xref: /freebsd/sys/dev/ixgbe/ixgbe_common.c (revision 49b49cda41feabe3439f7318e8bf40e3896c7bf4)
1 /******************************************************************************
2 
3   Copyright (c) 2001-2015, Intel Corporation
4   All rights reserved.
5 
6   Redistribution and use in source and binary forms, with or without
7   modification, are permitted provided that the following conditions are met:
8 
9    1. Redistributions of source code must retain the above copyright notice,
10       this list of conditions and the following disclaimer.
11 
12    2. Redistributions in binary form must reproduce the above copyright
13       notice, this list of conditions and the following disclaimer in the
14       documentation and/or other materials provided with the distribution.
15 
16    3. Neither the name of the Intel Corporation nor the names of its
17       contributors may be used to endorse or promote products derived from
18       this software without specific prior written permission.
19 
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31 
32 ******************************************************************************/
33 /*$FreeBSD$*/
34 
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 #include "ixgbe_dcb.h"
38 #include "ixgbe_dcb_82599.h"
39 #include "ixgbe_api.h"
40 
41 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
42 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
43 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
44 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
45 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
46 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
47 					u16 count);
48 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
49 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
50 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
51 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
52 
53 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
54 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
55 					 u16 *san_mac_offset);
56 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
57 					     u16 words, u16 *data);
58 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					      u16 words, u16 *data);
60 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
61 						 u16 offset);
62 
63 /**
64  *  ixgbe_init_ops_generic - Inits function ptrs
65  *  @hw: pointer to the hardware structure
66  *
67  *  Initialize the function pointers.
68  **/
69 s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
70 {
71 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
72 	struct ixgbe_mac_info *mac = &hw->mac;
73 	u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
74 
75 	DEBUGFUNC("ixgbe_init_ops_generic");
76 
77 	/* EEPROM */
78 	eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
79 	/* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
80 	if (eec & IXGBE_EEC_PRES) {
81 		eeprom->ops.read = ixgbe_read_eerd_generic;
82 		eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
83 	} else {
84 		eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
85 		eeprom->ops.read_buffer =
86 				 ixgbe_read_eeprom_buffer_bit_bang_generic;
87 	}
88 	eeprom->ops.write = ixgbe_write_eeprom_generic;
89 	eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
90 	eeprom->ops.validate_checksum =
91 				      ixgbe_validate_eeprom_checksum_generic;
92 	eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
93 	eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
94 
95 	/* MAC */
96 	mac->ops.init_hw = ixgbe_init_hw_generic;
97 	mac->ops.reset_hw = NULL;
98 	mac->ops.start_hw = ixgbe_start_hw_generic;
99 	mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
100 	mac->ops.get_media_type = NULL;
101 	mac->ops.get_supported_physical_layer = NULL;
102 	mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
103 	mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
104 	mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
105 	mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
106 	mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
107 	mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
108 	mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
109 	mac->ops.prot_autoc_read = prot_autoc_read_generic;
110 	mac->ops.prot_autoc_write = prot_autoc_write_generic;
111 
112 	/* LEDs */
113 	mac->ops.led_on = ixgbe_led_on_generic;
114 	mac->ops.led_off = ixgbe_led_off_generic;
115 	mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
116 	mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
117 
118 	/* RAR, Multicast, VLAN */
119 	mac->ops.set_rar = ixgbe_set_rar_generic;
120 	mac->ops.clear_rar = ixgbe_clear_rar_generic;
121 	mac->ops.insert_mac_addr = NULL;
122 	mac->ops.set_vmdq = NULL;
123 	mac->ops.clear_vmdq = NULL;
124 	mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
125 	mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
126 	mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
127 	mac->ops.enable_mc = ixgbe_enable_mc_generic;
128 	mac->ops.disable_mc = ixgbe_disable_mc_generic;
129 	mac->ops.clear_vfta = NULL;
130 	mac->ops.set_vfta = NULL;
131 	mac->ops.set_vlvf = NULL;
132 	mac->ops.init_uta_tables = NULL;
133 	mac->ops.enable_rx = ixgbe_enable_rx_generic;
134 	mac->ops.disable_rx = ixgbe_disable_rx_generic;
135 
136 	/* Flow Control */
137 	mac->ops.fc_enable = ixgbe_fc_enable_generic;
138 	mac->ops.setup_fc = ixgbe_setup_fc_generic;
139 
140 	/* Link */
141 	mac->ops.get_link_capabilities = NULL;
142 	mac->ops.setup_link = NULL;
143 	mac->ops.check_link = NULL;
144 	mac->ops.dmac_config = NULL;
145 	mac->ops.dmac_update_tcs = NULL;
146 	mac->ops.dmac_config_tcs = NULL;
147 
148 	return IXGBE_SUCCESS;
149 }
150 
151 /**
152  * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
153  * of flow control
154  * @hw: pointer to hardware structure
155  *
156  * This function returns TRUE if the device supports flow control
157  * autonegotiation, and FALSE if it does not.
158  *
159  **/
160 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
161 {
162 	bool supported = FALSE;
163 	ixgbe_link_speed speed;
164 	bool link_up;
165 
166 	DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
167 
168 	switch (hw->phy.media_type) {
169 	case ixgbe_media_type_fiber_fixed:
170 	case ixgbe_media_type_fiber_qsfp:
171 	case ixgbe_media_type_fiber:
172 		hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
173 		/* if link is down, assume supported */
174 		if (link_up)
175 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
176 				TRUE : FALSE;
177 		else
178 			supported = TRUE;
179 		break;
180 	case ixgbe_media_type_backplane:
181 		supported = TRUE;
182 		break;
183 	case ixgbe_media_type_copper:
184 		/* only some copper devices support flow control autoneg */
185 		switch (hw->device_id) {
186 		case IXGBE_DEV_ID_82599_T3_LOM:
187 		case IXGBE_DEV_ID_X540T:
188 		case IXGBE_DEV_ID_X540T1:
189 		case IXGBE_DEV_ID_X540_BYPASS:
190 		case IXGBE_DEV_ID_X550T:
191 		case IXGBE_DEV_ID_X550T1:
192 		case IXGBE_DEV_ID_X550EM_X_10G_T:
193 			supported = TRUE;
194 			break;
195 		default:
196 			supported = FALSE;
197 		}
198 	default:
199 		break;
200 	}
201 
202 	ERROR_REPORT2(IXGBE_ERROR_UNSUPPORTED,
203 		      "Device %x does not support flow control autoneg",
204 		      hw->device_id);
205 	return supported;
206 }
207 
208 /**
209  *  ixgbe_setup_fc_generic - Set up flow control
210  *  @hw: pointer to hardware structure
211  *
212  *  Called at init time to set up flow control.
213  **/
214 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
215 {
216 	s32 ret_val = IXGBE_SUCCESS;
217 	u32 reg = 0, reg_bp = 0;
218 	u16 reg_cu = 0;
219 	bool locked = FALSE;
220 
221 	DEBUGFUNC("ixgbe_setup_fc_generic");
222 
223 	/* Validate the requested mode */
224 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
225 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
226 			   "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
227 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
228 		goto out;
229 	}
230 
231 	/*
232 	 * 10gig parts do not have a word in the EEPROM to determine the
233 	 * default flow control setting, so we explicitly set it to full.
234 	 */
235 	if (hw->fc.requested_mode == ixgbe_fc_default)
236 		hw->fc.requested_mode = ixgbe_fc_full;
237 
238 	/*
239 	 * Set up the 1G and 10G flow control advertisement registers so the
240 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
241 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
242 	 */
243 	switch (hw->phy.media_type) {
244 	case ixgbe_media_type_backplane:
245 		/* some MAC's need RMW protection on AUTOC */
246 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
247 		if (ret_val != IXGBE_SUCCESS)
248 			goto out;
249 
250 		/* only backplane uses autoc so fall though */
251 	case ixgbe_media_type_fiber_fixed:
252 	case ixgbe_media_type_fiber_qsfp:
253 	case ixgbe_media_type_fiber:
254 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
255 
256 		break;
257 	case ixgbe_media_type_copper:
258 		hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
259 				     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
260 		break;
261 	default:
262 		break;
263 	}
264 
265 	/*
266 	 * The possible values of fc.requested_mode are:
267 	 * 0: Flow control is completely disabled
268 	 * 1: Rx flow control is enabled (we can receive pause frames,
269 	 *    but not send pause frames).
270 	 * 2: Tx flow control is enabled (we can send pause frames but
271 	 *    we do not support receiving pause frames).
272 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
273 	 * other: Invalid.
274 	 */
275 	switch (hw->fc.requested_mode) {
276 	case ixgbe_fc_none:
277 		/* Flow control completely disabled by software override. */
278 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
279 		if (hw->phy.media_type == ixgbe_media_type_backplane)
280 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
281 				    IXGBE_AUTOC_ASM_PAUSE);
282 		else if (hw->phy.media_type == ixgbe_media_type_copper)
283 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
284 		break;
285 	case ixgbe_fc_tx_pause:
286 		/*
287 		 * Tx Flow control is enabled, and Rx Flow control is
288 		 * disabled by software override.
289 		 */
290 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
291 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
292 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
293 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
294 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
295 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
296 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
297 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
298 		}
299 		break;
300 	case ixgbe_fc_rx_pause:
301 		/*
302 		 * Rx Flow control is enabled and Tx Flow control is
303 		 * disabled by software override. Since there really
304 		 * isn't a way to advertise that we are capable of RX
305 		 * Pause ONLY, we will advertise that we support both
306 		 * symmetric and asymmetric Rx PAUSE, as such we fall
307 		 * through to the fc_full statement.  Later, we will
308 		 * disable the adapter's ability to send PAUSE frames.
309 		 */
310 	case ixgbe_fc_full:
311 		/* Flow control (both Rx and Tx) is enabled by SW override. */
312 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
313 		if (hw->phy.media_type == ixgbe_media_type_backplane)
314 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
315 				  IXGBE_AUTOC_ASM_PAUSE;
316 		else if (hw->phy.media_type == ixgbe_media_type_copper)
317 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
318 		break;
319 	default:
320 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
321 			     "Flow control param set incorrectly\n");
322 		ret_val = IXGBE_ERR_CONFIG;
323 		goto out;
324 		break;
325 	}
326 
327 	if (hw->mac.type < ixgbe_mac_X540) {
328 		/*
329 		 * Enable auto-negotiation between the MAC & PHY;
330 		 * the MAC will advertise clause 37 flow control.
331 		 */
332 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
333 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
334 
335 		/* Disable AN timeout */
336 		if (hw->fc.strict_ieee)
337 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
338 
339 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
340 		DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
341 	}
342 
343 	/*
344 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
345 	 * and copper. There is no need to set the PCS1GCTL register.
346 	 *
347 	 */
348 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
349 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
350 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
351 		if (ret_val)
352 			goto out;
353 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
354 		    (ixgbe_device_supports_autoneg_fc(hw))) {
355 		hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
356 				      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
357 	}
358 
359 	DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
360 out:
361 	return ret_val;
362 }
363 
364 /**
365  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
366  *  @hw: pointer to hardware structure
367  *
368  *  Starts the hardware by filling the bus info structure and media type, clears
369  *  all on chip counters, initializes receive address registers, multicast
370  *  table, VLAN filter table, calls routine to set up link and flow control
371  *  settings, and leaves transmit and receive units disabled and uninitialized
372  **/
373 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
374 {
375 	s32 ret_val;
376 	u32 ctrl_ext;
377 
378 	DEBUGFUNC("ixgbe_start_hw_generic");
379 
380 	/* Set the media type */
381 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
382 
383 	/* PHY ops initialization must be done in reset_hw() */
384 
385 	/* Clear the VLAN filter table */
386 	hw->mac.ops.clear_vfta(hw);
387 
388 	/* Clear statistics registers */
389 	hw->mac.ops.clear_hw_cntrs(hw);
390 
391 	/* Set No Snoop Disable */
392 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
393 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
394 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
395 	IXGBE_WRITE_FLUSH(hw);
396 
397 	/* Setup flow control */
398 	ret_val = ixgbe_setup_fc(hw);
399 	if (ret_val != IXGBE_SUCCESS)
400 		goto out;
401 
402 	/* Clear adapter stopped flag */
403 	hw->adapter_stopped = FALSE;
404 
405 out:
406 	return ret_val;
407 }
408 
409 /**
410  *  ixgbe_start_hw_gen2 - Init sequence for common device family
411  *  @hw: pointer to hw structure
412  *
413  * Performs the init sequence common to the second generation
414  * of 10 GbE devices.
415  * Devices in the second generation:
416  *     82599
417  *     X540
418  **/
419 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
420 {
421 	u32 i;
422 	u32 regval;
423 
424 	/* Clear the rate limiters */
425 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
426 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
427 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
428 	}
429 	IXGBE_WRITE_FLUSH(hw);
430 
431 	/* Disable relaxed ordering */
432 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
433 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
434 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
435 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
436 	}
437 
438 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
439 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
440 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
441 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
442 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
443 	}
444 
445 	return IXGBE_SUCCESS;
446 }
447 
448 /**
449  *  ixgbe_init_hw_generic - Generic hardware initialization
450  *  @hw: pointer to hardware structure
451  *
452  *  Initialize the hardware by resetting the hardware, filling the bus info
453  *  structure and media type, clears all on chip counters, initializes receive
454  *  address registers, multicast table, VLAN filter table, calls routine to set
455  *  up link and flow control settings, and leaves transmit and receive units
456  *  disabled and uninitialized
457  **/
458 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
459 {
460 	s32 status;
461 
462 	DEBUGFUNC("ixgbe_init_hw_generic");
463 
464 	/* Reset the hardware */
465 	status = hw->mac.ops.reset_hw(hw);
466 
467 	if (status == IXGBE_SUCCESS) {
468 		/* Start the HW */
469 		status = hw->mac.ops.start_hw(hw);
470 	}
471 
472 	return status;
473 }
474 
475 /**
476  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
477  *  @hw: pointer to hardware structure
478  *
479  *  Clears all hardware statistics counters by reading them from the hardware
480  *  Statistics counters are clear on read.
481  **/
482 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
483 {
484 	u16 i = 0;
485 
486 	DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
487 
488 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
489 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
490 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
491 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
492 	for (i = 0; i < 8; i++)
493 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
494 
495 	IXGBE_READ_REG(hw, IXGBE_MLFC);
496 	IXGBE_READ_REG(hw, IXGBE_MRFC);
497 	IXGBE_READ_REG(hw, IXGBE_RLEC);
498 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
499 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
500 	if (hw->mac.type >= ixgbe_mac_82599EB) {
501 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
502 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
503 	} else {
504 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
505 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
506 	}
507 
508 	for (i = 0; i < 8; i++) {
509 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
510 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
511 		if (hw->mac.type >= ixgbe_mac_82599EB) {
512 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
513 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
514 		} else {
515 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
516 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
517 		}
518 	}
519 	if (hw->mac.type >= ixgbe_mac_82599EB)
520 		for (i = 0; i < 8; i++)
521 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
522 	IXGBE_READ_REG(hw, IXGBE_PRC64);
523 	IXGBE_READ_REG(hw, IXGBE_PRC127);
524 	IXGBE_READ_REG(hw, IXGBE_PRC255);
525 	IXGBE_READ_REG(hw, IXGBE_PRC511);
526 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
527 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
528 	IXGBE_READ_REG(hw, IXGBE_GPRC);
529 	IXGBE_READ_REG(hw, IXGBE_BPRC);
530 	IXGBE_READ_REG(hw, IXGBE_MPRC);
531 	IXGBE_READ_REG(hw, IXGBE_GPTC);
532 	IXGBE_READ_REG(hw, IXGBE_GORCL);
533 	IXGBE_READ_REG(hw, IXGBE_GORCH);
534 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
535 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
536 	if (hw->mac.type == ixgbe_mac_82598EB)
537 		for (i = 0; i < 8; i++)
538 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
539 	IXGBE_READ_REG(hw, IXGBE_RUC);
540 	IXGBE_READ_REG(hw, IXGBE_RFC);
541 	IXGBE_READ_REG(hw, IXGBE_ROC);
542 	IXGBE_READ_REG(hw, IXGBE_RJC);
543 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
544 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
545 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
546 	IXGBE_READ_REG(hw, IXGBE_TORL);
547 	IXGBE_READ_REG(hw, IXGBE_TORH);
548 	IXGBE_READ_REG(hw, IXGBE_TPR);
549 	IXGBE_READ_REG(hw, IXGBE_TPT);
550 	IXGBE_READ_REG(hw, IXGBE_PTC64);
551 	IXGBE_READ_REG(hw, IXGBE_PTC127);
552 	IXGBE_READ_REG(hw, IXGBE_PTC255);
553 	IXGBE_READ_REG(hw, IXGBE_PTC511);
554 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
555 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
556 	IXGBE_READ_REG(hw, IXGBE_MPTC);
557 	IXGBE_READ_REG(hw, IXGBE_BPTC);
558 	for (i = 0; i < 16; i++) {
559 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
560 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
561 		if (hw->mac.type >= ixgbe_mac_82599EB) {
562 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
563 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
564 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
565 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
566 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
567 		} else {
568 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
569 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
570 		}
571 	}
572 
573 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
574 		if (hw->phy.id == 0)
575 			ixgbe_identify_phy(hw);
576 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
577 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
578 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
579 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
580 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
581 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
582 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
583 				     IXGBE_MDIO_PCS_DEV_TYPE, &i);
584 	}
585 
586 	return IXGBE_SUCCESS;
587 }
588 
589 /**
590  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
591  *  @hw: pointer to hardware structure
592  *  @pba_num: stores the part number string from the EEPROM
593  *  @pba_num_size: part number string buffer length
594  *
595  *  Reads the part number string from the EEPROM.
596  **/
597 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
598 				  u32 pba_num_size)
599 {
600 	s32 ret_val;
601 	u16 data;
602 	u16 pba_ptr;
603 	u16 offset;
604 	u16 length;
605 
606 	DEBUGFUNC("ixgbe_read_pba_string_generic");
607 
608 	if (pba_num == NULL) {
609 		DEBUGOUT("PBA string buffer was null\n");
610 		return IXGBE_ERR_INVALID_ARGUMENT;
611 	}
612 
613 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
614 	if (ret_val) {
615 		DEBUGOUT("NVM Read Error\n");
616 		return ret_val;
617 	}
618 
619 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
620 	if (ret_val) {
621 		DEBUGOUT("NVM Read Error\n");
622 		return ret_val;
623 	}
624 
625 	/*
626 	 * if data is not ptr guard the PBA must be in legacy format which
627 	 * means pba_ptr is actually our second data word for the PBA number
628 	 * and we can decode it into an ascii string
629 	 */
630 	if (data != IXGBE_PBANUM_PTR_GUARD) {
631 		DEBUGOUT("NVM PBA number is not stored as string\n");
632 
633 		/* we will need 11 characters to store the PBA */
634 		if (pba_num_size < 11) {
635 			DEBUGOUT("PBA string buffer too small\n");
636 			return IXGBE_ERR_NO_SPACE;
637 		}
638 
639 		/* extract hex string from data and pba_ptr */
640 		pba_num[0] = (data >> 12) & 0xF;
641 		pba_num[1] = (data >> 8) & 0xF;
642 		pba_num[2] = (data >> 4) & 0xF;
643 		pba_num[3] = data & 0xF;
644 		pba_num[4] = (pba_ptr >> 12) & 0xF;
645 		pba_num[5] = (pba_ptr >> 8) & 0xF;
646 		pba_num[6] = '-';
647 		pba_num[7] = 0;
648 		pba_num[8] = (pba_ptr >> 4) & 0xF;
649 		pba_num[9] = pba_ptr & 0xF;
650 
651 		/* put a null character on the end of our string */
652 		pba_num[10] = '\0';
653 
654 		/* switch all the data but the '-' to hex char */
655 		for (offset = 0; offset < 10; offset++) {
656 			if (pba_num[offset] < 0xA)
657 				pba_num[offset] += '0';
658 			else if (pba_num[offset] < 0x10)
659 				pba_num[offset] += 'A' - 0xA;
660 		}
661 
662 		return IXGBE_SUCCESS;
663 	}
664 
665 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
666 	if (ret_val) {
667 		DEBUGOUT("NVM Read Error\n");
668 		return ret_val;
669 	}
670 
671 	if (length == 0xFFFF || length == 0) {
672 		DEBUGOUT("NVM PBA number section invalid length\n");
673 		return IXGBE_ERR_PBA_SECTION;
674 	}
675 
676 	/* check if pba_num buffer is big enough */
677 	if (pba_num_size  < (((u32)length * 2) - 1)) {
678 		DEBUGOUT("PBA string buffer too small\n");
679 		return IXGBE_ERR_NO_SPACE;
680 	}
681 
682 	/* trim pba length from start of string */
683 	pba_ptr++;
684 	length--;
685 
686 	for (offset = 0; offset < length; offset++) {
687 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
688 		if (ret_val) {
689 			DEBUGOUT("NVM Read Error\n");
690 			return ret_val;
691 		}
692 		pba_num[offset * 2] = (u8)(data >> 8);
693 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
694 	}
695 	pba_num[offset * 2] = '\0';
696 
697 	return IXGBE_SUCCESS;
698 }
699 
700 /**
701  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
702  *  @hw: pointer to hardware structure
703  *  @pba_num: stores the part number from the EEPROM
704  *
705  *  Reads the part number from the EEPROM.
706  **/
707 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
708 {
709 	s32 ret_val;
710 	u16 data;
711 
712 	DEBUGFUNC("ixgbe_read_pba_num_generic");
713 
714 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
715 	if (ret_val) {
716 		DEBUGOUT("NVM Read Error\n");
717 		return ret_val;
718 	} else if (data == IXGBE_PBANUM_PTR_GUARD) {
719 		DEBUGOUT("NVM Not supported\n");
720 		return IXGBE_NOT_IMPLEMENTED;
721 	}
722 	*pba_num = (u32)(data << 16);
723 
724 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
725 	if (ret_val) {
726 		DEBUGOUT("NVM Read Error\n");
727 		return ret_val;
728 	}
729 	*pba_num |= data;
730 
731 	return IXGBE_SUCCESS;
732 }
733 
734 /**
735  *  ixgbe_read_pba_raw
736  *  @hw: pointer to the HW structure
737  *  @eeprom_buf: optional pointer to EEPROM image
738  *  @eeprom_buf_size: size of EEPROM image in words
739  *  @max_pba_block_size: PBA block size limit
740  *  @pba: pointer to output PBA structure
741  *
742  *  Reads PBA from EEPROM image when eeprom_buf is not NULL.
743  *  Reads PBA from physical EEPROM device when eeprom_buf is NULL.
744  *
745  **/
746 s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
747 		       u32 eeprom_buf_size, u16 max_pba_block_size,
748 		       struct ixgbe_pba *pba)
749 {
750 	s32 ret_val;
751 	u16 pba_block_size;
752 
753 	if (pba == NULL)
754 		return IXGBE_ERR_PARAM;
755 
756 	if (eeprom_buf == NULL) {
757 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
758 						     &pba->word[0]);
759 		if (ret_val)
760 			return ret_val;
761 	} else {
762 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
763 			pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
764 			pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
765 		} else {
766 			return IXGBE_ERR_PARAM;
767 		}
768 	}
769 
770 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
771 		if (pba->pba_block == NULL)
772 			return IXGBE_ERR_PARAM;
773 
774 		ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
775 						   eeprom_buf_size,
776 						   &pba_block_size);
777 		if (ret_val)
778 			return ret_val;
779 
780 		if (pba_block_size > max_pba_block_size)
781 			return IXGBE_ERR_PARAM;
782 
783 		if (eeprom_buf == NULL) {
784 			ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
785 							     pba_block_size,
786 							     pba->pba_block);
787 			if (ret_val)
788 				return ret_val;
789 		} else {
790 			if (eeprom_buf_size > (u32)(pba->word[1] +
791 					      pba_block_size)) {
792 				memcpy(pba->pba_block,
793 				       &eeprom_buf[pba->word[1]],
794 				       pba_block_size * sizeof(u16));
795 			} else {
796 				return IXGBE_ERR_PARAM;
797 			}
798 		}
799 	}
800 
801 	return IXGBE_SUCCESS;
802 }
803 
804 /**
805  *  ixgbe_write_pba_raw
806  *  @hw: pointer to the HW structure
807  *  @eeprom_buf: optional pointer to EEPROM image
808  *  @eeprom_buf_size: size of EEPROM image in words
809  *  @pba: pointer to PBA structure
810  *
811  *  Writes PBA to EEPROM image when eeprom_buf is not NULL.
812  *  Writes PBA to physical EEPROM device when eeprom_buf is NULL.
813  *
814  **/
815 s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
816 			u32 eeprom_buf_size, struct ixgbe_pba *pba)
817 {
818 	s32 ret_val;
819 
820 	if (pba == NULL)
821 		return IXGBE_ERR_PARAM;
822 
823 	if (eeprom_buf == NULL) {
824 		ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
825 						      &pba->word[0]);
826 		if (ret_val)
827 			return ret_val;
828 	} else {
829 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
830 			eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
831 			eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
832 		} else {
833 			return IXGBE_ERR_PARAM;
834 		}
835 	}
836 
837 	if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
838 		if (pba->pba_block == NULL)
839 			return IXGBE_ERR_PARAM;
840 
841 		if (eeprom_buf == NULL) {
842 			ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
843 							      pba->pba_block[0],
844 							      pba->pba_block);
845 			if (ret_val)
846 				return ret_val;
847 		} else {
848 			if (eeprom_buf_size > (u32)(pba->word[1] +
849 					      pba->pba_block[0])) {
850 				memcpy(&eeprom_buf[pba->word[1]],
851 				       pba->pba_block,
852 				       pba->pba_block[0] * sizeof(u16));
853 			} else {
854 				return IXGBE_ERR_PARAM;
855 			}
856 		}
857 	}
858 
859 	return IXGBE_SUCCESS;
860 }
861 
862 /**
863  *  ixgbe_get_pba_block_size
864  *  @hw: pointer to the HW structure
865  *  @eeprom_buf: optional pointer to EEPROM image
866  *  @eeprom_buf_size: size of EEPROM image in words
867  *  @pba_data_size: pointer to output variable
868  *
869  *  Returns the size of the PBA block in words. Function operates on EEPROM
870  *  image if the eeprom_buf pointer is not NULL otherwise it accesses physical
871  *  EEPROM device.
872  *
873  **/
874 s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
875 			     u32 eeprom_buf_size, u16 *pba_block_size)
876 {
877 	s32 ret_val;
878 	u16 pba_word[2];
879 	u16 length;
880 
881 	DEBUGFUNC("ixgbe_get_pba_block_size");
882 
883 	if (eeprom_buf == NULL) {
884 		ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
885 						     &pba_word[0]);
886 		if (ret_val)
887 			return ret_val;
888 	} else {
889 		if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
890 			pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
891 			pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
892 		} else {
893 			return IXGBE_ERR_PARAM;
894 		}
895 	}
896 
897 	if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
898 		if (eeprom_buf == NULL) {
899 			ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
900 						      &length);
901 			if (ret_val)
902 				return ret_val;
903 		} else {
904 			if (eeprom_buf_size > pba_word[1])
905 				length = eeprom_buf[pba_word[1] + 0];
906 			else
907 				return IXGBE_ERR_PARAM;
908 		}
909 
910 		if (length == 0xFFFF || length == 0)
911 			return IXGBE_ERR_PBA_SECTION;
912 	} else {
913 		/* PBA number in legacy format, there is no PBA Block. */
914 		length = 0;
915 	}
916 
917 	if (pba_block_size != NULL)
918 		*pba_block_size = length;
919 
920 	return IXGBE_SUCCESS;
921 }
922 
923 /**
924  *  ixgbe_get_mac_addr_generic - Generic get MAC address
925  *  @hw: pointer to hardware structure
926  *  @mac_addr: Adapter MAC address
927  *
928  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
929  *  A reset of the adapter must be performed prior to calling this function
930  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
931  **/
932 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
933 {
934 	u32 rar_high;
935 	u32 rar_low;
936 	u16 i;
937 
938 	DEBUGFUNC("ixgbe_get_mac_addr_generic");
939 
940 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
941 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
942 
943 	for (i = 0; i < 4; i++)
944 		mac_addr[i] = (u8)(rar_low >> (i*8));
945 
946 	for (i = 0; i < 2; i++)
947 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
948 
949 	return IXGBE_SUCCESS;
950 }
951 
952 /**
953  *  ixgbe_set_pci_config_data_generic - Generic store PCI bus info
954  *  @hw: pointer to hardware structure
955  *  @link_status: the link status returned by the PCI config space
956  *
957  *  Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
958  **/
959 void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
960 {
961 	struct ixgbe_mac_info *mac = &hw->mac;
962 
963 	if (hw->bus.type == ixgbe_bus_type_unknown)
964 		hw->bus.type = ixgbe_bus_type_pci_express;
965 
966 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
967 	case IXGBE_PCI_LINK_WIDTH_1:
968 		hw->bus.width = ixgbe_bus_width_pcie_x1;
969 		break;
970 	case IXGBE_PCI_LINK_WIDTH_2:
971 		hw->bus.width = ixgbe_bus_width_pcie_x2;
972 		break;
973 	case IXGBE_PCI_LINK_WIDTH_4:
974 		hw->bus.width = ixgbe_bus_width_pcie_x4;
975 		break;
976 	case IXGBE_PCI_LINK_WIDTH_8:
977 		hw->bus.width = ixgbe_bus_width_pcie_x8;
978 		break;
979 	default:
980 		hw->bus.width = ixgbe_bus_width_unknown;
981 		break;
982 	}
983 
984 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
985 	case IXGBE_PCI_LINK_SPEED_2500:
986 		hw->bus.speed = ixgbe_bus_speed_2500;
987 		break;
988 	case IXGBE_PCI_LINK_SPEED_5000:
989 		hw->bus.speed = ixgbe_bus_speed_5000;
990 		break;
991 	case IXGBE_PCI_LINK_SPEED_8000:
992 		hw->bus.speed = ixgbe_bus_speed_8000;
993 		break;
994 	default:
995 		hw->bus.speed = ixgbe_bus_speed_unknown;
996 		break;
997 	}
998 
999 	mac->ops.set_lan_id(hw);
1000 }
1001 
1002 /**
1003  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
1004  *  @hw: pointer to hardware structure
1005  *
1006  *  Gets the PCI bus info (speed, width, type) then calls helper function to
1007  *  store this data within the ixgbe_hw structure.
1008  **/
1009 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1010 {
1011 	u16 link_status;
1012 
1013 	DEBUGFUNC("ixgbe_get_bus_info_generic");
1014 
1015 	/* Get the negotiated link width and speed from PCI config space */
1016 	link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1017 
1018 	ixgbe_set_pci_config_data_generic(hw, link_status);
1019 
1020 	return IXGBE_SUCCESS;
1021 }
1022 
1023 /**
1024  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1025  *  @hw: pointer to the HW structure
1026  *
1027  *  Determines the LAN function id by reading memory-mapped registers
1028  *  and swaps the port value if requested.
1029  **/
1030 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1031 {
1032 	struct ixgbe_bus_info *bus = &hw->bus;
1033 	u32 reg;
1034 
1035 	DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1036 
1037 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1038 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1039 	bus->lan_id = bus->func;
1040 
1041 	/* check for a port swap */
1042 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1043 	if (reg & IXGBE_FACTPS_LFS)
1044 		bus->func ^= 0x1;
1045 }
1046 
1047 /**
1048  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1049  *  @hw: pointer to hardware structure
1050  *
1051  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1052  *  disables transmit and receive units. The adapter_stopped flag is used by
1053  *  the shared code and drivers to determine if the adapter is in a stopped
1054  *  state and should not touch the hardware.
1055  **/
1056 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1057 {
1058 	u32 reg_val;
1059 	u16 i;
1060 
1061 	DEBUGFUNC("ixgbe_stop_adapter_generic");
1062 
1063 	/*
1064 	 * Set the adapter_stopped flag so other driver functions stop touching
1065 	 * the hardware
1066 	 */
1067 	hw->adapter_stopped = TRUE;
1068 
1069 	/* Disable the receive unit */
1070 	ixgbe_disable_rx(hw);
1071 
1072 	/* Clear interrupt mask to stop interrupts from being generated */
1073 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1074 
1075 	/* Clear any pending interrupts, flush previous writes */
1076 	IXGBE_READ_REG(hw, IXGBE_EICR);
1077 
1078 	/* Disable the transmit unit.  Each queue must be disabled. */
1079 	for (i = 0; i < hw->mac.max_tx_queues; i++)
1080 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1081 
1082 	/* Disable the receive unit by stopping each queue */
1083 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
1084 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1085 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
1086 		reg_val |= IXGBE_RXDCTL_SWFLSH;
1087 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1088 	}
1089 
1090 	/* flush all queues disables */
1091 	IXGBE_WRITE_FLUSH(hw);
1092 	msec_delay(2);
1093 
1094 	/*
1095 	 * Prevent the PCI-E bus from hanging by disabling PCI-E master
1096 	 * access and verify no pending requests
1097 	 */
1098 	return ixgbe_disable_pcie_master(hw);
1099 }
1100 
1101 /**
1102  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
1103  *  @hw: pointer to hardware structure
1104  *  @index: led number to turn on
1105  **/
1106 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1107 {
1108 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1109 
1110 	DEBUGFUNC("ixgbe_led_on_generic");
1111 
1112 	/* To turn on the LED, set mode to ON. */
1113 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1114 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1115 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1116 	IXGBE_WRITE_FLUSH(hw);
1117 
1118 	return IXGBE_SUCCESS;
1119 }
1120 
1121 /**
1122  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
1123  *  @hw: pointer to hardware structure
1124  *  @index: led number to turn off
1125  **/
1126 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1127 {
1128 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1129 
1130 	DEBUGFUNC("ixgbe_led_off_generic");
1131 
1132 	/* To turn off the LED, set mode to OFF. */
1133 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
1134 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1135 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1136 	IXGBE_WRITE_FLUSH(hw);
1137 
1138 	return IXGBE_SUCCESS;
1139 }
1140 
1141 /**
1142  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1143  *  @hw: pointer to hardware structure
1144  *
1145  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
1146  *  ixgbe_hw struct in order to set up EEPROM access.
1147  **/
1148 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1149 {
1150 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1151 	u32 eec;
1152 	u16 eeprom_size;
1153 
1154 	DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1155 
1156 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
1157 		eeprom->type = ixgbe_eeprom_none;
1158 		/* Set default semaphore delay to 10ms which is a well
1159 		 * tested value */
1160 		eeprom->semaphore_delay = 10;
1161 		/* Clear EEPROM page size, it will be initialized as needed */
1162 		eeprom->word_page_size = 0;
1163 
1164 		/*
1165 		 * Check for EEPROM present first.
1166 		 * If not present leave as none
1167 		 */
1168 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1169 		if (eec & IXGBE_EEC_PRES) {
1170 			eeprom->type = ixgbe_eeprom_spi;
1171 
1172 			/*
1173 			 * SPI EEPROM is assumed here.  This code would need to
1174 			 * change if a future EEPROM is not SPI.
1175 			 */
1176 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1177 					    IXGBE_EEC_SIZE_SHIFT);
1178 			eeprom->word_size = 1 << (eeprom_size +
1179 					     IXGBE_EEPROM_WORD_SIZE_SHIFT);
1180 		}
1181 
1182 		if (eec & IXGBE_EEC_ADDR_SIZE)
1183 			eeprom->address_bits = 16;
1184 		else
1185 			eeprom->address_bits = 8;
1186 		DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1187 			  "%d\n", eeprom->type, eeprom->word_size,
1188 			  eeprom->address_bits);
1189 	}
1190 
1191 	return IXGBE_SUCCESS;
1192 }
1193 
1194 /**
1195  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1196  *  @hw: pointer to hardware structure
1197  *  @offset: offset within the EEPROM to write
1198  *  @words: number of word(s)
1199  *  @data: 16 bit word(s) to write to EEPROM
1200  *
1201  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1202  **/
1203 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1204 					       u16 words, u16 *data)
1205 {
1206 	s32 status = IXGBE_SUCCESS;
1207 	u16 i, count;
1208 
1209 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1210 
1211 	hw->eeprom.ops.init_params(hw);
1212 
1213 	if (words == 0) {
1214 		status = IXGBE_ERR_INVALID_ARGUMENT;
1215 		goto out;
1216 	}
1217 
1218 	if (offset + words > hw->eeprom.word_size) {
1219 		status = IXGBE_ERR_EEPROM;
1220 		goto out;
1221 	}
1222 
1223 	/*
1224 	 * The EEPROM page size cannot be queried from the chip. We do lazy
1225 	 * initialization. It is worth to do that when we write large buffer.
1226 	 */
1227 	if ((hw->eeprom.word_page_size == 0) &&
1228 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1229 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
1230 
1231 	/*
1232 	 * We cannot hold synchronization semaphores for too long
1233 	 * to avoid other entity starvation. However it is more efficient
1234 	 * to read in bursts than synchronizing access for each word.
1235 	 */
1236 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1237 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1238 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1239 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1240 							    count, &data[i]);
1241 
1242 		if (status != IXGBE_SUCCESS)
1243 			break;
1244 	}
1245 
1246 out:
1247 	return status;
1248 }
1249 
1250 /**
1251  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1252  *  @hw: pointer to hardware structure
1253  *  @offset: offset within the EEPROM to be written to
1254  *  @words: number of word(s)
1255  *  @data: 16 bit word(s) to be written to the EEPROM
1256  *
1257  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1258  *  EEPROM will most likely contain an invalid checksum.
1259  **/
1260 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1261 					      u16 words, u16 *data)
1262 {
1263 	s32 status;
1264 	u16 word;
1265 	u16 page_size;
1266 	u16 i;
1267 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1268 
1269 	DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1270 
1271 	/* Prepare the EEPROM for writing  */
1272 	status = ixgbe_acquire_eeprom(hw);
1273 
1274 	if (status == IXGBE_SUCCESS) {
1275 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1276 			ixgbe_release_eeprom(hw);
1277 			status = IXGBE_ERR_EEPROM;
1278 		}
1279 	}
1280 
1281 	if (status == IXGBE_SUCCESS) {
1282 		for (i = 0; i < words; i++) {
1283 			ixgbe_standby_eeprom(hw);
1284 
1285 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
1286 			ixgbe_shift_out_eeprom_bits(hw,
1287 						   IXGBE_EEPROM_WREN_OPCODE_SPI,
1288 						   IXGBE_EEPROM_OPCODE_BITS);
1289 
1290 			ixgbe_standby_eeprom(hw);
1291 
1292 			/*
1293 			 * Some SPI eeproms use the 8th address bit embedded
1294 			 * in the opcode
1295 			 */
1296 			if ((hw->eeprom.address_bits == 8) &&
1297 			    ((offset + i) >= 128))
1298 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1299 
1300 			/* Send the Write command (8-bit opcode + addr) */
1301 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1302 						    IXGBE_EEPROM_OPCODE_BITS);
1303 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1304 						    hw->eeprom.address_bits);
1305 
1306 			page_size = hw->eeprom.word_page_size;
1307 
1308 			/* Send the data in burst via SPI*/
1309 			do {
1310 				word = data[i];
1311 				word = (word >> 8) | (word << 8);
1312 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
1313 
1314 				if (page_size == 0)
1315 					break;
1316 
1317 				/* do not wrap around page */
1318 				if (((offset + i) & (page_size - 1)) ==
1319 				    (page_size - 1))
1320 					break;
1321 			} while (++i < words);
1322 
1323 			ixgbe_standby_eeprom(hw);
1324 			msec_delay(10);
1325 		}
1326 		/* Done with writing - release the EEPROM */
1327 		ixgbe_release_eeprom(hw);
1328 	}
1329 
1330 	return status;
1331 }
1332 
1333 /**
1334  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1335  *  @hw: pointer to hardware structure
1336  *  @offset: offset within the EEPROM to be written to
1337  *  @data: 16 bit word to be written to the EEPROM
1338  *
1339  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1340  *  EEPROM will most likely contain an invalid checksum.
1341  **/
1342 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1343 {
1344 	s32 status;
1345 
1346 	DEBUGFUNC("ixgbe_write_eeprom_generic");
1347 
1348 	hw->eeprom.ops.init_params(hw);
1349 
1350 	if (offset >= hw->eeprom.word_size) {
1351 		status = IXGBE_ERR_EEPROM;
1352 		goto out;
1353 	}
1354 
1355 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1356 
1357 out:
1358 	return status;
1359 }
1360 
1361 /**
1362  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1363  *  @hw: pointer to hardware structure
1364  *  @offset: offset within the EEPROM to be read
1365  *  @data: read 16 bit words(s) from EEPROM
1366  *  @words: number of word(s)
1367  *
1368  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1369  **/
1370 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1371 					      u16 words, u16 *data)
1372 {
1373 	s32 status = IXGBE_SUCCESS;
1374 	u16 i, count;
1375 
1376 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1377 
1378 	hw->eeprom.ops.init_params(hw);
1379 
1380 	if (words == 0) {
1381 		status = IXGBE_ERR_INVALID_ARGUMENT;
1382 		goto out;
1383 	}
1384 
1385 	if (offset + words > hw->eeprom.word_size) {
1386 		status = IXGBE_ERR_EEPROM;
1387 		goto out;
1388 	}
1389 
1390 	/*
1391 	 * We cannot hold synchronization semaphores for too long
1392 	 * to avoid other entity starvation. However it is more efficient
1393 	 * to read in bursts than synchronizing access for each word.
1394 	 */
1395 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1396 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1397 			IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1398 
1399 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1400 							   count, &data[i]);
1401 
1402 		if (status != IXGBE_SUCCESS)
1403 			break;
1404 	}
1405 
1406 out:
1407 	return status;
1408 }
1409 
1410 /**
1411  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1412  *  @hw: pointer to hardware structure
1413  *  @offset: offset within the EEPROM to be read
1414  *  @words: number of word(s)
1415  *  @data: read 16 bit word(s) from EEPROM
1416  *
1417  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1418  **/
1419 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1420 					     u16 words, u16 *data)
1421 {
1422 	s32 status;
1423 	u16 word_in;
1424 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1425 	u16 i;
1426 
1427 	DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1428 
1429 	/* Prepare the EEPROM for reading  */
1430 	status = ixgbe_acquire_eeprom(hw);
1431 
1432 	if (status == IXGBE_SUCCESS) {
1433 		if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1434 			ixgbe_release_eeprom(hw);
1435 			status = IXGBE_ERR_EEPROM;
1436 		}
1437 	}
1438 
1439 	if (status == IXGBE_SUCCESS) {
1440 		for (i = 0; i < words; i++) {
1441 			ixgbe_standby_eeprom(hw);
1442 			/*
1443 			 * Some SPI eeproms use the 8th address bit embedded
1444 			 * in the opcode
1445 			 */
1446 			if ((hw->eeprom.address_bits == 8) &&
1447 			    ((offset + i) >= 128))
1448 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1449 
1450 			/* Send the READ command (opcode + addr) */
1451 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1452 						    IXGBE_EEPROM_OPCODE_BITS);
1453 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1454 						    hw->eeprom.address_bits);
1455 
1456 			/* Read the data. */
1457 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1458 			data[i] = (word_in >> 8) | (word_in << 8);
1459 		}
1460 
1461 		/* End this read operation */
1462 		ixgbe_release_eeprom(hw);
1463 	}
1464 
1465 	return status;
1466 }
1467 
1468 /**
1469  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1470  *  @hw: pointer to hardware structure
1471  *  @offset: offset within the EEPROM to be read
1472  *  @data: read 16 bit value from EEPROM
1473  *
1474  *  Reads 16 bit value from EEPROM through bit-bang method
1475  **/
1476 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1477 				       u16 *data)
1478 {
1479 	s32 status;
1480 
1481 	DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1482 
1483 	hw->eeprom.ops.init_params(hw);
1484 
1485 	if (offset >= hw->eeprom.word_size) {
1486 		status = IXGBE_ERR_EEPROM;
1487 		goto out;
1488 	}
1489 
1490 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1491 
1492 out:
1493 	return status;
1494 }
1495 
1496 /**
1497  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1498  *  @hw: pointer to hardware structure
1499  *  @offset: offset of word in the EEPROM to read
1500  *  @words: number of word(s)
1501  *  @data: 16 bit word(s) from the EEPROM
1502  *
1503  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1504  **/
1505 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1506 				   u16 words, u16 *data)
1507 {
1508 	u32 eerd;
1509 	s32 status = IXGBE_SUCCESS;
1510 	u32 i;
1511 
1512 	DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1513 
1514 	hw->eeprom.ops.init_params(hw);
1515 
1516 	if (words == 0) {
1517 		status = IXGBE_ERR_INVALID_ARGUMENT;
1518 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1519 		goto out;
1520 	}
1521 
1522 	if (offset >= hw->eeprom.word_size) {
1523 		status = IXGBE_ERR_EEPROM;
1524 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1525 		goto out;
1526 	}
1527 
1528 	for (i = 0; i < words; i++) {
1529 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1530 		       IXGBE_EEPROM_RW_REG_START;
1531 
1532 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1533 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1534 
1535 		if (status == IXGBE_SUCCESS) {
1536 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1537 				   IXGBE_EEPROM_RW_REG_DATA);
1538 		} else {
1539 			DEBUGOUT("Eeprom read timed out\n");
1540 			goto out;
1541 		}
1542 	}
1543 out:
1544 	return status;
1545 }
1546 
1547 /**
1548  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1549  *  @hw: pointer to hardware structure
1550  *  @offset: offset within the EEPROM to be used as a scratch pad
1551  *
1552  *  Discover EEPROM page size by writing marching data at given offset.
1553  *  This function is called only when we are writing a new large buffer
1554  *  at given offset so the data would be overwritten anyway.
1555  **/
1556 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1557 						 u16 offset)
1558 {
1559 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1560 	s32 status = IXGBE_SUCCESS;
1561 	u16 i;
1562 
1563 	DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1564 
1565 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1566 		data[i] = i;
1567 
1568 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1569 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1570 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1571 	hw->eeprom.word_page_size = 0;
1572 	if (status != IXGBE_SUCCESS)
1573 		goto out;
1574 
1575 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1576 	if (status != IXGBE_SUCCESS)
1577 		goto out;
1578 
1579 	/*
1580 	 * When writing in burst more than the actual page size
1581 	 * EEPROM address wraps around current page.
1582 	 */
1583 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1584 
1585 	DEBUGOUT1("Detected EEPROM page size = %d words.",
1586 		  hw->eeprom.word_page_size);
1587 out:
1588 	return status;
1589 }
1590 
1591 /**
1592  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1593  *  @hw: pointer to hardware structure
1594  *  @offset: offset of  word in the EEPROM to read
1595  *  @data: word read from the EEPROM
1596  *
1597  *  Reads a 16 bit word from the EEPROM using the EERD register.
1598  **/
1599 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1600 {
1601 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1602 }
1603 
1604 /**
1605  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1606  *  @hw: pointer to hardware structure
1607  *  @offset: offset of  word in the EEPROM to write
1608  *  @words: number of word(s)
1609  *  @data: word(s) write to the EEPROM
1610  *
1611  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1612  **/
1613 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1614 				    u16 words, u16 *data)
1615 {
1616 	u32 eewr;
1617 	s32 status = IXGBE_SUCCESS;
1618 	u16 i;
1619 
1620 	DEBUGFUNC("ixgbe_write_eewr_generic");
1621 
1622 	hw->eeprom.ops.init_params(hw);
1623 
1624 	if (words == 0) {
1625 		status = IXGBE_ERR_INVALID_ARGUMENT;
1626 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1627 		goto out;
1628 	}
1629 
1630 	if (offset >= hw->eeprom.word_size) {
1631 		status = IXGBE_ERR_EEPROM;
1632 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1633 		goto out;
1634 	}
1635 
1636 	for (i = 0; i < words; i++) {
1637 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1638 			(data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1639 			IXGBE_EEPROM_RW_REG_START;
1640 
1641 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1642 		if (status != IXGBE_SUCCESS) {
1643 			DEBUGOUT("Eeprom write EEWR timed out\n");
1644 			goto out;
1645 		}
1646 
1647 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1648 
1649 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1650 		if (status != IXGBE_SUCCESS) {
1651 			DEBUGOUT("Eeprom write EEWR timed out\n");
1652 			goto out;
1653 		}
1654 	}
1655 
1656 out:
1657 	return status;
1658 }
1659 
1660 /**
1661  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1662  *  @hw: pointer to hardware structure
1663  *  @offset: offset of  word in the EEPROM to write
1664  *  @data: word write to the EEPROM
1665  *
1666  *  Write a 16 bit word to the EEPROM using the EEWR register.
1667  **/
1668 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1669 {
1670 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1671 }
1672 
1673 /**
1674  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1675  *  @hw: pointer to hardware structure
1676  *  @ee_reg: EEPROM flag for polling
1677  *
1678  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1679  *  read or write is done respectively.
1680  **/
1681 s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1682 {
1683 	u32 i;
1684 	u32 reg;
1685 	s32 status = IXGBE_ERR_EEPROM;
1686 
1687 	DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1688 
1689 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1690 		if (ee_reg == IXGBE_NVM_POLL_READ)
1691 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1692 		else
1693 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1694 
1695 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1696 			status = IXGBE_SUCCESS;
1697 			break;
1698 		}
1699 		usec_delay(5);
1700 	}
1701 
1702 	if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1703 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1704 			     "EEPROM read/write done polling timed out");
1705 
1706 	return status;
1707 }
1708 
1709 /**
1710  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1711  *  @hw: pointer to hardware structure
1712  *
1713  *  Prepares EEPROM for access using bit-bang method. This function should
1714  *  be called before issuing a command to the EEPROM.
1715  **/
1716 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1717 {
1718 	s32 status = IXGBE_SUCCESS;
1719 	u32 eec;
1720 	u32 i;
1721 
1722 	DEBUGFUNC("ixgbe_acquire_eeprom");
1723 
1724 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1725 	    != IXGBE_SUCCESS)
1726 		status = IXGBE_ERR_SWFW_SYNC;
1727 
1728 	if (status == IXGBE_SUCCESS) {
1729 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1730 
1731 		/* Request EEPROM Access */
1732 		eec |= IXGBE_EEC_REQ;
1733 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1734 
1735 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1736 			eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1737 			if (eec & IXGBE_EEC_GNT)
1738 				break;
1739 			usec_delay(5);
1740 		}
1741 
1742 		/* Release if grant not acquired */
1743 		if (!(eec & IXGBE_EEC_GNT)) {
1744 			eec &= ~IXGBE_EEC_REQ;
1745 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1746 			DEBUGOUT("Could not acquire EEPROM grant\n");
1747 
1748 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1749 			status = IXGBE_ERR_EEPROM;
1750 		}
1751 
1752 		/* Setup EEPROM for Read/Write */
1753 		if (status == IXGBE_SUCCESS) {
1754 			/* Clear CS and SK */
1755 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1756 			IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1757 			IXGBE_WRITE_FLUSH(hw);
1758 			usec_delay(1);
1759 		}
1760 	}
1761 	return status;
1762 }
1763 
1764 /**
1765  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1766  *  @hw: pointer to hardware structure
1767  *
1768  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1769  **/
1770 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1771 {
1772 	s32 status = IXGBE_ERR_EEPROM;
1773 	u32 timeout = 2000;
1774 	u32 i;
1775 	u32 swsm;
1776 
1777 	DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1778 
1779 
1780 	/* Get SMBI software semaphore between device drivers first */
1781 	for (i = 0; i < timeout; i++) {
1782 		/*
1783 		 * If the SMBI bit is 0 when we read it, then the bit will be
1784 		 * set and we have the semaphore
1785 		 */
1786 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1787 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1788 			status = IXGBE_SUCCESS;
1789 			break;
1790 		}
1791 		usec_delay(50);
1792 	}
1793 
1794 	if (i == timeout) {
1795 		DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1796 			 "not granted.\n");
1797 		/*
1798 		 * this release is particularly important because our attempts
1799 		 * above to get the semaphore may have succeeded, and if there
1800 		 * was a timeout, we should unconditionally clear the semaphore
1801 		 * bits to free the driver to make progress
1802 		 */
1803 		ixgbe_release_eeprom_semaphore(hw);
1804 
1805 		usec_delay(50);
1806 		/*
1807 		 * one last try
1808 		 * If the SMBI bit is 0 when we read it, then the bit will be
1809 		 * set and we have the semaphore
1810 		 */
1811 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1812 		if (!(swsm & IXGBE_SWSM_SMBI))
1813 			status = IXGBE_SUCCESS;
1814 	}
1815 
1816 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1817 	if (status == IXGBE_SUCCESS) {
1818 		for (i = 0; i < timeout; i++) {
1819 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1820 
1821 			/* Set the SW EEPROM semaphore bit to request access */
1822 			swsm |= IXGBE_SWSM_SWESMBI;
1823 			IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1824 
1825 			/*
1826 			 * If we set the bit successfully then we got the
1827 			 * semaphore.
1828 			 */
1829 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1830 			if (swsm & IXGBE_SWSM_SWESMBI)
1831 				break;
1832 
1833 			usec_delay(50);
1834 		}
1835 
1836 		/*
1837 		 * Release semaphores and return error if SW EEPROM semaphore
1838 		 * was not granted because we don't have access to the EEPROM
1839 		 */
1840 		if (i >= timeout) {
1841 			ERROR_REPORT1(IXGBE_ERROR_POLLING,
1842 			    "SWESMBI Software EEPROM semaphore not granted.\n");
1843 			ixgbe_release_eeprom_semaphore(hw);
1844 			status = IXGBE_ERR_EEPROM;
1845 		}
1846 	} else {
1847 		ERROR_REPORT1(IXGBE_ERROR_POLLING,
1848 			     "Software semaphore SMBI between device drivers "
1849 			     "not granted.\n");
1850 	}
1851 
1852 	return status;
1853 }
1854 
1855 /**
1856  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1857  *  @hw: pointer to hardware structure
1858  *
1859  *  This function clears hardware semaphore bits.
1860  **/
1861 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1862 {
1863 	u32 swsm;
1864 
1865 	DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1866 
1867 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1868 
1869 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1870 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1871 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1872 	IXGBE_WRITE_FLUSH(hw);
1873 }
1874 
1875 /**
1876  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1877  *  @hw: pointer to hardware structure
1878  **/
1879 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1880 {
1881 	s32 status = IXGBE_SUCCESS;
1882 	u16 i;
1883 	u8 spi_stat_reg;
1884 
1885 	DEBUGFUNC("ixgbe_ready_eeprom");
1886 
1887 	/*
1888 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1889 	 * EEPROM will signal that the command has been completed by clearing
1890 	 * bit 0 of the internal status register.  If it's not cleared within
1891 	 * 5 milliseconds, then error out.
1892 	 */
1893 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1894 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1895 					    IXGBE_EEPROM_OPCODE_BITS);
1896 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1897 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1898 			break;
1899 
1900 		usec_delay(5);
1901 		ixgbe_standby_eeprom(hw);
1902 	};
1903 
1904 	/*
1905 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1906 	 * devices (and only 0-5mSec on 5V devices)
1907 	 */
1908 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1909 		DEBUGOUT("SPI EEPROM Status error\n");
1910 		status = IXGBE_ERR_EEPROM;
1911 	}
1912 
1913 	return status;
1914 }
1915 
1916 /**
1917  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1918  *  @hw: pointer to hardware structure
1919  **/
1920 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1921 {
1922 	u32 eec;
1923 
1924 	DEBUGFUNC("ixgbe_standby_eeprom");
1925 
1926 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1927 
1928 	/* Toggle CS to flush commands */
1929 	eec |= IXGBE_EEC_CS;
1930 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1931 	IXGBE_WRITE_FLUSH(hw);
1932 	usec_delay(1);
1933 	eec &= ~IXGBE_EEC_CS;
1934 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1935 	IXGBE_WRITE_FLUSH(hw);
1936 	usec_delay(1);
1937 }
1938 
1939 /**
1940  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1941  *  @hw: pointer to hardware structure
1942  *  @data: data to send to the EEPROM
1943  *  @count: number of bits to shift out
1944  **/
1945 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1946 					u16 count)
1947 {
1948 	u32 eec;
1949 	u32 mask;
1950 	u32 i;
1951 
1952 	DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
1953 
1954 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1955 
1956 	/*
1957 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1958 	 * one bit at a time.  Determine the starting bit based on count
1959 	 */
1960 	mask = 0x01 << (count - 1);
1961 
1962 	for (i = 0; i < count; i++) {
1963 		/*
1964 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1965 		 * "1", and then raising and then lowering the clock (the SK
1966 		 * bit controls the clock input to the EEPROM).  A "0" is
1967 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1968 		 * raising and then lowering the clock.
1969 		 */
1970 		if (data & mask)
1971 			eec |= IXGBE_EEC_DI;
1972 		else
1973 			eec &= ~IXGBE_EEC_DI;
1974 
1975 		IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1976 		IXGBE_WRITE_FLUSH(hw);
1977 
1978 		usec_delay(1);
1979 
1980 		ixgbe_raise_eeprom_clk(hw, &eec);
1981 		ixgbe_lower_eeprom_clk(hw, &eec);
1982 
1983 		/*
1984 		 * Shift mask to signify next bit of data to shift in to the
1985 		 * EEPROM
1986 		 */
1987 		mask = mask >> 1;
1988 	};
1989 
1990 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1991 	eec &= ~IXGBE_EEC_DI;
1992 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1993 	IXGBE_WRITE_FLUSH(hw);
1994 }
1995 
1996 /**
1997  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1998  *  @hw: pointer to hardware structure
1999  **/
2000 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2001 {
2002 	u32 eec;
2003 	u32 i;
2004 	u16 data = 0;
2005 
2006 	DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2007 
2008 	/*
2009 	 * In order to read a register from the EEPROM, we need to shift
2010 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2011 	 * the clock input to the EEPROM (setting the SK bit), and then reading
2012 	 * the value of the "DO" bit.  During this "shifting in" process the
2013 	 * "DI" bit should always be clear.
2014 	 */
2015 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2016 
2017 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2018 
2019 	for (i = 0; i < count; i++) {
2020 		data = data << 1;
2021 		ixgbe_raise_eeprom_clk(hw, &eec);
2022 
2023 		eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2024 
2025 		eec &= ~(IXGBE_EEC_DI);
2026 		if (eec & IXGBE_EEC_DO)
2027 			data |= 1;
2028 
2029 		ixgbe_lower_eeprom_clk(hw, &eec);
2030 	}
2031 
2032 	return data;
2033 }
2034 
2035 /**
2036  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2037  *  @hw: pointer to hardware structure
2038  *  @eec: EEC register's current value
2039  **/
2040 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2041 {
2042 	DEBUGFUNC("ixgbe_raise_eeprom_clk");
2043 
2044 	/*
2045 	 * Raise the clock input to the EEPROM
2046 	 * (setting the SK bit), then delay
2047 	 */
2048 	*eec = *eec | IXGBE_EEC_SK;
2049 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2050 	IXGBE_WRITE_FLUSH(hw);
2051 	usec_delay(1);
2052 }
2053 
2054 /**
2055  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2056  *  @hw: pointer to hardware structure
2057  *  @eecd: EECD's current value
2058  **/
2059 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2060 {
2061 	DEBUGFUNC("ixgbe_lower_eeprom_clk");
2062 
2063 	/*
2064 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
2065 	 * delay
2066 	 */
2067 	*eec = *eec & ~IXGBE_EEC_SK;
2068 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2069 	IXGBE_WRITE_FLUSH(hw);
2070 	usec_delay(1);
2071 }
2072 
2073 /**
2074  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
2075  *  @hw: pointer to hardware structure
2076  **/
2077 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2078 {
2079 	u32 eec;
2080 
2081 	DEBUGFUNC("ixgbe_release_eeprom");
2082 
2083 	eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2084 
2085 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
2086 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2087 
2088 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2089 	IXGBE_WRITE_FLUSH(hw);
2090 
2091 	usec_delay(1);
2092 
2093 	/* Stop requesting EEPROM access */
2094 	eec &= ~IXGBE_EEC_REQ;
2095 	IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2096 
2097 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2098 
2099 	/* Delay before attempt to obtain semaphore again to allow FW access */
2100 	msec_delay(hw->eeprom.semaphore_delay);
2101 }
2102 
2103 /**
2104  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2105  *  @hw: pointer to hardware structure
2106  *
2107  *  Returns a negative error code on error, or the 16-bit checksum
2108  **/
2109 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2110 {
2111 	u16 i;
2112 	u16 j;
2113 	u16 checksum = 0;
2114 	u16 length = 0;
2115 	u16 pointer = 0;
2116 	u16 word = 0;
2117 
2118 	DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2119 
2120 	/* Include 0x0-0x3F in the checksum */
2121 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2122 		if (hw->eeprom.ops.read(hw, i, &word)) {
2123 			DEBUGOUT("EEPROM read failed\n");
2124 			return IXGBE_ERR_EEPROM;
2125 		}
2126 		checksum += word;
2127 	}
2128 
2129 	/* Include all data from pointers except for the fw pointer */
2130 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2131 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
2132 			DEBUGOUT("EEPROM read failed\n");
2133 			return IXGBE_ERR_EEPROM;
2134 		}
2135 
2136 		/* If the pointer seems invalid */
2137 		if (pointer == 0xFFFF || pointer == 0)
2138 			continue;
2139 
2140 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
2141 			DEBUGOUT("EEPROM read failed\n");
2142 			return IXGBE_ERR_EEPROM;
2143 		}
2144 
2145 		if (length == 0xFFFF || length == 0)
2146 			continue;
2147 
2148 		for (j = pointer + 1; j <= pointer + length; j++) {
2149 			if (hw->eeprom.ops.read(hw, j, &word)) {
2150 				DEBUGOUT("EEPROM read failed\n");
2151 				return IXGBE_ERR_EEPROM;
2152 			}
2153 			checksum += word;
2154 		}
2155 	}
2156 
2157 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2158 
2159 	return (s32)checksum;
2160 }
2161 
2162 /**
2163  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2164  *  @hw: pointer to hardware structure
2165  *  @checksum_val: calculated checksum
2166  *
2167  *  Performs checksum calculation and validates the EEPROM checksum.  If the
2168  *  caller does not need checksum_val, the value can be NULL.
2169  **/
2170 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2171 					   u16 *checksum_val)
2172 {
2173 	s32 status;
2174 	u16 checksum;
2175 	u16 read_checksum = 0;
2176 
2177 	DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2178 
2179 	/* Read the first word from the EEPROM. If this times out or fails, do
2180 	 * not continue or we could be in for a very long wait while every
2181 	 * EEPROM read fails
2182 	 */
2183 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2184 	if (status) {
2185 		DEBUGOUT("EEPROM read failed\n");
2186 		return status;
2187 	}
2188 
2189 	status = hw->eeprom.ops.calc_checksum(hw);
2190 	if (status < 0)
2191 		return status;
2192 
2193 	checksum = (u16)(status & 0xffff);
2194 
2195 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2196 	if (status) {
2197 		DEBUGOUT("EEPROM read failed\n");
2198 		return status;
2199 	}
2200 
2201 	/* Verify read checksum from EEPROM is the same as
2202 	 * calculated checksum
2203 	 */
2204 	if (read_checksum != checksum)
2205 		status = IXGBE_ERR_EEPROM_CHECKSUM;
2206 
2207 	/* If the user cares, return the calculated checksum */
2208 	if (checksum_val)
2209 		*checksum_val = checksum;
2210 
2211 	return status;
2212 }
2213 
2214 /**
2215  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2216  *  @hw: pointer to hardware structure
2217  **/
2218 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2219 {
2220 	s32 status;
2221 	u16 checksum;
2222 
2223 	DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2224 
2225 	/* Read the first word from the EEPROM. If this times out or fails, do
2226 	 * not continue or we could be in for a very long wait while every
2227 	 * EEPROM read fails
2228 	 */
2229 	status = hw->eeprom.ops.read(hw, 0, &checksum);
2230 	if (status) {
2231 		DEBUGOUT("EEPROM read failed\n");
2232 		return status;
2233 	}
2234 
2235 	status = hw->eeprom.ops.calc_checksum(hw);
2236 	if (status < 0)
2237 		return status;
2238 
2239 	checksum = (u16)(status & 0xffff);
2240 
2241 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2242 
2243 	return status;
2244 }
2245 
2246 /**
2247  *  ixgbe_validate_mac_addr - Validate MAC address
2248  *  @mac_addr: pointer to MAC address.
2249  *
2250  *  Tests a MAC address to ensure it is a valid Individual Address
2251  **/
2252 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2253 {
2254 	s32 status = IXGBE_SUCCESS;
2255 
2256 	DEBUGFUNC("ixgbe_validate_mac_addr");
2257 
2258 	/* Make sure it is not a multicast address */
2259 	if (IXGBE_IS_MULTICAST(mac_addr)) {
2260 		DEBUGOUT("MAC address is multicast\n");
2261 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2262 	/* Not a broadcast address */
2263 	} else if (IXGBE_IS_BROADCAST(mac_addr)) {
2264 		DEBUGOUT("MAC address is broadcast\n");
2265 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2266 	/* Reject the zero address */
2267 	} else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2268 		   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2269 		DEBUGOUT("MAC address is all zeros\n");
2270 		status = IXGBE_ERR_INVALID_MAC_ADDR;
2271 	}
2272 	return status;
2273 }
2274 
2275 /**
2276  *  ixgbe_set_rar_generic - Set Rx address register
2277  *  @hw: pointer to hardware structure
2278  *  @index: Receive address register to write
2279  *  @addr: Address to put into receive address register
2280  *  @vmdq: VMDq "set" or "pool" index
2281  *  @enable_addr: set flag that address is active
2282  *
2283  *  Puts an ethernet address into a receive address register.
2284  **/
2285 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2286 			  u32 enable_addr)
2287 {
2288 	u32 rar_low, rar_high;
2289 	u32 rar_entries = hw->mac.num_rar_entries;
2290 
2291 	DEBUGFUNC("ixgbe_set_rar_generic");
2292 
2293 	/* Make sure we are using a valid rar index range */
2294 	if (index >= rar_entries) {
2295 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2296 			     "RAR index %d is out of range.\n", index);
2297 		return IXGBE_ERR_INVALID_ARGUMENT;
2298 	}
2299 
2300 	/* setup VMDq pool selection before this RAR gets enabled */
2301 	hw->mac.ops.set_vmdq(hw, index, vmdq);
2302 
2303 	/*
2304 	 * HW expects these in little endian so we reverse the byte
2305 	 * order from network order (big endian) to little endian
2306 	 */
2307 	rar_low = ((u32)addr[0] |
2308 		   ((u32)addr[1] << 8) |
2309 		   ((u32)addr[2] << 16) |
2310 		   ((u32)addr[3] << 24));
2311 	/*
2312 	 * Some parts put the VMDq setting in the extra RAH bits,
2313 	 * so save everything except the lower 16 bits that hold part
2314 	 * of the address and the address valid bit.
2315 	 */
2316 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2317 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2318 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2319 
2320 	if (enable_addr != 0)
2321 		rar_high |= IXGBE_RAH_AV;
2322 
2323 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2324 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2325 
2326 	return IXGBE_SUCCESS;
2327 }
2328 
2329 /**
2330  *  ixgbe_clear_rar_generic - Remove Rx address register
2331  *  @hw: pointer to hardware structure
2332  *  @index: Receive address register to write
2333  *
2334  *  Clears an ethernet address from a receive address register.
2335  **/
2336 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2337 {
2338 	u32 rar_high;
2339 	u32 rar_entries = hw->mac.num_rar_entries;
2340 
2341 	DEBUGFUNC("ixgbe_clear_rar_generic");
2342 
2343 	/* Make sure we are using a valid rar index range */
2344 	if (index >= rar_entries) {
2345 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2346 			     "RAR index %d is out of range.\n", index);
2347 		return IXGBE_ERR_INVALID_ARGUMENT;
2348 	}
2349 
2350 	/*
2351 	 * Some parts put the VMDq setting in the extra RAH bits,
2352 	 * so save everything except the lower 16 bits that hold part
2353 	 * of the address and the address valid bit.
2354 	 */
2355 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2356 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2357 
2358 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2359 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2360 
2361 	/* clear VMDq pool/queue selection for this RAR */
2362 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2363 
2364 	return IXGBE_SUCCESS;
2365 }
2366 
2367 /**
2368  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2369  *  @hw: pointer to hardware structure
2370  *
2371  *  Places the MAC address in receive address register 0 and clears the rest
2372  *  of the receive address registers. Clears the multicast table. Assumes
2373  *  the receiver is in reset when the routine is called.
2374  **/
2375 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2376 {
2377 	u32 i;
2378 	u32 rar_entries = hw->mac.num_rar_entries;
2379 
2380 	DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2381 
2382 	/*
2383 	 * If the current mac address is valid, assume it is a software override
2384 	 * to the permanent address.
2385 	 * Otherwise, use the permanent address from the eeprom.
2386 	 */
2387 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2388 	    IXGBE_ERR_INVALID_MAC_ADDR) {
2389 		/* Get the MAC address from the RAR0 for later reference */
2390 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2391 
2392 		DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2393 			  hw->mac.addr[0], hw->mac.addr[1],
2394 			  hw->mac.addr[2]);
2395 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2396 			  hw->mac.addr[4], hw->mac.addr[5]);
2397 	} else {
2398 		/* Setup the receive address. */
2399 		DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2400 		DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2401 			  hw->mac.addr[0], hw->mac.addr[1],
2402 			  hw->mac.addr[2]);
2403 		DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2404 			  hw->mac.addr[4], hw->mac.addr[5]);
2405 
2406 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2407 
2408 		/* clear VMDq pool/queue selection for RAR 0 */
2409 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2410 	}
2411 	hw->addr_ctrl.overflow_promisc = 0;
2412 
2413 	hw->addr_ctrl.rar_used_count = 1;
2414 
2415 	/* Zero out the other receive addresses. */
2416 	DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2417 	for (i = 1; i < rar_entries; i++) {
2418 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2419 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2420 	}
2421 
2422 	/* Clear the MTA */
2423 	hw->addr_ctrl.mta_in_use = 0;
2424 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2425 
2426 	DEBUGOUT(" Clearing MTA\n");
2427 	for (i = 0; i < hw->mac.mcft_size; i++)
2428 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2429 
2430 	ixgbe_init_uta_tables(hw);
2431 
2432 	return IXGBE_SUCCESS;
2433 }
2434 
2435 /**
2436  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
2437  *  @hw: pointer to hardware structure
2438  *  @addr: new address
2439  *
2440  *  Adds it to unused receive address register or goes into promiscuous mode.
2441  **/
2442 void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2443 {
2444 	u32 rar_entries = hw->mac.num_rar_entries;
2445 	u32 rar;
2446 
2447 	DEBUGFUNC("ixgbe_add_uc_addr");
2448 
2449 	DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2450 		  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2451 
2452 	/*
2453 	 * Place this address in the RAR if there is room,
2454 	 * else put the controller into promiscuous mode
2455 	 */
2456 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
2457 		rar = hw->addr_ctrl.rar_used_count;
2458 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2459 		DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2460 		hw->addr_ctrl.rar_used_count++;
2461 	} else {
2462 		hw->addr_ctrl.overflow_promisc++;
2463 	}
2464 
2465 	DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2466 }
2467 
2468 /**
2469  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2470  *  @hw: pointer to hardware structure
2471  *  @addr_list: the list of new addresses
2472  *  @addr_count: number of addresses
2473  *  @next: iterator function to walk the address list
2474  *
2475  *  The given list replaces any existing list.  Clears the secondary addrs from
2476  *  receive address registers.  Uses unused receive address registers for the
2477  *  first secondary addresses, and falls back to promiscuous mode as needed.
2478  *
2479  *  Drivers using secondary unicast addresses must set user_set_promisc when
2480  *  manually putting the device into promiscuous mode.
2481  **/
2482 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2483 				      u32 addr_count, ixgbe_mc_addr_itr next)
2484 {
2485 	u8 *addr;
2486 	u32 i;
2487 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2488 	u32 uc_addr_in_use;
2489 	u32 fctrl;
2490 	u32 vmdq;
2491 
2492 	DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2493 
2494 	/*
2495 	 * Clear accounting of old secondary address list,
2496 	 * don't count RAR[0]
2497 	 */
2498 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2499 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2500 	hw->addr_ctrl.overflow_promisc = 0;
2501 
2502 	/* Zero out the other receive addresses */
2503 	DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2504 	for (i = 0; i < uc_addr_in_use; i++) {
2505 		IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2506 		IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2507 	}
2508 
2509 	/* Add the new addresses */
2510 	for (i = 0; i < addr_count; i++) {
2511 		DEBUGOUT(" Adding the secondary addresses:\n");
2512 		addr = next(hw, &addr_list, &vmdq);
2513 		ixgbe_add_uc_addr(hw, addr, vmdq);
2514 	}
2515 
2516 	if (hw->addr_ctrl.overflow_promisc) {
2517 		/* enable promisc if not already in overflow or set by user */
2518 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2519 			DEBUGOUT(" Entering address overflow promisc mode\n");
2520 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2521 			fctrl |= IXGBE_FCTRL_UPE;
2522 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2523 		}
2524 	} else {
2525 		/* only disable if set by overflow, not by user */
2526 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2527 			DEBUGOUT(" Leaving address overflow promisc mode\n");
2528 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2529 			fctrl &= ~IXGBE_FCTRL_UPE;
2530 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2531 		}
2532 	}
2533 
2534 	DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2535 	return IXGBE_SUCCESS;
2536 }
2537 
2538 /**
2539  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2540  *  @hw: pointer to hardware structure
2541  *  @mc_addr: the multicast address
2542  *
2543  *  Extracts the 12 bits, from a multicast address, to determine which
2544  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2545  *  incoming rx multicast addresses, to determine the bit-vector to check in
2546  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2547  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2548  *  to mc_filter_type.
2549  **/
2550 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2551 {
2552 	u32 vector = 0;
2553 
2554 	DEBUGFUNC("ixgbe_mta_vector");
2555 
2556 	switch (hw->mac.mc_filter_type) {
2557 	case 0:   /* use bits [47:36] of the address */
2558 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2559 		break;
2560 	case 1:   /* use bits [46:35] of the address */
2561 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2562 		break;
2563 	case 2:   /* use bits [45:34] of the address */
2564 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2565 		break;
2566 	case 3:   /* use bits [43:32] of the address */
2567 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2568 		break;
2569 	default:  /* Invalid mc_filter_type */
2570 		DEBUGOUT("MC filter type param set incorrectly\n");
2571 		ASSERT(0);
2572 		break;
2573 	}
2574 
2575 	/* vector can only be 12-bits or boundary will be exceeded */
2576 	vector &= 0xFFF;
2577 	return vector;
2578 }
2579 
2580 /**
2581  *  ixgbe_set_mta - Set bit-vector in multicast table
2582  *  @hw: pointer to hardware structure
2583  *  @hash_value: Multicast address hash value
2584  *
2585  *  Sets the bit-vector in the multicast table.
2586  **/
2587 void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2588 {
2589 	u32 vector;
2590 	u32 vector_bit;
2591 	u32 vector_reg;
2592 
2593 	DEBUGFUNC("ixgbe_set_mta");
2594 
2595 	hw->addr_ctrl.mta_in_use++;
2596 
2597 	vector = ixgbe_mta_vector(hw, mc_addr);
2598 	DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2599 
2600 	/*
2601 	 * The MTA is a register array of 128 32-bit registers. It is treated
2602 	 * like an array of 4096 bits.  We want to set bit
2603 	 * BitArray[vector_value]. So we figure out what register the bit is
2604 	 * in, read it, OR in the new bit, then write back the new value.  The
2605 	 * register is determined by the upper 7 bits of the vector value and
2606 	 * the bit within that register are determined by the lower 5 bits of
2607 	 * the value.
2608 	 */
2609 	vector_reg = (vector >> 5) & 0x7F;
2610 	vector_bit = vector & 0x1F;
2611 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2612 }
2613 
2614 /**
2615  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2616  *  @hw: pointer to hardware structure
2617  *  @mc_addr_list: the list of new multicast addresses
2618  *  @mc_addr_count: number of addresses
2619  *  @next: iterator function to walk the multicast address list
2620  *  @clear: flag, when set clears the table beforehand
2621  *
2622  *  When the clear flag is set, the given list replaces any existing list.
2623  *  Hashes the given addresses into the multicast table.
2624  **/
2625 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2626 				      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2627 				      bool clear)
2628 {
2629 	u32 i;
2630 	u32 vmdq;
2631 
2632 	DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2633 
2634 	/*
2635 	 * Set the new number of MC addresses that we are being requested to
2636 	 * use.
2637 	 */
2638 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2639 	hw->addr_ctrl.mta_in_use = 0;
2640 
2641 	/* Clear mta_shadow */
2642 	if (clear) {
2643 		DEBUGOUT(" Clearing MTA\n");
2644 		memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2645 	}
2646 
2647 	/* Update mta_shadow */
2648 	for (i = 0; i < mc_addr_count; i++) {
2649 		DEBUGOUT(" Adding the multicast addresses:\n");
2650 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2651 	}
2652 
2653 	/* Enable mta */
2654 	for (i = 0; i < hw->mac.mcft_size; i++)
2655 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2656 				      hw->mac.mta_shadow[i]);
2657 
2658 	if (hw->addr_ctrl.mta_in_use > 0)
2659 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2660 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2661 
2662 	DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2663 	return IXGBE_SUCCESS;
2664 }
2665 
2666 /**
2667  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2668  *  @hw: pointer to hardware structure
2669  *
2670  *  Enables multicast address in RAR and the use of the multicast hash table.
2671  **/
2672 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2673 {
2674 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2675 
2676 	DEBUGFUNC("ixgbe_enable_mc_generic");
2677 
2678 	if (a->mta_in_use > 0)
2679 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2680 				hw->mac.mc_filter_type);
2681 
2682 	return IXGBE_SUCCESS;
2683 }
2684 
2685 /**
2686  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2687  *  @hw: pointer to hardware structure
2688  *
2689  *  Disables multicast address in RAR and the use of the multicast hash table.
2690  **/
2691 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2692 {
2693 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2694 
2695 	DEBUGFUNC("ixgbe_disable_mc_generic");
2696 
2697 	if (a->mta_in_use > 0)
2698 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2699 
2700 	return IXGBE_SUCCESS;
2701 }
2702 
2703 /**
2704  *  ixgbe_fc_enable_generic - Enable flow control
2705  *  @hw: pointer to hardware structure
2706  *
2707  *  Enable flow control according to the current settings.
2708  **/
2709 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2710 {
2711 	s32 ret_val = IXGBE_SUCCESS;
2712 	u32 mflcn_reg, fccfg_reg;
2713 	u32 reg;
2714 	u32 fcrtl, fcrth;
2715 	int i;
2716 
2717 	DEBUGFUNC("ixgbe_fc_enable_generic");
2718 
2719 	/* Validate the water mark configuration */
2720 	if (!hw->fc.pause_time) {
2721 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2722 		goto out;
2723 	}
2724 
2725 	/* Low water mark of zero causes XOFF floods */
2726 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2727 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2728 		    hw->fc.high_water[i]) {
2729 			if (!hw->fc.low_water[i] ||
2730 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2731 				DEBUGOUT("Invalid water mark configuration\n");
2732 				ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2733 				goto out;
2734 			}
2735 		}
2736 	}
2737 
2738 	/* Negotiate the fc mode to use */
2739 	ixgbe_fc_autoneg(hw);
2740 
2741 	/* Disable any previous flow control settings */
2742 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2743 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2744 
2745 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2746 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2747 
2748 	/*
2749 	 * The possible values of fc.current_mode are:
2750 	 * 0: Flow control is completely disabled
2751 	 * 1: Rx flow control is enabled (we can receive pause frames,
2752 	 *    but not send pause frames).
2753 	 * 2: Tx flow control is enabled (we can send pause frames but
2754 	 *    we do not support receiving pause frames).
2755 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2756 	 * other: Invalid.
2757 	 */
2758 	switch (hw->fc.current_mode) {
2759 	case ixgbe_fc_none:
2760 		/*
2761 		 * Flow control is disabled by software override or autoneg.
2762 		 * The code below will actually disable it in the HW.
2763 		 */
2764 		break;
2765 	case ixgbe_fc_rx_pause:
2766 		/*
2767 		 * Rx Flow control is enabled and Tx Flow control is
2768 		 * disabled by software override. Since there really
2769 		 * isn't a way to advertise that we are capable of RX
2770 		 * Pause ONLY, we will advertise that we support both
2771 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2772 		 * disable the adapter's ability to send PAUSE frames.
2773 		 */
2774 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2775 		break;
2776 	case ixgbe_fc_tx_pause:
2777 		/*
2778 		 * Tx Flow control is enabled, and Rx Flow control is
2779 		 * disabled by software override.
2780 		 */
2781 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2782 		break;
2783 	case ixgbe_fc_full:
2784 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2785 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2786 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2787 		break;
2788 	default:
2789 		ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2790 			     "Flow control param set incorrectly\n");
2791 		ret_val = IXGBE_ERR_CONFIG;
2792 		goto out;
2793 		break;
2794 	}
2795 
2796 	/* Set 802.3x based flow control settings. */
2797 	mflcn_reg |= IXGBE_MFLCN_DPF;
2798 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2799 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2800 
2801 
2802 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2803 	for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2804 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2805 		    hw->fc.high_water[i]) {
2806 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2807 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2808 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2809 		} else {
2810 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2811 			/*
2812 			 * In order to prevent Tx hangs when the internal Tx
2813 			 * switch is enabled we must set the high water mark
2814 			 * to the Rx packet buffer size - 24KB.  This allows
2815 			 * the Tx switch to function even under heavy Rx
2816 			 * workloads.
2817 			 */
2818 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2819 		}
2820 
2821 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2822 	}
2823 
2824 	/* Configure pause time (2 TCs per register) */
2825 	reg = hw->fc.pause_time * 0x00010001;
2826 	for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2827 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2828 
2829 	/* Configure flow control refresh threshold value */
2830 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2831 
2832 out:
2833 	return ret_val;
2834 }
2835 
2836 /**
2837  *  ixgbe_negotiate_fc - Negotiate flow control
2838  *  @hw: pointer to hardware structure
2839  *  @adv_reg: flow control advertised settings
2840  *  @lp_reg: link partner's flow control settings
2841  *  @adv_sym: symmetric pause bit in advertisement
2842  *  @adv_asm: asymmetric pause bit in advertisement
2843  *  @lp_sym: symmetric pause bit in link partner advertisement
2844  *  @lp_asm: asymmetric pause bit in link partner advertisement
2845  *
2846  *  Find the intersection between advertised settings and link partner's
2847  *  advertised settings
2848  **/
2849 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2850 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2851 {
2852 	if ((!(adv_reg)) ||  (!(lp_reg))) {
2853 		ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2854 			     "Local or link partner's advertised flow control "
2855 			     "settings are NULL. Local: %x, link partner: %x\n",
2856 			     adv_reg, lp_reg);
2857 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2858 	}
2859 
2860 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2861 		/*
2862 		 * Now we need to check if the user selected Rx ONLY
2863 		 * of pause frames.  In this case, we had to advertise
2864 		 * FULL flow control because we could not advertise RX
2865 		 * ONLY. Hence, we must now check to see if we need to
2866 		 * turn OFF the TRANSMISSION of PAUSE frames.
2867 		 */
2868 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2869 			hw->fc.current_mode = ixgbe_fc_full;
2870 			DEBUGOUT("Flow Control = FULL.\n");
2871 		} else {
2872 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2873 			DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2874 		}
2875 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2876 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2877 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2878 		DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2879 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2880 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2881 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2882 		DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2883 	} else {
2884 		hw->fc.current_mode = ixgbe_fc_none;
2885 		DEBUGOUT("Flow Control = NONE.\n");
2886 	}
2887 	return IXGBE_SUCCESS;
2888 }
2889 
2890 /**
2891  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2892  *  @hw: pointer to hardware structure
2893  *
2894  *  Enable flow control according on 1 gig fiber.
2895  **/
2896 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2897 {
2898 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2899 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2900 
2901 	/*
2902 	 * On multispeed fiber at 1g, bail out if
2903 	 * - link is up but AN did not complete, or if
2904 	 * - link is up and AN completed but timed out
2905 	 */
2906 
2907 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2908 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2909 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2910 		DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2911 		goto out;
2912 	}
2913 
2914 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2915 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2916 
2917 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2918 				      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2919 				      IXGBE_PCS1GANA_ASM_PAUSE,
2920 				      IXGBE_PCS1GANA_SYM_PAUSE,
2921 				      IXGBE_PCS1GANA_ASM_PAUSE);
2922 
2923 out:
2924 	return ret_val;
2925 }
2926 
2927 /**
2928  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2929  *  @hw: pointer to hardware structure
2930  *
2931  *  Enable flow control according to IEEE clause 37.
2932  **/
2933 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2934 {
2935 	u32 links2, anlp1_reg, autoc_reg, links;
2936 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2937 
2938 	/*
2939 	 * On backplane, bail out if
2940 	 * - backplane autoneg was not completed, or if
2941 	 * - we are 82599 and link partner is not AN enabled
2942 	 */
2943 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2944 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2945 		DEBUGOUT("Auto-Negotiation did not complete\n");
2946 		goto out;
2947 	}
2948 
2949 	if (hw->mac.type == ixgbe_mac_82599EB) {
2950 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2951 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2952 			DEBUGOUT("Link partner is not AN enabled\n");
2953 			goto out;
2954 		}
2955 	}
2956 	/*
2957 	 * Read the 10g AN autoc and LP ability registers and resolve
2958 	 * local flow control settings accordingly
2959 	 */
2960 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2961 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2962 
2963 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2964 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2965 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2966 
2967 out:
2968 	return ret_val;
2969 }
2970 
2971 /**
2972  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2973  *  @hw: pointer to hardware structure
2974  *
2975  *  Enable flow control according to IEEE clause 37.
2976  **/
2977 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2978 {
2979 	u16 technology_ability_reg = 0;
2980 	u16 lp_technology_ability_reg = 0;
2981 
2982 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
2983 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2984 			     &technology_ability_reg);
2985 	hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
2986 			     IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
2987 			     &lp_technology_ability_reg);
2988 
2989 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2990 				  (u32)lp_technology_ability_reg,
2991 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2992 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2993 }
2994 
2995 /**
2996  *  ixgbe_fc_autoneg - Configure flow control
2997  *  @hw: pointer to hardware structure
2998  *
2999  *  Compares our advertised flow control capabilities to those advertised by
3000  *  our link partner, and determines the proper flow control mode to use.
3001  **/
3002 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3003 {
3004 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3005 	ixgbe_link_speed speed;
3006 	bool link_up;
3007 
3008 	DEBUGFUNC("ixgbe_fc_autoneg");
3009 
3010 	/*
3011 	 * AN should have completed when the cable was plugged in.
3012 	 * Look for reasons to bail out.  Bail out if:
3013 	 * - FC autoneg is disabled, or if
3014 	 * - link is not up.
3015 	 */
3016 	if (hw->fc.disable_fc_autoneg) {
3017 		ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
3018 			     "Flow control autoneg is disabled");
3019 		goto out;
3020 	}
3021 
3022 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3023 	if (!link_up) {
3024 		ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3025 		goto out;
3026 	}
3027 
3028 	switch (hw->phy.media_type) {
3029 	/* Autoneg flow control on fiber adapters */
3030 	case ixgbe_media_type_fiber_fixed:
3031 	case ixgbe_media_type_fiber_qsfp:
3032 	case ixgbe_media_type_fiber:
3033 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3034 			ret_val = ixgbe_fc_autoneg_fiber(hw);
3035 		break;
3036 
3037 	/* Autoneg flow control on backplane adapters */
3038 	case ixgbe_media_type_backplane:
3039 		ret_val = ixgbe_fc_autoneg_backplane(hw);
3040 		break;
3041 
3042 	/* Autoneg flow control on copper adapters */
3043 	case ixgbe_media_type_copper:
3044 		if (ixgbe_device_supports_autoneg_fc(hw))
3045 			ret_val = ixgbe_fc_autoneg_copper(hw);
3046 		break;
3047 
3048 	default:
3049 		break;
3050 	}
3051 
3052 out:
3053 	if (ret_val == IXGBE_SUCCESS) {
3054 		hw->fc.fc_was_autonegged = TRUE;
3055 	} else {
3056 		hw->fc.fc_was_autonegged = FALSE;
3057 		hw->fc.current_mode = hw->fc.requested_mode;
3058 	}
3059 }
3060 
3061 /*
3062  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3063  * @hw: pointer to hardware structure
3064  *
3065  * System-wide timeout range is encoded in PCIe Device Control2 register.
3066  *
3067  * Add 10% to specified maximum and return the number of times to poll for
3068  * completion timeout, in units of 100 microsec.  Never return less than
3069  * 800 = 80 millisec.
3070  */
3071 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3072 {
3073 	s16 devctl2;
3074 	u32 pollcnt;
3075 
3076 	devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3077 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3078 
3079 	switch (devctl2) {
3080 	case IXGBE_PCIDEVCTRL2_65_130ms:
3081 		pollcnt = 1300;		/* 130 millisec */
3082 		break;
3083 	case IXGBE_PCIDEVCTRL2_260_520ms:
3084 		pollcnt = 5200;		/* 520 millisec */
3085 		break;
3086 	case IXGBE_PCIDEVCTRL2_1_2s:
3087 		pollcnt = 20000;	/* 2 sec */
3088 		break;
3089 	case IXGBE_PCIDEVCTRL2_4_8s:
3090 		pollcnt = 80000;	/* 8 sec */
3091 		break;
3092 	case IXGBE_PCIDEVCTRL2_17_34s:
3093 		pollcnt = 34000;	/* 34 sec */
3094 		break;
3095 	case IXGBE_PCIDEVCTRL2_50_100us:	/* 100 microsecs */
3096 	case IXGBE_PCIDEVCTRL2_1_2ms:		/* 2 millisecs */
3097 	case IXGBE_PCIDEVCTRL2_16_32ms:		/* 32 millisec */
3098 	case IXGBE_PCIDEVCTRL2_16_32ms_def:	/* 32 millisec default */
3099 	default:
3100 		pollcnt = 800;		/* 80 millisec minimum */
3101 		break;
3102 	}
3103 
3104 	/* add 10% to spec maximum */
3105 	return (pollcnt * 11) / 10;
3106 }
3107 
3108 /**
3109  *  ixgbe_disable_pcie_master - Disable PCI-express master access
3110  *  @hw: pointer to hardware structure
3111  *
3112  *  Disables PCI-Express master access and verifies there are no pending
3113  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3114  *  bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3115  *  is returned signifying master requests disabled.
3116  **/
3117 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3118 {
3119 	s32 status = IXGBE_SUCCESS;
3120 	u32 i, poll;
3121 	u16 value;
3122 
3123 	DEBUGFUNC("ixgbe_disable_pcie_master");
3124 
3125 	/* Always set this bit to ensure any future transactions are blocked */
3126 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3127 
3128 	/* Exit if master requests are blocked */
3129 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3130 	    IXGBE_REMOVED(hw->hw_addr))
3131 		goto out;
3132 
3133 	/* Poll for master request bit to clear */
3134 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3135 		usec_delay(100);
3136 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3137 			goto out;
3138 	}
3139 
3140 	/*
3141 	 * Two consecutive resets are required via CTRL.RST per datasheet
3142 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3143 	 * of this need.  The first reset prevents new master requests from
3144 	 * being issued by our device.  We then must wait 1usec or more for any
3145 	 * remaining completions from the PCIe bus to trickle in, and then reset
3146 	 * again to clear out any effects they may have had on our device.
3147 	 */
3148 	DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3149 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3150 
3151 	if (hw->mac.type >= ixgbe_mac_X550)
3152 		goto out;
3153 
3154 	/*
3155 	 * Before proceeding, make sure that the PCIe block does not have
3156 	 * transactions pending.
3157 	 */
3158 	poll = ixgbe_pcie_timeout_poll(hw);
3159 	for (i = 0; i < poll; i++) {
3160 		usec_delay(100);
3161 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3162 		if (IXGBE_REMOVED(hw->hw_addr))
3163 			goto out;
3164 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3165 			goto out;
3166 	}
3167 
3168 	ERROR_REPORT1(IXGBE_ERROR_POLLING,
3169 		     "PCIe transaction pending bit also did not clear.\n");
3170 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3171 
3172 out:
3173 	return status;
3174 }
3175 
3176 /**
3177  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3178  *  @hw: pointer to hardware structure
3179  *  @mask: Mask to specify which semaphore to acquire
3180  *
3181  *  Acquires the SWFW semaphore through the GSSR register for the specified
3182  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3183  **/
3184 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3185 {
3186 	u32 gssr = 0;
3187 	u32 swmask = mask;
3188 	u32 fwmask = mask << 5;
3189 	u32 timeout = 200;
3190 	u32 i;
3191 
3192 	DEBUGFUNC("ixgbe_acquire_swfw_sync");
3193 
3194 	for (i = 0; i < timeout; i++) {
3195 		/*
3196 		 * SW NVM semaphore bit is used for access to all
3197 		 * SW_FW_SYNC bits (not just NVM)
3198 		 */
3199 		if (ixgbe_get_eeprom_semaphore(hw))
3200 			return IXGBE_ERR_SWFW_SYNC;
3201 
3202 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3203 		if (!(gssr & (fwmask | swmask))) {
3204 			gssr |= swmask;
3205 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3206 			ixgbe_release_eeprom_semaphore(hw);
3207 			return IXGBE_SUCCESS;
3208 		} else {
3209 			/* Resource is currently in use by FW or SW */
3210 			ixgbe_release_eeprom_semaphore(hw);
3211 			msec_delay(5);
3212 		}
3213 	}
3214 
3215 	/* If time expired clear the bits holding the lock and retry */
3216 	if (gssr & (fwmask | swmask))
3217 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3218 
3219 	msec_delay(5);
3220 	return IXGBE_ERR_SWFW_SYNC;
3221 }
3222 
3223 /**
3224  *  ixgbe_release_swfw_sync - Release SWFW semaphore
3225  *  @hw: pointer to hardware structure
3226  *  @mask: Mask to specify which semaphore to release
3227  *
3228  *  Releases the SWFW semaphore through the GSSR register for the specified
3229  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
3230  **/
3231 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3232 {
3233 	u32 gssr;
3234 	u32 swmask = mask;
3235 
3236 	DEBUGFUNC("ixgbe_release_swfw_sync");
3237 
3238 	ixgbe_get_eeprom_semaphore(hw);
3239 
3240 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3241 	gssr &= ~swmask;
3242 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3243 
3244 	ixgbe_release_eeprom_semaphore(hw);
3245 }
3246 
3247 /**
3248  *  ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3249  *  @hw: pointer to hardware structure
3250  *
3251  *  Stops the receive data path and waits for the HW to internally empty
3252  *  the Rx security block
3253  **/
3254 s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3255 {
3256 #define IXGBE_MAX_SECRX_POLL 40
3257 
3258 	int i;
3259 	int secrxreg;
3260 
3261 	DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3262 
3263 
3264 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3265 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3266 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3267 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3268 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3269 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3270 			break;
3271 		else
3272 			/* Use interrupt-safe sleep just in case */
3273 			usec_delay(1000);
3274 	}
3275 
3276 	/* For informational purposes only */
3277 	if (i >= IXGBE_MAX_SECRX_POLL)
3278 		DEBUGOUT("Rx unit being enabled before security "
3279 			 "path fully disabled.  Continuing with init.\n");
3280 
3281 	return IXGBE_SUCCESS;
3282 }
3283 
3284 /**
3285  *  prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3286  *  @hw: pointer to hardware structure
3287  *  @reg_val: Value we read from AUTOC
3288  *
3289  *  The default case requires no protection so just to the register read.
3290  */
3291 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3292 {
3293 	*locked = FALSE;
3294 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3295 	return IXGBE_SUCCESS;
3296 }
3297 
3298 /**
3299  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3300  * @hw: pointer to hardware structure
3301  * @reg_val: value to write to AUTOC
3302  * @locked: bool to indicate whether the SW/FW lock was already taken by
3303  *           previous read.
3304  *
3305  * The default case requires no protection so just to the register write.
3306  */
3307 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3308 {
3309 	UNREFERENCED_1PARAMETER(locked);
3310 
3311 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3312 	return IXGBE_SUCCESS;
3313 }
3314 
3315 /**
3316  *  ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3317  *  @hw: pointer to hardware structure
3318  *
3319  *  Enables the receive data path.
3320  **/
3321 s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3322 {
3323 	int secrxreg;
3324 
3325 	DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3326 
3327 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3328 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3329 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3330 	IXGBE_WRITE_FLUSH(hw);
3331 
3332 	return IXGBE_SUCCESS;
3333 }
3334 
3335 /**
3336  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3337  *  @hw: pointer to hardware structure
3338  *  @regval: register value to write to RXCTRL
3339  *
3340  *  Enables the Rx DMA unit
3341  **/
3342 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3343 {
3344 	DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3345 
3346 	if (regval & IXGBE_RXCTRL_RXEN)
3347 		ixgbe_enable_rx(hw);
3348 	else
3349 		ixgbe_disable_rx(hw);
3350 
3351 	return IXGBE_SUCCESS;
3352 }
3353 
3354 /**
3355  *  ixgbe_blink_led_start_generic - Blink LED based on index.
3356  *  @hw: pointer to hardware structure
3357  *  @index: led number to blink
3358  **/
3359 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3360 {
3361 	ixgbe_link_speed speed = 0;
3362 	bool link_up = 0;
3363 	u32 autoc_reg = 0;
3364 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3365 	s32 ret_val = IXGBE_SUCCESS;
3366 	bool locked = FALSE;
3367 
3368 	DEBUGFUNC("ixgbe_blink_led_start_generic");
3369 
3370 	/*
3371 	 * Link must be up to auto-blink the LEDs;
3372 	 * Force it if link is down.
3373 	 */
3374 	hw->mac.ops.check_link(hw, &speed, &link_up, FALSE);
3375 
3376 	if (!link_up) {
3377 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3378 		if (ret_val != IXGBE_SUCCESS)
3379 			goto out;
3380 
3381 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3382 		autoc_reg |= IXGBE_AUTOC_FLU;
3383 
3384 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3385 		if (ret_val != IXGBE_SUCCESS)
3386 			goto out;
3387 
3388 		IXGBE_WRITE_FLUSH(hw);
3389 		msec_delay(10);
3390 	}
3391 
3392 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3393 	led_reg |= IXGBE_LED_BLINK(index);
3394 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3395 	IXGBE_WRITE_FLUSH(hw);
3396 
3397 out:
3398 	return ret_val;
3399 }
3400 
3401 /**
3402  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3403  *  @hw: pointer to hardware structure
3404  *  @index: led number to stop blinking
3405  **/
3406 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3407 {
3408 	u32 autoc_reg = 0;
3409 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3410 	s32 ret_val = IXGBE_SUCCESS;
3411 	bool locked = FALSE;
3412 
3413 	DEBUGFUNC("ixgbe_blink_led_stop_generic");
3414 
3415 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3416 	if (ret_val != IXGBE_SUCCESS)
3417 		goto out;
3418 
3419 	autoc_reg &= ~IXGBE_AUTOC_FLU;
3420 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3421 
3422 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3423 	if (ret_val != IXGBE_SUCCESS)
3424 		goto out;
3425 
3426 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
3427 	led_reg &= ~IXGBE_LED_BLINK(index);
3428 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3429 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3430 	IXGBE_WRITE_FLUSH(hw);
3431 
3432 out:
3433 	return ret_val;
3434 }
3435 
3436 /**
3437  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3438  *  @hw: pointer to hardware structure
3439  *  @san_mac_offset: SAN MAC address offset
3440  *
3441  *  This function will read the EEPROM location for the SAN MAC address
3442  *  pointer, and returns the value at that location.  This is used in both
3443  *  get and set mac_addr routines.
3444  **/
3445 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3446 					 u16 *san_mac_offset)
3447 {
3448 	s32 ret_val;
3449 
3450 	DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3451 
3452 	/*
3453 	 * First read the EEPROM pointer to see if the MAC addresses are
3454 	 * available.
3455 	 */
3456 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3457 				      san_mac_offset);
3458 	if (ret_val) {
3459 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3460 			      "eeprom at offset %d failed",
3461 			      IXGBE_SAN_MAC_ADDR_PTR);
3462 	}
3463 
3464 	return ret_val;
3465 }
3466 
3467 /**
3468  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3469  *  @hw: pointer to hardware structure
3470  *  @san_mac_addr: SAN MAC address
3471  *
3472  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
3473  *  per-port, so set_lan_id() must be called before reading the addresses.
3474  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
3475  *  upon for non-SFP connections, so we must call it here.
3476  **/
3477 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3478 {
3479 	u16 san_mac_data, san_mac_offset;
3480 	u8 i;
3481 	s32 ret_val;
3482 
3483 	DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3484 
3485 	/*
3486 	 * First read the EEPROM pointer to see if the MAC addresses are
3487 	 * available.  If they're not, no point in calling set_lan_id() here.
3488 	 */
3489 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3490 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3491 		goto san_mac_addr_out;
3492 
3493 	/* make sure we know which port we need to program */
3494 	hw->mac.ops.set_lan_id(hw);
3495 	/* apply the port offset to the address offset */
3496 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3497 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3498 	for (i = 0; i < 3; i++) {
3499 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3500 					      &san_mac_data);
3501 		if (ret_val) {
3502 			ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3503 				      "eeprom read at offset %d failed",
3504 				      san_mac_offset);
3505 			goto san_mac_addr_out;
3506 		}
3507 		san_mac_addr[i * 2] = (u8)(san_mac_data);
3508 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3509 		san_mac_offset++;
3510 	}
3511 	return IXGBE_SUCCESS;
3512 
3513 san_mac_addr_out:
3514 	/*
3515 	 * No addresses available in this EEPROM.  It's not an
3516 	 * error though, so just wipe the local address and return.
3517 	 */
3518 	for (i = 0; i < 6; i++)
3519 		san_mac_addr[i] = 0xFF;
3520 	return IXGBE_SUCCESS;
3521 }
3522 
3523 /**
3524  *  ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3525  *  @hw: pointer to hardware structure
3526  *  @san_mac_addr: SAN MAC address
3527  *
3528  *  Write a SAN MAC address to the EEPROM.
3529  **/
3530 s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3531 {
3532 	s32 ret_val;
3533 	u16 san_mac_data, san_mac_offset;
3534 	u8 i;
3535 
3536 	DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3537 
3538 	/* Look for SAN mac address pointer.  If not defined, return */
3539 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3540 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3541 		return IXGBE_ERR_NO_SAN_ADDR_PTR;
3542 
3543 	/* Make sure we know which port we need to write */
3544 	hw->mac.ops.set_lan_id(hw);
3545 	/* Apply the port offset to the address offset */
3546 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3547 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3548 
3549 	for (i = 0; i < 3; i++) {
3550 		san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3551 		san_mac_data |= (u16)(san_mac_addr[i * 2]);
3552 		hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3553 		san_mac_offset++;
3554 	}
3555 
3556 	return IXGBE_SUCCESS;
3557 }
3558 
3559 /**
3560  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3561  *  @hw: pointer to hardware structure
3562  *
3563  *  Read PCIe configuration space, and get the MSI-X vector count from
3564  *  the capabilities table.
3565  **/
3566 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3567 {
3568 	u16 msix_count = 1;
3569 	u16 max_msix_count;
3570 	u16 pcie_offset;
3571 
3572 	switch (hw->mac.type) {
3573 	case ixgbe_mac_82598EB:
3574 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3575 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3576 		break;
3577 	case ixgbe_mac_82599EB:
3578 	case ixgbe_mac_X540:
3579 	case ixgbe_mac_X550:
3580 	case ixgbe_mac_X550EM_x:
3581 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3582 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3583 		break;
3584 	default:
3585 		return msix_count;
3586 	}
3587 
3588 	DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3589 	msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3590 	if (IXGBE_REMOVED(hw->hw_addr))
3591 		msix_count = 0;
3592 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3593 
3594 	/* MSI-X count is zero-based in HW */
3595 	msix_count++;
3596 
3597 	if (msix_count > max_msix_count)
3598 		msix_count = max_msix_count;
3599 
3600 	return msix_count;
3601 }
3602 
3603 /**
3604  *  ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3605  *  @hw: pointer to hardware structure
3606  *  @addr: Address to put into receive address register
3607  *  @vmdq: VMDq pool to assign
3608  *
3609  *  Puts an ethernet address into a receive address register, or
3610  *  finds the rar that it is aleady in; adds to the pool list
3611  **/
3612 s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3613 {
3614 	static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3615 	u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3616 	u32 rar;
3617 	u32 rar_low, rar_high;
3618 	u32 addr_low, addr_high;
3619 
3620 	DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3621 
3622 	/* swap bytes for HW little endian */
3623 	addr_low  = addr[0] | (addr[1] << 8)
3624 			    | (addr[2] << 16)
3625 			    | (addr[3] << 24);
3626 	addr_high = addr[4] | (addr[5] << 8);
3627 
3628 	/*
3629 	 * Either find the mac_id in rar or find the first empty space.
3630 	 * rar_highwater points to just after the highest currently used
3631 	 * rar in order to shorten the search.  It grows when we add a new
3632 	 * rar to the top.
3633 	 */
3634 	for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3635 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3636 
3637 		if (((IXGBE_RAH_AV & rar_high) == 0)
3638 		    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3639 			first_empty_rar = rar;
3640 		} else if ((rar_high & 0xFFFF) == addr_high) {
3641 			rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3642 			if (rar_low == addr_low)
3643 				break;    /* found it already in the rars */
3644 		}
3645 	}
3646 
3647 	if (rar < hw->mac.rar_highwater) {
3648 		/* already there so just add to the pool bits */
3649 		ixgbe_set_vmdq(hw, rar, vmdq);
3650 	} else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3651 		/* stick it into first empty RAR slot we found */
3652 		rar = first_empty_rar;
3653 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3654 	} else if (rar == hw->mac.rar_highwater) {
3655 		/* add it to the top of the list and inc the highwater mark */
3656 		ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3657 		hw->mac.rar_highwater++;
3658 	} else if (rar >= hw->mac.num_rar_entries) {
3659 		return IXGBE_ERR_INVALID_MAC_ADDR;
3660 	}
3661 
3662 	/*
3663 	 * If we found rar[0], make sure the default pool bit (we use pool 0)
3664 	 * remains cleared to be sure default pool packets will get delivered
3665 	 */
3666 	if (rar == 0)
3667 		ixgbe_clear_vmdq(hw, rar, 0);
3668 
3669 	return rar;
3670 }
3671 
3672 /**
3673  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3674  *  @hw: pointer to hardware struct
3675  *  @rar: receive address register index to disassociate
3676  *  @vmdq: VMDq pool index to remove from the rar
3677  **/
3678 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3679 {
3680 	u32 mpsar_lo, mpsar_hi;
3681 	u32 rar_entries = hw->mac.num_rar_entries;
3682 
3683 	DEBUGFUNC("ixgbe_clear_vmdq_generic");
3684 
3685 	/* Make sure we are using a valid rar index range */
3686 	if (rar >= rar_entries) {
3687 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3688 			     "RAR index %d is out of range.\n", rar);
3689 		return IXGBE_ERR_INVALID_ARGUMENT;
3690 	}
3691 
3692 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3693 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3694 
3695 	if (IXGBE_REMOVED(hw->hw_addr))
3696 		goto done;
3697 
3698 	if (!mpsar_lo && !mpsar_hi)
3699 		goto done;
3700 
3701 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3702 		if (mpsar_lo) {
3703 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3704 			mpsar_lo = 0;
3705 		}
3706 		if (mpsar_hi) {
3707 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3708 			mpsar_hi = 0;
3709 		}
3710 	} else if (vmdq < 32) {
3711 		mpsar_lo &= ~(1 << vmdq);
3712 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3713 	} else {
3714 		mpsar_hi &= ~(1 << (vmdq - 32));
3715 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3716 	}
3717 
3718 	/* was that the last pool using this rar? */
3719 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
3720 		hw->mac.ops.clear_rar(hw, rar);
3721 done:
3722 	return IXGBE_SUCCESS;
3723 }
3724 
3725 /**
3726  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3727  *  @hw: pointer to hardware struct
3728  *  @rar: receive address register index to associate with a VMDq index
3729  *  @vmdq: VMDq pool index
3730  **/
3731 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3732 {
3733 	u32 mpsar;
3734 	u32 rar_entries = hw->mac.num_rar_entries;
3735 
3736 	DEBUGFUNC("ixgbe_set_vmdq_generic");
3737 
3738 	/* Make sure we are using a valid rar index range */
3739 	if (rar >= rar_entries) {
3740 		ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3741 			     "RAR index %d is out of range.\n", rar);
3742 		return IXGBE_ERR_INVALID_ARGUMENT;
3743 	}
3744 
3745 	if (vmdq < 32) {
3746 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3747 		mpsar |= 1 << vmdq;
3748 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3749 	} else {
3750 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3751 		mpsar |= 1 << (vmdq - 32);
3752 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3753 	}
3754 	return IXGBE_SUCCESS;
3755 }
3756 
3757 /**
3758  *  This function should only be involved in the IOV mode.
3759  *  In IOV mode, Default pool is next pool after the number of
3760  *  VFs advertized and not 0.
3761  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3762  *
3763  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3764  *  @hw: pointer to hardware struct
3765  *  @vmdq: VMDq pool index
3766  **/
3767 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3768 {
3769 	u32 rar = hw->mac.san_mac_rar_index;
3770 
3771 	DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3772 
3773 	if (vmdq < 32) {
3774 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3775 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3776 	} else {
3777 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3778 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3779 	}
3780 
3781 	return IXGBE_SUCCESS;
3782 }
3783 
3784 /**
3785  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3786  *  @hw: pointer to hardware structure
3787  **/
3788 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3789 {
3790 	int i;
3791 
3792 	DEBUGFUNC("ixgbe_init_uta_tables_generic");
3793 	DEBUGOUT(" Clearing UTA\n");
3794 
3795 	for (i = 0; i < 128; i++)
3796 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3797 
3798 	return IXGBE_SUCCESS;
3799 }
3800 
3801 /**
3802  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3803  *  @hw: pointer to hardware structure
3804  *  @vlan: VLAN id to write to VLAN filter
3805  *
3806  *  return the VLVF index where this VLAN id should be placed
3807  *
3808  **/
3809 s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
3810 {
3811 	u32 bits = 0;
3812 	u32 first_empty_slot = 0;
3813 	s32 regindex;
3814 
3815 	/* short cut the special case */
3816 	if (vlan == 0)
3817 		return 0;
3818 
3819 	/*
3820 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3821 	  * slot found along the way
3822 	  */
3823 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3824 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3825 		if (!bits && !(first_empty_slot))
3826 			first_empty_slot = regindex;
3827 		else if ((bits & 0x0FFF) == vlan)
3828 			break;
3829 	}
3830 
3831 	/*
3832 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3833 	  * in the VLVF. Else use the first empty VLVF register for this
3834 	  * vlan id.
3835 	  */
3836 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3837 		if (first_empty_slot)
3838 			regindex = first_empty_slot;
3839 		else {
3840 			ERROR_REPORT1(IXGBE_ERROR_SOFTWARE,
3841 				     "No space in VLVF.\n");
3842 			regindex = IXGBE_ERR_NO_SPACE;
3843 		}
3844 	}
3845 
3846 	return regindex;
3847 }
3848 
3849 /**
3850  *  ixgbe_set_vfta_generic - Set VLAN filter table
3851  *  @hw: pointer to hardware structure
3852  *  @vlan: VLAN id to write to VLAN filter
3853  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3854  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3855  *
3856  *  Turn on/off specified VLAN in the VLAN filter table.
3857  **/
3858 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3859 			   bool vlan_on)
3860 {
3861 	s32 regindex;
3862 	u32 bitindex;
3863 	u32 vfta;
3864 	u32 targetbit;
3865 	s32 ret_val = IXGBE_SUCCESS;
3866 	bool vfta_changed = FALSE;
3867 
3868 	DEBUGFUNC("ixgbe_set_vfta_generic");
3869 
3870 	if (vlan > 4095)
3871 		return IXGBE_ERR_PARAM;
3872 
3873 	/*
3874 	 * this is a 2 part operation - first the VFTA, then the
3875 	 * VLVF and VLVFB if VT Mode is set
3876 	 * We don't write the VFTA until we know the VLVF part succeeded.
3877 	 */
3878 
3879 	/* Part 1
3880 	 * The VFTA is a bitstring made up of 128 32-bit registers
3881 	 * that enable the particular VLAN id, much like the MTA:
3882 	 *    bits[11-5]: which register
3883 	 *    bits[4-0]:  which bit in the register
3884 	 */
3885 	regindex = (vlan >> 5) & 0x7F;
3886 	bitindex = vlan & 0x1F;
3887 	targetbit = (1 << bitindex);
3888 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3889 
3890 	if (vlan_on) {
3891 		if (!(vfta & targetbit)) {
3892 			vfta |= targetbit;
3893 			vfta_changed = TRUE;
3894 		}
3895 	} else {
3896 		if ((vfta & targetbit)) {
3897 			vfta &= ~targetbit;
3898 			vfta_changed = TRUE;
3899 		}
3900 	}
3901 
3902 	/* Part 2
3903 	 * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3904 	 */
3905 	ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on,
3906 					 &vfta_changed);
3907 	if (ret_val != IXGBE_SUCCESS)
3908 		return ret_val;
3909 
3910 	if (vfta_changed)
3911 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3912 
3913 	return IXGBE_SUCCESS;
3914 }
3915 
3916 /**
3917  *  ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3918  *  @hw: pointer to hardware structure
3919  *  @vlan: VLAN id to write to VLAN filter
3920  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3921  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3922  *  @vfta_changed: pointer to boolean flag which indicates whether VFTA
3923  *                 should be changed
3924  *
3925  *  Turn on/off specified bit in VLVF table.
3926  **/
3927 s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3928 			    bool vlan_on, bool *vfta_changed)
3929 {
3930 	u32 vt;
3931 
3932 	DEBUGFUNC("ixgbe_set_vlvf_generic");
3933 
3934 	if (vlan > 4095)
3935 		return IXGBE_ERR_PARAM;
3936 
3937 	/* If VT Mode is set
3938 	 *   Either vlan_on
3939 	 *     make sure the vlan is in VLVF
3940 	 *     set the vind bit in the matching VLVFB
3941 	 *   Or !vlan_on
3942 	 *     clear the pool bit and possibly the vind
3943 	 */
3944 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3945 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3946 		s32 vlvf_index;
3947 		u32 bits;
3948 
3949 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3950 		if (vlvf_index < 0)
3951 			return vlvf_index;
3952 
3953 		if (vlan_on) {
3954 			/* set the pool bit */
3955 			if (vind < 32) {
3956 				bits = IXGBE_READ_REG(hw,
3957 						IXGBE_VLVFB(vlvf_index * 2));
3958 				bits |= (1 << vind);
3959 				IXGBE_WRITE_REG(hw,
3960 						IXGBE_VLVFB(vlvf_index * 2),
3961 						bits);
3962 			} else {
3963 				bits = IXGBE_READ_REG(hw,
3964 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3965 				bits |= (1 << (vind - 32));
3966 				IXGBE_WRITE_REG(hw,
3967 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3968 					bits);
3969 			}
3970 		} else {
3971 			/* clear the pool bit */
3972 			if (vind < 32) {
3973 				bits = IXGBE_READ_REG(hw,
3974 						IXGBE_VLVFB(vlvf_index * 2));
3975 				bits &= ~(1 << vind);
3976 				IXGBE_WRITE_REG(hw,
3977 						IXGBE_VLVFB(vlvf_index * 2),
3978 						bits);
3979 				bits |= IXGBE_READ_REG(hw,
3980 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3981 			} else {
3982 				bits = IXGBE_READ_REG(hw,
3983 					IXGBE_VLVFB((vlvf_index * 2) + 1));
3984 				bits &= ~(1 << (vind - 32));
3985 				IXGBE_WRITE_REG(hw,
3986 					IXGBE_VLVFB((vlvf_index * 2) + 1),
3987 					bits);
3988 				bits |= IXGBE_READ_REG(hw,
3989 						IXGBE_VLVFB(vlvf_index * 2));
3990 			}
3991 		}
3992 
3993 		/*
3994 		 * If there are still bits set in the VLVFB registers
3995 		 * for the VLAN ID indicated we need to see if the
3996 		 * caller is requesting that we clear the VFTA entry bit.
3997 		 * If the caller has requested that we clear the VFTA
3998 		 * entry bit but there are still pools/VFs using this VLAN
3999 		 * ID entry then ignore the request.  We're not worried
4000 		 * about the case where we're turning the VFTA VLAN ID
4001 		 * entry bit on, only when requested to turn it off as
4002 		 * there may be multiple pools and/or VFs using the
4003 		 * VLAN ID entry.  In that case we cannot clear the
4004 		 * VFTA bit until all pools/VFs using that VLAN ID have also
4005 		 * been cleared.  This will be indicated by "bits" being
4006 		 * zero.
4007 		 */
4008 		if (bits) {
4009 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
4010 					(IXGBE_VLVF_VIEN | vlan));
4011 			if ((!vlan_on) && (vfta_changed != NULL)) {
4012 				/* someone wants to clear the vfta entry
4013 				 * but some pools/VFs are still using it.
4014 				 * Ignore it. */
4015 				*vfta_changed = FALSE;
4016 			}
4017 		} else
4018 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4019 	}
4020 
4021 	return IXGBE_SUCCESS;
4022 }
4023 
4024 /**
4025  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
4026  *  @hw: pointer to hardware structure
4027  *
4028  *  Clears the VLAN filer table, and the VMDq index associated with the filter
4029  **/
4030 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4031 {
4032 	u32 offset;
4033 
4034 	DEBUGFUNC("ixgbe_clear_vfta_generic");
4035 
4036 	for (offset = 0; offset < hw->mac.vft_size; offset++)
4037 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4038 
4039 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4040 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4041 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4042 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
4043 	}
4044 
4045 	return IXGBE_SUCCESS;
4046 }
4047 
4048 /**
4049  *  ixgbe_check_mac_link_generic - Determine link and speed status
4050  *  @hw: pointer to hardware structure
4051  *  @speed: pointer to link speed
4052  *  @link_up: TRUE when link is up
4053  *  @link_up_wait_to_complete: bool used to wait for link up or not
4054  *
4055  *  Reads the links register to determine if link is up and the current speed
4056  **/
4057 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4058 				 bool *link_up, bool link_up_wait_to_complete)
4059 {
4060 	u32 links_reg, links_orig;
4061 	u32 i;
4062 
4063 	DEBUGFUNC("ixgbe_check_mac_link_generic");
4064 
4065 	/* clear the old state */
4066 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4067 
4068 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4069 
4070 	if (links_orig != links_reg) {
4071 		DEBUGOUT2("LINKS changed from %08X to %08X\n",
4072 			  links_orig, links_reg);
4073 	}
4074 
4075 	if (link_up_wait_to_complete) {
4076 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
4077 			if (links_reg & IXGBE_LINKS_UP) {
4078 				*link_up = TRUE;
4079 				break;
4080 			} else {
4081 				*link_up = FALSE;
4082 			}
4083 			msec_delay(100);
4084 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4085 		}
4086 	} else {
4087 		if (links_reg & IXGBE_LINKS_UP)
4088 			*link_up = TRUE;
4089 		else
4090 			*link_up = FALSE;
4091 	}
4092 
4093 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4094 	case IXGBE_LINKS_SPEED_10G_82599:
4095 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
4096 		if (hw->mac.type >= ixgbe_mac_X550) {
4097 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4098 				*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4099 		}
4100 		break;
4101 	case IXGBE_LINKS_SPEED_1G_82599:
4102 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
4103 		break;
4104 	case IXGBE_LINKS_SPEED_100_82599:
4105 		*speed = IXGBE_LINK_SPEED_100_FULL;
4106 		if (hw->mac.type >= ixgbe_mac_X550) {
4107 			if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4108 				*speed = IXGBE_LINK_SPEED_5GB_FULL;
4109 		}
4110 		break;
4111 	default:
4112 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
4113 	}
4114 
4115 	return IXGBE_SUCCESS;
4116 }
4117 
4118 /**
4119  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4120  *  the EEPROM
4121  *  @hw: pointer to hardware structure
4122  *  @wwnn_prefix: the alternative WWNN prefix
4123  *  @wwpn_prefix: the alternative WWPN prefix
4124  *
4125  *  This function will read the EEPROM from the alternative SAN MAC address
4126  *  block to check the support for the alternative WWNN/WWPN prefix support.
4127  **/
4128 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4129 				 u16 *wwpn_prefix)
4130 {
4131 	u16 offset, caps;
4132 	u16 alt_san_mac_blk_offset;
4133 
4134 	DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4135 
4136 	/* clear output first */
4137 	*wwnn_prefix = 0xFFFF;
4138 	*wwpn_prefix = 0xFFFF;
4139 
4140 	/* check if alternative SAN MAC is supported */
4141 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4142 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4143 		goto wwn_prefix_err;
4144 
4145 	if ((alt_san_mac_blk_offset == 0) ||
4146 	    (alt_san_mac_blk_offset == 0xFFFF))
4147 		goto wwn_prefix_out;
4148 
4149 	/* check capability in alternative san mac address block */
4150 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4151 	if (hw->eeprom.ops.read(hw, offset, &caps))
4152 		goto wwn_prefix_err;
4153 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4154 		goto wwn_prefix_out;
4155 
4156 	/* get the corresponding prefix for WWNN/WWPN */
4157 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4158 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4159 		ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4160 			      "eeprom read at offset %d failed", offset);
4161 	}
4162 
4163 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4164 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4165 		goto wwn_prefix_err;
4166 
4167 wwn_prefix_out:
4168 	return IXGBE_SUCCESS;
4169 
4170 wwn_prefix_err:
4171 	ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4172 		      "eeprom read at offset %d failed", offset);
4173 	return IXGBE_SUCCESS;
4174 }
4175 
4176 /**
4177  *  ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4178  *  @hw: pointer to hardware structure
4179  *  @bs: the fcoe boot status
4180  *
4181  *  This function will read the FCOE boot status from the iSCSI FCOE block
4182  **/
4183 s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4184 {
4185 	u16 offset, caps, flags;
4186 	s32 status;
4187 
4188 	DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4189 
4190 	/* clear output first */
4191 	*bs = ixgbe_fcoe_bootstatus_unavailable;
4192 
4193 	/* check if FCOE IBA block is present */
4194 	offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4195 	status = hw->eeprom.ops.read(hw, offset, &caps);
4196 	if (status != IXGBE_SUCCESS)
4197 		goto out;
4198 
4199 	if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4200 		goto out;
4201 
4202 	/* check if iSCSI FCOE block is populated */
4203 	status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4204 	if (status != IXGBE_SUCCESS)
4205 		goto out;
4206 
4207 	if ((offset == 0) || (offset == 0xFFFF))
4208 		goto out;
4209 
4210 	/* read fcoe flags in iSCSI FCOE block */
4211 	offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4212 	status = hw->eeprom.ops.read(hw, offset, &flags);
4213 	if (status != IXGBE_SUCCESS)
4214 		goto out;
4215 
4216 	if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4217 		*bs = ixgbe_fcoe_bootstatus_enabled;
4218 	else
4219 		*bs = ixgbe_fcoe_bootstatus_disabled;
4220 
4221 out:
4222 	return status;
4223 }
4224 
4225 /**
4226  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4227  *  @hw: pointer to hardware structure
4228  *  @enable: enable or disable switch for anti-spoofing
4229  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
4230  *
4231  **/
4232 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
4233 {
4234 	int j;
4235 	int pf_target_reg = pf >> 3;
4236 	int pf_target_shift = pf % 8;
4237 	u32 pfvfspoof = 0;
4238 
4239 	if (hw->mac.type == ixgbe_mac_82598EB)
4240 		return;
4241 
4242 	if (enable)
4243 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
4244 
4245 	/*
4246 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
4247 	 * MAC anti-spoof enables in each register array element.
4248 	 */
4249 	for (j = 0; j < pf_target_reg; j++)
4250 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4251 
4252 	/*
4253 	 * The PF should be allowed to spoof so that it can support
4254 	 * emulation mode NICs.  Do not set the bits assigned to the PF
4255 	 */
4256 	pfvfspoof &= (1 << pf_target_shift) - 1;
4257 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
4258 
4259 	/*
4260 	 * Remaining pools belong to the PF so they do not need to have
4261 	 * anti-spoofing enabled.
4262 	 */
4263 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
4264 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
4265 }
4266 
4267 /**
4268  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4269  *  @hw: pointer to hardware structure
4270  *  @enable: enable or disable switch for VLAN anti-spoofing
4271  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4272  *
4273  **/
4274 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4275 {
4276 	int vf_target_reg = vf >> 3;
4277 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4278 	u32 pfvfspoof;
4279 
4280 	if (hw->mac.type == ixgbe_mac_82598EB)
4281 		return;
4282 
4283 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4284 	if (enable)
4285 		pfvfspoof |= (1 << vf_target_shift);
4286 	else
4287 		pfvfspoof &= ~(1 << vf_target_shift);
4288 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4289 }
4290 
4291 /**
4292  *  ixgbe_get_device_caps_generic - Get additional device capabilities
4293  *  @hw: pointer to hardware structure
4294  *  @device_caps: the EEPROM word with the extra device capabilities
4295  *
4296  *  This function will read the EEPROM location for the device capabilities,
4297  *  and return the word through device_caps.
4298  **/
4299 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4300 {
4301 	DEBUGFUNC("ixgbe_get_device_caps_generic");
4302 
4303 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4304 
4305 	return IXGBE_SUCCESS;
4306 }
4307 
4308 /**
4309  *  ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4310  *  @hw: pointer to hardware structure
4311  *
4312  **/
4313 void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4314 {
4315 	u32 regval;
4316 	u32 i;
4317 
4318 	DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4319 
4320 	/* Enable relaxed ordering */
4321 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
4322 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4323 		regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4324 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4325 	}
4326 
4327 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
4328 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4329 		regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4330 			  IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4331 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4332 	}
4333 
4334 }
4335 
4336 /**
4337  *  ixgbe_calculate_checksum - Calculate checksum for buffer
4338  *  @buffer: pointer to EEPROM
4339  *  @length: size of EEPROM to calculate a checksum for
4340  *  Calculates the checksum for some buffer on a specified length.  The
4341  *  checksum calculated is returned.
4342  **/
4343 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4344 {
4345 	u32 i;
4346 	u8 sum = 0;
4347 
4348 	DEBUGFUNC("ixgbe_calculate_checksum");
4349 
4350 	if (!buffer)
4351 		return 0;
4352 
4353 	for (i = 0; i < length; i++)
4354 		sum += buffer[i];
4355 
4356 	return (u8) (0 - sum);
4357 }
4358 
4359 /**
4360  *  ixgbe_host_interface_command - Issue command to manageability block
4361  *  @hw: pointer to the HW structure
4362  *  @buffer: contains the command to write and where the return status will
4363  *   be placed
4364  *  @length: length of buffer, must be multiple of 4 bytes
4365  *  @timeout: time in ms to wait for command completion
4366  *  @return_data: read and return data from the buffer (TRUE) or not (FALSE)
4367  *   Needed because FW structures are big endian and decoding of
4368  *   these fields can be 8 bit or 16 bit based on command. Decoding
4369  *   is not easily understood without making a table of commands.
4370  *   So we will leave this up to the caller to read back the data
4371  *   in these cases.
4372  *
4373  *  Communicates with the manageability block.  On success return IXGBE_SUCCESS
4374  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
4375  **/
4376 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4377 				 u32 length, u32 timeout, bool return_data)
4378 {
4379 	u32 hicr, i, bi, fwsts;
4380 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4381 	u16 buf_len;
4382 	u16 dword_len;
4383 
4384 	DEBUGFUNC("ixgbe_host_interface_command");
4385 
4386 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4387 		DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4388 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4389 	}
4390 	/* Set bit 9 of FWSTS clearing FW reset indication */
4391 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4392 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4393 
4394 	/* Check that the host interface is enabled. */
4395 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4396 	if ((hicr & IXGBE_HICR_EN) == 0) {
4397 		DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4398 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4399 	}
4400 
4401 	/* Calculate length in DWORDs. We must be DWORD aligned */
4402 	if ((length % (sizeof(u32))) != 0) {
4403 		DEBUGOUT("Buffer length failure, not aligned to dword");
4404 		return IXGBE_ERR_INVALID_ARGUMENT;
4405 	}
4406 
4407 	dword_len = length >> 2;
4408 
4409 	/* The device driver writes the relevant command block
4410 	 * into the ram area.
4411 	 */
4412 	for (i = 0; i < dword_len; i++)
4413 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4414 				      i, IXGBE_CPU_TO_LE32(buffer[i]));
4415 
4416 	/* Setting this bit tells the ARC that a new command is pending. */
4417 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4418 
4419 	for (i = 0; i < timeout; i++) {
4420 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4421 		if (!(hicr & IXGBE_HICR_C))
4422 			break;
4423 		msec_delay(1);
4424 	}
4425 
4426 	/* Check command completion */
4427 	if ((timeout != 0 && i == timeout) ||
4428 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4429 		ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4430 			     "Command has failed with no status valid.\n");
4431 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4432 	}
4433 
4434 	if (!return_data)
4435 		return 0;
4436 
4437 	/* Calculate length in DWORDs */
4438 	dword_len = hdr_size >> 2;
4439 
4440 	/* first pull in the header so we know the buffer length */
4441 	for (bi = 0; bi < dword_len; bi++) {
4442 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4443 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4444 	}
4445 
4446 	/* If there is any thing in data position pull it in */
4447 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
4448 	if (buf_len == 0)
4449 		return 0;
4450 
4451 	if (length < buf_len + hdr_size) {
4452 		DEBUGOUT("Buffer not large enough for reply message.\n");
4453 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4454 	}
4455 
4456 	/* Calculate length in DWORDs, add 3 for odd lengths */
4457 	dword_len = (buf_len + 3) >> 2;
4458 
4459 	/* Pull in the rest of the buffer (bi is where we left off) */
4460 	for (; bi <= dword_len; bi++) {
4461 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4462 		IXGBE_LE32_TO_CPUS(&buffer[bi]);
4463 	}
4464 
4465 	return 0;
4466 }
4467 
4468 /**
4469  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4470  *  @hw: pointer to the HW structure
4471  *  @maj: driver version major number
4472  *  @min: driver version minor number
4473  *  @build: driver version build number
4474  *  @sub: driver version sub build number
4475  *
4476  *  Sends driver version number to firmware through the manageability
4477  *  block.  On success return IXGBE_SUCCESS
4478  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4479  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4480  **/
4481 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4482 				 u8 build, u8 sub)
4483 {
4484 	struct ixgbe_hic_drv_info fw_cmd;
4485 	int i;
4486 	s32 ret_val = IXGBE_SUCCESS;
4487 
4488 	DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4489 
4490 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)
4491 	    != IXGBE_SUCCESS) {
4492 		ret_val = IXGBE_ERR_SWFW_SYNC;
4493 		goto out;
4494 	}
4495 
4496 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4497 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4498 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4499 	fw_cmd.port_num = (u8)hw->bus.func;
4500 	fw_cmd.ver_maj = maj;
4501 	fw_cmd.ver_min = min;
4502 	fw_cmd.ver_build = build;
4503 	fw_cmd.ver_sub = sub;
4504 	fw_cmd.hdr.checksum = 0;
4505 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4506 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4507 	fw_cmd.pad = 0;
4508 	fw_cmd.pad2 = 0;
4509 
4510 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4511 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4512 						       sizeof(fw_cmd),
4513 						       IXGBE_HI_COMMAND_TIMEOUT,
4514 						       TRUE);
4515 		if (ret_val != IXGBE_SUCCESS)
4516 			continue;
4517 
4518 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4519 		    FW_CEM_RESP_STATUS_SUCCESS)
4520 			ret_val = IXGBE_SUCCESS;
4521 		else
4522 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4523 
4524 		break;
4525 	}
4526 
4527 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4528 out:
4529 	return ret_val;
4530 }
4531 
4532 /**
4533  * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4534  * @hw: pointer to hardware structure
4535  * @num_pb: number of packet buffers to allocate
4536  * @headroom: reserve n KB of headroom
4537  * @strategy: packet buffer allocation strategy
4538  **/
4539 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4540 			     int strategy)
4541 {
4542 	u32 pbsize = hw->mac.rx_pb_size;
4543 	int i = 0;
4544 	u32 rxpktsize, txpktsize, txpbthresh;
4545 
4546 	/* Reserve headroom */
4547 	pbsize -= headroom;
4548 
4549 	if (!num_pb)
4550 		num_pb = 1;
4551 
4552 	/* Divide remaining packet buffer space amongst the number of packet
4553 	 * buffers requested using supplied strategy.
4554 	 */
4555 	switch (strategy) {
4556 	case PBA_STRATEGY_WEIGHTED:
4557 		/* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4558 		 * buffer with 5/8 of the packet buffer space.
4559 		 */
4560 		rxpktsize = (pbsize * 5) / (num_pb * 4);
4561 		pbsize -= rxpktsize * (num_pb / 2);
4562 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4563 		for (; i < (num_pb / 2); i++)
4564 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4565 		/* Fall through to configure remaining packet buffers */
4566 	case PBA_STRATEGY_EQUAL:
4567 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4568 		for (; i < num_pb; i++)
4569 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4570 		break;
4571 	default:
4572 		break;
4573 	}
4574 
4575 	/* Only support an equally distributed Tx packet buffer strategy. */
4576 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4577 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4578 	for (i = 0; i < num_pb; i++) {
4579 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4580 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4581 	}
4582 
4583 	/* Clear unused TCs, if any, to zero buffer size*/
4584 	for (; i < IXGBE_MAX_PB; i++) {
4585 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4586 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4587 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4588 	}
4589 }
4590 
4591 /**
4592  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4593  * @hw: pointer to the hardware structure
4594  *
4595  * The 82599 and x540 MACs can experience issues if TX work is still pending
4596  * when a reset occurs.  This function prevents this by flushing the PCIe
4597  * buffers on the system.
4598  **/
4599 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4600 {
4601 	u32 gcr_ext, hlreg0, i, poll;
4602 	u16 value;
4603 
4604 	/*
4605 	 * If double reset is not requested then all transactions should
4606 	 * already be clear and as such there is no work to do
4607 	 */
4608 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4609 		return;
4610 
4611 	/*
4612 	 * Set loopback enable to prevent any transmits from being sent
4613 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
4614 	 * has already been cleared.
4615 	 */
4616 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4617 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4618 
4619 	/* Wait for a last completion before clearing buffers */
4620 	IXGBE_WRITE_FLUSH(hw);
4621 	msec_delay(3);
4622 
4623 	/*
4624 	 * Before proceeding, make sure that the PCIe block does not have
4625 	 * transactions pending.
4626 	 */
4627 	poll = ixgbe_pcie_timeout_poll(hw);
4628 	for (i = 0; i < poll; i++) {
4629 		usec_delay(100);
4630 		value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4631 		if (IXGBE_REMOVED(hw->hw_addr))
4632 			goto out;
4633 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4634 			goto out;
4635 	}
4636 
4637 out:
4638 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
4639 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4640 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4641 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4642 
4643 	/* Flush all writes and allow 20usec for all transactions to clear */
4644 	IXGBE_WRITE_FLUSH(hw);
4645 	usec_delay(20);
4646 
4647 	/* restore previous register values */
4648 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4649 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4650 }
4651 
4652 
4653 /**
4654  * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
4655  * @hw: pointer to hardware structure
4656  * @map: pointer to u8 arr for returning map
4657  *
4658  * Read the rtrup2tc HW register and resolve its content into map
4659  **/
4660 void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
4661 {
4662 	u32 reg, i;
4663 
4664 	reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
4665 	for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
4666 		map[i] = IXGBE_RTRUP2TC_UP_MASK &
4667 			(reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
4668 	return;
4669 }
4670 
4671 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4672 {
4673 	u32 pfdtxgswc;
4674 	u32 rxctrl;
4675 
4676 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4677 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4678 		if (hw->mac.type != ixgbe_mac_82598EB) {
4679 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4680 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4681 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4682 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4683 				hw->mac.set_lben = TRUE;
4684 			} else {
4685 				hw->mac.set_lben = FALSE;
4686 			}
4687 		}
4688 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4689 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4690 	}
4691 }
4692 
4693 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4694 {
4695 	u32 pfdtxgswc;
4696 	u32 rxctrl;
4697 
4698 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4699 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4700 
4701 	if (hw->mac.type != ixgbe_mac_82598EB) {
4702 		if (hw->mac.set_lben) {
4703 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4704 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4705 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4706 			hw->mac.set_lben = FALSE;
4707 		}
4708 	}
4709 }
4710 
4711 /**
4712  * ixgbe_mng_present - returns TRUE when management capability is present
4713  * @hw: pointer to hardware structure
4714  */
4715 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4716 {
4717 	u32 fwsm;
4718 
4719 	if (hw->mac.type < ixgbe_mac_82599EB)
4720 		return FALSE;
4721 
4722 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4723 	fwsm &= IXGBE_FWSM_MODE_MASK;
4724 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4725 }
4726 
4727 /**
4728  * ixgbe_mng_enabled - Is the manageability engine enabled?
4729  * @hw: pointer to hardware structure
4730  *
4731  * Returns TRUE if the manageability engine is enabled.
4732  **/
4733 bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
4734 {
4735 	u32 fwsm, manc, factps;
4736 
4737 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
4738 	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
4739 		return FALSE;
4740 
4741 	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
4742 	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
4743 		return FALSE;
4744 
4745 	if (hw->mac.type <= ixgbe_mac_X540) {
4746 		factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
4747 		if (factps & IXGBE_FACTPS_MNGCG)
4748 			return FALSE;
4749 	}
4750 
4751 	return TRUE;
4752 }
4753 
4754 /**
4755  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4756  *  @hw: pointer to hardware structure
4757  *  @speed: new link speed
4758  *  @autoneg_wait_to_complete: TRUE when waiting for completion is needed
4759  *
4760  *  Set the link speed in the MAC and/or PHY register and restarts link.
4761  **/
4762 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4763 					  ixgbe_link_speed speed,
4764 					  bool autoneg_wait_to_complete)
4765 {
4766 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4767 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4768 	s32 status = IXGBE_SUCCESS;
4769 	u32 speedcnt = 0;
4770 	u32 i = 0;
4771 	bool autoneg, link_up = FALSE;
4772 
4773 	DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
4774 
4775 	/* Mask off requested but non-supported speeds */
4776 	status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
4777 	if (status != IXGBE_SUCCESS)
4778 		return status;
4779 
4780 	speed &= link_speed;
4781 
4782 	/* Try each speed one by one, highest priority first.  We do this in
4783 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4784 	 */
4785 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4786 		speedcnt++;
4787 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4788 
4789 		/* If we already have link at this speed, just jump out */
4790 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4791 		if (status != IXGBE_SUCCESS)
4792 			return status;
4793 
4794 		if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
4795 			goto out;
4796 
4797 		/* Set the module link speed */
4798 		switch (hw->phy.media_type) {
4799 		case ixgbe_media_type_fiber_fixed:
4800 		case ixgbe_media_type_fiber:
4801 			ixgbe_set_rate_select_speed(hw,
4802 						    IXGBE_LINK_SPEED_10GB_FULL);
4803 			break;
4804 		case ixgbe_media_type_fiber_qsfp:
4805 			/* QSFP module automatically detects MAC link speed */
4806 			break;
4807 		default:
4808 			DEBUGOUT("Unexpected media type.\n");
4809 			break;
4810 		}
4811 
4812 		/* Allow module to change analog characteristics (1G->10G) */
4813 		msec_delay(40);
4814 
4815 		status = ixgbe_setup_mac_link(hw,
4816 					      IXGBE_LINK_SPEED_10GB_FULL,
4817 					      autoneg_wait_to_complete);
4818 		if (status != IXGBE_SUCCESS)
4819 			return status;
4820 
4821 		/* Flap the Tx laser if it has not already been done */
4822 		ixgbe_flap_tx_laser(hw);
4823 
4824 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4825 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4826 		 * attempted.  82599 uses the same timing for 10g SFI.
4827 		 */
4828 		for (i = 0; i < 5; i++) {
4829 			/* Wait for the link partner to also set speed */
4830 			msec_delay(100);
4831 
4832 			/* If we have link, just jump out */
4833 			status = ixgbe_check_link(hw, &link_speed,
4834 						  &link_up, FALSE);
4835 			if (status != IXGBE_SUCCESS)
4836 				return status;
4837 
4838 			if (link_up)
4839 				goto out;
4840 		}
4841 	}
4842 
4843 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4844 		speedcnt++;
4845 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4846 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4847 
4848 		/* If we already have link at this speed, just jump out */
4849 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4850 		if (status != IXGBE_SUCCESS)
4851 			return status;
4852 
4853 		if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
4854 			goto out;
4855 
4856 		/* Set the module link speed */
4857 		switch (hw->phy.media_type) {
4858 		case ixgbe_media_type_fiber_fixed:
4859 		case ixgbe_media_type_fiber:
4860 			ixgbe_set_rate_select_speed(hw,
4861 						    IXGBE_LINK_SPEED_1GB_FULL);
4862 			break;
4863 		case ixgbe_media_type_fiber_qsfp:
4864 			/* QSFP module automatically detects link speed */
4865 			break;
4866 		default:
4867 			DEBUGOUT("Unexpected media type.\n");
4868 			break;
4869 		}
4870 
4871 		/* Allow module to change analog characteristics (10G->1G) */
4872 		msec_delay(40);
4873 
4874 		status = ixgbe_setup_mac_link(hw,
4875 					      IXGBE_LINK_SPEED_1GB_FULL,
4876 					      autoneg_wait_to_complete);
4877 		if (status != IXGBE_SUCCESS)
4878 			return status;
4879 
4880 		/* Flap the Tx laser if it has not already been done */
4881 		ixgbe_flap_tx_laser(hw);
4882 
4883 		/* Wait for the link partner to also set speed */
4884 		msec_delay(100);
4885 
4886 		/* If we have link, just jump out */
4887 		status = ixgbe_check_link(hw, &link_speed, &link_up, FALSE);
4888 		if (status != IXGBE_SUCCESS)
4889 			return status;
4890 
4891 		if (link_up)
4892 			goto out;
4893 	}
4894 
4895 	/* We didn't get link.  Configure back to the highest speed we tried,
4896 	 * (if there was more than one).  We call ourselves back with just the
4897 	 * single highest speed that the user requested.
4898 	 */
4899 	if (speedcnt > 1)
4900 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4901 						      highest_link_speed,
4902 						      autoneg_wait_to_complete);
4903 
4904 out:
4905 	/* Set autoneg_advertised value based on input link speed */
4906 	hw->phy.autoneg_advertised = 0;
4907 
4908 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4909 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4910 
4911 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4912 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4913 
4914 	return status;
4915 }
4916 
4917 /**
4918  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4919  *  @hw: pointer to hardware structure
4920  *  @speed: link speed to set
4921  *
4922  *  Set module link speed via the soft rate select.
4923  */
4924 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4925 					ixgbe_link_speed speed)
4926 {
4927 	s32 status;
4928 	u8 rs, eeprom_data;
4929 
4930 	switch (speed) {
4931 	case IXGBE_LINK_SPEED_10GB_FULL:
4932 		/* one bit mask same as setting on */
4933 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4934 		break;
4935 	case IXGBE_LINK_SPEED_1GB_FULL:
4936 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4937 		break;
4938 	default:
4939 		DEBUGOUT("Invalid fixed module speed\n");
4940 		return;
4941 	}
4942 
4943 	/* Set RS0 */
4944 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4945 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4946 					   &eeprom_data);
4947 	if (status) {
4948 		DEBUGOUT("Failed to read Rx Rate Select RS0\n");
4949 		goto out;
4950 	}
4951 
4952 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4953 
4954 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4955 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4956 					    eeprom_data);
4957 	if (status) {
4958 		DEBUGOUT("Failed to write Rx Rate Select RS0\n");
4959 		goto out;
4960 	}
4961 
4962 	/* Set RS1 */
4963 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4964 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4965 					   &eeprom_data);
4966 	if (status) {
4967 		DEBUGOUT("Failed to read Rx Rate Select RS1\n");
4968 		goto out;
4969 	}
4970 
4971 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4972 
4973 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4974 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4975 					    eeprom_data);
4976 	if (status) {
4977 		DEBUGOUT("Failed to write Rx Rate Select RS1\n");
4978 		goto out;
4979 	}
4980 out:
4981 	return;
4982 }
4983