xref: /freebsd/sys/dev/iwn/if_iwn.c (revision febdb468801f35e51c6c5c22221cfce9197c6f3b)
1 /*-
2  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
3  * Copyright (c) 2011 Intel Corporation
4  * Copyright (c) 2007-2009
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008
7  *	Benjamin Close <benjsc@FreeBSD.org>
8  * Copyright (c) 2008 Sam Leffler, Errno Consulting
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 /*
24  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
25  * adapters.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_wlan.h"
32 #include "opt_iwn.h"
33 
34 #include <sys/param.h>
35 #include <sys/sockio.h>
36 #include <sys/sysctl.h>
37 #include <sys/mbuf.h>
38 #include <sys/kernel.h>
39 #include <sys/socket.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/bus.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/queue.h>
49 #include <sys/taskqueue.h>
50 
51 #include <machine/bus.h>
52 #include <machine/resource.h>
53 #include <machine/clock.h>
54 
55 #include <dev/pci/pcireg.h>
56 #include <dev/pci/pcivar.h>
57 
58 #include <net/bpf.h>
59 #include <net/if.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_radiotap.h>
74 #include <net80211/ieee80211_regdomain.h>
75 #include <net80211/ieee80211_ratectl.h>
76 
77 #include <dev/iwn/if_iwnreg.h>
78 #include <dev/iwn/if_iwnvar.h>
79 #include <dev/iwn/if_iwn_devid.h>
80 
81 struct iwn_ident {
82 	uint16_t	vendor;
83 	uint16_t	device;
84 	const char	*name;
85 };
86 
87 static const struct iwn_ident iwn_ident_table[] = {
88 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
89 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
90 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
91 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
92 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
93 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
94 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
95 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
96 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
97 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
98 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
99 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
100 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
101 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
103 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
105 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
107 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
108 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
109 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
110 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
111 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
112 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
113 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
114 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
115 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
116 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
117 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
118 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
119 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
120 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
121 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
122 	{ 0, 0, NULL }
123 };
124 
125 static int	iwn_probe(device_t);
126 static int	iwn_attach(device_t);
127 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
128 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
129 static void	iwn_radiotap_attach(struct iwn_softc *);
130 static void	iwn_sysctlattach(struct iwn_softc *);
131 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
132 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
133 		    const uint8_t [IEEE80211_ADDR_LEN],
134 		    const uint8_t [IEEE80211_ADDR_LEN]);
135 static void	iwn_vap_delete(struct ieee80211vap *);
136 static int	iwn_detach(device_t);
137 static int	iwn_shutdown(device_t);
138 static int	iwn_suspend(device_t);
139 static int	iwn_resume(device_t);
140 static int	iwn_nic_lock(struct iwn_softc *);
141 static int	iwn_eeprom_lock(struct iwn_softc *);
142 static int	iwn_init_otprom(struct iwn_softc *);
143 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
144 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
145 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
146 		    void **, bus_size_t, bus_size_t);
147 static void	iwn_dma_contig_free(struct iwn_dma_info *);
148 static int	iwn_alloc_sched(struct iwn_softc *);
149 static void	iwn_free_sched(struct iwn_softc *);
150 static int	iwn_alloc_kw(struct iwn_softc *);
151 static void	iwn_free_kw(struct iwn_softc *);
152 static int	iwn_alloc_ict(struct iwn_softc *);
153 static void	iwn_free_ict(struct iwn_softc *);
154 static int	iwn_alloc_fwmem(struct iwn_softc *);
155 static void	iwn_free_fwmem(struct iwn_softc *);
156 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
157 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
158 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
159 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
160 		    int);
161 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
162 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
163 static void	iwn5000_ict_reset(struct iwn_softc *);
164 static int	iwn_read_eeprom(struct iwn_softc *,
165 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
166 static void	iwn4965_read_eeprom(struct iwn_softc *);
167 #ifdef	IWN_DEBUG
168 static void	iwn4965_print_power_group(struct iwn_softc *, int);
169 #endif
170 static void	iwn5000_read_eeprom(struct iwn_softc *);
171 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
172 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
173 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
174 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
175 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
176 		    struct ieee80211_channel *);
177 static int	iwn_setregdomain(struct ieee80211com *,
178 		    struct ieee80211_regdomain *, int,
179 		    struct ieee80211_channel[]);
180 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
181 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
182 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
183 static void	iwn_newassoc(struct ieee80211_node *, int);
184 static int	iwn_media_change(struct ifnet *);
185 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186 static void	iwn_calib_timeout(void *);
187 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
188 		    struct iwn_rx_data *);
189 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 		    struct iwn_rx_data *);
191 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn5000_rx_calib_results(struct iwn_softc *,
194 		    struct iwn_rx_desc *, struct iwn_rx_data *);
195 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
196 		    struct iwn_rx_data *);
197 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
198 		    struct iwn_rx_data *);
199 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
202 		    uint8_t);
203 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
204 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
205 static void	iwn_notif_intr(struct iwn_softc *);
206 static void	iwn_wakeup_intr(struct iwn_softc *);
207 static void	iwn_rftoggle_intr(struct iwn_softc *);
208 static void	iwn_fatal_intr(struct iwn_softc *);
209 static void	iwn_intr(void *);
210 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
211 		    uint16_t);
212 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
213 		    uint16_t);
214 #ifdef notyet
215 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
216 #endif
217 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
218 		    struct ieee80211_node *);
219 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
220 		    struct ieee80211_node *,
221 		    const struct ieee80211_bpf_params *params);
222 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
223 		    const struct ieee80211_bpf_params *);
224 static void	iwn_start(struct ifnet *);
225 static void	iwn_start_locked(struct ifnet *);
226 static void	iwn_watchdog(void *);
227 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
228 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
229 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
230 		    int);
231 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
232 		    int);
233 static int	iwn_set_link_quality(struct iwn_softc *,
234 		    struct ieee80211_node *);
235 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
236 static int	iwn_updateedca(struct ieee80211com *);
237 static void	iwn_update_mcast(struct ifnet *);
238 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
239 static int	iwn_set_critical_temp(struct iwn_softc *);
240 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
241 static void	iwn4965_power_calibration(struct iwn_softc *, int);
242 static int	iwn4965_set_txpower(struct iwn_softc *,
243 		    struct ieee80211_channel *, int);
244 static int	iwn5000_set_txpower(struct iwn_softc *,
245 		    struct ieee80211_channel *, int);
246 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
247 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
248 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
249 static int	iwn4965_get_temperature(struct iwn_softc *);
250 static int	iwn5000_get_temperature(struct iwn_softc *);
251 static int	iwn_init_sensitivity(struct iwn_softc *);
252 static void	iwn_collect_noise(struct iwn_softc *,
253 		    const struct iwn_rx_general_stats *);
254 static int	iwn4965_init_gains(struct iwn_softc *);
255 static int	iwn5000_init_gains(struct iwn_softc *);
256 static int	iwn4965_set_gains(struct iwn_softc *);
257 static int	iwn5000_set_gains(struct iwn_softc *);
258 static void	iwn_tune_sensitivity(struct iwn_softc *,
259 		    const struct iwn_rx_stats *);
260 static int	iwn_send_sensitivity(struct iwn_softc *);
261 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
262 static int	iwn_send_btcoex(struct iwn_softc *);
263 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
264 static int	iwn5000_runtime_calib(struct iwn_softc *);
265 static int	iwn_config(struct iwn_softc *);
266 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
267 static int	iwn_scan(struct iwn_softc *);
268 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
269 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
270 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
271 		    struct ieee80211_rx_ampdu *, int, int, int);
272 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
273 		    struct ieee80211_rx_ampdu *);
274 static int	iwn_addba_request(struct ieee80211_node *,
275 		    struct ieee80211_tx_ampdu *, int, int, int);
276 static int	iwn_addba_response(struct ieee80211_node *,
277 		    struct ieee80211_tx_ampdu *, int, int, int);
278 static int	iwn_ampdu_tx_start(struct ieee80211com *,
279 		    struct ieee80211_node *, uint8_t);
280 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
281 		    struct ieee80211_tx_ampdu *);
282 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
283 		    struct ieee80211_node *, int, uint8_t, uint16_t);
284 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
285 		    uint8_t, uint16_t);
286 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
287 		    struct ieee80211_node *, int, uint8_t, uint16_t);
288 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
289 		    uint8_t, uint16_t);
290 static int	iwn5000_query_calibration(struct iwn_softc *);
291 static int	iwn5000_send_calibration(struct iwn_softc *);
292 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
293 static int	iwn5000_crystal_calib(struct iwn_softc *);
294 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
295 static int	iwn4965_post_alive(struct iwn_softc *);
296 static int	iwn5000_post_alive(struct iwn_softc *);
297 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
298 		    int);
299 static int	iwn4965_load_firmware(struct iwn_softc *);
300 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
301 		    const uint8_t *, int);
302 static int	iwn5000_load_firmware(struct iwn_softc *);
303 static int	iwn_read_firmware_leg(struct iwn_softc *,
304 		    struct iwn_fw_info *);
305 static int	iwn_read_firmware_tlv(struct iwn_softc *,
306 		    struct iwn_fw_info *, uint16_t);
307 static int	iwn_read_firmware(struct iwn_softc *);
308 static int	iwn_clock_wait(struct iwn_softc *);
309 static int	iwn_apm_init(struct iwn_softc *);
310 static void	iwn_apm_stop_master(struct iwn_softc *);
311 static void	iwn_apm_stop(struct iwn_softc *);
312 static int	iwn4965_nic_config(struct iwn_softc *);
313 static int	iwn5000_nic_config(struct iwn_softc *);
314 static int	iwn_hw_prepare(struct iwn_softc *);
315 static int	iwn_hw_init(struct iwn_softc *);
316 static void	iwn_hw_stop(struct iwn_softc *);
317 static void	iwn_radio_on(void *, int);
318 static void	iwn_radio_off(void *, int);
319 static void	iwn_init_locked(struct iwn_softc *);
320 static void	iwn_init(void *);
321 static void	iwn_stop_locked(struct iwn_softc *);
322 static void	iwn_stop(struct iwn_softc *);
323 static void	iwn_scan_start(struct ieee80211com *);
324 static void	iwn_scan_end(struct ieee80211com *);
325 static void	iwn_set_channel(struct ieee80211com *);
326 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
327 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
328 static void	iwn_hw_reset(void *, int);
329 #ifdef	IWN_DEBUG
330 static char	*iwn_get_csr_string(int);
331 static void	iwn_debug_register(struct iwn_softc *);
332 #endif
333 
334 #ifdef	IWN_DEBUG
335 enum {
336 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
337 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
338 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
339 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
340 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
341 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
342 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
343 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
344 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
345 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
346 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
347 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
348 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
349 	IWN_DEBUG_TXRATE	= 0x00002000,	/* TX rate debugging */
350 	IWN_DEBUG_PWRSAVE	= 0x00004000,	/* Power save operations */
351 	IWN_DEBUG_REGISTER	= 0x20000000,	/* print chipset register */
352 	IWN_DEBUG_TRACE		= 0x40000000,	/* Print begin and start driver function */
353 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
354 	IWN_DEBUG_ANY		= 0xffffffff
355 };
356 
357 #define DPRINTF(sc, m, fmt, ...) do {			\
358 	if (sc->sc_debug & (m))				\
359 		printf(fmt, __VA_ARGS__);		\
360 } while (0)
361 
362 static const char *
363 iwn_intr_str(uint8_t cmd)
364 {
365 	switch (cmd) {
366 	/* Notifications */
367 	case IWN_UC_READY:		return "UC_READY";
368 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
369 	case IWN_TX_DONE:		return "TX_DONE";
370 	case IWN_START_SCAN:		return "START_SCAN";
371 	case IWN_STOP_SCAN:		return "STOP_SCAN";
372 	case IWN_RX_STATISTICS:		return "RX_STATS";
373 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
374 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
375 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
376 	case IWN_RX_PHY:		return "RX_PHY";
377 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
378 	case IWN_RX_DONE:		return "RX_DONE";
379 
380 	/* Command Notifications */
381 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
382 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
383 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
384 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
385 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
386 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
387 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
388 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
389 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
390 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
391 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
392 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
393 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
394 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
395 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
396 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
397 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
398 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
399 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
400 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
401 	}
402 	return "UNKNOWN INTR NOTIF/CMD";
403 }
404 #else
405 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
406 #endif
407 
408 static device_method_t iwn_methods[] = {
409 	/* Device interface */
410 	DEVMETHOD(device_probe,		iwn_probe),
411 	DEVMETHOD(device_attach,	iwn_attach),
412 	DEVMETHOD(device_detach,	iwn_detach),
413 	DEVMETHOD(device_shutdown,	iwn_shutdown),
414 	DEVMETHOD(device_suspend,	iwn_suspend),
415 	DEVMETHOD(device_resume,	iwn_resume),
416 	{ 0, 0 }
417 };
418 
419 static driver_t iwn_driver = {
420 	"iwn",
421 	iwn_methods,
422 	sizeof(struct iwn_softc)
423 };
424 static devclass_t iwn_devclass;
425 
426 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
427 
428 MODULE_VERSION(iwn, 1);
429 
430 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
431 MODULE_DEPEND(iwn, pci, 1, 1, 1);
432 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
433 
434 static int
435 iwn_probe(device_t dev)
436 {
437 	const struct iwn_ident *ident;
438 
439 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
440 		if (pci_get_vendor(dev) == ident->vendor &&
441 		    pci_get_device(dev) == ident->device) {
442 			device_set_desc(dev, ident->name);
443 			return 0;
444 		}
445 	}
446 	return ENXIO;
447 }
448 
449 static int
450 iwn_attach(device_t dev)
451 {
452 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
453 	struct ieee80211com *ic;
454 	struct ifnet *ifp;
455 	uint32_t reg;
456 	int i, error, result;
457 	uint8_t macaddr[IEEE80211_ADDR_LEN];
458 
459 	sc->sc_dev = dev;
460 
461 #ifdef	IWN_DEBUG
462 	error = resource_int_value(device_get_name(sc->sc_dev),
463 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
464 	if (error != 0)
465 		sc->sc_debug = 0;
466 #else
467 	sc->sc_debug = 0;
468 #endif
469 
470 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
471 
472 	/*
473 	 * Get the offset of the PCI Express Capability Structure in PCI
474 	 * Configuration Space.
475 	 */
476 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
477 	if (error != 0) {
478 		device_printf(dev, "PCIe capability structure not found!\n");
479 		return error;
480 	}
481 
482 	/* Clear device-specific "PCI retry timeout" register (41h). */
483 	pci_write_config(dev, 0x41, 0, 1);
484 
485 	/* Hardware bug workaround. */
486 	reg = pci_read_config(dev, PCIR_COMMAND, 2);
487 	if (reg & PCIM_CMD_INTxDIS) {
488 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
489 		    __func__);
490 		reg &= ~PCIM_CMD_INTxDIS;
491 		pci_write_config(dev, PCIR_COMMAND, reg, 2);
492 	}
493 
494 	/* Enable bus-mastering. */
495 	pci_enable_busmaster(dev);
496 
497 	sc->mem_rid = PCIR_BAR(0);
498 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
499 	    RF_ACTIVE);
500 	if (sc->mem == NULL) {
501 		device_printf(dev, "can't map mem space\n");
502 		error = ENOMEM;
503 		return error;
504 	}
505 	sc->sc_st = rman_get_bustag(sc->mem);
506 	sc->sc_sh = rman_get_bushandle(sc->mem);
507 
508 	sc->irq_rid = 0;
509 	if ((result = pci_msi_count(dev)) == 1 &&
510 	    pci_alloc_msi(dev, &result) == 0)
511 		sc->irq_rid = 1;
512 	/* Install interrupt handler. */
513 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
514 	    RF_ACTIVE | RF_SHAREABLE);
515 	if (sc->irq == NULL) {
516 		device_printf(dev, "can't map interrupt\n");
517 		error = ENOMEM;
518 		goto fail;
519 	}
520 
521 	IWN_LOCK_INIT(sc);
522 
523 	/* Read hardware revision and attach. */
524 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
525 	    & IWN_HW_REV_TYPE_MASK;
526 	sc->subdevice_id = pci_get_subdevice(dev);
527 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
528 		error = iwn4965_attach(sc, pci_get_device(dev));
529 	else
530 		error = iwn5000_attach(sc, pci_get_device(dev));
531 	if (error != 0) {
532 		device_printf(dev, "could not attach device, error %d\n",
533 		    error);
534 		goto fail;
535 	}
536 
537 	if ((error = iwn_hw_prepare(sc)) != 0) {
538 		device_printf(dev, "hardware not ready, error %d\n", error);
539 		goto fail;
540 	}
541 
542 	/* Allocate DMA memory for firmware transfers. */
543 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
544 		device_printf(dev,
545 		    "could not allocate memory for firmware, error %d\n",
546 		    error);
547 		goto fail;
548 	}
549 
550 	/* Allocate "Keep Warm" page. */
551 	if ((error = iwn_alloc_kw(sc)) != 0) {
552 		device_printf(dev,
553 		    "could not allocate keep warm page, error %d\n", error);
554 		goto fail;
555 	}
556 
557 	/* Allocate ICT table for 5000 Series. */
558 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
559 	    (error = iwn_alloc_ict(sc)) != 0) {
560 		device_printf(dev, "could not allocate ICT table, error %d\n",
561 		    error);
562 		goto fail;
563 	}
564 
565 	/* Allocate TX scheduler "rings". */
566 	if ((error = iwn_alloc_sched(sc)) != 0) {
567 		device_printf(dev,
568 		    "could not allocate TX scheduler rings, error %d\n", error);
569 		goto fail;
570 	}
571 
572 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
573 	for (i = 0; i < sc->ntxqs; i++) {
574 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
575 			device_printf(dev,
576 			    "could not allocate TX ring %d, error %d\n", i,
577 			    error);
578 			goto fail;
579 		}
580 	}
581 
582 	/* Allocate RX ring. */
583 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
584 		device_printf(dev, "could not allocate RX ring, error %d\n",
585 		    error);
586 		goto fail;
587 	}
588 
589 	/* Clear pending interrupts. */
590 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
591 
592 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
593 	if (ifp == NULL) {
594 		device_printf(dev, "can not allocate ifnet structure\n");
595 		goto fail;
596 	}
597 
598 	ic = ifp->if_l2com;
599 	ic->ic_ifp = ifp;
600 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
601 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
602 
603 	/* Set device capabilities. */
604 	ic->ic_caps =
605 		  IEEE80211_C_STA		/* station mode supported */
606 		| IEEE80211_C_MONITOR		/* monitor mode supported */
607 		| IEEE80211_C_BGSCAN		/* background scanning */
608 		| IEEE80211_C_TXPMGT		/* tx power management */
609 		| IEEE80211_C_SHSLOT		/* short slot time supported */
610 		| IEEE80211_C_WPA
611 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
612 #if 0
613 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
614 #endif
615 		| IEEE80211_C_WME		/* WME */
616 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
617 		;
618 
619 	/* Read MAC address, channels, etc from EEPROM. */
620 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
621 		device_printf(dev, "could not read EEPROM, error %d\n",
622 		    error);
623 		goto fail;
624 	}
625 
626 	/* Count the number of available chains. */
627 	sc->ntxchains =
628 	    ((sc->txchainmask >> 2) & 1) +
629 	    ((sc->txchainmask >> 1) & 1) +
630 	    ((sc->txchainmask >> 0) & 1);
631 	sc->nrxchains =
632 	    ((sc->rxchainmask >> 2) & 1) +
633 	    ((sc->rxchainmask >> 1) & 1) +
634 	    ((sc->rxchainmask >> 0) & 1);
635 	if (bootverbose) {
636 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
637 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
638 		    macaddr, ":");
639 	}
640 
641 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
642 		ic->ic_rxstream = sc->nrxchains;
643 		ic->ic_txstream = sc->ntxchains;
644 
645 		/*
646 		 * The NICs we currently support cap out at 2x2 support
647 		 * separate from the chains being used.
648 		 *
649 		 * This is a total hack to work around that until some
650 		 * per-device method is implemented to return the
651 		 * actual stream support.
652 		 */
653 		if (ic->ic_rxstream > 2)
654 			ic->ic_rxstream = 2;
655 		if (ic->ic_txstream > 2)
656 			ic->ic_txstream = 2;
657 
658 		ic->ic_htcaps =
659 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
660 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
661 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
662 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
663 #ifdef notyet
664 			| IEEE80211_HTCAP_GREENFIELD
665 #if IWN_RBUF_SIZE == 8192
666 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
667 #else
668 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
669 #endif
670 #endif
671 			/* s/w capabilities */
672 			| IEEE80211_HTC_HT		/* HT operation */
673 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
674 #ifdef notyet
675 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
676 #endif
677 			;
678 	}
679 
680 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
681 	ifp->if_softc = sc;
682 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
683 	ifp->if_init = iwn_init;
684 	ifp->if_ioctl = iwn_ioctl;
685 	ifp->if_start = iwn_start;
686 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
687 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
688 	IFQ_SET_READY(&ifp->if_snd);
689 
690 	ieee80211_ifattach(ic, macaddr);
691 	ic->ic_vap_create = iwn_vap_create;
692 	ic->ic_vap_delete = iwn_vap_delete;
693 	ic->ic_raw_xmit = iwn_raw_xmit;
694 	ic->ic_node_alloc = iwn_node_alloc;
695 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
696 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
697 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
698 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
699 	sc->sc_addba_request = ic->ic_addba_request;
700 	ic->ic_addba_request = iwn_addba_request;
701 	sc->sc_addba_response = ic->ic_addba_response;
702 	ic->ic_addba_response = iwn_addba_response;
703 	sc->sc_addba_stop = ic->ic_addba_stop;
704 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
705 	ic->ic_newassoc = iwn_newassoc;
706 	ic->ic_wme.wme_update = iwn_updateedca;
707 	ic->ic_update_mcast = iwn_update_mcast;
708 	ic->ic_scan_start = iwn_scan_start;
709 	ic->ic_scan_end = iwn_scan_end;
710 	ic->ic_set_channel = iwn_set_channel;
711 	ic->ic_scan_curchan = iwn_scan_curchan;
712 	ic->ic_scan_mindwell = iwn_scan_mindwell;
713 	ic->ic_setregdomain = iwn_setregdomain;
714 
715 	iwn_radiotap_attach(sc);
716 
717 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
718 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
719 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
720 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
721 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
722 
723 	iwn_sysctlattach(sc);
724 
725 	/*
726 	 * Hook our interrupt after all initialization is complete.
727 	 */
728 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
729 	    NULL, iwn_intr, sc, &sc->sc_ih);
730 	if (error != 0) {
731 		device_printf(dev, "can't establish interrupt, error %d\n",
732 		    error);
733 		goto fail;
734 	}
735 
736 	if (bootverbose)
737 		ieee80211_announce(ic);
738 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
739 	return 0;
740 fail:
741 	iwn_detach(dev);
742 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
743 	return error;
744 }
745 
746 static int
747 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
748 {
749 	struct iwn_ops *ops = &sc->ops;
750 
751 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
752 	ops->load_firmware = iwn4965_load_firmware;
753 	ops->read_eeprom = iwn4965_read_eeprom;
754 	ops->post_alive = iwn4965_post_alive;
755 	ops->nic_config = iwn4965_nic_config;
756 	ops->update_sched = iwn4965_update_sched;
757 	ops->get_temperature = iwn4965_get_temperature;
758 	ops->get_rssi = iwn4965_get_rssi;
759 	ops->set_txpower = iwn4965_set_txpower;
760 	ops->init_gains = iwn4965_init_gains;
761 	ops->set_gains = iwn4965_set_gains;
762 	ops->add_node = iwn4965_add_node;
763 	ops->tx_done = iwn4965_tx_done;
764 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
765 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
766 	sc->ntxqs = IWN4965_NTXQUEUES;
767 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
768 	sc->ndmachnls = IWN4965_NDMACHNLS;
769 	sc->broadcast_id = IWN4965_ID_BROADCAST;
770 	sc->rxonsz = IWN4965_RXONSZ;
771 	sc->schedsz = IWN4965_SCHEDSZ;
772 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
773 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
774 	sc->fwsz = IWN4965_FWSZ;
775 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
776 	sc->limits = &iwn4965_sensitivity_limits;
777 	sc->fwname = "iwn4965fw";
778 	/* Override chains masks, ROM is known to be broken. */
779 	sc->txchainmask = IWN_ANT_AB;
780 	sc->rxchainmask = IWN_ANT_ABC;
781 
782 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
783 
784 	return 0;
785 }
786 
787 static int
788 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
789 {
790 	struct iwn_ops *ops = &sc->ops;
791 
792 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
793 
794 	ops->load_firmware = iwn5000_load_firmware;
795 	ops->read_eeprom = iwn5000_read_eeprom;
796 	ops->post_alive = iwn5000_post_alive;
797 	ops->nic_config = iwn5000_nic_config;
798 	ops->update_sched = iwn5000_update_sched;
799 	ops->get_temperature = iwn5000_get_temperature;
800 	ops->get_rssi = iwn5000_get_rssi;
801 	ops->set_txpower = iwn5000_set_txpower;
802 	ops->init_gains = iwn5000_init_gains;
803 	ops->set_gains = iwn5000_set_gains;
804 	ops->add_node = iwn5000_add_node;
805 	ops->tx_done = iwn5000_tx_done;
806 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
807 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
808 	sc->ntxqs = IWN5000_NTXQUEUES;
809 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
810 	sc->ndmachnls = IWN5000_NDMACHNLS;
811 	sc->broadcast_id = IWN5000_ID_BROADCAST;
812 	sc->rxonsz = IWN5000_RXONSZ;
813 	sc->schedsz = IWN5000_SCHEDSZ;
814 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
815 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
816 	sc->fwsz = IWN5000_FWSZ;
817 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
818 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
819 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
820 
821 	switch (sc->hw_type) {
822 	case IWN_HW_REV_TYPE_5100:
823 		sc->limits = &iwn5000_sensitivity_limits;
824 		sc->fwname = "iwn5000fw";
825 		/* Override chains masks, ROM is known to be broken. */
826 		sc->txchainmask = IWN_ANT_B;
827 		sc->rxchainmask = IWN_ANT_AB;
828 		break;
829 	case IWN_HW_REV_TYPE_5150:
830 		sc->limits = &iwn5150_sensitivity_limits;
831 		sc->fwname = "iwn5150fw";
832 		break;
833 	case IWN_HW_REV_TYPE_5300:
834 	case IWN_HW_REV_TYPE_5350:
835 		sc->limits = &iwn5000_sensitivity_limits;
836 		sc->fwname = "iwn5000fw";
837 		break;
838 	case IWN_HW_REV_TYPE_1000:
839 		sc->limits = &iwn1000_sensitivity_limits;
840 		sc->fwname = "iwn1000fw";
841 		break;
842 	case IWN_HW_REV_TYPE_6000:
843 		sc->limits = &iwn6000_sensitivity_limits;
844 		sc->fwname = "iwn6000fw";
845 		if (pid == 0x422c || pid == 0x4239) {
846 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
847 			/* Override chains masks, ROM is known to be broken. */
848 			sc->txchainmask = IWN_ANT_BC;
849 			sc->rxchainmask = IWN_ANT_BC;
850 		}
851 		break;
852 	case IWN_HW_REV_TYPE_6050:
853 		sc->limits = &iwn6000_sensitivity_limits;
854 		sc->fwname = "iwn6050fw";
855 		/* Override chains masks, ROM is known to be broken. */
856 		sc->txchainmask = IWN_ANT_AB;
857 		sc->rxchainmask = IWN_ANT_AB;
858 		break;
859 	case IWN_HW_REV_TYPE_6005:
860 		sc->limits = &iwn6000_sensitivity_limits;
861 		if (pid != 0x0082 && pid != 0x0085) {
862 			sc->fwname = "iwn6000g2bfw";
863 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
864 		} else
865 			sc->fwname = "iwn6000g2afw";
866 		break;
867 	default:
868 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
869 		    sc->hw_type);
870 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
871 		return ENOTSUP;
872 	}
873 	return 0;
874 }
875 
876 /*
877  * Attach the interface to 802.11 radiotap.
878  */
879 static void
880 iwn_radiotap_attach(struct iwn_softc *sc)
881 {
882 	struct ifnet *ifp = sc->sc_ifp;
883 	struct ieee80211com *ic = ifp->if_l2com;
884 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
885 	ieee80211_radiotap_attach(ic,
886 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
887 		IWN_TX_RADIOTAP_PRESENT,
888 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
889 		IWN_RX_RADIOTAP_PRESENT);
890 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
891 }
892 
893 static void
894 iwn_sysctlattach(struct iwn_softc *sc)
895 {
896 #ifdef	IWN_DEBUG
897 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
898 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
899 
900 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
901 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
902 		"control debugging printfs");
903 #endif
904 }
905 
906 static struct ieee80211vap *
907 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
908     enum ieee80211_opmode opmode, int flags,
909     const uint8_t bssid[IEEE80211_ADDR_LEN],
910     const uint8_t mac[IEEE80211_ADDR_LEN])
911 {
912 	struct iwn_vap *ivp;
913 	struct ieee80211vap *vap;
914 	uint8_t mac1[IEEE80211_ADDR_LEN];
915 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
916 
917 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
918 		return NULL;
919 
920 	IEEE80211_ADDR_COPY(mac1, mac);
921 
922 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
923 	    M_80211_VAP, M_NOWAIT | M_ZERO);
924 	if (ivp == NULL)
925 		return NULL;
926 	vap = &ivp->iv_vap;
927 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
928 	ivp->ctx = IWN_RXON_BSS_CTX;
929 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
930 	vap->iv_bmissthreshold = 10;		/* override default */
931 	/* Override with driver methods. */
932 	ivp->iv_newstate = vap->iv_newstate;
933 	vap->iv_newstate = iwn_newstate;
934 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
935 
936 	ieee80211_ratectl_init(vap);
937 	/* Complete setup. */
938 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
939 	ic->ic_opmode = opmode;
940 	return vap;
941 }
942 
943 static void
944 iwn_vap_delete(struct ieee80211vap *vap)
945 {
946 	struct iwn_vap *ivp = IWN_VAP(vap);
947 
948 	ieee80211_ratectl_deinit(vap);
949 	ieee80211_vap_detach(vap);
950 	free(ivp, M_80211_VAP);
951 }
952 
953 static int
954 iwn_detach(device_t dev)
955 {
956 	struct iwn_softc *sc = device_get_softc(dev);
957 	struct ifnet *ifp = sc->sc_ifp;
958 	struct ieee80211com *ic;
959 	int qid;
960 
961 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
962 
963 	if (ifp != NULL) {
964 		ic = ifp->if_l2com;
965 
966 		ieee80211_draintask(ic, &sc->sc_reinit_task);
967 		ieee80211_draintask(ic, &sc->sc_radioon_task);
968 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
969 
970 		iwn_stop(sc);
971 		callout_drain(&sc->watchdog_to);
972 		callout_drain(&sc->calib_to);
973 		ieee80211_ifdetach(ic);
974 	}
975 
976 	/* Uninstall interrupt handler. */
977 	if (sc->irq != NULL) {
978 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
979 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
980 		if (sc->irq_rid == 1)
981 			pci_release_msi(dev);
982 	}
983 
984 	/* Free DMA resources. */
985 	iwn_free_rx_ring(sc, &sc->rxq);
986 	for (qid = 0; qid < sc->ntxqs; qid++)
987 		iwn_free_tx_ring(sc, &sc->txq[qid]);
988 	iwn_free_sched(sc);
989 	iwn_free_kw(sc);
990 	if (sc->ict != NULL)
991 		iwn_free_ict(sc);
992 	iwn_free_fwmem(sc);
993 
994 	if (sc->mem != NULL)
995 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
996 
997 	if (ifp != NULL)
998 		if_free(ifp);
999 
1000 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1001 	IWN_LOCK_DESTROY(sc);
1002 	return 0;
1003 }
1004 
1005 static int
1006 iwn_shutdown(device_t dev)
1007 {
1008 	struct iwn_softc *sc = device_get_softc(dev);
1009 
1010 	iwn_stop(sc);
1011 	return 0;
1012 }
1013 
1014 static int
1015 iwn_suspend(device_t dev)
1016 {
1017 	struct iwn_softc *sc = device_get_softc(dev);
1018 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1019 
1020 	ieee80211_suspend_all(ic);
1021 	return 0;
1022 }
1023 
1024 static int
1025 iwn_resume(device_t dev)
1026 {
1027 	struct iwn_softc *sc = device_get_softc(dev);
1028 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1029 
1030 	/* Clear device-specific "PCI retry timeout" register (41h). */
1031 	pci_write_config(dev, 0x41, 0, 1);
1032 
1033 	ieee80211_resume_all(ic);
1034 	return 0;
1035 }
1036 
1037 static int
1038 iwn_nic_lock(struct iwn_softc *sc)
1039 {
1040 	int ntries;
1041 
1042 	/* Request exclusive access to NIC. */
1043 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1044 
1045 	/* Spin until we actually get the lock. */
1046 	for (ntries = 0; ntries < 1000; ntries++) {
1047 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1048 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1049 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1050 			return 0;
1051 		DELAY(10);
1052 	}
1053 	return ETIMEDOUT;
1054 }
1055 
1056 static __inline void
1057 iwn_nic_unlock(struct iwn_softc *sc)
1058 {
1059 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1060 }
1061 
1062 static __inline uint32_t
1063 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1064 {
1065 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1066 	IWN_BARRIER_READ_WRITE(sc);
1067 	return IWN_READ(sc, IWN_PRPH_RDATA);
1068 }
1069 
1070 static __inline void
1071 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1072 {
1073 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1074 	IWN_BARRIER_WRITE(sc);
1075 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1076 }
1077 
1078 static __inline void
1079 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1080 {
1081 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1082 }
1083 
1084 static __inline void
1085 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1086 {
1087 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1088 }
1089 
1090 static __inline void
1091 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1092     const uint32_t *data, int count)
1093 {
1094 	for (; count > 0; count--, data++, addr += 4)
1095 		iwn_prph_write(sc, addr, *data);
1096 }
1097 
1098 static __inline uint32_t
1099 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1100 {
1101 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1102 	IWN_BARRIER_READ_WRITE(sc);
1103 	return IWN_READ(sc, IWN_MEM_RDATA);
1104 }
1105 
1106 static __inline void
1107 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1108 {
1109 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1110 	IWN_BARRIER_WRITE(sc);
1111 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1112 }
1113 
1114 static __inline void
1115 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1116 {
1117 	uint32_t tmp;
1118 
1119 	tmp = iwn_mem_read(sc, addr & ~3);
1120 	if (addr & 3)
1121 		tmp = (tmp & 0x0000ffff) | data << 16;
1122 	else
1123 		tmp = (tmp & 0xffff0000) | data;
1124 	iwn_mem_write(sc, addr & ~3, tmp);
1125 }
1126 
1127 static __inline void
1128 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1129     int count)
1130 {
1131 	for (; count > 0; count--, addr += 4)
1132 		*data++ = iwn_mem_read(sc, addr);
1133 }
1134 
1135 static __inline void
1136 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1137     int count)
1138 {
1139 	for (; count > 0; count--, addr += 4)
1140 		iwn_mem_write(sc, addr, val);
1141 }
1142 
1143 static int
1144 iwn_eeprom_lock(struct iwn_softc *sc)
1145 {
1146 	int i, ntries;
1147 
1148 	for (i = 0; i < 100; i++) {
1149 		/* Request exclusive access to EEPROM. */
1150 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1151 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1152 
1153 		/* Spin until we actually get the lock. */
1154 		for (ntries = 0; ntries < 100; ntries++) {
1155 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1156 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1157 				return 0;
1158 			DELAY(10);
1159 		}
1160 	}
1161 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1162 	return ETIMEDOUT;
1163 }
1164 
1165 static __inline void
1166 iwn_eeprom_unlock(struct iwn_softc *sc)
1167 {
1168 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1169 }
1170 
1171 /*
1172  * Initialize access by host to One Time Programmable ROM.
1173  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1174  */
1175 static int
1176 iwn_init_otprom(struct iwn_softc *sc)
1177 {
1178 	uint16_t prev, base, next;
1179 	int count, error;
1180 
1181 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1182 
1183 	/* Wait for clock stabilization before accessing prph. */
1184 	if ((error = iwn_clock_wait(sc)) != 0)
1185 		return error;
1186 
1187 	if ((error = iwn_nic_lock(sc)) != 0)
1188 		return error;
1189 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1190 	DELAY(5);
1191 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1192 	iwn_nic_unlock(sc);
1193 
1194 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1195 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1196 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1197 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1198 	}
1199 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1200 	/* Clear ECC status. */
1201 	IWN_SETBITS(sc, IWN_OTP_GP,
1202 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1203 
1204 	/*
1205 	 * Find the block before last block (contains the EEPROM image)
1206 	 * for HW without OTP shadow RAM.
1207 	 */
1208 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1209 		/* Switch to absolute addressing mode. */
1210 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1211 		base = prev = 0;
1212 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1213 			error = iwn_read_prom_data(sc, base, &next, 2);
1214 			if (error != 0)
1215 				return error;
1216 			if (next == 0)	/* End of linked-list. */
1217 				break;
1218 			prev = base;
1219 			base = le16toh(next);
1220 		}
1221 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1222 			return EIO;
1223 		/* Skip "next" word. */
1224 		sc->prom_base = prev + 1;
1225 	}
1226 
1227 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1228 
1229 	return 0;
1230 }
1231 
1232 static int
1233 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1234 {
1235 	uint8_t *out = data;
1236 	uint32_t val, tmp;
1237 	int ntries;
1238 
1239 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1240 
1241 	addr += sc->prom_base;
1242 	for (; count > 0; count -= 2, addr++) {
1243 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1244 		for (ntries = 0; ntries < 10; ntries++) {
1245 			val = IWN_READ(sc, IWN_EEPROM);
1246 			if (val & IWN_EEPROM_READ_VALID)
1247 				break;
1248 			DELAY(5);
1249 		}
1250 		if (ntries == 10) {
1251 			device_printf(sc->sc_dev,
1252 			    "timeout reading ROM at 0x%x\n", addr);
1253 			return ETIMEDOUT;
1254 		}
1255 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1256 			/* OTPROM, check for ECC errors. */
1257 			tmp = IWN_READ(sc, IWN_OTP_GP);
1258 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1259 				device_printf(sc->sc_dev,
1260 				    "OTPROM ECC error at 0x%x\n", addr);
1261 				return EIO;
1262 			}
1263 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1264 				/* Correctable ECC error, clear bit. */
1265 				IWN_SETBITS(sc, IWN_OTP_GP,
1266 				    IWN_OTP_GP_ECC_CORR_STTS);
1267 			}
1268 		}
1269 		*out++ = val >> 16;
1270 		if (count > 1)
1271 			*out++ = val >> 24;
1272 	}
1273 
1274 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1275 
1276 	return 0;
1277 }
1278 
1279 static void
1280 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1281 {
1282 	if (error != 0)
1283 		return;
1284 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1285 	*(bus_addr_t *)arg = segs[0].ds_addr;
1286 }
1287 
1288 static int
1289 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1290     void **kvap, bus_size_t size, bus_size_t alignment)
1291 {
1292 	int error;
1293 
1294 	dma->tag = NULL;
1295 	dma->size = size;
1296 
1297 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1298 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1299 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1300 	if (error != 0)
1301 		goto fail;
1302 
1303 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1304 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1305 	if (error != 0)
1306 		goto fail;
1307 
1308 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1309 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1310 	if (error != 0)
1311 		goto fail;
1312 
1313 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1314 
1315 	if (kvap != NULL)
1316 		*kvap = dma->vaddr;
1317 
1318 	return 0;
1319 
1320 fail:	iwn_dma_contig_free(dma);
1321 	return error;
1322 }
1323 
1324 static void
1325 iwn_dma_contig_free(struct iwn_dma_info *dma)
1326 {
1327 	if (dma->map != NULL) {
1328 		if (dma->vaddr != NULL) {
1329 			bus_dmamap_sync(dma->tag, dma->map,
1330 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1331 			bus_dmamap_unload(dma->tag, dma->map);
1332 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1333 			dma->vaddr = NULL;
1334 		}
1335 		bus_dmamap_destroy(dma->tag, dma->map);
1336 		dma->map = NULL;
1337 	}
1338 	if (dma->tag != NULL) {
1339 		bus_dma_tag_destroy(dma->tag);
1340 		dma->tag = NULL;
1341 	}
1342 }
1343 
1344 static int
1345 iwn_alloc_sched(struct iwn_softc *sc)
1346 {
1347 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1348 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1349 	    sc->schedsz, 1024);
1350 }
1351 
1352 static void
1353 iwn_free_sched(struct iwn_softc *sc)
1354 {
1355 	iwn_dma_contig_free(&sc->sched_dma);
1356 }
1357 
1358 static int
1359 iwn_alloc_kw(struct iwn_softc *sc)
1360 {
1361 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1362 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1363 }
1364 
1365 static void
1366 iwn_free_kw(struct iwn_softc *sc)
1367 {
1368 	iwn_dma_contig_free(&sc->kw_dma);
1369 }
1370 
1371 static int
1372 iwn_alloc_ict(struct iwn_softc *sc)
1373 {
1374 	/* ICT table must be aligned on a 4KB boundary. */
1375 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1376 	    IWN_ICT_SIZE, 4096);
1377 }
1378 
1379 static void
1380 iwn_free_ict(struct iwn_softc *sc)
1381 {
1382 	iwn_dma_contig_free(&sc->ict_dma);
1383 }
1384 
1385 static int
1386 iwn_alloc_fwmem(struct iwn_softc *sc)
1387 {
1388 	/* Must be aligned on a 16-byte boundary. */
1389 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1390 }
1391 
1392 static void
1393 iwn_free_fwmem(struct iwn_softc *sc)
1394 {
1395 	iwn_dma_contig_free(&sc->fw_dma);
1396 }
1397 
1398 static int
1399 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1400 {
1401 	bus_size_t size;
1402 	int i, error;
1403 
1404 	ring->cur = 0;
1405 
1406 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1407 
1408 	/* Allocate RX descriptors (256-byte aligned). */
1409 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1410 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1411 	    size, 256);
1412 	if (error != 0) {
1413 		device_printf(sc->sc_dev,
1414 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1415 		    __func__, error);
1416 		goto fail;
1417 	}
1418 
1419 	/* Allocate RX status area (16-byte aligned). */
1420 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1421 	    sizeof (struct iwn_rx_status), 16);
1422 	if (error != 0) {
1423 		device_printf(sc->sc_dev,
1424 		    "%s: could not allocate RX status DMA memory, error %d\n",
1425 		    __func__, error);
1426 		goto fail;
1427 	}
1428 
1429 	/* Create RX buffer DMA tag. */
1430 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1431 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1432 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1433 	    &ring->data_dmat);
1434 	if (error != 0) {
1435 		device_printf(sc->sc_dev,
1436 		    "%s: could not create RX buf DMA tag, error %d\n",
1437 		    __func__, error);
1438 		goto fail;
1439 	}
1440 
1441 	/*
1442 	 * Allocate and map RX buffers.
1443 	 */
1444 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1445 		struct iwn_rx_data *data = &ring->data[i];
1446 		bus_addr_t paddr;
1447 
1448 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1449 		if (error != 0) {
1450 			device_printf(sc->sc_dev,
1451 			    "%s: could not create RX buf DMA map, error %d\n",
1452 			    __func__, error);
1453 			goto fail;
1454 		}
1455 
1456 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1457 		    IWN_RBUF_SIZE);
1458 		if (data->m == NULL) {
1459 			device_printf(sc->sc_dev,
1460 			    "%s: could not allocate RX mbuf\n", __func__);
1461 			error = ENOBUFS;
1462 			goto fail;
1463 		}
1464 
1465 		error = bus_dmamap_load(ring->data_dmat, data->map,
1466 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1467 		    &paddr, BUS_DMA_NOWAIT);
1468 		if (error != 0 && error != EFBIG) {
1469 			device_printf(sc->sc_dev,
1470 			    "%s: can't not map mbuf, error %d\n", __func__,
1471 			    error);
1472 			goto fail;
1473 		}
1474 
1475 		/* Set physical address of RX buffer (256-byte aligned). */
1476 		ring->desc[i] = htole32(paddr >> 8);
1477 	}
1478 
1479 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1480 	    BUS_DMASYNC_PREWRITE);
1481 
1482 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1483 
1484 	return 0;
1485 
1486 fail:	iwn_free_rx_ring(sc, ring);
1487 
1488 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1489 
1490 	return error;
1491 }
1492 
1493 static void
1494 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1495 {
1496 	int ntries;
1497 
1498 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1499 
1500 	if (iwn_nic_lock(sc) == 0) {
1501 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1502 		for (ntries = 0; ntries < 1000; ntries++) {
1503 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1504 			    IWN_FH_RX_STATUS_IDLE)
1505 				break;
1506 			DELAY(10);
1507 		}
1508 		iwn_nic_unlock(sc);
1509 	}
1510 	ring->cur = 0;
1511 	sc->last_rx_valid = 0;
1512 }
1513 
1514 static void
1515 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1516 {
1517 	int i;
1518 
1519 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1520 
1521 	iwn_dma_contig_free(&ring->desc_dma);
1522 	iwn_dma_contig_free(&ring->stat_dma);
1523 
1524 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1525 		struct iwn_rx_data *data = &ring->data[i];
1526 
1527 		if (data->m != NULL) {
1528 			bus_dmamap_sync(ring->data_dmat, data->map,
1529 			    BUS_DMASYNC_POSTREAD);
1530 			bus_dmamap_unload(ring->data_dmat, data->map);
1531 			m_freem(data->m);
1532 			data->m = NULL;
1533 		}
1534 		if (data->map != NULL)
1535 			bus_dmamap_destroy(ring->data_dmat, data->map);
1536 	}
1537 	if (ring->data_dmat != NULL) {
1538 		bus_dma_tag_destroy(ring->data_dmat);
1539 		ring->data_dmat = NULL;
1540 	}
1541 }
1542 
1543 static int
1544 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1545 {
1546 	bus_addr_t paddr;
1547 	bus_size_t size;
1548 	int i, error;
1549 
1550 	ring->qid = qid;
1551 	ring->queued = 0;
1552 	ring->cur = 0;
1553 
1554 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1555 
1556 	/* Allocate TX descriptors (256-byte aligned). */
1557 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1558 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1559 	    size, 256);
1560 	if (error != 0) {
1561 		device_printf(sc->sc_dev,
1562 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1563 		    __func__, error);
1564 		goto fail;
1565 	}
1566 
1567 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1568 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1569 	    size, 4);
1570 	if (error != 0) {
1571 		device_printf(sc->sc_dev,
1572 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1573 		    __func__, error);
1574 		goto fail;
1575 	}
1576 
1577 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1578 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1579 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1580 	    &ring->data_dmat);
1581 	if (error != 0) {
1582 		device_printf(sc->sc_dev,
1583 		    "%s: could not create TX buf DMA tag, error %d\n",
1584 		    __func__, error);
1585 		goto fail;
1586 	}
1587 
1588 	paddr = ring->cmd_dma.paddr;
1589 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1590 		struct iwn_tx_data *data = &ring->data[i];
1591 
1592 		data->cmd_paddr = paddr;
1593 		data->scratch_paddr = paddr + 12;
1594 		paddr += sizeof (struct iwn_tx_cmd);
1595 
1596 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1597 		if (error != 0) {
1598 			device_printf(sc->sc_dev,
1599 			    "%s: could not create TX buf DMA map, error %d\n",
1600 			    __func__, error);
1601 			goto fail;
1602 		}
1603 	}
1604 
1605 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1606 
1607 	return 0;
1608 
1609 fail:	iwn_free_tx_ring(sc, ring);
1610 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
1611 	return error;
1612 }
1613 
1614 static void
1615 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1616 {
1617 	int i;
1618 
1619 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
1620 
1621 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1622 		struct iwn_tx_data *data = &ring->data[i];
1623 
1624 		if (data->m != NULL) {
1625 			bus_dmamap_sync(ring->data_dmat, data->map,
1626 			    BUS_DMASYNC_POSTWRITE);
1627 			bus_dmamap_unload(ring->data_dmat, data->map);
1628 			m_freem(data->m);
1629 			data->m = NULL;
1630 		}
1631 	}
1632 	/* Clear TX descriptors. */
1633 	memset(ring->desc, 0, ring->desc_dma.size);
1634 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1635 	    BUS_DMASYNC_PREWRITE);
1636 	sc->qfullmsk &= ~(1 << ring->qid);
1637 	ring->queued = 0;
1638 	ring->cur = 0;
1639 }
1640 
1641 static void
1642 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1643 {
1644 	int i;
1645 
1646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1647 
1648 	iwn_dma_contig_free(&ring->desc_dma);
1649 	iwn_dma_contig_free(&ring->cmd_dma);
1650 
1651 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1652 		struct iwn_tx_data *data = &ring->data[i];
1653 
1654 		if (data->m != NULL) {
1655 			bus_dmamap_sync(ring->data_dmat, data->map,
1656 			    BUS_DMASYNC_POSTWRITE);
1657 			bus_dmamap_unload(ring->data_dmat, data->map);
1658 			m_freem(data->m);
1659 		}
1660 		if (data->map != NULL)
1661 			bus_dmamap_destroy(ring->data_dmat, data->map);
1662 	}
1663 	if (ring->data_dmat != NULL) {
1664 		bus_dma_tag_destroy(ring->data_dmat);
1665 		ring->data_dmat = NULL;
1666 	}
1667 }
1668 
1669 static void
1670 iwn5000_ict_reset(struct iwn_softc *sc)
1671 {
1672 	/* Disable interrupts. */
1673 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1674 
1675 	/* Reset ICT table. */
1676 	memset(sc->ict, 0, IWN_ICT_SIZE);
1677 	sc->ict_cur = 0;
1678 
1679 	/* Set physical address of ICT table (4KB aligned). */
1680 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1681 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1682 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1683 
1684 	/* Enable periodic RX interrupt. */
1685 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1686 	/* Switch to ICT interrupt mode in driver. */
1687 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1688 
1689 	/* Re-enable interrupts. */
1690 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1691 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1692 }
1693 
1694 static int
1695 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1696 {
1697 	struct iwn_ops *ops = &sc->ops;
1698 	uint16_t val;
1699 	int error;
1700 
1701 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1702 
1703 	/* Check whether adapter has an EEPROM or an OTPROM. */
1704 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1705 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1706 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1707 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1708 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1709 
1710 	/* Adapter has to be powered on for EEPROM access to work. */
1711 	if ((error = iwn_apm_init(sc)) != 0) {
1712 		device_printf(sc->sc_dev,
1713 		    "%s: could not power ON adapter, error %d\n", __func__,
1714 		    error);
1715 		return error;
1716 	}
1717 
1718 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1719 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1720 		return EIO;
1721 	}
1722 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1723 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1724 		    __func__, error);
1725 		return error;
1726 	}
1727 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1728 		if ((error = iwn_init_otprom(sc)) != 0) {
1729 			device_printf(sc->sc_dev,
1730 			    "%s: could not initialize OTPROM, error %d\n",
1731 			    __func__, error);
1732 			return error;
1733 		}
1734 	}
1735 
1736 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1737 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1738 	/* Check if HT support is bonded out. */
1739 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1740 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1741 
1742 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1743 	sc->rfcfg = le16toh(val);
1744 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1745 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1746 	if (sc->txchainmask == 0)
1747 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1748 	if (sc->rxchainmask == 0)
1749 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1750 
1751 	/* Read MAC address. */
1752 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1753 
1754 	/* Read adapter-specific information from EEPROM. */
1755 	ops->read_eeprom(sc);
1756 
1757 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1758 
1759 	iwn_eeprom_unlock(sc);
1760 
1761 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1762 
1763 	return 0;
1764 }
1765 
1766 static void
1767 iwn4965_read_eeprom(struct iwn_softc *sc)
1768 {
1769 	uint32_t addr;
1770 	uint16_t val;
1771 	int i;
1772 
1773 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1774 
1775 	/* Read regulatory domain (4 ASCII characters). */
1776 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1777 
1778 	/* Read the list of authorized channels (20MHz ones only). */
1779 	for (i = 0; i < 7; i++) {
1780 		addr = iwn4965_regulatory_bands[i];
1781 		iwn_read_eeprom_channels(sc, i, addr);
1782 	}
1783 
1784 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1785 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1786 	sc->maxpwr2GHz = val & 0xff;
1787 	sc->maxpwr5GHz = val >> 8;
1788 	/* Check that EEPROM values are within valid range. */
1789 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1790 		sc->maxpwr5GHz = 38;
1791 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1792 		sc->maxpwr2GHz = 38;
1793 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1794 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1795 
1796 	/* Read samples for each TX power group. */
1797 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1798 	    sizeof sc->bands);
1799 
1800 	/* Read voltage at which samples were taken. */
1801 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1802 	sc->eeprom_voltage = (int16_t)le16toh(val);
1803 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1804 	    sc->eeprom_voltage);
1805 
1806 #ifdef IWN_DEBUG
1807 	/* Print samples. */
1808 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1809 		for (i = 0; i < IWN_NBANDS; i++)
1810 			iwn4965_print_power_group(sc, i);
1811 	}
1812 #endif
1813 
1814 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1815 }
1816 
1817 #ifdef IWN_DEBUG
1818 static void
1819 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1820 {
1821 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1822 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1823 	int j, c;
1824 
1825 	printf("===band %d===\n", i);
1826 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1827 	printf("chan1 num=%d\n", chans[0].num);
1828 	for (c = 0; c < 2; c++) {
1829 		for (j = 0; j < IWN_NSAMPLES; j++) {
1830 			printf("chain %d, sample %d: temp=%d gain=%d "
1831 			    "power=%d pa_det=%d\n", c, j,
1832 			    chans[0].samples[c][j].temp,
1833 			    chans[0].samples[c][j].gain,
1834 			    chans[0].samples[c][j].power,
1835 			    chans[0].samples[c][j].pa_det);
1836 		}
1837 	}
1838 	printf("chan2 num=%d\n", chans[1].num);
1839 	for (c = 0; c < 2; c++) {
1840 		for (j = 0; j < IWN_NSAMPLES; j++) {
1841 			printf("chain %d, sample %d: temp=%d gain=%d "
1842 			    "power=%d pa_det=%d\n", c, j,
1843 			    chans[1].samples[c][j].temp,
1844 			    chans[1].samples[c][j].gain,
1845 			    chans[1].samples[c][j].power,
1846 			    chans[1].samples[c][j].pa_det);
1847 		}
1848 	}
1849 }
1850 #endif
1851 
1852 static void
1853 iwn5000_read_eeprom(struct iwn_softc *sc)
1854 {
1855 	struct iwn5000_eeprom_calib_hdr hdr;
1856 	int32_t volt;
1857 	uint32_t base, addr;
1858 	uint16_t val;
1859 	int i;
1860 
1861 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1862 
1863 	/* Read regulatory domain (4 ASCII characters). */
1864 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1865 	base = le16toh(val);
1866 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1867 	    sc->eeprom_domain, 4);
1868 
1869 	/* Read the list of authorized channels (20MHz ones only). */
1870 	for (i = 0; i < 7; i++) {
1871 		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1872 			addr = base + iwn6000_regulatory_bands[i];
1873 		else
1874 			addr = base + iwn5000_regulatory_bands[i];
1875 		iwn_read_eeprom_channels(sc, i, addr);
1876 	}
1877 
1878 	/* Read enhanced TX power information for 6000 Series. */
1879 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1880 		iwn_read_eeprom_enhinfo(sc);
1881 
1882 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1883 	base = le16toh(val);
1884 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1885 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1886 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1887 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1888 	sc->calib_ver = hdr.version;
1889 
1890 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1891 		/* Compute temperature offset. */
1892 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1893 		sc->eeprom_temp = le16toh(val);
1894 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1895 		volt = le16toh(val);
1896 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1897 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1898 		    sc->eeprom_temp, volt, sc->temp_off);
1899 	} else {
1900 		/* Read crystal calibration. */
1901 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1902 		    &sc->eeprom_crystal, sizeof (uint32_t));
1903 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1904 		    le32toh(sc->eeprom_crystal));
1905 	}
1906 
1907 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1908 
1909 }
1910 
1911 /*
1912  * Translate EEPROM flags to net80211.
1913  */
1914 static uint32_t
1915 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1916 {
1917 	uint32_t nflags;
1918 
1919 	nflags = 0;
1920 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1921 		nflags |= IEEE80211_CHAN_PASSIVE;
1922 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1923 		nflags |= IEEE80211_CHAN_NOADHOC;
1924 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1925 		nflags |= IEEE80211_CHAN_DFS;
1926 		/* XXX apparently IBSS may still be marked */
1927 		nflags |= IEEE80211_CHAN_NOADHOC;
1928 	}
1929 
1930 	return nflags;
1931 }
1932 
1933 static void
1934 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1935 {
1936 	struct ifnet *ifp = sc->sc_ifp;
1937 	struct ieee80211com *ic = ifp->if_l2com;
1938 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1939 	const struct iwn_chan_band *band = &iwn_bands[n];
1940 	struct ieee80211_channel *c;
1941 	uint8_t chan;
1942 	int i, nflags;
1943 
1944 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1945 
1946 	for (i = 0; i < band->nchan; i++) {
1947 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1948 			DPRINTF(sc, IWN_DEBUG_RESET,
1949 			    "skip chan %d flags 0x%x maxpwr %d\n",
1950 			    band->chan[i], channels[i].flags,
1951 			    channels[i].maxpwr);
1952 			continue;
1953 		}
1954 		chan = band->chan[i];
1955 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1956 
1957 		c = &ic->ic_channels[ic->ic_nchans++];
1958 		c->ic_ieee = chan;
1959 		c->ic_maxregpower = channels[i].maxpwr;
1960 		c->ic_maxpower = 2*c->ic_maxregpower;
1961 
1962 		if (n == 0) {	/* 2GHz band */
1963 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1964 			/* G =>'s B is supported */
1965 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1966 			c = &ic->ic_channels[ic->ic_nchans++];
1967 			c[0] = c[-1];
1968 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1969 		} else {	/* 5GHz band */
1970 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1971 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1972 		}
1973 
1974 		/* Save maximum allowed TX power for this channel. */
1975 		sc->maxpwr[chan] = channels[i].maxpwr;
1976 
1977 		DPRINTF(sc, IWN_DEBUG_RESET,
1978 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1979 		    channels[i].flags, channels[i].maxpwr);
1980 
1981 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1982 			/* add HT20, HT40 added separately */
1983 			c = &ic->ic_channels[ic->ic_nchans++];
1984 			c[0] = c[-1];
1985 			c->ic_flags |= IEEE80211_CHAN_HT20;
1986 		}
1987 	}
1988 
1989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1990 
1991 }
1992 
1993 static void
1994 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1995 {
1996 	struct ifnet *ifp = sc->sc_ifp;
1997 	struct ieee80211com *ic = ifp->if_l2com;
1998 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1999 	const struct iwn_chan_band *band = &iwn_bands[n];
2000 	struct ieee80211_channel *c, *cent, *extc;
2001 	uint8_t chan;
2002 	int i, nflags;
2003 
2004 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2005 
2006 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2007 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2008 		return;
2009 	}
2010 
2011 	for (i = 0; i < band->nchan; i++) {
2012 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2013 			DPRINTF(sc, IWN_DEBUG_RESET,
2014 			    "skip chan %d flags 0x%x maxpwr %d\n",
2015 			    band->chan[i], channels[i].flags,
2016 			    channels[i].maxpwr);
2017 			continue;
2018 		}
2019 		chan = band->chan[i];
2020 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2021 
2022 		/*
2023 		 * Each entry defines an HT40 channel pair; find the
2024 		 * center channel, then the extension channel above.
2025 		 */
2026 		cent = ieee80211_find_channel_byieee(ic, chan,
2027 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2028 		if (cent == NULL) {	/* XXX shouldn't happen */
2029 			device_printf(sc->sc_dev,
2030 			    "%s: no entry for channel %d\n", __func__, chan);
2031 			continue;
2032 		}
2033 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2034 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2035 		if (extc == NULL) {
2036 			DPRINTF(sc, IWN_DEBUG_RESET,
2037 			    "%s: skip chan %d, extension channel not found\n",
2038 			    __func__, chan);
2039 			continue;
2040 		}
2041 
2042 		DPRINTF(sc, IWN_DEBUG_RESET,
2043 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2044 		    chan, channels[i].flags, channels[i].maxpwr);
2045 
2046 		c = &ic->ic_channels[ic->ic_nchans++];
2047 		c[0] = cent[0];
2048 		c->ic_extieee = extc->ic_ieee;
2049 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2050 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2051 		c = &ic->ic_channels[ic->ic_nchans++];
2052 		c[0] = extc[0];
2053 		c->ic_extieee = cent->ic_ieee;
2054 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2055 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2056 	}
2057 
2058 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2059 
2060 }
2061 
2062 static void
2063 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2064 {
2065 	struct ifnet *ifp = sc->sc_ifp;
2066 	struct ieee80211com *ic = ifp->if_l2com;
2067 
2068 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2069 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2070 
2071 	if (n < 5)
2072 		iwn_read_eeprom_band(sc, n);
2073 	else
2074 		iwn_read_eeprom_ht40(sc, n);
2075 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2076 }
2077 
2078 static struct iwn_eeprom_chan *
2079 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2080 {
2081 	int band, chan, i, j;
2082 
2083 	if (IEEE80211_IS_CHAN_HT40(c)) {
2084 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2085 		if (IEEE80211_IS_CHAN_HT40D(c))
2086 			chan = c->ic_extieee;
2087 		else
2088 			chan = c->ic_ieee;
2089 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2090 			if (iwn_bands[band].chan[i] == chan)
2091 				return &sc->eeprom_channels[band][i];
2092 		}
2093 	} else {
2094 		for (j = 0; j < 5; j++) {
2095 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2096 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2097 					return &sc->eeprom_channels[j][i];
2098 			}
2099 		}
2100 	}
2101 	return NULL;
2102 }
2103 
2104 /*
2105  * Enforce flags read from EEPROM.
2106  */
2107 static int
2108 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2109     int nchan, struct ieee80211_channel chans[])
2110 {
2111 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2112 	int i;
2113 
2114 	for (i = 0; i < nchan; i++) {
2115 		struct ieee80211_channel *c = &chans[i];
2116 		struct iwn_eeprom_chan *channel;
2117 
2118 		channel = iwn_find_eeprom_channel(sc, c);
2119 		if (channel == NULL) {
2120 			if_printf(ic->ic_ifp,
2121 			    "%s: invalid channel %u freq %u/0x%x\n",
2122 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2123 			return EINVAL;
2124 		}
2125 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static void
2132 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2133 {
2134 	struct iwn_eeprom_enhinfo enhinfo[35];
2135 	struct ifnet *ifp = sc->sc_ifp;
2136 	struct ieee80211com *ic = ifp->if_l2com;
2137 	struct ieee80211_channel *c;
2138 	uint16_t val, base;
2139 	int8_t maxpwr;
2140 	uint8_t flags;
2141 	int i, j;
2142 
2143 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2144 
2145 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2146 	base = le16toh(val);
2147 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2148 	    enhinfo, sizeof enhinfo);
2149 
2150 	for (i = 0; i < nitems(enhinfo); i++) {
2151 		flags = enhinfo[i].flags;
2152 		if (!(flags & IWN_ENHINFO_VALID))
2153 			continue;	/* Skip invalid entries. */
2154 
2155 		maxpwr = 0;
2156 		if (sc->txchainmask & IWN_ANT_A)
2157 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2158 		if (sc->txchainmask & IWN_ANT_B)
2159 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2160 		if (sc->txchainmask & IWN_ANT_C)
2161 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2162 		if (sc->ntxchains == 2)
2163 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2164 		else if (sc->ntxchains == 3)
2165 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2166 
2167 		for (j = 0; j < ic->ic_nchans; j++) {
2168 			c = &ic->ic_channels[j];
2169 			if ((flags & IWN_ENHINFO_5GHZ)) {
2170 				if (!IEEE80211_IS_CHAN_A(c))
2171 					continue;
2172 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2173 				if (!IEEE80211_IS_CHAN_G(c))
2174 					continue;
2175 			} else if (!IEEE80211_IS_CHAN_B(c))
2176 				continue;
2177 			if ((flags & IWN_ENHINFO_HT40)) {
2178 				if (!IEEE80211_IS_CHAN_HT40(c))
2179 					continue;
2180 			} else {
2181 				if (IEEE80211_IS_CHAN_HT40(c))
2182 					continue;
2183 			}
2184 			if (enhinfo[i].chan != 0 &&
2185 			    enhinfo[i].chan != c->ic_ieee)
2186 				continue;
2187 
2188 			DPRINTF(sc, IWN_DEBUG_RESET,
2189 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2190 			    c->ic_flags, maxpwr / 2);
2191 			c->ic_maxregpower = maxpwr / 2;
2192 			c->ic_maxpower = maxpwr;
2193 		}
2194 	}
2195 
2196 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2197 
2198 }
2199 
2200 static struct ieee80211_node *
2201 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2202 {
2203 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2204 }
2205 
2206 static __inline int
2207 rate2plcp(int rate)
2208 {
2209 	switch (rate & 0xff) {
2210 	case 12:	return 0xd;
2211 	case 18:	return 0xf;
2212 	case 24:	return 0x5;
2213 	case 36:	return 0x7;
2214 	case 48:	return 0x9;
2215 	case 72:	return 0xb;
2216 	case 96:	return 0x1;
2217 	case 108:	return 0x3;
2218 	case 2:		return 10;
2219 	case 4:		return 20;
2220 	case 11:	return 55;
2221 	case 22:	return 110;
2222 	}
2223 	return 0;
2224 }
2225 
2226 /*
2227  * Calculate the required PLCP value from the given rate,
2228  * to the given node.
2229  *
2230  * This will take the node configuration (eg 11n, rate table
2231  * setup, etc) into consideration.
2232  */
2233 static uint32_t
2234 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2235     uint8_t rate)
2236 {
2237 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2238 	struct ieee80211com *ic = ni->ni_ic;
2239 	uint8_t txant1, txant2;
2240 	uint32_t plcp = 0;
2241 	int ridx;
2242 
2243 	/* Use the first valid TX antenna. */
2244 	txant1 = IWN_LSB(sc->txchainmask);
2245 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2246 
2247 	/*
2248 	 * If it's an MCS rate, let's set the plcp correctly
2249 	 * and set the relevant flags based on the node config.
2250 	 */
2251 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2252 		/*
2253 		 * Set the initial PLCP value to be between 0->31 for
2254 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2255 		 * flag.
2256 		 */
2257 		plcp = RV(rate) | IWN_RFLAG_MCS;
2258 
2259 		/*
2260 		 * XXX the following should only occur if both
2261 		 * the local configuration _and_ the remote node
2262 		 * advertise these capabilities.  Thus this code
2263 		 * may need fixing!
2264 		 */
2265 
2266 		/*
2267 		 * Set the channel width and guard interval.
2268 		 */
2269 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2270 			plcp |= IWN_RFLAG_HT40;
2271 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2272 				plcp |= IWN_RFLAG_SGI;
2273 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2274 			plcp |= IWN_RFLAG_SGI;
2275 		}
2276 
2277 		/*
2278 		 * If it's a two stream rate, enable TX on both
2279 		 * antennas.
2280 		 *
2281 		 * XXX three stream rates?
2282 		 */
2283 		if (rate > 0x87)
2284 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2285 		else
2286 			plcp |= IWN_RFLAG_ANT(txant1);
2287 	} else {
2288 		/*
2289 		 * Set the initial PLCP - fine for both
2290 		 * OFDM and CCK rates.
2291 		 */
2292 		plcp = rate2plcp(rate);
2293 
2294 		/* Set CCK flag if it's CCK */
2295 
2296 		/* XXX It would be nice to have a method
2297 		 * to map the ridx -> phy table entry
2298 		 * so we could just query that, rather than
2299 		 * this hack to check against IWN_RIDX_OFDM6.
2300 		 */
2301 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2302 		    rate & IEEE80211_RATE_VAL);
2303 		if (ridx < IWN_RIDX_OFDM6 &&
2304 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2305 			plcp |= IWN_RFLAG_CCK;
2306 
2307 		/* Set antenna configuration */
2308 		plcp |= IWN_RFLAG_ANT(txant1);
2309 	}
2310 
2311 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2312 	    __func__,
2313 	    rate,
2314 	    plcp);
2315 
2316 	return (htole32(plcp));
2317 #undef	RV
2318 }
2319 
2320 static void
2321 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2322 {
2323 	/* Doesn't do anything at the moment */
2324 }
2325 
2326 static int
2327 iwn_media_change(struct ifnet *ifp)
2328 {
2329 	int error;
2330 
2331 	error = ieee80211_media_change(ifp);
2332 	/* NB: only the fixed rate can change and that doesn't need a reset */
2333 	return (error == ENETRESET ? 0 : error);
2334 }
2335 
2336 static int
2337 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2338 {
2339 	struct iwn_vap *ivp = IWN_VAP(vap);
2340 	struct ieee80211com *ic = vap->iv_ic;
2341 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2342 	int error = 0;
2343 
2344 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2345 
2346 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2347 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2348 
2349 	IEEE80211_UNLOCK(ic);
2350 	IWN_LOCK(sc);
2351 	callout_stop(&sc->calib_to);
2352 
2353 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2354 
2355 	switch (nstate) {
2356 	case IEEE80211_S_ASSOC:
2357 		if (vap->iv_state != IEEE80211_S_RUN)
2358 			break;
2359 		/* FALLTHROUGH */
2360 	case IEEE80211_S_AUTH:
2361 		if (vap->iv_state == IEEE80211_S_AUTH)
2362 			break;
2363 
2364 		/*
2365 		 * !AUTH -> AUTH transition requires state reset to handle
2366 		 * reassociations correctly.
2367 		 */
2368 		sc->rxon->associd = 0;
2369 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2370 		sc->calib.state = IWN_CALIB_STATE_INIT;
2371 
2372 		if ((error = iwn_auth(sc, vap)) != 0) {
2373 			device_printf(sc->sc_dev,
2374 			    "%s: could not move to auth state\n", __func__);
2375 		}
2376 		break;
2377 
2378 	case IEEE80211_S_RUN:
2379 		/*
2380 		 * RUN -> RUN transition; Just restart the timers.
2381 		 */
2382 		if (vap->iv_state == IEEE80211_S_RUN) {
2383 			sc->calib_cnt = 0;
2384 			break;
2385 		}
2386 
2387 		/*
2388 		 * !RUN -> RUN requires setting the association id
2389 		 * which is done with a firmware cmd.  We also defer
2390 		 * starting the timers until that work is done.
2391 		 */
2392 		if ((error = iwn_run(sc, vap)) != 0) {
2393 			device_printf(sc->sc_dev,
2394 			    "%s: could not move to run state\n", __func__);
2395 		}
2396 		break;
2397 
2398 	case IEEE80211_S_INIT:
2399 		sc->calib.state = IWN_CALIB_STATE_INIT;
2400 		break;
2401 
2402 	default:
2403 		break;
2404 	}
2405 	IWN_UNLOCK(sc);
2406 	IEEE80211_LOCK(ic);
2407 	if (error != 0){
2408 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2409 		return error;
2410 	}
2411 
2412 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2413 
2414 	return ivp->iv_newstate(vap, nstate, arg);
2415 }
2416 
2417 static void
2418 iwn_calib_timeout(void *arg)
2419 {
2420 	struct iwn_softc *sc = arg;
2421 
2422 	IWN_LOCK_ASSERT(sc);
2423 
2424 	/* Force automatic TX power calibration every 60 secs. */
2425 	if (++sc->calib_cnt >= 120) {
2426 		uint32_t flags = 0;
2427 
2428 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2429 		    "sending request for statistics");
2430 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2431 		    sizeof flags, 1);
2432 		sc->calib_cnt = 0;
2433 	}
2434 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2435 	    sc);
2436 }
2437 
2438 /*
2439  * Process an RX_PHY firmware notification.  This is usually immediately
2440  * followed by an MPDU_RX_DONE notification.
2441  */
2442 static void
2443 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2444     struct iwn_rx_data *data)
2445 {
2446 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2447 
2448 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2449 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2450 
2451 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2452 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2453 	sc->last_rx_valid = 1;
2454 }
2455 
2456 /*
2457  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2458  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2459  */
2460 static void
2461 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2462     struct iwn_rx_data *data)
2463 {
2464 	struct iwn_ops *ops = &sc->ops;
2465 	struct ifnet *ifp = sc->sc_ifp;
2466 	struct ieee80211com *ic = ifp->if_l2com;
2467 	struct iwn_rx_ring *ring = &sc->rxq;
2468 	struct ieee80211_frame *wh;
2469 	struct ieee80211_node *ni;
2470 	struct mbuf *m, *m1;
2471 	struct iwn_rx_stat *stat;
2472 	caddr_t head;
2473 	bus_addr_t paddr;
2474 	uint32_t flags;
2475 	int error, len, rssi, nf;
2476 
2477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2478 
2479 	if (desc->type == IWN_MPDU_RX_DONE) {
2480 		/* Check for prior RX_PHY notification. */
2481 		if (!sc->last_rx_valid) {
2482 			DPRINTF(sc, IWN_DEBUG_ANY,
2483 			    "%s: missing RX_PHY\n", __func__);
2484 			return;
2485 		}
2486 		stat = &sc->last_rx_stat;
2487 	} else
2488 		stat = (struct iwn_rx_stat *)(desc + 1);
2489 
2490 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2491 
2492 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2493 		device_printf(sc->sc_dev,
2494 		    "%s: invalid RX statistic header, len %d\n", __func__,
2495 		    stat->cfg_phy_len);
2496 		return;
2497 	}
2498 	if (desc->type == IWN_MPDU_RX_DONE) {
2499 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2500 		head = (caddr_t)(mpdu + 1);
2501 		len = le16toh(mpdu->len);
2502 	} else {
2503 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2504 		len = le16toh(stat->len);
2505 	}
2506 
2507 	flags = le32toh(*(uint32_t *)(head + len));
2508 
2509 	/* Discard frames with a bad FCS early. */
2510 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2511 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2512 		    __func__, flags);
2513 		ifp->if_ierrors++;
2514 		return;
2515 	}
2516 	/* Discard frames that are too short. */
2517 	if (len < sizeof (*wh)) {
2518 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2519 		    __func__, len);
2520 		ifp->if_ierrors++;
2521 		return;
2522 	}
2523 
2524 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2525 	if (m1 == NULL) {
2526 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2527 		    __func__);
2528 		ifp->if_ierrors++;
2529 		return;
2530 	}
2531 	bus_dmamap_unload(ring->data_dmat, data->map);
2532 
2533 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2534 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2535 	if (error != 0 && error != EFBIG) {
2536 		device_printf(sc->sc_dev,
2537 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2538 		m_freem(m1);
2539 
2540 		/* Try to reload the old mbuf. */
2541 		error = bus_dmamap_load(ring->data_dmat, data->map,
2542 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2543 		    &paddr, BUS_DMA_NOWAIT);
2544 		if (error != 0 && error != EFBIG) {
2545 			panic("%s: could not load old RX mbuf", __func__);
2546 		}
2547 		/* Physical address may have changed. */
2548 		ring->desc[ring->cur] = htole32(paddr >> 8);
2549 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2550 		    BUS_DMASYNC_PREWRITE);
2551 		ifp->if_ierrors++;
2552 		return;
2553 	}
2554 
2555 	m = data->m;
2556 	data->m = m1;
2557 	/* Update RX descriptor. */
2558 	ring->desc[ring->cur] = htole32(paddr >> 8);
2559 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2560 	    BUS_DMASYNC_PREWRITE);
2561 
2562 	/* Finalize mbuf. */
2563 	m->m_pkthdr.rcvif = ifp;
2564 	m->m_data = head;
2565 	m->m_pkthdr.len = m->m_len = len;
2566 
2567 	/* Grab a reference to the source node. */
2568 	wh = mtod(m, struct ieee80211_frame *);
2569 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2570 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2571 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2572 
2573 	rssi = ops->get_rssi(sc, stat);
2574 
2575 	if (ieee80211_radiotap_active(ic)) {
2576 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2577 
2578 		tap->wr_flags = 0;
2579 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2580 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2581 		tap->wr_dbm_antsignal = (int8_t)rssi;
2582 		tap->wr_dbm_antnoise = (int8_t)nf;
2583 		tap->wr_tsft = stat->tstamp;
2584 		switch (stat->rate) {
2585 		/* CCK rates. */
2586 		case  10: tap->wr_rate =   2; break;
2587 		case  20: tap->wr_rate =   4; break;
2588 		case  55: tap->wr_rate =  11; break;
2589 		case 110: tap->wr_rate =  22; break;
2590 		/* OFDM rates. */
2591 		case 0xd: tap->wr_rate =  12; break;
2592 		case 0xf: tap->wr_rate =  18; break;
2593 		case 0x5: tap->wr_rate =  24; break;
2594 		case 0x7: tap->wr_rate =  36; break;
2595 		case 0x9: tap->wr_rate =  48; break;
2596 		case 0xb: tap->wr_rate =  72; break;
2597 		case 0x1: tap->wr_rate =  96; break;
2598 		case 0x3: tap->wr_rate = 108; break;
2599 		/* Unknown rate: should not happen. */
2600 		default:  tap->wr_rate =   0;
2601 		}
2602 	}
2603 
2604 	IWN_UNLOCK(sc);
2605 
2606 	/* Send the frame to the 802.11 layer. */
2607 	if (ni != NULL) {
2608 		if (ni->ni_flags & IEEE80211_NODE_HT)
2609 			m->m_flags |= M_AMPDU;
2610 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2611 		/* Node is no longer needed. */
2612 		ieee80211_free_node(ni);
2613 	} else
2614 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2615 
2616 	IWN_LOCK(sc);
2617 
2618 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2619 
2620 }
2621 
2622 /* Process an incoming Compressed BlockAck. */
2623 static void
2624 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2625     struct iwn_rx_data *data)
2626 {
2627 	struct iwn_ops *ops = &sc->ops;
2628 	struct ifnet *ifp = sc->sc_ifp;
2629 	struct iwn_node *wn;
2630 	struct ieee80211_node *ni;
2631 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2632 	struct iwn_tx_ring *txq;
2633 	struct iwn_tx_data *txdata;
2634 	struct ieee80211_tx_ampdu *tap;
2635 	struct mbuf *m;
2636 	uint64_t bitmap;
2637 	uint16_t ssn;
2638 	uint8_t tid;
2639 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
2640 
2641 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2642 
2643 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2644 
2645 	qid = le16toh(ba->qid);
2646 	txq = &sc->txq[ba->qid];
2647 	tap = sc->qid2tap[ba->qid];
2648 	tid = tap->txa_tid;
2649 	wn = (void *)tap->txa_ni;
2650 
2651 	res = NULL;
2652 	ssn = 0;
2653 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2654 		res = tap->txa_private;
2655 		ssn = tap->txa_start & 0xfff;
2656 	}
2657 
2658 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
2659 		txdata = &txq->data[txq->read];
2660 
2661 		/* Unmap and free mbuf. */
2662 		bus_dmamap_sync(txq->data_dmat, txdata->map,
2663 		    BUS_DMASYNC_POSTWRITE);
2664 		bus_dmamap_unload(txq->data_dmat, txdata->map);
2665 		m = txdata->m, txdata->m = NULL;
2666 		ni = txdata->ni, txdata->ni = NULL;
2667 
2668 		KASSERT(ni != NULL, ("no node"));
2669 		KASSERT(m != NULL, ("no mbuf"));
2670 
2671 		ieee80211_tx_complete(ni, m, 1);
2672 
2673 		txq->queued--;
2674 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2675 	}
2676 
2677 	if (txq->queued == 0 && res != NULL) {
2678 		iwn_nic_lock(sc);
2679 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2680 		iwn_nic_unlock(sc);
2681 		sc->qid2tap[qid] = NULL;
2682 		free(res, M_DEVBUF);
2683 		return;
2684 	}
2685 
2686 	if (wn->agg[tid].bitmap == 0)
2687 		return;
2688 
2689 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2690 	if (shift < 0)
2691 		shift += 0x100;
2692 
2693 	if (wn->agg[tid].nframes > (64 - shift))
2694 		return;
2695 
2696 	ni = tap->txa_ni;
2697 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2698 	for (i = 0; bitmap; i++) {
2699 		if ((bitmap & 1) == 0) {
2700 			ifp->if_oerrors++;
2701 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2702 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2703 		} else {
2704 			ifp->if_opackets++;
2705 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2706 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2707 		}
2708 		bitmap >>= 1;
2709 	}
2710 
2711 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2712 
2713 }
2714 
2715 /*
2716  * Process a CALIBRATION_RESULT notification sent by the initialization
2717  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2718  */
2719 static void
2720 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2721     struct iwn_rx_data *data)
2722 {
2723 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2724 	int len, idx = -1;
2725 
2726 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2727 
2728 	/* Runtime firmware should not send such a notification. */
2729 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
2730 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
2731 	    __func__);
2732 		return;
2733 	}
2734 	len = (le32toh(desc->len) & 0x3fff) - 4;
2735 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2736 
2737 	switch (calib->code) {
2738 	case IWN5000_PHY_CALIB_DC:
2739 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2740 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2741 		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2742 		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2743 			idx = 0;
2744 		break;
2745 	case IWN5000_PHY_CALIB_LO:
2746 		idx = 1;
2747 		break;
2748 	case IWN5000_PHY_CALIB_TX_IQ:
2749 		idx = 2;
2750 		break;
2751 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2752 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2753 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2754 			idx = 3;
2755 		break;
2756 	case IWN5000_PHY_CALIB_BASE_BAND:
2757 		idx = 4;
2758 		break;
2759 	}
2760 	if (idx == -1)	/* Ignore other results. */
2761 		return;
2762 
2763 	/* Save calibration result. */
2764 	if (sc->calibcmd[idx].buf != NULL)
2765 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2766 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2767 	if (sc->calibcmd[idx].buf == NULL) {
2768 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2769 		    "not enough memory for calibration result %d\n",
2770 		    calib->code);
2771 		return;
2772 	}
2773 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2774 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2775 	sc->calibcmd[idx].len = len;
2776 	memcpy(sc->calibcmd[idx].buf, calib, len);
2777 }
2778 
2779 /*
2780  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2781  * The latter is sent by the firmware after each received beacon.
2782  */
2783 static void
2784 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2785     struct iwn_rx_data *data)
2786 {
2787 	struct iwn_ops *ops = &sc->ops;
2788 	struct ifnet *ifp = sc->sc_ifp;
2789 	struct ieee80211com *ic = ifp->if_l2com;
2790 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2791 	struct iwn_calib_state *calib = &sc->calib;
2792 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2793 	int temp;
2794 
2795 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2796 
2797 	/* Ignore statistics received during a scan. */
2798 	if (vap->iv_state != IEEE80211_S_RUN ||
2799 	    (ic->ic_flags & IEEE80211_F_SCAN)){
2800 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
2801 	    __func__);
2802 		return;
2803 	}
2804 
2805 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2806 
2807 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2808 	    __func__, desc->type);
2809 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2810 
2811 	/* Test if temperature has changed. */
2812 	if (stats->general.temp != sc->rawtemp) {
2813 		/* Convert "raw" temperature to degC. */
2814 		sc->rawtemp = stats->general.temp;
2815 		temp = ops->get_temperature(sc);
2816 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2817 		    __func__, temp);
2818 
2819 		/* Update TX power if need be (4965AGN only). */
2820 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2821 			iwn4965_power_calibration(sc, temp);
2822 	}
2823 
2824 	if (desc->type != IWN_BEACON_STATISTICS)
2825 		return;	/* Reply to a statistics request. */
2826 
2827 	sc->noise = iwn_get_noise(&stats->rx.general);
2828 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2829 
2830 	/* Test that RSSI and noise are present in stats report. */
2831 	if (le32toh(stats->rx.general.flags) != 1) {
2832 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2833 		    "received statistics without RSSI");
2834 		return;
2835 	}
2836 
2837 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2838 		iwn_collect_noise(sc, &stats->rx.general);
2839 	else if (calib->state == IWN_CALIB_STATE_RUN)
2840 		iwn_tune_sensitivity(sc, &stats->rx);
2841 
2842 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2843 }
2844 
2845 /*
2846  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2847  * and 5000 adapters have different incompatible TX status formats.
2848  */
2849 static void
2850 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2851     struct iwn_rx_data *data)
2852 {
2853 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2854 	struct iwn_tx_ring *ring;
2855 	int qid;
2856 
2857 	qid = desc->qid & 0xf;
2858 	ring = &sc->txq[qid];
2859 
2860 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2861 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2862 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2863 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2864 	    le32toh(stat->status));
2865 
2866 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2867 	if (qid >= sc->firstaggqueue) {
2868 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2869 		    &stat->status);
2870 	} else {
2871 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2872 		    le32toh(stat->status) & 0xff);
2873 	}
2874 }
2875 
2876 static void
2877 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2878     struct iwn_rx_data *data)
2879 {
2880 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2881 	struct iwn_tx_ring *ring;
2882 	int qid;
2883 
2884 	qid = desc->qid & 0xf;
2885 	ring = &sc->txq[qid];
2886 
2887 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2888 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2889 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2890 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2891 	    le32toh(stat->status));
2892 
2893 #ifdef notyet
2894 	/* Reset TX scheduler slot. */
2895 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2896 #endif
2897 
2898 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2899 	if (qid >= sc->firstaggqueue) {
2900 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2901 		    &stat->status);
2902 	} else {
2903 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2904 		    le16toh(stat->status) & 0xff);
2905 	}
2906 }
2907 
2908 /*
2909  * Adapter-independent backend for TX_DONE firmware notifications.
2910  */
2911 static void
2912 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2913     uint8_t status)
2914 {
2915 	struct ifnet *ifp = sc->sc_ifp;
2916 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2917 	struct iwn_tx_data *data = &ring->data[desc->idx];
2918 	struct mbuf *m;
2919 	struct ieee80211_node *ni;
2920 	struct ieee80211vap *vap;
2921 
2922 	KASSERT(data->ni != NULL, ("no node"));
2923 
2924 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2925 
2926 	/* Unmap and free mbuf. */
2927 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2928 	bus_dmamap_unload(ring->data_dmat, data->map);
2929 	m = data->m, data->m = NULL;
2930 	ni = data->ni, data->ni = NULL;
2931 	vap = ni->ni_vap;
2932 
2933 	/*
2934 	 * Update rate control statistics for the node.
2935 	 */
2936 	if (status & IWN_TX_FAIL) {
2937 		ifp->if_oerrors++;
2938 		ieee80211_ratectl_tx_complete(vap, ni,
2939 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2940 	} else {
2941 		ifp->if_opackets++;
2942 		ieee80211_ratectl_tx_complete(vap, ni,
2943 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2944 	}
2945 
2946 	/*
2947 	 * Channels marked for "radar" require traffic to be received
2948 	 * to unlock before we can transmit.  Until traffic is seen
2949 	 * any attempt to transmit is returned immediately with status
2950 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2951 	 * happen on first authenticate after scanning.  To workaround
2952 	 * this we ignore a failure of this sort in AUTH state so the
2953 	 * 802.11 layer will fall back to using a timeout to wait for
2954 	 * the AUTH reply.  This allows the firmware time to see
2955 	 * traffic so a subsequent retry of AUTH succeeds.  It's
2956 	 * unclear why the firmware does not maintain state for
2957 	 * channels recently visited as this would allow immediate
2958 	 * use of the channel after a scan (where we see traffic).
2959 	 */
2960 	if (status == IWN_TX_FAIL_TX_LOCKED &&
2961 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2962 		ieee80211_tx_complete(ni, m, 0);
2963 	else
2964 		ieee80211_tx_complete(ni, m,
2965 		    (status & IWN_TX_FAIL) != 0);
2966 
2967 	sc->sc_tx_timer = 0;
2968 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2969 		sc->qfullmsk &= ~(1 << ring->qid);
2970 		if (sc->qfullmsk == 0 &&
2971 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2972 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2973 			iwn_start_locked(ifp);
2974 		}
2975 	}
2976 
2977 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2978 
2979 }
2980 
2981 /*
2982  * Process a "command done" firmware notification.  This is where we wakeup
2983  * processes waiting for a synchronous command completion.
2984  */
2985 static void
2986 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2987 {
2988 	struct iwn_tx_ring *ring = &sc->txq[4];
2989 	struct iwn_tx_data *data;
2990 
2991 	if ((desc->qid & 0xf) != 4)
2992 		return;	/* Not a command ack. */
2993 
2994 	data = &ring->data[desc->idx];
2995 
2996 	/* If the command was mapped in an mbuf, free it. */
2997 	if (data->m != NULL) {
2998 		bus_dmamap_sync(ring->data_dmat, data->map,
2999 		    BUS_DMASYNC_POSTWRITE);
3000 		bus_dmamap_unload(ring->data_dmat, data->map);
3001 		m_freem(data->m);
3002 		data->m = NULL;
3003 	}
3004 	wakeup(&ring->desc[desc->idx]);
3005 }
3006 
3007 static void
3008 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3009     void *stat)
3010 {
3011 	struct iwn_ops *ops = &sc->ops;
3012 	struct ifnet *ifp = sc->sc_ifp;
3013 	struct iwn_tx_ring *ring = &sc->txq[qid];
3014 	struct iwn_tx_data *data;
3015 	struct mbuf *m;
3016 	struct iwn_node *wn;
3017 	struct ieee80211_node *ni;
3018 	struct ieee80211_tx_ampdu *tap;
3019 	uint64_t bitmap;
3020 	uint32_t *status = stat;
3021 	uint16_t *aggstatus = stat;
3022 	uint16_t ssn;
3023 	uint8_t tid;
3024 	int bit, i, lastidx, *res, seqno, shift, start;
3025 
3026 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3027 
3028 #ifdef NOT_YET
3029 	if (nframes == 1) {
3030 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
3031 			printf("ieee80211_send_bar()\n");
3032 	}
3033 #endif
3034 
3035 	bitmap = 0;
3036 	start = idx;
3037 	for (i = 0; i < nframes; i++) {
3038 		if (le16toh(aggstatus[i * 2]) & 0xc)
3039 			continue;
3040 
3041 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3042 		bit = idx - start;
3043 		shift = 0;
3044 		if (bit >= 64) {
3045 			shift = 0x100 - idx + start;
3046 			bit = 0;
3047 			start = idx;
3048 		} else if (bit <= -64)
3049 			bit = 0x100 - start + idx;
3050 		else if (bit < 0) {
3051 			shift = start - idx;
3052 			start = idx;
3053 			bit = 0;
3054 		}
3055 		bitmap = bitmap << shift;
3056 		bitmap |= 1ULL << bit;
3057 	}
3058 	tap = sc->qid2tap[qid];
3059 	tid = tap->txa_tid;
3060 	wn = (void *)tap->txa_ni;
3061 	wn->agg[tid].bitmap = bitmap;
3062 	wn->agg[tid].startidx = start;
3063 	wn->agg[tid].nframes = nframes;
3064 
3065 	res = NULL;
3066 	ssn = 0;
3067 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3068 		res = tap->txa_private;
3069 		ssn = tap->txa_start & 0xfff;
3070 	}
3071 
3072 	seqno = le32toh(*(status + nframes)) & 0xfff;
3073 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3074 		data = &ring->data[ring->read];
3075 
3076 		/* Unmap and free mbuf. */
3077 		bus_dmamap_sync(ring->data_dmat, data->map,
3078 		    BUS_DMASYNC_POSTWRITE);
3079 		bus_dmamap_unload(ring->data_dmat, data->map);
3080 		m = data->m, data->m = NULL;
3081 		ni = data->ni, data->ni = NULL;
3082 
3083 		KASSERT(ni != NULL, ("no node"));
3084 		KASSERT(m != NULL, ("no mbuf"));
3085 
3086 		ieee80211_tx_complete(ni, m, 1);
3087 
3088 		ring->queued--;
3089 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3090 	}
3091 
3092 	if (ring->queued == 0 && res != NULL) {
3093 		iwn_nic_lock(sc);
3094 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3095 		iwn_nic_unlock(sc);
3096 		sc->qid2tap[qid] = NULL;
3097 		free(res, M_DEVBUF);
3098 		return;
3099 	}
3100 
3101 	sc->sc_tx_timer = 0;
3102 	if (ring->queued < IWN_TX_RING_LOMARK) {
3103 		sc->qfullmsk &= ~(1 << ring->qid);
3104 		if (sc->qfullmsk == 0 &&
3105 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3106 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3107 			iwn_start_locked(ifp);
3108 		}
3109 	}
3110 
3111 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3112 
3113 }
3114 
3115 /*
3116  * Process an INT_FH_RX or INT_SW_RX interrupt.
3117  */
3118 static void
3119 iwn_notif_intr(struct iwn_softc *sc)
3120 {
3121 	struct iwn_ops *ops = &sc->ops;
3122 	struct ifnet *ifp = sc->sc_ifp;
3123 	struct ieee80211com *ic = ifp->if_l2com;
3124 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3125 	uint16_t hw;
3126 
3127 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3128 	    BUS_DMASYNC_POSTREAD);
3129 
3130 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3131 	while (sc->rxq.cur != hw) {
3132 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3133 		struct iwn_rx_desc *desc;
3134 
3135 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3136 		    BUS_DMASYNC_POSTREAD);
3137 		desc = mtod(data->m, struct iwn_rx_desc *);
3138 
3139 		DPRINTF(sc, IWN_DEBUG_RECV,
3140 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
3141 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
3142 		    desc->type, iwn_intr_str(desc->type),
3143 		    le16toh(desc->len));
3144 
3145 		if (!(desc->qid & 0x80))	/* Reply to a command. */
3146 			iwn_cmd_done(sc, desc);
3147 
3148 		switch (desc->type) {
3149 		case IWN_RX_PHY:
3150 			iwn_rx_phy(sc, desc, data);
3151 			break;
3152 
3153 		case IWN_RX_DONE:		/* 4965AGN only. */
3154 		case IWN_MPDU_RX_DONE:
3155 			/* An 802.11 frame has been received. */
3156 			iwn_rx_done(sc, desc, data);
3157 			break;
3158 
3159 		case IWN_RX_COMPRESSED_BA:
3160 			/* A Compressed BlockAck has been received. */
3161 			iwn_rx_compressed_ba(sc, desc, data);
3162 			break;
3163 
3164 		case IWN_TX_DONE:
3165 			/* An 802.11 frame has been transmitted. */
3166 			ops->tx_done(sc, desc, data);
3167 			break;
3168 
3169 		case IWN_RX_STATISTICS:
3170 		case IWN_BEACON_STATISTICS:
3171 			iwn_rx_statistics(sc, desc, data);
3172 			break;
3173 
3174 		case IWN_BEACON_MISSED:
3175 		{
3176 			struct iwn_beacon_missed *miss =
3177 			    (struct iwn_beacon_missed *)(desc + 1);
3178 			int misses;
3179 
3180 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3181 			    BUS_DMASYNC_POSTREAD);
3182 			misses = le32toh(miss->consecutive);
3183 
3184 			DPRINTF(sc, IWN_DEBUG_STATE,
3185 			    "%s: beacons missed %d/%d\n", __func__,
3186 			    misses, le32toh(miss->total));
3187 			/*
3188 			 * If more than 5 consecutive beacons are missed,
3189 			 * reinitialize the sensitivity state machine.
3190 			 */
3191 			if (vap->iv_state == IEEE80211_S_RUN &&
3192 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3193 				if (misses > 5)
3194 					(void)iwn_init_sensitivity(sc);
3195 				if (misses >= vap->iv_bmissthreshold) {
3196 					IWN_UNLOCK(sc);
3197 					ieee80211_beacon_miss(ic);
3198 					IWN_LOCK(sc);
3199 				}
3200 			}
3201 			break;
3202 		}
3203 		case IWN_UC_READY:
3204 		{
3205 			struct iwn_ucode_info *uc =
3206 			    (struct iwn_ucode_info *)(desc + 1);
3207 
3208 			/* The microcontroller is ready. */
3209 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3210 			    BUS_DMASYNC_POSTREAD);
3211 			DPRINTF(sc, IWN_DEBUG_RESET,
3212 			    "microcode alive notification version=%d.%d "
3213 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3214 			    uc->subtype, le32toh(uc->valid));
3215 
3216 			if (le32toh(uc->valid) != 1) {
3217 				device_printf(sc->sc_dev,
3218 				    "microcontroller initialization failed");
3219 				break;
3220 			}
3221 			if (uc->subtype == IWN_UCODE_INIT) {
3222 				/* Save microcontroller report. */
3223 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3224 			}
3225 			/* Save the address of the error log in SRAM. */
3226 			sc->errptr = le32toh(uc->errptr);
3227 			break;
3228 		}
3229 		case IWN_STATE_CHANGED:
3230 		{
3231 			/*
3232 			 * State change allows hardware switch change to be
3233 			 * noted. However, we handle this in iwn_intr as we
3234 			 * get both the enable/disble intr.
3235 			 */
3236 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3237 			    BUS_DMASYNC_POSTREAD);
3238 #ifdef	IWN_DEBUG
3239 			uint32_t *status = (uint32_t *)(desc + 1);
3240 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
3241 			    le32toh(*status));
3242 #endif
3243 			break;
3244 		}
3245 		case IWN_START_SCAN:
3246 		{
3247 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3248 			    BUS_DMASYNC_POSTREAD);
3249 #ifdef	IWN_DEBUG
3250 			struct iwn_start_scan *scan =
3251 			    (struct iwn_start_scan *)(desc + 1);
3252 			DPRINTF(sc, IWN_DEBUG_ANY,
3253 			    "%s: scanning channel %d status %x\n",
3254 			    __func__, scan->chan, le32toh(scan->status));
3255 #endif
3256 			break;
3257 		}
3258 		case IWN_STOP_SCAN:
3259 		{
3260 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3261 			    BUS_DMASYNC_POSTREAD);
3262 #ifdef	IWN_DEBUG
3263 			struct iwn_stop_scan *scan =
3264 			    (struct iwn_stop_scan *)(desc + 1);
3265 			DPRINTF(sc, IWN_DEBUG_STATE,
3266 			    "scan finished nchan=%d status=%d chan=%d\n",
3267 			    scan->nchan, scan->status, scan->chan);
3268 #endif
3269 
3270 			IWN_UNLOCK(sc);
3271 			ieee80211_scan_next(vap);
3272 			IWN_LOCK(sc);
3273 			break;
3274 		}
3275 		case IWN5000_CALIBRATION_RESULT:
3276 			iwn5000_rx_calib_results(sc, desc, data);
3277 			break;
3278 
3279 		case IWN5000_CALIBRATION_DONE:
3280 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3281 			wakeup(sc);
3282 			break;
3283 		}
3284 
3285 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3286 	}
3287 
3288 	/* Tell the firmware what we have processed. */
3289 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3290 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3291 }
3292 
3293 /*
3294  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3295  * from power-down sleep mode.
3296  */
3297 static void
3298 iwn_wakeup_intr(struct iwn_softc *sc)
3299 {
3300 	int qid;
3301 
3302 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3303 	    __func__);
3304 
3305 	/* Wakeup RX and TX rings. */
3306 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3307 	for (qid = 0; qid < sc->ntxqs; qid++) {
3308 		struct iwn_tx_ring *ring = &sc->txq[qid];
3309 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3310 	}
3311 }
3312 
3313 static void
3314 iwn_rftoggle_intr(struct iwn_softc *sc)
3315 {
3316 	struct ifnet *ifp = sc->sc_ifp;
3317 	struct ieee80211com *ic = ifp->if_l2com;
3318 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3319 
3320 	IWN_LOCK_ASSERT(sc);
3321 
3322 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3323 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3324 	if (tmp & IWN_GP_CNTRL_RFKILL)
3325 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3326 	else
3327 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3328 }
3329 
3330 /*
3331  * Dump the error log of the firmware when a firmware panic occurs.  Although
3332  * we can't debug the firmware because it is neither open source nor free, it
3333  * can help us to identify certain classes of problems.
3334  */
3335 static void
3336 iwn_fatal_intr(struct iwn_softc *sc)
3337 {
3338 	struct iwn_fw_dump dump;
3339 	int i;
3340 
3341 	IWN_LOCK_ASSERT(sc);
3342 
3343 	/* Force a complete recalibration on next init. */
3344 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3345 
3346 	/* Check that the error log address is valid. */
3347 	if (sc->errptr < IWN_FW_DATA_BASE ||
3348 	    sc->errptr + sizeof (dump) >
3349 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3350 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3351 		    sc->errptr);
3352 		return;
3353 	}
3354 	if (iwn_nic_lock(sc) != 0) {
3355 		printf("%s: could not read firmware error log\n", __func__);
3356 		return;
3357 	}
3358 	/* Read firmware error log from SRAM. */
3359 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3360 	    sizeof (dump) / sizeof (uint32_t));
3361 	iwn_nic_unlock(sc);
3362 
3363 	if (dump.valid == 0) {
3364 		printf("%s: firmware error log is empty\n", __func__);
3365 		return;
3366 	}
3367 	printf("firmware error log:\n");
3368 	printf("  error type      = \"%s\" (0x%08X)\n",
3369 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3370 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3371 	    dump.id);
3372 	printf("  program counter = 0x%08X\n", dump.pc);
3373 	printf("  source line     = 0x%08X\n", dump.src_line);
3374 	printf("  error data      = 0x%08X%08X\n",
3375 	    dump.error_data[0], dump.error_data[1]);
3376 	printf("  branch link     = 0x%08X%08X\n",
3377 	    dump.branch_link[0], dump.branch_link[1]);
3378 	printf("  interrupt link  = 0x%08X%08X\n",
3379 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3380 	printf("  time            = %u\n", dump.time[0]);
3381 
3382 	/* Dump driver status (TX and RX rings) while we're here. */
3383 	printf("driver status:\n");
3384 	for (i = 0; i < sc->ntxqs; i++) {
3385 		struct iwn_tx_ring *ring = &sc->txq[i];
3386 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3387 		    i, ring->qid, ring->cur, ring->queued);
3388 	}
3389 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3390 }
3391 
3392 static void
3393 iwn_intr(void *arg)
3394 {
3395 	struct iwn_softc *sc = arg;
3396 	struct ifnet *ifp = sc->sc_ifp;
3397 	uint32_t r1, r2, tmp;
3398 
3399 	IWN_LOCK(sc);
3400 
3401 	/* Disable interrupts. */
3402 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3403 
3404 	/* Read interrupts from ICT (fast) or from registers (slow). */
3405 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3406 		tmp = 0;
3407 		while (sc->ict[sc->ict_cur] != 0) {
3408 			tmp |= sc->ict[sc->ict_cur];
3409 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3410 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3411 		}
3412 		tmp = le32toh(tmp);
3413 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3414 			tmp = 0;
3415 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3416 			tmp |= 0x8000;
3417 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3418 		r2 = 0;	/* Unused. */
3419 	} else {
3420 		r1 = IWN_READ(sc, IWN_INT);
3421 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3422 			return;	/* Hardware gone! */
3423 		r2 = IWN_READ(sc, IWN_FH_INT);
3424 	}
3425 
3426 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3427     , r1, r2);
3428 
3429 	if (r1 == 0 && r2 == 0)
3430 		goto done;	/* Interrupt not for us. */
3431 
3432 	/* Acknowledge interrupts. */
3433 	IWN_WRITE(sc, IWN_INT, r1);
3434 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3435 		IWN_WRITE(sc, IWN_FH_INT, r2);
3436 
3437 	if (r1 & IWN_INT_RF_TOGGLED) {
3438 		iwn_rftoggle_intr(sc);
3439 		goto done;
3440 	}
3441 	if (r1 & IWN_INT_CT_REACHED) {
3442 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3443 		    __func__);
3444 	}
3445 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3446 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3447 		    __func__);
3448 #ifdef	IWN_DEBUG
3449 		iwn_debug_register(sc);
3450 #endif
3451 		/* Dump firmware error log and stop. */
3452 		iwn_fatal_intr(sc);
3453 		ifp->if_flags &= ~IFF_UP;
3454 		iwn_stop_locked(sc);
3455 		goto done;
3456 	}
3457 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3458 	    (r2 & IWN_FH_INT_RX)) {
3459 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3460 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3461 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3462 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3463 			    IWN_INT_PERIODIC_DIS);
3464 			iwn_notif_intr(sc);
3465 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3466 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3467 				    IWN_INT_PERIODIC_ENA);
3468 			}
3469 		} else
3470 			iwn_notif_intr(sc);
3471 	}
3472 
3473 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3474 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3475 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3476 		wakeup(sc);	/* FH DMA transfer completed. */
3477 	}
3478 
3479 	if (r1 & IWN_INT_ALIVE)
3480 		wakeup(sc);	/* Firmware is alive. */
3481 
3482 	if (r1 & IWN_INT_WAKEUP)
3483 		iwn_wakeup_intr(sc);
3484 
3485 done:
3486 	/* Re-enable interrupts. */
3487 	if (ifp->if_flags & IFF_UP)
3488 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3489 
3490 	IWN_UNLOCK(sc);
3491 }
3492 
3493 /*
3494  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3495  * 5000 adapters use a slightly different format).
3496  */
3497 static void
3498 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3499     uint16_t len)
3500 {
3501 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3502 
3503 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3504 
3505 	*w = htole16(len + 8);
3506 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3507 	    BUS_DMASYNC_PREWRITE);
3508 	if (idx < IWN_SCHED_WINSZ) {
3509 		*(w + IWN_TX_RING_COUNT) = *w;
3510 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3511 		    BUS_DMASYNC_PREWRITE);
3512 	}
3513 }
3514 
3515 static void
3516 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3517     uint16_t len)
3518 {
3519 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3520 
3521 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3522 
3523 	*w = htole16(id << 12 | (len + 8));
3524 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3525 	    BUS_DMASYNC_PREWRITE);
3526 	if (idx < IWN_SCHED_WINSZ) {
3527 		*(w + IWN_TX_RING_COUNT) = *w;
3528 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3529 		    BUS_DMASYNC_PREWRITE);
3530 	}
3531 }
3532 
3533 #ifdef notyet
3534 static void
3535 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3536 {
3537 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3538 
3539 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
3540 
3541 	*w = (*w & htole16(0xf000)) | htole16(1);
3542 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3543 	    BUS_DMASYNC_PREWRITE);
3544 	if (idx < IWN_SCHED_WINSZ) {
3545 		*(w + IWN_TX_RING_COUNT) = *w;
3546 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3547 		    BUS_DMASYNC_PREWRITE);
3548 	}
3549 }
3550 #endif
3551 
3552 static int
3553 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3554 {
3555 	struct iwn_ops *ops = &sc->ops;
3556 	const struct ieee80211_txparam *tp;
3557 	struct ieee80211vap *vap = ni->ni_vap;
3558 	struct ieee80211com *ic = ni->ni_ic;
3559 	struct iwn_node *wn = (void *)ni;
3560 	struct iwn_tx_ring *ring;
3561 	struct iwn_tx_desc *desc;
3562 	struct iwn_tx_data *data;
3563 	struct iwn_tx_cmd *cmd;
3564 	struct iwn_cmd_data *tx;
3565 	struct ieee80211_frame *wh;
3566 	struct ieee80211_key *k = NULL;
3567 	struct mbuf *m1;
3568 	uint32_t flags;
3569 	uint16_t qos;
3570 	u_int hdrlen;
3571 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3572 	uint8_t tid, ridx, txant, type;
3573 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3574 
3575 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3576 
3577 	IWN_LOCK_ASSERT(sc);
3578 
3579 	wh = mtod(m, struct ieee80211_frame *);
3580 	hdrlen = ieee80211_anyhdrsize(wh);
3581 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3582 
3583 	/* Select EDCA Access Category and TX ring for this frame. */
3584 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3585 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3586 		tid = qos & IEEE80211_QOS_TID;
3587 	} else {
3588 		qos = 0;
3589 		tid = 0;
3590 	}
3591 	ac = M_WME_GETAC(m);
3592 	if (m->m_flags & M_AMPDU_MPDU) {
3593 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3594 
3595 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
3596 			m_freem(m);
3597 			return EINVAL;
3598 		}
3599 
3600 		ac = *(int *)tap->txa_private;
3601 		*(uint16_t *)wh->i_seq =
3602 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3603 		ni->ni_txseqs[tid]++;
3604 	}
3605 	ring = &sc->txq[ac];
3606 	desc = &ring->desc[ring->cur];
3607 	data = &ring->data[ring->cur];
3608 
3609 	/* Choose a TX rate index. */
3610 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3611 	if (type == IEEE80211_FC0_TYPE_MGT)
3612 		rate = tp->mgmtrate;
3613 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3614 		rate = tp->mcastrate;
3615 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3616 		rate = tp->ucastrate;
3617 	else {
3618 		/* XXX pass pktlen */
3619 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3620 		rate = ni->ni_txrate;
3621 	}
3622 	ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
3623 	    rate & IEEE80211_RATE_VAL);
3624 
3625 	/* Encrypt the frame if need be. */
3626 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3627 		/* Retrieve key for TX. */
3628 		k = ieee80211_crypto_encap(ni, m);
3629 		if (k == NULL) {
3630 			m_freem(m);
3631 			return ENOBUFS;
3632 		}
3633 		/* 802.11 header may have moved. */
3634 		wh = mtod(m, struct ieee80211_frame *);
3635 	}
3636 	totlen = m->m_pkthdr.len;
3637 
3638 	if (ieee80211_radiotap_active_vap(vap)) {
3639 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3640 
3641 		tap->wt_flags = 0;
3642 		tap->wt_rate = rate;
3643 		if (k != NULL)
3644 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3645 
3646 		ieee80211_radiotap_tx(vap, m);
3647 	}
3648 
3649 	/* Prepare TX firmware command. */
3650 	cmd = &ring->cmd[ring->cur];
3651 	cmd->code = IWN_CMD_TX_DATA;
3652 	cmd->flags = 0;
3653 	cmd->qid = ring->qid;
3654 	cmd->idx = ring->cur;
3655 
3656 	tx = (struct iwn_cmd_data *)cmd->data;
3657 	/* NB: No need to clear tx, all fields are reinitialized here. */
3658 	tx->scratch = 0;	/* clear "scratch" area */
3659 
3660 	flags = 0;
3661 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3662 		/* Unicast frame, check if an ACK is expected. */
3663 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3664 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3665 			flags |= IWN_TX_NEED_ACK;
3666 	}
3667 	if ((wh->i_fc[0] &
3668 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3669 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3670 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3671 
3672 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3673 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3674 
3675 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3676 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3677 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3678 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3679 			flags |= IWN_TX_NEED_RTS;
3680 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3681 		    ridx >= IWN_RIDX_OFDM6) {
3682 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3683 				flags |= IWN_TX_NEED_CTS;
3684 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3685 				flags |= IWN_TX_NEED_RTS;
3686 		}
3687 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3688 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3689 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3690 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3691 				flags |= IWN_TX_NEED_PROTECTION;
3692 			} else
3693 				flags |= IWN_TX_FULL_TXOP;
3694 		}
3695 	}
3696 
3697 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3698 	    type != IEEE80211_FC0_TYPE_DATA)
3699 		tx->id = sc->broadcast_id;
3700 	else
3701 		tx->id = wn->id;
3702 
3703 	if (type == IEEE80211_FC0_TYPE_MGT) {
3704 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3705 
3706 		/* Tell HW to set timestamp in probe responses. */
3707 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3708 			flags |= IWN_TX_INSERT_TSTAMP;
3709 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3710 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3711 			tx->timeout = htole16(3);
3712 		else
3713 			tx->timeout = htole16(2);
3714 	} else
3715 		tx->timeout = htole16(0);
3716 
3717 	if (hdrlen & 3) {
3718 		/* First segment length must be a multiple of 4. */
3719 		flags |= IWN_TX_NEED_PADDING;
3720 		pad = 4 - (hdrlen & 3);
3721 	} else
3722 		pad = 0;
3723 
3724 	tx->len = htole16(totlen);
3725 	tx->tid = tid;
3726 	tx->rts_ntries = 60;
3727 	tx->data_ntries = 15;
3728 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3729 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
3730 	if (tx->id == sc->broadcast_id) {
3731 		/* Group or management frame. */
3732 		tx->linkq = 0;
3733 		/* XXX Alternate between antenna A and B? */
3734 		txant = IWN_LSB(sc->txchainmask);
3735 		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3736 	} else {
3737 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3738 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3739 	}
3740 	/* Set physical address of "scratch area". */
3741 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3742 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3743 
3744 	/* Copy 802.11 header in TX command. */
3745 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3746 
3747 	/* Trim 802.11 header. */
3748 	m_adj(m, hdrlen);
3749 	tx->security = 0;
3750 	tx->flags = htole32(flags);
3751 
3752 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3753 	    &nsegs, BUS_DMA_NOWAIT);
3754 	if (error != 0) {
3755 		if (error != EFBIG) {
3756 			device_printf(sc->sc_dev,
3757 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3758 			m_freem(m);
3759 			return error;
3760 		}
3761 		/* Too many DMA segments, linearize mbuf. */
3762 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
3763 		if (m1 == NULL) {
3764 			device_printf(sc->sc_dev,
3765 			    "%s: could not defrag mbuf\n", __func__);
3766 			m_freem(m);
3767 			return ENOBUFS;
3768 		}
3769 		m = m1;
3770 
3771 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3772 		    segs, &nsegs, BUS_DMA_NOWAIT);
3773 		if (error != 0) {
3774 			device_printf(sc->sc_dev,
3775 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3776 			m_freem(m);
3777 			return error;
3778 		}
3779 	}
3780 
3781 	data->m = m;
3782 	data->ni = ni;
3783 
3784 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3785 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3786 
3787 	/* Fill TX descriptor. */
3788 	desc->nsegs = 1;
3789 	if (m->m_len != 0)
3790 		desc->nsegs += nsegs;
3791 	/* First DMA segment is used by the TX command. */
3792 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3793 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3794 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3795 	/* Other DMA segments are for data payload. */
3796 	seg = &segs[0];
3797 	for (i = 1; i <= nsegs; i++) {
3798 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3799 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3800 		    seg->ds_len << 4);
3801 		seg++;
3802 	}
3803 
3804 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3805 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3806 	    BUS_DMASYNC_PREWRITE);
3807 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3808 	    BUS_DMASYNC_PREWRITE);
3809 
3810 	/* Update TX scheduler. */
3811 	if (ring->qid >= sc->firstaggqueue)
3812 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3813 
3814 	/* Kick TX ring. */
3815 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3816 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3817 
3818 	/* Mark TX ring as full if we reach a certain threshold. */
3819 	if (++ring->queued > IWN_TX_RING_HIMARK)
3820 		sc->qfullmsk |= 1 << ring->qid;
3821 
3822 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3823 
3824 	return 0;
3825 }
3826 
3827 static int
3828 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3829     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3830 {
3831 	struct iwn_ops *ops = &sc->ops;
3832 	struct ifnet *ifp = sc->sc_ifp;
3833 	struct ieee80211vap *vap = ni->ni_vap;
3834 	struct ieee80211com *ic = ifp->if_l2com;
3835 	struct iwn_tx_cmd *cmd;
3836 	struct iwn_cmd_data *tx;
3837 	struct ieee80211_frame *wh;
3838 	struct iwn_tx_ring *ring;
3839 	struct iwn_tx_desc *desc;
3840 	struct iwn_tx_data *data;
3841 	struct mbuf *m1;
3842 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3843 	uint32_t flags;
3844 	u_int hdrlen;
3845 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3846 	uint8_t ridx, type, txant;
3847 
3848 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3849 
3850 	IWN_LOCK_ASSERT(sc);
3851 
3852 	wh = mtod(m, struct ieee80211_frame *);
3853 	hdrlen = ieee80211_anyhdrsize(wh);
3854 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3855 
3856 	ac = params->ibp_pri & 3;
3857 
3858 	ring = &sc->txq[ac];
3859 	desc = &ring->desc[ring->cur];
3860 	data = &ring->data[ring->cur];
3861 
3862 	/* Choose a TX rate index. */
3863 	rate = params->ibp_rate0;
3864 	ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
3865 	    rate & IEEE80211_RATE_VAL);
3866 	if (ridx == (uint8_t)-1) {
3867 		/* XXX fall back to mcast/mgmt rate? */
3868 		m_freem(m);
3869 		return EINVAL;
3870 	}
3871 
3872 	totlen = m->m_pkthdr.len;
3873 
3874 	/* Prepare TX firmware command. */
3875 	cmd = &ring->cmd[ring->cur];
3876 	cmd->code = IWN_CMD_TX_DATA;
3877 	cmd->flags = 0;
3878 	cmd->qid = ring->qid;
3879 	cmd->idx = ring->cur;
3880 
3881 	tx = (struct iwn_cmd_data *)cmd->data;
3882 	/* NB: No need to clear tx, all fields are reinitialized here. */
3883 	tx->scratch = 0;	/* clear "scratch" area */
3884 
3885 	flags = 0;
3886 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3887 		flags |= IWN_TX_NEED_ACK;
3888 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3889 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3890 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3891 			flags &= ~IWN_TX_NEED_RTS;
3892 			flags |= IWN_TX_NEED_PROTECTION;
3893 		} else
3894 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3895 	}
3896 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3897 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3898 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3899 			flags &= ~IWN_TX_NEED_CTS;
3900 			flags |= IWN_TX_NEED_PROTECTION;
3901 		} else
3902 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3903 	}
3904 	if (type == IEEE80211_FC0_TYPE_MGT) {
3905 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3906 
3907 		/* Tell HW to set timestamp in probe responses. */
3908 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3909 			flags |= IWN_TX_INSERT_TSTAMP;
3910 
3911 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3912 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3913 			tx->timeout = htole16(3);
3914 		else
3915 			tx->timeout = htole16(2);
3916 	} else
3917 		tx->timeout = htole16(0);
3918 
3919 	if (hdrlen & 3) {
3920 		/* First segment length must be a multiple of 4. */
3921 		flags |= IWN_TX_NEED_PADDING;
3922 		pad = 4 - (hdrlen & 3);
3923 	} else
3924 		pad = 0;
3925 
3926 	if (ieee80211_radiotap_active_vap(vap)) {
3927 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3928 
3929 		tap->wt_flags = 0;
3930 		tap->wt_rate = rate;
3931 
3932 		ieee80211_radiotap_tx(vap, m);
3933 	}
3934 
3935 	tx->len = htole16(totlen);
3936 	tx->tid = 0;
3937 	tx->id = sc->broadcast_id;
3938 	tx->rts_ntries = params->ibp_try1;
3939 	tx->data_ntries = params->ibp_try0;
3940 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3941 
3942 	/* XXX should just use  iwn_rate_to_plcp() */
3943 	tx->rate = htole32(rate2plcp(rate));
3944 	if (ridx < IWN_RIDX_OFDM6 &&
3945 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3946 		tx->rate |= htole32(IWN_RFLAG_CCK);
3947 
3948 	/* Group or management frame. */
3949 	tx->linkq = 0;
3950 	txant = IWN_LSB(sc->txchainmask);
3951 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3952 
3953 	/* Set physical address of "scratch area". */
3954 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3955 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3956 
3957 	/* Copy 802.11 header in TX command. */
3958 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3959 
3960 	/* Trim 802.11 header. */
3961 	m_adj(m, hdrlen);
3962 	tx->security = 0;
3963 	tx->flags = htole32(flags);
3964 
3965 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3966 	    &nsegs, BUS_DMA_NOWAIT);
3967 	if (error != 0) {
3968 		if (error != EFBIG) {
3969 			device_printf(sc->sc_dev,
3970 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3971 			m_freem(m);
3972 			return error;
3973 		}
3974 		/* Too many DMA segments, linearize mbuf. */
3975 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
3976 		if (m1 == NULL) {
3977 			device_printf(sc->sc_dev,
3978 			    "%s: could not defrag mbuf\n", __func__);
3979 			m_freem(m);
3980 			return ENOBUFS;
3981 		}
3982 		m = m1;
3983 
3984 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3985 		    segs, &nsegs, BUS_DMA_NOWAIT);
3986 		if (error != 0) {
3987 			device_printf(sc->sc_dev,
3988 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3989 			m_freem(m);
3990 			return error;
3991 		}
3992 	}
3993 
3994 	data->m = m;
3995 	data->ni = ni;
3996 
3997 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3998 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3999 
4000 	/* Fill TX descriptor. */
4001 	desc->nsegs = 1;
4002 	if (m->m_len != 0)
4003 		desc->nsegs += nsegs;
4004 	/* First DMA segment is used by the TX command. */
4005 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4006 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4007 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4008 	/* Other DMA segments are for data payload. */
4009 	seg = &segs[0];
4010 	for (i = 1; i <= nsegs; i++) {
4011 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4012 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4013 		    seg->ds_len << 4);
4014 		seg++;
4015 	}
4016 
4017 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4018 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4019 	    BUS_DMASYNC_PREWRITE);
4020 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4021 	    BUS_DMASYNC_PREWRITE);
4022 
4023 	/* Update TX scheduler. */
4024 	if (ring->qid >= sc->firstaggqueue)
4025 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4026 
4027 	/* Kick TX ring. */
4028 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4029 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4030 
4031 	/* Mark TX ring as full if we reach a certain threshold. */
4032 	if (++ring->queued > IWN_TX_RING_HIMARK)
4033 		sc->qfullmsk |= 1 << ring->qid;
4034 
4035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4036 
4037 	return 0;
4038 }
4039 
4040 static int
4041 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4042     const struct ieee80211_bpf_params *params)
4043 {
4044 	struct ieee80211com *ic = ni->ni_ic;
4045 	struct ifnet *ifp = ic->ic_ifp;
4046 	struct iwn_softc *sc = ifp->if_softc;
4047 	int error = 0;
4048 
4049 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4050 
4051 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4052 		ieee80211_free_node(ni);
4053 		m_freem(m);
4054 		return ENETDOWN;
4055 	}
4056 
4057 	IWN_LOCK(sc);
4058 	if (params == NULL) {
4059 		/*
4060 		 * Legacy path; interpret frame contents to decide
4061 		 * precisely how to send the frame.
4062 		 */
4063 		error = iwn_tx_data(sc, m, ni);
4064 	} else {
4065 		/*
4066 		 * Caller supplied explicit parameters to use in
4067 		 * sending the frame.
4068 		 */
4069 		error = iwn_tx_data_raw(sc, m, ni, params);
4070 	}
4071 	if (error != 0) {
4072 		/* NB: m is reclaimed on tx failure */
4073 		ieee80211_free_node(ni);
4074 		ifp->if_oerrors++;
4075 	}
4076 	sc->sc_tx_timer = 5;
4077 
4078 	IWN_UNLOCK(sc);
4079 
4080 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4081 
4082 	return error;
4083 }
4084 
4085 static void
4086 iwn_start(struct ifnet *ifp)
4087 {
4088 	struct iwn_softc *sc = ifp->if_softc;
4089 
4090 	IWN_LOCK(sc);
4091 	iwn_start_locked(ifp);
4092 	IWN_UNLOCK(sc);
4093 }
4094 
4095 static void
4096 iwn_start_locked(struct ifnet *ifp)
4097 {
4098 	struct iwn_softc *sc = ifp->if_softc;
4099 	struct ieee80211_node *ni;
4100 	struct mbuf *m;
4101 
4102 	IWN_LOCK_ASSERT(sc);
4103 
4104 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
4105 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
4106 		return;
4107 
4108 	for (;;) {
4109 		if (sc->qfullmsk != 0) {
4110 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4111 			break;
4112 		}
4113 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4114 		if (m == NULL)
4115 			break;
4116 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4117 		if (iwn_tx_data(sc, m, ni) != 0) {
4118 			ieee80211_free_node(ni);
4119 			ifp->if_oerrors++;
4120 			continue;
4121 		}
4122 		sc->sc_tx_timer = 5;
4123 	}
4124 }
4125 
4126 static void
4127 iwn_watchdog(void *arg)
4128 {
4129 	struct iwn_softc *sc = arg;
4130 	struct ifnet *ifp = sc->sc_ifp;
4131 	struct ieee80211com *ic = ifp->if_l2com;
4132 
4133 	IWN_LOCK_ASSERT(sc);
4134 
4135 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
4136 
4137 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4138 
4139 	if (sc->sc_tx_timer > 0) {
4140 		if (--sc->sc_tx_timer == 0) {
4141 			if_printf(ifp, "device timeout\n");
4142 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4143 			return;
4144 		}
4145 	}
4146 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4147 }
4148 
4149 static int
4150 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4151 {
4152 	struct iwn_softc *sc = ifp->if_softc;
4153 	struct ieee80211com *ic = ifp->if_l2com;
4154 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4155 	struct ifreq *ifr = (struct ifreq *) data;
4156 	int error = 0, startall = 0, stop = 0;
4157 
4158 	switch (cmd) {
4159 	case SIOCGIFADDR:
4160 		error = ether_ioctl(ifp, cmd, data);
4161 		break;
4162 	case SIOCSIFFLAGS:
4163 		IWN_LOCK(sc);
4164 		if (ifp->if_flags & IFF_UP) {
4165 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4166 				iwn_init_locked(sc);
4167 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4168 					startall = 1;
4169 				else
4170 					stop = 1;
4171 			}
4172 		} else {
4173 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4174 				iwn_stop_locked(sc);
4175 		}
4176 		IWN_UNLOCK(sc);
4177 		if (startall)
4178 			ieee80211_start_all(ic);
4179 		else if (vap != NULL && stop)
4180 			ieee80211_stop(vap);
4181 		break;
4182 	case SIOCGIFMEDIA:
4183 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4184 		break;
4185 	default:
4186 		error = EINVAL;
4187 		break;
4188 	}
4189 	return error;
4190 }
4191 
4192 /*
4193  * Send a command to the firmware.
4194  */
4195 static int
4196 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4197 {
4198 	struct iwn_tx_ring *ring = &sc->txq[4];
4199 	struct iwn_tx_desc *desc;
4200 	struct iwn_tx_data *data;
4201 	struct iwn_tx_cmd *cmd;
4202 	struct mbuf *m;
4203 	bus_addr_t paddr;
4204 	int totlen, error;
4205 
4206 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4207 
4208 	if (async == 0)
4209 		IWN_LOCK_ASSERT(sc);
4210 
4211 	desc = &ring->desc[ring->cur];
4212 	data = &ring->data[ring->cur];
4213 	totlen = 4 + size;
4214 
4215 	if (size > sizeof cmd->data) {
4216 		/* Command is too large to fit in a descriptor. */
4217 		if (totlen > MCLBYTES)
4218 			return EINVAL;
4219 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4220 		if (m == NULL)
4221 			return ENOMEM;
4222 		cmd = mtod(m, struct iwn_tx_cmd *);
4223 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4224 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4225 		if (error != 0) {
4226 			m_freem(m);
4227 			return error;
4228 		}
4229 		data->m = m;
4230 	} else {
4231 		cmd = &ring->cmd[ring->cur];
4232 		paddr = data->cmd_paddr;
4233 	}
4234 
4235 	cmd->code = code;
4236 	cmd->flags = 0;
4237 	cmd->qid = ring->qid;
4238 	cmd->idx = ring->cur;
4239 	memcpy(cmd->data, buf, size);
4240 
4241 	desc->nsegs = 1;
4242 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4243 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4244 
4245 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4246 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4247 	    cmd->flags, cmd->qid, cmd->idx);
4248 
4249 	if (size > sizeof cmd->data) {
4250 		bus_dmamap_sync(ring->data_dmat, data->map,
4251 		    BUS_DMASYNC_PREWRITE);
4252 	} else {
4253 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4254 		    BUS_DMASYNC_PREWRITE);
4255 	}
4256 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4257 	    BUS_DMASYNC_PREWRITE);
4258 
4259 	/* Kick command ring. */
4260 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4261 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4262 
4263 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4264 
4265 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4266 }
4267 
4268 static int
4269 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4270 {
4271 	struct iwn4965_node_info hnode;
4272 	caddr_t src, dst;
4273 
4274 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4275 
4276 	/*
4277 	 * We use the node structure for 5000 Series internally (it is
4278 	 * a superset of the one for 4965AGN). We thus copy the common
4279 	 * fields before sending the command.
4280 	 */
4281 	src = (caddr_t)node;
4282 	dst = (caddr_t)&hnode;
4283 	memcpy(dst, src, 48);
4284 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4285 	memcpy(dst + 48, src + 72, 20);
4286 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4287 }
4288 
4289 static int
4290 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4291 {
4292 
4293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4294 
4295 	/* Direct mapping. */
4296 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4297 }
4298 
4299 static int
4300 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4301 {
4302 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4303 	struct iwn_node *wn = (void *)ni;
4304 	struct ieee80211_rateset *rs = &ni->ni_rates;
4305 	struct iwn_cmd_link_quality linkq;
4306 	uint8_t txant;
4307 	int i, rate, txrate;
4308 
4309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4310 
4311 	/* Use the first valid TX antenna. */
4312 	txant = IWN_LSB(sc->txchainmask);
4313 
4314 	memset(&linkq, 0, sizeof linkq);
4315 	linkq.id = wn->id;
4316 	linkq.antmsk_1stream = txant;
4317 	linkq.antmsk_2stream = IWN_ANT_AB;
4318 	linkq.ampdu_max = 64;
4319 	linkq.ampdu_threshold = 3;
4320 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4321 
4322 	/* Start at highest available bit-rate. */
4323 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4324 		txrate = ni->ni_htrates.rs_nrates - 1;
4325 	else
4326 		txrate = rs->rs_nrates - 1;
4327 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4328 		uint32_t plcp;
4329 
4330 		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4331 			rate = IEEE80211_RATE_MCS | txrate;
4332 		else
4333 			rate = RV(rs->rs_rates[txrate]);
4334 
4335 		/* Do rate -> PLCP config mapping */
4336 		plcp = iwn_rate_to_plcp(sc, ni, rate);
4337 		linkq.retry[i] = plcp;
4338 
4339 		/* Special case for dual-stream rates? */
4340 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
4341 		    RV(le32toh(plcp)) > 7)
4342 			linkq.mimo = i + 1;
4343 
4344 		/* Next retry at immediate lower bit-rate. */
4345 		if (txrate > 0)
4346 			txrate--;
4347 	}
4348 
4349 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4350 
4351 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4352 #undef	RV
4353 }
4354 
4355 /*
4356  * Broadcast node is used to send group-addressed and management frames.
4357  */
4358 static int
4359 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4360 {
4361 	struct iwn_ops *ops = &sc->ops;
4362 	struct ifnet *ifp = sc->sc_ifp;
4363 	struct ieee80211com *ic = ifp->if_l2com;
4364 	struct iwn_node_info node;
4365 	struct iwn_cmd_link_quality linkq;
4366 	uint8_t txant;
4367 	int i, error;
4368 
4369 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4370 
4371 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
4372 
4373 	memset(&node, 0, sizeof node);
4374 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4375 	node.id = sc->broadcast_id;
4376 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4377 	if ((error = ops->add_node(sc, &node, async)) != 0)
4378 		return error;
4379 
4380 	/* Use the first valid TX antenna. */
4381 	txant = IWN_LSB(sc->txchainmask);
4382 
4383 	memset(&linkq, 0, sizeof linkq);
4384 	linkq.id = sc->broadcast_id;
4385 	linkq.antmsk_1stream = txant;
4386 	linkq.antmsk_2stream = IWN_ANT_AB;
4387 	linkq.ampdu_max = 64;
4388 	linkq.ampdu_threshold = 3;
4389 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4390 
4391 	/* Use lowest mandatory bit-rate. */
4392 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4393 		linkq.retry[0] = htole32(0xd);
4394 	else
4395 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4396 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4397 	/* Use same bit-rate for all TX retries. */
4398 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4399 		linkq.retry[i] = linkq.retry[0];
4400 	}
4401 
4402 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4403 
4404 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4405 }
4406 
4407 static int
4408 iwn_updateedca(struct ieee80211com *ic)
4409 {
4410 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4411 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4412 	struct iwn_edca_params cmd;
4413 	int aci;
4414 
4415 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4416 
4417 	memset(&cmd, 0, sizeof cmd);
4418 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4419 	for (aci = 0; aci < WME_NUM_AC; aci++) {
4420 		const struct wmeParams *ac =
4421 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4422 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4423 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4424 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4425 		cmd.ac[aci].txoplimit =
4426 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4427 	}
4428 	IEEE80211_UNLOCK(ic);
4429 	IWN_LOCK(sc);
4430 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4431 	IWN_UNLOCK(sc);
4432 	IEEE80211_LOCK(ic);
4433 
4434 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4435 
4436 	return 0;
4437 #undef IWN_EXP2
4438 }
4439 
4440 static void
4441 iwn_update_mcast(struct ifnet *ifp)
4442 {
4443 	/* Ignore */
4444 }
4445 
4446 static void
4447 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4448 {
4449 	struct iwn_cmd_led led;
4450 
4451 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4452 
4453 	/* Clear microcode LED ownership. */
4454 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4455 
4456 	led.which = which;
4457 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4458 	led.off = off;
4459 	led.on = on;
4460 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4461 }
4462 
4463 /*
4464  * Set the critical temperature at which the firmware will stop the radio
4465  * and notify us.
4466  */
4467 static int
4468 iwn_set_critical_temp(struct iwn_softc *sc)
4469 {
4470 	struct iwn_critical_temp crit;
4471 	int32_t temp;
4472 
4473 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4474 
4475 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4476 
4477 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4478 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4479 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4480 		temp = IWN_CTOK(110);
4481 	else
4482 		temp = 110;
4483 	memset(&crit, 0, sizeof crit);
4484 	crit.tempR = htole32(temp);
4485 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4486 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4487 }
4488 
4489 static int
4490 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4491 {
4492 	struct iwn_cmd_timing cmd;
4493 	uint64_t val, mod;
4494 
4495 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4496 
4497 	memset(&cmd, 0, sizeof cmd);
4498 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4499 	cmd.bintval = htole16(ni->ni_intval);
4500 	cmd.lintval = htole16(10);
4501 
4502 	/* Compute remaining time until next beacon. */
4503 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4504 	mod = le64toh(cmd.tstamp) % val;
4505 	cmd.binitval = htole32((uint32_t)(val - mod));
4506 
4507 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4508 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4509 
4510 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4511 }
4512 
4513 static void
4514 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4515 {
4516 	struct ifnet *ifp = sc->sc_ifp;
4517 	struct ieee80211com *ic = ifp->if_l2com;
4518 
4519 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4520 
4521 	/* Adjust TX power if need be (delta >= 3 degC). */
4522 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4523 	    __func__, sc->temp, temp);
4524 	if (abs(temp - sc->temp) >= 3) {
4525 		/* Record temperature of last calibration. */
4526 		sc->temp = temp;
4527 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4528 	}
4529 }
4530 
4531 /*
4532  * Set TX power for current channel (each rate has its own power settings).
4533  * This function takes into account the regulatory information from EEPROM,
4534  * the current temperature and the current voltage.
4535  */
4536 static int
4537 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4538     int async)
4539 {
4540 /* Fixed-point arithmetic division using a n-bit fractional part. */
4541 #define fdivround(a, b, n)	\
4542 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4543 /* Linear interpolation. */
4544 #define interpolate(x, x1, y1, x2, y2, n)	\
4545 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4546 
4547 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4548 	struct iwn_ucode_info *uc = &sc->ucode_info;
4549 	struct iwn4965_cmd_txpower cmd;
4550 	struct iwn4965_eeprom_chan_samples *chans;
4551 	const uint8_t *rf_gain, *dsp_gain;
4552 	int32_t vdiff, tdiff;
4553 	int i, c, grp, maxpwr;
4554 	uint8_t chan;
4555 
4556 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
4557 	/* Retrieve current channel from last RXON. */
4558 	chan = sc->rxon->chan;
4559 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4560 	    chan);
4561 
4562 	memset(&cmd, 0, sizeof cmd);
4563 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4564 	cmd.chan = chan;
4565 
4566 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4567 		maxpwr   = sc->maxpwr5GHz;
4568 		rf_gain  = iwn4965_rf_gain_5ghz;
4569 		dsp_gain = iwn4965_dsp_gain_5ghz;
4570 	} else {
4571 		maxpwr   = sc->maxpwr2GHz;
4572 		rf_gain  = iwn4965_rf_gain_2ghz;
4573 		dsp_gain = iwn4965_dsp_gain_2ghz;
4574 	}
4575 
4576 	/* Compute voltage compensation. */
4577 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4578 	if (vdiff > 0)
4579 		vdiff *= 2;
4580 	if (abs(vdiff) > 2)
4581 		vdiff = 0;
4582 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4583 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4584 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4585 
4586 	/* Get channel attenuation group. */
4587 	if (chan <= 20)		/* 1-20 */
4588 		grp = 4;
4589 	else if (chan <= 43)	/* 34-43 */
4590 		grp = 0;
4591 	else if (chan <= 70)	/* 44-70 */
4592 		grp = 1;
4593 	else if (chan <= 124)	/* 71-124 */
4594 		grp = 2;
4595 	else			/* 125-200 */
4596 		grp = 3;
4597 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4598 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4599 
4600 	/* Get channel sub-band. */
4601 	for (i = 0; i < IWN_NBANDS; i++)
4602 		if (sc->bands[i].lo != 0 &&
4603 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4604 			break;
4605 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4606 		return EINVAL;
4607 	chans = sc->bands[i].chans;
4608 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4609 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4610 
4611 	for (c = 0; c < 2; c++) {
4612 		uint8_t power, gain, temp;
4613 		int maxchpwr, pwr, ridx, idx;
4614 
4615 		power = interpolate(chan,
4616 		    chans[0].num, chans[0].samples[c][1].power,
4617 		    chans[1].num, chans[1].samples[c][1].power, 1);
4618 		gain  = interpolate(chan,
4619 		    chans[0].num, chans[0].samples[c][1].gain,
4620 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4621 		temp  = interpolate(chan,
4622 		    chans[0].num, chans[0].samples[c][1].temp,
4623 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4624 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4625 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4626 		    __func__, c, power, gain, temp);
4627 
4628 		/* Compute temperature compensation. */
4629 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4630 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4631 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4632 		    __func__, tdiff, sc->temp, temp);
4633 
4634 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4635 			/* Convert dBm to half-dBm. */
4636 			maxchpwr = sc->maxpwr[chan] * 2;
4637 			if ((ridx / 8) & 1)
4638 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4639 
4640 			pwr = maxpwr;
4641 
4642 			/* Adjust TX power based on rate. */
4643 			if ((ridx % 8) == 5)
4644 				pwr -= 15;	/* OFDM48: -7.5dB */
4645 			else if ((ridx % 8) == 6)
4646 				pwr -= 17;	/* OFDM54: -8.5dB */
4647 			else if ((ridx % 8) == 7)
4648 				pwr -= 20;	/* OFDM60: -10dB */
4649 			else
4650 				pwr -= 10;	/* Others: -5dB */
4651 
4652 			/* Do not exceed channel max TX power. */
4653 			if (pwr > maxchpwr)
4654 				pwr = maxchpwr;
4655 
4656 			idx = gain - (pwr - power) - tdiff - vdiff;
4657 			if ((ridx / 8) & 1)	/* MIMO */
4658 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4659 
4660 			if (cmd.band == 0)
4661 				idx += 9;	/* 5GHz */
4662 			if (ridx == IWN_RIDX_MAX)
4663 				idx += 5;	/* CCK */
4664 
4665 			/* Make sure idx stays in a valid range. */
4666 			if (idx < 0)
4667 				idx = 0;
4668 			else if (idx > IWN4965_MAX_PWR_INDEX)
4669 				idx = IWN4965_MAX_PWR_INDEX;
4670 
4671 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4672 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4673 			    __func__, c, ridx, idx);
4674 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4675 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4676 		}
4677 	}
4678 
4679 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4680 	    "%s: set tx power for chan %d\n", __func__, chan);
4681 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4682 
4683 #undef interpolate
4684 #undef fdivround
4685 }
4686 
4687 static int
4688 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4689     int async)
4690 {
4691 	struct iwn5000_cmd_txpower cmd;
4692 
4693 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4694 
4695 	/*
4696 	 * TX power calibration is handled automatically by the firmware
4697 	 * for 5000 Series.
4698 	 */
4699 	memset(&cmd, 0, sizeof cmd);
4700 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4701 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4702 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4703 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4704 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4705 }
4706 
4707 /*
4708  * Retrieve the maximum RSSI (in dBm) among receivers.
4709  */
4710 static int
4711 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4712 {
4713 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4714 	uint8_t mask, agc;
4715 	int rssi;
4716 
4717 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4718 
4719 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4720 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4721 
4722 	rssi = 0;
4723 	if (mask & IWN_ANT_A)
4724 		rssi = MAX(rssi, phy->rssi[0]);
4725 	if (mask & IWN_ANT_B)
4726 		rssi = MAX(rssi, phy->rssi[2]);
4727 	if (mask & IWN_ANT_C)
4728 		rssi = MAX(rssi, phy->rssi[4]);
4729 
4730 	DPRINTF(sc, IWN_DEBUG_RECV,
4731 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4732 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4733 	    rssi - agc - IWN_RSSI_TO_DBM);
4734 	return rssi - agc - IWN_RSSI_TO_DBM;
4735 }
4736 
4737 static int
4738 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4739 {
4740 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4741 	uint8_t agc;
4742 	int rssi;
4743 
4744 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4745 
4746 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4747 
4748 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4749 		   le16toh(phy->rssi[1]) & 0xff);
4750 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4751 
4752 	DPRINTF(sc, IWN_DEBUG_RECV,
4753 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4754 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4755 	    rssi - agc - IWN_RSSI_TO_DBM);
4756 	return rssi - agc - IWN_RSSI_TO_DBM;
4757 }
4758 
4759 /*
4760  * Retrieve the average noise (in dBm) among receivers.
4761  */
4762 static int
4763 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4764 {
4765 	int i, total, nbant, noise;
4766 
4767 	total = nbant = 0;
4768 	for (i = 0; i < 3; i++) {
4769 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4770 			continue;
4771 		total += noise;
4772 		nbant++;
4773 	}
4774 	/* There should be at least one antenna but check anyway. */
4775 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4776 }
4777 
4778 /*
4779  * Compute temperature (in degC) from last received statistics.
4780  */
4781 static int
4782 iwn4965_get_temperature(struct iwn_softc *sc)
4783 {
4784 	struct iwn_ucode_info *uc = &sc->ucode_info;
4785 	int32_t r1, r2, r3, r4, temp;
4786 
4787 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4788 
4789 	r1 = le32toh(uc->temp[0].chan20MHz);
4790 	r2 = le32toh(uc->temp[1].chan20MHz);
4791 	r3 = le32toh(uc->temp[2].chan20MHz);
4792 	r4 = le32toh(sc->rawtemp);
4793 
4794 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4795 		return 0;
4796 
4797 	/* Sign-extend 23-bit R4 value to 32-bit. */
4798 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4799 	/* Compute temperature in Kelvin. */
4800 	temp = (259 * (r4 - r2)) / (r3 - r1);
4801 	temp = (temp * 97) / 100 + 8;
4802 
4803 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4804 	    IWN_KTOC(temp));
4805 	return IWN_KTOC(temp);
4806 }
4807 
4808 static int
4809 iwn5000_get_temperature(struct iwn_softc *sc)
4810 {
4811 	int32_t temp;
4812 
4813 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4814 
4815 	/*
4816 	 * Temperature is not used by the driver for 5000 Series because
4817 	 * TX power calibration is handled by firmware.
4818 	 */
4819 	temp = le32toh(sc->rawtemp);
4820 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4821 		temp = (temp / -5) + sc->temp_off;
4822 		temp = IWN_KTOC(temp);
4823 	}
4824 	return temp;
4825 }
4826 
4827 /*
4828  * Initialize sensitivity calibration state machine.
4829  */
4830 static int
4831 iwn_init_sensitivity(struct iwn_softc *sc)
4832 {
4833 	struct iwn_ops *ops = &sc->ops;
4834 	struct iwn_calib_state *calib = &sc->calib;
4835 	uint32_t flags;
4836 	int error;
4837 
4838 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4839 
4840 	/* Reset calibration state machine. */
4841 	memset(calib, 0, sizeof (*calib));
4842 	calib->state = IWN_CALIB_STATE_INIT;
4843 	calib->cck_state = IWN_CCK_STATE_HIFA;
4844 	/* Set initial correlation values. */
4845 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4846 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4847 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4848 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4849 	calib->cck_x4      = 125;
4850 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4851 	calib->energy_cck  = sc->limits->energy_cck;
4852 
4853 	/* Write initial sensitivity. */
4854 	if ((error = iwn_send_sensitivity(sc)) != 0)
4855 		return error;
4856 
4857 	/* Write initial gains. */
4858 	if ((error = ops->init_gains(sc)) != 0)
4859 		return error;
4860 
4861 	/* Request statistics at each beacon interval. */
4862 	flags = 0;
4863 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4864 	    __func__);
4865 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4866 }
4867 
4868 /*
4869  * Collect noise and RSSI statistics for the first 20 beacons received
4870  * after association and use them to determine connected antennas and
4871  * to set differential gains.
4872  */
4873 static void
4874 iwn_collect_noise(struct iwn_softc *sc,
4875     const struct iwn_rx_general_stats *stats)
4876 {
4877 	struct iwn_ops *ops = &sc->ops;
4878 	struct iwn_calib_state *calib = &sc->calib;
4879 	struct ifnet *ifp = sc->sc_ifp;
4880 	struct ieee80211com *ic = ifp->if_l2com;
4881 	uint32_t val;
4882 	int i;
4883 
4884 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4885 
4886 	/* Accumulate RSSI and noise for all 3 antennas. */
4887 	for (i = 0; i < 3; i++) {
4888 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4889 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4890 	}
4891 	/* NB: We update differential gains only once after 20 beacons. */
4892 	if (++calib->nbeacons < 20)
4893 		return;
4894 
4895 	/* Determine highest average RSSI. */
4896 	val = MAX(calib->rssi[0], calib->rssi[1]);
4897 	val = MAX(calib->rssi[2], val);
4898 
4899 	/* Determine which antennas are connected. */
4900 	sc->chainmask = sc->rxchainmask;
4901 	for (i = 0; i < 3; i++)
4902 		if (val - calib->rssi[i] > 15 * 20)
4903 			sc->chainmask &= ~(1 << i);
4904 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4905 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4906 	    __func__, sc->rxchainmask, sc->chainmask);
4907 
4908 	/* If none of the TX antennas are connected, keep at least one. */
4909 	if ((sc->chainmask & sc->txchainmask) == 0)
4910 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4911 
4912 	(void)ops->set_gains(sc);
4913 	calib->state = IWN_CALIB_STATE_RUN;
4914 
4915 #ifdef notyet
4916 	/* XXX Disable RX chains with no antennas connected. */
4917 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4918 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
4919 #endif
4920 
4921 	/* Enable power-saving mode if requested by user. */
4922 	if (ic->ic_flags & IEEE80211_F_PMGTON)
4923 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4924 
4925 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4926 
4927 }
4928 
4929 static int
4930 iwn4965_init_gains(struct iwn_softc *sc)
4931 {
4932 	struct iwn_phy_calib_gain cmd;
4933 
4934 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4935 
4936 	memset(&cmd, 0, sizeof cmd);
4937 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4938 	/* Differential gains initially set to 0 for all 3 antennas. */
4939 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4940 	    "%s: setting initial differential gains\n", __func__);
4941 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4942 }
4943 
4944 static int
4945 iwn5000_init_gains(struct iwn_softc *sc)
4946 {
4947 	struct iwn_phy_calib cmd;
4948 
4949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4950 
4951 	memset(&cmd, 0, sizeof cmd);
4952 	cmd.code = sc->reset_noise_gain;
4953 	cmd.ngroups = 1;
4954 	cmd.isvalid = 1;
4955 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4956 	    "%s: setting initial differential gains\n", __func__);
4957 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4958 }
4959 
4960 static int
4961 iwn4965_set_gains(struct iwn_softc *sc)
4962 {
4963 	struct iwn_calib_state *calib = &sc->calib;
4964 	struct iwn_phy_calib_gain cmd;
4965 	int i, delta, noise;
4966 
4967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4968 
4969 	/* Get minimal noise among connected antennas. */
4970 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4971 	for (i = 0; i < 3; i++)
4972 		if (sc->chainmask & (1 << i))
4973 			noise = MIN(calib->noise[i], noise);
4974 
4975 	memset(&cmd, 0, sizeof cmd);
4976 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4977 	/* Set differential gains for connected antennas. */
4978 	for (i = 0; i < 3; i++) {
4979 		if (sc->chainmask & (1 << i)) {
4980 			/* Compute attenuation (in unit of 1.5dB). */
4981 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4982 			/* NB: delta <= 0 */
4983 			/* Limit to [-4.5dB,0]. */
4984 			cmd.gain[i] = MIN(abs(delta), 3);
4985 			if (delta < 0)
4986 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4987 		}
4988 	}
4989 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4990 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4991 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4992 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4993 }
4994 
4995 static int
4996 iwn5000_set_gains(struct iwn_softc *sc)
4997 {
4998 	struct iwn_calib_state *calib = &sc->calib;
4999 	struct iwn_phy_calib_gain cmd;
5000 	int i, ant, div, delta;
5001 
5002 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5003 
5004 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5005 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5006 
5007 	memset(&cmd, 0, sizeof cmd);
5008 	cmd.code = sc->noise_gain;
5009 	cmd.ngroups = 1;
5010 	cmd.isvalid = 1;
5011 	/* Get first available RX antenna as referential. */
5012 	ant = IWN_LSB(sc->rxchainmask);
5013 	/* Set differential gains for other antennas. */
5014 	for (i = ant + 1; i < 3; i++) {
5015 		if (sc->chainmask & (1 << i)) {
5016 			/* The delta is relative to antenna "ant". */
5017 			delta = ((int32_t)calib->noise[ant] -
5018 			    (int32_t)calib->noise[i]) / div;
5019 			/* Limit to [-4.5dB,+4.5dB]. */
5020 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5021 			if (delta < 0)
5022 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5023 		}
5024 	}
5025 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5026 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5027 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5028 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5029 }
5030 
5031 /*
5032  * Tune RF RX sensitivity based on the number of false alarms detected
5033  * during the last beacon period.
5034  */
5035 static void
5036 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5037 {
5038 #define inc(val, inc, max)			\
5039 	if ((val) < (max)) {			\
5040 		if ((val) < (max) - (inc))	\
5041 			(val) += (inc);		\
5042 		else				\
5043 			(val) = (max);		\
5044 		needs_update = 1;		\
5045 	}
5046 #define dec(val, dec, min)			\
5047 	if ((val) > (min)) {			\
5048 		if ((val) > (min) + (dec))	\
5049 			(val) -= (dec);		\
5050 		else				\
5051 			(val) = (min);		\
5052 		needs_update = 1;		\
5053 	}
5054 
5055 	const struct iwn_sensitivity_limits *limits = sc->limits;
5056 	struct iwn_calib_state *calib = &sc->calib;
5057 	uint32_t val, rxena, fa;
5058 	uint32_t energy[3], energy_min;
5059 	uint8_t noise[3], noise_ref;
5060 	int i, needs_update = 0;
5061 
5062 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5063 
5064 	/* Check that we've been enabled long enough. */
5065 	if ((rxena = le32toh(stats->general.load)) == 0){
5066 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5067 		return;
5068 	}
5069 
5070 	/* Compute number of false alarms since last call for OFDM. */
5071 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5072 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5073 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5074 
5075 	/* Save counters values for next call. */
5076 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
5077 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
5078 
5079 	if (fa > 50 * rxena) {
5080 		/* High false alarm count, decrease sensitivity. */
5081 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5082 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5083 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5084 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5085 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5086 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5087 
5088 	} else if (fa < 5 * rxena) {
5089 		/* Low false alarm count, increase sensitivity. */
5090 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5091 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5092 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5093 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5094 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5095 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5096 	}
5097 
5098 	/* Compute maximum noise among 3 receivers. */
5099 	for (i = 0; i < 3; i++)
5100 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5101 	val = MAX(noise[0], noise[1]);
5102 	val = MAX(noise[2], val);
5103 	/* Insert it into our samples table. */
5104 	calib->noise_samples[calib->cur_noise_sample] = val;
5105 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5106 
5107 	/* Compute maximum noise among last 20 samples. */
5108 	noise_ref = calib->noise_samples[0];
5109 	for (i = 1; i < 20; i++)
5110 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5111 
5112 	/* Compute maximum energy among 3 receivers. */
5113 	for (i = 0; i < 3; i++)
5114 		energy[i] = le32toh(stats->general.energy[i]);
5115 	val = MIN(energy[0], energy[1]);
5116 	val = MIN(energy[2], val);
5117 	/* Insert it into our samples table. */
5118 	calib->energy_samples[calib->cur_energy_sample] = val;
5119 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5120 
5121 	/* Compute minimum energy among last 10 samples. */
5122 	energy_min = calib->energy_samples[0];
5123 	for (i = 1; i < 10; i++)
5124 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5125 	energy_min += 6;
5126 
5127 	/* Compute number of false alarms since last call for CCK. */
5128 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5129 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5130 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5131 
5132 	/* Save counters values for next call. */
5133 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
5134 	calib->fa_cck = le32toh(stats->cck.fa);
5135 
5136 	if (fa > 50 * rxena) {
5137 		/* High false alarm count, decrease sensitivity. */
5138 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5139 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5140 		calib->cck_state = IWN_CCK_STATE_HIFA;
5141 		calib->low_fa = 0;
5142 
5143 		if (calib->cck_x4 > 160) {
5144 			calib->noise_ref = noise_ref;
5145 			if (calib->energy_cck > 2)
5146 				dec(calib->energy_cck, 2, energy_min);
5147 		}
5148 		if (calib->cck_x4 < 160) {
5149 			calib->cck_x4 = 161;
5150 			needs_update = 1;
5151 		} else
5152 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5153 
5154 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5155 
5156 	} else if (fa < 5 * rxena) {
5157 		/* Low false alarm count, increase sensitivity. */
5158 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5159 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5160 		calib->cck_state = IWN_CCK_STATE_LOFA;
5161 		calib->low_fa++;
5162 
5163 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5164 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5165 		     calib->low_fa > 100)) {
5166 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5167 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5168 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5169 		}
5170 	} else {
5171 		/* Not worth to increase or decrease sensitivity. */
5172 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5173 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5174 		calib->low_fa = 0;
5175 		calib->noise_ref = noise_ref;
5176 
5177 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5178 			/* Previous interval had many false alarms. */
5179 			dec(calib->energy_cck, 8, energy_min);
5180 		}
5181 		calib->cck_state = IWN_CCK_STATE_INIT;
5182 	}
5183 
5184 	if (needs_update)
5185 		(void)iwn_send_sensitivity(sc);
5186 
5187 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5188 
5189 #undef dec
5190 #undef inc
5191 }
5192 
5193 static int
5194 iwn_send_sensitivity(struct iwn_softc *sc)
5195 {
5196 	struct iwn_calib_state *calib = &sc->calib;
5197 	struct iwn_enhanced_sensitivity_cmd cmd;
5198 	int len;
5199 
5200 	memset(&cmd, 0, sizeof cmd);
5201 	len = sizeof (struct iwn_sensitivity_cmd);
5202 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5203 	/* OFDM modulation. */
5204 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5205 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5206 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5207 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5208 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5209 	cmd.energy_ofdm_th     = htole16(62);
5210 	/* CCK modulation. */
5211 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5212 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5213 	cmd.energy_cck         = htole16(calib->energy_cck);
5214 	/* Barker modulation: use default values. */
5215 	cmd.corr_barker        = htole16(190);
5216 	cmd.corr_barker_mrc    = htole16(390);
5217 
5218 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5219 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5220 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5221 	    calib->ofdm_mrc_x4, calib->cck_x4,
5222 	    calib->cck_mrc_x4, calib->energy_cck);
5223 
5224 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5225 		goto send;
5226 	/* Enhanced sensitivity settings. */
5227 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5228 	cmd.ofdm_det_slope_mrc = htole16(668);
5229 	cmd.ofdm_det_icept_mrc = htole16(4);
5230 	cmd.ofdm_det_slope     = htole16(486);
5231 	cmd.ofdm_det_icept     = htole16(37);
5232 	cmd.cck_det_slope_mrc  = htole16(853);
5233 	cmd.cck_det_icept_mrc  = htole16(4);
5234 	cmd.cck_det_slope      = htole16(476);
5235 	cmd.cck_det_icept      = htole16(99);
5236 send:
5237 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5238 }
5239 
5240 /*
5241  * Set STA mode power saving level (between 0 and 5).
5242  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
5243  */
5244 static int
5245 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5246 {
5247 	struct iwn_pmgt_cmd cmd;
5248 	const struct iwn_pmgt *pmgt;
5249 	uint32_t max, skip_dtim;
5250 	uint32_t reg;
5251 	int i;
5252 
5253 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
5254 	    "%s: dtim=%d, level=%d, async=%d\n",
5255 	    __func__,
5256 	    dtim,
5257 	    level,
5258 	    async);
5259 
5260 	/* Select which PS parameters to use. */
5261 	if (dtim <= 2)
5262 		pmgt = &iwn_pmgt[0][level];
5263 	else if (dtim <= 10)
5264 		pmgt = &iwn_pmgt[1][level];
5265 	else
5266 		pmgt = &iwn_pmgt[2][level];
5267 
5268 	memset(&cmd, 0, sizeof cmd);
5269 	if (level != 0)	/* not CAM */
5270 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5271 	if (level == 5)
5272 		cmd.flags |= htole16(IWN_PS_FAST_PD);
5273 	/* Retrieve PCIe Active State Power Management (ASPM). */
5274 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5275 	if (!(reg & 0x1))	/* L0s Entry disabled. */
5276 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5277 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5278 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5279 
5280 	if (dtim == 0) {
5281 		dtim = 1;
5282 		skip_dtim = 0;
5283 	} else
5284 		skip_dtim = pmgt->skip_dtim;
5285 	if (skip_dtim != 0) {
5286 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5287 		max = pmgt->intval[4];
5288 		if (max == (uint32_t)-1)
5289 			max = dtim * (skip_dtim + 1);
5290 		else if (max > dtim)
5291 			max = (max / dtim) * dtim;
5292 	} else
5293 		max = dtim;
5294 	for (i = 0; i < 5; i++)
5295 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
5296 
5297 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
5298 	    level);
5299 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5300 }
5301 
5302 static int
5303 iwn_send_btcoex(struct iwn_softc *sc)
5304 {
5305 	struct iwn_bluetooth cmd;
5306 
5307 	memset(&cmd, 0, sizeof cmd);
5308 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
5309 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
5310 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
5311 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
5312 	    __func__);
5313 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
5314 }
5315 
5316 static int
5317 iwn_send_advanced_btcoex(struct iwn_softc *sc)
5318 {
5319 	static const uint32_t btcoex_3wire[12] = {
5320 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5321 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5322 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5323 	};
5324 	struct iwn6000_btcoex_config btconfig;
5325 	struct iwn_btcoex_priotable btprio;
5326 	struct iwn_btcoex_prot btprot;
5327 	int error, i;
5328 
5329 	memset(&btconfig, 0, sizeof btconfig);
5330 	btconfig.flags = 145;
5331 	btconfig.max_kill = 5;
5332 	btconfig.bt3_t7_timer = 1;
5333 	btconfig.kill_ack = htole32(0xffff0000);
5334 	btconfig.kill_cts = htole32(0xffff0000);
5335 	btconfig.sample_time = 2;
5336 	btconfig.bt3_t2_timer = 0xc;
5337 	for (i = 0; i < 12; i++)
5338 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5339 	btconfig.valid = htole16(0xff);
5340 	btconfig.prio_boost = 0xf0;
5341 	DPRINTF(sc, IWN_DEBUG_RESET,
5342 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
5343 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
5344 	if (error != 0)
5345 		return error;
5346 
5347 	memset(&btprio, 0, sizeof btprio);
5348 	btprio.calib_init1 = 0x6;
5349 	btprio.calib_init2 = 0x7;
5350 	btprio.calib_periodic_low1 = 0x2;
5351 	btprio.calib_periodic_low2 = 0x3;
5352 	btprio.calib_periodic_high1 = 0x4;
5353 	btprio.calib_periodic_high2 = 0x5;
5354 	btprio.dtim = 0x6;
5355 	btprio.scan52 = 0x8;
5356 	btprio.scan24 = 0xa;
5357 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
5358 	    1);
5359 	if (error != 0)
5360 		return error;
5361 
5362 	/* Force BT state machine change. */
5363 	memset(&btprot, 0, sizeof btprot);
5364 	btprot.open = 1;
5365 	btprot.type = 1;
5366 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5367 	if (error != 0)
5368 		return error;
5369 	btprot.open = 0;
5370 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5371 }
5372 
5373 static int
5374 iwn5000_runtime_calib(struct iwn_softc *sc)
5375 {
5376 	struct iwn5000_calib_config cmd;
5377 
5378 	memset(&cmd, 0, sizeof cmd);
5379 	cmd.ucode.once.enable = 0xffffffff;
5380 	cmd.ucode.once.start = IWN5000_CALIB_DC;
5381 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5382 	    "%s: configuring runtime calibration\n", __func__);
5383 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5384 }
5385 
5386 static int
5387 iwn_config(struct iwn_softc *sc)
5388 {
5389 	struct iwn_ops *ops = &sc->ops;
5390 	struct ifnet *ifp = sc->sc_ifp;
5391 	struct ieee80211com *ic = ifp->if_l2com;
5392 	uint32_t txmask;
5393 	uint16_t rxchain;
5394 	int error;
5395 
5396 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5397 
5398 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5399 		/* Set radio temperature sensor offset. */
5400 		error = iwn5000_temp_offset_calib(sc);
5401 		if (error != 0) {
5402 			device_printf(sc->sc_dev,
5403 			    "%s: could not set temperature offset\n", __func__);
5404 			return error;
5405 		}
5406 	}
5407 
5408 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5409 		/* Configure runtime DC calibration. */
5410 		error = iwn5000_runtime_calib(sc);
5411 		if (error != 0) {
5412 			device_printf(sc->sc_dev,
5413 			    "%s: could not configure runtime calibration\n",
5414 			    __func__);
5415 			return error;
5416 		}
5417 	}
5418 
5419 	/* Configure valid TX chains for >=5000 Series. */
5420 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5421 		txmask = htole32(sc->txchainmask);
5422 		DPRINTF(sc, IWN_DEBUG_RESET,
5423 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5424 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5425 		    sizeof txmask, 0);
5426 		if (error != 0) {
5427 			device_printf(sc->sc_dev,
5428 			    "%s: could not configure valid TX chains, "
5429 			    "error %d\n", __func__, error);
5430 			return error;
5431 		}
5432 	}
5433 
5434 	/* Configure bluetooth coexistence. */
5435 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5436 		error = iwn_send_advanced_btcoex(sc);
5437 	else
5438 		error = iwn_send_btcoex(sc);
5439 	if (error != 0) {
5440 		device_printf(sc->sc_dev,
5441 		    "%s: could not configure bluetooth coexistence, error %d\n",
5442 		    __func__, error);
5443 		return error;
5444 	}
5445 
5446 	/* Set mode, channel, RX filter and enable RX. */
5447 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5448 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
5449 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
5450 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
5451 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5452 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5453 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5454 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5455 	switch (ic->ic_opmode) {
5456 	case IEEE80211_M_STA:
5457 		sc->rxon->mode = IWN_MODE_STA;
5458 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
5459 		break;
5460 	case IEEE80211_M_MONITOR:
5461 		sc->rxon->mode = IWN_MODE_MONITOR;
5462 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
5463 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5464 		break;
5465 	default:
5466 		/* Should not get there. */
5467 		break;
5468 	}
5469 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
5470 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
5471 	sc->rxon->ht_single_mask = 0xff;
5472 	sc->rxon->ht_dual_mask = 0xff;
5473 	sc->rxon->ht_triple_mask = 0xff;
5474 	rxchain =
5475 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5476 	    IWN_RXCHAIN_MIMO_COUNT(2) |
5477 	    IWN_RXCHAIN_IDLE_COUNT(2);
5478 	sc->rxon->rxchain = htole16(rxchain);
5479 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5480 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
5481 	if (error != 0) {
5482 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5483 		    __func__);
5484 		return error;
5485 	}
5486 
5487 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5488 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5489 		    __func__);
5490 		return error;
5491 	}
5492 
5493 	/* Configuration has changed, set TX power accordingly. */
5494 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5495 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5496 		    __func__);
5497 		return error;
5498 	}
5499 
5500 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5501 		device_printf(sc->sc_dev,
5502 		    "%s: could not set critical temperature\n", __func__);
5503 		return error;
5504 	}
5505 
5506 	/* Set power saving level to CAM during initialization. */
5507 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5508 		device_printf(sc->sc_dev,
5509 		    "%s: could not set power saving level\n", __func__);
5510 		return error;
5511 	}
5512 
5513 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5514 
5515 	return 0;
5516 }
5517 
5518 /*
5519  * Add an ssid element to a frame.
5520  */
5521 static uint8_t *
5522 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5523 {
5524 	*frm++ = IEEE80211_ELEMID_SSID;
5525 	*frm++ = len;
5526 	memcpy(frm, ssid, len);
5527 	return frm + len;
5528 }
5529 
5530 static int
5531 iwn_scan(struct iwn_softc *sc)
5532 {
5533 	struct ifnet *ifp = sc->sc_ifp;
5534 	struct ieee80211com *ic = ifp->if_l2com;
5535 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5536 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5537 	struct iwn_scan_hdr *hdr;
5538 	struct iwn_cmd_data *tx;
5539 	struct iwn_scan_essid *essid;
5540 	struct iwn_scan_chan *chan;
5541 	struct ieee80211_frame *wh;
5542 	struct ieee80211_rateset *rs;
5543 	struct ieee80211_channel *c;
5544 	uint8_t *buf, *frm;
5545 	uint16_t rxchain;
5546 	uint8_t txant;
5547 	int buflen, error;
5548 
5549 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5550 
5551 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5552 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5553 	if (buf == NULL) {
5554 		device_printf(sc->sc_dev,
5555 		    "%s: could not allocate buffer for scan command\n",
5556 		    __func__);
5557 		return ENOMEM;
5558 	}
5559 	hdr = (struct iwn_scan_hdr *)buf;
5560 	/*
5561 	 * Move to the next channel if no frames are received within 10ms
5562 	 * after sending the probe request.
5563 	 */
5564 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5565 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5566 
5567 	/* Select antennas for scanning. */
5568 	rxchain =
5569 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5570 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5571 	    IWN_RXCHAIN_DRIVER_FORCE;
5572 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5573 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5574 		/* Ant A must be avoided in 5GHz because of an HW bug. */
5575 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5576 	} else	/* Use all available RX antennas. */
5577 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5578 	hdr->rxchain = htole16(rxchain);
5579 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5580 
5581 	tx = (struct iwn_cmd_data *)(hdr + 1);
5582 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5583 	tx->id = sc->broadcast_id;
5584 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5585 
5586 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5587 		/* Send probe requests at 6Mbps. */
5588 		tx->rate = htole32(0xd);
5589 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5590 	} else {
5591 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5592 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5593 		    sc->rxon->associd && sc->rxon->chan > 14)
5594 			tx->rate = htole32(0xd);
5595 		else {
5596 			/* Send probe requests at 1Mbps. */
5597 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5598 		}
5599 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5600 	}
5601 	/* Use the first valid TX antenna. */
5602 	txant = IWN_LSB(sc->txchainmask);
5603 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5604 
5605 	essid = (struct iwn_scan_essid *)(tx + 1);
5606 	if (ss->ss_ssid[0].len != 0) {
5607 		essid[0].id = IEEE80211_ELEMID_SSID;
5608 		essid[0].len = ss->ss_ssid[0].len;
5609 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5610 	}
5611 	/*
5612 	 * Build a probe request frame.  Most of the following code is a
5613 	 * copy & paste of what is done in net80211.
5614 	 */
5615 	wh = (struct ieee80211_frame *)(essid + 20);
5616 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5617 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5618 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5619 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5620 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5621 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5622 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5623 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5624 
5625 	frm = (uint8_t *)(wh + 1);
5626 	frm = ieee80211_add_ssid(frm, NULL, 0);
5627 	frm = ieee80211_add_rates(frm, rs);
5628 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5629 		frm = ieee80211_add_xrates(frm, rs);
5630 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5631 		frm = ieee80211_add_htcap(frm, ni);
5632 
5633 	/* Set length of probe request. */
5634 	tx->len = htole16(frm - (uint8_t *)wh);
5635 
5636 	c = ic->ic_curchan;
5637 	chan = (struct iwn_scan_chan *)frm;
5638 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5639 	chan->flags = 0;
5640 	if (ss->ss_nssid > 0)
5641 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5642 	chan->dsp_gain = 0x6e;
5643 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5644 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5645 		chan->rf_gain = 0x3b;
5646 		chan->active  = htole16(24);
5647 		chan->passive = htole16(110);
5648 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5649 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5650 		chan->rf_gain = 0x3b;
5651 		chan->active  = htole16(24);
5652 		if (sc->rxon->associd)
5653 			chan->passive = htole16(78);
5654 		else
5655 			chan->passive = htole16(110);
5656 		hdr->crc_threshold = 0xffff;
5657 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5658 		chan->rf_gain = 0x28;
5659 		chan->active  = htole16(36);
5660 		chan->passive = htole16(120);
5661 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5662 	} else {
5663 		chan->rf_gain = 0x28;
5664 		chan->active  = htole16(36);
5665 		if (sc->rxon->associd)
5666 			chan->passive = htole16(88);
5667 		else
5668 			chan->passive = htole16(120);
5669 		hdr->crc_threshold = 0xffff;
5670 	}
5671 
5672 	DPRINTF(sc, IWN_DEBUG_STATE,
5673 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5674 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5675 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5676 	    chan->active, chan->passive);
5677 
5678 	hdr->nchan++;
5679 	chan++;
5680 	buflen = (uint8_t *)chan - buf;
5681 	hdr->len = htole16(buflen);
5682 
5683 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5684 	    hdr->nchan);
5685 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5686 	free(buf, M_DEVBUF);
5687 
5688 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5689 
5690 	return error;
5691 }
5692 
5693 static int
5694 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5695 {
5696 	struct iwn_ops *ops = &sc->ops;
5697 	struct ifnet *ifp = sc->sc_ifp;
5698 	struct ieee80211com *ic = ifp->if_l2com;
5699 	struct ieee80211_node *ni = vap->iv_bss;
5700 	int error;
5701 
5702 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5703 
5704 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5705 	/* Update adapter configuration. */
5706 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
5707 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5708 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5709 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5710 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5711 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5712 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
5713 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5714 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
5715 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5716 		sc->rxon->cck_mask  = 0;
5717 		sc->rxon->ofdm_mask = 0x15;
5718 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5719 		sc->rxon->cck_mask  = 0x03;
5720 		sc->rxon->ofdm_mask = 0;
5721 	} else {
5722 		/* Assume 802.11b/g. */
5723 		sc->rxon->cck_mask  = 0x0f;
5724 		sc->rxon->ofdm_mask = 0x15;
5725 	}
5726 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5727 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
5728 	    sc->rxon->ofdm_mask);
5729 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5730 	if (error != 0) {
5731 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5732 		    __func__, error);
5733 		return error;
5734 	}
5735 
5736 	/* Configuration has changed, set TX power accordingly. */
5737 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5738 		device_printf(sc->sc_dev,
5739 		    "%s: could not set TX power, error %d\n", __func__, error);
5740 		return error;
5741 	}
5742 	/*
5743 	 * Reconfiguring RXON clears the firmware nodes table so we must
5744 	 * add the broadcast node again.
5745 	 */
5746 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5747 		device_printf(sc->sc_dev,
5748 		    "%s: could not add broadcast node, error %d\n", __func__,
5749 		    error);
5750 		return error;
5751 	}
5752 
5753 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5754 
5755 	return 0;
5756 }
5757 
5758 static int
5759 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5760 {
5761 	struct iwn_ops *ops = &sc->ops;
5762 	struct ifnet *ifp = sc->sc_ifp;
5763 	struct ieee80211com *ic = ifp->if_l2com;
5764 	struct ieee80211_node *ni = vap->iv_bss;
5765 	struct iwn_node_info node;
5766 	uint32_t htflags = 0;
5767 	int error;
5768 
5769 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5770 
5771 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5772 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5773 		/* Link LED blinks while monitoring. */
5774 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5775 		return 0;
5776 	}
5777 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5778 		device_printf(sc->sc_dev,
5779 		    "%s: could not set timing, error %d\n", __func__, error);
5780 		return error;
5781 	}
5782 
5783 	/* Update adapter configuration. */
5784 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
5785 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
5786 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5787 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5788 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5789 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5790 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5791 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
5792 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5793 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
5794 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5795 		sc->rxon->cck_mask  = 0;
5796 		sc->rxon->ofdm_mask = 0x15;
5797 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5798 		sc->rxon->cck_mask  = 0x03;
5799 		sc->rxon->ofdm_mask = 0;
5800 	} else {
5801 		/* Assume 802.11b/g. */
5802 		sc->rxon->cck_mask  = 0x0f;
5803 		sc->rxon->ofdm_mask = 0x15;
5804 	}
5805 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5806 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5807 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5808 			switch (ic->ic_curhtprotmode) {
5809 			case IEEE80211_HTINFO_OPMODE_HT20PR:
5810 				htflags |= IWN_RXON_HT_MODEPURE40;
5811 				break;
5812 			default:
5813 				htflags |= IWN_RXON_HT_MODEMIXED;
5814 				break;
5815 			}
5816 		}
5817 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5818 			htflags |= IWN_RXON_HT_HT40MINUS;
5819 	}
5820 	sc->rxon->flags |= htole32(htflags);
5821 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
5822 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5823 	    sc->rxon->chan, sc->rxon->flags);
5824 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5825 	if (error != 0) {
5826 		device_printf(sc->sc_dev,
5827 		    "%s: could not update configuration, error %d\n", __func__,
5828 		    error);
5829 		return error;
5830 	}
5831 
5832 	/* Configuration has changed, set TX power accordingly. */
5833 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5834 		device_printf(sc->sc_dev,
5835 		    "%s: could not set TX power, error %d\n", __func__, error);
5836 		return error;
5837 	}
5838 
5839 	/* Fake a join to initialize the TX rate. */
5840 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5841 	iwn_newassoc(ni, 1);
5842 
5843 	/* Add BSS node. */
5844 	memset(&node, 0, sizeof node);
5845 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5846 	node.id = IWN_ID_BSS;
5847 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5848 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5849 		case IEEE80211_HTCAP_SMPS_ENA:
5850 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5851 			break;
5852 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5853 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5854 			break;
5855 		}
5856 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5857 		    IWN_AMDPU_DENSITY(5));	/* 4us */
5858 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5859 			node.htflags |= htole32(IWN_NODE_HT40);
5860 	}
5861 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5862 	error = ops->add_node(sc, &node, 1);
5863 	if (error != 0) {
5864 		device_printf(sc->sc_dev,
5865 		    "%s: could not add BSS node, error %d\n", __func__, error);
5866 		return error;
5867 	}
5868 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5869 	    __func__, node.id);
5870 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5871 		device_printf(sc->sc_dev,
5872 		    "%s: could not setup link quality for node %d, error %d\n",
5873 		    __func__, node.id, error);
5874 		return error;
5875 	}
5876 
5877 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5878 		device_printf(sc->sc_dev,
5879 		    "%s: could not set sensitivity, error %d\n", __func__,
5880 		    error);
5881 		return error;
5882 	}
5883 	/* Start periodic calibration timer. */
5884 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5885 	sc->calib_cnt = 0;
5886 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5887 	    sc);
5888 
5889 	/* Link LED always on while associated. */
5890 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5891 
5892 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5893 
5894 	return 0;
5895 }
5896 
5897 /*
5898  * This function is called by upper layer when an ADDBA request is received
5899  * from another STA and before the ADDBA response is sent.
5900  */
5901 static int
5902 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5903     int baparamset, int batimeout, int baseqctl)
5904 {
5905 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5906 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5907 	struct iwn_ops *ops = &sc->ops;
5908 	struct iwn_node *wn = (void *)ni;
5909 	struct iwn_node_info node;
5910 	uint16_t ssn;
5911 	uint8_t tid;
5912 	int error;
5913 
5914 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5915 
5916 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5917 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5918 
5919 	memset(&node, 0, sizeof node);
5920 	node.id = wn->id;
5921 	node.control = IWN_NODE_UPDATE;
5922 	node.flags = IWN_FLAG_SET_ADDBA;
5923 	node.addba_tid = tid;
5924 	node.addba_ssn = htole16(ssn);
5925 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5926 	    wn->id, tid, ssn);
5927 	error = ops->add_node(sc, &node, 1);
5928 	if (error != 0)
5929 		return error;
5930 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5931 #undef MS
5932 }
5933 
5934 /*
5935  * This function is called by upper layer on teardown of an HT-immediate
5936  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5937  */
5938 static void
5939 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5940 {
5941 	struct ieee80211com *ic = ni->ni_ic;
5942 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5943 	struct iwn_ops *ops = &sc->ops;
5944 	struct iwn_node *wn = (void *)ni;
5945 	struct iwn_node_info node;
5946 	uint8_t tid;
5947 
5948 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5949 
5950 	/* XXX: tid as an argument */
5951 	for (tid = 0; tid < WME_NUM_TID; tid++) {
5952 		if (&ni->ni_rx_ampdu[tid] == rap)
5953 			break;
5954 	}
5955 
5956 	memset(&node, 0, sizeof node);
5957 	node.id = wn->id;
5958 	node.control = IWN_NODE_UPDATE;
5959 	node.flags = IWN_FLAG_SET_DELBA;
5960 	node.delba_tid = tid;
5961 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5962 	(void)ops->add_node(sc, &node, 1);
5963 	sc->sc_ampdu_rx_stop(ni, rap);
5964 }
5965 
5966 static int
5967 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5968     int dialogtoken, int baparamset, int batimeout)
5969 {
5970 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5971 	int qid;
5972 
5973 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5974 
5975 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5976 		if (sc->qid2tap[qid] == NULL)
5977 			break;
5978 	}
5979 	if (qid == sc->ntxqs) {
5980 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5981 		    __func__);
5982 		return 0;
5983 	}
5984 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5985 	if (tap->txa_private == NULL) {
5986 		device_printf(sc->sc_dev,
5987 		    "%s: failed to alloc TX aggregation structure\n", __func__);
5988 		return 0;
5989 	}
5990 	sc->qid2tap[qid] = tap;
5991 	*(int *)tap->txa_private = qid;
5992 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5993 	    batimeout);
5994 }
5995 
5996 static int
5997 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5998     int code, int baparamset, int batimeout)
5999 {
6000 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6001 	int qid = *(int *)tap->txa_private;
6002 	uint8_t tid = tap->txa_tid;
6003 	int ret;
6004 
6005 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6006 
6007 	if (code == IEEE80211_STATUS_SUCCESS) {
6008 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
6009 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
6010 		if (ret != 1)
6011 			return ret;
6012 	} else {
6013 		sc->qid2tap[qid] = NULL;
6014 		free(tap->txa_private, M_DEVBUF);
6015 		tap->txa_private = NULL;
6016 	}
6017 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
6018 }
6019 
6020 /*
6021  * This function is called by upper layer when an ADDBA response is received
6022  * from another STA.
6023  */
6024 static int
6025 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
6026     uint8_t tid)
6027 {
6028 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
6029 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6030 	struct iwn_ops *ops = &sc->ops;
6031 	struct iwn_node *wn = (void *)ni;
6032 	struct iwn_node_info node;
6033 	int error, qid;
6034 
6035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6036 
6037 	/* Enable TX for the specified RA/TID. */
6038 	wn->disable_tid &= ~(1 << tid);
6039 	memset(&node, 0, sizeof node);
6040 	node.id = wn->id;
6041 	node.control = IWN_NODE_UPDATE;
6042 	node.flags = IWN_FLAG_SET_DISABLE_TID;
6043 	node.disable_tid = htole16(wn->disable_tid);
6044 	error = ops->add_node(sc, &node, 1);
6045 	if (error != 0)
6046 		return 0;
6047 
6048 	if ((error = iwn_nic_lock(sc)) != 0)
6049 		return 0;
6050 	qid = *(int *)tap->txa_private;
6051 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
6052 	    __func__, wn->id, tid, tap->txa_start, qid);
6053 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
6054 	iwn_nic_unlock(sc);
6055 
6056 	iwn_set_link_quality(sc, ni);
6057 	return 1;
6058 }
6059 
6060 static void
6061 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
6062 {
6063 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6064 	struct iwn_ops *ops = &sc->ops;
6065 	uint8_t tid = tap->txa_tid;
6066 	int qid;
6067 
6068 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6069 
6070 	sc->sc_addba_stop(ni, tap);
6071 
6072 	if (tap->txa_private == NULL)
6073 		return;
6074 
6075 	qid = *(int *)tap->txa_private;
6076 	if (sc->txq[qid].queued != 0)
6077 		return;
6078 	if (iwn_nic_lock(sc) != 0)
6079 		return;
6080 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
6081 	iwn_nic_unlock(sc);
6082 	sc->qid2tap[qid] = NULL;
6083 	free(tap->txa_private, M_DEVBUF);
6084 	tap->txa_private = NULL;
6085 }
6086 
6087 static void
6088 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6089     int qid, uint8_t tid, uint16_t ssn)
6090 {
6091 	struct iwn_node *wn = (void *)ni;
6092 
6093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6094 
6095 	/* Stop TX scheduler while we're changing its configuration. */
6096 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6097 	    IWN4965_TXQ_STATUS_CHGACT);
6098 
6099 	/* Assign RA/TID translation to the queue. */
6100 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
6101 	    wn->id << 4 | tid);
6102 
6103 	/* Enable chain-building mode for the queue. */
6104 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
6105 
6106 	/* Set starting sequence number from the ADDBA request. */
6107 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
6108 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6109 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6110 
6111 	/* Set scheduler window size. */
6112 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6113 	    IWN_SCHED_WINSZ);
6114 	/* Set scheduler frame limit. */
6115 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6116 	    IWN_SCHED_LIMIT << 16);
6117 
6118 	/* Enable interrupts for the queue. */
6119 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6120 
6121 	/* Mark the queue as active. */
6122 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6123 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6124 	    iwn_tid2fifo[tid] << 1);
6125 }
6126 
6127 static void
6128 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
6129 {
6130 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6131 
6132 	/* Stop TX scheduler while we're changing its configuration. */
6133 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6134 	    IWN4965_TXQ_STATUS_CHGACT);
6135 
6136 	/* Set starting sequence number from the ADDBA request. */
6137 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6138 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6139 
6140 	/* Disable interrupts for the queue. */
6141 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6142 
6143 	/* Mark the queue as inactive. */
6144 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6145 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6146 }
6147 
6148 static void
6149 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6150     int qid, uint8_t tid, uint16_t ssn)
6151 {
6152 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6153 
6154 	struct iwn_node *wn = (void *)ni;
6155 
6156 	/* Stop TX scheduler while we're changing its configuration. */
6157 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6158 	    IWN5000_TXQ_STATUS_CHGACT);
6159 
6160 	/* Assign RA/TID translation to the queue. */
6161 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
6162 	    wn->id << 4 | tid);
6163 
6164 	/* Enable chain-building mode for the queue. */
6165 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
6166 
6167 	/* Enable aggregation for the queue. */
6168 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6169 
6170 	/* Set starting sequence number from the ADDBA request. */
6171 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
6172 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6173 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6174 
6175 	/* Set scheduler window size and frame limit. */
6176 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6177 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6178 
6179 	/* Enable interrupts for the queue. */
6180 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6181 
6182 	/* Mark the queue as active. */
6183 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6184 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
6185 }
6186 
6187 static void
6188 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
6189 {
6190 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6191 
6192 	/* Stop TX scheduler while we're changing its configuration. */
6193 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6194 	    IWN5000_TXQ_STATUS_CHGACT);
6195 
6196 	/* Disable aggregation for the queue. */
6197 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6198 
6199 	/* Set starting sequence number from the ADDBA request. */
6200 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
6201 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6202 
6203 	/* Disable interrupts for the queue. */
6204 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6205 
6206 	/* Mark the queue as inactive. */
6207 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6208 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
6209 }
6210 
6211 /*
6212  * Query calibration tables from the initialization firmware.  We do this
6213  * only once at first boot.  Called from a process context.
6214  */
6215 static int
6216 iwn5000_query_calibration(struct iwn_softc *sc)
6217 {
6218 	struct iwn5000_calib_config cmd;
6219 	int error;
6220 
6221 	memset(&cmd, 0, sizeof cmd);
6222 	cmd.ucode.once.enable = 0xffffffff;
6223 	cmd.ucode.once.start  = 0xffffffff;
6224 	cmd.ucode.once.send   = 0xffffffff;
6225 	cmd.ucode.flags       = 0xffffffff;
6226 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
6227 	    __func__);
6228 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
6229 	if (error != 0)
6230 		return error;
6231 
6232 	/* Wait at most two seconds for calibration to complete. */
6233 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
6234 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
6235 	return error;
6236 }
6237 
6238 /*
6239  * Send calibration results to the runtime firmware.  These results were
6240  * obtained on first boot from the initialization firmware.
6241  */
6242 static int
6243 iwn5000_send_calibration(struct iwn_softc *sc)
6244 {
6245 	int idx, error;
6246 
6247 	for (idx = 0; idx < 5; idx++) {
6248 		if (sc->calibcmd[idx].buf == NULL)
6249 			continue;	/* No results available. */
6250 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6251 		    "send calibration result idx=%d len=%d\n", idx,
6252 		    sc->calibcmd[idx].len);
6253 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
6254 		    sc->calibcmd[idx].len, 0);
6255 		if (error != 0) {
6256 			device_printf(sc->sc_dev,
6257 			    "%s: could not send calibration result, error %d\n",
6258 			    __func__, error);
6259 			return error;
6260 		}
6261 	}
6262 	return 0;
6263 }
6264 
6265 static int
6266 iwn5000_send_wimax_coex(struct iwn_softc *sc)
6267 {
6268 	struct iwn5000_wimax_coex wimax;
6269 
6270 #ifdef notyet
6271 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6272 		/* Enable WiMAX coexistence for combo adapters. */
6273 		wimax.flags =
6274 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
6275 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
6276 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
6277 		    IWN_WIMAX_COEX_ENABLE;
6278 		memcpy(wimax.events, iwn6050_wimax_events,
6279 		    sizeof iwn6050_wimax_events);
6280 	} else
6281 #endif
6282 	{
6283 		/* Disable WiMAX coexistence. */
6284 		wimax.flags = 0;
6285 		memset(wimax.events, 0, sizeof wimax.events);
6286 	}
6287 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
6288 	    __func__);
6289 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
6290 }
6291 
6292 static int
6293 iwn5000_crystal_calib(struct iwn_softc *sc)
6294 {
6295 	struct iwn5000_phy_calib_crystal cmd;
6296 
6297 	memset(&cmd, 0, sizeof cmd);
6298 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
6299 	cmd.ngroups = 1;
6300 	cmd.isvalid = 1;
6301 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
6302 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
6303 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
6304 	    cmd.cap_pin[0], cmd.cap_pin[1]);
6305 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6306 }
6307 
6308 static int
6309 iwn5000_temp_offset_calib(struct iwn_softc *sc)
6310 {
6311 	struct iwn5000_phy_calib_temp_offset cmd;
6312 
6313 	memset(&cmd, 0, sizeof cmd);
6314 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
6315 	cmd.ngroups = 1;
6316 	cmd.isvalid = 1;
6317 	if (sc->eeprom_temp != 0)
6318 		cmd.offset = htole16(sc->eeprom_temp);
6319 	else
6320 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
6321 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
6322 	    le16toh(cmd.offset));
6323 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6324 }
6325 
6326 /*
6327  * This function is called after the runtime firmware notifies us of its
6328  * readiness (called in a process context).
6329  */
6330 static int
6331 iwn4965_post_alive(struct iwn_softc *sc)
6332 {
6333 	int error, qid;
6334 
6335 	if ((error = iwn_nic_lock(sc)) != 0)
6336 		return error;
6337 
6338 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6339 
6340 	/* Clear TX scheduler state in SRAM. */
6341 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6342 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
6343 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
6344 
6345 	/* Set physical address of TX scheduler rings (1KB aligned). */
6346 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6347 
6348 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6349 
6350 	/* Disable chain mode for all our 16 queues. */
6351 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6352 
6353 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6354 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6355 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6356 
6357 		/* Set scheduler window size. */
6358 		iwn_mem_write(sc, sc->sched_base +
6359 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6360 		/* Set scheduler frame limit. */
6361 		iwn_mem_write(sc, sc->sched_base +
6362 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6363 		    IWN_SCHED_LIMIT << 16);
6364 	}
6365 
6366 	/* Enable interrupts for all our 16 queues. */
6367 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6368 	/* Identify TX FIFO rings (0-7). */
6369 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6370 
6371 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6372 	for (qid = 0; qid < 7; qid++) {
6373 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6374 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6375 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6376 	}
6377 	iwn_nic_unlock(sc);
6378 	return 0;
6379 }
6380 
6381 /*
6382  * This function is called after the initialization or runtime firmware
6383  * notifies us of its readiness (called in a process context).
6384  */
6385 static int
6386 iwn5000_post_alive(struct iwn_softc *sc)
6387 {
6388 	int error, qid;
6389 
6390 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6391 
6392 	/* Switch to using ICT interrupt mode. */
6393 	iwn5000_ict_reset(sc);
6394 
6395 	if ((error = iwn_nic_lock(sc)) != 0){
6396 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
6397 		return error;
6398 	}
6399 
6400 	/* Clear TX scheduler state in SRAM. */
6401 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6402 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6403 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6404 
6405 	/* Set physical address of TX scheduler rings (1KB aligned). */
6406 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6407 
6408 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6409 
6410 	/* Enable chain mode for all queues, except command queue. */
6411 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6412 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6413 
6414 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6415 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6416 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6417 
6418 		iwn_mem_write(sc, sc->sched_base +
6419 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6420 		/* Set scheduler window size and frame limit. */
6421 		iwn_mem_write(sc, sc->sched_base +
6422 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6423 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6424 	}
6425 
6426 	/* Enable interrupts for all our 20 queues. */
6427 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6428 	/* Identify TX FIFO rings (0-7). */
6429 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6430 
6431 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6432 	for (qid = 0; qid < 7; qid++) {
6433 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6434 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6435 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6436 	}
6437 	iwn_nic_unlock(sc);
6438 
6439 	/* Configure WiMAX coexistence for combo adapters. */
6440 	error = iwn5000_send_wimax_coex(sc);
6441 	if (error != 0) {
6442 		device_printf(sc->sc_dev,
6443 		    "%s: could not configure WiMAX coexistence, error %d\n",
6444 		    __func__, error);
6445 		return error;
6446 	}
6447 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6448 		/* Perform crystal calibration. */
6449 		error = iwn5000_crystal_calib(sc);
6450 		if (error != 0) {
6451 			device_printf(sc->sc_dev,
6452 			    "%s: crystal calibration failed, error %d\n",
6453 			    __func__, error);
6454 			return error;
6455 		}
6456 	}
6457 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6458 		/* Query calibration from the initialization firmware. */
6459 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6460 			device_printf(sc->sc_dev,
6461 			    "%s: could not query calibration, error %d\n",
6462 			    __func__, error);
6463 			return error;
6464 		}
6465 		/*
6466 		 * We have the calibration results now, reboot with the
6467 		 * runtime firmware (call ourselves recursively!)
6468 		 */
6469 		iwn_hw_stop(sc);
6470 		error = iwn_hw_init(sc);
6471 	} else {
6472 		/* Send calibration results to runtime firmware. */
6473 		error = iwn5000_send_calibration(sc);
6474 	}
6475 
6476 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6477 
6478 	return error;
6479 }
6480 
6481 /*
6482  * The firmware boot code is small and is intended to be copied directly into
6483  * the NIC internal memory (no DMA transfer).
6484  */
6485 static int
6486 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6487 {
6488 	int error, ntries;
6489 
6490 	size /= sizeof (uint32_t);
6491 
6492 	if ((error = iwn_nic_lock(sc)) != 0)
6493 		return error;
6494 
6495 	/* Copy microcode image into NIC memory. */
6496 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6497 	    (const uint32_t *)ucode, size);
6498 
6499 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6500 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6501 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6502 
6503 	/* Start boot load now. */
6504 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6505 
6506 	/* Wait for transfer to complete. */
6507 	for (ntries = 0; ntries < 1000; ntries++) {
6508 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6509 		    IWN_BSM_WR_CTRL_START))
6510 			break;
6511 		DELAY(10);
6512 	}
6513 	if (ntries == 1000) {
6514 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6515 		    __func__);
6516 		iwn_nic_unlock(sc);
6517 		return ETIMEDOUT;
6518 	}
6519 
6520 	/* Enable boot after power up. */
6521 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6522 
6523 	iwn_nic_unlock(sc);
6524 	return 0;
6525 }
6526 
6527 static int
6528 iwn4965_load_firmware(struct iwn_softc *sc)
6529 {
6530 	struct iwn_fw_info *fw = &sc->fw;
6531 	struct iwn_dma_info *dma = &sc->fw_dma;
6532 	int error;
6533 
6534 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6535 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6536 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6537 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6538 	    fw->init.text, fw->init.textsz);
6539 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6540 
6541 	/* Tell adapter where to find initialization sections. */
6542 	if ((error = iwn_nic_lock(sc)) != 0)
6543 		return error;
6544 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6545 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6546 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6547 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6548 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6549 	iwn_nic_unlock(sc);
6550 
6551 	/* Load firmware boot code. */
6552 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6553 	if (error != 0) {
6554 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6555 		    __func__);
6556 		return error;
6557 	}
6558 	/* Now press "execute". */
6559 	IWN_WRITE(sc, IWN_RESET, 0);
6560 
6561 	/* Wait at most one second for first alive notification. */
6562 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6563 		device_printf(sc->sc_dev,
6564 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6565 		    __func__, error);
6566 		return error;
6567 	}
6568 
6569 	/* Retrieve current temperature for initial TX power calibration. */
6570 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6571 	sc->temp = iwn4965_get_temperature(sc);
6572 
6573 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6574 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6575 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6576 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6577 	    fw->main.text, fw->main.textsz);
6578 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6579 
6580 	/* Tell adapter where to find runtime sections. */
6581 	if ((error = iwn_nic_lock(sc)) != 0)
6582 		return error;
6583 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6584 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6585 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6586 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6587 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6588 	    IWN_FW_UPDATED | fw->main.textsz);
6589 	iwn_nic_unlock(sc);
6590 
6591 	return 0;
6592 }
6593 
6594 static int
6595 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6596     const uint8_t *section, int size)
6597 {
6598 	struct iwn_dma_info *dma = &sc->fw_dma;
6599 	int error;
6600 
6601 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6602 
6603 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6604 	memcpy(dma->vaddr, section, size);
6605 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6606 
6607 	if ((error = iwn_nic_lock(sc)) != 0)
6608 		return error;
6609 
6610 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6611 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6612 
6613 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6614 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6615 	    IWN_LOADDR(dma->paddr));
6616 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6617 	    IWN_HIADDR(dma->paddr) << 28 | size);
6618 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6619 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6620 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6621 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6622 
6623 	/* Kick Flow Handler to start DMA transfer. */
6624 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6625 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6626 
6627 	iwn_nic_unlock(sc);
6628 
6629 	/* Wait at most five seconds for FH DMA transfer to complete. */
6630 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6631 }
6632 
6633 static int
6634 iwn5000_load_firmware(struct iwn_softc *sc)
6635 {
6636 	struct iwn_fw_part *fw;
6637 	int error;
6638 
6639 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6640 
6641 	/* Load the initialization firmware on first boot only. */
6642 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6643 	    &sc->fw.main : &sc->fw.init;
6644 
6645 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6646 	    fw->text, fw->textsz);
6647 	if (error != 0) {
6648 		device_printf(sc->sc_dev,
6649 		    "%s: could not load firmware %s section, error %d\n",
6650 		    __func__, ".text", error);
6651 		return error;
6652 	}
6653 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6654 	    fw->data, fw->datasz);
6655 	if (error != 0) {
6656 		device_printf(sc->sc_dev,
6657 		    "%s: could not load firmware %s section, error %d\n",
6658 		    __func__, ".data", error);
6659 		return error;
6660 	}
6661 
6662 	/* Now press "execute". */
6663 	IWN_WRITE(sc, IWN_RESET, 0);
6664 	return 0;
6665 }
6666 
6667 /*
6668  * Extract text and data sections from a legacy firmware image.
6669  */
6670 static int
6671 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6672 {
6673 	const uint32_t *ptr;
6674 	size_t hdrlen = 24;
6675 	uint32_t rev;
6676 
6677 	ptr = (const uint32_t *)fw->data;
6678 	rev = le32toh(*ptr++);
6679 
6680 	/* Check firmware API version. */
6681 	if (IWN_FW_API(rev) <= 1) {
6682 		device_printf(sc->sc_dev,
6683 		    "%s: bad firmware, need API version >=2\n", __func__);
6684 		return EINVAL;
6685 	}
6686 	if (IWN_FW_API(rev) >= 3) {
6687 		/* Skip build number (version 2 header). */
6688 		hdrlen += 4;
6689 		ptr++;
6690 	}
6691 	if (fw->size < hdrlen) {
6692 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6693 		    __func__, fw->size);
6694 		return EINVAL;
6695 	}
6696 	fw->main.textsz = le32toh(*ptr++);
6697 	fw->main.datasz = le32toh(*ptr++);
6698 	fw->init.textsz = le32toh(*ptr++);
6699 	fw->init.datasz = le32toh(*ptr++);
6700 	fw->boot.textsz = le32toh(*ptr++);
6701 
6702 	/* Check that all firmware sections fit. */
6703 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6704 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6705 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6706 		    __func__, fw->size);
6707 		return EINVAL;
6708 	}
6709 
6710 	/* Get pointers to firmware sections. */
6711 	fw->main.text = (const uint8_t *)ptr;
6712 	fw->main.data = fw->main.text + fw->main.textsz;
6713 	fw->init.text = fw->main.data + fw->main.datasz;
6714 	fw->init.data = fw->init.text + fw->init.textsz;
6715 	fw->boot.text = fw->init.data + fw->init.datasz;
6716 	return 0;
6717 }
6718 
6719 /*
6720  * Extract text and data sections from a TLV firmware image.
6721  */
6722 static int
6723 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6724     uint16_t alt)
6725 {
6726 	const struct iwn_fw_tlv_hdr *hdr;
6727 	const struct iwn_fw_tlv *tlv;
6728 	const uint8_t *ptr, *end;
6729 	uint64_t altmask;
6730 	uint32_t len, tmp;
6731 
6732 	if (fw->size < sizeof (*hdr)) {
6733 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6734 		    __func__, fw->size);
6735 		return EINVAL;
6736 	}
6737 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6738 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6739 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6740 		    __func__, le32toh(hdr->signature));
6741 		return EINVAL;
6742 	}
6743 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6744 	    le32toh(hdr->build));
6745 
6746 	/*
6747 	 * Select the closest supported alternative that is less than
6748 	 * or equal to the specified one.
6749 	 */
6750 	altmask = le64toh(hdr->altmask);
6751 	while (alt > 0 && !(altmask & (1ULL << alt)))
6752 		alt--;	/* Downgrade. */
6753 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6754 
6755 	ptr = (const uint8_t *)(hdr + 1);
6756 	end = (const uint8_t *)(fw->data + fw->size);
6757 
6758 	/* Parse type-length-value fields. */
6759 	while (ptr + sizeof (*tlv) <= end) {
6760 		tlv = (const struct iwn_fw_tlv *)ptr;
6761 		len = le32toh(tlv->len);
6762 
6763 		ptr += sizeof (*tlv);
6764 		if (ptr + len > end) {
6765 			device_printf(sc->sc_dev,
6766 			    "%s: firmware too short: %zu bytes\n", __func__,
6767 			    fw->size);
6768 			return EINVAL;
6769 		}
6770 		/* Skip other alternatives. */
6771 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6772 			goto next;
6773 
6774 		switch (le16toh(tlv->type)) {
6775 		case IWN_FW_TLV_MAIN_TEXT:
6776 			fw->main.text = ptr;
6777 			fw->main.textsz = len;
6778 			break;
6779 		case IWN_FW_TLV_MAIN_DATA:
6780 			fw->main.data = ptr;
6781 			fw->main.datasz = len;
6782 			break;
6783 		case IWN_FW_TLV_INIT_TEXT:
6784 			fw->init.text = ptr;
6785 			fw->init.textsz = len;
6786 			break;
6787 		case IWN_FW_TLV_INIT_DATA:
6788 			fw->init.data = ptr;
6789 			fw->init.datasz = len;
6790 			break;
6791 		case IWN_FW_TLV_BOOT_TEXT:
6792 			fw->boot.text = ptr;
6793 			fw->boot.textsz = len;
6794 			break;
6795 		case IWN_FW_TLV_ENH_SENS:
6796 			if (!len)
6797 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6798 			break;
6799 		case IWN_FW_TLV_PHY_CALIB:
6800 			tmp = htole32(*ptr);
6801 			if (tmp < 253) {
6802 				sc->reset_noise_gain = tmp;
6803 				sc->noise_gain = tmp + 1;
6804 			}
6805 			break;
6806 		case IWN_FW_TLV_PAN:
6807 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
6808 			DPRINTF(sc, IWN_DEBUG_RESET,
6809 			    "PAN Support found: %d\n", 1);
6810 			break;
6811 		case IWN_FW_TLV_FLAGS :
6812 			sc->tlv_feature_flags = htole32(*ptr);
6813 			break;
6814 		case IWN_FW_TLV_PBREQ_MAXLEN:
6815 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
6816 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
6817 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
6818 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
6819 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
6820 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
6821 		case IWN_FW_TLV_WOWLAN_INST:
6822 		case IWN_FW_TLV_WOWLAN_DATA:
6823 			DPRINTF(sc, IWN_DEBUG_RESET,
6824 			    "TLV type %d reconized but not handled\n",
6825 			    le16toh(tlv->type));
6826 			break;
6827 		default:
6828 			DPRINTF(sc, IWN_DEBUG_RESET,
6829 			    "TLV type %d not handled\n", le16toh(tlv->type));
6830 			break;
6831 		}
6832  next:		/* TLV fields are 32-bit aligned. */
6833 		ptr += (len + 3) & ~3;
6834 	}
6835 	return 0;
6836 }
6837 
6838 static int
6839 iwn_read_firmware(struct iwn_softc *sc)
6840 {
6841 	struct iwn_fw_info *fw = &sc->fw;
6842 	int error;
6843 
6844 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6845 
6846 	IWN_UNLOCK(sc);
6847 
6848 	memset(fw, 0, sizeof (*fw));
6849 
6850 	/* Read firmware image from filesystem. */
6851 	sc->fw_fp = firmware_get(sc->fwname);
6852 	if (sc->fw_fp == NULL) {
6853 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6854 		    __func__, sc->fwname);
6855 		IWN_LOCK(sc);
6856 		return EINVAL;
6857 	}
6858 	IWN_LOCK(sc);
6859 
6860 	fw->size = sc->fw_fp->datasize;
6861 	fw->data = (const uint8_t *)sc->fw_fp->data;
6862 	if (fw->size < sizeof (uint32_t)) {
6863 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6864 		    __func__, fw->size);
6865 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6866 		sc->fw_fp = NULL;
6867 		return EINVAL;
6868 	}
6869 
6870 	/* Retrieve text and data sections. */
6871 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6872 		error = iwn_read_firmware_leg(sc, fw);
6873 	else
6874 		error = iwn_read_firmware_tlv(sc, fw, 1);
6875 	if (error != 0) {
6876 		device_printf(sc->sc_dev,
6877 		    "%s: could not read firmware sections, error %d\n",
6878 		    __func__, error);
6879 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6880 		sc->fw_fp = NULL;
6881 		return error;
6882 	}
6883 
6884 	/* Make sure text and data sections fit in hardware memory. */
6885 	if (fw->main.textsz > sc->fw_text_maxsz ||
6886 	    fw->main.datasz > sc->fw_data_maxsz ||
6887 	    fw->init.textsz > sc->fw_text_maxsz ||
6888 	    fw->init.datasz > sc->fw_data_maxsz ||
6889 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6890 	    (fw->boot.textsz & 3) != 0) {
6891 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6892 		    __func__);
6893 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6894 		sc->fw_fp = NULL;
6895 		return EINVAL;
6896 	}
6897 
6898 	/* We can proceed with loading the firmware. */
6899 	return 0;
6900 }
6901 
6902 static int
6903 iwn_clock_wait(struct iwn_softc *sc)
6904 {
6905 	int ntries;
6906 
6907 	/* Set "initialization complete" bit. */
6908 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6909 
6910 	/* Wait for clock stabilization. */
6911 	for (ntries = 0; ntries < 2500; ntries++) {
6912 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6913 			return 0;
6914 		DELAY(10);
6915 	}
6916 	device_printf(sc->sc_dev,
6917 	    "%s: timeout waiting for clock stabilization\n", __func__);
6918 	return ETIMEDOUT;
6919 }
6920 
6921 static int
6922 iwn_apm_init(struct iwn_softc *sc)
6923 {
6924 	uint32_t reg;
6925 	int error;
6926 
6927 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6928 
6929 	/* Disable L0s exit timer (NMI bug workaround). */
6930 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6931 	/* Don't wait for ICH L0s (ICH bug workaround). */
6932 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6933 
6934 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6935 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6936 
6937 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6938 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6939 
6940 	/* Retrieve PCIe Active State Power Management (ASPM). */
6941 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6942 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6943 	if (reg & 0x02)	/* L1 Entry enabled. */
6944 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6945 	else
6946 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6947 
6948 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6949 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6950 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6951 
6952 	/* Wait for clock stabilization before accessing prph. */
6953 	if ((error = iwn_clock_wait(sc)) != 0)
6954 		return error;
6955 
6956 	if ((error = iwn_nic_lock(sc)) != 0)
6957 		return error;
6958 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6959 		/* Enable DMA and BSM (Bootstrap State Machine). */
6960 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6961 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6962 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6963 	} else {
6964 		/* Enable DMA. */
6965 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6966 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6967 	}
6968 	DELAY(20);
6969 	/* Disable L1-Active. */
6970 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6971 	iwn_nic_unlock(sc);
6972 
6973 	return 0;
6974 }
6975 
6976 static void
6977 iwn_apm_stop_master(struct iwn_softc *sc)
6978 {
6979 	int ntries;
6980 
6981 	/* Stop busmaster DMA activity. */
6982 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6983 	for (ntries = 0; ntries < 100; ntries++) {
6984 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6985 			return;
6986 		DELAY(10);
6987 	}
6988 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6989 }
6990 
6991 static void
6992 iwn_apm_stop(struct iwn_softc *sc)
6993 {
6994 	iwn_apm_stop_master(sc);
6995 
6996 	/* Reset the entire device. */
6997 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6998 	DELAY(10);
6999 	/* Clear "initialization complete" bit. */
7000 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
7001 }
7002 
7003 static int
7004 iwn4965_nic_config(struct iwn_softc *sc)
7005 {
7006 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7007 
7008 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
7009 		/*
7010 		 * I don't believe this to be correct but this is what the
7011 		 * vendor driver is doing. Probably the bits should not be
7012 		 * shifted in IWN_RFCFG_*.
7013 		 */
7014 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7015 		    IWN_RFCFG_TYPE(sc->rfcfg) |
7016 		    IWN_RFCFG_STEP(sc->rfcfg) |
7017 		    IWN_RFCFG_DASH(sc->rfcfg));
7018 	}
7019 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7020 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7021 	return 0;
7022 }
7023 
7024 static int
7025 iwn5000_nic_config(struct iwn_softc *sc)
7026 {
7027 	uint32_t tmp;
7028 	int error;
7029 
7030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7031 
7032 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
7033 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7034 		    IWN_RFCFG_TYPE(sc->rfcfg) |
7035 		    IWN_RFCFG_STEP(sc->rfcfg) |
7036 		    IWN_RFCFG_DASH(sc->rfcfg));
7037 	}
7038 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
7039 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
7040 
7041 	if ((error = iwn_nic_lock(sc)) != 0)
7042 		return error;
7043 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
7044 
7045 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
7046 		/*
7047 		 * Select first Switching Voltage Regulator (1.32V) to
7048 		 * solve a stability issue related to noisy DC2DC line
7049 		 * in the silicon of 1000 Series.
7050 		 */
7051 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
7052 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
7053 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
7054 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
7055 	}
7056 	iwn_nic_unlock(sc);
7057 
7058 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
7059 		/* Use internal power amplifier only. */
7060 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
7061 	}
7062 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
7063 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
7064 		/* Indicate that ROM calibration version is >=6. */
7065 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
7066 	}
7067 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
7068 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
7069 	return 0;
7070 }
7071 
7072 /*
7073  * Take NIC ownership over Intel Active Management Technology (AMT).
7074  */
7075 static int
7076 iwn_hw_prepare(struct iwn_softc *sc)
7077 {
7078 	int ntries;
7079 
7080 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7081 
7082 	/* Check if hardware is ready. */
7083 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7084 	for (ntries = 0; ntries < 5; ntries++) {
7085 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7086 		    IWN_HW_IF_CONFIG_NIC_READY)
7087 			return 0;
7088 		DELAY(10);
7089 	}
7090 
7091 	/* Hardware not ready, force into ready state. */
7092 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
7093 	for (ntries = 0; ntries < 15000; ntries++) {
7094 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
7095 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
7096 			break;
7097 		DELAY(10);
7098 	}
7099 	if (ntries == 15000)
7100 		return ETIMEDOUT;
7101 
7102 	/* Hardware should be ready now. */
7103 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
7104 	for (ntries = 0; ntries < 5; ntries++) {
7105 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
7106 		    IWN_HW_IF_CONFIG_NIC_READY)
7107 			return 0;
7108 		DELAY(10);
7109 	}
7110 	return ETIMEDOUT;
7111 }
7112 
7113 static int
7114 iwn_hw_init(struct iwn_softc *sc)
7115 {
7116 	struct iwn_ops *ops = &sc->ops;
7117 	int error, chnl, qid;
7118 
7119 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7120 
7121 	/* Clear pending interrupts. */
7122 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7123 
7124 	if ((error = iwn_apm_init(sc)) != 0) {
7125 		device_printf(sc->sc_dev,
7126 		    "%s: could not power ON adapter, error %d\n", __func__,
7127 		    error);
7128 		return error;
7129 	}
7130 
7131 	/* Select VMAIN power source. */
7132 	if ((error = iwn_nic_lock(sc)) != 0)
7133 		return error;
7134 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
7135 	iwn_nic_unlock(sc);
7136 
7137 	/* Perform adapter-specific initialization. */
7138 	if ((error = ops->nic_config(sc)) != 0)
7139 		return error;
7140 
7141 	/* Initialize RX ring. */
7142 	if ((error = iwn_nic_lock(sc)) != 0)
7143 		return error;
7144 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
7145 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
7146 	/* Set physical address of RX ring (256-byte aligned). */
7147 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
7148 	/* Set physical address of RX status (16-byte aligned). */
7149 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
7150 	/* Enable RX. */
7151 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
7152 	    IWN_FH_RX_CONFIG_ENA           |
7153 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
7154 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
7155 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
7156 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
7157 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
7158 	iwn_nic_unlock(sc);
7159 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
7160 
7161 	if ((error = iwn_nic_lock(sc)) != 0)
7162 		return error;
7163 
7164 	/* Initialize TX scheduler. */
7165 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7166 
7167 	/* Set physical address of "keep warm" page (16-byte aligned). */
7168 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
7169 
7170 	/* Initialize TX rings. */
7171 	for (qid = 0; qid < sc->ntxqs; qid++) {
7172 		struct iwn_tx_ring *txq = &sc->txq[qid];
7173 
7174 		/* Set physical address of TX ring (256-byte aligned). */
7175 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
7176 		    txq->desc_dma.paddr >> 8);
7177 	}
7178 	iwn_nic_unlock(sc);
7179 
7180 	/* Enable DMA channels. */
7181 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7182 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
7183 		    IWN_FH_TX_CONFIG_DMA_ENA |
7184 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
7185 	}
7186 
7187 	/* Clear "radio off" and "commands blocked" bits. */
7188 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7189 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
7190 
7191 	/* Clear pending interrupts. */
7192 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7193 	/* Enable interrupt coalescing. */
7194 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
7195 	/* Enable interrupts. */
7196 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7197 
7198 	/* _Really_ make sure "radio off" bit is cleared! */
7199 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7200 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7201 
7202 	/* Enable shadow registers. */
7203 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
7204 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
7205 
7206 	if ((error = ops->load_firmware(sc)) != 0) {
7207 		device_printf(sc->sc_dev,
7208 		    "%s: could not load firmware, error %d\n", __func__,
7209 		    error);
7210 		return error;
7211 	}
7212 	/* Wait at most one second for firmware alive notification. */
7213 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7214 		device_printf(sc->sc_dev,
7215 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7216 		    __func__, error);
7217 		return error;
7218 	}
7219 	/* Do post-firmware initialization. */
7220 
7221 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7222 
7223 	return ops->post_alive(sc);
7224 }
7225 
7226 static void
7227 iwn_hw_stop(struct iwn_softc *sc)
7228 {
7229 	int chnl, qid, ntries;
7230 
7231 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7232 
7233 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
7234 
7235 	/* Disable interrupts. */
7236 	IWN_WRITE(sc, IWN_INT_MASK, 0);
7237 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7238 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
7239 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7240 
7241 	/* Make sure we no longer hold the NIC lock. */
7242 	iwn_nic_unlock(sc);
7243 
7244 	/* Stop TX scheduler. */
7245 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7246 
7247 	/* Stop all DMA channels. */
7248 	if (iwn_nic_lock(sc) == 0) {
7249 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7250 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
7251 			for (ntries = 0; ntries < 200; ntries++) {
7252 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
7253 				    IWN_FH_TX_STATUS_IDLE(chnl))
7254 					break;
7255 				DELAY(10);
7256 			}
7257 		}
7258 		iwn_nic_unlock(sc);
7259 	}
7260 
7261 	/* Stop RX ring. */
7262 	iwn_reset_rx_ring(sc, &sc->rxq);
7263 
7264 	/* Reset all TX rings. */
7265 	for (qid = 0; qid < sc->ntxqs; qid++)
7266 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
7267 
7268 	if (iwn_nic_lock(sc) == 0) {
7269 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
7270 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7271 		iwn_nic_unlock(sc);
7272 	}
7273 	DELAY(5);
7274 	/* Power OFF adapter. */
7275 	iwn_apm_stop(sc);
7276 }
7277 
7278 static void
7279 iwn_radio_on(void *arg0, int pending)
7280 {
7281 	struct iwn_softc *sc = arg0;
7282 	struct ifnet *ifp = sc->sc_ifp;
7283 	struct ieee80211com *ic = ifp->if_l2com;
7284 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7285 
7286 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7287 
7288 	if (vap != NULL) {
7289 		iwn_init(sc);
7290 		ieee80211_init(vap);
7291 	}
7292 }
7293 
7294 static void
7295 iwn_radio_off(void *arg0, int pending)
7296 {
7297 	struct iwn_softc *sc = arg0;
7298 	struct ifnet *ifp = sc->sc_ifp;
7299 	struct ieee80211com *ic = ifp->if_l2com;
7300 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7301 
7302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7303 
7304 	iwn_stop(sc);
7305 	if (vap != NULL)
7306 		ieee80211_stop(vap);
7307 
7308 	/* Enable interrupts to get RF toggle notification. */
7309 	IWN_LOCK(sc);
7310 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7311 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7312 	IWN_UNLOCK(sc);
7313 }
7314 
7315 static void
7316 iwn_init_locked(struct iwn_softc *sc)
7317 {
7318 	struct ifnet *ifp = sc->sc_ifp;
7319 	int error;
7320 
7321 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7322 
7323 	IWN_LOCK_ASSERT(sc);
7324 
7325 	if ((error = iwn_hw_prepare(sc)) != 0) {
7326 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
7327 		    __func__, error);
7328 		goto fail;
7329 	}
7330 
7331 	/* Initialize interrupt mask to default value. */
7332 	sc->int_mask = IWN_INT_MASK_DEF;
7333 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7334 
7335 	/* Check that the radio is not disabled by hardware switch. */
7336 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
7337 		device_printf(sc->sc_dev,
7338 		    "radio is disabled by hardware switch\n");
7339 		/* Enable interrupts to get RF toggle notifications. */
7340 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
7341 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7342 		return;
7343 	}
7344 
7345 	/* Read firmware images from the filesystem. */
7346 	if ((error = iwn_read_firmware(sc)) != 0) {
7347 		device_printf(sc->sc_dev,
7348 		    "%s: could not read firmware, error %d\n", __func__,
7349 		    error);
7350 		goto fail;
7351 	}
7352 
7353 	/* Initialize hardware and upload firmware. */
7354 	error = iwn_hw_init(sc);
7355 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7356 	sc->fw_fp = NULL;
7357 	if (error != 0) {
7358 		device_printf(sc->sc_dev,
7359 		    "%s: could not initialize hardware, error %d\n", __func__,
7360 		    error);
7361 		goto fail;
7362 	}
7363 
7364 	/* Configure adapter now that it is ready. */
7365 	if ((error = iwn_config(sc)) != 0) {
7366 		device_printf(sc->sc_dev,
7367 		    "%s: could not configure device, error %d\n", __func__,
7368 		    error);
7369 		goto fail;
7370 	}
7371 
7372 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7373 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7374 
7375 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
7376 
7377 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7378 
7379 	return;
7380 
7381 fail:	iwn_stop_locked(sc);
7382 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
7383 }
7384 
7385 static void
7386 iwn_init(void *arg)
7387 {
7388 	struct iwn_softc *sc = arg;
7389 	struct ifnet *ifp = sc->sc_ifp;
7390 	struct ieee80211com *ic = ifp->if_l2com;
7391 
7392 	IWN_LOCK(sc);
7393 	iwn_init_locked(sc);
7394 	IWN_UNLOCK(sc);
7395 
7396 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7397 		ieee80211_start_all(ic);
7398 }
7399 
7400 static void
7401 iwn_stop_locked(struct iwn_softc *sc)
7402 {
7403 	struct ifnet *ifp = sc->sc_ifp;
7404 
7405 	IWN_LOCK_ASSERT(sc);
7406 
7407 	sc->sc_tx_timer = 0;
7408 	callout_stop(&sc->watchdog_to);
7409 	callout_stop(&sc->calib_to);
7410 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
7411 
7412 	/* Power OFF hardware. */
7413 	iwn_hw_stop(sc);
7414 }
7415 
7416 static void
7417 iwn_stop(struct iwn_softc *sc)
7418 {
7419 	IWN_LOCK(sc);
7420 	iwn_stop_locked(sc);
7421 	IWN_UNLOCK(sc);
7422 }
7423 
7424 /*
7425  * Callback from net80211 to start a scan.
7426  */
7427 static void
7428 iwn_scan_start(struct ieee80211com *ic)
7429 {
7430 	struct ifnet *ifp = ic->ic_ifp;
7431 	struct iwn_softc *sc = ifp->if_softc;
7432 
7433 	IWN_LOCK(sc);
7434 	/* make the link LED blink while we're scanning */
7435 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
7436 	IWN_UNLOCK(sc);
7437 }
7438 
7439 /*
7440  * Callback from net80211 to terminate a scan.
7441  */
7442 static void
7443 iwn_scan_end(struct ieee80211com *ic)
7444 {
7445 	struct ifnet *ifp = ic->ic_ifp;
7446 	struct iwn_softc *sc = ifp->if_softc;
7447 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7448 
7449 	IWN_LOCK(sc);
7450 	if (vap->iv_state == IEEE80211_S_RUN) {
7451 		/* Set link LED to ON status if we are associated */
7452 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7453 	}
7454 	IWN_UNLOCK(sc);
7455 }
7456 
7457 /*
7458  * Callback from net80211 to force a channel change.
7459  */
7460 static void
7461 iwn_set_channel(struct ieee80211com *ic)
7462 {
7463 	const struct ieee80211_channel *c = ic->ic_curchan;
7464 	struct ifnet *ifp = ic->ic_ifp;
7465 	struct iwn_softc *sc = ifp->if_softc;
7466 	int error;
7467 
7468 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7469 
7470 	IWN_LOCK(sc);
7471 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
7472 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
7473 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
7474 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
7475 
7476 	/*
7477 	 * Only need to set the channel in Monitor mode. AP scanning and auth
7478 	 * are already taken care of by their respective firmware commands.
7479 	 */
7480 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7481 		error = iwn_config(sc);
7482 		if (error != 0)
7483 		device_printf(sc->sc_dev,
7484 		    "%s: error %d settting channel\n", __func__, error);
7485 	}
7486 	IWN_UNLOCK(sc);
7487 }
7488 
7489 /*
7490  * Callback from net80211 to start scanning of the current channel.
7491  */
7492 static void
7493 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
7494 {
7495 	struct ieee80211vap *vap = ss->ss_vap;
7496 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7497 	int error;
7498 
7499 	IWN_LOCK(sc);
7500 	error = iwn_scan(sc);
7501 	IWN_UNLOCK(sc);
7502 	if (error != 0)
7503 		ieee80211_cancel_scan(vap);
7504 }
7505 
7506 /*
7507  * Callback from net80211 to handle the minimum dwell time being met.
7508  * The intent is to terminate the scan but we just let the firmware
7509  * notify us when it's finished as we have no safe way to abort it.
7510  */
7511 static void
7512 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7513 {
7514 	/* NB: don't try to abort scan; wait for firmware to finish */
7515 }
7516 
7517 static void
7518 iwn_hw_reset(void *arg0, int pending)
7519 {
7520 	struct iwn_softc *sc = arg0;
7521 	struct ifnet *ifp = sc->sc_ifp;
7522 	struct ieee80211com *ic = ifp->if_l2com;
7523 
7524 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7525 
7526 	iwn_stop(sc);
7527 	iwn_init(sc);
7528 	ieee80211_notify_radio(ic, 1);
7529 }
7530 #ifdef	IWN_DEBUG
7531 #define	IWN_DESC(x) case x:	return #x
7532 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
7533 
7534 /*
7535  * Translate CSR code to string
7536  */
7537 static char *iwn_get_csr_string(int csr)
7538 {
7539 	switch (csr) {
7540 		IWN_DESC(IWN_HW_IF_CONFIG);
7541 		IWN_DESC(IWN_INT_COALESCING);
7542 		IWN_DESC(IWN_INT);
7543 		IWN_DESC(IWN_INT_MASK);
7544 		IWN_DESC(IWN_FH_INT);
7545 		IWN_DESC(IWN_GPIO_IN);
7546 		IWN_DESC(IWN_RESET);
7547 		IWN_DESC(IWN_GP_CNTRL);
7548 		IWN_DESC(IWN_HW_REV);
7549 		IWN_DESC(IWN_EEPROM);
7550 		IWN_DESC(IWN_EEPROM_GP);
7551 		IWN_DESC(IWN_OTP_GP);
7552 		IWN_DESC(IWN_GIO);
7553 		IWN_DESC(IWN_GP_UCODE);
7554 		IWN_DESC(IWN_GP_DRIVER);
7555 		IWN_DESC(IWN_UCODE_GP1);
7556 		IWN_DESC(IWN_UCODE_GP2);
7557 		IWN_DESC(IWN_LED);
7558 		IWN_DESC(IWN_DRAM_INT_TBL);
7559 		IWN_DESC(IWN_GIO_CHICKEN);
7560 		IWN_DESC(IWN_ANA_PLL);
7561 		IWN_DESC(IWN_HW_REV_WA);
7562 		IWN_DESC(IWN_DBG_HPET_MEM);
7563 	default:
7564 		return "UNKNOWN CSR";
7565 	}
7566 }
7567 
7568 /*
7569  * This function print firmware register
7570  */
7571 static void
7572 iwn_debug_register(struct iwn_softc *sc)
7573 {
7574 	int i;
7575 	static const uint32_t csr_tbl[] = {
7576 		IWN_HW_IF_CONFIG,
7577 		IWN_INT_COALESCING,
7578 		IWN_INT,
7579 		IWN_INT_MASK,
7580 		IWN_FH_INT,
7581 		IWN_GPIO_IN,
7582 		IWN_RESET,
7583 		IWN_GP_CNTRL,
7584 		IWN_HW_REV,
7585 		IWN_EEPROM,
7586 		IWN_EEPROM_GP,
7587 		IWN_OTP_GP,
7588 		IWN_GIO,
7589 		IWN_GP_UCODE,
7590 		IWN_GP_DRIVER,
7591 		IWN_UCODE_GP1,
7592 		IWN_UCODE_GP2,
7593 		IWN_LED,
7594 		IWN_DRAM_INT_TBL,
7595 		IWN_GIO_CHICKEN,
7596 		IWN_ANA_PLL,
7597 		IWN_HW_REV_WA,
7598 		IWN_DBG_HPET_MEM,
7599 	};
7600 	DPRINTF(sc, IWN_DEBUG_REGISTER,
7601 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
7602 	    "\n");
7603 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
7604 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
7605 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
7606 		if ((i+1) % 3 == 0)
7607 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
7608 	}
7609 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
7610 }
7611 #endif
7612