1 /*- 2 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 3 * Copyright (c) 2011 Intel Corporation 4 * Copyright (c) 2007-2009 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * Copyright (c) 2008 7 * Benjamin Close <benjsc@FreeBSD.org> 8 * Copyright (c) 2008 Sam Leffler, Errno Consulting 9 * 10 * Permission to use, copy, modify, and distribute this software for any 11 * purpose with or without fee is hereby granted, provided that the above 12 * copyright notice and this permission notice appear in all copies. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 21 */ 22 23 /* 24 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 25 * adapters. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_wlan.h" 32 #include "opt_iwn.h" 33 34 #include <sys/param.h> 35 #include <sys/sockio.h> 36 #include <sys/sysctl.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/socket.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/bus.h> 43 #include <sys/rman.h> 44 #include <sys/endian.h> 45 #include <sys/firmware.h> 46 #include <sys/limits.h> 47 #include <sys/module.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 51 #include <machine/bus.h> 52 #include <machine/resource.h> 53 #include <machine/clock.h> 54 55 #include <dev/pci/pcireg.h> 56 #include <dev/pci/pcivar.h> 57 58 #include <net/bpf.h> 59 #include <net/if.h> 60 #include <net/if_arp.h> 61 #include <net/ethernet.h> 62 #include <net/if_dl.h> 63 #include <net/if_media.h> 64 #include <net/if_types.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/in_var.h> 69 #include <netinet/if_ether.h> 70 #include <netinet/ip.h> 71 72 #include <net80211/ieee80211_var.h> 73 #include <net80211/ieee80211_radiotap.h> 74 #include <net80211/ieee80211_regdomain.h> 75 #include <net80211/ieee80211_ratectl.h> 76 77 #include <dev/iwn/if_iwnreg.h> 78 #include <dev/iwn/if_iwnvar.h> 79 #include <dev/iwn/if_iwn_devid.h> 80 81 struct iwn_ident { 82 uint16_t vendor; 83 uint16_t device; 84 const char *name; 85 }; 86 87 static const struct iwn_ident iwn_ident_table[] = { 88 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 89 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 90 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 91 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 92 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 93 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 94 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 95 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 96 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 97 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 98 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 99 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 100 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 101 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 102 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 103 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 104 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 105 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 106 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 107 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 108 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 109 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 110 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 111 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 112 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 113 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 114 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 115 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 116 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 117 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 118 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 119 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 120 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 121 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 122 { 0, 0, NULL } 123 }; 124 125 static int iwn_probe(device_t); 126 static int iwn_attach(device_t); 127 static int iwn4965_attach(struct iwn_softc *, uint16_t); 128 static int iwn5000_attach(struct iwn_softc *, uint16_t); 129 static void iwn_radiotap_attach(struct iwn_softc *); 130 static void iwn_sysctlattach(struct iwn_softc *); 131 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 132 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 133 const uint8_t [IEEE80211_ADDR_LEN], 134 const uint8_t [IEEE80211_ADDR_LEN]); 135 static void iwn_vap_delete(struct ieee80211vap *); 136 static int iwn_detach(device_t); 137 static int iwn_shutdown(device_t); 138 static int iwn_suspend(device_t); 139 static int iwn_resume(device_t); 140 static int iwn_nic_lock(struct iwn_softc *); 141 static int iwn_eeprom_lock(struct iwn_softc *); 142 static int iwn_init_otprom(struct iwn_softc *); 143 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 144 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 145 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 146 void **, bus_size_t, bus_size_t); 147 static void iwn_dma_contig_free(struct iwn_dma_info *); 148 static int iwn_alloc_sched(struct iwn_softc *); 149 static void iwn_free_sched(struct iwn_softc *); 150 static int iwn_alloc_kw(struct iwn_softc *); 151 static void iwn_free_kw(struct iwn_softc *); 152 static int iwn_alloc_ict(struct iwn_softc *); 153 static void iwn_free_ict(struct iwn_softc *); 154 static int iwn_alloc_fwmem(struct iwn_softc *); 155 static void iwn_free_fwmem(struct iwn_softc *); 156 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 157 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 158 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 159 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 160 int); 161 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 162 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 163 static void iwn5000_ict_reset(struct iwn_softc *); 164 static int iwn_read_eeprom(struct iwn_softc *, 165 uint8_t macaddr[IEEE80211_ADDR_LEN]); 166 static void iwn4965_read_eeprom(struct iwn_softc *); 167 #ifdef IWN_DEBUG 168 static void iwn4965_print_power_group(struct iwn_softc *, int); 169 #endif 170 static void iwn5000_read_eeprom(struct iwn_softc *); 171 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 172 static void iwn_read_eeprom_band(struct iwn_softc *, int); 173 static void iwn_read_eeprom_ht40(struct iwn_softc *, int); 174 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 175 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 176 struct ieee80211_channel *); 177 static int iwn_setregdomain(struct ieee80211com *, 178 struct ieee80211_regdomain *, int, 179 struct ieee80211_channel[]); 180 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 181 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 182 const uint8_t mac[IEEE80211_ADDR_LEN]); 183 static void iwn_newassoc(struct ieee80211_node *, int); 184 static int iwn_media_change(struct ifnet *); 185 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 186 static void iwn_calib_timeout(void *); 187 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 188 struct iwn_rx_data *); 189 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 190 struct iwn_rx_data *); 191 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 192 struct iwn_rx_data *); 193 static void iwn5000_rx_calib_results(struct iwn_softc *, 194 struct iwn_rx_desc *, struct iwn_rx_data *); 195 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 196 struct iwn_rx_data *); 197 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 198 struct iwn_rx_data *); 199 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 200 struct iwn_rx_data *); 201 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 202 uint8_t); 203 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *); 204 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 205 static void iwn_notif_intr(struct iwn_softc *); 206 static void iwn_wakeup_intr(struct iwn_softc *); 207 static void iwn_rftoggle_intr(struct iwn_softc *); 208 static void iwn_fatal_intr(struct iwn_softc *); 209 static void iwn_intr(void *); 210 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 211 uint16_t); 212 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 213 uint16_t); 214 #ifdef notyet 215 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 216 #endif 217 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 218 struct ieee80211_node *); 219 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 220 struct ieee80211_node *, 221 const struct ieee80211_bpf_params *params); 222 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 223 const struct ieee80211_bpf_params *); 224 static void iwn_start(struct ifnet *); 225 static void iwn_start_locked(struct ifnet *); 226 static void iwn_watchdog(void *); 227 static int iwn_ioctl(struct ifnet *, u_long, caddr_t); 228 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 229 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 230 int); 231 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 232 int); 233 static int iwn_set_link_quality(struct iwn_softc *, 234 struct ieee80211_node *); 235 static int iwn_add_broadcast_node(struct iwn_softc *, int); 236 static int iwn_updateedca(struct ieee80211com *); 237 static void iwn_update_mcast(struct ifnet *); 238 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 239 static int iwn_set_critical_temp(struct iwn_softc *); 240 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 241 static void iwn4965_power_calibration(struct iwn_softc *, int); 242 static int iwn4965_set_txpower(struct iwn_softc *, 243 struct ieee80211_channel *, int); 244 static int iwn5000_set_txpower(struct iwn_softc *, 245 struct ieee80211_channel *, int); 246 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 247 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 248 static int iwn_get_noise(const struct iwn_rx_general_stats *); 249 static int iwn4965_get_temperature(struct iwn_softc *); 250 static int iwn5000_get_temperature(struct iwn_softc *); 251 static int iwn_init_sensitivity(struct iwn_softc *); 252 static void iwn_collect_noise(struct iwn_softc *, 253 const struct iwn_rx_general_stats *); 254 static int iwn4965_init_gains(struct iwn_softc *); 255 static int iwn5000_init_gains(struct iwn_softc *); 256 static int iwn4965_set_gains(struct iwn_softc *); 257 static int iwn5000_set_gains(struct iwn_softc *); 258 static void iwn_tune_sensitivity(struct iwn_softc *, 259 const struct iwn_rx_stats *); 260 static int iwn_send_sensitivity(struct iwn_softc *); 261 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 262 static int iwn_send_btcoex(struct iwn_softc *); 263 static int iwn_send_advanced_btcoex(struct iwn_softc *); 264 static int iwn5000_runtime_calib(struct iwn_softc *); 265 static int iwn_config(struct iwn_softc *); 266 static uint8_t *ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int); 267 static int iwn_scan(struct iwn_softc *); 268 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 269 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 270 static int iwn_ampdu_rx_start(struct ieee80211_node *, 271 struct ieee80211_rx_ampdu *, int, int, int); 272 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 273 struct ieee80211_rx_ampdu *); 274 static int iwn_addba_request(struct ieee80211_node *, 275 struct ieee80211_tx_ampdu *, int, int, int); 276 static int iwn_addba_response(struct ieee80211_node *, 277 struct ieee80211_tx_ampdu *, int, int, int); 278 static int iwn_ampdu_tx_start(struct ieee80211com *, 279 struct ieee80211_node *, uint8_t); 280 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 281 struct ieee80211_tx_ampdu *); 282 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 283 struct ieee80211_node *, int, uint8_t, uint16_t); 284 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 285 uint8_t, uint16_t); 286 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 287 struct ieee80211_node *, int, uint8_t, uint16_t); 288 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 289 uint8_t, uint16_t); 290 static int iwn5000_query_calibration(struct iwn_softc *); 291 static int iwn5000_send_calibration(struct iwn_softc *); 292 static int iwn5000_send_wimax_coex(struct iwn_softc *); 293 static int iwn5000_crystal_calib(struct iwn_softc *); 294 static int iwn5000_temp_offset_calib(struct iwn_softc *); 295 static int iwn4965_post_alive(struct iwn_softc *); 296 static int iwn5000_post_alive(struct iwn_softc *); 297 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 298 int); 299 static int iwn4965_load_firmware(struct iwn_softc *); 300 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 301 const uint8_t *, int); 302 static int iwn5000_load_firmware(struct iwn_softc *); 303 static int iwn_read_firmware_leg(struct iwn_softc *, 304 struct iwn_fw_info *); 305 static int iwn_read_firmware_tlv(struct iwn_softc *, 306 struct iwn_fw_info *, uint16_t); 307 static int iwn_read_firmware(struct iwn_softc *); 308 static int iwn_clock_wait(struct iwn_softc *); 309 static int iwn_apm_init(struct iwn_softc *); 310 static void iwn_apm_stop_master(struct iwn_softc *); 311 static void iwn_apm_stop(struct iwn_softc *); 312 static int iwn4965_nic_config(struct iwn_softc *); 313 static int iwn5000_nic_config(struct iwn_softc *); 314 static int iwn_hw_prepare(struct iwn_softc *); 315 static int iwn_hw_init(struct iwn_softc *); 316 static void iwn_hw_stop(struct iwn_softc *); 317 static void iwn_radio_on(void *, int); 318 static void iwn_radio_off(void *, int); 319 static void iwn_init_locked(struct iwn_softc *); 320 static void iwn_init(void *); 321 static void iwn_stop_locked(struct iwn_softc *); 322 static void iwn_stop(struct iwn_softc *); 323 static void iwn_scan_start(struct ieee80211com *); 324 static void iwn_scan_end(struct ieee80211com *); 325 static void iwn_set_channel(struct ieee80211com *); 326 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 327 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 328 static void iwn_hw_reset(void *, int); 329 #ifdef IWN_DEBUG 330 static char *iwn_get_csr_string(int); 331 static void iwn_debug_register(struct iwn_softc *); 332 #endif 333 334 #ifdef IWN_DEBUG 335 enum { 336 IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 337 IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */ 338 IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ 339 IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */ 340 IWN_DEBUG_RESET = 0x00000010, /* reset processing */ 341 IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */ 342 IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */ 343 IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */ 344 IWN_DEBUG_INTR = 0x00000100, /* ISR */ 345 IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */ 346 IWN_DEBUG_NODE = 0x00000400, /* node management */ 347 IWN_DEBUG_LED = 0x00000800, /* led management */ 348 IWN_DEBUG_CMD = 0x00001000, /* cmd submission */ 349 IWN_DEBUG_TXRATE = 0x00002000, /* TX rate debugging */ 350 IWN_DEBUG_PWRSAVE = 0x00004000, /* Power save operations */ 351 IWN_DEBUG_REGISTER = 0x20000000, /* print chipset register */ 352 IWN_DEBUG_TRACE = 0x40000000, /* Print begin and start driver function */ 353 IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */ 354 IWN_DEBUG_ANY = 0xffffffff 355 }; 356 357 #define DPRINTF(sc, m, fmt, ...) do { \ 358 if (sc->sc_debug & (m)) \ 359 printf(fmt, __VA_ARGS__); \ 360 } while (0) 361 362 static const char * 363 iwn_intr_str(uint8_t cmd) 364 { 365 switch (cmd) { 366 /* Notifications */ 367 case IWN_UC_READY: return "UC_READY"; 368 case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE"; 369 case IWN_TX_DONE: return "TX_DONE"; 370 case IWN_START_SCAN: return "START_SCAN"; 371 case IWN_STOP_SCAN: return "STOP_SCAN"; 372 case IWN_RX_STATISTICS: return "RX_STATS"; 373 case IWN_BEACON_STATISTICS: return "BEACON_STATS"; 374 case IWN_STATE_CHANGED: return "STATE_CHANGED"; 375 case IWN_BEACON_MISSED: return "BEACON_MISSED"; 376 case IWN_RX_PHY: return "RX_PHY"; 377 case IWN_MPDU_RX_DONE: return "MPDU_RX_DONE"; 378 case IWN_RX_DONE: return "RX_DONE"; 379 380 /* Command Notifications */ 381 case IWN_CMD_RXON: return "IWN_CMD_RXON"; 382 case IWN_CMD_RXON_ASSOC: return "IWN_CMD_RXON_ASSOC"; 383 case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS"; 384 case IWN_CMD_TIMING: return "IWN_CMD_TIMING"; 385 case IWN_CMD_LINK_QUALITY: return "IWN_CMD_LINK_QUALITY"; 386 case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED"; 387 case IWN5000_CMD_WIMAX_COEX: return "IWN5000_CMD_WIMAX_COEX"; 388 case IWN5000_CMD_CALIB_CONFIG: return "IWN5000_CMD_CALIB_CONFIG"; 389 case IWN5000_CMD_CALIB_RESULT: return "IWN5000_CMD_CALIB_RESULT"; 390 case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE"; 391 case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE"; 392 case IWN_CMD_SCAN: return "IWN_CMD_SCAN"; 393 case IWN_CMD_SCAN_RESULTS: return "IWN_CMD_SCAN_RESULTS"; 394 case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER"; 395 case IWN_CMD_TXPOWER_DBM: return "IWN_CMD_TXPOWER_DBM"; 396 case IWN5000_CMD_TX_ANT_CONFIG: return "IWN5000_CMD_TX_ANT_CONFIG"; 397 case IWN_CMD_BT_COEX: return "IWN_CMD_BT_COEX"; 398 case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP"; 399 case IWN_CMD_SET_SENSITIVITY: return "IWN_CMD_SET_SENSITIVITY"; 400 case IWN_CMD_PHY_CALIB: return "IWN_CMD_PHY_CALIB"; 401 } 402 return "UNKNOWN INTR NOTIF/CMD"; 403 } 404 #else 405 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0) 406 #endif 407 408 static device_method_t iwn_methods[] = { 409 /* Device interface */ 410 DEVMETHOD(device_probe, iwn_probe), 411 DEVMETHOD(device_attach, iwn_attach), 412 DEVMETHOD(device_detach, iwn_detach), 413 DEVMETHOD(device_shutdown, iwn_shutdown), 414 DEVMETHOD(device_suspend, iwn_suspend), 415 DEVMETHOD(device_resume, iwn_resume), 416 { 0, 0 } 417 }; 418 419 static driver_t iwn_driver = { 420 "iwn", 421 iwn_methods, 422 sizeof(struct iwn_softc) 423 }; 424 static devclass_t iwn_devclass; 425 426 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0); 427 428 MODULE_VERSION(iwn, 1); 429 430 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 431 MODULE_DEPEND(iwn, pci, 1, 1, 1); 432 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 433 434 static int 435 iwn_probe(device_t dev) 436 { 437 const struct iwn_ident *ident; 438 439 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 440 if (pci_get_vendor(dev) == ident->vendor && 441 pci_get_device(dev) == ident->device) { 442 device_set_desc(dev, ident->name); 443 return 0; 444 } 445 } 446 return ENXIO; 447 } 448 449 static int 450 iwn_attach(device_t dev) 451 { 452 struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev); 453 struct ieee80211com *ic; 454 struct ifnet *ifp; 455 uint32_t reg; 456 int i, error, result; 457 uint8_t macaddr[IEEE80211_ADDR_LEN]; 458 459 sc->sc_dev = dev; 460 461 #ifdef IWN_DEBUG 462 error = resource_int_value(device_get_name(sc->sc_dev), 463 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 464 if (error != 0) 465 sc->sc_debug = 0; 466 #else 467 sc->sc_debug = 0; 468 #endif 469 470 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 471 472 /* 473 * Get the offset of the PCI Express Capability Structure in PCI 474 * Configuration Space. 475 */ 476 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 477 if (error != 0) { 478 device_printf(dev, "PCIe capability structure not found!\n"); 479 return error; 480 } 481 482 /* Clear device-specific "PCI retry timeout" register (41h). */ 483 pci_write_config(dev, 0x41, 0, 1); 484 485 /* Hardware bug workaround. */ 486 reg = pci_read_config(dev, PCIR_COMMAND, 2); 487 if (reg & PCIM_CMD_INTxDIS) { 488 DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n", 489 __func__); 490 reg &= ~PCIM_CMD_INTxDIS; 491 pci_write_config(dev, PCIR_COMMAND, reg, 2); 492 } 493 494 /* Enable bus-mastering. */ 495 pci_enable_busmaster(dev); 496 497 sc->mem_rid = PCIR_BAR(0); 498 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 499 RF_ACTIVE); 500 if (sc->mem == NULL) { 501 device_printf(dev, "can't map mem space\n"); 502 error = ENOMEM; 503 return error; 504 } 505 sc->sc_st = rman_get_bustag(sc->mem); 506 sc->sc_sh = rman_get_bushandle(sc->mem); 507 508 sc->irq_rid = 0; 509 if ((result = pci_msi_count(dev)) == 1 && 510 pci_alloc_msi(dev, &result) == 0) 511 sc->irq_rid = 1; 512 /* Install interrupt handler. */ 513 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 514 RF_ACTIVE | RF_SHAREABLE); 515 if (sc->irq == NULL) { 516 device_printf(dev, "can't map interrupt\n"); 517 error = ENOMEM; 518 goto fail; 519 } 520 521 IWN_LOCK_INIT(sc); 522 523 /* Read hardware revision and attach. */ 524 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 525 & IWN_HW_REV_TYPE_MASK; 526 sc->subdevice_id = pci_get_subdevice(dev); 527 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 528 error = iwn4965_attach(sc, pci_get_device(dev)); 529 else 530 error = iwn5000_attach(sc, pci_get_device(dev)); 531 if (error != 0) { 532 device_printf(dev, "could not attach device, error %d\n", 533 error); 534 goto fail; 535 } 536 537 if ((error = iwn_hw_prepare(sc)) != 0) { 538 device_printf(dev, "hardware not ready, error %d\n", error); 539 goto fail; 540 } 541 542 /* Allocate DMA memory for firmware transfers. */ 543 if ((error = iwn_alloc_fwmem(sc)) != 0) { 544 device_printf(dev, 545 "could not allocate memory for firmware, error %d\n", 546 error); 547 goto fail; 548 } 549 550 /* Allocate "Keep Warm" page. */ 551 if ((error = iwn_alloc_kw(sc)) != 0) { 552 device_printf(dev, 553 "could not allocate keep warm page, error %d\n", error); 554 goto fail; 555 } 556 557 /* Allocate ICT table for 5000 Series. */ 558 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 559 (error = iwn_alloc_ict(sc)) != 0) { 560 device_printf(dev, "could not allocate ICT table, error %d\n", 561 error); 562 goto fail; 563 } 564 565 /* Allocate TX scheduler "rings". */ 566 if ((error = iwn_alloc_sched(sc)) != 0) { 567 device_printf(dev, 568 "could not allocate TX scheduler rings, error %d\n", error); 569 goto fail; 570 } 571 572 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 573 for (i = 0; i < sc->ntxqs; i++) { 574 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 575 device_printf(dev, 576 "could not allocate TX ring %d, error %d\n", i, 577 error); 578 goto fail; 579 } 580 } 581 582 /* Allocate RX ring. */ 583 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 584 device_printf(dev, "could not allocate RX ring, error %d\n", 585 error); 586 goto fail; 587 } 588 589 /* Clear pending interrupts. */ 590 IWN_WRITE(sc, IWN_INT, 0xffffffff); 591 592 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 593 if (ifp == NULL) { 594 device_printf(dev, "can not allocate ifnet structure\n"); 595 goto fail; 596 } 597 598 ic = ifp->if_l2com; 599 ic->ic_ifp = ifp; 600 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 601 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 602 603 /* Set device capabilities. */ 604 ic->ic_caps = 605 IEEE80211_C_STA /* station mode supported */ 606 | IEEE80211_C_MONITOR /* monitor mode supported */ 607 | IEEE80211_C_BGSCAN /* background scanning */ 608 | IEEE80211_C_TXPMGT /* tx power management */ 609 | IEEE80211_C_SHSLOT /* short slot time supported */ 610 | IEEE80211_C_WPA 611 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 612 #if 0 613 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 614 #endif 615 | IEEE80211_C_WME /* WME */ 616 | IEEE80211_C_PMGT /* Station-side power mgmt */ 617 ; 618 619 /* Read MAC address, channels, etc from EEPROM. */ 620 if ((error = iwn_read_eeprom(sc, macaddr)) != 0) { 621 device_printf(dev, "could not read EEPROM, error %d\n", 622 error); 623 goto fail; 624 } 625 626 /* Count the number of available chains. */ 627 sc->ntxchains = 628 ((sc->txchainmask >> 2) & 1) + 629 ((sc->txchainmask >> 1) & 1) + 630 ((sc->txchainmask >> 0) & 1); 631 sc->nrxchains = 632 ((sc->rxchainmask >> 2) & 1) + 633 ((sc->rxchainmask >> 1) & 1) + 634 ((sc->rxchainmask >> 0) & 1); 635 if (bootverbose) { 636 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 637 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 638 macaddr, ":"); 639 } 640 641 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 642 ic->ic_rxstream = sc->nrxchains; 643 ic->ic_txstream = sc->ntxchains; 644 645 /* 646 * The NICs we currently support cap out at 2x2 support 647 * separate from the chains being used. 648 * 649 * This is a total hack to work around that until some 650 * per-device method is implemented to return the 651 * actual stream support. 652 */ 653 if (ic->ic_rxstream > 2) 654 ic->ic_rxstream = 2; 655 if (ic->ic_txstream > 2) 656 ic->ic_txstream = 2; 657 658 ic->ic_htcaps = 659 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 660 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 661 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 662 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 663 #ifdef notyet 664 | IEEE80211_HTCAP_GREENFIELD 665 #if IWN_RBUF_SIZE == 8192 666 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 667 #else 668 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 669 #endif 670 #endif 671 /* s/w capabilities */ 672 | IEEE80211_HTC_HT /* HT operation */ 673 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 674 #ifdef notyet 675 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 676 #endif 677 ; 678 } 679 680 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 681 ifp->if_softc = sc; 682 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 683 ifp->if_init = iwn_init; 684 ifp->if_ioctl = iwn_ioctl; 685 ifp->if_start = iwn_start; 686 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 687 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 688 IFQ_SET_READY(&ifp->if_snd); 689 690 ieee80211_ifattach(ic, macaddr); 691 ic->ic_vap_create = iwn_vap_create; 692 ic->ic_vap_delete = iwn_vap_delete; 693 ic->ic_raw_xmit = iwn_raw_xmit; 694 ic->ic_node_alloc = iwn_node_alloc; 695 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 696 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 697 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 698 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 699 sc->sc_addba_request = ic->ic_addba_request; 700 ic->ic_addba_request = iwn_addba_request; 701 sc->sc_addba_response = ic->ic_addba_response; 702 ic->ic_addba_response = iwn_addba_response; 703 sc->sc_addba_stop = ic->ic_addba_stop; 704 ic->ic_addba_stop = iwn_ampdu_tx_stop; 705 ic->ic_newassoc = iwn_newassoc; 706 ic->ic_wme.wme_update = iwn_updateedca; 707 ic->ic_update_mcast = iwn_update_mcast; 708 ic->ic_scan_start = iwn_scan_start; 709 ic->ic_scan_end = iwn_scan_end; 710 ic->ic_set_channel = iwn_set_channel; 711 ic->ic_scan_curchan = iwn_scan_curchan; 712 ic->ic_scan_mindwell = iwn_scan_mindwell; 713 ic->ic_setregdomain = iwn_setregdomain; 714 715 iwn_radiotap_attach(sc); 716 717 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 718 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 719 TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc); 720 TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc); 721 TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc); 722 723 iwn_sysctlattach(sc); 724 725 /* 726 * Hook our interrupt after all initialization is complete. 727 */ 728 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 729 NULL, iwn_intr, sc, &sc->sc_ih); 730 if (error != 0) { 731 device_printf(dev, "can't establish interrupt, error %d\n", 732 error); 733 goto fail; 734 } 735 736 if (bootverbose) 737 ieee80211_announce(ic); 738 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 739 return 0; 740 fail: 741 iwn_detach(dev); 742 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 743 return error; 744 } 745 746 static int 747 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 748 { 749 struct iwn_ops *ops = &sc->ops; 750 751 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 752 ops->load_firmware = iwn4965_load_firmware; 753 ops->read_eeprom = iwn4965_read_eeprom; 754 ops->post_alive = iwn4965_post_alive; 755 ops->nic_config = iwn4965_nic_config; 756 ops->update_sched = iwn4965_update_sched; 757 ops->get_temperature = iwn4965_get_temperature; 758 ops->get_rssi = iwn4965_get_rssi; 759 ops->set_txpower = iwn4965_set_txpower; 760 ops->init_gains = iwn4965_init_gains; 761 ops->set_gains = iwn4965_set_gains; 762 ops->add_node = iwn4965_add_node; 763 ops->tx_done = iwn4965_tx_done; 764 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 765 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 766 sc->ntxqs = IWN4965_NTXQUEUES; 767 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 768 sc->ndmachnls = IWN4965_NDMACHNLS; 769 sc->broadcast_id = IWN4965_ID_BROADCAST; 770 sc->rxonsz = IWN4965_RXONSZ; 771 sc->schedsz = IWN4965_SCHEDSZ; 772 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 773 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 774 sc->fwsz = IWN4965_FWSZ; 775 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 776 sc->limits = &iwn4965_sensitivity_limits; 777 sc->fwname = "iwn4965fw"; 778 /* Override chains masks, ROM is known to be broken. */ 779 sc->txchainmask = IWN_ANT_AB; 780 sc->rxchainmask = IWN_ANT_ABC; 781 782 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 783 784 return 0; 785 } 786 787 static int 788 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 789 { 790 struct iwn_ops *ops = &sc->ops; 791 792 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 793 794 ops->load_firmware = iwn5000_load_firmware; 795 ops->read_eeprom = iwn5000_read_eeprom; 796 ops->post_alive = iwn5000_post_alive; 797 ops->nic_config = iwn5000_nic_config; 798 ops->update_sched = iwn5000_update_sched; 799 ops->get_temperature = iwn5000_get_temperature; 800 ops->get_rssi = iwn5000_get_rssi; 801 ops->set_txpower = iwn5000_set_txpower; 802 ops->init_gains = iwn5000_init_gains; 803 ops->set_gains = iwn5000_set_gains; 804 ops->add_node = iwn5000_add_node; 805 ops->tx_done = iwn5000_tx_done; 806 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 807 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 808 sc->ntxqs = IWN5000_NTXQUEUES; 809 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 810 sc->ndmachnls = IWN5000_NDMACHNLS; 811 sc->broadcast_id = IWN5000_ID_BROADCAST; 812 sc->rxonsz = IWN5000_RXONSZ; 813 sc->schedsz = IWN5000_SCHEDSZ; 814 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 815 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 816 sc->fwsz = IWN5000_FWSZ; 817 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 818 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 819 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 820 821 switch (sc->hw_type) { 822 case IWN_HW_REV_TYPE_5100: 823 sc->limits = &iwn5000_sensitivity_limits; 824 sc->fwname = "iwn5000fw"; 825 /* Override chains masks, ROM is known to be broken. */ 826 sc->txchainmask = IWN_ANT_B; 827 sc->rxchainmask = IWN_ANT_AB; 828 break; 829 case IWN_HW_REV_TYPE_5150: 830 sc->limits = &iwn5150_sensitivity_limits; 831 sc->fwname = "iwn5150fw"; 832 break; 833 case IWN_HW_REV_TYPE_5300: 834 case IWN_HW_REV_TYPE_5350: 835 sc->limits = &iwn5000_sensitivity_limits; 836 sc->fwname = "iwn5000fw"; 837 break; 838 case IWN_HW_REV_TYPE_1000: 839 sc->limits = &iwn1000_sensitivity_limits; 840 sc->fwname = "iwn1000fw"; 841 break; 842 case IWN_HW_REV_TYPE_6000: 843 sc->limits = &iwn6000_sensitivity_limits; 844 sc->fwname = "iwn6000fw"; 845 if (pid == 0x422c || pid == 0x4239) { 846 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 847 /* Override chains masks, ROM is known to be broken. */ 848 sc->txchainmask = IWN_ANT_BC; 849 sc->rxchainmask = IWN_ANT_BC; 850 } 851 break; 852 case IWN_HW_REV_TYPE_6050: 853 sc->limits = &iwn6000_sensitivity_limits; 854 sc->fwname = "iwn6050fw"; 855 /* Override chains masks, ROM is known to be broken. */ 856 sc->txchainmask = IWN_ANT_AB; 857 sc->rxchainmask = IWN_ANT_AB; 858 break; 859 case IWN_HW_REV_TYPE_6005: 860 sc->limits = &iwn6000_sensitivity_limits; 861 if (pid != 0x0082 && pid != 0x0085) { 862 sc->fwname = "iwn6000g2bfw"; 863 sc->sc_flags |= IWN_FLAG_ADV_BTCOEX; 864 } else 865 sc->fwname = "iwn6000g2afw"; 866 break; 867 default: 868 device_printf(sc->sc_dev, "adapter type %d not supported\n", 869 sc->hw_type); 870 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 871 return ENOTSUP; 872 } 873 return 0; 874 } 875 876 /* 877 * Attach the interface to 802.11 radiotap. 878 */ 879 static void 880 iwn_radiotap_attach(struct iwn_softc *sc) 881 { 882 struct ifnet *ifp = sc->sc_ifp; 883 struct ieee80211com *ic = ifp->if_l2com; 884 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 885 ieee80211_radiotap_attach(ic, 886 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 887 IWN_TX_RADIOTAP_PRESENT, 888 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 889 IWN_RX_RADIOTAP_PRESENT); 890 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 891 } 892 893 static void 894 iwn_sysctlattach(struct iwn_softc *sc) 895 { 896 #ifdef IWN_DEBUG 897 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 898 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 899 900 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 901 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 902 "control debugging printfs"); 903 #endif 904 } 905 906 static struct ieee80211vap * 907 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 908 enum ieee80211_opmode opmode, int flags, 909 const uint8_t bssid[IEEE80211_ADDR_LEN], 910 const uint8_t mac[IEEE80211_ADDR_LEN]) 911 { 912 struct iwn_vap *ivp; 913 struct ieee80211vap *vap; 914 uint8_t mac1[IEEE80211_ADDR_LEN]; 915 struct iwn_softc *sc = ic->ic_ifp->if_softc; 916 917 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 918 return NULL; 919 920 IEEE80211_ADDR_COPY(mac1, mac); 921 922 ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap), 923 M_80211_VAP, M_NOWAIT | M_ZERO); 924 if (ivp == NULL) 925 return NULL; 926 vap = &ivp->iv_vap; 927 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1); 928 ivp->ctx = IWN_RXON_BSS_CTX; 929 IEEE80211_ADDR_COPY(ivp->macaddr, mac1); 930 vap->iv_bmissthreshold = 10; /* override default */ 931 /* Override with driver methods. */ 932 ivp->iv_newstate = vap->iv_newstate; 933 vap->iv_newstate = iwn_newstate; 934 sc->ivap[IWN_RXON_BSS_CTX] = vap; 935 936 ieee80211_ratectl_init(vap); 937 /* Complete setup. */ 938 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status); 939 ic->ic_opmode = opmode; 940 return vap; 941 } 942 943 static void 944 iwn_vap_delete(struct ieee80211vap *vap) 945 { 946 struct iwn_vap *ivp = IWN_VAP(vap); 947 948 ieee80211_ratectl_deinit(vap); 949 ieee80211_vap_detach(vap); 950 free(ivp, M_80211_VAP); 951 } 952 953 static int 954 iwn_detach(device_t dev) 955 { 956 struct iwn_softc *sc = device_get_softc(dev); 957 struct ifnet *ifp = sc->sc_ifp; 958 struct ieee80211com *ic; 959 int qid; 960 961 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 962 963 if (ifp != NULL) { 964 ic = ifp->if_l2com; 965 966 ieee80211_draintask(ic, &sc->sc_reinit_task); 967 ieee80211_draintask(ic, &sc->sc_radioon_task); 968 ieee80211_draintask(ic, &sc->sc_radiooff_task); 969 970 iwn_stop(sc); 971 callout_drain(&sc->watchdog_to); 972 callout_drain(&sc->calib_to); 973 ieee80211_ifdetach(ic); 974 } 975 976 /* Uninstall interrupt handler. */ 977 if (sc->irq != NULL) { 978 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 979 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 980 if (sc->irq_rid == 1) 981 pci_release_msi(dev); 982 } 983 984 /* Free DMA resources. */ 985 iwn_free_rx_ring(sc, &sc->rxq); 986 for (qid = 0; qid < sc->ntxqs; qid++) 987 iwn_free_tx_ring(sc, &sc->txq[qid]); 988 iwn_free_sched(sc); 989 iwn_free_kw(sc); 990 if (sc->ict != NULL) 991 iwn_free_ict(sc); 992 iwn_free_fwmem(sc); 993 994 if (sc->mem != NULL) 995 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 996 997 if (ifp != NULL) 998 if_free(ifp); 999 1000 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1001 IWN_LOCK_DESTROY(sc); 1002 return 0; 1003 } 1004 1005 static int 1006 iwn_shutdown(device_t dev) 1007 { 1008 struct iwn_softc *sc = device_get_softc(dev); 1009 1010 iwn_stop(sc); 1011 return 0; 1012 } 1013 1014 static int 1015 iwn_suspend(device_t dev) 1016 { 1017 struct iwn_softc *sc = device_get_softc(dev); 1018 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1019 1020 ieee80211_suspend_all(ic); 1021 return 0; 1022 } 1023 1024 static int 1025 iwn_resume(device_t dev) 1026 { 1027 struct iwn_softc *sc = device_get_softc(dev); 1028 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 1029 1030 /* Clear device-specific "PCI retry timeout" register (41h). */ 1031 pci_write_config(dev, 0x41, 0, 1); 1032 1033 ieee80211_resume_all(ic); 1034 return 0; 1035 } 1036 1037 static int 1038 iwn_nic_lock(struct iwn_softc *sc) 1039 { 1040 int ntries; 1041 1042 /* Request exclusive access to NIC. */ 1043 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1044 1045 /* Spin until we actually get the lock. */ 1046 for (ntries = 0; ntries < 1000; ntries++) { 1047 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1048 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1049 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1050 return 0; 1051 DELAY(10); 1052 } 1053 return ETIMEDOUT; 1054 } 1055 1056 static __inline void 1057 iwn_nic_unlock(struct iwn_softc *sc) 1058 { 1059 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1060 } 1061 1062 static __inline uint32_t 1063 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1064 { 1065 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1066 IWN_BARRIER_READ_WRITE(sc); 1067 return IWN_READ(sc, IWN_PRPH_RDATA); 1068 } 1069 1070 static __inline void 1071 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1072 { 1073 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1074 IWN_BARRIER_WRITE(sc); 1075 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1076 } 1077 1078 static __inline void 1079 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1080 { 1081 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1082 } 1083 1084 static __inline void 1085 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1086 { 1087 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1088 } 1089 1090 static __inline void 1091 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1092 const uint32_t *data, int count) 1093 { 1094 for (; count > 0; count--, data++, addr += 4) 1095 iwn_prph_write(sc, addr, *data); 1096 } 1097 1098 static __inline uint32_t 1099 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1100 { 1101 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1102 IWN_BARRIER_READ_WRITE(sc); 1103 return IWN_READ(sc, IWN_MEM_RDATA); 1104 } 1105 1106 static __inline void 1107 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1108 { 1109 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1110 IWN_BARRIER_WRITE(sc); 1111 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1112 } 1113 1114 static __inline void 1115 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1116 { 1117 uint32_t tmp; 1118 1119 tmp = iwn_mem_read(sc, addr & ~3); 1120 if (addr & 3) 1121 tmp = (tmp & 0x0000ffff) | data << 16; 1122 else 1123 tmp = (tmp & 0xffff0000) | data; 1124 iwn_mem_write(sc, addr & ~3, tmp); 1125 } 1126 1127 static __inline void 1128 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1129 int count) 1130 { 1131 for (; count > 0; count--, addr += 4) 1132 *data++ = iwn_mem_read(sc, addr); 1133 } 1134 1135 static __inline void 1136 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1137 int count) 1138 { 1139 for (; count > 0; count--, addr += 4) 1140 iwn_mem_write(sc, addr, val); 1141 } 1142 1143 static int 1144 iwn_eeprom_lock(struct iwn_softc *sc) 1145 { 1146 int i, ntries; 1147 1148 for (i = 0; i < 100; i++) { 1149 /* Request exclusive access to EEPROM. */ 1150 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1151 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1152 1153 /* Spin until we actually get the lock. */ 1154 for (ntries = 0; ntries < 100; ntries++) { 1155 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1156 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1157 return 0; 1158 DELAY(10); 1159 } 1160 } 1161 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1162 return ETIMEDOUT; 1163 } 1164 1165 static __inline void 1166 iwn_eeprom_unlock(struct iwn_softc *sc) 1167 { 1168 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1169 } 1170 1171 /* 1172 * Initialize access by host to One Time Programmable ROM. 1173 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1174 */ 1175 static int 1176 iwn_init_otprom(struct iwn_softc *sc) 1177 { 1178 uint16_t prev, base, next; 1179 int count, error; 1180 1181 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1182 1183 /* Wait for clock stabilization before accessing prph. */ 1184 if ((error = iwn_clock_wait(sc)) != 0) 1185 return error; 1186 1187 if ((error = iwn_nic_lock(sc)) != 0) 1188 return error; 1189 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1190 DELAY(5); 1191 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1192 iwn_nic_unlock(sc); 1193 1194 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1195 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1196 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1197 IWN_RESET_LINK_PWR_MGMT_DIS); 1198 } 1199 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1200 /* Clear ECC status. */ 1201 IWN_SETBITS(sc, IWN_OTP_GP, 1202 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1203 1204 /* 1205 * Find the block before last block (contains the EEPROM image) 1206 * for HW without OTP shadow RAM. 1207 */ 1208 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1209 /* Switch to absolute addressing mode. */ 1210 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1211 base = prev = 0; 1212 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1213 error = iwn_read_prom_data(sc, base, &next, 2); 1214 if (error != 0) 1215 return error; 1216 if (next == 0) /* End of linked-list. */ 1217 break; 1218 prev = base; 1219 base = le16toh(next); 1220 } 1221 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1222 return EIO; 1223 /* Skip "next" word. */ 1224 sc->prom_base = prev + 1; 1225 } 1226 1227 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1228 1229 return 0; 1230 } 1231 1232 static int 1233 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1234 { 1235 uint8_t *out = data; 1236 uint32_t val, tmp; 1237 int ntries; 1238 1239 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1240 1241 addr += sc->prom_base; 1242 for (; count > 0; count -= 2, addr++) { 1243 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1244 for (ntries = 0; ntries < 10; ntries++) { 1245 val = IWN_READ(sc, IWN_EEPROM); 1246 if (val & IWN_EEPROM_READ_VALID) 1247 break; 1248 DELAY(5); 1249 } 1250 if (ntries == 10) { 1251 device_printf(sc->sc_dev, 1252 "timeout reading ROM at 0x%x\n", addr); 1253 return ETIMEDOUT; 1254 } 1255 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1256 /* OTPROM, check for ECC errors. */ 1257 tmp = IWN_READ(sc, IWN_OTP_GP); 1258 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1259 device_printf(sc->sc_dev, 1260 "OTPROM ECC error at 0x%x\n", addr); 1261 return EIO; 1262 } 1263 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1264 /* Correctable ECC error, clear bit. */ 1265 IWN_SETBITS(sc, IWN_OTP_GP, 1266 IWN_OTP_GP_ECC_CORR_STTS); 1267 } 1268 } 1269 *out++ = val >> 16; 1270 if (count > 1) 1271 *out++ = val >> 24; 1272 } 1273 1274 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1275 1276 return 0; 1277 } 1278 1279 static void 1280 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1281 { 1282 if (error != 0) 1283 return; 1284 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1285 *(bus_addr_t *)arg = segs[0].ds_addr; 1286 } 1287 1288 static int 1289 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1290 void **kvap, bus_size_t size, bus_size_t alignment) 1291 { 1292 int error; 1293 1294 dma->tag = NULL; 1295 dma->size = size; 1296 1297 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1298 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1299 1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag); 1300 if (error != 0) 1301 goto fail; 1302 1303 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1304 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1305 if (error != 0) 1306 goto fail; 1307 1308 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1309 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1310 if (error != 0) 1311 goto fail; 1312 1313 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1314 1315 if (kvap != NULL) 1316 *kvap = dma->vaddr; 1317 1318 return 0; 1319 1320 fail: iwn_dma_contig_free(dma); 1321 return error; 1322 } 1323 1324 static void 1325 iwn_dma_contig_free(struct iwn_dma_info *dma) 1326 { 1327 if (dma->map != NULL) { 1328 if (dma->vaddr != NULL) { 1329 bus_dmamap_sync(dma->tag, dma->map, 1330 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1331 bus_dmamap_unload(dma->tag, dma->map); 1332 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1333 dma->vaddr = NULL; 1334 } 1335 bus_dmamap_destroy(dma->tag, dma->map); 1336 dma->map = NULL; 1337 } 1338 if (dma->tag != NULL) { 1339 bus_dma_tag_destroy(dma->tag); 1340 dma->tag = NULL; 1341 } 1342 } 1343 1344 static int 1345 iwn_alloc_sched(struct iwn_softc *sc) 1346 { 1347 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1348 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1349 sc->schedsz, 1024); 1350 } 1351 1352 static void 1353 iwn_free_sched(struct iwn_softc *sc) 1354 { 1355 iwn_dma_contig_free(&sc->sched_dma); 1356 } 1357 1358 static int 1359 iwn_alloc_kw(struct iwn_softc *sc) 1360 { 1361 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1362 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1363 } 1364 1365 static void 1366 iwn_free_kw(struct iwn_softc *sc) 1367 { 1368 iwn_dma_contig_free(&sc->kw_dma); 1369 } 1370 1371 static int 1372 iwn_alloc_ict(struct iwn_softc *sc) 1373 { 1374 /* ICT table must be aligned on a 4KB boundary. */ 1375 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1376 IWN_ICT_SIZE, 4096); 1377 } 1378 1379 static void 1380 iwn_free_ict(struct iwn_softc *sc) 1381 { 1382 iwn_dma_contig_free(&sc->ict_dma); 1383 } 1384 1385 static int 1386 iwn_alloc_fwmem(struct iwn_softc *sc) 1387 { 1388 /* Must be aligned on a 16-byte boundary. */ 1389 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1390 } 1391 1392 static void 1393 iwn_free_fwmem(struct iwn_softc *sc) 1394 { 1395 iwn_dma_contig_free(&sc->fw_dma); 1396 } 1397 1398 static int 1399 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1400 { 1401 bus_size_t size; 1402 int i, error; 1403 1404 ring->cur = 0; 1405 1406 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1407 1408 /* Allocate RX descriptors (256-byte aligned). */ 1409 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1410 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1411 size, 256); 1412 if (error != 0) { 1413 device_printf(sc->sc_dev, 1414 "%s: could not allocate RX ring DMA memory, error %d\n", 1415 __func__, error); 1416 goto fail; 1417 } 1418 1419 /* Allocate RX status area (16-byte aligned). */ 1420 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1421 sizeof (struct iwn_rx_status), 16); 1422 if (error != 0) { 1423 device_printf(sc->sc_dev, 1424 "%s: could not allocate RX status DMA memory, error %d\n", 1425 __func__, error); 1426 goto fail; 1427 } 1428 1429 /* Create RX buffer DMA tag. */ 1430 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1431 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1432 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL, 1433 &ring->data_dmat); 1434 if (error != 0) { 1435 device_printf(sc->sc_dev, 1436 "%s: could not create RX buf DMA tag, error %d\n", 1437 __func__, error); 1438 goto fail; 1439 } 1440 1441 /* 1442 * Allocate and map RX buffers. 1443 */ 1444 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1445 struct iwn_rx_data *data = &ring->data[i]; 1446 bus_addr_t paddr; 1447 1448 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1449 if (error != 0) { 1450 device_printf(sc->sc_dev, 1451 "%s: could not create RX buf DMA map, error %d\n", 1452 __func__, error); 1453 goto fail; 1454 } 1455 1456 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1457 IWN_RBUF_SIZE); 1458 if (data->m == NULL) { 1459 device_printf(sc->sc_dev, 1460 "%s: could not allocate RX mbuf\n", __func__); 1461 error = ENOBUFS; 1462 goto fail; 1463 } 1464 1465 error = bus_dmamap_load(ring->data_dmat, data->map, 1466 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1467 &paddr, BUS_DMA_NOWAIT); 1468 if (error != 0 && error != EFBIG) { 1469 device_printf(sc->sc_dev, 1470 "%s: can't not map mbuf, error %d\n", __func__, 1471 error); 1472 goto fail; 1473 } 1474 1475 /* Set physical address of RX buffer (256-byte aligned). */ 1476 ring->desc[i] = htole32(paddr >> 8); 1477 } 1478 1479 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1480 BUS_DMASYNC_PREWRITE); 1481 1482 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1483 1484 return 0; 1485 1486 fail: iwn_free_rx_ring(sc, ring); 1487 1488 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1489 1490 return error; 1491 } 1492 1493 static void 1494 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1495 { 1496 int ntries; 1497 1498 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1499 1500 if (iwn_nic_lock(sc) == 0) { 1501 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1502 for (ntries = 0; ntries < 1000; ntries++) { 1503 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1504 IWN_FH_RX_STATUS_IDLE) 1505 break; 1506 DELAY(10); 1507 } 1508 iwn_nic_unlock(sc); 1509 } 1510 ring->cur = 0; 1511 sc->last_rx_valid = 0; 1512 } 1513 1514 static void 1515 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1516 { 1517 int i; 1518 1519 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1520 1521 iwn_dma_contig_free(&ring->desc_dma); 1522 iwn_dma_contig_free(&ring->stat_dma); 1523 1524 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1525 struct iwn_rx_data *data = &ring->data[i]; 1526 1527 if (data->m != NULL) { 1528 bus_dmamap_sync(ring->data_dmat, data->map, 1529 BUS_DMASYNC_POSTREAD); 1530 bus_dmamap_unload(ring->data_dmat, data->map); 1531 m_freem(data->m); 1532 data->m = NULL; 1533 } 1534 if (data->map != NULL) 1535 bus_dmamap_destroy(ring->data_dmat, data->map); 1536 } 1537 if (ring->data_dmat != NULL) { 1538 bus_dma_tag_destroy(ring->data_dmat); 1539 ring->data_dmat = NULL; 1540 } 1541 } 1542 1543 static int 1544 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1545 { 1546 bus_addr_t paddr; 1547 bus_size_t size; 1548 int i, error; 1549 1550 ring->qid = qid; 1551 ring->queued = 0; 1552 ring->cur = 0; 1553 1554 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1555 1556 /* Allocate TX descriptors (256-byte aligned). */ 1557 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1558 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1559 size, 256); 1560 if (error != 0) { 1561 device_printf(sc->sc_dev, 1562 "%s: could not allocate TX ring DMA memory, error %d\n", 1563 __func__, error); 1564 goto fail; 1565 } 1566 1567 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 1568 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 1569 size, 4); 1570 if (error != 0) { 1571 device_printf(sc->sc_dev, 1572 "%s: could not allocate TX cmd DMA memory, error %d\n", 1573 __func__, error); 1574 goto fail; 1575 } 1576 1577 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1578 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1579 IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, 1580 &ring->data_dmat); 1581 if (error != 0) { 1582 device_printf(sc->sc_dev, 1583 "%s: could not create TX buf DMA tag, error %d\n", 1584 __func__, error); 1585 goto fail; 1586 } 1587 1588 paddr = ring->cmd_dma.paddr; 1589 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1590 struct iwn_tx_data *data = &ring->data[i]; 1591 1592 data->cmd_paddr = paddr; 1593 data->scratch_paddr = paddr + 12; 1594 paddr += sizeof (struct iwn_tx_cmd); 1595 1596 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1597 if (error != 0) { 1598 device_printf(sc->sc_dev, 1599 "%s: could not create TX buf DMA map, error %d\n", 1600 __func__, error); 1601 goto fail; 1602 } 1603 } 1604 1605 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1606 1607 return 0; 1608 1609 fail: iwn_free_tx_ring(sc, ring); 1610 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 1611 return error; 1612 } 1613 1614 static void 1615 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1616 { 1617 int i; 1618 1619 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 1620 1621 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1622 struct iwn_tx_data *data = &ring->data[i]; 1623 1624 if (data->m != NULL) { 1625 bus_dmamap_sync(ring->data_dmat, data->map, 1626 BUS_DMASYNC_POSTWRITE); 1627 bus_dmamap_unload(ring->data_dmat, data->map); 1628 m_freem(data->m); 1629 data->m = NULL; 1630 } 1631 } 1632 /* Clear TX descriptors. */ 1633 memset(ring->desc, 0, ring->desc_dma.size); 1634 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1635 BUS_DMASYNC_PREWRITE); 1636 sc->qfullmsk &= ~(1 << ring->qid); 1637 ring->queued = 0; 1638 ring->cur = 0; 1639 } 1640 1641 static void 1642 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1643 { 1644 int i; 1645 1646 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1647 1648 iwn_dma_contig_free(&ring->desc_dma); 1649 iwn_dma_contig_free(&ring->cmd_dma); 1650 1651 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1652 struct iwn_tx_data *data = &ring->data[i]; 1653 1654 if (data->m != NULL) { 1655 bus_dmamap_sync(ring->data_dmat, data->map, 1656 BUS_DMASYNC_POSTWRITE); 1657 bus_dmamap_unload(ring->data_dmat, data->map); 1658 m_freem(data->m); 1659 } 1660 if (data->map != NULL) 1661 bus_dmamap_destroy(ring->data_dmat, data->map); 1662 } 1663 if (ring->data_dmat != NULL) { 1664 bus_dma_tag_destroy(ring->data_dmat); 1665 ring->data_dmat = NULL; 1666 } 1667 } 1668 1669 static void 1670 iwn5000_ict_reset(struct iwn_softc *sc) 1671 { 1672 /* Disable interrupts. */ 1673 IWN_WRITE(sc, IWN_INT_MASK, 0); 1674 1675 /* Reset ICT table. */ 1676 memset(sc->ict, 0, IWN_ICT_SIZE); 1677 sc->ict_cur = 0; 1678 1679 /* Set physical address of ICT table (4KB aligned). */ 1680 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 1681 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1682 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1683 1684 /* Enable periodic RX interrupt. */ 1685 sc->int_mask |= IWN_INT_RX_PERIODIC; 1686 /* Switch to ICT interrupt mode in driver. */ 1687 sc->sc_flags |= IWN_FLAG_USE_ICT; 1688 1689 /* Re-enable interrupts. */ 1690 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1691 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1692 } 1693 1694 static int 1695 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1696 { 1697 struct iwn_ops *ops = &sc->ops; 1698 uint16_t val; 1699 int error; 1700 1701 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1702 1703 /* Check whether adapter has an EEPROM or an OTPROM. */ 1704 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1705 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1706 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1707 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 1708 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 1709 1710 /* Adapter has to be powered on for EEPROM access to work. */ 1711 if ((error = iwn_apm_init(sc)) != 0) { 1712 device_printf(sc->sc_dev, 1713 "%s: could not power ON adapter, error %d\n", __func__, 1714 error); 1715 return error; 1716 } 1717 1718 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1719 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 1720 return EIO; 1721 } 1722 if ((error = iwn_eeprom_lock(sc)) != 0) { 1723 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 1724 __func__, error); 1725 return error; 1726 } 1727 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1728 if ((error = iwn_init_otprom(sc)) != 0) { 1729 device_printf(sc->sc_dev, 1730 "%s: could not initialize OTPROM, error %d\n", 1731 __func__, error); 1732 return error; 1733 } 1734 } 1735 1736 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 1737 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 1738 /* Check if HT support is bonded out. */ 1739 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 1740 sc->sc_flags |= IWN_FLAG_HAS_11N; 1741 1742 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1743 sc->rfcfg = le16toh(val); 1744 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 1745 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 1746 if (sc->txchainmask == 0) 1747 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 1748 if (sc->rxchainmask == 0) 1749 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 1750 1751 /* Read MAC address. */ 1752 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 1753 1754 /* Read adapter-specific information from EEPROM. */ 1755 ops->read_eeprom(sc); 1756 1757 iwn_apm_stop(sc); /* Power OFF adapter. */ 1758 1759 iwn_eeprom_unlock(sc); 1760 1761 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1762 1763 return 0; 1764 } 1765 1766 static void 1767 iwn4965_read_eeprom(struct iwn_softc *sc) 1768 { 1769 uint32_t addr; 1770 uint16_t val; 1771 int i; 1772 1773 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1774 1775 /* Read regulatory domain (4 ASCII characters). */ 1776 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1777 1778 /* Read the list of authorized channels (20MHz ones only). */ 1779 for (i = 0; i < 7; i++) { 1780 addr = iwn4965_regulatory_bands[i]; 1781 iwn_read_eeprom_channels(sc, i, addr); 1782 } 1783 1784 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1785 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1786 sc->maxpwr2GHz = val & 0xff; 1787 sc->maxpwr5GHz = val >> 8; 1788 /* Check that EEPROM values are within valid range. */ 1789 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1790 sc->maxpwr5GHz = 38; 1791 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1792 sc->maxpwr2GHz = 38; 1793 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 1794 sc->maxpwr2GHz, sc->maxpwr5GHz); 1795 1796 /* Read samples for each TX power group. */ 1797 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1798 sizeof sc->bands); 1799 1800 /* Read voltage at which samples were taken. */ 1801 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1802 sc->eeprom_voltage = (int16_t)le16toh(val); 1803 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 1804 sc->eeprom_voltage); 1805 1806 #ifdef IWN_DEBUG 1807 /* Print samples. */ 1808 if (sc->sc_debug & IWN_DEBUG_ANY) { 1809 for (i = 0; i < IWN_NBANDS; i++) 1810 iwn4965_print_power_group(sc, i); 1811 } 1812 #endif 1813 1814 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1815 } 1816 1817 #ifdef IWN_DEBUG 1818 static void 1819 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1820 { 1821 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1822 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1823 int j, c; 1824 1825 printf("===band %d===\n", i); 1826 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1827 printf("chan1 num=%d\n", chans[0].num); 1828 for (c = 0; c < 2; c++) { 1829 for (j = 0; j < IWN_NSAMPLES; j++) { 1830 printf("chain %d, sample %d: temp=%d gain=%d " 1831 "power=%d pa_det=%d\n", c, j, 1832 chans[0].samples[c][j].temp, 1833 chans[0].samples[c][j].gain, 1834 chans[0].samples[c][j].power, 1835 chans[0].samples[c][j].pa_det); 1836 } 1837 } 1838 printf("chan2 num=%d\n", chans[1].num); 1839 for (c = 0; c < 2; c++) { 1840 for (j = 0; j < IWN_NSAMPLES; j++) { 1841 printf("chain %d, sample %d: temp=%d gain=%d " 1842 "power=%d pa_det=%d\n", c, j, 1843 chans[1].samples[c][j].temp, 1844 chans[1].samples[c][j].gain, 1845 chans[1].samples[c][j].power, 1846 chans[1].samples[c][j].pa_det); 1847 } 1848 } 1849 } 1850 #endif 1851 1852 static void 1853 iwn5000_read_eeprom(struct iwn_softc *sc) 1854 { 1855 struct iwn5000_eeprom_calib_hdr hdr; 1856 int32_t volt; 1857 uint32_t base, addr; 1858 uint16_t val; 1859 int i; 1860 1861 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1862 1863 /* Read regulatory domain (4 ASCII characters). */ 1864 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1865 base = le16toh(val); 1866 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1867 sc->eeprom_domain, 4); 1868 1869 /* Read the list of authorized channels (20MHz ones only). */ 1870 for (i = 0; i < 7; i++) { 1871 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1872 addr = base + iwn6000_regulatory_bands[i]; 1873 else 1874 addr = base + iwn5000_regulatory_bands[i]; 1875 iwn_read_eeprom_channels(sc, i, addr); 1876 } 1877 1878 /* Read enhanced TX power information for 6000 Series. */ 1879 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1880 iwn_read_eeprom_enhinfo(sc); 1881 1882 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1883 base = le16toh(val); 1884 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1885 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 1886 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 1887 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 1888 sc->calib_ver = hdr.version; 1889 1890 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1891 /* Compute temperature offset. */ 1892 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1893 sc->eeprom_temp = le16toh(val); 1894 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1895 volt = le16toh(val); 1896 sc->temp_off = sc->eeprom_temp - (volt / -5); 1897 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 1898 sc->eeprom_temp, volt, sc->temp_off); 1899 } else { 1900 /* Read crystal calibration. */ 1901 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1902 &sc->eeprom_crystal, sizeof (uint32_t)); 1903 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 1904 le32toh(sc->eeprom_crystal)); 1905 } 1906 1907 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1908 1909 } 1910 1911 /* 1912 * Translate EEPROM flags to net80211. 1913 */ 1914 static uint32_t 1915 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 1916 { 1917 uint32_t nflags; 1918 1919 nflags = 0; 1920 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 1921 nflags |= IEEE80211_CHAN_PASSIVE; 1922 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 1923 nflags |= IEEE80211_CHAN_NOADHOC; 1924 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 1925 nflags |= IEEE80211_CHAN_DFS; 1926 /* XXX apparently IBSS may still be marked */ 1927 nflags |= IEEE80211_CHAN_NOADHOC; 1928 } 1929 1930 return nflags; 1931 } 1932 1933 static void 1934 iwn_read_eeprom_band(struct iwn_softc *sc, int n) 1935 { 1936 struct ifnet *ifp = sc->sc_ifp; 1937 struct ieee80211com *ic = ifp->if_l2com; 1938 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 1939 const struct iwn_chan_band *band = &iwn_bands[n]; 1940 struct ieee80211_channel *c; 1941 uint8_t chan; 1942 int i, nflags; 1943 1944 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1945 1946 for (i = 0; i < band->nchan; i++) { 1947 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 1948 DPRINTF(sc, IWN_DEBUG_RESET, 1949 "skip chan %d flags 0x%x maxpwr %d\n", 1950 band->chan[i], channels[i].flags, 1951 channels[i].maxpwr); 1952 continue; 1953 } 1954 chan = band->chan[i]; 1955 nflags = iwn_eeprom_channel_flags(&channels[i]); 1956 1957 c = &ic->ic_channels[ic->ic_nchans++]; 1958 c->ic_ieee = chan; 1959 c->ic_maxregpower = channels[i].maxpwr; 1960 c->ic_maxpower = 2*c->ic_maxregpower; 1961 1962 if (n == 0) { /* 2GHz band */ 1963 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G); 1964 /* G =>'s B is supported */ 1965 c->ic_flags = IEEE80211_CHAN_B | nflags; 1966 c = &ic->ic_channels[ic->ic_nchans++]; 1967 c[0] = c[-1]; 1968 c->ic_flags = IEEE80211_CHAN_G | nflags; 1969 } else { /* 5GHz band */ 1970 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); 1971 c->ic_flags = IEEE80211_CHAN_A | nflags; 1972 } 1973 1974 /* Save maximum allowed TX power for this channel. */ 1975 sc->maxpwr[chan] = channels[i].maxpwr; 1976 1977 DPRINTF(sc, IWN_DEBUG_RESET, 1978 "add chan %d flags 0x%x maxpwr %d\n", chan, 1979 channels[i].flags, channels[i].maxpwr); 1980 1981 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 1982 /* add HT20, HT40 added separately */ 1983 c = &ic->ic_channels[ic->ic_nchans++]; 1984 c[0] = c[-1]; 1985 c->ic_flags |= IEEE80211_CHAN_HT20; 1986 } 1987 } 1988 1989 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1990 1991 } 1992 1993 static void 1994 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n) 1995 { 1996 struct ifnet *ifp = sc->sc_ifp; 1997 struct ieee80211com *ic = ifp->if_l2com; 1998 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 1999 const struct iwn_chan_band *band = &iwn_bands[n]; 2000 struct ieee80211_channel *c, *cent, *extc; 2001 uint8_t chan; 2002 int i, nflags; 2003 2004 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2005 2006 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2007 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2008 return; 2009 } 2010 2011 for (i = 0; i < band->nchan; i++) { 2012 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2013 DPRINTF(sc, IWN_DEBUG_RESET, 2014 "skip chan %d flags 0x%x maxpwr %d\n", 2015 band->chan[i], channels[i].flags, 2016 channels[i].maxpwr); 2017 continue; 2018 } 2019 chan = band->chan[i]; 2020 nflags = iwn_eeprom_channel_flags(&channels[i]); 2021 2022 /* 2023 * Each entry defines an HT40 channel pair; find the 2024 * center channel, then the extension channel above. 2025 */ 2026 cent = ieee80211_find_channel_byieee(ic, chan, 2027 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 2028 if (cent == NULL) { /* XXX shouldn't happen */ 2029 device_printf(sc->sc_dev, 2030 "%s: no entry for channel %d\n", __func__, chan); 2031 continue; 2032 } 2033 extc = ieee80211_find_channel(ic, cent->ic_freq+20, 2034 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 2035 if (extc == NULL) { 2036 DPRINTF(sc, IWN_DEBUG_RESET, 2037 "%s: skip chan %d, extension channel not found\n", 2038 __func__, chan); 2039 continue; 2040 } 2041 2042 DPRINTF(sc, IWN_DEBUG_RESET, 2043 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2044 chan, channels[i].flags, channels[i].maxpwr); 2045 2046 c = &ic->ic_channels[ic->ic_nchans++]; 2047 c[0] = cent[0]; 2048 c->ic_extieee = extc->ic_ieee; 2049 c->ic_flags &= ~IEEE80211_CHAN_HT; 2050 c->ic_flags |= IEEE80211_CHAN_HT40U | nflags; 2051 c = &ic->ic_channels[ic->ic_nchans++]; 2052 c[0] = extc[0]; 2053 c->ic_extieee = cent->ic_ieee; 2054 c->ic_flags &= ~IEEE80211_CHAN_HT; 2055 c->ic_flags |= IEEE80211_CHAN_HT40D | nflags; 2056 } 2057 2058 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2059 2060 } 2061 2062 static void 2063 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2064 { 2065 struct ifnet *ifp = sc->sc_ifp; 2066 struct ieee80211com *ic = ifp->if_l2com; 2067 2068 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2069 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2070 2071 if (n < 5) 2072 iwn_read_eeprom_band(sc, n); 2073 else 2074 iwn_read_eeprom_ht40(sc, n); 2075 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2076 } 2077 2078 static struct iwn_eeprom_chan * 2079 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2080 { 2081 int band, chan, i, j; 2082 2083 if (IEEE80211_IS_CHAN_HT40(c)) { 2084 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2085 if (IEEE80211_IS_CHAN_HT40D(c)) 2086 chan = c->ic_extieee; 2087 else 2088 chan = c->ic_ieee; 2089 for (i = 0; i < iwn_bands[band].nchan; i++) { 2090 if (iwn_bands[band].chan[i] == chan) 2091 return &sc->eeprom_channels[band][i]; 2092 } 2093 } else { 2094 for (j = 0; j < 5; j++) { 2095 for (i = 0; i < iwn_bands[j].nchan; i++) { 2096 if (iwn_bands[j].chan[i] == c->ic_ieee) 2097 return &sc->eeprom_channels[j][i]; 2098 } 2099 } 2100 } 2101 return NULL; 2102 } 2103 2104 /* 2105 * Enforce flags read from EEPROM. 2106 */ 2107 static int 2108 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2109 int nchan, struct ieee80211_channel chans[]) 2110 { 2111 struct iwn_softc *sc = ic->ic_ifp->if_softc; 2112 int i; 2113 2114 for (i = 0; i < nchan; i++) { 2115 struct ieee80211_channel *c = &chans[i]; 2116 struct iwn_eeprom_chan *channel; 2117 2118 channel = iwn_find_eeprom_channel(sc, c); 2119 if (channel == NULL) { 2120 if_printf(ic->ic_ifp, 2121 "%s: invalid channel %u freq %u/0x%x\n", 2122 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2123 return EINVAL; 2124 } 2125 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2126 } 2127 2128 return 0; 2129 } 2130 2131 static void 2132 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2133 { 2134 struct iwn_eeprom_enhinfo enhinfo[35]; 2135 struct ifnet *ifp = sc->sc_ifp; 2136 struct ieee80211com *ic = ifp->if_l2com; 2137 struct ieee80211_channel *c; 2138 uint16_t val, base; 2139 int8_t maxpwr; 2140 uint8_t flags; 2141 int i, j; 2142 2143 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2144 2145 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2146 base = le16toh(val); 2147 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2148 enhinfo, sizeof enhinfo); 2149 2150 for (i = 0; i < nitems(enhinfo); i++) { 2151 flags = enhinfo[i].flags; 2152 if (!(flags & IWN_ENHINFO_VALID)) 2153 continue; /* Skip invalid entries. */ 2154 2155 maxpwr = 0; 2156 if (sc->txchainmask & IWN_ANT_A) 2157 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2158 if (sc->txchainmask & IWN_ANT_B) 2159 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2160 if (sc->txchainmask & IWN_ANT_C) 2161 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2162 if (sc->ntxchains == 2) 2163 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2164 else if (sc->ntxchains == 3) 2165 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2166 2167 for (j = 0; j < ic->ic_nchans; j++) { 2168 c = &ic->ic_channels[j]; 2169 if ((flags & IWN_ENHINFO_5GHZ)) { 2170 if (!IEEE80211_IS_CHAN_A(c)) 2171 continue; 2172 } else if ((flags & IWN_ENHINFO_OFDM)) { 2173 if (!IEEE80211_IS_CHAN_G(c)) 2174 continue; 2175 } else if (!IEEE80211_IS_CHAN_B(c)) 2176 continue; 2177 if ((flags & IWN_ENHINFO_HT40)) { 2178 if (!IEEE80211_IS_CHAN_HT40(c)) 2179 continue; 2180 } else { 2181 if (IEEE80211_IS_CHAN_HT40(c)) 2182 continue; 2183 } 2184 if (enhinfo[i].chan != 0 && 2185 enhinfo[i].chan != c->ic_ieee) 2186 continue; 2187 2188 DPRINTF(sc, IWN_DEBUG_RESET, 2189 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2190 c->ic_flags, maxpwr / 2); 2191 c->ic_maxregpower = maxpwr / 2; 2192 c->ic_maxpower = maxpwr; 2193 } 2194 } 2195 2196 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2197 2198 } 2199 2200 static struct ieee80211_node * 2201 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2202 { 2203 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 2204 } 2205 2206 static __inline int 2207 rate2plcp(int rate) 2208 { 2209 switch (rate & 0xff) { 2210 case 12: return 0xd; 2211 case 18: return 0xf; 2212 case 24: return 0x5; 2213 case 36: return 0x7; 2214 case 48: return 0x9; 2215 case 72: return 0xb; 2216 case 96: return 0x1; 2217 case 108: return 0x3; 2218 case 2: return 10; 2219 case 4: return 20; 2220 case 11: return 55; 2221 case 22: return 110; 2222 } 2223 return 0; 2224 } 2225 2226 /* 2227 * Calculate the required PLCP value from the given rate, 2228 * to the given node. 2229 * 2230 * This will take the node configuration (eg 11n, rate table 2231 * setup, etc) into consideration. 2232 */ 2233 static uint32_t 2234 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2235 uint8_t rate) 2236 { 2237 #define RV(v) ((v) & IEEE80211_RATE_VAL) 2238 struct ieee80211com *ic = ni->ni_ic; 2239 uint8_t txant1, txant2; 2240 uint32_t plcp = 0; 2241 int ridx; 2242 2243 /* Use the first valid TX antenna. */ 2244 txant1 = IWN_LSB(sc->txchainmask); 2245 txant2 = IWN_LSB(sc->txchainmask & ~txant1); 2246 2247 /* 2248 * If it's an MCS rate, let's set the plcp correctly 2249 * and set the relevant flags based on the node config. 2250 */ 2251 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2252 /* 2253 * Set the initial PLCP value to be between 0->31 for 2254 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2255 * flag. 2256 */ 2257 plcp = RV(rate) | IWN_RFLAG_MCS; 2258 2259 /* 2260 * XXX the following should only occur if both 2261 * the local configuration _and_ the remote node 2262 * advertise these capabilities. Thus this code 2263 * may need fixing! 2264 */ 2265 2266 /* 2267 * Set the channel width and guard interval. 2268 */ 2269 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2270 plcp |= IWN_RFLAG_HT40; 2271 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2272 plcp |= IWN_RFLAG_SGI; 2273 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2274 plcp |= IWN_RFLAG_SGI; 2275 } 2276 2277 /* 2278 * If it's a two stream rate, enable TX on both 2279 * antennas. 2280 * 2281 * XXX three stream rates? 2282 */ 2283 if (rate > 0x87) 2284 plcp |= IWN_RFLAG_ANT(txant1 | txant2); 2285 else 2286 plcp |= IWN_RFLAG_ANT(txant1); 2287 } else { 2288 /* 2289 * Set the initial PLCP - fine for both 2290 * OFDM and CCK rates. 2291 */ 2292 plcp = rate2plcp(rate); 2293 2294 /* Set CCK flag if it's CCK */ 2295 2296 /* XXX It would be nice to have a method 2297 * to map the ridx -> phy table entry 2298 * so we could just query that, rather than 2299 * this hack to check against IWN_RIDX_OFDM6. 2300 */ 2301 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2302 rate & IEEE80211_RATE_VAL); 2303 if (ridx < IWN_RIDX_OFDM6 && 2304 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2305 plcp |= IWN_RFLAG_CCK; 2306 2307 /* Set antenna configuration */ 2308 plcp |= IWN_RFLAG_ANT(txant1); 2309 } 2310 2311 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2312 __func__, 2313 rate, 2314 plcp); 2315 2316 return (htole32(plcp)); 2317 #undef RV 2318 } 2319 2320 static void 2321 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2322 { 2323 /* Doesn't do anything at the moment */ 2324 } 2325 2326 static int 2327 iwn_media_change(struct ifnet *ifp) 2328 { 2329 int error; 2330 2331 error = ieee80211_media_change(ifp); 2332 /* NB: only the fixed rate can change and that doesn't need a reset */ 2333 return (error == ENETRESET ? 0 : error); 2334 } 2335 2336 static int 2337 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2338 { 2339 struct iwn_vap *ivp = IWN_VAP(vap); 2340 struct ieee80211com *ic = vap->iv_ic; 2341 struct iwn_softc *sc = ic->ic_ifp->if_softc; 2342 int error = 0; 2343 2344 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2345 2346 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2347 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2348 2349 IEEE80211_UNLOCK(ic); 2350 IWN_LOCK(sc); 2351 callout_stop(&sc->calib_to); 2352 2353 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2354 2355 switch (nstate) { 2356 case IEEE80211_S_ASSOC: 2357 if (vap->iv_state != IEEE80211_S_RUN) 2358 break; 2359 /* FALLTHROUGH */ 2360 case IEEE80211_S_AUTH: 2361 if (vap->iv_state == IEEE80211_S_AUTH) 2362 break; 2363 2364 /* 2365 * !AUTH -> AUTH transition requires state reset to handle 2366 * reassociations correctly. 2367 */ 2368 sc->rxon->associd = 0; 2369 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2370 sc->calib.state = IWN_CALIB_STATE_INIT; 2371 2372 if ((error = iwn_auth(sc, vap)) != 0) { 2373 device_printf(sc->sc_dev, 2374 "%s: could not move to auth state\n", __func__); 2375 } 2376 break; 2377 2378 case IEEE80211_S_RUN: 2379 /* 2380 * RUN -> RUN transition; Just restart the timers. 2381 */ 2382 if (vap->iv_state == IEEE80211_S_RUN) { 2383 sc->calib_cnt = 0; 2384 break; 2385 } 2386 2387 /* 2388 * !RUN -> RUN requires setting the association id 2389 * which is done with a firmware cmd. We also defer 2390 * starting the timers until that work is done. 2391 */ 2392 if ((error = iwn_run(sc, vap)) != 0) { 2393 device_printf(sc->sc_dev, 2394 "%s: could not move to run state\n", __func__); 2395 } 2396 break; 2397 2398 case IEEE80211_S_INIT: 2399 sc->calib.state = IWN_CALIB_STATE_INIT; 2400 break; 2401 2402 default: 2403 break; 2404 } 2405 IWN_UNLOCK(sc); 2406 IEEE80211_LOCK(ic); 2407 if (error != 0){ 2408 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2409 return error; 2410 } 2411 2412 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2413 2414 return ivp->iv_newstate(vap, nstate, arg); 2415 } 2416 2417 static void 2418 iwn_calib_timeout(void *arg) 2419 { 2420 struct iwn_softc *sc = arg; 2421 2422 IWN_LOCK_ASSERT(sc); 2423 2424 /* Force automatic TX power calibration every 60 secs. */ 2425 if (++sc->calib_cnt >= 120) { 2426 uint32_t flags = 0; 2427 2428 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2429 "sending request for statistics"); 2430 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2431 sizeof flags, 1); 2432 sc->calib_cnt = 0; 2433 } 2434 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2435 sc); 2436 } 2437 2438 /* 2439 * Process an RX_PHY firmware notification. This is usually immediately 2440 * followed by an MPDU_RX_DONE notification. 2441 */ 2442 static void 2443 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2444 struct iwn_rx_data *data) 2445 { 2446 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2447 2448 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 2449 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2450 2451 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2452 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2453 sc->last_rx_valid = 1; 2454 } 2455 2456 /* 2457 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2458 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2459 */ 2460 static void 2461 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2462 struct iwn_rx_data *data) 2463 { 2464 struct iwn_ops *ops = &sc->ops; 2465 struct ifnet *ifp = sc->sc_ifp; 2466 struct ieee80211com *ic = ifp->if_l2com; 2467 struct iwn_rx_ring *ring = &sc->rxq; 2468 struct ieee80211_frame *wh; 2469 struct ieee80211_node *ni; 2470 struct mbuf *m, *m1; 2471 struct iwn_rx_stat *stat; 2472 caddr_t head; 2473 bus_addr_t paddr; 2474 uint32_t flags; 2475 int error, len, rssi, nf; 2476 2477 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2478 2479 if (desc->type == IWN_MPDU_RX_DONE) { 2480 /* Check for prior RX_PHY notification. */ 2481 if (!sc->last_rx_valid) { 2482 DPRINTF(sc, IWN_DEBUG_ANY, 2483 "%s: missing RX_PHY\n", __func__); 2484 return; 2485 } 2486 stat = &sc->last_rx_stat; 2487 } else 2488 stat = (struct iwn_rx_stat *)(desc + 1); 2489 2490 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2491 2492 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2493 device_printf(sc->sc_dev, 2494 "%s: invalid RX statistic header, len %d\n", __func__, 2495 stat->cfg_phy_len); 2496 return; 2497 } 2498 if (desc->type == IWN_MPDU_RX_DONE) { 2499 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2500 head = (caddr_t)(mpdu + 1); 2501 len = le16toh(mpdu->len); 2502 } else { 2503 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 2504 len = le16toh(stat->len); 2505 } 2506 2507 flags = le32toh(*(uint32_t *)(head + len)); 2508 2509 /* Discard frames with a bad FCS early. */ 2510 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2511 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 2512 __func__, flags); 2513 ifp->if_ierrors++; 2514 return; 2515 } 2516 /* Discard frames that are too short. */ 2517 if (len < sizeof (*wh)) { 2518 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 2519 __func__, len); 2520 ifp->if_ierrors++; 2521 return; 2522 } 2523 2524 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 2525 if (m1 == NULL) { 2526 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 2527 __func__); 2528 ifp->if_ierrors++; 2529 return; 2530 } 2531 bus_dmamap_unload(ring->data_dmat, data->map); 2532 2533 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 2534 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 2535 if (error != 0 && error != EFBIG) { 2536 device_printf(sc->sc_dev, 2537 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 2538 m_freem(m1); 2539 2540 /* Try to reload the old mbuf. */ 2541 error = bus_dmamap_load(ring->data_dmat, data->map, 2542 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 2543 &paddr, BUS_DMA_NOWAIT); 2544 if (error != 0 && error != EFBIG) { 2545 panic("%s: could not load old RX mbuf", __func__); 2546 } 2547 /* Physical address may have changed. */ 2548 ring->desc[ring->cur] = htole32(paddr >> 8); 2549 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 2550 BUS_DMASYNC_PREWRITE); 2551 ifp->if_ierrors++; 2552 return; 2553 } 2554 2555 m = data->m; 2556 data->m = m1; 2557 /* Update RX descriptor. */ 2558 ring->desc[ring->cur] = htole32(paddr >> 8); 2559 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2560 BUS_DMASYNC_PREWRITE); 2561 2562 /* Finalize mbuf. */ 2563 m->m_pkthdr.rcvif = ifp; 2564 m->m_data = head; 2565 m->m_pkthdr.len = m->m_len = len; 2566 2567 /* Grab a reference to the source node. */ 2568 wh = mtod(m, struct ieee80211_frame *); 2569 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2570 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 2571 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 2572 2573 rssi = ops->get_rssi(sc, stat); 2574 2575 if (ieee80211_radiotap_active(ic)) { 2576 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2577 2578 tap->wr_flags = 0; 2579 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2580 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2581 tap->wr_dbm_antsignal = (int8_t)rssi; 2582 tap->wr_dbm_antnoise = (int8_t)nf; 2583 tap->wr_tsft = stat->tstamp; 2584 switch (stat->rate) { 2585 /* CCK rates. */ 2586 case 10: tap->wr_rate = 2; break; 2587 case 20: tap->wr_rate = 4; break; 2588 case 55: tap->wr_rate = 11; break; 2589 case 110: tap->wr_rate = 22; break; 2590 /* OFDM rates. */ 2591 case 0xd: tap->wr_rate = 12; break; 2592 case 0xf: tap->wr_rate = 18; break; 2593 case 0x5: tap->wr_rate = 24; break; 2594 case 0x7: tap->wr_rate = 36; break; 2595 case 0x9: tap->wr_rate = 48; break; 2596 case 0xb: tap->wr_rate = 72; break; 2597 case 0x1: tap->wr_rate = 96; break; 2598 case 0x3: tap->wr_rate = 108; break; 2599 /* Unknown rate: should not happen. */ 2600 default: tap->wr_rate = 0; 2601 } 2602 } 2603 2604 IWN_UNLOCK(sc); 2605 2606 /* Send the frame to the 802.11 layer. */ 2607 if (ni != NULL) { 2608 if (ni->ni_flags & IEEE80211_NODE_HT) 2609 m->m_flags |= M_AMPDU; 2610 (void)ieee80211_input(ni, m, rssi - nf, nf); 2611 /* Node is no longer needed. */ 2612 ieee80211_free_node(ni); 2613 } else 2614 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 2615 2616 IWN_LOCK(sc); 2617 2618 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2619 2620 } 2621 2622 /* Process an incoming Compressed BlockAck. */ 2623 static void 2624 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2625 struct iwn_rx_data *data) 2626 { 2627 struct iwn_ops *ops = &sc->ops; 2628 struct ifnet *ifp = sc->sc_ifp; 2629 struct iwn_node *wn; 2630 struct ieee80211_node *ni; 2631 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2632 struct iwn_tx_ring *txq; 2633 struct iwn_tx_data *txdata; 2634 struct ieee80211_tx_ampdu *tap; 2635 struct mbuf *m; 2636 uint64_t bitmap; 2637 uint16_t ssn; 2638 uint8_t tid; 2639 int ackfailcnt = 0, i, lastidx, qid, *res, shift; 2640 2641 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2642 2643 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2644 2645 qid = le16toh(ba->qid); 2646 txq = &sc->txq[ba->qid]; 2647 tap = sc->qid2tap[ba->qid]; 2648 tid = tap->txa_tid; 2649 wn = (void *)tap->txa_ni; 2650 2651 res = NULL; 2652 ssn = 0; 2653 if (!IEEE80211_AMPDU_RUNNING(tap)) { 2654 res = tap->txa_private; 2655 ssn = tap->txa_start & 0xfff; 2656 } 2657 2658 for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) { 2659 txdata = &txq->data[txq->read]; 2660 2661 /* Unmap and free mbuf. */ 2662 bus_dmamap_sync(txq->data_dmat, txdata->map, 2663 BUS_DMASYNC_POSTWRITE); 2664 bus_dmamap_unload(txq->data_dmat, txdata->map); 2665 m = txdata->m, txdata->m = NULL; 2666 ni = txdata->ni, txdata->ni = NULL; 2667 2668 KASSERT(ni != NULL, ("no node")); 2669 KASSERT(m != NULL, ("no mbuf")); 2670 2671 ieee80211_tx_complete(ni, m, 1); 2672 2673 txq->queued--; 2674 txq->read = (txq->read + 1) % IWN_TX_RING_COUNT; 2675 } 2676 2677 if (txq->queued == 0 && res != NULL) { 2678 iwn_nic_lock(sc); 2679 ops->ampdu_tx_stop(sc, qid, tid, ssn); 2680 iwn_nic_unlock(sc); 2681 sc->qid2tap[qid] = NULL; 2682 free(res, M_DEVBUF); 2683 return; 2684 } 2685 2686 if (wn->agg[tid].bitmap == 0) 2687 return; 2688 2689 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 2690 if (shift < 0) 2691 shift += 0x100; 2692 2693 if (wn->agg[tid].nframes > (64 - shift)) 2694 return; 2695 2696 ni = tap->txa_ni; 2697 bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; 2698 for (i = 0; bitmap; i++) { 2699 if ((bitmap & 1) == 0) { 2700 ifp->if_oerrors++; 2701 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 2702 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 2703 } else { 2704 ifp->if_opackets++; 2705 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 2706 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 2707 } 2708 bitmap >>= 1; 2709 } 2710 2711 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2712 2713 } 2714 2715 /* 2716 * Process a CALIBRATION_RESULT notification sent by the initialization 2717 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 2718 */ 2719 static void 2720 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2721 struct iwn_rx_data *data) 2722 { 2723 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2724 int len, idx = -1; 2725 2726 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2727 2728 /* Runtime firmware should not send such a notification. */ 2729 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 2730 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n", 2731 __func__); 2732 return; 2733 } 2734 len = (le32toh(desc->len) & 0x3fff) - 4; 2735 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2736 2737 switch (calib->code) { 2738 case IWN5000_PHY_CALIB_DC: 2739 if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 && 2740 (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2741 sc->hw_type >= IWN_HW_REV_TYPE_6000) && 2742 sc->hw_type != IWN_HW_REV_TYPE_6050) 2743 idx = 0; 2744 break; 2745 case IWN5000_PHY_CALIB_LO: 2746 idx = 1; 2747 break; 2748 case IWN5000_PHY_CALIB_TX_IQ: 2749 idx = 2; 2750 break; 2751 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2752 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2753 sc->hw_type != IWN_HW_REV_TYPE_5150) 2754 idx = 3; 2755 break; 2756 case IWN5000_PHY_CALIB_BASE_BAND: 2757 idx = 4; 2758 break; 2759 } 2760 if (idx == -1) /* Ignore other results. */ 2761 return; 2762 2763 /* Save calibration result. */ 2764 if (sc->calibcmd[idx].buf != NULL) 2765 free(sc->calibcmd[idx].buf, M_DEVBUF); 2766 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2767 if (sc->calibcmd[idx].buf == NULL) { 2768 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2769 "not enough memory for calibration result %d\n", 2770 calib->code); 2771 return; 2772 } 2773 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2774 "saving calibration result code=%d len=%d\n", calib->code, len); 2775 sc->calibcmd[idx].len = len; 2776 memcpy(sc->calibcmd[idx].buf, calib, len); 2777 } 2778 2779 /* 2780 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2781 * The latter is sent by the firmware after each received beacon. 2782 */ 2783 static void 2784 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2785 struct iwn_rx_data *data) 2786 { 2787 struct iwn_ops *ops = &sc->ops; 2788 struct ifnet *ifp = sc->sc_ifp; 2789 struct ieee80211com *ic = ifp->if_l2com; 2790 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2791 struct iwn_calib_state *calib = &sc->calib; 2792 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2793 int temp; 2794 2795 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2796 2797 /* Ignore statistics received during a scan. */ 2798 if (vap->iv_state != IEEE80211_S_RUN || 2799 (ic->ic_flags & IEEE80211_F_SCAN)){ 2800 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 2801 __func__); 2802 return; 2803 } 2804 2805 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2806 2807 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n", 2808 __func__, desc->type); 2809 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 2810 2811 /* Test if temperature has changed. */ 2812 if (stats->general.temp != sc->rawtemp) { 2813 /* Convert "raw" temperature to degC. */ 2814 sc->rawtemp = stats->general.temp; 2815 temp = ops->get_temperature(sc); 2816 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 2817 __func__, temp); 2818 2819 /* Update TX power if need be (4965AGN only). */ 2820 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2821 iwn4965_power_calibration(sc, temp); 2822 } 2823 2824 if (desc->type != IWN_BEACON_STATISTICS) 2825 return; /* Reply to a statistics request. */ 2826 2827 sc->noise = iwn_get_noise(&stats->rx.general); 2828 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 2829 2830 /* Test that RSSI and noise are present in stats report. */ 2831 if (le32toh(stats->rx.general.flags) != 1) { 2832 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 2833 "received statistics without RSSI"); 2834 return; 2835 } 2836 2837 if (calib->state == IWN_CALIB_STATE_ASSOC) 2838 iwn_collect_noise(sc, &stats->rx.general); 2839 else if (calib->state == IWN_CALIB_STATE_RUN) 2840 iwn_tune_sensitivity(sc, &stats->rx); 2841 2842 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2843 } 2844 2845 /* 2846 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2847 * and 5000 adapters have different incompatible TX status formats. 2848 */ 2849 static void 2850 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2851 struct iwn_rx_data *data) 2852 { 2853 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2854 struct iwn_tx_ring *ring; 2855 int qid; 2856 2857 qid = desc->qid & 0xf; 2858 ring = &sc->txq[qid]; 2859 2860 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 2861 "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", 2862 __func__, desc->qid, desc->idx, stat->ackfailcnt, 2863 stat->btkillcnt, stat->rate, le16toh(stat->duration), 2864 le32toh(stat->status)); 2865 2866 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2867 if (qid >= sc->firstaggqueue) { 2868 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 2869 &stat->status); 2870 } else { 2871 iwn_tx_done(sc, desc, stat->ackfailcnt, 2872 le32toh(stat->status) & 0xff); 2873 } 2874 } 2875 2876 static void 2877 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2878 struct iwn_rx_data *data) 2879 { 2880 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2881 struct iwn_tx_ring *ring; 2882 int qid; 2883 2884 qid = desc->qid & 0xf; 2885 ring = &sc->txq[qid]; 2886 2887 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 2888 "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", 2889 __func__, desc->qid, desc->idx, stat->ackfailcnt, 2890 stat->btkillcnt, stat->rate, le16toh(stat->duration), 2891 le32toh(stat->status)); 2892 2893 #ifdef notyet 2894 /* Reset TX scheduler slot. */ 2895 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2896 #endif 2897 2898 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2899 if (qid >= sc->firstaggqueue) { 2900 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 2901 &stat->status); 2902 } else { 2903 iwn_tx_done(sc, desc, stat->ackfailcnt, 2904 le16toh(stat->status) & 0xff); 2905 } 2906 } 2907 2908 /* 2909 * Adapter-independent backend for TX_DONE firmware notifications. 2910 */ 2911 static void 2912 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2913 uint8_t status) 2914 { 2915 struct ifnet *ifp = sc->sc_ifp; 2916 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2917 struct iwn_tx_data *data = &ring->data[desc->idx]; 2918 struct mbuf *m; 2919 struct ieee80211_node *ni; 2920 struct ieee80211vap *vap; 2921 2922 KASSERT(data->ni != NULL, ("no node")); 2923 2924 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2925 2926 /* Unmap and free mbuf. */ 2927 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2928 bus_dmamap_unload(ring->data_dmat, data->map); 2929 m = data->m, data->m = NULL; 2930 ni = data->ni, data->ni = NULL; 2931 vap = ni->ni_vap; 2932 2933 /* 2934 * Update rate control statistics for the node. 2935 */ 2936 if (status & IWN_TX_FAIL) { 2937 ifp->if_oerrors++; 2938 ieee80211_ratectl_tx_complete(vap, ni, 2939 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 2940 } else { 2941 ifp->if_opackets++; 2942 ieee80211_ratectl_tx_complete(vap, ni, 2943 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 2944 } 2945 2946 /* 2947 * Channels marked for "radar" require traffic to be received 2948 * to unlock before we can transmit. Until traffic is seen 2949 * any attempt to transmit is returned immediately with status 2950 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 2951 * happen on first authenticate after scanning. To workaround 2952 * this we ignore a failure of this sort in AUTH state so the 2953 * 802.11 layer will fall back to using a timeout to wait for 2954 * the AUTH reply. This allows the firmware time to see 2955 * traffic so a subsequent retry of AUTH succeeds. It's 2956 * unclear why the firmware does not maintain state for 2957 * channels recently visited as this would allow immediate 2958 * use of the channel after a scan (where we see traffic). 2959 */ 2960 if (status == IWN_TX_FAIL_TX_LOCKED && 2961 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 2962 ieee80211_tx_complete(ni, m, 0); 2963 else 2964 ieee80211_tx_complete(ni, m, 2965 (status & IWN_TX_FAIL) != 0); 2966 2967 sc->sc_tx_timer = 0; 2968 if (--ring->queued < IWN_TX_RING_LOMARK) { 2969 sc->qfullmsk &= ~(1 << ring->qid); 2970 if (sc->qfullmsk == 0 && 2971 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { 2972 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2973 iwn_start_locked(ifp); 2974 } 2975 } 2976 2977 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2978 2979 } 2980 2981 /* 2982 * Process a "command done" firmware notification. This is where we wakeup 2983 * processes waiting for a synchronous command completion. 2984 */ 2985 static void 2986 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2987 { 2988 struct iwn_tx_ring *ring = &sc->txq[4]; 2989 struct iwn_tx_data *data; 2990 2991 if ((desc->qid & 0xf) != 4) 2992 return; /* Not a command ack. */ 2993 2994 data = &ring->data[desc->idx]; 2995 2996 /* If the command was mapped in an mbuf, free it. */ 2997 if (data->m != NULL) { 2998 bus_dmamap_sync(ring->data_dmat, data->map, 2999 BUS_DMASYNC_POSTWRITE); 3000 bus_dmamap_unload(ring->data_dmat, data->map); 3001 m_freem(data->m); 3002 data->m = NULL; 3003 } 3004 wakeup(&ring->desc[desc->idx]); 3005 } 3006 3007 static void 3008 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, 3009 void *stat) 3010 { 3011 struct iwn_ops *ops = &sc->ops; 3012 struct ifnet *ifp = sc->sc_ifp; 3013 struct iwn_tx_ring *ring = &sc->txq[qid]; 3014 struct iwn_tx_data *data; 3015 struct mbuf *m; 3016 struct iwn_node *wn; 3017 struct ieee80211_node *ni; 3018 struct ieee80211_tx_ampdu *tap; 3019 uint64_t bitmap; 3020 uint32_t *status = stat; 3021 uint16_t *aggstatus = stat; 3022 uint16_t ssn; 3023 uint8_t tid; 3024 int bit, i, lastidx, *res, seqno, shift, start; 3025 3026 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3027 3028 #ifdef NOT_YET 3029 if (nframes == 1) { 3030 if ((*status & 0xff) != 1 && (*status & 0xff) != 2) 3031 printf("ieee80211_send_bar()\n"); 3032 } 3033 #endif 3034 3035 bitmap = 0; 3036 start = idx; 3037 for (i = 0; i < nframes; i++) { 3038 if (le16toh(aggstatus[i * 2]) & 0xc) 3039 continue; 3040 3041 idx = le16toh(aggstatus[2*i + 1]) & 0xff; 3042 bit = idx - start; 3043 shift = 0; 3044 if (bit >= 64) { 3045 shift = 0x100 - idx + start; 3046 bit = 0; 3047 start = idx; 3048 } else if (bit <= -64) 3049 bit = 0x100 - start + idx; 3050 else if (bit < 0) { 3051 shift = start - idx; 3052 start = idx; 3053 bit = 0; 3054 } 3055 bitmap = bitmap << shift; 3056 bitmap |= 1ULL << bit; 3057 } 3058 tap = sc->qid2tap[qid]; 3059 tid = tap->txa_tid; 3060 wn = (void *)tap->txa_ni; 3061 wn->agg[tid].bitmap = bitmap; 3062 wn->agg[tid].startidx = start; 3063 wn->agg[tid].nframes = nframes; 3064 3065 res = NULL; 3066 ssn = 0; 3067 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3068 res = tap->txa_private; 3069 ssn = tap->txa_start & 0xfff; 3070 } 3071 3072 seqno = le32toh(*(status + nframes)) & 0xfff; 3073 for (lastidx = (seqno & 0xff); ring->read != lastidx;) { 3074 data = &ring->data[ring->read]; 3075 3076 /* Unmap and free mbuf. */ 3077 bus_dmamap_sync(ring->data_dmat, data->map, 3078 BUS_DMASYNC_POSTWRITE); 3079 bus_dmamap_unload(ring->data_dmat, data->map); 3080 m = data->m, data->m = NULL; 3081 ni = data->ni, data->ni = NULL; 3082 3083 KASSERT(ni != NULL, ("no node")); 3084 KASSERT(m != NULL, ("no mbuf")); 3085 3086 ieee80211_tx_complete(ni, m, 1); 3087 3088 ring->queued--; 3089 ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; 3090 } 3091 3092 if (ring->queued == 0 && res != NULL) { 3093 iwn_nic_lock(sc); 3094 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3095 iwn_nic_unlock(sc); 3096 sc->qid2tap[qid] = NULL; 3097 free(res, M_DEVBUF); 3098 return; 3099 } 3100 3101 sc->sc_tx_timer = 0; 3102 if (ring->queued < IWN_TX_RING_LOMARK) { 3103 sc->qfullmsk &= ~(1 << ring->qid); 3104 if (sc->qfullmsk == 0 && 3105 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { 3106 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3107 iwn_start_locked(ifp); 3108 } 3109 } 3110 3111 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3112 3113 } 3114 3115 /* 3116 * Process an INT_FH_RX or INT_SW_RX interrupt. 3117 */ 3118 static void 3119 iwn_notif_intr(struct iwn_softc *sc) 3120 { 3121 struct iwn_ops *ops = &sc->ops; 3122 struct ifnet *ifp = sc->sc_ifp; 3123 struct ieee80211com *ic = ifp->if_l2com; 3124 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3125 uint16_t hw; 3126 3127 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3128 BUS_DMASYNC_POSTREAD); 3129 3130 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3131 while (sc->rxq.cur != hw) { 3132 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3133 struct iwn_rx_desc *desc; 3134 3135 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3136 BUS_DMASYNC_POSTREAD); 3137 desc = mtod(data->m, struct iwn_rx_desc *); 3138 3139 DPRINTF(sc, IWN_DEBUG_RECV, 3140 "%s: qid %x idx %d flags %x type %d(%s) len %d\n", 3141 __func__, desc->qid & 0xf, desc->idx, desc->flags, 3142 desc->type, iwn_intr_str(desc->type), 3143 le16toh(desc->len)); 3144 3145 if (!(desc->qid & 0x80)) /* Reply to a command. */ 3146 iwn_cmd_done(sc, desc); 3147 3148 switch (desc->type) { 3149 case IWN_RX_PHY: 3150 iwn_rx_phy(sc, desc, data); 3151 break; 3152 3153 case IWN_RX_DONE: /* 4965AGN only. */ 3154 case IWN_MPDU_RX_DONE: 3155 /* An 802.11 frame has been received. */ 3156 iwn_rx_done(sc, desc, data); 3157 break; 3158 3159 case IWN_RX_COMPRESSED_BA: 3160 /* A Compressed BlockAck has been received. */ 3161 iwn_rx_compressed_ba(sc, desc, data); 3162 break; 3163 3164 case IWN_TX_DONE: 3165 /* An 802.11 frame has been transmitted. */ 3166 ops->tx_done(sc, desc, data); 3167 break; 3168 3169 case IWN_RX_STATISTICS: 3170 case IWN_BEACON_STATISTICS: 3171 iwn_rx_statistics(sc, desc, data); 3172 break; 3173 3174 case IWN_BEACON_MISSED: 3175 { 3176 struct iwn_beacon_missed *miss = 3177 (struct iwn_beacon_missed *)(desc + 1); 3178 int misses; 3179 3180 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3181 BUS_DMASYNC_POSTREAD); 3182 misses = le32toh(miss->consecutive); 3183 3184 DPRINTF(sc, IWN_DEBUG_STATE, 3185 "%s: beacons missed %d/%d\n", __func__, 3186 misses, le32toh(miss->total)); 3187 /* 3188 * If more than 5 consecutive beacons are missed, 3189 * reinitialize the sensitivity state machine. 3190 */ 3191 if (vap->iv_state == IEEE80211_S_RUN && 3192 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3193 if (misses > 5) 3194 (void)iwn_init_sensitivity(sc); 3195 if (misses >= vap->iv_bmissthreshold) { 3196 IWN_UNLOCK(sc); 3197 ieee80211_beacon_miss(ic); 3198 IWN_LOCK(sc); 3199 } 3200 } 3201 break; 3202 } 3203 case IWN_UC_READY: 3204 { 3205 struct iwn_ucode_info *uc = 3206 (struct iwn_ucode_info *)(desc + 1); 3207 3208 /* The microcontroller is ready. */ 3209 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3210 BUS_DMASYNC_POSTREAD); 3211 DPRINTF(sc, IWN_DEBUG_RESET, 3212 "microcode alive notification version=%d.%d " 3213 "subtype=%x alive=%x\n", uc->major, uc->minor, 3214 uc->subtype, le32toh(uc->valid)); 3215 3216 if (le32toh(uc->valid) != 1) { 3217 device_printf(sc->sc_dev, 3218 "microcontroller initialization failed"); 3219 break; 3220 } 3221 if (uc->subtype == IWN_UCODE_INIT) { 3222 /* Save microcontroller report. */ 3223 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3224 } 3225 /* Save the address of the error log in SRAM. */ 3226 sc->errptr = le32toh(uc->errptr); 3227 break; 3228 } 3229 case IWN_STATE_CHANGED: 3230 { 3231 /* 3232 * State change allows hardware switch change to be 3233 * noted. However, we handle this in iwn_intr as we 3234 * get both the enable/disble intr. 3235 */ 3236 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3237 BUS_DMASYNC_POSTREAD); 3238 #ifdef IWN_DEBUG 3239 uint32_t *status = (uint32_t *)(desc + 1); 3240 DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n", 3241 le32toh(*status)); 3242 #endif 3243 break; 3244 } 3245 case IWN_START_SCAN: 3246 { 3247 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3248 BUS_DMASYNC_POSTREAD); 3249 #ifdef IWN_DEBUG 3250 struct iwn_start_scan *scan = 3251 (struct iwn_start_scan *)(desc + 1); 3252 DPRINTF(sc, IWN_DEBUG_ANY, 3253 "%s: scanning channel %d status %x\n", 3254 __func__, scan->chan, le32toh(scan->status)); 3255 #endif 3256 break; 3257 } 3258 case IWN_STOP_SCAN: 3259 { 3260 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3261 BUS_DMASYNC_POSTREAD); 3262 #ifdef IWN_DEBUG 3263 struct iwn_stop_scan *scan = 3264 (struct iwn_stop_scan *)(desc + 1); 3265 DPRINTF(sc, IWN_DEBUG_STATE, 3266 "scan finished nchan=%d status=%d chan=%d\n", 3267 scan->nchan, scan->status, scan->chan); 3268 #endif 3269 3270 IWN_UNLOCK(sc); 3271 ieee80211_scan_next(vap); 3272 IWN_LOCK(sc); 3273 break; 3274 } 3275 case IWN5000_CALIBRATION_RESULT: 3276 iwn5000_rx_calib_results(sc, desc, data); 3277 break; 3278 3279 case IWN5000_CALIBRATION_DONE: 3280 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3281 wakeup(sc); 3282 break; 3283 } 3284 3285 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3286 } 3287 3288 /* Tell the firmware what we have processed. */ 3289 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3290 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3291 } 3292 3293 /* 3294 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3295 * from power-down sleep mode. 3296 */ 3297 static void 3298 iwn_wakeup_intr(struct iwn_softc *sc) 3299 { 3300 int qid; 3301 3302 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 3303 __func__); 3304 3305 /* Wakeup RX and TX rings. */ 3306 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 3307 for (qid = 0; qid < sc->ntxqs; qid++) { 3308 struct iwn_tx_ring *ring = &sc->txq[qid]; 3309 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 3310 } 3311 } 3312 3313 static void 3314 iwn_rftoggle_intr(struct iwn_softc *sc) 3315 { 3316 struct ifnet *ifp = sc->sc_ifp; 3317 struct ieee80211com *ic = ifp->if_l2com; 3318 uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); 3319 3320 IWN_LOCK_ASSERT(sc); 3321 3322 device_printf(sc->sc_dev, "RF switch: radio %s\n", 3323 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 3324 if (tmp & IWN_GP_CNTRL_RFKILL) 3325 ieee80211_runtask(ic, &sc->sc_radioon_task); 3326 else 3327 ieee80211_runtask(ic, &sc->sc_radiooff_task); 3328 } 3329 3330 /* 3331 * Dump the error log of the firmware when a firmware panic occurs. Although 3332 * we can't debug the firmware because it is neither open source nor free, it 3333 * can help us to identify certain classes of problems. 3334 */ 3335 static void 3336 iwn_fatal_intr(struct iwn_softc *sc) 3337 { 3338 struct iwn_fw_dump dump; 3339 int i; 3340 3341 IWN_LOCK_ASSERT(sc); 3342 3343 /* Force a complete recalibration on next init. */ 3344 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 3345 3346 /* Check that the error log address is valid. */ 3347 if (sc->errptr < IWN_FW_DATA_BASE || 3348 sc->errptr + sizeof (dump) > 3349 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 3350 printf("%s: bad firmware error log address 0x%08x\n", __func__, 3351 sc->errptr); 3352 return; 3353 } 3354 if (iwn_nic_lock(sc) != 0) { 3355 printf("%s: could not read firmware error log\n", __func__); 3356 return; 3357 } 3358 /* Read firmware error log from SRAM. */ 3359 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 3360 sizeof (dump) / sizeof (uint32_t)); 3361 iwn_nic_unlock(sc); 3362 3363 if (dump.valid == 0) { 3364 printf("%s: firmware error log is empty\n", __func__); 3365 return; 3366 } 3367 printf("firmware error log:\n"); 3368 printf(" error type = \"%s\" (0x%08X)\n", 3369 (dump.id < nitems(iwn_fw_errmsg)) ? 3370 iwn_fw_errmsg[dump.id] : "UNKNOWN", 3371 dump.id); 3372 printf(" program counter = 0x%08X\n", dump.pc); 3373 printf(" source line = 0x%08X\n", dump.src_line); 3374 printf(" error data = 0x%08X%08X\n", 3375 dump.error_data[0], dump.error_data[1]); 3376 printf(" branch link = 0x%08X%08X\n", 3377 dump.branch_link[0], dump.branch_link[1]); 3378 printf(" interrupt link = 0x%08X%08X\n", 3379 dump.interrupt_link[0], dump.interrupt_link[1]); 3380 printf(" time = %u\n", dump.time[0]); 3381 3382 /* Dump driver status (TX and RX rings) while we're here. */ 3383 printf("driver status:\n"); 3384 for (i = 0; i < sc->ntxqs; i++) { 3385 struct iwn_tx_ring *ring = &sc->txq[i]; 3386 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 3387 i, ring->qid, ring->cur, ring->queued); 3388 } 3389 printf(" rx ring: cur=%d\n", sc->rxq.cur); 3390 } 3391 3392 static void 3393 iwn_intr(void *arg) 3394 { 3395 struct iwn_softc *sc = arg; 3396 struct ifnet *ifp = sc->sc_ifp; 3397 uint32_t r1, r2, tmp; 3398 3399 IWN_LOCK(sc); 3400 3401 /* Disable interrupts. */ 3402 IWN_WRITE(sc, IWN_INT_MASK, 0); 3403 3404 /* Read interrupts from ICT (fast) or from registers (slow). */ 3405 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3406 tmp = 0; 3407 while (sc->ict[sc->ict_cur] != 0) { 3408 tmp |= sc->ict[sc->ict_cur]; 3409 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 3410 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 3411 } 3412 tmp = le32toh(tmp); 3413 if (tmp == 0xffffffff) /* Shouldn't happen. */ 3414 tmp = 0; 3415 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 3416 tmp |= 0x8000; 3417 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 3418 r2 = 0; /* Unused. */ 3419 } else { 3420 r1 = IWN_READ(sc, IWN_INT); 3421 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 3422 return; /* Hardware gone! */ 3423 r2 = IWN_READ(sc, IWN_FH_INT); 3424 } 3425 3426 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 3427 , r1, r2); 3428 3429 if (r1 == 0 && r2 == 0) 3430 goto done; /* Interrupt not for us. */ 3431 3432 /* Acknowledge interrupts. */ 3433 IWN_WRITE(sc, IWN_INT, r1); 3434 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 3435 IWN_WRITE(sc, IWN_FH_INT, r2); 3436 3437 if (r1 & IWN_INT_RF_TOGGLED) { 3438 iwn_rftoggle_intr(sc); 3439 goto done; 3440 } 3441 if (r1 & IWN_INT_CT_REACHED) { 3442 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 3443 __func__); 3444 } 3445 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 3446 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 3447 __func__); 3448 #ifdef IWN_DEBUG 3449 iwn_debug_register(sc); 3450 #endif 3451 /* Dump firmware error log and stop. */ 3452 iwn_fatal_intr(sc); 3453 ifp->if_flags &= ~IFF_UP; 3454 iwn_stop_locked(sc); 3455 goto done; 3456 } 3457 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 3458 (r2 & IWN_FH_INT_RX)) { 3459 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 3460 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 3461 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 3462 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3463 IWN_INT_PERIODIC_DIS); 3464 iwn_notif_intr(sc); 3465 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 3466 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 3467 IWN_INT_PERIODIC_ENA); 3468 } 3469 } else 3470 iwn_notif_intr(sc); 3471 } 3472 3473 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 3474 if (sc->sc_flags & IWN_FLAG_USE_ICT) 3475 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 3476 wakeup(sc); /* FH DMA transfer completed. */ 3477 } 3478 3479 if (r1 & IWN_INT_ALIVE) 3480 wakeup(sc); /* Firmware is alive. */ 3481 3482 if (r1 & IWN_INT_WAKEUP) 3483 iwn_wakeup_intr(sc); 3484 3485 done: 3486 /* Re-enable interrupts. */ 3487 if (ifp->if_flags & IFF_UP) 3488 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 3489 3490 IWN_UNLOCK(sc); 3491 } 3492 3493 /* 3494 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 3495 * 5000 adapters use a slightly different format). 3496 */ 3497 static void 3498 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3499 uint16_t len) 3500 { 3501 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 3502 3503 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 3504 3505 *w = htole16(len + 8); 3506 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3507 BUS_DMASYNC_PREWRITE); 3508 if (idx < IWN_SCHED_WINSZ) { 3509 *(w + IWN_TX_RING_COUNT) = *w; 3510 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3511 BUS_DMASYNC_PREWRITE); 3512 } 3513 } 3514 3515 static void 3516 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 3517 uint16_t len) 3518 { 3519 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 3520 3521 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 3522 3523 *w = htole16(id << 12 | (len + 8)); 3524 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3525 BUS_DMASYNC_PREWRITE); 3526 if (idx < IWN_SCHED_WINSZ) { 3527 *(w + IWN_TX_RING_COUNT) = *w; 3528 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3529 BUS_DMASYNC_PREWRITE); 3530 } 3531 } 3532 3533 #ifdef notyet 3534 static void 3535 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 3536 { 3537 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 3538 3539 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 3540 3541 *w = (*w & htole16(0xf000)) | htole16(1); 3542 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3543 BUS_DMASYNC_PREWRITE); 3544 if (idx < IWN_SCHED_WINSZ) { 3545 *(w + IWN_TX_RING_COUNT) = *w; 3546 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 3547 BUS_DMASYNC_PREWRITE); 3548 } 3549 } 3550 #endif 3551 3552 static int 3553 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 3554 { 3555 struct iwn_ops *ops = &sc->ops; 3556 const struct ieee80211_txparam *tp; 3557 struct ieee80211vap *vap = ni->ni_vap; 3558 struct ieee80211com *ic = ni->ni_ic; 3559 struct iwn_node *wn = (void *)ni; 3560 struct iwn_tx_ring *ring; 3561 struct iwn_tx_desc *desc; 3562 struct iwn_tx_data *data; 3563 struct iwn_tx_cmd *cmd; 3564 struct iwn_cmd_data *tx; 3565 struct ieee80211_frame *wh; 3566 struct ieee80211_key *k = NULL; 3567 struct mbuf *m1; 3568 uint32_t flags; 3569 uint16_t qos; 3570 u_int hdrlen; 3571 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 3572 uint8_t tid, ridx, txant, type; 3573 int ac, i, totlen, error, pad, nsegs = 0, rate; 3574 3575 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3576 3577 IWN_LOCK_ASSERT(sc); 3578 3579 wh = mtod(m, struct ieee80211_frame *); 3580 hdrlen = ieee80211_anyhdrsize(wh); 3581 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3582 3583 /* Select EDCA Access Category and TX ring for this frame. */ 3584 if (IEEE80211_QOS_HAS_SEQ(wh)) { 3585 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 3586 tid = qos & IEEE80211_QOS_TID; 3587 } else { 3588 qos = 0; 3589 tid = 0; 3590 } 3591 ac = M_WME_GETAC(m); 3592 if (m->m_flags & M_AMPDU_MPDU) { 3593 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 3594 3595 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3596 m_freem(m); 3597 return EINVAL; 3598 } 3599 3600 ac = *(int *)tap->txa_private; 3601 *(uint16_t *)wh->i_seq = 3602 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 3603 ni->ni_txseqs[tid]++; 3604 } 3605 ring = &sc->txq[ac]; 3606 desc = &ring->desc[ring->cur]; 3607 data = &ring->data[ring->cur]; 3608 3609 /* Choose a TX rate index. */ 3610 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 3611 if (type == IEEE80211_FC0_TYPE_MGT) 3612 rate = tp->mgmtrate; 3613 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 3614 rate = tp->mcastrate; 3615 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 3616 rate = tp->ucastrate; 3617 else { 3618 /* XXX pass pktlen */ 3619 (void) ieee80211_ratectl_rate(ni, NULL, 0); 3620 rate = ni->ni_txrate; 3621 } 3622 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 3623 rate & IEEE80211_RATE_VAL); 3624 3625 /* Encrypt the frame if need be. */ 3626 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 3627 /* Retrieve key for TX. */ 3628 k = ieee80211_crypto_encap(ni, m); 3629 if (k == NULL) { 3630 m_freem(m); 3631 return ENOBUFS; 3632 } 3633 /* 802.11 header may have moved. */ 3634 wh = mtod(m, struct ieee80211_frame *); 3635 } 3636 totlen = m->m_pkthdr.len; 3637 3638 if (ieee80211_radiotap_active_vap(vap)) { 3639 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3640 3641 tap->wt_flags = 0; 3642 tap->wt_rate = rate; 3643 if (k != NULL) 3644 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3645 3646 ieee80211_radiotap_tx(vap, m); 3647 } 3648 3649 /* Prepare TX firmware command. */ 3650 cmd = &ring->cmd[ring->cur]; 3651 cmd->code = IWN_CMD_TX_DATA; 3652 cmd->flags = 0; 3653 cmd->qid = ring->qid; 3654 cmd->idx = ring->cur; 3655 3656 tx = (struct iwn_cmd_data *)cmd->data; 3657 /* NB: No need to clear tx, all fields are reinitialized here. */ 3658 tx->scratch = 0; /* clear "scratch" area */ 3659 3660 flags = 0; 3661 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3662 /* Unicast frame, check if an ACK is expected. */ 3663 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 3664 IEEE80211_QOS_ACKPOLICY_NOACK) 3665 flags |= IWN_TX_NEED_ACK; 3666 } 3667 if ((wh->i_fc[0] & 3668 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3669 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 3670 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 3671 3672 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 3673 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 3674 3675 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 3676 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3677 /* NB: Group frames are sent using CCK in 802.11b/g. */ 3678 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 3679 flags |= IWN_TX_NEED_RTS; 3680 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3681 ridx >= IWN_RIDX_OFDM6) { 3682 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3683 flags |= IWN_TX_NEED_CTS; 3684 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3685 flags |= IWN_TX_NEED_RTS; 3686 } 3687 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 3688 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3689 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3690 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 3691 flags |= IWN_TX_NEED_PROTECTION; 3692 } else 3693 flags |= IWN_TX_FULL_TXOP; 3694 } 3695 } 3696 3697 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 3698 type != IEEE80211_FC0_TYPE_DATA) 3699 tx->id = sc->broadcast_id; 3700 else 3701 tx->id = wn->id; 3702 3703 if (type == IEEE80211_FC0_TYPE_MGT) { 3704 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3705 3706 /* Tell HW to set timestamp in probe responses. */ 3707 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3708 flags |= IWN_TX_INSERT_TSTAMP; 3709 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3710 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3711 tx->timeout = htole16(3); 3712 else 3713 tx->timeout = htole16(2); 3714 } else 3715 tx->timeout = htole16(0); 3716 3717 if (hdrlen & 3) { 3718 /* First segment length must be a multiple of 4. */ 3719 flags |= IWN_TX_NEED_PADDING; 3720 pad = 4 - (hdrlen & 3); 3721 } else 3722 pad = 0; 3723 3724 tx->len = htole16(totlen); 3725 tx->tid = tid; 3726 tx->rts_ntries = 60; 3727 tx->data_ntries = 15; 3728 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3729 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 3730 if (tx->id == sc->broadcast_id) { 3731 /* Group or management frame. */ 3732 tx->linkq = 0; 3733 /* XXX Alternate between antenna A and B? */ 3734 txant = IWN_LSB(sc->txchainmask); 3735 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 3736 } else { 3737 tx->linkq = ni->ni_rates.rs_nrates - ridx - 1; 3738 flags |= IWN_TX_LINKQ; /* enable MRR */ 3739 } 3740 /* Set physical address of "scratch area". */ 3741 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3742 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3743 3744 /* Copy 802.11 header in TX command. */ 3745 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3746 3747 /* Trim 802.11 header. */ 3748 m_adj(m, hdrlen); 3749 tx->security = 0; 3750 tx->flags = htole32(flags); 3751 3752 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 3753 &nsegs, BUS_DMA_NOWAIT); 3754 if (error != 0) { 3755 if (error != EFBIG) { 3756 device_printf(sc->sc_dev, 3757 "%s: can't map mbuf (error %d)\n", __func__, error); 3758 m_freem(m); 3759 return error; 3760 } 3761 /* Too many DMA segments, linearize mbuf. */ 3762 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER); 3763 if (m1 == NULL) { 3764 device_printf(sc->sc_dev, 3765 "%s: could not defrag mbuf\n", __func__); 3766 m_freem(m); 3767 return ENOBUFS; 3768 } 3769 m = m1; 3770 3771 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3772 segs, &nsegs, BUS_DMA_NOWAIT); 3773 if (error != 0) { 3774 device_printf(sc->sc_dev, 3775 "%s: can't map mbuf (error %d)\n", __func__, error); 3776 m_freem(m); 3777 return error; 3778 } 3779 } 3780 3781 data->m = m; 3782 data->ni = ni; 3783 3784 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 3785 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 3786 3787 /* Fill TX descriptor. */ 3788 desc->nsegs = 1; 3789 if (m->m_len != 0) 3790 desc->nsegs += nsegs; 3791 /* First DMA segment is used by the TX command. */ 3792 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3793 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3794 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3795 /* Other DMA segments are for data payload. */ 3796 seg = &segs[0]; 3797 for (i = 1; i <= nsegs; i++) { 3798 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 3799 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 3800 seg->ds_len << 4); 3801 seg++; 3802 } 3803 3804 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 3805 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3806 BUS_DMASYNC_PREWRITE); 3807 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3808 BUS_DMASYNC_PREWRITE); 3809 3810 /* Update TX scheduler. */ 3811 if (ring->qid >= sc->firstaggqueue) 3812 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3813 3814 /* Kick TX ring. */ 3815 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3816 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3817 3818 /* Mark TX ring as full if we reach a certain threshold. */ 3819 if (++ring->queued > IWN_TX_RING_HIMARK) 3820 sc->qfullmsk |= 1 << ring->qid; 3821 3822 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3823 3824 return 0; 3825 } 3826 3827 static int 3828 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 3829 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 3830 { 3831 struct iwn_ops *ops = &sc->ops; 3832 struct ifnet *ifp = sc->sc_ifp; 3833 struct ieee80211vap *vap = ni->ni_vap; 3834 struct ieee80211com *ic = ifp->if_l2com; 3835 struct iwn_tx_cmd *cmd; 3836 struct iwn_cmd_data *tx; 3837 struct ieee80211_frame *wh; 3838 struct iwn_tx_ring *ring; 3839 struct iwn_tx_desc *desc; 3840 struct iwn_tx_data *data; 3841 struct mbuf *m1; 3842 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 3843 uint32_t flags; 3844 u_int hdrlen; 3845 int ac, totlen, error, pad, nsegs = 0, i, rate; 3846 uint8_t ridx, type, txant; 3847 3848 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3849 3850 IWN_LOCK_ASSERT(sc); 3851 3852 wh = mtod(m, struct ieee80211_frame *); 3853 hdrlen = ieee80211_anyhdrsize(wh); 3854 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3855 3856 ac = params->ibp_pri & 3; 3857 3858 ring = &sc->txq[ac]; 3859 desc = &ring->desc[ring->cur]; 3860 data = &ring->data[ring->cur]; 3861 3862 /* Choose a TX rate index. */ 3863 rate = params->ibp_rate0; 3864 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 3865 rate & IEEE80211_RATE_VAL); 3866 if (ridx == (uint8_t)-1) { 3867 /* XXX fall back to mcast/mgmt rate? */ 3868 m_freem(m); 3869 return EINVAL; 3870 } 3871 3872 totlen = m->m_pkthdr.len; 3873 3874 /* Prepare TX firmware command. */ 3875 cmd = &ring->cmd[ring->cur]; 3876 cmd->code = IWN_CMD_TX_DATA; 3877 cmd->flags = 0; 3878 cmd->qid = ring->qid; 3879 cmd->idx = ring->cur; 3880 3881 tx = (struct iwn_cmd_data *)cmd->data; 3882 /* NB: No need to clear tx, all fields are reinitialized here. */ 3883 tx->scratch = 0; /* clear "scratch" area */ 3884 3885 flags = 0; 3886 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 3887 flags |= IWN_TX_NEED_ACK; 3888 if (params->ibp_flags & IEEE80211_BPF_RTS) { 3889 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3890 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3891 flags &= ~IWN_TX_NEED_RTS; 3892 flags |= IWN_TX_NEED_PROTECTION; 3893 } else 3894 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 3895 } 3896 if (params->ibp_flags & IEEE80211_BPF_CTS) { 3897 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3898 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3899 flags &= ~IWN_TX_NEED_CTS; 3900 flags |= IWN_TX_NEED_PROTECTION; 3901 } else 3902 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 3903 } 3904 if (type == IEEE80211_FC0_TYPE_MGT) { 3905 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3906 3907 /* Tell HW to set timestamp in probe responses. */ 3908 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3909 flags |= IWN_TX_INSERT_TSTAMP; 3910 3911 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3912 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3913 tx->timeout = htole16(3); 3914 else 3915 tx->timeout = htole16(2); 3916 } else 3917 tx->timeout = htole16(0); 3918 3919 if (hdrlen & 3) { 3920 /* First segment length must be a multiple of 4. */ 3921 flags |= IWN_TX_NEED_PADDING; 3922 pad = 4 - (hdrlen & 3); 3923 } else 3924 pad = 0; 3925 3926 if (ieee80211_radiotap_active_vap(vap)) { 3927 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3928 3929 tap->wt_flags = 0; 3930 tap->wt_rate = rate; 3931 3932 ieee80211_radiotap_tx(vap, m); 3933 } 3934 3935 tx->len = htole16(totlen); 3936 tx->tid = 0; 3937 tx->id = sc->broadcast_id; 3938 tx->rts_ntries = params->ibp_try1; 3939 tx->data_ntries = params->ibp_try0; 3940 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3941 3942 /* XXX should just use iwn_rate_to_plcp() */ 3943 tx->rate = htole32(rate2plcp(rate)); 3944 if (ridx < IWN_RIDX_OFDM6 && 3945 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 3946 tx->rate |= htole32(IWN_RFLAG_CCK); 3947 3948 /* Group or management frame. */ 3949 tx->linkq = 0; 3950 txant = IWN_LSB(sc->txchainmask); 3951 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 3952 3953 /* Set physical address of "scratch area". */ 3954 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3955 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3956 3957 /* Copy 802.11 header in TX command. */ 3958 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3959 3960 /* Trim 802.11 header. */ 3961 m_adj(m, hdrlen); 3962 tx->security = 0; 3963 tx->flags = htole32(flags); 3964 3965 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 3966 &nsegs, BUS_DMA_NOWAIT); 3967 if (error != 0) { 3968 if (error != EFBIG) { 3969 device_printf(sc->sc_dev, 3970 "%s: can't map mbuf (error %d)\n", __func__, error); 3971 m_freem(m); 3972 return error; 3973 } 3974 /* Too many DMA segments, linearize mbuf. */ 3975 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER); 3976 if (m1 == NULL) { 3977 device_printf(sc->sc_dev, 3978 "%s: could not defrag mbuf\n", __func__); 3979 m_freem(m); 3980 return ENOBUFS; 3981 } 3982 m = m1; 3983 3984 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 3985 segs, &nsegs, BUS_DMA_NOWAIT); 3986 if (error != 0) { 3987 device_printf(sc->sc_dev, 3988 "%s: can't map mbuf (error %d)\n", __func__, error); 3989 m_freem(m); 3990 return error; 3991 } 3992 } 3993 3994 data->m = m; 3995 data->ni = ni; 3996 3997 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 3998 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 3999 4000 /* Fill TX descriptor. */ 4001 desc->nsegs = 1; 4002 if (m->m_len != 0) 4003 desc->nsegs += nsegs; 4004 /* First DMA segment is used by the TX command. */ 4005 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4006 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4007 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4008 /* Other DMA segments are for data payload. */ 4009 seg = &segs[0]; 4010 for (i = 1; i <= nsegs; i++) { 4011 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4012 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4013 seg->ds_len << 4); 4014 seg++; 4015 } 4016 4017 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4018 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4019 BUS_DMASYNC_PREWRITE); 4020 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4021 BUS_DMASYNC_PREWRITE); 4022 4023 /* Update TX scheduler. */ 4024 if (ring->qid >= sc->firstaggqueue) 4025 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4026 4027 /* Kick TX ring. */ 4028 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4029 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4030 4031 /* Mark TX ring as full if we reach a certain threshold. */ 4032 if (++ring->queued > IWN_TX_RING_HIMARK) 4033 sc->qfullmsk |= 1 << ring->qid; 4034 4035 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4036 4037 return 0; 4038 } 4039 4040 static int 4041 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 4042 const struct ieee80211_bpf_params *params) 4043 { 4044 struct ieee80211com *ic = ni->ni_ic; 4045 struct ifnet *ifp = ic->ic_ifp; 4046 struct iwn_softc *sc = ifp->if_softc; 4047 int error = 0; 4048 4049 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4050 4051 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4052 ieee80211_free_node(ni); 4053 m_freem(m); 4054 return ENETDOWN; 4055 } 4056 4057 IWN_LOCK(sc); 4058 if (params == NULL) { 4059 /* 4060 * Legacy path; interpret frame contents to decide 4061 * precisely how to send the frame. 4062 */ 4063 error = iwn_tx_data(sc, m, ni); 4064 } else { 4065 /* 4066 * Caller supplied explicit parameters to use in 4067 * sending the frame. 4068 */ 4069 error = iwn_tx_data_raw(sc, m, ni, params); 4070 } 4071 if (error != 0) { 4072 /* NB: m is reclaimed on tx failure */ 4073 ieee80211_free_node(ni); 4074 ifp->if_oerrors++; 4075 } 4076 sc->sc_tx_timer = 5; 4077 4078 IWN_UNLOCK(sc); 4079 4080 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4081 4082 return error; 4083 } 4084 4085 static void 4086 iwn_start(struct ifnet *ifp) 4087 { 4088 struct iwn_softc *sc = ifp->if_softc; 4089 4090 IWN_LOCK(sc); 4091 iwn_start_locked(ifp); 4092 IWN_UNLOCK(sc); 4093 } 4094 4095 static void 4096 iwn_start_locked(struct ifnet *ifp) 4097 { 4098 struct iwn_softc *sc = ifp->if_softc; 4099 struct ieee80211_node *ni; 4100 struct mbuf *m; 4101 4102 IWN_LOCK_ASSERT(sc); 4103 4104 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 4105 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) 4106 return; 4107 4108 for (;;) { 4109 if (sc->qfullmsk != 0) { 4110 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 4111 break; 4112 } 4113 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 4114 if (m == NULL) 4115 break; 4116 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4117 if (iwn_tx_data(sc, m, ni) != 0) { 4118 ieee80211_free_node(ni); 4119 ifp->if_oerrors++; 4120 continue; 4121 } 4122 sc->sc_tx_timer = 5; 4123 } 4124 } 4125 4126 static void 4127 iwn_watchdog(void *arg) 4128 { 4129 struct iwn_softc *sc = arg; 4130 struct ifnet *ifp = sc->sc_ifp; 4131 struct ieee80211com *ic = ifp->if_l2com; 4132 4133 IWN_LOCK_ASSERT(sc); 4134 4135 KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running")); 4136 4137 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4138 4139 if (sc->sc_tx_timer > 0) { 4140 if (--sc->sc_tx_timer == 0) { 4141 if_printf(ifp, "device timeout\n"); 4142 ieee80211_runtask(ic, &sc->sc_reinit_task); 4143 return; 4144 } 4145 } 4146 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 4147 } 4148 4149 static int 4150 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4151 { 4152 struct iwn_softc *sc = ifp->if_softc; 4153 struct ieee80211com *ic = ifp->if_l2com; 4154 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4155 struct ifreq *ifr = (struct ifreq *) data; 4156 int error = 0, startall = 0, stop = 0; 4157 4158 switch (cmd) { 4159 case SIOCGIFADDR: 4160 error = ether_ioctl(ifp, cmd, data); 4161 break; 4162 case SIOCSIFFLAGS: 4163 IWN_LOCK(sc); 4164 if (ifp->if_flags & IFF_UP) { 4165 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 4166 iwn_init_locked(sc); 4167 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) 4168 startall = 1; 4169 else 4170 stop = 1; 4171 } 4172 } else { 4173 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4174 iwn_stop_locked(sc); 4175 } 4176 IWN_UNLOCK(sc); 4177 if (startall) 4178 ieee80211_start_all(ic); 4179 else if (vap != NULL && stop) 4180 ieee80211_stop(vap); 4181 break; 4182 case SIOCGIFMEDIA: 4183 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 4184 break; 4185 default: 4186 error = EINVAL; 4187 break; 4188 } 4189 return error; 4190 } 4191 4192 /* 4193 * Send a command to the firmware. 4194 */ 4195 static int 4196 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 4197 { 4198 struct iwn_tx_ring *ring = &sc->txq[4]; 4199 struct iwn_tx_desc *desc; 4200 struct iwn_tx_data *data; 4201 struct iwn_tx_cmd *cmd; 4202 struct mbuf *m; 4203 bus_addr_t paddr; 4204 int totlen, error; 4205 4206 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4207 4208 if (async == 0) 4209 IWN_LOCK_ASSERT(sc); 4210 4211 desc = &ring->desc[ring->cur]; 4212 data = &ring->data[ring->cur]; 4213 totlen = 4 + size; 4214 4215 if (size > sizeof cmd->data) { 4216 /* Command is too large to fit in a descriptor. */ 4217 if (totlen > MCLBYTES) 4218 return EINVAL; 4219 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 4220 if (m == NULL) 4221 return ENOMEM; 4222 cmd = mtod(m, struct iwn_tx_cmd *); 4223 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 4224 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 4225 if (error != 0) { 4226 m_freem(m); 4227 return error; 4228 } 4229 data->m = m; 4230 } else { 4231 cmd = &ring->cmd[ring->cur]; 4232 paddr = data->cmd_paddr; 4233 } 4234 4235 cmd->code = code; 4236 cmd->flags = 0; 4237 cmd->qid = ring->qid; 4238 cmd->idx = ring->cur; 4239 memcpy(cmd->data, buf, size); 4240 4241 desc->nsegs = 1; 4242 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 4243 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 4244 4245 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 4246 __func__, iwn_intr_str(cmd->code), cmd->code, 4247 cmd->flags, cmd->qid, cmd->idx); 4248 4249 if (size > sizeof cmd->data) { 4250 bus_dmamap_sync(ring->data_dmat, data->map, 4251 BUS_DMASYNC_PREWRITE); 4252 } else { 4253 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4254 BUS_DMASYNC_PREWRITE); 4255 } 4256 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4257 BUS_DMASYNC_PREWRITE); 4258 4259 /* Kick command ring. */ 4260 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4261 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4262 4263 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4264 4265 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 4266 } 4267 4268 static int 4269 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 4270 { 4271 struct iwn4965_node_info hnode; 4272 caddr_t src, dst; 4273 4274 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4275 4276 /* 4277 * We use the node structure for 5000 Series internally (it is 4278 * a superset of the one for 4965AGN). We thus copy the common 4279 * fields before sending the command. 4280 */ 4281 src = (caddr_t)node; 4282 dst = (caddr_t)&hnode; 4283 memcpy(dst, src, 48); 4284 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 4285 memcpy(dst + 48, src + 72, 20); 4286 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 4287 } 4288 4289 static int 4290 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 4291 { 4292 4293 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4294 4295 /* Direct mapping. */ 4296 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 4297 } 4298 4299 static int 4300 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 4301 { 4302 #define RV(v) ((v) & IEEE80211_RATE_VAL) 4303 struct iwn_node *wn = (void *)ni; 4304 struct ieee80211_rateset *rs = &ni->ni_rates; 4305 struct iwn_cmd_link_quality linkq; 4306 uint8_t txant; 4307 int i, rate, txrate; 4308 4309 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4310 4311 /* Use the first valid TX antenna. */ 4312 txant = IWN_LSB(sc->txchainmask); 4313 4314 memset(&linkq, 0, sizeof linkq); 4315 linkq.id = wn->id; 4316 linkq.antmsk_1stream = txant; 4317 linkq.antmsk_2stream = IWN_ANT_AB; 4318 linkq.ampdu_max = 64; 4319 linkq.ampdu_threshold = 3; 4320 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4321 4322 /* Start at highest available bit-rate. */ 4323 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) 4324 txrate = ni->ni_htrates.rs_nrates - 1; 4325 else 4326 txrate = rs->rs_nrates - 1; 4327 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 4328 uint32_t plcp; 4329 4330 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) 4331 rate = IEEE80211_RATE_MCS | txrate; 4332 else 4333 rate = RV(rs->rs_rates[txrate]); 4334 4335 /* Do rate -> PLCP config mapping */ 4336 plcp = iwn_rate_to_plcp(sc, ni, rate); 4337 linkq.retry[i] = plcp; 4338 4339 /* Special case for dual-stream rates? */ 4340 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 4341 RV(le32toh(plcp)) > 7) 4342 linkq.mimo = i + 1; 4343 4344 /* Next retry at immediate lower bit-rate. */ 4345 if (txrate > 0) 4346 txrate--; 4347 } 4348 4349 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4350 4351 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 4352 #undef RV 4353 } 4354 4355 /* 4356 * Broadcast node is used to send group-addressed and management frames. 4357 */ 4358 static int 4359 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 4360 { 4361 struct iwn_ops *ops = &sc->ops; 4362 struct ifnet *ifp = sc->sc_ifp; 4363 struct ieee80211com *ic = ifp->if_l2com; 4364 struct iwn_node_info node; 4365 struct iwn_cmd_link_quality linkq; 4366 uint8_t txant; 4367 int i, error; 4368 4369 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4370 4371 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 4372 4373 memset(&node, 0, sizeof node); 4374 IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr); 4375 node.id = sc->broadcast_id; 4376 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 4377 if ((error = ops->add_node(sc, &node, async)) != 0) 4378 return error; 4379 4380 /* Use the first valid TX antenna. */ 4381 txant = IWN_LSB(sc->txchainmask); 4382 4383 memset(&linkq, 0, sizeof linkq); 4384 linkq.id = sc->broadcast_id; 4385 linkq.antmsk_1stream = txant; 4386 linkq.antmsk_2stream = IWN_ANT_AB; 4387 linkq.ampdu_max = 64; 4388 linkq.ampdu_threshold = 3; 4389 linkq.ampdu_limit = htole16(4000); /* 4ms */ 4390 4391 /* Use lowest mandatory bit-rate. */ 4392 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 4393 linkq.retry[0] = htole32(0xd); 4394 else 4395 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 4396 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 4397 /* Use same bit-rate for all TX retries. */ 4398 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 4399 linkq.retry[i] = linkq.retry[0]; 4400 } 4401 4402 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4403 4404 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 4405 } 4406 4407 static int 4408 iwn_updateedca(struct ieee80211com *ic) 4409 { 4410 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 4411 struct iwn_softc *sc = ic->ic_ifp->if_softc; 4412 struct iwn_edca_params cmd; 4413 int aci; 4414 4415 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4416 4417 memset(&cmd, 0, sizeof cmd); 4418 cmd.flags = htole32(IWN_EDCA_UPDATE); 4419 for (aci = 0; aci < WME_NUM_AC; aci++) { 4420 const struct wmeParams *ac = 4421 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 4422 cmd.ac[aci].aifsn = ac->wmep_aifsn; 4423 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 4424 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 4425 cmd.ac[aci].txoplimit = 4426 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 4427 } 4428 IEEE80211_UNLOCK(ic); 4429 IWN_LOCK(sc); 4430 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 4431 IWN_UNLOCK(sc); 4432 IEEE80211_LOCK(ic); 4433 4434 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4435 4436 return 0; 4437 #undef IWN_EXP2 4438 } 4439 4440 static void 4441 iwn_update_mcast(struct ifnet *ifp) 4442 { 4443 /* Ignore */ 4444 } 4445 4446 static void 4447 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 4448 { 4449 struct iwn_cmd_led led; 4450 4451 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4452 4453 /* Clear microcode LED ownership. */ 4454 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 4455 4456 led.which = which; 4457 led.unit = htole32(10000); /* on/off in unit of 100ms */ 4458 led.off = off; 4459 led.on = on; 4460 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 4461 } 4462 4463 /* 4464 * Set the critical temperature at which the firmware will stop the radio 4465 * and notify us. 4466 */ 4467 static int 4468 iwn_set_critical_temp(struct iwn_softc *sc) 4469 { 4470 struct iwn_critical_temp crit; 4471 int32_t temp; 4472 4473 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4474 4475 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 4476 4477 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 4478 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 4479 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 4480 temp = IWN_CTOK(110); 4481 else 4482 temp = 110; 4483 memset(&crit, 0, sizeof crit); 4484 crit.tempR = htole32(temp); 4485 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 4486 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 4487 } 4488 4489 static int 4490 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 4491 { 4492 struct iwn_cmd_timing cmd; 4493 uint64_t val, mod; 4494 4495 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4496 4497 memset(&cmd, 0, sizeof cmd); 4498 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 4499 cmd.bintval = htole16(ni->ni_intval); 4500 cmd.lintval = htole16(10); 4501 4502 /* Compute remaining time until next beacon. */ 4503 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 4504 mod = le64toh(cmd.tstamp) % val; 4505 cmd.binitval = htole32((uint32_t)(val - mod)); 4506 4507 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 4508 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 4509 4510 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 4511 } 4512 4513 static void 4514 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 4515 { 4516 struct ifnet *ifp = sc->sc_ifp; 4517 struct ieee80211com *ic = ifp->if_l2com; 4518 4519 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4520 4521 /* Adjust TX power if need be (delta >= 3 degC). */ 4522 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 4523 __func__, sc->temp, temp); 4524 if (abs(temp - sc->temp) >= 3) { 4525 /* Record temperature of last calibration. */ 4526 sc->temp = temp; 4527 (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); 4528 } 4529 } 4530 4531 /* 4532 * Set TX power for current channel (each rate has its own power settings). 4533 * This function takes into account the regulatory information from EEPROM, 4534 * the current temperature and the current voltage. 4535 */ 4536 static int 4537 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 4538 int async) 4539 { 4540 /* Fixed-point arithmetic division using a n-bit fractional part. */ 4541 #define fdivround(a, b, n) \ 4542 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 4543 /* Linear interpolation. */ 4544 #define interpolate(x, x1, y1, x2, y2, n) \ 4545 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 4546 4547 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 4548 struct iwn_ucode_info *uc = &sc->ucode_info; 4549 struct iwn4965_cmd_txpower cmd; 4550 struct iwn4965_eeprom_chan_samples *chans; 4551 const uint8_t *rf_gain, *dsp_gain; 4552 int32_t vdiff, tdiff; 4553 int i, c, grp, maxpwr; 4554 uint8_t chan; 4555 4556 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 4557 /* Retrieve current channel from last RXON. */ 4558 chan = sc->rxon->chan; 4559 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 4560 chan); 4561 4562 memset(&cmd, 0, sizeof cmd); 4563 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 4564 cmd.chan = chan; 4565 4566 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 4567 maxpwr = sc->maxpwr5GHz; 4568 rf_gain = iwn4965_rf_gain_5ghz; 4569 dsp_gain = iwn4965_dsp_gain_5ghz; 4570 } else { 4571 maxpwr = sc->maxpwr2GHz; 4572 rf_gain = iwn4965_rf_gain_2ghz; 4573 dsp_gain = iwn4965_dsp_gain_2ghz; 4574 } 4575 4576 /* Compute voltage compensation. */ 4577 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 4578 if (vdiff > 0) 4579 vdiff *= 2; 4580 if (abs(vdiff) > 2) 4581 vdiff = 0; 4582 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4583 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 4584 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 4585 4586 /* Get channel attenuation group. */ 4587 if (chan <= 20) /* 1-20 */ 4588 grp = 4; 4589 else if (chan <= 43) /* 34-43 */ 4590 grp = 0; 4591 else if (chan <= 70) /* 44-70 */ 4592 grp = 1; 4593 else if (chan <= 124) /* 71-124 */ 4594 grp = 2; 4595 else /* 125-200 */ 4596 grp = 3; 4597 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4598 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 4599 4600 /* Get channel sub-band. */ 4601 for (i = 0; i < IWN_NBANDS; i++) 4602 if (sc->bands[i].lo != 0 && 4603 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 4604 break; 4605 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 4606 return EINVAL; 4607 chans = sc->bands[i].chans; 4608 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4609 "%s: chan %d sub-band=%d\n", __func__, chan, i); 4610 4611 for (c = 0; c < 2; c++) { 4612 uint8_t power, gain, temp; 4613 int maxchpwr, pwr, ridx, idx; 4614 4615 power = interpolate(chan, 4616 chans[0].num, chans[0].samples[c][1].power, 4617 chans[1].num, chans[1].samples[c][1].power, 1); 4618 gain = interpolate(chan, 4619 chans[0].num, chans[0].samples[c][1].gain, 4620 chans[1].num, chans[1].samples[c][1].gain, 1); 4621 temp = interpolate(chan, 4622 chans[0].num, chans[0].samples[c][1].temp, 4623 chans[1].num, chans[1].samples[c][1].temp, 1); 4624 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4625 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 4626 __func__, c, power, gain, temp); 4627 4628 /* Compute temperature compensation. */ 4629 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 4630 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4631 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 4632 __func__, tdiff, sc->temp, temp); 4633 4634 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 4635 /* Convert dBm to half-dBm. */ 4636 maxchpwr = sc->maxpwr[chan] * 2; 4637 if ((ridx / 8) & 1) 4638 maxchpwr -= 6; /* MIMO 2T: -3dB */ 4639 4640 pwr = maxpwr; 4641 4642 /* Adjust TX power based on rate. */ 4643 if ((ridx % 8) == 5) 4644 pwr -= 15; /* OFDM48: -7.5dB */ 4645 else if ((ridx % 8) == 6) 4646 pwr -= 17; /* OFDM54: -8.5dB */ 4647 else if ((ridx % 8) == 7) 4648 pwr -= 20; /* OFDM60: -10dB */ 4649 else 4650 pwr -= 10; /* Others: -5dB */ 4651 4652 /* Do not exceed channel max TX power. */ 4653 if (pwr > maxchpwr) 4654 pwr = maxchpwr; 4655 4656 idx = gain - (pwr - power) - tdiff - vdiff; 4657 if ((ridx / 8) & 1) /* MIMO */ 4658 idx += (int32_t)le32toh(uc->atten[grp][c]); 4659 4660 if (cmd.band == 0) 4661 idx += 9; /* 5GHz */ 4662 if (ridx == IWN_RIDX_MAX) 4663 idx += 5; /* CCK */ 4664 4665 /* Make sure idx stays in a valid range. */ 4666 if (idx < 0) 4667 idx = 0; 4668 else if (idx > IWN4965_MAX_PWR_INDEX) 4669 idx = IWN4965_MAX_PWR_INDEX; 4670 4671 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4672 "%s: Tx chain %d, rate idx %d: power=%d\n", 4673 __func__, c, ridx, idx); 4674 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 4675 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 4676 } 4677 } 4678 4679 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 4680 "%s: set tx power for chan %d\n", __func__, chan); 4681 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 4682 4683 #undef interpolate 4684 #undef fdivround 4685 } 4686 4687 static int 4688 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 4689 int async) 4690 { 4691 struct iwn5000_cmd_txpower cmd; 4692 4693 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4694 4695 /* 4696 * TX power calibration is handled automatically by the firmware 4697 * for 5000 Series. 4698 */ 4699 memset(&cmd, 0, sizeof cmd); 4700 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 4701 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 4702 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 4703 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__); 4704 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 4705 } 4706 4707 /* 4708 * Retrieve the maximum RSSI (in dBm) among receivers. 4709 */ 4710 static int 4711 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 4712 { 4713 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 4714 uint8_t mask, agc; 4715 int rssi; 4716 4717 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4718 4719 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 4720 agc = (le16toh(phy->agc) >> 7) & 0x7f; 4721 4722 rssi = 0; 4723 if (mask & IWN_ANT_A) 4724 rssi = MAX(rssi, phy->rssi[0]); 4725 if (mask & IWN_ANT_B) 4726 rssi = MAX(rssi, phy->rssi[2]); 4727 if (mask & IWN_ANT_C) 4728 rssi = MAX(rssi, phy->rssi[4]); 4729 4730 DPRINTF(sc, IWN_DEBUG_RECV, 4731 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 4732 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 4733 rssi - agc - IWN_RSSI_TO_DBM); 4734 return rssi - agc - IWN_RSSI_TO_DBM; 4735 } 4736 4737 static int 4738 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 4739 { 4740 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 4741 uint8_t agc; 4742 int rssi; 4743 4744 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4745 4746 agc = (le32toh(phy->agc) >> 9) & 0x7f; 4747 4748 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 4749 le16toh(phy->rssi[1]) & 0xff); 4750 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 4751 4752 DPRINTF(sc, IWN_DEBUG_RECV, 4753 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 4754 phy->rssi[0], phy->rssi[1], phy->rssi[2], 4755 rssi - agc - IWN_RSSI_TO_DBM); 4756 return rssi - agc - IWN_RSSI_TO_DBM; 4757 } 4758 4759 /* 4760 * Retrieve the average noise (in dBm) among receivers. 4761 */ 4762 static int 4763 iwn_get_noise(const struct iwn_rx_general_stats *stats) 4764 { 4765 int i, total, nbant, noise; 4766 4767 total = nbant = 0; 4768 for (i = 0; i < 3; i++) { 4769 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 4770 continue; 4771 total += noise; 4772 nbant++; 4773 } 4774 /* There should be at least one antenna but check anyway. */ 4775 return (nbant == 0) ? -127 : (total / nbant) - 107; 4776 } 4777 4778 /* 4779 * Compute temperature (in degC) from last received statistics. 4780 */ 4781 static int 4782 iwn4965_get_temperature(struct iwn_softc *sc) 4783 { 4784 struct iwn_ucode_info *uc = &sc->ucode_info; 4785 int32_t r1, r2, r3, r4, temp; 4786 4787 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4788 4789 r1 = le32toh(uc->temp[0].chan20MHz); 4790 r2 = le32toh(uc->temp[1].chan20MHz); 4791 r3 = le32toh(uc->temp[2].chan20MHz); 4792 r4 = le32toh(sc->rawtemp); 4793 4794 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 4795 return 0; 4796 4797 /* Sign-extend 23-bit R4 value to 32-bit. */ 4798 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 4799 /* Compute temperature in Kelvin. */ 4800 temp = (259 * (r4 - r2)) / (r3 - r1); 4801 temp = (temp * 97) / 100 + 8; 4802 4803 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 4804 IWN_KTOC(temp)); 4805 return IWN_KTOC(temp); 4806 } 4807 4808 static int 4809 iwn5000_get_temperature(struct iwn_softc *sc) 4810 { 4811 int32_t temp; 4812 4813 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4814 4815 /* 4816 * Temperature is not used by the driver for 5000 Series because 4817 * TX power calibration is handled by firmware. 4818 */ 4819 temp = le32toh(sc->rawtemp); 4820 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 4821 temp = (temp / -5) + sc->temp_off; 4822 temp = IWN_KTOC(temp); 4823 } 4824 return temp; 4825 } 4826 4827 /* 4828 * Initialize sensitivity calibration state machine. 4829 */ 4830 static int 4831 iwn_init_sensitivity(struct iwn_softc *sc) 4832 { 4833 struct iwn_ops *ops = &sc->ops; 4834 struct iwn_calib_state *calib = &sc->calib; 4835 uint32_t flags; 4836 int error; 4837 4838 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4839 4840 /* Reset calibration state machine. */ 4841 memset(calib, 0, sizeof (*calib)); 4842 calib->state = IWN_CALIB_STATE_INIT; 4843 calib->cck_state = IWN_CCK_STATE_HIFA; 4844 /* Set initial correlation values. */ 4845 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 4846 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 4847 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 4848 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 4849 calib->cck_x4 = 125; 4850 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 4851 calib->energy_cck = sc->limits->energy_cck; 4852 4853 /* Write initial sensitivity. */ 4854 if ((error = iwn_send_sensitivity(sc)) != 0) 4855 return error; 4856 4857 /* Write initial gains. */ 4858 if ((error = ops->init_gains(sc)) != 0) 4859 return error; 4860 4861 /* Request statistics at each beacon interval. */ 4862 flags = 0; 4863 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 4864 __func__); 4865 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4866 } 4867 4868 /* 4869 * Collect noise and RSSI statistics for the first 20 beacons received 4870 * after association and use them to determine connected antennas and 4871 * to set differential gains. 4872 */ 4873 static void 4874 iwn_collect_noise(struct iwn_softc *sc, 4875 const struct iwn_rx_general_stats *stats) 4876 { 4877 struct iwn_ops *ops = &sc->ops; 4878 struct iwn_calib_state *calib = &sc->calib; 4879 struct ifnet *ifp = sc->sc_ifp; 4880 struct ieee80211com *ic = ifp->if_l2com; 4881 uint32_t val; 4882 int i; 4883 4884 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4885 4886 /* Accumulate RSSI and noise for all 3 antennas. */ 4887 for (i = 0; i < 3; i++) { 4888 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4889 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4890 } 4891 /* NB: We update differential gains only once after 20 beacons. */ 4892 if (++calib->nbeacons < 20) 4893 return; 4894 4895 /* Determine highest average RSSI. */ 4896 val = MAX(calib->rssi[0], calib->rssi[1]); 4897 val = MAX(calib->rssi[2], val); 4898 4899 /* Determine which antennas are connected. */ 4900 sc->chainmask = sc->rxchainmask; 4901 for (i = 0; i < 3; i++) 4902 if (val - calib->rssi[i] > 15 * 20) 4903 sc->chainmask &= ~(1 << i); 4904 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4905 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 4906 __func__, sc->rxchainmask, sc->chainmask); 4907 4908 /* If none of the TX antennas are connected, keep at least one. */ 4909 if ((sc->chainmask & sc->txchainmask) == 0) 4910 sc->chainmask |= IWN_LSB(sc->txchainmask); 4911 4912 (void)ops->set_gains(sc); 4913 calib->state = IWN_CALIB_STATE_RUN; 4914 4915 #ifdef notyet 4916 /* XXX Disable RX chains with no antennas connected. */ 4917 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4918 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 4919 #endif 4920 4921 /* Enable power-saving mode if requested by user. */ 4922 if (ic->ic_flags & IEEE80211_F_PMGTON) 4923 (void)iwn_set_pslevel(sc, 0, 3, 1); 4924 4925 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4926 4927 } 4928 4929 static int 4930 iwn4965_init_gains(struct iwn_softc *sc) 4931 { 4932 struct iwn_phy_calib_gain cmd; 4933 4934 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4935 4936 memset(&cmd, 0, sizeof cmd); 4937 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4938 /* Differential gains initially set to 0 for all 3 antennas. */ 4939 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4940 "%s: setting initial differential gains\n", __func__); 4941 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4942 } 4943 4944 static int 4945 iwn5000_init_gains(struct iwn_softc *sc) 4946 { 4947 struct iwn_phy_calib cmd; 4948 4949 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4950 4951 memset(&cmd, 0, sizeof cmd); 4952 cmd.code = sc->reset_noise_gain; 4953 cmd.ngroups = 1; 4954 cmd.isvalid = 1; 4955 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4956 "%s: setting initial differential gains\n", __func__); 4957 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4958 } 4959 4960 static int 4961 iwn4965_set_gains(struct iwn_softc *sc) 4962 { 4963 struct iwn_calib_state *calib = &sc->calib; 4964 struct iwn_phy_calib_gain cmd; 4965 int i, delta, noise; 4966 4967 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4968 4969 /* Get minimal noise among connected antennas. */ 4970 noise = INT_MAX; /* NB: There's at least one antenna. */ 4971 for (i = 0; i < 3; i++) 4972 if (sc->chainmask & (1 << i)) 4973 noise = MIN(calib->noise[i], noise); 4974 4975 memset(&cmd, 0, sizeof cmd); 4976 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4977 /* Set differential gains for connected antennas. */ 4978 for (i = 0; i < 3; i++) { 4979 if (sc->chainmask & (1 << i)) { 4980 /* Compute attenuation (in unit of 1.5dB). */ 4981 delta = (noise - (int32_t)calib->noise[i]) / 30; 4982 /* NB: delta <= 0 */ 4983 /* Limit to [-4.5dB,0]. */ 4984 cmd.gain[i] = MIN(abs(delta), 3); 4985 if (delta < 0) 4986 cmd.gain[i] |= 1 << 2; /* sign bit */ 4987 } 4988 } 4989 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4990 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4991 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 4992 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4993 } 4994 4995 static int 4996 iwn5000_set_gains(struct iwn_softc *sc) 4997 { 4998 struct iwn_calib_state *calib = &sc->calib; 4999 struct iwn_phy_calib_gain cmd; 5000 int i, ant, div, delta; 5001 5002 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5003 5004 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 5005 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 5006 5007 memset(&cmd, 0, sizeof cmd); 5008 cmd.code = sc->noise_gain; 5009 cmd.ngroups = 1; 5010 cmd.isvalid = 1; 5011 /* Get first available RX antenna as referential. */ 5012 ant = IWN_LSB(sc->rxchainmask); 5013 /* Set differential gains for other antennas. */ 5014 for (i = ant + 1; i < 3; i++) { 5015 if (sc->chainmask & (1 << i)) { 5016 /* The delta is relative to antenna "ant". */ 5017 delta = ((int32_t)calib->noise[ant] - 5018 (int32_t)calib->noise[i]) / div; 5019 /* Limit to [-4.5dB,+4.5dB]. */ 5020 cmd.gain[i - 1] = MIN(abs(delta), 3); 5021 if (delta < 0) 5022 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 5023 } 5024 } 5025 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5026 "setting differential gains Ant B/C: %x/%x (%x)\n", 5027 cmd.gain[0], cmd.gain[1], sc->chainmask); 5028 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5029 } 5030 5031 /* 5032 * Tune RF RX sensitivity based on the number of false alarms detected 5033 * during the last beacon period. 5034 */ 5035 static void 5036 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 5037 { 5038 #define inc(val, inc, max) \ 5039 if ((val) < (max)) { \ 5040 if ((val) < (max) - (inc)) \ 5041 (val) += (inc); \ 5042 else \ 5043 (val) = (max); \ 5044 needs_update = 1; \ 5045 } 5046 #define dec(val, dec, min) \ 5047 if ((val) > (min)) { \ 5048 if ((val) > (min) + (dec)) \ 5049 (val) -= (dec); \ 5050 else \ 5051 (val) = (min); \ 5052 needs_update = 1; \ 5053 } 5054 5055 const struct iwn_sensitivity_limits *limits = sc->limits; 5056 struct iwn_calib_state *calib = &sc->calib; 5057 uint32_t val, rxena, fa; 5058 uint32_t energy[3], energy_min; 5059 uint8_t noise[3], noise_ref; 5060 int i, needs_update = 0; 5061 5062 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5063 5064 /* Check that we've been enabled long enough. */ 5065 if ((rxena = le32toh(stats->general.load)) == 0){ 5066 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 5067 return; 5068 } 5069 5070 /* Compute number of false alarms since last call for OFDM. */ 5071 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 5072 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 5073 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 5074 5075 /* Save counters values for next call. */ 5076 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 5077 calib->fa_ofdm = le32toh(stats->ofdm.fa); 5078 5079 if (fa > 50 * rxena) { 5080 /* High false alarm count, decrease sensitivity. */ 5081 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5082 "%s: OFDM high false alarm count: %u\n", __func__, fa); 5083 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 5084 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 5085 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 5086 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 5087 5088 } else if (fa < 5 * rxena) { 5089 /* Low false alarm count, increase sensitivity. */ 5090 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5091 "%s: OFDM low false alarm count: %u\n", __func__, fa); 5092 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 5093 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 5094 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 5095 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 5096 } 5097 5098 /* Compute maximum noise among 3 receivers. */ 5099 for (i = 0; i < 3; i++) 5100 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 5101 val = MAX(noise[0], noise[1]); 5102 val = MAX(noise[2], val); 5103 /* Insert it into our samples table. */ 5104 calib->noise_samples[calib->cur_noise_sample] = val; 5105 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 5106 5107 /* Compute maximum noise among last 20 samples. */ 5108 noise_ref = calib->noise_samples[0]; 5109 for (i = 1; i < 20; i++) 5110 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 5111 5112 /* Compute maximum energy among 3 receivers. */ 5113 for (i = 0; i < 3; i++) 5114 energy[i] = le32toh(stats->general.energy[i]); 5115 val = MIN(energy[0], energy[1]); 5116 val = MIN(energy[2], val); 5117 /* Insert it into our samples table. */ 5118 calib->energy_samples[calib->cur_energy_sample] = val; 5119 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 5120 5121 /* Compute minimum energy among last 10 samples. */ 5122 energy_min = calib->energy_samples[0]; 5123 for (i = 1; i < 10; i++) 5124 energy_min = MAX(energy_min, calib->energy_samples[i]); 5125 energy_min += 6; 5126 5127 /* Compute number of false alarms since last call for CCK. */ 5128 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 5129 fa += le32toh(stats->cck.fa) - calib->fa_cck; 5130 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 5131 5132 /* Save counters values for next call. */ 5133 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 5134 calib->fa_cck = le32toh(stats->cck.fa); 5135 5136 if (fa > 50 * rxena) { 5137 /* High false alarm count, decrease sensitivity. */ 5138 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5139 "%s: CCK high false alarm count: %u\n", __func__, fa); 5140 calib->cck_state = IWN_CCK_STATE_HIFA; 5141 calib->low_fa = 0; 5142 5143 if (calib->cck_x4 > 160) { 5144 calib->noise_ref = noise_ref; 5145 if (calib->energy_cck > 2) 5146 dec(calib->energy_cck, 2, energy_min); 5147 } 5148 if (calib->cck_x4 < 160) { 5149 calib->cck_x4 = 161; 5150 needs_update = 1; 5151 } else 5152 inc(calib->cck_x4, 3, limits->max_cck_x4); 5153 5154 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 5155 5156 } else if (fa < 5 * rxena) { 5157 /* Low false alarm count, increase sensitivity. */ 5158 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5159 "%s: CCK low false alarm count: %u\n", __func__, fa); 5160 calib->cck_state = IWN_CCK_STATE_LOFA; 5161 calib->low_fa++; 5162 5163 if (calib->cck_state != IWN_CCK_STATE_INIT && 5164 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 5165 calib->low_fa > 100)) { 5166 inc(calib->energy_cck, 2, limits->min_energy_cck); 5167 dec(calib->cck_x4, 3, limits->min_cck_x4); 5168 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 5169 } 5170 } else { 5171 /* Not worth to increase or decrease sensitivity. */ 5172 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5173 "%s: CCK normal false alarm count: %u\n", __func__, fa); 5174 calib->low_fa = 0; 5175 calib->noise_ref = noise_ref; 5176 5177 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 5178 /* Previous interval had many false alarms. */ 5179 dec(calib->energy_cck, 8, energy_min); 5180 } 5181 calib->cck_state = IWN_CCK_STATE_INIT; 5182 } 5183 5184 if (needs_update) 5185 (void)iwn_send_sensitivity(sc); 5186 5187 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5188 5189 #undef dec 5190 #undef inc 5191 } 5192 5193 static int 5194 iwn_send_sensitivity(struct iwn_softc *sc) 5195 { 5196 struct iwn_calib_state *calib = &sc->calib; 5197 struct iwn_enhanced_sensitivity_cmd cmd; 5198 int len; 5199 5200 memset(&cmd, 0, sizeof cmd); 5201 len = sizeof (struct iwn_sensitivity_cmd); 5202 cmd.which = IWN_SENSITIVITY_WORKTBL; 5203 /* OFDM modulation. */ 5204 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 5205 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 5206 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 5207 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 5208 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 5209 cmd.energy_ofdm_th = htole16(62); 5210 /* CCK modulation. */ 5211 cmd.corr_cck_x4 = htole16(calib->cck_x4); 5212 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 5213 cmd.energy_cck = htole16(calib->energy_cck); 5214 /* Barker modulation: use default values. */ 5215 cmd.corr_barker = htole16(190); 5216 cmd.corr_barker_mrc = htole16(390); 5217 5218 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5219 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 5220 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 5221 calib->ofdm_mrc_x4, calib->cck_x4, 5222 calib->cck_mrc_x4, calib->energy_cck); 5223 5224 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 5225 goto send; 5226 /* Enhanced sensitivity settings. */ 5227 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 5228 cmd.ofdm_det_slope_mrc = htole16(668); 5229 cmd.ofdm_det_icept_mrc = htole16(4); 5230 cmd.ofdm_det_slope = htole16(486); 5231 cmd.ofdm_det_icept = htole16(37); 5232 cmd.cck_det_slope_mrc = htole16(853); 5233 cmd.cck_det_icept_mrc = htole16(4); 5234 cmd.cck_det_slope = htole16(476); 5235 cmd.cck_det_icept = htole16(99); 5236 send: 5237 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 5238 } 5239 5240 /* 5241 * Set STA mode power saving level (between 0 and 5). 5242 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 5243 */ 5244 static int 5245 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 5246 { 5247 struct iwn_pmgt_cmd cmd; 5248 const struct iwn_pmgt *pmgt; 5249 uint32_t max, skip_dtim; 5250 uint32_t reg; 5251 int i; 5252 5253 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 5254 "%s: dtim=%d, level=%d, async=%d\n", 5255 __func__, 5256 dtim, 5257 level, 5258 async); 5259 5260 /* Select which PS parameters to use. */ 5261 if (dtim <= 2) 5262 pmgt = &iwn_pmgt[0][level]; 5263 else if (dtim <= 10) 5264 pmgt = &iwn_pmgt[1][level]; 5265 else 5266 pmgt = &iwn_pmgt[2][level]; 5267 5268 memset(&cmd, 0, sizeof cmd); 5269 if (level != 0) /* not CAM */ 5270 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 5271 if (level == 5) 5272 cmd.flags |= htole16(IWN_PS_FAST_PD); 5273 /* Retrieve PCIe Active State Power Management (ASPM). */ 5274 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); 5275 if (!(reg & 0x1)) /* L0s Entry disabled. */ 5276 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 5277 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 5278 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 5279 5280 if (dtim == 0) { 5281 dtim = 1; 5282 skip_dtim = 0; 5283 } else 5284 skip_dtim = pmgt->skip_dtim; 5285 if (skip_dtim != 0) { 5286 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 5287 max = pmgt->intval[4]; 5288 if (max == (uint32_t)-1) 5289 max = dtim * (skip_dtim + 1); 5290 else if (max > dtim) 5291 max = (max / dtim) * dtim; 5292 } else 5293 max = dtim; 5294 for (i = 0; i < 5; i++) 5295 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 5296 5297 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 5298 level); 5299 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 5300 } 5301 5302 static int 5303 iwn_send_btcoex(struct iwn_softc *sc) 5304 { 5305 struct iwn_bluetooth cmd; 5306 5307 memset(&cmd, 0, sizeof cmd); 5308 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 5309 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 5310 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 5311 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 5312 __func__); 5313 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 5314 } 5315 5316 static int 5317 iwn_send_advanced_btcoex(struct iwn_softc *sc) 5318 { 5319 static const uint32_t btcoex_3wire[12] = { 5320 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 5321 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 5322 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 5323 }; 5324 struct iwn6000_btcoex_config btconfig; 5325 struct iwn_btcoex_priotable btprio; 5326 struct iwn_btcoex_prot btprot; 5327 int error, i; 5328 5329 memset(&btconfig, 0, sizeof btconfig); 5330 btconfig.flags = 145; 5331 btconfig.max_kill = 5; 5332 btconfig.bt3_t7_timer = 1; 5333 btconfig.kill_ack = htole32(0xffff0000); 5334 btconfig.kill_cts = htole32(0xffff0000); 5335 btconfig.sample_time = 2; 5336 btconfig.bt3_t2_timer = 0xc; 5337 for (i = 0; i < 12; i++) 5338 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 5339 btconfig.valid = htole16(0xff); 5340 btconfig.prio_boost = 0xf0; 5341 DPRINTF(sc, IWN_DEBUG_RESET, 5342 "%s: configuring advanced bluetooth coexistence\n", __func__); 5343 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1); 5344 if (error != 0) 5345 return error; 5346 5347 memset(&btprio, 0, sizeof btprio); 5348 btprio.calib_init1 = 0x6; 5349 btprio.calib_init2 = 0x7; 5350 btprio.calib_periodic_low1 = 0x2; 5351 btprio.calib_periodic_low2 = 0x3; 5352 btprio.calib_periodic_high1 = 0x4; 5353 btprio.calib_periodic_high2 = 0x5; 5354 btprio.dtim = 0x6; 5355 btprio.scan52 = 0x8; 5356 btprio.scan24 = 0xa; 5357 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 5358 1); 5359 if (error != 0) 5360 return error; 5361 5362 /* Force BT state machine change. */ 5363 memset(&btprot, 0, sizeof btprot); 5364 btprot.open = 1; 5365 btprot.type = 1; 5366 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 5367 if (error != 0) 5368 return error; 5369 btprot.open = 0; 5370 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 5371 } 5372 5373 static int 5374 iwn5000_runtime_calib(struct iwn_softc *sc) 5375 { 5376 struct iwn5000_calib_config cmd; 5377 5378 memset(&cmd, 0, sizeof cmd); 5379 cmd.ucode.once.enable = 0xffffffff; 5380 cmd.ucode.once.start = IWN5000_CALIB_DC; 5381 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5382 "%s: configuring runtime calibration\n", __func__); 5383 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 5384 } 5385 5386 static int 5387 iwn_config(struct iwn_softc *sc) 5388 { 5389 struct iwn_ops *ops = &sc->ops; 5390 struct ifnet *ifp = sc->sc_ifp; 5391 struct ieee80211com *ic = ifp->if_l2com; 5392 uint32_t txmask; 5393 uint16_t rxchain; 5394 int error; 5395 5396 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5397 5398 if (sc->hw_type == IWN_HW_REV_TYPE_6005) { 5399 /* Set radio temperature sensor offset. */ 5400 error = iwn5000_temp_offset_calib(sc); 5401 if (error != 0) { 5402 device_printf(sc->sc_dev, 5403 "%s: could not set temperature offset\n", __func__); 5404 return error; 5405 } 5406 } 5407 5408 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5409 /* Configure runtime DC calibration. */ 5410 error = iwn5000_runtime_calib(sc); 5411 if (error != 0) { 5412 device_printf(sc->sc_dev, 5413 "%s: could not configure runtime calibration\n", 5414 __func__); 5415 return error; 5416 } 5417 } 5418 5419 /* Configure valid TX chains for >=5000 Series. */ 5420 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 5421 txmask = htole32(sc->txchainmask); 5422 DPRINTF(sc, IWN_DEBUG_RESET, 5423 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 5424 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 5425 sizeof txmask, 0); 5426 if (error != 0) { 5427 device_printf(sc->sc_dev, 5428 "%s: could not configure valid TX chains, " 5429 "error %d\n", __func__, error); 5430 return error; 5431 } 5432 } 5433 5434 /* Configure bluetooth coexistence. */ 5435 if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX) 5436 error = iwn_send_advanced_btcoex(sc); 5437 else 5438 error = iwn_send_btcoex(sc); 5439 if (error != 0) { 5440 device_printf(sc->sc_dev, 5441 "%s: could not configure bluetooth coexistence, error %d\n", 5442 __func__, error); 5443 return error; 5444 } 5445 5446 /* Set mode, channel, RX filter and enable RX. */ 5447 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5448 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 5449 IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp)); 5450 IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp)); 5451 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 5452 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5453 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 5454 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5455 switch (ic->ic_opmode) { 5456 case IEEE80211_M_STA: 5457 sc->rxon->mode = IWN_MODE_STA; 5458 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 5459 break; 5460 case IEEE80211_M_MONITOR: 5461 sc->rxon->mode = IWN_MODE_MONITOR; 5462 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST | 5463 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 5464 break; 5465 default: 5466 /* Should not get there. */ 5467 break; 5468 } 5469 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 5470 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 5471 sc->rxon->ht_single_mask = 0xff; 5472 sc->rxon->ht_dual_mask = 0xff; 5473 sc->rxon->ht_triple_mask = 0xff; 5474 rxchain = 5475 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5476 IWN_RXCHAIN_MIMO_COUNT(2) | 5477 IWN_RXCHAIN_IDLE_COUNT(2); 5478 sc->rxon->rxchain = htole16(rxchain); 5479 DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__); 5480 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0); 5481 if (error != 0) { 5482 device_printf(sc->sc_dev, "%s: RXON command failed\n", 5483 __func__); 5484 return error; 5485 } 5486 5487 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 5488 device_printf(sc->sc_dev, "%s: could not add broadcast node\n", 5489 __func__); 5490 return error; 5491 } 5492 5493 /* Configuration has changed, set TX power accordingly. */ 5494 if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) { 5495 device_printf(sc->sc_dev, "%s: could not set TX power\n", 5496 __func__); 5497 return error; 5498 } 5499 5500 if ((error = iwn_set_critical_temp(sc)) != 0) { 5501 device_printf(sc->sc_dev, 5502 "%s: could not set critical temperature\n", __func__); 5503 return error; 5504 } 5505 5506 /* Set power saving level to CAM during initialization. */ 5507 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 5508 device_printf(sc->sc_dev, 5509 "%s: could not set power saving level\n", __func__); 5510 return error; 5511 } 5512 5513 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5514 5515 return 0; 5516 } 5517 5518 /* 5519 * Add an ssid element to a frame. 5520 */ 5521 static uint8_t * 5522 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 5523 { 5524 *frm++ = IEEE80211_ELEMID_SSID; 5525 *frm++ = len; 5526 memcpy(frm, ssid, len); 5527 return frm + len; 5528 } 5529 5530 static int 5531 iwn_scan(struct iwn_softc *sc) 5532 { 5533 struct ifnet *ifp = sc->sc_ifp; 5534 struct ieee80211com *ic = ifp->if_l2com; 5535 struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/ 5536 struct ieee80211_node *ni = ss->ss_vap->iv_bss; 5537 struct iwn_scan_hdr *hdr; 5538 struct iwn_cmd_data *tx; 5539 struct iwn_scan_essid *essid; 5540 struct iwn_scan_chan *chan; 5541 struct ieee80211_frame *wh; 5542 struct ieee80211_rateset *rs; 5543 struct ieee80211_channel *c; 5544 uint8_t *buf, *frm; 5545 uint16_t rxchain; 5546 uint8_t txant; 5547 int buflen, error; 5548 5549 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5550 5551 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5552 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 5553 if (buf == NULL) { 5554 device_printf(sc->sc_dev, 5555 "%s: could not allocate buffer for scan command\n", 5556 __func__); 5557 return ENOMEM; 5558 } 5559 hdr = (struct iwn_scan_hdr *)buf; 5560 /* 5561 * Move to the next channel if no frames are received within 10ms 5562 * after sending the probe request. 5563 */ 5564 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 5565 hdr->quiet_threshold = htole16(1); /* min # of packets */ 5566 5567 /* Select antennas for scanning. */ 5568 rxchain = 5569 IWN_RXCHAIN_VALID(sc->rxchainmask) | 5570 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 5571 IWN_RXCHAIN_DRIVER_FORCE; 5572 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) && 5573 sc->hw_type == IWN_HW_REV_TYPE_4965) { 5574 /* Ant A must be avoided in 5GHz because of an HW bug. */ 5575 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 5576 } else /* Use all available RX antennas. */ 5577 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 5578 hdr->rxchain = htole16(rxchain); 5579 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 5580 5581 tx = (struct iwn_cmd_data *)(hdr + 1); 5582 tx->flags = htole32(IWN_TX_AUTO_SEQ); 5583 tx->id = sc->broadcast_id; 5584 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 5585 5586 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 5587 /* Send probe requests at 6Mbps. */ 5588 tx->rate = htole32(0xd); 5589 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 5590 } else { 5591 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 5592 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 5593 sc->rxon->associd && sc->rxon->chan > 14) 5594 tx->rate = htole32(0xd); 5595 else { 5596 /* Send probe requests at 1Mbps. */ 5597 tx->rate = htole32(10 | IWN_RFLAG_CCK); 5598 } 5599 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 5600 } 5601 /* Use the first valid TX antenna. */ 5602 txant = IWN_LSB(sc->txchainmask); 5603 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 5604 5605 essid = (struct iwn_scan_essid *)(tx + 1); 5606 if (ss->ss_ssid[0].len != 0) { 5607 essid[0].id = IEEE80211_ELEMID_SSID; 5608 essid[0].len = ss->ss_ssid[0].len; 5609 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 5610 } 5611 /* 5612 * Build a probe request frame. Most of the following code is a 5613 * copy & paste of what is done in net80211. 5614 */ 5615 wh = (struct ieee80211_frame *)(essid + 20); 5616 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 5617 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 5618 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 5619 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 5620 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 5621 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 5622 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 5623 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 5624 5625 frm = (uint8_t *)(wh + 1); 5626 frm = ieee80211_add_ssid(frm, NULL, 0); 5627 frm = ieee80211_add_rates(frm, rs); 5628 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 5629 frm = ieee80211_add_xrates(frm, rs); 5630 if (ic->ic_htcaps & IEEE80211_HTC_HT) 5631 frm = ieee80211_add_htcap(frm, ni); 5632 5633 /* Set length of probe request. */ 5634 tx->len = htole16(frm - (uint8_t *)wh); 5635 5636 c = ic->ic_curchan; 5637 chan = (struct iwn_scan_chan *)frm; 5638 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 5639 chan->flags = 0; 5640 if (ss->ss_nssid > 0) 5641 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 5642 chan->dsp_gain = 0x6e; 5643 if (IEEE80211_IS_CHAN_5GHZ(c) && 5644 !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 5645 chan->rf_gain = 0x3b; 5646 chan->active = htole16(24); 5647 chan->passive = htole16(110); 5648 chan->flags |= htole32(IWN_CHAN_ACTIVE); 5649 } else if (IEEE80211_IS_CHAN_5GHZ(c)) { 5650 chan->rf_gain = 0x3b; 5651 chan->active = htole16(24); 5652 if (sc->rxon->associd) 5653 chan->passive = htole16(78); 5654 else 5655 chan->passive = htole16(110); 5656 hdr->crc_threshold = 0xffff; 5657 } else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 5658 chan->rf_gain = 0x28; 5659 chan->active = htole16(36); 5660 chan->passive = htole16(120); 5661 chan->flags |= htole32(IWN_CHAN_ACTIVE); 5662 } else { 5663 chan->rf_gain = 0x28; 5664 chan->active = htole16(36); 5665 if (sc->rxon->associd) 5666 chan->passive = htole16(88); 5667 else 5668 chan->passive = htole16(120); 5669 hdr->crc_threshold = 0xffff; 5670 } 5671 5672 DPRINTF(sc, IWN_DEBUG_STATE, 5673 "%s: chan %u flags 0x%x rf_gain 0x%x " 5674 "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__, 5675 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 5676 chan->active, chan->passive); 5677 5678 hdr->nchan++; 5679 chan++; 5680 buflen = (uint8_t *)chan - buf; 5681 hdr->len = htole16(buflen); 5682 5683 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 5684 hdr->nchan); 5685 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 5686 free(buf, M_DEVBUF); 5687 5688 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5689 5690 return error; 5691 } 5692 5693 static int 5694 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 5695 { 5696 struct iwn_ops *ops = &sc->ops; 5697 struct ifnet *ifp = sc->sc_ifp; 5698 struct ieee80211com *ic = ifp->if_l2com; 5699 struct ieee80211_node *ni = vap->iv_bss; 5700 int error; 5701 5702 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5703 5704 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5705 /* Update adapter configuration. */ 5706 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 5707 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 5708 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5709 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 5710 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5711 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5712 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 5713 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5714 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 5715 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 5716 sc->rxon->cck_mask = 0; 5717 sc->rxon->ofdm_mask = 0x15; 5718 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 5719 sc->rxon->cck_mask = 0x03; 5720 sc->rxon->ofdm_mask = 0; 5721 } else { 5722 /* Assume 802.11b/g. */ 5723 sc->rxon->cck_mask = 0x0f; 5724 sc->rxon->ofdm_mask = 0x15; 5725 } 5726 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 5727 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 5728 sc->rxon->ofdm_mask); 5729 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 5730 if (error != 0) { 5731 device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", 5732 __func__, error); 5733 return error; 5734 } 5735 5736 /* Configuration has changed, set TX power accordingly. */ 5737 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 5738 device_printf(sc->sc_dev, 5739 "%s: could not set TX power, error %d\n", __func__, error); 5740 return error; 5741 } 5742 /* 5743 * Reconfiguring RXON clears the firmware nodes table so we must 5744 * add the broadcast node again. 5745 */ 5746 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 5747 device_printf(sc->sc_dev, 5748 "%s: could not add broadcast node, error %d\n", __func__, 5749 error); 5750 return error; 5751 } 5752 5753 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5754 5755 return 0; 5756 } 5757 5758 static int 5759 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 5760 { 5761 struct iwn_ops *ops = &sc->ops; 5762 struct ifnet *ifp = sc->sc_ifp; 5763 struct ieee80211com *ic = ifp->if_l2com; 5764 struct ieee80211_node *ni = vap->iv_bss; 5765 struct iwn_node_info node; 5766 uint32_t htflags = 0; 5767 int error; 5768 5769 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5770 5771 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5772 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 5773 /* Link LED blinks while monitoring. */ 5774 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 5775 return 0; 5776 } 5777 if ((error = iwn_set_timing(sc, ni)) != 0) { 5778 device_printf(sc->sc_dev, 5779 "%s: could not set timing, error %d\n", __func__, error); 5780 return error; 5781 } 5782 5783 /* Update adapter configuration. */ 5784 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 5785 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 5786 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 5787 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 5788 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 5789 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 5790 if (ic->ic_flags & IEEE80211_F_SHSLOT) 5791 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 5792 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 5793 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 5794 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 5795 sc->rxon->cck_mask = 0; 5796 sc->rxon->ofdm_mask = 0x15; 5797 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 5798 sc->rxon->cck_mask = 0x03; 5799 sc->rxon->ofdm_mask = 0; 5800 } else { 5801 /* Assume 802.11b/g. */ 5802 sc->rxon->cck_mask = 0x0f; 5803 sc->rxon->ofdm_mask = 0x15; 5804 } 5805 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 5806 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 5807 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 5808 switch (ic->ic_curhtprotmode) { 5809 case IEEE80211_HTINFO_OPMODE_HT20PR: 5810 htflags |= IWN_RXON_HT_MODEPURE40; 5811 break; 5812 default: 5813 htflags |= IWN_RXON_HT_MODEMIXED; 5814 break; 5815 } 5816 } 5817 if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 5818 htflags |= IWN_RXON_HT_HT40MINUS; 5819 } 5820 sc->rxon->flags |= htole32(htflags); 5821 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 5822 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n", 5823 sc->rxon->chan, sc->rxon->flags); 5824 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 5825 if (error != 0) { 5826 device_printf(sc->sc_dev, 5827 "%s: could not update configuration, error %d\n", __func__, 5828 error); 5829 return error; 5830 } 5831 5832 /* Configuration has changed, set TX power accordingly. */ 5833 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 5834 device_printf(sc->sc_dev, 5835 "%s: could not set TX power, error %d\n", __func__, error); 5836 return error; 5837 } 5838 5839 /* Fake a join to initialize the TX rate. */ 5840 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 5841 iwn_newassoc(ni, 1); 5842 5843 /* Add BSS node. */ 5844 memset(&node, 0, sizeof node); 5845 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 5846 node.id = IWN_ID_BSS; 5847 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 5848 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 5849 case IEEE80211_HTCAP_SMPS_ENA: 5850 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 5851 break; 5852 case IEEE80211_HTCAP_SMPS_DYNAMIC: 5853 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 5854 break; 5855 } 5856 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 5857 IWN_AMDPU_DENSITY(5)); /* 4us */ 5858 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 5859 node.htflags |= htole32(IWN_NODE_HT40); 5860 } 5861 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 5862 error = ops->add_node(sc, &node, 1); 5863 if (error != 0) { 5864 device_printf(sc->sc_dev, 5865 "%s: could not add BSS node, error %d\n", __func__, error); 5866 return error; 5867 } 5868 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 5869 __func__, node.id); 5870 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 5871 device_printf(sc->sc_dev, 5872 "%s: could not setup link quality for node %d, error %d\n", 5873 __func__, node.id, error); 5874 return error; 5875 } 5876 5877 if ((error = iwn_init_sensitivity(sc)) != 0) { 5878 device_printf(sc->sc_dev, 5879 "%s: could not set sensitivity, error %d\n", __func__, 5880 error); 5881 return error; 5882 } 5883 /* Start periodic calibration timer. */ 5884 sc->calib.state = IWN_CALIB_STATE_ASSOC; 5885 sc->calib_cnt = 0; 5886 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 5887 sc); 5888 5889 /* Link LED always on while associated. */ 5890 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 5891 5892 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5893 5894 return 0; 5895 } 5896 5897 /* 5898 * This function is called by upper layer when an ADDBA request is received 5899 * from another STA and before the ADDBA response is sent. 5900 */ 5901 static int 5902 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 5903 int baparamset, int batimeout, int baseqctl) 5904 { 5905 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 5906 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5907 struct iwn_ops *ops = &sc->ops; 5908 struct iwn_node *wn = (void *)ni; 5909 struct iwn_node_info node; 5910 uint16_t ssn; 5911 uint8_t tid; 5912 int error; 5913 5914 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5915 5916 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 5917 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 5918 5919 memset(&node, 0, sizeof node); 5920 node.id = wn->id; 5921 node.control = IWN_NODE_UPDATE; 5922 node.flags = IWN_FLAG_SET_ADDBA; 5923 node.addba_tid = tid; 5924 node.addba_ssn = htole16(ssn); 5925 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 5926 wn->id, tid, ssn); 5927 error = ops->add_node(sc, &node, 1); 5928 if (error != 0) 5929 return error; 5930 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 5931 #undef MS 5932 } 5933 5934 /* 5935 * This function is called by upper layer on teardown of an HT-immediate 5936 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 5937 */ 5938 static void 5939 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 5940 { 5941 struct ieee80211com *ic = ni->ni_ic; 5942 struct iwn_softc *sc = ic->ic_ifp->if_softc; 5943 struct iwn_ops *ops = &sc->ops; 5944 struct iwn_node *wn = (void *)ni; 5945 struct iwn_node_info node; 5946 uint8_t tid; 5947 5948 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5949 5950 /* XXX: tid as an argument */ 5951 for (tid = 0; tid < WME_NUM_TID; tid++) { 5952 if (&ni->ni_rx_ampdu[tid] == rap) 5953 break; 5954 } 5955 5956 memset(&node, 0, sizeof node); 5957 node.id = wn->id; 5958 node.control = IWN_NODE_UPDATE; 5959 node.flags = IWN_FLAG_SET_DELBA; 5960 node.delba_tid = tid; 5961 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 5962 (void)ops->add_node(sc, &node, 1); 5963 sc->sc_ampdu_rx_stop(ni, rap); 5964 } 5965 5966 static int 5967 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5968 int dialogtoken, int baparamset, int batimeout) 5969 { 5970 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 5971 int qid; 5972 5973 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5974 5975 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 5976 if (sc->qid2tap[qid] == NULL) 5977 break; 5978 } 5979 if (qid == sc->ntxqs) { 5980 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 5981 __func__); 5982 return 0; 5983 } 5984 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 5985 if (tap->txa_private == NULL) { 5986 device_printf(sc->sc_dev, 5987 "%s: failed to alloc TX aggregation structure\n", __func__); 5988 return 0; 5989 } 5990 sc->qid2tap[qid] = tap; 5991 *(int *)tap->txa_private = qid; 5992 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 5993 batimeout); 5994 } 5995 5996 static int 5997 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 5998 int code, int baparamset, int batimeout) 5999 { 6000 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 6001 int qid = *(int *)tap->txa_private; 6002 uint8_t tid = tap->txa_tid; 6003 int ret; 6004 6005 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6006 6007 if (code == IEEE80211_STATUS_SUCCESS) { 6008 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 6009 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 6010 if (ret != 1) 6011 return ret; 6012 } else { 6013 sc->qid2tap[qid] = NULL; 6014 free(tap->txa_private, M_DEVBUF); 6015 tap->txa_private = NULL; 6016 } 6017 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 6018 } 6019 6020 /* 6021 * This function is called by upper layer when an ADDBA response is received 6022 * from another STA. 6023 */ 6024 static int 6025 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 6026 uint8_t tid) 6027 { 6028 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 6029 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 6030 struct iwn_ops *ops = &sc->ops; 6031 struct iwn_node *wn = (void *)ni; 6032 struct iwn_node_info node; 6033 int error, qid; 6034 6035 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6036 6037 /* Enable TX for the specified RA/TID. */ 6038 wn->disable_tid &= ~(1 << tid); 6039 memset(&node, 0, sizeof node); 6040 node.id = wn->id; 6041 node.control = IWN_NODE_UPDATE; 6042 node.flags = IWN_FLAG_SET_DISABLE_TID; 6043 node.disable_tid = htole16(wn->disable_tid); 6044 error = ops->add_node(sc, &node, 1); 6045 if (error != 0) 6046 return 0; 6047 6048 if ((error = iwn_nic_lock(sc)) != 0) 6049 return 0; 6050 qid = *(int *)tap->txa_private; 6051 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 6052 __func__, wn->id, tid, tap->txa_start, qid); 6053 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 6054 iwn_nic_unlock(sc); 6055 6056 iwn_set_link_quality(sc, ni); 6057 return 1; 6058 } 6059 6060 static void 6061 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 6062 { 6063 struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc; 6064 struct iwn_ops *ops = &sc->ops; 6065 uint8_t tid = tap->txa_tid; 6066 int qid; 6067 6068 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6069 6070 sc->sc_addba_stop(ni, tap); 6071 6072 if (tap->txa_private == NULL) 6073 return; 6074 6075 qid = *(int *)tap->txa_private; 6076 if (sc->txq[qid].queued != 0) 6077 return; 6078 if (iwn_nic_lock(sc) != 0) 6079 return; 6080 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 6081 iwn_nic_unlock(sc); 6082 sc->qid2tap[qid] = NULL; 6083 free(tap->txa_private, M_DEVBUF); 6084 tap->txa_private = NULL; 6085 } 6086 6087 static void 6088 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 6089 int qid, uint8_t tid, uint16_t ssn) 6090 { 6091 struct iwn_node *wn = (void *)ni; 6092 6093 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6094 6095 /* Stop TX scheduler while we're changing its configuration. */ 6096 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6097 IWN4965_TXQ_STATUS_CHGACT); 6098 6099 /* Assign RA/TID translation to the queue. */ 6100 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 6101 wn->id << 4 | tid); 6102 6103 /* Enable chain-building mode for the queue. */ 6104 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 6105 6106 /* Set starting sequence number from the ADDBA request. */ 6107 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 6108 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6109 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 6110 6111 /* Set scheduler window size. */ 6112 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 6113 IWN_SCHED_WINSZ); 6114 /* Set scheduler frame limit. */ 6115 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 6116 IWN_SCHED_LIMIT << 16); 6117 6118 /* Enable interrupts for the queue. */ 6119 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 6120 6121 /* Mark the queue as active. */ 6122 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6123 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 6124 iwn_tid2fifo[tid] << 1); 6125 } 6126 6127 static void 6128 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 6129 { 6130 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6131 6132 /* Stop TX scheduler while we're changing its configuration. */ 6133 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6134 IWN4965_TXQ_STATUS_CHGACT); 6135 6136 /* Set starting sequence number from the ADDBA request. */ 6137 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6138 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 6139 6140 /* Disable interrupts for the queue. */ 6141 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 6142 6143 /* Mark the queue as inactive. */ 6144 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6145 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 6146 } 6147 6148 static void 6149 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 6150 int qid, uint8_t tid, uint16_t ssn) 6151 { 6152 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6153 6154 struct iwn_node *wn = (void *)ni; 6155 6156 /* Stop TX scheduler while we're changing its configuration. */ 6157 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6158 IWN5000_TXQ_STATUS_CHGACT); 6159 6160 /* Assign RA/TID translation to the queue. */ 6161 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 6162 wn->id << 4 | tid); 6163 6164 /* Enable chain-building mode for the queue. */ 6165 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 6166 6167 /* Enable aggregation for the queue. */ 6168 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 6169 6170 /* Set starting sequence number from the ADDBA request. */ 6171 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 6172 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6173 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 6174 6175 /* Set scheduler window size and frame limit. */ 6176 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 6177 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 6178 6179 /* Enable interrupts for the queue. */ 6180 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 6181 6182 /* Mark the queue as active. */ 6183 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6184 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 6185 } 6186 6187 static void 6188 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 6189 { 6190 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6191 6192 /* Stop TX scheduler while we're changing its configuration. */ 6193 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6194 IWN5000_TXQ_STATUS_CHGACT); 6195 6196 /* Disable aggregation for the queue. */ 6197 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 6198 6199 /* Set starting sequence number from the ADDBA request. */ 6200 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 6201 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 6202 6203 /* Disable interrupts for the queue. */ 6204 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 6205 6206 /* Mark the queue as inactive. */ 6207 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6208 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 6209 } 6210 6211 /* 6212 * Query calibration tables from the initialization firmware. We do this 6213 * only once at first boot. Called from a process context. 6214 */ 6215 static int 6216 iwn5000_query_calibration(struct iwn_softc *sc) 6217 { 6218 struct iwn5000_calib_config cmd; 6219 int error; 6220 6221 memset(&cmd, 0, sizeof cmd); 6222 cmd.ucode.once.enable = 0xffffffff; 6223 cmd.ucode.once.start = 0xffffffff; 6224 cmd.ucode.once.send = 0xffffffff; 6225 cmd.ucode.flags = 0xffffffff; 6226 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 6227 __func__); 6228 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 6229 if (error != 0) 6230 return error; 6231 6232 /* Wait at most two seconds for calibration to complete. */ 6233 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 6234 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 6235 return error; 6236 } 6237 6238 /* 6239 * Send calibration results to the runtime firmware. These results were 6240 * obtained on first boot from the initialization firmware. 6241 */ 6242 static int 6243 iwn5000_send_calibration(struct iwn_softc *sc) 6244 { 6245 int idx, error; 6246 6247 for (idx = 0; idx < 5; idx++) { 6248 if (sc->calibcmd[idx].buf == NULL) 6249 continue; /* No results available. */ 6250 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6251 "send calibration result idx=%d len=%d\n", idx, 6252 sc->calibcmd[idx].len); 6253 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 6254 sc->calibcmd[idx].len, 0); 6255 if (error != 0) { 6256 device_printf(sc->sc_dev, 6257 "%s: could not send calibration result, error %d\n", 6258 __func__, error); 6259 return error; 6260 } 6261 } 6262 return 0; 6263 } 6264 6265 static int 6266 iwn5000_send_wimax_coex(struct iwn_softc *sc) 6267 { 6268 struct iwn5000_wimax_coex wimax; 6269 6270 #ifdef notyet 6271 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6272 /* Enable WiMAX coexistence for combo adapters. */ 6273 wimax.flags = 6274 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 6275 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 6276 IWN_WIMAX_COEX_STA_TABLE_VALID | 6277 IWN_WIMAX_COEX_ENABLE; 6278 memcpy(wimax.events, iwn6050_wimax_events, 6279 sizeof iwn6050_wimax_events); 6280 } else 6281 #endif 6282 { 6283 /* Disable WiMAX coexistence. */ 6284 wimax.flags = 0; 6285 memset(wimax.events, 0, sizeof wimax.events); 6286 } 6287 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 6288 __func__); 6289 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 6290 } 6291 6292 static int 6293 iwn5000_crystal_calib(struct iwn_softc *sc) 6294 { 6295 struct iwn5000_phy_calib_crystal cmd; 6296 6297 memset(&cmd, 0, sizeof cmd); 6298 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 6299 cmd.ngroups = 1; 6300 cmd.isvalid = 1; 6301 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 6302 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 6303 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 6304 cmd.cap_pin[0], cmd.cap_pin[1]); 6305 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6306 } 6307 6308 static int 6309 iwn5000_temp_offset_calib(struct iwn_softc *sc) 6310 { 6311 struct iwn5000_phy_calib_temp_offset cmd; 6312 6313 memset(&cmd, 0, sizeof cmd); 6314 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 6315 cmd.ngroups = 1; 6316 cmd.isvalid = 1; 6317 if (sc->eeprom_temp != 0) 6318 cmd.offset = htole16(sc->eeprom_temp); 6319 else 6320 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 6321 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 6322 le16toh(cmd.offset)); 6323 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 6324 } 6325 6326 /* 6327 * This function is called after the runtime firmware notifies us of its 6328 * readiness (called in a process context). 6329 */ 6330 static int 6331 iwn4965_post_alive(struct iwn_softc *sc) 6332 { 6333 int error, qid; 6334 6335 if ((error = iwn_nic_lock(sc)) != 0) 6336 return error; 6337 6338 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6339 6340 /* Clear TX scheduler state in SRAM. */ 6341 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 6342 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 6343 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 6344 6345 /* Set physical address of TX scheduler rings (1KB aligned). */ 6346 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 6347 6348 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 6349 6350 /* Disable chain mode for all our 16 queues. */ 6351 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 6352 6353 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 6354 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 6355 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 6356 6357 /* Set scheduler window size. */ 6358 iwn_mem_write(sc, sc->sched_base + 6359 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 6360 /* Set scheduler frame limit. */ 6361 iwn_mem_write(sc, sc->sched_base + 6362 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 6363 IWN_SCHED_LIMIT << 16); 6364 } 6365 6366 /* Enable interrupts for all our 16 queues. */ 6367 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 6368 /* Identify TX FIFO rings (0-7). */ 6369 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 6370 6371 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6372 for (qid = 0; qid < 7; qid++) { 6373 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 6374 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 6375 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 6376 } 6377 iwn_nic_unlock(sc); 6378 return 0; 6379 } 6380 6381 /* 6382 * This function is called after the initialization or runtime firmware 6383 * notifies us of its readiness (called in a process context). 6384 */ 6385 static int 6386 iwn5000_post_alive(struct iwn_softc *sc) 6387 { 6388 int error, qid; 6389 6390 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6391 6392 /* Switch to using ICT interrupt mode. */ 6393 iwn5000_ict_reset(sc); 6394 6395 if ((error = iwn_nic_lock(sc)) != 0){ 6396 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 6397 return error; 6398 } 6399 6400 /* Clear TX scheduler state in SRAM. */ 6401 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 6402 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 6403 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 6404 6405 /* Set physical address of TX scheduler rings (1KB aligned). */ 6406 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 6407 6408 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 6409 6410 /* Enable chain mode for all queues, except command queue. */ 6411 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 6412 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 6413 6414 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 6415 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 6416 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 6417 6418 iwn_mem_write(sc, sc->sched_base + 6419 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 6420 /* Set scheduler window size and frame limit. */ 6421 iwn_mem_write(sc, sc->sched_base + 6422 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 6423 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 6424 } 6425 6426 /* Enable interrupts for all our 20 queues. */ 6427 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 6428 /* Identify TX FIFO rings (0-7). */ 6429 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 6430 6431 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 6432 for (qid = 0; qid < 7; qid++) { 6433 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 6434 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 6435 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 6436 } 6437 iwn_nic_unlock(sc); 6438 6439 /* Configure WiMAX coexistence for combo adapters. */ 6440 error = iwn5000_send_wimax_coex(sc); 6441 if (error != 0) { 6442 device_printf(sc->sc_dev, 6443 "%s: could not configure WiMAX coexistence, error %d\n", 6444 __func__, error); 6445 return error; 6446 } 6447 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 6448 /* Perform crystal calibration. */ 6449 error = iwn5000_crystal_calib(sc); 6450 if (error != 0) { 6451 device_printf(sc->sc_dev, 6452 "%s: crystal calibration failed, error %d\n", 6453 __func__, error); 6454 return error; 6455 } 6456 } 6457 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 6458 /* Query calibration from the initialization firmware. */ 6459 if ((error = iwn5000_query_calibration(sc)) != 0) { 6460 device_printf(sc->sc_dev, 6461 "%s: could not query calibration, error %d\n", 6462 __func__, error); 6463 return error; 6464 } 6465 /* 6466 * We have the calibration results now, reboot with the 6467 * runtime firmware (call ourselves recursively!) 6468 */ 6469 iwn_hw_stop(sc); 6470 error = iwn_hw_init(sc); 6471 } else { 6472 /* Send calibration results to runtime firmware. */ 6473 error = iwn5000_send_calibration(sc); 6474 } 6475 6476 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6477 6478 return error; 6479 } 6480 6481 /* 6482 * The firmware boot code is small and is intended to be copied directly into 6483 * the NIC internal memory (no DMA transfer). 6484 */ 6485 static int 6486 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 6487 { 6488 int error, ntries; 6489 6490 size /= sizeof (uint32_t); 6491 6492 if ((error = iwn_nic_lock(sc)) != 0) 6493 return error; 6494 6495 /* Copy microcode image into NIC memory. */ 6496 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 6497 (const uint32_t *)ucode, size); 6498 6499 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 6500 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 6501 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 6502 6503 /* Start boot load now. */ 6504 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 6505 6506 /* Wait for transfer to complete. */ 6507 for (ntries = 0; ntries < 1000; ntries++) { 6508 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 6509 IWN_BSM_WR_CTRL_START)) 6510 break; 6511 DELAY(10); 6512 } 6513 if (ntries == 1000) { 6514 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 6515 __func__); 6516 iwn_nic_unlock(sc); 6517 return ETIMEDOUT; 6518 } 6519 6520 /* Enable boot after power up. */ 6521 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 6522 6523 iwn_nic_unlock(sc); 6524 return 0; 6525 } 6526 6527 static int 6528 iwn4965_load_firmware(struct iwn_softc *sc) 6529 { 6530 struct iwn_fw_info *fw = &sc->fw; 6531 struct iwn_dma_info *dma = &sc->fw_dma; 6532 int error; 6533 6534 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 6535 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 6536 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6537 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6538 fw->init.text, fw->init.textsz); 6539 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6540 6541 /* Tell adapter where to find initialization sections. */ 6542 if ((error = iwn_nic_lock(sc)) != 0) 6543 return error; 6544 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6545 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 6546 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6547 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6548 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 6549 iwn_nic_unlock(sc); 6550 6551 /* Load firmware boot code. */ 6552 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 6553 if (error != 0) { 6554 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 6555 __func__); 6556 return error; 6557 } 6558 /* Now press "execute". */ 6559 IWN_WRITE(sc, IWN_RESET, 0); 6560 6561 /* Wait at most one second for first alive notification. */ 6562 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 6563 device_printf(sc->sc_dev, 6564 "%s: timeout waiting for adapter to initialize, error %d\n", 6565 __func__, error); 6566 return error; 6567 } 6568 6569 /* Retrieve current temperature for initial TX power calibration. */ 6570 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 6571 sc->temp = iwn4965_get_temperature(sc); 6572 6573 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 6574 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 6575 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6576 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 6577 fw->main.text, fw->main.textsz); 6578 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6579 6580 /* Tell adapter where to find runtime sections. */ 6581 if ((error = iwn_nic_lock(sc)) != 0) 6582 return error; 6583 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 6584 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 6585 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 6586 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 6587 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 6588 IWN_FW_UPDATED | fw->main.textsz); 6589 iwn_nic_unlock(sc); 6590 6591 return 0; 6592 } 6593 6594 static int 6595 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 6596 const uint8_t *section, int size) 6597 { 6598 struct iwn_dma_info *dma = &sc->fw_dma; 6599 int error; 6600 6601 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6602 6603 /* Copy firmware section into pre-allocated DMA-safe memory. */ 6604 memcpy(dma->vaddr, section, size); 6605 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 6606 6607 if ((error = iwn_nic_lock(sc)) != 0) 6608 return error; 6609 6610 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6611 IWN_FH_TX_CONFIG_DMA_PAUSE); 6612 6613 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 6614 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 6615 IWN_LOADDR(dma->paddr)); 6616 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 6617 IWN_HIADDR(dma->paddr) << 28 | size); 6618 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 6619 IWN_FH_TXBUF_STATUS_TBNUM(1) | 6620 IWN_FH_TXBUF_STATUS_TBIDX(1) | 6621 IWN_FH_TXBUF_STATUS_TFBD_VALID); 6622 6623 /* Kick Flow Handler to start DMA transfer. */ 6624 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 6625 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 6626 6627 iwn_nic_unlock(sc); 6628 6629 /* Wait at most five seconds for FH DMA transfer to complete. */ 6630 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 6631 } 6632 6633 static int 6634 iwn5000_load_firmware(struct iwn_softc *sc) 6635 { 6636 struct iwn_fw_part *fw; 6637 int error; 6638 6639 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6640 6641 /* Load the initialization firmware on first boot only. */ 6642 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 6643 &sc->fw.main : &sc->fw.init; 6644 6645 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 6646 fw->text, fw->textsz); 6647 if (error != 0) { 6648 device_printf(sc->sc_dev, 6649 "%s: could not load firmware %s section, error %d\n", 6650 __func__, ".text", error); 6651 return error; 6652 } 6653 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 6654 fw->data, fw->datasz); 6655 if (error != 0) { 6656 device_printf(sc->sc_dev, 6657 "%s: could not load firmware %s section, error %d\n", 6658 __func__, ".data", error); 6659 return error; 6660 } 6661 6662 /* Now press "execute". */ 6663 IWN_WRITE(sc, IWN_RESET, 0); 6664 return 0; 6665 } 6666 6667 /* 6668 * Extract text and data sections from a legacy firmware image. 6669 */ 6670 static int 6671 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 6672 { 6673 const uint32_t *ptr; 6674 size_t hdrlen = 24; 6675 uint32_t rev; 6676 6677 ptr = (const uint32_t *)fw->data; 6678 rev = le32toh(*ptr++); 6679 6680 /* Check firmware API version. */ 6681 if (IWN_FW_API(rev) <= 1) { 6682 device_printf(sc->sc_dev, 6683 "%s: bad firmware, need API version >=2\n", __func__); 6684 return EINVAL; 6685 } 6686 if (IWN_FW_API(rev) >= 3) { 6687 /* Skip build number (version 2 header). */ 6688 hdrlen += 4; 6689 ptr++; 6690 } 6691 if (fw->size < hdrlen) { 6692 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6693 __func__, fw->size); 6694 return EINVAL; 6695 } 6696 fw->main.textsz = le32toh(*ptr++); 6697 fw->main.datasz = le32toh(*ptr++); 6698 fw->init.textsz = le32toh(*ptr++); 6699 fw->init.datasz = le32toh(*ptr++); 6700 fw->boot.textsz = le32toh(*ptr++); 6701 6702 /* Check that all firmware sections fit. */ 6703 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 6704 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 6705 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6706 __func__, fw->size); 6707 return EINVAL; 6708 } 6709 6710 /* Get pointers to firmware sections. */ 6711 fw->main.text = (const uint8_t *)ptr; 6712 fw->main.data = fw->main.text + fw->main.textsz; 6713 fw->init.text = fw->main.data + fw->main.datasz; 6714 fw->init.data = fw->init.text + fw->init.textsz; 6715 fw->boot.text = fw->init.data + fw->init.datasz; 6716 return 0; 6717 } 6718 6719 /* 6720 * Extract text and data sections from a TLV firmware image. 6721 */ 6722 static int 6723 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 6724 uint16_t alt) 6725 { 6726 const struct iwn_fw_tlv_hdr *hdr; 6727 const struct iwn_fw_tlv *tlv; 6728 const uint8_t *ptr, *end; 6729 uint64_t altmask; 6730 uint32_t len, tmp; 6731 6732 if (fw->size < sizeof (*hdr)) { 6733 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6734 __func__, fw->size); 6735 return EINVAL; 6736 } 6737 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 6738 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 6739 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 6740 __func__, le32toh(hdr->signature)); 6741 return EINVAL; 6742 } 6743 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 6744 le32toh(hdr->build)); 6745 6746 /* 6747 * Select the closest supported alternative that is less than 6748 * or equal to the specified one. 6749 */ 6750 altmask = le64toh(hdr->altmask); 6751 while (alt > 0 && !(altmask & (1ULL << alt))) 6752 alt--; /* Downgrade. */ 6753 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 6754 6755 ptr = (const uint8_t *)(hdr + 1); 6756 end = (const uint8_t *)(fw->data + fw->size); 6757 6758 /* Parse type-length-value fields. */ 6759 while (ptr + sizeof (*tlv) <= end) { 6760 tlv = (const struct iwn_fw_tlv *)ptr; 6761 len = le32toh(tlv->len); 6762 6763 ptr += sizeof (*tlv); 6764 if (ptr + len > end) { 6765 device_printf(sc->sc_dev, 6766 "%s: firmware too short: %zu bytes\n", __func__, 6767 fw->size); 6768 return EINVAL; 6769 } 6770 /* Skip other alternatives. */ 6771 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 6772 goto next; 6773 6774 switch (le16toh(tlv->type)) { 6775 case IWN_FW_TLV_MAIN_TEXT: 6776 fw->main.text = ptr; 6777 fw->main.textsz = len; 6778 break; 6779 case IWN_FW_TLV_MAIN_DATA: 6780 fw->main.data = ptr; 6781 fw->main.datasz = len; 6782 break; 6783 case IWN_FW_TLV_INIT_TEXT: 6784 fw->init.text = ptr; 6785 fw->init.textsz = len; 6786 break; 6787 case IWN_FW_TLV_INIT_DATA: 6788 fw->init.data = ptr; 6789 fw->init.datasz = len; 6790 break; 6791 case IWN_FW_TLV_BOOT_TEXT: 6792 fw->boot.text = ptr; 6793 fw->boot.textsz = len; 6794 break; 6795 case IWN_FW_TLV_ENH_SENS: 6796 if (!len) 6797 sc->sc_flags |= IWN_FLAG_ENH_SENS; 6798 break; 6799 case IWN_FW_TLV_PHY_CALIB: 6800 tmp = htole32(*ptr); 6801 if (tmp < 253) { 6802 sc->reset_noise_gain = tmp; 6803 sc->noise_gain = tmp + 1; 6804 } 6805 break; 6806 case IWN_FW_TLV_PAN: 6807 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 6808 DPRINTF(sc, IWN_DEBUG_RESET, 6809 "PAN Support found: %d\n", 1); 6810 break; 6811 case IWN_FW_TLV_FLAGS : 6812 sc->tlv_feature_flags = htole32(*ptr); 6813 break; 6814 case IWN_FW_TLV_PBREQ_MAXLEN: 6815 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 6816 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 6817 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 6818 case IWN_FW_TLV_INIT_EVTLOG_PTR: 6819 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 6820 case IWN_FW_TLV_INIT_ERRLOG_PTR: 6821 case IWN_FW_TLV_WOWLAN_INST: 6822 case IWN_FW_TLV_WOWLAN_DATA: 6823 DPRINTF(sc, IWN_DEBUG_RESET, 6824 "TLV type %d reconized but not handled\n", 6825 le16toh(tlv->type)); 6826 break; 6827 default: 6828 DPRINTF(sc, IWN_DEBUG_RESET, 6829 "TLV type %d not handled\n", le16toh(tlv->type)); 6830 break; 6831 } 6832 next: /* TLV fields are 32-bit aligned. */ 6833 ptr += (len + 3) & ~3; 6834 } 6835 return 0; 6836 } 6837 6838 static int 6839 iwn_read_firmware(struct iwn_softc *sc) 6840 { 6841 struct iwn_fw_info *fw = &sc->fw; 6842 int error; 6843 6844 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6845 6846 IWN_UNLOCK(sc); 6847 6848 memset(fw, 0, sizeof (*fw)); 6849 6850 /* Read firmware image from filesystem. */ 6851 sc->fw_fp = firmware_get(sc->fwname); 6852 if (sc->fw_fp == NULL) { 6853 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 6854 __func__, sc->fwname); 6855 IWN_LOCK(sc); 6856 return EINVAL; 6857 } 6858 IWN_LOCK(sc); 6859 6860 fw->size = sc->fw_fp->datasize; 6861 fw->data = (const uint8_t *)sc->fw_fp->data; 6862 if (fw->size < sizeof (uint32_t)) { 6863 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 6864 __func__, fw->size); 6865 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6866 sc->fw_fp = NULL; 6867 return EINVAL; 6868 } 6869 6870 /* Retrieve text and data sections. */ 6871 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 6872 error = iwn_read_firmware_leg(sc, fw); 6873 else 6874 error = iwn_read_firmware_tlv(sc, fw, 1); 6875 if (error != 0) { 6876 device_printf(sc->sc_dev, 6877 "%s: could not read firmware sections, error %d\n", 6878 __func__, error); 6879 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6880 sc->fw_fp = NULL; 6881 return error; 6882 } 6883 6884 /* Make sure text and data sections fit in hardware memory. */ 6885 if (fw->main.textsz > sc->fw_text_maxsz || 6886 fw->main.datasz > sc->fw_data_maxsz || 6887 fw->init.textsz > sc->fw_text_maxsz || 6888 fw->init.datasz > sc->fw_data_maxsz || 6889 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 6890 (fw->boot.textsz & 3) != 0) { 6891 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 6892 __func__); 6893 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6894 sc->fw_fp = NULL; 6895 return EINVAL; 6896 } 6897 6898 /* We can proceed with loading the firmware. */ 6899 return 0; 6900 } 6901 6902 static int 6903 iwn_clock_wait(struct iwn_softc *sc) 6904 { 6905 int ntries; 6906 6907 /* Set "initialization complete" bit. */ 6908 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 6909 6910 /* Wait for clock stabilization. */ 6911 for (ntries = 0; ntries < 2500; ntries++) { 6912 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 6913 return 0; 6914 DELAY(10); 6915 } 6916 device_printf(sc->sc_dev, 6917 "%s: timeout waiting for clock stabilization\n", __func__); 6918 return ETIMEDOUT; 6919 } 6920 6921 static int 6922 iwn_apm_init(struct iwn_softc *sc) 6923 { 6924 uint32_t reg; 6925 int error; 6926 6927 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6928 6929 /* Disable L0s exit timer (NMI bug workaround). */ 6930 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 6931 /* Don't wait for ICH L0s (ICH bug workaround). */ 6932 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 6933 6934 /* Set FH wait threshold to max (HW bug under stress workaround). */ 6935 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 6936 6937 /* Enable HAP INTA to move adapter from L1a to L0s. */ 6938 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 6939 6940 /* Retrieve PCIe Active State Power Management (ASPM). */ 6941 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); 6942 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 6943 if (reg & 0x02) /* L1 Entry enabled. */ 6944 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6945 else 6946 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 6947 6948 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6949 sc->hw_type <= IWN_HW_REV_TYPE_1000) 6950 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 6951 6952 /* Wait for clock stabilization before accessing prph. */ 6953 if ((error = iwn_clock_wait(sc)) != 0) 6954 return error; 6955 6956 if ((error = iwn_nic_lock(sc)) != 0) 6957 return error; 6958 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 6959 /* Enable DMA and BSM (Bootstrap State Machine). */ 6960 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6961 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 6962 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 6963 } else { 6964 /* Enable DMA. */ 6965 iwn_prph_write(sc, IWN_APMG_CLK_EN, 6966 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6967 } 6968 DELAY(20); 6969 /* Disable L1-Active. */ 6970 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 6971 iwn_nic_unlock(sc); 6972 6973 return 0; 6974 } 6975 6976 static void 6977 iwn_apm_stop_master(struct iwn_softc *sc) 6978 { 6979 int ntries; 6980 6981 /* Stop busmaster DMA activity. */ 6982 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 6983 for (ntries = 0; ntries < 100; ntries++) { 6984 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 6985 return; 6986 DELAY(10); 6987 } 6988 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 6989 } 6990 6991 static void 6992 iwn_apm_stop(struct iwn_softc *sc) 6993 { 6994 iwn_apm_stop_master(sc); 6995 6996 /* Reset the entire device. */ 6997 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 6998 DELAY(10); 6999 /* Clear "initialization complete" bit. */ 7000 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 7001 } 7002 7003 static int 7004 iwn4965_nic_config(struct iwn_softc *sc) 7005 { 7006 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7007 7008 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 7009 /* 7010 * I don't believe this to be correct but this is what the 7011 * vendor driver is doing. Probably the bits should not be 7012 * shifted in IWN_RFCFG_*. 7013 */ 7014 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7015 IWN_RFCFG_TYPE(sc->rfcfg) | 7016 IWN_RFCFG_STEP(sc->rfcfg) | 7017 IWN_RFCFG_DASH(sc->rfcfg)); 7018 } 7019 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7020 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 7021 return 0; 7022 } 7023 7024 static int 7025 iwn5000_nic_config(struct iwn_softc *sc) 7026 { 7027 uint32_t tmp; 7028 int error; 7029 7030 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7031 7032 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 7033 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7034 IWN_RFCFG_TYPE(sc->rfcfg) | 7035 IWN_RFCFG_STEP(sc->rfcfg) | 7036 IWN_RFCFG_DASH(sc->rfcfg)); 7037 } 7038 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 7039 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 7040 7041 if ((error = iwn_nic_lock(sc)) != 0) 7042 return error; 7043 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 7044 7045 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 7046 /* 7047 * Select first Switching Voltage Regulator (1.32V) to 7048 * solve a stability issue related to noisy DC2DC line 7049 * in the silicon of 1000 Series. 7050 */ 7051 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 7052 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 7053 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 7054 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 7055 } 7056 iwn_nic_unlock(sc); 7057 7058 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 7059 /* Use internal power amplifier only. */ 7060 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 7061 } 7062 if ((sc->hw_type == IWN_HW_REV_TYPE_6050 || 7063 sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) { 7064 /* Indicate that ROM calibration version is >=6. */ 7065 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 7066 } 7067 if (sc->hw_type == IWN_HW_REV_TYPE_6005) 7068 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2); 7069 return 0; 7070 } 7071 7072 /* 7073 * Take NIC ownership over Intel Active Management Technology (AMT). 7074 */ 7075 static int 7076 iwn_hw_prepare(struct iwn_softc *sc) 7077 { 7078 int ntries; 7079 7080 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7081 7082 /* Check if hardware is ready. */ 7083 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 7084 for (ntries = 0; ntries < 5; ntries++) { 7085 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 7086 IWN_HW_IF_CONFIG_NIC_READY) 7087 return 0; 7088 DELAY(10); 7089 } 7090 7091 /* Hardware not ready, force into ready state. */ 7092 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 7093 for (ntries = 0; ntries < 15000; ntries++) { 7094 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 7095 IWN_HW_IF_CONFIG_PREPARE_DONE)) 7096 break; 7097 DELAY(10); 7098 } 7099 if (ntries == 15000) 7100 return ETIMEDOUT; 7101 7102 /* Hardware should be ready now. */ 7103 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 7104 for (ntries = 0; ntries < 5; ntries++) { 7105 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 7106 IWN_HW_IF_CONFIG_NIC_READY) 7107 return 0; 7108 DELAY(10); 7109 } 7110 return ETIMEDOUT; 7111 } 7112 7113 static int 7114 iwn_hw_init(struct iwn_softc *sc) 7115 { 7116 struct iwn_ops *ops = &sc->ops; 7117 int error, chnl, qid; 7118 7119 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7120 7121 /* Clear pending interrupts. */ 7122 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7123 7124 if ((error = iwn_apm_init(sc)) != 0) { 7125 device_printf(sc->sc_dev, 7126 "%s: could not power ON adapter, error %d\n", __func__, 7127 error); 7128 return error; 7129 } 7130 7131 /* Select VMAIN power source. */ 7132 if ((error = iwn_nic_lock(sc)) != 0) 7133 return error; 7134 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 7135 iwn_nic_unlock(sc); 7136 7137 /* Perform adapter-specific initialization. */ 7138 if ((error = ops->nic_config(sc)) != 0) 7139 return error; 7140 7141 /* Initialize RX ring. */ 7142 if ((error = iwn_nic_lock(sc)) != 0) 7143 return error; 7144 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 7145 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 7146 /* Set physical address of RX ring (256-byte aligned). */ 7147 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 7148 /* Set physical address of RX status (16-byte aligned). */ 7149 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 7150 /* Enable RX. */ 7151 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 7152 IWN_FH_RX_CONFIG_ENA | 7153 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 7154 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 7155 IWN_FH_RX_CONFIG_SINGLE_FRAME | 7156 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 7157 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 7158 iwn_nic_unlock(sc); 7159 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 7160 7161 if ((error = iwn_nic_lock(sc)) != 0) 7162 return error; 7163 7164 /* Initialize TX scheduler. */ 7165 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 7166 7167 /* Set physical address of "keep warm" page (16-byte aligned). */ 7168 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 7169 7170 /* Initialize TX rings. */ 7171 for (qid = 0; qid < sc->ntxqs; qid++) { 7172 struct iwn_tx_ring *txq = &sc->txq[qid]; 7173 7174 /* Set physical address of TX ring (256-byte aligned). */ 7175 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 7176 txq->desc_dma.paddr >> 8); 7177 } 7178 iwn_nic_unlock(sc); 7179 7180 /* Enable DMA channels. */ 7181 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 7182 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 7183 IWN_FH_TX_CONFIG_DMA_ENA | 7184 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 7185 } 7186 7187 /* Clear "radio off" and "commands blocked" bits. */ 7188 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7189 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 7190 7191 /* Clear pending interrupts. */ 7192 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7193 /* Enable interrupt coalescing. */ 7194 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 7195 /* Enable interrupts. */ 7196 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 7197 7198 /* _Really_ make sure "radio off" bit is cleared! */ 7199 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7200 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 7201 7202 /* Enable shadow registers. */ 7203 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 7204 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 7205 7206 if ((error = ops->load_firmware(sc)) != 0) { 7207 device_printf(sc->sc_dev, 7208 "%s: could not load firmware, error %d\n", __func__, 7209 error); 7210 return error; 7211 } 7212 /* Wait at most one second for firmware alive notification. */ 7213 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 7214 device_printf(sc->sc_dev, 7215 "%s: timeout waiting for adapter to initialize, error %d\n", 7216 __func__, error); 7217 return error; 7218 } 7219 /* Do post-firmware initialization. */ 7220 7221 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7222 7223 return ops->post_alive(sc); 7224 } 7225 7226 static void 7227 iwn_hw_stop(struct iwn_softc *sc) 7228 { 7229 int chnl, qid, ntries; 7230 7231 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7232 7233 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 7234 7235 /* Disable interrupts. */ 7236 IWN_WRITE(sc, IWN_INT_MASK, 0); 7237 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7238 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 7239 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 7240 7241 /* Make sure we no longer hold the NIC lock. */ 7242 iwn_nic_unlock(sc); 7243 7244 /* Stop TX scheduler. */ 7245 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 7246 7247 /* Stop all DMA channels. */ 7248 if (iwn_nic_lock(sc) == 0) { 7249 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 7250 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 7251 for (ntries = 0; ntries < 200; ntries++) { 7252 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 7253 IWN_FH_TX_STATUS_IDLE(chnl)) 7254 break; 7255 DELAY(10); 7256 } 7257 } 7258 iwn_nic_unlock(sc); 7259 } 7260 7261 /* Stop RX ring. */ 7262 iwn_reset_rx_ring(sc, &sc->rxq); 7263 7264 /* Reset all TX rings. */ 7265 for (qid = 0; qid < sc->ntxqs; qid++) 7266 iwn_reset_tx_ring(sc, &sc->txq[qid]); 7267 7268 if (iwn_nic_lock(sc) == 0) { 7269 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 7270 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 7271 iwn_nic_unlock(sc); 7272 } 7273 DELAY(5); 7274 /* Power OFF adapter. */ 7275 iwn_apm_stop(sc); 7276 } 7277 7278 static void 7279 iwn_radio_on(void *arg0, int pending) 7280 { 7281 struct iwn_softc *sc = arg0; 7282 struct ifnet *ifp = sc->sc_ifp; 7283 struct ieee80211com *ic = ifp->if_l2com; 7284 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 7285 7286 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7287 7288 if (vap != NULL) { 7289 iwn_init(sc); 7290 ieee80211_init(vap); 7291 } 7292 } 7293 7294 static void 7295 iwn_radio_off(void *arg0, int pending) 7296 { 7297 struct iwn_softc *sc = arg0; 7298 struct ifnet *ifp = sc->sc_ifp; 7299 struct ieee80211com *ic = ifp->if_l2com; 7300 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 7301 7302 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7303 7304 iwn_stop(sc); 7305 if (vap != NULL) 7306 ieee80211_stop(vap); 7307 7308 /* Enable interrupts to get RF toggle notification. */ 7309 IWN_LOCK(sc); 7310 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7311 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 7312 IWN_UNLOCK(sc); 7313 } 7314 7315 static void 7316 iwn_init_locked(struct iwn_softc *sc) 7317 { 7318 struct ifnet *ifp = sc->sc_ifp; 7319 int error; 7320 7321 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7322 7323 IWN_LOCK_ASSERT(sc); 7324 7325 if ((error = iwn_hw_prepare(sc)) != 0) { 7326 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 7327 __func__, error); 7328 goto fail; 7329 } 7330 7331 /* Initialize interrupt mask to default value. */ 7332 sc->int_mask = IWN_INT_MASK_DEF; 7333 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 7334 7335 /* Check that the radio is not disabled by hardware switch. */ 7336 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 7337 device_printf(sc->sc_dev, 7338 "radio is disabled by hardware switch\n"); 7339 /* Enable interrupts to get RF toggle notifications. */ 7340 IWN_WRITE(sc, IWN_INT, 0xffffffff); 7341 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 7342 return; 7343 } 7344 7345 /* Read firmware images from the filesystem. */ 7346 if ((error = iwn_read_firmware(sc)) != 0) { 7347 device_printf(sc->sc_dev, 7348 "%s: could not read firmware, error %d\n", __func__, 7349 error); 7350 goto fail; 7351 } 7352 7353 /* Initialize hardware and upload firmware. */ 7354 error = iwn_hw_init(sc); 7355 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 7356 sc->fw_fp = NULL; 7357 if (error != 0) { 7358 device_printf(sc->sc_dev, 7359 "%s: could not initialize hardware, error %d\n", __func__, 7360 error); 7361 goto fail; 7362 } 7363 7364 /* Configure adapter now that it is ready. */ 7365 if ((error = iwn_config(sc)) != 0) { 7366 device_printf(sc->sc_dev, 7367 "%s: could not configure device, error %d\n", __func__, 7368 error); 7369 goto fail; 7370 } 7371 7372 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 7373 ifp->if_drv_flags |= IFF_DRV_RUNNING; 7374 7375 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 7376 7377 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7378 7379 return; 7380 7381 fail: iwn_stop_locked(sc); 7382 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 7383 } 7384 7385 static void 7386 iwn_init(void *arg) 7387 { 7388 struct iwn_softc *sc = arg; 7389 struct ifnet *ifp = sc->sc_ifp; 7390 struct ieee80211com *ic = ifp->if_l2com; 7391 7392 IWN_LOCK(sc); 7393 iwn_init_locked(sc); 7394 IWN_UNLOCK(sc); 7395 7396 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 7397 ieee80211_start_all(ic); 7398 } 7399 7400 static void 7401 iwn_stop_locked(struct iwn_softc *sc) 7402 { 7403 struct ifnet *ifp = sc->sc_ifp; 7404 7405 IWN_LOCK_ASSERT(sc); 7406 7407 sc->sc_tx_timer = 0; 7408 callout_stop(&sc->watchdog_to); 7409 callout_stop(&sc->calib_to); 7410 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 7411 7412 /* Power OFF hardware. */ 7413 iwn_hw_stop(sc); 7414 } 7415 7416 static void 7417 iwn_stop(struct iwn_softc *sc) 7418 { 7419 IWN_LOCK(sc); 7420 iwn_stop_locked(sc); 7421 IWN_UNLOCK(sc); 7422 } 7423 7424 /* 7425 * Callback from net80211 to start a scan. 7426 */ 7427 static void 7428 iwn_scan_start(struct ieee80211com *ic) 7429 { 7430 struct ifnet *ifp = ic->ic_ifp; 7431 struct iwn_softc *sc = ifp->if_softc; 7432 7433 IWN_LOCK(sc); 7434 /* make the link LED blink while we're scanning */ 7435 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 7436 IWN_UNLOCK(sc); 7437 } 7438 7439 /* 7440 * Callback from net80211 to terminate a scan. 7441 */ 7442 static void 7443 iwn_scan_end(struct ieee80211com *ic) 7444 { 7445 struct ifnet *ifp = ic->ic_ifp; 7446 struct iwn_softc *sc = ifp->if_softc; 7447 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 7448 7449 IWN_LOCK(sc); 7450 if (vap->iv_state == IEEE80211_S_RUN) { 7451 /* Set link LED to ON status if we are associated */ 7452 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7453 } 7454 IWN_UNLOCK(sc); 7455 } 7456 7457 /* 7458 * Callback from net80211 to force a channel change. 7459 */ 7460 static void 7461 iwn_set_channel(struct ieee80211com *ic) 7462 { 7463 const struct ieee80211_channel *c = ic->ic_curchan; 7464 struct ifnet *ifp = ic->ic_ifp; 7465 struct iwn_softc *sc = ifp->if_softc; 7466 int error; 7467 7468 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7469 7470 IWN_LOCK(sc); 7471 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 7472 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 7473 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 7474 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 7475 7476 /* 7477 * Only need to set the channel in Monitor mode. AP scanning and auth 7478 * are already taken care of by their respective firmware commands. 7479 */ 7480 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7481 error = iwn_config(sc); 7482 if (error != 0) 7483 device_printf(sc->sc_dev, 7484 "%s: error %d settting channel\n", __func__, error); 7485 } 7486 IWN_UNLOCK(sc); 7487 } 7488 7489 /* 7490 * Callback from net80211 to start scanning of the current channel. 7491 */ 7492 static void 7493 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 7494 { 7495 struct ieee80211vap *vap = ss->ss_vap; 7496 struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc; 7497 int error; 7498 7499 IWN_LOCK(sc); 7500 error = iwn_scan(sc); 7501 IWN_UNLOCK(sc); 7502 if (error != 0) 7503 ieee80211_cancel_scan(vap); 7504 } 7505 7506 /* 7507 * Callback from net80211 to handle the minimum dwell time being met. 7508 * The intent is to terminate the scan but we just let the firmware 7509 * notify us when it's finished as we have no safe way to abort it. 7510 */ 7511 static void 7512 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 7513 { 7514 /* NB: don't try to abort scan; wait for firmware to finish */ 7515 } 7516 7517 static void 7518 iwn_hw_reset(void *arg0, int pending) 7519 { 7520 struct iwn_softc *sc = arg0; 7521 struct ifnet *ifp = sc->sc_ifp; 7522 struct ieee80211com *ic = ifp->if_l2com; 7523 7524 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7525 7526 iwn_stop(sc); 7527 iwn_init(sc); 7528 ieee80211_notify_radio(ic, 1); 7529 } 7530 #ifdef IWN_DEBUG 7531 #define IWN_DESC(x) case x: return #x 7532 #define COUNTOF(array) (sizeof(array) / sizeof(array[0])) 7533 7534 /* 7535 * Translate CSR code to string 7536 */ 7537 static char *iwn_get_csr_string(int csr) 7538 { 7539 switch (csr) { 7540 IWN_DESC(IWN_HW_IF_CONFIG); 7541 IWN_DESC(IWN_INT_COALESCING); 7542 IWN_DESC(IWN_INT); 7543 IWN_DESC(IWN_INT_MASK); 7544 IWN_DESC(IWN_FH_INT); 7545 IWN_DESC(IWN_GPIO_IN); 7546 IWN_DESC(IWN_RESET); 7547 IWN_DESC(IWN_GP_CNTRL); 7548 IWN_DESC(IWN_HW_REV); 7549 IWN_DESC(IWN_EEPROM); 7550 IWN_DESC(IWN_EEPROM_GP); 7551 IWN_DESC(IWN_OTP_GP); 7552 IWN_DESC(IWN_GIO); 7553 IWN_DESC(IWN_GP_UCODE); 7554 IWN_DESC(IWN_GP_DRIVER); 7555 IWN_DESC(IWN_UCODE_GP1); 7556 IWN_DESC(IWN_UCODE_GP2); 7557 IWN_DESC(IWN_LED); 7558 IWN_DESC(IWN_DRAM_INT_TBL); 7559 IWN_DESC(IWN_GIO_CHICKEN); 7560 IWN_DESC(IWN_ANA_PLL); 7561 IWN_DESC(IWN_HW_REV_WA); 7562 IWN_DESC(IWN_DBG_HPET_MEM); 7563 default: 7564 return "UNKNOWN CSR"; 7565 } 7566 } 7567 7568 /* 7569 * This function print firmware register 7570 */ 7571 static void 7572 iwn_debug_register(struct iwn_softc *sc) 7573 { 7574 int i; 7575 static const uint32_t csr_tbl[] = { 7576 IWN_HW_IF_CONFIG, 7577 IWN_INT_COALESCING, 7578 IWN_INT, 7579 IWN_INT_MASK, 7580 IWN_FH_INT, 7581 IWN_GPIO_IN, 7582 IWN_RESET, 7583 IWN_GP_CNTRL, 7584 IWN_HW_REV, 7585 IWN_EEPROM, 7586 IWN_EEPROM_GP, 7587 IWN_OTP_GP, 7588 IWN_GIO, 7589 IWN_GP_UCODE, 7590 IWN_GP_DRIVER, 7591 IWN_UCODE_GP1, 7592 IWN_UCODE_GP2, 7593 IWN_LED, 7594 IWN_DRAM_INT_TBL, 7595 IWN_GIO_CHICKEN, 7596 IWN_ANA_PLL, 7597 IWN_HW_REV_WA, 7598 IWN_DBG_HPET_MEM, 7599 }; 7600 DPRINTF(sc, IWN_DEBUG_REGISTER, 7601 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 7602 "\n"); 7603 for (i = 0; i < COUNTOF(csr_tbl); i++){ 7604 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 7605 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 7606 if ((i+1) % 3 == 0) 7607 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 7608 } 7609 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 7610 } 7611 #endif 7612