1 /****************************************************************************** 2 3 Copyright (c) 2001-2015, Intel Corporation 4 All rights reserved. 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions are met: 8 9 1. Redistributions of source code must retain the above copyright notice, 10 this list of conditions and the following disclaimer. 11 12 2. Redistributions in binary form must reproduce the above copyright 13 notice, this list of conditions and the following disclaimer in the 14 documentation and/or other materials provided with the distribution. 15 16 3. Neither the name of the Intel Corporation nor the names of its 17 contributors may be used to endorse or promote products derived from 18 this software without specific prior written permission. 19 20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 POSSIBILITY OF SUCH DAMAGE. 31 32 ******************************************************************************/ 33 /*$FreeBSD$*/ 34 35 36 #ifndef IXGBE_STANDALONE_BUILD 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_rss.h" 40 #endif 41 42 #include "ixgbe.h" 43 44 #ifdef RSS 45 #include <net/rss_config.h> 46 #include <netinet/in_rss.h> 47 #endif 48 49 #ifdef DEV_NETMAP 50 #include <net/netmap.h> 51 #include <sys/selinfo.h> 52 #include <dev/netmap/netmap_kern.h> 53 54 extern int ix_crcstrip; 55 #endif 56 57 /* 58 ** HW RSC control: 59 ** this feature only works with 60 ** IPv4, and only on 82599 and later. 61 ** Also this will cause IP forwarding to 62 ** fail and that can't be controlled by 63 ** the stack as LRO can. For all these 64 ** reasons I've deemed it best to leave 65 ** this off and not bother with a tuneable 66 ** interface, this would need to be compiled 67 ** to enable. 68 */ 69 static bool ixgbe_rsc_enable = FALSE; 70 71 #ifdef IXGBE_FDIR 72 /* 73 ** For Flow Director: this is the 74 ** number of TX packets we sample 75 ** for the filter pool, this means 76 ** every 20th packet will be probed. 77 ** 78 ** This feature can be disabled by 79 ** setting this to 0. 80 */ 81 static int atr_sample_rate = 20; 82 #endif 83 84 /********************************************************************* 85 * Local Function prototypes 86 *********************************************************************/ 87 static void ixgbe_setup_transmit_ring(struct tx_ring *); 88 static void ixgbe_free_transmit_buffers(struct tx_ring *); 89 static int ixgbe_setup_receive_ring(struct rx_ring *); 90 static void ixgbe_free_receive_buffers(struct rx_ring *); 91 92 static void ixgbe_rx_checksum(u32, struct mbuf *, u32); 93 static void ixgbe_refresh_mbufs(struct rx_ring *, int); 94 static int ixgbe_xmit(struct tx_ring *, struct mbuf **); 95 static int ixgbe_tx_ctx_setup(struct tx_ring *, 96 struct mbuf *, u32 *, u32 *); 97 static int ixgbe_tso_setup(struct tx_ring *, 98 struct mbuf *, u32 *, u32 *); 99 #ifdef IXGBE_FDIR 100 static void ixgbe_atr(struct tx_ring *, struct mbuf *); 101 #endif 102 static __inline void ixgbe_rx_discard(struct rx_ring *, int); 103 static __inline void ixgbe_rx_input(struct rx_ring *, struct ifnet *, 104 struct mbuf *, u32); 105 106 #ifdef IXGBE_LEGACY_TX 107 /********************************************************************* 108 * Transmit entry point 109 * 110 * ixgbe_start is called by the stack to initiate a transmit. 111 * The driver will remain in this routine as long as there are 112 * packets to transmit and transmit resources are available. 113 * In case resources are not available stack is notified and 114 * the packet is requeued. 115 **********************************************************************/ 116 117 void 118 ixgbe_start_locked(struct tx_ring *txr, struct ifnet * ifp) 119 { 120 struct mbuf *m_head; 121 struct adapter *adapter = txr->adapter; 122 123 IXGBE_TX_LOCK_ASSERT(txr); 124 125 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 126 return; 127 if (!adapter->link_active) 128 return; 129 130 while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) { 131 if (txr->tx_avail <= IXGBE_QUEUE_MIN_FREE) 132 break; 133 134 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 135 if (m_head == NULL) 136 break; 137 138 if (ixgbe_xmit(txr, &m_head)) { 139 if (m_head != NULL) 140 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 141 break; 142 } 143 /* Send a copy of the frame to the BPF listener */ 144 ETHER_BPF_MTAP(ifp, m_head); 145 } 146 return; 147 } 148 149 /* 150 * Legacy TX start - called by the stack, this 151 * always uses the first tx ring, and should 152 * not be used with multiqueue tx enabled. 153 */ 154 void 155 ixgbe_start(struct ifnet *ifp) 156 { 157 struct adapter *adapter = ifp->if_softc; 158 struct tx_ring *txr = adapter->tx_rings; 159 160 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 161 IXGBE_TX_LOCK(txr); 162 ixgbe_start_locked(txr, ifp); 163 IXGBE_TX_UNLOCK(txr); 164 } 165 return; 166 } 167 168 #else /* ! IXGBE_LEGACY_TX */ 169 170 /* 171 ** Multiqueue Transmit Entry Point 172 ** (if_transmit function) 173 */ 174 int 175 ixgbe_mq_start(struct ifnet *ifp, struct mbuf *m) 176 { 177 struct adapter *adapter = ifp->if_softc; 178 struct ix_queue *que; 179 struct tx_ring *txr; 180 int i, err = 0; 181 #ifdef RSS 182 uint32_t bucket_id; 183 #endif 184 185 /* 186 * When doing RSS, map it to the same outbound queue 187 * as the incoming flow would be mapped to. 188 * 189 * If everything is setup correctly, it should be the 190 * same bucket that the current CPU we're on is. 191 */ 192 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { 193 #ifdef RSS 194 if (rss_hash2bucket(m->m_pkthdr.flowid, 195 M_HASHTYPE_GET(m), &bucket_id) == 0) { 196 i = bucket_id % adapter->num_queues; 197 #ifdef IXGBE_DEBUG 198 if (bucket_id > adapter->num_queues) 199 if_printf(ifp, "bucket_id (%d) > num_queues " 200 "(%d)\n", bucket_id, adapter->num_queues); 201 #endif 202 } else 203 #endif 204 i = m->m_pkthdr.flowid % adapter->num_queues; 205 } else 206 i = curcpu % adapter->num_queues; 207 208 /* Check for a hung queue and pick alternative */ 209 if (((1 << i) & adapter->active_queues) == 0) 210 i = ffsl(adapter->active_queues); 211 212 txr = &adapter->tx_rings[i]; 213 que = &adapter->queues[i]; 214 215 err = drbr_enqueue(ifp, txr->br, m); 216 if (err) 217 return (err); 218 if (IXGBE_TX_TRYLOCK(txr)) { 219 ixgbe_mq_start_locked(ifp, txr); 220 IXGBE_TX_UNLOCK(txr); 221 } else 222 taskqueue_enqueue(que->tq, &txr->txq_task); 223 224 return (0); 225 } 226 227 int 228 ixgbe_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr) 229 { 230 struct adapter *adapter = txr->adapter; 231 struct mbuf *next; 232 int enqueued = 0, err = 0; 233 234 if (((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) || 235 adapter->link_active == 0) 236 return (ENETDOWN); 237 238 /* Process the queue */ 239 #if __FreeBSD_version < 901504 240 next = drbr_dequeue(ifp, txr->br); 241 while (next != NULL) { 242 if ((err = ixgbe_xmit(txr, &next)) != 0) { 243 if (next != NULL) 244 err = drbr_enqueue(ifp, txr->br, next); 245 #else 246 while ((next = drbr_peek(ifp, txr->br)) != NULL) { 247 if ((err = ixgbe_xmit(txr, &next)) != 0) { 248 if (next == NULL) { 249 drbr_advance(ifp, txr->br); 250 } else { 251 drbr_putback(ifp, txr->br, next); 252 } 253 #endif 254 break; 255 } 256 #if __FreeBSD_version >= 901504 257 drbr_advance(ifp, txr->br); 258 #endif 259 enqueued++; 260 #if 0 // this is VF-only 261 #if __FreeBSD_version >= 1100036 262 /* 263 * Since we're looking at the tx ring, we can check 264 * to see if we're a VF by examing our tail register 265 * address. 266 */ 267 if (txr->tail < IXGBE_TDT(0) && next->m_flags & M_MCAST) 268 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 269 #endif 270 #endif 271 /* Send a copy of the frame to the BPF listener */ 272 ETHER_BPF_MTAP(ifp, next); 273 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 274 break; 275 #if __FreeBSD_version < 901504 276 next = drbr_dequeue(ifp, txr->br); 277 #endif 278 } 279 280 if (txr->tx_avail < IXGBE_TX_CLEANUP_THRESHOLD) 281 ixgbe_txeof(txr); 282 283 return (err); 284 } 285 286 /* 287 * Called from a taskqueue to drain queued transmit packets. 288 */ 289 void 290 ixgbe_deferred_mq_start(void *arg, int pending) 291 { 292 struct tx_ring *txr = arg; 293 struct adapter *adapter = txr->adapter; 294 struct ifnet *ifp = adapter->ifp; 295 296 IXGBE_TX_LOCK(txr); 297 if (!drbr_empty(ifp, txr->br)) 298 ixgbe_mq_start_locked(ifp, txr); 299 IXGBE_TX_UNLOCK(txr); 300 } 301 302 /* 303 * Flush all ring buffers 304 */ 305 void 306 ixgbe_qflush(struct ifnet *ifp) 307 { 308 struct adapter *adapter = ifp->if_softc; 309 struct tx_ring *txr = adapter->tx_rings; 310 struct mbuf *m; 311 312 for (int i = 0; i < adapter->num_queues; i++, txr++) { 313 IXGBE_TX_LOCK(txr); 314 while ((m = buf_ring_dequeue_sc(txr->br)) != NULL) 315 m_freem(m); 316 IXGBE_TX_UNLOCK(txr); 317 } 318 if_qflush(ifp); 319 } 320 #endif /* IXGBE_LEGACY_TX */ 321 322 323 /********************************************************************* 324 * 325 * This routine maps the mbufs to tx descriptors, allowing the 326 * TX engine to transmit the packets. 327 * - return 0 on success, positive on failure 328 * 329 **********************************************************************/ 330 331 static int 332 ixgbe_xmit(struct tx_ring *txr, struct mbuf **m_headp) 333 { 334 struct adapter *adapter = txr->adapter; 335 u32 olinfo_status = 0, cmd_type_len; 336 int i, j, error, nsegs; 337 int first; 338 bool remap = TRUE; 339 struct mbuf *m_head; 340 bus_dma_segment_t segs[adapter->num_segs]; 341 bus_dmamap_t map; 342 struct ixgbe_tx_buf *txbuf; 343 union ixgbe_adv_tx_desc *txd = NULL; 344 345 m_head = *m_headp; 346 347 /* Basic descriptor defines */ 348 cmd_type_len = (IXGBE_ADVTXD_DTYP_DATA | 349 IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT); 350 351 if (m_head->m_flags & M_VLANTAG) 352 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE; 353 354 /* 355 * Important to capture the first descriptor 356 * used because it will contain the index of 357 * the one we tell the hardware to report back 358 */ 359 first = txr->next_avail_desc; 360 txbuf = &txr->tx_buffers[first]; 361 map = txbuf->map; 362 363 /* 364 * Map the packet for DMA. 365 */ 366 retry: 367 error = bus_dmamap_load_mbuf_sg(txr->txtag, map, 368 *m_headp, segs, &nsegs, BUS_DMA_NOWAIT); 369 370 if (__predict_false(error)) { 371 struct mbuf *m; 372 373 switch (error) { 374 case EFBIG: 375 /* Try it again? - one try */ 376 if (remap == TRUE) { 377 remap = FALSE; 378 /* 379 * XXX: m_defrag will choke on 380 * non-MCLBYTES-sized clusters 381 */ 382 m = m_defrag(*m_headp, M_NOWAIT); 383 if (m == NULL) { 384 adapter->mbuf_defrag_failed++; 385 m_freem(*m_headp); 386 *m_headp = NULL; 387 return (ENOBUFS); 388 } 389 *m_headp = m; 390 goto retry; 391 } else 392 return (error); 393 case ENOMEM: 394 txr->no_tx_dma_setup++; 395 return (error); 396 default: 397 txr->no_tx_dma_setup++; 398 m_freem(*m_headp); 399 *m_headp = NULL; 400 return (error); 401 } 402 } 403 404 /* Make certain there are enough descriptors */ 405 if (nsegs > txr->tx_avail - 2) { 406 txr->no_desc_avail++; 407 bus_dmamap_unload(txr->txtag, map); 408 return (ENOBUFS); 409 } 410 m_head = *m_headp; 411 412 /* 413 * Set up the appropriate offload context 414 * this will consume the first descriptor 415 */ 416 error = ixgbe_tx_ctx_setup(txr, m_head, &cmd_type_len, &olinfo_status); 417 if (__predict_false(error)) { 418 if (error == ENOBUFS) 419 *m_headp = NULL; 420 return (error); 421 } 422 423 #ifdef IXGBE_FDIR 424 /* Do the flow director magic */ 425 if ((txr->atr_sample) && (!adapter->fdir_reinit)) { 426 ++txr->atr_count; 427 if (txr->atr_count >= atr_sample_rate) { 428 ixgbe_atr(txr, m_head); 429 txr->atr_count = 0; 430 } 431 } 432 #endif 433 434 olinfo_status |= IXGBE_ADVTXD_CC; 435 i = txr->next_avail_desc; 436 for (j = 0; j < nsegs; j++) { 437 bus_size_t seglen; 438 bus_addr_t segaddr; 439 440 txbuf = &txr->tx_buffers[i]; 441 txd = &txr->tx_base[i]; 442 seglen = segs[j].ds_len; 443 segaddr = htole64(segs[j].ds_addr); 444 445 txd->read.buffer_addr = segaddr; 446 txd->read.cmd_type_len = htole32(txr->txd_cmd | 447 cmd_type_len |seglen); 448 txd->read.olinfo_status = htole32(olinfo_status); 449 450 if (++i == txr->num_desc) 451 i = 0; 452 } 453 454 txd->read.cmd_type_len |= 455 htole32(IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS); 456 txr->tx_avail -= nsegs; 457 txr->next_avail_desc = i; 458 459 txbuf->m_head = m_head; 460 /* 461 * Here we swap the map so the last descriptor, 462 * which gets the completion interrupt has the 463 * real map, and the first descriptor gets the 464 * unused map from this descriptor. 465 */ 466 txr->tx_buffers[first].map = txbuf->map; 467 txbuf->map = map; 468 bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE); 469 470 /* Set the EOP descriptor that will be marked done */ 471 txbuf = &txr->tx_buffers[first]; 472 txbuf->eop = txd; 473 474 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 475 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 476 /* 477 * Advance the Transmit Descriptor Tail (Tdt), this tells the 478 * hardware that this frame is available to transmit. 479 */ 480 ++txr->total_packets; 481 IXGBE_WRITE_REG(&adapter->hw, txr->tail, i); 482 483 /* Mark queue as having work */ 484 if (txr->busy == 0) 485 txr->busy = 1; 486 487 return (0); 488 } 489 490 491 /********************************************************************* 492 * 493 * Allocate memory for tx_buffer structures. The tx_buffer stores all 494 * the information needed to transmit a packet on the wire. This is 495 * called only once at attach, setup is done every reset. 496 * 497 **********************************************************************/ 498 int 499 ixgbe_allocate_transmit_buffers(struct tx_ring *txr) 500 { 501 struct adapter *adapter = txr->adapter; 502 device_t dev = adapter->dev; 503 struct ixgbe_tx_buf *txbuf; 504 int error, i; 505 506 /* 507 * Setup DMA descriptor areas. 508 */ 509 if ((error = bus_dma_tag_create( 510 bus_get_dma_tag(adapter->dev), /* parent */ 511 1, 0, /* alignment, bounds */ 512 BUS_SPACE_MAXADDR, /* lowaddr */ 513 BUS_SPACE_MAXADDR, /* highaddr */ 514 NULL, NULL, /* filter, filterarg */ 515 IXGBE_TSO_SIZE, /* maxsize */ 516 adapter->num_segs, /* nsegments */ 517 PAGE_SIZE, /* maxsegsize */ 518 0, /* flags */ 519 NULL, /* lockfunc */ 520 NULL, /* lockfuncarg */ 521 &txr->txtag))) { 522 device_printf(dev,"Unable to allocate TX DMA tag\n"); 523 goto fail; 524 } 525 526 if (!(txr->tx_buffers = 527 (struct ixgbe_tx_buf *) malloc(sizeof(struct ixgbe_tx_buf) * 528 adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) { 529 device_printf(dev, "Unable to allocate tx_buffer memory\n"); 530 error = ENOMEM; 531 goto fail; 532 } 533 534 /* Create the descriptor buffer dma maps */ 535 txbuf = txr->tx_buffers; 536 for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) { 537 error = bus_dmamap_create(txr->txtag, 0, &txbuf->map); 538 if (error != 0) { 539 device_printf(dev, "Unable to create TX DMA map\n"); 540 goto fail; 541 } 542 } 543 544 return 0; 545 fail: 546 /* We free all, it handles case where we are in the middle */ 547 ixgbe_free_transmit_structures(adapter); 548 return (error); 549 } 550 551 /********************************************************************* 552 * 553 * Initialize a transmit ring. 554 * 555 **********************************************************************/ 556 static void 557 ixgbe_setup_transmit_ring(struct tx_ring *txr) 558 { 559 struct adapter *adapter = txr->adapter; 560 struct ixgbe_tx_buf *txbuf; 561 #ifdef DEV_NETMAP 562 struct netmap_adapter *na = NA(adapter->ifp); 563 struct netmap_slot *slot; 564 #endif /* DEV_NETMAP */ 565 566 /* Clear the old ring contents */ 567 IXGBE_TX_LOCK(txr); 568 #ifdef DEV_NETMAP 569 /* 570 * (under lock): if in netmap mode, do some consistency 571 * checks and set slot to entry 0 of the netmap ring. 572 */ 573 slot = netmap_reset(na, NR_TX, txr->me, 0); 574 #endif /* DEV_NETMAP */ 575 bzero((void *)txr->tx_base, 576 (sizeof(union ixgbe_adv_tx_desc)) * adapter->num_tx_desc); 577 /* Reset indices */ 578 txr->next_avail_desc = 0; 579 txr->next_to_clean = 0; 580 581 /* Free any existing tx buffers. */ 582 txbuf = txr->tx_buffers; 583 for (int i = 0; i < txr->num_desc; i++, txbuf++) { 584 if (txbuf->m_head != NULL) { 585 bus_dmamap_sync(txr->txtag, txbuf->map, 586 BUS_DMASYNC_POSTWRITE); 587 bus_dmamap_unload(txr->txtag, txbuf->map); 588 m_freem(txbuf->m_head); 589 txbuf->m_head = NULL; 590 } 591 #ifdef DEV_NETMAP 592 /* 593 * In netmap mode, set the map for the packet buffer. 594 * NOTE: Some drivers (not this one) also need to set 595 * the physical buffer address in the NIC ring. 596 * Slots in the netmap ring (indexed by "si") are 597 * kring->nkr_hwofs positions "ahead" wrt the 598 * corresponding slot in the NIC ring. In some drivers 599 * (not here) nkr_hwofs can be negative. Function 600 * netmap_idx_n2k() handles wraparounds properly. 601 */ 602 if (slot) { 603 int si = netmap_idx_n2k(&na->tx_rings[txr->me], i); 604 netmap_load_map(na, txr->txtag, 605 txbuf->map, NMB(na, slot + si)); 606 } 607 #endif /* DEV_NETMAP */ 608 /* Clear the EOP descriptor pointer */ 609 txbuf->eop = NULL; 610 } 611 612 #ifdef IXGBE_FDIR 613 /* Set the rate at which we sample packets */ 614 if (adapter->hw.mac.type != ixgbe_mac_82598EB) 615 txr->atr_sample = atr_sample_rate; 616 #endif 617 618 /* Set number of descriptors available */ 619 txr->tx_avail = adapter->num_tx_desc; 620 621 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 622 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 623 IXGBE_TX_UNLOCK(txr); 624 } 625 626 /********************************************************************* 627 * 628 * Initialize all transmit rings. 629 * 630 **********************************************************************/ 631 int 632 ixgbe_setup_transmit_structures(struct adapter *adapter) 633 { 634 struct tx_ring *txr = adapter->tx_rings; 635 636 for (int i = 0; i < adapter->num_queues; i++, txr++) 637 ixgbe_setup_transmit_ring(txr); 638 639 return (0); 640 } 641 642 /********************************************************************* 643 * 644 * Free all transmit rings. 645 * 646 **********************************************************************/ 647 void 648 ixgbe_free_transmit_structures(struct adapter *adapter) 649 { 650 struct tx_ring *txr = adapter->tx_rings; 651 652 for (int i = 0; i < adapter->num_queues; i++, txr++) { 653 IXGBE_TX_LOCK(txr); 654 ixgbe_free_transmit_buffers(txr); 655 ixgbe_dma_free(adapter, &txr->txdma); 656 IXGBE_TX_UNLOCK(txr); 657 IXGBE_TX_LOCK_DESTROY(txr); 658 } 659 free(adapter->tx_rings, M_DEVBUF); 660 } 661 662 /********************************************************************* 663 * 664 * Free transmit ring related data structures. 665 * 666 **********************************************************************/ 667 static void 668 ixgbe_free_transmit_buffers(struct tx_ring *txr) 669 { 670 struct adapter *adapter = txr->adapter; 671 struct ixgbe_tx_buf *tx_buffer; 672 int i; 673 674 INIT_DEBUGOUT("ixgbe_free_transmit_ring: begin"); 675 676 if (txr->tx_buffers == NULL) 677 return; 678 679 tx_buffer = txr->tx_buffers; 680 for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) { 681 if (tx_buffer->m_head != NULL) { 682 bus_dmamap_sync(txr->txtag, tx_buffer->map, 683 BUS_DMASYNC_POSTWRITE); 684 bus_dmamap_unload(txr->txtag, 685 tx_buffer->map); 686 m_freem(tx_buffer->m_head); 687 tx_buffer->m_head = NULL; 688 if (tx_buffer->map != NULL) { 689 bus_dmamap_destroy(txr->txtag, 690 tx_buffer->map); 691 tx_buffer->map = NULL; 692 } 693 } else if (tx_buffer->map != NULL) { 694 bus_dmamap_unload(txr->txtag, 695 tx_buffer->map); 696 bus_dmamap_destroy(txr->txtag, 697 tx_buffer->map); 698 tx_buffer->map = NULL; 699 } 700 } 701 #ifdef IXGBE_LEGACY_TX 702 if (txr->br != NULL) 703 buf_ring_free(txr->br, M_DEVBUF); 704 #endif 705 if (txr->tx_buffers != NULL) { 706 free(txr->tx_buffers, M_DEVBUF); 707 txr->tx_buffers = NULL; 708 } 709 if (txr->txtag != NULL) { 710 bus_dma_tag_destroy(txr->txtag); 711 txr->txtag = NULL; 712 } 713 return; 714 } 715 716 /********************************************************************* 717 * 718 * Advanced Context Descriptor setup for VLAN, CSUM or TSO 719 * 720 **********************************************************************/ 721 722 static int 723 ixgbe_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp, 724 u32 *cmd_type_len, u32 *olinfo_status) 725 { 726 struct adapter *adapter = txr->adapter; 727 struct ixgbe_adv_tx_context_desc *TXD; 728 struct ether_vlan_header *eh; 729 #ifdef INET 730 struct ip *ip; 731 #endif 732 #ifdef INET6 733 struct ip6_hdr *ip6; 734 #endif 735 u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0; 736 int ehdrlen, ip_hlen = 0; 737 u16 etype; 738 u8 ipproto = 0; 739 int offload = TRUE; 740 int ctxd = txr->next_avail_desc; 741 u16 vtag = 0; 742 caddr_t l3d; 743 744 745 /* First check if TSO is to be used */ 746 if (mp->m_pkthdr.csum_flags & (CSUM_IP_TSO|CSUM_IP6_TSO)) 747 return (ixgbe_tso_setup(txr, mp, cmd_type_len, olinfo_status)); 748 749 if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0) 750 offload = FALSE; 751 752 /* Indicate the whole packet as payload when not doing TSO */ 753 *olinfo_status |= mp->m_pkthdr.len << IXGBE_ADVTXD_PAYLEN_SHIFT; 754 755 /* Now ready a context descriptor */ 756 TXD = (struct ixgbe_adv_tx_context_desc *) &txr->tx_base[ctxd]; 757 758 /* 759 ** In advanced descriptors the vlan tag must 760 ** be placed into the context descriptor. Hence 761 ** we need to make one even if not doing offloads. 762 */ 763 if (mp->m_flags & M_VLANTAG) { 764 vtag = htole16(mp->m_pkthdr.ether_vtag); 765 vlan_macip_lens |= (vtag << IXGBE_ADVTXD_VLAN_SHIFT); 766 } else if (!IXGBE_IS_X550VF(adapter) && (offload == FALSE)) 767 return (0); 768 769 /* 770 * Determine where frame payload starts. 771 * Jump over vlan headers if already present, 772 * helpful for QinQ too. 773 */ 774 eh = mtod(mp, struct ether_vlan_header *); 775 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 776 etype = ntohs(eh->evl_proto); 777 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 778 } else { 779 etype = ntohs(eh->evl_encap_proto); 780 ehdrlen = ETHER_HDR_LEN; 781 } 782 783 /* Set the ether header length */ 784 vlan_macip_lens |= ehdrlen << IXGBE_ADVTXD_MACLEN_SHIFT; 785 786 if (offload == FALSE) 787 goto no_offloads; 788 789 /* 790 * If the first mbuf only includes the ethernet header, jump to the next one 791 * XXX: This assumes the stack splits mbufs containing headers on header boundaries 792 * XXX: And assumes the entire IP header is contained in one mbuf 793 */ 794 if (mp->m_len == ehdrlen && mp->m_next) 795 l3d = mtod(mp->m_next, caddr_t); 796 else 797 l3d = mtod(mp, caddr_t) + ehdrlen; 798 799 switch (etype) { 800 #ifdef INET 801 case ETHERTYPE_IP: 802 ip = (struct ip *)(l3d); 803 ip_hlen = ip->ip_hl << 2; 804 ipproto = ip->ip_p; 805 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4; 806 /* Insert IPv4 checksum into data descriptors */ 807 if (mp->m_pkthdr.csum_flags & CSUM_IP) { 808 ip->ip_sum = 0; 809 *olinfo_status |= IXGBE_TXD_POPTS_IXSM << 8; 810 } 811 break; 812 #endif 813 #ifdef INET6 814 case ETHERTYPE_IPV6: 815 ip6 = (struct ip6_hdr *)(l3d); 816 ip_hlen = sizeof(struct ip6_hdr); 817 ipproto = ip6->ip6_nxt; 818 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV6; 819 break; 820 #endif 821 default: 822 offload = FALSE; 823 break; 824 } 825 826 vlan_macip_lens |= ip_hlen; 827 828 /* No support for offloads for non-L4 next headers */ 829 switch (ipproto) { 830 case IPPROTO_TCP: 831 if (mp->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) 832 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP; 833 else 834 offload = false; 835 break; 836 case IPPROTO_UDP: 837 if (mp->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) 838 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP; 839 else 840 offload = false; 841 break; 842 case IPPROTO_SCTP: 843 if (mp->m_pkthdr.csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) 844 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP; 845 else 846 offload = false; 847 break; 848 default: 849 offload = false; 850 break; 851 } 852 853 if (offload) /* Insert L4 checksum into data descriptors */ 854 *olinfo_status |= IXGBE_TXD_POPTS_TXSM << 8; 855 856 no_offloads: 857 type_tucmd_mlhl |= IXGBE_ADVTXD_DCMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 858 859 /* Now copy bits into descriptor */ 860 TXD->vlan_macip_lens = htole32(vlan_macip_lens); 861 TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl); 862 TXD->seqnum_seed = htole32(0); 863 TXD->mss_l4len_idx = htole32(0); 864 865 /* We've consumed the first desc, adjust counters */ 866 if (++ctxd == txr->num_desc) 867 ctxd = 0; 868 txr->next_avail_desc = ctxd; 869 --txr->tx_avail; 870 871 return (0); 872 } 873 874 /********************************************************************** 875 * 876 * Setup work for hardware segmentation offload (TSO) on 877 * adapters using advanced tx descriptors 878 * 879 **********************************************************************/ 880 static int 881 ixgbe_tso_setup(struct tx_ring *txr, struct mbuf *mp, 882 u32 *cmd_type_len, u32 *olinfo_status) 883 { 884 struct ixgbe_adv_tx_context_desc *TXD; 885 u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0; 886 u32 mss_l4len_idx = 0, paylen; 887 u16 vtag = 0, eh_type; 888 int ctxd, ehdrlen, ip_hlen, tcp_hlen; 889 struct ether_vlan_header *eh; 890 #ifdef INET6 891 struct ip6_hdr *ip6; 892 #endif 893 #ifdef INET 894 struct ip *ip; 895 #endif 896 struct tcphdr *th; 897 898 /* 899 * Determine where frame payload starts. 900 * Jump over vlan headers if already present 901 */ 902 eh = mtod(mp, struct ether_vlan_header *); 903 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 904 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 905 eh_type = eh->evl_proto; 906 } else { 907 ehdrlen = ETHER_HDR_LEN; 908 eh_type = eh->evl_encap_proto; 909 } 910 911 switch (ntohs(eh_type)) { 912 #ifdef INET6 913 case ETHERTYPE_IPV6: 914 ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); 915 /* XXX-BZ For now we do not pretend to support ext. hdrs. */ 916 if (ip6->ip6_nxt != IPPROTO_TCP) 917 return (ENXIO); 918 ip_hlen = sizeof(struct ip6_hdr); 919 ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen); 920 th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen); 921 th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0); 922 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV6; 923 break; 924 #endif 925 #ifdef INET 926 case ETHERTYPE_IP: 927 ip = (struct ip *)(mp->m_data + ehdrlen); 928 if (ip->ip_p != IPPROTO_TCP) 929 return (ENXIO); 930 ip->ip_sum = 0; 931 ip_hlen = ip->ip_hl << 2; 932 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 933 th->th_sum = in_pseudo(ip->ip_src.s_addr, 934 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 935 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4; 936 /* Tell transmit desc to also do IPv4 checksum. */ 937 *olinfo_status |= IXGBE_TXD_POPTS_IXSM << 8; 938 break; 939 #endif 940 default: 941 panic("%s: CSUM_TSO but no supported IP version (0x%04x)", 942 __func__, ntohs(eh_type)); 943 break; 944 } 945 946 ctxd = txr->next_avail_desc; 947 TXD = (struct ixgbe_adv_tx_context_desc *) &txr->tx_base[ctxd]; 948 949 tcp_hlen = th->th_off << 2; 950 951 /* This is used in the transmit desc in encap */ 952 paylen = mp->m_pkthdr.len - ehdrlen - ip_hlen - tcp_hlen; 953 954 /* VLAN MACLEN IPLEN */ 955 if (mp->m_flags & M_VLANTAG) { 956 vtag = htole16(mp->m_pkthdr.ether_vtag); 957 vlan_macip_lens |= (vtag << IXGBE_ADVTXD_VLAN_SHIFT); 958 } 959 960 vlan_macip_lens |= ehdrlen << IXGBE_ADVTXD_MACLEN_SHIFT; 961 vlan_macip_lens |= ip_hlen; 962 TXD->vlan_macip_lens = htole32(vlan_macip_lens); 963 964 /* ADV DTYPE TUCMD */ 965 type_tucmd_mlhl |= IXGBE_ADVTXD_DCMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 966 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP; 967 TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl); 968 969 /* MSS L4LEN IDX */ 970 mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT); 971 mss_l4len_idx |= (tcp_hlen << IXGBE_ADVTXD_L4LEN_SHIFT); 972 TXD->mss_l4len_idx = htole32(mss_l4len_idx); 973 974 TXD->seqnum_seed = htole32(0); 975 976 if (++ctxd == txr->num_desc) 977 ctxd = 0; 978 979 txr->tx_avail--; 980 txr->next_avail_desc = ctxd; 981 *cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE; 982 *olinfo_status |= IXGBE_TXD_POPTS_TXSM << 8; 983 *olinfo_status |= paylen << IXGBE_ADVTXD_PAYLEN_SHIFT; 984 ++txr->tso_tx; 985 return (0); 986 } 987 988 989 /********************************************************************** 990 * 991 * Examine each tx_buffer in the used queue. If the hardware is done 992 * processing the packet then free associated resources. The 993 * tx_buffer is put back on the free queue. 994 * 995 **********************************************************************/ 996 void 997 ixgbe_txeof(struct tx_ring *txr) 998 { 999 struct adapter *adapter = txr->adapter; 1000 #ifdef DEV_NETMAP 1001 struct ifnet *ifp = adapter->ifp; 1002 #endif 1003 u32 work, processed = 0; 1004 u32 limit = adapter->tx_process_limit; 1005 struct ixgbe_tx_buf *buf; 1006 union ixgbe_adv_tx_desc *txd; 1007 1008 mtx_assert(&txr->tx_mtx, MA_OWNED); 1009 1010 #ifdef DEV_NETMAP 1011 if (ifp->if_capenable & IFCAP_NETMAP) { 1012 struct netmap_adapter *na = NA(ifp); 1013 struct netmap_kring *kring = &na->tx_rings[txr->me]; 1014 txd = txr->tx_base; 1015 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 1016 BUS_DMASYNC_POSTREAD); 1017 /* 1018 * In netmap mode, all the work is done in the context 1019 * of the client thread. Interrupt handlers only wake up 1020 * clients, which may be sleeping on individual rings 1021 * or on a global resource for all rings. 1022 * To implement tx interrupt mitigation, we wake up the client 1023 * thread roughly every half ring, even if the NIC interrupts 1024 * more frequently. This is implemented as follows: 1025 * - ixgbe_txsync() sets kring->nr_kflags with the index of 1026 * the slot that should wake up the thread (nkr_num_slots 1027 * means the user thread should not be woken up); 1028 * - the driver ignores tx interrupts unless netmap_mitigate=0 1029 * or the slot has the DD bit set. 1030 */ 1031 if (!netmap_mitigate || 1032 (kring->nr_kflags < kring->nkr_num_slots && 1033 txd[kring->nr_kflags].wb.status & IXGBE_TXD_STAT_DD)) { 1034 netmap_tx_irq(ifp, txr->me); 1035 } 1036 return; 1037 } 1038 #endif /* DEV_NETMAP */ 1039 1040 if (txr->tx_avail == txr->num_desc) { 1041 txr->busy = 0; 1042 return; 1043 } 1044 1045 /* Get work starting point */ 1046 work = txr->next_to_clean; 1047 buf = &txr->tx_buffers[work]; 1048 txd = &txr->tx_base[work]; 1049 work -= txr->num_desc; /* The distance to ring end */ 1050 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 1051 BUS_DMASYNC_POSTREAD); 1052 1053 do { 1054 union ixgbe_adv_tx_desc *eop = buf->eop; 1055 if (eop == NULL) /* No work */ 1056 break; 1057 1058 if ((eop->wb.status & IXGBE_TXD_STAT_DD) == 0) 1059 break; /* I/O not complete */ 1060 1061 if (buf->m_head) { 1062 txr->bytes += 1063 buf->m_head->m_pkthdr.len; 1064 bus_dmamap_sync(txr->txtag, 1065 buf->map, 1066 BUS_DMASYNC_POSTWRITE); 1067 bus_dmamap_unload(txr->txtag, 1068 buf->map); 1069 m_freem(buf->m_head); 1070 buf->m_head = NULL; 1071 } 1072 buf->eop = NULL; 1073 ++txr->tx_avail; 1074 1075 /* We clean the range if multi segment */ 1076 while (txd != eop) { 1077 ++txd; 1078 ++buf; 1079 ++work; 1080 /* wrap the ring? */ 1081 if (__predict_false(!work)) { 1082 work -= txr->num_desc; 1083 buf = txr->tx_buffers; 1084 txd = txr->tx_base; 1085 } 1086 if (buf->m_head) { 1087 txr->bytes += 1088 buf->m_head->m_pkthdr.len; 1089 bus_dmamap_sync(txr->txtag, 1090 buf->map, 1091 BUS_DMASYNC_POSTWRITE); 1092 bus_dmamap_unload(txr->txtag, 1093 buf->map); 1094 m_freem(buf->m_head); 1095 buf->m_head = NULL; 1096 } 1097 ++txr->tx_avail; 1098 buf->eop = NULL; 1099 1100 } 1101 ++txr->packets; 1102 ++processed; 1103 1104 /* Try the next packet */ 1105 ++txd; 1106 ++buf; 1107 ++work; 1108 /* reset with a wrap */ 1109 if (__predict_false(!work)) { 1110 work -= txr->num_desc; 1111 buf = txr->tx_buffers; 1112 txd = txr->tx_base; 1113 } 1114 prefetch(txd); 1115 } while (__predict_true(--limit)); 1116 1117 bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map, 1118 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1119 1120 work += txr->num_desc; 1121 txr->next_to_clean = work; 1122 1123 /* 1124 ** Queue Hang detection, we know there's 1125 ** work outstanding or the first return 1126 ** would have been taken, so increment busy 1127 ** if nothing managed to get cleaned, then 1128 ** in local_timer it will be checked and 1129 ** marked as HUNG if it exceeds a MAX attempt. 1130 */ 1131 if ((processed == 0) && (txr->busy != IXGBE_QUEUE_HUNG)) 1132 ++txr->busy; 1133 /* 1134 ** If anything gets cleaned we reset state to 1, 1135 ** note this will turn off HUNG if its set. 1136 */ 1137 if (processed) 1138 txr->busy = 1; 1139 1140 if (txr->tx_avail == txr->num_desc) 1141 txr->busy = 0; 1142 1143 return; 1144 } 1145 1146 1147 #ifdef IXGBE_FDIR 1148 /* 1149 ** This routine parses packet headers so that Flow 1150 ** Director can make a hashed filter table entry 1151 ** allowing traffic flows to be identified and kept 1152 ** on the same cpu. This would be a performance 1153 ** hit, but we only do it at IXGBE_FDIR_RATE of 1154 ** packets. 1155 */ 1156 static void 1157 ixgbe_atr(struct tx_ring *txr, struct mbuf *mp) 1158 { 1159 struct adapter *adapter = txr->adapter; 1160 struct ix_queue *que; 1161 struct ip *ip; 1162 struct tcphdr *th; 1163 struct udphdr *uh; 1164 struct ether_vlan_header *eh; 1165 union ixgbe_atr_hash_dword input = {.dword = 0}; 1166 union ixgbe_atr_hash_dword common = {.dword = 0}; 1167 int ehdrlen, ip_hlen; 1168 u16 etype; 1169 1170 eh = mtod(mp, struct ether_vlan_header *); 1171 if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { 1172 ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 1173 etype = eh->evl_proto; 1174 } else { 1175 ehdrlen = ETHER_HDR_LEN; 1176 etype = eh->evl_encap_proto; 1177 } 1178 1179 /* Only handling IPv4 */ 1180 if (etype != htons(ETHERTYPE_IP)) 1181 return; 1182 1183 ip = (struct ip *)(mp->m_data + ehdrlen); 1184 ip_hlen = ip->ip_hl << 2; 1185 1186 /* check if we're UDP or TCP */ 1187 switch (ip->ip_p) { 1188 case IPPROTO_TCP: 1189 th = (struct tcphdr *)((caddr_t)ip + ip_hlen); 1190 /* src and dst are inverted */ 1191 common.port.dst ^= th->th_sport; 1192 common.port.src ^= th->th_dport; 1193 input.formatted.flow_type ^= IXGBE_ATR_FLOW_TYPE_TCPV4; 1194 break; 1195 case IPPROTO_UDP: 1196 uh = (struct udphdr *)((caddr_t)ip + ip_hlen); 1197 /* src and dst are inverted */ 1198 common.port.dst ^= uh->uh_sport; 1199 common.port.src ^= uh->uh_dport; 1200 input.formatted.flow_type ^= IXGBE_ATR_FLOW_TYPE_UDPV4; 1201 break; 1202 default: 1203 return; 1204 } 1205 1206 input.formatted.vlan_id = htobe16(mp->m_pkthdr.ether_vtag); 1207 if (mp->m_pkthdr.ether_vtag) 1208 common.flex_bytes ^= htons(ETHERTYPE_VLAN); 1209 else 1210 common.flex_bytes ^= etype; 1211 common.ip ^= ip->ip_src.s_addr ^ ip->ip_dst.s_addr; 1212 1213 que = &adapter->queues[txr->me]; 1214 /* 1215 ** This assumes the Rx queue and Tx 1216 ** queue are bound to the same CPU 1217 */ 1218 ixgbe_fdir_add_signature_filter_82599(&adapter->hw, 1219 input, common, que->msix); 1220 } 1221 #endif /* IXGBE_FDIR */ 1222 1223 /* 1224 ** Used to detect a descriptor that has 1225 ** been merged by Hardware RSC. 1226 */ 1227 static inline u32 1228 ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx) 1229 { 1230 return (le32toh(rx->wb.lower.lo_dword.data) & 1231 IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT; 1232 } 1233 1234 /********************************************************************* 1235 * 1236 * Initialize Hardware RSC (LRO) feature on 82599 1237 * for an RX ring, this is toggled by the LRO capability 1238 * even though it is transparent to the stack. 1239 * 1240 * NOTE: since this HW feature only works with IPV4 and 1241 * our testing has shown soft LRO to be as effective 1242 * I have decided to disable this by default. 1243 * 1244 **********************************************************************/ 1245 static void 1246 ixgbe_setup_hw_rsc(struct rx_ring *rxr) 1247 { 1248 struct adapter *adapter = rxr->adapter; 1249 struct ixgbe_hw *hw = &adapter->hw; 1250 u32 rscctrl, rdrxctl; 1251 1252 /* If turning LRO/RSC off we need to disable it */ 1253 if ((adapter->ifp->if_capenable & IFCAP_LRO) == 0) { 1254 rscctrl = IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxr->me)); 1255 rscctrl &= ~IXGBE_RSCCTL_RSCEN; 1256 return; 1257 } 1258 1259 rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL); 1260 rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE; 1261 #ifdef DEV_NETMAP /* crcstrip is optional in netmap */ 1262 if (adapter->ifp->if_capenable & IFCAP_NETMAP && !ix_crcstrip) 1263 #endif /* DEV_NETMAP */ 1264 rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP; 1265 rdrxctl |= IXGBE_RDRXCTL_RSCACKC; 1266 IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl); 1267 1268 rscctrl = IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxr->me)); 1269 rscctrl |= IXGBE_RSCCTL_RSCEN; 1270 /* 1271 ** Limit the total number of descriptors that 1272 ** can be combined, so it does not exceed 64K 1273 */ 1274 if (rxr->mbuf_sz == MCLBYTES) 1275 rscctrl |= IXGBE_RSCCTL_MAXDESC_16; 1276 else if (rxr->mbuf_sz == MJUMPAGESIZE) 1277 rscctrl |= IXGBE_RSCCTL_MAXDESC_8; 1278 else if (rxr->mbuf_sz == MJUM9BYTES) 1279 rscctrl |= IXGBE_RSCCTL_MAXDESC_4; 1280 else /* Using 16K cluster */ 1281 rscctrl |= IXGBE_RSCCTL_MAXDESC_1; 1282 1283 IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxr->me), rscctrl); 1284 1285 /* Enable TCP header recognition */ 1286 IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(0), 1287 (IXGBE_READ_REG(hw, IXGBE_PSRTYPE(0)) | 1288 IXGBE_PSRTYPE_TCPHDR)); 1289 1290 /* Disable RSC for ACK packets */ 1291 IXGBE_WRITE_REG(hw, IXGBE_RSCDBU, 1292 (IXGBE_RSCDBU_RSCACKDIS | IXGBE_READ_REG(hw, IXGBE_RSCDBU))); 1293 1294 rxr->hw_rsc = TRUE; 1295 } 1296 1297 /********************************************************************* 1298 * 1299 * Refresh mbuf buffers for RX descriptor rings 1300 * - now keeps its own state so discards due to resource 1301 * exhaustion are unnecessary, if an mbuf cannot be obtained 1302 * it just returns, keeping its placeholder, thus it can simply 1303 * be recalled to try again. 1304 * 1305 **********************************************************************/ 1306 static void 1307 ixgbe_refresh_mbufs(struct rx_ring *rxr, int limit) 1308 { 1309 struct adapter *adapter = rxr->adapter; 1310 bus_dma_segment_t seg[1]; 1311 struct ixgbe_rx_buf *rxbuf; 1312 struct mbuf *mp; 1313 int i, j, nsegs, error; 1314 bool refreshed = FALSE; 1315 1316 i = j = rxr->next_to_refresh; 1317 /* Control the loop with one beyond */ 1318 if (++j == rxr->num_desc) 1319 j = 0; 1320 1321 while (j != limit) { 1322 rxbuf = &rxr->rx_buffers[i]; 1323 if (rxbuf->buf == NULL) { 1324 mp = m_getjcl(M_NOWAIT, MT_DATA, 1325 M_PKTHDR, rxr->mbuf_sz); 1326 if (mp == NULL) 1327 goto update; 1328 if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN)) 1329 m_adj(mp, ETHER_ALIGN); 1330 } else 1331 mp = rxbuf->buf; 1332 1333 mp->m_pkthdr.len = mp->m_len = rxr->mbuf_sz; 1334 1335 /* If we're dealing with an mbuf that was copied rather 1336 * than replaced, there's no need to go through busdma. 1337 */ 1338 if ((rxbuf->flags & IXGBE_RX_COPY) == 0) { 1339 /* Get the memory mapping */ 1340 bus_dmamap_unload(rxr->ptag, rxbuf->pmap); 1341 error = bus_dmamap_load_mbuf_sg(rxr->ptag, 1342 rxbuf->pmap, mp, seg, &nsegs, BUS_DMA_NOWAIT); 1343 if (error != 0) { 1344 printf("Refresh mbufs: payload dmamap load" 1345 " failure - %d\n", error); 1346 m_free(mp); 1347 rxbuf->buf = NULL; 1348 goto update; 1349 } 1350 rxbuf->buf = mp; 1351 bus_dmamap_sync(rxr->ptag, rxbuf->pmap, 1352 BUS_DMASYNC_PREREAD); 1353 rxbuf->addr = rxr->rx_base[i].read.pkt_addr = 1354 htole64(seg[0].ds_addr); 1355 } else { 1356 rxr->rx_base[i].read.pkt_addr = rxbuf->addr; 1357 rxbuf->flags &= ~IXGBE_RX_COPY; 1358 } 1359 1360 refreshed = TRUE; 1361 /* Next is precalculated */ 1362 i = j; 1363 rxr->next_to_refresh = i; 1364 if (++j == rxr->num_desc) 1365 j = 0; 1366 } 1367 update: 1368 if (refreshed) /* Update hardware tail index */ 1369 IXGBE_WRITE_REG(&adapter->hw, 1370 rxr->tail, rxr->next_to_refresh); 1371 return; 1372 } 1373 1374 /********************************************************************* 1375 * 1376 * Allocate memory for rx_buffer structures. Since we use one 1377 * rx_buffer per received packet, the maximum number of rx_buffer's 1378 * that we'll need is equal to the number of receive descriptors 1379 * that we've allocated. 1380 * 1381 **********************************************************************/ 1382 int 1383 ixgbe_allocate_receive_buffers(struct rx_ring *rxr) 1384 { 1385 struct adapter *adapter = rxr->adapter; 1386 device_t dev = adapter->dev; 1387 struct ixgbe_rx_buf *rxbuf; 1388 int bsize, error; 1389 1390 bsize = sizeof(struct ixgbe_rx_buf) * rxr->num_desc; 1391 if (!(rxr->rx_buffers = 1392 (struct ixgbe_rx_buf *) malloc(bsize, 1393 M_DEVBUF, M_NOWAIT | M_ZERO))) { 1394 device_printf(dev, "Unable to allocate rx_buffer memory\n"); 1395 error = ENOMEM; 1396 goto fail; 1397 } 1398 1399 if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */ 1400 1, 0, /* alignment, bounds */ 1401 BUS_SPACE_MAXADDR, /* lowaddr */ 1402 BUS_SPACE_MAXADDR, /* highaddr */ 1403 NULL, NULL, /* filter, filterarg */ 1404 MJUM16BYTES, /* maxsize */ 1405 1, /* nsegments */ 1406 MJUM16BYTES, /* maxsegsize */ 1407 0, /* flags */ 1408 NULL, /* lockfunc */ 1409 NULL, /* lockfuncarg */ 1410 &rxr->ptag))) { 1411 device_printf(dev, "Unable to create RX DMA tag\n"); 1412 goto fail; 1413 } 1414 1415 for (int i = 0; i < rxr->num_desc; i++, rxbuf++) { 1416 rxbuf = &rxr->rx_buffers[i]; 1417 error = bus_dmamap_create(rxr->ptag, 0, &rxbuf->pmap); 1418 if (error) { 1419 device_printf(dev, "Unable to create RX dma map\n"); 1420 goto fail; 1421 } 1422 } 1423 1424 return (0); 1425 1426 fail: 1427 /* Frees all, but can handle partial completion */ 1428 ixgbe_free_receive_structures(adapter); 1429 return (error); 1430 } 1431 1432 static void 1433 ixgbe_free_receive_ring(struct rx_ring *rxr) 1434 { 1435 struct ixgbe_rx_buf *rxbuf; 1436 1437 for (int i = 0; i < rxr->num_desc; i++) { 1438 rxbuf = &rxr->rx_buffers[i]; 1439 if (rxbuf->buf != NULL) { 1440 bus_dmamap_sync(rxr->ptag, rxbuf->pmap, 1441 BUS_DMASYNC_POSTREAD); 1442 bus_dmamap_unload(rxr->ptag, rxbuf->pmap); 1443 rxbuf->buf->m_flags |= M_PKTHDR; 1444 m_freem(rxbuf->buf); 1445 rxbuf->buf = NULL; 1446 rxbuf->flags = 0; 1447 } 1448 } 1449 } 1450 1451 /********************************************************************* 1452 * 1453 * Initialize a receive ring and its buffers. 1454 * 1455 **********************************************************************/ 1456 static int 1457 ixgbe_setup_receive_ring(struct rx_ring *rxr) 1458 { 1459 struct adapter *adapter; 1460 struct ifnet *ifp; 1461 device_t dev; 1462 struct ixgbe_rx_buf *rxbuf; 1463 bus_dma_segment_t seg[1]; 1464 struct lro_ctrl *lro = &rxr->lro; 1465 int rsize, nsegs, error = 0; 1466 #ifdef DEV_NETMAP 1467 struct netmap_adapter *na = NA(rxr->adapter->ifp); 1468 struct netmap_slot *slot; 1469 #endif /* DEV_NETMAP */ 1470 1471 adapter = rxr->adapter; 1472 ifp = adapter->ifp; 1473 dev = adapter->dev; 1474 1475 /* Clear the ring contents */ 1476 IXGBE_RX_LOCK(rxr); 1477 #ifdef DEV_NETMAP 1478 /* same as in ixgbe_setup_transmit_ring() */ 1479 slot = netmap_reset(na, NR_RX, rxr->me, 0); 1480 #endif /* DEV_NETMAP */ 1481 rsize = roundup2(adapter->num_rx_desc * 1482 sizeof(union ixgbe_adv_rx_desc), DBA_ALIGN); 1483 bzero((void *)rxr->rx_base, rsize); 1484 /* Cache the size */ 1485 rxr->mbuf_sz = adapter->rx_mbuf_sz; 1486 1487 /* Free current RX buffer structs and their mbufs */ 1488 ixgbe_free_receive_ring(rxr); 1489 1490 /* Now replenish the mbufs */ 1491 for (int j = 0; j != rxr->num_desc; ++j) { 1492 struct mbuf *mp; 1493 1494 rxbuf = &rxr->rx_buffers[j]; 1495 #ifdef DEV_NETMAP 1496 /* 1497 * In netmap mode, fill the map and set the buffer 1498 * address in the NIC ring, considering the offset 1499 * between the netmap and NIC rings (see comment in 1500 * ixgbe_setup_transmit_ring() ). No need to allocate 1501 * an mbuf, so end the block with a continue; 1502 */ 1503 if (slot) { 1504 int sj = netmap_idx_n2k(&na->rx_rings[rxr->me], j); 1505 uint64_t paddr; 1506 void *addr; 1507 1508 addr = PNMB(na, slot + sj, &paddr); 1509 netmap_load_map(na, rxr->ptag, rxbuf->pmap, addr); 1510 /* Update descriptor and the cached value */ 1511 rxr->rx_base[j].read.pkt_addr = htole64(paddr); 1512 rxbuf->addr = htole64(paddr); 1513 continue; 1514 } 1515 #endif /* DEV_NETMAP */ 1516 rxbuf->flags = 0; 1517 rxbuf->buf = m_getjcl(M_NOWAIT, MT_DATA, 1518 M_PKTHDR, adapter->rx_mbuf_sz); 1519 if (rxbuf->buf == NULL) { 1520 error = ENOBUFS; 1521 goto fail; 1522 } 1523 mp = rxbuf->buf; 1524 mp->m_pkthdr.len = mp->m_len = rxr->mbuf_sz; 1525 /* Get the memory mapping */ 1526 error = bus_dmamap_load_mbuf_sg(rxr->ptag, 1527 rxbuf->pmap, mp, seg, 1528 &nsegs, BUS_DMA_NOWAIT); 1529 if (error != 0) 1530 goto fail; 1531 bus_dmamap_sync(rxr->ptag, 1532 rxbuf->pmap, BUS_DMASYNC_PREREAD); 1533 /* Update the descriptor and the cached value */ 1534 rxr->rx_base[j].read.pkt_addr = htole64(seg[0].ds_addr); 1535 rxbuf->addr = htole64(seg[0].ds_addr); 1536 } 1537 1538 1539 /* Setup our descriptor indices */ 1540 rxr->next_to_check = 0; 1541 rxr->next_to_refresh = 0; 1542 rxr->lro_enabled = FALSE; 1543 rxr->rx_copies = 0; 1544 rxr->rx_bytes = 0; 1545 rxr->vtag_strip = FALSE; 1546 1547 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 1548 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1549 1550 /* 1551 ** Now set up the LRO interface: 1552 */ 1553 if (ixgbe_rsc_enable) 1554 ixgbe_setup_hw_rsc(rxr); 1555 else if (ifp->if_capenable & IFCAP_LRO) { 1556 int err = tcp_lro_init(lro); 1557 if (err) { 1558 device_printf(dev, "LRO Initialization failed!\n"); 1559 goto fail; 1560 } 1561 INIT_DEBUGOUT("RX Soft LRO Initialized\n"); 1562 rxr->lro_enabled = TRUE; 1563 lro->ifp = adapter->ifp; 1564 } 1565 1566 IXGBE_RX_UNLOCK(rxr); 1567 return (0); 1568 1569 fail: 1570 ixgbe_free_receive_ring(rxr); 1571 IXGBE_RX_UNLOCK(rxr); 1572 return (error); 1573 } 1574 1575 /********************************************************************* 1576 * 1577 * Initialize all receive rings. 1578 * 1579 **********************************************************************/ 1580 int 1581 ixgbe_setup_receive_structures(struct adapter *adapter) 1582 { 1583 struct rx_ring *rxr = adapter->rx_rings; 1584 int j; 1585 1586 for (j = 0; j < adapter->num_queues; j++, rxr++) 1587 if (ixgbe_setup_receive_ring(rxr)) 1588 goto fail; 1589 1590 return (0); 1591 fail: 1592 /* 1593 * Free RX buffers allocated so far, we will only handle 1594 * the rings that completed, the failing case will have 1595 * cleaned up for itself. 'j' failed, so its the terminus. 1596 */ 1597 for (int i = 0; i < j; ++i) { 1598 rxr = &adapter->rx_rings[i]; 1599 ixgbe_free_receive_ring(rxr); 1600 } 1601 1602 return (ENOBUFS); 1603 } 1604 1605 1606 /********************************************************************* 1607 * 1608 * Free all receive rings. 1609 * 1610 **********************************************************************/ 1611 void 1612 ixgbe_free_receive_structures(struct adapter *adapter) 1613 { 1614 struct rx_ring *rxr = adapter->rx_rings; 1615 1616 INIT_DEBUGOUT("ixgbe_free_receive_structures: begin"); 1617 1618 for (int i = 0; i < adapter->num_queues; i++, rxr++) { 1619 struct lro_ctrl *lro = &rxr->lro; 1620 ixgbe_free_receive_buffers(rxr); 1621 /* Free LRO memory */ 1622 tcp_lro_free(lro); 1623 /* Free the ring memory as well */ 1624 ixgbe_dma_free(adapter, &rxr->rxdma); 1625 } 1626 1627 free(adapter->rx_rings, M_DEVBUF); 1628 } 1629 1630 1631 /********************************************************************* 1632 * 1633 * Free receive ring data structures 1634 * 1635 **********************************************************************/ 1636 void 1637 ixgbe_free_receive_buffers(struct rx_ring *rxr) 1638 { 1639 struct adapter *adapter = rxr->adapter; 1640 struct ixgbe_rx_buf *rxbuf; 1641 1642 INIT_DEBUGOUT("ixgbe_free_receive_buffers: begin"); 1643 1644 /* Cleanup any existing buffers */ 1645 if (rxr->rx_buffers != NULL) { 1646 for (int i = 0; i < adapter->num_rx_desc; i++) { 1647 rxbuf = &rxr->rx_buffers[i]; 1648 if (rxbuf->buf != NULL) { 1649 bus_dmamap_sync(rxr->ptag, rxbuf->pmap, 1650 BUS_DMASYNC_POSTREAD); 1651 bus_dmamap_unload(rxr->ptag, rxbuf->pmap); 1652 rxbuf->buf->m_flags |= M_PKTHDR; 1653 m_freem(rxbuf->buf); 1654 } 1655 rxbuf->buf = NULL; 1656 if (rxbuf->pmap != NULL) { 1657 bus_dmamap_destroy(rxr->ptag, rxbuf->pmap); 1658 rxbuf->pmap = NULL; 1659 } 1660 } 1661 if (rxr->rx_buffers != NULL) { 1662 free(rxr->rx_buffers, M_DEVBUF); 1663 rxr->rx_buffers = NULL; 1664 } 1665 } 1666 1667 if (rxr->ptag != NULL) { 1668 bus_dma_tag_destroy(rxr->ptag); 1669 rxr->ptag = NULL; 1670 } 1671 1672 return; 1673 } 1674 1675 static __inline void 1676 ixgbe_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u32 ptype) 1677 { 1678 1679 /* 1680 * ATM LRO is only for IP/TCP packets and TCP checksum of the packet 1681 * should be computed by hardware. Also it should not have VLAN tag in 1682 * ethernet header. In case of IPv6 we do not yet support ext. hdrs. 1683 */ 1684 if (rxr->lro_enabled && 1685 (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 && 1686 (ptype & IXGBE_RXDADV_PKTTYPE_ETQF) == 0 && 1687 ((ptype & (IXGBE_RXDADV_PKTTYPE_IPV4 | IXGBE_RXDADV_PKTTYPE_TCP)) == 1688 (IXGBE_RXDADV_PKTTYPE_IPV4 | IXGBE_RXDADV_PKTTYPE_TCP) || 1689 (ptype & (IXGBE_RXDADV_PKTTYPE_IPV6 | IXGBE_RXDADV_PKTTYPE_TCP)) == 1690 (IXGBE_RXDADV_PKTTYPE_IPV6 | IXGBE_RXDADV_PKTTYPE_TCP)) && 1691 (m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) == 1692 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) { 1693 /* 1694 * Send to the stack if: 1695 ** - LRO not enabled, or 1696 ** - no LRO resources, or 1697 ** - lro enqueue fails 1698 */ 1699 if (rxr->lro.lro_cnt != 0) 1700 if (tcp_lro_rx(&rxr->lro, m, 0) == 0) 1701 return; 1702 } 1703 IXGBE_RX_UNLOCK(rxr); 1704 (*ifp->if_input)(ifp, m); 1705 IXGBE_RX_LOCK(rxr); 1706 } 1707 1708 static __inline void 1709 ixgbe_rx_discard(struct rx_ring *rxr, int i) 1710 { 1711 struct ixgbe_rx_buf *rbuf; 1712 1713 rbuf = &rxr->rx_buffers[i]; 1714 1715 1716 /* 1717 ** With advanced descriptors the writeback 1718 ** clobbers the buffer addrs, so its easier 1719 ** to just free the existing mbufs and take 1720 ** the normal refresh path to get new buffers 1721 ** and mapping. 1722 */ 1723 1724 if (rbuf->fmp != NULL) {/* Partial chain ? */ 1725 rbuf->fmp->m_flags |= M_PKTHDR; 1726 m_freem(rbuf->fmp); 1727 rbuf->fmp = NULL; 1728 rbuf->buf = NULL; /* rbuf->buf is part of fmp's chain */ 1729 } else if (rbuf->buf) { 1730 m_free(rbuf->buf); 1731 rbuf->buf = NULL; 1732 } 1733 bus_dmamap_unload(rxr->ptag, rbuf->pmap); 1734 1735 rbuf->flags = 0; 1736 1737 return; 1738 } 1739 1740 1741 /********************************************************************* 1742 * 1743 * This routine executes in interrupt context. It replenishes 1744 * the mbufs in the descriptor and sends data which has been 1745 * dma'ed into host memory to upper layer. 1746 * 1747 * Return TRUE for more work, FALSE for all clean. 1748 *********************************************************************/ 1749 bool 1750 ixgbe_rxeof(struct ix_queue *que) 1751 { 1752 struct adapter *adapter = que->adapter; 1753 struct rx_ring *rxr = que->rxr; 1754 struct ifnet *ifp = adapter->ifp; 1755 struct lro_ctrl *lro = &rxr->lro; 1756 int i, nextp, processed = 0; 1757 u32 staterr = 0; 1758 u32 count = adapter->rx_process_limit; 1759 union ixgbe_adv_rx_desc *cur; 1760 struct ixgbe_rx_buf *rbuf, *nbuf; 1761 u16 pkt_info; 1762 1763 IXGBE_RX_LOCK(rxr); 1764 1765 #ifdef DEV_NETMAP 1766 /* Same as the txeof routine: wakeup clients on intr. */ 1767 if (netmap_rx_irq(ifp, rxr->me, &processed)) { 1768 IXGBE_RX_UNLOCK(rxr); 1769 return (FALSE); 1770 } 1771 #endif /* DEV_NETMAP */ 1772 1773 for (i = rxr->next_to_check; count != 0;) { 1774 struct mbuf *sendmp, *mp; 1775 u32 rsc, ptype; 1776 u16 len; 1777 u16 vtag = 0; 1778 bool eop; 1779 1780 /* Sync the ring. */ 1781 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 1782 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1783 1784 cur = &rxr->rx_base[i]; 1785 staterr = le32toh(cur->wb.upper.status_error); 1786 pkt_info = le16toh(cur->wb.lower.lo_dword.hs_rss.pkt_info); 1787 1788 if ((staterr & IXGBE_RXD_STAT_DD) == 0) 1789 break; 1790 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1791 break; 1792 1793 count--; 1794 sendmp = NULL; 1795 nbuf = NULL; 1796 rsc = 0; 1797 cur->wb.upper.status_error = 0; 1798 rbuf = &rxr->rx_buffers[i]; 1799 mp = rbuf->buf; 1800 1801 len = le16toh(cur->wb.upper.length); 1802 ptype = le32toh(cur->wb.lower.lo_dword.data) & 1803 IXGBE_RXDADV_PKTTYPE_MASK; 1804 eop = ((staterr & IXGBE_RXD_STAT_EOP) != 0); 1805 1806 /* Make sure bad packets are discarded */ 1807 if (eop && (staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK) != 0) { 1808 #if __FreeBSD_version >= 1100036 1809 if (IXGBE_IS_VF(adapter)) 1810 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1811 #endif 1812 rxr->rx_discarded++; 1813 ixgbe_rx_discard(rxr, i); 1814 goto next_desc; 1815 } 1816 1817 /* 1818 ** On 82599 which supports a hardware 1819 ** LRO (called HW RSC), packets need 1820 ** not be fragmented across sequential 1821 ** descriptors, rather the next descriptor 1822 ** is indicated in bits of the descriptor. 1823 ** This also means that we might proceses 1824 ** more than one packet at a time, something 1825 ** that has never been true before, it 1826 ** required eliminating global chain pointers 1827 ** in favor of what we are doing here. -jfv 1828 */ 1829 if (!eop) { 1830 /* 1831 ** Figure out the next descriptor 1832 ** of this frame. 1833 */ 1834 if (rxr->hw_rsc == TRUE) { 1835 rsc = ixgbe_rsc_count(cur); 1836 rxr->rsc_num += (rsc - 1); 1837 } 1838 if (rsc) { /* Get hardware index */ 1839 nextp = ((staterr & 1840 IXGBE_RXDADV_NEXTP_MASK) >> 1841 IXGBE_RXDADV_NEXTP_SHIFT); 1842 } else { /* Just sequential */ 1843 nextp = i + 1; 1844 if (nextp == adapter->num_rx_desc) 1845 nextp = 0; 1846 } 1847 nbuf = &rxr->rx_buffers[nextp]; 1848 prefetch(nbuf); 1849 } 1850 /* 1851 ** Rather than using the fmp/lmp global pointers 1852 ** we now keep the head of a packet chain in the 1853 ** buffer struct and pass this along from one 1854 ** descriptor to the next, until we get EOP. 1855 */ 1856 mp->m_len = len; 1857 /* 1858 ** See if there is a stored head 1859 ** that determines what we are 1860 */ 1861 sendmp = rbuf->fmp; 1862 if (sendmp != NULL) { /* secondary frag */ 1863 rbuf->buf = rbuf->fmp = NULL; 1864 mp->m_flags &= ~M_PKTHDR; 1865 sendmp->m_pkthdr.len += mp->m_len; 1866 } else { 1867 /* 1868 * Optimize. This might be a small packet, 1869 * maybe just a TCP ACK. Do a fast copy that 1870 * is cache aligned into a new mbuf, and 1871 * leave the old mbuf+cluster for re-use. 1872 */ 1873 if (eop && len <= IXGBE_RX_COPY_LEN) { 1874 sendmp = m_gethdr(M_NOWAIT, MT_DATA); 1875 if (sendmp != NULL) { 1876 sendmp->m_data += 1877 IXGBE_RX_COPY_ALIGN; 1878 ixgbe_bcopy(mp->m_data, 1879 sendmp->m_data, len); 1880 sendmp->m_len = len; 1881 rxr->rx_copies++; 1882 rbuf->flags |= IXGBE_RX_COPY; 1883 } 1884 } 1885 if (sendmp == NULL) { 1886 rbuf->buf = rbuf->fmp = NULL; 1887 sendmp = mp; 1888 } 1889 1890 /* first desc of a non-ps chain */ 1891 sendmp->m_flags |= M_PKTHDR; 1892 sendmp->m_pkthdr.len = mp->m_len; 1893 } 1894 ++processed; 1895 1896 /* Pass the head pointer on */ 1897 if (eop == 0) { 1898 nbuf->fmp = sendmp; 1899 sendmp = NULL; 1900 mp->m_next = nbuf->buf; 1901 } else { /* Sending this frame */ 1902 sendmp->m_pkthdr.rcvif = ifp; 1903 rxr->rx_packets++; 1904 /* capture data for AIM */ 1905 rxr->bytes += sendmp->m_pkthdr.len; 1906 rxr->rx_bytes += sendmp->m_pkthdr.len; 1907 /* Process vlan info */ 1908 if ((rxr->vtag_strip) && 1909 (staterr & IXGBE_RXD_STAT_VP)) 1910 vtag = le16toh(cur->wb.upper.vlan); 1911 if (vtag) { 1912 sendmp->m_pkthdr.ether_vtag = vtag; 1913 sendmp->m_flags |= M_VLANTAG; 1914 } 1915 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 1916 ixgbe_rx_checksum(staterr, sendmp, ptype); 1917 1918 /* 1919 * In case of multiqueue, we have RXCSUM.PCSD bit set 1920 * and never cleared. This means we have RSS hash 1921 * available to be used. 1922 */ 1923 if (adapter->num_queues > 1) { 1924 sendmp->m_pkthdr.flowid = 1925 le32toh(cur->wb.lower.hi_dword.rss); 1926 switch (pkt_info & IXGBE_RXDADV_RSSTYPE_MASK) { 1927 case IXGBE_RXDADV_RSSTYPE_IPV4: 1928 M_HASHTYPE_SET(sendmp, 1929 M_HASHTYPE_RSS_IPV4); 1930 break; 1931 case IXGBE_RXDADV_RSSTYPE_IPV4_TCP: 1932 M_HASHTYPE_SET(sendmp, 1933 M_HASHTYPE_RSS_TCP_IPV4); 1934 break; 1935 case IXGBE_RXDADV_RSSTYPE_IPV6: 1936 M_HASHTYPE_SET(sendmp, 1937 M_HASHTYPE_RSS_IPV6); 1938 break; 1939 case IXGBE_RXDADV_RSSTYPE_IPV6_TCP: 1940 M_HASHTYPE_SET(sendmp, 1941 M_HASHTYPE_RSS_TCP_IPV6); 1942 break; 1943 case IXGBE_RXDADV_RSSTYPE_IPV6_EX: 1944 M_HASHTYPE_SET(sendmp, 1945 M_HASHTYPE_RSS_IPV6_EX); 1946 break; 1947 case IXGBE_RXDADV_RSSTYPE_IPV6_TCP_EX: 1948 M_HASHTYPE_SET(sendmp, 1949 M_HASHTYPE_RSS_TCP_IPV6_EX); 1950 break; 1951 #if __FreeBSD_version > 1100000 1952 case IXGBE_RXDADV_RSSTYPE_IPV4_UDP: 1953 M_HASHTYPE_SET(sendmp, 1954 M_HASHTYPE_RSS_UDP_IPV4); 1955 break; 1956 case IXGBE_RXDADV_RSSTYPE_IPV6_UDP: 1957 M_HASHTYPE_SET(sendmp, 1958 M_HASHTYPE_RSS_UDP_IPV6); 1959 break; 1960 case IXGBE_RXDADV_RSSTYPE_IPV6_UDP_EX: 1961 M_HASHTYPE_SET(sendmp, 1962 M_HASHTYPE_RSS_UDP_IPV6_EX); 1963 break; 1964 #endif 1965 default: 1966 M_HASHTYPE_SET(sendmp, 1967 M_HASHTYPE_OPAQUE); 1968 } 1969 } else { 1970 sendmp->m_pkthdr.flowid = que->msix; 1971 M_HASHTYPE_SET(sendmp, M_HASHTYPE_OPAQUE); 1972 } 1973 } 1974 next_desc: 1975 bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map, 1976 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1977 1978 /* Advance our pointers to the next descriptor. */ 1979 if (++i == rxr->num_desc) 1980 i = 0; 1981 1982 /* Now send to the stack or do LRO */ 1983 if (sendmp != NULL) { 1984 rxr->next_to_check = i; 1985 ixgbe_rx_input(rxr, ifp, sendmp, ptype); 1986 i = rxr->next_to_check; 1987 } 1988 1989 /* Every 8 descriptors we go to refresh mbufs */ 1990 if (processed == 8) { 1991 ixgbe_refresh_mbufs(rxr, i); 1992 processed = 0; 1993 } 1994 } 1995 1996 /* Refresh any remaining buf structs */ 1997 if (ixgbe_rx_unrefreshed(rxr)) 1998 ixgbe_refresh_mbufs(rxr, i); 1999 2000 rxr->next_to_check = i; 2001 2002 /* 2003 * Flush any outstanding LRO work 2004 */ 2005 tcp_lro_flush_all(lro); 2006 2007 IXGBE_RX_UNLOCK(rxr); 2008 2009 /* 2010 ** Still have cleaning to do? 2011 */ 2012 if ((staterr & IXGBE_RXD_STAT_DD) != 0) 2013 return (TRUE); 2014 else 2015 return (FALSE); 2016 } 2017 2018 2019 /********************************************************************* 2020 * 2021 * Verify that the hardware indicated that the checksum is valid. 2022 * Inform the stack about the status of checksum so that stack 2023 * doesn't spend time verifying the checksum. 2024 * 2025 *********************************************************************/ 2026 static void 2027 ixgbe_rx_checksum(u32 staterr, struct mbuf * mp, u32 ptype) 2028 { 2029 u16 status = (u16) staterr; 2030 u8 errors = (u8) (staterr >> 24); 2031 bool sctp = false; 2032 2033 if ((ptype & IXGBE_RXDADV_PKTTYPE_ETQF) == 0 && 2034 (ptype & IXGBE_RXDADV_PKTTYPE_SCTP) != 0) 2035 sctp = true; 2036 2037 /* IPv4 checksum */ 2038 if (status & IXGBE_RXD_STAT_IPCS) { 2039 mp->m_pkthdr.csum_flags |= CSUM_L3_CALC; 2040 /* IP Checksum Good */ 2041 if (!(errors & IXGBE_RXD_ERR_IPE)) 2042 mp->m_pkthdr.csum_flags |= CSUM_L3_VALID; 2043 } 2044 /* TCP/UDP/SCTP checksum */ 2045 if (status & IXGBE_RXD_STAT_L4CS) { 2046 mp->m_pkthdr.csum_flags |= CSUM_L4_CALC; 2047 if (!(errors & IXGBE_RXD_ERR_TCPE)) { 2048 mp->m_pkthdr.csum_flags |= CSUM_L4_VALID; 2049 if (!sctp) 2050 mp->m_pkthdr.csum_data = htons(0xffff); 2051 } 2052 } 2053 } 2054 2055 /******************************************************************** 2056 * Manage DMA'able memory. 2057 *******************************************************************/ 2058 static void 2059 ixgbe_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error) 2060 { 2061 if (error) 2062 return; 2063 *(bus_addr_t *) arg = segs->ds_addr; 2064 return; 2065 } 2066 2067 int 2068 ixgbe_dma_malloc(struct adapter *adapter, bus_size_t size, 2069 struct ixgbe_dma_alloc *dma, int mapflags) 2070 { 2071 device_t dev = adapter->dev; 2072 int r; 2073 2074 r = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */ 2075 DBA_ALIGN, 0, /* alignment, bounds */ 2076 BUS_SPACE_MAXADDR, /* lowaddr */ 2077 BUS_SPACE_MAXADDR, /* highaddr */ 2078 NULL, NULL, /* filter, filterarg */ 2079 size, /* maxsize */ 2080 1, /* nsegments */ 2081 size, /* maxsegsize */ 2082 BUS_DMA_ALLOCNOW, /* flags */ 2083 NULL, /* lockfunc */ 2084 NULL, /* lockfuncarg */ 2085 &dma->dma_tag); 2086 if (r != 0) { 2087 device_printf(dev,"ixgbe_dma_malloc: bus_dma_tag_create failed; " 2088 "error %u\n", r); 2089 goto fail_0; 2090 } 2091 r = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr, 2092 BUS_DMA_NOWAIT, &dma->dma_map); 2093 if (r != 0) { 2094 device_printf(dev,"ixgbe_dma_malloc: bus_dmamem_alloc failed; " 2095 "error %u\n", r); 2096 goto fail_1; 2097 } 2098 r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, 2099 size, 2100 ixgbe_dmamap_cb, 2101 &dma->dma_paddr, 2102 mapflags | BUS_DMA_NOWAIT); 2103 if (r != 0) { 2104 device_printf(dev,"ixgbe_dma_malloc: bus_dmamap_load failed; " 2105 "error %u\n", r); 2106 goto fail_2; 2107 } 2108 dma->dma_size = size; 2109 return (0); 2110 fail_2: 2111 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 2112 fail_1: 2113 bus_dma_tag_destroy(dma->dma_tag); 2114 fail_0: 2115 dma->dma_tag = NULL; 2116 return (r); 2117 } 2118 2119 void 2120 ixgbe_dma_free(struct adapter *adapter, struct ixgbe_dma_alloc *dma) 2121 { 2122 bus_dmamap_sync(dma->dma_tag, dma->dma_map, 2123 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2124 bus_dmamap_unload(dma->dma_tag, dma->dma_map); 2125 bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map); 2126 bus_dma_tag_destroy(dma->dma_tag); 2127 } 2128 2129 2130 /********************************************************************* 2131 * 2132 * Allocate memory for the transmit and receive rings, and then 2133 * the descriptors associated with each, called only once at attach. 2134 * 2135 **********************************************************************/ 2136 int 2137 ixgbe_allocate_queues(struct adapter *adapter) 2138 { 2139 device_t dev = adapter->dev; 2140 struct ix_queue *que; 2141 struct tx_ring *txr; 2142 struct rx_ring *rxr; 2143 int rsize, tsize, error = IXGBE_SUCCESS; 2144 int txconf = 0, rxconf = 0; 2145 #ifdef PCI_IOV 2146 enum ixgbe_iov_mode iov_mode; 2147 #endif 2148 2149 /* First allocate the top level queue structs */ 2150 if (!(adapter->queues = 2151 (struct ix_queue *) malloc(sizeof(struct ix_queue) * 2152 adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2153 device_printf(dev, "Unable to allocate queue memory\n"); 2154 error = ENOMEM; 2155 goto fail; 2156 } 2157 2158 /* First allocate the TX ring struct memory */ 2159 if (!(adapter->tx_rings = 2160 (struct tx_ring *) malloc(sizeof(struct tx_ring) * 2161 adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2162 device_printf(dev, "Unable to allocate TX ring memory\n"); 2163 error = ENOMEM; 2164 goto tx_fail; 2165 } 2166 2167 /* Next allocate the RX */ 2168 if (!(adapter->rx_rings = 2169 (struct rx_ring *) malloc(sizeof(struct rx_ring) * 2170 adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) { 2171 device_printf(dev, "Unable to allocate RX ring memory\n"); 2172 error = ENOMEM; 2173 goto rx_fail; 2174 } 2175 2176 /* For the ring itself */ 2177 tsize = roundup2(adapter->num_tx_desc * 2178 sizeof(union ixgbe_adv_tx_desc), DBA_ALIGN); 2179 2180 #ifdef PCI_IOV 2181 iov_mode = ixgbe_get_iov_mode(adapter); 2182 adapter->pool = ixgbe_max_vfs(iov_mode); 2183 #else 2184 adapter->pool = 0; 2185 #endif 2186 /* 2187 * Now set up the TX queues, txconf is needed to handle the 2188 * possibility that things fail midcourse and we need to 2189 * undo memory gracefully 2190 */ 2191 for (int i = 0; i < adapter->num_queues; i++, txconf++) { 2192 /* Set up some basics */ 2193 txr = &adapter->tx_rings[i]; 2194 txr->adapter = adapter; 2195 #ifdef PCI_IOV 2196 txr->me = ixgbe_pf_que_index(iov_mode, i); 2197 #else 2198 txr->me = i; 2199 #endif 2200 txr->num_desc = adapter->num_tx_desc; 2201 2202 /* Initialize the TX side lock */ 2203 snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)", 2204 device_get_nameunit(dev), txr->me); 2205 mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF); 2206 2207 if (ixgbe_dma_malloc(adapter, tsize, 2208 &txr->txdma, BUS_DMA_NOWAIT)) { 2209 device_printf(dev, 2210 "Unable to allocate TX Descriptor memory\n"); 2211 error = ENOMEM; 2212 goto err_tx_desc; 2213 } 2214 txr->tx_base = (union ixgbe_adv_tx_desc *)txr->txdma.dma_vaddr; 2215 bzero((void *)txr->tx_base, tsize); 2216 2217 /* Now allocate transmit buffers for the ring */ 2218 if (ixgbe_allocate_transmit_buffers(txr)) { 2219 device_printf(dev, 2220 "Critical Failure setting up transmit buffers\n"); 2221 error = ENOMEM; 2222 goto err_tx_desc; 2223 } 2224 #ifndef IXGBE_LEGACY_TX 2225 /* Allocate a buf ring */ 2226 txr->br = buf_ring_alloc(IXGBE_BR_SIZE, M_DEVBUF, 2227 M_WAITOK, &txr->tx_mtx); 2228 if (txr->br == NULL) { 2229 device_printf(dev, 2230 "Critical Failure setting up buf ring\n"); 2231 error = ENOMEM; 2232 goto err_tx_desc; 2233 } 2234 #endif 2235 } 2236 2237 /* 2238 * Next the RX queues... 2239 */ 2240 rsize = roundup2(adapter->num_rx_desc * 2241 sizeof(union ixgbe_adv_rx_desc), DBA_ALIGN); 2242 for (int i = 0; i < adapter->num_queues; i++, rxconf++) { 2243 rxr = &adapter->rx_rings[i]; 2244 /* Set up some basics */ 2245 rxr->adapter = adapter; 2246 #ifdef PCI_IOV 2247 rxr->me = ixgbe_pf_que_index(iov_mode, i); 2248 #else 2249 rxr->me = i; 2250 #endif 2251 rxr->num_desc = adapter->num_rx_desc; 2252 2253 /* Initialize the RX side lock */ 2254 snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)", 2255 device_get_nameunit(dev), rxr->me); 2256 mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF); 2257 2258 if (ixgbe_dma_malloc(adapter, rsize, 2259 &rxr->rxdma, BUS_DMA_NOWAIT)) { 2260 device_printf(dev, 2261 "Unable to allocate RxDescriptor memory\n"); 2262 error = ENOMEM; 2263 goto err_rx_desc; 2264 } 2265 rxr->rx_base = (union ixgbe_adv_rx_desc *)rxr->rxdma.dma_vaddr; 2266 bzero((void *)rxr->rx_base, rsize); 2267 2268 /* Allocate receive buffers for the ring*/ 2269 if (ixgbe_allocate_receive_buffers(rxr)) { 2270 device_printf(dev, 2271 "Critical Failure setting up receive buffers\n"); 2272 error = ENOMEM; 2273 goto err_rx_desc; 2274 } 2275 } 2276 2277 /* 2278 ** Finally set up the queue holding structs 2279 */ 2280 for (int i = 0; i < adapter->num_queues; i++) { 2281 que = &adapter->queues[i]; 2282 que->adapter = adapter; 2283 que->me = i; 2284 que->txr = &adapter->tx_rings[i]; 2285 que->rxr = &adapter->rx_rings[i]; 2286 } 2287 2288 return (0); 2289 2290 err_rx_desc: 2291 for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--) 2292 ixgbe_dma_free(adapter, &rxr->rxdma); 2293 err_tx_desc: 2294 for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--) 2295 ixgbe_dma_free(adapter, &txr->txdma); 2296 free(adapter->rx_rings, M_DEVBUF); 2297 rx_fail: 2298 free(adapter->tx_rings, M_DEVBUF); 2299 tx_fail: 2300 free(adapter->queues, M_DEVBUF); 2301 fail: 2302 return (error); 2303 } 2304