1 /****************************************************************************** 2 SPDX-License-Identifier: BSD-3-Clause 3 4 Copyright (c) 2001-2020, Intel Corporation 5 All rights reserved. 6 7 Redistribution and use in source and binary forms, with or without 8 modification, are permitted provided that the following conditions are met: 9 10 1. Redistributions of source code must retain the above copyright notice, 11 this list of conditions and the following disclaimer. 12 13 2. Redistributions in binary form must reproduce the above copyright 14 notice, this list of conditions and the following disclaimer in the 15 documentation and/or other materials provided with the distribution. 16 17 3. Neither the name of the Intel Corporation nor the names of its 18 contributors may be used to endorse or promote products derived from 19 this software without specific prior written permission. 20 21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 POSSIBILITY OF SUCH DAMAGE. 32 33 ******************************************************************************/ 34 /*$FreeBSD$*/ 35 36 #include "ixgbe_common.h" 37 #include "ixgbe_phy.h" 38 #include "ixgbe_dcb.h" 39 #include "ixgbe_dcb_82599.h" 40 #include "ixgbe_api.h" 41 42 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 43 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 44 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 45 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); 46 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); 47 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 48 u16 count); 49 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); 50 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 51 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 52 static void ixgbe_release_eeprom(struct ixgbe_hw *hw); 53 54 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); 55 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 56 u16 *san_mac_offset); 57 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 58 u16 words, u16 *data); 59 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 60 u16 words, u16 *data); 61 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 62 u16 offset); 63 64 /** 65 * ixgbe_init_ops_generic - Inits function ptrs 66 * @hw: pointer to the hardware structure 67 * 68 * Initialize the function pointers. 69 **/ 70 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw) 71 { 72 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 73 struct ixgbe_mac_info *mac = &hw->mac; 74 u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 75 76 DEBUGFUNC("ixgbe_init_ops_generic"); 77 78 /* EEPROM */ 79 eeprom->ops.init_params = ixgbe_init_eeprom_params_generic; 80 /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */ 81 if (eec & IXGBE_EEC_PRES) { 82 eeprom->ops.read = ixgbe_read_eerd_generic; 83 eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic; 84 } else { 85 eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic; 86 eeprom->ops.read_buffer = 87 ixgbe_read_eeprom_buffer_bit_bang_generic; 88 } 89 eeprom->ops.write = ixgbe_write_eeprom_generic; 90 eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic; 91 eeprom->ops.validate_checksum = 92 ixgbe_validate_eeprom_checksum_generic; 93 eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic; 94 eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic; 95 96 /* MAC */ 97 mac->ops.init_hw = ixgbe_init_hw_generic; 98 mac->ops.reset_hw = NULL; 99 mac->ops.start_hw = ixgbe_start_hw_generic; 100 mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic; 101 mac->ops.get_media_type = NULL; 102 mac->ops.get_supported_physical_layer = NULL; 103 mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic; 104 mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic; 105 mac->ops.stop_adapter = ixgbe_stop_adapter_generic; 106 mac->ops.get_bus_info = ixgbe_get_bus_info_generic; 107 mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie; 108 mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync; 109 mac->ops.release_swfw_sync = ixgbe_release_swfw_sync; 110 mac->ops.prot_autoc_read = prot_autoc_read_generic; 111 mac->ops.prot_autoc_write = prot_autoc_write_generic; 112 113 /* LEDs */ 114 mac->ops.led_on = ixgbe_led_on_generic; 115 mac->ops.led_off = ixgbe_led_off_generic; 116 mac->ops.blink_led_start = ixgbe_blink_led_start_generic; 117 mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic; 118 mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic; 119 120 /* RAR, Multicast, VLAN */ 121 mac->ops.set_rar = ixgbe_set_rar_generic; 122 mac->ops.clear_rar = ixgbe_clear_rar_generic; 123 mac->ops.insert_mac_addr = NULL; 124 mac->ops.set_vmdq = NULL; 125 mac->ops.clear_vmdq = NULL; 126 mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic; 127 mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic; 128 mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic; 129 mac->ops.enable_mc = ixgbe_enable_mc_generic; 130 mac->ops.disable_mc = ixgbe_disable_mc_generic; 131 mac->ops.clear_vfta = NULL; 132 mac->ops.set_vfta = NULL; 133 mac->ops.set_vlvf = NULL; 134 mac->ops.init_uta_tables = NULL; 135 mac->ops.enable_rx = ixgbe_enable_rx_generic; 136 mac->ops.disable_rx = ixgbe_disable_rx_generic; 137 138 /* Flow Control */ 139 mac->ops.fc_enable = ixgbe_fc_enable_generic; 140 mac->ops.setup_fc = ixgbe_setup_fc_generic; 141 mac->ops.fc_autoneg = ixgbe_fc_autoneg; 142 143 /* Link */ 144 mac->ops.get_link_capabilities = NULL; 145 mac->ops.setup_link = NULL; 146 mac->ops.check_link = NULL; 147 mac->ops.dmac_config = NULL; 148 mac->ops.dmac_update_tcs = NULL; 149 mac->ops.dmac_config_tcs = NULL; 150 151 return IXGBE_SUCCESS; 152 } 153 154 /** 155 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation 156 * of flow control 157 * @hw: pointer to hardware structure 158 * 159 * This function returns true if the device supports flow control 160 * autonegotiation, and false if it does not. 161 * 162 **/ 163 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) 164 { 165 bool supported = false; 166 ixgbe_link_speed speed; 167 bool link_up; 168 169 DEBUGFUNC("ixgbe_device_supports_autoneg_fc"); 170 171 switch (hw->phy.media_type) { 172 case ixgbe_media_type_fiber_fixed: 173 case ixgbe_media_type_fiber_qsfp: 174 case ixgbe_media_type_fiber: 175 /* flow control autoneg black list */ 176 switch (hw->device_id) { 177 case IXGBE_DEV_ID_X550EM_A_SFP: 178 case IXGBE_DEV_ID_X550EM_A_SFP_N: 179 case IXGBE_DEV_ID_X550EM_A_QSFP: 180 case IXGBE_DEV_ID_X550EM_A_QSFP_N: 181 supported = false; 182 break; 183 default: 184 hw->mac.ops.check_link(hw, &speed, &link_up, false); 185 /* if link is down, assume supported */ 186 if (link_up) 187 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ? 188 true : false; 189 else 190 supported = true; 191 } 192 193 break; 194 case ixgbe_media_type_backplane: 195 if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI) 196 supported = false; 197 else 198 supported = true; 199 break; 200 case ixgbe_media_type_copper: 201 /* only some copper devices support flow control autoneg */ 202 switch (hw->device_id) { 203 case IXGBE_DEV_ID_82599_T3_LOM: 204 case IXGBE_DEV_ID_X540T: 205 case IXGBE_DEV_ID_X540T1: 206 case IXGBE_DEV_ID_X540_BYPASS: 207 case IXGBE_DEV_ID_X550T: 208 case IXGBE_DEV_ID_X550T1: 209 case IXGBE_DEV_ID_X550EM_X_10G_T: 210 case IXGBE_DEV_ID_X550EM_A_10G_T: 211 case IXGBE_DEV_ID_X550EM_A_1G_T: 212 case IXGBE_DEV_ID_X550EM_A_1G_T_L: 213 supported = true; 214 break; 215 default: 216 supported = false; 217 } 218 default: 219 break; 220 } 221 222 if (!supported) 223 ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED, 224 "Device %x does not support flow control autoneg", 225 hw->device_id); 226 227 return supported; 228 } 229 230 /** 231 * ixgbe_setup_fc_generic - Set up flow control 232 * @hw: pointer to hardware structure 233 * 234 * Called at init time to set up flow control. 235 **/ 236 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw) 237 { 238 s32 ret_val = IXGBE_SUCCESS; 239 u32 reg = 0, reg_bp = 0; 240 u16 reg_cu = 0; 241 bool locked = false; 242 243 DEBUGFUNC("ixgbe_setup_fc_generic"); 244 245 /* Validate the requested mode */ 246 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { 247 ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED, 248 "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); 249 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 250 goto out; 251 } 252 253 /* 254 * 10gig parts do not have a word in the EEPROM to determine the 255 * default flow control setting, so we explicitly set it to full. 256 */ 257 if (hw->fc.requested_mode == ixgbe_fc_default) 258 hw->fc.requested_mode = ixgbe_fc_full; 259 260 /* 261 * Set up the 1G and 10G flow control advertisement registers so the 262 * HW will be able to do fc autoneg once the cable is plugged in. If 263 * we link at 10G, the 1G advertisement is harmless and vice versa. 264 */ 265 switch (hw->phy.media_type) { 266 case ixgbe_media_type_backplane: 267 /* some MAC's need RMW protection on AUTOC */ 268 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp); 269 if (ret_val != IXGBE_SUCCESS) 270 goto out; 271 272 /* only backplane uses autoc */ 273 /* FALLTHROUGH */ 274 case ixgbe_media_type_fiber_fixed: 275 case ixgbe_media_type_fiber_qsfp: 276 case ixgbe_media_type_fiber: 277 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 278 279 break; 280 case ixgbe_media_type_copper: 281 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 282 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, ®_cu); 283 break; 284 default: 285 break; 286 } 287 288 /* 289 * The possible values of fc.requested_mode are: 290 * 0: Flow control is completely disabled 291 * 1: Rx flow control is enabled (we can receive pause frames, 292 * but not send pause frames). 293 * 2: Tx flow control is enabled (we can send pause frames but 294 * we do not support receiving pause frames). 295 * 3: Both Rx and Tx flow control (symmetric) are enabled. 296 * other: Invalid. 297 */ 298 switch (hw->fc.requested_mode) { 299 case ixgbe_fc_none: 300 /* Flow control completely disabled by software override. */ 301 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); 302 if (hw->phy.media_type == ixgbe_media_type_backplane) 303 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | 304 IXGBE_AUTOC_ASM_PAUSE); 305 else if (hw->phy.media_type == ixgbe_media_type_copper) 306 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); 307 break; 308 case ixgbe_fc_tx_pause: 309 /* 310 * Tx Flow control is enabled, and Rx Flow control is 311 * disabled by software override. 312 */ 313 reg |= IXGBE_PCS1GANA_ASM_PAUSE; 314 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; 315 if (hw->phy.media_type == ixgbe_media_type_backplane) { 316 reg_bp |= IXGBE_AUTOC_ASM_PAUSE; 317 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; 318 } else if (hw->phy.media_type == ixgbe_media_type_copper) { 319 reg_cu |= IXGBE_TAF_ASM_PAUSE; 320 reg_cu &= ~IXGBE_TAF_SYM_PAUSE; 321 } 322 break; 323 case ixgbe_fc_rx_pause: 324 /* 325 * Rx Flow control is enabled and Tx Flow control is 326 * disabled by software override. Since there really 327 * isn't a way to advertise that we are capable of RX 328 * Pause ONLY, we will advertise that we support both 329 * symmetric and asymmetric Rx PAUSE, as such we fall 330 * through to the fc_full statement. Later, we will 331 * disable the adapter's ability to send PAUSE frames. 332 */ 333 case ixgbe_fc_full: 334 /* Flow control (both Rx and Tx) is enabled by SW override. */ 335 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; 336 if (hw->phy.media_type == ixgbe_media_type_backplane) 337 reg_bp |= IXGBE_AUTOC_SYM_PAUSE | 338 IXGBE_AUTOC_ASM_PAUSE; 339 else if (hw->phy.media_type == ixgbe_media_type_copper) 340 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; 341 break; 342 default: 343 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, 344 "Flow control param set incorrectly\n"); 345 ret_val = IXGBE_ERR_CONFIG; 346 goto out; 347 break; 348 } 349 350 if (hw->mac.type < ixgbe_mac_X540) { 351 /* 352 * Enable auto-negotiation between the MAC & PHY; 353 * the MAC will advertise clause 37 flow control. 354 */ 355 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); 356 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); 357 358 /* Disable AN timeout */ 359 if (hw->fc.strict_ieee) 360 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; 361 362 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); 363 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 364 } 365 366 /* 367 * AUTOC restart handles negotiation of 1G and 10G on backplane 368 * and copper. There is no need to set the PCS1GCTL register. 369 * 370 */ 371 if (hw->phy.media_type == ixgbe_media_type_backplane) { 372 reg_bp |= IXGBE_AUTOC_AN_RESTART; 373 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked); 374 if (ret_val) 375 goto out; 376 } else if ((hw->phy.media_type == ixgbe_media_type_copper) && 377 (ixgbe_device_supports_autoneg_fc(hw))) { 378 hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 379 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu); 380 } 381 382 DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg); 383 out: 384 return ret_val; 385 } 386 387 /** 388 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx 389 * @hw: pointer to hardware structure 390 * 391 * Starts the hardware by filling the bus info structure and media type, clears 392 * all on chip counters, initializes receive address registers, multicast 393 * table, VLAN filter table, calls routine to set up link and flow control 394 * settings, and leaves transmit and receive units disabled and uninitialized 395 **/ 396 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) 397 { 398 s32 ret_val; 399 u32 ctrl_ext; 400 u16 device_caps; 401 402 DEBUGFUNC("ixgbe_start_hw_generic"); 403 404 /* Set the media type */ 405 hw->phy.media_type = hw->mac.ops.get_media_type(hw); 406 407 /* PHY ops initialization must be done in reset_hw() */ 408 409 /* Clear the VLAN filter table */ 410 hw->mac.ops.clear_vfta(hw); 411 412 /* Clear statistics registers */ 413 hw->mac.ops.clear_hw_cntrs(hw); 414 415 /* Set No Snoop Disable */ 416 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); 417 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; 418 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); 419 IXGBE_WRITE_FLUSH(hw); 420 421 /* Setup flow control */ 422 ret_val = ixgbe_setup_fc(hw); 423 if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) { 424 DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val); 425 return ret_val; 426 } 427 428 /* Cache bit indicating need for crosstalk fix */ 429 switch (hw->mac.type) { 430 case ixgbe_mac_82599EB: 431 case ixgbe_mac_X550EM_x: 432 case ixgbe_mac_X550EM_a: 433 hw->mac.ops.get_device_caps(hw, &device_caps); 434 if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR) 435 hw->need_crosstalk_fix = false; 436 else 437 hw->need_crosstalk_fix = true; 438 break; 439 default: 440 hw->need_crosstalk_fix = false; 441 break; 442 } 443 444 /* Clear adapter stopped flag */ 445 hw->adapter_stopped = false; 446 447 return IXGBE_SUCCESS; 448 } 449 450 /** 451 * ixgbe_start_hw_gen2 - Init sequence for common device family 452 * @hw: pointer to hw structure 453 * 454 * Performs the init sequence common to the second generation 455 * of 10 GbE devices. 456 * Devices in the second generation: 457 * 82599 458 * X540 459 **/ 460 void ixgbe_start_hw_gen2(struct ixgbe_hw *hw) 461 { 462 u32 i; 463 u32 regval; 464 465 /* Clear the rate limiters */ 466 for (i = 0; i < hw->mac.max_tx_queues; i++) { 467 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); 468 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); 469 } 470 IXGBE_WRITE_FLUSH(hw); 471 472 /* Disable relaxed ordering */ 473 for (i = 0; i < hw->mac.max_tx_queues; i++) { 474 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 475 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; 476 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 477 } 478 479 for (i = 0; i < hw->mac.max_rx_queues; i++) { 480 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 481 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | 482 IXGBE_DCA_RXCTRL_HEAD_WRO_EN); 483 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 484 } 485 } 486 487 /** 488 * ixgbe_init_hw_generic - Generic hardware initialization 489 * @hw: pointer to hardware structure 490 * 491 * Initialize the hardware by resetting the hardware, filling the bus info 492 * structure and media type, clears all on chip counters, initializes receive 493 * address registers, multicast table, VLAN filter table, calls routine to set 494 * up link and flow control settings, and leaves transmit and receive units 495 * disabled and uninitialized 496 **/ 497 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) 498 { 499 s32 status; 500 501 DEBUGFUNC("ixgbe_init_hw_generic"); 502 503 /* Reset the hardware */ 504 status = hw->mac.ops.reset_hw(hw); 505 506 if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) { 507 /* Start the HW */ 508 status = hw->mac.ops.start_hw(hw); 509 } 510 511 /* Initialize the LED link active for LED blink support */ 512 if (hw->mac.ops.init_led_link_act) 513 hw->mac.ops.init_led_link_act(hw); 514 515 if (status != IXGBE_SUCCESS) 516 DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status); 517 518 return status; 519 } 520 521 /** 522 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters 523 * @hw: pointer to hardware structure 524 * 525 * Clears all hardware statistics counters by reading them from the hardware 526 * Statistics counters are clear on read. 527 **/ 528 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) 529 { 530 u16 i = 0; 531 532 DEBUGFUNC("ixgbe_clear_hw_cntrs_generic"); 533 534 IXGBE_READ_REG(hw, IXGBE_CRCERRS); 535 IXGBE_READ_REG(hw, IXGBE_ILLERRC); 536 IXGBE_READ_REG(hw, IXGBE_ERRBC); 537 IXGBE_READ_REG(hw, IXGBE_MSPDC); 538 for (i = 0; i < 8; i++) 539 IXGBE_READ_REG(hw, IXGBE_MPC(i)); 540 541 IXGBE_READ_REG(hw, IXGBE_MLFC); 542 IXGBE_READ_REG(hw, IXGBE_MRFC); 543 IXGBE_READ_REG(hw, IXGBE_RLEC); 544 IXGBE_READ_REG(hw, IXGBE_LXONTXC); 545 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); 546 if (hw->mac.type >= ixgbe_mac_82599EB) { 547 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); 548 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); 549 } else { 550 IXGBE_READ_REG(hw, IXGBE_LXONRXC); 551 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); 552 } 553 554 for (i = 0; i < 8; i++) { 555 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); 556 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); 557 if (hw->mac.type >= ixgbe_mac_82599EB) { 558 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); 559 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); 560 } else { 561 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); 562 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); 563 } 564 } 565 if (hw->mac.type >= ixgbe_mac_82599EB) 566 for (i = 0; i < 8; i++) 567 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); 568 IXGBE_READ_REG(hw, IXGBE_PRC64); 569 IXGBE_READ_REG(hw, IXGBE_PRC127); 570 IXGBE_READ_REG(hw, IXGBE_PRC255); 571 IXGBE_READ_REG(hw, IXGBE_PRC511); 572 IXGBE_READ_REG(hw, IXGBE_PRC1023); 573 IXGBE_READ_REG(hw, IXGBE_PRC1522); 574 IXGBE_READ_REG(hw, IXGBE_GPRC); 575 IXGBE_READ_REG(hw, IXGBE_BPRC); 576 IXGBE_READ_REG(hw, IXGBE_MPRC); 577 IXGBE_READ_REG(hw, IXGBE_GPTC); 578 IXGBE_READ_REG(hw, IXGBE_GORCL); 579 IXGBE_READ_REG(hw, IXGBE_GORCH); 580 IXGBE_READ_REG(hw, IXGBE_GOTCL); 581 IXGBE_READ_REG(hw, IXGBE_GOTCH); 582 if (hw->mac.type == ixgbe_mac_82598EB) 583 for (i = 0; i < 8; i++) 584 IXGBE_READ_REG(hw, IXGBE_RNBC(i)); 585 IXGBE_READ_REG(hw, IXGBE_RUC); 586 IXGBE_READ_REG(hw, IXGBE_RFC); 587 IXGBE_READ_REG(hw, IXGBE_ROC); 588 IXGBE_READ_REG(hw, IXGBE_RJC); 589 IXGBE_READ_REG(hw, IXGBE_MNGPRC); 590 IXGBE_READ_REG(hw, IXGBE_MNGPDC); 591 IXGBE_READ_REG(hw, IXGBE_MNGPTC); 592 IXGBE_READ_REG(hw, IXGBE_TORL); 593 IXGBE_READ_REG(hw, IXGBE_TORH); 594 IXGBE_READ_REG(hw, IXGBE_TPR); 595 IXGBE_READ_REG(hw, IXGBE_TPT); 596 IXGBE_READ_REG(hw, IXGBE_PTC64); 597 IXGBE_READ_REG(hw, IXGBE_PTC127); 598 IXGBE_READ_REG(hw, IXGBE_PTC255); 599 IXGBE_READ_REG(hw, IXGBE_PTC511); 600 IXGBE_READ_REG(hw, IXGBE_PTC1023); 601 IXGBE_READ_REG(hw, IXGBE_PTC1522); 602 IXGBE_READ_REG(hw, IXGBE_MPTC); 603 IXGBE_READ_REG(hw, IXGBE_BPTC); 604 for (i = 0; i < 16; i++) { 605 IXGBE_READ_REG(hw, IXGBE_QPRC(i)); 606 IXGBE_READ_REG(hw, IXGBE_QPTC(i)); 607 if (hw->mac.type >= ixgbe_mac_82599EB) { 608 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); 609 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); 610 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); 611 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); 612 IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); 613 } else { 614 IXGBE_READ_REG(hw, IXGBE_QBRC(i)); 615 IXGBE_READ_REG(hw, IXGBE_QBTC(i)); 616 } 617 } 618 619 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) { 620 if (hw->phy.id == 0) 621 ixgbe_identify_phy(hw); 622 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, 623 IXGBE_MDIO_PCS_DEV_TYPE, &i); 624 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, 625 IXGBE_MDIO_PCS_DEV_TYPE, &i); 626 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, 627 IXGBE_MDIO_PCS_DEV_TYPE, &i); 628 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, 629 IXGBE_MDIO_PCS_DEV_TYPE, &i); 630 } 631 632 return IXGBE_SUCCESS; 633 } 634 635 /** 636 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM 637 * @hw: pointer to hardware structure 638 * @pba_num: stores the part number string from the EEPROM 639 * @pba_num_size: part number string buffer length 640 * 641 * Reads the part number string from the EEPROM. 642 **/ 643 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, 644 u32 pba_num_size) 645 { 646 s32 ret_val; 647 u16 data; 648 u16 pba_ptr; 649 u16 offset; 650 u16 length; 651 652 DEBUGFUNC("ixgbe_read_pba_string_generic"); 653 654 if (pba_num == NULL) { 655 DEBUGOUT("PBA string buffer was null\n"); 656 return IXGBE_ERR_INVALID_ARGUMENT; 657 } 658 659 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 660 if (ret_val) { 661 DEBUGOUT("NVM Read Error\n"); 662 return ret_val; 663 } 664 665 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); 666 if (ret_val) { 667 DEBUGOUT("NVM Read Error\n"); 668 return ret_val; 669 } 670 671 /* 672 * if data is not ptr guard the PBA must be in legacy format which 673 * means pba_ptr is actually our second data word for the PBA number 674 * and we can decode it into an ascii string 675 */ 676 if (data != IXGBE_PBANUM_PTR_GUARD) { 677 DEBUGOUT("NVM PBA number is not stored as string\n"); 678 679 /* we will need 11 characters to store the PBA */ 680 if (pba_num_size < 11) { 681 DEBUGOUT("PBA string buffer too small\n"); 682 return IXGBE_ERR_NO_SPACE; 683 } 684 685 /* extract hex string from data and pba_ptr */ 686 pba_num[0] = (data >> 12) & 0xF; 687 pba_num[1] = (data >> 8) & 0xF; 688 pba_num[2] = (data >> 4) & 0xF; 689 pba_num[3] = data & 0xF; 690 pba_num[4] = (pba_ptr >> 12) & 0xF; 691 pba_num[5] = (pba_ptr >> 8) & 0xF; 692 pba_num[6] = '-'; 693 pba_num[7] = 0; 694 pba_num[8] = (pba_ptr >> 4) & 0xF; 695 pba_num[9] = pba_ptr & 0xF; 696 697 /* put a null character on the end of our string */ 698 pba_num[10] = '\0'; 699 700 /* switch all the data but the '-' to hex char */ 701 for (offset = 0; offset < 10; offset++) { 702 if (pba_num[offset] < 0xA) 703 pba_num[offset] += '0'; 704 else if (pba_num[offset] < 0x10) 705 pba_num[offset] += 'A' - 0xA; 706 } 707 708 return IXGBE_SUCCESS; 709 } 710 711 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); 712 if (ret_val) { 713 DEBUGOUT("NVM Read Error\n"); 714 return ret_val; 715 } 716 717 if (length == 0xFFFF || length == 0) { 718 DEBUGOUT("NVM PBA number section invalid length\n"); 719 return IXGBE_ERR_PBA_SECTION; 720 } 721 722 /* check if pba_num buffer is big enough */ 723 if (pba_num_size < (((u32)length * 2) - 1)) { 724 DEBUGOUT("PBA string buffer too small\n"); 725 return IXGBE_ERR_NO_SPACE; 726 } 727 728 /* trim pba length from start of string */ 729 pba_ptr++; 730 length--; 731 732 for (offset = 0; offset < length; offset++) { 733 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); 734 if (ret_val) { 735 DEBUGOUT("NVM Read Error\n"); 736 return ret_val; 737 } 738 pba_num[offset * 2] = (u8)(data >> 8); 739 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); 740 } 741 pba_num[offset * 2] = '\0'; 742 743 return IXGBE_SUCCESS; 744 } 745 746 /** 747 * ixgbe_read_pba_num_generic - Reads part number from EEPROM 748 * @hw: pointer to hardware structure 749 * @pba_num: stores the part number from the EEPROM 750 * 751 * Reads the part number from the EEPROM. 752 **/ 753 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num) 754 { 755 s32 ret_val; 756 u16 data; 757 758 DEBUGFUNC("ixgbe_read_pba_num_generic"); 759 760 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 761 if (ret_val) { 762 DEBUGOUT("NVM Read Error\n"); 763 return ret_val; 764 } else if (data == IXGBE_PBANUM_PTR_GUARD) { 765 DEBUGOUT("NVM Not supported\n"); 766 return IXGBE_NOT_IMPLEMENTED; 767 } 768 *pba_num = (u32)(data << 16); 769 770 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data); 771 if (ret_val) { 772 DEBUGOUT("NVM Read Error\n"); 773 return ret_val; 774 } 775 *pba_num |= (u32)data; 776 777 return IXGBE_SUCCESS; 778 } 779 780 /** 781 * ixgbe_read_pba_raw 782 * @hw: pointer to the HW structure 783 * @eeprom_buf: optional pointer to EEPROM image 784 * @eeprom_buf_size: size of EEPROM image in words 785 * @max_pba_block_size: PBA block size limit 786 * @pba: pointer to output PBA structure 787 * 788 * Reads PBA from EEPROM image when eeprom_buf is not NULL. 789 * Reads PBA from physical EEPROM device when eeprom_buf is NULL. 790 * 791 **/ 792 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf, 793 u32 eeprom_buf_size, u16 max_pba_block_size, 794 struct ixgbe_pba *pba) 795 { 796 s32 ret_val; 797 u16 pba_block_size; 798 799 if (pba == NULL) 800 return IXGBE_ERR_PARAM; 801 802 if (eeprom_buf == NULL) { 803 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2, 804 &pba->word[0]); 805 if (ret_val) 806 return ret_val; 807 } else { 808 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 809 pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR]; 810 pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR]; 811 } else { 812 return IXGBE_ERR_PARAM; 813 } 814 } 815 816 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) { 817 if (pba->pba_block == NULL) 818 return IXGBE_ERR_PARAM; 819 820 ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf, 821 eeprom_buf_size, 822 &pba_block_size); 823 if (ret_val) 824 return ret_val; 825 826 if (pba_block_size > max_pba_block_size) 827 return IXGBE_ERR_PARAM; 828 829 if (eeprom_buf == NULL) { 830 ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1], 831 pba_block_size, 832 pba->pba_block); 833 if (ret_val) 834 return ret_val; 835 } else { 836 if (eeprom_buf_size > (u32)(pba->word[1] + 837 pba_block_size)) { 838 memcpy(pba->pba_block, 839 &eeprom_buf[pba->word[1]], 840 pba_block_size * sizeof(u16)); 841 } else { 842 return IXGBE_ERR_PARAM; 843 } 844 } 845 } 846 847 return IXGBE_SUCCESS; 848 } 849 850 /** 851 * ixgbe_write_pba_raw 852 * @hw: pointer to the HW structure 853 * @eeprom_buf: optional pointer to EEPROM image 854 * @eeprom_buf_size: size of EEPROM image in words 855 * @pba: pointer to PBA structure 856 * 857 * Writes PBA to EEPROM image when eeprom_buf is not NULL. 858 * Writes PBA to physical EEPROM device when eeprom_buf is NULL. 859 * 860 **/ 861 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf, 862 u32 eeprom_buf_size, struct ixgbe_pba *pba) 863 { 864 s32 ret_val; 865 866 if (pba == NULL) 867 return IXGBE_ERR_PARAM; 868 869 if (eeprom_buf == NULL) { 870 ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2, 871 &pba->word[0]); 872 if (ret_val) 873 return ret_val; 874 } else { 875 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 876 eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0]; 877 eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1]; 878 } else { 879 return IXGBE_ERR_PARAM; 880 } 881 } 882 883 if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) { 884 if (pba->pba_block == NULL) 885 return IXGBE_ERR_PARAM; 886 887 if (eeprom_buf == NULL) { 888 ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1], 889 pba->pba_block[0], 890 pba->pba_block); 891 if (ret_val) 892 return ret_val; 893 } else { 894 if (eeprom_buf_size > (u32)(pba->word[1] + 895 pba->pba_block[0])) { 896 memcpy(&eeprom_buf[pba->word[1]], 897 pba->pba_block, 898 pba->pba_block[0] * sizeof(u16)); 899 } else { 900 return IXGBE_ERR_PARAM; 901 } 902 } 903 } 904 905 return IXGBE_SUCCESS; 906 } 907 908 /** 909 * ixgbe_get_pba_block_size 910 * @hw: pointer to the HW structure 911 * @eeprom_buf: optional pointer to EEPROM image 912 * @eeprom_buf_size: size of EEPROM image in words 913 * @pba_data_size: pointer to output variable 914 * 915 * Returns the size of the PBA block in words. Function operates on EEPROM 916 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical 917 * EEPROM device. 918 * 919 **/ 920 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf, 921 u32 eeprom_buf_size, u16 *pba_block_size) 922 { 923 s32 ret_val; 924 u16 pba_word[2]; 925 u16 length; 926 927 DEBUGFUNC("ixgbe_get_pba_block_size"); 928 929 if (eeprom_buf == NULL) { 930 ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2, 931 &pba_word[0]); 932 if (ret_val) 933 return ret_val; 934 } else { 935 if (eeprom_buf_size > IXGBE_PBANUM1_PTR) { 936 pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR]; 937 pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR]; 938 } else { 939 return IXGBE_ERR_PARAM; 940 } 941 } 942 943 if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) { 944 if (eeprom_buf == NULL) { 945 ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0, 946 &length); 947 if (ret_val) 948 return ret_val; 949 } else { 950 if (eeprom_buf_size > pba_word[1]) 951 length = eeprom_buf[pba_word[1] + 0]; 952 else 953 return IXGBE_ERR_PARAM; 954 } 955 956 if (length == 0xFFFF || length == 0) 957 return IXGBE_ERR_PBA_SECTION; 958 } else { 959 /* PBA number in legacy format, there is no PBA Block. */ 960 length = 0; 961 } 962 963 if (pba_block_size != NULL) 964 *pba_block_size = length; 965 966 return IXGBE_SUCCESS; 967 } 968 969 /** 970 * ixgbe_get_mac_addr_generic - Generic get MAC address 971 * @hw: pointer to hardware structure 972 * @mac_addr: Adapter MAC address 973 * 974 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 975 * A reset of the adapter must be performed prior to calling this function 976 * in order for the MAC address to have been loaded from the EEPROM into RAR0 977 **/ 978 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) 979 { 980 u32 rar_high; 981 u32 rar_low; 982 u16 i; 983 984 DEBUGFUNC("ixgbe_get_mac_addr_generic"); 985 986 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); 987 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); 988 989 for (i = 0; i < 4; i++) 990 mac_addr[i] = (u8)(rar_low >> (i*8)); 991 992 for (i = 0; i < 2; i++) 993 mac_addr[i+4] = (u8)(rar_high >> (i*8)); 994 995 return IXGBE_SUCCESS; 996 } 997 998 /** 999 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info 1000 * @hw: pointer to hardware structure 1001 * @link_status: the link status returned by the PCI config space 1002 * 1003 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure 1004 **/ 1005 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status) 1006 { 1007 struct ixgbe_mac_info *mac = &hw->mac; 1008 1009 if (hw->bus.type == ixgbe_bus_type_unknown) 1010 hw->bus.type = ixgbe_bus_type_pci_express; 1011 1012 switch (link_status & IXGBE_PCI_LINK_WIDTH) { 1013 case IXGBE_PCI_LINK_WIDTH_1: 1014 hw->bus.width = ixgbe_bus_width_pcie_x1; 1015 break; 1016 case IXGBE_PCI_LINK_WIDTH_2: 1017 hw->bus.width = ixgbe_bus_width_pcie_x2; 1018 break; 1019 case IXGBE_PCI_LINK_WIDTH_4: 1020 hw->bus.width = ixgbe_bus_width_pcie_x4; 1021 break; 1022 case IXGBE_PCI_LINK_WIDTH_8: 1023 hw->bus.width = ixgbe_bus_width_pcie_x8; 1024 break; 1025 default: 1026 hw->bus.width = ixgbe_bus_width_unknown; 1027 break; 1028 } 1029 1030 switch (link_status & IXGBE_PCI_LINK_SPEED) { 1031 case IXGBE_PCI_LINK_SPEED_2500: 1032 hw->bus.speed = ixgbe_bus_speed_2500; 1033 break; 1034 case IXGBE_PCI_LINK_SPEED_5000: 1035 hw->bus.speed = ixgbe_bus_speed_5000; 1036 break; 1037 case IXGBE_PCI_LINK_SPEED_8000: 1038 hw->bus.speed = ixgbe_bus_speed_8000; 1039 break; 1040 default: 1041 hw->bus.speed = ixgbe_bus_speed_unknown; 1042 break; 1043 } 1044 1045 mac->ops.set_lan_id(hw); 1046 } 1047 1048 /** 1049 * ixgbe_get_bus_info_generic - Generic set PCI bus info 1050 * @hw: pointer to hardware structure 1051 * 1052 * Gets the PCI bus info (speed, width, type) then calls helper function to 1053 * store this data within the ixgbe_hw structure. 1054 **/ 1055 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) 1056 { 1057 u16 link_status; 1058 1059 DEBUGFUNC("ixgbe_get_bus_info_generic"); 1060 1061 /* Get the negotiated link width and speed from PCI config space */ 1062 link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS); 1063 1064 ixgbe_set_pci_config_data_generic(hw, link_status); 1065 1066 return IXGBE_SUCCESS; 1067 } 1068 1069 /** 1070 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 1071 * @hw: pointer to the HW structure 1072 * 1073 * Determines the LAN function id by reading memory-mapped registers and swaps 1074 * the port value if requested, and set MAC instance for devices that share 1075 * CS4227. 1076 **/ 1077 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) 1078 { 1079 struct ixgbe_bus_info *bus = &hw->bus; 1080 u32 reg; 1081 u16 ee_ctrl_4; 1082 1083 DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie"); 1084 1085 reg = IXGBE_READ_REG(hw, IXGBE_STATUS); 1086 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; 1087 bus->lan_id = (u8)bus->func; 1088 1089 /* check for a port swap */ 1090 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw)); 1091 if (reg & IXGBE_FACTPS_LFS) 1092 bus->func ^= 0x1; 1093 1094 /* Get MAC instance from EEPROM for configuring CS4227 */ 1095 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) { 1096 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4); 1097 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >> 1098 IXGBE_EE_CTRL_4_INST_ID_SHIFT; 1099 } 1100 } 1101 1102 /** 1103 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units 1104 * @hw: pointer to hardware structure 1105 * 1106 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, 1107 * disables transmit and receive units. The adapter_stopped flag is used by 1108 * the shared code and drivers to determine if the adapter is in a stopped 1109 * state and should not touch the hardware. 1110 **/ 1111 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) 1112 { 1113 u32 reg_val; 1114 u16 i; 1115 1116 DEBUGFUNC("ixgbe_stop_adapter_generic"); 1117 1118 /* 1119 * Set the adapter_stopped flag so other driver functions stop touching 1120 * the hardware 1121 */ 1122 hw->adapter_stopped = true; 1123 1124 /* Disable the receive unit */ 1125 ixgbe_disable_rx(hw); 1126 1127 /* Clear interrupt mask to stop interrupts from being generated */ 1128 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); 1129 1130 /* Clear any pending interrupts, flush previous writes */ 1131 IXGBE_READ_REG(hw, IXGBE_EICR); 1132 1133 /* Disable the transmit unit. Each queue must be disabled. */ 1134 for (i = 0; i < hw->mac.max_tx_queues; i++) 1135 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); 1136 1137 /* Disable the receive unit by stopping each queue */ 1138 for (i = 0; i < hw->mac.max_rx_queues; i++) { 1139 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); 1140 reg_val &= ~IXGBE_RXDCTL_ENABLE; 1141 reg_val |= IXGBE_RXDCTL_SWFLSH; 1142 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); 1143 } 1144 1145 /* flush all queues disables */ 1146 IXGBE_WRITE_FLUSH(hw); 1147 msec_delay(2); 1148 1149 /* 1150 * Prevent the PCI-E bus from hanging by disabling PCI-E master 1151 * access and verify no pending requests 1152 */ 1153 return ixgbe_disable_pcie_master(hw); 1154 } 1155 1156 /** 1157 * ixgbe_init_led_link_act_generic - Store the LED index link/activity. 1158 * @hw: pointer to hardware structure 1159 * 1160 * Store the index for the link active LED. This will be used to support 1161 * blinking the LED. 1162 **/ 1163 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw) 1164 { 1165 struct ixgbe_mac_info *mac = &hw->mac; 1166 u32 led_reg, led_mode; 1167 u8 i; 1168 1169 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1170 1171 /* Get LED link active from the LEDCTL register */ 1172 for (i = 0; i < 4; i++) { 1173 led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i); 1174 1175 if ((led_mode & IXGBE_LED_MODE_MASK_BASE) == 1176 IXGBE_LED_LINK_ACTIVE) { 1177 mac->led_link_act = i; 1178 return IXGBE_SUCCESS; 1179 } 1180 } 1181 1182 /* 1183 * If LEDCTL register does not have the LED link active set, then use 1184 * known MAC defaults. 1185 */ 1186 switch (hw->mac.type) { 1187 case ixgbe_mac_X550EM_a: 1188 case ixgbe_mac_X550EM_x: 1189 mac->led_link_act = 1; 1190 break; 1191 default: 1192 mac->led_link_act = 2; 1193 } 1194 return IXGBE_SUCCESS; 1195 } 1196 1197 /** 1198 * ixgbe_led_on_generic - Turns on the software controllable LEDs. 1199 * @hw: pointer to hardware structure 1200 * @index: led number to turn on 1201 **/ 1202 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) 1203 { 1204 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1205 1206 DEBUGFUNC("ixgbe_led_on_generic"); 1207 1208 if (index > 3) 1209 return IXGBE_ERR_PARAM; 1210 1211 /* To turn on the LED, set mode to ON. */ 1212 led_reg &= ~IXGBE_LED_MODE_MASK(index); 1213 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); 1214 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 1215 IXGBE_WRITE_FLUSH(hw); 1216 1217 return IXGBE_SUCCESS; 1218 } 1219 1220 /** 1221 * ixgbe_led_off_generic - Turns off the software controllable LEDs. 1222 * @hw: pointer to hardware structure 1223 * @index: led number to turn off 1224 **/ 1225 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) 1226 { 1227 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 1228 1229 DEBUGFUNC("ixgbe_led_off_generic"); 1230 1231 if (index > 3) 1232 return IXGBE_ERR_PARAM; 1233 1234 /* To turn off the LED, set mode to OFF. */ 1235 led_reg &= ~IXGBE_LED_MODE_MASK(index); 1236 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); 1237 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 1238 IXGBE_WRITE_FLUSH(hw); 1239 1240 return IXGBE_SUCCESS; 1241 } 1242 1243 /** 1244 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params 1245 * @hw: pointer to hardware structure 1246 * 1247 * Initializes the EEPROM parameters ixgbe_eeprom_info within the 1248 * ixgbe_hw struct in order to set up EEPROM access. 1249 **/ 1250 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) 1251 { 1252 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 1253 u32 eec; 1254 u16 eeprom_size; 1255 1256 DEBUGFUNC("ixgbe_init_eeprom_params_generic"); 1257 1258 if (eeprom->type == ixgbe_eeprom_uninitialized) { 1259 eeprom->type = ixgbe_eeprom_none; 1260 /* Set default semaphore delay to 10ms which is a well 1261 * tested value */ 1262 eeprom->semaphore_delay = 10; 1263 /* Clear EEPROM page size, it will be initialized as needed */ 1264 eeprom->word_page_size = 0; 1265 1266 /* 1267 * Check for EEPROM present first. 1268 * If not present leave as none 1269 */ 1270 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1271 if (eec & IXGBE_EEC_PRES) { 1272 eeprom->type = ixgbe_eeprom_spi; 1273 1274 /* 1275 * SPI EEPROM is assumed here. This code would need to 1276 * change if a future EEPROM is not SPI. 1277 */ 1278 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> 1279 IXGBE_EEC_SIZE_SHIFT); 1280 eeprom->word_size = 1 << (eeprom_size + 1281 IXGBE_EEPROM_WORD_SIZE_SHIFT); 1282 } 1283 1284 if (eec & IXGBE_EEC_ADDR_SIZE) 1285 eeprom->address_bits = 16; 1286 else 1287 eeprom->address_bits = 8; 1288 DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: " 1289 "%d\n", eeprom->type, eeprom->word_size, 1290 eeprom->address_bits); 1291 } 1292 1293 return IXGBE_SUCCESS; 1294 } 1295 1296 /** 1297 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang 1298 * @hw: pointer to hardware structure 1299 * @offset: offset within the EEPROM to write 1300 * @words: number of word(s) 1301 * @data: 16 bit word(s) to write to EEPROM 1302 * 1303 * Reads 16 bit word(s) from EEPROM through bit-bang method 1304 **/ 1305 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1306 u16 words, u16 *data) 1307 { 1308 s32 status = IXGBE_SUCCESS; 1309 u16 i, count; 1310 1311 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic"); 1312 1313 hw->eeprom.ops.init_params(hw); 1314 1315 if (words == 0) { 1316 status = IXGBE_ERR_INVALID_ARGUMENT; 1317 goto out; 1318 } 1319 1320 if (offset + words > hw->eeprom.word_size) { 1321 status = IXGBE_ERR_EEPROM; 1322 goto out; 1323 } 1324 1325 /* 1326 * The EEPROM page size cannot be queried from the chip. We do lazy 1327 * initialization. It is worth to do that when we write large buffer. 1328 */ 1329 if ((hw->eeprom.word_page_size == 0) && 1330 (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) 1331 ixgbe_detect_eeprom_page_size_generic(hw, offset); 1332 1333 /* 1334 * We cannot hold synchronization semaphores for too long 1335 * to avoid other entity starvation. However it is more efficient 1336 * to read in bursts than synchronizing access for each word. 1337 */ 1338 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1339 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1340 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1341 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, 1342 count, &data[i]); 1343 1344 if (status != IXGBE_SUCCESS) 1345 break; 1346 } 1347 1348 out: 1349 return status; 1350 } 1351 1352 /** 1353 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM 1354 * @hw: pointer to hardware structure 1355 * @offset: offset within the EEPROM to be written to 1356 * @words: number of word(s) 1357 * @data: 16 bit word(s) to be written to the EEPROM 1358 * 1359 * If ixgbe_eeprom_update_checksum is not called after this function, the 1360 * EEPROM will most likely contain an invalid checksum. 1361 **/ 1362 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1363 u16 words, u16 *data) 1364 { 1365 s32 status; 1366 u16 word; 1367 u16 page_size; 1368 u16 i; 1369 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; 1370 1371 DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang"); 1372 1373 /* Prepare the EEPROM for writing */ 1374 status = ixgbe_acquire_eeprom(hw); 1375 1376 if (status == IXGBE_SUCCESS) { 1377 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1378 ixgbe_release_eeprom(hw); 1379 status = IXGBE_ERR_EEPROM; 1380 } 1381 } 1382 1383 if (status == IXGBE_SUCCESS) { 1384 for (i = 0; i < words; i++) { 1385 ixgbe_standby_eeprom(hw); 1386 1387 /* Send the WRITE ENABLE command (8 bit opcode ) */ 1388 ixgbe_shift_out_eeprom_bits(hw, 1389 IXGBE_EEPROM_WREN_OPCODE_SPI, 1390 IXGBE_EEPROM_OPCODE_BITS); 1391 1392 ixgbe_standby_eeprom(hw); 1393 1394 /* 1395 * Some SPI eeproms use the 8th address bit embedded 1396 * in the opcode 1397 */ 1398 if ((hw->eeprom.address_bits == 8) && 1399 ((offset + i) >= 128)) 1400 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1401 1402 /* Send the Write command (8-bit opcode + addr) */ 1403 ixgbe_shift_out_eeprom_bits(hw, write_opcode, 1404 IXGBE_EEPROM_OPCODE_BITS); 1405 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1406 hw->eeprom.address_bits); 1407 1408 page_size = hw->eeprom.word_page_size; 1409 1410 /* Send the data in burst via SPI*/ 1411 do { 1412 word = data[i]; 1413 word = (word >> 8) | (word << 8); 1414 ixgbe_shift_out_eeprom_bits(hw, word, 16); 1415 1416 if (page_size == 0) 1417 break; 1418 1419 /* do not wrap around page */ 1420 if (((offset + i) & (page_size - 1)) == 1421 (page_size - 1)) 1422 break; 1423 } while (++i < words); 1424 1425 ixgbe_standby_eeprom(hw); 1426 msec_delay(10); 1427 } 1428 /* Done with writing - release the EEPROM */ 1429 ixgbe_release_eeprom(hw); 1430 } 1431 1432 return status; 1433 } 1434 1435 /** 1436 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM 1437 * @hw: pointer to hardware structure 1438 * @offset: offset within the EEPROM to be written to 1439 * @data: 16 bit word to be written to the EEPROM 1440 * 1441 * If ixgbe_eeprom_update_checksum is not called after this function, the 1442 * EEPROM will most likely contain an invalid checksum. 1443 **/ 1444 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1445 { 1446 s32 status; 1447 1448 DEBUGFUNC("ixgbe_write_eeprom_generic"); 1449 1450 hw->eeprom.ops.init_params(hw); 1451 1452 if (offset >= hw->eeprom.word_size) { 1453 status = IXGBE_ERR_EEPROM; 1454 goto out; 1455 } 1456 1457 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); 1458 1459 out: 1460 return status; 1461 } 1462 1463 /** 1464 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang 1465 * @hw: pointer to hardware structure 1466 * @offset: offset within the EEPROM to be read 1467 * @data: read 16 bit words(s) from EEPROM 1468 * @words: number of word(s) 1469 * 1470 * Reads 16 bit word(s) from EEPROM through bit-bang method 1471 **/ 1472 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1473 u16 words, u16 *data) 1474 { 1475 s32 status = IXGBE_SUCCESS; 1476 u16 i, count; 1477 1478 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic"); 1479 1480 hw->eeprom.ops.init_params(hw); 1481 1482 if (words == 0) { 1483 status = IXGBE_ERR_INVALID_ARGUMENT; 1484 goto out; 1485 } 1486 1487 if (offset + words > hw->eeprom.word_size) { 1488 status = IXGBE_ERR_EEPROM; 1489 goto out; 1490 } 1491 1492 /* 1493 * We cannot hold synchronization semaphores for too long 1494 * to avoid other entity starvation. However it is more efficient 1495 * to read in bursts than synchronizing access for each word. 1496 */ 1497 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1498 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1499 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1500 1501 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, 1502 count, &data[i]); 1503 1504 if (status != IXGBE_SUCCESS) 1505 break; 1506 } 1507 1508 out: 1509 return status; 1510 } 1511 1512 /** 1513 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang 1514 * @hw: pointer to hardware structure 1515 * @offset: offset within the EEPROM to be read 1516 * @words: number of word(s) 1517 * @data: read 16 bit word(s) from EEPROM 1518 * 1519 * Reads 16 bit word(s) from EEPROM through bit-bang method 1520 **/ 1521 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1522 u16 words, u16 *data) 1523 { 1524 s32 status; 1525 u16 word_in; 1526 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; 1527 u16 i; 1528 1529 DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang"); 1530 1531 /* Prepare the EEPROM for reading */ 1532 status = ixgbe_acquire_eeprom(hw); 1533 1534 if (status == IXGBE_SUCCESS) { 1535 if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) { 1536 ixgbe_release_eeprom(hw); 1537 status = IXGBE_ERR_EEPROM; 1538 } 1539 } 1540 1541 if (status == IXGBE_SUCCESS) { 1542 for (i = 0; i < words; i++) { 1543 ixgbe_standby_eeprom(hw); 1544 /* 1545 * Some SPI eeproms use the 8th address bit embedded 1546 * in the opcode 1547 */ 1548 if ((hw->eeprom.address_bits == 8) && 1549 ((offset + i) >= 128)) 1550 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1551 1552 /* Send the READ command (opcode + addr) */ 1553 ixgbe_shift_out_eeprom_bits(hw, read_opcode, 1554 IXGBE_EEPROM_OPCODE_BITS); 1555 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1556 hw->eeprom.address_bits); 1557 1558 /* Read the data. */ 1559 word_in = ixgbe_shift_in_eeprom_bits(hw, 16); 1560 data[i] = (word_in >> 8) | (word_in << 8); 1561 } 1562 1563 /* End this read operation */ 1564 ixgbe_release_eeprom(hw); 1565 } 1566 1567 return status; 1568 } 1569 1570 /** 1571 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang 1572 * @hw: pointer to hardware structure 1573 * @offset: offset within the EEPROM to be read 1574 * @data: read 16 bit value from EEPROM 1575 * 1576 * Reads 16 bit value from EEPROM through bit-bang method 1577 **/ 1578 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1579 u16 *data) 1580 { 1581 s32 status; 1582 1583 DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic"); 1584 1585 hw->eeprom.ops.init_params(hw); 1586 1587 if (offset >= hw->eeprom.word_size) { 1588 status = IXGBE_ERR_EEPROM; 1589 goto out; 1590 } 1591 1592 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1593 1594 out: 1595 return status; 1596 } 1597 1598 /** 1599 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD 1600 * @hw: pointer to hardware structure 1601 * @offset: offset of word in the EEPROM to read 1602 * @words: number of word(s) 1603 * @data: 16 bit word(s) from the EEPROM 1604 * 1605 * Reads a 16 bit word(s) from the EEPROM using the EERD register. 1606 **/ 1607 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1608 u16 words, u16 *data) 1609 { 1610 u32 eerd; 1611 s32 status = IXGBE_SUCCESS; 1612 u32 i; 1613 1614 DEBUGFUNC("ixgbe_read_eerd_buffer_generic"); 1615 1616 hw->eeprom.ops.init_params(hw); 1617 1618 if (words == 0) { 1619 status = IXGBE_ERR_INVALID_ARGUMENT; 1620 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words"); 1621 goto out; 1622 } 1623 1624 if (offset >= hw->eeprom.word_size) { 1625 status = IXGBE_ERR_EEPROM; 1626 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset"); 1627 goto out; 1628 } 1629 1630 for (i = 0; i < words; i++) { 1631 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1632 IXGBE_EEPROM_RW_REG_START; 1633 1634 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 1635 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); 1636 1637 if (status == IXGBE_SUCCESS) { 1638 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 1639 IXGBE_EEPROM_RW_REG_DATA); 1640 } else { 1641 DEBUGOUT("Eeprom read timed out\n"); 1642 goto out; 1643 } 1644 } 1645 out: 1646 return status; 1647 } 1648 1649 /** 1650 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size 1651 * @hw: pointer to hardware structure 1652 * @offset: offset within the EEPROM to be used as a scratch pad 1653 * 1654 * Discover EEPROM page size by writing marching data at given offset. 1655 * This function is called only when we are writing a new large buffer 1656 * at given offset so the data would be overwritten anyway. 1657 **/ 1658 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 1659 u16 offset) 1660 { 1661 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; 1662 s32 status = IXGBE_SUCCESS; 1663 u16 i; 1664 1665 DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic"); 1666 1667 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) 1668 data[i] = i; 1669 1670 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; 1671 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1672 IXGBE_EEPROM_PAGE_SIZE_MAX, data); 1673 hw->eeprom.word_page_size = 0; 1674 if (status != IXGBE_SUCCESS) 1675 goto out; 1676 1677 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1678 if (status != IXGBE_SUCCESS) 1679 goto out; 1680 1681 /* 1682 * When writing in burst more than the actual page size 1683 * EEPROM address wraps around current page. 1684 */ 1685 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; 1686 1687 DEBUGOUT1("Detected EEPROM page size = %d words.", 1688 hw->eeprom.word_page_size); 1689 out: 1690 return status; 1691 } 1692 1693 /** 1694 * ixgbe_read_eerd_generic - Read EEPROM word using EERD 1695 * @hw: pointer to hardware structure 1696 * @offset: offset of word in the EEPROM to read 1697 * @data: word read from the EEPROM 1698 * 1699 * Reads a 16 bit word from the EEPROM using the EERD register. 1700 **/ 1701 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 1702 { 1703 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); 1704 } 1705 1706 /** 1707 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR 1708 * @hw: pointer to hardware structure 1709 * @offset: offset of word in the EEPROM to write 1710 * @words: number of word(s) 1711 * @data: word(s) write to the EEPROM 1712 * 1713 * Write a 16 bit word(s) to the EEPROM using the EEWR register. 1714 **/ 1715 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1716 u16 words, u16 *data) 1717 { 1718 u32 eewr; 1719 s32 status = IXGBE_SUCCESS; 1720 u16 i; 1721 1722 DEBUGFUNC("ixgbe_write_eewr_generic"); 1723 1724 hw->eeprom.ops.init_params(hw); 1725 1726 if (words == 0) { 1727 status = IXGBE_ERR_INVALID_ARGUMENT; 1728 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words"); 1729 goto out; 1730 } 1731 1732 if (offset >= hw->eeprom.word_size) { 1733 status = IXGBE_ERR_EEPROM; 1734 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset"); 1735 goto out; 1736 } 1737 1738 for (i = 0; i < words; i++) { 1739 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1740 (data[i] << IXGBE_EEPROM_RW_REG_DATA) | 1741 IXGBE_EEPROM_RW_REG_START; 1742 1743 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1744 if (status != IXGBE_SUCCESS) { 1745 DEBUGOUT("Eeprom write EEWR timed out\n"); 1746 goto out; 1747 } 1748 1749 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); 1750 1751 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1752 if (status != IXGBE_SUCCESS) { 1753 DEBUGOUT("Eeprom write EEWR timed out\n"); 1754 goto out; 1755 } 1756 } 1757 1758 out: 1759 return status; 1760 } 1761 1762 /** 1763 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR 1764 * @hw: pointer to hardware structure 1765 * @offset: offset of word in the EEPROM to write 1766 * @data: word write to the EEPROM 1767 * 1768 * Write a 16 bit word to the EEPROM using the EEWR register. 1769 **/ 1770 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1771 { 1772 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); 1773 } 1774 1775 /** 1776 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status 1777 * @hw: pointer to hardware structure 1778 * @ee_reg: EEPROM flag for polling 1779 * 1780 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the 1781 * read or write is done respectively. 1782 **/ 1783 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) 1784 { 1785 u32 i; 1786 u32 reg; 1787 s32 status = IXGBE_ERR_EEPROM; 1788 1789 DEBUGFUNC("ixgbe_poll_eerd_eewr_done"); 1790 1791 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { 1792 if (ee_reg == IXGBE_NVM_POLL_READ) 1793 reg = IXGBE_READ_REG(hw, IXGBE_EERD); 1794 else 1795 reg = IXGBE_READ_REG(hw, IXGBE_EEWR); 1796 1797 if (reg & IXGBE_EEPROM_RW_REG_DONE) { 1798 status = IXGBE_SUCCESS; 1799 break; 1800 } 1801 usec_delay(5); 1802 } 1803 1804 if (i == IXGBE_EERD_EEWR_ATTEMPTS) 1805 ERROR_REPORT1(IXGBE_ERROR_POLLING, 1806 "EEPROM read/write done polling timed out"); 1807 1808 return status; 1809 } 1810 1811 /** 1812 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang 1813 * @hw: pointer to hardware structure 1814 * 1815 * Prepares EEPROM for access using bit-bang method. This function should 1816 * be called before issuing a command to the EEPROM. 1817 **/ 1818 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) 1819 { 1820 s32 status = IXGBE_SUCCESS; 1821 u32 eec; 1822 u32 i; 1823 1824 DEBUGFUNC("ixgbe_acquire_eeprom"); 1825 1826 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) 1827 != IXGBE_SUCCESS) 1828 status = IXGBE_ERR_SWFW_SYNC; 1829 1830 if (status == IXGBE_SUCCESS) { 1831 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1832 1833 /* Request EEPROM Access */ 1834 eec |= IXGBE_EEC_REQ; 1835 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1836 1837 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { 1838 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 1839 if (eec & IXGBE_EEC_GNT) 1840 break; 1841 usec_delay(5); 1842 } 1843 1844 /* Release if grant not acquired */ 1845 if (!(eec & IXGBE_EEC_GNT)) { 1846 eec &= ~IXGBE_EEC_REQ; 1847 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1848 DEBUGOUT("Could not acquire EEPROM grant\n"); 1849 1850 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1851 status = IXGBE_ERR_EEPROM; 1852 } 1853 1854 /* Setup EEPROM for Read/Write */ 1855 if (status == IXGBE_SUCCESS) { 1856 /* Clear CS and SK */ 1857 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); 1858 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 1859 IXGBE_WRITE_FLUSH(hw); 1860 usec_delay(1); 1861 } 1862 } 1863 return status; 1864 } 1865 1866 /** 1867 * ixgbe_get_eeprom_semaphore - Get hardware semaphore 1868 * @hw: pointer to hardware structure 1869 * 1870 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method 1871 **/ 1872 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) 1873 { 1874 s32 status = IXGBE_ERR_EEPROM; 1875 u32 timeout = 2000; 1876 u32 i; 1877 u32 swsm; 1878 1879 DEBUGFUNC("ixgbe_get_eeprom_semaphore"); 1880 1881 1882 /* Get SMBI software semaphore between device drivers first */ 1883 for (i = 0; i < timeout; i++) { 1884 /* 1885 * If the SMBI bit is 0 when we read it, then the bit will be 1886 * set and we have the semaphore 1887 */ 1888 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1889 if (!(swsm & IXGBE_SWSM_SMBI)) { 1890 status = IXGBE_SUCCESS; 1891 break; 1892 } 1893 usec_delay(50); 1894 } 1895 1896 if (i == timeout) { 1897 DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore " 1898 "not granted.\n"); 1899 /* 1900 * this release is particularly important because our attempts 1901 * above to get the semaphore may have succeeded, and if there 1902 * was a timeout, we should unconditionally clear the semaphore 1903 * bits to free the driver to make progress 1904 */ 1905 ixgbe_release_eeprom_semaphore(hw); 1906 1907 usec_delay(50); 1908 /* 1909 * one last try 1910 * If the SMBI bit is 0 when we read it, then the bit will be 1911 * set and we have the semaphore 1912 */ 1913 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1914 if (!(swsm & IXGBE_SWSM_SMBI)) 1915 status = IXGBE_SUCCESS; 1916 } 1917 1918 /* Now get the semaphore between SW/FW through the SWESMBI bit */ 1919 if (status == IXGBE_SUCCESS) { 1920 for (i = 0; i < timeout; i++) { 1921 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1922 1923 /* Set the SW EEPROM semaphore bit to request access */ 1924 swsm |= IXGBE_SWSM_SWESMBI; 1925 IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm); 1926 1927 /* 1928 * If we set the bit successfully then we got the 1929 * semaphore. 1930 */ 1931 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw)); 1932 if (swsm & IXGBE_SWSM_SWESMBI) 1933 break; 1934 1935 usec_delay(50); 1936 } 1937 1938 /* 1939 * Release semaphores and return error if SW EEPROM semaphore 1940 * was not granted because we don't have access to the EEPROM 1941 */ 1942 if (i >= timeout) { 1943 ERROR_REPORT1(IXGBE_ERROR_POLLING, 1944 "SWESMBI Software EEPROM semaphore not granted.\n"); 1945 ixgbe_release_eeprom_semaphore(hw); 1946 status = IXGBE_ERR_EEPROM; 1947 } 1948 } else { 1949 ERROR_REPORT1(IXGBE_ERROR_POLLING, 1950 "Software semaphore SMBI between device drivers " 1951 "not granted.\n"); 1952 } 1953 1954 return status; 1955 } 1956 1957 /** 1958 * ixgbe_release_eeprom_semaphore - Release hardware semaphore 1959 * @hw: pointer to hardware structure 1960 * 1961 * This function clears hardware semaphore bits. 1962 **/ 1963 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) 1964 { 1965 u32 swsm; 1966 1967 DEBUGFUNC("ixgbe_release_eeprom_semaphore"); 1968 1969 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM); 1970 1971 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ 1972 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); 1973 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm); 1974 IXGBE_WRITE_FLUSH(hw); 1975 } 1976 1977 /** 1978 * ixgbe_ready_eeprom - Polls for EEPROM ready 1979 * @hw: pointer to hardware structure 1980 **/ 1981 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) 1982 { 1983 s32 status = IXGBE_SUCCESS; 1984 u16 i; 1985 u8 spi_stat_reg; 1986 1987 DEBUGFUNC("ixgbe_ready_eeprom"); 1988 1989 /* 1990 * Read "Status Register" repeatedly until the LSB is cleared. The 1991 * EEPROM will signal that the command has been completed by clearing 1992 * bit 0 of the internal status register. If it's not cleared within 1993 * 5 milliseconds, then error out. 1994 */ 1995 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { 1996 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, 1997 IXGBE_EEPROM_OPCODE_BITS); 1998 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); 1999 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) 2000 break; 2001 2002 usec_delay(5); 2003 ixgbe_standby_eeprom(hw); 2004 } 2005 2006 /* 2007 * On some parts, SPI write time could vary from 0-20mSec on 3.3V 2008 * devices (and only 0-5mSec on 5V devices) 2009 */ 2010 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { 2011 DEBUGOUT("SPI EEPROM Status error\n"); 2012 status = IXGBE_ERR_EEPROM; 2013 } 2014 2015 return status; 2016 } 2017 2018 /** 2019 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state 2020 * @hw: pointer to hardware structure 2021 **/ 2022 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) 2023 { 2024 u32 eec; 2025 2026 DEBUGFUNC("ixgbe_standby_eeprom"); 2027 2028 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2029 2030 /* Toggle CS to flush commands */ 2031 eec |= IXGBE_EEC_CS; 2032 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2033 IXGBE_WRITE_FLUSH(hw); 2034 usec_delay(1); 2035 eec &= ~IXGBE_EEC_CS; 2036 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2037 IXGBE_WRITE_FLUSH(hw); 2038 usec_delay(1); 2039 } 2040 2041 /** 2042 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. 2043 * @hw: pointer to hardware structure 2044 * @data: data to send to the EEPROM 2045 * @count: number of bits to shift out 2046 **/ 2047 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 2048 u16 count) 2049 { 2050 u32 eec; 2051 u32 mask; 2052 u32 i; 2053 2054 DEBUGFUNC("ixgbe_shift_out_eeprom_bits"); 2055 2056 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2057 2058 /* 2059 * Mask is used to shift "count" bits of "data" out to the EEPROM 2060 * one bit at a time. Determine the starting bit based on count 2061 */ 2062 mask = 0x01 << (count - 1); 2063 2064 for (i = 0; i < count; i++) { 2065 /* 2066 * A "1" is shifted out to the EEPROM by setting bit "DI" to a 2067 * "1", and then raising and then lowering the clock (the SK 2068 * bit controls the clock input to the EEPROM). A "0" is 2069 * shifted out to the EEPROM by setting "DI" to "0" and then 2070 * raising and then lowering the clock. 2071 */ 2072 if (data & mask) 2073 eec |= IXGBE_EEC_DI; 2074 else 2075 eec &= ~IXGBE_EEC_DI; 2076 2077 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2078 IXGBE_WRITE_FLUSH(hw); 2079 2080 usec_delay(1); 2081 2082 ixgbe_raise_eeprom_clk(hw, &eec); 2083 ixgbe_lower_eeprom_clk(hw, &eec); 2084 2085 /* 2086 * Shift mask to signify next bit of data to shift in to the 2087 * EEPROM 2088 */ 2089 mask = mask >> 1; 2090 } 2091 2092 /* We leave the "DI" bit set to "0" when we leave this routine. */ 2093 eec &= ~IXGBE_EEC_DI; 2094 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2095 IXGBE_WRITE_FLUSH(hw); 2096 } 2097 2098 /** 2099 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM 2100 * @hw: pointer to hardware structure 2101 * @count: number of bits to shift 2102 **/ 2103 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) 2104 { 2105 u32 eec; 2106 u32 i; 2107 u16 data = 0; 2108 2109 DEBUGFUNC("ixgbe_shift_in_eeprom_bits"); 2110 2111 /* 2112 * In order to read a register from the EEPROM, we need to shift 2113 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising 2114 * the clock input to the EEPROM (setting the SK bit), and then reading 2115 * the value of the "DO" bit. During this "shifting in" process the 2116 * "DI" bit should always be clear. 2117 */ 2118 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2119 2120 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); 2121 2122 for (i = 0; i < count; i++) { 2123 data = data << 1; 2124 ixgbe_raise_eeprom_clk(hw, &eec); 2125 2126 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2127 2128 eec &= ~(IXGBE_EEC_DI); 2129 if (eec & IXGBE_EEC_DO) 2130 data |= 1; 2131 2132 ixgbe_lower_eeprom_clk(hw, &eec); 2133 } 2134 2135 return data; 2136 } 2137 2138 /** 2139 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. 2140 * @hw: pointer to hardware structure 2141 * @eec: EEC register's current value 2142 **/ 2143 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 2144 { 2145 DEBUGFUNC("ixgbe_raise_eeprom_clk"); 2146 2147 /* 2148 * Raise the clock input to the EEPROM 2149 * (setting the SK bit), then delay 2150 */ 2151 *eec = *eec | IXGBE_EEC_SK; 2152 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec); 2153 IXGBE_WRITE_FLUSH(hw); 2154 usec_delay(1); 2155 } 2156 2157 /** 2158 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. 2159 * @hw: pointer to hardware structure 2160 * @eec: EEC's current value 2161 **/ 2162 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 2163 { 2164 DEBUGFUNC("ixgbe_lower_eeprom_clk"); 2165 2166 /* 2167 * Lower the clock input to the EEPROM (clearing the SK bit), then 2168 * delay 2169 */ 2170 *eec = *eec & ~IXGBE_EEC_SK; 2171 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec); 2172 IXGBE_WRITE_FLUSH(hw); 2173 usec_delay(1); 2174 } 2175 2176 /** 2177 * ixgbe_release_eeprom - Release EEPROM, release semaphores 2178 * @hw: pointer to hardware structure 2179 **/ 2180 static void ixgbe_release_eeprom(struct ixgbe_hw *hw) 2181 { 2182 u32 eec; 2183 2184 DEBUGFUNC("ixgbe_release_eeprom"); 2185 2186 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw)); 2187 2188 eec |= IXGBE_EEC_CS; /* Pull CS high */ 2189 eec &= ~IXGBE_EEC_SK; /* Lower SCK */ 2190 2191 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2192 IXGBE_WRITE_FLUSH(hw); 2193 2194 usec_delay(1); 2195 2196 /* Stop requesting EEPROM access */ 2197 eec &= ~IXGBE_EEC_REQ; 2198 IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec); 2199 2200 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 2201 2202 /* Delay before attempt to obtain semaphore again to allow FW access */ 2203 msec_delay(hw->eeprom.semaphore_delay); 2204 } 2205 2206 /** 2207 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum 2208 * @hw: pointer to hardware structure 2209 * 2210 * Returns a negative error code on error, or the 16-bit checksum 2211 **/ 2212 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) 2213 { 2214 u16 i; 2215 u16 j; 2216 u16 checksum = 0; 2217 u16 length = 0; 2218 u16 pointer = 0; 2219 u16 word = 0; 2220 2221 DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic"); 2222 2223 /* Include 0x0-0x3F in the checksum */ 2224 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { 2225 if (hw->eeprom.ops.read(hw, i, &word)) { 2226 DEBUGOUT("EEPROM read failed\n"); 2227 return IXGBE_ERR_EEPROM; 2228 } 2229 checksum += word; 2230 } 2231 2232 /* Include all data from pointers except for the fw pointer */ 2233 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { 2234 if (hw->eeprom.ops.read(hw, i, &pointer)) { 2235 DEBUGOUT("EEPROM read failed\n"); 2236 return IXGBE_ERR_EEPROM; 2237 } 2238 2239 /* If the pointer seems invalid */ 2240 if (pointer == 0xFFFF || pointer == 0) 2241 continue; 2242 2243 if (hw->eeprom.ops.read(hw, pointer, &length)) { 2244 DEBUGOUT("EEPROM read failed\n"); 2245 return IXGBE_ERR_EEPROM; 2246 } 2247 2248 if (length == 0xFFFF || length == 0) 2249 continue; 2250 2251 for (j = pointer + 1; j <= pointer + length; j++) { 2252 if (hw->eeprom.ops.read(hw, j, &word)) { 2253 DEBUGOUT("EEPROM read failed\n"); 2254 return IXGBE_ERR_EEPROM; 2255 } 2256 checksum += word; 2257 } 2258 } 2259 2260 checksum = (u16)IXGBE_EEPROM_SUM - checksum; 2261 2262 return (s32)checksum; 2263 } 2264 2265 /** 2266 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum 2267 * @hw: pointer to hardware structure 2268 * @checksum_val: calculated checksum 2269 * 2270 * Performs checksum calculation and validates the EEPROM checksum. If the 2271 * caller does not need checksum_val, the value can be NULL. 2272 **/ 2273 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, 2274 u16 *checksum_val) 2275 { 2276 s32 status; 2277 u16 checksum; 2278 u16 read_checksum = 0; 2279 2280 DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic"); 2281 2282 /* Read the first word from the EEPROM. If this times out or fails, do 2283 * not continue or we could be in for a very long wait while every 2284 * EEPROM read fails 2285 */ 2286 status = hw->eeprom.ops.read(hw, 0, &checksum); 2287 if (status) { 2288 DEBUGOUT("EEPROM read failed\n"); 2289 return status; 2290 } 2291 2292 status = hw->eeprom.ops.calc_checksum(hw); 2293 if (status < 0) 2294 return status; 2295 2296 checksum = (u16)(status & 0xffff); 2297 2298 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); 2299 if (status) { 2300 DEBUGOUT("EEPROM read failed\n"); 2301 return status; 2302 } 2303 2304 /* Verify read checksum from EEPROM is the same as 2305 * calculated checksum 2306 */ 2307 if (read_checksum != checksum) 2308 status = IXGBE_ERR_EEPROM_CHECKSUM; 2309 2310 /* If the user cares, return the calculated checksum */ 2311 if (checksum_val) 2312 *checksum_val = checksum; 2313 2314 return status; 2315 } 2316 2317 /** 2318 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum 2319 * @hw: pointer to hardware structure 2320 **/ 2321 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) 2322 { 2323 s32 status; 2324 u16 checksum; 2325 2326 DEBUGFUNC("ixgbe_update_eeprom_checksum_generic"); 2327 2328 /* Read the first word from the EEPROM. If this times out or fails, do 2329 * not continue or we could be in for a very long wait while every 2330 * EEPROM read fails 2331 */ 2332 status = hw->eeprom.ops.read(hw, 0, &checksum); 2333 if (status) { 2334 DEBUGOUT("EEPROM read failed\n"); 2335 return status; 2336 } 2337 2338 status = hw->eeprom.ops.calc_checksum(hw); 2339 if (status < 0) 2340 return status; 2341 2342 checksum = (u16)(status & 0xffff); 2343 2344 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum); 2345 2346 return status; 2347 } 2348 2349 /** 2350 * ixgbe_validate_mac_addr - Validate MAC address 2351 * @mac_addr: pointer to MAC address. 2352 * 2353 * Tests a MAC address to ensure it is a valid Individual Address. 2354 **/ 2355 s32 ixgbe_validate_mac_addr(u8 *mac_addr) 2356 { 2357 s32 status = IXGBE_SUCCESS; 2358 2359 DEBUGFUNC("ixgbe_validate_mac_addr"); 2360 2361 /* Make sure it is not a multicast address */ 2362 if (IXGBE_IS_MULTICAST(mac_addr)) { 2363 status = IXGBE_ERR_INVALID_MAC_ADDR; 2364 /* Not a broadcast address */ 2365 } else if (IXGBE_IS_BROADCAST(mac_addr)) { 2366 status = IXGBE_ERR_INVALID_MAC_ADDR; 2367 /* Reject the zero address */ 2368 } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 && 2369 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) { 2370 status = IXGBE_ERR_INVALID_MAC_ADDR; 2371 } 2372 return status; 2373 } 2374 2375 /** 2376 * ixgbe_set_rar_generic - Set Rx address register 2377 * @hw: pointer to hardware structure 2378 * @index: Receive address register to write 2379 * @addr: Address to put into receive address register 2380 * @vmdq: VMDq "set" or "pool" index 2381 * @enable_addr: set flag that address is active 2382 * 2383 * Puts an ethernet address into a receive address register. 2384 **/ 2385 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, 2386 u32 enable_addr) 2387 { 2388 u32 rar_low, rar_high; 2389 u32 rar_entries = hw->mac.num_rar_entries; 2390 2391 DEBUGFUNC("ixgbe_set_rar_generic"); 2392 2393 /* Make sure we are using a valid rar index range */ 2394 if (index >= rar_entries) { 2395 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 2396 "RAR index %d is out of range.\n", index); 2397 return IXGBE_ERR_INVALID_ARGUMENT; 2398 } 2399 2400 /* setup VMDq pool selection before this RAR gets enabled */ 2401 hw->mac.ops.set_vmdq(hw, index, vmdq); 2402 2403 /* 2404 * HW expects these in little endian so we reverse the byte 2405 * order from network order (big endian) to little endian 2406 */ 2407 rar_low = ((u32)addr[0] | 2408 ((u32)addr[1] << 8) | 2409 ((u32)addr[2] << 16) | 2410 ((u32)addr[3] << 24)); 2411 /* 2412 * Some parts put the VMDq setting in the extra RAH bits, 2413 * so save everything except the lower 16 bits that hold part 2414 * of the address and the address valid bit. 2415 */ 2416 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2417 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2418 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); 2419 2420 if (enable_addr != 0) 2421 rar_high |= IXGBE_RAH_AV; 2422 2423 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); 2424 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2425 2426 return IXGBE_SUCCESS; 2427 } 2428 2429 /** 2430 * ixgbe_clear_rar_generic - Remove Rx address register 2431 * @hw: pointer to hardware structure 2432 * @index: Receive address register to write 2433 * 2434 * Clears an ethernet address from a receive address register. 2435 **/ 2436 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) 2437 { 2438 u32 rar_high; 2439 u32 rar_entries = hw->mac.num_rar_entries; 2440 2441 DEBUGFUNC("ixgbe_clear_rar_generic"); 2442 2443 /* Make sure we are using a valid rar index range */ 2444 if (index >= rar_entries) { 2445 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 2446 "RAR index %d is out of range.\n", index); 2447 return IXGBE_ERR_INVALID_ARGUMENT; 2448 } 2449 2450 /* 2451 * Some parts put the VMDq setting in the extra RAH bits, 2452 * so save everything except the lower 16 bits that hold part 2453 * of the address and the address valid bit. 2454 */ 2455 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 2456 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 2457 2458 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); 2459 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 2460 2461 /* clear VMDq pool/queue selection for this RAR */ 2462 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); 2463 2464 return IXGBE_SUCCESS; 2465 } 2466 2467 /** 2468 * ixgbe_init_rx_addrs_generic - Initializes receive address filters. 2469 * @hw: pointer to hardware structure 2470 * 2471 * Places the MAC address in receive address register 0 and clears the rest 2472 * of the receive address registers. Clears the multicast table. Assumes 2473 * the receiver is in reset when the routine is called. 2474 **/ 2475 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) 2476 { 2477 u32 i; 2478 u32 rar_entries = hw->mac.num_rar_entries; 2479 2480 DEBUGFUNC("ixgbe_init_rx_addrs_generic"); 2481 2482 /* 2483 * If the current mac address is valid, assume it is a software override 2484 * to the permanent address. 2485 * Otherwise, use the permanent address from the eeprom. 2486 */ 2487 if (ixgbe_validate_mac_addr(hw->mac.addr) == 2488 IXGBE_ERR_INVALID_MAC_ADDR) { 2489 /* Get the MAC address from the RAR0 for later reference */ 2490 hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2491 2492 DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ", 2493 hw->mac.addr[0], hw->mac.addr[1], 2494 hw->mac.addr[2]); 2495 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2496 hw->mac.addr[4], hw->mac.addr[5]); 2497 } else { 2498 /* Setup the receive address. */ 2499 DEBUGOUT("Overriding MAC Address in RAR[0]\n"); 2500 DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ", 2501 hw->mac.addr[0], hw->mac.addr[1], 2502 hw->mac.addr[2]); 2503 DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3], 2504 hw->mac.addr[4], hw->mac.addr[5]); 2505 2506 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); 2507 } 2508 2509 /* clear VMDq pool/queue selection for RAR 0 */ 2510 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); 2511 2512 hw->addr_ctrl.overflow_promisc = 0; 2513 2514 hw->addr_ctrl.rar_used_count = 1; 2515 2516 /* Zero out the other receive addresses. */ 2517 DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1); 2518 for (i = 1; i < rar_entries; i++) { 2519 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); 2520 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); 2521 } 2522 2523 /* Clear the MTA */ 2524 hw->addr_ctrl.mta_in_use = 0; 2525 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2526 2527 DEBUGOUT(" Clearing MTA\n"); 2528 for (i = 0; i < hw->mac.mcft_size; i++) 2529 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 2530 2531 ixgbe_init_uta_tables(hw); 2532 2533 return IXGBE_SUCCESS; 2534 } 2535 2536 /** 2537 * ixgbe_add_uc_addr - Adds a secondary unicast address. 2538 * @hw: pointer to hardware structure 2539 * @addr: new address 2540 * @vmdq: VMDq "set" or "pool" index 2541 * 2542 * Adds it to unused receive address register or goes into promiscuous mode. 2543 **/ 2544 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 2545 { 2546 u32 rar_entries = hw->mac.num_rar_entries; 2547 u32 rar; 2548 2549 DEBUGFUNC("ixgbe_add_uc_addr"); 2550 2551 DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n", 2552 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]); 2553 2554 /* 2555 * Place this address in the RAR if there is room, 2556 * else put the controller into promiscuous mode 2557 */ 2558 if (hw->addr_ctrl.rar_used_count < rar_entries) { 2559 rar = hw->addr_ctrl.rar_used_count; 2560 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 2561 DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar); 2562 hw->addr_ctrl.rar_used_count++; 2563 } else { 2564 hw->addr_ctrl.overflow_promisc++; 2565 } 2566 2567 DEBUGOUT("ixgbe_add_uc_addr Complete\n"); 2568 } 2569 2570 /** 2571 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses 2572 * @hw: pointer to hardware structure 2573 * @addr_list: the list of new addresses 2574 * @addr_count: number of addresses 2575 * @next: iterator function to walk the address list 2576 * 2577 * The given list replaces any existing list. Clears the secondary addrs from 2578 * receive address registers. Uses unused receive address registers for the 2579 * first secondary addresses, and falls back to promiscuous mode as needed. 2580 * 2581 * Drivers using secondary unicast addresses must set user_set_promisc when 2582 * manually putting the device into promiscuous mode. 2583 **/ 2584 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list, 2585 u32 addr_count, ixgbe_mc_addr_itr next) 2586 { 2587 u8 *addr; 2588 u32 i; 2589 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc; 2590 u32 uc_addr_in_use; 2591 u32 fctrl; 2592 u32 vmdq; 2593 2594 DEBUGFUNC("ixgbe_update_uc_addr_list_generic"); 2595 2596 /* 2597 * Clear accounting of old secondary address list, 2598 * don't count RAR[0] 2599 */ 2600 uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1; 2601 hw->addr_ctrl.rar_used_count -= uc_addr_in_use; 2602 hw->addr_ctrl.overflow_promisc = 0; 2603 2604 /* Zero out the other receive addresses */ 2605 DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1); 2606 for (i = 0; i < uc_addr_in_use; i++) { 2607 IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0); 2608 IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0); 2609 } 2610 2611 /* Add the new addresses */ 2612 for (i = 0; i < addr_count; i++) { 2613 DEBUGOUT(" Adding the secondary addresses:\n"); 2614 addr = next(hw, &addr_list, &vmdq); 2615 ixgbe_add_uc_addr(hw, addr, vmdq); 2616 } 2617 2618 if (hw->addr_ctrl.overflow_promisc) { 2619 /* enable promisc if not already in overflow or set by user */ 2620 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2621 DEBUGOUT(" Entering address overflow promisc mode\n"); 2622 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2623 fctrl |= IXGBE_FCTRL_UPE; 2624 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2625 } 2626 } else { 2627 /* only disable if set by overflow, not by user */ 2628 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) { 2629 DEBUGOUT(" Leaving address overflow promisc mode\n"); 2630 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL); 2631 fctrl &= ~IXGBE_FCTRL_UPE; 2632 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl); 2633 } 2634 } 2635 2636 DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n"); 2637 return IXGBE_SUCCESS; 2638 } 2639 2640 /** 2641 * ixgbe_mta_vector - Determines bit-vector in multicast table to set 2642 * @hw: pointer to hardware structure 2643 * @mc_addr: the multicast address 2644 * 2645 * Extracts the 12 bits, from a multicast address, to determine which 2646 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 2647 * incoming rx multicast addresses, to determine the bit-vector to check in 2648 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 2649 * by the MO field of the MCSTCTRL. The MO field is set during initialization 2650 * to mc_filter_type. 2651 **/ 2652 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) 2653 { 2654 u32 vector = 0; 2655 2656 DEBUGFUNC("ixgbe_mta_vector"); 2657 2658 switch (hw->mac.mc_filter_type) { 2659 case 0: /* use bits [47:36] of the address */ 2660 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 2661 break; 2662 case 1: /* use bits [46:35] of the address */ 2663 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 2664 break; 2665 case 2: /* use bits [45:34] of the address */ 2666 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 2667 break; 2668 case 3: /* use bits [43:32] of the address */ 2669 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 2670 break; 2671 default: /* Invalid mc_filter_type */ 2672 DEBUGOUT("MC filter type param set incorrectly\n"); 2673 ASSERT(0); 2674 break; 2675 } 2676 2677 /* vector can only be 12-bits or boundary will be exceeded */ 2678 vector &= 0xFFF; 2679 return vector; 2680 } 2681 2682 /** 2683 * ixgbe_set_mta - Set bit-vector in multicast table 2684 * @hw: pointer to hardware structure 2685 * @mc_addr: Multicast address 2686 * 2687 * Sets the bit-vector in the multicast table. 2688 **/ 2689 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) 2690 { 2691 u32 vector; 2692 u32 vector_bit; 2693 u32 vector_reg; 2694 2695 DEBUGFUNC("ixgbe_set_mta"); 2696 2697 hw->addr_ctrl.mta_in_use++; 2698 2699 vector = ixgbe_mta_vector(hw, mc_addr); 2700 DEBUGOUT1(" bit-vector = 0x%03X\n", vector); 2701 2702 /* 2703 * The MTA is a register array of 128 32-bit registers. It is treated 2704 * like an array of 4096 bits. We want to set bit 2705 * BitArray[vector_value]. So we figure out what register the bit is 2706 * in, read it, OR in the new bit, then write back the new value. The 2707 * register is determined by the upper 7 bits of the vector value and 2708 * the bit within that register are determined by the lower 5 bits of 2709 * the value. 2710 */ 2711 vector_reg = (vector >> 5) & 0x7F; 2712 vector_bit = vector & 0x1F; 2713 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 2714 } 2715 2716 /** 2717 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 2718 * @hw: pointer to hardware structure 2719 * @mc_addr_list: the list of new multicast addresses 2720 * @mc_addr_count: number of addresses 2721 * @next: iterator function to walk the multicast address list 2722 * @clear: flag, when set clears the table beforehand 2723 * 2724 * When the clear flag is set, the given list replaces any existing list. 2725 * Hashes the given addresses into the multicast table. 2726 **/ 2727 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list, 2728 u32 mc_addr_count, ixgbe_mc_addr_itr next, 2729 bool clear) 2730 { 2731 u32 i; 2732 u32 vmdq; 2733 2734 DEBUGFUNC("ixgbe_update_mc_addr_list_generic"); 2735 2736 /* 2737 * Set the new number of MC addresses that we are being requested to 2738 * use. 2739 */ 2740 hw->addr_ctrl.num_mc_addrs = mc_addr_count; 2741 hw->addr_ctrl.mta_in_use = 0; 2742 2743 /* Clear mta_shadow */ 2744 if (clear) { 2745 DEBUGOUT(" Clearing MTA\n"); 2746 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 2747 } 2748 2749 /* Update mta_shadow */ 2750 for (i = 0; i < mc_addr_count; i++) { 2751 DEBUGOUT(" Adding the multicast addresses:\n"); 2752 ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq)); 2753 } 2754 2755 /* Enable mta */ 2756 for (i = 0; i < hw->mac.mcft_size; i++) 2757 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, 2758 hw->mac.mta_shadow[i]); 2759 2760 if (hw->addr_ctrl.mta_in_use > 0) 2761 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, 2762 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); 2763 2764 DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n"); 2765 return IXGBE_SUCCESS; 2766 } 2767 2768 /** 2769 * ixgbe_enable_mc_generic - Enable multicast address in RAR 2770 * @hw: pointer to hardware structure 2771 * 2772 * Enables multicast address in RAR and the use of the multicast hash table. 2773 **/ 2774 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) 2775 { 2776 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2777 2778 DEBUGFUNC("ixgbe_enable_mc_generic"); 2779 2780 if (a->mta_in_use > 0) 2781 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | 2782 hw->mac.mc_filter_type); 2783 2784 return IXGBE_SUCCESS; 2785 } 2786 2787 /** 2788 * ixgbe_disable_mc_generic - Disable multicast address in RAR 2789 * @hw: pointer to hardware structure 2790 * 2791 * Disables multicast address in RAR and the use of the multicast hash table. 2792 **/ 2793 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) 2794 { 2795 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2796 2797 DEBUGFUNC("ixgbe_disable_mc_generic"); 2798 2799 if (a->mta_in_use > 0) 2800 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2801 2802 return IXGBE_SUCCESS; 2803 } 2804 2805 /** 2806 * ixgbe_fc_enable_generic - Enable flow control 2807 * @hw: pointer to hardware structure 2808 * 2809 * Enable flow control according to the current settings. 2810 **/ 2811 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) 2812 { 2813 s32 ret_val = IXGBE_SUCCESS; 2814 u32 mflcn_reg, fccfg_reg; 2815 u32 reg; 2816 u32 fcrtl, fcrth; 2817 int i; 2818 2819 DEBUGFUNC("ixgbe_fc_enable_generic"); 2820 2821 /* Validate the water mark configuration */ 2822 if (!hw->fc.pause_time) { 2823 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2824 goto out; 2825 } 2826 2827 /* Low water mark of zero causes XOFF floods */ 2828 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2829 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2830 hw->fc.high_water[i]) { 2831 if (!hw->fc.low_water[i] || 2832 hw->fc.low_water[i] >= hw->fc.high_water[i]) { 2833 DEBUGOUT("Invalid water mark configuration\n"); 2834 ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS; 2835 goto out; 2836 } 2837 } 2838 } 2839 2840 /* Negotiate the fc mode to use */ 2841 hw->mac.ops.fc_autoneg(hw); 2842 2843 /* Disable any previous flow control settings */ 2844 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); 2845 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); 2846 2847 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); 2848 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); 2849 2850 /* 2851 * The possible values of fc.current_mode are: 2852 * 0: Flow control is completely disabled 2853 * 1: Rx flow control is enabled (we can receive pause frames, 2854 * but not send pause frames). 2855 * 2: Tx flow control is enabled (we can send pause frames but 2856 * we do not support receiving pause frames). 2857 * 3: Both Rx and Tx flow control (symmetric) are enabled. 2858 * other: Invalid. 2859 */ 2860 switch (hw->fc.current_mode) { 2861 case ixgbe_fc_none: 2862 /* 2863 * Flow control is disabled by software override or autoneg. 2864 * The code below will actually disable it in the HW. 2865 */ 2866 break; 2867 case ixgbe_fc_rx_pause: 2868 /* 2869 * Rx Flow control is enabled and Tx Flow control is 2870 * disabled by software override. Since there really 2871 * isn't a way to advertise that we are capable of RX 2872 * Pause ONLY, we will advertise that we support both 2873 * symmetric and asymmetric Rx PAUSE. Later, we will 2874 * disable the adapter's ability to send PAUSE frames. 2875 */ 2876 mflcn_reg |= IXGBE_MFLCN_RFCE; 2877 break; 2878 case ixgbe_fc_tx_pause: 2879 /* 2880 * Tx Flow control is enabled, and Rx Flow control is 2881 * disabled by software override. 2882 */ 2883 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2884 break; 2885 case ixgbe_fc_full: 2886 /* Flow control (both Rx and Tx) is enabled by SW override. */ 2887 mflcn_reg |= IXGBE_MFLCN_RFCE; 2888 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2889 break; 2890 default: 2891 ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, 2892 "Flow control param set incorrectly\n"); 2893 ret_val = IXGBE_ERR_CONFIG; 2894 goto out; 2895 break; 2896 } 2897 2898 /* Set 802.3x based flow control settings. */ 2899 mflcn_reg |= IXGBE_MFLCN_DPF; 2900 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); 2901 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); 2902 2903 2904 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2905 for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) { 2906 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2907 hw->fc.high_water[i]) { 2908 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE; 2909 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); 2910 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; 2911 } else { 2912 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); 2913 /* 2914 * In order to prevent Tx hangs when the internal Tx 2915 * switch is enabled we must set the high water mark 2916 * to the Rx packet buffer size - 24KB. This allows 2917 * the Tx switch to function even under heavy Rx 2918 * workloads. 2919 */ 2920 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576; 2921 } 2922 2923 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); 2924 } 2925 2926 /* Configure pause time (2 TCs per register) */ 2927 reg = hw->fc.pause_time * 0x00010001; 2928 for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++) 2929 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); 2930 2931 /* Configure flow control refresh threshold value */ 2932 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); 2933 2934 out: 2935 return ret_val; 2936 } 2937 2938 /** 2939 * ixgbe_negotiate_fc - Negotiate flow control 2940 * @hw: pointer to hardware structure 2941 * @adv_reg: flow control advertised settings 2942 * @lp_reg: link partner's flow control settings 2943 * @adv_sym: symmetric pause bit in advertisement 2944 * @adv_asm: asymmetric pause bit in advertisement 2945 * @lp_sym: symmetric pause bit in link partner advertisement 2946 * @lp_asm: asymmetric pause bit in link partner advertisement 2947 * 2948 * Find the intersection between advertised settings and link partner's 2949 * advertised settings 2950 **/ 2951 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, 2952 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) 2953 { 2954 if ((!(adv_reg)) || (!(lp_reg))) { 2955 ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED, 2956 "Local or link partner's advertised flow control " 2957 "settings are NULL. Local: %x, link partner: %x\n", 2958 adv_reg, lp_reg); 2959 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2960 } 2961 2962 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { 2963 /* 2964 * Now we need to check if the user selected Rx ONLY 2965 * of pause frames. In this case, we had to advertise 2966 * FULL flow control because we could not advertise RX 2967 * ONLY. Hence, we must now check to see if we need to 2968 * turn OFF the TRANSMISSION of PAUSE frames. 2969 */ 2970 if (hw->fc.requested_mode == ixgbe_fc_full) { 2971 hw->fc.current_mode = ixgbe_fc_full; 2972 DEBUGOUT("Flow Control = FULL.\n"); 2973 } else { 2974 hw->fc.current_mode = ixgbe_fc_rx_pause; 2975 DEBUGOUT("Flow Control=RX PAUSE frames only\n"); 2976 } 2977 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && 2978 (lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2979 hw->fc.current_mode = ixgbe_fc_tx_pause; 2980 DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); 2981 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && 2982 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2983 hw->fc.current_mode = ixgbe_fc_rx_pause; 2984 DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); 2985 } else { 2986 hw->fc.current_mode = ixgbe_fc_none; 2987 DEBUGOUT("Flow Control = NONE.\n"); 2988 } 2989 return IXGBE_SUCCESS; 2990 } 2991 2992 /** 2993 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber 2994 * @hw: pointer to hardware structure 2995 * 2996 * Enable flow control according on 1 gig fiber. 2997 **/ 2998 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) 2999 { 3000 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; 3001 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3002 3003 /* 3004 * On multispeed fiber at 1g, bail out if 3005 * - link is up but AN did not complete, or if 3006 * - link is up and AN completed but timed out 3007 */ 3008 3009 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); 3010 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || 3011 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) { 3012 DEBUGOUT("Auto-Negotiation did not complete or timed out\n"); 3013 goto out; 3014 } 3015 3016 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 3017 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); 3018 3019 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, 3020 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, 3021 IXGBE_PCS1GANA_ASM_PAUSE, 3022 IXGBE_PCS1GANA_SYM_PAUSE, 3023 IXGBE_PCS1GANA_ASM_PAUSE); 3024 3025 out: 3026 return ret_val; 3027 } 3028 3029 /** 3030 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 3031 * @hw: pointer to hardware structure 3032 * 3033 * Enable flow control according to IEEE clause 37. 3034 **/ 3035 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) 3036 { 3037 u32 links2, anlp1_reg, autoc_reg, links; 3038 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3039 3040 /* 3041 * On backplane, bail out if 3042 * - backplane autoneg was not completed, or if 3043 * - we are 82599 and link partner is not AN enabled 3044 */ 3045 links = IXGBE_READ_REG(hw, IXGBE_LINKS); 3046 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) { 3047 DEBUGOUT("Auto-Negotiation did not complete\n"); 3048 goto out; 3049 } 3050 3051 if (hw->mac.type == ixgbe_mac_82599EB) { 3052 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); 3053 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) { 3054 DEBUGOUT("Link partner is not AN enabled\n"); 3055 goto out; 3056 } 3057 } 3058 /* 3059 * Read the 10g AN autoc and LP ability registers and resolve 3060 * local flow control settings accordingly 3061 */ 3062 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3063 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); 3064 3065 ret_val = ixgbe_negotiate_fc(hw, autoc_reg, 3066 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, 3067 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); 3068 3069 out: 3070 return ret_val; 3071 } 3072 3073 /** 3074 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 3075 * @hw: pointer to hardware structure 3076 * 3077 * Enable flow control according to IEEE clause 37. 3078 **/ 3079 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) 3080 { 3081 u16 technology_ability_reg = 0; 3082 u16 lp_technology_ability_reg = 0; 3083 3084 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT, 3085 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 3086 &technology_ability_reg); 3087 hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP, 3088 IXGBE_MDIO_AUTO_NEG_DEV_TYPE, 3089 &lp_technology_ability_reg); 3090 3091 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, 3092 (u32)lp_technology_ability_reg, 3093 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, 3094 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); 3095 } 3096 3097 /** 3098 * ixgbe_fc_autoneg - Configure flow control 3099 * @hw: pointer to hardware structure 3100 * 3101 * Compares our advertised flow control capabilities to those advertised by 3102 * our link partner, and determines the proper flow control mode to use. 3103 **/ 3104 void ixgbe_fc_autoneg(struct ixgbe_hw *hw) 3105 { 3106 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 3107 ixgbe_link_speed speed; 3108 bool link_up; 3109 3110 DEBUGFUNC("ixgbe_fc_autoneg"); 3111 3112 /* 3113 * AN should have completed when the cable was plugged in. 3114 * Look for reasons to bail out. Bail out if: 3115 * - FC autoneg is disabled, or if 3116 * - link is not up. 3117 */ 3118 if (hw->fc.disable_fc_autoneg) { 3119 /* TODO: This should be just an informative log */ 3120 ERROR_REPORT1(IXGBE_ERROR_CAUTION, 3121 "Flow control autoneg is disabled"); 3122 goto out; 3123 } 3124 3125 hw->mac.ops.check_link(hw, &speed, &link_up, false); 3126 if (!link_up) { 3127 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down"); 3128 goto out; 3129 } 3130 3131 switch (hw->phy.media_type) { 3132 /* Autoneg flow control on fiber adapters */ 3133 case ixgbe_media_type_fiber_fixed: 3134 case ixgbe_media_type_fiber_qsfp: 3135 case ixgbe_media_type_fiber: 3136 if (speed == IXGBE_LINK_SPEED_1GB_FULL) 3137 ret_val = ixgbe_fc_autoneg_fiber(hw); 3138 break; 3139 3140 /* Autoneg flow control on backplane adapters */ 3141 case ixgbe_media_type_backplane: 3142 ret_val = ixgbe_fc_autoneg_backplane(hw); 3143 break; 3144 3145 /* Autoneg flow control on copper adapters */ 3146 case ixgbe_media_type_copper: 3147 if (ixgbe_device_supports_autoneg_fc(hw)) 3148 ret_val = ixgbe_fc_autoneg_copper(hw); 3149 break; 3150 3151 default: 3152 break; 3153 } 3154 3155 out: 3156 if (ret_val == IXGBE_SUCCESS) { 3157 hw->fc.fc_was_autonegged = true; 3158 } else { 3159 hw->fc.fc_was_autonegged = false; 3160 hw->fc.current_mode = hw->fc.requested_mode; 3161 } 3162 } 3163 3164 /* 3165 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion 3166 * @hw: pointer to hardware structure 3167 * 3168 * System-wide timeout range is encoded in PCIe Device Control2 register. 3169 * 3170 * Add 10% to specified maximum and return the number of times to poll for 3171 * completion timeout, in units of 100 microsec. Never return less than 3172 * 800 = 80 millisec. 3173 */ 3174 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw) 3175 { 3176 s16 devctl2; 3177 u32 pollcnt; 3178 3179 devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2); 3180 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK; 3181 3182 switch (devctl2) { 3183 case IXGBE_PCIDEVCTRL2_65_130ms: 3184 pollcnt = 1300; /* 130 millisec */ 3185 break; 3186 case IXGBE_PCIDEVCTRL2_260_520ms: 3187 pollcnt = 5200; /* 520 millisec */ 3188 break; 3189 case IXGBE_PCIDEVCTRL2_1_2s: 3190 pollcnt = 20000; /* 2 sec */ 3191 break; 3192 case IXGBE_PCIDEVCTRL2_4_8s: 3193 pollcnt = 80000; /* 8 sec */ 3194 break; 3195 case IXGBE_PCIDEVCTRL2_17_34s: 3196 pollcnt = 34000; /* 34 sec */ 3197 break; 3198 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */ 3199 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */ 3200 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */ 3201 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */ 3202 default: 3203 pollcnt = 800; /* 80 millisec minimum */ 3204 break; 3205 } 3206 3207 /* add 10% to spec maximum */ 3208 return (pollcnt * 11) / 10; 3209 } 3210 3211 /** 3212 * ixgbe_disable_pcie_master - Disable PCI-express master access 3213 * @hw: pointer to hardware structure 3214 * 3215 * Disables PCI-Express master access and verifies there are no pending 3216 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable 3217 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS 3218 * is returned signifying master requests disabled. 3219 **/ 3220 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) 3221 { 3222 s32 status = IXGBE_SUCCESS; 3223 u32 i, poll; 3224 u16 value; 3225 3226 DEBUGFUNC("ixgbe_disable_pcie_master"); 3227 3228 /* Always set this bit to ensure any future transactions are blocked */ 3229 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); 3230 3231 /* Exit if master requests are blocked */ 3232 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) || 3233 IXGBE_REMOVED(hw->hw_addr)) 3234 goto out; 3235 3236 /* Poll for master request bit to clear */ 3237 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 3238 usec_delay(100); 3239 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 3240 goto out; 3241 } 3242 3243 /* 3244 * Two consecutive resets are required via CTRL.RST per datasheet 3245 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine 3246 * of this need. The first reset prevents new master requests from 3247 * being issued by our device. We then must wait 1usec or more for any 3248 * remaining completions from the PCIe bus to trickle in, and then reset 3249 * again to clear out any effects they may have had on our device. 3250 */ 3251 DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n"); 3252 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 3253 3254 if (hw->mac.type >= ixgbe_mac_X550) 3255 goto out; 3256 3257 /* 3258 * Before proceeding, make sure that the PCIe block does not have 3259 * transactions pending. 3260 */ 3261 poll = ixgbe_pcie_timeout_poll(hw); 3262 for (i = 0; i < poll; i++) { 3263 usec_delay(100); 3264 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS); 3265 if (IXGBE_REMOVED(hw->hw_addr)) 3266 goto out; 3267 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 3268 goto out; 3269 } 3270 3271 ERROR_REPORT1(IXGBE_ERROR_POLLING, 3272 "PCIe transaction pending bit also did not clear.\n"); 3273 status = IXGBE_ERR_MASTER_REQUESTS_PENDING; 3274 3275 out: 3276 return status; 3277 } 3278 3279 /** 3280 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore 3281 * @hw: pointer to hardware structure 3282 * @mask: Mask to specify which semaphore to acquire 3283 * 3284 * Acquires the SWFW semaphore through the GSSR register for the specified 3285 * function (CSR, PHY0, PHY1, EEPROM, Flash) 3286 **/ 3287 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask) 3288 { 3289 u32 gssr = 0; 3290 u32 swmask = mask; 3291 u32 fwmask = mask << 5; 3292 u32 timeout = 200; 3293 u32 i; 3294 3295 DEBUGFUNC("ixgbe_acquire_swfw_sync"); 3296 3297 for (i = 0; i < timeout; i++) { 3298 /* 3299 * SW NVM semaphore bit is used for access to all 3300 * SW_FW_SYNC bits (not just NVM) 3301 */ 3302 if (ixgbe_get_eeprom_semaphore(hw)) 3303 return IXGBE_ERR_SWFW_SYNC; 3304 3305 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 3306 if (!(gssr & (fwmask | swmask))) { 3307 gssr |= swmask; 3308 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 3309 ixgbe_release_eeprom_semaphore(hw); 3310 return IXGBE_SUCCESS; 3311 } else { 3312 /* Resource is currently in use by FW or SW */ 3313 ixgbe_release_eeprom_semaphore(hw); 3314 msec_delay(5); 3315 } 3316 } 3317 3318 /* If time expired clear the bits holding the lock and retry */ 3319 if (gssr & (fwmask | swmask)) 3320 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask)); 3321 3322 msec_delay(5); 3323 return IXGBE_ERR_SWFW_SYNC; 3324 } 3325 3326 /** 3327 * ixgbe_release_swfw_sync - Release SWFW semaphore 3328 * @hw: pointer to hardware structure 3329 * @mask: Mask to specify which semaphore to release 3330 * 3331 * Releases the SWFW semaphore through the GSSR register for the specified 3332 * function (CSR, PHY0, PHY1, EEPROM, Flash) 3333 **/ 3334 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask) 3335 { 3336 u32 gssr; 3337 u32 swmask = mask; 3338 3339 DEBUGFUNC("ixgbe_release_swfw_sync"); 3340 3341 ixgbe_get_eeprom_semaphore(hw); 3342 3343 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 3344 gssr &= ~swmask; 3345 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 3346 3347 ixgbe_release_eeprom_semaphore(hw); 3348 } 3349 3350 /** 3351 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path 3352 * @hw: pointer to hardware structure 3353 * 3354 * Stops the receive data path and waits for the HW to internally empty 3355 * the Rx security block 3356 **/ 3357 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw) 3358 { 3359 #define IXGBE_MAX_SECRX_POLL 4000 3360 3361 int i; 3362 int secrxreg; 3363 3364 DEBUGFUNC("ixgbe_disable_sec_rx_path_generic"); 3365 3366 3367 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 3368 secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 3369 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 3370 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 3371 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 3372 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 3373 break; 3374 else 3375 /* Use interrupt-safe sleep just in case */ 3376 usec_delay(10); 3377 } 3378 3379 /* For informational purposes only */ 3380 if (i >= IXGBE_MAX_SECRX_POLL) 3381 DEBUGOUT("Rx unit being enabled before security " 3382 "path fully disabled. Continuing with init.\n"); 3383 3384 return IXGBE_SUCCESS; 3385 } 3386 3387 /** 3388 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read 3389 * @hw: pointer to hardware structure 3390 * @locked: bool to indicate whether the SW/FW lock was taken 3391 * @reg_val: Value we read from AUTOC 3392 * 3393 * The default case requires no protection so just to the register read. 3394 */ 3395 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val) 3396 { 3397 *locked = false; 3398 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC); 3399 return IXGBE_SUCCESS; 3400 } 3401 3402 /** 3403 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write 3404 * @hw: pointer to hardware structure 3405 * @reg_val: value to write to AUTOC 3406 * @locked: bool to indicate whether the SW/FW lock was already taken by 3407 * previous read. 3408 * 3409 * The default case requires no protection so just to the register write. 3410 */ 3411 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked) 3412 { 3413 UNREFERENCED_1PARAMETER(locked); 3414 3415 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val); 3416 return IXGBE_SUCCESS; 3417 } 3418 3419 /** 3420 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path 3421 * @hw: pointer to hardware structure 3422 * 3423 * Enables the receive data path. 3424 **/ 3425 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw) 3426 { 3427 u32 secrxreg; 3428 3429 DEBUGFUNC("ixgbe_enable_sec_rx_path_generic"); 3430 3431 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 3432 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 3433 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 3434 IXGBE_WRITE_FLUSH(hw); 3435 3436 return IXGBE_SUCCESS; 3437 } 3438 3439 /** 3440 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit 3441 * @hw: pointer to hardware structure 3442 * @regval: register value to write to RXCTRL 3443 * 3444 * Enables the Rx DMA unit 3445 **/ 3446 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) 3447 { 3448 DEBUGFUNC("ixgbe_enable_rx_dma_generic"); 3449 3450 if (regval & IXGBE_RXCTRL_RXEN) 3451 ixgbe_enable_rx(hw); 3452 else 3453 ixgbe_disable_rx(hw); 3454 3455 return IXGBE_SUCCESS; 3456 } 3457 3458 /** 3459 * ixgbe_blink_led_start_generic - Blink LED based on index. 3460 * @hw: pointer to hardware structure 3461 * @index: led number to blink 3462 **/ 3463 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) 3464 { 3465 ixgbe_link_speed speed = 0; 3466 bool link_up = 0; 3467 u32 autoc_reg = 0; 3468 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3469 s32 ret_val = IXGBE_SUCCESS; 3470 bool locked = false; 3471 3472 DEBUGFUNC("ixgbe_blink_led_start_generic"); 3473 3474 if (index > 3) 3475 return IXGBE_ERR_PARAM; 3476 3477 /* 3478 * Link must be up to auto-blink the LEDs; 3479 * Force it if link is down. 3480 */ 3481 hw->mac.ops.check_link(hw, &speed, &link_up, false); 3482 3483 if (!link_up) { 3484 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 3485 if (ret_val != IXGBE_SUCCESS) 3486 goto out; 3487 3488 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3489 autoc_reg |= IXGBE_AUTOC_FLU; 3490 3491 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 3492 if (ret_val != IXGBE_SUCCESS) 3493 goto out; 3494 3495 IXGBE_WRITE_FLUSH(hw); 3496 msec_delay(10); 3497 } 3498 3499 led_reg &= ~IXGBE_LED_MODE_MASK(index); 3500 led_reg |= IXGBE_LED_BLINK(index); 3501 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3502 IXGBE_WRITE_FLUSH(hw); 3503 3504 out: 3505 return ret_val; 3506 } 3507 3508 /** 3509 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. 3510 * @hw: pointer to hardware structure 3511 * @index: led number to stop blinking 3512 **/ 3513 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) 3514 { 3515 u32 autoc_reg = 0; 3516 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 3517 s32 ret_val = IXGBE_SUCCESS; 3518 bool locked = false; 3519 3520 DEBUGFUNC("ixgbe_blink_led_stop_generic"); 3521 3522 if (index > 3) 3523 return IXGBE_ERR_PARAM; 3524 3525 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 3526 if (ret_val != IXGBE_SUCCESS) 3527 goto out; 3528 3529 autoc_reg &= ~IXGBE_AUTOC_FLU; 3530 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 3531 3532 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 3533 if (ret_val != IXGBE_SUCCESS) 3534 goto out; 3535 3536 led_reg &= ~IXGBE_LED_MODE_MASK(index); 3537 led_reg &= ~IXGBE_LED_BLINK(index); 3538 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); 3539 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 3540 IXGBE_WRITE_FLUSH(hw); 3541 3542 out: 3543 return ret_val; 3544 } 3545 3546 /** 3547 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM 3548 * @hw: pointer to hardware structure 3549 * @san_mac_offset: SAN MAC address offset 3550 * 3551 * This function will read the EEPROM location for the SAN MAC address 3552 * pointer, and returns the value at that location. This is used in both 3553 * get and set mac_addr routines. 3554 **/ 3555 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 3556 u16 *san_mac_offset) 3557 { 3558 s32 ret_val; 3559 3560 DEBUGFUNC("ixgbe_get_san_mac_addr_offset"); 3561 3562 /* 3563 * First read the EEPROM pointer to see if the MAC addresses are 3564 * available. 3565 */ 3566 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, 3567 san_mac_offset); 3568 if (ret_val) { 3569 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 3570 "eeprom at offset %d failed", 3571 IXGBE_SAN_MAC_ADDR_PTR); 3572 } 3573 3574 return ret_val; 3575 } 3576 3577 /** 3578 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM 3579 * @hw: pointer to hardware structure 3580 * @san_mac_addr: SAN MAC address 3581 * 3582 * Reads the SAN MAC address from the EEPROM, if it's available. This is 3583 * per-port, so set_lan_id() must be called before reading the addresses. 3584 * set_lan_id() is called by identify_sfp(), but this cannot be relied 3585 * upon for non-SFP connections, so we must call it here. 3586 **/ 3587 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3588 { 3589 u16 san_mac_data, san_mac_offset; 3590 u8 i; 3591 s32 ret_val; 3592 3593 DEBUGFUNC("ixgbe_get_san_mac_addr_generic"); 3594 3595 /* 3596 * First read the EEPROM pointer to see if the MAC addresses are 3597 * available. If they're not, no point in calling set_lan_id() here. 3598 */ 3599 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3600 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 3601 goto san_mac_addr_out; 3602 3603 /* make sure we know which port we need to program */ 3604 hw->mac.ops.set_lan_id(hw); 3605 /* apply the port offset to the address offset */ 3606 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3607 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3608 for (i = 0; i < 3; i++) { 3609 ret_val = hw->eeprom.ops.read(hw, san_mac_offset, 3610 &san_mac_data); 3611 if (ret_val) { 3612 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 3613 "eeprom read at offset %d failed", 3614 san_mac_offset); 3615 goto san_mac_addr_out; 3616 } 3617 san_mac_addr[i * 2] = (u8)(san_mac_data); 3618 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); 3619 san_mac_offset++; 3620 } 3621 return IXGBE_SUCCESS; 3622 3623 san_mac_addr_out: 3624 /* 3625 * No addresses available in this EEPROM. It's not an 3626 * error though, so just wipe the local address and return. 3627 */ 3628 for (i = 0; i < 6; i++) 3629 san_mac_addr[i] = 0xFF; 3630 return IXGBE_SUCCESS; 3631 } 3632 3633 /** 3634 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM 3635 * @hw: pointer to hardware structure 3636 * @san_mac_addr: SAN MAC address 3637 * 3638 * Write a SAN MAC address to the EEPROM. 3639 **/ 3640 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 3641 { 3642 s32 ret_val; 3643 u16 san_mac_data, san_mac_offset; 3644 u8 i; 3645 3646 DEBUGFUNC("ixgbe_set_san_mac_addr_generic"); 3647 3648 /* Look for SAN mac address pointer. If not defined, return */ 3649 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 3650 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 3651 return IXGBE_ERR_NO_SAN_ADDR_PTR; 3652 3653 /* Make sure we know which port we need to write */ 3654 hw->mac.ops.set_lan_id(hw); 3655 /* Apply the port offset to the address offset */ 3656 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 3657 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 3658 3659 for (i = 0; i < 3; i++) { 3660 san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8); 3661 san_mac_data |= (u16)(san_mac_addr[i * 2]); 3662 hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data); 3663 san_mac_offset++; 3664 } 3665 3666 return IXGBE_SUCCESS; 3667 } 3668 3669 /** 3670 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count 3671 * @hw: pointer to hardware structure 3672 * 3673 * Read PCIe configuration space, and get the MSI-X vector count from 3674 * the capabilities table. 3675 **/ 3676 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) 3677 { 3678 u16 msix_count = 1; 3679 u16 max_msix_count; 3680 u16 pcie_offset; 3681 3682 switch (hw->mac.type) { 3683 case ixgbe_mac_82598EB: 3684 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; 3685 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; 3686 break; 3687 case ixgbe_mac_82599EB: 3688 case ixgbe_mac_X540: 3689 case ixgbe_mac_X550: 3690 case ixgbe_mac_X550EM_x: 3691 case ixgbe_mac_X550EM_a: 3692 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; 3693 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; 3694 break; 3695 default: 3696 return msix_count; 3697 } 3698 3699 DEBUGFUNC("ixgbe_get_pcie_msix_count_generic"); 3700 msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset); 3701 if (IXGBE_REMOVED(hw->hw_addr)) 3702 msix_count = 0; 3703 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; 3704 3705 /* MSI-X count is zero-based in HW */ 3706 msix_count++; 3707 3708 if (msix_count > max_msix_count) 3709 msix_count = max_msix_count; 3710 3711 return msix_count; 3712 } 3713 3714 /** 3715 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address 3716 * @hw: pointer to hardware structure 3717 * @addr: Address to put into receive address register 3718 * @vmdq: VMDq pool to assign 3719 * 3720 * Puts an ethernet address into a receive address register, or 3721 * finds the rar that it is already in; adds to the pool list 3722 **/ 3723 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) 3724 { 3725 static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF; 3726 u32 first_empty_rar = NO_EMPTY_RAR_FOUND; 3727 u32 rar; 3728 u32 rar_low, rar_high; 3729 u32 addr_low, addr_high; 3730 3731 DEBUGFUNC("ixgbe_insert_mac_addr_generic"); 3732 3733 /* swap bytes for HW little endian */ 3734 addr_low = addr[0] | (addr[1] << 8) 3735 | (addr[2] << 16) 3736 | (addr[3] << 24); 3737 addr_high = addr[4] | (addr[5] << 8); 3738 3739 /* 3740 * Either find the mac_id in rar or find the first empty space. 3741 * rar_highwater points to just after the highest currently used 3742 * rar in order to shorten the search. It grows when we add a new 3743 * rar to the top. 3744 */ 3745 for (rar = 0; rar < hw->mac.rar_highwater; rar++) { 3746 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar)); 3747 3748 if (((IXGBE_RAH_AV & rar_high) == 0) 3749 && first_empty_rar == NO_EMPTY_RAR_FOUND) { 3750 first_empty_rar = rar; 3751 } else if ((rar_high & 0xFFFF) == addr_high) { 3752 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar)); 3753 if (rar_low == addr_low) 3754 break; /* found it already in the rars */ 3755 } 3756 } 3757 3758 if (rar < hw->mac.rar_highwater) { 3759 /* already there so just add to the pool bits */ 3760 ixgbe_set_vmdq(hw, rar, vmdq); 3761 } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) { 3762 /* stick it into first empty RAR slot we found */ 3763 rar = first_empty_rar; 3764 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3765 } else if (rar == hw->mac.rar_highwater) { 3766 /* add it to the top of the list and inc the highwater mark */ 3767 ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); 3768 hw->mac.rar_highwater++; 3769 } else if (rar >= hw->mac.num_rar_entries) { 3770 return IXGBE_ERR_INVALID_MAC_ADDR; 3771 } 3772 3773 /* 3774 * If we found rar[0], make sure the default pool bit (we use pool 0) 3775 * remains cleared to be sure default pool packets will get delivered 3776 */ 3777 if (rar == 0) 3778 ixgbe_clear_vmdq(hw, rar, 0); 3779 3780 return rar; 3781 } 3782 3783 /** 3784 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address 3785 * @hw: pointer to hardware struct 3786 * @rar: receive address register index to disassociate 3787 * @vmdq: VMDq pool index to remove from the rar 3788 **/ 3789 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3790 { 3791 u32 mpsar_lo, mpsar_hi; 3792 u32 rar_entries = hw->mac.num_rar_entries; 3793 3794 DEBUGFUNC("ixgbe_clear_vmdq_generic"); 3795 3796 /* Make sure we are using a valid rar index range */ 3797 if (rar >= rar_entries) { 3798 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 3799 "RAR index %d is out of range.\n", rar); 3800 return IXGBE_ERR_INVALID_ARGUMENT; 3801 } 3802 3803 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3804 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3805 3806 if (IXGBE_REMOVED(hw->hw_addr)) 3807 goto done; 3808 3809 if (!mpsar_lo && !mpsar_hi) 3810 goto done; 3811 3812 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { 3813 if (mpsar_lo) { 3814 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3815 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3816 } 3817 if (mpsar_hi) { 3818 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3819 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3820 } 3821 } else if (vmdq < 32) { 3822 mpsar_lo &= ~(1 << vmdq); 3823 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); 3824 } else { 3825 mpsar_hi &= ~(1 << (vmdq - 32)); 3826 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); 3827 } 3828 3829 /* was that the last pool using this rar? */ 3830 if (mpsar_lo == 0 && mpsar_hi == 0 && 3831 rar != 0 && rar != hw->mac.san_mac_rar_index) 3832 hw->mac.ops.clear_rar(hw, rar); 3833 done: 3834 return IXGBE_SUCCESS; 3835 } 3836 3837 /** 3838 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address 3839 * @hw: pointer to hardware struct 3840 * @rar: receive address register index to associate with a VMDq index 3841 * @vmdq: VMDq pool index 3842 **/ 3843 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 3844 { 3845 u32 mpsar; 3846 u32 rar_entries = hw->mac.num_rar_entries; 3847 3848 DEBUGFUNC("ixgbe_set_vmdq_generic"); 3849 3850 /* Make sure we are using a valid rar index range */ 3851 if (rar >= rar_entries) { 3852 ERROR_REPORT2(IXGBE_ERROR_ARGUMENT, 3853 "RAR index %d is out of range.\n", rar); 3854 return IXGBE_ERR_INVALID_ARGUMENT; 3855 } 3856 3857 if (vmdq < 32) { 3858 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 3859 mpsar |= 1 << vmdq; 3860 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); 3861 } else { 3862 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 3863 mpsar |= 1 << (vmdq - 32); 3864 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); 3865 } 3866 return IXGBE_SUCCESS; 3867 } 3868 3869 /** 3870 * This function should only be involved in the IOV mode. 3871 * In IOV mode, Default pool is next pool after the number of 3872 * VFs advertized and not 0. 3873 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index] 3874 * 3875 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address 3876 * @hw: pointer to hardware struct 3877 * @vmdq: VMDq pool index 3878 **/ 3879 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq) 3880 { 3881 u32 rar = hw->mac.san_mac_rar_index; 3882 3883 DEBUGFUNC("ixgbe_set_vmdq_san_mac"); 3884 3885 if (vmdq < 32) { 3886 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq); 3887 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 3888 } else { 3889 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 3890 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32)); 3891 } 3892 3893 return IXGBE_SUCCESS; 3894 } 3895 3896 /** 3897 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array 3898 * @hw: pointer to hardware structure 3899 **/ 3900 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) 3901 { 3902 int i; 3903 3904 DEBUGFUNC("ixgbe_init_uta_tables_generic"); 3905 DEBUGOUT(" Clearing UTA\n"); 3906 3907 for (i = 0; i < 128; i++) 3908 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); 3909 3910 return IXGBE_SUCCESS; 3911 } 3912 3913 /** 3914 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot 3915 * @hw: pointer to hardware structure 3916 * @vlan: VLAN id to write to VLAN filter 3917 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if 3918 * vlanid not found 3919 * 3920 * 3921 * return the VLVF index where this VLAN id should be placed 3922 * 3923 **/ 3924 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass) 3925 { 3926 s32 regindex, first_empty_slot; 3927 u32 bits; 3928 3929 /* short cut the special case */ 3930 if (vlan == 0) 3931 return 0; 3932 3933 /* if vlvf_bypass is set we don't want to use an empty slot, we 3934 * will simply bypass the VLVF if there are no entries present in the 3935 * VLVF that contain our VLAN 3936 */ 3937 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0; 3938 3939 /* add VLAN enable bit for comparison */ 3940 vlan |= IXGBE_VLVF_VIEN; 3941 3942 /* Search for the vlan id in the VLVF entries. Save off the first empty 3943 * slot found along the way. 3944 * 3945 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 3946 */ 3947 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) { 3948 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); 3949 if (bits == vlan) 3950 return regindex; 3951 if (!first_empty_slot && !bits) 3952 first_empty_slot = regindex; 3953 } 3954 3955 /* If we are here then we didn't find the VLAN. Return first empty 3956 * slot we found during our search, else error. 3957 */ 3958 if (!first_empty_slot) 3959 ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n"); 3960 3961 return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE; 3962 } 3963 3964 /** 3965 * ixgbe_set_vfta_generic - Set VLAN filter table 3966 * @hw: pointer to hardware structure 3967 * @vlan: VLAN id to write to VLAN filter 3968 * @vind: VMDq output index that maps queue to VLAN id in VLVFB 3969 * @vlan_on: boolean flag to turn on/off VLAN 3970 * @vlvf_bypass: boolean flag indicating updating default pool is okay 3971 * 3972 * Turn on/off specified VLAN in the VLAN filter table. 3973 **/ 3974 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 3975 bool vlan_on, bool vlvf_bypass) 3976 { 3977 u32 regidx, vfta_delta, vfta; 3978 s32 ret_val; 3979 3980 DEBUGFUNC("ixgbe_set_vfta_generic"); 3981 3982 if (vlan > 4095 || vind > 63) 3983 return IXGBE_ERR_PARAM; 3984 3985 /* 3986 * this is a 2 part operation - first the VFTA, then the 3987 * VLVF and VLVFB if VT Mode is set 3988 * We don't write the VFTA until we know the VLVF part succeeded. 3989 */ 3990 3991 /* Part 1 3992 * The VFTA is a bitstring made up of 128 32-bit registers 3993 * that enable the particular VLAN id, much like the MTA: 3994 * bits[11-5]: which register 3995 * bits[4-0]: which bit in the register 3996 */ 3997 regidx = vlan / 32; 3998 vfta_delta = 1 << (vlan % 32); 3999 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx)); 4000 4001 /* 4002 * vfta_delta represents the difference between the current value 4003 * of vfta and the value we want in the register. Since the diff 4004 * is an XOR mask we can just update the vfta using an XOR 4005 */ 4006 vfta_delta &= vlan_on ? ~vfta : vfta; 4007 vfta ^= vfta_delta; 4008 4009 /* Part 2 4010 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF 4011 */ 4012 ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta, 4013 vfta, vlvf_bypass); 4014 if (ret_val != IXGBE_SUCCESS) { 4015 if (vlvf_bypass) 4016 goto vfta_update; 4017 return ret_val; 4018 } 4019 4020 vfta_update: 4021 /* Update VFTA now that we are ready for traffic */ 4022 if (vfta_delta) 4023 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta); 4024 4025 return IXGBE_SUCCESS; 4026 } 4027 4028 /** 4029 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter 4030 * @hw: pointer to hardware structure 4031 * @vlan: VLAN id to write to VLAN filter 4032 * @vind: VMDq output index that maps queue to VLAN id in VLVFB 4033 * @vlan_on: boolean flag to turn on/off VLAN in VLVF 4034 * @vfta_delta: pointer to the difference between the current value of VFTA 4035 * and the desired value 4036 * @vfta: the desired value of the VFTA 4037 * @vlvf_bypass: boolean flag indicating updating default pool is okay 4038 * 4039 * Turn on/off specified bit in VLVF table. 4040 **/ 4041 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 4042 bool vlan_on, u32 *vfta_delta, u32 vfta, 4043 bool vlvf_bypass) 4044 { 4045 u32 bits; 4046 s32 vlvf_index; 4047 4048 DEBUGFUNC("ixgbe_set_vlvf_generic"); 4049 4050 if (vlan > 4095 || vind > 63) 4051 return IXGBE_ERR_PARAM; 4052 4053 /* If VT Mode is set 4054 * Either vlan_on 4055 * make sure the vlan is in VLVF 4056 * set the vind bit in the matching VLVFB 4057 * Or !vlan_on 4058 * clear the pool bit and possibly the vind 4059 */ 4060 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE)) 4061 return IXGBE_SUCCESS; 4062 4063 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass); 4064 if (vlvf_index < 0) 4065 return vlvf_index; 4066 4067 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32)); 4068 4069 /* set the pool bit */ 4070 bits |= 1 << (vind % 32); 4071 if (vlan_on) 4072 goto vlvf_update; 4073 4074 /* clear the pool bit */ 4075 bits ^= 1 << (vind % 32); 4076 4077 if (!bits && 4078 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) { 4079 /* Clear VFTA first, then disable VLVF. Otherwise 4080 * we run the risk of stray packets leaking into 4081 * the PF via the default pool 4082 */ 4083 if (*vfta_delta) 4084 IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta); 4085 4086 /* disable VLVF and clear remaining bit from pool */ 4087 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); 4088 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0); 4089 4090 return IXGBE_SUCCESS; 4091 } 4092 4093 /* If there are still bits set in the VLVFB registers 4094 * for the VLAN ID indicated we need to see if the 4095 * caller is requesting that we clear the VFTA entry bit. 4096 * If the caller has requested that we clear the VFTA 4097 * entry bit but there are still pools/VFs using this VLAN 4098 * ID entry then ignore the request. We're not worried 4099 * about the case where we're turning the VFTA VLAN ID 4100 * entry bit on, only when requested to turn it off as 4101 * there may be multiple pools and/or VFs using the 4102 * VLAN ID entry. In that case we cannot clear the 4103 * VFTA bit until all pools/VFs using that VLAN ID have also 4104 * been cleared. This will be indicated by "bits" being 4105 * zero. 4106 */ 4107 *vfta_delta = 0; 4108 4109 vlvf_update: 4110 /* record pool change and enable VLAN ID if not already enabled */ 4111 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits); 4112 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan); 4113 4114 return IXGBE_SUCCESS; 4115 } 4116 4117 /** 4118 * ixgbe_clear_vfta_generic - Clear VLAN filter table 4119 * @hw: pointer to hardware structure 4120 * 4121 * Clears the VLAN filter table, and the VMDq index associated with the filter 4122 **/ 4123 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) 4124 { 4125 u32 offset; 4126 4127 DEBUGFUNC("ixgbe_clear_vfta_generic"); 4128 4129 for (offset = 0; offset < hw->mac.vft_size; offset++) 4130 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); 4131 4132 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { 4133 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); 4134 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0); 4135 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0); 4136 } 4137 4138 return IXGBE_SUCCESS; 4139 } 4140 4141 /** 4142 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix 4143 * @hw: pointer to hardware structure 4144 * 4145 * Contains the logic to identify if we need to verify link for the 4146 * crosstalk fix 4147 **/ 4148 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw) 4149 { 4150 4151 /* Does FW say we need the fix */ 4152 if (!hw->need_crosstalk_fix) 4153 return false; 4154 4155 /* Only consider SFP+ PHYs i.e. media type fiber */ 4156 switch (hw->mac.ops.get_media_type(hw)) { 4157 case ixgbe_media_type_fiber: 4158 case ixgbe_media_type_fiber_qsfp: 4159 break; 4160 default: 4161 return false; 4162 } 4163 4164 return true; 4165 } 4166 4167 /** 4168 * ixgbe_check_mac_link_generic - Determine link and speed status 4169 * @hw: pointer to hardware structure 4170 * @speed: pointer to link speed 4171 * @link_up: true when link is up 4172 * @link_up_wait_to_complete: bool used to wait for link up or not 4173 * 4174 * Reads the links register to determine if link is up and the current speed 4175 **/ 4176 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 4177 bool *link_up, bool link_up_wait_to_complete) 4178 { 4179 u32 links_reg, links_orig; 4180 u32 i; 4181 4182 DEBUGFUNC("ixgbe_check_mac_link_generic"); 4183 4184 /* If Crosstalk fix enabled do the sanity check of making sure 4185 * the SFP+ cage is full. 4186 */ 4187 if (ixgbe_need_crosstalk_fix(hw)) { 4188 u32 sfp_cage_full; 4189 4190 switch (hw->mac.type) { 4191 case ixgbe_mac_82599EB: 4192 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) & 4193 IXGBE_ESDP_SDP2; 4194 break; 4195 case ixgbe_mac_X550EM_x: 4196 case ixgbe_mac_X550EM_a: 4197 sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) & 4198 IXGBE_ESDP_SDP0; 4199 break; 4200 default: 4201 /* sanity check - No SFP+ devices here */ 4202 sfp_cage_full = false; 4203 break; 4204 } 4205 4206 if (!sfp_cage_full) { 4207 *link_up = false; 4208 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4209 return IXGBE_SUCCESS; 4210 } 4211 } 4212 4213 /* clear the old state */ 4214 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); 4215 4216 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4217 4218 if (links_orig != links_reg) { 4219 DEBUGOUT2("LINKS changed from %08X to %08X\n", 4220 links_orig, links_reg); 4221 } 4222 4223 if (link_up_wait_to_complete) { 4224 for (i = 0; i < hw->mac.max_link_up_time; i++) { 4225 if (links_reg & IXGBE_LINKS_UP) { 4226 *link_up = true; 4227 break; 4228 } else { 4229 *link_up = false; 4230 } 4231 msec_delay(100); 4232 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 4233 } 4234 } else { 4235 if (links_reg & IXGBE_LINKS_UP) 4236 *link_up = true; 4237 else 4238 *link_up = false; 4239 } 4240 4241 switch (links_reg & IXGBE_LINKS_SPEED_82599) { 4242 case IXGBE_LINKS_SPEED_10G_82599: 4243 *speed = IXGBE_LINK_SPEED_10GB_FULL; 4244 if (hw->mac.type >= ixgbe_mac_X550) { 4245 if (links_reg & IXGBE_LINKS_SPEED_NON_STD) 4246 *speed = IXGBE_LINK_SPEED_2_5GB_FULL; 4247 } 4248 break; 4249 case IXGBE_LINKS_SPEED_1G_82599: 4250 *speed = IXGBE_LINK_SPEED_1GB_FULL; 4251 break; 4252 case IXGBE_LINKS_SPEED_100_82599: 4253 *speed = IXGBE_LINK_SPEED_100_FULL; 4254 if (hw->mac.type == ixgbe_mac_X550) { 4255 if (links_reg & IXGBE_LINKS_SPEED_NON_STD) 4256 *speed = IXGBE_LINK_SPEED_5GB_FULL; 4257 } 4258 break; 4259 case IXGBE_LINKS_SPEED_10_X550EM_A: 4260 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4261 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T || 4262 hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) 4263 *speed = IXGBE_LINK_SPEED_10_FULL; 4264 break; 4265 default: 4266 *speed = IXGBE_LINK_SPEED_UNKNOWN; 4267 } 4268 4269 return IXGBE_SUCCESS; 4270 } 4271 4272 /** 4273 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from 4274 * the EEPROM 4275 * @hw: pointer to hardware structure 4276 * @wwnn_prefix: the alternative WWNN prefix 4277 * @wwpn_prefix: the alternative WWPN prefix 4278 * 4279 * This function will read the EEPROM from the alternative SAN MAC address 4280 * block to check the support for the alternative WWNN/WWPN prefix support. 4281 **/ 4282 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, 4283 u16 *wwpn_prefix) 4284 { 4285 u16 offset, caps; 4286 u16 alt_san_mac_blk_offset; 4287 4288 DEBUGFUNC("ixgbe_get_wwn_prefix_generic"); 4289 4290 /* clear output first */ 4291 *wwnn_prefix = 0xFFFF; 4292 *wwpn_prefix = 0xFFFF; 4293 4294 /* check if alternative SAN MAC is supported */ 4295 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR; 4296 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset)) 4297 goto wwn_prefix_err; 4298 4299 if ((alt_san_mac_blk_offset == 0) || 4300 (alt_san_mac_blk_offset == 0xFFFF)) 4301 goto wwn_prefix_out; 4302 4303 /* check capability in alternative san mac address block */ 4304 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; 4305 if (hw->eeprom.ops.read(hw, offset, &caps)) 4306 goto wwn_prefix_err; 4307 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) 4308 goto wwn_prefix_out; 4309 4310 /* get the corresponding prefix for WWNN/WWPN */ 4311 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; 4312 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) { 4313 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4314 "eeprom read at offset %d failed", offset); 4315 } 4316 4317 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; 4318 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix)) 4319 goto wwn_prefix_err; 4320 4321 wwn_prefix_out: 4322 return IXGBE_SUCCESS; 4323 4324 wwn_prefix_err: 4325 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4326 "eeprom read at offset %d failed", offset); 4327 return IXGBE_SUCCESS; 4328 } 4329 4330 /** 4331 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM 4332 * @hw: pointer to hardware structure 4333 * @bs: the fcoe boot status 4334 * 4335 * This function will read the FCOE boot status from the iSCSI FCOE block 4336 **/ 4337 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs) 4338 { 4339 u16 offset, caps, flags; 4340 s32 status; 4341 4342 DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic"); 4343 4344 /* clear output first */ 4345 *bs = ixgbe_fcoe_bootstatus_unavailable; 4346 4347 /* check if FCOE IBA block is present */ 4348 offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR; 4349 status = hw->eeprom.ops.read(hw, offset, &caps); 4350 if (status != IXGBE_SUCCESS) 4351 goto out; 4352 4353 if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE)) 4354 goto out; 4355 4356 /* check if iSCSI FCOE block is populated */ 4357 status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset); 4358 if (status != IXGBE_SUCCESS) 4359 goto out; 4360 4361 if ((offset == 0) || (offset == 0xFFFF)) 4362 goto out; 4363 4364 /* read fcoe flags in iSCSI FCOE block */ 4365 offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET; 4366 status = hw->eeprom.ops.read(hw, offset, &flags); 4367 if (status != IXGBE_SUCCESS) 4368 goto out; 4369 4370 if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE) 4371 *bs = ixgbe_fcoe_bootstatus_enabled; 4372 else 4373 *bs = ixgbe_fcoe_bootstatus_disabled; 4374 4375 out: 4376 return status; 4377 } 4378 4379 /** 4380 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing 4381 * @hw: pointer to hardware structure 4382 * @enable: enable or disable switch for MAC anti-spoofing 4383 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing 4384 * 4385 **/ 4386 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 4387 { 4388 int vf_target_reg = vf >> 3; 4389 int vf_target_shift = vf % 8; 4390 u32 pfvfspoof; 4391 4392 if (hw->mac.type == ixgbe_mac_82598EB) 4393 return; 4394 4395 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 4396 if (enable) 4397 pfvfspoof |= (1 << vf_target_shift); 4398 else 4399 pfvfspoof &= ~(1 << vf_target_shift); 4400 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 4401 } 4402 4403 /** 4404 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing 4405 * @hw: pointer to hardware structure 4406 * @enable: enable or disable switch for VLAN anti-spoofing 4407 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing 4408 * 4409 **/ 4410 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 4411 { 4412 int vf_target_reg = vf >> 3; 4413 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; 4414 u32 pfvfspoof; 4415 4416 if (hw->mac.type == ixgbe_mac_82598EB) 4417 return; 4418 4419 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 4420 if (enable) 4421 pfvfspoof |= (1 << vf_target_shift); 4422 else 4423 pfvfspoof &= ~(1 << vf_target_shift); 4424 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 4425 } 4426 4427 /** 4428 * ixgbe_get_device_caps_generic - Get additional device capabilities 4429 * @hw: pointer to hardware structure 4430 * @device_caps: the EEPROM word with the extra device capabilities 4431 * 4432 * This function will read the EEPROM location for the device capabilities, 4433 * and return the word through device_caps. 4434 **/ 4435 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) 4436 { 4437 DEBUGFUNC("ixgbe_get_device_caps_generic"); 4438 4439 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); 4440 4441 return IXGBE_SUCCESS; 4442 } 4443 4444 /** 4445 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering 4446 * @hw: pointer to hardware structure 4447 * 4448 **/ 4449 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw) 4450 { 4451 u32 regval; 4452 u32 i; 4453 4454 DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2"); 4455 4456 /* Enable relaxed ordering */ 4457 for (i = 0; i < hw->mac.max_tx_queues; i++) { 4458 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 4459 regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN; 4460 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 4461 } 4462 4463 for (i = 0; i < hw->mac.max_rx_queues; i++) { 4464 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 4465 regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN | 4466 IXGBE_DCA_RXCTRL_HEAD_WRO_EN; 4467 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 4468 } 4469 4470 } 4471 4472 /** 4473 * ixgbe_calculate_checksum - Calculate checksum for buffer 4474 * @buffer: pointer to EEPROM 4475 * @length: size of EEPROM to calculate a checksum for 4476 * Calculates the checksum for some buffer on a specified length. The 4477 * checksum calculated is returned. 4478 **/ 4479 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) 4480 { 4481 u32 i; 4482 u8 sum = 0; 4483 4484 DEBUGFUNC("ixgbe_calculate_checksum"); 4485 4486 if (!buffer) 4487 return 0; 4488 4489 for (i = 0; i < length; i++) 4490 sum += buffer[i]; 4491 4492 return (u8) (0 - sum); 4493 } 4494 4495 /** 4496 * ixgbe_hic_unlocked - Issue command to manageability block unlocked 4497 * @hw: pointer to the HW structure 4498 * @buffer: command to write and where the return status will be placed 4499 * @length: length of buffer, must be multiple of 4 bytes 4500 * @timeout: time in ms to wait for command completion 4501 * 4502 * Communicates with the manageability block. On success return IXGBE_SUCCESS 4503 * else returns semaphore error when encountering an error acquiring 4504 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4505 * 4506 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held 4507 * by the caller. 4508 **/ 4509 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length, 4510 u32 timeout) 4511 { 4512 u32 hicr, i, fwsts; 4513 u16 dword_len; 4514 4515 DEBUGFUNC("ixgbe_hic_unlocked"); 4516 4517 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 4518 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length); 4519 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4520 } 4521 4522 /* Set bit 9 of FWSTS clearing FW reset indication */ 4523 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS); 4524 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI); 4525 4526 /* Check that the host interface is enabled. */ 4527 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 4528 if (!(hicr & IXGBE_HICR_EN)) { 4529 DEBUGOUT("IXGBE_HOST_EN bit disabled.\n"); 4530 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4531 } 4532 4533 /* Calculate length in DWORDs. We must be DWORD aligned */ 4534 if (length % sizeof(u32)) { 4535 DEBUGOUT("Buffer length failure, not aligned to dword"); 4536 return IXGBE_ERR_INVALID_ARGUMENT; 4537 } 4538 4539 dword_len = length >> 2; 4540 4541 /* The device driver writes the relevant command block 4542 * into the ram area. 4543 */ 4544 for (i = 0; i < dword_len; i++) 4545 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, 4546 i, IXGBE_CPU_TO_LE32(buffer[i])); 4547 4548 /* Setting this bit tells the ARC that a new command is pending. */ 4549 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); 4550 4551 for (i = 0; i < timeout; i++) { 4552 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 4553 if (!(hicr & IXGBE_HICR_C)) 4554 break; 4555 msec_delay(1); 4556 } 4557 4558 /* For each command except "Apply Update" perform 4559 * status checks in the HICR registry. 4560 */ 4561 if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) == 4562 IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD) 4563 return IXGBE_SUCCESS; 4564 4565 /* Check command completion */ 4566 if ((timeout && i == timeout) || 4567 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) { 4568 ERROR_REPORT1(IXGBE_ERROR_CAUTION, 4569 "Command has failed with no status valid.\n"); 4570 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4571 } 4572 4573 return IXGBE_SUCCESS; 4574 } 4575 4576 /** 4577 * ixgbe_host_interface_command - Issue command to manageability block 4578 * @hw: pointer to the HW structure 4579 * @buffer: contains the command to write and where the return status will 4580 * be placed 4581 * @length: length of buffer, must be multiple of 4 bytes 4582 * @timeout: time in ms to wait for command completion 4583 * @return_data: read and return data from the buffer (true) or not (false) 4584 * Needed because FW structures are big endian and decoding of 4585 * these fields can be 8 bit or 16 bit based on command. Decoding 4586 * is not easily understood without making a table of commands. 4587 * So we will leave this up to the caller to read back the data 4588 * in these cases. 4589 * 4590 * Communicates with the manageability block. On success return IXGBE_SUCCESS 4591 * else returns semaphore error when encountering an error acquiring 4592 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4593 **/ 4594 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, 4595 u32 length, u32 timeout, bool return_data) 4596 { 4597 u32 hdr_size = sizeof(struct ixgbe_hic_hdr); 4598 struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer; 4599 u16 buf_len; 4600 s32 status; 4601 u32 bi; 4602 u32 dword_len; 4603 4604 DEBUGFUNC("ixgbe_host_interface_command"); 4605 4606 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 4607 DEBUGOUT1("Buffer length failure buffersize=%d.\n", length); 4608 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 4609 } 4610 4611 /* Take management host interface semaphore */ 4612 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4613 if (status) 4614 return status; 4615 4616 status = ixgbe_hic_unlocked(hw, buffer, length, timeout); 4617 if (status) 4618 goto rel_out; 4619 4620 if (!return_data) 4621 goto rel_out; 4622 4623 /* Calculate length in DWORDs */ 4624 dword_len = hdr_size >> 2; 4625 4626 /* first pull in the header so we know the buffer length */ 4627 for (bi = 0; bi < dword_len; bi++) { 4628 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 4629 IXGBE_LE32_TO_CPUS((uintptr_t)&buffer[bi]); 4630 } 4631 4632 /* 4633 * If there is any thing in data position pull it in 4634 * Read Flash command requires reading buffer length from 4635 * two byes instead of one byte 4636 */ 4637 if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD || 4638 resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) { 4639 for (; bi < dword_len + 2; bi++) { 4640 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, 4641 bi); 4642 IXGBE_LE32_TO_CPUS(&buffer[bi]); 4643 } 4644 buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3) 4645 & 0xF00) | resp->buf_len; 4646 hdr_size += (2 << 2); 4647 } else { 4648 buf_len = resp->buf_len; 4649 } 4650 if (!buf_len) 4651 goto rel_out; 4652 4653 if (length < buf_len + hdr_size) { 4654 DEBUGOUT("Buffer not large enough for reply message.\n"); 4655 status = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4656 goto rel_out; 4657 } 4658 4659 /* Calculate length in DWORDs, add 3 for odd lengths */ 4660 dword_len = (buf_len + 3) >> 2; 4661 4662 /* Pull in the rest of the buffer (bi is where we left off) */ 4663 for (; bi <= dword_len; bi++) { 4664 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 4665 IXGBE_LE32_TO_CPUS((uintptr_t)&buffer[bi]); 4666 } 4667 4668 rel_out: 4669 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 4670 4671 return status; 4672 } 4673 4674 /** 4675 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware 4676 * @hw: pointer to the HW structure 4677 * @maj: driver version major number 4678 * @min: driver version minor number 4679 * @build: driver version build number 4680 * @sub: driver version sub build number 4681 * @len: unused 4682 * @driver_ver: unused 4683 * 4684 * Sends driver version number to firmware through the manageability 4685 * block. On success return IXGBE_SUCCESS 4686 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring 4687 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 4688 **/ 4689 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, 4690 u8 build, u8 sub, u16 len, 4691 const char *driver_ver) 4692 { 4693 struct ixgbe_hic_drv_info fw_cmd; 4694 int i; 4695 s32 ret_val = IXGBE_SUCCESS; 4696 4697 DEBUGFUNC("ixgbe_set_fw_drv_ver_generic"); 4698 UNREFERENCED_2PARAMETER(len, driver_ver); 4699 4700 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; 4701 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; 4702 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; 4703 fw_cmd.port_num = (u8)hw->bus.func; 4704 fw_cmd.ver_maj = maj; 4705 fw_cmd.ver_min = min; 4706 fw_cmd.ver_build = build; 4707 fw_cmd.ver_sub = sub; 4708 fw_cmd.hdr.checksum = 0; 4709 fw_cmd.pad = 0; 4710 fw_cmd.pad2 = 0; 4711 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, 4712 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); 4713 4714 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { 4715 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, 4716 sizeof(fw_cmd), 4717 IXGBE_HI_COMMAND_TIMEOUT, 4718 true); 4719 if (ret_val != IXGBE_SUCCESS) 4720 continue; 4721 4722 if (fw_cmd.hdr.cmd_or_resp.ret_status == 4723 FW_CEM_RESP_STATUS_SUCCESS) 4724 ret_val = IXGBE_SUCCESS; 4725 else 4726 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 4727 4728 break; 4729 } 4730 4731 return ret_val; 4732 } 4733 4734 /** 4735 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer 4736 * @hw: pointer to hardware structure 4737 * @num_pb: number of packet buffers to allocate 4738 * @headroom: reserve n KB of headroom 4739 * @strategy: packet buffer allocation strategy 4740 **/ 4741 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom, 4742 int strategy) 4743 { 4744 u32 pbsize = hw->mac.rx_pb_size; 4745 int i = 0; 4746 u32 rxpktsize, txpktsize, txpbthresh; 4747 4748 /* Reserve headroom */ 4749 pbsize -= headroom; 4750 4751 if (!num_pb) 4752 num_pb = 1; 4753 4754 /* Divide remaining packet buffer space amongst the number of packet 4755 * buffers requested using supplied strategy. 4756 */ 4757 switch (strategy) { 4758 case PBA_STRATEGY_WEIGHTED: 4759 /* ixgbe_dcb_pba_80_48 strategy weight first half of packet 4760 * buffer with 5/8 of the packet buffer space. 4761 */ 4762 rxpktsize = (pbsize * 5) / (num_pb * 4); 4763 pbsize -= rxpktsize * (num_pb / 2); 4764 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; 4765 for (; i < (num_pb / 2); i++) 4766 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4767 /* configure remaining packet buffers */ 4768 /* FALLTHROUGH */ 4769 case PBA_STRATEGY_EQUAL: 4770 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; 4771 for (; i < num_pb; i++) 4772 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 4773 break; 4774 default: 4775 break; 4776 } 4777 4778 /* Only support an equally distributed Tx packet buffer strategy. */ 4779 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; 4780 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; 4781 for (i = 0; i < num_pb; i++) { 4782 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); 4783 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); 4784 } 4785 4786 /* Clear unused TCs, if any, to zero buffer size*/ 4787 for (; i < IXGBE_MAX_PB; i++) { 4788 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); 4789 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); 4790 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); 4791 } 4792 } 4793 4794 /** 4795 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo 4796 * @hw: pointer to the hardware structure 4797 * 4798 * The 82599 and x540 MACs can experience issues if TX work is still pending 4799 * when a reset occurs. This function prevents this by flushing the PCIe 4800 * buffers on the system. 4801 **/ 4802 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) 4803 { 4804 u32 gcr_ext, hlreg0, i, poll; 4805 u16 value; 4806 4807 /* 4808 * If double reset is not requested then all transactions should 4809 * already be clear and as such there is no work to do 4810 */ 4811 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) 4812 return; 4813 4814 /* 4815 * Set loopback enable to prevent any transmits from being sent 4816 * should the link come up. This assumes that the RXCTRL.RXEN bit 4817 * has already been cleared. 4818 */ 4819 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); 4820 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); 4821 4822 /* Wait for a last completion before clearing buffers */ 4823 IXGBE_WRITE_FLUSH(hw); 4824 msec_delay(3); 4825 4826 /* 4827 * Before proceeding, make sure that the PCIe block does not have 4828 * transactions pending. 4829 */ 4830 poll = ixgbe_pcie_timeout_poll(hw); 4831 for (i = 0; i < poll; i++) { 4832 usec_delay(100); 4833 value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS); 4834 if (IXGBE_REMOVED(hw->hw_addr)) 4835 goto out; 4836 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 4837 goto out; 4838 } 4839 4840 out: 4841 /* initiate cleaning flow for buffers in the PCIe transaction layer */ 4842 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 4843 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, 4844 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); 4845 4846 /* Flush all writes and allow 20usec for all transactions to clear */ 4847 IXGBE_WRITE_FLUSH(hw); 4848 usec_delay(20); 4849 4850 /* restore previous register values */ 4851 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); 4852 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); 4853 } 4854 4855 static const u8 ixgbe_emc_temp_data[4] = { 4856 IXGBE_EMC_INTERNAL_DATA, 4857 IXGBE_EMC_DIODE1_DATA, 4858 IXGBE_EMC_DIODE2_DATA, 4859 IXGBE_EMC_DIODE3_DATA 4860 }; 4861 static const u8 ixgbe_emc_therm_limit[4] = { 4862 IXGBE_EMC_INTERNAL_THERM_LIMIT, 4863 IXGBE_EMC_DIODE1_THERM_LIMIT, 4864 IXGBE_EMC_DIODE2_THERM_LIMIT, 4865 IXGBE_EMC_DIODE3_THERM_LIMIT 4866 }; 4867 4868 /** 4869 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data 4870 * @hw: pointer to hardware structure 4871 * 4872 * Returns the thermal sensor data structure 4873 **/ 4874 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw) 4875 { 4876 s32 status = IXGBE_SUCCESS; 4877 u16 ets_offset; 4878 u16 ets_cfg; 4879 u16 ets_sensor; 4880 u8 num_sensors; 4881 u8 sensor_index; 4882 u8 sensor_location; 4883 u8 i; 4884 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 4885 4886 DEBUGFUNC("ixgbe_get_thermal_sensor_data_generic"); 4887 4888 /* Only support thermal sensors attached to 82599 physical port 0 */ 4889 if ((hw->mac.type != ixgbe_mac_82599EB) || 4890 (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) { 4891 status = IXGBE_NOT_IMPLEMENTED; 4892 goto out; 4893 } 4894 4895 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset); 4896 if (status) 4897 goto out; 4898 4899 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) { 4900 status = IXGBE_NOT_IMPLEMENTED; 4901 goto out; 4902 } 4903 4904 status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg); 4905 if (status) 4906 goto out; 4907 4908 if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT) 4909 != IXGBE_ETS_TYPE_EMC) { 4910 status = IXGBE_NOT_IMPLEMENTED; 4911 goto out; 4912 } 4913 4914 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 4915 if (num_sensors > IXGBE_MAX_SENSORS) 4916 num_sensors = IXGBE_MAX_SENSORS; 4917 4918 for (i = 0; i < num_sensors; i++) { 4919 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i), 4920 &ets_sensor); 4921 if (status) 4922 goto out; 4923 4924 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 4925 IXGBE_ETS_DATA_INDEX_SHIFT); 4926 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 4927 IXGBE_ETS_DATA_LOC_SHIFT); 4928 4929 if (sensor_location != 0) { 4930 status = hw->phy.ops.read_i2c_byte(hw, 4931 ixgbe_emc_temp_data[sensor_index], 4932 IXGBE_I2C_THERMAL_SENSOR_ADDR, 4933 &data->sensor[i].temp); 4934 if (status) 4935 goto out; 4936 } 4937 } 4938 out: 4939 return status; 4940 } 4941 4942 /** 4943 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds 4944 * @hw: pointer to hardware structure 4945 * 4946 * Inits the thermal sensor thresholds according to the NVM map 4947 * and save off the threshold and location values into mac.thermal_sensor_data 4948 **/ 4949 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw) 4950 { 4951 s32 status = IXGBE_SUCCESS; 4952 u16 offset; 4953 u16 ets_offset; 4954 u16 ets_cfg; 4955 u16 ets_sensor; 4956 u8 low_thresh_delta; 4957 u8 num_sensors; 4958 u8 sensor_index; 4959 u8 sensor_location; 4960 u8 therm_limit; 4961 u8 i; 4962 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 4963 4964 DEBUGFUNC("ixgbe_init_thermal_sensor_thresh_generic"); 4965 4966 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data)); 4967 4968 /* Only support thermal sensors attached to 82599 physical port 0 */ 4969 if ((hw->mac.type != ixgbe_mac_82599EB) || 4970 (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) 4971 return IXGBE_NOT_IMPLEMENTED; 4972 4973 offset = IXGBE_ETS_CFG; 4974 if (hw->eeprom.ops.read(hw, offset, &ets_offset)) 4975 goto eeprom_err; 4976 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 4977 return IXGBE_NOT_IMPLEMENTED; 4978 4979 offset = ets_offset; 4980 if (hw->eeprom.ops.read(hw, offset, &ets_cfg)) 4981 goto eeprom_err; 4982 if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT) 4983 != IXGBE_ETS_TYPE_EMC) 4984 return IXGBE_NOT_IMPLEMENTED; 4985 4986 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >> 4987 IXGBE_ETS_LTHRES_DELTA_SHIFT); 4988 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 4989 4990 for (i = 0; i < num_sensors; i++) { 4991 offset = ets_offset + 1 + i; 4992 if (hw->eeprom.ops.read(hw, offset, &ets_sensor)) { 4993 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 4994 "eeprom read at offset %d failed", 4995 offset); 4996 continue; 4997 } 4998 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 4999 IXGBE_ETS_DATA_INDEX_SHIFT); 5000 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 5001 IXGBE_ETS_DATA_LOC_SHIFT); 5002 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK; 5003 5004 hw->phy.ops.write_i2c_byte(hw, 5005 ixgbe_emc_therm_limit[sensor_index], 5006 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit); 5007 5008 if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) { 5009 data->sensor[i].location = sensor_location; 5010 data->sensor[i].caution_thresh = therm_limit; 5011 data->sensor[i].max_op_thresh = therm_limit - 5012 low_thresh_delta; 5013 } 5014 } 5015 return status; 5016 5017 eeprom_err: 5018 ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE, 5019 "eeprom read at offset %d failed", offset); 5020 return IXGBE_NOT_IMPLEMENTED; 5021 } 5022 5023 /** 5024 * ixgbe_bypass_rw_generic - Bit bang data into by_pass FW 5025 * 5026 * @hw: pointer to hardware structure 5027 * @cmd: Command we send to the FW 5028 * @status: The reply from the FW 5029 * 5030 * Bit-bangs the cmd to the by_pass FW status points to what is returned. 5031 **/ 5032 #define IXGBE_BYPASS_BB_WAIT 1 5033 s32 ixgbe_bypass_rw_generic(struct ixgbe_hw *hw, u32 cmd, u32 *status) 5034 { 5035 int i; 5036 u32 sck, sdi, sdo, dir_sck, dir_sdi, dir_sdo; 5037 u32 esdp; 5038 5039 if (!status) 5040 return IXGBE_ERR_PARAM; 5041 5042 *status = 0; 5043 5044 /* SDP vary by MAC type */ 5045 switch (hw->mac.type) { 5046 case ixgbe_mac_82599EB: 5047 sck = IXGBE_ESDP_SDP7; 5048 sdi = IXGBE_ESDP_SDP0; 5049 sdo = IXGBE_ESDP_SDP6; 5050 dir_sck = IXGBE_ESDP_SDP7_DIR; 5051 dir_sdi = IXGBE_ESDP_SDP0_DIR; 5052 dir_sdo = IXGBE_ESDP_SDP6_DIR; 5053 break; 5054 case ixgbe_mac_X540: 5055 sck = IXGBE_ESDP_SDP2; 5056 sdi = IXGBE_ESDP_SDP0; 5057 sdo = IXGBE_ESDP_SDP1; 5058 dir_sck = IXGBE_ESDP_SDP2_DIR; 5059 dir_sdi = IXGBE_ESDP_SDP0_DIR; 5060 dir_sdo = IXGBE_ESDP_SDP1_DIR; 5061 break; 5062 default: 5063 return IXGBE_ERR_DEVICE_NOT_SUPPORTED; 5064 } 5065 5066 /* Set SDP pins direction */ 5067 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 5068 esdp |= dir_sck; /* SCK as output */ 5069 esdp |= dir_sdi; /* SDI as output */ 5070 esdp &= ~dir_sdo; /* SDO as input */ 5071 esdp |= sck; 5072 esdp |= sdi; 5073 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5074 IXGBE_WRITE_FLUSH(hw); 5075 msec_delay(IXGBE_BYPASS_BB_WAIT); 5076 5077 /* Generate start condition */ 5078 esdp &= ~sdi; 5079 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5080 IXGBE_WRITE_FLUSH(hw); 5081 msec_delay(IXGBE_BYPASS_BB_WAIT); 5082 5083 esdp &= ~sck; 5084 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5085 IXGBE_WRITE_FLUSH(hw); 5086 msec_delay(IXGBE_BYPASS_BB_WAIT); 5087 5088 /* Clock out the new control word and clock in the status */ 5089 for (i = 0; i < 32; i++) { 5090 if ((cmd >> (31 - i)) & 0x01) { 5091 esdp |= sdi; 5092 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5093 } else { 5094 esdp &= ~sdi; 5095 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5096 } 5097 IXGBE_WRITE_FLUSH(hw); 5098 msec_delay(IXGBE_BYPASS_BB_WAIT); 5099 5100 esdp |= sck; 5101 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5102 IXGBE_WRITE_FLUSH(hw); 5103 msec_delay(IXGBE_BYPASS_BB_WAIT); 5104 5105 esdp &= ~sck; 5106 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5107 IXGBE_WRITE_FLUSH(hw); 5108 msec_delay(IXGBE_BYPASS_BB_WAIT); 5109 5110 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 5111 if (esdp & sdo) 5112 *status = (*status << 1) | 0x01; 5113 else 5114 *status = (*status << 1) | 0x00; 5115 msec_delay(IXGBE_BYPASS_BB_WAIT); 5116 } 5117 5118 /* stop condition */ 5119 esdp |= sck; 5120 esdp &= ~sdi; 5121 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5122 IXGBE_WRITE_FLUSH(hw); 5123 msec_delay(IXGBE_BYPASS_BB_WAIT); 5124 5125 esdp |= sdi; 5126 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 5127 IXGBE_WRITE_FLUSH(hw); 5128 5129 /* set the page bits to match the cmd that the status it belongs to */ 5130 *status = (*status & 0x3fffffff) | (cmd & 0xc0000000); 5131 5132 return IXGBE_SUCCESS; 5133 } 5134 5135 /** 5136 * ixgbe_bypass_valid_rd_generic - Verify valid return from bit-bang. 5137 * 5138 * If we send a write we can't be sure it took until we can read back 5139 * that same register. It can be a problem as some of the feilds may 5140 * for valid reasons change inbetween the time wrote the register and 5141 * we read it again to verify. So this function check everything we 5142 * can check and then assumes it worked. 5143 * 5144 * @u32 in_reg - The register cmd for the bit-bang read. 5145 * @u32 out_reg - The register returned from a bit-bang read. 5146 **/ 5147 bool ixgbe_bypass_valid_rd_generic(u32 in_reg, u32 out_reg) 5148 { 5149 u32 mask; 5150 5151 /* Page must match for all control pages */ 5152 if ((in_reg & BYPASS_PAGE_M) != (out_reg & BYPASS_PAGE_M)) 5153 return false; 5154 5155 switch (in_reg & BYPASS_PAGE_M) { 5156 case BYPASS_PAGE_CTL0: 5157 /* All the following can't change since the last write 5158 * - All the event actions 5159 * - The timeout value 5160 */ 5161 mask = BYPASS_AUX_ON_M | BYPASS_MAIN_ON_M | 5162 BYPASS_MAIN_OFF_M | BYPASS_AUX_OFF_M | 5163 BYPASS_WDTIMEOUT_M | 5164 BYPASS_WDT_VALUE_M; 5165 if ((out_reg & mask) != (in_reg & mask)) 5166 return false; 5167 5168 /* 0x0 is never a valid value for bypass status */ 5169 if (!(out_reg & BYPASS_STATUS_OFF_M)) 5170 return false; 5171 break; 5172 case BYPASS_PAGE_CTL1: 5173 /* All the following can't change since the last write 5174 * - time valid bit 5175 * - time we last sent 5176 */ 5177 mask = BYPASS_CTL1_VALID_M | BYPASS_CTL1_TIME_M; 5178 if ((out_reg & mask) != (in_reg & mask)) 5179 return false; 5180 break; 5181 case BYPASS_PAGE_CTL2: 5182 /* All we can check in this page is control number 5183 * which is already done above. 5184 */ 5185 break; 5186 } 5187 5188 /* We are as sure as we can be return true */ 5189 return true; 5190 } 5191 5192 /** 5193 * ixgbe_bypass_set_generic - Set a bypass field in the FW CTRL Regiter. 5194 * 5195 * @hw: pointer to hardware structure 5196 * @cmd: The control word we are setting. 5197 * @event: The event we are setting in the FW. This also happens to 5198 * be the mask for the event we are setting (handy) 5199 * @action: The action we set the event to in the FW. This is in a 5200 * bit field that happens to be what we want to put in 5201 * the event spot (also handy) 5202 **/ 5203 s32 ixgbe_bypass_set_generic(struct ixgbe_hw *hw, u32 ctrl, u32 event, 5204 u32 action) 5205 { 5206 u32 by_ctl = 0; 5207 u32 cmd, verify; 5208 u32 count = 0; 5209 5210 /* Get current values */ 5211 cmd = ctrl; /* just reading only need control number */ 5212 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl)) 5213 return IXGBE_ERR_INVALID_ARGUMENT; 5214 5215 /* Set to new action */ 5216 cmd = (by_ctl & ~event) | BYPASS_WE | action; 5217 if (ixgbe_bypass_rw_generic(hw, cmd, &by_ctl)) 5218 return IXGBE_ERR_INVALID_ARGUMENT; 5219 5220 /* Page 0 force a FW eeprom write which is slow so verify */ 5221 if ((cmd & BYPASS_PAGE_M) == BYPASS_PAGE_CTL0) { 5222 verify = BYPASS_PAGE_CTL0; 5223 do { 5224 if (count++ > 5) 5225 return IXGBE_BYPASS_FW_WRITE_FAILURE; 5226 5227 if (ixgbe_bypass_rw_generic(hw, verify, &by_ctl)) 5228 return IXGBE_ERR_INVALID_ARGUMENT; 5229 } while (!ixgbe_bypass_valid_rd_generic(cmd, by_ctl)); 5230 } else { 5231 /* We have give the FW time for the write to stick */ 5232 msec_delay(100); 5233 } 5234 5235 return IXGBE_SUCCESS; 5236 } 5237 5238 /** 5239 * ixgbe_bypass_rd_eep_generic - Read the bypass FW eeprom addres. 5240 * 5241 * @hw: pointer to hardware structure 5242 * @addr: The bypass eeprom address to read. 5243 * @value: The 8b of data at the address above. 5244 **/ 5245 s32 ixgbe_bypass_rd_eep_generic(struct ixgbe_hw *hw, u32 addr, u8 *value) 5246 { 5247 u32 cmd; 5248 u32 status; 5249 5250 5251 /* send the request */ 5252 cmd = BYPASS_PAGE_CTL2 | BYPASS_WE; 5253 cmd |= (addr << BYPASS_CTL2_OFFSET_SHIFT) & BYPASS_CTL2_OFFSET_M; 5254 if (ixgbe_bypass_rw_generic(hw, cmd, &status)) 5255 return IXGBE_ERR_INVALID_ARGUMENT; 5256 5257 /* We have give the FW time for the write to stick */ 5258 msec_delay(100); 5259 5260 /* now read the results */ 5261 cmd &= ~BYPASS_WE; 5262 if (ixgbe_bypass_rw_generic(hw, cmd, &status)) 5263 return IXGBE_ERR_INVALID_ARGUMENT; 5264 5265 *value = status & BYPASS_CTL2_DATA_M; 5266 5267 return IXGBE_SUCCESS; 5268 } 5269 5270 /** 5271 * ixgbe_get_orom_version - Return option ROM from EEPROM 5272 * 5273 * @hw: pointer to hardware structure 5274 * @nvm_ver: pointer to output structure 5275 * 5276 * if valid option ROM version, nvm_ver->or_valid set to true 5277 * else nvm_ver->or_valid is false. 5278 **/ 5279 void ixgbe_get_orom_version(struct ixgbe_hw *hw, 5280 struct ixgbe_nvm_version *nvm_ver) 5281 { 5282 u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl; 5283 5284 nvm_ver->or_valid = false; 5285 /* Option Rom may or may not be present. Start with pointer */ 5286 hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset); 5287 5288 /* make sure offset is valid */ 5289 if ((offset == 0x0) || (offset == NVM_INVALID_PTR)) 5290 return; 5291 5292 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh); 5293 hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl); 5294 5295 /* option rom exists and is valid */ 5296 if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 || 5297 eeprom_cfg_blkl == NVM_VER_INVALID || 5298 eeprom_cfg_blkh == NVM_VER_INVALID) 5299 return; 5300 5301 nvm_ver->or_valid = true; 5302 nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT; 5303 nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) | 5304 (eeprom_cfg_blkh >> NVM_OROM_SHIFT); 5305 nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK; 5306 } 5307 5308 /** 5309 * ixgbe_get_oem_prod_version - Return OEM Product version 5310 * 5311 * @hw: pointer to hardware structure 5312 * @nvm_ver: pointer to output structure 5313 * 5314 * if valid OEM product version, nvm_ver->oem_valid set to true 5315 * else nvm_ver->oem_valid is false. 5316 **/ 5317 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw, 5318 struct ixgbe_nvm_version *nvm_ver) 5319 { 5320 u16 rel_num, prod_ver, mod_len, cap, offset; 5321 5322 nvm_ver->oem_valid = false; 5323 hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset); 5324 5325 /* Return if offset to OEM Product Version block is invalid */ 5326 if (offset == 0x0 || offset == NVM_INVALID_PTR) 5327 return; 5328 5329 /* Read product version block */ 5330 hw->eeprom.ops.read(hw, offset, &mod_len); 5331 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap); 5332 5333 /* Return if OEM product version block is invalid */ 5334 if (mod_len != NVM_OEM_PROD_VER_MOD_LEN || 5335 (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0) 5336 return; 5337 5338 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver); 5339 hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num); 5340 5341 /* Return if version is invalid */ 5342 if ((rel_num | prod_ver) == 0x0 || 5343 rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID) 5344 return; 5345 5346 nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT; 5347 nvm_ver->oem_minor = prod_ver & NVM_VER_MASK; 5348 nvm_ver->oem_release = rel_num; 5349 nvm_ver->oem_valid = true; 5350 } 5351 5352 /** 5353 * ixgbe_get_etk_id - Return Etrack ID from EEPROM 5354 * 5355 * @hw: pointer to hardware structure 5356 * @nvm_ver: pointer to output structure 5357 * 5358 * word read errors will return 0xFFFF 5359 **/ 5360 void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver) 5361 { 5362 u16 etk_id_l, etk_id_h; 5363 5364 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l)) 5365 etk_id_l = NVM_VER_INVALID; 5366 if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h)) 5367 etk_id_h = NVM_VER_INVALID; 5368 5369 /* The word order for the version format is determined by high order 5370 * word bit 15. 5371 */ 5372 if ((etk_id_h & NVM_ETK_VALID) == 0) { 5373 nvm_ver->etk_id = etk_id_h; 5374 nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT); 5375 } else { 5376 nvm_ver->etk_id = etk_id_l; 5377 nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT); 5378 } 5379 } 5380 5381 5382 /** 5383 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg 5384 * @hw: pointer to hardware structure 5385 * @map: pointer to u8 arr for returning map 5386 * 5387 * Read the rtrup2tc HW register and resolve its content into map 5388 **/ 5389 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map) 5390 { 5391 u32 reg, i; 5392 5393 reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC); 5394 for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++) 5395 map[i] = IXGBE_RTRUP2TC_UP_MASK & 5396 (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT)); 5397 return; 5398 } 5399 5400 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw) 5401 { 5402 u32 pfdtxgswc; 5403 u32 rxctrl; 5404 5405 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 5406 if (rxctrl & IXGBE_RXCTRL_RXEN) { 5407 if (hw->mac.type != ixgbe_mac_82598EB) { 5408 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 5409 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { 5410 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; 5411 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 5412 hw->mac.set_lben = true; 5413 } else { 5414 hw->mac.set_lben = false; 5415 } 5416 } 5417 rxctrl &= ~IXGBE_RXCTRL_RXEN; 5418 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); 5419 } 5420 } 5421 5422 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw) 5423 { 5424 u32 pfdtxgswc; 5425 u32 rxctrl; 5426 5427 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 5428 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN)); 5429 5430 if (hw->mac.type != ixgbe_mac_82598EB) { 5431 if (hw->mac.set_lben) { 5432 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 5433 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN; 5434 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 5435 hw->mac.set_lben = false; 5436 } 5437 } 5438 } 5439 5440 /** 5441 * ixgbe_mng_present - returns true when management capability is present 5442 * @hw: pointer to hardware structure 5443 */ 5444 bool ixgbe_mng_present(struct ixgbe_hw *hw) 5445 { 5446 u32 fwsm; 5447 5448 if (hw->mac.type < ixgbe_mac_82599EB) 5449 return false; 5450 5451 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw)); 5452 5453 return !!(fwsm & IXGBE_FWSM_FW_MODE_PT); 5454 } 5455 5456 /** 5457 * ixgbe_mng_enabled - Is the manageability engine enabled? 5458 * @hw: pointer to hardware structure 5459 * 5460 * Returns true if the manageability engine is enabled. 5461 **/ 5462 bool ixgbe_mng_enabled(struct ixgbe_hw *hw) 5463 { 5464 u32 fwsm, manc, factps; 5465 5466 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw)); 5467 if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT) 5468 return false; 5469 5470 manc = IXGBE_READ_REG(hw, IXGBE_MANC); 5471 if (!(manc & IXGBE_MANC_RCV_TCO_EN)) 5472 return false; 5473 5474 if (hw->mac.type <= ixgbe_mac_X540) { 5475 factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw)); 5476 if (factps & IXGBE_FACTPS_MNGCG) 5477 return false; 5478 } 5479 5480 return true; 5481 } 5482 5483 /** 5484 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed 5485 * @hw: pointer to hardware structure 5486 * @speed: new link speed 5487 * @autoneg_wait_to_complete: true when waiting for completion is needed 5488 * 5489 * Set the link speed in the MAC and/or PHY register and restarts link. 5490 **/ 5491 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw, 5492 ixgbe_link_speed speed, 5493 bool autoneg_wait_to_complete) 5494 { 5495 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN; 5496 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN; 5497 s32 status = IXGBE_SUCCESS; 5498 u32 speedcnt = 0; 5499 u32 i = 0; 5500 bool autoneg, link_up = false; 5501 5502 DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber"); 5503 5504 /* Mask off requested but non-supported speeds */ 5505 status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg); 5506 if (status != IXGBE_SUCCESS) 5507 return status; 5508 5509 speed &= link_speed; 5510 5511 /* Try each speed one by one, highest priority first. We do this in 5512 * software because 10Gb fiber doesn't support speed autonegotiation. 5513 */ 5514 if (speed & IXGBE_LINK_SPEED_10GB_FULL) { 5515 speedcnt++; 5516 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL; 5517 5518 /* Set the module link speed */ 5519 switch (hw->phy.media_type) { 5520 case ixgbe_media_type_fiber_fixed: 5521 case ixgbe_media_type_fiber: 5522 ixgbe_set_rate_select_speed(hw, 5523 IXGBE_LINK_SPEED_10GB_FULL); 5524 break; 5525 case ixgbe_media_type_fiber_qsfp: 5526 /* QSFP module automatically detects MAC link speed */ 5527 break; 5528 default: 5529 DEBUGOUT("Unexpected media type.\n"); 5530 break; 5531 } 5532 5533 /* Allow module to change analog characteristics (1G->10G) */ 5534 msec_delay(40); 5535 5536 status = ixgbe_setup_mac_link(hw, 5537 IXGBE_LINK_SPEED_10GB_FULL, 5538 autoneg_wait_to_complete); 5539 if (status != IXGBE_SUCCESS) 5540 return status; 5541 5542 /* Flap the Tx laser if it has not already been done */ 5543 ixgbe_flap_tx_laser(hw); 5544 5545 /* Wait for the controller to acquire link. Per IEEE 802.3ap, 5546 * Section 73.10.2, we may have to wait up to 1000ms if KR is 5547 * attempted. 82599 uses the same timing for 10g SFI. 5548 */ 5549 for (i = 0; i < 10; i++) { 5550 /* Wait for the link partner to also set speed */ 5551 msec_delay(100); 5552 5553 /* If we have link, just jump out */ 5554 status = ixgbe_check_link(hw, &link_speed, 5555 &link_up, false); 5556 if (status != IXGBE_SUCCESS) 5557 return status; 5558 5559 if (link_up) 5560 goto out; 5561 } 5562 } 5563 5564 if (speed & IXGBE_LINK_SPEED_1GB_FULL) { 5565 speedcnt++; 5566 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN) 5567 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL; 5568 5569 /* Set the module link speed */ 5570 switch (hw->phy.media_type) { 5571 case ixgbe_media_type_fiber_fixed: 5572 case ixgbe_media_type_fiber: 5573 ixgbe_set_rate_select_speed(hw, 5574 IXGBE_LINK_SPEED_1GB_FULL); 5575 break; 5576 case ixgbe_media_type_fiber_qsfp: 5577 /* QSFP module automatically detects link speed */ 5578 break; 5579 default: 5580 DEBUGOUT("Unexpected media type.\n"); 5581 break; 5582 } 5583 5584 /* Allow module to change analog characteristics (10G->1G) */ 5585 msec_delay(40); 5586 5587 status = ixgbe_setup_mac_link(hw, 5588 IXGBE_LINK_SPEED_1GB_FULL, 5589 autoneg_wait_to_complete); 5590 if (status != IXGBE_SUCCESS) 5591 return status; 5592 5593 /* Flap the Tx laser if it has not already been done */ 5594 ixgbe_flap_tx_laser(hw); 5595 5596 /* Wait for the link partner to also set speed */ 5597 msec_delay(100); 5598 5599 /* If we have link, just jump out */ 5600 status = ixgbe_check_link(hw, &link_speed, &link_up, false); 5601 if (status != IXGBE_SUCCESS) 5602 return status; 5603 5604 if (link_up) 5605 goto out; 5606 } 5607 5608 /* We didn't get link. Configure back to the highest speed we tried, 5609 * (if there was more than one). We call ourselves back with just the 5610 * single highest speed that the user requested. 5611 */ 5612 if (speedcnt > 1) 5613 status = ixgbe_setup_mac_link_multispeed_fiber(hw, 5614 highest_link_speed, 5615 autoneg_wait_to_complete); 5616 5617 out: 5618 /* Set autoneg_advertised value based on input link speed */ 5619 hw->phy.autoneg_advertised = 0; 5620 5621 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 5622 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 5623 5624 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 5625 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 5626 5627 return status; 5628 } 5629 5630 /** 5631 * ixgbe_set_soft_rate_select_speed - Set module link speed 5632 * @hw: pointer to hardware structure 5633 * @speed: link speed to set 5634 * 5635 * Set module link speed via the soft rate select. 5636 */ 5637 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw, 5638 ixgbe_link_speed speed) 5639 { 5640 s32 status; 5641 u8 rs, eeprom_data; 5642 5643 switch (speed) { 5644 case IXGBE_LINK_SPEED_10GB_FULL: 5645 /* one bit mask same as setting on */ 5646 rs = IXGBE_SFF_SOFT_RS_SELECT_10G; 5647 break; 5648 case IXGBE_LINK_SPEED_1GB_FULL: 5649 rs = IXGBE_SFF_SOFT_RS_SELECT_1G; 5650 break; 5651 default: 5652 DEBUGOUT("Invalid fixed module speed\n"); 5653 return; 5654 } 5655 5656 /* Set RS0 */ 5657 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, 5658 IXGBE_I2C_EEPROM_DEV_ADDR2, 5659 &eeprom_data); 5660 if (status) { 5661 DEBUGOUT("Failed to read Rx Rate Select RS0\n"); 5662 goto out; 5663 } 5664 5665 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; 5666 5667 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB, 5668 IXGBE_I2C_EEPROM_DEV_ADDR2, 5669 eeprom_data); 5670 if (status) { 5671 DEBUGOUT("Failed to write Rx Rate Select RS0\n"); 5672 goto out; 5673 } 5674 5675 /* Set RS1 */ 5676 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, 5677 IXGBE_I2C_EEPROM_DEV_ADDR2, 5678 &eeprom_data); 5679 if (status) { 5680 DEBUGOUT("Failed to read Rx Rate Select RS1\n"); 5681 goto out; 5682 } 5683 5684 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs; 5685 5686 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB, 5687 IXGBE_I2C_EEPROM_DEV_ADDR2, 5688 eeprom_data); 5689 if (status) { 5690 DEBUGOUT("Failed to write Rx Rate Select RS1\n"); 5691 goto out; 5692 } 5693 out: 5694 return; 5695 } 5696