1 /*- 2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr> 3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org> 4 * Copyright (c) 2008 Sam Leffler, Errno Consulting 5 * Copyright (c) 2011 Intel Corporation 6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 24 * adapters. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_wlan.h" 31 #include "opt_iwn.h" 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/rman.h> 44 #include <sys/endian.h> 45 #include <sys/firmware.h> 46 #include <sys/limits.h> 47 #include <sys/module.h> 48 #include <sys/priv.h> 49 #include <sys/queue.h> 50 #include <sys/taskqueue.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <machine/clock.h> 55 56 #include <dev/pci/pcireg.h> 57 #include <dev/pci/pcivar.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 #include <dev/iwn/if_iwn_devid.h> 75 #include <dev/iwn/if_iwn_chip_cfg.h> 76 #include <dev/iwn/if_iwn_debug.h> 77 #include <dev/iwn/if_iwn_ioctl.h> 78 79 struct iwn_ident { 80 uint16_t vendor; 81 uint16_t device; 82 const char *name; 83 }; 84 85 static const struct iwn_ident iwn_ident_table[] = { 86 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 87 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 88 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 89 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 90 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 91 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 92 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 93 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 94 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 95 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 96 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 97 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 98 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 99 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 100 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ 101 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 102 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 103 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 104 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 105 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 106 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 107 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, 108 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, 109 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, 110 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, 111 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 112 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 113 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 114 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 115 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 116 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 117 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 118 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 119 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 120 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 121 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 122 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 123 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 124 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 125 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 126 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 127 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, 128 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, 129 { 0, 0, NULL } 130 }; 131 132 static int iwn_probe(device_t); 133 static int iwn_attach(device_t); 134 static int iwn4965_attach(struct iwn_softc *, uint16_t); 135 static int iwn5000_attach(struct iwn_softc *, uint16_t); 136 static int iwn_config_specific(struct iwn_softc *, uint16_t); 137 static void iwn_radiotap_attach(struct iwn_softc *); 138 static void iwn_sysctlattach(struct iwn_softc *); 139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 140 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 141 const uint8_t [IEEE80211_ADDR_LEN], 142 const uint8_t [IEEE80211_ADDR_LEN]); 143 static void iwn_vap_delete(struct ieee80211vap *); 144 static int iwn_detach(device_t); 145 static int iwn_shutdown(device_t); 146 static int iwn_suspend(device_t); 147 static int iwn_resume(device_t); 148 static int iwn_nic_lock(struct iwn_softc *); 149 static int iwn_eeprom_lock(struct iwn_softc *); 150 static int iwn_init_otprom(struct iwn_softc *); 151 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 152 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 153 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 154 void **, bus_size_t, bus_size_t); 155 static void iwn_dma_contig_free(struct iwn_dma_info *); 156 static int iwn_alloc_sched(struct iwn_softc *); 157 static void iwn_free_sched(struct iwn_softc *); 158 static int iwn_alloc_kw(struct iwn_softc *); 159 static void iwn_free_kw(struct iwn_softc *); 160 static int iwn_alloc_ict(struct iwn_softc *); 161 static void iwn_free_ict(struct iwn_softc *); 162 static int iwn_alloc_fwmem(struct iwn_softc *); 163 static void iwn_free_fwmem(struct iwn_softc *); 164 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 165 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 166 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 167 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 168 int); 169 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 170 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 171 static void iwn5000_ict_reset(struct iwn_softc *); 172 static int iwn_read_eeprom(struct iwn_softc *, 173 uint8_t macaddr[IEEE80211_ADDR_LEN]); 174 static void iwn4965_read_eeprom(struct iwn_softc *); 175 #ifdef IWN_DEBUG 176 static void iwn4965_print_power_group(struct iwn_softc *, int); 177 #endif 178 static void iwn5000_read_eeprom(struct iwn_softc *); 179 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 180 static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *, 181 struct ieee80211_channel[]); 182 static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *, 183 struct ieee80211_channel[]); 184 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 186 struct ieee80211_channel *); 187 static void iwn_getradiocaps(struct ieee80211com *, int, int *, 188 struct ieee80211_channel[]); 189 static int iwn_setregdomain(struct ieee80211com *, 190 struct ieee80211_regdomain *, int, 191 struct ieee80211_channel[]); 192 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 194 const uint8_t mac[IEEE80211_ADDR_LEN]); 195 static void iwn_newassoc(struct ieee80211_node *, int); 196 static int iwn_media_change(struct ifnet *); 197 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void iwn_calib_timeout(void *); 199 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 200 struct iwn_rx_data *); 201 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 202 struct iwn_rx_data *); 203 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 204 struct iwn_rx_data *); 205 static void iwn5000_rx_calib_results(struct iwn_softc *, 206 struct iwn_rx_desc *, struct iwn_rx_data *); 207 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 208 struct iwn_rx_data *); 209 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 210 struct iwn_rx_data *); 211 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 212 struct iwn_rx_data *); 213 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 214 uint8_t); 215 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, void *); 216 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 217 static void iwn_notif_intr(struct iwn_softc *); 218 static void iwn_wakeup_intr(struct iwn_softc *); 219 static void iwn_rftoggle_intr(struct iwn_softc *); 220 static void iwn_fatal_intr(struct iwn_softc *); 221 static void iwn_intr(void *); 222 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 223 uint16_t); 224 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 225 uint16_t); 226 #ifdef notyet 227 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 228 #endif 229 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 230 struct ieee80211_node *); 231 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 232 struct ieee80211_node *, 233 const struct ieee80211_bpf_params *params); 234 static void iwn_xmit_task(void *arg0, int pending); 235 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 236 const struct ieee80211_bpf_params *); 237 static int iwn_transmit(struct ieee80211com *, struct mbuf *); 238 static void iwn_watchdog(void *); 239 static int iwn_ioctl(struct ieee80211com *, u_long , void *); 240 static void iwn_parent(struct ieee80211com *); 241 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 242 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 243 int); 244 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 245 int); 246 static int iwn_set_link_quality(struct iwn_softc *, 247 struct ieee80211_node *); 248 static int iwn_add_broadcast_node(struct iwn_softc *, int); 249 static int iwn_updateedca(struct ieee80211com *); 250 static void iwn_update_mcast(struct ieee80211com *); 251 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 252 static int iwn_set_critical_temp(struct iwn_softc *); 253 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 254 static void iwn4965_power_calibration(struct iwn_softc *, int); 255 static int iwn4965_set_txpower(struct iwn_softc *, 256 struct ieee80211_channel *, int); 257 static int iwn5000_set_txpower(struct iwn_softc *, 258 struct ieee80211_channel *, int); 259 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 260 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 261 static int iwn_get_noise(const struct iwn_rx_general_stats *); 262 static int iwn4965_get_temperature(struct iwn_softc *); 263 static int iwn5000_get_temperature(struct iwn_softc *); 264 static int iwn_init_sensitivity(struct iwn_softc *); 265 static void iwn_collect_noise(struct iwn_softc *, 266 const struct iwn_rx_general_stats *); 267 static int iwn4965_init_gains(struct iwn_softc *); 268 static int iwn5000_init_gains(struct iwn_softc *); 269 static int iwn4965_set_gains(struct iwn_softc *); 270 static int iwn5000_set_gains(struct iwn_softc *); 271 static void iwn_tune_sensitivity(struct iwn_softc *, 272 const struct iwn_rx_stats *); 273 static void iwn_save_stats_counters(struct iwn_softc *, 274 const struct iwn_stats *); 275 static int iwn_send_sensitivity(struct iwn_softc *); 276 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); 277 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 278 static int iwn_send_btcoex(struct iwn_softc *); 279 static int iwn_send_advanced_btcoex(struct iwn_softc *); 280 static int iwn5000_runtime_calib(struct iwn_softc *); 281 static int iwn_config(struct iwn_softc *); 282 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, 283 struct ieee80211_scan_state *, struct ieee80211_channel *); 284 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 285 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 286 static int iwn_ampdu_rx_start(struct ieee80211_node *, 287 struct ieee80211_rx_ampdu *, int, int, int); 288 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 289 struct ieee80211_rx_ampdu *); 290 static int iwn_addba_request(struct ieee80211_node *, 291 struct ieee80211_tx_ampdu *, int, int, int); 292 static int iwn_addba_response(struct ieee80211_node *, 293 struct ieee80211_tx_ampdu *, int, int, int); 294 static int iwn_ampdu_tx_start(struct ieee80211com *, 295 struct ieee80211_node *, uint8_t); 296 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 297 struct ieee80211_tx_ampdu *); 298 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 299 struct ieee80211_node *, int, uint8_t, uint16_t); 300 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 301 uint8_t, uint16_t); 302 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 303 struct ieee80211_node *, int, uint8_t, uint16_t); 304 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 305 uint8_t, uint16_t); 306 static int iwn5000_query_calibration(struct iwn_softc *); 307 static int iwn5000_send_calibration(struct iwn_softc *); 308 static int iwn5000_send_wimax_coex(struct iwn_softc *); 309 static int iwn5000_crystal_calib(struct iwn_softc *); 310 static int iwn5000_temp_offset_calib(struct iwn_softc *); 311 static int iwn5000_temp_offset_calibv2(struct iwn_softc *); 312 static int iwn4965_post_alive(struct iwn_softc *); 313 static int iwn5000_post_alive(struct iwn_softc *); 314 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 315 int); 316 static int iwn4965_load_firmware(struct iwn_softc *); 317 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 318 const uint8_t *, int); 319 static int iwn5000_load_firmware(struct iwn_softc *); 320 static int iwn_read_firmware_leg(struct iwn_softc *, 321 struct iwn_fw_info *); 322 static int iwn_read_firmware_tlv(struct iwn_softc *, 323 struct iwn_fw_info *, uint16_t); 324 static int iwn_read_firmware(struct iwn_softc *); 325 static void iwn_unload_firmware(struct iwn_softc *); 326 static int iwn_clock_wait(struct iwn_softc *); 327 static int iwn_apm_init(struct iwn_softc *); 328 static void iwn_apm_stop_master(struct iwn_softc *); 329 static void iwn_apm_stop(struct iwn_softc *); 330 static int iwn4965_nic_config(struct iwn_softc *); 331 static int iwn5000_nic_config(struct iwn_softc *); 332 static int iwn_hw_prepare(struct iwn_softc *); 333 static int iwn_hw_init(struct iwn_softc *); 334 static void iwn_hw_stop(struct iwn_softc *); 335 static void iwn_radio_on(void *, int); 336 static void iwn_radio_off(void *, int); 337 static void iwn_panicked(void *, int); 338 static void iwn_init_locked(struct iwn_softc *); 339 static void iwn_init(struct iwn_softc *); 340 static void iwn_stop_locked(struct iwn_softc *); 341 static void iwn_stop(struct iwn_softc *); 342 static void iwn_scan_start(struct ieee80211com *); 343 static void iwn_scan_end(struct ieee80211com *); 344 static void iwn_set_channel(struct ieee80211com *); 345 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 346 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 347 static void iwn_hw_reset(void *, int); 348 #ifdef IWN_DEBUG 349 static char *iwn_get_csr_string(int); 350 static void iwn_debug_register(struct iwn_softc *); 351 #endif 352 353 static device_method_t iwn_methods[] = { 354 /* Device interface */ 355 DEVMETHOD(device_probe, iwn_probe), 356 DEVMETHOD(device_attach, iwn_attach), 357 DEVMETHOD(device_detach, iwn_detach), 358 DEVMETHOD(device_shutdown, iwn_shutdown), 359 DEVMETHOD(device_suspend, iwn_suspend), 360 DEVMETHOD(device_resume, iwn_resume), 361 362 DEVMETHOD_END 363 }; 364 365 static driver_t iwn_driver = { 366 "iwn", 367 iwn_methods, 368 sizeof(struct iwn_softc) 369 }; 370 static devclass_t iwn_devclass; 371 372 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL); 373 374 MODULE_VERSION(iwn, 1); 375 376 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 377 MODULE_DEPEND(iwn, pci, 1, 1, 1); 378 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 379 380 static d_ioctl_t iwn_cdev_ioctl; 381 static d_open_t iwn_cdev_open; 382 static d_close_t iwn_cdev_close; 383 384 static struct cdevsw iwn_cdevsw = { 385 .d_version = D_VERSION, 386 .d_flags = 0, 387 .d_open = iwn_cdev_open, 388 .d_close = iwn_cdev_close, 389 .d_ioctl = iwn_cdev_ioctl, 390 .d_name = "iwn", 391 }; 392 393 static int 394 iwn_probe(device_t dev) 395 { 396 const struct iwn_ident *ident; 397 398 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 399 if (pci_get_vendor(dev) == ident->vendor && 400 pci_get_device(dev) == ident->device) { 401 device_set_desc(dev, ident->name); 402 return (BUS_PROBE_DEFAULT); 403 } 404 } 405 return ENXIO; 406 } 407 408 static int 409 iwn_is_3stream_device(struct iwn_softc *sc) 410 { 411 /* XXX for now only 5300, until the 5350 can be tested */ 412 if (sc->hw_type == IWN_HW_REV_TYPE_5300) 413 return (1); 414 return (0); 415 } 416 417 static int 418 iwn_attach(device_t dev) 419 { 420 struct iwn_softc *sc = device_get_softc(dev); 421 struct ieee80211com *ic; 422 int i, error, rid; 423 424 sc->sc_dev = dev; 425 426 #ifdef IWN_DEBUG 427 error = resource_int_value(device_get_name(sc->sc_dev), 428 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 429 if (error != 0) 430 sc->sc_debug = 0; 431 #else 432 sc->sc_debug = 0; 433 #endif 434 435 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 436 437 /* 438 * Get the offset of the PCI Express Capability Structure in PCI 439 * Configuration Space. 440 */ 441 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 442 if (error != 0) { 443 device_printf(dev, "PCIe capability structure not found!\n"); 444 return error; 445 } 446 447 /* Clear device-specific "PCI retry timeout" register (41h). */ 448 pci_write_config(dev, 0x41, 0, 1); 449 450 /* Enable bus-mastering. */ 451 pci_enable_busmaster(dev); 452 453 rid = PCIR_BAR(0); 454 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 455 RF_ACTIVE); 456 if (sc->mem == NULL) { 457 device_printf(dev, "can't map mem space\n"); 458 error = ENOMEM; 459 return error; 460 } 461 sc->sc_st = rman_get_bustag(sc->mem); 462 sc->sc_sh = rman_get_bushandle(sc->mem); 463 464 i = 1; 465 rid = 0; 466 if (pci_alloc_msi(dev, &i) == 0) 467 rid = 1; 468 /* Install interrupt handler. */ 469 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 470 (rid != 0 ? 0 : RF_SHAREABLE)); 471 if (sc->irq == NULL) { 472 device_printf(dev, "can't map interrupt\n"); 473 error = ENOMEM; 474 goto fail; 475 } 476 477 IWN_LOCK_INIT(sc); 478 479 /* Read hardware revision and attach. */ 480 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 481 & IWN_HW_REV_TYPE_MASK; 482 sc->subdevice_id = pci_get_subdevice(dev); 483 484 /* 485 * 4965 versus 5000 and later have different methods. 486 * Let's set those up first. 487 */ 488 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 489 error = iwn4965_attach(sc, pci_get_device(dev)); 490 else 491 error = iwn5000_attach(sc, pci_get_device(dev)); 492 if (error != 0) { 493 device_printf(dev, "could not attach device, error %d\n", 494 error); 495 goto fail; 496 } 497 498 /* 499 * Next, let's setup the various parameters of each NIC. 500 */ 501 error = iwn_config_specific(sc, pci_get_device(dev)); 502 if (error != 0) { 503 device_printf(dev, "could not attach device, error %d\n", 504 error); 505 goto fail; 506 } 507 508 if ((error = iwn_hw_prepare(sc)) != 0) { 509 device_printf(dev, "hardware not ready, error %d\n", error); 510 goto fail; 511 } 512 513 /* Allocate DMA memory for firmware transfers. */ 514 if ((error = iwn_alloc_fwmem(sc)) != 0) { 515 device_printf(dev, 516 "could not allocate memory for firmware, error %d\n", 517 error); 518 goto fail; 519 } 520 521 /* Allocate "Keep Warm" page. */ 522 if ((error = iwn_alloc_kw(sc)) != 0) { 523 device_printf(dev, 524 "could not allocate keep warm page, error %d\n", error); 525 goto fail; 526 } 527 528 /* Allocate ICT table for 5000 Series. */ 529 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 530 (error = iwn_alloc_ict(sc)) != 0) { 531 device_printf(dev, "could not allocate ICT table, error %d\n", 532 error); 533 goto fail; 534 } 535 536 /* Allocate TX scheduler "rings". */ 537 if ((error = iwn_alloc_sched(sc)) != 0) { 538 device_printf(dev, 539 "could not allocate TX scheduler rings, error %d\n", error); 540 goto fail; 541 } 542 543 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 544 for (i = 0; i < sc->ntxqs; i++) { 545 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 546 device_printf(dev, 547 "could not allocate TX ring %d, error %d\n", i, 548 error); 549 goto fail; 550 } 551 } 552 553 /* Allocate RX ring. */ 554 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 555 device_printf(dev, "could not allocate RX ring, error %d\n", 556 error); 557 goto fail; 558 } 559 560 /* Clear pending interrupts. */ 561 IWN_WRITE(sc, IWN_INT, 0xffffffff); 562 563 ic = &sc->sc_ic; 564 ic->ic_softc = sc; 565 ic->ic_name = device_get_nameunit(dev); 566 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 567 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 568 569 /* Set device capabilities. */ 570 ic->ic_caps = 571 IEEE80211_C_STA /* station mode supported */ 572 | IEEE80211_C_MONITOR /* monitor mode supported */ 573 #if 0 574 | IEEE80211_C_BGSCAN /* background scanning */ 575 #endif 576 | IEEE80211_C_TXPMGT /* tx power management */ 577 | IEEE80211_C_SHSLOT /* short slot time supported */ 578 | IEEE80211_C_WPA 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 #if 0 581 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 582 #endif 583 | IEEE80211_C_WME /* WME */ 584 | IEEE80211_C_PMGT /* Station-side power mgmt */ 585 ; 586 587 /* Read MAC address, channels, etc from EEPROM. */ 588 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { 589 device_printf(dev, "could not read EEPROM, error %d\n", 590 error); 591 goto fail; 592 } 593 594 /* Count the number of available chains. */ 595 sc->ntxchains = 596 ((sc->txchainmask >> 2) & 1) + 597 ((sc->txchainmask >> 1) & 1) + 598 ((sc->txchainmask >> 0) & 1); 599 sc->nrxchains = 600 ((sc->rxchainmask >> 2) & 1) + 601 ((sc->rxchainmask >> 1) & 1) + 602 ((sc->rxchainmask >> 0) & 1); 603 if (bootverbose) { 604 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 605 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 606 ic->ic_macaddr, ":"); 607 } 608 609 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 610 ic->ic_rxstream = sc->nrxchains; 611 ic->ic_txstream = sc->ntxchains; 612 613 /* 614 * Some of the 3 antenna devices (ie, the 4965) only supports 615 * 2x2 operation. So correct the number of streams if 616 * it's not a 3-stream device. 617 */ 618 if (! iwn_is_3stream_device(sc)) { 619 if (ic->ic_rxstream > 2) 620 ic->ic_rxstream = 2; 621 if (ic->ic_txstream > 2) 622 ic->ic_txstream = 2; 623 } 624 625 ic->ic_htcaps = 626 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 627 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 628 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 629 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 630 #ifdef notyet 631 | IEEE80211_HTCAP_GREENFIELD 632 #if IWN_RBUF_SIZE == 8192 633 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 634 #else 635 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 636 #endif 637 #endif 638 /* s/w capabilities */ 639 | IEEE80211_HTC_HT /* HT operation */ 640 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 641 #ifdef notyet 642 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 643 #endif 644 ; 645 } 646 647 ieee80211_ifattach(ic); 648 ic->ic_vap_create = iwn_vap_create; 649 ic->ic_ioctl = iwn_ioctl; 650 ic->ic_parent = iwn_parent; 651 ic->ic_vap_delete = iwn_vap_delete; 652 ic->ic_transmit = iwn_transmit; 653 ic->ic_raw_xmit = iwn_raw_xmit; 654 ic->ic_node_alloc = iwn_node_alloc; 655 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 656 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 657 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 658 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 659 sc->sc_addba_request = ic->ic_addba_request; 660 ic->ic_addba_request = iwn_addba_request; 661 sc->sc_addba_response = ic->ic_addba_response; 662 ic->ic_addba_response = iwn_addba_response; 663 sc->sc_addba_stop = ic->ic_addba_stop; 664 ic->ic_addba_stop = iwn_ampdu_tx_stop; 665 ic->ic_newassoc = iwn_newassoc; 666 ic->ic_wme.wme_update = iwn_updateedca; 667 ic->ic_update_mcast = iwn_update_mcast; 668 ic->ic_scan_start = iwn_scan_start; 669 ic->ic_scan_end = iwn_scan_end; 670 ic->ic_set_channel = iwn_set_channel; 671 ic->ic_scan_curchan = iwn_scan_curchan; 672 ic->ic_scan_mindwell = iwn_scan_mindwell; 673 ic->ic_getradiocaps = iwn_getradiocaps; 674 ic->ic_setregdomain = iwn_setregdomain; 675 676 iwn_radiotap_attach(sc); 677 678 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 679 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 680 TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc); 681 TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc); 682 TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc); 683 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); 684 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); 685 686 mbufq_init(&sc->sc_xmit_queue, 1024); 687 688 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, 689 taskqueue_thread_enqueue, &sc->sc_tq); 690 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); 691 if (error != 0) { 692 device_printf(dev, "can't start threads, error %d\n", error); 693 goto fail; 694 } 695 696 iwn_sysctlattach(sc); 697 698 /* 699 * Hook our interrupt after all initialization is complete. 700 */ 701 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 702 NULL, iwn_intr, sc, &sc->sc_ih); 703 if (error != 0) { 704 device_printf(dev, "can't establish interrupt, error %d\n", 705 error); 706 goto fail; 707 } 708 709 #if 0 710 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", 711 __func__, 712 sizeof(struct iwn_stats), 713 sizeof(struct iwn_stats_bt)); 714 #endif 715 716 if (bootverbose) 717 ieee80211_announce(ic); 718 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 719 720 /* Add debug ioctl right at the end */ 721 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), 722 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); 723 if (sc->sc_cdev == NULL) { 724 device_printf(dev, "failed to create debug character device\n"); 725 } else { 726 sc->sc_cdev->si_drv1 = sc; 727 } 728 return 0; 729 fail: 730 iwn_detach(dev); 731 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 732 return error; 733 } 734 735 /* 736 * Define specific configuration based on device id and subdevice id 737 * pid : PCI device id 738 */ 739 static int 740 iwn_config_specific(struct iwn_softc *sc, uint16_t pid) 741 { 742 743 switch (pid) { 744 /* 4965 series */ 745 case IWN_DID_4965_1: 746 case IWN_DID_4965_2: 747 case IWN_DID_4965_3: 748 case IWN_DID_4965_4: 749 sc->base_params = &iwn4965_base_params; 750 sc->limits = &iwn4965_sensitivity_limits; 751 sc->fwname = "iwn4965fw"; 752 /* Override chains masks, ROM is known to be broken. */ 753 sc->txchainmask = IWN_ANT_AB; 754 sc->rxchainmask = IWN_ANT_ABC; 755 /* Enable normal btcoex */ 756 sc->sc_flags |= IWN_FLAG_BTCOEX; 757 break; 758 /* 1000 Series */ 759 case IWN_DID_1000_1: 760 case IWN_DID_1000_2: 761 switch(sc->subdevice_id) { 762 case IWN_SDID_1000_1: 763 case IWN_SDID_1000_2: 764 case IWN_SDID_1000_3: 765 case IWN_SDID_1000_4: 766 case IWN_SDID_1000_5: 767 case IWN_SDID_1000_6: 768 case IWN_SDID_1000_7: 769 case IWN_SDID_1000_8: 770 case IWN_SDID_1000_9: 771 case IWN_SDID_1000_10: 772 case IWN_SDID_1000_11: 773 case IWN_SDID_1000_12: 774 sc->limits = &iwn1000_sensitivity_limits; 775 sc->base_params = &iwn1000_base_params; 776 sc->fwname = "iwn1000fw"; 777 break; 778 default: 779 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 780 "0x%04x rev %d not supported (subdevice)\n", pid, 781 sc->subdevice_id,sc->hw_type); 782 return ENOTSUP; 783 } 784 break; 785 /* 6x00 Series */ 786 case IWN_DID_6x00_2: 787 case IWN_DID_6x00_4: 788 case IWN_DID_6x00_1: 789 case IWN_DID_6x00_3: 790 sc->fwname = "iwn6000fw"; 791 sc->limits = &iwn6000_sensitivity_limits; 792 switch(sc->subdevice_id) { 793 case IWN_SDID_6x00_1: 794 case IWN_SDID_6x00_2: 795 case IWN_SDID_6x00_8: 796 //iwl6000_3agn_cfg 797 sc->base_params = &iwn_6000_base_params; 798 break; 799 case IWN_SDID_6x00_3: 800 case IWN_SDID_6x00_6: 801 case IWN_SDID_6x00_9: 802 ////iwl6000i_2agn 803 case IWN_SDID_6x00_4: 804 case IWN_SDID_6x00_7: 805 case IWN_SDID_6x00_10: 806 //iwl6000i_2abg_cfg 807 case IWN_SDID_6x00_5: 808 //iwl6000i_2bg_cfg 809 sc->base_params = &iwn_6000i_base_params; 810 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 811 sc->txchainmask = IWN_ANT_BC; 812 sc->rxchainmask = IWN_ANT_BC; 813 break; 814 default: 815 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 816 "0x%04x rev %d not supported (subdevice)\n", pid, 817 sc->subdevice_id,sc->hw_type); 818 return ENOTSUP; 819 } 820 break; 821 /* 6x05 Series */ 822 case IWN_DID_6x05_1: 823 case IWN_DID_6x05_2: 824 switch(sc->subdevice_id) { 825 case IWN_SDID_6x05_1: 826 case IWN_SDID_6x05_4: 827 case IWN_SDID_6x05_6: 828 //iwl6005_2agn_cfg 829 case IWN_SDID_6x05_2: 830 case IWN_SDID_6x05_5: 831 case IWN_SDID_6x05_7: 832 //iwl6005_2abg_cfg 833 case IWN_SDID_6x05_3: 834 //iwl6005_2bg_cfg 835 case IWN_SDID_6x05_8: 836 case IWN_SDID_6x05_9: 837 //iwl6005_2agn_sff_cfg 838 case IWN_SDID_6x05_10: 839 //iwl6005_2agn_d_cfg 840 case IWN_SDID_6x05_11: 841 //iwl6005_2agn_mow1_cfg 842 case IWN_SDID_6x05_12: 843 //iwl6005_2agn_mow2_cfg 844 sc->fwname = "iwn6000g2afw"; 845 sc->limits = &iwn6000_sensitivity_limits; 846 sc->base_params = &iwn_6000g2_base_params; 847 break; 848 default: 849 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 850 "0x%04x rev %d not supported (subdevice)\n", pid, 851 sc->subdevice_id,sc->hw_type); 852 return ENOTSUP; 853 } 854 break; 855 /* 6x35 Series */ 856 case IWN_DID_6035_1: 857 case IWN_DID_6035_2: 858 switch(sc->subdevice_id) { 859 case IWN_SDID_6035_1: 860 case IWN_SDID_6035_2: 861 case IWN_SDID_6035_3: 862 case IWN_SDID_6035_4: 863 sc->fwname = "iwn6000g2bfw"; 864 sc->limits = &iwn6235_sensitivity_limits; 865 sc->base_params = &iwn_6235_base_params; 866 break; 867 default: 868 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 869 "0x%04x rev %d not supported (subdevice)\n", pid, 870 sc->subdevice_id,sc->hw_type); 871 return ENOTSUP; 872 } 873 break; 874 /* 6x50 WiFi/WiMax Series */ 875 case IWN_DID_6050_1: 876 case IWN_DID_6050_2: 877 switch(sc->subdevice_id) { 878 case IWN_SDID_6050_1: 879 case IWN_SDID_6050_3: 880 case IWN_SDID_6050_5: 881 //iwl6050_2agn_cfg 882 case IWN_SDID_6050_2: 883 case IWN_SDID_6050_4: 884 case IWN_SDID_6050_6: 885 //iwl6050_2abg_cfg 886 sc->fwname = "iwn6050fw"; 887 sc->txchainmask = IWN_ANT_AB; 888 sc->rxchainmask = IWN_ANT_AB; 889 sc->limits = &iwn6000_sensitivity_limits; 890 sc->base_params = &iwn_6050_base_params; 891 break; 892 default: 893 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 894 "0x%04x rev %d not supported (subdevice)\n", pid, 895 sc->subdevice_id,sc->hw_type); 896 return ENOTSUP; 897 } 898 break; 899 /* 6150 WiFi/WiMax Series */ 900 case IWN_DID_6150_1: 901 case IWN_DID_6150_2: 902 switch(sc->subdevice_id) { 903 case IWN_SDID_6150_1: 904 case IWN_SDID_6150_3: 905 case IWN_SDID_6150_5: 906 // iwl6150_bgn_cfg 907 case IWN_SDID_6150_2: 908 case IWN_SDID_6150_4: 909 case IWN_SDID_6150_6: 910 //iwl6150_bg_cfg 911 sc->fwname = "iwn6050fw"; 912 sc->limits = &iwn6000_sensitivity_limits; 913 sc->base_params = &iwn_6150_base_params; 914 break; 915 default: 916 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 917 "0x%04x rev %d not supported (subdevice)\n", pid, 918 sc->subdevice_id,sc->hw_type); 919 return ENOTSUP; 920 } 921 break; 922 /* 6030 Series and 1030 Series */ 923 case IWN_DID_x030_1: 924 case IWN_DID_x030_2: 925 case IWN_DID_x030_3: 926 case IWN_DID_x030_4: 927 switch(sc->subdevice_id) { 928 case IWN_SDID_x030_1: 929 case IWN_SDID_x030_3: 930 case IWN_SDID_x030_5: 931 // iwl1030_bgn_cfg 932 case IWN_SDID_x030_2: 933 case IWN_SDID_x030_4: 934 case IWN_SDID_x030_6: 935 //iwl1030_bg_cfg 936 case IWN_SDID_x030_7: 937 case IWN_SDID_x030_10: 938 case IWN_SDID_x030_14: 939 //iwl6030_2agn_cfg 940 case IWN_SDID_x030_8: 941 case IWN_SDID_x030_11: 942 case IWN_SDID_x030_15: 943 // iwl6030_2bgn_cfg 944 case IWN_SDID_x030_9: 945 case IWN_SDID_x030_12: 946 case IWN_SDID_x030_16: 947 // iwl6030_2abg_cfg 948 case IWN_SDID_x030_13: 949 //iwl6030_2bg_cfg 950 sc->fwname = "iwn6000g2bfw"; 951 sc->limits = &iwn6000_sensitivity_limits; 952 sc->base_params = &iwn_6000g2b_base_params; 953 break; 954 default: 955 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 956 "0x%04x rev %d not supported (subdevice)\n", pid, 957 sc->subdevice_id,sc->hw_type); 958 return ENOTSUP; 959 } 960 break; 961 /* 130 Series WiFi */ 962 /* XXX: This series will need adjustment for rate. 963 * see rx_with_siso_diversity in linux kernel 964 */ 965 case IWN_DID_130_1: 966 case IWN_DID_130_2: 967 switch(sc->subdevice_id) { 968 case IWN_SDID_130_1: 969 case IWN_SDID_130_3: 970 case IWN_SDID_130_5: 971 //iwl130_bgn_cfg 972 case IWN_SDID_130_2: 973 case IWN_SDID_130_4: 974 case IWN_SDID_130_6: 975 //iwl130_bg_cfg 976 sc->fwname = "iwn6000g2bfw"; 977 sc->limits = &iwn6000_sensitivity_limits; 978 sc->base_params = &iwn_6000g2b_base_params; 979 break; 980 default: 981 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 982 "0x%04x rev %d not supported (subdevice)\n", pid, 983 sc->subdevice_id,sc->hw_type); 984 return ENOTSUP; 985 } 986 break; 987 /* 100 Series WiFi */ 988 case IWN_DID_100_1: 989 case IWN_DID_100_2: 990 switch(sc->subdevice_id) { 991 case IWN_SDID_100_1: 992 case IWN_SDID_100_2: 993 case IWN_SDID_100_3: 994 case IWN_SDID_100_4: 995 case IWN_SDID_100_5: 996 case IWN_SDID_100_6: 997 sc->limits = &iwn1000_sensitivity_limits; 998 sc->base_params = &iwn1000_base_params; 999 sc->fwname = "iwn100fw"; 1000 break; 1001 default: 1002 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1003 "0x%04x rev %d not supported (subdevice)\n", pid, 1004 sc->subdevice_id,sc->hw_type); 1005 return ENOTSUP; 1006 } 1007 break; 1008 1009 /* 105 Series */ 1010 /* XXX: This series will need adjustment for rate. 1011 * see rx_with_siso_diversity in linux kernel 1012 */ 1013 case IWN_DID_105_1: 1014 case IWN_DID_105_2: 1015 switch(sc->subdevice_id) { 1016 case IWN_SDID_105_1: 1017 case IWN_SDID_105_2: 1018 case IWN_SDID_105_3: 1019 //iwl105_bgn_cfg 1020 case IWN_SDID_105_4: 1021 //iwl105_bgn_d_cfg 1022 sc->limits = &iwn2030_sensitivity_limits; 1023 sc->base_params = &iwn2000_base_params; 1024 sc->fwname = "iwn105fw"; 1025 break; 1026 default: 1027 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1028 "0x%04x rev %d not supported (subdevice)\n", pid, 1029 sc->subdevice_id,sc->hw_type); 1030 return ENOTSUP; 1031 } 1032 break; 1033 1034 /* 135 Series */ 1035 /* XXX: This series will need adjustment for rate. 1036 * see rx_with_siso_diversity in linux kernel 1037 */ 1038 case IWN_DID_135_1: 1039 case IWN_DID_135_2: 1040 switch(sc->subdevice_id) { 1041 case IWN_SDID_135_1: 1042 case IWN_SDID_135_2: 1043 case IWN_SDID_135_3: 1044 sc->limits = &iwn2030_sensitivity_limits; 1045 sc->base_params = &iwn2030_base_params; 1046 sc->fwname = "iwn135fw"; 1047 break; 1048 default: 1049 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1050 "0x%04x rev %d not supported (subdevice)\n", pid, 1051 sc->subdevice_id,sc->hw_type); 1052 return ENOTSUP; 1053 } 1054 break; 1055 1056 /* 2x00 Series */ 1057 case IWN_DID_2x00_1: 1058 case IWN_DID_2x00_2: 1059 switch(sc->subdevice_id) { 1060 case IWN_SDID_2x00_1: 1061 case IWN_SDID_2x00_2: 1062 case IWN_SDID_2x00_3: 1063 //iwl2000_2bgn_cfg 1064 case IWN_SDID_2x00_4: 1065 //iwl2000_2bgn_d_cfg 1066 sc->limits = &iwn2030_sensitivity_limits; 1067 sc->base_params = &iwn2000_base_params; 1068 sc->fwname = "iwn2000fw"; 1069 break; 1070 default: 1071 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1072 "0x%04x rev %d not supported (subdevice) \n", 1073 pid, sc->subdevice_id, sc->hw_type); 1074 return ENOTSUP; 1075 } 1076 break; 1077 /* 2x30 Series */ 1078 case IWN_DID_2x30_1: 1079 case IWN_DID_2x30_2: 1080 switch(sc->subdevice_id) { 1081 case IWN_SDID_2x30_1: 1082 case IWN_SDID_2x30_3: 1083 case IWN_SDID_2x30_5: 1084 //iwl100_bgn_cfg 1085 case IWN_SDID_2x30_2: 1086 case IWN_SDID_2x30_4: 1087 case IWN_SDID_2x30_6: 1088 //iwl100_bg_cfg 1089 sc->limits = &iwn2030_sensitivity_limits; 1090 sc->base_params = &iwn2030_base_params; 1091 sc->fwname = "iwn2030fw"; 1092 break; 1093 default: 1094 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1095 "0x%04x rev %d not supported (subdevice)\n", pid, 1096 sc->subdevice_id,sc->hw_type); 1097 return ENOTSUP; 1098 } 1099 break; 1100 /* 5x00 Series */ 1101 case IWN_DID_5x00_1: 1102 case IWN_DID_5x00_2: 1103 case IWN_DID_5x00_3: 1104 case IWN_DID_5x00_4: 1105 sc->limits = &iwn5000_sensitivity_limits; 1106 sc->base_params = &iwn5000_base_params; 1107 sc->fwname = "iwn5000fw"; 1108 switch(sc->subdevice_id) { 1109 case IWN_SDID_5x00_1: 1110 case IWN_SDID_5x00_2: 1111 case IWN_SDID_5x00_3: 1112 case IWN_SDID_5x00_4: 1113 case IWN_SDID_5x00_9: 1114 case IWN_SDID_5x00_10: 1115 case IWN_SDID_5x00_11: 1116 case IWN_SDID_5x00_12: 1117 case IWN_SDID_5x00_17: 1118 case IWN_SDID_5x00_18: 1119 case IWN_SDID_5x00_19: 1120 case IWN_SDID_5x00_20: 1121 //iwl5100_agn_cfg 1122 sc->txchainmask = IWN_ANT_B; 1123 sc->rxchainmask = IWN_ANT_AB; 1124 break; 1125 case IWN_SDID_5x00_5: 1126 case IWN_SDID_5x00_6: 1127 case IWN_SDID_5x00_13: 1128 case IWN_SDID_5x00_14: 1129 case IWN_SDID_5x00_21: 1130 case IWN_SDID_5x00_22: 1131 //iwl5100_bgn_cfg 1132 sc->txchainmask = IWN_ANT_B; 1133 sc->rxchainmask = IWN_ANT_AB; 1134 break; 1135 case IWN_SDID_5x00_7: 1136 case IWN_SDID_5x00_8: 1137 case IWN_SDID_5x00_15: 1138 case IWN_SDID_5x00_16: 1139 case IWN_SDID_5x00_23: 1140 case IWN_SDID_5x00_24: 1141 //iwl5100_abg_cfg 1142 sc->txchainmask = IWN_ANT_B; 1143 sc->rxchainmask = IWN_ANT_AB; 1144 break; 1145 case IWN_SDID_5x00_25: 1146 case IWN_SDID_5x00_26: 1147 case IWN_SDID_5x00_27: 1148 case IWN_SDID_5x00_28: 1149 case IWN_SDID_5x00_29: 1150 case IWN_SDID_5x00_30: 1151 case IWN_SDID_5x00_31: 1152 case IWN_SDID_5x00_32: 1153 case IWN_SDID_5x00_33: 1154 case IWN_SDID_5x00_34: 1155 case IWN_SDID_5x00_35: 1156 case IWN_SDID_5x00_36: 1157 //iwl5300_agn_cfg 1158 sc->txchainmask = IWN_ANT_ABC; 1159 sc->rxchainmask = IWN_ANT_ABC; 1160 break; 1161 default: 1162 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1163 "0x%04x rev %d not supported (subdevice)\n", pid, 1164 sc->subdevice_id,sc->hw_type); 1165 return ENOTSUP; 1166 } 1167 break; 1168 /* 5x50 Series */ 1169 case IWN_DID_5x50_1: 1170 case IWN_DID_5x50_2: 1171 case IWN_DID_5x50_3: 1172 case IWN_DID_5x50_4: 1173 sc->limits = &iwn5000_sensitivity_limits; 1174 sc->base_params = &iwn5000_base_params; 1175 sc->fwname = "iwn5000fw"; 1176 switch(sc->subdevice_id) { 1177 case IWN_SDID_5x50_1: 1178 case IWN_SDID_5x50_2: 1179 case IWN_SDID_5x50_3: 1180 //iwl5350_agn_cfg 1181 sc->limits = &iwn5000_sensitivity_limits; 1182 sc->base_params = &iwn5000_base_params; 1183 sc->fwname = "iwn5000fw"; 1184 break; 1185 case IWN_SDID_5x50_4: 1186 case IWN_SDID_5x50_5: 1187 case IWN_SDID_5x50_8: 1188 case IWN_SDID_5x50_9: 1189 case IWN_SDID_5x50_10: 1190 case IWN_SDID_5x50_11: 1191 //iwl5150_agn_cfg 1192 case IWN_SDID_5x50_6: 1193 case IWN_SDID_5x50_7: 1194 case IWN_SDID_5x50_12: 1195 case IWN_SDID_5x50_13: 1196 //iwl5150_abg_cfg 1197 sc->limits = &iwn5000_sensitivity_limits; 1198 sc->fwname = "iwn5150fw"; 1199 sc->base_params = &iwn_5x50_base_params; 1200 break; 1201 default: 1202 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1203 "0x%04x rev %d not supported (subdevice)\n", pid, 1204 sc->subdevice_id,sc->hw_type); 1205 return ENOTSUP; 1206 } 1207 break; 1208 default: 1209 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" 1210 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, 1211 sc->hw_type); 1212 return ENOTSUP; 1213 } 1214 return 0; 1215 } 1216 1217 static int 1218 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 1219 { 1220 struct iwn_ops *ops = &sc->ops; 1221 1222 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1223 ops->load_firmware = iwn4965_load_firmware; 1224 ops->read_eeprom = iwn4965_read_eeprom; 1225 ops->post_alive = iwn4965_post_alive; 1226 ops->nic_config = iwn4965_nic_config; 1227 ops->update_sched = iwn4965_update_sched; 1228 ops->get_temperature = iwn4965_get_temperature; 1229 ops->get_rssi = iwn4965_get_rssi; 1230 ops->set_txpower = iwn4965_set_txpower; 1231 ops->init_gains = iwn4965_init_gains; 1232 ops->set_gains = iwn4965_set_gains; 1233 ops->add_node = iwn4965_add_node; 1234 ops->tx_done = iwn4965_tx_done; 1235 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1236 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1237 sc->ntxqs = IWN4965_NTXQUEUES; 1238 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 1239 sc->ndmachnls = IWN4965_NDMACHNLS; 1240 sc->broadcast_id = IWN4965_ID_BROADCAST; 1241 sc->rxonsz = IWN4965_RXONSZ; 1242 sc->schedsz = IWN4965_SCHEDSZ; 1243 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1244 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1245 sc->fwsz = IWN4965_FWSZ; 1246 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1247 sc->limits = &iwn4965_sensitivity_limits; 1248 sc->fwname = "iwn4965fw"; 1249 /* Override chains masks, ROM is known to be broken. */ 1250 sc->txchainmask = IWN_ANT_AB; 1251 sc->rxchainmask = IWN_ANT_ABC; 1252 /* Enable normal btcoex */ 1253 sc->sc_flags |= IWN_FLAG_BTCOEX; 1254 1255 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1256 1257 return 0; 1258 } 1259 1260 static int 1261 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1262 { 1263 struct iwn_ops *ops = &sc->ops; 1264 1265 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1266 1267 ops->load_firmware = iwn5000_load_firmware; 1268 ops->read_eeprom = iwn5000_read_eeprom; 1269 ops->post_alive = iwn5000_post_alive; 1270 ops->nic_config = iwn5000_nic_config; 1271 ops->update_sched = iwn5000_update_sched; 1272 ops->get_temperature = iwn5000_get_temperature; 1273 ops->get_rssi = iwn5000_get_rssi; 1274 ops->set_txpower = iwn5000_set_txpower; 1275 ops->init_gains = iwn5000_init_gains; 1276 ops->set_gains = iwn5000_set_gains; 1277 ops->add_node = iwn5000_add_node; 1278 ops->tx_done = iwn5000_tx_done; 1279 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1280 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1281 sc->ntxqs = IWN5000_NTXQUEUES; 1282 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 1283 sc->ndmachnls = IWN5000_NDMACHNLS; 1284 sc->broadcast_id = IWN5000_ID_BROADCAST; 1285 sc->rxonsz = IWN5000_RXONSZ; 1286 sc->schedsz = IWN5000_SCHEDSZ; 1287 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1288 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1289 sc->fwsz = IWN5000_FWSZ; 1290 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1291 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 1292 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Attach the interface to 802.11 radiotap. 1299 */ 1300 static void 1301 iwn_radiotap_attach(struct iwn_softc *sc) 1302 { 1303 1304 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1305 ieee80211_radiotap_attach(&sc->sc_ic, 1306 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 1307 IWN_TX_RADIOTAP_PRESENT, 1308 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 1309 IWN_RX_RADIOTAP_PRESENT); 1310 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1311 } 1312 1313 static void 1314 iwn_sysctlattach(struct iwn_softc *sc) 1315 { 1316 #ifdef IWN_DEBUG 1317 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 1318 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 1319 1320 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1321 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 1322 "control debugging printfs"); 1323 #endif 1324 } 1325 1326 static struct ieee80211vap * 1327 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1328 enum ieee80211_opmode opmode, int flags, 1329 const uint8_t bssid[IEEE80211_ADDR_LEN], 1330 const uint8_t mac[IEEE80211_ADDR_LEN]) 1331 { 1332 struct iwn_softc *sc = ic->ic_softc; 1333 struct iwn_vap *ivp; 1334 struct ieee80211vap *vap; 1335 1336 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1337 return NULL; 1338 1339 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1340 vap = &ivp->iv_vap; 1341 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1342 ivp->ctx = IWN_RXON_BSS_CTX; 1343 vap->iv_bmissthreshold = 10; /* override default */ 1344 /* Override with driver methods. */ 1345 ivp->iv_newstate = vap->iv_newstate; 1346 vap->iv_newstate = iwn_newstate; 1347 sc->ivap[IWN_RXON_BSS_CTX] = vap; 1348 1349 ieee80211_ratectl_init(vap); 1350 /* Complete setup. */ 1351 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status, 1352 mac); 1353 ic->ic_opmode = opmode; 1354 return vap; 1355 } 1356 1357 static void 1358 iwn_vap_delete(struct ieee80211vap *vap) 1359 { 1360 struct iwn_vap *ivp = IWN_VAP(vap); 1361 1362 ieee80211_ratectl_deinit(vap); 1363 ieee80211_vap_detach(vap); 1364 free(ivp, M_80211_VAP); 1365 } 1366 1367 static void 1368 iwn_xmit_queue_drain(struct iwn_softc *sc) 1369 { 1370 struct mbuf *m; 1371 struct ieee80211_node *ni; 1372 1373 IWN_LOCK_ASSERT(sc); 1374 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 1375 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1376 ieee80211_free_node(ni); 1377 m_freem(m); 1378 } 1379 } 1380 1381 static int 1382 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) 1383 { 1384 1385 IWN_LOCK_ASSERT(sc); 1386 return (mbufq_enqueue(&sc->sc_xmit_queue, m)); 1387 } 1388 1389 static int 1390 iwn_detach(device_t dev) 1391 { 1392 struct iwn_softc *sc = device_get_softc(dev); 1393 int qid; 1394 1395 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1396 1397 if (sc->sc_ic.ic_softc != NULL) { 1398 /* Free the mbuf queue and node references */ 1399 IWN_LOCK(sc); 1400 iwn_xmit_queue_drain(sc); 1401 IWN_UNLOCK(sc); 1402 1403 ieee80211_draintask(&sc->sc_ic, &sc->sc_reinit_task); 1404 ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task); 1405 ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task); 1406 iwn_stop(sc); 1407 1408 taskqueue_drain_all(sc->sc_tq); 1409 taskqueue_free(sc->sc_tq); 1410 1411 callout_drain(&sc->watchdog_to); 1412 callout_drain(&sc->calib_to); 1413 ieee80211_ifdetach(&sc->sc_ic); 1414 } 1415 1416 /* Uninstall interrupt handler. */ 1417 if (sc->irq != NULL) { 1418 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 1419 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 1420 sc->irq); 1421 pci_release_msi(dev); 1422 } 1423 1424 /* Free DMA resources. */ 1425 iwn_free_rx_ring(sc, &sc->rxq); 1426 for (qid = 0; qid < sc->ntxqs; qid++) 1427 iwn_free_tx_ring(sc, &sc->txq[qid]); 1428 iwn_free_sched(sc); 1429 iwn_free_kw(sc); 1430 if (sc->ict != NULL) 1431 iwn_free_ict(sc); 1432 iwn_free_fwmem(sc); 1433 1434 if (sc->mem != NULL) 1435 bus_release_resource(dev, SYS_RES_MEMORY, 1436 rman_get_rid(sc->mem), sc->mem); 1437 1438 if (sc->sc_cdev) { 1439 destroy_dev(sc->sc_cdev); 1440 sc->sc_cdev = NULL; 1441 } 1442 1443 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1444 IWN_LOCK_DESTROY(sc); 1445 return 0; 1446 } 1447 1448 static int 1449 iwn_shutdown(device_t dev) 1450 { 1451 struct iwn_softc *sc = device_get_softc(dev); 1452 1453 iwn_stop(sc); 1454 return 0; 1455 } 1456 1457 static int 1458 iwn_suspend(device_t dev) 1459 { 1460 struct iwn_softc *sc = device_get_softc(dev); 1461 1462 ieee80211_suspend_all(&sc->sc_ic); 1463 return 0; 1464 } 1465 1466 static int 1467 iwn_resume(device_t dev) 1468 { 1469 struct iwn_softc *sc = device_get_softc(dev); 1470 1471 /* Clear device-specific "PCI retry timeout" register (41h). */ 1472 pci_write_config(dev, 0x41, 0, 1); 1473 1474 ieee80211_resume_all(&sc->sc_ic); 1475 return 0; 1476 } 1477 1478 static int 1479 iwn_nic_lock(struct iwn_softc *sc) 1480 { 1481 int ntries; 1482 1483 /* Request exclusive access to NIC. */ 1484 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1485 1486 /* Spin until we actually get the lock. */ 1487 for (ntries = 0; ntries < 1000; ntries++) { 1488 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1489 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1490 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1491 return 0; 1492 DELAY(10); 1493 } 1494 return ETIMEDOUT; 1495 } 1496 1497 static __inline void 1498 iwn_nic_unlock(struct iwn_softc *sc) 1499 { 1500 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1501 } 1502 1503 static __inline uint32_t 1504 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1505 { 1506 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1507 IWN_BARRIER_READ_WRITE(sc); 1508 return IWN_READ(sc, IWN_PRPH_RDATA); 1509 } 1510 1511 static __inline void 1512 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1513 { 1514 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1515 IWN_BARRIER_WRITE(sc); 1516 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1517 } 1518 1519 static __inline void 1520 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1521 { 1522 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1523 } 1524 1525 static __inline void 1526 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1527 { 1528 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1529 } 1530 1531 static __inline void 1532 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1533 const uint32_t *data, int count) 1534 { 1535 for (; count > 0; count--, data++, addr += 4) 1536 iwn_prph_write(sc, addr, *data); 1537 } 1538 1539 static __inline uint32_t 1540 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1541 { 1542 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1543 IWN_BARRIER_READ_WRITE(sc); 1544 return IWN_READ(sc, IWN_MEM_RDATA); 1545 } 1546 1547 static __inline void 1548 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1549 { 1550 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1551 IWN_BARRIER_WRITE(sc); 1552 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1553 } 1554 1555 static __inline void 1556 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1557 { 1558 uint32_t tmp; 1559 1560 tmp = iwn_mem_read(sc, addr & ~3); 1561 if (addr & 3) 1562 tmp = (tmp & 0x0000ffff) | data << 16; 1563 else 1564 tmp = (tmp & 0xffff0000) | data; 1565 iwn_mem_write(sc, addr & ~3, tmp); 1566 } 1567 1568 static __inline void 1569 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1570 int count) 1571 { 1572 for (; count > 0; count--, addr += 4) 1573 *data++ = iwn_mem_read(sc, addr); 1574 } 1575 1576 static __inline void 1577 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1578 int count) 1579 { 1580 for (; count > 0; count--, addr += 4) 1581 iwn_mem_write(sc, addr, val); 1582 } 1583 1584 static int 1585 iwn_eeprom_lock(struct iwn_softc *sc) 1586 { 1587 int i, ntries; 1588 1589 for (i = 0; i < 100; i++) { 1590 /* Request exclusive access to EEPROM. */ 1591 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1592 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1593 1594 /* Spin until we actually get the lock. */ 1595 for (ntries = 0; ntries < 100; ntries++) { 1596 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1597 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1598 return 0; 1599 DELAY(10); 1600 } 1601 } 1602 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1603 return ETIMEDOUT; 1604 } 1605 1606 static __inline void 1607 iwn_eeprom_unlock(struct iwn_softc *sc) 1608 { 1609 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1610 } 1611 1612 /* 1613 * Initialize access by host to One Time Programmable ROM. 1614 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1615 */ 1616 static int 1617 iwn_init_otprom(struct iwn_softc *sc) 1618 { 1619 uint16_t prev, base, next; 1620 int count, error; 1621 1622 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1623 1624 /* Wait for clock stabilization before accessing prph. */ 1625 if ((error = iwn_clock_wait(sc)) != 0) 1626 return error; 1627 1628 if ((error = iwn_nic_lock(sc)) != 0) 1629 return error; 1630 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1631 DELAY(5); 1632 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1633 iwn_nic_unlock(sc); 1634 1635 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1636 if (sc->base_params->shadow_ram_support) { 1637 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1638 IWN_RESET_LINK_PWR_MGMT_DIS); 1639 } 1640 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1641 /* Clear ECC status. */ 1642 IWN_SETBITS(sc, IWN_OTP_GP, 1643 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1644 1645 /* 1646 * Find the block before last block (contains the EEPROM image) 1647 * for HW without OTP shadow RAM. 1648 */ 1649 if (! sc->base_params->shadow_ram_support) { 1650 /* Switch to absolute addressing mode. */ 1651 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1652 base = prev = 0; 1653 for (count = 0; count < sc->base_params->max_ll_items; 1654 count++) { 1655 error = iwn_read_prom_data(sc, base, &next, 2); 1656 if (error != 0) 1657 return error; 1658 if (next == 0) /* End of linked-list. */ 1659 break; 1660 prev = base; 1661 base = le16toh(next); 1662 } 1663 if (count == 0 || count == sc->base_params->max_ll_items) 1664 return EIO; 1665 /* Skip "next" word. */ 1666 sc->prom_base = prev + 1; 1667 } 1668 1669 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1670 1671 return 0; 1672 } 1673 1674 static int 1675 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1676 { 1677 uint8_t *out = data; 1678 uint32_t val, tmp; 1679 int ntries; 1680 1681 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1682 1683 addr += sc->prom_base; 1684 for (; count > 0; count -= 2, addr++) { 1685 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1686 for (ntries = 0; ntries < 10; ntries++) { 1687 val = IWN_READ(sc, IWN_EEPROM); 1688 if (val & IWN_EEPROM_READ_VALID) 1689 break; 1690 DELAY(5); 1691 } 1692 if (ntries == 10) { 1693 device_printf(sc->sc_dev, 1694 "timeout reading ROM at 0x%x\n", addr); 1695 return ETIMEDOUT; 1696 } 1697 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1698 /* OTPROM, check for ECC errors. */ 1699 tmp = IWN_READ(sc, IWN_OTP_GP); 1700 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1701 device_printf(sc->sc_dev, 1702 "OTPROM ECC error at 0x%x\n", addr); 1703 return EIO; 1704 } 1705 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1706 /* Correctable ECC error, clear bit. */ 1707 IWN_SETBITS(sc, IWN_OTP_GP, 1708 IWN_OTP_GP_ECC_CORR_STTS); 1709 } 1710 } 1711 *out++ = val >> 16; 1712 if (count > 1) 1713 *out++ = val >> 24; 1714 } 1715 1716 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1717 1718 return 0; 1719 } 1720 1721 static void 1722 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1723 { 1724 if (error != 0) 1725 return; 1726 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1727 *(bus_addr_t *)arg = segs[0].ds_addr; 1728 } 1729 1730 static int 1731 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1732 void **kvap, bus_size_t size, bus_size_t alignment) 1733 { 1734 int error; 1735 1736 dma->tag = NULL; 1737 dma->size = size; 1738 1739 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1740 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1741 1, size, 0, NULL, NULL, &dma->tag); 1742 if (error != 0) 1743 goto fail; 1744 1745 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1746 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1747 if (error != 0) 1748 goto fail; 1749 1750 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1751 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1752 if (error != 0) 1753 goto fail; 1754 1755 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1756 1757 if (kvap != NULL) 1758 *kvap = dma->vaddr; 1759 1760 return 0; 1761 1762 fail: iwn_dma_contig_free(dma); 1763 return error; 1764 } 1765 1766 static void 1767 iwn_dma_contig_free(struct iwn_dma_info *dma) 1768 { 1769 if (dma->vaddr != NULL) { 1770 bus_dmamap_sync(dma->tag, dma->map, 1771 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1772 bus_dmamap_unload(dma->tag, dma->map); 1773 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1774 dma->vaddr = NULL; 1775 } 1776 if (dma->tag != NULL) { 1777 bus_dma_tag_destroy(dma->tag); 1778 dma->tag = NULL; 1779 } 1780 } 1781 1782 static int 1783 iwn_alloc_sched(struct iwn_softc *sc) 1784 { 1785 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1786 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1787 sc->schedsz, 1024); 1788 } 1789 1790 static void 1791 iwn_free_sched(struct iwn_softc *sc) 1792 { 1793 iwn_dma_contig_free(&sc->sched_dma); 1794 } 1795 1796 static int 1797 iwn_alloc_kw(struct iwn_softc *sc) 1798 { 1799 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1800 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1801 } 1802 1803 static void 1804 iwn_free_kw(struct iwn_softc *sc) 1805 { 1806 iwn_dma_contig_free(&sc->kw_dma); 1807 } 1808 1809 static int 1810 iwn_alloc_ict(struct iwn_softc *sc) 1811 { 1812 /* ICT table must be aligned on a 4KB boundary. */ 1813 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1814 IWN_ICT_SIZE, 4096); 1815 } 1816 1817 static void 1818 iwn_free_ict(struct iwn_softc *sc) 1819 { 1820 iwn_dma_contig_free(&sc->ict_dma); 1821 } 1822 1823 static int 1824 iwn_alloc_fwmem(struct iwn_softc *sc) 1825 { 1826 /* Must be aligned on a 16-byte boundary. */ 1827 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1828 } 1829 1830 static void 1831 iwn_free_fwmem(struct iwn_softc *sc) 1832 { 1833 iwn_dma_contig_free(&sc->fw_dma); 1834 } 1835 1836 static int 1837 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1838 { 1839 bus_size_t size; 1840 int i, error; 1841 1842 ring->cur = 0; 1843 1844 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1845 1846 /* Allocate RX descriptors (256-byte aligned). */ 1847 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1848 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1849 size, 256); 1850 if (error != 0) { 1851 device_printf(sc->sc_dev, 1852 "%s: could not allocate RX ring DMA memory, error %d\n", 1853 __func__, error); 1854 goto fail; 1855 } 1856 1857 /* Allocate RX status area (16-byte aligned). */ 1858 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1859 sizeof (struct iwn_rx_status), 16); 1860 if (error != 0) { 1861 device_printf(sc->sc_dev, 1862 "%s: could not allocate RX status DMA memory, error %d\n", 1863 __func__, error); 1864 goto fail; 1865 } 1866 1867 /* Create RX buffer DMA tag. */ 1868 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1869 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1870 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 1871 if (error != 0) { 1872 device_printf(sc->sc_dev, 1873 "%s: could not create RX buf DMA tag, error %d\n", 1874 __func__, error); 1875 goto fail; 1876 } 1877 1878 /* 1879 * Allocate and map RX buffers. 1880 */ 1881 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1882 struct iwn_rx_data *data = &ring->data[i]; 1883 bus_addr_t paddr; 1884 1885 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1886 if (error != 0) { 1887 device_printf(sc->sc_dev, 1888 "%s: could not create RX buf DMA map, error %d\n", 1889 __func__, error); 1890 goto fail; 1891 } 1892 1893 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1894 IWN_RBUF_SIZE); 1895 if (data->m == NULL) { 1896 device_printf(sc->sc_dev, 1897 "%s: could not allocate RX mbuf\n", __func__); 1898 error = ENOBUFS; 1899 goto fail; 1900 } 1901 1902 error = bus_dmamap_load(ring->data_dmat, data->map, 1903 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1904 &paddr, BUS_DMA_NOWAIT); 1905 if (error != 0 && error != EFBIG) { 1906 device_printf(sc->sc_dev, 1907 "%s: can't map mbuf, error %d\n", __func__, 1908 error); 1909 goto fail; 1910 } 1911 1912 /* Set physical address of RX buffer (256-byte aligned). */ 1913 ring->desc[i] = htole32(paddr >> 8); 1914 } 1915 1916 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1917 BUS_DMASYNC_PREWRITE); 1918 1919 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1920 1921 return 0; 1922 1923 fail: iwn_free_rx_ring(sc, ring); 1924 1925 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1926 1927 return error; 1928 } 1929 1930 static void 1931 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1932 { 1933 int ntries; 1934 1935 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1936 1937 if (iwn_nic_lock(sc) == 0) { 1938 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1939 for (ntries = 0; ntries < 1000; ntries++) { 1940 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1941 IWN_FH_RX_STATUS_IDLE) 1942 break; 1943 DELAY(10); 1944 } 1945 iwn_nic_unlock(sc); 1946 } 1947 ring->cur = 0; 1948 sc->last_rx_valid = 0; 1949 } 1950 1951 static void 1952 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1953 { 1954 int i; 1955 1956 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1957 1958 iwn_dma_contig_free(&ring->desc_dma); 1959 iwn_dma_contig_free(&ring->stat_dma); 1960 1961 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1962 struct iwn_rx_data *data = &ring->data[i]; 1963 1964 if (data->m != NULL) { 1965 bus_dmamap_sync(ring->data_dmat, data->map, 1966 BUS_DMASYNC_POSTREAD); 1967 bus_dmamap_unload(ring->data_dmat, data->map); 1968 m_freem(data->m); 1969 data->m = NULL; 1970 } 1971 if (data->map != NULL) 1972 bus_dmamap_destroy(ring->data_dmat, data->map); 1973 } 1974 if (ring->data_dmat != NULL) { 1975 bus_dma_tag_destroy(ring->data_dmat); 1976 ring->data_dmat = NULL; 1977 } 1978 } 1979 1980 static int 1981 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1982 { 1983 bus_addr_t paddr; 1984 bus_size_t size; 1985 int i, error; 1986 1987 ring->qid = qid; 1988 ring->queued = 0; 1989 ring->cur = 0; 1990 1991 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1992 1993 /* Allocate TX descriptors (256-byte aligned). */ 1994 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 1995 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1996 size, 256); 1997 if (error != 0) { 1998 device_printf(sc->sc_dev, 1999 "%s: could not allocate TX ring DMA memory, error %d\n", 2000 __func__, error); 2001 goto fail; 2002 } 2003 2004 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2005 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 2006 size, 4); 2007 if (error != 0) { 2008 device_printf(sc->sc_dev, 2009 "%s: could not allocate TX cmd DMA memory, error %d\n", 2010 __func__, error); 2011 goto fail; 2012 } 2013 2014 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 2015 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 2016 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 2017 if (error != 0) { 2018 device_printf(sc->sc_dev, 2019 "%s: could not create TX buf DMA tag, error %d\n", 2020 __func__, error); 2021 goto fail; 2022 } 2023 2024 paddr = ring->cmd_dma.paddr; 2025 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2026 struct iwn_tx_data *data = &ring->data[i]; 2027 2028 data->cmd_paddr = paddr; 2029 data->scratch_paddr = paddr + 12; 2030 paddr += sizeof (struct iwn_tx_cmd); 2031 2032 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2033 if (error != 0) { 2034 device_printf(sc->sc_dev, 2035 "%s: could not create TX buf DMA map, error %d\n", 2036 __func__, error); 2037 goto fail; 2038 } 2039 } 2040 2041 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2042 2043 return 0; 2044 2045 fail: iwn_free_tx_ring(sc, ring); 2046 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2047 return error; 2048 } 2049 2050 static void 2051 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2052 { 2053 int i; 2054 2055 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 2056 2057 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2058 struct iwn_tx_data *data = &ring->data[i]; 2059 2060 if (data->m != NULL) { 2061 bus_dmamap_sync(ring->data_dmat, data->map, 2062 BUS_DMASYNC_POSTWRITE); 2063 bus_dmamap_unload(ring->data_dmat, data->map); 2064 m_freem(data->m); 2065 data->m = NULL; 2066 } 2067 if (data->ni != NULL) { 2068 ieee80211_free_node(data->ni); 2069 data->ni = NULL; 2070 } 2071 } 2072 /* Clear TX descriptors. */ 2073 memset(ring->desc, 0, ring->desc_dma.size); 2074 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2075 BUS_DMASYNC_PREWRITE); 2076 sc->qfullmsk &= ~(1 << ring->qid); 2077 ring->queued = 0; 2078 ring->cur = 0; 2079 } 2080 2081 static void 2082 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2083 { 2084 int i; 2085 2086 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 2087 2088 iwn_dma_contig_free(&ring->desc_dma); 2089 iwn_dma_contig_free(&ring->cmd_dma); 2090 2091 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2092 struct iwn_tx_data *data = &ring->data[i]; 2093 2094 if (data->m != NULL) { 2095 bus_dmamap_sync(ring->data_dmat, data->map, 2096 BUS_DMASYNC_POSTWRITE); 2097 bus_dmamap_unload(ring->data_dmat, data->map); 2098 m_freem(data->m); 2099 } 2100 if (data->map != NULL) 2101 bus_dmamap_destroy(ring->data_dmat, data->map); 2102 } 2103 if (ring->data_dmat != NULL) { 2104 bus_dma_tag_destroy(ring->data_dmat); 2105 ring->data_dmat = NULL; 2106 } 2107 } 2108 2109 static void 2110 iwn5000_ict_reset(struct iwn_softc *sc) 2111 { 2112 /* Disable interrupts. */ 2113 IWN_WRITE(sc, IWN_INT_MASK, 0); 2114 2115 /* Reset ICT table. */ 2116 memset(sc->ict, 0, IWN_ICT_SIZE); 2117 sc->ict_cur = 0; 2118 2119 /* Set physical address of ICT table (4KB aligned). */ 2120 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 2121 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2122 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2123 2124 /* Enable periodic RX interrupt. */ 2125 sc->int_mask |= IWN_INT_RX_PERIODIC; 2126 /* Switch to ICT interrupt mode in driver. */ 2127 sc->sc_flags |= IWN_FLAG_USE_ICT; 2128 2129 /* Re-enable interrupts. */ 2130 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2131 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2132 } 2133 2134 static int 2135 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2136 { 2137 struct iwn_ops *ops = &sc->ops; 2138 uint16_t val; 2139 int error; 2140 2141 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2142 2143 /* Check whether adapter has an EEPROM or an OTPROM. */ 2144 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2145 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2146 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2147 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 2148 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2149 2150 /* Adapter has to be powered on for EEPROM access to work. */ 2151 if ((error = iwn_apm_init(sc)) != 0) { 2152 device_printf(sc->sc_dev, 2153 "%s: could not power ON adapter, error %d\n", __func__, 2154 error); 2155 return error; 2156 } 2157 2158 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2159 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 2160 return EIO; 2161 } 2162 if ((error = iwn_eeprom_lock(sc)) != 0) { 2163 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 2164 __func__, error); 2165 return error; 2166 } 2167 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2168 if ((error = iwn_init_otprom(sc)) != 0) { 2169 device_printf(sc->sc_dev, 2170 "%s: could not initialize OTPROM, error %d\n", 2171 __func__, error); 2172 return error; 2173 } 2174 } 2175 2176 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2177 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 2178 /* Check if HT support is bonded out. */ 2179 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2180 sc->sc_flags |= IWN_FLAG_HAS_11N; 2181 2182 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2183 sc->rfcfg = le16toh(val); 2184 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 2185 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2186 if (sc->txchainmask == 0) 2187 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2188 if (sc->rxchainmask == 0) 2189 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2190 2191 /* Read MAC address. */ 2192 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 2193 2194 /* Read adapter-specific information from EEPROM. */ 2195 ops->read_eeprom(sc); 2196 2197 iwn_apm_stop(sc); /* Power OFF adapter. */ 2198 2199 iwn_eeprom_unlock(sc); 2200 2201 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2202 2203 return 0; 2204 } 2205 2206 static void 2207 iwn4965_read_eeprom(struct iwn_softc *sc) 2208 { 2209 uint32_t addr; 2210 uint16_t val; 2211 int i; 2212 2213 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2214 2215 /* Read regulatory domain (4 ASCII characters). */ 2216 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2217 2218 /* Read the list of authorized channels (20MHz ones only). */ 2219 for (i = 0; i < IWN_NBANDS - 1; i++) { 2220 addr = iwn4965_regulatory_bands[i]; 2221 iwn_read_eeprom_channels(sc, i, addr); 2222 } 2223 2224 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2225 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2226 sc->maxpwr2GHz = val & 0xff; 2227 sc->maxpwr5GHz = val >> 8; 2228 /* Check that EEPROM values are within valid range. */ 2229 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2230 sc->maxpwr5GHz = 38; 2231 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2232 sc->maxpwr2GHz = 38; 2233 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 2234 sc->maxpwr2GHz, sc->maxpwr5GHz); 2235 2236 /* Read samples for each TX power group. */ 2237 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2238 sizeof sc->bands); 2239 2240 /* Read voltage at which samples were taken. */ 2241 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2242 sc->eeprom_voltage = (int16_t)le16toh(val); 2243 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 2244 sc->eeprom_voltage); 2245 2246 #ifdef IWN_DEBUG 2247 /* Print samples. */ 2248 if (sc->sc_debug & IWN_DEBUG_ANY) { 2249 for (i = 0; i < IWN_NBANDS - 1; i++) 2250 iwn4965_print_power_group(sc, i); 2251 } 2252 #endif 2253 2254 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2255 } 2256 2257 #ifdef IWN_DEBUG 2258 static void 2259 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2260 { 2261 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2262 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2263 int j, c; 2264 2265 printf("===band %d===\n", i); 2266 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 2267 printf("chan1 num=%d\n", chans[0].num); 2268 for (c = 0; c < 2; c++) { 2269 for (j = 0; j < IWN_NSAMPLES; j++) { 2270 printf("chain %d, sample %d: temp=%d gain=%d " 2271 "power=%d pa_det=%d\n", c, j, 2272 chans[0].samples[c][j].temp, 2273 chans[0].samples[c][j].gain, 2274 chans[0].samples[c][j].power, 2275 chans[0].samples[c][j].pa_det); 2276 } 2277 } 2278 printf("chan2 num=%d\n", chans[1].num); 2279 for (c = 0; c < 2; c++) { 2280 for (j = 0; j < IWN_NSAMPLES; j++) { 2281 printf("chain %d, sample %d: temp=%d gain=%d " 2282 "power=%d pa_det=%d\n", c, j, 2283 chans[1].samples[c][j].temp, 2284 chans[1].samples[c][j].gain, 2285 chans[1].samples[c][j].power, 2286 chans[1].samples[c][j].pa_det); 2287 } 2288 } 2289 } 2290 #endif 2291 2292 static void 2293 iwn5000_read_eeprom(struct iwn_softc *sc) 2294 { 2295 struct iwn5000_eeprom_calib_hdr hdr; 2296 int32_t volt; 2297 uint32_t base, addr; 2298 uint16_t val; 2299 int i; 2300 2301 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2302 2303 /* Read regulatory domain (4 ASCII characters). */ 2304 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2305 base = le16toh(val); 2306 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2307 sc->eeprom_domain, 4); 2308 2309 /* Read the list of authorized channels (20MHz ones only). */ 2310 for (i = 0; i < IWN_NBANDS - 1; i++) { 2311 addr = base + sc->base_params->regulatory_bands[i]; 2312 iwn_read_eeprom_channels(sc, i, addr); 2313 } 2314 2315 /* Read enhanced TX power information for 6000 Series. */ 2316 if (sc->base_params->enhanced_TX_power) 2317 iwn_read_eeprom_enhinfo(sc); 2318 2319 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2320 base = le16toh(val); 2321 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2322 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2323 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 2324 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2325 sc->calib_ver = hdr.version; 2326 2327 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 2328 sc->eeprom_voltage = le16toh(hdr.volt); 2329 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2330 sc->eeprom_temp_high=le16toh(val); 2331 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2332 sc->eeprom_temp = le16toh(val); 2333 } 2334 2335 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2336 /* Compute temperature offset. */ 2337 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2338 sc->eeprom_temp = le16toh(val); 2339 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2340 volt = le16toh(val); 2341 sc->temp_off = sc->eeprom_temp - (volt / -5); 2342 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 2343 sc->eeprom_temp, volt, sc->temp_off); 2344 } else { 2345 /* Read crystal calibration. */ 2346 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2347 &sc->eeprom_crystal, sizeof (uint32_t)); 2348 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 2349 le32toh(sc->eeprom_crystal)); 2350 } 2351 2352 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2353 2354 } 2355 2356 /* 2357 * Translate EEPROM flags to net80211. 2358 */ 2359 static uint32_t 2360 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 2361 { 2362 uint32_t nflags; 2363 2364 nflags = 0; 2365 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 2366 nflags |= IEEE80211_CHAN_PASSIVE; 2367 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 2368 nflags |= IEEE80211_CHAN_NOADHOC; 2369 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 2370 nflags |= IEEE80211_CHAN_DFS; 2371 /* XXX apparently IBSS may still be marked */ 2372 nflags |= IEEE80211_CHAN_NOADHOC; 2373 } 2374 2375 return nflags; 2376 } 2377 2378 static void 2379 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2380 struct ieee80211_channel chans[]) 2381 { 2382 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2383 const struct iwn_chan_band *band = &iwn_bands[n]; 2384 struct ieee80211_channel *c; 2385 uint8_t chan; 2386 int i, nflags; 2387 2388 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2389 2390 for (i = 0; i < band->nchan; i++) { 2391 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2392 DPRINTF(sc, IWN_DEBUG_RESET, 2393 "skip chan %d flags 0x%x maxpwr %d\n", 2394 band->chan[i], channels[i].flags, 2395 channels[i].maxpwr); 2396 continue; 2397 } 2398 2399 if (*nchans >= maxchans) 2400 break; 2401 2402 chan = band->chan[i]; 2403 nflags = iwn_eeprom_channel_flags(&channels[i]); 2404 2405 c = &chans[(*nchans)++]; 2406 c->ic_ieee = chan; 2407 c->ic_maxregpower = channels[i].maxpwr; 2408 c->ic_maxpower = 2*c->ic_maxregpower; 2409 2410 if (n == 0) { /* 2GHz band */ 2411 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G); 2412 /* G =>'s B is supported */ 2413 c->ic_flags = IEEE80211_CHAN_B | nflags; 2414 2415 if (*nchans >= maxchans) 2416 break; 2417 2418 c = &chans[(*nchans)++]; 2419 c[0] = c[-1]; 2420 c->ic_flags = IEEE80211_CHAN_G | nflags; 2421 } else { /* 5GHz band */ 2422 c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); 2423 c->ic_flags = IEEE80211_CHAN_A | nflags; 2424 } 2425 2426 /* Save maximum allowed TX power for this channel. */ 2427 sc->maxpwr[chan] = channels[i].maxpwr; 2428 2429 DPRINTF(sc, IWN_DEBUG_RESET, 2430 "add chan %d flags 0x%x maxpwr %d\n", chan, 2431 channels[i].flags, channels[i].maxpwr); 2432 2433 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 2434 if (*nchans >= maxchans) 2435 break; 2436 2437 /* add HT20, HT40 added separately */ 2438 c = &chans[(*nchans)++]; 2439 c[0] = c[-1]; 2440 c->ic_flags |= IEEE80211_CHAN_HT20; 2441 } 2442 } 2443 2444 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2445 2446 } 2447 2448 static void 2449 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2450 struct ieee80211_channel chans[]) 2451 { 2452 struct ieee80211com *ic = &sc->sc_ic; 2453 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2454 const struct iwn_chan_band *band = &iwn_bands[n]; 2455 struct ieee80211_channel *c, *cent, *extc; 2456 uint8_t chan; 2457 int i, nflags; 2458 2459 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2460 2461 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2462 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2463 return; 2464 } 2465 2466 for (i = 0; i < band->nchan; i++) { 2467 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2468 DPRINTF(sc, IWN_DEBUG_RESET, 2469 "skip chan %d flags 0x%x maxpwr %d\n", 2470 band->chan[i], channels[i].flags, 2471 channels[i].maxpwr); 2472 continue; 2473 } 2474 2475 if (*nchans + 1 >= maxchans) 2476 break; 2477 2478 chan = band->chan[i]; 2479 nflags = iwn_eeprom_channel_flags(&channels[i]); 2480 2481 /* 2482 * Each entry defines an HT40 channel pair; find the 2483 * center channel, then the extension channel above. 2484 */ 2485 cent = ieee80211_find_channel_byieee(ic, chan, 2486 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 2487 if (cent == NULL) { /* XXX shouldn't happen */ 2488 device_printf(sc->sc_dev, 2489 "%s: no entry for channel %d\n", __func__, chan); 2490 continue; 2491 } 2492 extc = ieee80211_find_channel(ic, cent->ic_freq+20, 2493 (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A)); 2494 if (extc == NULL) { 2495 DPRINTF(sc, IWN_DEBUG_RESET, 2496 "%s: skip chan %d, extension channel not found\n", 2497 __func__, chan); 2498 continue; 2499 } 2500 2501 DPRINTF(sc, IWN_DEBUG_RESET, 2502 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2503 chan, channels[i].flags, channels[i].maxpwr); 2504 2505 c = &chans[(*nchans)++]; 2506 c[0] = cent[0]; 2507 c->ic_extieee = extc->ic_ieee; 2508 c->ic_flags &= ~IEEE80211_CHAN_HT; 2509 c->ic_flags |= IEEE80211_CHAN_HT40U | nflags; 2510 c = &chans[(*nchans)++]; 2511 c[0] = extc[0]; 2512 c->ic_extieee = cent->ic_ieee; 2513 c->ic_flags &= ~IEEE80211_CHAN_HT; 2514 c->ic_flags |= IEEE80211_CHAN_HT40D | nflags; 2515 } 2516 2517 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2518 2519 } 2520 2521 static void 2522 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2523 { 2524 struct ieee80211com *ic = &sc->sc_ic; 2525 2526 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2527 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2528 2529 if (n < 5) { 2530 iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2531 ic->ic_channels); 2532 } else { 2533 iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2534 ic->ic_channels); 2535 } 2536 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2537 } 2538 2539 static struct iwn_eeprom_chan * 2540 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2541 { 2542 int band, chan, i, j; 2543 2544 if (IEEE80211_IS_CHAN_HT40(c)) { 2545 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2546 if (IEEE80211_IS_CHAN_HT40D(c)) 2547 chan = c->ic_extieee; 2548 else 2549 chan = c->ic_ieee; 2550 for (i = 0; i < iwn_bands[band].nchan; i++) { 2551 if (iwn_bands[band].chan[i] == chan) 2552 return &sc->eeprom_channels[band][i]; 2553 } 2554 } else { 2555 for (j = 0; j < 5; j++) { 2556 for (i = 0; i < iwn_bands[j].nchan; i++) { 2557 if (iwn_bands[j].chan[i] == c->ic_ieee) 2558 return &sc->eeprom_channels[j][i]; 2559 } 2560 } 2561 } 2562 return NULL; 2563 } 2564 2565 static void 2566 iwn_getradiocaps(struct ieee80211com *ic, 2567 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2568 { 2569 struct iwn_softc *sc = ic->ic_softc; 2570 int i; 2571 2572 /* Parse the list of authorized channels. */ 2573 for (i = 0; i < 5 && *nchans < maxchans; i++) 2574 iwn_read_eeprom_band(sc, i, maxchans, nchans, chans); 2575 for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++) 2576 iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans); 2577 } 2578 2579 /* 2580 * Enforce flags read from EEPROM. 2581 */ 2582 static int 2583 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2584 int nchan, struct ieee80211_channel chans[]) 2585 { 2586 struct iwn_softc *sc = ic->ic_softc; 2587 int i; 2588 2589 for (i = 0; i < nchan; i++) { 2590 struct ieee80211_channel *c = &chans[i]; 2591 struct iwn_eeprom_chan *channel; 2592 2593 channel = iwn_find_eeprom_channel(sc, c); 2594 if (channel == NULL) { 2595 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 2596 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2597 return EINVAL; 2598 } 2599 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2600 } 2601 2602 return 0; 2603 } 2604 2605 static void 2606 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2607 { 2608 struct iwn_eeprom_enhinfo enhinfo[35]; 2609 struct ieee80211com *ic = &sc->sc_ic; 2610 struct ieee80211_channel *c; 2611 uint16_t val, base; 2612 int8_t maxpwr; 2613 uint8_t flags; 2614 int i, j; 2615 2616 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2617 2618 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2619 base = le16toh(val); 2620 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2621 enhinfo, sizeof enhinfo); 2622 2623 for (i = 0; i < nitems(enhinfo); i++) { 2624 flags = enhinfo[i].flags; 2625 if (!(flags & IWN_ENHINFO_VALID)) 2626 continue; /* Skip invalid entries. */ 2627 2628 maxpwr = 0; 2629 if (sc->txchainmask & IWN_ANT_A) 2630 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2631 if (sc->txchainmask & IWN_ANT_B) 2632 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2633 if (sc->txchainmask & IWN_ANT_C) 2634 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2635 if (sc->ntxchains == 2) 2636 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2637 else if (sc->ntxchains == 3) 2638 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2639 2640 for (j = 0; j < ic->ic_nchans; j++) { 2641 c = &ic->ic_channels[j]; 2642 if ((flags & IWN_ENHINFO_5GHZ)) { 2643 if (!IEEE80211_IS_CHAN_A(c)) 2644 continue; 2645 } else if ((flags & IWN_ENHINFO_OFDM)) { 2646 if (!IEEE80211_IS_CHAN_G(c)) 2647 continue; 2648 } else if (!IEEE80211_IS_CHAN_B(c)) 2649 continue; 2650 if ((flags & IWN_ENHINFO_HT40)) { 2651 if (!IEEE80211_IS_CHAN_HT40(c)) 2652 continue; 2653 } else { 2654 if (IEEE80211_IS_CHAN_HT40(c)) 2655 continue; 2656 } 2657 if (enhinfo[i].chan != 0 && 2658 enhinfo[i].chan != c->ic_ieee) 2659 continue; 2660 2661 DPRINTF(sc, IWN_DEBUG_RESET, 2662 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2663 c->ic_flags, maxpwr / 2); 2664 c->ic_maxregpower = maxpwr / 2; 2665 c->ic_maxpower = maxpwr; 2666 } 2667 } 2668 2669 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2670 2671 } 2672 2673 static struct ieee80211_node * 2674 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2675 { 2676 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 2677 } 2678 2679 static __inline int 2680 rate2plcp(int rate) 2681 { 2682 switch (rate & 0xff) { 2683 case 12: return 0xd; 2684 case 18: return 0xf; 2685 case 24: return 0x5; 2686 case 36: return 0x7; 2687 case 48: return 0x9; 2688 case 72: return 0xb; 2689 case 96: return 0x1; 2690 case 108: return 0x3; 2691 case 2: return 10; 2692 case 4: return 20; 2693 case 11: return 55; 2694 case 22: return 110; 2695 } 2696 return 0; 2697 } 2698 2699 static int 2700 iwn_get_1stream_tx_antmask(struct iwn_softc *sc) 2701 { 2702 2703 return IWN_LSB(sc->txchainmask); 2704 } 2705 2706 static int 2707 iwn_get_2stream_tx_antmask(struct iwn_softc *sc) 2708 { 2709 int tx; 2710 2711 /* 2712 * The '2 stream' setup is a bit .. odd. 2713 * 2714 * For NICs that support only 1 antenna, default to IWN_ANT_AB or 2715 * the firmware panics (eg Intel 5100.) 2716 * 2717 * For NICs that support two antennas, we use ANT_AB. 2718 * 2719 * For NICs that support three antennas, we use the two that 2720 * wasn't the default one. 2721 * 2722 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict 2723 * this to only one antenna. 2724 */ 2725 2726 /* Default - transmit on the other antennas */ 2727 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); 2728 2729 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ 2730 if (tx == 0) 2731 tx = IWN_ANT_AB; 2732 2733 /* 2734 * If the NIC is a two-stream TX NIC, configure the TX mask to 2735 * the default chainmask 2736 */ 2737 else if (sc->ntxchains == 2) 2738 tx = sc->txchainmask; 2739 2740 return (tx); 2741 } 2742 2743 2744 2745 /* 2746 * Calculate the required PLCP value from the given rate, 2747 * to the given node. 2748 * 2749 * This will take the node configuration (eg 11n, rate table 2750 * setup, etc) into consideration. 2751 */ 2752 static uint32_t 2753 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2754 uint8_t rate) 2755 { 2756 struct ieee80211com *ic = ni->ni_ic; 2757 uint32_t plcp = 0; 2758 int ridx; 2759 2760 /* 2761 * If it's an MCS rate, let's set the plcp correctly 2762 * and set the relevant flags based on the node config. 2763 */ 2764 if (rate & IEEE80211_RATE_MCS) { 2765 /* 2766 * Set the initial PLCP value to be between 0->31 for 2767 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2768 * flag. 2769 */ 2770 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; 2771 2772 /* 2773 * XXX the following should only occur if both 2774 * the local configuration _and_ the remote node 2775 * advertise these capabilities. Thus this code 2776 * may need fixing! 2777 */ 2778 2779 /* 2780 * Set the channel width and guard interval. 2781 */ 2782 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2783 plcp |= IWN_RFLAG_HT40; 2784 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2785 plcp |= IWN_RFLAG_SGI; 2786 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2787 plcp |= IWN_RFLAG_SGI; 2788 } 2789 2790 /* 2791 * Ensure the selected rate matches the link quality 2792 * table entries being used. 2793 */ 2794 if (rate > 0x8f) 2795 plcp |= IWN_RFLAG_ANT(sc->txchainmask); 2796 else if (rate > 0x87) 2797 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); 2798 else 2799 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2800 } else { 2801 /* 2802 * Set the initial PLCP - fine for both 2803 * OFDM and CCK rates. 2804 */ 2805 plcp = rate2plcp(rate); 2806 2807 /* Set CCK flag if it's CCK */ 2808 2809 /* XXX It would be nice to have a method 2810 * to map the ridx -> phy table entry 2811 * so we could just query that, rather than 2812 * this hack to check against IWN_RIDX_OFDM6. 2813 */ 2814 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2815 rate & IEEE80211_RATE_VAL); 2816 if (ridx < IWN_RIDX_OFDM6 && 2817 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2818 plcp |= IWN_RFLAG_CCK; 2819 2820 /* Set antenna configuration */ 2821 /* XXX TODO: is this the right antenna to use for legacy? */ 2822 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2823 } 2824 2825 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2826 __func__, 2827 rate, 2828 plcp); 2829 2830 return (htole32(plcp)); 2831 } 2832 2833 static void 2834 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2835 { 2836 /* Doesn't do anything at the moment */ 2837 } 2838 2839 static int 2840 iwn_media_change(struct ifnet *ifp) 2841 { 2842 int error; 2843 2844 error = ieee80211_media_change(ifp); 2845 /* NB: only the fixed rate can change and that doesn't need a reset */ 2846 return (error == ENETRESET ? 0 : error); 2847 } 2848 2849 static int 2850 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2851 { 2852 struct iwn_vap *ivp = IWN_VAP(vap); 2853 struct ieee80211com *ic = vap->iv_ic; 2854 struct iwn_softc *sc = ic->ic_softc; 2855 int error = 0; 2856 2857 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2858 2859 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2860 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2861 2862 IEEE80211_UNLOCK(ic); 2863 IWN_LOCK(sc); 2864 callout_stop(&sc->calib_to); 2865 2866 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2867 2868 switch (nstate) { 2869 case IEEE80211_S_ASSOC: 2870 if (vap->iv_state != IEEE80211_S_RUN) 2871 break; 2872 /* FALLTHROUGH */ 2873 case IEEE80211_S_AUTH: 2874 if (vap->iv_state == IEEE80211_S_AUTH) 2875 break; 2876 2877 /* 2878 * !AUTH -> AUTH transition requires state reset to handle 2879 * reassociations correctly. 2880 */ 2881 sc->rxon->associd = 0; 2882 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2883 sc->calib.state = IWN_CALIB_STATE_INIT; 2884 2885 /* Wait until we hear a beacon before we transmit */ 2886 sc->sc_beacon_wait = 1; 2887 2888 if ((error = iwn_auth(sc, vap)) != 0) { 2889 device_printf(sc->sc_dev, 2890 "%s: could not move to auth state\n", __func__); 2891 } 2892 break; 2893 2894 case IEEE80211_S_RUN: 2895 /* 2896 * RUN -> RUN transition; Just restart the timers. 2897 */ 2898 if (vap->iv_state == IEEE80211_S_RUN) { 2899 sc->calib_cnt = 0; 2900 break; 2901 } 2902 2903 /* Wait until we hear a beacon before we transmit */ 2904 sc->sc_beacon_wait = 1; 2905 2906 /* 2907 * !RUN -> RUN requires setting the association id 2908 * which is done with a firmware cmd. We also defer 2909 * starting the timers until that work is done. 2910 */ 2911 if ((error = iwn_run(sc, vap)) != 0) { 2912 device_printf(sc->sc_dev, 2913 "%s: could not move to run state\n", __func__); 2914 } 2915 break; 2916 2917 case IEEE80211_S_INIT: 2918 sc->calib.state = IWN_CALIB_STATE_INIT; 2919 /* 2920 * Purge the xmit queue so we don't have old frames 2921 * during a new association attempt. 2922 */ 2923 sc->sc_beacon_wait = 0; 2924 iwn_xmit_queue_drain(sc); 2925 break; 2926 2927 default: 2928 break; 2929 } 2930 IWN_UNLOCK(sc); 2931 IEEE80211_LOCK(ic); 2932 if (error != 0){ 2933 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2934 return error; 2935 } 2936 2937 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2938 2939 return ivp->iv_newstate(vap, nstate, arg); 2940 } 2941 2942 static void 2943 iwn_calib_timeout(void *arg) 2944 { 2945 struct iwn_softc *sc = arg; 2946 2947 IWN_LOCK_ASSERT(sc); 2948 2949 /* Force automatic TX power calibration every 60 secs. */ 2950 if (++sc->calib_cnt >= 120) { 2951 uint32_t flags = 0; 2952 2953 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2954 "sending request for statistics"); 2955 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2956 sizeof flags, 1); 2957 sc->calib_cnt = 0; 2958 } 2959 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2960 sc); 2961 } 2962 2963 /* 2964 * Process an RX_PHY firmware notification. This is usually immediately 2965 * followed by an MPDU_RX_DONE notification. 2966 */ 2967 static void 2968 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2969 struct iwn_rx_data *data) 2970 { 2971 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2972 2973 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 2974 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2975 2976 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2977 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2978 sc->last_rx_valid = 1; 2979 } 2980 2981 /* 2982 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2983 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2984 */ 2985 static void 2986 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2987 struct iwn_rx_data *data) 2988 { 2989 struct iwn_ops *ops = &sc->ops; 2990 struct ieee80211com *ic = &sc->sc_ic; 2991 struct iwn_rx_ring *ring = &sc->rxq; 2992 struct ieee80211_frame *wh; 2993 struct ieee80211_node *ni; 2994 struct mbuf *m, *m1; 2995 struct iwn_rx_stat *stat; 2996 caddr_t head; 2997 bus_addr_t paddr; 2998 uint32_t flags; 2999 int error, len, rssi, nf; 3000 3001 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3002 3003 if (desc->type == IWN_MPDU_RX_DONE) { 3004 /* Check for prior RX_PHY notification. */ 3005 if (!sc->last_rx_valid) { 3006 DPRINTF(sc, IWN_DEBUG_ANY, 3007 "%s: missing RX_PHY\n", __func__); 3008 return; 3009 } 3010 stat = &sc->last_rx_stat; 3011 } else 3012 stat = (struct iwn_rx_stat *)(desc + 1); 3013 3014 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3015 3016 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 3017 device_printf(sc->sc_dev, 3018 "%s: invalid RX statistic header, len %d\n", __func__, 3019 stat->cfg_phy_len); 3020 return; 3021 } 3022 if (desc->type == IWN_MPDU_RX_DONE) { 3023 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 3024 head = (caddr_t)(mpdu + 1); 3025 len = le16toh(mpdu->len); 3026 } else { 3027 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 3028 len = le16toh(stat->len); 3029 } 3030 3031 flags = le32toh(*(uint32_t *)(head + len)); 3032 3033 /* Discard frames with a bad FCS early. */ 3034 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 3035 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 3036 __func__, flags); 3037 counter_u64_add(ic->ic_ierrors, 1); 3038 return; 3039 } 3040 /* Discard frames that are too short. */ 3041 if (len < sizeof (struct ieee80211_frame_ack)) { 3042 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 3043 __func__, len); 3044 counter_u64_add(ic->ic_ierrors, 1); 3045 return; 3046 } 3047 3048 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 3049 if (m1 == NULL) { 3050 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 3051 __func__); 3052 counter_u64_add(ic->ic_ierrors, 1); 3053 return; 3054 } 3055 bus_dmamap_unload(ring->data_dmat, data->map); 3056 3057 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 3058 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3059 if (error != 0 && error != EFBIG) { 3060 device_printf(sc->sc_dev, 3061 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 3062 m_freem(m1); 3063 3064 /* Try to reload the old mbuf. */ 3065 error = bus_dmamap_load(ring->data_dmat, data->map, 3066 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 3067 &paddr, BUS_DMA_NOWAIT); 3068 if (error != 0 && error != EFBIG) { 3069 panic("%s: could not load old RX mbuf", __func__); 3070 } 3071 /* Physical address may have changed. */ 3072 ring->desc[ring->cur] = htole32(paddr >> 8); 3073 bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map, 3074 BUS_DMASYNC_PREWRITE); 3075 counter_u64_add(ic->ic_ierrors, 1); 3076 return; 3077 } 3078 3079 m = data->m; 3080 data->m = m1; 3081 /* Update RX descriptor. */ 3082 ring->desc[ring->cur] = htole32(paddr >> 8); 3083 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3084 BUS_DMASYNC_PREWRITE); 3085 3086 /* Finalize mbuf. */ 3087 m->m_data = head; 3088 m->m_pkthdr.len = m->m_len = len; 3089 3090 /* Grab a reference to the source node. */ 3091 wh = mtod(m, struct ieee80211_frame *); 3092 if (len >= sizeof(struct ieee80211_frame_min)) 3093 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 3094 else 3095 ni = NULL; 3096 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 3097 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 3098 3099 rssi = ops->get_rssi(sc, stat); 3100 3101 if (ieee80211_radiotap_active(ic)) { 3102 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 3103 3104 tap->wr_flags = 0; 3105 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 3106 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3107 tap->wr_dbm_antsignal = (int8_t)rssi; 3108 tap->wr_dbm_antnoise = (int8_t)nf; 3109 tap->wr_tsft = stat->tstamp; 3110 switch (stat->rate) { 3111 /* CCK rates. */ 3112 case 10: tap->wr_rate = 2; break; 3113 case 20: tap->wr_rate = 4; break; 3114 case 55: tap->wr_rate = 11; break; 3115 case 110: tap->wr_rate = 22; break; 3116 /* OFDM rates. */ 3117 case 0xd: tap->wr_rate = 12; break; 3118 case 0xf: tap->wr_rate = 18; break; 3119 case 0x5: tap->wr_rate = 24; break; 3120 case 0x7: tap->wr_rate = 36; break; 3121 case 0x9: tap->wr_rate = 48; break; 3122 case 0xb: tap->wr_rate = 72; break; 3123 case 0x1: tap->wr_rate = 96; break; 3124 case 0x3: tap->wr_rate = 108; break; 3125 /* Unknown rate: should not happen. */ 3126 default: tap->wr_rate = 0; 3127 } 3128 } 3129 3130 /* 3131 * If it's a beacon and we're waiting, then do the 3132 * wakeup. This should unblock raw_xmit/start. 3133 */ 3134 if (sc->sc_beacon_wait) { 3135 uint8_t type, subtype; 3136 /* NB: Re-assign wh */ 3137 wh = mtod(m, struct ieee80211_frame *); 3138 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3139 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3140 /* 3141 * This assumes at this point we've received our own 3142 * beacon. 3143 */ 3144 DPRINTF(sc, IWN_DEBUG_TRACE, 3145 "%s: beacon_wait, type=%d, subtype=%d\n", 3146 __func__, type, subtype); 3147 if (type == IEEE80211_FC0_TYPE_MGT && 3148 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 3149 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3150 "%s: waking things up\n", __func__); 3151 /* queue taskqueue to transmit! */ 3152 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); 3153 } 3154 } 3155 3156 IWN_UNLOCK(sc); 3157 3158 /* Send the frame to the 802.11 layer. */ 3159 if (ni != NULL) { 3160 if (ni->ni_flags & IEEE80211_NODE_HT) 3161 m->m_flags |= M_AMPDU; 3162 (void)ieee80211_input(ni, m, rssi - nf, nf); 3163 /* Node is no longer needed. */ 3164 ieee80211_free_node(ni); 3165 } else 3166 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 3167 3168 IWN_LOCK(sc); 3169 3170 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3171 3172 } 3173 3174 /* Process an incoming Compressed BlockAck. */ 3175 static void 3176 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3177 struct iwn_rx_data *data) 3178 { 3179 struct iwn_ops *ops = &sc->ops; 3180 struct iwn_node *wn; 3181 struct ieee80211_node *ni; 3182 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 3183 struct iwn_tx_ring *txq; 3184 struct iwn_tx_data *txdata; 3185 struct ieee80211_tx_ampdu *tap; 3186 struct mbuf *m; 3187 uint64_t bitmap; 3188 uint16_t ssn; 3189 uint8_t tid; 3190 int ackfailcnt = 0, i, lastidx, qid, *res, shift; 3191 int tx_ok = 0, tx_err = 0; 3192 3193 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__); 3194 3195 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3196 3197 qid = le16toh(ba->qid); 3198 txq = &sc->txq[ba->qid]; 3199 tap = sc->qid2tap[ba->qid]; 3200 tid = tap->txa_tid; 3201 wn = (void *)tap->txa_ni; 3202 3203 res = NULL; 3204 ssn = 0; 3205 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3206 res = tap->txa_private; 3207 ssn = tap->txa_start & 0xfff; 3208 } 3209 3210 for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) { 3211 txdata = &txq->data[txq->read]; 3212 3213 /* Unmap and free mbuf. */ 3214 bus_dmamap_sync(txq->data_dmat, txdata->map, 3215 BUS_DMASYNC_POSTWRITE); 3216 bus_dmamap_unload(txq->data_dmat, txdata->map); 3217 m = txdata->m, txdata->m = NULL; 3218 ni = txdata->ni, txdata->ni = NULL; 3219 3220 KASSERT(ni != NULL, ("no node")); 3221 KASSERT(m != NULL, ("no mbuf")); 3222 3223 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3224 ieee80211_tx_complete(ni, m, 1); 3225 3226 txq->queued--; 3227 txq->read = (txq->read + 1) % IWN_TX_RING_COUNT; 3228 } 3229 3230 if (txq->queued == 0 && res != NULL) { 3231 iwn_nic_lock(sc); 3232 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3233 iwn_nic_unlock(sc); 3234 sc->qid2tap[qid] = NULL; 3235 free(res, M_DEVBUF); 3236 return; 3237 } 3238 3239 if (wn->agg[tid].bitmap == 0) 3240 return; 3241 3242 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 3243 if (shift < 0) 3244 shift += 0x100; 3245 3246 if (wn->agg[tid].nframes > (64 - shift)) 3247 return; 3248 3249 /* 3250 * Walk the bitmap and calculate how many successful and failed 3251 * attempts are made. 3252 * 3253 * Yes, the rate control code doesn't know these are A-MPDU 3254 * subframes and that it's okay to fail some of these. 3255 */ 3256 ni = tap->txa_ni; 3257 bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; 3258 for (i = 0; bitmap; i++) { 3259 if ((bitmap & 1) == 0) { 3260 tx_err ++; 3261 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 3262 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 3263 } else { 3264 tx_ok ++; 3265 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 3266 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 3267 } 3268 bitmap >>= 1; 3269 } 3270 3271 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3272 "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err); 3273 3274 } 3275 3276 /* 3277 * Process a CALIBRATION_RESULT notification sent by the initialization 3278 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 3279 */ 3280 static void 3281 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3282 struct iwn_rx_data *data) 3283 { 3284 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 3285 int len, idx = -1; 3286 3287 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3288 3289 /* Runtime firmware should not send such a notification. */ 3290 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 3291 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n", 3292 __func__); 3293 return; 3294 } 3295 len = (le32toh(desc->len) & 0x3fff) - 4; 3296 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3297 3298 switch (calib->code) { 3299 case IWN5000_PHY_CALIB_DC: 3300 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) 3301 idx = 0; 3302 break; 3303 case IWN5000_PHY_CALIB_LO: 3304 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) 3305 idx = 1; 3306 break; 3307 case IWN5000_PHY_CALIB_TX_IQ: 3308 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) 3309 idx = 2; 3310 break; 3311 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 3312 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) 3313 idx = 3; 3314 break; 3315 case IWN5000_PHY_CALIB_BASE_BAND: 3316 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) 3317 idx = 4; 3318 break; 3319 } 3320 if (idx == -1) /* Ignore other results. */ 3321 return; 3322 3323 /* Save calibration result. */ 3324 if (sc->calibcmd[idx].buf != NULL) 3325 free(sc->calibcmd[idx].buf, M_DEVBUF); 3326 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 3327 if (sc->calibcmd[idx].buf == NULL) { 3328 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3329 "not enough memory for calibration result %d\n", 3330 calib->code); 3331 return; 3332 } 3333 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3334 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); 3335 sc->calibcmd[idx].len = len; 3336 memcpy(sc->calibcmd[idx].buf, calib, len); 3337 } 3338 3339 static void 3340 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, 3341 struct iwn_stats *stats, int len) 3342 { 3343 struct iwn_stats_bt *stats_bt; 3344 struct iwn_stats *lstats; 3345 3346 /* 3347 * First - check whether the length is the bluetooth or normal. 3348 * 3349 * If it's normal - just copy it and bump out. 3350 * Otherwise we have to convert things. 3351 */ 3352 3353 if (len == sizeof(struct iwn_stats) + 4) { 3354 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3355 sc->last_stat_valid = 1; 3356 return; 3357 } 3358 3359 /* 3360 * If it's not the bluetooth size - log, then just copy. 3361 */ 3362 if (len != sizeof(struct iwn_stats_bt) + 4) { 3363 DPRINTF(sc, IWN_DEBUG_STATS, 3364 "%s: size of rx statistics (%d) not an expected size!\n", 3365 __func__, 3366 len); 3367 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3368 sc->last_stat_valid = 1; 3369 return; 3370 } 3371 3372 /* 3373 * Ok. Time to copy. 3374 */ 3375 stats_bt = (struct iwn_stats_bt *) stats; 3376 lstats = &sc->last_stat; 3377 3378 /* flags */ 3379 lstats->flags = stats_bt->flags; 3380 /* rx_bt */ 3381 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, 3382 sizeof(struct iwn_rx_phy_stats)); 3383 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, 3384 sizeof(struct iwn_rx_phy_stats)); 3385 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, 3386 sizeof(struct iwn_rx_general_stats)); 3387 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, 3388 sizeof(struct iwn_rx_ht_phy_stats)); 3389 /* tx */ 3390 memcpy(&lstats->tx, &stats_bt->tx, 3391 sizeof(struct iwn_tx_stats)); 3392 /* general */ 3393 memcpy(&lstats->general, &stats_bt->general, 3394 sizeof(struct iwn_general_stats)); 3395 3396 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ 3397 sc->last_stat_valid = 1; 3398 } 3399 3400 /* 3401 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 3402 * The latter is sent by the firmware after each received beacon. 3403 */ 3404 static void 3405 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3406 struct iwn_rx_data *data) 3407 { 3408 struct iwn_ops *ops = &sc->ops; 3409 struct ieee80211com *ic = &sc->sc_ic; 3410 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3411 struct iwn_calib_state *calib = &sc->calib; 3412 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 3413 struct iwn_stats *lstats; 3414 int temp; 3415 3416 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3417 3418 /* Ignore statistics received during a scan. */ 3419 if (vap->iv_state != IEEE80211_S_RUN || 3420 (ic->ic_flags & IEEE80211_F_SCAN)){ 3421 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 3422 __func__); 3423 return; 3424 } 3425 3426 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3427 3428 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, 3429 "%s: received statistics, cmd %d, len %d\n", 3430 __func__, desc->type, le16toh(desc->len)); 3431 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 3432 3433 /* 3434 * Collect/track general statistics for reporting. 3435 * 3436 * This takes care of ensuring that the bluetooth sized message 3437 * will be correctly converted to the legacy sized message. 3438 */ 3439 iwn_stats_update(sc, calib, stats, le16toh(desc->len)); 3440 3441 /* 3442 * And now, let's take a reference of it to use! 3443 */ 3444 lstats = &sc->last_stat; 3445 3446 /* Test if temperature has changed. */ 3447 if (lstats->general.temp != sc->rawtemp) { 3448 /* Convert "raw" temperature to degC. */ 3449 sc->rawtemp = stats->general.temp; 3450 temp = ops->get_temperature(sc); 3451 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 3452 __func__, temp); 3453 3454 /* Update TX power if need be (4965AGN only). */ 3455 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3456 iwn4965_power_calibration(sc, temp); 3457 } 3458 3459 if (desc->type != IWN_BEACON_STATISTICS) 3460 return; /* Reply to a statistics request. */ 3461 3462 sc->noise = iwn_get_noise(&lstats->rx.general); 3463 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 3464 3465 /* Test that RSSI and noise are present in stats report. */ 3466 if (le32toh(lstats->rx.general.flags) != 1) { 3467 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 3468 "received statistics without RSSI"); 3469 return; 3470 } 3471 3472 if (calib->state == IWN_CALIB_STATE_ASSOC) 3473 iwn_collect_noise(sc, &lstats->rx.general); 3474 else if (calib->state == IWN_CALIB_STATE_RUN) { 3475 iwn_tune_sensitivity(sc, &lstats->rx); 3476 /* 3477 * XXX TODO: Only run the RX recovery if we're associated! 3478 */ 3479 iwn_check_rx_recovery(sc, lstats); 3480 iwn_save_stats_counters(sc, lstats); 3481 } 3482 3483 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3484 } 3485 3486 /* 3487 * Save the relevant statistic counters for the next calibration 3488 * pass. 3489 */ 3490 static void 3491 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) 3492 { 3493 struct iwn_calib_state *calib = &sc->calib; 3494 3495 /* Save counters values for next call. */ 3496 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); 3497 calib->fa_cck = le32toh(rs->rx.cck.fa); 3498 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); 3499 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); 3500 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); 3501 3502 /* Last time we received these tick values */ 3503 sc->last_calib_ticks = ticks; 3504 } 3505 3506 /* 3507 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 3508 * and 5000 adapters have different incompatible TX status formats. 3509 */ 3510 static void 3511 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3512 struct iwn_rx_data *data) 3513 { 3514 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 3515 struct iwn_tx_ring *ring; 3516 int qid; 3517 3518 qid = desc->qid & 0xf; 3519 ring = &sc->txq[qid]; 3520 3521 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3522 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3523 __func__, desc->qid, desc->idx, 3524 stat->rtsfailcnt, 3525 stat->ackfailcnt, 3526 stat->btkillcnt, 3527 stat->rate, le16toh(stat->duration), 3528 le32toh(stat->status)); 3529 3530 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3531 if (qid >= sc->firstaggqueue) { 3532 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3533 stat->ackfailcnt, &stat->status); 3534 } else { 3535 iwn_tx_done(sc, desc, stat->ackfailcnt, 3536 le32toh(stat->status) & 0xff); 3537 } 3538 } 3539 3540 static void 3541 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3542 struct iwn_rx_data *data) 3543 { 3544 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 3545 struct iwn_tx_ring *ring; 3546 int qid; 3547 3548 qid = desc->qid & 0xf; 3549 ring = &sc->txq[qid]; 3550 3551 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3552 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3553 __func__, desc->qid, desc->idx, 3554 stat->rtsfailcnt, 3555 stat->ackfailcnt, 3556 stat->btkillcnt, 3557 stat->rate, le16toh(stat->duration), 3558 le32toh(stat->status)); 3559 3560 #ifdef notyet 3561 /* Reset TX scheduler slot. */ 3562 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 3563 #endif 3564 3565 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3566 if (qid >= sc->firstaggqueue) { 3567 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3568 stat->ackfailcnt, &stat->status); 3569 } else { 3570 iwn_tx_done(sc, desc, stat->ackfailcnt, 3571 le16toh(stat->status) & 0xff); 3572 } 3573 } 3574 3575 /* 3576 * Adapter-independent backend for TX_DONE firmware notifications. 3577 */ 3578 static void 3579 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 3580 uint8_t status) 3581 { 3582 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 3583 struct iwn_tx_data *data = &ring->data[desc->idx]; 3584 struct mbuf *m; 3585 struct ieee80211_node *ni; 3586 struct ieee80211vap *vap; 3587 3588 KASSERT(data->ni != NULL, ("no node")); 3589 3590 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3591 3592 /* Unmap and free mbuf. */ 3593 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 3594 bus_dmamap_unload(ring->data_dmat, data->map); 3595 m = data->m, data->m = NULL; 3596 ni = data->ni, data->ni = NULL; 3597 vap = ni->ni_vap; 3598 3599 /* 3600 * Update rate control statistics for the node. 3601 */ 3602 if (status & IWN_TX_FAIL) 3603 ieee80211_ratectl_tx_complete(vap, ni, 3604 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 3605 else 3606 ieee80211_ratectl_tx_complete(vap, ni, 3607 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 3608 3609 /* 3610 * Channels marked for "radar" require traffic to be received 3611 * to unlock before we can transmit. Until traffic is seen 3612 * any attempt to transmit is returned immediately with status 3613 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 3614 * happen on first authenticate after scanning. To workaround 3615 * this we ignore a failure of this sort in AUTH state so the 3616 * 802.11 layer will fall back to using a timeout to wait for 3617 * the AUTH reply. This allows the firmware time to see 3618 * traffic so a subsequent retry of AUTH succeeds. It's 3619 * unclear why the firmware does not maintain state for 3620 * channels recently visited as this would allow immediate 3621 * use of the channel after a scan (where we see traffic). 3622 */ 3623 if (status == IWN_TX_FAIL_TX_LOCKED && 3624 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 3625 ieee80211_tx_complete(ni, m, 0); 3626 else 3627 ieee80211_tx_complete(ni, m, 3628 (status & IWN_TX_FAIL) != 0); 3629 3630 sc->sc_tx_timer = 0; 3631 if (--ring->queued < IWN_TX_RING_LOMARK) 3632 sc->qfullmsk &= ~(1 << ring->qid); 3633 3634 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3635 } 3636 3637 /* 3638 * Process a "command done" firmware notification. This is where we wakeup 3639 * processes waiting for a synchronous command completion. 3640 */ 3641 static void 3642 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3643 { 3644 struct iwn_tx_ring *ring; 3645 struct iwn_tx_data *data; 3646 int cmd_queue_num; 3647 3648 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 3649 cmd_queue_num = IWN_PAN_CMD_QUEUE; 3650 else 3651 cmd_queue_num = IWN_CMD_QUEUE_NUM; 3652 3653 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) 3654 return; /* Not a command ack. */ 3655 3656 ring = &sc->txq[cmd_queue_num]; 3657 data = &ring->data[desc->idx]; 3658 3659 /* If the command was mapped in an mbuf, free it. */ 3660 if (data->m != NULL) { 3661 bus_dmamap_sync(ring->data_dmat, data->map, 3662 BUS_DMASYNC_POSTWRITE); 3663 bus_dmamap_unload(ring->data_dmat, data->map); 3664 m_freem(data->m); 3665 data->m = NULL; 3666 } 3667 wakeup(&ring->desc[desc->idx]); 3668 } 3669 3670 static void 3671 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, 3672 int ackfailcnt, void *stat) 3673 { 3674 struct iwn_ops *ops = &sc->ops; 3675 struct iwn_tx_ring *ring = &sc->txq[qid]; 3676 struct iwn_tx_data *data; 3677 struct mbuf *m; 3678 struct iwn_node *wn; 3679 struct ieee80211_node *ni; 3680 struct ieee80211_tx_ampdu *tap; 3681 uint64_t bitmap; 3682 uint32_t *status = stat; 3683 uint16_t *aggstatus = stat; 3684 uint16_t ssn; 3685 uint8_t tid; 3686 int bit, i, lastidx, *res, seqno, shift, start; 3687 3688 /* XXX TODO: status is le16 field! Grr */ 3689 3690 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3691 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n", 3692 __func__, 3693 nframes, 3694 *status); 3695 3696 tap = sc->qid2tap[qid]; 3697 tid = tap->txa_tid; 3698 wn = (void *)tap->txa_ni; 3699 ni = tap->txa_ni; 3700 3701 /* 3702 * XXX TODO: ACK and RTS failures would be nice here! 3703 */ 3704 3705 /* 3706 * A-MPDU single frame status - if we failed to transmit it 3707 * in A-MPDU, then it may be a permanent failure. 3708 * 3709 * XXX TODO: check what the Linux iwlwifi driver does here; 3710 * there's some permanent and temporary failures that may be 3711 * handled differently. 3712 */ 3713 if (nframes == 1) { 3714 if ((*status & 0xff) != 1 && (*status & 0xff) != 2) { 3715 #ifdef NOT_YET 3716 printf("ieee80211_send_bar()\n"); 3717 #endif 3718 /* 3719 * If we completely fail a transmit, make sure a 3720 * notification is pushed up to the rate control 3721 * layer. 3722 */ 3723 ieee80211_ratectl_tx_complete(ni->ni_vap, 3724 ni, 3725 IEEE80211_RATECTL_TX_FAILURE, 3726 &ackfailcnt, 3727 NULL); 3728 } else { 3729 /* 3730 * If nframes=1, then we won't be getting a BA for 3731 * this frame. Ensure that we correctly update the 3732 * rate control code with how many retries were 3733 * needed to send it. 3734 */ 3735 ieee80211_ratectl_tx_complete(ni->ni_vap, 3736 ni, 3737 IEEE80211_RATECTL_TX_SUCCESS, 3738 &ackfailcnt, 3739 NULL); 3740 } 3741 } 3742 3743 bitmap = 0; 3744 start = idx; 3745 for (i = 0; i < nframes; i++) { 3746 if (le16toh(aggstatus[i * 2]) & 0xc) 3747 continue; 3748 3749 idx = le16toh(aggstatus[2*i + 1]) & 0xff; 3750 bit = idx - start; 3751 shift = 0; 3752 if (bit >= 64) { 3753 shift = 0x100 - idx + start; 3754 bit = 0; 3755 start = idx; 3756 } else if (bit <= -64) 3757 bit = 0x100 - start + idx; 3758 else if (bit < 0) { 3759 shift = start - idx; 3760 start = idx; 3761 bit = 0; 3762 } 3763 bitmap = bitmap << shift; 3764 bitmap |= 1ULL << bit; 3765 } 3766 tap = sc->qid2tap[qid]; 3767 tid = tap->txa_tid; 3768 wn = (void *)tap->txa_ni; 3769 wn->agg[tid].bitmap = bitmap; 3770 wn->agg[tid].startidx = start; 3771 wn->agg[tid].nframes = nframes; 3772 3773 res = NULL; 3774 ssn = 0; 3775 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3776 res = tap->txa_private; 3777 ssn = tap->txa_start & 0xfff; 3778 } 3779 3780 /* This is going nframes DWORDS into the descriptor? */ 3781 seqno = le32toh(*(status + nframes)) & 0xfff; 3782 for (lastidx = (seqno & 0xff); ring->read != lastidx;) { 3783 data = &ring->data[ring->read]; 3784 3785 /* Unmap and free mbuf. */ 3786 bus_dmamap_sync(ring->data_dmat, data->map, 3787 BUS_DMASYNC_POSTWRITE); 3788 bus_dmamap_unload(ring->data_dmat, data->map); 3789 m = data->m, data->m = NULL; 3790 ni = data->ni, data->ni = NULL; 3791 3792 KASSERT(ni != NULL, ("no node")); 3793 KASSERT(m != NULL, ("no mbuf")); 3794 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3795 ieee80211_tx_complete(ni, m, 1); 3796 3797 ring->queued--; 3798 ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; 3799 } 3800 3801 if (ring->queued == 0 && res != NULL) { 3802 iwn_nic_lock(sc); 3803 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3804 iwn_nic_unlock(sc); 3805 sc->qid2tap[qid] = NULL; 3806 free(res, M_DEVBUF); 3807 return; 3808 } 3809 3810 sc->sc_tx_timer = 0; 3811 if (ring->queued < IWN_TX_RING_LOMARK) 3812 sc->qfullmsk &= ~(1 << ring->qid); 3813 3814 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3815 } 3816 3817 /* 3818 * Process an INT_FH_RX or INT_SW_RX interrupt. 3819 */ 3820 static void 3821 iwn_notif_intr(struct iwn_softc *sc) 3822 { 3823 struct iwn_ops *ops = &sc->ops; 3824 struct ieee80211com *ic = &sc->sc_ic; 3825 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3826 uint16_t hw; 3827 3828 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3829 BUS_DMASYNC_POSTREAD); 3830 3831 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3832 while (sc->rxq.cur != hw) { 3833 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3834 struct iwn_rx_desc *desc; 3835 3836 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3837 BUS_DMASYNC_POSTREAD); 3838 desc = mtod(data->m, struct iwn_rx_desc *); 3839 3840 DPRINTF(sc, IWN_DEBUG_RECV, 3841 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 3842 __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags, 3843 desc->type, iwn_intr_str(desc->type), 3844 le16toh(desc->len)); 3845 3846 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ 3847 iwn_cmd_done(sc, desc); 3848 3849 switch (desc->type) { 3850 case IWN_RX_PHY: 3851 iwn_rx_phy(sc, desc, data); 3852 break; 3853 3854 case IWN_RX_DONE: /* 4965AGN only. */ 3855 case IWN_MPDU_RX_DONE: 3856 /* An 802.11 frame has been received. */ 3857 iwn_rx_done(sc, desc, data); 3858 break; 3859 3860 case IWN_RX_COMPRESSED_BA: 3861 /* A Compressed BlockAck has been received. */ 3862 iwn_rx_compressed_ba(sc, desc, data); 3863 break; 3864 3865 case IWN_TX_DONE: 3866 /* An 802.11 frame has been transmitted. */ 3867 ops->tx_done(sc, desc, data); 3868 break; 3869 3870 case IWN_RX_STATISTICS: 3871 case IWN_BEACON_STATISTICS: 3872 iwn_rx_statistics(sc, desc, data); 3873 break; 3874 3875 case IWN_BEACON_MISSED: 3876 { 3877 struct iwn_beacon_missed *miss = 3878 (struct iwn_beacon_missed *)(desc + 1); 3879 int misses; 3880 3881 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3882 BUS_DMASYNC_POSTREAD); 3883 misses = le32toh(miss->consecutive); 3884 3885 DPRINTF(sc, IWN_DEBUG_STATE, 3886 "%s: beacons missed %d/%d\n", __func__, 3887 misses, le32toh(miss->total)); 3888 /* 3889 * If more than 5 consecutive beacons are missed, 3890 * reinitialize the sensitivity state machine. 3891 */ 3892 if (vap->iv_state == IEEE80211_S_RUN && 3893 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3894 if (misses > 5) 3895 (void)iwn_init_sensitivity(sc); 3896 if (misses >= vap->iv_bmissthreshold) { 3897 IWN_UNLOCK(sc); 3898 ieee80211_beacon_miss(ic); 3899 IWN_LOCK(sc); 3900 } 3901 } 3902 break; 3903 } 3904 case IWN_UC_READY: 3905 { 3906 struct iwn_ucode_info *uc = 3907 (struct iwn_ucode_info *)(desc + 1); 3908 3909 /* The microcontroller is ready. */ 3910 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3911 BUS_DMASYNC_POSTREAD); 3912 DPRINTF(sc, IWN_DEBUG_RESET, 3913 "microcode alive notification version=%d.%d " 3914 "subtype=%x alive=%x\n", uc->major, uc->minor, 3915 uc->subtype, le32toh(uc->valid)); 3916 3917 if (le32toh(uc->valid) != 1) { 3918 device_printf(sc->sc_dev, 3919 "microcontroller initialization failed"); 3920 break; 3921 } 3922 if (uc->subtype == IWN_UCODE_INIT) { 3923 /* Save microcontroller report. */ 3924 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3925 } 3926 /* Save the address of the error log in SRAM. */ 3927 sc->errptr = le32toh(uc->errptr); 3928 break; 3929 } 3930 case IWN_STATE_CHANGED: 3931 { 3932 /* 3933 * State change allows hardware switch change to be 3934 * noted. However, we handle this in iwn_intr as we 3935 * get both the enable/disble intr. 3936 */ 3937 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3938 BUS_DMASYNC_POSTREAD); 3939 #ifdef IWN_DEBUG 3940 uint32_t *status = (uint32_t *)(desc + 1); 3941 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, 3942 "state changed to %x\n", 3943 le32toh(*status)); 3944 #endif 3945 break; 3946 } 3947 case IWN_START_SCAN: 3948 { 3949 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3950 BUS_DMASYNC_POSTREAD); 3951 #ifdef IWN_DEBUG 3952 struct iwn_start_scan *scan = 3953 (struct iwn_start_scan *)(desc + 1); 3954 DPRINTF(sc, IWN_DEBUG_ANY, 3955 "%s: scanning channel %d status %x\n", 3956 __func__, scan->chan, le32toh(scan->status)); 3957 #endif 3958 break; 3959 } 3960 case IWN_STOP_SCAN: 3961 { 3962 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3963 BUS_DMASYNC_POSTREAD); 3964 #ifdef IWN_DEBUG 3965 struct iwn_stop_scan *scan = 3966 (struct iwn_stop_scan *)(desc + 1); 3967 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, 3968 "scan finished nchan=%d status=%d chan=%d\n", 3969 scan->nchan, scan->status, scan->chan); 3970 #endif 3971 sc->sc_is_scanning = 0; 3972 IWN_UNLOCK(sc); 3973 ieee80211_scan_next(vap); 3974 IWN_LOCK(sc); 3975 break; 3976 } 3977 case IWN5000_CALIBRATION_RESULT: 3978 iwn5000_rx_calib_results(sc, desc, data); 3979 break; 3980 3981 case IWN5000_CALIBRATION_DONE: 3982 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3983 wakeup(sc); 3984 break; 3985 } 3986 3987 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3988 } 3989 3990 /* Tell the firmware what we have processed. */ 3991 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 3992 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 3993 } 3994 3995 /* 3996 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 3997 * from power-down sleep mode. 3998 */ 3999 static void 4000 iwn_wakeup_intr(struct iwn_softc *sc) 4001 { 4002 int qid; 4003 4004 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 4005 __func__); 4006 4007 /* Wakeup RX and TX rings. */ 4008 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 4009 for (qid = 0; qid < sc->ntxqs; qid++) { 4010 struct iwn_tx_ring *ring = &sc->txq[qid]; 4011 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 4012 } 4013 } 4014 4015 static void 4016 iwn_rftoggle_intr(struct iwn_softc *sc) 4017 { 4018 struct ieee80211com *ic = &sc->sc_ic; 4019 uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); 4020 4021 IWN_LOCK_ASSERT(sc); 4022 4023 device_printf(sc->sc_dev, "RF switch: radio %s\n", 4024 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 4025 if (tmp & IWN_GP_CNTRL_RFKILL) 4026 ieee80211_runtask(ic, &sc->sc_radioon_task); 4027 else 4028 ieee80211_runtask(ic, &sc->sc_radiooff_task); 4029 } 4030 4031 /* 4032 * Dump the error log of the firmware when a firmware panic occurs. Although 4033 * we can't debug the firmware because it is neither open source nor free, it 4034 * can help us to identify certain classes of problems. 4035 */ 4036 static void 4037 iwn_fatal_intr(struct iwn_softc *sc) 4038 { 4039 struct iwn_fw_dump dump; 4040 int i; 4041 4042 IWN_LOCK_ASSERT(sc); 4043 4044 /* Force a complete recalibration on next init. */ 4045 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 4046 4047 /* Check that the error log address is valid. */ 4048 if (sc->errptr < IWN_FW_DATA_BASE || 4049 sc->errptr + sizeof (dump) > 4050 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 4051 printf("%s: bad firmware error log address 0x%08x\n", __func__, 4052 sc->errptr); 4053 return; 4054 } 4055 if (iwn_nic_lock(sc) != 0) { 4056 printf("%s: could not read firmware error log\n", __func__); 4057 return; 4058 } 4059 /* Read firmware error log from SRAM. */ 4060 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 4061 sizeof (dump) / sizeof (uint32_t)); 4062 iwn_nic_unlock(sc); 4063 4064 if (dump.valid == 0) { 4065 printf("%s: firmware error log is empty\n", __func__); 4066 return; 4067 } 4068 printf("firmware error log:\n"); 4069 printf(" error type = \"%s\" (0x%08X)\n", 4070 (dump.id < nitems(iwn_fw_errmsg)) ? 4071 iwn_fw_errmsg[dump.id] : "UNKNOWN", 4072 dump.id); 4073 printf(" program counter = 0x%08X\n", dump.pc); 4074 printf(" source line = 0x%08X\n", dump.src_line); 4075 printf(" error data = 0x%08X%08X\n", 4076 dump.error_data[0], dump.error_data[1]); 4077 printf(" branch link = 0x%08X%08X\n", 4078 dump.branch_link[0], dump.branch_link[1]); 4079 printf(" interrupt link = 0x%08X%08X\n", 4080 dump.interrupt_link[0], dump.interrupt_link[1]); 4081 printf(" time = %u\n", dump.time[0]); 4082 4083 /* Dump driver status (TX and RX rings) while we're here. */ 4084 printf("driver status:\n"); 4085 for (i = 0; i < sc->ntxqs; i++) { 4086 struct iwn_tx_ring *ring = &sc->txq[i]; 4087 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 4088 i, ring->qid, ring->cur, ring->queued); 4089 } 4090 printf(" rx ring: cur=%d\n", sc->rxq.cur); 4091 } 4092 4093 static void 4094 iwn_intr(void *arg) 4095 { 4096 struct iwn_softc *sc = arg; 4097 uint32_t r1, r2, tmp; 4098 4099 IWN_LOCK(sc); 4100 4101 /* Disable interrupts. */ 4102 IWN_WRITE(sc, IWN_INT_MASK, 0); 4103 4104 /* Read interrupts from ICT (fast) or from registers (slow). */ 4105 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4106 tmp = 0; 4107 while (sc->ict[sc->ict_cur] != 0) { 4108 tmp |= sc->ict[sc->ict_cur]; 4109 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 4110 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 4111 } 4112 tmp = le32toh(tmp); 4113 if (tmp == 0xffffffff) /* Shouldn't happen. */ 4114 tmp = 0; 4115 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 4116 tmp |= 0x8000; 4117 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 4118 r2 = 0; /* Unused. */ 4119 } else { 4120 r1 = IWN_READ(sc, IWN_INT); 4121 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { 4122 IWN_UNLOCK(sc); 4123 return; /* Hardware gone! */ 4124 } 4125 r2 = IWN_READ(sc, IWN_FH_INT); 4126 } 4127 4128 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 4129 , r1, r2); 4130 4131 if (r1 == 0 && r2 == 0) 4132 goto done; /* Interrupt not for us. */ 4133 4134 /* Acknowledge interrupts. */ 4135 IWN_WRITE(sc, IWN_INT, r1); 4136 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 4137 IWN_WRITE(sc, IWN_FH_INT, r2); 4138 4139 if (r1 & IWN_INT_RF_TOGGLED) { 4140 iwn_rftoggle_intr(sc); 4141 goto done; 4142 } 4143 if (r1 & IWN_INT_CT_REACHED) { 4144 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 4145 __func__); 4146 } 4147 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 4148 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 4149 __func__); 4150 #ifdef IWN_DEBUG 4151 iwn_debug_register(sc); 4152 #endif 4153 /* Dump firmware error log and stop. */ 4154 iwn_fatal_intr(sc); 4155 4156 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); 4157 goto done; 4158 } 4159 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 4160 (r2 & IWN_FH_INT_RX)) { 4161 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4162 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 4163 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 4164 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4165 IWN_INT_PERIODIC_DIS); 4166 iwn_notif_intr(sc); 4167 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 4168 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4169 IWN_INT_PERIODIC_ENA); 4170 } 4171 } else 4172 iwn_notif_intr(sc); 4173 } 4174 4175 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 4176 if (sc->sc_flags & IWN_FLAG_USE_ICT) 4177 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 4178 wakeup(sc); /* FH DMA transfer completed. */ 4179 } 4180 4181 if (r1 & IWN_INT_ALIVE) 4182 wakeup(sc); /* Firmware is alive. */ 4183 4184 if (r1 & IWN_INT_WAKEUP) 4185 iwn_wakeup_intr(sc); 4186 4187 done: 4188 /* Re-enable interrupts. */ 4189 if (sc->sc_flags & IWN_FLAG_RUNNING) 4190 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4191 4192 IWN_UNLOCK(sc); 4193 } 4194 4195 /* 4196 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 4197 * 5000 adapters use a slightly different format). 4198 */ 4199 static void 4200 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4201 uint16_t len) 4202 { 4203 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 4204 4205 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4206 4207 *w = htole16(len + 8); 4208 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4209 BUS_DMASYNC_PREWRITE); 4210 if (idx < IWN_SCHED_WINSZ) { 4211 *(w + IWN_TX_RING_COUNT) = *w; 4212 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4213 BUS_DMASYNC_PREWRITE); 4214 } 4215 } 4216 4217 static void 4218 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4219 uint16_t len) 4220 { 4221 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4222 4223 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4224 4225 *w = htole16(id << 12 | (len + 8)); 4226 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4227 BUS_DMASYNC_PREWRITE); 4228 if (idx < IWN_SCHED_WINSZ) { 4229 *(w + IWN_TX_RING_COUNT) = *w; 4230 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4231 BUS_DMASYNC_PREWRITE); 4232 } 4233 } 4234 4235 #ifdef notyet 4236 static void 4237 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 4238 { 4239 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4240 4241 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4242 4243 *w = (*w & htole16(0xf000)) | htole16(1); 4244 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4245 BUS_DMASYNC_PREWRITE); 4246 if (idx < IWN_SCHED_WINSZ) { 4247 *(w + IWN_TX_RING_COUNT) = *w; 4248 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4249 BUS_DMASYNC_PREWRITE); 4250 } 4251 } 4252 #endif 4253 4254 /* 4255 * Check whether OFDM 11g protection will be enabled for the given rate. 4256 * 4257 * The original driver code only enabled protection for OFDM rates. 4258 * It didn't check to see whether it was operating in 11a or 11bg mode. 4259 */ 4260 static int 4261 iwn_check_rate_needs_protection(struct iwn_softc *sc, 4262 struct ieee80211vap *vap, uint8_t rate) 4263 { 4264 struct ieee80211com *ic = vap->iv_ic; 4265 4266 /* 4267 * Not in 2GHz mode? Then there's no need to enable OFDM 4268 * 11bg protection. 4269 */ 4270 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 4271 return (0); 4272 } 4273 4274 /* 4275 * 11bg protection not enabled? Then don't use it. 4276 */ 4277 if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0) 4278 return (0); 4279 4280 /* 4281 * If it's an 11n rate - no protection. 4282 * We'll do it via a specific 11n check. 4283 */ 4284 if (rate & IEEE80211_RATE_MCS) { 4285 return (0); 4286 } 4287 4288 /* 4289 * Do a rate table lookup. If the PHY is CCK, 4290 * don't do protection. 4291 */ 4292 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) 4293 return (0); 4294 4295 /* 4296 * Yup, enable protection. 4297 */ 4298 return (1); 4299 } 4300 4301 /* 4302 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into 4303 * the link quality table that reflects this particular entry. 4304 */ 4305 static int 4306 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, 4307 uint8_t rate) 4308 { 4309 struct ieee80211_rateset *rs; 4310 int is_11n; 4311 int nr; 4312 int i; 4313 uint8_t cmp_rate; 4314 4315 /* 4316 * Figure out if we're using 11n or not here. 4317 */ 4318 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) 4319 is_11n = 1; 4320 else 4321 is_11n = 0; 4322 4323 /* 4324 * Use the correct rate table. 4325 */ 4326 if (is_11n) { 4327 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 4328 nr = ni->ni_htrates.rs_nrates; 4329 } else { 4330 rs = &ni->ni_rates; 4331 nr = rs->rs_nrates; 4332 } 4333 4334 /* 4335 * Find the relevant link quality entry in the table. 4336 */ 4337 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { 4338 /* 4339 * The link quality table index starts at 0 == highest 4340 * rate, so we walk the rate table backwards. 4341 */ 4342 cmp_rate = rs->rs_rates[(nr - 1) - i]; 4343 if (rate & IEEE80211_RATE_MCS) 4344 cmp_rate |= IEEE80211_RATE_MCS; 4345 4346 #if 0 4347 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", 4348 __func__, 4349 i, 4350 nr, 4351 rate, 4352 cmp_rate); 4353 #endif 4354 4355 if (cmp_rate == rate) 4356 return (i); 4357 } 4358 4359 /* Failed? Start at the end */ 4360 return (IWN_MAX_TX_RETRIES - 1); 4361 } 4362 4363 static int 4364 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 4365 { 4366 struct iwn_ops *ops = &sc->ops; 4367 const struct ieee80211_txparam *tp; 4368 struct ieee80211vap *vap = ni->ni_vap; 4369 struct ieee80211com *ic = ni->ni_ic; 4370 struct iwn_node *wn = (void *)ni; 4371 struct iwn_tx_ring *ring; 4372 struct iwn_tx_desc *desc; 4373 struct iwn_tx_data *data; 4374 struct iwn_tx_cmd *cmd; 4375 struct iwn_cmd_data *tx; 4376 struct ieee80211_frame *wh; 4377 struct ieee80211_key *k = NULL; 4378 struct mbuf *m1; 4379 uint32_t flags; 4380 uint16_t qos; 4381 u_int hdrlen; 4382 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4383 uint8_t tid, type; 4384 int ac, i, totlen, error, pad, nsegs = 0, rate; 4385 4386 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4387 4388 IWN_LOCK_ASSERT(sc); 4389 4390 wh = mtod(m, struct ieee80211_frame *); 4391 hdrlen = ieee80211_anyhdrsize(wh); 4392 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4393 4394 /* Select EDCA Access Category and TX ring for this frame. */ 4395 if (IEEE80211_QOS_HAS_SEQ(wh)) { 4396 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 4397 tid = qos & IEEE80211_QOS_TID; 4398 } else { 4399 qos = 0; 4400 tid = 0; 4401 } 4402 ac = M_WME_GETAC(m); 4403 if (m->m_flags & M_AMPDU_MPDU) { 4404 uint16_t seqno; 4405 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 4406 4407 if (!IEEE80211_AMPDU_RUNNING(tap)) { 4408 return EINVAL; 4409 } 4410 4411 /* 4412 * Queue this frame to the hardware ring that we've 4413 * negotiated AMPDU TX on. 4414 * 4415 * Note that the sequence number must match the TX slot 4416 * being used! 4417 */ 4418 ac = *(int *)tap->txa_private; 4419 seqno = ni->ni_txseqs[tid]; 4420 *(uint16_t *)wh->i_seq = 4421 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4422 ring = &sc->txq[ac]; 4423 if ((seqno % 256) != ring->cur) { 4424 device_printf(sc->sc_dev, 4425 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", 4426 __func__, 4427 m, 4428 seqno, 4429 seqno % 256, 4430 ring->cur); 4431 } 4432 ni->ni_txseqs[tid]++; 4433 } 4434 ring = &sc->txq[ac]; 4435 desc = &ring->desc[ring->cur]; 4436 data = &ring->data[ring->cur]; 4437 4438 /* Choose a TX rate index. */ 4439 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 4440 if (type == IEEE80211_FC0_TYPE_MGT) 4441 rate = tp->mgmtrate; 4442 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4443 rate = tp->mcastrate; 4444 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 4445 rate = tp->ucastrate; 4446 else if (m->m_flags & M_EAPOL) 4447 rate = tp->mgmtrate; 4448 else { 4449 /* XXX pass pktlen */ 4450 (void) ieee80211_ratectl_rate(ni, NULL, 0); 4451 rate = ni->ni_txrate; 4452 } 4453 4454 /* Encrypt the frame if need be. */ 4455 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 4456 /* Retrieve key for TX. */ 4457 k = ieee80211_crypto_encap(ni, m); 4458 if (k == NULL) { 4459 return ENOBUFS; 4460 } 4461 /* 802.11 header may have moved. */ 4462 wh = mtod(m, struct ieee80211_frame *); 4463 } 4464 totlen = m->m_pkthdr.len; 4465 4466 if (ieee80211_radiotap_active_vap(vap)) { 4467 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4468 4469 tap->wt_flags = 0; 4470 tap->wt_rate = rate; 4471 if (k != NULL) 4472 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4473 4474 ieee80211_radiotap_tx(vap, m); 4475 } 4476 4477 /* Prepare TX firmware command. */ 4478 cmd = &ring->cmd[ring->cur]; 4479 cmd->code = IWN_CMD_TX_DATA; 4480 cmd->flags = 0; 4481 cmd->qid = ring->qid; 4482 cmd->idx = ring->cur; 4483 4484 tx = (struct iwn_cmd_data *)cmd->data; 4485 /* NB: No need to clear tx, all fields are reinitialized here. */ 4486 tx->scratch = 0; /* clear "scratch" area */ 4487 4488 flags = 0; 4489 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4490 /* Unicast frame, check if an ACK is expected. */ 4491 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 4492 IEEE80211_QOS_ACKPOLICY_NOACK) 4493 flags |= IWN_TX_NEED_ACK; 4494 } 4495 if ((wh->i_fc[0] & 4496 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 4497 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 4498 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 4499 4500 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 4501 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 4502 4503 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 4504 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4505 /* NB: Group frames are sent using CCK in 802.11b/g. */ 4506 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 4507 flags |= IWN_TX_NEED_RTS; 4508 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { 4509 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4510 flags |= IWN_TX_NEED_CTS; 4511 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4512 flags |= IWN_TX_NEED_RTS; 4513 } else if ((rate & IEEE80211_RATE_MCS) && 4514 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { 4515 flags |= IWN_TX_NEED_RTS; 4516 } 4517 4518 /* XXX HT protection? */ 4519 4520 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 4521 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4522 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4523 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 4524 flags |= IWN_TX_NEED_PROTECTION; 4525 } else 4526 flags |= IWN_TX_FULL_TXOP; 4527 } 4528 } 4529 4530 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 4531 type != IEEE80211_FC0_TYPE_DATA) 4532 tx->id = sc->broadcast_id; 4533 else 4534 tx->id = wn->id; 4535 4536 if (type == IEEE80211_FC0_TYPE_MGT) { 4537 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4538 4539 /* Tell HW to set timestamp in probe responses. */ 4540 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4541 flags |= IWN_TX_INSERT_TSTAMP; 4542 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4543 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4544 tx->timeout = htole16(3); 4545 else 4546 tx->timeout = htole16(2); 4547 } else 4548 tx->timeout = htole16(0); 4549 4550 if (hdrlen & 3) { 4551 /* First segment length must be a multiple of 4. */ 4552 flags |= IWN_TX_NEED_PADDING; 4553 pad = 4 - (hdrlen & 3); 4554 } else 4555 pad = 0; 4556 4557 tx->len = htole16(totlen); 4558 tx->tid = tid; 4559 tx->rts_ntries = 60; 4560 tx->data_ntries = 15; 4561 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4562 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4563 if (tx->id == sc->broadcast_id) { 4564 /* Group or management frame. */ 4565 tx->linkq = 0; 4566 } else { 4567 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); 4568 flags |= IWN_TX_LINKQ; /* enable MRR */ 4569 } 4570 4571 /* Set physical address of "scratch area". */ 4572 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4573 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4574 4575 /* Copy 802.11 header in TX command. */ 4576 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4577 4578 /* Trim 802.11 header. */ 4579 m_adj(m, hdrlen); 4580 tx->security = 0; 4581 tx->flags = htole32(flags); 4582 4583 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4584 &nsegs, BUS_DMA_NOWAIT); 4585 if (error != 0) { 4586 if (error != EFBIG) { 4587 device_printf(sc->sc_dev, 4588 "%s: can't map mbuf (error %d)\n", __func__, error); 4589 return error; 4590 } 4591 /* Too many DMA segments, linearize mbuf. */ 4592 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4593 if (m1 == NULL) { 4594 device_printf(sc->sc_dev, 4595 "%s: could not defrag mbuf\n", __func__); 4596 return ENOBUFS; 4597 } 4598 m = m1; 4599 4600 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4601 segs, &nsegs, BUS_DMA_NOWAIT); 4602 if (error != 0) { 4603 device_printf(sc->sc_dev, 4604 "%s: can't map mbuf (error %d)\n", __func__, error); 4605 return error; 4606 } 4607 } 4608 4609 data->m = m; 4610 data->ni = ni; 4611 4612 DPRINTF(sc, IWN_DEBUG_XMIT, 4613 "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n", 4614 __func__, 4615 ring->qid, 4616 ring->cur, 4617 m->m_pkthdr.len, 4618 nsegs, 4619 flags, 4620 rate, 4621 tx->rate); 4622 4623 /* Fill TX descriptor. */ 4624 desc->nsegs = 1; 4625 if (m->m_len != 0) 4626 desc->nsegs += nsegs; 4627 /* First DMA segment is used by the TX command. */ 4628 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4629 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4630 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4631 /* Other DMA segments are for data payload. */ 4632 seg = &segs[0]; 4633 for (i = 1; i <= nsegs; i++) { 4634 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4635 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4636 seg->ds_len << 4); 4637 seg++; 4638 } 4639 4640 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4641 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4642 BUS_DMASYNC_PREWRITE); 4643 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4644 BUS_DMASYNC_PREWRITE); 4645 4646 /* Update TX scheduler. */ 4647 if (ring->qid >= sc->firstaggqueue) 4648 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4649 4650 /* Kick TX ring. */ 4651 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4652 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4653 4654 /* Mark TX ring as full if we reach a certain threshold. */ 4655 if (++ring->queued > IWN_TX_RING_HIMARK) 4656 sc->qfullmsk |= 1 << ring->qid; 4657 4658 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4659 4660 return 0; 4661 } 4662 4663 static int 4664 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 4665 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 4666 { 4667 struct iwn_ops *ops = &sc->ops; 4668 struct ieee80211vap *vap = ni->ni_vap; 4669 struct iwn_tx_cmd *cmd; 4670 struct iwn_cmd_data *tx; 4671 struct ieee80211_frame *wh; 4672 struct iwn_tx_ring *ring; 4673 struct iwn_tx_desc *desc; 4674 struct iwn_tx_data *data; 4675 struct mbuf *m1; 4676 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4677 uint32_t flags; 4678 u_int hdrlen; 4679 int ac, totlen, error, pad, nsegs = 0, i, rate; 4680 uint8_t type; 4681 4682 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4683 4684 IWN_LOCK_ASSERT(sc); 4685 4686 wh = mtod(m, struct ieee80211_frame *); 4687 hdrlen = ieee80211_anyhdrsize(wh); 4688 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4689 4690 ac = params->ibp_pri & 3; 4691 4692 ring = &sc->txq[ac]; 4693 desc = &ring->desc[ring->cur]; 4694 data = &ring->data[ring->cur]; 4695 4696 /* Choose a TX rate. */ 4697 rate = params->ibp_rate0; 4698 totlen = m->m_pkthdr.len; 4699 4700 /* Prepare TX firmware command. */ 4701 cmd = &ring->cmd[ring->cur]; 4702 cmd->code = IWN_CMD_TX_DATA; 4703 cmd->flags = 0; 4704 cmd->qid = ring->qid; 4705 cmd->idx = ring->cur; 4706 4707 tx = (struct iwn_cmd_data *)cmd->data; 4708 /* NB: No need to clear tx, all fields are reinitialized here. */ 4709 tx->scratch = 0; /* clear "scratch" area */ 4710 4711 flags = 0; 4712 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 4713 flags |= IWN_TX_NEED_ACK; 4714 if (params->ibp_flags & IEEE80211_BPF_RTS) { 4715 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4716 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4717 flags &= ~IWN_TX_NEED_RTS; 4718 flags |= IWN_TX_NEED_PROTECTION; 4719 } else 4720 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 4721 } 4722 if (params->ibp_flags & IEEE80211_BPF_CTS) { 4723 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4724 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4725 flags &= ~IWN_TX_NEED_CTS; 4726 flags |= IWN_TX_NEED_PROTECTION; 4727 } else 4728 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 4729 } 4730 if (type == IEEE80211_FC0_TYPE_MGT) { 4731 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4732 4733 /* Tell HW to set timestamp in probe responses. */ 4734 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4735 flags |= IWN_TX_INSERT_TSTAMP; 4736 4737 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4738 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4739 tx->timeout = htole16(3); 4740 else 4741 tx->timeout = htole16(2); 4742 } else 4743 tx->timeout = htole16(0); 4744 4745 if (hdrlen & 3) { 4746 /* First segment length must be a multiple of 4. */ 4747 flags |= IWN_TX_NEED_PADDING; 4748 pad = 4 - (hdrlen & 3); 4749 } else 4750 pad = 0; 4751 4752 if (ieee80211_radiotap_active_vap(vap)) { 4753 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4754 4755 tap->wt_flags = 0; 4756 tap->wt_rate = rate; 4757 4758 ieee80211_radiotap_tx(vap, m); 4759 } 4760 4761 tx->len = htole16(totlen); 4762 tx->tid = 0; 4763 tx->id = sc->broadcast_id; 4764 tx->rts_ntries = params->ibp_try1; 4765 tx->data_ntries = params->ibp_try0; 4766 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4767 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4768 4769 /* Group or management frame. */ 4770 tx->linkq = 0; 4771 4772 /* Set physical address of "scratch area". */ 4773 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4774 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4775 4776 /* Copy 802.11 header in TX command. */ 4777 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4778 4779 /* Trim 802.11 header. */ 4780 m_adj(m, hdrlen); 4781 tx->security = 0; 4782 tx->flags = htole32(flags); 4783 4784 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4785 &nsegs, BUS_DMA_NOWAIT); 4786 if (error != 0) { 4787 if (error != EFBIG) { 4788 device_printf(sc->sc_dev, 4789 "%s: can't map mbuf (error %d)\n", __func__, error); 4790 return error; 4791 } 4792 /* Too many DMA segments, linearize mbuf. */ 4793 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4794 if (m1 == NULL) { 4795 device_printf(sc->sc_dev, 4796 "%s: could not defrag mbuf\n", __func__); 4797 return ENOBUFS; 4798 } 4799 m = m1; 4800 4801 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4802 segs, &nsegs, BUS_DMA_NOWAIT); 4803 if (error != 0) { 4804 device_printf(sc->sc_dev, 4805 "%s: can't map mbuf (error %d)\n", __func__, error); 4806 return error; 4807 } 4808 } 4809 4810 data->m = m; 4811 data->ni = ni; 4812 4813 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 4814 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 4815 4816 /* Fill TX descriptor. */ 4817 desc->nsegs = 1; 4818 if (m->m_len != 0) 4819 desc->nsegs += nsegs; 4820 /* First DMA segment is used by the TX command. */ 4821 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4822 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4823 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4824 /* Other DMA segments are for data payload. */ 4825 seg = &segs[0]; 4826 for (i = 1; i <= nsegs; i++) { 4827 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4828 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4829 seg->ds_len << 4); 4830 seg++; 4831 } 4832 4833 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4834 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 4835 BUS_DMASYNC_PREWRITE); 4836 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4837 BUS_DMASYNC_PREWRITE); 4838 4839 /* Update TX scheduler. */ 4840 if (ring->qid >= sc->firstaggqueue) 4841 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4842 4843 /* Kick TX ring. */ 4844 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4845 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4846 4847 /* Mark TX ring as full if we reach a certain threshold. */ 4848 if (++ring->queued > IWN_TX_RING_HIMARK) 4849 sc->qfullmsk |= 1 << ring->qid; 4850 4851 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4852 4853 return 0; 4854 } 4855 4856 static void 4857 iwn_xmit_task(void *arg0, int pending) 4858 { 4859 struct iwn_softc *sc = arg0; 4860 struct ieee80211_node *ni; 4861 struct mbuf *m; 4862 int error; 4863 struct ieee80211_bpf_params p; 4864 int have_p; 4865 4866 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); 4867 4868 IWN_LOCK(sc); 4869 /* 4870 * Dequeue frames, attempt to transmit, 4871 * then disable beaconwait when we're done. 4872 */ 4873 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 4874 have_p = 0; 4875 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4876 4877 /* Get xmit params if appropriate */ 4878 if (ieee80211_get_xmit_params(m, &p) == 0) 4879 have_p = 1; 4880 4881 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", 4882 __func__, m, have_p); 4883 4884 /* If we have xmit params, use them */ 4885 if (have_p) 4886 error = iwn_tx_data_raw(sc, m, ni, &p); 4887 else 4888 error = iwn_tx_data(sc, m, ni); 4889 4890 if (error != 0) { 4891 if_inc_counter(ni->ni_vap->iv_ifp, 4892 IFCOUNTER_OERRORS, 1); 4893 ieee80211_free_node(ni); 4894 m_freem(m); 4895 } 4896 } 4897 4898 sc->sc_beacon_wait = 0; 4899 IWN_UNLOCK(sc); 4900 } 4901 4902 /* 4903 * raw frame xmit - free node/reference if failed. 4904 */ 4905 static int 4906 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 4907 const struct ieee80211_bpf_params *params) 4908 { 4909 struct ieee80211com *ic = ni->ni_ic; 4910 struct iwn_softc *sc = ic->ic_softc; 4911 int error = 0; 4912 4913 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4914 4915 IWN_LOCK(sc); 4916 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { 4917 m_freem(m); 4918 IWN_UNLOCK(sc); 4919 return (ENETDOWN); 4920 } 4921 4922 /* queue frame if we have to */ 4923 if (sc->sc_beacon_wait) { 4924 if (iwn_xmit_queue_enqueue(sc, m) != 0) { 4925 m_freem(m); 4926 IWN_UNLOCK(sc); 4927 return (ENOBUFS); 4928 } 4929 /* Queued, so just return OK */ 4930 IWN_UNLOCK(sc); 4931 return (0); 4932 } 4933 4934 if (params == NULL) { 4935 /* 4936 * Legacy path; interpret frame contents to decide 4937 * precisely how to send the frame. 4938 */ 4939 error = iwn_tx_data(sc, m, ni); 4940 } else { 4941 /* 4942 * Caller supplied explicit parameters to use in 4943 * sending the frame. 4944 */ 4945 error = iwn_tx_data_raw(sc, m, ni, params); 4946 } 4947 if (error == 0) 4948 sc->sc_tx_timer = 5; 4949 else 4950 m_freem(m); 4951 4952 IWN_UNLOCK(sc); 4953 4954 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); 4955 4956 return (error); 4957 } 4958 4959 /* 4960 * transmit - don't free mbuf if failed; don't free node ref if failed. 4961 */ 4962 static int 4963 iwn_transmit(struct ieee80211com *ic, struct mbuf *m) 4964 { 4965 struct iwn_softc *sc = ic->ic_softc; 4966 struct ieee80211_node *ni; 4967 int error; 4968 4969 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4970 4971 IWN_LOCK(sc); 4972 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { 4973 IWN_UNLOCK(sc); 4974 return (ENXIO); 4975 } 4976 4977 if (sc->qfullmsk) { 4978 IWN_UNLOCK(sc); 4979 return (ENOBUFS); 4980 } 4981 4982 error = iwn_tx_data(sc, m, ni); 4983 if (!error) 4984 sc->sc_tx_timer = 5; 4985 IWN_UNLOCK(sc); 4986 return (error); 4987 } 4988 4989 static void 4990 iwn_watchdog(void *arg) 4991 { 4992 struct iwn_softc *sc = arg; 4993 struct ieee80211com *ic = &sc->sc_ic; 4994 4995 IWN_LOCK_ASSERT(sc); 4996 4997 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); 4998 4999 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5000 5001 if (sc->sc_tx_timer > 0) { 5002 if (--sc->sc_tx_timer == 0) { 5003 ic_printf(ic, "device timeout\n"); 5004 ieee80211_runtask(ic, &sc->sc_reinit_task); 5005 return; 5006 } 5007 } 5008 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 5009 } 5010 5011 static int 5012 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) 5013 { 5014 5015 return (0); 5016 } 5017 5018 static int 5019 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) 5020 { 5021 5022 return (0); 5023 } 5024 5025 static int 5026 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 5027 struct thread *td) 5028 { 5029 int rc; 5030 struct iwn_softc *sc = dev->si_drv1; 5031 struct iwn_ioctl_data *d; 5032 5033 rc = priv_check(td, PRIV_DRIVER); 5034 if (rc != 0) 5035 return (0); 5036 5037 switch (cmd) { 5038 case SIOCGIWNSTATS: 5039 d = (struct iwn_ioctl_data *) data; 5040 IWN_LOCK(sc); 5041 /* XXX validate permissions/memory/etc? */ 5042 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); 5043 IWN_UNLOCK(sc); 5044 break; 5045 case SIOCZIWNSTATS: 5046 IWN_LOCK(sc); 5047 memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); 5048 IWN_UNLOCK(sc); 5049 break; 5050 default: 5051 rc = EINVAL; 5052 break; 5053 } 5054 return (rc); 5055 } 5056 5057 static int 5058 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 5059 { 5060 5061 return (ENOTTY); 5062 } 5063 5064 static void 5065 iwn_parent(struct ieee80211com *ic) 5066 { 5067 struct iwn_softc *sc = ic->ic_softc; 5068 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 5069 int startall = 0, stop = 0; 5070 5071 IWN_LOCK(sc); 5072 if (ic->ic_nrunning > 0) { 5073 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { 5074 iwn_init_locked(sc); 5075 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) 5076 startall = 1; 5077 else 5078 stop = 1; 5079 } 5080 } else if (sc->sc_flags & IWN_FLAG_RUNNING) 5081 iwn_stop_locked(sc); 5082 IWN_UNLOCK(sc); 5083 if (startall) 5084 ieee80211_start_all(ic); 5085 else if (vap != NULL && stop) 5086 ieee80211_stop(vap); 5087 } 5088 5089 /* 5090 * Send a command to the firmware. 5091 */ 5092 static int 5093 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 5094 { 5095 struct iwn_tx_ring *ring; 5096 struct iwn_tx_desc *desc; 5097 struct iwn_tx_data *data; 5098 struct iwn_tx_cmd *cmd; 5099 struct mbuf *m; 5100 bus_addr_t paddr; 5101 int totlen, error; 5102 int cmd_queue_num; 5103 5104 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5105 5106 if (async == 0) 5107 IWN_LOCK_ASSERT(sc); 5108 5109 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 5110 cmd_queue_num = IWN_PAN_CMD_QUEUE; 5111 else 5112 cmd_queue_num = IWN_CMD_QUEUE_NUM; 5113 5114 ring = &sc->txq[cmd_queue_num]; 5115 desc = &ring->desc[ring->cur]; 5116 data = &ring->data[ring->cur]; 5117 totlen = 4 + size; 5118 5119 if (size > sizeof cmd->data) { 5120 /* Command is too large to fit in a descriptor. */ 5121 if (totlen > MCLBYTES) 5122 return EINVAL; 5123 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 5124 if (m == NULL) 5125 return ENOMEM; 5126 cmd = mtod(m, struct iwn_tx_cmd *); 5127 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 5128 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 5129 if (error != 0) { 5130 m_freem(m); 5131 return error; 5132 } 5133 data->m = m; 5134 } else { 5135 cmd = &ring->cmd[ring->cur]; 5136 paddr = data->cmd_paddr; 5137 } 5138 5139 cmd->code = code; 5140 cmd->flags = 0; 5141 cmd->qid = ring->qid; 5142 cmd->idx = ring->cur; 5143 memcpy(cmd->data, buf, size); 5144 5145 desc->nsegs = 1; 5146 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 5147 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 5148 5149 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 5150 __func__, iwn_intr_str(cmd->code), cmd->code, 5151 cmd->flags, cmd->qid, cmd->idx); 5152 5153 if (size > sizeof cmd->data) { 5154 bus_dmamap_sync(ring->data_dmat, data->map, 5155 BUS_DMASYNC_PREWRITE); 5156 } else { 5157 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 5158 BUS_DMASYNC_PREWRITE); 5159 } 5160 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 5161 BUS_DMASYNC_PREWRITE); 5162 5163 /* Kick command ring. */ 5164 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 5165 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 5166 5167 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5168 5169 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 5170 } 5171 5172 static int 5173 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5174 { 5175 struct iwn4965_node_info hnode; 5176 caddr_t src, dst; 5177 5178 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5179 5180 /* 5181 * We use the node structure for 5000 Series internally (it is 5182 * a superset of the one for 4965AGN). We thus copy the common 5183 * fields before sending the command. 5184 */ 5185 src = (caddr_t)node; 5186 dst = (caddr_t)&hnode; 5187 memcpy(dst, src, 48); 5188 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 5189 memcpy(dst + 48, src + 72, 20); 5190 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 5191 } 5192 5193 static int 5194 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5195 { 5196 5197 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5198 5199 /* Direct mapping. */ 5200 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 5201 } 5202 5203 static int 5204 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 5205 { 5206 struct iwn_node *wn = (void *)ni; 5207 struct ieee80211_rateset *rs; 5208 struct iwn_cmd_link_quality linkq; 5209 int i, rate, txrate; 5210 int is_11n; 5211 5212 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5213 5214 memset(&linkq, 0, sizeof linkq); 5215 linkq.id = wn->id; 5216 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5217 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5218 5219 linkq.ampdu_max = 32; /* XXX negotiated? */ 5220 linkq.ampdu_threshold = 3; 5221 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5222 5223 DPRINTF(sc, IWN_DEBUG_XMIT, 5224 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", 5225 __func__, 5226 linkq.antmsk_1stream, 5227 linkq.antmsk_2stream, 5228 sc->ntxchains); 5229 5230 /* 5231 * Are we using 11n rates? Ensure the channel is 5232 * 11n _and_ we have some 11n rates, or don't 5233 * try. 5234 */ 5235 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { 5236 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 5237 is_11n = 1; 5238 } else { 5239 rs = &ni->ni_rates; 5240 is_11n = 0; 5241 } 5242 5243 /* Start at highest available bit-rate. */ 5244 /* 5245 * XXX this is all very dirty! 5246 */ 5247 if (is_11n) 5248 txrate = ni->ni_htrates.rs_nrates - 1; 5249 else 5250 txrate = rs->rs_nrates - 1; 5251 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 5252 uint32_t plcp; 5253 5254 /* 5255 * XXX TODO: ensure the last two slots are the two lowest 5256 * rate entries, just for now. 5257 */ 5258 if (i == 14 || i == 15) 5259 txrate = 0; 5260 5261 if (is_11n) 5262 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; 5263 else 5264 rate = IEEE80211_RV(rs->rs_rates[txrate]); 5265 5266 /* Do rate -> PLCP config mapping */ 5267 plcp = iwn_rate_to_plcp(sc, ni, rate); 5268 linkq.retry[i] = plcp; 5269 DPRINTF(sc, IWN_DEBUG_XMIT, 5270 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", 5271 __func__, 5272 i, 5273 txrate, 5274 rate, 5275 le32toh(plcp)); 5276 5277 /* 5278 * The mimo field is an index into the table which 5279 * indicates the first index where it and subsequent entries 5280 * will not be using MIMO. 5281 * 5282 * Since we're filling linkq from 0..15 and we're filling 5283 * from the higest MCS rates to the lowest rates, if we 5284 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, 5285 * the next entry.) That way if the next entry is a non-MIMO 5286 * entry, we're already pointing at it. 5287 */ 5288 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 5289 IEEE80211_RV(le32toh(plcp)) > 7) 5290 linkq.mimo = i + 1; 5291 5292 /* Next retry at immediate lower bit-rate. */ 5293 if (txrate > 0) 5294 txrate--; 5295 } 5296 /* 5297 * If we reached the end of the list and indeed we hit 5298 * all MIMO rates (eg 5300 doing MCS23-15) then yes, 5299 * set mimo to 15. Setting it to 16 panics the firmware. 5300 */ 5301 if (linkq.mimo > 15) 5302 linkq.mimo = 15; 5303 5304 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); 5305 5306 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5307 5308 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 5309 } 5310 5311 /* 5312 * Broadcast node is used to send group-addressed and management frames. 5313 */ 5314 static int 5315 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 5316 { 5317 struct iwn_ops *ops = &sc->ops; 5318 struct ieee80211com *ic = &sc->sc_ic; 5319 struct iwn_node_info node; 5320 struct iwn_cmd_link_quality linkq; 5321 uint8_t txant; 5322 int i, error; 5323 5324 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5325 5326 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5327 5328 memset(&node, 0, sizeof node); 5329 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 5330 node.id = sc->broadcast_id; 5331 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 5332 if ((error = ops->add_node(sc, &node, async)) != 0) 5333 return error; 5334 5335 /* Use the first valid TX antenna. */ 5336 txant = IWN_LSB(sc->txchainmask); 5337 5338 memset(&linkq, 0, sizeof linkq); 5339 linkq.id = sc->broadcast_id; 5340 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5341 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5342 linkq.ampdu_max = 64; 5343 linkq.ampdu_threshold = 3; 5344 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5345 5346 /* Use lowest mandatory bit-rate. */ 5347 /* XXX rate table lookup? */ 5348 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 5349 linkq.retry[0] = htole32(0xd); 5350 else 5351 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 5352 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 5353 /* Use same bit-rate for all TX retries. */ 5354 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 5355 linkq.retry[i] = linkq.retry[0]; 5356 } 5357 5358 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5359 5360 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 5361 } 5362 5363 static int 5364 iwn_updateedca(struct ieee80211com *ic) 5365 { 5366 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 5367 struct iwn_softc *sc = ic->ic_softc; 5368 struct iwn_edca_params cmd; 5369 int aci; 5370 5371 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5372 5373 memset(&cmd, 0, sizeof cmd); 5374 cmd.flags = htole32(IWN_EDCA_UPDATE); 5375 5376 IEEE80211_LOCK(ic); 5377 for (aci = 0; aci < WME_NUM_AC; aci++) { 5378 const struct wmeParams *ac = 5379 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 5380 cmd.ac[aci].aifsn = ac->wmep_aifsn; 5381 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 5382 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 5383 cmd.ac[aci].txoplimit = 5384 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 5385 } 5386 IEEE80211_UNLOCK(ic); 5387 5388 IWN_LOCK(sc); 5389 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5390 IWN_UNLOCK(sc); 5391 5392 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5393 5394 return 0; 5395 #undef IWN_EXP2 5396 } 5397 5398 static void 5399 iwn_update_mcast(struct ieee80211com *ic) 5400 { 5401 /* Ignore */ 5402 } 5403 5404 static void 5405 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 5406 { 5407 struct iwn_cmd_led led; 5408 5409 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5410 5411 #if 0 5412 /* XXX don't set LEDs during scan? */ 5413 if (sc->sc_is_scanning) 5414 return; 5415 #endif 5416 5417 /* Clear microcode LED ownership. */ 5418 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 5419 5420 led.which = which; 5421 led.unit = htole32(10000); /* on/off in unit of 100ms */ 5422 led.off = off; 5423 led.on = on; 5424 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 5425 } 5426 5427 /* 5428 * Set the critical temperature at which the firmware will stop the radio 5429 * and notify us. 5430 */ 5431 static int 5432 iwn_set_critical_temp(struct iwn_softc *sc) 5433 { 5434 struct iwn_critical_temp crit; 5435 int32_t temp; 5436 5437 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5438 5439 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 5440 5441 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 5442 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 5443 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 5444 temp = IWN_CTOK(110); 5445 else 5446 temp = 110; 5447 memset(&crit, 0, sizeof crit); 5448 crit.tempR = htole32(temp); 5449 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 5450 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 5451 } 5452 5453 static int 5454 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 5455 { 5456 struct iwn_cmd_timing cmd; 5457 uint64_t val, mod; 5458 5459 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5460 5461 memset(&cmd, 0, sizeof cmd); 5462 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 5463 cmd.bintval = htole16(ni->ni_intval); 5464 cmd.lintval = htole16(10); 5465 5466 /* Compute remaining time until next beacon. */ 5467 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 5468 mod = le64toh(cmd.tstamp) % val; 5469 cmd.binitval = htole32((uint32_t)(val - mod)); 5470 5471 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 5472 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 5473 5474 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 5475 } 5476 5477 static void 5478 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 5479 { 5480 struct ieee80211com *ic = &sc->sc_ic; 5481 5482 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5483 5484 /* Adjust TX power if need be (delta >= 3 degC). */ 5485 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 5486 __func__, sc->temp, temp); 5487 if (abs(temp - sc->temp) >= 3) { 5488 /* Record temperature of last calibration. */ 5489 sc->temp = temp; 5490 (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); 5491 } 5492 } 5493 5494 /* 5495 * Set TX power for current channel (each rate has its own power settings). 5496 * This function takes into account the regulatory information from EEPROM, 5497 * the current temperature and the current voltage. 5498 */ 5499 static int 5500 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 5501 int async) 5502 { 5503 /* Fixed-point arithmetic division using a n-bit fractional part. */ 5504 #define fdivround(a, b, n) \ 5505 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 5506 /* Linear interpolation. */ 5507 #define interpolate(x, x1, y1, x2, y2, n) \ 5508 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 5509 5510 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 5511 struct iwn_ucode_info *uc = &sc->ucode_info; 5512 struct iwn4965_cmd_txpower cmd; 5513 struct iwn4965_eeprom_chan_samples *chans; 5514 const uint8_t *rf_gain, *dsp_gain; 5515 int32_t vdiff, tdiff; 5516 int i, c, grp, maxpwr; 5517 uint8_t chan; 5518 5519 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5520 /* Retrieve current channel from last RXON. */ 5521 chan = sc->rxon->chan; 5522 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 5523 chan); 5524 5525 memset(&cmd, 0, sizeof cmd); 5526 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 5527 cmd.chan = chan; 5528 5529 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 5530 maxpwr = sc->maxpwr5GHz; 5531 rf_gain = iwn4965_rf_gain_5ghz; 5532 dsp_gain = iwn4965_dsp_gain_5ghz; 5533 } else { 5534 maxpwr = sc->maxpwr2GHz; 5535 rf_gain = iwn4965_rf_gain_2ghz; 5536 dsp_gain = iwn4965_dsp_gain_2ghz; 5537 } 5538 5539 /* Compute voltage compensation. */ 5540 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 5541 if (vdiff > 0) 5542 vdiff *= 2; 5543 if (abs(vdiff) > 2) 5544 vdiff = 0; 5545 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5546 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 5547 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 5548 5549 /* Get channel attenuation group. */ 5550 if (chan <= 20) /* 1-20 */ 5551 grp = 4; 5552 else if (chan <= 43) /* 34-43 */ 5553 grp = 0; 5554 else if (chan <= 70) /* 44-70 */ 5555 grp = 1; 5556 else if (chan <= 124) /* 71-124 */ 5557 grp = 2; 5558 else /* 125-200 */ 5559 grp = 3; 5560 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5561 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 5562 5563 /* Get channel sub-band. */ 5564 for (i = 0; i < IWN_NBANDS; i++) 5565 if (sc->bands[i].lo != 0 && 5566 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 5567 break; 5568 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 5569 return EINVAL; 5570 chans = sc->bands[i].chans; 5571 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5572 "%s: chan %d sub-band=%d\n", __func__, chan, i); 5573 5574 for (c = 0; c < 2; c++) { 5575 uint8_t power, gain, temp; 5576 int maxchpwr, pwr, ridx, idx; 5577 5578 power = interpolate(chan, 5579 chans[0].num, chans[0].samples[c][1].power, 5580 chans[1].num, chans[1].samples[c][1].power, 1); 5581 gain = interpolate(chan, 5582 chans[0].num, chans[0].samples[c][1].gain, 5583 chans[1].num, chans[1].samples[c][1].gain, 1); 5584 temp = interpolate(chan, 5585 chans[0].num, chans[0].samples[c][1].temp, 5586 chans[1].num, chans[1].samples[c][1].temp, 1); 5587 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5588 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 5589 __func__, c, power, gain, temp); 5590 5591 /* Compute temperature compensation. */ 5592 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 5593 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5594 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 5595 __func__, tdiff, sc->temp, temp); 5596 5597 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 5598 /* Convert dBm to half-dBm. */ 5599 maxchpwr = sc->maxpwr[chan] * 2; 5600 if ((ridx / 8) & 1) 5601 maxchpwr -= 6; /* MIMO 2T: -3dB */ 5602 5603 pwr = maxpwr; 5604 5605 /* Adjust TX power based on rate. */ 5606 if ((ridx % 8) == 5) 5607 pwr -= 15; /* OFDM48: -7.5dB */ 5608 else if ((ridx % 8) == 6) 5609 pwr -= 17; /* OFDM54: -8.5dB */ 5610 else if ((ridx % 8) == 7) 5611 pwr -= 20; /* OFDM60: -10dB */ 5612 else 5613 pwr -= 10; /* Others: -5dB */ 5614 5615 /* Do not exceed channel max TX power. */ 5616 if (pwr > maxchpwr) 5617 pwr = maxchpwr; 5618 5619 idx = gain - (pwr - power) - tdiff - vdiff; 5620 if ((ridx / 8) & 1) /* MIMO */ 5621 idx += (int32_t)le32toh(uc->atten[grp][c]); 5622 5623 if (cmd.band == 0) 5624 idx += 9; /* 5GHz */ 5625 if (ridx == IWN_RIDX_MAX) 5626 idx += 5; /* CCK */ 5627 5628 /* Make sure idx stays in a valid range. */ 5629 if (idx < 0) 5630 idx = 0; 5631 else if (idx > IWN4965_MAX_PWR_INDEX) 5632 idx = IWN4965_MAX_PWR_INDEX; 5633 5634 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5635 "%s: Tx chain %d, rate idx %d: power=%d\n", 5636 __func__, c, ridx, idx); 5637 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 5638 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 5639 } 5640 } 5641 5642 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5643 "%s: set tx power for chan %d\n", __func__, chan); 5644 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 5645 5646 #undef interpolate 5647 #undef fdivround 5648 } 5649 5650 static int 5651 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 5652 int async) 5653 { 5654 struct iwn5000_cmd_txpower cmd; 5655 int cmdid; 5656 5657 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5658 5659 /* 5660 * TX power calibration is handled automatically by the firmware 5661 * for 5000 Series. 5662 */ 5663 memset(&cmd, 0, sizeof cmd); 5664 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 5665 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 5666 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 5667 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5668 "%s: setting TX power; rev=%d\n", 5669 __func__, 5670 IWN_UCODE_API(sc->ucode_rev)); 5671 if (IWN_UCODE_API(sc->ucode_rev) == 1) 5672 cmdid = IWN_CMD_TXPOWER_DBM_V1; 5673 else 5674 cmdid = IWN_CMD_TXPOWER_DBM; 5675 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 5676 } 5677 5678 /* 5679 * Retrieve the maximum RSSI (in dBm) among receivers. 5680 */ 5681 static int 5682 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5683 { 5684 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 5685 uint8_t mask, agc; 5686 int rssi; 5687 5688 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5689 5690 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 5691 agc = (le16toh(phy->agc) >> 7) & 0x7f; 5692 5693 rssi = 0; 5694 if (mask & IWN_ANT_A) 5695 rssi = MAX(rssi, phy->rssi[0]); 5696 if (mask & IWN_ANT_B) 5697 rssi = MAX(rssi, phy->rssi[2]); 5698 if (mask & IWN_ANT_C) 5699 rssi = MAX(rssi, phy->rssi[4]); 5700 5701 DPRINTF(sc, IWN_DEBUG_RECV, 5702 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 5703 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 5704 rssi - agc - IWN_RSSI_TO_DBM); 5705 return rssi - agc - IWN_RSSI_TO_DBM; 5706 } 5707 5708 static int 5709 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5710 { 5711 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 5712 uint8_t agc; 5713 int rssi; 5714 5715 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5716 5717 agc = (le32toh(phy->agc) >> 9) & 0x7f; 5718 5719 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 5720 le16toh(phy->rssi[1]) & 0xff); 5721 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 5722 5723 DPRINTF(sc, IWN_DEBUG_RECV, 5724 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 5725 phy->rssi[0], phy->rssi[1], phy->rssi[2], 5726 rssi - agc - IWN_RSSI_TO_DBM); 5727 return rssi - agc - IWN_RSSI_TO_DBM; 5728 } 5729 5730 /* 5731 * Retrieve the average noise (in dBm) among receivers. 5732 */ 5733 static int 5734 iwn_get_noise(const struct iwn_rx_general_stats *stats) 5735 { 5736 int i, total, nbant, noise; 5737 5738 total = nbant = 0; 5739 for (i = 0; i < 3; i++) { 5740 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 5741 continue; 5742 total += noise; 5743 nbant++; 5744 } 5745 /* There should be at least one antenna but check anyway. */ 5746 return (nbant == 0) ? -127 : (total / nbant) - 107; 5747 } 5748 5749 /* 5750 * Compute temperature (in degC) from last received statistics. 5751 */ 5752 static int 5753 iwn4965_get_temperature(struct iwn_softc *sc) 5754 { 5755 struct iwn_ucode_info *uc = &sc->ucode_info; 5756 int32_t r1, r2, r3, r4, temp; 5757 5758 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5759 5760 r1 = le32toh(uc->temp[0].chan20MHz); 5761 r2 = le32toh(uc->temp[1].chan20MHz); 5762 r3 = le32toh(uc->temp[2].chan20MHz); 5763 r4 = le32toh(sc->rawtemp); 5764 5765 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 5766 return 0; 5767 5768 /* Sign-extend 23-bit R4 value to 32-bit. */ 5769 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 5770 /* Compute temperature in Kelvin. */ 5771 temp = (259 * (r4 - r2)) / (r3 - r1); 5772 temp = (temp * 97) / 100 + 8; 5773 5774 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 5775 IWN_KTOC(temp)); 5776 return IWN_KTOC(temp); 5777 } 5778 5779 static int 5780 iwn5000_get_temperature(struct iwn_softc *sc) 5781 { 5782 int32_t temp; 5783 5784 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5785 5786 /* 5787 * Temperature is not used by the driver for 5000 Series because 5788 * TX power calibration is handled by firmware. 5789 */ 5790 temp = le32toh(sc->rawtemp); 5791 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 5792 temp = (temp / -5) + sc->temp_off; 5793 temp = IWN_KTOC(temp); 5794 } 5795 return temp; 5796 } 5797 5798 /* 5799 * Initialize sensitivity calibration state machine. 5800 */ 5801 static int 5802 iwn_init_sensitivity(struct iwn_softc *sc) 5803 { 5804 struct iwn_ops *ops = &sc->ops; 5805 struct iwn_calib_state *calib = &sc->calib; 5806 uint32_t flags; 5807 int error; 5808 5809 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5810 5811 /* Reset calibration state machine. */ 5812 memset(calib, 0, sizeof (*calib)); 5813 calib->state = IWN_CALIB_STATE_INIT; 5814 calib->cck_state = IWN_CCK_STATE_HIFA; 5815 /* Set initial correlation values. */ 5816 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 5817 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 5818 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 5819 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 5820 calib->cck_x4 = 125; 5821 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 5822 calib->energy_cck = sc->limits->energy_cck; 5823 5824 /* Write initial sensitivity. */ 5825 if ((error = iwn_send_sensitivity(sc)) != 0) 5826 return error; 5827 5828 /* Write initial gains. */ 5829 if ((error = ops->init_gains(sc)) != 0) 5830 return error; 5831 5832 /* Request statistics at each beacon interval. */ 5833 flags = 0; 5834 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 5835 __func__); 5836 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 5837 } 5838 5839 /* 5840 * Collect noise and RSSI statistics for the first 20 beacons received 5841 * after association and use them to determine connected antennas and 5842 * to set differential gains. 5843 */ 5844 static void 5845 iwn_collect_noise(struct iwn_softc *sc, 5846 const struct iwn_rx_general_stats *stats) 5847 { 5848 struct iwn_ops *ops = &sc->ops; 5849 struct iwn_calib_state *calib = &sc->calib; 5850 struct ieee80211com *ic = &sc->sc_ic; 5851 uint32_t val; 5852 int i; 5853 5854 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5855 5856 /* Accumulate RSSI and noise for all 3 antennas. */ 5857 for (i = 0; i < 3; i++) { 5858 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 5859 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 5860 } 5861 /* NB: We update differential gains only once after 20 beacons. */ 5862 if (++calib->nbeacons < 20) 5863 return; 5864 5865 /* Determine highest average RSSI. */ 5866 val = MAX(calib->rssi[0], calib->rssi[1]); 5867 val = MAX(calib->rssi[2], val); 5868 5869 /* Determine which antennas are connected. */ 5870 sc->chainmask = sc->rxchainmask; 5871 for (i = 0; i < 3; i++) 5872 if (val - calib->rssi[i] > 15 * 20) 5873 sc->chainmask &= ~(1 << i); 5874 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5875 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 5876 __func__, sc->rxchainmask, sc->chainmask); 5877 5878 /* If none of the TX antennas are connected, keep at least one. */ 5879 if ((sc->chainmask & sc->txchainmask) == 0) 5880 sc->chainmask |= IWN_LSB(sc->txchainmask); 5881 5882 (void)ops->set_gains(sc); 5883 calib->state = IWN_CALIB_STATE_RUN; 5884 5885 #ifdef notyet 5886 /* XXX Disable RX chains with no antennas connected. */ 5887 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 5888 if (sc->sc_is_scanning) 5889 device_printf(sc->sc_dev, 5890 "%s: is_scanning set, before RXON\n", 5891 __func__); 5892 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 5893 #endif 5894 5895 /* Enable power-saving mode if requested by user. */ 5896 if (ic->ic_flags & IEEE80211_F_PMGTON) 5897 (void)iwn_set_pslevel(sc, 0, 3, 1); 5898 5899 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5900 5901 } 5902 5903 static int 5904 iwn4965_init_gains(struct iwn_softc *sc) 5905 { 5906 struct iwn_phy_calib_gain cmd; 5907 5908 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5909 5910 memset(&cmd, 0, sizeof cmd); 5911 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5912 /* Differential gains initially set to 0 for all 3 antennas. */ 5913 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5914 "%s: setting initial differential gains\n", __func__); 5915 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5916 } 5917 5918 static int 5919 iwn5000_init_gains(struct iwn_softc *sc) 5920 { 5921 struct iwn_phy_calib cmd; 5922 5923 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5924 5925 memset(&cmd, 0, sizeof cmd); 5926 cmd.code = sc->reset_noise_gain; 5927 cmd.ngroups = 1; 5928 cmd.isvalid = 1; 5929 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5930 "%s: setting initial differential gains\n", __func__); 5931 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5932 } 5933 5934 static int 5935 iwn4965_set_gains(struct iwn_softc *sc) 5936 { 5937 struct iwn_calib_state *calib = &sc->calib; 5938 struct iwn_phy_calib_gain cmd; 5939 int i, delta, noise; 5940 5941 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5942 5943 /* Get minimal noise among connected antennas. */ 5944 noise = INT_MAX; /* NB: There's at least one antenna. */ 5945 for (i = 0; i < 3; i++) 5946 if (sc->chainmask & (1 << i)) 5947 noise = MIN(calib->noise[i], noise); 5948 5949 memset(&cmd, 0, sizeof cmd); 5950 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5951 /* Set differential gains for connected antennas. */ 5952 for (i = 0; i < 3; i++) { 5953 if (sc->chainmask & (1 << i)) { 5954 /* Compute attenuation (in unit of 1.5dB). */ 5955 delta = (noise - (int32_t)calib->noise[i]) / 30; 5956 /* NB: delta <= 0 */ 5957 /* Limit to [-4.5dB,0]. */ 5958 cmd.gain[i] = MIN(abs(delta), 3); 5959 if (delta < 0) 5960 cmd.gain[i] |= 1 << 2; /* sign bit */ 5961 } 5962 } 5963 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5964 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 5965 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 5966 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5967 } 5968 5969 static int 5970 iwn5000_set_gains(struct iwn_softc *sc) 5971 { 5972 struct iwn_calib_state *calib = &sc->calib; 5973 struct iwn_phy_calib_gain cmd; 5974 int i, ant, div, delta; 5975 5976 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5977 5978 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 5979 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 5980 5981 memset(&cmd, 0, sizeof cmd); 5982 cmd.code = sc->noise_gain; 5983 cmd.ngroups = 1; 5984 cmd.isvalid = 1; 5985 /* Get first available RX antenna as referential. */ 5986 ant = IWN_LSB(sc->rxchainmask); 5987 /* Set differential gains for other antennas. */ 5988 for (i = ant + 1; i < 3; i++) { 5989 if (sc->chainmask & (1 << i)) { 5990 /* The delta is relative to antenna "ant". */ 5991 delta = ((int32_t)calib->noise[ant] - 5992 (int32_t)calib->noise[i]) / div; 5993 /* Limit to [-4.5dB,+4.5dB]. */ 5994 cmd.gain[i - 1] = MIN(abs(delta), 3); 5995 if (delta < 0) 5996 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 5997 } 5998 } 5999 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 6000 "setting differential gains Ant B/C: %x/%x (%x)\n", 6001 cmd.gain[0], cmd.gain[1], sc->chainmask); 6002 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6003 } 6004 6005 /* 6006 * Tune RF RX sensitivity based on the number of false alarms detected 6007 * during the last beacon period. 6008 */ 6009 static void 6010 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 6011 { 6012 #define inc(val, inc, max) \ 6013 if ((val) < (max)) { \ 6014 if ((val) < (max) - (inc)) \ 6015 (val) += (inc); \ 6016 else \ 6017 (val) = (max); \ 6018 needs_update = 1; \ 6019 } 6020 #define dec(val, dec, min) \ 6021 if ((val) > (min)) { \ 6022 if ((val) > (min) + (dec)) \ 6023 (val) -= (dec); \ 6024 else \ 6025 (val) = (min); \ 6026 needs_update = 1; \ 6027 } 6028 6029 const struct iwn_sensitivity_limits *limits = sc->limits; 6030 struct iwn_calib_state *calib = &sc->calib; 6031 uint32_t val, rxena, fa; 6032 uint32_t energy[3], energy_min; 6033 uint8_t noise[3], noise_ref; 6034 int i, needs_update = 0; 6035 6036 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6037 6038 /* Check that we've been enabled long enough. */ 6039 if ((rxena = le32toh(stats->general.load)) == 0){ 6040 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 6041 return; 6042 } 6043 6044 /* Compute number of false alarms since last call for OFDM. */ 6045 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6046 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 6047 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6048 6049 if (fa > 50 * rxena) { 6050 /* High false alarm count, decrease sensitivity. */ 6051 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6052 "%s: OFDM high false alarm count: %u\n", __func__, fa); 6053 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 6054 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 6055 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 6056 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 6057 6058 } else if (fa < 5 * rxena) { 6059 /* Low false alarm count, increase sensitivity. */ 6060 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6061 "%s: OFDM low false alarm count: %u\n", __func__, fa); 6062 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 6063 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 6064 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 6065 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 6066 } 6067 6068 /* Compute maximum noise among 3 receivers. */ 6069 for (i = 0; i < 3; i++) 6070 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 6071 val = MAX(noise[0], noise[1]); 6072 val = MAX(noise[2], val); 6073 /* Insert it into our samples table. */ 6074 calib->noise_samples[calib->cur_noise_sample] = val; 6075 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 6076 6077 /* Compute maximum noise among last 20 samples. */ 6078 noise_ref = calib->noise_samples[0]; 6079 for (i = 1; i < 20; i++) 6080 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 6081 6082 /* Compute maximum energy among 3 receivers. */ 6083 for (i = 0; i < 3; i++) 6084 energy[i] = le32toh(stats->general.energy[i]); 6085 val = MIN(energy[0], energy[1]); 6086 val = MIN(energy[2], val); 6087 /* Insert it into our samples table. */ 6088 calib->energy_samples[calib->cur_energy_sample] = val; 6089 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 6090 6091 /* Compute minimum energy among last 10 samples. */ 6092 energy_min = calib->energy_samples[0]; 6093 for (i = 1; i < 10; i++) 6094 energy_min = MAX(energy_min, calib->energy_samples[i]); 6095 energy_min += 6; 6096 6097 /* Compute number of false alarms since last call for CCK. */ 6098 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 6099 fa += le32toh(stats->cck.fa) - calib->fa_cck; 6100 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6101 6102 if (fa > 50 * rxena) { 6103 /* High false alarm count, decrease sensitivity. */ 6104 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6105 "%s: CCK high false alarm count: %u\n", __func__, fa); 6106 calib->cck_state = IWN_CCK_STATE_HIFA; 6107 calib->low_fa = 0; 6108 6109 if (calib->cck_x4 > 160) { 6110 calib->noise_ref = noise_ref; 6111 if (calib->energy_cck > 2) 6112 dec(calib->energy_cck, 2, energy_min); 6113 } 6114 if (calib->cck_x4 < 160) { 6115 calib->cck_x4 = 161; 6116 needs_update = 1; 6117 } else 6118 inc(calib->cck_x4, 3, limits->max_cck_x4); 6119 6120 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 6121 6122 } else if (fa < 5 * rxena) { 6123 /* Low false alarm count, increase sensitivity. */ 6124 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6125 "%s: CCK low false alarm count: %u\n", __func__, fa); 6126 calib->cck_state = IWN_CCK_STATE_LOFA; 6127 calib->low_fa++; 6128 6129 if (calib->cck_state != IWN_CCK_STATE_INIT && 6130 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 6131 calib->low_fa > 100)) { 6132 inc(calib->energy_cck, 2, limits->min_energy_cck); 6133 dec(calib->cck_x4, 3, limits->min_cck_x4); 6134 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 6135 } 6136 } else { 6137 /* Not worth to increase or decrease sensitivity. */ 6138 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6139 "%s: CCK normal false alarm count: %u\n", __func__, fa); 6140 calib->low_fa = 0; 6141 calib->noise_ref = noise_ref; 6142 6143 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 6144 /* Previous interval had many false alarms. */ 6145 dec(calib->energy_cck, 8, energy_min); 6146 } 6147 calib->cck_state = IWN_CCK_STATE_INIT; 6148 } 6149 6150 if (needs_update) 6151 (void)iwn_send_sensitivity(sc); 6152 6153 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6154 6155 #undef dec 6156 #undef inc 6157 } 6158 6159 static int 6160 iwn_send_sensitivity(struct iwn_softc *sc) 6161 { 6162 struct iwn_calib_state *calib = &sc->calib; 6163 struct iwn_enhanced_sensitivity_cmd cmd; 6164 int len; 6165 6166 memset(&cmd, 0, sizeof cmd); 6167 len = sizeof (struct iwn_sensitivity_cmd); 6168 cmd.which = IWN_SENSITIVITY_WORKTBL; 6169 /* OFDM modulation. */ 6170 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 6171 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 6172 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 6173 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 6174 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 6175 cmd.energy_ofdm_th = htole16(62); 6176 /* CCK modulation. */ 6177 cmd.corr_cck_x4 = htole16(calib->cck_x4); 6178 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 6179 cmd.energy_cck = htole16(calib->energy_cck); 6180 /* Barker modulation: use default values. */ 6181 cmd.corr_barker = htole16(190); 6182 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 6183 6184 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6185 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 6186 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 6187 calib->ofdm_mrc_x4, calib->cck_x4, 6188 calib->cck_mrc_x4, calib->energy_cck); 6189 6190 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 6191 goto send; 6192 /* Enhanced sensitivity settings. */ 6193 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 6194 cmd.ofdm_det_slope_mrc = htole16(668); 6195 cmd.ofdm_det_icept_mrc = htole16(4); 6196 cmd.ofdm_det_slope = htole16(486); 6197 cmd.ofdm_det_icept = htole16(37); 6198 cmd.cck_det_slope_mrc = htole16(853); 6199 cmd.cck_det_icept_mrc = htole16(4); 6200 cmd.cck_det_slope = htole16(476); 6201 cmd.cck_det_icept = htole16(99); 6202 send: 6203 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 6204 } 6205 6206 /* 6207 * Look at the increase of PLCP errors over time; if it exceeds 6208 * a programmed threshold then trigger an RF retune. 6209 */ 6210 static void 6211 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) 6212 { 6213 int32_t delta_ofdm, delta_ht, delta_cck; 6214 struct iwn_calib_state *calib = &sc->calib; 6215 int delta_ticks, cur_ticks; 6216 int delta_msec; 6217 int thresh; 6218 6219 /* 6220 * Calculate the difference between the current and 6221 * previous statistics. 6222 */ 6223 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; 6224 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6225 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; 6226 6227 /* 6228 * Calculate the delta in time between successive statistics 6229 * messages. Yes, it can roll over; so we make sure that 6230 * this doesn't happen. 6231 * 6232 * XXX go figure out what to do about rollover 6233 * XXX go figure out what to do if ticks rolls over to -ve instead! 6234 * XXX go stab signed integer overflow undefined-ness in the face. 6235 */ 6236 cur_ticks = ticks; 6237 delta_ticks = cur_ticks - sc->last_calib_ticks; 6238 6239 /* 6240 * If any are negative, then the firmware likely reset; so just 6241 * bail. We'll pick this up next time. 6242 */ 6243 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) 6244 return; 6245 6246 /* 6247 * delta_ticks is in ticks; we need to convert it up to milliseconds 6248 * so we can do some useful math with it. 6249 */ 6250 delta_msec = ticks_to_msecs(delta_ticks); 6251 6252 /* 6253 * Calculate what our threshold is given the current delta_msec. 6254 */ 6255 thresh = sc->base_params->plcp_err_threshold * delta_msec; 6256 6257 DPRINTF(sc, IWN_DEBUG_STATE, 6258 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", 6259 __func__, 6260 delta_msec, 6261 delta_cck, 6262 delta_ofdm, 6263 delta_ht, 6264 (delta_msec + delta_cck + delta_ofdm + delta_ht), 6265 thresh); 6266 6267 /* 6268 * If we need a retune, then schedule a single channel scan 6269 * to a channel that isn't the currently active one! 6270 * 6271 * The math from linux iwlwifi: 6272 * 6273 * if ((delta * 100 / msecs) > threshold) 6274 */ 6275 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { 6276 DPRINTF(sc, IWN_DEBUG_ANY, 6277 "%s: PLCP error threshold raw (%d) comparison (%d) " 6278 "over limit (%d); retune!\n", 6279 __func__, 6280 (delta_cck + delta_ofdm + delta_ht), 6281 (delta_cck + delta_ofdm + delta_ht) * 100, 6282 thresh); 6283 } 6284 } 6285 6286 /* 6287 * Set STA mode power saving level (between 0 and 5). 6288 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 6289 */ 6290 static int 6291 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 6292 { 6293 struct iwn_pmgt_cmd cmd; 6294 const struct iwn_pmgt *pmgt; 6295 uint32_t max, skip_dtim; 6296 uint32_t reg; 6297 int i; 6298 6299 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 6300 "%s: dtim=%d, level=%d, async=%d\n", 6301 __func__, 6302 dtim, 6303 level, 6304 async); 6305 6306 /* Select which PS parameters to use. */ 6307 if (dtim <= 2) 6308 pmgt = &iwn_pmgt[0][level]; 6309 else if (dtim <= 10) 6310 pmgt = &iwn_pmgt[1][level]; 6311 else 6312 pmgt = &iwn_pmgt[2][level]; 6313 6314 memset(&cmd, 0, sizeof cmd); 6315 if (level != 0) /* not CAM */ 6316 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 6317 if (level == 5) 6318 cmd.flags |= htole16(IWN_PS_FAST_PD); 6319 /* Retrieve PCIe Active State Power Management (ASPM). */ 6320 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 6321 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 6322 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 6323 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 6324 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 6325 6326 if (dtim == 0) { 6327 dtim = 1; 6328 skip_dtim = 0; 6329 } else 6330 skip_dtim = pmgt->skip_dtim; 6331 if (skip_dtim != 0) { 6332 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 6333 max = pmgt->intval[4]; 6334 if (max == (uint32_t)-1) 6335 max = dtim * (skip_dtim + 1); 6336 else if (max > dtim) 6337 max = (max / dtim) * dtim; 6338 } else 6339 max = dtim; 6340 for (i = 0; i < 5; i++) 6341 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 6342 6343 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 6344 level); 6345 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 6346 } 6347 6348 static int 6349 iwn_send_btcoex(struct iwn_softc *sc) 6350 { 6351 struct iwn_bluetooth cmd; 6352 6353 memset(&cmd, 0, sizeof cmd); 6354 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 6355 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 6356 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 6357 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 6358 __func__); 6359 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 6360 } 6361 6362 static int 6363 iwn_send_advanced_btcoex(struct iwn_softc *sc) 6364 { 6365 static const uint32_t btcoex_3wire[12] = { 6366 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 6367 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 6368 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 6369 }; 6370 struct iwn6000_btcoex_config btconfig; 6371 struct iwn2000_btcoex_config btconfig2k; 6372 struct iwn_btcoex_priotable btprio; 6373 struct iwn_btcoex_prot btprot; 6374 int error, i; 6375 uint8_t flags; 6376 6377 memset(&btconfig, 0, sizeof btconfig); 6378 memset(&btconfig2k, 0, sizeof btconfig2k); 6379 6380 flags = IWN_BT_FLAG_COEX6000_MODE_3W << 6381 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 6382 6383 if (sc->base_params->bt_sco_disable) 6384 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6385 else 6386 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6387 6388 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; 6389 6390 /* Default flags result is 145 as old value */ 6391 6392 /* 6393 * Flags value has to be review. Values must change if we 6394 * which to disable it 6395 */ 6396 if (sc->base_params->bt_session_2) { 6397 btconfig2k.flags = flags; 6398 btconfig2k.max_kill = 5; 6399 btconfig2k.bt3_t7_timer = 1; 6400 btconfig2k.kill_ack = htole32(0xffff0000); 6401 btconfig2k.kill_cts = htole32(0xffff0000); 6402 btconfig2k.sample_time = 2; 6403 btconfig2k.bt3_t2_timer = 0xc; 6404 6405 for (i = 0; i < 12; i++) 6406 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); 6407 btconfig2k.valid = htole16(0xff); 6408 btconfig2k.prio_boost = htole32(0xf0); 6409 DPRINTF(sc, IWN_DEBUG_RESET, 6410 "%s: configuring advanced bluetooth coexistence" 6411 " session 2, flags : 0x%x\n", 6412 __func__, 6413 flags); 6414 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, 6415 sizeof(btconfig2k), 1); 6416 } else { 6417 btconfig.flags = flags; 6418 btconfig.max_kill = 5; 6419 btconfig.bt3_t7_timer = 1; 6420 btconfig.kill_ack = htole32(0xffff0000); 6421 btconfig.kill_cts = htole32(0xffff0000); 6422 btconfig.sample_time = 2; 6423 btconfig.bt3_t2_timer = 0xc; 6424 6425 for (i = 0; i < 12; i++) 6426 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 6427 btconfig.valid = htole16(0xff); 6428 btconfig.prio_boost = 0xf0; 6429 DPRINTF(sc, IWN_DEBUG_RESET, 6430 "%s: configuring advanced bluetooth coexistence," 6431 " flags : 0x%x\n", 6432 __func__, 6433 flags); 6434 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 6435 sizeof(btconfig), 1); 6436 } 6437 6438 if (error != 0) 6439 return error; 6440 6441 memset(&btprio, 0, sizeof btprio); 6442 btprio.calib_init1 = 0x6; 6443 btprio.calib_init2 = 0x7; 6444 btprio.calib_periodic_low1 = 0x2; 6445 btprio.calib_periodic_low2 = 0x3; 6446 btprio.calib_periodic_high1 = 0x4; 6447 btprio.calib_periodic_high2 = 0x5; 6448 btprio.dtim = 0x6; 6449 btprio.scan52 = 0x8; 6450 btprio.scan24 = 0xa; 6451 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 6452 1); 6453 if (error != 0) 6454 return error; 6455 6456 /* Force BT state machine change. */ 6457 memset(&btprot, 0, sizeof btprot); 6458 btprot.open = 1; 6459 btprot.type = 1; 6460 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6461 if (error != 0) 6462 return error; 6463 btprot.open = 0; 6464 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6465 } 6466 6467 static int 6468 iwn5000_runtime_calib(struct iwn_softc *sc) 6469 { 6470 struct iwn5000_calib_config cmd; 6471 6472 memset(&cmd, 0, sizeof cmd); 6473 cmd.ucode.once.enable = 0xffffffff; 6474 cmd.ucode.once.start = IWN5000_CALIB_DC; 6475 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6476 "%s: configuring runtime calibration\n", __func__); 6477 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 6478 } 6479 6480 static uint32_t 6481 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c) 6482 { 6483 struct ieee80211com *ic = &sc->sc_ic; 6484 uint32_t htflags = 0; 6485 6486 if (! IEEE80211_IS_CHAN_HT(c)) 6487 return (0); 6488 6489 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 6490 6491 if (IEEE80211_IS_CHAN_HT40(c)) { 6492 switch (ic->ic_curhtprotmode) { 6493 case IEEE80211_HTINFO_OPMODE_HT20PR: 6494 htflags |= IWN_RXON_HT_MODEPURE40; 6495 break; 6496 default: 6497 htflags |= IWN_RXON_HT_MODEMIXED; 6498 break; 6499 } 6500 } 6501 if (IEEE80211_IS_CHAN_HT40D(c)) 6502 htflags |= IWN_RXON_HT_HT40MINUS; 6503 6504 return (htflags); 6505 } 6506 6507 static int 6508 iwn_config(struct iwn_softc *sc) 6509 { 6510 struct iwn_ops *ops = &sc->ops; 6511 struct ieee80211com *ic = &sc->sc_ic; 6512 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6513 const uint8_t *macaddr; 6514 uint32_t txmask; 6515 uint16_t rxchain; 6516 int error; 6517 6518 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6519 6520 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) 6521 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { 6522 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" 6523 " exclusive each together. Review NIC config file. Conf" 6524 " : 0x%08x Flags : 0x%08x \n", __func__, 6525 sc->base_params->calib_need, 6526 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | 6527 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); 6528 return (EINVAL); 6529 } 6530 6531 /* Compute temperature calib if needed. Will be send by send calib */ 6532 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { 6533 error = iwn5000_temp_offset_calib(sc); 6534 if (error != 0) { 6535 device_printf(sc->sc_dev, 6536 "%s: could not set temperature offset\n", __func__); 6537 return (error); 6538 } 6539 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 6540 error = iwn5000_temp_offset_calibv2(sc); 6541 if (error != 0) { 6542 device_printf(sc->sc_dev, 6543 "%s: could not compute temperature offset v2\n", 6544 __func__); 6545 return (error); 6546 } 6547 } 6548 6549 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6550 /* Configure runtime DC calibration. */ 6551 error = iwn5000_runtime_calib(sc); 6552 if (error != 0) { 6553 device_printf(sc->sc_dev, 6554 "%s: could not configure runtime calibration\n", 6555 __func__); 6556 return error; 6557 } 6558 } 6559 6560 /* Configure valid TX chains for >=5000 Series. */ 6561 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6562 IWN_UCODE_API(sc->ucode_rev) > 1) { 6563 txmask = htole32(sc->txchainmask); 6564 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6565 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 6566 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 6567 sizeof txmask, 0); 6568 if (error != 0) { 6569 device_printf(sc->sc_dev, 6570 "%s: could not configure valid TX chains, " 6571 "error %d\n", __func__, error); 6572 return error; 6573 } 6574 } 6575 6576 /* Configure bluetooth coexistence. */ 6577 error = 0; 6578 6579 /* Configure bluetooth coexistence if needed. */ 6580 if (sc->base_params->bt_mode == IWN_BT_ADVANCED) 6581 error = iwn_send_advanced_btcoex(sc); 6582 if (sc->base_params->bt_mode == IWN_BT_SIMPLE) 6583 error = iwn_send_btcoex(sc); 6584 6585 if (error != 0) { 6586 device_printf(sc->sc_dev, 6587 "%s: could not configure bluetooth coexistence, error %d\n", 6588 __func__, error); 6589 return error; 6590 } 6591 6592 /* Set mode, channel, RX filter and enable RX. */ 6593 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6594 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 6595 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 6596 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); 6597 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); 6598 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 6599 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6600 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 6601 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6602 switch (ic->ic_opmode) { 6603 case IEEE80211_M_STA: 6604 sc->rxon->mode = IWN_MODE_STA; 6605 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 6606 break; 6607 case IEEE80211_M_MONITOR: 6608 sc->rxon->mode = IWN_MODE_MONITOR; 6609 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST | 6610 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 6611 break; 6612 default: 6613 /* Should not get there. */ 6614 break; 6615 } 6616 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 6617 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 6618 sc->rxon->ht_single_mask = 0xff; 6619 sc->rxon->ht_dual_mask = 0xff; 6620 sc->rxon->ht_triple_mask = 0xff; 6621 /* 6622 * In active association mode, ensure that 6623 * all the receive chains are enabled. 6624 * 6625 * Since we're not yet doing SMPS, don't allow the 6626 * number of idle RX chains to be less than the active 6627 * number. 6628 */ 6629 rxchain = 6630 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6631 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 6632 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 6633 sc->rxon->rxchain = htole16(rxchain); 6634 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6635 "%s: rxchainmask=0x%x, nrxchains=%d\n", 6636 __func__, 6637 sc->rxchainmask, 6638 sc->nrxchains); 6639 6640 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 6641 6642 DPRINTF(sc, IWN_DEBUG_RESET, 6643 "%s: setting configuration; flags=0x%08x\n", 6644 __func__, le32toh(sc->rxon->flags)); 6645 if (sc->sc_is_scanning) 6646 device_printf(sc->sc_dev, 6647 "%s: is_scanning set, before RXON\n", 6648 __func__); 6649 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0); 6650 if (error != 0) { 6651 device_printf(sc->sc_dev, "%s: RXON command failed\n", 6652 __func__); 6653 return error; 6654 } 6655 6656 if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { 6657 device_printf(sc->sc_dev, "%s: could not add broadcast node\n", 6658 __func__); 6659 return error; 6660 } 6661 6662 /* Configuration has changed, set TX power accordingly. */ 6663 if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) { 6664 device_printf(sc->sc_dev, "%s: could not set TX power\n", 6665 __func__); 6666 return error; 6667 } 6668 6669 if ((error = iwn_set_critical_temp(sc)) != 0) { 6670 device_printf(sc->sc_dev, 6671 "%s: could not set critical temperature\n", __func__); 6672 return error; 6673 } 6674 6675 /* Set power saving level to CAM during initialization. */ 6676 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 6677 device_printf(sc->sc_dev, 6678 "%s: could not set power saving level\n", __func__); 6679 return error; 6680 } 6681 6682 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6683 6684 return 0; 6685 } 6686 6687 static uint16_t 6688 iwn_get_active_dwell_time(struct iwn_softc *sc, 6689 struct ieee80211_channel *c, uint8_t n_probes) 6690 { 6691 /* No channel? Default to 2GHz settings */ 6692 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6693 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 6694 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 6695 } 6696 6697 /* 5GHz dwell time */ 6698 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 6699 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 6700 } 6701 6702 /* 6703 * Limit the total dwell time to 85% of the beacon interval. 6704 * 6705 * Returns the dwell time in milliseconds. 6706 */ 6707 static uint16_t 6708 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 6709 { 6710 struct ieee80211com *ic = &sc->sc_ic; 6711 struct ieee80211vap *vap = NULL; 6712 int bintval = 0; 6713 6714 /* bintval is in TU (1.024mS) */ 6715 if (! TAILQ_EMPTY(&ic->ic_vaps)) { 6716 vap = TAILQ_FIRST(&ic->ic_vaps); 6717 bintval = vap->iv_bss->ni_intval; 6718 } 6719 6720 /* 6721 * If it's non-zero, we should calculate the minimum of 6722 * it and the DWELL_BASE. 6723 * 6724 * XXX Yes, the math should take into account that bintval 6725 * is 1.024mS, not 1mS.. 6726 */ 6727 if (bintval > 0) { 6728 DPRINTF(sc, IWN_DEBUG_SCAN, 6729 "%s: bintval=%d\n", 6730 __func__, 6731 bintval); 6732 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 6733 } 6734 6735 /* No association context? Default */ 6736 return (IWN_PASSIVE_DWELL_BASE); 6737 } 6738 6739 static uint16_t 6740 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) 6741 { 6742 uint16_t passive; 6743 6744 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6745 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 6746 } else { 6747 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 6748 } 6749 6750 /* Clamp to the beacon interval if we're associated */ 6751 return (iwn_limit_dwell(sc, passive)); 6752 } 6753 6754 static int 6755 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, 6756 struct ieee80211_scan_state *ss, struct ieee80211_channel *c) 6757 { 6758 struct ieee80211com *ic = &sc->sc_ic; 6759 struct ieee80211_node *ni = vap->iv_bss; 6760 struct iwn_scan_hdr *hdr; 6761 struct iwn_cmd_data *tx; 6762 struct iwn_scan_essid *essid; 6763 struct iwn_scan_chan *chan; 6764 struct ieee80211_frame *wh; 6765 struct ieee80211_rateset *rs; 6766 uint8_t *buf, *frm; 6767 uint16_t rxchain; 6768 uint8_t txant; 6769 int buflen, error; 6770 int is_active; 6771 uint16_t dwell_active, dwell_passive; 6772 uint32_t extra, scan_service_time; 6773 6774 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6775 6776 /* 6777 * We are absolutely not allowed to send a scan command when another 6778 * scan command is pending. 6779 */ 6780 if (sc->sc_is_scanning) { 6781 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 6782 __func__); 6783 return (EAGAIN); 6784 } 6785 6786 /* Assign the scan channel */ 6787 c = ic->ic_curchan; 6788 6789 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6790 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 6791 if (buf == NULL) { 6792 device_printf(sc->sc_dev, 6793 "%s: could not allocate buffer for scan command\n", 6794 __func__); 6795 return ENOMEM; 6796 } 6797 hdr = (struct iwn_scan_hdr *)buf; 6798 /* 6799 * Move to the next channel if no frames are received within 10ms 6800 * after sending the probe request. 6801 */ 6802 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 6803 hdr->quiet_threshold = htole16(1); /* min # of packets */ 6804 /* 6805 * Max needs to be greater than active and passive and quiet! 6806 * It's also in microseconds! 6807 */ 6808 hdr->max_svc = htole32(250 * 1024); 6809 6810 /* 6811 * Reset scan: interval=100 6812 * Normal scan: interval=becaon interval 6813 * suspend_time: 100 (TU) 6814 * 6815 */ 6816 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; 6817 //scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); 6818 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ 6819 hdr->pause_svc = htole32(scan_service_time); 6820 6821 /* Select antennas for scanning. */ 6822 rxchain = 6823 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6824 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 6825 IWN_RXCHAIN_DRIVER_FORCE; 6826 if (IEEE80211_IS_CHAN_A(c) && 6827 sc->hw_type == IWN_HW_REV_TYPE_4965) { 6828 /* Ant A must be avoided in 5GHz because of an HW bug. */ 6829 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 6830 } else /* Use all available RX antennas. */ 6831 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 6832 hdr->rxchain = htole16(rxchain); 6833 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 6834 6835 tx = (struct iwn_cmd_data *)(hdr + 1); 6836 tx->flags = htole32(IWN_TX_AUTO_SEQ); 6837 tx->id = sc->broadcast_id; 6838 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 6839 6840 if (IEEE80211_IS_CHAN_5GHZ(c)) { 6841 /* Send probe requests at 6Mbps. */ 6842 tx->rate = htole32(0xd); 6843 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 6844 } else { 6845 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 6846 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 6847 sc->rxon->associd && sc->rxon->chan > 14) 6848 tx->rate = htole32(0xd); 6849 else { 6850 /* Send probe requests at 1Mbps. */ 6851 tx->rate = htole32(10 | IWN_RFLAG_CCK); 6852 } 6853 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 6854 } 6855 /* Use the first valid TX antenna. */ 6856 txant = IWN_LSB(sc->txchainmask); 6857 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 6858 6859 /* 6860 * Only do active scanning if we're announcing a probe request 6861 * for a given SSID (or more, if we ever add it to the driver.) 6862 */ 6863 is_active = 0; 6864 6865 /* 6866 * If we're scanning for a specific SSID, add it to the command. 6867 * 6868 * XXX maybe look at adding support for scanning multiple SSIDs? 6869 */ 6870 essid = (struct iwn_scan_essid *)(tx + 1); 6871 if (ss != NULL) { 6872 if (ss->ss_ssid[0].len != 0) { 6873 essid[0].id = IEEE80211_ELEMID_SSID; 6874 essid[0].len = ss->ss_ssid[0].len; 6875 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 6876 } 6877 6878 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", 6879 __func__, 6880 ss->ss_ssid[0].len, 6881 ss->ss_ssid[0].len, 6882 ss->ss_ssid[0].ssid); 6883 6884 if (ss->ss_nssid > 0) 6885 is_active = 1; 6886 } 6887 6888 /* 6889 * Build a probe request frame. Most of the following code is a 6890 * copy & paste of what is done in net80211. 6891 */ 6892 wh = (struct ieee80211_frame *)(essid + 20); 6893 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 6894 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 6895 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 6896 IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr); 6897 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp)); 6898 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr); 6899 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 6900 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 6901 6902 frm = (uint8_t *)(wh + 1); 6903 frm = ieee80211_add_ssid(frm, NULL, 0); 6904 frm = ieee80211_add_rates(frm, rs); 6905 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 6906 frm = ieee80211_add_xrates(frm, rs); 6907 if (ic->ic_htcaps & IEEE80211_HTC_HT) 6908 frm = ieee80211_add_htcap(frm, ni); 6909 6910 /* Set length of probe request. */ 6911 tx->len = htole16(frm - (uint8_t *)wh); 6912 6913 /* 6914 * If active scanning is requested but a certain channel is 6915 * marked passive, we can do active scanning if we detect 6916 * transmissions. 6917 * 6918 * There is an issue with some firmware versions that triggers 6919 * a sysassert on a "good CRC threshold" of zero (== disabled), 6920 * on a radar channel even though this means that we should NOT 6921 * send probes. 6922 * 6923 * The "good CRC threshold" is the number of frames that we 6924 * need to receive during our dwell time on a channel before 6925 * sending out probes -- setting this to a huge value will 6926 * mean we never reach it, but at the same time work around 6927 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER 6928 * here instead of IWL_GOOD_CRC_TH_DISABLED. 6929 * 6930 * This was fixed in later versions along with some other 6931 * scan changes, and the threshold behaves as a flag in those 6932 * versions. 6933 */ 6934 6935 /* 6936 * If we're doing active scanning, set the crc_threshold 6937 * to a suitable value. This is different to active veruss 6938 * passive scanning depending upon the channel flags; the 6939 * firmware will obey that particular check for us. 6940 */ 6941 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 6942 hdr->crc_threshold = is_active ? 6943 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 6944 else 6945 hdr->crc_threshold = is_active ? 6946 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 6947 6948 chan = (struct iwn_scan_chan *)frm; 6949 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 6950 chan->flags = 0; 6951 if (ss->ss_nssid > 0) 6952 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 6953 chan->dsp_gain = 0x6e; 6954 6955 /* 6956 * Set the passive/active flag depending upon the channel mode. 6957 * XXX TODO: take the is_active flag into account as well? 6958 */ 6959 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 6960 chan->flags |= htole32(IWN_CHAN_PASSIVE); 6961 else 6962 chan->flags |= htole32(IWN_CHAN_ACTIVE); 6963 6964 /* 6965 * Calculate the active/passive dwell times. 6966 */ 6967 6968 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); 6969 dwell_passive = iwn_get_passive_dwell_time(sc, c); 6970 6971 /* Make sure they're valid */ 6972 if (dwell_passive <= dwell_active) 6973 dwell_passive = dwell_active + 1; 6974 6975 chan->active = htole16(dwell_active); 6976 chan->passive = htole16(dwell_passive); 6977 6978 if (IEEE80211_IS_CHAN_5GHZ(c)) 6979 chan->rf_gain = 0x3b; 6980 else 6981 chan->rf_gain = 0x28; 6982 6983 DPRINTF(sc, IWN_DEBUG_STATE, 6984 "%s: chan %u flags 0x%x rf_gain 0x%x " 6985 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " 6986 "isactive=%d numssid=%d\n", __func__, 6987 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 6988 dwell_active, dwell_passive, scan_service_time, 6989 hdr->crc_threshold, is_active, ss->ss_nssid); 6990 6991 hdr->nchan++; 6992 chan++; 6993 buflen = (uint8_t *)chan - buf; 6994 hdr->len = htole16(buflen); 6995 6996 if (sc->sc_is_scanning) { 6997 device_printf(sc->sc_dev, 6998 "%s: called with is_scanning set!\n", 6999 __func__); 7000 } 7001 sc->sc_is_scanning = 1; 7002 7003 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 7004 hdr->nchan); 7005 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 7006 free(buf, M_DEVBUF); 7007 7008 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7009 7010 return error; 7011 } 7012 7013 static int 7014 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 7015 { 7016 struct iwn_ops *ops = &sc->ops; 7017 struct ieee80211com *ic = &sc->sc_ic; 7018 struct ieee80211_node *ni = vap->iv_bss; 7019 int error; 7020 7021 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7022 7023 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7024 /* Update adapter configuration. */ 7025 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7026 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7027 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7028 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7029 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7030 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7031 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7032 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7033 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7034 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7035 sc->rxon->cck_mask = 0; 7036 sc->rxon->ofdm_mask = 0x15; 7037 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7038 sc->rxon->cck_mask = 0x03; 7039 sc->rxon->ofdm_mask = 0; 7040 } else { 7041 /* Assume 802.11b/g. */ 7042 sc->rxon->cck_mask = 0x03; 7043 sc->rxon->ofdm_mask = 0x15; 7044 } 7045 7046 /* try HT */ 7047 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 7048 7049 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 7050 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 7051 sc->rxon->ofdm_mask); 7052 if (sc->sc_is_scanning) 7053 device_printf(sc->sc_dev, 7054 "%s: is_scanning set, before RXON\n", 7055 __func__); 7056 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 7057 if (error != 0) { 7058 device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n", 7059 __func__, error); 7060 return error; 7061 } 7062 7063 /* Configuration has changed, set TX power accordingly. */ 7064 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 7065 device_printf(sc->sc_dev, 7066 "%s: could not set TX power, error %d\n", __func__, error); 7067 return error; 7068 } 7069 /* 7070 * Reconfiguring RXON clears the firmware nodes table so we must 7071 * add the broadcast node again. 7072 */ 7073 if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { 7074 device_printf(sc->sc_dev, 7075 "%s: could not add broadcast node, error %d\n", __func__, 7076 error); 7077 return error; 7078 } 7079 7080 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7081 7082 return 0; 7083 } 7084 7085 static int 7086 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 7087 { 7088 struct iwn_ops *ops = &sc->ops; 7089 struct ieee80211com *ic = &sc->sc_ic; 7090 struct ieee80211_node *ni = vap->iv_bss; 7091 struct iwn_node_info node; 7092 int error; 7093 7094 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7095 7096 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7097 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7098 /* Link LED blinks while monitoring. */ 7099 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 7100 return 0; 7101 } 7102 if ((error = iwn_set_timing(sc, ni)) != 0) { 7103 device_printf(sc->sc_dev, 7104 "%s: could not set timing, error %d\n", __func__, error); 7105 return error; 7106 } 7107 7108 /* Update adapter configuration. */ 7109 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7110 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 7111 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7112 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7113 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7114 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7115 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7116 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7117 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7118 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7119 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7120 sc->rxon->cck_mask = 0; 7121 sc->rxon->ofdm_mask = 0x15; 7122 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7123 sc->rxon->cck_mask = 0x03; 7124 sc->rxon->ofdm_mask = 0; 7125 } else { 7126 /* Assume 802.11b/g. */ 7127 sc->rxon->cck_mask = 0x0f; 7128 sc->rxon->ofdm_mask = 0x15; 7129 } 7130 /* try HT */ 7131 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan)); 7132 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 7133 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", 7134 sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode); 7135 if (sc->sc_is_scanning) 7136 device_printf(sc->sc_dev, 7137 "%s: is_scanning set, before RXON\n", 7138 __func__); 7139 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 7140 if (error != 0) { 7141 device_printf(sc->sc_dev, 7142 "%s: could not update configuration, error %d\n", __func__, 7143 error); 7144 return error; 7145 } 7146 7147 /* Configuration has changed, set TX power accordingly. */ 7148 if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) { 7149 device_printf(sc->sc_dev, 7150 "%s: could not set TX power, error %d\n", __func__, error); 7151 return error; 7152 } 7153 7154 /* Fake a join to initialize the TX rate. */ 7155 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 7156 iwn_newassoc(ni, 1); 7157 7158 /* Add BSS node. */ 7159 memset(&node, 0, sizeof node); 7160 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 7161 node.id = IWN_ID_BSS; 7162 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 7163 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 7164 case IEEE80211_HTCAP_SMPS_ENA: 7165 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 7166 break; 7167 case IEEE80211_HTCAP_SMPS_DYNAMIC: 7168 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 7169 break; 7170 } 7171 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 7172 IWN_AMDPU_DENSITY(5)); /* 4us */ 7173 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 7174 node.htflags |= htole32(IWN_NODE_HT40); 7175 } 7176 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 7177 error = ops->add_node(sc, &node, 1); 7178 if (error != 0) { 7179 device_printf(sc->sc_dev, 7180 "%s: could not add BSS node, error %d\n", __func__, error); 7181 return error; 7182 } 7183 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 7184 __func__, node.id); 7185 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 7186 device_printf(sc->sc_dev, 7187 "%s: could not setup link quality for node %d, error %d\n", 7188 __func__, node.id, error); 7189 return error; 7190 } 7191 7192 if ((error = iwn_init_sensitivity(sc)) != 0) { 7193 device_printf(sc->sc_dev, 7194 "%s: could not set sensitivity, error %d\n", __func__, 7195 error); 7196 return error; 7197 } 7198 /* Start periodic calibration timer. */ 7199 sc->calib.state = IWN_CALIB_STATE_ASSOC; 7200 sc->calib_cnt = 0; 7201 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 7202 sc); 7203 7204 /* Link LED always on while associated. */ 7205 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7206 7207 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7208 7209 return 0; 7210 } 7211 7212 /* 7213 * This function is called by upper layer when an ADDBA request is received 7214 * from another STA and before the ADDBA response is sent. 7215 */ 7216 static int 7217 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 7218 int baparamset, int batimeout, int baseqctl) 7219 { 7220 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 7221 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7222 struct iwn_ops *ops = &sc->ops; 7223 struct iwn_node *wn = (void *)ni; 7224 struct iwn_node_info node; 7225 uint16_t ssn; 7226 uint8_t tid; 7227 int error; 7228 7229 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7230 7231 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 7232 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 7233 7234 memset(&node, 0, sizeof node); 7235 node.id = wn->id; 7236 node.control = IWN_NODE_UPDATE; 7237 node.flags = IWN_FLAG_SET_ADDBA; 7238 node.addba_tid = tid; 7239 node.addba_ssn = htole16(ssn); 7240 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 7241 wn->id, tid, ssn); 7242 error = ops->add_node(sc, &node, 1); 7243 if (error != 0) 7244 return error; 7245 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 7246 #undef MS 7247 } 7248 7249 /* 7250 * This function is called by upper layer on teardown of an HT-immediate 7251 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 7252 */ 7253 static void 7254 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 7255 { 7256 struct ieee80211com *ic = ni->ni_ic; 7257 struct iwn_softc *sc = ic->ic_softc; 7258 struct iwn_ops *ops = &sc->ops; 7259 struct iwn_node *wn = (void *)ni; 7260 struct iwn_node_info node; 7261 uint8_t tid; 7262 7263 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7264 7265 /* XXX: tid as an argument */ 7266 for (tid = 0; tid < WME_NUM_TID; tid++) { 7267 if (&ni->ni_rx_ampdu[tid] == rap) 7268 break; 7269 } 7270 7271 memset(&node, 0, sizeof node); 7272 node.id = wn->id; 7273 node.control = IWN_NODE_UPDATE; 7274 node.flags = IWN_FLAG_SET_DELBA; 7275 node.delba_tid = tid; 7276 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 7277 (void)ops->add_node(sc, &node, 1); 7278 sc->sc_ampdu_rx_stop(ni, rap); 7279 } 7280 7281 static int 7282 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7283 int dialogtoken, int baparamset, int batimeout) 7284 { 7285 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7286 int qid; 7287 7288 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7289 7290 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 7291 if (sc->qid2tap[qid] == NULL) 7292 break; 7293 } 7294 if (qid == sc->ntxqs) { 7295 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 7296 __func__); 7297 return 0; 7298 } 7299 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 7300 if (tap->txa_private == NULL) { 7301 device_printf(sc->sc_dev, 7302 "%s: failed to alloc TX aggregation structure\n", __func__); 7303 return 0; 7304 } 7305 sc->qid2tap[qid] = tap; 7306 *(int *)tap->txa_private = qid; 7307 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 7308 batimeout); 7309 } 7310 7311 static int 7312 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7313 int code, int baparamset, int batimeout) 7314 { 7315 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7316 int qid = *(int *)tap->txa_private; 7317 uint8_t tid = tap->txa_tid; 7318 int ret; 7319 7320 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7321 7322 if (code == IEEE80211_STATUS_SUCCESS) { 7323 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 7324 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 7325 if (ret != 1) 7326 return ret; 7327 } else { 7328 sc->qid2tap[qid] = NULL; 7329 free(tap->txa_private, M_DEVBUF); 7330 tap->txa_private = NULL; 7331 } 7332 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 7333 } 7334 7335 /* 7336 * This function is called by upper layer when an ADDBA response is received 7337 * from another STA. 7338 */ 7339 static int 7340 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 7341 uint8_t tid) 7342 { 7343 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 7344 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7345 struct iwn_ops *ops = &sc->ops; 7346 struct iwn_node *wn = (void *)ni; 7347 struct iwn_node_info node; 7348 int error, qid; 7349 7350 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7351 7352 /* Enable TX for the specified RA/TID. */ 7353 wn->disable_tid &= ~(1 << tid); 7354 memset(&node, 0, sizeof node); 7355 node.id = wn->id; 7356 node.control = IWN_NODE_UPDATE; 7357 node.flags = IWN_FLAG_SET_DISABLE_TID; 7358 node.disable_tid = htole16(wn->disable_tid); 7359 error = ops->add_node(sc, &node, 1); 7360 if (error != 0) 7361 return 0; 7362 7363 if ((error = iwn_nic_lock(sc)) != 0) 7364 return 0; 7365 qid = *(int *)tap->txa_private; 7366 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 7367 __func__, wn->id, tid, tap->txa_start, qid); 7368 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 7369 iwn_nic_unlock(sc); 7370 7371 iwn_set_link_quality(sc, ni); 7372 return 1; 7373 } 7374 7375 static void 7376 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 7377 { 7378 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7379 struct iwn_ops *ops = &sc->ops; 7380 uint8_t tid = tap->txa_tid; 7381 int qid; 7382 7383 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7384 7385 sc->sc_addba_stop(ni, tap); 7386 7387 if (tap->txa_private == NULL) 7388 return; 7389 7390 qid = *(int *)tap->txa_private; 7391 if (sc->txq[qid].queued != 0) 7392 return; 7393 if (iwn_nic_lock(sc) != 0) 7394 return; 7395 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 7396 iwn_nic_unlock(sc); 7397 sc->qid2tap[qid] = NULL; 7398 free(tap->txa_private, M_DEVBUF); 7399 tap->txa_private = NULL; 7400 } 7401 7402 static void 7403 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7404 int qid, uint8_t tid, uint16_t ssn) 7405 { 7406 struct iwn_node *wn = (void *)ni; 7407 7408 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7409 7410 /* Stop TX scheduler while we're changing its configuration. */ 7411 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7412 IWN4965_TXQ_STATUS_CHGACT); 7413 7414 /* Assign RA/TID translation to the queue. */ 7415 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 7416 wn->id << 4 | tid); 7417 7418 /* Enable chain-building mode for the queue. */ 7419 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 7420 7421 /* Set starting sequence number from the ADDBA request. */ 7422 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7423 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7424 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7425 7426 /* Set scheduler window size. */ 7427 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 7428 IWN_SCHED_WINSZ); 7429 /* Set scheduler frame limit. */ 7430 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7431 IWN_SCHED_LIMIT << 16); 7432 7433 /* Enable interrupts for the queue. */ 7434 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7435 7436 /* Mark the queue as active. */ 7437 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7438 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 7439 iwn_tid2fifo[tid] << 1); 7440 } 7441 7442 static void 7443 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7444 { 7445 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7446 7447 /* Stop TX scheduler while we're changing its configuration. */ 7448 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7449 IWN4965_TXQ_STATUS_CHGACT); 7450 7451 /* Set starting sequence number from the ADDBA request. */ 7452 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7453 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7454 7455 /* Disable interrupts for the queue. */ 7456 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7457 7458 /* Mark the queue as inactive. */ 7459 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7460 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 7461 } 7462 7463 static void 7464 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7465 int qid, uint8_t tid, uint16_t ssn) 7466 { 7467 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7468 7469 struct iwn_node *wn = (void *)ni; 7470 7471 /* Stop TX scheduler while we're changing its configuration. */ 7472 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7473 IWN5000_TXQ_STATUS_CHGACT); 7474 7475 /* Assign RA/TID translation to the queue. */ 7476 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 7477 wn->id << 4 | tid); 7478 7479 /* Enable chain-building mode for the queue. */ 7480 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 7481 7482 /* Enable aggregation for the queue. */ 7483 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7484 7485 /* Set starting sequence number from the ADDBA request. */ 7486 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7487 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7488 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7489 7490 /* Set scheduler window size and frame limit. */ 7491 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7492 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7493 7494 /* Enable interrupts for the queue. */ 7495 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7496 7497 /* Mark the queue as active. */ 7498 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7499 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 7500 } 7501 7502 static void 7503 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7504 { 7505 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7506 7507 /* Stop TX scheduler while we're changing its configuration. */ 7508 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7509 IWN5000_TXQ_STATUS_CHGACT); 7510 7511 /* Disable aggregation for the queue. */ 7512 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7513 7514 /* Set starting sequence number from the ADDBA request. */ 7515 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7516 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7517 7518 /* Disable interrupts for the queue. */ 7519 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7520 7521 /* Mark the queue as inactive. */ 7522 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7523 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 7524 } 7525 7526 /* 7527 * Query calibration tables from the initialization firmware. We do this 7528 * only once at first boot. Called from a process context. 7529 */ 7530 static int 7531 iwn5000_query_calibration(struct iwn_softc *sc) 7532 { 7533 struct iwn5000_calib_config cmd; 7534 int error; 7535 7536 memset(&cmd, 0, sizeof cmd); 7537 cmd.ucode.once.enable = htole32(0xffffffff); 7538 cmd.ucode.once.start = htole32(0xffffffff); 7539 cmd.ucode.once.send = htole32(0xffffffff); 7540 cmd.ucode.flags = htole32(0xffffffff); 7541 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 7542 __func__); 7543 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 7544 if (error != 0) 7545 return error; 7546 7547 /* Wait at most two seconds for calibration to complete. */ 7548 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 7549 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 7550 return error; 7551 } 7552 7553 /* 7554 * Send calibration results to the runtime firmware. These results were 7555 * obtained on first boot from the initialization firmware. 7556 */ 7557 static int 7558 iwn5000_send_calibration(struct iwn_softc *sc) 7559 { 7560 int idx, error; 7561 7562 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { 7563 if (!(sc->base_params->calib_need & (1<<idx))) { 7564 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7565 "No need of calib %d\n", 7566 idx); 7567 continue; /* no need for this calib */ 7568 } 7569 if (sc->calibcmd[idx].buf == NULL) { 7570 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7571 "Need calib idx : %d but no available data\n", 7572 idx); 7573 continue; 7574 } 7575 7576 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7577 "send calibration result idx=%d len=%d\n", idx, 7578 sc->calibcmd[idx].len); 7579 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 7580 sc->calibcmd[idx].len, 0); 7581 if (error != 0) { 7582 device_printf(sc->sc_dev, 7583 "%s: could not send calibration result, error %d\n", 7584 __func__, error); 7585 return error; 7586 } 7587 } 7588 return 0; 7589 } 7590 7591 static int 7592 iwn5000_send_wimax_coex(struct iwn_softc *sc) 7593 { 7594 struct iwn5000_wimax_coex wimax; 7595 7596 #if 0 7597 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 7598 /* Enable WiMAX coexistence for combo adapters. */ 7599 wimax.flags = 7600 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 7601 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 7602 IWN_WIMAX_COEX_STA_TABLE_VALID | 7603 IWN_WIMAX_COEX_ENABLE; 7604 memcpy(wimax.events, iwn6050_wimax_events, 7605 sizeof iwn6050_wimax_events); 7606 } else 7607 #endif 7608 { 7609 /* Disable WiMAX coexistence. */ 7610 wimax.flags = 0; 7611 memset(wimax.events, 0, sizeof wimax.events); 7612 } 7613 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 7614 __func__); 7615 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 7616 } 7617 7618 static int 7619 iwn5000_crystal_calib(struct iwn_softc *sc) 7620 { 7621 struct iwn5000_phy_calib_crystal cmd; 7622 7623 memset(&cmd, 0, sizeof cmd); 7624 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 7625 cmd.ngroups = 1; 7626 cmd.isvalid = 1; 7627 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 7628 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 7629 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 7630 cmd.cap_pin[0], cmd.cap_pin[1]); 7631 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7632 } 7633 7634 static int 7635 iwn5000_temp_offset_calib(struct iwn_softc *sc) 7636 { 7637 struct iwn5000_phy_calib_temp_offset cmd; 7638 7639 memset(&cmd, 0, sizeof cmd); 7640 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7641 cmd.ngroups = 1; 7642 cmd.isvalid = 1; 7643 if (sc->eeprom_temp != 0) 7644 cmd.offset = htole16(sc->eeprom_temp); 7645 else 7646 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 7647 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 7648 le16toh(cmd.offset)); 7649 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7650 } 7651 7652 static int 7653 iwn5000_temp_offset_calibv2(struct iwn_softc *sc) 7654 { 7655 struct iwn5000_phy_calib_temp_offsetv2 cmd; 7656 7657 memset(&cmd, 0, sizeof cmd); 7658 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7659 cmd.ngroups = 1; 7660 cmd.isvalid = 1; 7661 if (sc->eeprom_temp != 0) { 7662 cmd.offset_low = htole16(sc->eeprom_temp); 7663 cmd.offset_high = htole16(sc->eeprom_temp_high); 7664 } else { 7665 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 7666 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 7667 } 7668 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 7669 7670 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7671 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", 7672 le16toh(cmd.offset_low), 7673 le16toh(cmd.offset_high), 7674 le16toh(cmd.burnt_voltage_ref)); 7675 7676 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7677 } 7678 7679 /* 7680 * This function is called after the runtime firmware notifies us of its 7681 * readiness (called in a process context). 7682 */ 7683 static int 7684 iwn4965_post_alive(struct iwn_softc *sc) 7685 { 7686 int error, qid; 7687 7688 if ((error = iwn_nic_lock(sc)) != 0) 7689 return error; 7690 7691 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7692 7693 /* Clear TX scheduler state in SRAM. */ 7694 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7695 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 7696 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 7697 7698 /* Set physical address of TX scheduler rings (1KB aligned). */ 7699 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7700 7701 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7702 7703 /* Disable chain mode for all our 16 queues. */ 7704 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 7705 7706 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 7707 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 7708 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7709 7710 /* Set scheduler window size. */ 7711 iwn_mem_write(sc, sc->sched_base + 7712 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 7713 /* Set scheduler frame limit. */ 7714 iwn_mem_write(sc, sc->sched_base + 7715 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7716 IWN_SCHED_LIMIT << 16); 7717 } 7718 7719 /* Enable interrupts for all our 16 queues. */ 7720 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 7721 /* Identify TX FIFO rings (0-7). */ 7722 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 7723 7724 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7725 for (qid = 0; qid < 7; qid++) { 7726 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 7727 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7728 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 7729 } 7730 iwn_nic_unlock(sc); 7731 return 0; 7732 } 7733 7734 /* 7735 * This function is called after the initialization or runtime firmware 7736 * notifies us of its readiness (called in a process context). 7737 */ 7738 static int 7739 iwn5000_post_alive(struct iwn_softc *sc) 7740 { 7741 int error, qid; 7742 7743 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7744 7745 /* Switch to using ICT interrupt mode. */ 7746 iwn5000_ict_reset(sc); 7747 7748 if ((error = iwn_nic_lock(sc)) != 0){ 7749 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 7750 return error; 7751 } 7752 7753 /* Clear TX scheduler state in SRAM. */ 7754 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7755 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 7756 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 7757 7758 /* Set physical address of TX scheduler rings (1KB aligned). */ 7759 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7760 7761 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7762 7763 /* Enable chain mode for all queues, except command queue. */ 7764 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 7765 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); 7766 else 7767 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 7768 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 7769 7770 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 7771 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 7772 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7773 7774 iwn_mem_write(sc, sc->sched_base + 7775 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 7776 /* Set scheduler window size and frame limit. */ 7777 iwn_mem_write(sc, sc->sched_base + 7778 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7779 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7780 } 7781 7782 /* Enable interrupts for all our 20 queues. */ 7783 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 7784 /* Identify TX FIFO rings (0-7). */ 7785 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 7786 7787 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7788 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { 7789 /* Mark TX rings as active. */ 7790 for (qid = 0; qid < 11; qid++) { 7791 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; 7792 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7793 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7794 } 7795 } else { 7796 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7797 for (qid = 0; qid < 7; qid++) { 7798 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 7799 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7800 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7801 } 7802 } 7803 iwn_nic_unlock(sc); 7804 7805 /* Configure WiMAX coexistence for combo adapters. */ 7806 error = iwn5000_send_wimax_coex(sc); 7807 if (error != 0) { 7808 device_printf(sc->sc_dev, 7809 "%s: could not configure WiMAX coexistence, error %d\n", 7810 __func__, error); 7811 return error; 7812 } 7813 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 7814 /* Perform crystal calibration. */ 7815 error = iwn5000_crystal_calib(sc); 7816 if (error != 0) { 7817 device_printf(sc->sc_dev, 7818 "%s: crystal calibration failed, error %d\n", 7819 __func__, error); 7820 return error; 7821 } 7822 } 7823 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 7824 /* Query calibration from the initialization firmware. */ 7825 if ((error = iwn5000_query_calibration(sc)) != 0) { 7826 device_printf(sc->sc_dev, 7827 "%s: could not query calibration, error %d\n", 7828 __func__, error); 7829 return error; 7830 } 7831 /* 7832 * We have the calibration results now, reboot with the 7833 * runtime firmware (call ourselves recursively!) 7834 */ 7835 iwn_hw_stop(sc); 7836 error = iwn_hw_init(sc); 7837 } else { 7838 /* Send calibration results to runtime firmware. */ 7839 error = iwn5000_send_calibration(sc); 7840 } 7841 7842 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7843 7844 return error; 7845 } 7846 7847 /* 7848 * The firmware boot code is small and is intended to be copied directly into 7849 * the NIC internal memory (no DMA transfer). 7850 */ 7851 static int 7852 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 7853 { 7854 int error, ntries; 7855 7856 size /= sizeof (uint32_t); 7857 7858 if ((error = iwn_nic_lock(sc)) != 0) 7859 return error; 7860 7861 /* Copy microcode image into NIC memory. */ 7862 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 7863 (const uint32_t *)ucode, size); 7864 7865 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 7866 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 7867 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 7868 7869 /* Start boot load now. */ 7870 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 7871 7872 /* Wait for transfer to complete. */ 7873 for (ntries = 0; ntries < 1000; ntries++) { 7874 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 7875 IWN_BSM_WR_CTRL_START)) 7876 break; 7877 DELAY(10); 7878 } 7879 if (ntries == 1000) { 7880 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 7881 __func__); 7882 iwn_nic_unlock(sc); 7883 return ETIMEDOUT; 7884 } 7885 7886 /* Enable boot after power up. */ 7887 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 7888 7889 iwn_nic_unlock(sc); 7890 return 0; 7891 } 7892 7893 static int 7894 iwn4965_load_firmware(struct iwn_softc *sc) 7895 { 7896 struct iwn_fw_info *fw = &sc->fw; 7897 struct iwn_dma_info *dma = &sc->fw_dma; 7898 int error; 7899 7900 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 7901 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 7902 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7903 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 7904 fw->init.text, fw->init.textsz); 7905 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7906 7907 /* Tell adapter where to find initialization sections. */ 7908 if ((error = iwn_nic_lock(sc)) != 0) 7909 return error; 7910 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 7911 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 7912 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 7913 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 7914 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 7915 iwn_nic_unlock(sc); 7916 7917 /* Load firmware boot code. */ 7918 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 7919 if (error != 0) { 7920 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 7921 __func__); 7922 return error; 7923 } 7924 /* Now press "execute". */ 7925 IWN_WRITE(sc, IWN_RESET, 0); 7926 7927 /* Wait at most one second for first alive notification. */ 7928 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 7929 device_printf(sc->sc_dev, 7930 "%s: timeout waiting for adapter to initialize, error %d\n", 7931 __func__, error); 7932 return error; 7933 } 7934 7935 /* Retrieve current temperature for initial TX power calibration. */ 7936 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 7937 sc->temp = iwn4965_get_temperature(sc); 7938 7939 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 7940 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 7941 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7942 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 7943 fw->main.text, fw->main.textsz); 7944 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7945 7946 /* Tell adapter where to find runtime sections. */ 7947 if ((error = iwn_nic_lock(sc)) != 0) 7948 return error; 7949 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 7950 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 7951 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 7952 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 7953 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 7954 IWN_FW_UPDATED | fw->main.textsz); 7955 iwn_nic_unlock(sc); 7956 7957 return 0; 7958 } 7959 7960 static int 7961 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 7962 const uint8_t *section, int size) 7963 { 7964 struct iwn_dma_info *dma = &sc->fw_dma; 7965 int error; 7966 7967 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7968 7969 /* Copy firmware section into pre-allocated DMA-safe memory. */ 7970 memcpy(dma->vaddr, section, size); 7971 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 7972 7973 if ((error = iwn_nic_lock(sc)) != 0) 7974 return error; 7975 7976 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 7977 IWN_FH_TX_CONFIG_DMA_PAUSE); 7978 7979 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 7980 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 7981 IWN_LOADDR(dma->paddr)); 7982 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 7983 IWN_HIADDR(dma->paddr) << 28 | size); 7984 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 7985 IWN_FH_TXBUF_STATUS_TBNUM(1) | 7986 IWN_FH_TXBUF_STATUS_TBIDX(1) | 7987 IWN_FH_TXBUF_STATUS_TFBD_VALID); 7988 7989 /* Kick Flow Handler to start DMA transfer. */ 7990 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 7991 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 7992 7993 iwn_nic_unlock(sc); 7994 7995 /* Wait at most five seconds for FH DMA transfer to complete. */ 7996 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 7997 } 7998 7999 static int 8000 iwn5000_load_firmware(struct iwn_softc *sc) 8001 { 8002 struct iwn_fw_part *fw; 8003 int error; 8004 8005 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8006 8007 /* Load the initialization firmware on first boot only. */ 8008 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 8009 &sc->fw.main : &sc->fw.init; 8010 8011 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 8012 fw->text, fw->textsz); 8013 if (error != 0) { 8014 device_printf(sc->sc_dev, 8015 "%s: could not load firmware %s section, error %d\n", 8016 __func__, ".text", error); 8017 return error; 8018 } 8019 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 8020 fw->data, fw->datasz); 8021 if (error != 0) { 8022 device_printf(sc->sc_dev, 8023 "%s: could not load firmware %s section, error %d\n", 8024 __func__, ".data", error); 8025 return error; 8026 } 8027 8028 /* Now press "execute". */ 8029 IWN_WRITE(sc, IWN_RESET, 0); 8030 return 0; 8031 } 8032 8033 /* 8034 * Extract text and data sections from a legacy firmware image. 8035 */ 8036 static int 8037 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 8038 { 8039 const uint32_t *ptr; 8040 size_t hdrlen = 24; 8041 uint32_t rev; 8042 8043 ptr = (const uint32_t *)fw->data; 8044 rev = le32toh(*ptr++); 8045 8046 sc->ucode_rev = rev; 8047 8048 /* Check firmware API version. */ 8049 if (IWN_FW_API(rev) <= 1) { 8050 device_printf(sc->sc_dev, 8051 "%s: bad firmware, need API version >=2\n", __func__); 8052 return EINVAL; 8053 } 8054 if (IWN_FW_API(rev) >= 3) { 8055 /* Skip build number (version 2 header). */ 8056 hdrlen += 4; 8057 ptr++; 8058 } 8059 if (fw->size < hdrlen) { 8060 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8061 __func__, fw->size); 8062 return EINVAL; 8063 } 8064 fw->main.textsz = le32toh(*ptr++); 8065 fw->main.datasz = le32toh(*ptr++); 8066 fw->init.textsz = le32toh(*ptr++); 8067 fw->init.datasz = le32toh(*ptr++); 8068 fw->boot.textsz = le32toh(*ptr++); 8069 8070 /* Check that all firmware sections fit. */ 8071 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 8072 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 8073 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8074 __func__, fw->size); 8075 return EINVAL; 8076 } 8077 8078 /* Get pointers to firmware sections. */ 8079 fw->main.text = (const uint8_t *)ptr; 8080 fw->main.data = fw->main.text + fw->main.textsz; 8081 fw->init.text = fw->main.data + fw->main.datasz; 8082 fw->init.data = fw->init.text + fw->init.textsz; 8083 fw->boot.text = fw->init.data + fw->init.datasz; 8084 return 0; 8085 } 8086 8087 /* 8088 * Extract text and data sections from a TLV firmware image. 8089 */ 8090 static int 8091 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 8092 uint16_t alt) 8093 { 8094 const struct iwn_fw_tlv_hdr *hdr; 8095 const struct iwn_fw_tlv *tlv; 8096 const uint8_t *ptr, *end; 8097 uint64_t altmask; 8098 uint32_t len, tmp; 8099 8100 if (fw->size < sizeof (*hdr)) { 8101 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8102 __func__, fw->size); 8103 return EINVAL; 8104 } 8105 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 8106 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 8107 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 8108 __func__, le32toh(hdr->signature)); 8109 return EINVAL; 8110 } 8111 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 8112 le32toh(hdr->build)); 8113 sc->ucode_rev = le32toh(hdr->rev); 8114 8115 /* 8116 * Select the closest supported alternative that is less than 8117 * or equal to the specified one. 8118 */ 8119 altmask = le64toh(hdr->altmask); 8120 while (alt > 0 && !(altmask & (1ULL << alt))) 8121 alt--; /* Downgrade. */ 8122 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 8123 8124 ptr = (const uint8_t *)(hdr + 1); 8125 end = (const uint8_t *)(fw->data + fw->size); 8126 8127 /* Parse type-length-value fields. */ 8128 while (ptr + sizeof (*tlv) <= end) { 8129 tlv = (const struct iwn_fw_tlv *)ptr; 8130 len = le32toh(tlv->len); 8131 8132 ptr += sizeof (*tlv); 8133 if (ptr + len > end) { 8134 device_printf(sc->sc_dev, 8135 "%s: firmware too short: %zu bytes\n", __func__, 8136 fw->size); 8137 return EINVAL; 8138 } 8139 /* Skip other alternatives. */ 8140 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 8141 goto next; 8142 8143 switch (le16toh(tlv->type)) { 8144 case IWN_FW_TLV_MAIN_TEXT: 8145 fw->main.text = ptr; 8146 fw->main.textsz = len; 8147 break; 8148 case IWN_FW_TLV_MAIN_DATA: 8149 fw->main.data = ptr; 8150 fw->main.datasz = len; 8151 break; 8152 case IWN_FW_TLV_INIT_TEXT: 8153 fw->init.text = ptr; 8154 fw->init.textsz = len; 8155 break; 8156 case IWN_FW_TLV_INIT_DATA: 8157 fw->init.data = ptr; 8158 fw->init.datasz = len; 8159 break; 8160 case IWN_FW_TLV_BOOT_TEXT: 8161 fw->boot.text = ptr; 8162 fw->boot.textsz = len; 8163 break; 8164 case IWN_FW_TLV_ENH_SENS: 8165 if (!len) 8166 sc->sc_flags |= IWN_FLAG_ENH_SENS; 8167 break; 8168 case IWN_FW_TLV_PHY_CALIB: 8169 tmp = le32toh(*ptr); 8170 if (tmp < 253) { 8171 sc->reset_noise_gain = tmp; 8172 sc->noise_gain = tmp + 1; 8173 } 8174 break; 8175 case IWN_FW_TLV_PAN: 8176 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 8177 DPRINTF(sc, IWN_DEBUG_RESET, 8178 "PAN Support found: %d\n", 1); 8179 break; 8180 case IWN_FW_TLV_FLAGS: 8181 if (len < sizeof(uint32_t)) 8182 break; 8183 if (len % sizeof(uint32_t)) 8184 break; 8185 sc->tlv_feature_flags = le32toh(*ptr); 8186 DPRINTF(sc, IWN_DEBUG_RESET, 8187 "%s: feature: 0x%08x\n", 8188 __func__, 8189 sc->tlv_feature_flags); 8190 break; 8191 case IWN_FW_TLV_PBREQ_MAXLEN: 8192 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 8193 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 8194 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 8195 case IWN_FW_TLV_INIT_EVTLOG_PTR: 8196 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 8197 case IWN_FW_TLV_INIT_ERRLOG_PTR: 8198 case IWN_FW_TLV_WOWLAN_INST: 8199 case IWN_FW_TLV_WOWLAN_DATA: 8200 DPRINTF(sc, IWN_DEBUG_RESET, 8201 "TLV type %d recognized but not handled\n", 8202 le16toh(tlv->type)); 8203 break; 8204 default: 8205 DPRINTF(sc, IWN_DEBUG_RESET, 8206 "TLV type %d not handled\n", le16toh(tlv->type)); 8207 break; 8208 } 8209 next: /* TLV fields are 32-bit aligned. */ 8210 ptr += (len + 3) & ~3; 8211 } 8212 return 0; 8213 } 8214 8215 static int 8216 iwn_read_firmware(struct iwn_softc *sc) 8217 { 8218 struct iwn_fw_info *fw = &sc->fw; 8219 int error; 8220 8221 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8222 8223 IWN_UNLOCK(sc); 8224 8225 memset(fw, 0, sizeof (*fw)); 8226 8227 /* Read firmware image from filesystem. */ 8228 sc->fw_fp = firmware_get(sc->fwname); 8229 if (sc->fw_fp == NULL) { 8230 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 8231 __func__, sc->fwname); 8232 IWN_LOCK(sc); 8233 return EINVAL; 8234 } 8235 IWN_LOCK(sc); 8236 8237 fw->size = sc->fw_fp->datasize; 8238 fw->data = (const uint8_t *)sc->fw_fp->data; 8239 if (fw->size < sizeof (uint32_t)) { 8240 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8241 __func__, fw->size); 8242 error = EINVAL; 8243 goto fail; 8244 } 8245 8246 /* Retrieve text and data sections. */ 8247 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 8248 error = iwn_read_firmware_leg(sc, fw); 8249 else 8250 error = iwn_read_firmware_tlv(sc, fw, 1); 8251 if (error != 0) { 8252 device_printf(sc->sc_dev, 8253 "%s: could not read firmware sections, error %d\n", 8254 __func__, error); 8255 goto fail; 8256 } 8257 8258 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); 8259 8260 /* Make sure text and data sections fit in hardware memory. */ 8261 if (fw->main.textsz > sc->fw_text_maxsz || 8262 fw->main.datasz > sc->fw_data_maxsz || 8263 fw->init.textsz > sc->fw_text_maxsz || 8264 fw->init.datasz > sc->fw_data_maxsz || 8265 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 8266 (fw->boot.textsz & 3) != 0) { 8267 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 8268 __func__); 8269 error = EINVAL; 8270 goto fail; 8271 } 8272 8273 /* We can proceed with loading the firmware. */ 8274 return 0; 8275 8276 fail: iwn_unload_firmware(sc); 8277 return error; 8278 } 8279 8280 static void 8281 iwn_unload_firmware(struct iwn_softc *sc) 8282 { 8283 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 8284 sc->fw_fp = NULL; 8285 } 8286 8287 static int 8288 iwn_clock_wait(struct iwn_softc *sc) 8289 { 8290 int ntries; 8291 8292 /* Set "initialization complete" bit. */ 8293 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8294 8295 /* Wait for clock stabilization. */ 8296 for (ntries = 0; ntries < 2500; ntries++) { 8297 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 8298 return 0; 8299 DELAY(10); 8300 } 8301 device_printf(sc->sc_dev, 8302 "%s: timeout waiting for clock stabilization\n", __func__); 8303 return ETIMEDOUT; 8304 } 8305 8306 static int 8307 iwn_apm_init(struct iwn_softc *sc) 8308 { 8309 uint32_t reg; 8310 int error; 8311 8312 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8313 8314 /* Disable L0s exit timer (NMI bug workaround). */ 8315 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 8316 /* Don't wait for ICH L0s (ICH bug workaround). */ 8317 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 8318 8319 /* Set FH wait threshold to max (HW bug under stress workaround). */ 8320 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 8321 8322 /* Enable HAP INTA to move adapter from L1a to L0s. */ 8323 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 8324 8325 /* Retrieve PCIe Active State Power Management (ASPM). */ 8326 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 8327 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 8328 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 8329 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8330 else 8331 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8332 8333 if (sc->base_params->pll_cfg_val) 8334 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); 8335 8336 /* Wait for clock stabilization before accessing prph. */ 8337 if ((error = iwn_clock_wait(sc)) != 0) 8338 return error; 8339 8340 if ((error = iwn_nic_lock(sc)) != 0) 8341 return error; 8342 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 8343 /* Enable DMA and BSM (Bootstrap State Machine). */ 8344 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8345 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 8346 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 8347 } else { 8348 /* Enable DMA. */ 8349 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8350 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8351 } 8352 DELAY(20); 8353 /* Disable L1-Active. */ 8354 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 8355 iwn_nic_unlock(sc); 8356 8357 return 0; 8358 } 8359 8360 static void 8361 iwn_apm_stop_master(struct iwn_softc *sc) 8362 { 8363 int ntries; 8364 8365 /* Stop busmaster DMA activity. */ 8366 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 8367 for (ntries = 0; ntries < 100; ntries++) { 8368 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 8369 return; 8370 DELAY(10); 8371 } 8372 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 8373 } 8374 8375 static void 8376 iwn_apm_stop(struct iwn_softc *sc) 8377 { 8378 iwn_apm_stop_master(sc); 8379 8380 /* Reset the entire device. */ 8381 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 8382 DELAY(10); 8383 /* Clear "initialization complete" bit. */ 8384 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8385 } 8386 8387 static int 8388 iwn4965_nic_config(struct iwn_softc *sc) 8389 { 8390 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8391 8392 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 8393 /* 8394 * I don't believe this to be correct but this is what the 8395 * vendor driver is doing. Probably the bits should not be 8396 * shifted in IWN_RFCFG_*. 8397 */ 8398 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8399 IWN_RFCFG_TYPE(sc->rfcfg) | 8400 IWN_RFCFG_STEP(sc->rfcfg) | 8401 IWN_RFCFG_DASH(sc->rfcfg)); 8402 } 8403 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8404 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8405 return 0; 8406 } 8407 8408 static int 8409 iwn5000_nic_config(struct iwn_softc *sc) 8410 { 8411 uint32_t tmp; 8412 int error; 8413 8414 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8415 8416 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 8417 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8418 IWN_RFCFG_TYPE(sc->rfcfg) | 8419 IWN_RFCFG_STEP(sc->rfcfg) | 8420 IWN_RFCFG_DASH(sc->rfcfg)); 8421 } 8422 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8423 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8424 8425 if ((error = iwn_nic_lock(sc)) != 0) 8426 return error; 8427 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 8428 8429 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 8430 /* 8431 * Select first Switching Voltage Regulator (1.32V) to 8432 * solve a stability issue related to noisy DC2DC line 8433 * in the silicon of 1000 Series. 8434 */ 8435 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 8436 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 8437 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 8438 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 8439 } 8440 iwn_nic_unlock(sc); 8441 8442 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 8443 /* Use internal power amplifier only. */ 8444 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 8445 } 8446 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { 8447 /* Indicate that ROM calibration version is >=6. */ 8448 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 8449 } 8450 if (sc->base_params->additional_gp_drv_bit) 8451 IWN_SETBITS(sc, IWN_GP_DRIVER, 8452 sc->base_params->additional_gp_drv_bit); 8453 return 0; 8454 } 8455 8456 /* 8457 * Take NIC ownership over Intel Active Management Technology (AMT). 8458 */ 8459 static int 8460 iwn_hw_prepare(struct iwn_softc *sc) 8461 { 8462 int ntries; 8463 8464 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8465 8466 /* Check if hardware is ready. */ 8467 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8468 for (ntries = 0; ntries < 5; ntries++) { 8469 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8470 IWN_HW_IF_CONFIG_NIC_READY) 8471 return 0; 8472 DELAY(10); 8473 } 8474 8475 /* Hardware not ready, force into ready state. */ 8476 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 8477 for (ntries = 0; ntries < 15000; ntries++) { 8478 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 8479 IWN_HW_IF_CONFIG_PREPARE_DONE)) 8480 break; 8481 DELAY(10); 8482 } 8483 if (ntries == 15000) 8484 return ETIMEDOUT; 8485 8486 /* Hardware should be ready now. */ 8487 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8488 for (ntries = 0; ntries < 5; ntries++) { 8489 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8490 IWN_HW_IF_CONFIG_NIC_READY) 8491 return 0; 8492 DELAY(10); 8493 } 8494 return ETIMEDOUT; 8495 } 8496 8497 static int 8498 iwn_hw_init(struct iwn_softc *sc) 8499 { 8500 struct iwn_ops *ops = &sc->ops; 8501 int error, chnl, qid; 8502 8503 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8504 8505 /* Clear pending interrupts. */ 8506 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8507 8508 if ((error = iwn_apm_init(sc)) != 0) { 8509 device_printf(sc->sc_dev, 8510 "%s: could not power ON adapter, error %d\n", __func__, 8511 error); 8512 return error; 8513 } 8514 8515 /* Select VMAIN power source. */ 8516 if ((error = iwn_nic_lock(sc)) != 0) 8517 return error; 8518 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 8519 iwn_nic_unlock(sc); 8520 8521 /* Perform adapter-specific initialization. */ 8522 if ((error = ops->nic_config(sc)) != 0) 8523 return error; 8524 8525 /* Initialize RX ring. */ 8526 if ((error = iwn_nic_lock(sc)) != 0) 8527 return error; 8528 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 8529 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 8530 /* Set physical address of RX ring (256-byte aligned). */ 8531 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 8532 /* Set physical address of RX status (16-byte aligned). */ 8533 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 8534 /* Enable RX. */ 8535 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 8536 IWN_FH_RX_CONFIG_ENA | 8537 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 8538 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 8539 IWN_FH_RX_CONFIG_SINGLE_FRAME | 8540 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 8541 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 8542 iwn_nic_unlock(sc); 8543 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 8544 8545 if ((error = iwn_nic_lock(sc)) != 0) 8546 return error; 8547 8548 /* Initialize TX scheduler. */ 8549 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8550 8551 /* Set physical address of "keep warm" page (16-byte aligned). */ 8552 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 8553 8554 /* Initialize TX rings. */ 8555 for (qid = 0; qid < sc->ntxqs; qid++) { 8556 struct iwn_tx_ring *txq = &sc->txq[qid]; 8557 8558 /* Set physical address of TX ring (256-byte aligned). */ 8559 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 8560 txq->desc_dma.paddr >> 8); 8561 } 8562 iwn_nic_unlock(sc); 8563 8564 /* Enable DMA channels. */ 8565 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8566 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 8567 IWN_FH_TX_CONFIG_DMA_ENA | 8568 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 8569 } 8570 8571 /* Clear "radio off" and "commands blocked" bits. */ 8572 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8573 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 8574 8575 /* Clear pending interrupts. */ 8576 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8577 /* Enable interrupt coalescing. */ 8578 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 8579 /* Enable interrupts. */ 8580 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8581 8582 /* _Really_ make sure "radio off" bit is cleared! */ 8583 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8584 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8585 8586 /* Enable shadow registers. */ 8587 if (sc->base_params->shadow_reg_enable) 8588 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 8589 8590 if ((error = ops->load_firmware(sc)) != 0) { 8591 device_printf(sc->sc_dev, 8592 "%s: could not load firmware, error %d\n", __func__, 8593 error); 8594 return error; 8595 } 8596 /* Wait at most one second for firmware alive notification. */ 8597 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8598 device_printf(sc->sc_dev, 8599 "%s: timeout waiting for adapter to initialize, error %d\n", 8600 __func__, error); 8601 return error; 8602 } 8603 /* Do post-firmware initialization. */ 8604 8605 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8606 8607 return ops->post_alive(sc); 8608 } 8609 8610 static void 8611 iwn_hw_stop(struct iwn_softc *sc) 8612 { 8613 int chnl, qid, ntries; 8614 8615 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8616 8617 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 8618 8619 /* Disable interrupts. */ 8620 IWN_WRITE(sc, IWN_INT_MASK, 0); 8621 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8622 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 8623 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8624 8625 /* Make sure we no longer hold the NIC lock. */ 8626 iwn_nic_unlock(sc); 8627 8628 /* Stop TX scheduler. */ 8629 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8630 8631 /* Stop all DMA channels. */ 8632 if (iwn_nic_lock(sc) == 0) { 8633 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8634 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 8635 for (ntries = 0; ntries < 200; ntries++) { 8636 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 8637 IWN_FH_TX_STATUS_IDLE(chnl)) 8638 break; 8639 DELAY(10); 8640 } 8641 } 8642 iwn_nic_unlock(sc); 8643 } 8644 8645 /* Stop RX ring. */ 8646 iwn_reset_rx_ring(sc, &sc->rxq); 8647 8648 /* Reset all TX rings. */ 8649 for (qid = 0; qid < sc->ntxqs; qid++) 8650 iwn_reset_tx_ring(sc, &sc->txq[qid]); 8651 8652 if (iwn_nic_lock(sc) == 0) { 8653 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 8654 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8655 iwn_nic_unlock(sc); 8656 } 8657 DELAY(5); 8658 /* Power OFF adapter. */ 8659 iwn_apm_stop(sc); 8660 } 8661 8662 static void 8663 iwn_radio_on(void *arg0, int pending) 8664 { 8665 struct iwn_softc *sc = arg0; 8666 struct ieee80211com *ic = &sc->sc_ic; 8667 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8668 8669 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8670 8671 if (vap != NULL) { 8672 iwn_init(sc); 8673 ieee80211_init(vap); 8674 } 8675 } 8676 8677 static void 8678 iwn_radio_off(void *arg0, int pending) 8679 { 8680 struct iwn_softc *sc = arg0; 8681 struct ieee80211com *ic = &sc->sc_ic; 8682 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8683 8684 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8685 8686 iwn_stop(sc); 8687 if (vap != NULL) 8688 ieee80211_stop(vap); 8689 8690 /* Enable interrupts to get RF toggle notification. */ 8691 IWN_LOCK(sc); 8692 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8693 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8694 IWN_UNLOCK(sc); 8695 } 8696 8697 static void 8698 iwn_panicked(void *arg0, int pending) 8699 { 8700 struct iwn_softc *sc = arg0; 8701 struct ieee80211com *ic = &sc->sc_ic; 8702 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8703 int error; 8704 8705 if (vap == NULL) { 8706 printf("%s: null vap\n", __func__); 8707 return; 8708 } 8709 8710 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 8711 "resetting...\n", __func__, vap->iv_state); 8712 8713 IWN_LOCK(sc); 8714 8715 iwn_stop_locked(sc); 8716 iwn_init_locked(sc); 8717 if (vap->iv_state >= IEEE80211_S_AUTH && 8718 (error = iwn_auth(sc, vap)) != 0) { 8719 device_printf(sc->sc_dev, 8720 "%s: could not move to auth state\n", __func__); 8721 } 8722 if (vap->iv_state >= IEEE80211_S_RUN && 8723 (error = iwn_run(sc, vap)) != 0) { 8724 device_printf(sc->sc_dev, 8725 "%s: could not move to run state\n", __func__); 8726 } 8727 8728 IWN_UNLOCK(sc); 8729 } 8730 8731 static void 8732 iwn_init_locked(struct iwn_softc *sc) 8733 { 8734 int error; 8735 8736 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8737 8738 IWN_LOCK_ASSERT(sc); 8739 8740 sc->sc_flags |= IWN_FLAG_RUNNING; 8741 8742 if ((error = iwn_hw_prepare(sc)) != 0) { 8743 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 8744 __func__, error); 8745 goto fail; 8746 } 8747 8748 /* Initialize interrupt mask to default value. */ 8749 sc->int_mask = IWN_INT_MASK_DEF; 8750 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8751 8752 /* Check that the radio is not disabled by hardware switch. */ 8753 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 8754 device_printf(sc->sc_dev, 8755 "radio is disabled by hardware switch\n"); 8756 /* Enable interrupts to get RF toggle notifications. */ 8757 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8758 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8759 return; 8760 } 8761 8762 /* Read firmware images from the filesystem. */ 8763 if ((error = iwn_read_firmware(sc)) != 0) { 8764 device_printf(sc->sc_dev, 8765 "%s: could not read firmware, error %d\n", __func__, 8766 error); 8767 goto fail; 8768 } 8769 8770 /* Initialize hardware and upload firmware. */ 8771 error = iwn_hw_init(sc); 8772 iwn_unload_firmware(sc); 8773 if (error != 0) { 8774 device_printf(sc->sc_dev, 8775 "%s: could not initialize hardware, error %d\n", __func__, 8776 error); 8777 goto fail; 8778 } 8779 8780 /* Configure adapter now that it is ready. */ 8781 if ((error = iwn_config(sc)) != 0) { 8782 device_printf(sc->sc_dev, 8783 "%s: could not configure device, error %d\n", __func__, 8784 error); 8785 goto fail; 8786 } 8787 8788 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 8789 8790 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8791 8792 return; 8793 8794 fail: 8795 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8796 iwn_stop_locked(sc); 8797 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 8798 } 8799 8800 static void 8801 iwn_init(struct iwn_softc *sc) 8802 { 8803 8804 IWN_LOCK(sc); 8805 iwn_init_locked(sc); 8806 IWN_UNLOCK(sc); 8807 8808 if (sc->sc_flags & IWN_FLAG_RUNNING) 8809 ieee80211_start_all(&sc->sc_ic); 8810 } 8811 8812 static void 8813 iwn_stop_locked(struct iwn_softc *sc) 8814 { 8815 8816 IWN_LOCK_ASSERT(sc); 8817 8818 sc->sc_is_scanning = 0; 8819 sc->sc_tx_timer = 0; 8820 callout_stop(&sc->watchdog_to); 8821 callout_stop(&sc->calib_to); 8822 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8823 8824 /* Power OFF hardware. */ 8825 iwn_hw_stop(sc); 8826 } 8827 8828 static void 8829 iwn_stop(struct iwn_softc *sc) 8830 { 8831 IWN_LOCK(sc); 8832 iwn_stop_locked(sc); 8833 IWN_UNLOCK(sc); 8834 } 8835 8836 /* 8837 * Callback from net80211 to start a scan. 8838 */ 8839 static void 8840 iwn_scan_start(struct ieee80211com *ic) 8841 { 8842 struct iwn_softc *sc = ic->ic_softc; 8843 8844 IWN_LOCK(sc); 8845 /* make the link LED blink while we're scanning */ 8846 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 8847 IWN_UNLOCK(sc); 8848 } 8849 8850 /* 8851 * Callback from net80211 to terminate a scan. 8852 */ 8853 static void 8854 iwn_scan_end(struct ieee80211com *ic) 8855 { 8856 struct iwn_softc *sc = ic->ic_softc; 8857 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8858 8859 IWN_LOCK(sc); 8860 if (vap->iv_state == IEEE80211_S_RUN) { 8861 /* Set link LED to ON status if we are associated */ 8862 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 8863 } 8864 IWN_UNLOCK(sc); 8865 } 8866 8867 /* 8868 * Callback from net80211 to force a channel change. 8869 */ 8870 static void 8871 iwn_set_channel(struct ieee80211com *ic) 8872 { 8873 const struct ieee80211_channel *c = ic->ic_curchan; 8874 struct iwn_softc *sc = ic->ic_softc; 8875 int error; 8876 8877 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8878 8879 IWN_LOCK(sc); 8880 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 8881 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 8882 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 8883 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 8884 8885 /* 8886 * Only need to set the channel in Monitor mode. AP scanning and auth 8887 * are already taken care of by their respective firmware commands. 8888 */ 8889 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 8890 error = iwn_config(sc); 8891 if (error != 0) 8892 device_printf(sc->sc_dev, 8893 "%s: error %d settting channel\n", __func__, error); 8894 } 8895 IWN_UNLOCK(sc); 8896 } 8897 8898 /* 8899 * Callback from net80211 to start scanning of the current channel. 8900 */ 8901 static void 8902 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 8903 { 8904 struct ieee80211vap *vap = ss->ss_vap; 8905 struct ieee80211com *ic = vap->iv_ic; 8906 struct iwn_softc *sc = ic->ic_softc; 8907 int error; 8908 8909 IWN_LOCK(sc); 8910 error = iwn_scan(sc, vap, ss, ic->ic_curchan); 8911 IWN_UNLOCK(sc); 8912 if (error != 0) 8913 ieee80211_cancel_scan(vap); 8914 } 8915 8916 /* 8917 * Callback from net80211 to handle the minimum dwell time being met. 8918 * The intent is to terminate the scan but we just let the firmware 8919 * notify us when it's finished as we have no safe way to abort it. 8920 */ 8921 static void 8922 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 8923 { 8924 /* NB: don't try to abort scan; wait for firmware to finish */ 8925 } 8926 8927 static void 8928 iwn_hw_reset(void *arg0, int pending) 8929 { 8930 struct iwn_softc *sc = arg0; 8931 struct ieee80211com *ic = &sc->sc_ic; 8932 8933 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8934 8935 iwn_stop(sc); 8936 iwn_init(sc); 8937 ieee80211_notify_radio(ic, 1); 8938 } 8939 #ifdef IWN_DEBUG 8940 #define IWN_DESC(x) case x: return #x 8941 8942 /* 8943 * Translate CSR code to string 8944 */ 8945 static char *iwn_get_csr_string(int csr) 8946 { 8947 switch (csr) { 8948 IWN_DESC(IWN_HW_IF_CONFIG); 8949 IWN_DESC(IWN_INT_COALESCING); 8950 IWN_DESC(IWN_INT); 8951 IWN_DESC(IWN_INT_MASK); 8952 IWN_DESC(IWN_FH_INT); 8953 IWN_DESC(IWN_GPIO_IN); 8954 IWN_DESC(IWN_RESET); 8955 IWN_DESC(IWN_GP_CNTRL); 8956 IWN_DESC(IWN_HW_REV); 8957 IWN_DESC(IWN_EEPROM); 8958 IWN_DESC(IWN_EEPROM_GP); 8959 IWN_DESC(IWN_OTP_GP); 8960 IWN_DESC(IWN_GIO); 8961 IWN_DESC(IWN_GP_UCODE); 8962 IWN_DESC(IWN_GP_DRIVER); 8963 IWN_DESC(IWN_UCODE_GP1); 8964 IWN_DESC(IWN_UCODE_GP2); 8965 IWN_DESC(IWN_LED); 8966 IWN_DESC(IWN_DRAM_INT_TBL); 8967 IWN_DESC(IWN_GIO_CHICKEN); 8968 IWN_DESC(IWN_ANA_PLL); 8969 IWN_DESC(IWN_HW_REV_WA); 8970 IWN_DESC(IWN_DBG_HPET_MEM); 8971 default: 8972 return "UNKNOWN CSR"; 8973 } 8974 } 8975 8976 /* 8977 * This function print firmware register 8978 */ 8979 static void 8980 iwn_debug_register(struct iwn_softc *sc) 8981 { 8982 int i; 8983 static const uint32_t csr_tbl[] = { 8984 IWN_HW_IF_CONFIG, 8985 IWN_INT_COALESCING, 8986 IWN_INT, 8987 IWN_INT_MASK, 8988 IWN_FH_INT, 8989 IWN_GPIO_IN, 8990 IWN_RESET, 8991 IWN_GP_CNTRL, 8992 IWN_HW_REV, 8993 IWN_EEPROM, 8994 IWN_EEPROM_GP, 8995 IWN_OTP_GP, 8996 IWN_GIO, 8997 IWN_GP_UCODE, 8998 IWN_GP_DRIVER, 8999 IWN_UCODE_GP1, 9000 IWN_UCODE_GP2, 9001 IWN_LED, 9002 IWN_DRAM_INT_TBL, 9003 IWN_GIO_CHICKEN, 9004 IWN_ANA_PLL, 9005 IWN_HW_REV_WA, 9006 IWN_DBG_HPET_MEM, 9007 }; 9008 DPRINTF(sc, IWN_DEBUG_REGISTER, 9009 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 9010 "\n"); 9011 for (i = 0; i < nitems(csr_tbl); i++){ 9012 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 9013 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 9014 if ((i+1) % 3 == 0) 9015 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9016 } 9017 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9018 } 9019 #endif 9020 9021 9022