892 	u16 ets_cfg;
4893 	u16 ets_sensor;
4894 	u8  num_sensors;
4895 	u8  sensor_index;
4896 	u8  sensor_location;
4897 	u8  i;
4898 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4899 
4900 	DEBUGFUNC("ixgbe_get_thermal_sensor_data_generic");
4901 
4902 	/* Only support thermal sensors attached to 82599 physical port 0 */
4903 	if ((hw->mac.type != ixgbe_mac_82599EB) ||
4904 	    (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
4905 		status = IXGBE_NOT_IMPLEMENTED;
4906 		goto out;
4907 	}
4908 
4909 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
4910 	if (status)
4911 		goto out;
4912 
4913 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) {
4914 		status = IXGBE_NOT_IMPLEMENTED;
4915 		goto out;
4916 	}
4917 
4918 	status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
4919 	if (status)
4920 		goto out;
4921 
4922 	if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
4923 		!= IXGBE_ETS_TYPE_EMC) {
4924 		status = IXGBE_NOT_IMPLEMENTED;
4925 		goto out;
4926 	}
4927 
4928 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4929 	if (num_sensors > IXGBE_MAX_SENSORS)
4930 		num_sensors = IXGBE_MAX_SENSORS;
4931 
4932 	for (i = 0; i < num_sensors; i++) {
4933 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
4934 					     &ets_sensor);
4935 		if (status)
4936 			goto out;
4937 
4938 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4939 				IXGBE_ETS_DATA_INDEX_SHIFT);
4940 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4941 				   IXGBE_ETS_DATA_LOC_SHIFT);
4942 
4943 		if (sensor_location != 0) {
4944 			status = hw->phy.ops.read_i2c_byte(hw,
4945 					ixgbe_emc_temp_data[sensor_index],
4946 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
4947 					&data->sensor[i].temp);
4948 			if (status)
4949 				goto out;
4950 		}
4951 	}
4952 out:
4953 	return status;
4954 }
4955 
4956 /**
4957  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
4958  * @hw: pointer to hardware structure
4959  *
4960  * Inits the thermal sensor thresholds according to the NVM map
4961  * and save off the threshold and location values into mac.thermal_sensor_data
4962  **/
4963 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
4964 {
4965 	s32 status = IXGBE_SUCCESS;
4966 	u16 offset;
4967 	u16 ets_offset;
4968 	u16 ets_cfg;
4969 	u16 ets_sensor;
4970 	u8  low_thresh_delta;
4971 	u8  num_sensors;
4972 	u8  sensor_index;
4973 	u8  sensor_location;
4974 	u8  therm_limit;
4975 	u8  i;
4976 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4977 
4978 	DEBUGFUNC("ixgbe_init_thermal_sensor_thresh_generic");
4979 
4980 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
4981 
4982 	/* Only support thermal sensors attached to 82599 physical port 0 */
4983 	if ((hw->mac.type != ixgbe_mac_82599EB) ||
4984 	    (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
4985 		return IXGBE_NOT_IMPLEMENTED;
4986 
4987 	offset = IXGBE_ETS_CFG;
4988 	if (hw->eeprom.ops.read(hw, offset, &ets_offset))
4989 		goto eeprom_err;
4990 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
4991 		return IXGBE_NOT_IMPLEMENTED;
4992 
4993 	offset = ets_offset;
4994 	if (hw->eeprom.ops.read(hw, offset, &ets_cfg))
4995 		goto eeprom_err;
4996 	if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
4997 		!= IXGBE_ETS_TYPE_EMC)
4998 		return IXGBE_NOT_IMPLEMENTED;
4999 
5000 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
5001 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
5002 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
5003 
5004 	for (i = 0; i < num_sensors; i++) {
5005 		offset = ets_offset + 1 + i;
5006 		if (hw->eeprom.ops.read(hw, offset, &ets_sensor)) {
5007 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
5008 				      "eeprom read at offset %d failed",
5009 				      offset);
5010 			continue;
5011 		}
5012 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
5013 				IXGBE_ETS_DATA_INDEX_SHIFT);
5014 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
5015 				   IXGBE_ETS_DATA_LOC_SHIFT);
5016 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
5017 
5018 		hw->phy.ops.write_i2c_byte(hw,
5019 			ixgbe_emc_therm_limit[sensor_index],
5020 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
5021 
5022 		if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) {
5023 			data->sensor[i].location = sensor_location;
5024 			data->sensor[i].caution_thresh = therm_limit;
5025 			data->sensor[i].max_op_thresh = therm_limit -
5026 							low_thresh_delta;
5027 		}
5028 	}
5029 	return status;
5030 
5031 eeprom_err:
5032 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
5033 		      "eeprom read at offset %d failed", offset);
5034 	return IXGBE_NOT_IMPLEMENTED;
5035 }
5036 
5037 /**
5038  * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW
5039  *
5040  * @hw: pointer to hardware structure
5041  * @cmd: Command we send to the FW
5042  * @status: The reply from the FW
5043  *
5044  * Bit-bangs the cmd to the by_pass FW status points to what is returned.
5045  **/
5046 #define IXGBE_BYPASS_BB_WAIT 1
5047 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status)
5048 {
5049 	int i;
5050 	u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo;
5051 	u32 esdp;
5052 
5053 	if (!status)
5054 		return IXGBE_ERR_PARAM;
5055 
5056 	*status = 0;
5057 
5058 	/* SDP vary by MAC type */
5059 	switch (hw->mac.type) {
5060 	case ixgbe_mac_82599EB:
5061 		sck = IXGBE_ESDP_SDP7;
5062 		sdi = IXGBE_ESDP_SDP0;
5063 		sdo = IXGBE_ESDP_SDP6;
5064 		dir_sck = IXGBE_ESDP_SDP7_DIR;
5065 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
5066 		dir_sdo = IXGBE_ESDP_SDP6_DIR;
5067 		break;
5068 	case ixgbe_mac_X540:
5069 		sck = IXGBE_ESDP_SDP2;
5070 		sdi = IXGBE_ESDP_SDP0;
5071 		sdo = IXGBE_ESDP_SDP1;
5072 		dir_sck = IXGBE_ESDP_SDP2_DIR;
5073 		dir_sdi = IXGBE_ESDP_SDP0_DIR;
5074 		dir_sdo = IXGBE_ESDP_SDP1_DIR;
5075 		break;
5076 	default:
5077 		return IXGBE_ERR_DEVICE_NOT_SUPPORTED;
5078 	}
5079 
5080 	/* Set SDP pins direction */
5081 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5082 	esdp |= dir_sck;	/* SCK as output */
5083 	esdp |= dir_sdi;	/* SDI as output */
5084 	esdp &= ~dir_sdo;	/* SDO as input */
5085 	esdp |= sck;
5086 	esdp |= sdi;
5087 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5088 	IXGBE_WRITE_FLUSH(hw);
5089 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5090 
5091 	/* Generate start condition */
5092 	esdp &= ~sdi;
5093 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5094 	IXGBE_WRITE_FLUSH(hw);
5095 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5096 
5097 	esdp &= ~sck;
5098 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5099 	IXGBE_WRITE_FLUSH(hw);
5100 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5101 
5102 	/* Clock out the new control word and clock in the status */
5103 	for (i = 0; i < 32; i++) {
5104 		if ((cmd >> (31 - i)) & 0x01) {
5105 			esdp |= sdi;
5106 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5107 		} else {
5108 			esdp &= ~sdi;
5109 			IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5110 		}
5111 		IXGBE_WRITE_FLUSH(hw);
5112 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5113 
5114 		esdp |= sck;
5115 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5116 		IXGBE_WRITE_FLUSH(hw);
5117 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5118 
5119 		esdp &= ~sck;
5120 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5121 		IXGBE_WRITE_FLUSH(hw);
5122 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5123 
5124 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
5125 		if (esdp & sdo)
5126 			*status = (*status << 1) | 0x01;
5127 		else
5128 			*status = (*status << 1) | 0x00;
5129 		msec_delay(IXGBE_BYPASS_BB_WAIT);
5130 	}
5131 
5132 	/* stop condition */
5133 	esdp |= sck;
5134 	esdp &= ~sdi;
5135 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5136 	IXGBE_WRITE_FLUSH(hw);
5137 	msec_delay(IXGBE_BYPASS_BB_WAIT);
5138 
5139 	esdp |= sdi;
5140 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
5141 	IXGBE_WRITE_FLUSH(hw);
5142 
5143 	/* set the page bits to match the cmd that the status it belongs to */
5144 	*status = (*status & 0x3fffffff) | (cmd & 0xc0000000);
5145 
5146 	return IXGBE_SUCCESS;
5147 }
5148 
5149 /**
5150  * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang.
5151  *
5152  * If we send a write we can't be sure it took until we can read back
5153  * that same register.  It can be a problem as some of the fields may
5154  * for valid reasons change inbetween the time wrote the register and
5155  * we read it again to verify.  So this function check everything we
5156  * can check and then assumes it worked.
5157  *
5158  * @u32 in_reg - The register cmd for the bit-bang read.
5159  * @u32 out_reg - The register returned from a bit-bang read.
5160  **/
5161 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg)
5162 {
5163 	u32 mask;
5164 
5165 	/* Page must match for all control pages */
5166 	if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M))
5167 		return false;
5168 
5169 	switch (in_reg & BYPASS_PAGE_M) {
5170 	case BYPASS_PAGE_CTL0:
5171 		/* All the following can't change since the last write
5172 		 *  - All the event actions
5173 		 *  - The timeout value
5174 		 */
5175 		mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M |
5176 		       BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M |
5177 		       BYPASS_WDTIMEOUT_M |
5178 		       BYPASS_WDT_VALUE_M;
5179 		if ((out_reg & mask) != (in_reg & mask))
5180 			return false;
5181 
5182 		/* 0x0 is never a valid value for bypass status */
5183 		if (!(out_reg & BYPASS_STATUS_OFF_M))
5184 			return false;
5185 		break;
5186 	case BYPASS_PAGE_CTL1:
5187 		/* All the following can't change since the last write
5188 		 *  - time valid bit
5189 		 *  - time we last sent
5190 		 */
5191 		mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M;
5192 		if ((out_reg & mask) != (in_reg & mask))
5193 			return false;
5194 		break;
5195 	case BYPASS_PAGE_CTL2:
5196 		/* All we can check in this page is control number
5197 		 * which is already done above.
5198 		 */
5199 		break;
5200 	}
5201 
5202 	/* We are as sure as we can be return true */
5203 	return true;
5204 }
5205 
5206 /**
5207  * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter.
5208  *
5209  * @hw: pointer to hardware structure
5210  * @cmd: The control word we are setting.
5211  * @event: The event we are setting in the FW.  This also happens to
5212  *	    be the mask for the event we are setting (handy)
5213  * @action: The action we set the event to in the FW. This is in a
5214  *	     bit field that happens to be what we want to put in
5215  *	     the event spot (also handy)
5216  **/
5217 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event,
5218 			     u32 action)
5219 {
5220 	u32 by_ctl = 0;
5221 	u32 cmd, verify;
5222 	u32 count = 0;
5223 
5224 	/* Get current values */
5225 	cmd = ctrl;	/* just reading only need control number */
5226 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5227 		return IXGBE_ERR_INVALID_ARGUMENT;
5228 
5229 	/* Set to new action */
5230 	cmd = (by_ctl & ~event) | BYPASS_WE | action;
5231 	if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl))
5232 		return IXGBE_ERR_INVALID_ARGUMENT;
5233 
5234 	/* Page 0 force a FW eeprom write which is slow so verify */
5235 	if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) {
5236 		verify = BYPASS_PAGE_CTL0;
5237 		do {
5238 			if (count++ > 5)
5239 				return IXGBE_BYPASS_FW_WRITE_FAILURE;
5240 
5241 			if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl))
5242 				return IXGBE_ERR_INVALID_ARGUMENT;
5243 		} while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl));
5244 	} else {
5245 		/* We have give the FW time for the write to stick */
5246 		msec_delay(100);
5247 	}
5248 
5249 	return IXGBE_SUCCESS;
5250 }
5251 
5252 /**
5253  * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres.
5254  *
5255  * @hw: pointer to hardware structure
5256  * @addr: The bypass eeprom address to read.
5257  * @value: The 8b of data at the address above.
5258  **/
5259 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value)
5260 {
5261 	u32 cmd;
5262 	u32 status;
5263 
5264 
5265 	/* send the request */
5266 	cmd = BYPASS_PAGE_CTL2 | BYPASS_WE;
5267 	cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M;
5268 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5269 		return IXGBE_ERR_INVALID_ARGUMENT;
5270 
5271 	/* We have give the FW time for the write to stick */
5272 	msec_delay(100);
5273 
5274 	/* now read the results */
5275 	cmd &= ~BYPASS_WE;
5276 	if (ixgbe_bypass_rw_generic(hw, cmd, &status))
5277 		return IXGBE_ERR_INVALID_ARGUMENT;
5278 
5279 	*value = status & BYPASS_CTL2_DATA_M;
5280 
5281 	return IXGBE_SUCCESS;
5282 }
5283 
5284 /**
5285  * ixgbe_get_orom_version - Return option ROM from EEPROM
5286  *
5287  * @hw: pointer to hardware structure
5288  * @nvm_ver: pointer to output structure
5289  *
5290  * if valid option ROM version, nvm_ver->or_valid set to true
5291  * else nvm_ver->or_valid is false.
5292  **/
5293 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
5294 			    struct ixgbe_nvm_version *nvm_ver)
5295 {
5296 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
5297 
5298 	nvm_ver->or_valid = false;
5299 	/* Option Rom may or may not be present.  Start with pointer */
5300 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
5301 
5302 	/* make sure offset is valid */
5303 	if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5304 		return;
5305 
5306 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5307 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5308 
5309 	/* option rom exists and is valid */
5310 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5311 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
5312 	    eeprom_cfg_blkh == NVM_VER_INVALID)
5313 		return;
5314 
5315 	nvm_ver->or_valid = true;
5316 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5317 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5318 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5319 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5320 }
5321 
5322 /**
5323  * ixgbe_get_oem_prod_version - Return OEM Product version
5324  *
5325  * @hw: pointer to hardware structure
5326  * @nvm_ver: pointer to output structure
5327  *
5328  * if valid OEM product version, nvm_ver->oem_valid set to true
5329  * else nvm_ver->oem_valid is false.
5330  **/
5331 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5332 				struct ixgbe_nvm_version *nvm_ver)
5333 {
5334 	u16 rel_num, prod_ver, mod_len, cap, offset;
5335 
5336 	nvm_ver->oem_valid = false;
5337 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5338 
5339 	/* Return if offset to OEM Product Version block is invalid */
5340 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
5341 		return;
5342 
5343 	/* Read product version block */
5344 	hw->eeprom.ops.read(hw, offset, &mod_len);
5345 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5346 
5347 	/* Return if OEM product version block is invalid */
5348 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5349 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5350 		return;
5351 
5352 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5353 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5354 
5355 	/* Return if version is invalid */
5356 	if ((rel_num | prod_ver) == 0x0 ||
5357 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5358 		return;
5359 
5360 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5361 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5362 	nvm_ver->oem_release = rel_num;
5363 	nvm_ver->oem_valid = true;
5364 }
5365 
5366 /**
5367  * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5368  *
5369  * @hw: pointer to hardware structure
5370  * @nvm_ver: pointer to output structure
5371  *
5372  * word read errors will return 0xFFFF
5373  **/
5374 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5375 {
5376 	u16 etk_id_l, etk_id_h;
5377 
5378 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5379 		etk_id_l = NVM_VER_INVALID;
5380 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5381 		etk_id_h = NVM_VER_INVALID;
5382 
5383 	/* The word order for the version format is determined by high order
5384 	 * word bit 15.
5385 	 */
5386 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
5387 		nvm_ver->etk_id = etk_id_h;
5388 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5389 	} else {
5390 		nvm_ver->etk_id = etk_id_l;
5391 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5392 	}
5393 }
5394 
5395 
5396 /**
5397  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5398  * @hw: pointer to hardware structure
5399  * @map: pointer to u8 arr for returning map
5400  *
5401  * Read the rtrup2tc HW register and resolve its content into map
5402  **/
5403 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5404 {
5405 	u32 reg, i;
5406 
5407 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5408 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5409 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
5410 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5411 	return;
5412 }
5413 
5414 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5415 {
5416 	u32 pfdtxgswc;
5417 	u32 rxctrl;
5418 
5419 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5420 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
5421 		if (hw->mac.type != ixgbe_mac_82598EB) {
5422 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5423 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5424 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5425 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5426 				hw->mac.set_lben = true;
5427 			} else {
5428 				hw->mac.set_lben = false;
5429 			}
5430 		}
5431 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
5432 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5433 	}
5434 }
5435 
5436 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5437 {
5438 	u32 pfdtxgswc;
5439 	u32 rxctrl;
5440 
5441 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5442 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5443 
5444 	if (hw->mac.type != ixgbe_mac_82598EB) {
5445 		if (hw->mac.set_lben) {
5446 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5447 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5448 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5449 			hw->mac.set_lben = false;
5450 		}
5451 	}
5452 }
5453 
5454 /**
5455  * ixgbe_mng_present - returns true when management capability is present
5456  * @hw: pointer to hardware structure
5457  */
5458 bool ixgbe_mng_present(struct ixgbe_hw *hw)
5459 {
5460 	u32 fwsm;
5461 
5462 	if (hw->mac.type < ixgbe_mac_82599EB)
5463 		return false;
5464 
5465 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5466 
5467 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5468 }
5469 
5470 /**
5471  * ixgbe_mng_enabled - Is the manageability engine enabled?
5472  * @hw: pointer to hardware structure
5473  *
5474  * Returns true if the manageability engine is enabled.
5475  **/
5476 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5477 {
5478 	u32 fwsm, manc, factps;
5479 
5480 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5481 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5482 		return false;
5483 
5484 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5485 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5486 		return false;
5487 
5488 	if (hw->mac.type <= ixgbe_mac_X540) {
5489 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5490 		if (factps & IXGBE_FACTPS_MNGCG)
5491 			return false;
5492 	}
5493 
5494 	return true;
5495 }
5496 
5497 /**
5498  * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5499  * @hw: pointer to hardware structure
5500  * @speed: new link speed
5501  * @autoneg_wait_to_complete: true when waiting for completion is needed
5502  *
5503  * Set the link speed in the MAC and/or PHY register and restarts link.
5504  **/
5505 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5506 					  ixgbe_link_speed speed,
5507 					  bool autoneg_wait_to_complete)
5508 {
5509 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5510 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5511 	s32 status = IXGBE_SUCCESS;
5512 	u32 speedcnt = 0;
5513 	u32 i = 0;
5514 	bool autoneg, link_up = false;
5515 
5516 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5517 
5518 	/* Mask off requested but non-supported speeds */
5519 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5520 	if (status != IXGBE_SUCCESS)
5521 		return status;
5522 
5523 	speed &= link_speed;
5524 
5525 	/* Try each speed one by one, highest priority first.  We do this in
5526 	 * software because 10Gb fiber doesn't support speed autonegotiation.
5527 	 */
5528 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5529 		speedcnt++;
5530 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5531 
5532 		/* Set the module link speed */
5533 		switch (hw->phy.media_type) {
5534 		case ixgbe_media_type_fiber_fixed:
5535 		case ixgbe_media_type_fiber:
5536 			ixgbe_set_rate_select_speed(hw,
5537 						    IXGBE_LINK_SPEED_10GB_FULL);
5538 			break;
5539 		case ixgbe_media_type_fiber_qsfp:
5540 			/* QSFP module automatically detects MAC link speed */
5541 			break;
5542 		default:
5543 			DEBUGOUT("Unexpected media type.\n");
5544 			break;
5545 		}
5546 
5547 		/* Allow module to change analog characteristics (1G->10G) */
5548 		msec_delay(40);
5549 
5550 		status = ixgbe_setup_mac_link(hw,
5551 					      IXGBE_LINK_SPEED_10GB_FULL,
5552 					      autoneg_wait_to_complete);
5553 		if (status != IXGBE_SUCCESS)
5554 			return status;
5555 
5556 		/* Flap the Tx laser if it has not already been done */
5557 		ixgbe_flap_tx_laser(hw);
5558 
5559 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5560 		 * Section 73.10.2, we may have to wait up to 1000ms if KR is
5561 		 * attempted.  82599 uses the same timing for 10g SFI.
5562 		 */
5563 		for (i = 0; i < 10; i++) {
5564 			/* Wait for the link partner to also set speed */
5565 			msec_delay(100);
5566 
5567 			/* If we have link, just jump out */
5568 			status = ixgbe_check_link(hw, &link_speed,
5569 						  &link_up, false);
5570 			if (status != IXGBE_SUCCESS)
5571 				return status;
5572 
5573 			if (link_up)
5574 				goto out;
5575 		}
5576 	}
5577 
5578 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5579 		speedcnt++;
5580 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5581 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5582 
5583 		/* Set the module link speed */
5584 		switch (hw->phy.media_type) {
5585 		case ixgbe_media_type_fiber_fixed:
5586 		case ixgbe_media_type_fiber:
5587 			ixgbe_set_rate_select_speed(hw,
5588 						    IXGBE_LINK_SPEED_1GB_FULL);
5589 			break;
5590 		case ixgbe_media_type_fiber_qsfp:
5591 			/* QSFP module automatically detects link speed */
5592 			break;
5593 		default:
5594 			DEBUGOUT("Unexpected media type.\n");
5595 			break;
5596 		}
5597 
5598 		/* Allow module to change analog characteristics (10G->1G) */
5599 		msec_delay(40);
5600 
5601 		status = ixgbe_setup_mac_link(hw,
5602 					      IXGBE_LINK_SPEED_1GB_FULL,
5603 					      autoneg_wait_to_complete);
5604 		if (status != IXGBE_SUCCESS)
5605 			return status;
5606 
5607 		/* Flap the Tx laser if it has not already been done */
5608 		ixgbe_flap_tx_laser(hw);
5609 
5610 		/* Wait for the link partner to also set speed */
5611 		msec_delay(100);
5612 
5613 		/* If we have link, just jump out */
5614 		status = ixgbe_check_link(hw, &link_speed, &link_up, false);
5615 		if (status != IXGBE_SUCCESS)
5616 			return status;
5617 
5618 		if (link_up)
5619 			goto out;
5620 	}
5621 
5622 	/* We didn't get link.  Configure back to the highest speed we tried,
5623 	 * (if there was more than one).  We call ourselves back with just the
5624 	 * single highest speed that the user requested.
5625 	 */
5626 	if (speedcnt > 1)
5627 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5628 						      highest_link_speed,
5629 						      autoneg_wait_to_complete);
5630 
5631 out:
5632 	/* Set autoneg_advertised value based on input link speed */
5633 	hw->phy.autoneg_advertised = 0;
5634 
5635 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5636 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5637 
5638 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5639 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5640 
5641 	return status;
5642 }
5643 
5644 /**
5645  * ixgbe_set_soft_rate_select_speed - Set module link speed
5646  * @hw: pointer to hardware structure
5647  * @speed: link speed to set
5648  *
5649  * Set module link speed via the soft rate select.
5650  */
5651 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5652 					ixgbe_link_speed speed)
5653 {
5654 	s32 status;
5655 	u8 rs, eeprom_data;
5656 
5657 	switch (speed) {
5658 	case IXGBE_LINK_SPEED_10GB_FULL:
5659 		/* one bit mask same as setting on */
5660 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5661 		break;
5662 	case IXGBE_LINK_SPEED_1GB_FULL:
5663 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5664 		break;
5665 	default:
5666 		DEBUGOUT("Invalid fixed module speed\n");
5667 		return;
5668 	}
5669 
5670 	/* Set RS0 */
5671 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5672 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5673 					   &eeprom_data);
5674 	if (status) {
5675 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5676 		goto out;
5677 	}
5678 
5679 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5680 
5681 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5682 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5683 					    eeprom_data);
5684 	if (status) {
5685 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5686 		goto out;
5687 	}
5688 
5689 	/* Set RS1 */
5690 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5691 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
5692 					   &eeprom_data);
5693 	if (status) {
5694 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5695 		goto out;
5696 	}
5697 
5698 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5699 
5700 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5701 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
5702 					    eeprom_data);
5703 	if (status) {
5704 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5705 		goto out;
5706 	}
5707 out:
5708 	return;
5709 }
5710