xref: /freebsd/sys/dev/iwn/if_iwn.c (revision f976241773df2260e6170317080761d1c5814fe5)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static void	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static void	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn_check_tx_ring(struct iwn_softc *, int);
172 static void	iwn5000_ict_reset(struct iwn_softc *);
173 static int	iwn_read_eeprom(struct iwn_softc *,
174 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
175 static void	iwn4965_read_eeprom(struct iwn_softc *);
176 #ifdef	IWN_DEBUG
177 static void	iwn4965_print_power_group(struct iwn_softc *, int);
178 #endif
179 static void	iwn5000_read_eeprom(struct iwn_softc *);
180 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
181 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
182 		    struct ieee80211_channel[]);
183 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
184 		    struct ieee80211_channel[]);
185 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
186 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
187 		    struct ieee80211_channel *);
188 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
189 		    struct ieee80211_channel[]);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
204 		    int, int, int);
205 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
215 		    uint8_t);
216 static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
217 static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
218 		    uint64_t, int, int);
219 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
220 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
221 static void	iwn_notif_intr(struct iwn_softc *);
222 static void	iwn_wakeup_intr(struct iwn_softc *);
223 static void	iwn_rftoggle_task(void *, int);
224 static void	iwn_fatal_intr(struct iwn_softc *);
225 static void	iwn_intr(void *);
226 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
227 		    uint16_t);
228 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
229 		    uint16_t);
230 #ifdef notyet
231 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
232 #endif
233 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
234 		    struct ieee80211_node *);
235 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *,
237 		    const struct ieee80211_bpf_params *params);
238 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
239 		    struct ieee80211_node *, struct iwn_tx_ring *);
240 static void	iwn_xmit_task(void *arg0, int pending);
241 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
242 		    const struct ieee80211_bpf_params *);
243 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
244 static void	iwn_scan_timeout(void *);
245 static void	iwn_watchdog(void *);
246 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
247 static void	iwn_parent(struct ieee80211com *);
248 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
249 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
250 		    int);
251 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
252 		    int);
253 static int	iwn_set_link_quality(struct iwn_softc *,
254 		    struct ieee80211_node *);
255 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
256 static int	iwn_updateedca(struct ieee80211com *);
257 static void	iwn_set_promisc(struct iwn_softc *);
258 static void	iwn_update_promisc(struct ieee80211com *);
259 static void	iwn_update_mcast(struct ieee80211com *);
260 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
261 static int	iwn_set_critical_temp(struct iwn_softc *);
262 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
263 static void	iwn4965_power_calibration(struct iwn_softc *, int);
264 static int	iwn4965_set_txpower(struct iwn_softc *, int);
265 static int	iwn5000_set_txpower(struct iwn_softc *, int);
266 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
267 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
268 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
269 static int	iwn4965_get_temperature(struct iwn_softc *);
270 static int	iwn5000_get_temperature(struct iwn_softc *);
271 static int	iwn_init_sensitivity(struct iwn_softc *);
272 static void	iwn_collect_noise(struct iwn_softc *,
273 		    const struct iwn_rx_general_stats *);
274 static int	iwn4965_init_gains(struct iwn_softc *);
275 static int	iwn5000_init_gains(struct iwn_softc *);
276 static int	iwn4965_set_gains(struct iwn_softc *);
277 static int	iwn5000_set_gains(struct iwn_softc *);
278 static void	iwn_tune_sensitivity(struct iwn_softc *,
279 		    const struct iwn_rx_stats *);
280 static void	iwn_save_stats_counters(struct iwn_softc *,
281 		    const struct iwn_stats *);
282 static int	iwn_send_sensitivity(struct iwn_softc *);
283 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
284 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
285 static int	iwn_send_btcoex(struct iwn_softc *);
286 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
287 static int	iwn5000_runtime_calib(struct iwn_softc *);
288 static int	iwn_check_bss_filter(struct iwn_softc *);
289 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
290 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
291 static int	iwn_send_rxon(struct iwn_softc *, int, int);
292 static int	iwn_config(struct iwn_softc *);
293 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
294 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
295 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
296 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
297 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
298 		    struct ieee80211_rx_ampdu *, int, int, int);
299 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
300 		    struct ieee80211_rx_ampdu *);
301 static int	iwn_addba_request(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *, int, int, int);
303 static int	iwn_addba_response(struct ieee80211_node *,
304 		    struct ieee80211_tx_ampdu *, int, int, int);
305 static int	iwn_ampdu_tx_start(struct ieee80211com *,
306 		    struct ieee80211_node *, uint8_t);
307 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
308 		    struct ieee80211_tx_ampdu *);
309 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
310 		    struct ieee80211_node *, int, uint8_t, uint16_t);
311 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
312 		    uint8_t, uint16_t);
313 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
314 		    struct ieee80211_node *, int, uint8_t, uint16_t);
315 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
316 		    uint8_t, uint16_t);
317 static int	iwn5000_query_calibration(struct iwn_softc *);
318 static int	iwn5000_send_calibration(struct iwn_softc *);
319 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
320 static int	iwn5000_crystal_calib(struct iwn_softc *);
321 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
322 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
323 static int	iwn4965_post_alive(struct iwn_softc *);
324 static int	iwn5000_post_alive(struct iwn_softc *);
325 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
326 		    int);
327 static int	iwn4965_load_firmware(struct iwn_softc *);
328 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
329 		    const uint8_t *, int);
330 static int	iwn5000_load_firmware(struct iwn_softc *);
331 static int	iwn_read_firmware_leg(struct iwn_softc *,
332 		    struct iwn_fw_info *);
333 static int	iwn_read_firmware_tlv(struct iwn_softc *,
334 		    struct iwn_fw_info *, uint16_t);
335 static int	iwn_read_firmware(struct iwn_softc *);
336 static void	iwn_unload_firmware(struct iwn_softc *);
337 static int	iwn_clock_wait(struct iwn_softc *);
338 static int	iwn_apm_init(struct iwn_softc *);
339 static void	iwn_apm_stop_master(struct iwn_softc *);
340 static void	iwn_apm_stop(struct iwn_softc *);
341 static int	iwn4965_nic_config(struct iwn_softc *);
342 static int	iwn5000_nic_config(struct iwn_softc *);
343 static int	iwn_hw_prepare(struct iwn_softc *);
344 static int	iwn_hw_init(struct iwn_softc *);
345 static void	iwn_hw_stop(struct iwn_softc *);
346 static void	iwn_panicked(void *, int);
347 static int	iwn_init_locked(struct iwn_softc *);
348 static int	iwn_init(struct iwn_softc *);
349 static void	iwn_stop_locked(struct iwn_softc *);
350 static void	iwn_stop(struct iwn_softc *);
351 static void	iwn_scan_start(struct ieee80211com *);
352 static void	iwn_scan_end(struct ieee80211com *);
353 static void	iwn_set_channel(struct ieee80211com *);
354 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
355 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
356 #ifdef	IWN_DEBUG
357 static char	*iwn_get_csr_string(int);
358 static void	iwn_debug_register(struct iwn_softc *);
359 #endif
360 
361 static device_method_t iwn_methods[] = {
362 	/* Device interface */
363 	DEVMETHOD(device_probe,		iwn_probe),
364 	DEVMETHOD(device_attach,	iwn_attach),
365 	DEVMETHOD(device_detach,	iwn_detach),
366 	DEVMETHOD(device_shutdown,	iwn_shutdown),
367 	DEVMETHOD(device_suspend,	iwn_suspend),
368 	DEVMETHOD(device_resume,	iwn_resume),
369 
370 	DEVMETHOD_END
371 };
372 
373 static driver_t iwn_driver = {
374 	"iwn",
375 	iwn_methods,
376 	sizeof(struct iwn_softc)
377 };
378 static devclass_t iwn_devclass;
379 
380 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
381 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
382     nitems(iwn_ident_table) - 1);
383 MODULE_VERSION(iwn, 1);
384 
385 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
386 MODULE_DEPEND(iwn, pci, 1, 1, 1);
387 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
388 
389 static d_ioctl_t iwn_cdev_ioctl;
390 static d_open_t iwn_cdev_open;
391 static d_close_t iwn_cdev_close;
392 
393 static struct cdevsw iwn_cdevsw = {
394 	.d_version = D_VERSION,
395 	.d_flags = 0,
396 	.d_open = iwn_cdev_open,
397 	.d_close = iwn_cdev_close,
398 	.d_ioctl = iwn_cdev_ioctl,
399 	.d_name = "iwn",
400 };
401 
402 static int
403 iwn_probe(device_t dev)
404 {
405 	const struct iwn_ident *ident;
406 
407 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
408 		if (pci_get_vendor(dev) == ident->vendor &&
409 		    pci_get_device(dev) == ident->device) {
410 			device_set_desc(dev, ident->name);
411 			return (BUS_PROBE_DEFAULT);
412 		}
413 	}
414 	return ENXIO;
415 }
416 
417 static int
418 iwn_is_3stream_device(struct iwn_softc *sc)
419 {
420 	/* XXX for now only 5300, until the 5350 can be tested */
421 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
422 		return (1);
423 	return (0);
424 }
425 
426 static int
427 iwn_attach(device_t dev)
428 {
429 	struct iwn_softc *sc = device_get_softc(dev);
430 	struct ieee80211com *ic;
431 	int i, error, rid;
432 
433 	sc->sc_dev = dev;
434 
435 #ifdef	IWN_DEBUG
436 	error = resource_int_value(device_get_name(sc->sc_dev),
437 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
438 	if (error != 0)
439 		sc->sc_debug = 0;
440 #else
441 	sc->sc_debug = 0;
442 #endif
443 
444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
445 
446 	/*
447 	 * Get the offset of the PCI Express Capability Structure in PCI
448 	 * Configuration Space.
449 	 */
450 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
451 	if (error != 0) {
452 		device_printf(dev, "PCIe capability structure not found!\n");
453 		return error;
454 	}
455 
456 	/* Clear device-specific "PCI retry timeout" register (41h). */
457 	pci_write_config(dev, 0x41, 0, 1);
458 
459 	/* Enable bus-mastering. */
460 	pci_enable_busmaster(dev);
461 
462 	rid = PCIR_BAR(0);
463 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
464 	    RF_ACTIVE);
465 	if (sc->mem == NULL) {
466 		device_printf(dev, "can't map mem space\n");
467 		error = ENOMEM;
468 		return error;
469 	}
470 	sc->sc_st = rman_get_bustag(sc->mem);
471 	sc->sc_sh = rman_get_bushandle(sc->mem);
472 
473 	i = 1;
474 	rid = 0;
475 	if (pci_alloc_msi(dev, &i) == 0)
476 		rid = 1;
477 	/* Install interrupt handler. */
478 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
479 	    (rid != 0 ? 0 : RF_SHAREABLE));
480 	if (sc->irq == NULL) {
481 		device_printf(dev, "can't map interrupt\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	IWN_LOCK_INIT(sc);
487 
488 	/* Read hardware revision and attach. */
489 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
490 	    & IWN_HW_REV_TYPE_MASK;
491 	sc->subdevice_id = pci_get_subdevice(dev);
492 
493 	/*
494 	 * 4965 versus 5000 and later have different methods.
495 	 * Let's set those up first.
496 	 */
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		iwn5000_attach(sc, pci_get_device(dev));
501 
502 	/*
503 	 * Next, let's setup the various parameters of each NIC.
504 	 */
505 	error = iwn_config_specific(sc, pci_get_device(dev));
506 	if (error != 0) {
507 		device_printf(dev, "could not attach device, error %d\n",
508 		    error);
509 		goto fail;
510 	}
511 
512 	if ((error = iwn_hw_prepare(sc)) != 0) {
513 		device_printf(dev, "hardware not ready, error %d\n", error);
514 		goto fail;
515 	}
516 
517 	/* Allocate DMA memory for firmware transfers. */
518 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
519 		device_printf(dev,
520 		    "could not allocate memory for firmware, error %d\n",
521 		    error);
522 		goto fail;
523 	}
524 
525 	/* Allocate "Keep Warm" page. */
526 	if ((error = iwn_alloc_kw(sc)) != 0) {
527 		device_printf(dev,
528 		    "could not allocate keep warm page, error %d\n", error);
529 		goto fail;
530 	}
531 
532 	/* Allocate ICT table for 5000 Series. */
533 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
534 	    (error = iwn_alloc_ict(sc)) != 0) {
535 		device_printf(dev, "could not allocate ICT table, error %d\n",
536 		    error);
537 		goto fail;
538 	}
539 
540 	/* Allocate TX scheduler "rings". */
541 	if ((error = iwn_alloc_sched(sc)) != 0) {
542 		device_printf(dev,
543 		    "could not allocate TX scheduler rings, error %d\n", error);
544 		goto fail;
545 	}
546 
547 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
548 	for (i = 0; i < sc->ntxqs; i++) {
549 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
550 			device_printf(dev,
551 			    "could not allocate TX ring %d, error %d\n", i,
552 			    error);
553 			goto fail;
554 		}
555 	}
556 
557 	/* Allocate RX ring. */
558 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
559 		device_printf(dev, "could not allocate RX ring, error %d\n",
560 		    error);
561 		goto fail;
562 	}
563 
564 	/* Clear pending interrupts. */
565 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
566 
567 	ic = &sc->sc_ic;
568 	ic->ic_softc = sc;
569 	ic->ic_name = device_get_nameunit(dev);
570 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
571 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
572 
573 	/* Set device capabilities. */
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode supported */
576 		| IEEE80211_C_MONITOR		/* monitor mode supported */
577 #if 0
578 		| IEEE80211_C_BGSCAN		/* background scanning */
579 #endif
580 		| IEEE80211_C_TXPMGT		/* tx power management */
581 		| IEEE80211_C_SHSLOT		/* short slot time supported */
582 		| IEEE80211_C_WPA
583 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
584 #if 0
585 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
586 #endif
587 		| IEEE80211_C_WME		/* WME */
588 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
589 		;
590 
591 	/* Read MAC address, channels, etc from EEPROM. */
592 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
593 		device_printf(dev, "could not read EEPROM, error %d\n",
594 		    error);
595 		goto fail;
596 	}
597 
598 	/* Count the number of available chains. */
599 	sc->ntxchains =
600 	    ((sc->txchainmask >> 2) & 1) +
601 	    ((sc->txchainmask >> 1) & 1) +
602 	    ((sc->txchainmask >> 0) & 1);
603 	sc->nrxchains =
604 	    ((sc->rxchainmask >> 2) & 1) +
605 	    ((sc->rxchainmask >> 1) & 1) +
606 	    ((sc->rxchainmask >> 0) & 1);
607 	if (bootverbose) {
608 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
609 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
610 		    ic->ic_macaddr, ":");
611 	}
612 
613 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
614 		ic->ic_rxstream = sc->nrxchains;
615 		ic->ic_txstream = sc->ntxchains;
616 
617 		/*
618 		 * Some of the 3 antenna devices (ie, the 4965) only supports
619 		 * 2x2 operation.  So correct the number of streams if
620 		 * it's not a 3-stream device.
621 		 */
622 		if (! iwn_is_3stream_device(sc)) {
623 			if (ic->ic_rxstream > 2)
624 				ic->ic_rxstream = 2;
625 			if (ic->ic_txstream > 2)
626 				ic->ic_txstream = 2;
627 		}
628 
629 		ic->ic_htcaps =
630 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
631 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
632 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
633 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
634 #ifdef notyet
635 			| IEEE80211_HTCAP_GREENFIELD
636 #if IWN_RBUF_SIZE == 8192
637 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
638 #else
639 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
640 #endif
641 #endif
642 			/* s/w capabilities */
643 			| IEEE80211_HTC_HT		/* HT operation */
644 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
645 #ifdef notyet
646 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
647 #endif
648 			;
649 	}
650 
651 	ieee80211_ifattach(ic);
652 	ic->ic_vap_create = iwn_vap_create;
653 	ic->ic_ioctl = iwn_ioctl;
654 	ic->ic_parent = iwn_parent;
655 	ic->ic_vap_delete = iwn_vap_delete;
656 	ic->ic_transmit = iwn_transmit;
657 	ic->ic_raw_xmit = iwn_raw_xmit;
658 	ic->ic_node_alloc = iwn_node_alloc;
659 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
660 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
661 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
662 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
663 	sc->sc_addba_request = ic->ic_addba_request;
664 	ic->ic_addba_request = iwn_addba_request;
665 	sc->sc_addba_response = ic->ic_addba_response;
666 	ic->ic_addba_response = iwn_addba_response;
667 	sc->sc_addba_stop = ic->ic_addba_stop;
668 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
669 	ic->ic_newassoc = iwn_newassoc;
670 	ic->ic_wme.wme_update = iwn_updateedca;
671 	ic->ic_update_promisc = iwn_update_promisc;
672 	ic->ic_update_mcast = iwn_update_mcast;
673 	ic->ic_scan_start = iwn_scan_start;
674 	ic->ic_scan_end = iwn_scan_end;
675 	ic->ic_set_channel = iwn_set_channel;
676 	ic->ic_scan_curchan = iwn_scan_curchan;
677 	ic->ic_scan_mindwell = iwn_scan_mindwell;
678 	ic->ic_getradiocaps = iwn_getradiocaps;
679 	ic->ic_setregdomain = iwn_setregdomain;
680 
681 	iwn_radiotap_attach(sc);
682 
683 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
684 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
685 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
686 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
687 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
688 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
689 
690 	mbufq_init(&sc->sc_xmit_queue, 1024);
691 
692 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
693 	    taskqueue_thread_enqueue, &sc->sc_tq);
694 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
695 	if (error != 0) {
696 		device_printf(dev, "can't start threads, error %d\n", error);
697 		goto fail;
698 	}
699 
700 	iwn_sysctlattach(sc);
701 
702 	/*
703 	 * Hook our interrupt after all initialization is complete.
704 	 */
705 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
706 	    NULL, iwn_intr, sc, &sc->sc_ih);
707 	if (error != 0) {
708 		device_printf(dev, "can't establish interrupt, error %d\n",
709 		    error);
710 		goto fail;
711 	}
712 
713 #if 0
714 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
715 	    __func__,
716 	    sizeof(struct iwn_stats),
717 	    sizeof(struct iwn_stats_bt));
718 #endif
719 
720 	if (bootverbose)
721 		ieee80211_announce(ic);
722 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
723 
724 	/* Add debug ioctl right at the end */
725 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
726 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
727 	if (sc->sc_cdev == NULL) {
728 		device_printf(dev, "failed to create debug character device\n");
729 	} else {
730 		sc->sc_cdev->si_drv1 = sc;
731 	}
732 	return 0;
733 fail:
734 	iwn_detach(dev);
735 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
736 	return error;
737 }
738 
739 /*
740  * Define specific configuration based on device id and subdevice id
741  * pid : PCI device id
742  */
743 static int
744 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
745 {
746 
747 	switch (pid) {
748 /* 4965 series */
749 	case IWN_DID_4965_1:
750 	case IWN_DID_4965_2:
751 	case IWN_DID_4965_3:
752 	case IWN_DID_4965_4:
753 		sc->base_params = &iwn4965_base_params;
754 		sc->limits = &iwn4965_sensitivity_limits;
755 		sc->fwname = "iwn4965fw";
756 		/* Override chains masks, ROM is known to be broken. */
757 		sc->txchainmask = IWN_ANT_AB;
758 		sc->rxchainmask = IWN_ANT_ABC;
759 		/* Enable normal btcoex */
760 		sc->sc_flags |= IWN_FLAG_BTCOEX;
761 		break;
762 /* 1000 Series */
763 	case IWN_DID_1000_1:
764 	case IWN_DID_1000_2:
765 		switch(sc->subdevice_id) {
766 			case	IWN_SDID_1000_1:
767 			case	IWN_SDID_1000_2:
768 			case	IWN_SDID_1000_3:
769 			case	IWN_SDID_1000_4:
770 			case	IWN_SDID_1000_5:
771 			case	IWN_SDID_1000_6:
772 			case	IWN_SDID_1000_7:
773 			case	IWN_SDID_1000_8:
774 			case	IWN_SDID_1000_9:
775 			case	IWN_SDID_1000_10:
776 			case	IWN_SDID_1000_11:
777 			case	IWN_SDID_1000_12:
778 				sc->limits = &iwn1000_sensitivity_limits;
779 				sc->base_params = &iwn1000_base_params;
780 				sc->fwname = "iwn1000fw";
781 				break;
782 			default:
783 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
784 				    "0x%04x rev %d not supported (subdevice)\n", pid,
785 				    sc->subdevice_id,sc->hw_type);
786 				return ENOTSUP;
787 		}
788 		break;
789 /* 6x00 Series */
790 	case IWN_DID_6x00_2:
791 	case IWN_DID_6x00_4:
792 	case IWN_DID_6x00_1:
793 	case IWN_DID_6x00_3:
794 		sc->fwname = "iwn6000fw";
795 		sc->limits = &iwn6000_sensitivity_limits;
796 		switch(sc->subdevice_id) {
797 			case IWN_SDID_6x00_1:
798 			case IWN_SDID_6x00_2:
799 			case IWN_SDID_6x00_8:
800 				//iwl6000_3agn_cfg
801 				sc->base_params = &iwn_6000_base_params;
802 				break;
803 			case IWN_SDID_6x00_3:
804 			case IWN_SDID_6x00_6:
805 			case IWN_SDID_6x00_9:
806 				////iwl6000i_2agn
807 			case IWN_SDID_6x00_4:
808 			case IWN_SDID_6x00_7:
809 			case IWN_SDID_6x00_10:
810 				//iwl6000i_2abg_cfg
811 			case IWN_SDID_6x00_5:
812 				//iwl6000i_2bg_cfg
813 				sc->base_params = &iwn_6000i_base_params;
814 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
815 				sc->txchainmask = IWN_ANT_BC;
816 				sc->rxchainmask = IWN_ANT_BC;
817 				break;
818 			default:
819 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
820 				    "0x%04x rev %d not supported (subdevice)\n", pid,
821 				    sc->subdevice_id,sc->hw_type);
822 				return ENOTSUP;
823 		}
824 		break;
825 /* 6x05 Series */
826 	case IWN_DID_6x05_1:
827 	case IWN_DID_6x05_2:
828 		switch(sc->subdevice_id) {
829 			case IWN_SDID_6x05_1:
830 			case IWN_SDID_6x05_4:
831 			case IWN_SDID_6x05_6:
832 				//iwl6005_2agn_cfg
833 			case IWN_SDID_6x05_2:
834 			case IWN_SDID_6x05_5:
835 			case IWN_SDID_6x05_7:
836 				//iwl6005_2abg_cfg
837 			case IWN_SDID_6x05_3:
838 				//iwl6005_2bg_cfg
839 			case IWN_SDID_6x05_8:
840 			case IWN_SDID_6x05_9:
841 				//iwl6005_2agn_sff_cfg
842 			case IWN_SDID_6x05_10:
843 				//iwl6005_2agn_d_cfg
844 			case IWN_SDID_6x05_11:
845 				//iwl6005_2agn_mow1_cfg
846 			case IWN_SDID_6x05_12:
847 				//iwl6005_2agn_mow2_cfg
848 				sc->fwname = "iwn6000g2afw";
849 				sc->limits = &iwn6000_sensitivity_limits;
850 				sc->base_params = &iwn_6000g2_base_params;
851 				break;
852 			default:
853 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
854 				    "0x%04x rev %d not supported (subdevice)\n", pid,
855 				    sc->subdevice_id,sc->hw_type);
856 				return ENOTSUP;
857 		}
858 		break;
859 /* 6x35 Series */
860 	case IWN_DID_6035_1:
861 	case IWN_DID_6035_2:
862 		switch(sc->subdevice_id) {
863 			case IWN_SDID_6035_1:
864 			case IWN_SDID_6035_2:
865 			case IWN_SDID_6035_3:
866 			case IWN_SDID_6035_4:
867 			case IWN_SDID_6035_5:
868 				sc->fwname = "iwn6000g2bfw";
869 				sc->limits = &iwn6235_sensitivity_limits;
870 				sc->base_params = &iwn_6235_base_params;
871 				break;
872 			default:
873 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
874 				    "0x%04x rev %d not supported (subdevice)\n", pid,
875 				    sc->subdevice_id,sc->hw_type);
876 				return ENOTSUP;
877 		}
878 		break;
879 /* 6x50 WiFi/WiMax Series */
880 	case IWN_DID_6050_1:
881 	case IWN_DID_6050_2:
882 		switch(sc->subdevice_id) {
883 			case IWN_SDID_6050_1:
884 			case IWN_SDID_6050_3:
885 			case IWN_SDID_6050_5:
886 				//iwl6050_2agn_cfg
887 			case IWN_SDID_6050_2:
888 			case IWN_SDID_6050_4:
889 			case IWN_SDID_6050_6:
890 				//iwl6050_2abg_cfg
891 				sc->fwname = "iwn6050fw";
892 				sc->txchainmask = IWN_ANT_AB;
893 				sc->rxchainmask = IWN_ANT_AB;
894 				sc->limits = &iwn6000_sensitivity_limits;
895 				sc->base_params = &iwn_6050_base_params;
896 				break;
897 			default:
898 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
899 				    "0x%04x rev %d not supported (subdevice)\n", pid,
900 				    sc->subdevice_id,sc->hw_type);
901 				return ENOTSUP;
902 		}
903 		break;
904 /* 6150 WiFi/WiMax Series */
905 	case IWN_DID_6150_1:
906 	case IWN_DID_6150_2:
907 		switch(sc->subdevice_id) {
908 			case IWN_SDID_6150_1:
909 			case IWN_SDID_6150_3:
910 			case IWN_SDID_6150_5:
911 				// iwl6150_bgn_cfg
912 			case IWN_SDID_6150_2:
913 			case IWN_SDID_6150_4:
914 			case IWN_SDID_6150_6:
915 				//iwl6150_bg_cfg
916 				sc->fwname = "iwn6050fw";
917 				sc->limits = &iwn6000_sensitivity_limits;
918 				sc->base_params = &iwn_6150_base_params;
919 				break;
920 			default:
921 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
922 				    "0x%04x rev %d not supported (subdevice)\n", pid,
923 				    sc->subdevice_id,sc->hw_type);
924 				return ENOTSUP;
925 		}
926 		break;
927 /* 6030 Series and 1030 Series */
928 	case IWN_DID_x030_1:
929 	case IWN_DID_x030_2:
930 	case IWN_DID_x030_3:
931 	case IWN_DID_x030_4:
932 		switch(sc->subdevice_id) {
933 			case IWN_SDID_x030_1:
934 			case IWN_SDID_x030_3:
935 			case IWN_SDID_x030_5:
936 			// iwl1030_bgn_cfg
937 			case IWN_SDID_x030_2:
938 			case IWN_SDID_x030_4:
939 			case IWN_SDID_x030_6:
940 			//iwl1030_bg_cfg
941 			case IWN_SDID_x030_7:
942 			case IWN_SDID_x030_10:
943 			case IWN_SDID_x030_14:
944 			//iwl6030_2agn_cfg
945 			case IWN_SDID_x030_8:
946 			case IWN_SDID_x030_11:
947 			case IWN_SDID_x030_15:
948 			// iwl6030_2bgn_cfg
949 			case IWN_SDID_x030_9:
950 			case IWN_SDID_x030_12:
951 			case IWN_SDID_x030_16:
952 			// iwl6030_2abg_cfg
953 			case IWN_SDID_x030_13:
954 			//iwl6030_2bg_cfg
955 				sc->fwname = "iwn6000g2bfw";
956 				sc->limits = &iwn6000_sensitivity_limits;
957 				sc->base_params = &iwn_6000g2b_base_params;
958 				break;
959 			default:
960 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
961 				    "0x%04x rev %d not supported (subdevice)\n", pid,
962 				    sc->subdevice_id,sc->hw_type);
963 				return ENOTSUP;
964 		}
965 		break;
966 /* 130 Series WiFi */
967 /* XXX: This series will need adjustment for rate.
968  * see rx_with_siso_diversity in linux kernel
969  */
970 	case IWN_DID_130_1:
971 	case IWN_DID_130_2:
972 		switch(sc->subdevice_id) {
973 			case IWN_SDID_130_1:
974 			case IWN_SDID_130_3:
975 			case IWN_SDID_130_5:
976 			//iwl130_bgn_cfg
977 			case IWN_SDID_130_2:
978 			case IWN_SDID_130_4:
979 			case IWN_SDID_130_6:
980 			//iwl130_bg_cfg
981 				sc->fwname = "iwn6000g2bfw";
982 				sc->limits = &iwn6000_sensitivity_limits;
983 				sc->base_params = &iwn_6000g2b_base_params;
984 				break;
985 			default:
986 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
987 				    "0x%04x rev %d not supported (subdevice)\n", pid,
988 				    sc->subdevice_id,sc->hw_type);
989 				return ENOTSUP;
990 		}
991 		break;
992 /* 100 Series WiFi */
993 	case IWN_DID_100_1:
994 	case IWN_DID_100_2:
995 		switch(sc->subdevice_id) {
996 			case IWN_SDID_100_1:
997 			case IWN_SDID_100_2:
998 			case IWN_SDID_100_3:
999 			case IWN_SDID_100_4:
1000 			case IWN_SDID_100_5:
1001 			case IWN_SDID_100_6:
1002 				sc->limits = &iwn1000_sensitivity_limits;
1003 				sc->base_params = &iwn1000_base_params;
1004 				sc->fwname = "iwn100fw";
1005 				break;
1006 			default:
1007 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1008 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1009 				    sc->subdevice_id,sc->hw_type);
1010 				return ENOTSUP;
1011 		}
1012 		break;
1013 
1014 /* 105 Series */
1015 /* XXX: This series will need adjustment for rate.
1016  * see rx_with_siso_diversity in linux kernel
1017  */
1018 	case IWN_DID_105_1:
1019 	case IWN_DID_105_2:
1020 		switch(sc->subdevice_id) {
1021 			case IWN_SDID_105_1:
1022 			case IWN_SDID_105_2:
1023 			case IWN_SDID_105_3:
1024 			//iwl105_bgn_cfg
1025 			case IWN_SDID_105_4:
1026 			//iwl105_bgn_d_cfg
1027 				sc->limits = &iwn2030_sensitivity_limits;
1028 				sc->base_params = &iwn2000_base_params;
1029 				sc->fwname = "iwn105fw";
1030 				break;
1031 			default:
1032 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1033 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1034 				    sc->subdevice_id,sc->hw_type);
1035 				return ENOTSUP;
1036 		}
1037 		break;
1038 
1039 /* 135 Series */
1040 /* XXX: This series will need adjustment for rate.
1041  * see rx_with_siso_diversity in linux kernel
1042  */
1043 	case IWN_DID_135_1:
1044 	case IWN_DID_135_2:
1045 		switch(sc->subdevice_id) {
1046 			case IWN_SDID_135_1:
1047 			case IWN_SDID_135_2:
1048 			case IWN_SDID_135_3:
1049 				sc->limits = &iwn2030_sensitivity_limits;
1050 				sc->base_params = &iwn2030_base_params;
1051 				sc->fwname = "iwn135fw";
1052 				break;
1053 			default:
1054 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1055 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1056 				    sc->subdevice_id,sc->hw_type);
1057 				return ENOTSUP;
1058 		}
1059 		break;
1060 
1061 /* 2x00 Series */
1062 	case IWN_DID_2x00_1:
1063 	case IWN_DID_2x00_2:
1064 		switch(sc->subdevice_id) {
1065 			case IWN_SDID_2x00_1:
1066 			case IWN_SDID_2x00_2:
1067 			case IWN_SDID_2x00_3:
1068 			//iwl2000_2bgn_cfg
1069 			case IWN_SDID_2x00_4:
1070 			//iwl2000_2bgn_d_cfg
1071 				sc->limits = &iwn2030_sensitivity_limits;
1072 				sc->base_params = &iwn2000_base_params;
1073 				sc->fwname = "iwn2000fw";
1074 				break;
1075 			default:
1076 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1077 				    "0x%04x rev %d not supported (subdevice) \n",
1078 				    pid, sc->subdevice_id, sc->hw_type);
1079 				return ENOTSUP;
1080 		}
1081 		break;
1082 /* 2x30 Series */
1083 	case IWN_DID_2x30_1:
1084 	case IWN_DID_2x30_2:
1085 		switch(sc->subdevice_id) {
1086 			case IWN_SDID_2x30_1:
1087 			case IWN_SDID_2x30_3:
1088 			case IWN_SDID_2x30_5:
1089 			//iwl100_bgn_cfg
1090 			case IWN_SDID_2x30_2:
1091 			case IWN_SDID_2x30_4:
1092 			case IWN_SDID_2x30_6:
1093 			//iwl100_bg_cfg
1094 				sc->limits = &iwn2030_sensitivity_limits;
1095 				sc->base_params = &iwn2030_base_params;
1096 				sc->fwname = "iwn2030fw";
1097 				break;
1098 			default:
1099 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1100 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1101 				    sc->subdevice_id,sc->hw_type);
1102 				return ENOTSUP;
1103 		}
1104 		break;
1105 /* 5x00 Series */
1106 	case IWN_DID_5x00_1:
1107 	case IWN_DID_5x00_2:
1108 	case IWN_DID_5x00_3:
1109 	case IWN_DID_5x00_4:
1110 		sc->limits = &iwn5000_sensitivity_limits;
1111 		sc->base_params = &iwn5000_base_params;
1112 		sc->fwname = "iwn5000fw";
1113 		switch(sc->subdevice_id) {
1114 			case IWN_SDID_5x00_1:
1115 			case IWN_SDID_5x00_2:
1116 			case IWN_SDID_5x00_3:
1117 			case IWN_SDID_5x00_4:
1118 			case IWN_SDID_5x00_9:
1119 			case IWN_SDID_5x00_10:
1120 			case IWN_SDID_5x00_11:
1121 			case IWN_SDID_5x00_12:
1122 			case IWN_SDID_5x00_17:
1123 			case IWN_SDID_5x00_18:
1124 			case IWN_SDID_5x00_19:
1125 			case IWN_SDID_5x00_20:
1126 			//iwl5100_agn_cfg
1127 				sc->txchainmask = IWN_ANT_B;
1128 				sc->rxchainmask = IWN_ANT_AB;
1129 				break;
1130 			case IWN_SDID_5x00_5:
1131 			case IWN_SDID_5x00_6:
1132 			case IWN_SDID_5x00_13:
1133 			case IWN_SDID_5x00_14:
1134 			case IWN_SDID_5x00_21:
1135 			case IWN_SDID_5x00_22:
1136 			//iwl5100_bgn_cfg
1137 				sc->txchainmask = IWN_ANT_B;
1138 				sc->rxchainmask = IWN_ANT_AB;
1139 				break;
1140 			case IWN_SDID_5x00_7:
1141 			case IWN_SDID_5x00_8:
1142 			case IWN_SDID_5x00_15:
1143 			case IWN_SDID_5x00_16:
1144 			case IWN_SDID_5x00_23:
1145 			case IWN_SDID_5x00_24:
1146 			//iwl5100_abg_cfg
1147 				sc->txchainmask = IWN_ANT_B;
1148 				sc->rxchainmask = IWN_ANT_AB;
1149 				break;
1150 			case IWN_SDID_5x00_25:
1151 			case IWN_SDID_5x00_26:
1152 			case IWN_SDID_5x00_27:
1153 			case IWN_SDID_5x00_28:
1154 			case IWN_SDID_5x00_29:
1155 			case IWN_SDID_5x00_30:
1156 			case IWN_SDID_5x00_31:
1157 			case IWN_SDID_5x00_32:
1158 			case IWN_SDID_5x00_33:
1159 			case IWN_SDID_5x00_34:
1160 			case IWN_SDID_5x00_35:
1161 			case IWN_SDID_5x00_36:
1162 			//iwl5300_agn_cfg
1163 				sc->txchainmask = IWN_ANT_ABC;
1164 				sc->rxchainmask = IWN_ANT_ABC;
1165 				break;
1166 			default:
1167 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1168 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1169 				    sc->subdevice_id,sc->hw_type);
1170 				return ENOTSUP;
1171 		}
1172 		break;
1173 /* 5x50 Series */
1174 	case IWN_DID_5x50_1:
1175 	case IWN_DID_5x50_2:
1176 	case IWN_DID_5x50_3:
1177 	case IWN_DID_5x50_4:
1178 		sc->limits = &iwn5000_sensitivity_limits;
1179 		sc->base_params = &iwn5000_base_params;
1180 		sc->fwname = "iwn5000fw";
1181 		switch(sc->subdevice_id) {
1182 			case IWN_SDID_5x50_1:
1183 			case IWN_SDID_5x50_2:
1184 			case IWN_SDID_5x50_3:
1185 			//iwl5350_agn_cfg
1186 				sc->limits = &iwn5000_sensitivity_limits;
1187 				sc->base_params = &iwn5000_base_params;
1188 				sc->fwname = "iwn5000fw";
1189 				break;
1190 			case IWN_SDID_5x50_4:
1191 			case IWN_SDID_5x50_5:
1192 			case IWN_SDID_5x50_8:
1193 			case IWN_SDID_5x50_9:
1194 			case IWN_SDID_5x50_10:
1195 			case IWN_SDID_5x50_11:
1196 			//iwl5150_agn_cfg
1197 			case IWN_SDID_5x50_6:
1198 			case IWN_SDID_5x50_7:
1199 			case IWN_SDID_5x50_12:
1200 			case IWN_SDID_5x50_13:
1201 			//iwl5150_abg_cfg
1202 				sc->limits = &iwn5000_sensitivity_limits;
1203 				sc->fwname = "iwn5150fw";
1204 				sc->base_params = &iwn_5x50_base_params;
1205 				break;
1206 			default:
1207 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1208 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1209 				    sc->subdevice_id,sc->hw_type);
1210 				return ENOTSUP;
1211 		}
1212 		break;
1213 	default:
1214 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1215 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1216 		     sc->hw_type);
1217 		return ENOTSUP;
1218 	}
1219 	return 0;
1220 }
1221 
1222 static void
1223 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1224 {
1225 	struct iwn_ops *ops = &sc->ops;
1226 
1227 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1228 
1229 	ops->load_firmware = iwn4965_load_firmware;
1230 	ops->read_eeprom = iwn4965_read_eeprom;
1231 	ops->post_alive = iwn4965_post_alive;
1232 	ops->nic_config = iwn4965_nic_config;
1233 	ops->update_sched = iwn4965_update_sched;
1234 	ops->get_temperature = iwn4965_get_temperature;
1235 	ops->get_rssi = iwn4965_get_rssi;
1236 	ops->set_txpower = iwn4965_set_txpower;
1237 	ops->init_gains = iwn4965_init_gains;
1238 	ops->set_gains = iwn4965_set_gains;
1239 	ops->rxon_assoc = iwn4965_rxon_assoc;
1240 	ops->add_node = iwn4965_add_node;
1241 	ops->tx_done = iwn4965_tx_done;
1242 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1243 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1244 	sc->ntxqs = IWN4965_NTXQUEUES;
1245 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1246 	sc->ndmachnls = IWN4965_NDMACHNLS;
1247 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1248 	sc->rxonsz = IWN4965_RXONSZ;
1249 	sc->schedsz = IWN4965_SCHEDSZ;
1250 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1251 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1252 	sc->fwsz = IWN4965_FWSZ;
1253 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1254 	sc->limits = &iwn4965_sensitivity_limits;
1255 	sc->fwname = "iwn4965fw";
1256 	/* Override chains masks, ROM is known to be broken. */
1257 	sc->txchainmask = IWN_ANT_AB;
1258 	sc->rxchainmask = IWN_ANT_ABC;
1259 	/* Enable normal btcoex */
1260 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1261 
1262 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1263 }
1264 
1265 static void
1266 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1267 {
1268 	struct iwn_ops *ops = &sc->ops;
1269 
1270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1271 
1272 	ops->load_firmware = iwn5000_load_firmware;
1273 	ops->read_eeprom = iwn5000_read_eeprom;
1274 	ops->post_alive = iwn5000_post_alive;
1275 	ops->nic_config = iwn5000_nic_config;
1276 	ops->update_sched = iwn5000_update_sched;
1277 	ops->get_temperature = iwn5000_get_temperature;
1278 	ops->get_rssi = iwn5000_get_rssi;
1279 	ops->set_txpower = iwn5000_set_txpower;
1280 	ops->init_gains = iwn5000_init_gains;
1281 	ops->set_gains = iwn5000_set_gains;
1282 	ops->rxon_assoc = iwn5000_rxon_assoc;
1283 	ops->add_node = iwn5000_add_node;
1284 	ops->tx_done = iwn5000_tx_done;
1285 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1286 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1287 	sc->ntxqs = IWN5000_NTXQUEUES;
1288 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1289 	sc->ndmachnls = IWN5000_NDMACHNLS;
1290 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1291 	sc->rxonsz = IWN5000_RXONSZ;
1292 	sc->schedsz = IWN5000_SCHEDSZ;
1293 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1294 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1295 	sc->fwsz = IWN5000_FWSZ;
1296 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1297 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1298 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1299 
1300 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1301 }
1302 
1303 /*
1304  * Attach the interface to 802.11 radiotap.
1305  */
1306 static void
1307 iwn_radiotap_attach(struct iwn_softc *sc)
1308 {
1309 
1310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1311 	ieee80211_radiotap_attach(&sc->sc_ic,
1312 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1313 		IWN_TX_RADIOTAP_PRESENT,
1314 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1315 		IWN_RX_RADIOTAP_PRESENT);
1316 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1317 }
1318 
1319 static void
1320 iwn_sysctlattach(struct iwn_softc *sc)
1321 {
1322 #ifdef	IWN_DEBUG
1323 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1324 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1325 
1326 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1327 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1328 		"control debugging printfs");
1329 #endif
1330 }
1331 
1332 static struct ieee80211vap *
1333 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1334     enum ieee80211_opmode opmode, int flags,
1335     const uint8_t bssid[IEEE80211_ADDR_LEN],
1336     const uint8_t mac[IEEE80211_ADDR_LEN])
1337 {
1338 	struct iwn_softc *sc = ic->ic_softc;
1339 	struct iwn_vap *ivp;
1340 	struct ieee80211vap *vap;
1341 
1342 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1343 		return NULL;
1344 
1345 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1346 	vap = &ivp->iv_vap;
1347 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1348 	ivp->ctx = IWN_RXON_BSS_CTX;
1349 	vap->iv_bmissthreshold = 10;		/* override default */
1350 	/* Override with driver methods. */
1351 	ivp->iv_newstate = vap->iv_newstate;
1352 	vap->iv_newstate = iwn_newstate;
1353 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1354 
1355 	ieee80211_ratectl_init(vap);
1356 	/* Complete setup. */
1357 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1358 	    mac);
1359 	ic->ic_opmode = opmode;
1360 	return vap;
1361 }
1362 
1363 static void
1364 iwn_vap_delete(struct ieee80211vap *vap)
1365 {
1366 	struct iwn_vap *ivp = IWN_VAP(vap);
1367 
1368 	ieee80211_ratectl_deinit(vap);
1369 	ieee80211_vap_detach(vap);
1370 	free(ivp, M_80211_VAP);
1371 }
1372 
1373 static void
1374 iwn_xmit_queue_drain(struct iwn_softc *sc)
1375 {
1376 	struct mbuf *m;
1377 	struct ieee80211_node *ni;
1378 
1379 	IWN_LOCK_ASSERT(sc);
1380 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1381 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1382 		ieee80211_free_node(ni);
1383 		m_freem(m);
1384 	}
1385 }
1386 
1387 static int
1388 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1389 {
1390 
1391 	IWN_LOCK_ASSERT(sc);
1392 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1393 }
1394 
1395 static int
1396 iwn_detach(device_t dev)
1397 {
1398 	struct iwn_softc *sc = device_get_softc(dev);
1399 	int qid;
1400 
1401 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1402 
1403 	if (sc->sc_ic.ic_softc != NULL) {
1404 		/* Free the mbuf queue and node references */
1405 		IWN_LOCK(sc);
1406 		iwn_xmit_queue_drain(sc);
1407 		IWN_UNLOCK(sc);
1408 
1409 		iwn_stop(sc);
1410 
1411 		taskqueue_drain_all(sc->sc_tq);
1412 		taskqueue_free(sc->sc_tq);
1413 
1414 		callout_drain(&sc->watchdog_to);
1415 		callout_drain(&sc->scan_timeout);
1416 		callout_drain(&sc->calib_to);
1417 		ieee80211_ifdetach(&sc->sc_ic);
1418 	}
1419 
1420 	/* Uninstall interrupt handler. */
1421 	if (sc->irq != NULL) {
1422 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1423 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1424 		    sc->irq);
1425 		pci_release_msi(dev);
1426 	}
1427 
1428 	/* Free DMA resources. */
1429 	iwn_free_rx_ring(sc, &sc->rxq);
1430 	for (qid = 0; qid < sc->ntxqs; qid++)
1431 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1432 	iwn_free_sched(sc);
1433 	iwn_free_kw(sc);
1434 	if (sc->ict != NULL)
1435 		iwn_free_ict(sc);
1436 	iwn_free_fwmem(sc);
1437 
1438 	if (sc->mem != NULL)
1439 		bus_release_resource(dev, SYS_RES_MEMORY,
1440 		    rman_get_rid(sc->mem), sc->mem);
1441 
1442 	if (sc->sc_cdev) {
1443 		destroy_dev(sc->sc_cdev);
1444 		sc->sc_cdev = NULL;
1445 	}
1446 
1447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1448 	IWN_LOCK_DESTROY(sc);
1449 	return 0;
1450 }
1451 
1452 static int
1453 iwn_shutdown(device_t dev)
1454 {
1455 	struct iwn_softc *sc = device_get_softc(dev);
1456 
1457 	iwn_stop(sc);
1458 	return 0;
1459 }
1460 
1461 static int
1462 iwn_suspend(device_t dev)
1463 {
1464 	struct iwn_softc *sc = device_get_softc(dev);
1465 
1466 	ieee80211_suspend_all(&sc->sc_ic);
1467 	return 0;
1468 }
1469 
1470 static int
1471 iwn_resume(device_t dev)
1472 {
1473 	struct iwn_softc *sc = device_get_softc(dev);
1474 
1475 	/* Clear device-specific "PCI retry timeout" register (41h). */
1476 	pci_write_config(dev, 0x41, 0, 1);
1477 
1478 	ieee80211_resume_all(&sc->sc_ic);
1479 	return 0;
1480 }
1481 
1482 static int
1483 iwn_nic_lock(struct iwn_softc *sc)
1484 {
1485 	int ntries;
1486 
1487 	/* Request exclusive access to NIC. */
1488 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1489 
1490 	/* Spin until we actually get the lock. */
1491 	for (ntries = 0; ntries < 1000; ntries++) {
1492 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1493 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1494 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1495 			return 0;
1496 		DELAY(10);
1497 	}
1498 	return ETIMEDOUT;
1499 }
1500 
1501 static __inline void
1502 iwn_nic_unlock(struct iwn_softc *sc)
1503 {
1504 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1505 }
1506 
1507 static __inline uint32_t
1508 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1509 {
1510 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1511 	IWN_BARRIER_READ_WRITE(sc);
1512 	return IWN_READ(sc, IWN_PRPH_RDATA);
1513 }
1514 
1515 static __inline void
1516 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1517 {
1518 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1519 	IWN_BARRIER_WRITE(sc);
1520 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1521 }
1522 
1523 static __inline void
1524 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1525 {
1526 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1527 }
1528 
1529 static __inline void
1530 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1531 {
1532 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1533 }
1534 
1535 static __inline void
1536 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1537     const uint32_t *data, int count)
1538 {
1539 	for (; count > 0; count--, data++, addr += 4)
1540 		iwn_prph_write(sc, addr, *data);
1541 }
1542 
1543 static __inline uint32_t
1544 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1545 {
1546 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1547 	IWN_BARRIER_READ_WRITE(sc);
1548 	return IWN_READ(sc, IWN_MEM_RDATA);
1549 }
1550 
1551 static __inline void
1552 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1553 {
1554 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1555 	IWN_BARRIER_WRITE(sc);
1556 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1557 }
1558 
1559 static __inline void
1560 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1561 {
1562 	uint32_t tmp;
1563 
1564 	tmp = iwn_mem_read(sc, addr & ~3);
1565 	if (addr & 3)
1566 		tmp = (tmp & 0x0000ffff) | data << 16;
1567 	else
1568 		tmp = (tmp & 0xffff0000) | data;
1569 	iwn_mem_write(sc, addr & ~3, tmp);
1570 }
1571 
1572 static __inline void
1573 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1574     int count)
1575 {
1576 	for (; count > 0; count--, addr += 4)
1577 		*data++ = iwn_mem_read(sc, addr);
1578 }
1579 
1580 static __inline void
1581 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1582     int count)
1583 {
1584 	for (; count > 0; count--, addr += 4)
1585 		iwn_mem_write(sc, addr, val);
1586 }
1587 
1588 static int
1589 iwn_eeprom_lock(struct iwn_softc *sc)
1590 {
1591 	int i, ntries;
1592 
1593 	for (i = 0; i < 100; i++) {
1594 		/* Request exclusive access to EEPROM. */
1595 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1596 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1597 
1598 		/* Spin until we actually get the lock. */
1599 		for (ntries = 0; ntries < 100; ntries++) {
1600 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1601 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1602 				return 0;
1603 			DELAY(10);
1604 		}
1605 	}
1606 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1607 	return ETIMEDOUT;
1608 }
1609 
1610 static __inline void
1611 iwn_eeprom_unlock(struct iwn_softc *sc)
1612 {
1613 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1614 }
1615 
1616 /*
1617  * Initialize access by host to One Time Programmable ROM.
1618  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1619  */
1620 static int
1621 iwn_init_otprom(struct iwn_softc *sc)
1622 {
1623 	uint16_t prev, base, next;
1624 	int count, error;
1625 
1626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1627 
1628 	/* Wait for clock stabilization before accessing prph. */
1629 	if ((error = iwn_clock_wait(sc)) != 0)
1630 		return error;
1631 
1632 	if ((error = iwn_nic_lock(sc)) != 0)
1633 		return error;
1634 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	DELAY(5);
1636 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1637 	iwn_nic_unlock(sc);
1638 
1639 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1640 	if (sc->base_params->shadow_ram_support) {
1641 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1642 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1643 	}
1644 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1645 	/* Clear ECC status. */
1646 	IWN_SETBITS(sc, IWN_OTP_GP,
1647 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1648 
1649 	/*
1650 	 * Find the block before last block (contains the EEPROM image)
1651 	 * for HW without OTP shadow RAM.
1652 	 */
1653 	if (! sc->base_params->shadow_ram_support) {
1654 		/* Switch to absolute addressing mode. */
1655 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1656 		base = prev = 0;
1657 		for (count = 0; count < sc->base_params->max_ll_items;
1658 		    count++) {
1659 			error = iwn_read_prom_data(sc, base, &next, 2);
1660 			if (error != 0)
1661 				return error;
1662 			if (next == 0)	/* End of linked-list. */
1663 				break;
1664 			prev = base;
1665 			base = le16toh(next);
1666 		}
1667 		if (count == 0 || count == sc->base_params->max_ll_items)
1668 			return EIO;
1669 		/* Skip "next" word. */
1670 		sc->prom_base = prev + 1;
1671 	}
1672 
1673 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1674 
1675 	return 0;
1676 }
1677 
1678 static int
1679 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1680 {
1681 	uint8_t *out = data;
1682 	uint32_t val, tmp;
1683 	int ntries;
1684 
1685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1686 
1687 	addr += sc->prom_base;
1688 	for (; count > 0; count -= 2, addr++) {
1689 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1690 		for (ntries = 0; ntries < 10; ntries++) {
1691 			val = IWN_READ(sc, IWN_EEPROM);
1692 			if (val & IWN_EEPROM_READ_VALID)
1693 				break;
1694 			DELAY(5);
1695 		}
1696 		if (ntries == 10) {
1697 			device_printf(sc->sc_dev,
1698 			    "timeout reading ROM at 0x%x\n", addr);
1699 			return ETIMEDOUT;
1700 		}
1701 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1702 			/* OTPROM, check for ECC errors. */
1703 			tmp = IWN_READ(sc, IWN_OTP_GP);
1704 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1705 				device_printf(sc->sc_dev,
1706 				    "OTPROM ECC error at 0x%x\n", addr);
1707 				return EIO;
1708 			}
1709 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1710 				/* Correctable ECC error, clear bit. */
1711 				IWN_SETBITS(sc, IWN_OTP_GP,
1712 				    IWN_OTP_GP_ECC_CORR_STTS);
1713 			}
1714 		}
1715 		*out++ = val >> 16;
1716 		if (count > 1)
1717 			*out++ = val >> 24;
1718 	}
1719 
1720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1721 
1722 	return 0;
1723 }
1724 
1725 static void
1726 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1727 {
1728 	if (error != 0)
1729 		return;
1730 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1731 	*(bus_addr_t *)arg = segs[0].ds_addr;
1732 }
1733 
1734 static int
1735 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1736     void **kvap, bus_size_t size, bus_size_t alignment)
1737 {
1738 	int error;
1739 
1740 	dma->tag = NULL;
1741 	dma->size = size;
1742 
1743 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1744 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1745 	    1, size, 0, NULL, NULL, &dma->tag);
1746 	if (error != 0)
1747 		goto fail;
1748 
1749 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1750 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1751 	if (error != 0)
1752 		goto fail;
1753 
1754 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1755 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1756 	if (error != 0)
1757 		goto fail;
1758 
1759 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1760 
1761 	if (kvap != NULL)
1762 		*kvap = dma->vaddr;
1763 
1764 	return 0;
1765 
1766 fail:	iwn_dma_contig_free(dma);
1767 	return error;
1768 }
1769 
1770 static void
1771 iwn_dma_contig_free(struct iwn_dma_info *dma)
1772 {
1773 	if (dma->vaddr != NULL) {
1774 		bus_dmamap_sync(dma->tag, dma->map,
1775 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1776 		bus_dmamap_unload(dma->tag, dma->map);
1777 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1778 		dma->vaddr = NULL;
1779 	}
1780 	if (dma->tag != NULL) {
1781 		bus_dma_tag_destroy(dma->tag);
1782 		dma->tag = NULL;
1783 	}
1784 }
1785 
1786 static int
1787 iwn_alloc_sched(struct iwn_softc *sc)
1788 {
1789 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1790 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1791 	    sc->schedsz, 1024);
1792 }
1793 
1794 static void
1795 iwn_free_sched(struct iwn_softc *sc)
1796 {
1797 	iwn_dma_contig_free(&sc->sched_dma);
1798 }
1799 
1800 static int
1801 iwn_alloc_kw(struct iwn_softc *sc)
1802 {
1803 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1804 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1805 }
1806 
1807 static void
1808 iwn_free_kw(struct iwn_softc *sc)
1809 {
1810 	iwn_dma_contig_free(&sc->kw_dma);
1811 }
1812 
1813 static int
1814 iwn_alloc_ict(struct iwn_softc *sc)
1815 {
1816 	/* ICT table must be aligned on a 4KB boundary. */
1817 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1818 	    IWN_ICT_SIZE, 4096);
1819 }
1820 
1821 static void
1822 iwn_free_ict(struct iwn_softc *sc)
1823 {
1824 	iwn_dma_contig_free(&sc->ict_dma);
1825 }
1826 
1827 static int
1828 iwn_alloc_fwmem(struct iwn_softc *sc)
1829 {
1830 	/* Must be aligned on a 16-byte boundary. */
1831 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1832 }
1833 
1834 static void
1835 iwn_free_fwmem(struct iwn_softc *sc)
1836 {
1837 	iwn_dma_contig_free(&sc->fw_dma);
1838 }
1839 
1840 static int
1841 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1842 {
1843 	bus_size_t size;
1844 	int i, error;
1845 
1846 	ring->cur = 0;
1847 
1848 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1849 
1850 	/* Allocate RX descriptors (256-byte aligned). */
1851 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1852 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1853 	    size, 256);
1854 	if (error != 0) {
1855 		device_printf(sc->sc_dev,
1856 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1857 		    __func__, error);
1858 		goto fail;
1859 	}
1860 
1861 	/* Allocate RX status area (16-byte aligned). */
1862 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1863 	    sizeof (struct iwn_rx_status), 16);
1864 	if (error != 0) {
1865 		device_printf(sc->sc_dev,
1866 		    "%s: could not allocate RX status DMA memory, error %d\n",
1867 		    __func__, error);
1868 		goto fail;
1869 	}
1870 
1871 	/* Create RX buffer DMA tag. */
1872 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1873 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1874 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1875 	if (error != 0) {
1876 		device_printf(sc->sc_dev,
1877 		    "%s: could not create RX buf DMA tag, error %d\n",
1878 		    __func__, error);
1879 		goto fail;
1880 	}
1881 
1882 	/*
1883 	 * Allocate and map RX buffers.
1884 	 */
1885 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1886 		struct iwn_rx_data *data = &ring->data[i];
1887 		bus_addr_t paddr;
1888 
1889 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1890 		if (error != 0) {
1891 			device_printf(sc->sc_dev,
1892 			    "%s: could not create RX buf DMA map, error %d\n",
1893 			    __func__, error);
1894 			goto fail;
1895 		}
1896 
1897 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1898 		    IWN_RBUF_SIZE);
1899 		if (data->m == NULL) {
1900 			device_printf(sc->sc_dev,
1901 			    "%s: could not allocate RX mbuf\n", __func__);
1902 			error = ENOBUFS;
1903 			goto fail;
1904 		}
1905 
1906 		error = bus_dmamap_load(ring->data_dmat, data->map,
1907 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1908 		    &paddr, BUS_DMA_NOWAIT);
1909 		if (error != 0 && error != EFBIG) {
1910 			device_printf(sc->sc_dev,
1911 			    "%s: can't map mbuf, error %d\n", __func__,
1912 			    error);
1913 			goto fail;
1914 		}
1915 
1916 		bus_dmamap_sync(ring->data_dmat, data->map,
1917 		    BUS_DMASYNC_PREREAD);
1918 
1919 		/* Set physical address of RX buffer (256-byte aligned). */
1920 		ring->desc[i] = htole32(paddr >> 8);
1921 	}
1922 
1923 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1924 	    BUS_DMASYNC_PREWRITE);
1925 
1926 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1927 
1928 	return 0;
1929 
1930 fail:	iwn_free_rx_ring(sc, ring);
1931 
1932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1933 
1934 	return error;
1935 }
1936 
1937 static void
1938 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1939 {
1940 	int ntries;
1941 
1942 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1943 
1944 	if (iwn_nic_lock(sc) == 0) {
1945 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1946 		for (ntries = 0; ntries < 1000; ntries++) {
1947 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1948 			    IWN_FH_RX_STATUS_IDLE)
1949 				break;
1950 			DELAY(10);
1951 		}
1952 		iwn_nic_unlock(sc);
1953 	}
1954 	ring->cur = 0;
1955 	sc->last_rx_valid = 0;
1956 }
1957 
1958 static void
1959 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1960 {
1961 	int i;
1962 
1963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1964 
1965 	iwn_dma_contig_free(&ring->desc_dma);
1966 	iwn_dma_contig_free(&ring->stat_dma);
1967 
1968 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1969 		struct iwn_rx_data *data = &ring->data[i];
1970 
1971 		if (data->m != NULL) {
1972 			bus_dmamap_sync(ring->data_dmat, data->map,
1973 			    BUS_DMASYNC_POSTREAD);
1974 			bus_dmamap_unload(ring->data_dmat, data->map);
1975 			m_freem(data->m);
1976 			data->m = NULL;
1977 		}
1978 		if (data->map != NULL)
1979 			bus_dmamap_destroy(ring->data_dmat, data->map);
1980 	}
1981 	if (ring->data_dmat != NULL) {
1982 		bus_dma_tag_destroy(ring->data_dmat);
1983 		ring->data_dmat = NULL;
1984 	}
1985 }
1986 
1987 static int
1988 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1989 {
1990 	bus_addr_t paddr;
1991 	bus_size_t size;
1992 	int i, error;
1993 
1994 	ring->qid = qid;
1995 	ring->queued = 0;
1996 	ring->cur = 0;
1997 
1998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1999 
2000 	/* Allocate TX descriptors (256-byte aligned). */
2001 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2002 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2003 	    size, 256);
2004 	if (error != 0) {
2005 		device_printf(sc->sc_dev,
2006 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2007 		    __func__, error);
2008 		goto fail;
2009 	}
2010 
2011 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2012 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2013 	    size, 4);
2014 	if (error != 0) {
2015 		device_printf(sc->sc_dev,
2016 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2017 		    __func__, error);
2018 		goto fail;
2019 	}
2020 
2021 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2022 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2023 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2024 	if (error != 0) {
2025 		device_printf(sc->sc_dev,
2026 		    "%s: could not create TX buf DMA tag, error %d\n",
2027 		    __func__, error);
2028 		goto fail;
2029 	}
2030 
2031 	paddr = ring->cmd_dma.paddr;
2032 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2033 		struct iwn_tx_data *data = &ring->data[i];
2034 
2035 		data->cmd_paddr = paddr;
2036 		data->scratch_paddr = paddr + 12;
2037 		paddr += sizeof (struct iwn_tx_cmd);
2038 
2039 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2040 		if (error != 0) {
2041 			device_printf(sc->sc_dev,
2042 			    "%s: could not create TX buf DMA map, error %d\n",
2043 			    __func__, error);
2044 			goto fail;
2045 		}
2046 	}
2047 
2048 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2049 
2050 	return 0;
2051 
2052 fail:	iwn_free_tx_ring(sc, ring);
2053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2054 	return error;
2055 }
2056 
2057 static void
2058 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2059 {
2060 	int i;
2061 
2062 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2063 
2064 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2065 		struct iwn_tx_data *data = &ring->data[i];
2066 
2067 		if (data->m != NULL) {
2068 			bus_dmamap_sync(ring->data_dmat, data->map,
2069 			    BUS_DMASYNC_POSTWRITE);
2070 			bus_dmamap_unload(ring->data_dmat, data->map);
2071 			m_freem(data->m);
2072 			data->m = NULL;
2073 		}
2074 		if (data->ni != NULL) {
2075 			ieee80211_free_node(data->ni);
2076 			data->ni = NULL;
2077 		}
2078 		data->remapped = 0;
2079 		data->long_retries = 0;
2080 	}
2081 	/* Clear TX descriptors. */
2082 	memset(ring->desc, 0, ring->desc_dma.size);
2083 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2084 	    BUS_DMASYNC_PREWRITE);
2085 	sc->qfullmsk &= ~(1 << ring->qid);
2086 	ring->queued = 0;
2087 	ring->cur = 0;
2088 }
2089 
2090 static void
2091 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2092 {
2093 	int i;
2094 
2095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2096 
2097 	iwn_dma_contig_free(&ring->desc_dma);
2098 	iwn_dma_contig_free(&ring->cmd_dma);
2099 
2100 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2101 		struct iwn_tx_data *data = &ring->data[i];
2102 
2103 		if (data->m != NULL) {
2104 			bus_dmamap_sync(ring->data_dmat, data->map,
2105 			    BUS_DMASYNC_POSTWRITE);
2106 			bus_dmamap_unload(ring->data_dmat, data->map);
2107 			m_freem(data->m);
2108 		}
2109 		if (data->map != NULL)
2110 			bus_dmamap_destroy(ring->data_dmat, data->map);
2111 	}
2112 	if (ring->data_dmat != NULL) {
2113 		bus_dma_tag_destroy(ring->data_dmat);
2114 		ring->data_dmat = NULL;
2115 	}
2116 }
2117 
2118 static void
2119 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2120 {
2121 	struct iwn_tx_ring *ring = &sc->txq[qid];
2122 
2123 	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2124 	    __func__, ring->queued, qid));
2125 
2126 	if (qid >= sc->firstaggqueue) {
2127 		struct iwn_ops *ops = &sc->ops;
2128 		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2129 
2130 		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2131 			uint16_t ssn = tap->txa_start & 0xfff;
2132 			uint8_t tid = tap->txa_tid;
2133 			int *res = tap->txa_private;
2134 
2135 			iwn_nic_lock(sc);
2136 			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2137 			iwn_nic_unlock(sc);
2138 
2139 			sc->qid2tap[qid] = NULL;
2140 			free(res, M_DEVBUF);
2141 		}
2142 	}
2143 
2144 	if (ring->queued < IWN_TX_RING_LOMARK) {
2145 		sc->qfullmsk &= ~(1 << qid);
2146 
2147 		if (ring->queued == 0)
2148 			sc->sc_tx_timer = 0;
2149 		else
2150 			sc->sc_tx_timer = 5;
2151 	}
2152 }
2153 
2154 static void
2155 iwn5000_ict_reset(struct iwn_softc *sc)
2156 {
2157 	/* Disable interrupts. */
2158 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2159 
2160 	/* Reset ICT table. */
2161 	memset(sc->ict, 0, IWN_ICT_SIZE);
2162 	sc->ict_cur = 0;
2163 
2164 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2165 	    BUS_DMASYNC_PREWRITE);
2166 
2167 	/* Set physical address of ICT table (4KB aligned). */
2168 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2169 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2170 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2171 
2172 	/* Enable periodic RX interrupt. */
2173 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2174 	/* Switch to ICT interrupt mode in driver. */
2175 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2176 
2177 	/* Re-enable interrupts. */
2178 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2179 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2180 }
2181 
2182 static int
2183 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2184 {
2185 	struct iwn_ops *ops = &sc->ops;
2186 	uint16_t val;
2187 	int error;
2188 
2189 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2190 
2191 	/* Check whether adapter has an EEPROM or an OTPROM. */
2192 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2193 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2194 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2195 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2196 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2197 
2198 	/* Adapter has to be powered on for EEPROM access to work. */
2199 	if ((error = iwn_apm_init(sc)) != 0) {
2200 		device_printf(sc->sc_dev,
2201 		    "%s: could not power ON adapter, error %d\n", __func__,
2202 		    error);
2203 		return error;
2204 	}
2205 
2206 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2207 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2208 		return EIO;
2209 	}
2210 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2211 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2212 		    __func__, error);
2213 		return error;
2214 	}
2215 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2216 		if ((error = iwn_init_otprom(sc)) != 0) {
2217 			device_printf(sc->sc_dev,
2218 			    "%s: could not initialize OTPROM, error %d\n",
2219 			    __func__, error);
2220 			return error;
2221 		}
2222 	}
2223 
2224 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2225 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2226 	/* Check if HT support is bonded out. */
2227 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2228 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2229 
2230 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2231 	sc->rfcfg = le16toh(val);
2232 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2233 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2234 	if (sc->txchainmask == 0)
2235 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2236 	if (sc->rxchainmask == 0)
2237 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2238 
2239 	/* Read MAC address. */
2240 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2241 
2242 	/* Read adapter-specific information from EEPROM. */
2243 	ops->read_eeprom(sc);
2244 
2245 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2246 
2247 	iwn_eeprom_unlock(sc);
2248 
2249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2250 
2251 	return 0;
2252 }
2253 
2254 static void
2255 iwn4965_read_eeprom(struct iwn_softc *sc)
2256 {
2257 	uint32_t addr;
2258 	uint16_t val;
2259 	int i;
2260 
2261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2262 
2263 	/* Read regulatory domain (4 ASCII characters). */
2264 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2265 
2266 	/* Read the list of authorized channels (20MHz & 40MHz). */
2267 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2268 		addr = iwn4965_regulatory_bands[i];
2269 		iwn_read_eeprom_channels(sc, i, addr);
2270 	}
2271 
2272 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2273 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2274 	sc->maxpwr2GHz = val & 0xff;
2275 	sc->maxpwr5GHz = val >> 8;
2276 	/* Check that EEPROM values are within valid range. */
2277 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2278 		sc->maxpwr5GHz = 38;
2279 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2280 		sc->maxpwr2GHz = 38;
2281 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2282 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2283 
2284 	/* Read samples for each TX power group. */
2285 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2286 	    sizeof sc->bands);
2287 
2288 	/* Read voltage at which samples were taken. */
2289 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2290 	sc->eeprom_voltage = (int16_t)le16toh(val);
2291 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2292 	    sc->eeprom_voltage);
2293 
2294 #ifdef IWN_DEBUG
2295 	/* Print samples. */
2296 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2297 		for (i = 0; i < IWN_NBANDS - 1; i++)
2298 			iwn4965_print_power_group(sc, i);
2299 	}
2300 #endif
2301 
2302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2303 }
2304 
2305 #ifdef IWN_DEBUG
2306 static void
2307 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2308 {
2309 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2310 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2311 	int j, c;
2312 
2313 	printf("===band %d===\n", i);
2314 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2315 	printf("chan1 num=%d\n", chans[0].num);
2316 	for (c = 0; c < 2; c++) {
2317 		for (j = 0; j < IWN_NSAMPLES; j++) {
2318 			printf("chain %d, sample %d: temp=%d gain=%d "
2319 			    "power=%d pa_det=%d\n", c, j,
2320 			    chans[0].samples[c][j].temp,
2321 			    chans[0].samples[c][j].gain,
2322 			    chans[0].samples[c][j].power,
2323 			    chans[0].samples[c][j].pa_det);
2324 		}
2325 	}
2326 	printf("chan2 num=%d\n", chans[1].num);
2327 	for (c = 0; c < 2; c++) {
2328 		for (j = 0; j < IWN_NSAMPLES; j++) {
2329 			printf("chain %d, sample %d: temp=%d gain=%d "
2330 			    "power=%d pa_det=%d\n", c, j,
2331 			    chans[1].samples[c][j].temp,
2332 			    chans[1].samples[c][j].gain,
2333 			    chans[1].samples[c][j].power,
2334 			    chans[1].samples[c][j].pa_det);
2335 		}
2336 	}
2337 }
2338 #endif
2339 
2340 static void
2341 iwn5000_read_eeprom(struct iwn_softc *sc)
2342 {
2343 	struct iwn5000_eeprom_calib_hdr hdr;
2344 	int32_t volt;
2345 	uint32_t base, addr;
2346 	uint16_t val;
2347 	int i;
2348 
2349 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2350 
2351 	/* Read regulatory domain (4 ASCII characters). */
2352 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2353 	base = le16toh(val);
2354 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2355 	    sc->eeprom_domain, 4);
2356 
2357 	/* Read the list of authorized channels (20MHz & 40MHz). */
2358 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2359 		addr =  base + sc->base_params->regulatory_bands[i];
2360 		iwn_read_eeprom_channels(sc, i, addr);
2361 	}
2362 
2363 	/* Read enhanced TX power information for 6000 Series. */
2364 	if (sc->base_params->enhanced_TX_power)
2365 		iwn_read_eeprom_enhinfo(sc);
2366 
2367 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2368 	base = le16toh(val);
2369 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2370 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2371 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2372 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2373 	sc->calib_ver = hdr.version;
2374 
2375 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2376 		sc->eeprom_voltage = le16toh(hdr.volt);
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2378 		sc->eeprom_temp_high=le16toh(val);
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2380 		sc->eeprom_temp = le16toh(val);
2381 	}
2382 
2383 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2384 		/* Compute temperature offset. */
2385 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2386 		sc->eeprom_temp = le16toh(val);
2387 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2388 		volt = le16toh(val);
2389 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2391 		    sc->eeprom_temp, volt, sc->temp_off);
2392 	} else {
2393 		/* Read crystal calibration. */
2394 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2395 		    &sc->eeprom_crystal, sizeof (uint32_t));
2396 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2397 		    le32toh(sc->eeprom_crystal));
2398 	}
2399 
2400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2401 
2402 }
2403 
2404 /*
2405  * Translate EEPROM flags to net80211.
2406  */
2407 static uint32_t
2408 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2409 {
2410 	uint32_t nflags;
2411 
2412 	nflags = 0;
2413 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2414 		nflags |= IEEE80211_CHAN_PASSIVE;
2415 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2416 		nflags |= IEEE80211_CHAN_NOADHOC;
2417 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2418 		nflags |= IEEE80211_CHAN_DFS;
2419 		/* XXX apparently IBSS may still be marked */
2420 		nflags |= IEEE80211_CHAN_NOADHOC;
2421 	}
2422 
2423 	return nflags;
2424 }
2425 
2426 static void
2427 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2428     struct ieee80211_channel chans[])
2429 {
2430 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2431 	const struct iwn_chan_band *band = &iwn_bands[n];
2432 	uint8_t bands[IEEE80211_MODE_BYTES];
2433 	uint8_t chan;
2434 	int i, error, nflags;
2435 
2436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2437 
2438 	memset(bands, 0, sizeof(bands));
2439 	if (n == 0) {
2440 		setbit(bands, IEEE80211_MODE_11B);
2441 		setbit(bands, IEEE80211_MODE_11G);
2442 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2443 			setbit(bands, IEEE80211_MODE_11NG);
2444 	} else {
2445 		setbit(bands, IEEE80211_MODE_11A);
2446 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2447 			setbit(bands, IEEE80211_MODE_11NA);
2448 	}
2449 
2450 	for (i = 0; i < band->nchan; i++) {
2451 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2452 			DPRINTF(sc, IWN_DEBUG_RESET,
2453 			    "skip chan %d flags 0x%x maxpwr %d\n",
2454 			    band->chan[i], channels[i].flags,
2455 			    channels[i].maxpwr);
2456 			continue;
2457 		}
2458 
2459 		chan = band->chan[i];
2460 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2461 		error = ieee80211_add_channel(chans, maxchans, nchans,
2462 		    chan, 0, channels[i].maxpwr, nflags, bands);
2463 		if (error != 0)
2464 			break;
2465 
2466 		/* Save maximum allowed TX power for this channel. */
2467 		/* XXX wrong */
2468 		sc->maxpwr[chan] = channels[i].maxpwr;
2469 
2470 		DPRINTF(sc, IWN_DEBUG_RESET,
2471 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2472 		    channels[i].flags, channels[i].maxpwr);
2473 	}
2474 
2475 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2476 
2477 }
2478 
2479 static void
2480 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2481     struct ieee80211_channel chans[])
2482 {
2483 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2484 	const struct iwn_chan_band *band = &iwn_bands[n];
2485 	uint8_t chan;
2486 	int i, error, nflags;
2487 
2488 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2489 
2490 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2491 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2492 		return;
2493 	}
2494 
2495 	for (i = 0; i < band->nchan; i++) {
2496 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2497 			DPRINTF(sc, IWN_DEBUG_RESET,
2498 			    "skip chan %d flags 0x%x maxpwr %d\n",
2499 			    band->chan[i], channels[i].flags,
2500 			    channels[i].maxpwr);
2501 			continue;
2502 		}
2503 
2504 		chan = band->chan[i];
2505 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2506 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2507 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2508 		    chan, channels[i].maxpwr, nflags);
2509 		switch (error) {
2510 		case EINVAL:
2511 			device_printf(sc->sc_dev,
2512 			    "%s: no entry for channel %d\n", __func__, chan);
2513 			continue;
2514 		case ENOENT:
2515 			DPRINTF(sc, IWN_DEBUG_RESET,
2516 			    "%s: skip chan %d, extension channel not found\n",
2517 			    __func__, chan);
2518 			continue;
2519 		case ENOBUFS:
2520 			device_printf(sc->sc_dev,
2521 			    "%s: channel table is full!\n", __func__);
2522 			break;
2523 		case 0:
2524 			DPRINTF(sc, IWN_DEBUG_RESET,
2525 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2526 			    chan, channels[i].flags, channels[i].maxpwr);
2527 			/* FALLTHROUGH */
2528 		default:
2529 			break;
2530 		}
2531 	}
2532 
2533 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2534 
2535 }
2536 
2537 static void
2538 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2539 {
2540 	struct ieee80211com *ic = &sc->sc_ic;
2541 
2542 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2543 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2544 
2545 	if (n < 5) {
2546 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2547 		    ic->ic_channels);
2548 	} else {
2549 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2550 		    ic->ic_channels);
2551 	}
2552 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2553 }
2554 
2555 static struct iwn_eeprom_chan *
2556 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2557 {
2558 	int band, chan, i, j;
2559 
2560 	if (IEEE80211_IS_CHAN_HT40(c)) {
2561 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2562 		if (IEEE80211_IS_CHAN_HT40D(c))
2563 			chan = c->ic_extieee;
2564 		else
2565 			chan = c->ic_ieee;
2566 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2567 			if (iwn_bands[band].chan[i] == chan)
2568 				return &sc->eeprom_channels[band][i];
2569 		}
2570 	} else {
2571 		for (j = 0; j < 5; j++) {
2572 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2573 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2574 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2575 					return &sc->eeprom_channels[j][i];
2576 			}
2577 		}
2578 	}
2579 	return NULL;
2580 }
2581 
2582 static void
2583 iwn_getradiocaps(struct ieee80211com *ic,
2584     int maxchans, int *nchans, struct ieee80211_channel chans[])
2585 {
2586 	struct iwn_softc *sc = ic->ic_softc;
2587 	int i;
2588 
2589 	/* Parse the list of authorized channels. */
2590 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2591 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2592 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2593 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2594 }
2595 
2596 /*
2597  * Enforce flags read from EEPROM.
2598  */
2599 static int
2600 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2601     int nchan, struct ieee80211_channel chans[])
2602 {
2603 	struct iwn_softc *sc = ic->ic_softc;
2604 	int i;
2605 
2606 	for (i = 0; i < nchan; i++) {
2607 		struct ieee80211_channel *c = &chans[i];
2608 		struct iwn_eeprom_chan *channel;
2609 
2610 		channel = iwn_find_eeprom_channel(sc, c);
2611 		if (channel == NULL) {
2612 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2613 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2614 			return EINVAL;
2615 		}
2616 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static void
2623 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2624 {
2625 	struct iwn_eeprom_enhinfo enhinfo[35];
2626 	struct ieee80211com *ic = &sc->sc_ic;
2627 	struct ieee80211_channel *c;
2628 	uint16_t val, base;
2629 	int8_t maxpwr;
2630 	uint8_t flags;
2631 	int i, j;
2632 
2633 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2634 
2635 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2636 	base = le16toh(val);
2637 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2638 	    enhinfo, sizeof enhinfo);
2639 
2640 	for (i = 0; i < nitems(enhinfo); i++) {
2641 		flags = enhinfo[i].flags;
2642 		if (!(flags & IWN_ENHINFO_VALID))
2643 			continue;	/* Skip invalid entries. */
2644 
2645 		maxpwr = 0;
2646 		if (sc->txchainmask & IWN_ANT_A)
2647 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2648 		if (sc->txchainmask & IWN_ANT_B)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2650 		if (sc->txchainmask & IWN_ANT_C)
2651 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2652 		if (sc->ntxchains == 2)
2653 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2654 		else if (sc->ntxchains == 3)
2655 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2656 
2657 		for (j = 0; j < ic->ic_nchans; j++) {
2658 			c = &ic->ic_channels[j];
2659 			if ((flags & IWN_ENHINFO_5GHZ)) {
2660 				if (!IEEE80211_IS_CHAN_A(c))
2661 					continue;
2662 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2663 				if (!IEEE80211_IS_CHAN_G(c))
2664 					continue;
2665 			} else if (!IEEE80211_IS_CHAN_B(c))
2666 				continue;
2667 			if ((flags & IWN_ENHINFO_HT40)) {
2668 				if (!IEEE80211_IS_CHAN_HT40(c))
2669 					continue;
2670 			} else {
2671 				if (IEEE80211_IS_CHAN_HT40(c))
2672 					continue;
2673 			}
2674 			if (enhinfo[i].chan != 0 &&
2675 			    enhinfo[i].chan != c->ic_ieee)
2676 				continue;
2677 
2678 			DPRINTF(sc, IWN_DEBUG_RESET,
2679 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2680 			    c->ic_flags, maxpwr / 2);
2681 			c->ic_maxregpower = maxpwr / 2;
2682 			c->ic_maxpower = maxpwr;
2683 		}
2684 	}
2685 
2686 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2687 
2688 }
2689 
2690 static struct ieee80211_node *
2691 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2692 {
2693 	struct iwn_node *wn;
2694 
2695 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2696 	if (wn == NULL)
2697 		return (NULL);
2698 
2699 	wn->id = IWN_ID_UNDEFINED;
2700 
2701 	return (&wn->ni);
2702 }
2703 
2704 static __inline int
2705 rate2plcp(int rate)
2706 {
2707 	switch (rate & 0xff) {
2708 	case 12:	return 0xd;
2709 	case 18:	return 0xf;
2710 	case 24:	return 0x5;
2711 	case 36:	return 0x7;
2712 	case 48:	return 0x9;
2713 	case 72:	return 0xb;
2714 	case 96:	return 0x1;
2715 	case 108:	return 0x3;
2716 	case 2:		return 10;
2717 	case 4:		return 20;
2718 	case 11:	return 55;
2719 	case 22:	return 110;
2720 	}
2721 	return 0;
2722 }
2723 
2724 static __inline uint8_t
2725 plcp2rate(const uint8_t rate_plcp)
2726 {
2727 	switch (rate_plcp) {
2728 	case 0xd:	return 12;
2729 	case 0xf:	return 18;
2730 	case 0x5:	return 24;
2731 	case 0x7:	return 36;
2732 	case 0x9:	return 48;
2733 	case 0xb:	return 72;
2734 	case 0x1:	return 96;
2735 	case 0x3:	return 108;
2736 	case 10:	return 2;
2737 	case 20:	return 4;
2738 	case 55:	return 11;
2739 	case 110:	return 22;
2740 	default:	return 0;
2741 	}
2742 }
2743 
2744 static int
2745 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2746 {
2747 
2748 	return IWN_LSB(sc->txchainmask);
2749 }
2750 
2751 static int
2752 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2753 {
2754 	int tx;
2755 
2756 	/*
2757 	 * The '2 stream' setup is a bit .. odd.
2758 	 *
2759 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2760 	 * the firmware panics (eg Intel 5100.)
2761 	 *
2762 	 * For NICs that support two antennas, we use ANT_AB.
2763 	 *
2764 	 * For NICs that support three antennas, we use the two that
2765 	 * wasn't the default one.
2766 	 *
2767 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2768 	 * this to only one antenna.
2769 	 */
2770 
2771 	/* Default - transmit on the other antennas */
2772 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2773 
2774 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2775 	if (tx == 0)
2776 		tx = IWN_ANT_AB;
2777 
2778 	/*
2779 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2780 	 * the default chainmask
2781 	 */
2782 	else if (sc->ntxchains == 2)
2783 		tx = sc->txchainmask;
2784 
2785 	return (tx);
2786 }
2787 
2788 
2789 
2790 /*
2791  * Calculate the required PLCP value from the given rate,
2792  * to the given node.
2793  *
2794  * This will take the node configuration (eg 11n, rate table
2795  * setup, etc) into consideration.
2796  */
2797 static uint32_t
2798 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2799     uint8_t rate)
2800 {
2801 	struct ieee80211com *ic = ni->ni_ic;
2802 	uint32_t plcp = 0;
2803 	int ridx;
2804 
2805 	/*
2806 	 * If it's an MCS rate, let's set the plcp correctly
2807 	 * and set the relevant flags based on the node config.
2808 	 */
2809 	if (rate & IEEE80211_RATE_MCS) {
2810 		/*
2811 		 * Set the initial PLCP value to be between 0->31 for
2812 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2813 		 * flag.
2814 		 */
2815 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2816 
2817 		/*
2818 		 * XXX the following should only occur if both
2819 		 * the local configuration _and_ the remote node
2820 		 * advertise these capabilities.  Thus this code
2821 		 * may need fixing!
2822 		 */
2823 
2824 		/*
2825 		 * Set the channel width and guard interval.
2826 		 */
2827 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2828 			plcp |= IWN_RFLAG_HT40;
2829 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2830 				plcp |= IWN_RFLAG_SGI;
2831 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2832 			plcp |= IWN_RFLAG_SGI;
2833 		}
2834 
2835 		/*
2836 		 * Ensure the selected rate matches the link quality
2837 		 * table entries being used.
2838 		 */
2839 		if (rate > 0x8f)
2840 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2841 		else if (rate > 0x87)
2842 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2843 		else
2844 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2845 	} else {
2846 		/*
2847 		 * Set the initial PLCP - fine for both
2848 		 * OFDM and CCK rates.
2849 		 */
2850 		plcp = rate2plcp(rate);
2851 
2852 		/* Set CCK flag if it's CCK */
2853 
2854 		/* XXX It would be nice to have a method
2855 		 * to map the ridx -> phy table entry
2856 		 * so we could just query that, rather than
2857 		 * this hack to check against IWN_RIDX_OFDM6.
2858 		 */
2859 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2860 		    rate & IEEE80211_RATE_VAL);
2861 		if (ridx < IWN_RIDX_OFDM6 &&
2862 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2863 			plcp |= IWN_RFLAG_CCK;
2864 
2865 		/* Set antenna configuration */
2866 		/* XXX TODO: is this the right antenna to use for legacy? */
2867 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2868 	}
2869 
2870 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2871 	    __func__,
2872 	    rate,
2873 	    plcp);
2874 
2875 	return (htole32(plcp));
2876 }
2877 
2878 static void
2879 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2880 {
2881 	/* Doesn't do anything at the moment */
2882 }
2883 
2884 static int
2885 iwn_media_change(struct ifnet *ifp)
2886 {
2887 	int error;
2888 
2889 	error = ieee80211_media_change(ifp);
2890 	/* NB: only the fixed rate can change and that doesn't need a reset */
2891 	return (error == ENETRESET ? 0 : error);
2892 }
2893 
2894 static int
2895 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2896 {
2897 	struct iwn_vap *ivp = IWN_VAP(vap);
2898 	struct ieee80211com *ic = vap->iv_ic;
2899 	struct iwn_softc *sc = ic->ic_softc;
2900 	int error = 0;
2901 
2902 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2903 
2904 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2905 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2906 
2907 	IEEE80211_UNLOCK(ic);
2908 	IWN_LOCK(sc);
2909 	callout_stop(&sc->calib_to);
2910 
2911 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2912 
2913 	switch (nstate) {
2914 	case IEEE80211_S_ASSOC:
2915 		if (vap->iv_state != IEEE80211_S_RUN)
2916 			break;
2917 		/* FALLTHROUGH */
2918 	case IEEE80211_S_AUTH:
2919 		if (vap->iv_state == IEEE80211_S_AUTH)
2920 			break;
2921 
2922 		/*
2923 		 * !AUTH -> AUTH transition requires state reset to handle
2924 		 * reassociations correctly.
2925 		 */
2926 		sc->rxon->associd = 0;
2927 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2928 		sc->calib.state = IWN_CALIB_STATE_INIT;
2929 
2930 		/* Wait until we hear a beacon before we transmit */
2931 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2932 			sc->sc_beacon_wait = 1;
2933 
2934 		if ((error = iwn_auth(sc, vap)) != 0) {
2935 			device_printf(sc->sc_dev,
2936 			    "%s: could not move to auth state\n", __func__);
2937 		}
2938 		break;
2939 
2940 	case IEEE80211_S_RUN:
2941 		/*
2942 		 * RUN -> RUN transition; Just restart the timers.
2943 		 */
2944 		if (vap->iv_state == IEEE80211_S_RUN) {
2945 			sc->calib_cnt = 0;
2946 			break;
2947 		}
2948 
2949 		/* Wait until we hear a beacon before we transmit */
2950 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2951 			sc->sc_beacon_wait = 1;
2952 
2953 		/*
2954 		 * !RUN -> RUN requires setting the association id
2955 		 * which is done with a firmware cmd.  We also defer
2956 		 * starting the timers until that work is done.
2957 		 */
2958 		if ((error = iwn_run(sc, vap)) != 0) {
2959 			device_printf(sc->sc_dev,
2960 			    "%s: could not move to run state\n", __func__);
2961 		}
2962 		break;
2963 
2964 	case IEEE80211_S_INIT:
2965 		sc->calib.state = IWN_CALIB_STATE_INIT;
2966 		/*
2967 		 * Purge the xmit queue so we don't have old frames
2968 		 * during a new association attempt.
2969 		 */
2970 		sc->sc_beacon_wait = 0;
2971 		iwn_xmit_queue_drain(sc);
2972 		break;
2973 
2974 	default:
2975 		break;
2976 	}
2977 	IWN_UNLOCK(sc);
2978 	IEEE80211_LOCK(ic);
2979 	if (error != 0){
2980 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2981 		return error;
2982 	}
2983 
2984 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2985 
2986 	return ivp->iv_newstate(vap, nstate, arg);
2987 }
2988 
2989 static void
2990 iwn_calib_timeout(void *arg)
2991 {
2992 	struct iwn_softc *sc = arg;
2993 
2994 	IWN_LOCK_ASSERT(sc);
2995 
2996 	/* Force automatic TX power calibration every 60 secs. */
2997 	if (++sc->calib_cnt >= 120) {
2998 		uint32_t flags = 0;
2999 
3000 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
3001 		    "sending request for statistics");
3002 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
3003 		    sizeof flags, 1);
3004 		sc->calib_cnt = 0;
3005 	}
3006 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
3007 	    sc);
3008 }
3009 
3010 /*
3011  * Process an RX_PHY firmware notification.  This is usually immediately
3012  * followed by an MPDU_RX_DONE notification.
3013  */
3014 static void
3015 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3016 {
3017 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3018 
3019 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3020 
3021 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3022 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3023 	sc->last_rx_valid = 1;
3024 }
3025 
3026 /*
3027  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3028  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3029  */
3030 static void
3031 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3032     struct iwn_rx_data *data)
3033 {
3034 	struct epoch_tracker et;
3035 	struct iwn_ops *ops = &sc->ops;
3036 	struct ieee80211com *ic = &sc->sc_ic;
3037 	struct iwn_rx_ring *ring = &sc->rxq;
3038 	struct ieee80211_frame_min *wh;
3039 	struct ieee80211_node *ni;
3040 	struct mbuf *m, *m1;
3041 	struct iwn_rx_stat *stat;
3042 	caddr_t head;
3043 	bus_addr_t paddr;
3044 	uint32_t flags;
3045 	int error, len, rssi, nf;
3046 
3047 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3048 
3049 	if (desc->type == IWN_MPDU_RX_DONE) {
3050 		/* Check for prior RX_PHY notification. */
3051 		if (!sc->last_rx_valid) {
3052 			DPRINTF(sc, IWN_DEBUG_ANY,
3053 			    "%s: missing RX_PHY\n", __func__);
3054 			return;
3055 		}
3056 		stat = &sc->last_rx_stat;
3057 	} else
3058 		stat = (struct iwn_rx_stat *)(desc + 1);
3059 
3060 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3061 		device_printf(sc->sc_dev,
3062 		    "%s: invalid RX statistic header, len %d\n", __func__,
3063 		    stat->cfg_phy_len);
3064 		return;
3065 	}
3066 	if (desc->type == IWN_MPDU_RX_DONE) {
3067 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3068 		head = (caddr_t)(mpdu + 1);
3069 		len = le16toh(mpdu->len);
3070 	} else {
3071 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3072 		len = le16toh(stat->len);
3073 	}
3074 
3075 	flags = le32toh(*(uint32_t *)(head + len));
3076 
3077 	/* Discard frames with a bad FCS early. */
3078 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3079 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3080 		    __func__, flags);
3081 		counter_u64_add(ic->ic_ierrors, 1);
3082 		return;
3083 	}
3084 	/* Discard frames that are too short. */
3085 	if (len < sizeof (struct ieee80211_frame_ack)) {
3086 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3087 		    __func__, len);
3088 		counter_u64_add(ic->ic_ierrors, 1);
3089 		return;
3090 	}
3091 
3092 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3093 	if (m1 == NULL) {
3094 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3095 		    __func__);
3096 		counter_u64_add(ic->ic_ierrors, 1);
3097 		return;
3098 	}
3099 	bus_dmamap_unload(ring->data_dmat, data->map);
3100 
3101 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3102 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3103 	if (error != 0 && error != EFBIG) {
3104 		device_printf(sc->sc_dev,
3105 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3106 		m_freem(m1);
3107 
3108 		/* Try to reload the old mbuf. */
3109 		error = bus_dmamap_load(ring->data_dmat, data->map,
3110 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3111 		    &paddr, BUS_DMA_NOWAIT);
3112 		if (error != 0 && error != EFBIG) {
3113 			panic("%s: could not load old RX mbuf", __func__);
3114 		}
3115 		bus_dmamap_sync(ring->data_dmat, data->map,
3116 		    BUS_DMASYNC_PREREAD);
3117 		/* Physical address may have changed. */
3118 		ring->desc[ring->cur] = htole32(paddr >> 8);
3119 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3120 		    BUS_DMASYNC_PREWRITE);
3121 		counter_u64_add(ic->ic_ierrors, 1);
3122 		return;
3123 	}
3124 
3125 	bus_dmamap_sync(ring->data_dmat, data->map,
3126 	    BUS_DMASYNC_PREREAD);
3127 
3128 	m = data->m;
3129 	data->m = m1;
3130 	/* Update RX descriptor. */
3131 	ring->desc[ring->cur] = htole32(paddr >> 8);
3132 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3133 	    BUS_DMASYNC_PREWRITE);
3134 
3135 	/* Finalize mbuf. */
3136 	m->m_data = head;
3137 	m->m_pkthdr.len = m->m_len = len;
3138 
3139 	/* Grab a reference to the source node. */
3140 	wh = mtod(m, struct ieee80211_frame_min *);
3141 	if (len >= sizeof(struct ieee80211_frame_min))
3142 		ni = ieee80211_find_rxnode(ic, wh);
3143 	else
3144 		ni = NULL;
3145 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3146 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3147 
3148 	rssi = ops->get_rssi(sc, stat);
3149 
3150 	if (ieee80211_radiotap_active(ic)) {
3151 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3152 		uint32_t rate = le32toh(stat->rate);
3153 
3154 		tap->wr_flags = 0;
3155 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3156 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3157 		tap->wr_dbm_antsignal = (int8_t)rssi;
3158 		tap->wr_dbm_antnoise = (int8_t)nf;
3159 		tap->wr_tsft = stat->tstamp;
3160 		if (rate & IWN_RFLAG_MCS) {
3161 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3162 			tap->wr_rate |= IEEE80211_RATE_MCS;
3163 		} else
3164 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3165 	}
3166 
3167 	/*
3168 	 * If it's a beacon and we're waiting, then do the
3169 	 * wakeup.  This should unblock raw_xmit/start.
3170 	 */
3171 	if (sc->sc_beacon_wait) {
3172 		uint8_t type, subtype;
3173 		/* NB: Re-assign wh */
3174 		wh = mtod(m, struct ieee80211_frame_min *);
3175 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3176 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3177 		/*
3178 		 * This assumes at this point we've received our own
3179 		 * beacon.
3180 		 */
3181 		DPRINTF(sc, IWN_DEBUG_TRACE,
3182 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3183 		    __func__, type, subtype);
3184 		if (type == IEEE80211_FC0_TYPE_MGT &&
3185 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3186 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3187 			    "%s: waking things up\n", __func__);
3188 			/* queue taskqueue to transmit! */
3189 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3190 		}
3191 	}
3192 
3193 	IWN_UNLOCK(sc);
3194 	NET_EPOCH_ENTER(et);
3195 
3196 	/* Send the frame to the 802.11 layer. */
3197 	if (ni != NULL) {
3198 		if (ni->ni_flags & IEEE80211_NODE_HT)
3199 			m->m_flags |= M_AMPDU;
3200 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3201 		/* Node is no longer needed. */
3202 		ieee80211_free_node(ni);
3203 	} else
3204 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3205 
3206 	NET_EPOCH_EXIT(et);
3207 	IWN_LOCK(sc);
3208 
3209 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3210 
3211 }
3212 
3213 static void
3214 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3215     int idx, int success)
3216 {
3217 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3218 	struct iwn_tx_data *data = &ring->data[idx];
3219 	struct iwn_node *wn;
3220 	struct mbuf *m;
3221 	struct ieee80211_node *ni;
3222 
3223 	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3224 	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3225 
3226 	/* Unmap and free mbuf. */
3227 	bus_dmamap_sync(ring->data_dmat, data->map,
3228 	    BUS_DMASYNC_POSTWRITE);
3229 	bus_dmamap_unload(ring->data_dmat, data->map);
3230 	m = data->m, data->m = NULL;
3231 	ni = data->ni, data->ni = NULL;
3232 	wn = (void *)ni;
3233 
3234 #if 0
3235 	/* XXX causes significant performance degradation. */
3236 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3237 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3238 	txs->long_retries = data->long_retries - 1;
3239 #else
3240 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3241 #endif
3242 	txs->short_retries = wn->agg[tid].short_retries;
3243 	if (success)
3244 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3245 	else
3246 		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3247 
3248 	wn->agg[tid].short_retries = 0;
3249 	data->long_retries = 0;
3250 
3251 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3252 	    __func__, m, ni, idx, ring->qid);
3253 	ieee80211_ratectl_tx_complete(ni, txs);
3254 	ieee80211_tx_complete(ni, m, !success);
3255 }
3256 
3257 /* Process an incoming Compressed BlockAck. */
3258 static void
3259 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3260 {
3261 	struct iwn_tx_ring *ring;
3262 	struct iwn_tx_data *data;
3263 	struct iwn_node *wn;
3264 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3265 	struct ieee80211_tx_ampdu *tap;
3266 	uint64_t bitmap;
3267 	uint8_t tid;
3268 	int i, qid, shift;
3269 	int tx_ok = 0;
3270 
3271 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3272 
3273 	qid = le16toh(ba->qid);
3274 	tap = sc->qid2tap[qid];
3275 	ring = &sc->txq[qid];
3276 	tid = tap->txa_tid;
3277 	wn = (void *)tap->txa_ni;
3278 
3279 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3280 	    "bitmap: ba %016jX wn %016jX, start %d\n",
3281 	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3282 	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3283 	    wn->agg[tid].startidx);
3284 
3285 	if (wn->agg[tid].bitmap == 0)
3286 		return;
3287 
3288 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3289 	if (shift <= -64)
3290 		shift += 0x100;
3291 
3292 	/*
3293 	 * Walk the bitmap and calculate how many successful attempts
3294 	 * are made.
3295 	 *
3296 	 * Yes, the rate control code doesn't know these are A-MPDU
3297 	 * subframes; due to that long_retries stats are not used here.
3298 	 */
3299 	bitmap = le64toh(ba->bitmap);
3300 	if (shift >= 0)
3301 		bitmap >>= shift;
3302 	else
3303 		bitmap <<= -shift;
3304 	bitmap &= wn->agg[tid].bitmap;
3305 	wn->agg[tid].bitmap = 0;
3306 
3307 	for (i = wn->agg[tid].startidx;
3308 	     bitmap;
3309 	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3310 		if ((bitmap & 1) == 0)
3311 			continue;
3312 
3313 		data = &ring->data[i];
3314 		if (__predict_false(data->m == NULL)) {
3315 			/*
3316 			 * There is no frame; skip this entry.
3317 			 *
3318 			 * NB: it is "ok" to have both
3319 			 * 'tx done' + 'compressed BA' replies for frame
3320 			 * with STATE_SCD_QUERY status.
3321 			 */
3322 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3323 			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3324 			continue;
3325 		}
3326 
3327 		tx_ok++;
3328 		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3329 	}
3330 
3331 	ring->queued -= tx_ok;
3332 	iwn_check_tx_ring(sc, qid);
3333 
3334 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3335 	    "->%s: end; %d ok\n",__func__, tx_ok);
3336 }
3337 
3338 /*
3339  * Process a CALIBRATION_RESULT notification sent by the initialization
3340  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3341  */
3342 static void
3343 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3344 {
3345 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3346 	int len, idx = -1;
3347 
3348 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3349 
3350 	/* Runtime firmware should not send such a notification. */
3351 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3352 		DPRINTF(sc, IWN_DEBUG_TRACE,
3353 		    "->%s received after calib done\n", __func__);
3354 		return;
3355 	}
3356 	len = (le32toh(desc->len) & 0x3fff) - 4;
3357 
3358 	switch (calib->code) {
3359 	case IWN5000_PHY_CALIB_DC:
3360 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3361 			idx = 0;
3362 		break;
3363 	case IWN5000_PHY_CALIB_LO:
3364 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3365 			idx = 1;
3366 		break;
3367 	case IWN5000_PHY_CALIB_TX_IQ:
3368 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3369 			idx = 2;
3370 		break;
3371 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3372 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3373 			idx = 3;
3374 		break;
3375 	case IWN5000_PHY_CALIB_BASE_BAND:
3376 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3377 			idx = 4;
3378 		break;
3379 	}
3380 	if (idx == -1)	/* Ignore other results. */
3381 		return;
3382 
3383 	/* Save calibration result. */
3384 	if (sc->calibcmd[idx].buf != NULL)
3385 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3386 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3387 	if (sc->calibcmd[idx].buf == NULL) {
3388 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3389 		    "not enough memory for calibration result %d\n",
3390 		    calib->code);
3391 		return;
3392 	}
3393 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3394 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3395 	sc->calibcmd[idx].len = len;
3396 	memcpy(sc->calibcmd[idx].buf, calib, len);
3397 }
3398 
3399 static void
3400 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3401     struct iwn_stats *stats, int len)
3402 {
3403 	struct iwn_stats_bt *stats_bt;
3404 	struct iwn_stats *lstats;
3405 
3406 	/*
3407 	 * First - check whether the length is the bluetooth or normal.
3408 	 *
3409 	 * If it's normal - just copy it and bump out.
3410 	 * Otherwise we have to convert things.
3411 	 */
3412 
3413 	if (len == sizeof(struct iwn_stats) + 4) {
3414 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3415 		sc->last_stat_valid = 1;
3416 		return;
3417 	}
3418 
3419 	/*
3420 	 * If it's not the bluetooth size - log, then just copy.
3421 	 */
3422 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3423 		DPRINTF(sc, IWN_DEBUG_STATS,
3424 		    "%s: size of rx statistics (%d) not an expected size!\n",
3425 		    __func__,
3426 		    len);
3427 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3428 		sc->last_stat_valid = 1;
3429 		return;
3430 	}
3431 
3432 	/*
3433 	 * Ok. Time to copy.
3434 	 */
3435 	stats_bt = (struct iwn_stats_bt *) stats;
3436 	lstats = &sc->last_stat;
3437 
3438 	/* flags */
3439 	lstats->flags = stats_bt->flags;
3440 	/* rx_bt */
3441 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3442 	    sizeof(struct iwn_rx_phy_stats));
3443 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3444 	    sizeof(struct iwn_rx_phy_stats));
3445 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3446 	    sizeof(struct iwn_rx_general_stats));
3447 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3448 	    sizeof(struct iwn_rx_ht_phy_stats));
3449 	/* tx */
3450 	memcpy(&lstats->tx, &stats_bt->tx,
3451 	    sizeof(struct iwn_tx_stats));
3452 	/* general */
3453 	memcpy(&lstats->general, &stats_bt->general,
3454 	    sizeof(struct iwn_general_stats));
3455 
3456 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3457 	sc->last_stat_valid = 1;
3458 }
3459 
3460 /*
3461  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3462  * The latter is sent by the firmware after each received beacon.
3463  */
3464 static void
3465 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3466 {
3467 	struct iwn_ops *ops = &sc->ops;
3468 	struct ieee80211com *ic = &sc->sc_ic;
3469 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3470 	struct iwn_calib_state *calib = &sc->calib;
3471 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3472 	struct iwn_stats *lstats;
3473 	int temp;
3474 
3475 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3476 
3477 	/* Ignore statistics received during a scan. */
3478 	if (vap->iv_state != IEEE80211_S_RUN ||
3479 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3480 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3481 	    __func__);
3482 		return;
3483 	}
3484 
3485 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3486 	    "%s: received statistics, cmd %d, len %d\n",
3487 	    __func__, desc->type, le16toh(desc->len));
3488 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3489 
3490 	/*
3491 	 * Collect/track general statistics for reporting.
3492 	 *
3493 	 * This takes care of ensuring that the bluetooth sized message
3494 	 * will be correctly converted to the legacy sized message.
3495 	 */
3496 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3497 
3498 	/*
3499 	 * And now, let's take a reference of it to use!
3500 	 */
3501 	lstats = &sc->last_stat;
3502 
3503 	/* Test if temperature has changed. */
3504 	if (lstats->general.temp != sc->rawtemp) {
3505 		/* Convert "raw" temperature to degC. */
3506 		sc->rawtemp = stats->general.temp;
3507 		temp = ops->get_temperature(sc);
3508 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3509 		    __func__, temp);
3510 
3511 		/* Update TX power if need be (4965AGN only). */
3512 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3513 			iwn4965_power_calibration(sc, temp);
3514 	}
3515 
3516 	if (desc->type != IWN_BEACON_STATISTICS)
3517 		return;	/* Reply to a statistics request. */
3518 
3519 	sc->noise = iwn_get_noise(&lstats->rx.general);
3520 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3521 
3522 	/* Test that RSSI and noise are present in stats report. */
3523 	if (le32toh(lstats->rx.general.flags) != 1) {
3524 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3525 		    "received statistics without RSSI");
3526 		return;
3527 	}
3528 
3529 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3530 		iwn_collect_noise(sc, &lstats->rx.general);
3531 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3532 		iwn_tune_sensitivity(sc, &lstats->rx);
3533 		/*
3534 		 * XXX TODO: Only run the RX recovery if we're associated!
3535 		 */
3536 		iwn_check_rx_recovery(sc, lstats);
3537 		iwn_save_stats_counters(sc, lstats);
3538 	}
3539 
3540 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3541 }
3542 
3543 /*
3544  * Save the relevant statistic counters for the next calibration
3545  * pass.
3546  */
3547 static void
3548 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3549 {
3550 	struct iwn_calib_state *calib = &sc->calib;
3551 
3552 	/* Save counters values for next call. */
3553 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3554 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3555 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3556 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3557 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3558 
3559 	/* Last time we received these tick values */
3560 	sc->last_calib_ticks = ticks;
3561 }
3562 
3563 /*
3564  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3565  * and 5000 adapters have different incompatible TX status formats.
3566  */
3567 static void
3568 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3569     struct iwn_rx_data *data)
3570 {
3571 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3572 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3573 
3574 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3575 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3576 	    __func__, desc->qid, desc->idx,
3577 	    stat->rtsfailcnt,
3578 	    stat->ackfailcnt,
3579 	    stat->btkillcnt,
3580 	    stat->rate, le16toh(stat->duration),
3581 	    le32toh(stat->status));
3582 
3583 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3584 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3585 		    &stat->status);
3586 	} else {
3587 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3588 		    le32toh(stat->status) & 0xff);
3589 	}
3590 }
3591 
3592 static void
3593 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3594     struct iwn_rx_data *data)
3595 {
3596 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3597 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3598 
3599 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3600 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3601 	    __func__, desc->qid, desc->idx,
3602 	    stat->rtsfailcnt,
3603 	    stat->ackfailcnt,
3604 	    stat->btkillcnt,
3605 	    stat->rate, le16toh(stat->duration),
3606 	    le32toh(stat->status));
3607 
3608 #ifdef notyet
3609 	/* Reset TX scheduler slot. */
3610 	iwn5000_reset_sched(sc, qid, desc->idx);
3611 #endif
3612 
3613 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3614 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3615 		    &stat->status);
3616 	} else {
3617 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3618 		    le16toh(stat->status) & 0xff);
3619 	}
3620 }
3621 
3622 static void
3623 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3624 {
3625 	int i;
3626 
3627 	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3628 		struct iwn_tx_data *data = &ring->data[i];
3629 
3630 		if (data->m != NULL)
3631 			break;
3632 
3633 		data->remapped = 0;
3634 	}
3635 
3636 	ring->read = i;
3637 }
3638 
3639 /*
3640  * Adapter-independent backend for TX_DONE firmware notifications.
3641  */
3642 static void
3643 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3644     int ackfailcnt, uint8_t status)
3645 {
3646 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3647 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3648 	struct iwn_tx_data *data = &ring->data[desc->idx];
3649 	struct mbuf *m;
3650 	struct ieee80211_node *ni;
3651 
3652 	if (__predict_false(data->m == NULL &&
3653 	    ring->qid >= sc->firstaggqueue)) {
3654 		/*
3655 		 * There is no frame; skip this entry.
3656 		 */
3657 		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3658 		    __func__, ring->qid, desc->idx);
3659 		return;
3660 	}
3661 
3662 	KASSERT(data->ni != NULL, ("no node"));
3663 	KASSERT(data->m != NULL, ("no mbuf"));
3664 
3665 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3666 
3667 	/* Unmap and free mbuf. */
3668 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3669 	bus_dmamap_unload(ring->data_dmat, data->map);
3670 	m = data->m, data->m = NULL;
3671 	ni = data->ni, data->ni = NULL;
3672 
3673 	data->long_retries = 0;
3674 
3675 	if (ring->qid >= sc->firstaggqueue)
3676 		iwn_adj_ampdu_ptr(sc, ring);
3677 
3678 	/*
3679 	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3680 	 * (aggregation queues only).
3681 	 */
3682 
3683 	ring->queued--;
3684 	iwn_check_tx_ring(sc, ring->qid);
3685 
3686 	/*
3687 	 * Update rate control statistics for the node.
3688 	 */
3689 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3690 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3691 	txs->short_retries = rtsfailcnt;
3692 	txs->long_retries = ackfailcnt;
3693 	if (!(status & IWN_TX_FAIL))
3694 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3695 	else {
3696 		switch (status) {
3697 		case IWN_TX_FAIL_SHORT_LIMIT:
3698 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3699 			break;
3700 		case IWN_TX_FAIL_LONG_LIMIT:
3701 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3702 			break;
3703 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3704 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3705 			break;
3706 		default:
3707 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3708 			break;
3709 		}
3710 	}
3711 	ieee80211_ratectl_tx_complete(ni, txs);
3712 
3713 	/*
3714 	 * Channels marked for "radar" require traffic to be received
3715 	 * to unlock before we can transmit.  Until traffic is seen
3716 	 * any attempt to transmit is returned immediately with status
3717 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3718 	 * happen on first authenticate after scanning.  To workaround
3719 	 * this we ignore a failure of this sort in AUTH state so the
3720 	 * 802.11 layer will fall back to using a timeout to wait for
3721 	 * the AUTH reply.  This allows the firmware time to see
3722 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3723 	 * unclear why the firmware does not maintain state for
3724 	 * channels recently visited as this would allow immediate
3725 	 * use of the channel after a scan (where we see traffic).
3726 	 */
3727 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3728 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3729 		ieee80211_tx_complete(ni, m, 0);
3730 	else
3731 		ieee80211_tx_complete(ni, m,
3732 		    (status & IWN_TX_FAIL) != 0);
3733 
3734 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3735 }
3736 
3737 /*
3738  * Process a "command done" firmware notification.  This is where we wakeup
3739  * processes waiting for a synchronous command completion.
3740  */
3741 static void
3742 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3743 {
3744 	struct iwn_tx_ring *ring;
3745 	struct iwn_tx_data *data;
3746 	int cmd_queue_num;
3747 
3748 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3749 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3750 	else
3751 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3752 
3753 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3754 		return;	/* Not a command ack. */
3755 
3756 	ring = &sc->txq[cmd_queue_num];
3757 	data = &ring->data[desc->idx];
3758 
3759 	/* If the command was mapped in an mbuf, free it. */
3760 	if (data->m != NULL) {
3761 		bus_dmamap_sync(ring->data_dmat, data->map,
3762 		    BUS_DMASYNC_POSTWRITE);
3763 		bus_dmamap_unload(ring->data_dmat, data->map);
3764 		m_freem(data->m);
3765 		data->m = NULL;
3766 	}
3767 	wakeup(&ring->desc[desc->idx]);
3768 }
3769 
3770 static int
3771 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3772 {
3773 	int bit, shift;
3774 
3775 	bit = idx - start;
3776 	shift = 0;
3777 	if (bit >= 64) {
3778 		shift = 0x100 - bit;
3779 		bit = 0;
3780 	} else if (bit <= -64)
3781 		bit = 0x100 + bit;
3782 	else if (bit < 0) {
3783 		shift = -bit;
3784 		bit = 0;
3785 	}
3786 
3787 	if (bit - shift >= 64)
3788 		return (0);
3789 
3790 	return ((bitmap & (1ULL << (bit - shift))) != 0);
3791 }
3792 
3793 /*
3794  * Firmware bug workaround: in case if 'retries' counter
3795  * overflows 'seqno' field will be incremented:
3796  *    status|sequence|status|sequence|status|sequence
3797  *     0000    0A48    0001    0A49    0000    0A6A
3798  *     1000    0A48    1000    0A49    1000    0A6A
3799  *     2000    0A48    2000    0A49    2000    0A6A
3800  * ...
3801  *     E000    0A48    E000    0A49    E000    0A6A
3802  *     F000    0A48    F000    0A49    F000    0A6A
3803  *     0000    0A49    0000    0A49    0000    0A6B
3804  *     1000    0A49    1000    0A49    1000    0A6B
3805  * ...
3806  *     D000    0A49    D000    0A49    D000    0A6B
3807  *     E000    0A49    E001    0A49    E000    0A6B
3808  *     F000    0A49    F001    0A49    F000    0A6B
3809  *     0000    0A4A    0000    0A4B    0000    0A6A
3810  *     1000    0A4A    1000    0A4B    1000    0A6A
3811  * ...
3812  *
3813  * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3814  * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3815  * Not checked with nretries >= 64.
3816  *
3817  */
3818 static int
3819 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3820     uint64_t bitmap, int start, int idx)
3821 {
3822 	struct ieee80211com *ic = &sc->sc_ic;
3823 	struct iwn_tx_data *data;
3824 	int diff, min_retries, max_retries, new_idx, loop_end;
3825 
3826 	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3827 	if (new_idx < 0)
3828 		new_idx += IWN_TX_RING_COUNT;
3829 
3830 	/*
3831 	 * Corner case: check if retry count is not too big;
3832 	 * reset device otherwise.
3833 	 */
3834 	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3835 		data = &ring->data[new_idx];
3836 		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3837 			device_printf(sc->sc_dev,
3838 			    "%s: retry count (%d) for idx %d/%d overflow, "
3839 			    "resetting...\n", __func__, data->long_retries,
3840 			    ring->qid, new_idx);
3841 			ieee80211_restart_all(ic);
3842 			return (-1);
3843 		}
3844 	}
3845 
3846 	/* Correct index if needed. */
3847 	loop_end = idx;
3848 	do {
3849 		data = &ring->data[new_idx];
3850 		diff = idx - new_idx;
3851 		if (diff < 0)
3852 			diff += IWN_TX_RING_COUNT;
3853 
3854 		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3855 		if ((new_idx % 2) == 0)
3856 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3857 		else
3858 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3859 
3860 		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3861 		    ((data->long_retries >= min_retries &&
3862 		      data->long_retries < max_retries) ||
3863 		     (diff == 1 &&
3864 		      (new_idx & 0x03) == 0x02 &&
3865 		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3866 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3867 			    "%s: correcting index %d -> %d in queue %d"
3868 			    " (retries %d)\n", __func__, idx, new_idx,
3869 			    ring->qid, data->long_retries);
3870 			return (new_idx);
3871 		}
3872 
3873 		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3874 	} while (new_idx != loop_end);
3875 
3876 	return (idx);
3877 }
3878 
3879 static void
3880 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3881     void *stat)
3882 {
3883 	struct iwn_tx_ring *ring = &sc->txq[qid];
3884 	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3885 	struct iwn_node *wn = (void *)tap->txa_ni;
3886 	struct iwn_tx_data *data;
3887 	uint64_t bitmap = 0;
3888 	uint16_t *aggstatus = stat;
3889 	uint8_t tid = tap->txa_tid;
3890 	int bit, i, idx, shift, start, tx_err;
3891 
3892 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3893 
3894 	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3895 
3896 	for (i = 0; i < nframes; i++) {
3897 		uint16_t status = le16toh(aggstatus[i * 2]);
3898 
3899 		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3900 			continue;
3901 
3902 		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3903 		data = &ring->data[idx];
3904 		if (data->remapped) {
3905 			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3906 			if (idx == -1) {
3907 				/* skip error (device will be restarted anyway). */
3908 				continue;
3909 			}
3910 
3911 			/* Index may have changed. */
3912 			data = &ring->data[idx];
3913 		}
3914 
3915 		/*
3916 		 * XXX Sometimes (rarely) some frames are excluded from events.
3917 		 * XXX Due to that long_retries counter may be wrong.
3918 		 */
3919 		data->long_retries &= ~0x0f;
3920 		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3921 
3922 		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3923 			int diff, wrong_idx;
3924 
3925 			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3926 			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3927 
3928 			/*
3929 			 * Mark the entry so the above code will check it
3930 			 * next time.
3931 			 */
3932 			ring->data[wrong_idx].remapped = 1;
3933 		}
3934 
3935 		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3936 			/*
3937 			 * NB: count retries but postpone - it was not
3938 			 * transmitted.
3939 			 */
3940 			continue;
3941 		}
3942 
3943 		bit = idx - start;
3944 		shift = 0;
3945 		if (bit >= 64) {
3946 			shift = 0x100 - bit;
3947 			bit = 0;
3948 		} else if (bit <= -64)
3949 			bit = 0x100 + bit;
3950 		else if (bit < 0) {
3951 			shift = -bit;
3952 			bit = 0;
3953 		}
3954 		bitmap = bitmap << shift;
3955 		bitmap |= 1ULL << bit;
3956 	}
3957 	wn->agg[tid].startidx = start;
3958 	wn->agg[tid].bitmap = bitmap;
3959 	wn->agg[tid].short_retries = rtsfailcnt;
3960 
3961 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3962 	    __func__, nframes, start, (uintmax_t)bitmap);
3963 
3964 	i = ring->read;
3965 
3966 	for (tx_err = 0;
3967 	     i != wn->agg[tid].startidx;
3968 	     i = (i + 1) % IWN_TX_RING_COUNT) {
3969 		data = &ring->data[i];
3970 		data->remapped = 0;
3971 		if (data->m == NULL)
3972 			continue;
3973 
3974 		tx_err++;
3975 		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3976 	}
3977 
3978 	ring->read = wn->agg[tid].startidx;
3979 	ring->queued -= tx_err;
3980 
3981 	iwn_check_tx_ring(sc, qid);
3982 
3983 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3984 }
3985 
3986 /*
3987  * Process an INT_FH_RX or INT_SW_RX interrupt.
3988  */
3989 static void
3990 iwn_notif_intr(struct iwn_softc *sc)
3991 {
3992 	struct iwn_ops *ops = &sc->ops;
3993 	struct ieee80211com *ic = &sc->sc_ic;
3994 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3995 	uint16_t hw;
3996 	int is_stopped;
3997 
3998 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3999 	    BUS_DMASYNC_POSTREAD);
4000 
4001 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
4002 	while (sc->rxq.cur != hw) {
4003 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4004 		struct iwn_rx_desc *desc;
4005 
4006 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4007 		    BUS_DMASYNC_POSTREAD);
4008 		desc = mtod(data->m, struct iwn_rx_desc *);
4009 
4010 		DPRINTF(sc, IWN_DEBUG_RECV,
4011 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4012 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4013 		    desc->idx, desc->flags, desc->type,
4014 		    iwn_intr_str(desc->type), le16toh(desc->len));
4015 
4016 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
4017 			iwn_cmd_done(sc, desc);
4018 
4019 		switch (desc->type) {
4020 		case IWN_RX_PHY:
4021 			iwn_rx_phy(sc, desc);
4022 			break;
4023 
4024 		case IWN_RX_DONE:		/* 4965AGN only. */
4025 		case IWN_MPDU_RX_DONE:
4026 			/* An 802.11 frame has been received. */
4027 			iwn_rx_done(sc, desc, data);
4028 
4029 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4030 			if (__predict_false(is_stopped))
4031 				return;
4032 
4033 			break;
4034 
4035 		case IWN_RX_COMPRESSED_BA:
4036 			/* A Compressed BlockAck has been received. */
4037 			iwn_rx_compressed_ba(sc, desc);
4038 			break;
4039 
4040 		case IWN_TX_DONE:
4041 			/* An 802.11 frame has been transmitted. */
4042 			ops->tx_done(sc, desc, data);
4043 			break;
4044 
4045 		case IWN_RX_STATISTICS:
4046 		case IWN_BEACON_STATISTICS:
4047 			iwn_rx_statistics(sc, desc);
4048 			break;
4049 
4050 		case IWN_BEACON_MISSED:
4051 		{
4052 			struct iwn_beacon_missed *miss =
4053 			    (struct iwn_beacon_missed *)(desc + 1);
4054 			int misses;
4055 
4056 			misses = le32toh(miss->consecutive);
4057 
4058 			DPRINTF(sc, IWN_DEBUG_STATE,
4059 			    "%s: beacons missed %d/%d\n", __func__,
4060 			    misses, le32toh(miss->total));
4061 			/*
4062 			 * If more than 5 consecutive beacons are missed,
4063 			 * reinitialize the sensitivity state machine.
4064 			 */
4065 			if (vap->iv_state == IEEE80211_S_RUN &&
4066 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4067 				if (misses > 5)
4068 					(void)iwn_init_sensitivity(sc);
4069 				if (misses >= vap->iv_bmissthreshold) {
4070 					IWN_UNLOCK(sc);
4071 					ieee80211_beacon_miss(ic);
4072 					IWN_LOCK(sc);
4073 
4074 					is_stopped = (sc->sc_flags &
4075 					    IWN_FLAG_RUNNING) == 0;
4076 					if (__predict_false(is_stopped))
4077 						return;
4078 				}
4079 			}
4080 			break;
4081 		}
4082 		case IWN_UC_READY:
4083 		{
4084 			struct iwn_ucode_info *uc =
4085 			    (struct iwn_ucode_info *)(desc + 1);
4086 
4087 			/* The microcontroller is ready. */
4088 			DPRINTF(sc, IWN_DEBUG_RESET,
4089 			    "microcode alive notification version=%d.%d "
4090 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4091 			    uc->subtype, le32toh(uc->valid));
4092 
4093 			if (le32toh(uc->valid) != 1) {
4094 				device_printf(sc->sc_dev,
4095 				    "microcontroller initialization failed");
4096 				break;
4097 			}
4098 			if (uc->subtype == IWN_UCODE_INIT) {
4099 				/* Save microcontroller report. */
4100 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4101 			}
4102 			/* Save the address of the error log in SRAM. */
4103 			sc->errptr = le32toh(uc->errptr);
4104 			break;
4105 		}
4106 #ifdef IWN_DEBUG
4107 		case IWN_STATE_CHANGED:
4108 		{
4109 			/*
4110 			 * State change allows hardware switch change to be
4111 			 * noted. However, we handle this in iwn_intr as we
4112 			 * get both the enable/disble intr.
4113 			 */
4114 			uint32_t *status = (uint32_t *)(desc + 1);
4115 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4116 			    "state changed to %x\n",
4117 			    le32toh(*status));
4118 			break;
4119 		}
4120 		case IWN_START_SCAN:
4121 		{
4122 			struct iwn_start_scan *scan =
4123 			    (struct iwn_start_scan *)(desc + 1);
4124 			DPRINTF(sc, IWN_DEBUG_ANY,
4125 			    "%s: scanning channel %d status %x\n",
4126 			    __func__, scan->chan, le32toh(scan->status));
4127 			break;
4128 		}
4129 #endif
4130 		case IWN_STOP_SCAN:
4131 		{
4132 #ifdef	IWN_DEBUG
4133 			struct iwn_stop_scan *scan =
4134 			    (struct iwn_stop_scan *)(desc + 1);
4135 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4136 			    "scan finished nchan=%d status=%d chan=%d\n",
4137 			    scan->nchan, scan->status, scan->chan);
4138 #endif
4139 			sc->sc_is_scanning = 0;
4140 			callout_stop(&sc->scan_timeout);
4141 			IWN_UNLOCK(sc);
4142 			ieee80211_scan_next(vap);
4143 			IWN_LOCK(sc);
4144 
4145 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4146 			if (__predict_false(is_stopped))
4147 				return;
4148 
4149 			break;
4150 		}
4151 		case IWN5000_CALIBRATION_RESULT:
4152 			iwn5000_rx_calib_results(sc, desc);
4153 			break;
4154 
4155 		case IWN5000_CALIBRATION_DONE:
4156 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4157 			wakeup(sc);
4158 			break;
4159 		}
4160 
4161 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4162 	}
4163 
4164 	/* Tell the firmware what we have processed. */
4165 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4166 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4167 }
4168 
4169 /*
4170  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4171  * from power-down sleep mode.
4172  */
4173 static void
4174 iwn_wakeup_intr(struct iwn_softc *sc)
4175 {
4176 	int qid;
4177 
4178 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4179 	    __func__);
4180 
4181 	/* Wakeup RX and TX rings. */
4182 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4183 	for (qid = 0; qid < sc->ntxqs; qid++) {
4184 		struct iwn_tx_ring *ring = &sc->txq[qid];
4185 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4186 	}
4187 }
4188 
4189 static void
4190 iwn_rftoggle_task(void *arg, int npending)
4191 {
4192 	struct iwn_softc *sc = arg;
4193 	struct ieee80211com *ic = &sc->sc_ic;
4194 	uint32_t tmp;
4195 
4196 	IWN_LOCK(sc);
4197 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4198 	IWN_UNLOCK(sc);
4199 
4200 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4201 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4202 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4203 		ieee80211_suspend_all(ic);
4204 
4205 		/* Enable interrupts to get RF toggle notification. */
4206 		IWN_LOCK(sc);
4207 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4208 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4209 		IWN_UNLOCK(sc);
4210 	} else
4211 		ieee80211_resume_all(ic);
4212 }
4213 
4214 /*
4215  * Dump the error log of the firmware when a firmware panic occurs.  Although
4216  * we can't debug the firmware because it is neither open source nor free, it
4217  * can help us to identify certain classes of problems.
4218  */
4219 static void
4220 iwn_fatal_intr(struct iwn_softc *sc)
4221 {
4222 	struct iwn_fw_dump dump;
4223 	int i;
4224 
4225 	IWN_LOCK_ASSERT(sc);
4226 
4227 	/* Force a complete recalibration on next init. */
4228 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4229 
4230 	/* Check that the error log address is valid. */
4231 	if (sc->errptr < IWN_FW_DATA_BASE ||
4232 	    sc->errptr + sizeof (dump) >
4233 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4234 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4235 		    sc->errptr);
4236 		return;
4237 	}
4238 	if (iwn_nic_lock(sc) != 0) {
4239 		printf("%s: could not read firmware error log\n", __func__);
4240 		return;
4241 	}
4242 	/* Read firmware error log from SRAM. */
4243 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4244 	    sizeof (dump) / sizeof (uint32_t));
4245 	iwn_nic_unlock(sc);
4246 
4247 	if (dump.valid == 0) {
4248 		printf("%s: firmware error log is empty\n", __func__);
4249 		return;
4250 	}
4251 	printf("firmware error log:\n");
4252 	printf("  error type      = \"%s\" (0x%08X)\n",
4253 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4254 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4255 	    dump.id);
4256 	printf("  program counter = 0x%08X\n", dump.pc);
4257 	printf("  source line     = 0x%08X\n", dump.src_line);
4258 	printf("  error data      = 0x%08X%08X\n",
4259 	    dump.error_data[0], dump.error_data[1]);
4260 	printf("  branch link     = 0x%08X%08X\n",
4261 	    dump.branch_link[0], dump.branch_link[1]);
4262 	printf("  interrupt link  = 0x%08X%08X\n",
4263 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4264 	printf("  time            = %u\n", dump.time[0]);
4265 
4266 	/* Dump driver status (TX and RX rings) while we're here. */
4267 	printf("driver status:\n");
4268 	for (i = 0; i < sc->ntxqs; i++) {
4269 		struct iwn_tx_ring *ring = &sc->txq[i];
4270 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4271 		    i, ring->qid, ring->cur, ring->queued);
4272 	}
4273 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4274 }
4275 
4276 static void
4277 iwn_intr(void *arg)
4278 {
4279 	struct iwn_softc *sc = arg;
4280 	uint32_t r1, r2, tmp;
4281 
4282 	IWN_LOCK(sc);
4283 
4284 	/* Disable interrupts. */
4285 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4286 
4287 	/* Read interrupts from ICT (fast) or from registers (slow). */
4288 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4289 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4290 		    BUS_DMASYNC_POSTREAD);
4291 		tmp = 0;
4292 		while (sc->ict[sc->ict_cur] != 0) {
4293 			tmp |= sc->ict[sc->ict_cur];
4294 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4295 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4296 		}
4297 		tmp = le32toh(tmp);
4298 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4299 			tmp = 0;
4300 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4301 			tmp |= 0x8000;
4302 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4303 		r2 = 0;	/* Unused. */
4304 	} else {
4305 		r1 = IWN_READ(sc, IWN_INT);
4306 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4307 			IWN_UNLOCK(sc);
4308 			return;	/* Hardware gone! */
4309 		}
4310 		r2 = IWN_READ(sc, IWN_FH_INT);
4311 	}
4312 
4313 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4314     , r1, r2);
4315 
4316 	if (r1 == 0 && r2 == 0)
4317 		goto done;	/* Interrupt not for us. */
4318 
4319 	/* Acknowledge interrupts. */
4320 	IWN_WRITE(sc, IWN_INT, r1);
4321 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4322 		IWN_WRITE(sc, IWN_FH_INT, r2);
4323 
4324 	if (r1 & IWN_INT_RF_TOGGLED) {
4325 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4326 		goto done;
4327 	}
4328 	if (r1 & IWN_INT_CT_REACHED) {
4329 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4330 		    __func__);
4331 	}
4332 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4333 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4334 		    __func__);
4335 #ifdef	IWN_DEBUG
4336 		iwn_debug_register(sc);
4337 #endif
4338 		/* Dump firmware error log and stop. */
4339 		iwn_fatal_intr(sc);
4340 
4341 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4342 		goto done;
4343 	}
4344 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4345 	    (r2 & IWN_FH_INT_RX)) {
4346 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4347 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4348 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4349 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4350 			    IWN_INT_PERIODIC_DIS);
4351 			iwn_notif_intr(sc);
4352 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4353 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4354 				    IWN_INT_PERIODIC_ENA);
4355 			}
4356 		} else
4357 			iwn_notif_intr(sc);
4358 	}
4359 
4360 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4361 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4362 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4363 		wakeup(sc);	/* FH DMA transfer completed. */
4364 	}
4365 
4366 	if (r1 & IWN_INT_ALIVE)
4367 		wakeup(sc);	/* Firmware is alive. */
4368 
4369 	if (r1 & IWN_INT_WAKEUP)
4370 		iwn_wakeup_intr(sc);
4371 
4372 done:
4373 	/* Re-enable interrupts. */
4374 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4375 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4376 
4377 	IWN_UNLOCK(sc);
4378 }
4379 
4380 /*
4381  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4382  * 5000 adapters use a slightly different format).
4383  */
4384 static void
4385 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4386     uint16_t len)
4387 {
4388 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4389 
4390 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4391 
4392 	*w = htole16(len + 8);
4393 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4394 	    BUS_DMASYNC_PREWRITE);
4395 	if (idx < IWN_SCHED_WINSZ) {
4396 		*(w + IWN_TX_RING_COUNT) = *w;
4397 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4398 		    BUS_DMASYNC_PREWRITE);
4399 	}
4400 }
4401 
4402 static void
4403 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4404     uint16_t len)
4405 {
4406 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4407 
4408 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4409 
4410 	*w = htole16(id << 12 | (len + 8));
4411 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4412 	    BUS_DMASYNC_PREWRITE);
4413 	if (idx < IWN_SCHED_WINSZ) {
4414 		*(w + IWN_TX_RING_COUNT) = *w;
4415 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4416 		    BUS_DMASYNC_PREWRITE);
4417 	}
4418 }
4419 
4420 #ifdef notyet
4421 static void
4422 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4423 {
4424 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4425 
4426 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4427 
4428 	*w = (*w & htole16(0xf000)) | htole16(1);
4429 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4430 	    BUS_DMASYNC_PREWRITE);
4431 	if (idx < IWN_SCHED_WINSZ) {
4432 		*(w + IWN_TX_RING_COUNT) = *w;
4433 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4434 		    BUS_DMASYNC_PREWRITE);
4435 	}
4436 }
4437 #endif
4438 
4439 /*
4440  * Check whether OFDM 11g protection will be enabled for the given rate.
4441  *
4442  * The original driver code only enabled protection for OFDM rates.
4443  * It didn't check to see whether it was operating in 11a or 11bg mode.
4444  */
4445 static int
4446 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4447     struct ieee80211vap *vap, uint8_t rate)
4448 {
4449 	struct ieee80211com *ic = vap->iv_ic;
4450 
4451 	/*
4452 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4453 	 * 11bg protection.
4454 	 */
4455 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4456 		return (0);
4457 	}
4458 
4459 	/*
4460 	 * 11bg protection not enabled? Then don't use it.
4461 	 */
4462 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4463 		return (0);
4464 
4465 	/*
4466 	 * If it's an 11n rate - no protection.
4467 	 * We'll do it via a specific 11n check.
4468 	 */
4469 	if (rate & IEEE80211_RATE_MCS) {
4470 		return (0);
4471 	}
4472 
4473 	/*
4474 	 * Do a rate table lookup.  If the PHY is CCK,
4475 	 * don't do protection.
4476 	 */
4477 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4478 		return (0);
4479 
4480 	/*
4481 	 * Yup, enable protection.
4482 	 */
4483 	return (1);
4484 }
4485 
4486 /*
4487  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4488  * the link quality table that reflects this particular entry.
4489  */
4490 static int
4491 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4492     uint8_t rate)
4493 {
4494 	struct ieee80211_rateset *rs;
4495 	int is_11n;
4496 	int nr;
4497 	int i;
4498 	uint8_t cmp_rate;
4499 
4500 	/*
4501 	 * Figure out if we're using 11n or not here.
4502 	 */
4503 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4504 		is_11n = 1;
4505 	else
4506 		is_11n = 0;
4507 
4508 	/*
4509 	 * Use the correct rate table.
4510 	 */
4511 	if (is_11n) {
4512 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4513 		nr = ni->ni_htrates.rs_nrates;
4514 	} else {
4515 		rs = &ni->ni_rates;
4516 		nr = rs->rs_nrates;
4517 	}
4518 
4519 	/*
4520 	 * Find the relevant link quality entry in the table.
4521 	 */
4522 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4523 		/*
4524 		 * The link quality table index starts at 0 == highest
4525 		 * rate, so we walk the rate table backwards.
4526 		 */
4527 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4528 		if (rate & IEEE80211_RATE_MCS)
4529 			cmp_rate |= IEEE80211_RATE_MCS;
4530 
4531 #if 0
4532 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4533 		    __func__,
4534 		    i,
4535 		    nr,
4536 		    rate,
4537 		    cmp_rate);
4538 #endif
4539 
4540 		if (cmp_rate == rate)
4541 			return (i);
4542 	}
4543 
4544 	/* Failed? Start at the end */
4545 	return (IWN_MAX_TX_RETRIES - 1);
4546 }
4547 
4548 static int
4549 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4550 {
4551 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4552 	struct ieee80211vap *vap = ni->ni_vap;
4553 	struct ieee80211com *ic = ni->ni_ic;
4554 	struct iwn_node *wn = (void *)ni;
4555 	struct iwn_tx_ring *ring;
4556 	struct iwn_tx_cmd *cmd;
4557 	struct iwn_cmd_data *tx;
4558 	struct ieee80211_frame *wh;
4559 	struct ieee80211_key *k = NULL;
4560 	uint32_t flags;
4561 	uint16_t qos;
4562 	uint8_t tid, type;
4563 	int ac, totlen, rate;
4564 
4565 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4566 
4567 	IWN_LOCK_ASSERT(sc);
4568 
4569 	wh = mtod(m, struct ieee80211_frame *);
4570 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4571 
4572 	/* Select EDCA Access Category and TX ring for this frame. */
4573 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4574 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4575 		tid = qos & IEEE80211_QOS_TID;
4576 	} else {
4577 		qos = 0;
4578 		tid = 0;
4579 	}
4580 
4581 	/* Choose a TX rate index. */
4582 	if (type == IEEE80211_FC0_TYPE_MGT ||
4583 	    type == IEEE80211_FC0_TYPE_CTL ||
4584 	    (m->m_flags & M_EAPOL) != 0)
4585 		rate = tp->mgmtrate;
4586 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4587 		rate = tp->mcastrate;
4588 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4589 		rate = tp->ucastrate;
4590 	else {
4591 		/* XXX pass pktlen */
4592 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4593 		rate = ni->ni_txrate;
4594 	}
4595 
4596 	/*
4597 	 * XXX TODO: Group addressed frames aren't aggregated and must
4598 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4599 	 * assigned from net80211.
4600 	 */
4601 
4602 	ac = M_WME_GETAC(m);
4603 	if (m->m_flags & M_AMPDU_MPDU) {
4604 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4605 
4606 		if (!IEEE80211_AMPDU_RUNNING(tap))
4607 			return (EINVAL);
4608 
4609 		ac = *(int *)tap->txa_private;
4610 	}
4611 
4612 	/* Encrypt the frame if need be. */
4613 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4614 		/* Retrieve key for TX. */
4615 		k = ieee80211_crypto_encap(ni, m);
4616 		if (k == NULL) {
4617 			return ENOBUFS;
4618 		}
4619 		/* 802.11 header may have moved. */
4620 		wh = mtod(m, struct ieee80211_frame *);
4621 	}
4622 	totlen = m->m_pkthdr.len;
4623 
4624 	if (ieee80211_radiotap_active_vap(vap)) {
4625 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4626 
4627 		tap->wt_flags = 0;
4628 		tap->wt_rate = rate;
4629 		if (k != NULL)
4630 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4631 
4632 		ieee80211_radiotap_tx(vap, m);
4633 	}
4634 
4635 	flags = 0;
4636 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4637 		/* Unicast frame, check if an ACK is expected. */
4638 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4639 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4640 			flags |= IWN_TX_NEED_ACK;
4641 	}
4642 	if ((wh->i_fc[0] &
4643 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4644 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4645 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4646 
4647 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4648 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4649 
4650 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4651 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4652 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4653 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4654 			flags |= IWN_TX_NEED_RTS;
4655 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4656 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4657 				flags |= IWN_TX_NEED_CTS;
4658 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4659 				flags |= IWN_TX_NEED_RTS;
4660 		} else if ((rate & IEEE80211_RATE_MCS) &&
4661 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4662 			flags |= IWN_TX_NEED_RTS;
4663 		}
4664 
4665 		/* XXX HT protection? */
4666 
4667 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4668 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4669 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4670 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4671 				flags |= IWN_TX_NEED_PROTECTION;
4672 			} else
4673 				flags |= IWN_TX_FULL_TXOP;
4674 		}
4675 	}
4676 
4677 	ring = &sc->txq[ac];
4678 	if (m->m_flags & M_AMPDU_MPDU) {
4679 		uint16_t seqno = ni->ni_txseqs[tid];
4680 
4681 		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4682 		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4683 			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4684 			    "(queued %d) left in %d queue!\n",
4685 			    __func__, ring->queued, ac);
4686 			return (ENOBUFS);
4687 		}
4688 
4689 		/*
4690 		 * Queue this frame to the hardware ring that we've
4691 		 * negotiated AMPDU TX on.
4692 		 *
4693 		 * Note that the sequence number must match the TX slot
4694 		 * being used!
4695 		 */
4696 		if ((seqno % 256) != ring->cur) {
4697 			device_printf(sc->sc_dev,
4698 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4699 			    __func__,
4700 			    m,
4701 			    seqno,
4702 			    seqno % 256,
4703 			    ring->cur);
4704 
4705 			/* XXX until D9195 will not be committed */
4706 			ni->ni_txseqs[tid] &= ~0xff;
4707 			ni->ni_txseqs[tid] += ring->cur;
4708 			seqno = ni->ni_txseqs[tid];
4709 		}
4710 
4711 		*(uint16_t *)wh->i_seq =
4712 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4713 		ni->ni_txseqs[tid]++;
4714 	}
4715 
4716 	/* Prepare TX firmware command. */
4717 	cmd = &ring->cmd[ring->cur];
4718 	tx = (struct iwn_cmd_data *)cmd->data;
4719 
4720 	/* NB: No need to clear tx, all fields are reinitialized here. */
4721 	tx->scratch = 0;	/* clear "scratch" area */
4722 
4723 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4724 	    type != IEEE80211_FC0_TYPE_DATA)
4725 		tx->id = sc->broadcast_id;
4726 	else
4727 		tx->id = wn->id;
4728 
4729 	if (type == IEEE80211_FC0_TYPE_MGT) {
4730 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4731 
4732 		/* Tell HW to set timestamp in probe responses. */
4733 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4734 			flags |= IWN_TX_INSERT_TSTAMP;
4735 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4736 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4737 			tx->timeout = htole16(3);
4738 		else
4739 			tx->timeout = htole16(2);
4740 	} else
4741 		tx->timeout = htole16(0);
4742 
4743 	if (tx->id == sc->broadcast_id) {
4744 		/* Group or management frame. */
4745 		tx->linkq = 0;
4746 	} else {
4747 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4748 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4749 	}
4750 
4751 	tx->tid = tid;
4752 	tx->rts_ntries = 60;
4753 	tx->data_ntries = 15;
4754 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4755 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4756 	tx->security = 0;
4757 	tx->flags = htole32(flags);
4758 
4759 	return (iwn_tx_cmd(sc, m, ni, ring));
4760 }
4761 
4762 static int
4763 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4764     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4765 {
4766 	struct ieee80211vap *vap = ni->ni_vap;
4767 	struct iwn_tx_cmd *cmd;
4768 	struct iwn_cmd_data *tx;
4769 	struct ieee80211_frame *wh;
4770 	struct iwn_tx_ring *ring;
4771 	uint32_t flags;
4772 	int ac, rate;
4773 	uint8_t type;
4774 
4775 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4776 
4777 	IWN_LOCK_ASSERT(sc);
4778 
4779 	wh = mtod(m, struct ieee80211_frame *);
4780 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4781 
4782 	ac = params->ibp_pri & 3;
4783 
4784 	/* Choose a TX rate. */
4785 	rate = params->ibp_rate0;
4786 
4787 	flags = 0;
4788 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4789 		flags |= IWN_TX_NEED_ACK;
4790 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4791 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4792 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4793 			flags &= ~IWN_TX_NEED_RTS;
4794 			flags |= IWN_TX_NEED_PROTECTION;
4795 		} else
4796 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4797 	}
4798 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4799 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4800 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4801 			flags &= ~IWN_TX_NEED_CTS;
4802 			flags |= IWN_TX_NEED_PROTECTION;
4803 		} else
4804 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4805 	}
4806 
4807 	if (ieee80211_radiotap_active_vap(vap)) {
4808 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4809 
4810 		tap->wt_flags = 0;
4811 		tap->wt_rate = rate;
4812 
4813 		ieee80211_radiotap_tx(vap, m);
4814 	}
4815 
4816 	ring = &sc->txq[ac];
4817 	cmd = &ring->cmd[ring->cur];
4818 
4819 	tx = (struct iwn_cmd_data *)cmd->data;
4820 	/* NB: No need to clear tx, all fields are reinitialized here. */
4821 	tx->scratch = 0;	/* clear "scratch" area */
4822 
4823 	if (type == IEEE80211_FC0_TYPE_MGT) {
4824 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4825 
4826 		/* Tell HW to set timestamp in probe responses. */
4827 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4828 			flags |= IWN_TX_INSERT_TSTAMP;
4829 
4830 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4831 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4832 			tx->timeout = htole16(3);
4833 		else
4834 			tx->timeout = htole16(2);
4835 	} else
4836 		tx->timeout = htole16(0);
4837 
4838 	tx->tid = 0;
4839 	tx->id = sc->broadcast_id;
4840 	tx->rts_ntries = params->ibp_try1;
4841 	tx->data_ntries = params->ibp_try0;
4842 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4843 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4844 	tx->security = 0;
4845 	tx->flags = htole32(flags);
4846 
4847 	/* Group or management frame. */
4848 	tx->linkq = 0;
4849 
4850 	return (iwn_tx_cmd(sc, m, ni, ring));
4851 }
4852 
4853 static int
4854 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4855     struct iwn_tx_ring *ring)
4856 {
4857 	struct iwn_ops *ops = &sc->ops;
4858 	struct iwn_tx_cmd *cmd;
4859 	struct iwn_cmd_data *tx;
4860 	struct ieee80211_frame *wh;
4861 	struct iwn_tx_desc *desc;
4862 	struct iwn_tx_data *data;
4863 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4864 	struct mbuf *m1;
4865 	u_int hdrlen;
4866 	int totlen, error, pad, nsegs = 0, i;
4867 
4868 	wh = mtod(m, struct ieee80211_frame *);
4869 	hdrlen = ieee80211_anyhdrsize(wh);
4870 	totlen = m->m_pkthdr.len;
4871 
4872 	desc = &ring->desc[ring->cur];
4873 	data = &ring->data[ring->cur];
4874 
4875 	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4876 		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4877 		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4878 		    ring->cur, ring->qid);
4879 		return EIO;
4880 	}
4881 
4882 	/* Prepare TX firmware command. */
4883 	cmd = &ring->cmd[ring->cur];
4884 	cmd->code = IWN_CMD_TX_DATA;
4885 	cmd->flags = 0;
4886 	cmd->qid = ring->qid;
4887 	cmd->idx = ring->cur;
4888 
4889 	tx = (struct iwn_cmd_data *)cmd->data;
4890 	tx->len = htole16(totlen);
4891 
4892 	/* Set physical address of "scratch area". */
4893 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4894 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4895 	if (hdrlen & 3) {
4896 		/* First segment length must be a multiple of 4. */
4897 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4898 		pad = 4 - (hdrlen & 3);
4899 	} else
4900 		pad = 0;
4901 
4902 	/* Copy 802.11 header in TX command. */
4903 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4904 
4905 	/* Trim 802.11 header. */
4906 	m_adj(m, hdrlen);
4907 
4908 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4909 	    &nsegs, BUS_DMA_NOWAIT);
4910 	if (error != 0) {
4911 		if (error != EFBIG) {
4912 			device_printf(sc->sc_dev,
4913 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4914 			return error;
4915 		}
4916 		/* Too many DMA segments, linearize mbuf. */
4917 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4918 		if (m1 == NULL) {
4919 			device_printf(sc->sc_dev,
4920 			    "%s: could not defrag mbuf\n", __func__);
4921 			return ENOBUFS;
4922 		}
4923 		m = m1;
4924 
4925 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4926 		    segs, &nsegs, BUS_DMA_NOWAIT);
4927 		if (error != 0) {
4928 			/* XXX fix this */
4929 			/*
4930 			 * NB: Do not return error;
4931 			 * original mbuf does not exist anymore.
4932 			 */
4933 			device_printf(sc->sc_dev,
4934 			    "%s: can't map mbuf (error %d)\n",
4935 			    __func__, error);
4936 			if_inc_counter(ni->ni_vap->iv_ifp,
4937 			    IFCOUNTER_OERRORS, 1);
4938 			ieee80211_free_node(ni);
4939 			m_freem(m);
4940 			return 0;
4941 		}
4942 	}
4943 
4944 	data->m = m;
4945 	data->ni = ni;
4946 
4947 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4948 	    "plcp %d\n",
4949 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4950 
4951 	/* Fill TX descriptor. */
4952 	desc->nsegs = 1;
4953 	if (m->m_len != 0)
4954 		desc->nsegs += nsegs;
4955 	/* First DMA segment is used by the TX command. */
4956 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4957 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4958 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4959 	/* Other DMA segments are for data payload. */
4960 	seg = &segs[0];
4961 	for (i = 1; i <= nsegs; i++) {
4962 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4963 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4964 		    seg->ds_len << 4);
4965 		seg++;
4966 	}
4967 
4968 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4969 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4970 	    BUS_DMASYNC_PREWRITE);
4971 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4972 	    BUS_DMASYNC_PREWRITE);
4973 
4974 	/* Update TX scheduler. */
4975 	if (ring->qid >= sc->firstaggqueue)
4976 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4977 
4978 	/* Kick TX ring. */
4979 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4980 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4981 
4982 	/* Mark TX ring as full if we reach a certain threshold. */
4983 	if (++ring->queued > IWN_TX_RING_HIMARK)
4984 		sc->qfullmsk |= 1 << ring->qid;
4985 
4986 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4987 
4988 	return 0;
4989 }
4990 
4991 static void
4992 iwn_xmit_task(void *arg0, int pending)
4993 {
4994 	struct iwn_softc *sc = arg0;
4995 	struct ieee80211_node *ni;
4996 	struct mbuf *m;
4997 	int error;
4998 	struct ieee80211_bpf_params p;
4999 	int have_p;
5000 
5001 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5002 
5003 	IWN_LOCK(sc);
5004 	/*
5005 	 * Dequeue frames, attempt to transmit,
5006 	 * then disable beaconwait when we're done.
5007 	 */
5008 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
5009 		have_p = 0;
5010 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5011 
5012 		/* Get xmit params if appropriate */
5013 		if (ieee80211_get_xmit_params(m, &p) == 0)
5014 			have_p = 1;
5015 
5016 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
5017 		    __func__, m, have_p);
5018 
5019 		/* If we have xmit params, use them */
5020 		if (have_p)
5021 			error = iwn_tx_data_raw(sc, m, ni, &p);
5022 		else
5023 			error = iwn_tx_data(sc, m, ni);
5024 
5025 		if (error != 0) {
5026 			if_inc_counter(ni->ni_vap->iv_ifp,
5027 			    IFCOUNTER_OERRORS, 1);
5028 			ieee80211_free_node(ni);
5029 			m_freem(m);
5030 		}
5031 	}
5032 
5033 	sc->sc_beacon_wait = 0;
5034 	IWN_UNLOCK(sc);
5035 }
5036 
5037 /*
5038  * raw frame xmit - free node/reference if failed.
5039  */
5040 static int
5041 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5042     const struct ieee80211_bpf_params *params)
5043 {
5044 	struct ieee80211com *ic = ni->ni_ic;
5045 	struct iwn_softc *sc = ic->ic_softc;
5046 	int error = 0;
5047 
5048 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5049 
5050 	IWN_LOCK(sc);
5051 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5052 		m_freem(m);
5053 		IWN_UNLOCK(sc);
5054 		return (ENETDOWN);
5055 	}
5056 
5057 	/* queue frame if we have to */
5058 	if (sc->sc_beacon_wait) {
5059 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5060 			m_freem(m);
5061 			IWN_UNLOCK(sc);
5062 			return (ENOBUFS);
5063 		}
5064 		/* Queued, so just return OK */
5065 		IWN_UNLOCK(sc);
5066 		return (0);
5067 	}
5068 
5069 	if (params == NULL) {
5070 		/*
5071 		 * Legacy path; interpret frame contents to decide
5072 		 * precisely how to send the frame.
5073 		 */
5074 		error = iwn_tx_data(sc, m, ni);
5075 	} else {
5076 		/*
5077 		 * Caller supplied explicit parameters to use in
5078 		 * sending the frame.
5079 		 */
5080 		error = iwn_tx_data_raw(sc, m, ni, params);
5081 	}
5082 	if (error == 0)
5083 		sc->sc_tx_timer = 5;
5084 	else
5085 		m_freem(m);
5086 
5087 	IWN_UNLOCK(sc);
5088 
5089 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5090 
5091 	return (error);
5092 }
5093 
5094 /*
5095  * transmit - don't free mbuf if failed; don't free node ref if failed.
5096  */
5097 static int
5098 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5099 {
5100 	struct iwn_softc *sc = ic->ic_softc;
5101 	struct ieee80211_node *ni;
5102 	int error;
5103 
5104 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5105 
5106 	IWN_LOCK(sc);
5107 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5108 		IWN_UNLOCK(sc);
5109 		return (ENXIO);
5110 	}
5111 
5112 	if (sc->qfullmsk) {
5113 		IWN_UNLOCK(sc);
5114 		return (ENOBUFS);
5115 	}
5116 
5117 	error = iwn_tx_data(sc, m, ni);
5118 	if (!error)
5119 		sc->sc_tx_timer = 5;
5120 	IWN_UNLOCK(sc);
5121 	return (error);
5122 }
5123 
5124 static void
5125 iwn_scan_timeout(void *arg)
5126 {
5127 	struct iwn_softc *sc = arg;
5128 	struct ieee80211com *ic = &sc->sc_ic;
5129 
5130 	ic_printf(ic, "scan timeout\n");
5131 	ieee80211_restart_all(ic);
5132 }
5133 
5134 static void
5135 iwn_watchdog(void *arg)
5136 {
5137 	struct iwn_softc *sc = arg;
5138 	struct ieee80211com *ic = &sc->sc_ic;
5139 
5140 	IWN_LOCK_ASSERT(sc);
5141 
5142 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5143 
5144 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5145 
5146 	if (sc->sc_tx_timer > 0) {
5147 		if (--sc->sc_tx_timer == 0) {
5148 			ic_printf(ic, "device timeout\n");
5149 			ieee80211_restart_all(ic);
5150 			return;
5151 		}
5152 	}
5153 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5154 }
5155 
5156 static int
5157 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5158 {
5159 
5160 	return (0);
5161 }
5162 
5163 static int
5164 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5165 {
5166 
5167 	return (0);
5168 }
5169 
5170 static int
5171 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5172     struct thread *td)
5173 {
5174 	int rc;
5175 	struct iwn_softc *sc = dev->si_drv1;
5176 	struct iwn_ioctl_data *d;
5177 
5178 	rc = priv_check(td, PRIV_DRIVER);
5179 	if (rc != 0)
5180 		return (0);
5181 
5182 	switch (cmd) {
5183 	case SIOCGIWNSTATS:
5184 		d = (struct iwn_ioctl_data *) data;
5185 		IWN_LOCK(sc);
5186 		/* XXX validate permissions/memory/etc? */
5187 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5188 		IWN_UNLOCK(sc);
5189 		break;
5190 	case SIOCZIWNSTATS:
5191 		IWN_LOCK(sc);
5192 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5193 		IWN_UNLOCK(sc);
5194 		break;
5195 	default:
5196 		rc = EINVAL;
5197 		break;
5198 	}
5199 	return (rc);
5200 }
5201 
5202 static int
5203 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5204 {
5205 
5206 	return (ENOTTY);
5207 }
5208 
5209 static void
5210 iwn_parent(struct ieee80211com *ic)
5211 {
5212 	struct iwn_softc *sc = ic->ic_softc;
5213 	struct ieee80211vap *vap;
5214 	int error;
5215 
5216 	if (ic->ic_nrunning > 0) {
5217 		error = iwn_init(sc);
5218 
5219 		switch (error) {
5220 		case 0:
5221 			ieee80211_start_all(ic);
5222 			break;
5223 		case 1:
5224 			/* radio is disabled via RFkill switch */
5225 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5226 			break;
5227 		default:
5228 			vap = TAILQ_FIRST(&ic->ic_vaps);
5229 			if (vap != NULL)
5230 				ieee80211_stop(vap);
5231 			break;
5232 		}
5233 	} else
5234 		iwn_stop(sc);
5235 }
5236 
5237 /*
5238  * Send a command to the firmware.
5239  */
5240 static int
5241 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5242 {
5243 	struct iwn_tx_ring *ring;
5244 	struct iwn_tx_desc *desc;
5245 	struct iwn_tx_data *data;
5246 	struct iwn_tx_cmd *cmd;
5247 	struct mbuf *m;
5248 	bus_addr_t paddr;
5249 	int totlen, error;
5250 	int cmd_queue_num;
5251 
5252 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5253 
5254 	if (async == 0)
5255 		IWN_LOCK_ASSERT(sc);
5256 
5257 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5258 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5259 	else
5260 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5261 
5262 	ring = &sc->txq[cmd_queue_num];
5263 	desc = &ring->desc[ring->cur];
5264 	data = &ring->data[ring->cur];
5265 	totlen = 4 + size;
5266 
5267 	if (size > sizeof cmd->data) {
5268 		/* Command is too large to fit in a descriptor. */
5269 		if (totlen > MCLBYTES)
5270 			return EINVAL;
5271 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5272 		if (m == NULL)
5273 			return ENOMEM;
5274 		cmd = mtod(m, struct iwn_tx_cmd *);
5275 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5276 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5277 		if (error != 0) {
5278 			m_freem(m);
5279 			return error;
5280 		}
5281 		data->m = m;
5282 	} else {
5283 		cmd = &ring->cmd[ring->cur];
5284 		paddr = data->cmd_paddr;
5285 	}
5286 
5287 	cmd->code = code;
5288 	cmd->flags = 0;
5289 	cmd->qid = ring->qid;
5290 	cmd->idx = ring->cur;
5291 	memcpy(cmd->data, buf, size);
5292 
5293 	desc->nsegs = 1;
5294 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5295 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5296 
5297 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5298 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5299 	    cmd->flags, cmd->qid, cmd->idx);
5300 
5301 	if (size > sizeof cmd->data) {
5302 		bus_dmamap_sync(ring->data_dmat, data->map,
5303 		    BUS_DMASYNC_PREWRITE);
5304 	} else {
5305 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5306 		    BUS_DMASYNC_PREWRITE);
5307 	}
5308 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5309 	    BUS_DMASYNC_PREWRITE);
5310 
5311 	/* Kick command ring. */
5312 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5313 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5314 
5315 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5316 
5317 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5318 }
5319 
5320 static int
5321 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5322 {
5323 	struct iwn4965_node_info hnode;
5324 	caddr_t src, dst;
5325 
5326 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5327 
5328 	/*
5329 	 * We use the node structure for 5000 Series internally (it is
5330 	 * a superset of the one for 4965AGN). We thus copy the common
5331 	 * fields before sending the command.
5332 	 */
5333 	src = (caddr_t)node;
5334 	dst = (caddr_t)&hnode;
5335 	memcpy(dst, src, 48);
5336 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5337 	memcpy(dst + 48, src + 72, 20);
5338 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5339 }
5340 
5341 static int
5342 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5343 {
5344 
5345 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5346 
5347 	/* Direct mapping. */
5348 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5349 }
5350 
5351 static int
5352 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5353 {
5354 	struct iwn_node *wn = (void *)ni;
5355 	struct ieee80211_rateset *rs;
5356 	struct iwn_cmd_link_quality linkq;
5357 	int i, rate, txrate;
5358 	int is_11n;
5359 
5360 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5361 
5362 	memset(&linkq, 0, sizeof linkq);
5363 	linkq.id = wn->id;
5364 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5365 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5366 
5367 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5368 	linkq.ampdu_threshold = 3;
5369 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5370 
5371 	DPRINTF(sc, IWN_DEBUG_XMIT,
5372 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5373 	    __func__,
5374 	    linkq.antmsk_1stream,
5375 	    linkq.antmsk_2stream,
5376 	    sc->ntxchains);
5377 
5378 	/*
5379 	 * Are we using 11n rates? Ensure the channel is
5380 	 * 11n _and_ we have some 11n rates, or don't
5381 	 * try.
5382 	 */
5383 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5384 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5385 		is_11n = 1;
5386 	} else {
5387 		rs = &ni->ni_rates;
5388 		is_11n = 0;
5389 	}
5390 
5391 	/* Start at highest available bit-rate. */
5392 	/*
5393 	 * XXX this is all very dirty!
5394 	 */
5395 	if (is_11n)
5396 		txrate = ni->ni_htrates.rs_nrates - 1;
5397 	else
5398 		txrate = rs->rs_nrates - 1;
5399 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5400 		uint32_t plcp;
5401 
5402 		/*
5403 		 * XXX TODO: ensure the last two slots are the two lowest
5404 		 * rate entries, just for now.
5405 		 */
5406 		if (i == 14 || i == 15)
5407 			txrate = 0;
5408 
5409 		if (is_11n)
5410 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5411 		else
5412 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5413 
5414 		/* Do rate -> PLCP config mapping */
5415 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5416 		linkq.retry[i] = plcp;
5417 		DPRINTF(sc, IWN_DEBUG_XMIT,
5418 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5419 		    __func__,
5420 		    i,
5421 		    txrate,
5422 		    rate,
5423 		    le32toh(plcp));
5424 
5425 		/*
5426 		 * The mimo field is an index into the table which
5427 		 * indicates the first index where it and subsequent entries
5428 		 * will not be using MIMO.
5429 		 *
5430 		 * Since we're filling linkq from 0..15 and we're filling
5431 		 * from the highest MCS rates to the lowest rates, if we
5432 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5433 		 * the next entry.)  That way if the next entry is a non-MIMO
5434 		 * entry, we're already pointing at it.
5435 		 */
5436 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5437 		    IEEE80211_RV(le32toh(plcp)) > 7)
5438 			linkq.mimo = i + 1;
5439 
5440 		/* Next retry at immediate lower bit-rate. */
5441 		if (txrate > 0)
5442 			txrate--;
5443 	}
5444 	/*
5445 	 * If we reached the end of the list and indeed we hit
5446 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5447 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5448 	 */
5449 	if (linkq.mimo > 15)
5450 		linkq.mimo = 15;
5451 
5452 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5453 
5454 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5455 
5456 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5457 }
5458 
5459 /*
5460  * Broadcast node is used to send group-addressed and management frames.
5461  */
5462 static int
5463 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5464 {
5465 	struct iwn_ops *ops = &sc->ops;
5466 	struct ieee80211com *ic = &sc->sc_ic;
5467 	struct iwn_node_info node;
5468 	struct iwn_cmd_link_quality linkq;
5469 	uint8_t txant;
5470 	int i, error;
5471 
5472 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5473 
5474 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5475 
5476 	memset(&node, 0, sizeof node);
5477 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5478 	node.id = sc->broadcast_id;
5479 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5480 	if ((error = ops->add_node(sc, &node, async)) != 0)
5481 		return error;
5482 
5483 	/* Use the first valid TX antenna. */
5484 	txant = IWN_LSB(sc->txchainmask);
5485 
5486 	memset(&linkq, 0, sizeof linkq);
5487 	linkq.id = sc->broadcast_id;
5488 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5489 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5490 	linkq.ampdu_max = 64;
5491 	linkq.ampdu_threshold = 3;
5492 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5493 
5494 	/* Use lowest mandatory bit-rate. */
5495 	/* XXX rate table lookup? */
5496 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5497 		linkq.retry[0] = htole32(0xd);
5498 	else
5499 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5500 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5501 	/* Use same bit-rate for all TX retries. */
5502 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5503 		linkq.retry[i] = linkq.retry[0];
5504 	}
5505 
5506 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5507 
5508 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5509 }
5510 
5511 static int
5512 iwn_updateedca(struct ieee80211com *ic)
5513 {
5514 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5515 	struct iwn_softc *sc = ic->ic_softc;
5516 	struct iwn_edca_params cmd;
5517 	struct chanAccParams chp;
5518 	int aci;
5519 
5520 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5521 
5522 	ieee80211_wme_ic_getparams(ic, &chp);
5523 
5524 	memset(&cmd, 0, sizeof cmd);
5525 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5526 
5527 	IEEE80211_LOCK(ic);
5528 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5529 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5530 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5531 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5532 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5533 		cmd.ac[aci].txoplimit =
5534 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5535 	}
5536 	IEEE80211_UNLOCK(ic);
5537 
5538 	IWN_LOCK(sc);
5539 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5540 	IWN_UNLOCK(sc);
5541 
5542 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5543 
5544 	return 0;
5545 #undef IWN_EXP2
5546 }
5547 
5548 static void
5549 iwn_set_promisc(struct iwn_softc *sc)
5550 {
5551 	struct ieee80211com *ic = &sc->sc_ic;
5552 	uint32_t promisc_filter;
5553 
5554 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5555 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5556 		sc->rxon->filter |= htole32(promisc_filter);
5557 	else
5558 		sc->rxon->filter &= ~htole32(promisc_filter);
5559 }
5560 
5561 static void
5562 iwn_update_promisc(struct ieee80211com *ic)
5563 {
5564 	struct iwn_softc *sc = ic->ic_softc;
5565 	int error;
5566 
5567 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5568 		return;		/* nothing to do */
5569 
5570 	IWN_LOCK(sc);
5571 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5572 		IWN_UNLOCK(sc);
5573 		return;
5574 	}
5575 
5576 	iwn_set_promisc(sc);
5577 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5578 		device_printf(sc->sc_dev,
5579 		    "%s: could not send RXON, error %d\n",
5580 		    __func__, error);
5581 	}
5582 	IWN_UNLOCK(sc);
5583 }
5584 
5585 static void
5586 iwn_update_mcast(struct ieee80211com *ic)
5587 {
5588 	/* Ignore */
5589 }
5590 
5591 static void
5592 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5593 {
5594 	struct iwn_cmd_led led;
5595 
5596 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5597 
5598 #if 0
5599 	/* XXX don't set LEDs during scan? */
5600 	if (sc->sc_is_scanning)
5601 		return;
5602 #endif
5603 
5604 	/* Clear microcode LED ownership. */
5605 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5606 
5607 	led.which = which;
5608 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5609 	led.off = off;
5610 	led.on = on;
5611 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5612 }
5613 
5614 /*
5615  * Set the critical temperature at which the firmware will stop the radio
5616  * and notify us.
5617  */
5618 static int
5619 iwn_set_critical_temp(struct iwn_softc *sc)
5620 {
5621 	struct iwn_critical_temp crit;
5622 	int32_t temp;
5623 
5624 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5625 
5626 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5627 
5628 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5629 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5630 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5631 		temp = IWN_CTOK(110);
5632 	else
5633 		temp = 110;
5634 	memset(&crit, 0, sizeof crit);
5635 	crit.tempR = htole32(temp);
5636 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5637 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5638 }
5639 
5640 static int
5641 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5642 {
5643 	struct iwn_cmd_timing cmd;
5644 	uint64_t val, mod;
5645 
5646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5647 
5648 	memset(&cmd, 0, sizeof cmd);
5649 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5650 	cmd.bintval = htole16(ni->ni_intval);
5651 	cmd.lintval = htole16(10);
5652 
5653 	/* Compute remaining time until next beacon. */
5654 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5655 	mod = le64toh(cmd.tstamp) % val;
5656 	cmd.binitval = htole32((uint32_t)(val - mod));
5657 
5658 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5659 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5660 
5661 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5662 }
5663 
5664 static void
5665 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5666 {
5667 
5668 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5669 
5670 	/* Adjust TX power if need be (delta >= 3 degC). */
5671 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5672 	    __func__, sc->temp, temp);
5673 	if (abs(temp - sc->temp) >= 3) {
5674 		/* Record temperature of last calibration. */
5675 		sc->temp = temp;
5676 		(void)iwn4965_set_txpower(sc, 1);
5677 	}
5678 }
5679 
5680 /*
5681  * Set TX power for current channel (each rate has its own power settings).
5682  * This function takes into account the regulatory information from EEPROM,
5683  * the current temperature and the current voltage.
5684  */
5685 static int
5686 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5687 {
5688 /* Fixed-point arithmetic division using a n-bit fractional part. */
5689 #define fdivround(a, b, n)	\
5690 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5691 /* Linear interpolation. */
5692 #define interpolate(x, x1, y1, x2, y2, n)	\
5693 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5694 
5695 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5696 	struct iwn_ucode_info *uc = &sc->ucode_info;
5697 	struct iwn4965_cmd_txpower cmd;
5698 	struct iwn4965_eeprom_chan_samples *chans;
5699 	const uint8_t *rf_gain, *dsp_gain;
5700 	int32_t vdiff, tdiff;
5701 	int i, is_chan_5ghz, c, grp, maxpwr;
5702 	uint8_t chan;
5703 
5704 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5705 	/* Retrieve current channel from last RXON. */
5706 	chan = sc->rxon->chan;
5707 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5708 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5709 	    chan);
5710 
5711 	memset(&cmd, 0, sizeof cmd);
5712 	cmd.band = is_chan_5ghz ? 0 : 1;
5713 	cmd.chan = chan;
5714 
5715 	if (is_chan_5ghz) {
5716 		maxpwr   = sc->maxpwr5GHz;
5717 		rf_gain  = iwn4965_rf_gain_5ghz;
5718 		dsp_gain = iwn4965_dsp_gain_5ghz;
5719 	} else {
5720 		maxpwr   = sc->maxpwr2GHz;
5721 		rf_gain  = iwn4965_rf_gain_2ghz;
5722 		dsp_gain = iwn4965_dsp_gain_2ghz;
5723 	}
5724 
5725 	/* Compute voltage compensation. */
5726 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5727 	if (vdiff > 0)
5728 		vdiff *= 2;
5729 	if (abs(vdiff) > 2)
5730 		vdiff = 0;
5731 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5732 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5733 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5734 
5735 	/* Get channel attenuation group. */
5736 	if (chan <= 20)		/* 1-20 */
5737 		grp = 4;
5738 	else if (chan <= 43)	/* 34-43 */
5739 		grp = 0;
5740 	else if (chan <= 70)	/* 44-70 */
5741 		grp = 1;
5742 	else if (chan <= 124)	/* 71-124 */
5743 		grp = 2;
5744 	else			/* 125-200 */
5745 		grp = 3;
5746 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5747 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5748 
5749 	/* Get channel sub-band. */
5750 	for (i = 0; i < IWN_NBANDS; i++)
5751 		if (sc->bands[i].lo != 0 &&
5752 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5753 			break;
5754 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5755 		return EINVAL;
5756 	chans = sc->bands[i].chans;
5757 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5758 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5759 
5760 	for (c = 0; c < 2; c++) {
5761 		uint8_t power, gain, temp;
5762 		int maxchpwr, pwr, ridx, idx;
5763 
5764 		power = interpolate(chan,
5765 		    chans[0].num, chans[0].samples[c][1].power,
5766 		    chans[1].num, chans[1].samples[c][1].power, 1);
5767 		gain  = interpolate(chan,
5768 		    chans[0].num, chans[0].samples[c][1].gain,
5769 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5770 		temp  = interpolate(chan,
5771 		    chans[0].num, chans[0].samples[c][1].temp,
5772 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5773 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5774 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5775 		    __func__, c, power, gain, temp);
5776 
5777 		/* Compute temperature compensation. */
5778 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5779 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5780 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5781 		    __func__, tdiff, sc->temp, temp);
5782 
5783 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5784 			/* Convert dBm to half-dBm. */
5785 			maxchpwr = sc->maxpwr[chan] * 2;
5786 			if ((ridx / 8) & 1)
5787 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5788 
5789 			pwr = maxpwr;
5790 
5791 			/* Adjust TX power based on rate. */
5792 			if ((ridx % 8) == 5)
5793 				pwr -= 15;	/* OFDM48: -7.5dB */
5794 			else if ((ridx % 8) == 6)
5795 				pwr -= 17;	/* OFDM54: -8.5dB */
5796 			else if ((ridx % 8) == 7)
5797 				pwr -= 20;	/* OFDM60: -10dB */
5798 			else
5799 				pwr -= 10;	/* Others: -5dB */
5800 
5801 			/* Do not exceed channel max TX power. */
5802 			if (pwr > maxchpwr)
5803 				pwr = maxchpwr;
5804 
5805 			idx = gain - (pwr - power) - tdiff - vdiff;
5806 			if ((ridx / 8) & 1)	/* MIMO */
5807 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5808 
5809 			if (cmd.band == 0)
5810 				idx += 9;	/* 5GHz */
5811 			if (ridx == IWN_RIDX_MAX)
5812 				idx += 5;	/* CCK */
5813 
5814 			/* Make sure idx stays in a valid range. */
5815 			if (idx < 0)
5816 				idx = 0;
5817 			else if (idx > IWN4965_MAX_PWR_INDEX)
5818 				idx = IWN4965_MAX_PWR_INDEX;
5819 
5820 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5821 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5822 			    __func__, c, ridx, idx);
5823 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5824 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5825 		}
5826 	}
5827 
5828 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5829 	    "%s: set tx power for chan %d\n", __func__, chan);
5830 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5831 
5832 #undef interpolate
5833 #undef fdivround
5834 }
5835 
5836 static int
5837 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5838 {
5839 	struct iwn5000_cmd_txpower cmd;
5840 	int cmdid;
5841 
5842 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5843 
5844 	/*
5845 	 * TX power calibration is handled automatically by the firmware
5846 	 * for 5000 Series.
5847 	 */
5848 	memset(&cmd, 0, sizeof cmd);
5849 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5850 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5851 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5852 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5853 	    "%s: setting TX power; rev=%d\n",
5854 	    __func__,
5855 	    IWN_UCODE_API(sc->ucode_rev));
5856 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5857 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5858 	else
5859 		cmdid = IWN_CMD_TXPOWER_DBM;
5860 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5861 }
5862 
5863 /*
5864  * Retrieve the maximum RSSI (in dBm) among receivers.
5865  */
5866 static int
5867 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5868 {
5869 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5870 	uint8_t mask, agc;
5871 	int rssi;
5872 
5873 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5874 
5875 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5876 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5877 
5878 	rssi = 0;
5879 	if (mask & IWN_ANT_A)
5880 		rssi = MAX(rssi, phy->rssi[0]);
5881 	if (mask & IWN_ANT_B)
5882 		rssi = MAX(rssi, phy->rssi[2]);
5883 	if (mask & IWN_ANT_C)
5884 		rssi = MAX(rssi, phy->rssi[4]);
5885 
5886 	DPRINTF(sc, IWN_DEBUG_RECV,
5887 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5888 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5889 	    rssi - agc - IWN_RSSI_TO_DBM);
5890 	return rssi - agc - IWN_RSSI_TO_DBM;
5891 }
5892 
5893 static int
5894 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5895 {
5896 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5897 	uint8_t agc;
5898 	int rssi;
5899 
5900 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5901 
5902 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5903 
5904 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5905 		   le16toh(phy->rssi[1]) & 0xff);
5906 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5907 
5908 	DPRINTF(sc, IWN_DEBUG_RECV,
5909 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5910 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5911 	    rssi - agc - IWN_RSSI_TO_DBM);
5912 	return rssi - agc - IWN_RSSI_TO_DBM;
5913 }
5914 
5915 /*
5916  * Retrieve the average noise (in dBm) among receivers.
5917  */
5918 static int
5919 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5920 {
5921 	int i, total, nbant, noise;
5922 
5923 	total = nbant = 0;
5924 	for (i = 0; i < 3; i++) {
5925 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5926 			continue;
5927 		total += noise;
5928 		nbant++;
5929 	}
5930 	/* There should be at least one antenna but check anyway. */
5931 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5932 }
5933 
5934 /*
5935  * Compute temperature (in degC) from last received statistics.
5936  */
5937 static int
5938 iwn4965_get_temperature(struct iwn_softc *sc)
5939 {
5940 	struct iwn_ucode_info *uc = &sc->ucode_info;
5941 	int32_t r1, r2, r3, r4, temp;
5942 
5943 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5944 
5945 	r1 = le32toh(uc->temp[0].chan20MHz);
5946 	r2 = le32toh(uc->temp[1].chan20MHz);
5947 	r3 = le32toh(uc->temp[2].chan20MHz);
5948 	r4 = le32toh(sc->rawtemp);
5949 
5950 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5951 		return 0;
5952 
5953 	/* Sign-extend 23-bit R4 value to 32-bit. */
5954 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5955 	/* Compute temperature in Kelvin. */
5956 	temp = (259 * (r4 - r2)) / (r3 - r1);
5957 	temp = (temp * 97) / 100 + 8;
5958 
5959 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5960 	    IWN_KTOC(temp));
5961 	return IWN_KTOC(temp);
5962 }
5963 
5964 static int
5965 iwn5000_get_temperature(struct iwn_softc *sc)
5966 {
5967 	int32_t temp;
5968 
5969 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5970 
5971 	/*
5972 	 * Temperature is not used by the driver for 5000 Series because
5973 	 * TX power calibration is handled by firmware.
5974 	 */
5975 	temp = le32toh(sc->rawtemp);
5976 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5977 		temp = (temp / -5) + sc->temp_off;
5978 		temp = IWN_KTOC(temp);
5979 	}
5980 	return temp;
5981 }
5982 
5983 /*
5984  * Initialize sensitivity calibration state machine.
5985  */
5986 static int
5987 iwn_init_sensitivity(struct iwn_softc *sc)
5988 {
5989 	struct iwn_ops *ops = &sc->ops;
5990 	struct iwn_calib_state *calib = &sc->calib;
5991 	uint32_t flags;
5992 	int error;
5993 
5994 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5995 
5996 	/* Reset calibration state machine. */
5997 	memset(calib, 0, sizeof (*calib));
5998 	calib->state = IWN_CALIB_STATE_INIT;
5999 	calib->cck_state = IWN_CCK_STATE_HIFA;
6000 	/* Set initial correlation values. */
6001 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
6002 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
6003 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
6004 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
6005 	calib->cck_x4      = 125;
6006 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
6007 	calib->energy_cck  = sc->limits->energy_cck;
6008 
6009 	/* Write initial sensitivity. */
6010 	if ((error = iwn_send_sensitivity(sc)) != 0)
6011 		return error;
6012 
6013 	/* Write initial gains. */
6014 	if ((error = ops->init_gains(sc)) != 0)
6015 		return error;
6016 
6017 	/* Request statistics at each beacon interval. */
6018 	flags = 0;
6019 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6020 	    __func__);
6021 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6022 }
6023 
6024 /*
6025  * Collect noise and RSSI statistics for the first 20 beacons received
6026  * after association and use them to determine connected antennas and
6027  * to set differential gains.
6028  */
6029 static void
6030 iwn_collect_noise(struct iwn_softc *sc,
6031     const struct iwn_rx_general_stats *stats)
6032 {
6033 	struct iwn_ops *ops = &sc->ops;
6034 	struct iwn_calib_state *calib = &sc->calib;
6035 	struct ieee80211com *ic = &sc->sc_ic;
6036 	uint32_t val;
6037 	int i;
6038 
6039 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6040 
6041 	/* Accumulate RSSI and noise for all 3 antennas. */
6042 	for (i = 0; i < 3; i++) {
6043 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6044 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6045 	}
6046 	/* NB: We update differential gains only once after 20 beacons. */
6047 	if (++calib->nbeacons < 20)
6048 		return;
6049 
6050 	/* Determine highest average RSSI. */
6051 	val = MAX(calib->rssi[0], calib->rssi[1]);
6052 	val = MAX(calib->rssi[2], val);
6053 
6054 	/* Determine which antennas are connected. */
6055 	sc->chainmask = sc->rxchainmask;
6056 	for (i = 0; i < 3; i++)
6057 		if (val - calib->rssi[i] > 15 * 20)
6058 			sc->chainmask &= ~(1 << i);
6059 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6060 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6061 	    __func__, sc->rxchainmask, sc->chainmask);
6062 
6063 	/* If none of the TX antennas are connected, keep at least one. */
6064 	if ((sc->chainmask & sc->txchainmask) == 0)
6065 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6066 
6067 	(void)ops->set_gains(sc);
6068 	calib->state = IWN_CALIB_STATE_RUN;
6069 
6070 #ifdef notyet
6071 	/* XXX Disable RX chains with no antennas connected. */
6072 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6073 	if (sc->sc_is_scanning)
6074 		device_printf(sc->sc_dev,
6075 		    "%s: is_scanning set, before RXON\n",
6076 		    __func__);
6077 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6078 #endif
6079 
6080 	/* Enable power-saving mode if requested by user. */
6081 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6082 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6083 
6084 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6085 
6086 }
6087 
6088 static int
6089 iwn4965_init_gains(struct iwn_softc *sc)
6090 {
6091 	struct iwn_phy_calib_gain cmd;
6092 
6093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6094 
6095 	memset(&cmd, 0, sizeof cmd);
6096 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6097 	/* Differential gains initially set to 0 for all 3 antennas. */
6098 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6099 	    "%s: setting initial differential gains\n", __func__);
6100 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6101 }
6102 
6103 static int
6104 iwn5000_init_gains(struct iwn_softc *sc)
6105 {
6106 	struct iwn_phy_calib cmd;
6107 
6108 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6109 
6110 	memset(&cmd, 0, sizeof cmd);
6111 	cmd.code = sc->reset_noise_gain;
6112 	cmd.ngroups = 1;
6113 	cmd.isvalid = 1;
6114 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6115 	    "%s: setting initial differential gains\n", __func__);
6116 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6117 }
6118 
6119 static int
6120 iwn4965_set_gains(struct iwn_softc *sc)
6121 {
6122 	struct iwn_calib_state *calib = &sc->calib;
6123 	struct iwn_phy_calib_gain cmd;
6124 	int i, delta, noise;
6125 
6126 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6127 
6128 	/* Get minimal noise among connected antennas. */
6129 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6130 	for (i = 0; i < 3; i++)
6131 		if (sc->chainmask & (1 << i))
6132 			noise = MIN(calib->noise[i], noise);
6133 
6134 	memset(&cmd, 0, sizeof cmd);
6135 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6136 	/* Set differential gains for connected antennas. */
6137 	for (i = 0; i < 3; i++) {
6138 		if (sc->chainmask & (1 << i)) {
6139 			/* Compute attenuation (in unit of 1.5dB). */
6140 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6141 			/* NB: delta <= 0 */
6142 			/* Limit to [-4.5dB,0]. */
6143 			cmd.gain[i] = MIN(abs(delta), 3);
6144 			if (delta < 0)
6145 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6146 		}
6147 	}
6148 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6149 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6150 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6151 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6152 }
6153 
6154 static int
6155 iwn5000_set_gains(struct iwn_softc *sc)
6156 {
6157 	struct iwn_calib_state *calib = &sc->calib;
6158 	struct iwn_phy_calib_gain cmd;
6159 	int i, ant, div, delta;
6160 
6161 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6162 
6163 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6164 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6165 
6166 	memset(&cmd, 0, sizeof cmd);
6167 	cmd.code = sc->noise_gain;
6168 	cmd.ngroups = 1;
6169 	cmd.isvalid = 1;
6170 	/* Get first available RX antenna as referential. */
6171 	ant = IWN_LSB(sc->rxchainmask);
6172 	/* Set differential gains for other antennas. */
6173 	for (i = ant + 1; i < 3; i++) {
6174 		if (sc->chainmask & (1 << i)) {
6175 			/* The delta is relative to antenna "ant". */
6176 			delta = ((int32_t)calib->noise[ant] -
6177 			    (int32_t)calib->noise[i]) / div;
6178 			/* Limit to [-4.5dB,+4.5dB]. */
6179 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6180 			if (delta < 0)
6181 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6182 		}
6183 	}
6184 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6185 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6186 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6187 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6188 }
6189 
6190 /*
6191  * Tune RF RX sensitivity based on the number of false alarms detected
6192  * during the last beacon period.
6193  */
6194 static void
6195 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6196 {
6197 #define inc(val, inc, max)			\
6198 	if ((val) < (max)) {			\
6199 		if ((val) < (max) - (inc))	\
6200 			(val) += (inc);		\
6201 		else				\
6202 			(val) = (max);		\
6203 		needs_update = 1;		\
6204 	}
6205 #define dec(val, dec, min)			\
6206 	if ((val) > (min)) {			\
6207 		if ((val) > (min) + (dec))	\
6208 			(val) -= (dec);		\
6209 		else				\
6210 			(val) = (min);		\
6211 		needs_update = 1;		\
6212 	}
6213 
6214 	const struct iwn_sensitivity_limits *limits = sc->limits;
6215 	struct iwn_calib_state *calib = &sc->calib;
6216 	uint32_t val, rxena, fa;
6217 	uint32_t energy[3], energy_min;
6218 	uint8_t noise[3], noise_ref;
6219 	int i, needs_update = 0;
6220 
6221 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6222 
6223 	/* Check that we've been enabled long enough. */
6224 	if ((rxena = le32toh(stats->general.load)) == 0){
6225 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6226 		return;
6227 	}
6228 
6229 	/* Compute number of false alarms since last call for OFDM. */
6230 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6231 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6232 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6233 
6234 	if (fa > 50 * rxena) {
6235 		/* High false alarm count, decrease sensitivity. */
6236 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6237 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6238 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6239 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6240 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6241 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6242 
6243 	} else if (fa < 5 * rxena) {
6244 		/* Low false alarm count, increase sensitivity. */
6245 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6246 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6247 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6248 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6249 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6250 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6251 	}
6252 
6253 	/* Compute maximum noise among 3 receivers. */
6254 	for (i = 0; i < 3; i++)
6255 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6256 	val = MAX(noise[0], noise[1]);
6257 	val = MAX(noise[2], val);
6258 	/* Insert it into our samples table. */
6259 	calib->noise_samples[calib->cur_noise_sample] = val;
6260 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6261 
6262 	/* Compute maximum noise among last 20 samples. */
6263 	noise_ref = calib->noise_samples[0];
6264 	for (i = 1; i < 20; i++)
6265 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6266 
6267 	/* Compute maximum energy among 3 receivers. */
6268 	for (i = 0; i < 3; i++)
6269 		energy[i] = le32toh(stats->general.energy[i]);
6270 	val = MIN(energy[0], energy[1]);
6271 	val = MIN(energy[2], val);
6272 	/* Insert it into our samples table. */
6273 	calib->energy_samples[calib->cur_energy_sample] = val;
6274 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6275 
6276 	/* Compute minimum energy among last 10 samples. */
6277 	energy_min = calib->energy_samples[0];
6278 	for (i = 1; i < 10; i++)
6279 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6280 	energy_min += 6;
6281 
6282 	/* Compute number of false alarms since last call for CCK. */
6283 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6284 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6285 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6286 
6287 	if (fa > 50 * rxena) {
6288 		/* High false alarm count, decrease sensitivity. */
6289 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6290 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6291 		calib->cck_state = IWN_CCK_STATE_HIFA;
6292 		calib->low_fa = 0;
6293 
6294 		if (calib->cck_x4 > 160) {
6295 			calib->noise_ref = noise_ref;
6296 			if (calib->energy_cck > 2)
6297 				dec(calib->energy_cck, 2, energy_min);
6298 		}
6299 		if (calib->cck_x4 < 160) {
6300 			calib->cck_x4 = 161;
6301 			needs_update = 1;
6302 		} else
6303 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6304 
6305 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6306 
6307 	} else if (fa < 5 * rxena) {
6308 		/* Low false alarm count, increase sensitivity. */
6309 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6310 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6311 		calib->cck_state = IWN_CCK_STATE_LOFA;
6312 		calib->low_fa++;
6313 
6314 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6315 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6316 		     calib->low_fa > 100)) {
6317 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6318 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6319 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6320 		}
6321 	} else {
6322 		/* Not worth to increase or decrease sensitivity. */
6323 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6324 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6325 		calib->low_fa = 0;
6326 		calib->noise_ref = noise_ref;
6327 
6328 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6329 			/* Previous interval had many false alarms. */
6330 			dec(calib->energy_cck, 8, energy_min);
6331 		}
6332 		calib->cck_state = IWN_CCK_STATE_INIT;
6333 	}
6334 
6335 	if (needs_update)
6336 		(void)iwn_send_sensitivity(sc);
6337 
6338 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6339 
6340 #undef dec
6341 #undef inc
6342 }
6343 
6344 static int
6345 iwn_send_sensitivity(struct iwn_softc *sc)
6346 {
6347 	struct iwn_calib_state *calib = &sc->calib;
6348 	struct iwn_enhanced_sensitivity_cmd cmd;
6349 	int len;
6350 
6351 	memset(&cmd, 0, sizeof cmd);
6352 	len = sizeof (struct iwn_sensitivity_cmd);
6353 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6354 	/* OFDM modulation. */
6355 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6356 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6357 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6358 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6359 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6360 	cmd.energy_ofdm_th     = htole16(62);
6361 	/* CCK modulation. */
6362 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6363 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6364 	cmd.energy_cck         = htole16(calib->energy_cck);
6365 	/* Barker modulation: use default values. */
6366 	cmd.corr_barker        = htole16(190);
6367 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6368 
6369 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6370 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6371 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6372 	    calib->ofdm_mrc_x4, calib->cck_x4,
6373 	    calib->cck_mrc_x4, calib->energy_cck);
6374 
6375 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6376 		goto send;
6377 	/* Enhanced sensitivity settings. */
6378 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6379 	cmd.ofdm_det_slope_mrc = htole16(668);
6380 	cmd.ofdm_det_icept_mrc = htole16(4);
6381 	cmd.ofdm_det_slope     = htole16(486);
6382 	cmd.ofdm_det_icept     = htole16(37);
6383 	cmd.cck_det_slope_mrc  = htole16(853);
6384 	cmd.cck_det_icept_mrc  = htole16(4);
6385 	cmd.cck_det_slope      = htole16(476);
6386 	cmd.cck_det_icept      = htole16(99);
6387 send:
6388 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6389 }
6390 
6391 /*
6392  * Look at the increase of PLCP errors over time; if it exceeds
6393  * a programmed threshold then trigger an RF retune.
6394  */
6395 static void
6396 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6397 {
6398 	int32_t delta_ofdm, delta_ht, delta_cck;
6399 	struct iwn_calib_state *calib = &sc->calib;
6400 	int delta_ticks, cur_ticks;
6401 	int delta_msec;
6402 	int thresh;
6403 
6404 	/*
6405 	 * Calculate the difference between the current and
6406 	 * previous statistics.
6407 	 */
6408 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6409 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6410 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6411 
6412 	/*
6413 	 * Calculate the delta in time between successive statistics
6414 	 * messages.  Yes, it can roll over; so we make sure that
6415 	 * this doesn't happen.
6416 	 *
6417 	 * XXX go figure out what to do about rollover
6418 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6419 	 * XXX go stab signed integer overflow undefined-ness in the face.
6420 	 */
6421 	cur_ticks = ticks;
6422 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6423 
6424 	/*
6425 	 * If any are negative, then the firmware likely reset; so just
6426 	 * bail.  We'll pick this up next time.
6427 	 */
6428 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6429 		return;
6430 
6431 	/*
6432 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6433 	 * so we can do some useful math with it.
6434 	 */
6435 	delta_msec = ticks_to_msecs(delta_ticks);
6436 
6437 	/*
6438 	 * Calculate what our threshold is given the current delta_msec.
6439 	 */
6440 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6441 
6442 	DPRINTF(sc, IWN_DEBUG_STATE,
6443 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6444 	    __func__,
6445 	    delta_msec,
6446 	    delta_cck,
6447 	    delta_ofdm,
6448 	    delta_ht,
6449 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6450 	    thresh);
6451 
6452 	/*
6453 	 * If we need a retune, then schedule a single channel scan
6454 	 * to a channel that isn't the currently active one!
6455 	 *
6456 	 * The math from linux iwlwifi:
6457 	 *
6458 	 * if ((delta * 100 / msecs) > threshold)
6459 	 */
6460 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6461 		DPRINTF(sc, IWN_DEBUG_ANY,
6462 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6463 		    "over limit (%d); retune!\n",
6464 		    __func__,
6465 		    (delta_cck + delta_ofdm + delta_ht),
6466 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6467 		    thresh);
6468 	}
6469 }
6470 
6471 /*
6472  * Set STA mode power saving level (between 0 and 5).
6473  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6474  */
6475 static int
6476 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6477 {
6478 	struct iwn_pmgt_cmd cmd;
6479 	const struct iwn_pmgt *pmgt;
6480 	uint32_t max, skip_dtim;
6481 	uint32_t reg;
6482 	int i;
6483 
6484 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6485 	    "%s: dtim=%d, level=%d, async=%d\n",
6486 	    __func__,
6487 	    dtim,
6488 	    level,
6489 	    async);
6490 
6491 	/* Select which PS parameters to use. */
6492 	if (dtim <= 2)
6493 		pmgt = &iwn_pmgt[0][level];
6494 	else if (dtim <= 10)
6495 		pmgt = &iwn_pmgt[1][level];
6496 	else
6497 		pmgt = &iwn_pmgt[2][level];
6498 
6499 	memset(&cmd, 0, sizeof cmd);
6500 	if (level != 0)	/* not CAM */
6501 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6502 	if (level == 5)
6503 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6504 	/* Retrieve PCIe Active State Power Management (ASPM). */
6505 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6506 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6507 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6508 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6509 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6510 
6511 	if (dtim == 0) {
6512 		dtim = 1;
6513 		skip_dtim = 0;
6514 	} else
6515 		skip_dtim = pmgt->skip_dtim;
6516 	if (skip_dtim != 0) {
6517 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6518 		max = pmgt->intval[4];
6519 		if (max == (uint32_t)-1)
6520 			max = dtim * (skip_dtim + 1);
6521 		else if (max > dtim)
6522 			max = rounddown(max, dtim);
6523 	} else
6524 		max = dtim;
6525 	for (i = 0; i < 5; i++)
6526 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6527 
6528 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6529 	    level);
6530 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6531 }
6532 
6533 static int
6534 iwn_send_btcoex(struct iwn_softc *sc)
6535 {
6536 	struct iwn_bluetooth cmd;
6537 
6538 	memset(&cmd, 0, sizeof cmd);
6539 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6540 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6541 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6542 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6543 	    __func__);
6544 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6545 }
6546 
6547 static int
6548 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6549 {
6550 	static const uint32_t btcoex_3wire[12] = {
6551 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6552 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6553 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6554 	};
6555 	struct iwn6000_btcoex_config btconfig;
6556 	struct iwn2000_btcoex_config btconfig2k;
6557 	struct iwn_btcoex_priotable btprio;
6558 	struct iwn_btcoex_prot btprot;
6559 	int error, i;
6560 	uint8_t flags;
6561 
6562 	memset(&btconfig, 0, sizeof btconfig);
6563 	memset(&btconfig2k, 0, sizeof btconfig2k);
6564 
6565 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6566 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6567 
6568 	if (sc->base_params->bt_sco_disable)
6569 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6570 	else
6571 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6572 
6573 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6574 
6575 	/* Default flags result is 145 as old value */
6576 
6577 	/*
6578 	 * Flags value has to be review. Values must change if we
6579 	 * which to disable it
6580 	 */
6581 	if (sc->base_params->bt_session_2) {
6582 		btconfig2k.flags = flags;
6583 		btconfig2k.max_kill = 5;
6584 		btconfig2k.bt3_t7_timer = 1;
6585 		btconfig2k.kill_ack = htole32(0xffff0000);
6586 		btconfig2k.kill_cts = htole32(0xffff0000);
6587 		btconfig2k.sample_time = 2;
6588 		btconfig2k.bt3_t2_timer = 0xc;
6589 
6590 		for (i = 0; i < 12; i++)
6591 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6592 		btconfig2k.valid = htole16(0xff);
6593 		btconfig2k.prio_boost = htole32(0xf0);
6594 		DPRINTF(sc, IWN_DEBUG_RESET,
6595 		    "%s: configuring advanced bluetooth coexistence"
6596 		    " session 2, flags : 0x%x\n",
6597 		    __func__,
6598 		    flags);
6599 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6600 		    sizeof(btconfig2k), 1);
6601 	} else {
6602 		btconfig.flags = flags;
6603 		btconfig.max_kill = 5;
6604 		btconfig.bt3_t7_timer = 1;
6605 		btconfig.kill_ack = htole32(0xffff0000);
6606 		btconfig.kill_cts = htole32(0xffff0000);
6607 		btconfig.sample_time = 2;
6608 		btconfig.bt3_t2_timer = 0xc;
6609 
6610 		for (i = 0; i < 12; i++)
6611 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6612 		btconfig.valid = htole16(0xff);
6613 		btconfig.prio_boost = 0xf0;
6614 		DPRINTF(sc, IWN_DEBUG_RESET,
6615 		    "%s: configuring advanced bluetooth coexistence,"
6616 		    " flags : 0x%x\n",
6617 		    __func__,
6618 		    flags);
6619 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6620 		    sizeof(btconfig), 1);
6621 	}
6622 
6623 	if (error != 0)
6624 		return error;
6625 
6626 	memset(&btprio, 0, sizeof btprio);
6627 	btprio.calib_init1 = 0x6;
6628 	btprio.calib_init2 = 0x7;
6629 	btprio.calib_periodic_low1 = 0x2;
6630 	btprio.calib_periodic_low2 = 0x3;
6631 	btprio.calib_periodic_high1 = 0x4;
6632 	btprio.calib_periodic_high2 = 0x5;
6633 	btprio.dtim = 0x6;
6634 	btprio.scan52 = 0x8;
6635 	btprio.scan24 = 0xa;
6636 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6637 	    1);
6638 	if (error != 0)
6639 		return error;
6640 
6641 	/* Force BT state machine change. */
6642 	memset(&btprot, 0, sizeof btprot);
6643 	btprot.open = 1;
6644 	btprot.type = 1;
6645 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6646 	if (error != 0)
6647 		return error;
6648 	btprot.open = 0;
6649 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6650 }
6651 
6652 static int
6653 iwn5000_runtime_calib(struct iwn_softc *sc)
6654 {
6655 	struct iwn5000_calib_config cmd;
6656 
6657 	memset(&cmd, 0, sizeof cmd);
6658 	cmd.ucode.once.enable = 0xffffffff;
6659 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6660 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6661 	    "%s: configuring runtime calibration\n", __func__);
6662 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6663 }
6664 
6665 static uint32_t
6666 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6667 {
6668 	struct ieee80211com *ic = &sc->sc_ic;
6669 	uint32_t htflags = 0;
6670 
6671 	if (! IEEE80211_IS_CHAN_HT(c))
6672 		return (0);
6673 
6674 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6675 
6676 	if (IEEE80211_IS_CHAN_HT40(c)) {
6677 		switch (ic->ic_curhtprotmode) {
6678 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6679 			htflags |= IWN_RXON_HT_MODEPURE40;
6680 			break;
6681 		default:
6682 			htflags |= IWN_RXON_HT_MODEMIXED;
6683 			break;
6684 		}
6685 	}
6686 	if (IEEE80211_IS_CHAN_HT40D(c))
6687 		htflags |= IWN_RXON_HT_HT40MINUS;
6688 
6689 	return (htflags);
6690 }
6691 
6692 static int
6693 iwn_check_bss_filter(struct iwn_softc *sc)
6694 {
6695 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6696 }
6697 
6698 static int
6699 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6700 {
6701 	struct iwn4965_rxon_assoc cmd;
6702 	struct iwn_rxon *rxon = sc->rxon;
6703 
6704 	cmd.flags = rxon->flags;
6705 	cmd.filter = rxon->filter;
6706 	cmd.ofdm_mask = rxon->ofdm_mask;
6707 	cmd.cck_mask = rxon->cck_mask;
6708 	cmd.ht_single_mask = rxon->ht_single_mask;
6709 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6710 	cmd.rxchain = rxon->rxchain;
6711 	cmd.reserved = 0;
6712 
6713 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6714 }
6715 
6716 static int
6717 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6718 {
6719 	struct iwn5000_rxon_assoc cmd;
6720 	struct iwn_rxon *rxon = sc->rxon;
6721 
6722 	cmd.flags = rxon->flags;
6723 	cmd.filter = rxon->filter;
6724 	cmd.ofdm_mask = rxon->ofdm_mask;
6725 	cmd.cck_mask = rxon->cck_mask;
6726 	cmd.reserved1 = 0;
6727 	cmd.ht_single_mask = rxon->ht_single_mask;
6728 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6729 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6730 	cmd.reserved2 = 0;
6731 	cmd.rxchain = rxon->rxchain;
6732 	cmd.acquisition = rxon->acquisition;
6733 	cmd.reserved3 = 0;
6734 
6735 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6736 }
6737 
6738 static int
6739 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6740 {
6741 	struct iwn_ops *ops = &sc->ops;
6742 	int error;
6743 
6744 	IWN_LOCK_ASSERT(sc);
6745 
6746 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6747 		error = ops->rxon_assoc(sc, async);
6748 		if (error != 0) {
6749 			device_printf(sc->sc_dev,
6750 			    "%s: RXON_ASSOC command failed, error %d\n",
6751 			    __func__, error);
6752 			return (error);
6753 		}
6754 	} else {
6755 		if (sc->sc_is_scanning)
6756 			device_printf(sc->sc_dev,
6757 			    "%s: is_scanning set, before RXON\n",
6758 			    __func__);
6759 
6760 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6761 		if (error != 0) {
6762 			device_printf(sc->sc_dev,
6763 			    "%s: RXON command failed, error %d\n",
6764 			    __func__, error);
6765 			return (error);
6766 		}
6767 
6768 		/*
6769 		 * Reconfiguring RXON clears the firmware nodes table so
6770 		 * we must add the broadcast node again.
6771 		 */
6772 		if (iwn_check_bss_filter(sc) == 0 &&
6773 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6774 			device_printf(sc->sc_dev,
6775 			    "%s: could not add broadcast node, error %d\n",
6776 			    __func__, error);
6777 			return (error);
6778 		}
6779 	}
6780 
6781 	/* Configuration has changed, set TX power accordingly. */
6782 	if ((error = ops->set_txpower(sc, async)) != 0) {
6783 		device_printf(sc->sc_dev,
6784 		    "%s: could not set TX power, error %d\n",
6785 		    __func__, error);
6786 		return (error);
6787 	}
6788 
6789 	return (0);
6790 }
6791 
6792 static int
6793 iwn_config(struct iwn_softc *sc)
6794 {
6795 	struct ieee80211com *ic = &sc->sc_ic;
6796 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6797 	const uint8_t *macaddr;
6798 	uint32_t txmask;
6799 	uint16_t rxchain;
6800 	int error;
6801 
6802 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6803 
6804 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6805 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6806 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6807 		    " exclusive each together. Review NIC config file. Conf"
6808 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6809 		    sc->base_params->calib_need,
6810 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6811 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6812 		return (EINVAL);
6813 	}
6814 
6815 	/* Compute temperature calib if needed. Will be send by send calib */
6816 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6817 		error = iwn5000_temp_offset_calib(sc);
6818 		if (error != 0) {
6819 			device_printf(sc->sc_dev,
6820 			    "%s: could not set temperature offset\n", __func__);
6821 			return (error);
6822 		}
6823 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6824 		error = iwn5000_temp_offset_calibv2(sc);
6825 		if (error != 0) {
6826 			device_printf(sc->sc_dev,
6827 			    "%s: could not compute temperature offset v2\n",
6828 			    __func__);
6829 			return (error);
6830 		}
6831 	}
6832 
6833 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6834 		/* Configure runtime DC calibration. */
6835 		error = iwn5000_runtime_calib(sc);
6836 		if (error != 0) {
6837 			device_printf(sc->sc_dev,
6838 			    "%s: could not configure runtime calibration\n",
6839 			    __func__);
6840 			return error;
6841 		}
6842 	}
6843 
6844 	/* Configure valid TX chains for >=5000 Series. */
6845 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6846 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6847 		txmask = htole32(sc->txchainmask);
6848 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6849 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6850 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6851 		    sizeof txmask, 0);
6852 		if (error != 0) {
6853 			device_printf(sc->sc_dev,
6854 			    "%s: could not configure valid TX chains, "
6855 			    "error %d\n", __func__, error);
6856 			return error;
6857 		}
6858 	}
6859 
6860 	/* Configure bluetooth coexistence. */
6861 	error = 0;
6862 
6863 	/* Configure bluetooth coexistence if needed. */
6864 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6865 		error = iwn_send_advanced_btcoex(sc);
6866 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6867 		error = iwn_send_btcoex(sc);
6868 
6869 	if (error != 0) {
6870 		device_printf(sc->sc_dev,
6871 		    "%s: could not configure bluetooth coexistence, error %d\n",
6872 		    __func__, error);
6873 		return error;
6874 	}
6875 
6876 	/* Set mode, channel, RX filter and enable RX. */
6877 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6878 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6879 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6880 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6881 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6882 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6883 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6884 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6885 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6886 
6887 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6888 	switch (ic->ic_opmode) {
6889 	case IEEE80211_M_STA:
6890 		sc->rxon->mode = IWN_MODE_STA;
6891 		break;
6892 	case IEEE80211_M_MONITOR:
6893 		sc->rxon->mode = IWN_MODE_MONITOR;
6894 		break;
6895 	default:
6896 		/* Should not get there. */
6897 		break;
6898 	}
6899 	iwn_set_promisc(sc);
6900 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6901 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6902 	sc->rxon->ht_single_mask = 0xff;
6903 	sc->rxon->ht_dual_mask = 0xff;
6904 	sc->rxon->ht_triple_mask = 0xff;
6905 	/*
6906 	 * In active association mode, ensure that
6907 	 * all the receive chains are enabled.
6908 	 *
6909 	 * Since we're not yet doing SMPS, don't allow the
6910 	 * number of idle RX chains to be less than the active
6911 	 * number.
6912 	 */
6913 	rxchain =
6914 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6915 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6916 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6917 	sc->rxon->rxchain = htole16(rxchain);
6918 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6919 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6920 	    __func__,
6921 	    sc->rxchainmask,
6922 	    sc->nrxchains);
6923 
6924 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6925 
6926 	DPRINTF(sc, IWN_DEBUG_RESET,
6927 	    "%s: setting configuration; flags=0x%08x\n",
6928 	    __func__, le32toh(sc->rxon->flags));
6929 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6930 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6931 		    __func__);
6932 		return error;
6933 	}
6934 
6935 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6936 		device_printf(sc->sc_dev,
6937 		    "%s: could not set critical temperature\n", __func__);
6938 		return error;
6939 	}
6940 
6941 	/* Set power saving level to CAM during initialization. */
6942 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6943 		device_printf(sc->sc_dev,
6944 		    "%s: could not set power saving level\n", __func__);
6945 		return error;
6946 	}
6947 
6948 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6949 
6950 	return 0;
6951 }
6952 
6953 static uint16_t
6954 iwn_get_active_dwell_time(struct iwn_softc *sc,
6955     struct ieee80211_channel *c, uint8_t n_probes)
6956 {
6957 	/* No channel? Default to 2GHz settings */
6958 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6959 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6960 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6961 	}
6962 
6963 	/* 5GHz dwell time */
6964 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6965 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6966 }
6967 
6968 /*
6969  * Limit the total dwell time to 85% of the beacon interval.
6970  *
6971  * Returns the dwell time in milliseconds.
6972  */
6973 static uint16_t
6974 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6975 {
6976 	struct ieee80211com *ic = &sc->sc_ic;
6977 	struct ieee80211vap *vap = NULL;
6978 	int bintval = 0;
6979 
6980 	/* bintval is in TU (1.024mS) */
6981 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6982 		vap = TAILQ_FIRST(&ic->ic_vaps);
6983 		bintval = vap->iv_bss->ni_intval;
6984 	}
6985 
6986 	/*
6987 	 * If it's non-zero, we should calculate the minimum of
6988 	 * it and the DWELL_BASE.
6989 	 *
6990 	 * XXX Yes, the math should take into account that bintval
6991 	 * is 1.024mS, not 1mS..
6992 	 */
6993 	if (bintval > 0) {
6994 		DPRINTF(sc, IWN_DEBUG_SCAN,
6995 		    "%s: bintval=%d\n",
6996 		    __func__,
6997 		    bintval);
6998 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6999 	}
7000 
7001 	/* No association context? Default */
7002 	return (IWN_PASSIVE_DWELL_BASE);
7003 }
7004 
7005 static uint16_t
7006 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
7007 {
7008 	uint16_t passive;
7009 
7010 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
7011 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
7012 	} else {
7013 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
7014 	}
7015 
7016 	/* Clamp to the beacon interval if we're associated */
7017 	return (iwn_limit_dwell(sc, passive));
7018 }
7019 
7020 static int
7021 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7022     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7023 {
7024 	struct ieee80211com *ic = &sc->sc_ic;
7025 	struct ieee80211_node *ni = vap->iv_bss;
7026 	struct iwn_scan_hdr *hdr;
7027 	struct iwn_cmd_data *tx;
7028 	struct iwn_scan_essid *essid;
7029 	struct iwn_scan_chan *chan;
7030 	struct ieee80211_frame *wh;
7031 	struct ieee80211_rateset *rs;
7032 	uint8_t *buf, *frm;
7033 	uint16_t rxchain;
7034 	uint8_t txant;
7035 	int buflen, error;
7036 	int is_active;
7037 	uint16_t dwell_active, dwell_passive;
7038 	uint32_t extra, scan_service_time;
7039 
7040 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7041 
7042 	/*
7043 	 * We are absolutely not allowed to send a scan command when another
7044 	 * scan command is pending.
7045 	 */
7046 	if (sc->sc_is_scanning) {
7047 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7048 		    __func__);
7049 		return (EAGAIN);
7050 	}
7051 
7052 	/* Assign the scan channel */
7053 	c = ic->ic_curchan;
7054 
7055 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7056 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7057 	if (buf == NULL) {
7058 		device_printf(sc->sc_dev,
7059 		    "%s: could not allocate buffer for scan command\n",
7060 		    __func__);
7061 		return ENOMEM;
7062 	}
7063 	hdr = (struct iwn_scan_hdr *)buf;
7064 	/*
7065 	 * Move to the next channel if no frames are received within 10ms
7066 	 * after sending the probe request.
7067 	 */
7068 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7069 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7070 	/*
7071 	 * Max needs to be greater than active and passive and quiet!
7072 	 * It's also in microseconds!
7073 	 */
7074 	hdr->max_svc = htole32(250 * 1024);
7075 
7076 	/*
7077 	 * Reset scan: interval=100
7078 	 * Normal scan: interval=becaon interval
7079 	 * suspend_time: 100 (TU)
7080 	 *
7081 	 */
7082 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7083 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7084 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7085 	hdr->pause_svc = htole32(scan_service_time);
7086 
7087 	/* Select antennas for scanning. */
7088 	rxchain =
7089 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7090 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7091 	    IWN_RXCHAIN_DRIVER_FORCE;
7092 	if (IEEE80211_IS_CHAN_A(c) &&
7093 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7094 		/* Ant A must be avoided in 5GHz because of an HW bug. */
7095 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7096 	} else	/* Use all available RX antennas. */
7097 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7098 	hdr->rxchain = htole16(rxchain);
7099 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7100 
7101 	tx = (struct iwn_cmd_data *)(hdr + 1);
7102 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7103 	tx->id = sc->broadcast_id;
7104 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7105 
7106 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7107 		/* Send probe requests at 6Mbps. */
7108 		tx->rate = htole32(0xd);
7109 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7110 	} else {
7111 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7112 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7113 		    sc->rxon->associd && sc->rxon->chan > 14)
7114 			tx->rate = htole32(0xd);
7115 		else {
7116 			/* Send probe requests at 1Mbps. */
7117 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7118 		}
7119 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7120 	}
7121 	/* Use the first valid TX antenna. */
7122 	txant = IWN_LSB(sc->txchainmask);
7123 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7124 
7125 	/*
7126 	 * Only do active scanning if we're announcing a probe request
7127 	 * for a given SSID (or more, if we ever add it to the driver.)
7128 	 */
7129 	is_active = 0;
7130 
7131 	/*
7132 	 * If we're scanning for a specific SSID, add it to the command.
7133 	 *
7134 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7135 	 */
7136 	essid = (struct iwn_scan_essid *)(tx + 1);
7137 	if (ss != NULL) {
7138 		if (ss->ss_ssid[0].len != 0) {
7139 			essid[0].id = IEEE80211_ELEMID_SSID;
7140 			essid[0].len = ss->ss_ssid[0].len;
7141 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7142 		}
7143 
7144 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7145 		    __func__,
7146 		    ss->ss_ssid[0].len,
7147 		    ss->ss_ssid[0].len,
7148 		    ss->ss_ssid[0].ssid);
7149 
7150 		if (ss->ss_nssid > 0)
7151 			is_active = 1;
7152 	}
7153 
7154 	/*
7155 	 * Build a probe request frame.  Most of the following code is a
7156 	 * copy & paste of what is done in net80211.
7157 	 */
7158 	wh = (struct ieee80211_frame *)(essid + 20);
7159 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7160 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7161 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7162 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7163 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7164 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7165 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7166 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7167 
7168 	frm = (uint8_t *)(wh + 1);
7169 	frm = ieee80211_add_ssid(frm, NULL, 0);
7170 	frm = ieee80211_add_rates(frm, rs);
7171 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7172 		frm = ieee80211_add_xrates(frm, rs);
7173 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7174 		frm = ieee80211_add_htcap(frm, ni);
7175 
7176 	/* Set length of probe request. */
7177 	tx->len = htole16(frm - (uint8_t *)wh);
7178 
7179 	/*
7180 	 * If active scanning is requested but a certain channel is
7181 	 * marked passive, we can do active scanning if we detect
7182 	 * transmissions.
7183 	 *
7184 	 * There is an issue with some firmware versions that triggers
7185 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7186 	 * on a radar channel even though this means that we should NOT
7187 	 * send probes.
7188 	 *
7189 	 * The "good CRC threshold" is the number of frames that we
7190 	 * need to receive during our dwell time on a channel before
7191 	 * sending out probes -- setting this to a huge value will
7192 	 * mean we never reach it, but at the same time work around
7193 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7194 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7195 	 *
7196 	 * This was fixed in later versions along with some other
7197 	 * scan changes, and the threshold behaves as a flag in those
7198 	 * versions.
7199 	 */
7200 
7201 	/*
7202 	 * If we're doing active scanning, set the crc_threshold
7203 	 * to a suitable value.  This is different to active veruss
7204 	 * passive scanning depending upon the channel flags; the
7205 	 * firmware will obey that particular check for us.
7206 	 */
7207 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7208 		hdr->crc_threshold = is_active ?
7209 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7210 	else
7211 		hdr->crc_threshold = is_active ?
7212 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7213 
7214 	chan = (struct iwn_scan_chan *)frm;
7215 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7216 	chan->flags = 0;
7217 	if (ss->ss_nssid > 0)
7218 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7219 	chan->dsp_gain = 0x6e;
7220 
7221 	/*
7222 	 * Set the passive/active flag depending upon the channel mode.
7223 	 * XXX TODO: take the is_active flag into account as well?
7224 	 */
7225 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7226 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7227 	else
7228 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7229 
7230 	/*
7231 	 * Calculate the active/passive dwell times.
7232 	 */
7233 
7234 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7235 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7236 
7237 	/* Make sure they're valid */
7238 	if (dwell_passive <= dwell_active)
7239 		dwell_passive = dwell_active + 1;
7240 
7241 	chan->active = htole16(dwell_active);
7242 	chan->passive = htole16(dwell_passive);
7243 
7244 	if (IEEE80211_IS_CHAN_5GHZ(c))
7245 		chan->rf_gain = 0x3b;
7246 	else
7247 		chan->rf_gain = 0x28;
7248 
7249 	DPRINTF(sc, IWN_DEBUG_STATE,
7250 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7251 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7252 	    "isactive=%d numssid=%d\n", __func__,
7253 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7254 	    dwell_active, dwell_passive, scan_service_time,
7255 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7256 
7257 	hdr->nchan++;
7258 	chan++;
7259 	buflen = (uint8_t *)chan - buf;
7260 	hdr->len = htole16(buflen);
7261 
7262 	if (sc->sc_is_scanning) {
7263 		device_printf(sc->sc_dev,
7264 		    "%s: called with is_scanning set!\n",
7265 		    __func__);
7266 	}
7267 	sc->sc_is_scanning = 1;
7268 
7269 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7270 	    hdr->nchan);
7271 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7272 	free(buf, M_DEVBUF);
7273 	if (error == 0)
7274 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7275 
7276 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7277 
7278 	return error;
7279 }
7280 
7281 static int
7282 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7283 {
7284 	struct ieee80211com *ic = &sc->sc_ic;
7285 	struct ieee80211_node *ni = vap->iv_bss;
7286 	int error;
7287 
7288 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7289 
7290 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7291 	/* Update adapter configuration. */
7292 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7293 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7294 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7295 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7296 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7297 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7298 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7299 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7300 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7301 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7302 		sc->rxon->cck_mask  = 0;
7303 		sc->rxon->ofdm_mask = 0x15;
7304 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7305 		sc->rxon->cck_mask  = 0x03;
7306 		sc->rxon->ofdm_mask = 0;
7307 	} else {
7308 		/* Assume 802.11b/g. */
7309 		sc->rxon->cck_mask  = 0x03;
7310 		sc->rxon->ofdm_mask = 0x15;
7311 	}
7312 
7313 	/* try HT */
7314 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7315 
7316 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7317 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7318 	    sc->rxon->ofdm_mask);
7319 
7320 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7321 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7322 		    __func__);
7323 		return (error);
7324 	}
7325 
7326 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7327 
7328 	return (0);
7329 }
7330 
7331 static int
7332 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7333 {
7334 	struct iwn_ops *ops = &sc->ops;
7335 	struct ieee80211com *ic = &sc->sc_ic;
7336 	struct ieee80211_node *ni = vap->iv_bss;
7337 	struct iwn_node_info node;
7338 	int error;
7339 
7340 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7341 
7342 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7343 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7344 		/* Link LED blinks while monitoring. */
7345 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7346 		return 0;
7347 	}
7348 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7349 		device_printf(sc->sc_dev,
7350 		    "%s: could not set timing, error %d\n", __func__, error);
7351 		return error;
7352 	}
7353 
7354 	/* Update adapter configuration. */
7355 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7356 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7357 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7358 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7359 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7360 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7361 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7362 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7363 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7364 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7365 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7366 		sc->rxon->cck_mask  = 0;
7367 		sc->rxon->ofdm_mask = 0x15;
7368 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7369 		sc->rxon->cck_mask  = 0x03;
7370 		sc->rxon->ofdm_mask = 0;
7371 	} else {
7372 		/* Assume 802.11b/g. */
7373 		sc->rxon->cck_mask  = 0x0f;
7374 		sc->rxon->ofdm_mask = 0x15;
7375 	}
7376 	/* try HT */
7377 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7378 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7379 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7380 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7381 
7382 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7383 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7384 		    __func__);
7385 		return error;
7386 	}
7387 
7388 	/* Fake a join to initialize the TX rate. */
7389 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7390 	iwn_newassoc(ni, 1);
7391 
7392 	/* Add BSS node. */
7393 	memset(&node, 0, sizeof node);
7394 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7395 	node.id = IWN_ID_BSS;
7396 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7397 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7398 		case IEEE80211_HTCAP_SMPS_ENA:
7399 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7400 			break;
7401 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7402 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7403 			break;
7404 		}
7405 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7406 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7407 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7408 			node.htflags |= htole32(IWN_NODE_HT40);
7409 	}
7410 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7411 	error = ops->add_node(sc, &node, 1);
7412 	if (error != 0) {
7413 		device_printf(sc->sc_dev,
7414 		    "%s: could not add BSS node, error %d\n", __func__, error);
7415 		return error;
7416 	}
7417 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7418 	    __func__, node.id);
7419 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7420 		device_printf(sc->sc_dev,
7421 		    "%s: could not setup link quality for node %d, error %d\n",
7422 		    __func__, node.id, error);
7423 		return error;
7424 	}
7425 
7426 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7427 		device_printf(sc->sc_dev,
7428 		    "%s: could not set sensitivity, error %d\n", __func__,
7429 		    error);
7430 		return error;
7431 	}
7432 	/* Start periodic calibration timer. */
7433 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7434 	sc->calib_cnt = 0;
7435 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7436 	    sc);
7437 
7438 	/* Link LED always on while associated. */
7439 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7440 
7441 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7442 
7443 	return 0;
7444 }
7445 
7446 /*
7447  * This function is called by upper layer when an ADDBA request is received
7448  * from another STA and before the ADDBA response is sent.
7449  */
7450 static int
7451 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7452     int baparamset, int batimeout, int baseqctl)
7453 {
7454 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7455 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7456 	struct iwn_ops *ops = &sc->ops;
7457 	struct iwn_node *wn = (void *)ni;
7458 	struct iwn_node_info node;
7459 	uint16_t ssn;
7460 	uint8_t tid;
7461 	int error;
7462 
7463 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7464 
7465 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7466 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7467 
7468 	if (wn->id == IWN_ID_UNDEFINED)
7469 		return (ENOENT);
7470 
7471 	memset(&node, 0, sizeof node);
7472 	node.id = wn->id;
7473 	node.control = IWN_NODE_UPDATE;
7474 	node.flags = IWN_FLAG_SET_ADDBA;
7475 	node.addba_tid = tid;
7476 	node.addba_ssn = htole16(ssn);
7477 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7478 	    wn->id, tid, ssn);
7479 	error = ops->add_node(sc, &node, 1);
7480 	if (error != 0)
7481 		return error;
7482 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7483 #undef MS
7484 }
7485 
7486 /*
7487  * This function is called by upper layer on teardown of an HT-immediate
7488  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7489  */
7490 static void
7491 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7492 {
7493 	struct ieee80211com *ic = ni->ni_ic;
7494 	struct iwn_softc *sc = ic->ic_softc;
7495 	struct iwn_ops *ops = &sc->ops;
7496 	struct iwn_node *wn = (void *)ni;
7497 	struct iwn_node_info node;
7498 	uint8_t tid;
7499 
7500 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7501 
7502 	if (wn->id == IWN_ID_UNDEFINED)
7503 		goto end;
7504 
7505 	/* XXX: tid as an argument */
7506 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7507 		if (&ni->ni_rx_ampdu[tid] == rap)
7508 			break;
7509 	}
7510 
7511 	memset(&node, 0, sizeof node);
7512 	node.id = wn->id;
7513 	node.control = IWN_NODE_UPDATE;
7514 	node.flags = IWN_FLAG_SET_DELBA;
7515 	node.delba_tid = tid;
7516 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7517 	(void)ops->add_node(sc, &node, 1);
7518 end:
7519 	sc->sc_ampdu_rx_stop(ni, rap);
7520 }
7521 
7522 static int
7523 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7524     int dialogtoken, int baparamset, int batimeout)
7525 {
7526 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7527 	int qid;
7528 
7529 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7530 
7531 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7532 		if (sc->qid2tap[qid] == NULL)
7533 			break;
7534 	}
7535 	if (qid == sc->ntxqs) {
7536 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7537 		    __func__);
7538 		return 0;
7539 	}
7540 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7541 	if (tap->txa_private == NULL) {
7542 		device_printf(sc->sc_dev,
7543 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7544 		return 0;
7545 	}
7546 	sc->qid2tap[qid] = tap;
7547 	*(int *)tap->txa_private = qid;
7548 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7549 	    batimeout);
7550 }
7551 
7552 static int
7553 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7554     int code, int baparamset, int batimeout)
7555 {
7556 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7557 	int qid = *(int *)tap->txa_private;
7558 	uint8_t tid = tap->txa_tid;
7559 	int ret;
7560 
7561 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7562 
7563 	if (code == IEEE80211_STATUS_SUCCESS) {
7564 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7565 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7566 		if (ret != 1)
7567 			return ret;
7568 	} else {
7569 		sc->qid2tap[qid] = NULL;
7570 		free(tap->txa_private, M_DEVBUF);
7571 		tap->txa_private = NULL;
7572 	}
7573 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7574 }
7575 
7576 /*
7577  * This function is called by upper layer when an ADDBA response is received
7578  * from another STA.
7579  */
7580 static int
7581 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7582     uint8_t tid)
7583 {
7584 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7585 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7586 	struct iwn_ops *ops = &sc->ops;
7587 	struct iwn_node *wn = (void *)ni;
7588 	struct iwn_node_info node;
7589 	int error, qid;
7590 
7591 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7592 
7593 	if (wn->id == IWN_ID_UNDEFINED)
7594 		return (0);
7595 
7596 	/* Enable TX for the specified RA/TID. */
7597 	wn->disable_tid &= ~(1 << tid);
7598 	memset(&node, 0, sizeof node);
7599 	node.id = wn->id;
7600 	node.control = IWN_NODE_UPDATE;
7601 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7602 	node.disable_tid = htole16(wn->disable_tid);
7603 	error = ops->add_node(sc, &node, 1);
7604 	if (error != 0)
7605 		return 0;
7606 
7607 	if ((error = iwn_nic_lock(sc)) != 0)
7608 		return 0;
7609 	qid = *(int *)tap->txa_private;
7610 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7611 	    __func__, wn->id, tid, tap->txa_start, qid);
7612 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7613 	iwn_nic_unlock(sc);
7614 
7615 	iwn_set_link_quality(sc, ni);
7616 	return 1;
7617 }
7618 
7619 static void
7620 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7621 {
7622 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7623 	struct iwn_ops *ops = &sc->ops;
7624 	uint8_t tid = tap->txa_tid;
7625 	int qid;
7626 
7627 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7628 
7629 	sc->sc_addba_stop(ni, tap);
7630 
7631 	if (tap->txa_private == NULL)
7632 		return;
7633 
7634 	qid = *(int *)tap->txa_private;
7635 	if (sc->txq[qid].queued != 0)
7636 		return;
7637 	if (iwn_nic_lock(sc) != 0)
7638 		return;
7639 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7640 	iwn_nic_unlock(sc);
7641 	sc->qid2tap[qid] = NULL;
7642 	free(tap->txa_private, M_DEVBUF);
7643 	tap->txa_private = NULL;
7644 }
7645 
7646 static void
7647 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7648     int qid, uint8_t tid, uint16_t ssn)
7649 {
7650 	struct iwn_node *wn = (void *)ni;
7651 
7652 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7653 
7654 	/* Stop TX scheduler while we're changing its configuration. */
7655 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7656 	    IWN4965_TXQ_STATUS_CHGACT);
7657 
7658 	/* Assign RA/TID translation to the queue. */
7659 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7660 	    wn->id << 4 | tid);
7661 
7662 	/* Enable chain-building mode for the queue. */
7663 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7664 
7665 	/* Set starting sequence number from the ADDBA request. */
7666 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7667 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7668 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7669 
7670 	/* Set scheduler window size. */
7671 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7672 	    IWN_SCHED_WINSZ);
7673 	/* Set scheduler frame limit. */
7674 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7675 	    IWN_SCHED_LIMIT << 16);
7676 
7677 	/* Enable interrupts for the queue. */
7678 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7679 
7680 	/* Mark the queue as active. */
7681 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7682 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7683 	    iwn_tid2fifo[tid] << 1);
7684 }
7685 
7686 static void
7687 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7688 {
7689 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7690 
7691 	/* Stop TX scheduler while we're changing its configuration. */
7692 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7693 	    IWN4965_TXQ_STATUS_CHGACT);
7694 
7695 	/* Set starting sequence number from the ADDBA request. */
7696 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7697 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7698 
7699 	/* Disable interrupts for the queue. */
7700 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7701 
7702 	/* Mark the queue as inactive. */
7703 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7704 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7705 }
7706 
7707 static void
7708 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7709     int qid, uint8_t tid, uint16_t ssn)
7710 {
7711 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7712 
7713 	struct iwn_node *wn = (void *)ni;
7714 
7715 	/* Stop TX scheduler while we're changing its configuration. */
7716 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7717 	    IWN5000_TXQ_STATUS_CHGACT);
7718 
7719 	/* Assign RA/TID translation to the queue. */
7720 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7721 	    wn->id << 4 | tid);
7722 
7723 	/* Enable chain-building mode for the queue. */
7724 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7725 
7726 	/* Enable aggregation for the queue. */
7727 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7728 
7729 	/* Set starting sequence number from the ADDBA request. */
7730 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7731 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7732 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7733 
7734 	/* Set scheduler window size and frame limit. */
7735 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7736 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7737 
7738 	/* Enable interrupts for the queue. */
7739 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7740 
7741 	/* Mark the queue as active. */
7742 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7743 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7744 }
7745 
7746 static void
7747 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7748 {
7749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7750 
7751 	/* Stop TX scheduler while we're changing its configuration. */
7752 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7753 	    IWN5000_TXQ_STATUS_CHGACT);
7754 
7755 	/* Disable aggregation for the queue. */
7756 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7757 
7758 	/* Set starting sequence number from the ADDBA request. */
7759 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7760 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7761 
7762 	/* Disable interrupts for the queue. */
7763 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7764 
7765 	/* Mark the queue as inactive. */
7766 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7767 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7768 }
7769 
7770 /*
7771  * Query calibration tables from the initialization firmware.  We do this
7772  * only once at first boot.  Called from a process context.
7773  */
7774 static int
7775 iwn5000_query_calibration(struct iwn_softc *sc)
7776 {
7777 	struct iwn5000_calib_config cmd;
7778 	int error;
7779 
7780 	memset(&cmd, 0, sizeof cmd);
7781 	cmd.ucode.once.enable = htole32(0xffffffff);
7782 	cmd.ucode.once.start  = htole32(0xffffffff);
7783 	cmd.ucode.once.send   = htole32(0xffffffff);
7784 	cmd.ucode.flags       = htole32(0xffffffff);
7785 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7786 	    __func__);
7787 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7788 	if (error != 0)
7789 		return error;
7790 
7791 	/* Wait at most two seconds for calibration to complete. */
7792 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7793 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7794 	return error;
7795 }
7796 
7797 /*
7798  * Send calibration results to the runtime firmware.  These results were
7799  * obtained on first boot from the initialization firmware.
7800  */
7801 static int
7802 iwn5000_send_calibration(struct iwn_softc *sc)
7803 {
7804 	int idx, error;
7805 
7806 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7807 		if (!(sc->base_params->calib_need & (1<<idx))) {
7808 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7809 			    "No need of calib %d\n",
7810 			    idx);
7811 			continue; /* no need for this calib */
7812 		}
7813 		if (sc->calibcmd[idx].buf == NULL) {
7814 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7815 			    "Need calib idx : %d but no available data\n",
7816 			    idx);
7817 			continue;
7818 		}
7819 
7820 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7821 		    "send calibration result idx=%d len=%d\n", idx,
7822 		    sc->calibcmd[idx].len);
7823 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7824 		    sc->calibcmd[idx].len, 0);
7825 		if (error != 0) {
7826 			device_printf(sc->sc_dev,
7827 			    "%s: could not send calibration result, error %d\n",
7828 			    __func__, error);
7829 			return error;
7830 		}
7831 	}
7832 	return 0;
7833 }
7834 
7835 static int
7836 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7837 {
7838 	struct iwn5000_wimax_coex wimax;
7839 
7840 #if 0
7841 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7842 		/* Enable WiMAX coexistence for combo adapters. */
7843 		wimax.flags =
7844 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7845 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7846 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7847 		    IWN_WIMAX_COEX_ENABLE;
7848 		memcpy(wimax.events, iwn6050_wimax_events,
7849 		    sizeof iwn6050_wimax_events);
7850 	} else
7851 #endif
7852 	{
7853 		/* Disable WiMAX coexistence. */
7854 		wimax.flags = 0;
7855 		memset(wimax.events, 0, sizeof wimax.events);
7856 	}
7857 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7858 	    __func__);
7859 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7860 }
7861 
7862 static int
7863 iwn5000_crystal_calib(struct iwn_softc *sc)
7864 {
7865 	struct iwn5000_phy_calib_crystal cmd;
7866 
7867 	memset(&cmd, 0, sizeof cmd);
7868 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7869 	cmd.ngroups = 1;
7870 	cmd.isvalid = 1;
7871 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7872 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7873 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7874 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7875 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7876 }
7877 
7878 static int
7879 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7880 {
7881 	struct iwn5000_phy_calib_temp_offset cmd;
7882 
7883 	memset(&cmd, 0, sizeof cmd);
7884 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7885 	cmd.ngroups = 1;
7886 	cmd.isvalid = 1;
7887 	if (sc->eeprom_temp != 0)
7888 		cmd.offset = htole16(sc->eeprom_temp);
7889 	else
7890 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7891 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7892 	    le16toh(cmd.offset));
7893 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7894 }
7895 
7896 static int
7897 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7898 {
7899 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7900 
7901 	memset(&cmd, 0, sizeof cmd);
7902 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7903 	cmd.ngroups = 1;
7904 	cmd.isvalid = 1;
7905 	if (sc->eeprom_temp != 0) {
7906 		cmd.offset_low = htole16(sc->eeprom_temp);
7907 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7908 	} else {
7909 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7910 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7911 	}
7912 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7913 
7914 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7915 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7916 	    le16toh(cmd.offset_low),
7917 	    le16toh(cmd.offset_high),
7918 	    le16toh(cmd.burnt_voltage_ref));
7919 
7920 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7921 }
7922 
7923 /*
7924  * This function is called after the runtime firmware notifies us of its
7925  * readiness (called in a process context).
7926  */
7927 static int
7928 iwn4965_post_alive(struct iwn_softc *sc)
7929 {
7930 	int error, qid;
7931 
7932 	if ((error = iwn_nic_lock(sc)) != 0)
7933 		return error;
7934 
7935 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7936 
7937 	/* Clear TX scheduler state in SRAM. */
7938 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7939 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7940 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7941 
7942 	/* Set physical address of TX scheduler rings (1KB aligned). */
7943 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7944 
7945 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7946 
7947 	/* Disable chain mode for all our 16 queues. */
7948 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7949 
7950 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7951 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7952 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7953 
7954 		/* Set scheduler window size. */
7955 		iwn_mem_write(sc, sc->sched_base +
7956 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7957 		/* Set scheduler frame limit. */
7958 		iwn_mem_write(sc, sc->sched_base +
7959 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7960 		    IWN_SCHED_LIMIT << 16);
7961 	}
7962 
7963 	/* Enable interrupts for all our 16 queues. */
7964 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7965 	/* Identify TX FIFO rings (0-7). */
7966 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7967 
7968 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7969 	for (qid = 0; qid < 7; qid++) {
7970 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7971 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7972 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7973 	}
7974 	iwn_nic_unlock(sc);
7975 	return 0;
7976 }
7977 
7978 /*
7979  * This function is called after the initialization or runtime firmware
7980  * notifies us of its readiness (called in a process context).
7981  */
7982 static int
7983 iwn5000_post_alive(struct iwn_softc *sc)
7984 {
7985 	int error, qid;
7986 
7987 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7988 
7989 	/* Switch to using ICT interrupt mode. */
7990 	iwn5000_ict_reset(sc);
7991 
7992 	if ((error = iwn_nic_lock(sc)) != 0){
7993 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7994 		return error;
7995 	}
7996 
7997 	/* Clear TX scheduler state in SRAM. */
7998 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7999 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
8000 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
8001 
8002 	/* Set physical address of TX scheduler rings (1KB aligned). */
8003 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
8004 
8005 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
8006 
8007 	/* Enable chain mode for all queues, except command queue. */
8008 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8009 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8010 	else
8011 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8012 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8013 
8014 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8015 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8016 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8017 
8018 		iwn_mem_write(sc, sc->sched_base +
8019 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8020 		/* Set scheduler window size and frame limit. */
8021 		iwn_mem_write(sc, sc->sched_base +
8022 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8023 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8024 	}
8025 
8026 	/* Enable interrupts for all our 20 queues. */
8027 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8028 	/* Identify TX FIFO rings (0-7). */
8029 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8030 
8031 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8032 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8033 		/* Mark TX rings as active. */
8034 		for (qid = 0; qid < 11; qid++) {
8035 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8036 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8037 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8038 		}
8039 	} else {
8040 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8041 		for (qid = 0; qid < 7; qid++) {
8042 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8043 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8044 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8045 		}
8046 	}
8047 	iwn_nic_unlock(sc);
8048 
8049 	/* Configure WiMAX coexistence for combo adapters. */
8050 	error = iwn5000_send_wimax_coex(sc);
8051 	if (error != 0) {
8052 		device_printf(sc->sc_dev,
8053 		    "%s: could not configure WiMAX coexistence, error %d\n",
8054 		    __func__, error);
8055 		return error;
8056 	}
8057 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8058 		/* Perform crystal calibration. */
8059 		error = iwn5000_crystal_calib(sc);
8060 		if (error != 0) {
8061 			device_printf(sc->sc_dev,
8062 			    "%s: crystal calibration failed, error %d\n",
8063 			    __func__, error);
8064 			return error;
8065 		}
8066 	}
8067 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8068 		/* Query calibration from the initialization firmware. */
8069 		if ((error = iwn5000_query_calibration(sc)) != 0) {
8070 			device_printf(sc->sc_dev,
8071 			    "%s: could not query calibration, error %d\n",
8072 			    __func__, error);
8073 			return error;
8074 		}
8075 		/*
8076 		 * We have the calibration results now, reboot with the
8077 		 * runtime firmware (call ourselves recursively!)
8078 		 */
8079 		iwn_hw_stop(sc);
8080 		error = iwn_hw_init(sc);
8081 	} else {
8082 		/* Send calibration results to runtime firmware. */
8083 		error = iwn5000_send_calibration(sc);
8084 	}
8085 
8086 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8087 
8088 	return error;
8089 }
8090 
8091 /*
8092  * The firmware boot code is small and is intended to be copied directly into
8093  * the NIC internal memory (no DMA transfer).
8094  */
8095 static int
8096 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8097 {
8098 	int error, ntries;
8099 
8100 	size /= sizeof (uint32_t);
8101 
8102 	if ((error = iwn_nic_lock(sc)) != 0)
8103 		return error;
8104 
8105 	/* Copy microcode image into NIC memory. */
8106 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8107 	    (const uint32_t *)ucode, size);
8108 
8109 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8110 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8111 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8112 
8113 	/* Start boot load now. */
8114 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8115 
8116 	/* Wait for transfer to complete. */
8117 	for (ntries = 0; ntries < 1000; ntries++) {
8118 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8119 		    IWN_BSM_WR_CTRL_START))
8120 			break;
8121 		DELAY(10);
8122 	}
8123 	if (ntries == 1000) {
8124 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8125 		    __func__);
8126 		iwn_nic_unlock(sc);
8127 		return ETIMEDOUT;
8128 	}
8129 
8130 	/* Enable boot after power up. */
8131 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8132 
8133 	iwn_nic_unlock(sc);
8134 	return 0;
8135 }
8136 
8137 static int
8138 iwn4965_load_firmware(struct iwn_softc *sc)
8139 {
8140 	struct iwn_fw_info *fw = &sc->fw;
8141 	struct iwn_dma_info *dma = &sc->fw_dma;
8142 	int error;
8143 
8144 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8145 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8146 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8147 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8148 	    fw->init.text, fw->init.textsz);
8149 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8150 
8151 	/* Tell adapter where to find initialization sections. */
8152 	if ((error = iwn_nic_lock(sc)) != 0)
8153 		return error;
8154 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8155 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8156 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8157 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8158 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8159 	iwn_nic_unlock(sc);
8160 
8161 	/* Load firmware boot code. */
8162 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8163 	if (error != 0) {
8164 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8165 		    __func__);
8166 		return error;
8167 	}
8168 	/* Now press "execute". */
8169 	IWN_WRITE(sc, IWN_RESET, 0);
8170 
8171 	/* Wait at most one second for first alive notification. */
8172 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8173 		device_printf(sc->sc_dev,
8174 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8175 		    __func__, error);
8176 		return error;
8177 	}
8178 
8179 	/* Retrieve current temperature for initial TX power calibration. */
8180 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8181 	sc->temp = iwn4965_get_temperature(sc);
8182 
8183 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8184 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8185 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8186 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8187 	    fw->main.text, fw->main.textsz);
8188 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8189 
8190 	/* Tell adapter where to find runtime sections. */
8191 	if ((error = iwn_nic_lock(sc)) != 0)
8192 		return error;
8193 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8194 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8195 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8196 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8197 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8198 	    IWN_FW_UPDATED | fw->main.textsz);
8199 	iwn_nic_unlock(sc);
8200 
8201 	return 0;
8202 }
8203 
8204 static int
8205 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8206     const uint8_t *section, int size)
8207 {
8208 	struct iwn_dma_info *dma = &sc->fw_dma;
8209 	int error;
8210 
8211 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8212 
8213 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8214 	memcpy(dma->vaddr, section, size);
8215 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8216 
8217 	if ((error = iwn_nic_lock(sc)) != 0)
8218 		return error;
8219 
8220 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8221 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8222 
8223 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8224 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8225 	    IWN_LOADDR(dma->paddr));
8226 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8227 	    IWN_HIADDR(dma->paddr) << 28 | size);
8228 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8229 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8230 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8231 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8232 
8233 	/* Kick Flow Handler to start DMA transfer. */
8234 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8235 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8236 
8237 	iwn_nic_unlock(sc);
8238 
8239 	/* Wait at most five seconds for FH DMA transfer to complete. */
8240 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8241 }
8242 
8243 static int
8244 iwn5000_load_firmware(struct iwn_softc *sc)
8245 {
8246 	struct iwn_fw_part *fw;
8247 	int error;
8248 
8249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8250 
8251 	/* Load the initialization firmware on first boot only. */
8252 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8253 	    &sc->fw.main : &sc->fw.init;
8254 
8255 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8256 	    fw->text, fw->textsz);
8257 	if (error != 0) {
8258 		device_printf(sc->sc_dev,
8259 		    "%s: could not load firmware %s section, error %d\n",
8260 		    __func__, ".text", error);
8261 		return error;
8262 	}
8263 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8264 	    fw->data, fw->datasz);
8265 	if (error != 0) {
8266 		device_printf(sc->sc_dev,
8267 		    "%s: could not load firmware %s section, error %d\n",
8268 		    __func__, ".data", error);
8269 		return error;
8270 	}
8271 
8272 	/* Now press "execute". */
8273 	IWN_WRITE(sc, IWN_RESET, 0);
8274 	return 0;
8275 }
8276 
8277 /*
8278  * Extract text and data sections from a legacy firmware image.
8279  */
8280 static int
8281 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8282 {
8283 	const uint32_t *ptr;
8284 	size_t hdrlen = 24;
8285 	uint32_t rev;
8286 
8287 	ptr = (const uint32_t *)fw->data;
8288 	rev = le32toh(*ptr++);
8289 
8290 	sc->ucode_rev = rev;
8291 
8292 	/* Check firmware API version. */
8293 	if (IWN_FW_API(rev) <= 1) {
8294 		device_printf(sc->sc_dev,
8295 		    "%s: bad firmware, need API version >=2\n", __func__);
8296 		return EINVAL;
8297 	}
8298 	if (IWN_FW_API(rev) >= 3) {
8299 		/* Skip build number (version 2 header). */
8300 		hdrlen += 4;
8301 		ptr++;
8302 	}
8303 	if (fw->size < hdrlen) {
8304 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8305 		    __func__, fw->size);
8306 		return EINVAL;
8307 	}
8308 	fw->main.textsz = le32toh(*ptr++);
8309 	fw->main.datasz = le32toh(*ptr++);
8310 	fw->init.textsz = le32toh(*ptr++);
8311 	fw->init.datasz = le32toh(*ptr++);
8312 	fw->boot.textsz = le32toh(*ptr++);
8313 
8314 	/* Check that all firmware sections fit. */
8315 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8316 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8317 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8318 		    __func__, fw->size);
8319 		return EINVAL;
8320 	}
8321 
8322 	/* Get pointers to firmware sections. */
8323 	fw->main.text = (const uint8_t *)ptr;
8324 	fw->main.data = fw->main.text + fw->main.textsz;
8325 	fw->init.text = fw->main.data + fw->main.datasz;
8326 	fw->init.data = fw->init.text + fw->init.textsz;
8327 	fw->boot.text = fw->init.data + fw->init.datasz;
8328 	return 0;
8329 }
8330 
8331 /*
8332  * Extract text and data sections from a TLV firmware image.
8333  */
8334 static int
8335 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8336     uint16_t alt)
8337 {
8338 	const struct iwn_fw_tlv_hdr *hdr;
8339 	const struct iwn_fw_tlv *tlv;
8340 	const uint8_t *ptr, *end;
8341 	uint64_t altmask;
8342 	uint32_t len, tmp;
8343 
8344 	if (fw->size < sizeof (*hdr)) {
8345 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8346 		    __func__, fw->size);
8347 		return EINVAL;
8348 	}
8349 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8350 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8351 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8352 		    __func__, le32toh(hdr->signature));
8353 		return EINVAL;
8354 	}
8355 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8356 	    le32toh(hdr->build));
8357 	sc->ucode_rev = le32toh(hdr->rev);
8358 
8359 	/*
8360 	 * Select the closest supported alternative that is less than
8361 	 * or equal to the specified one.
8362 	 */
8363 	altmask = le64toh(hdr->altmask);
8364 	while (alt > 0 && !(altmask & (1ULL << alt)))
8365 		alt--;	/* Downgrade. */
8366 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8367 
8368 	ptr = (const uint8_t *)(hdr + 1);
8369 	end = (const uint8_t *)(fw->data + fw->size);
8370 
8371 	/* Parse type-length-value fields. */
8372 	while (ptr + sizeof (*tlv) <= end) {
8373 		tlv = (const struct iwn_fw_tlv *)ptr;
8374 		len = le32toh(tlv->len);
8375 
8376 		ptr += sizeof (*tlv);
8377 		if (ptr + len > end) {
8378 			device_printf(sc->sc_dev,
8379 			    "%s: firmware too short: %zu bytes\n", __func__,
8380 			    fw->size);
8381 			return EINVAL;
8382 		}
8383 		/* Skip other alternatives. */
8384 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8385 			goto next;
8386 
8387 		switch (le16toh(tlv->type)) {
8388 		case IWN_FW_TLV_MAIN_TEXT:
8389 			fw->main.text = ptr;
8390 			fw->main.textsz = len;
8391 			break;
8392 		case IWN_FW_TLV_MAIN_DATA:
8393 			fw->main.data = ptr;
8394 			fw->main.datasz = len;
8395 			break;
8396 		case IWN_FW_TLV_INIT_TEXT:
8397 			fw->init.text = ptr;
8398 			fw->init.textsz = len;
8399 			break;
8400 		case IWN_FW_TLV_INIT_DATA:
8401 			fw->init.data = ptr;
8402 			fw->init.datasz = len;
8403 			break;
8404 		case IWN_FW_TLV_BOOT_TEXT:
8405 			fw->boot.text = ptr;
8406 			fw->boot.textsz = len;
8407 			break;
8408 		case IWN_FW_TLV_ENH_SENS:
8409 			if (!len)
8410 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8411 			break;
8412 		case IWN_FW_TLV_PHY_CALIB:
8413 			tmp = le32toh(*ptr);
8414 			if (tmp < 253) {
8415 				sc->reset_noise_gain = tmp;
8416 				sc->noise_gain = tmp + 1;
8417 			}
8418 			break;
8419 		case IWN_FW_TLV_PAN:
8420 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8421 			DPRINTF(sc, IWN_DEBUG_RESET,
8422 			    "PAN Support found: %d\n", 1);
8423 			break;
8424 		case IWN_FW_TLV_FLAGS:
8425 			if (len < sizeof(uint32_t))
8426 				break;
8427 			if (len % sizeof(uint32_t))
8428 				break;
8429 			sc->tlv_feature_flags = le32toh(*ptr);
8430 			DPRINTF(sc, IWN_DEBUG_RESET,
8431 			    "%s: feature: 0x%08x\n",
8432 			    __func__,
8433 			    sc->tlv_feature_flags);
8434 			break;
8435 		case IWN_FW_TLV_PBREQ_MAXLEN:
8436 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8437 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8438 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8439 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8440 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8441 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8442 		case IWN_FW_TLV_WOWLAN_INST:
8443 		case IWN_FW_TLV_WOWLAN_DATA:
8444 			DPRINTF(sc, IWN_DEBUG_RESET,
8445 			    "TLV type %d recognized but not handled\n",
8446 			    le16toh(tlv->type));
8447 			break;
8448 		default:
8449 			DPRINTF(sc, IWN_DEBUG_RESET,
8450 			    "TLV type %d not handled\n", le16toh(tlv->type));
8451 			break;
8452 		}
8453  next:		/* TLV fields are 32-bit aligned. */
8454 		ptr += (len + 3) & ~3;
8455 	}
8456 	return 0;
8457 }
8458 
8459 static int
8460 iwn_read_firmware(struct iwn_softc *sc)
8461 {
8462 	struct iwn_fw_info *fw = &sc->fw;
8463 	int error;
8464 
8465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8466 
8467 	IWN_UNLOCK(sc);
8468 
8469 	memset(fw, 0, sizeof (*fw));
8470 
8471 	/* Read firmware image from filesystem. */
8472 	sc->fw_fp = firmware_get(sc->fwname);
8473 	if (sc->fw_fp == NULL) {
8474 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8475 		    __func__, sc->fwname);
8476 		IWN_LOCK(sc);
8477 		return EINVAL;
8478 	}
8479 	IWN_LOCK(sc);
8480 
8481 	fw->size = sc->fw_fp->datasize;
8482 	fw->data = (const uint8_t *)sc->fw_fp->data;
8483 	if (fw->size < sizeof (uint32_t)) {
8484 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8485 		    __func__, fw->size);
8486 		error = EINVAL;
8487 		goto fail;
8488 	}
8489 
8490 	/* Retrieve text and data sections. */
8491 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8492 		error = iwn_read_firmware_leg(sc, fw);
8493 	else
8494 		error = iwn_read_firmware_tlv(sc, fw, 1);
8495 	if (error != 0) {
8496 		device_printf(sc->sc_dev,
8497 		    "%s: could not read firmware sections, error %d\n",
8498 		    __func__, error);
8499 		goto fail;
8500 	}
8501 
8502 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8503 
8504 	/* Make sure text and data sections fit in hardware memory. */
8505 	if (fw->main.textsz > sc->fw_text_maxsz ||
8506 	    fw->main.datasz > sc->fw_data_maxsz ||
8507 	    fw->init.textsz > sc->fw_text_maxsz ||
8508 	    fw->init.datasz > sc->fw_data_maxsz ||
8509 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8510 	    (fw->boot.textsz & 3) != 0) {
8511 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8512 		    __func__);
8513 		error = EINVAL;
8514 		goto fail;
8515 	}
8516 
8517 	/* We can proceed with loading the firmware. */
8518 	return 0;
8519 
8520 fail:	iwn_unload_firmware(sc);
8521 	return error;
8522 }
8523 
8524 static void
8525 iwn_unload_firmware(struct iwn_softc *sc)
8526 {
8527 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8528 	sc->fw_fp = NULL;
8529 }
8530 
8531 static int
8532 iwn_clock_wait(struct iwn_softc *sc)
8533 {
8534 	int ntries;
8535 
8536 	/* Set "initialization complete" bit. */
8537 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8538 
8539 	/* Wait for clock stabilization. */
8540 	for (ntries = 0; ntries < 2500; ntries++) {
8541 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8542 			return 0;
8543 		DELAY(10);
8544 	}
8545 	device_printf(sc->sc_dev,
8546 	    "%s: timeout waiting for clock stabilization\n", __func__);
8547 	return ETIMEDOUT;
8548 }
8549 
8550 static int
8551 iwn_apm_init(struct iwn_softc *sc)
8552 {
8553 	uint32_t reg;
8554 	int error;
8555 
8556 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8557 
8558 	/* Disable L0s exit timer (NMI bug workaround). */
8559 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8560 	/* Don't wait for ICH L0s (ICH bug workaround). */
8561 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8562 
8563 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8564 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8565 
8566 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8567 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8568 
8569 	/* Retrieve PCIe Active State Power Management (ASPM). */
8570 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8571 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8572 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8573 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8574 	else
8575 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8576 
8577 	if (sc->base_params->pll_cfg_val)
8578 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8579 
8580 	/* Wait for clock stabilization before accessing prph. */
8581 	if ((error = iwn_clock_wait(sc)) != 0)
8582 		return error;
8583 
8584 	if ((error = iwn_nic_lock(sc)) != 0)
8585 		return error;
8586 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8587 		/* Enable DMA and BSM (Bootstrap State Machine). */
8588 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8589 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8590 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8591 	} else {
8592 		/* Enable DMA. */
8593 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8594 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8595 	}
8596 	DELAY(20);
8597 	/* Disable L1-Active. */
8598 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8599 	iwn_nic_unlock(sc);
8600 
8601 	return 0;
8602 }
8603 
8604 static void
8605 iwn_apm_stop_master(struct iwn_softc *sc)
8606 {
8607 	int ntries;
8608 
8609 	/* Stop busmaster DMA activity. */
8610 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8611 	for (ntries = 0; ntries < 100; ntries++) {
8612 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8613 			return;
8614 		DELAY(10);
8615 	}
8616 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8617 }
8618 
8619 static void
8620 iwn_apm_stop(struct iwn_softc *sc)
8621 {
8622 	iwn_apm_stop_master(sc);
8623 
8624 	/* Reset the entire device. */
8625 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8626 	DELAY(10);
8627 	/* Clear "initialization complete" bit. */
8628 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8629 }
8630 
8631 static int
8632 iwn4965_nic_config(struct iwn_softc *sc)
8633 {
8634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8635 
8636 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8637 		/*
8638 		 * I don't believe this to be correct but this is what the
8639 		 * vendor driver is doing. Probably the bits should not be
8640 		 * shifted in IWN_RFCFG_*.
8641 		 */
8642 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8643 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8644 		    IWN_RFCFG_STEP(sc->rfcfg) |
8645 		    IWN_RFCFG_DASH(sc->rfcfg));
8646 	}
8647 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8648 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8649 	return 0;
8650 }
8651 
8652 static int
8653 iwn5000_nic_config(struct iwn_softc *sc)
8654 {
8655 	uint32_t tmp;
8656 	int error;
8657 
8658 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8659 
8660 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8661 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8662 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8663 		    IWN_RFCFG_STEP(sc->rfcfg) |
8664 		    IWN_RFCFG_DASH(sc->rfcfg));
8665 	}
8666 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8667 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8668 
8669 	if ((error = iwn_nic_lock(sc)) != 0)
8670 		return error;
8671 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8672 
8673 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8674 		/*
8675 		 * Select first Switching Voltage Regulator (1.32V) to
8676 		 * solve a stability issue related to noisy DC2DC line
8677 		 * in the silicon of 1000 Series.
8678 		 */
8679 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8680 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8681 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8682 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8683 	}
8684 	iwn_nic_unlock(sc);
8685 
8686 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8687 		/* Use internal power amplifier only. */
8688 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8689 	}
8690 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8691 		/* Indicate that ROM calibration version is >=6. */
8692 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8693 	}
8694 	if (sc->base_params->additional_gp_drv_bit)
8695 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8696 		    sc->base_params->additional_gp_drv_bit);
8697 	return 0;
8698 }
8699 
8700 /*
8701  * Take NIC ownership over Intel Active Management Technology (AMT).
8702  */
8703 static int
8704 iwn_hw_prepare(struct iwn_softc *sc)
8705 {
8706 	int ntries;
8707 
8708 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8709 
8710 	/* Check if hardware is ready. */
8711 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8712 	for (ntries = 0; ntries < 5; ntries++) {
8713 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8714 		    IWN_HW_IF_CONFIG_NIC_READY)
8715 			return 0;
8716 		DELAY(10);
8717 	}
8718 
8719 	/* Hardware not ready, force into ready state. */
8720 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8721 	for (ntries = 0; ntries < 15000; ntries++) {
8722 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8723 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8724 			break;
8725 		DELAY(10);
8726 	}
8727 	if (ntries == 15000)
8728 		return ETIMEDOUT;
8729 
8730 	/* Hardware should be ready now. */
8731 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8732 	for (ntries = 0; ntries < 5; ntries++) {
8733 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8734 		    IWN_HW_IF_CONFIG_NIC_READY)
8735 			return 0;
8736 		DELAY(10);
8737 	}
8738 	return ETIMEDOUT;
8739 }
8740 
8741 static int
8742 iwn_hw_init(struct iwn_softc *sc)
8743 {
8744 	struct iwn_ops *ops = &sc->ops;
8745 	int error, chnl, qid;
8746 
8747 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8748 
8749 	/* Clear pending interrupts. */
8750 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8751 
8752 	if ((error = iwn_apm_init(sc)) != 0) {
8753 		device_printf(sc->sc_dev,
8754 		    "%s: could not power ON adapter, error %d\n", __func__,
8755 		    error);
8756 		return error;
8757 	}
8758 
8759 	/* Select VMAIN power source. */
8760 	if ((error = iwn_nic_lock(sc)) != 0)
8761 		return error;
8762 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8763 	iwn_nic_unlock(sc);
8764 
8765 	/* Perform adapter-specific initialization. */
8766 	if ((error = ops->nic_config(sc)) != 0)
8767 		return error;
8768 
8769 	/* Initialize RX ring. */
8770 	if ((error = iwn_nic_lock(sc)) != 0)
8771 		return error;
8772 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8773 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8774 	/* Set physical address of RX ring (256-byte aligned). */
8775 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8776 	/* Set physical address of RX status (16-byte aligned). */
8777 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8778 	/* Enable RX. */
8779 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8780 	    IWN_FH_RX_CONFIG_ENA           |
8781 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8782 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8783 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8784 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8785 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8786 	iwn_nic_unlock(sc);
8787 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8788 
8789 	if ((error = iwn_nic_lock(sc)) != 0)
8790 		return error;
8791 
8792 	/* Initialize TX scheduler. */
8793 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8794 
8795 	/* Set physical address of "keep warm" page (16-byte aligned). */
8796 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8797 
8798 	/* Initialize TX rings. */
8799 	for (qid = 0; qid < sc->ntxqs; qid++) {
8800 		struct iwn_tx_ring *txq = &sc->txq[qid];
8801 
8802 		/* Set physical address of TX ring (256-byte aligned). */
8803 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8804 		    txq->desc_dma.paddr >> 8);
8805 	}
8806 	iwn_nic_unlock(sc);
8807 
8808 	/* Enable DMA channels. */
8809 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8810 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8811 		    IWN_FH_TX_CONFIG_DMA_ENA |
8812 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8813 	}
8814 
8815 	/* Clear "radio off" and "commands blocked" bits. */
8816 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8817 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8818 
8819 	/* Clear pending interrupts. */
8820 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8821 	/* Enable interrupt coalescing. */
8822 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8823 	/* Enable interrupts. */
8824 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8825 
8826 	/* _Really_ make sure "radio off" bit is cleared! */
8827 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8828 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8829 
8830 	/* Enable shadow registers. */
8831 	if (sc->base_params->shadow_reg_enable)
8832 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8833 
8834 	if ((error = ops->load_firmware(sc)) != 0) {
8835 		device_printf(sc->sc_dev,
8836 		    "%s: could not load firmware, error %d\n", __func__,
8837 		    error);
8838 		return error;
8839 	}
8840 	/* Wait at most one second for firmware alive notification. */
8841 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8842 		device_printf(sc->sc_dev,
8843 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8844 		    __func__, error);
8845 		return error;
8846 	}
8847 	/* Do post-firmware initialization. */
8848 
8849 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8850 
8851 	return ops->post_alive(sc);
8852 }
8853 
8854 static void
8855 iwn_hw_stop(struct iwn_softc *sc)
8856 {
8857 	int chnl, qid, ntries;
8858 
8859 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8860 
8861 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8862 
8863 	/* Disable interrupts. */
8864 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8865 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8866 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8867 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8868 
8869 	/* Make sure we no longer hold the NIC lock. */
8870 	iwn_nic_unlock(sc);
8871 
8872 	/* Stop TX scheduler. */
8873 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8874 
8875 	/* Stop all DMA channels. */
8876 	if (iwn_nic_lock(sc) == 0) {
8877 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8878 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8879 			for (ntries = 0; ntries < 200; ntries++) {
8880 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8881 				    IWN_FH_TX_STATUS_IDLE(chnl))
8882 					break;
8883 				DELAY(10);
8884 			}
8885 		}
8886 		iwn_nic_unlock(sc);
8887 	}
8888 
8889 	/* Stop RX ring. */
8890 	iwn_reset_rx_ring(sc, &sc->rxq);
8891 
8892 	/* Reset all TX rings. */
8893 	for (qid = 0; qid < sc->ntxqs; qid++)
8894 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8895 
8896 	if (iwn_nic_lock(sc) == 0) {
8897 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8898 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8899 		iwn_nic_unlock(sc);
8900 	}
8901 	DELAY(5);
8902 	/* Power OFF adapter. */
8903 	iwn_apm_stop(sc);
8904 }
8905 
8906 static void
8907 iwn_panicked(void *arg0, int pending)
8908 {
8909 	struct iwn_softc *sc = arg0;
8910 	struct ieee80211com *ic = &sc->sc_ic;
8911 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8912 #if 0
8913 	int error;
8914 #endif
8915 
8916 	if (vap == NULL) {
8917 		printf("%s: null vap\n", __func__);
8918 		return;
8919 	}
8920 
8921 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8922 	    "restarting\n", __func__, vap->iv_state);
8923 
8924 	/*
8925 	 * This is not enough work. We need to also reinitialise
8926 	 * the correct transmit state for aggregation enabled queues,
8927 	 * which has a very specific requirement of
8928 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8929 	 * we definitely don't!) then the firmware will just panic again.
8930 	 */
8931 #if 1
8932 	ieee80211_restart_all(ic);
8933 #else
8934 	IWN_LOCK(sc);
8935 
8936 	iwn_stop_locked(sc);
8937 	if ((error = iwn_init_locked(sc)) != 0) {
8938 		device_printf(sc->sc_dev,
8939 		    "%s: could not init hardware\n", __func__);
8940 		goto unlock;
8941 	}
8942 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8943 	    (error = iwn_auth(sc, vap)) != 0) {
8944 		device_printf(sc->sc_dev,
8945 		    "%s: could not move to auth state\n", __func__);
8946 	}
8947 	if (vap->iv_state >= IEEE80211_S_RUN &&
8948 	    (error = iwn_run(sc, vap)) != 0) {
8949 		device_printf(sc->sc_dev,
8950 		    "%s: could not move to run state\n", __func__);
8951 	}
8952 
8953 unlock:
8954 	IWN_UNLOCK(sc);
8955 #endif
8956 }
8957 
8958 static int
8959 iwn_init_locked(struct iwn_softc *sc)
8960 {
8961 	int error;
8962 
8963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8964 
8965 	IWN_LOCK_ASSERT(sc);
8966 
8967 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8968 		goto end;
8969 
8970 	sc->sc_flags |= IWN_FLAG_RUNNING;
8971 
8972 	if ((error = iwn_hw_prepare(sc)) != 0) {
8973 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8974 		    __func__, error);
8975 		goto fail;
8976 	}
8977 
8978 	/* Initialize interrupt mask to default value. */
8979 	sc->int_mask = IWN_INT_MASK_DEF;
8980 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8981 
8982 	/* Check that the radio is not disabled by hardware switch. */
8983 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8984 		iwn_stop_locked(sc);
8985 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8986 
8987 		return (1);
8988 	}
8989 
8990 	/* Read firmware images from the filesystem. */
8991 	if ((error = iwn_read_firmware(sc)) != 0) {
8992 		device_printf(sc->sc_dev,
8993 		    "%s: could not read firmware, error %d\n", __func__,
8994 		    error);
8995 		goto fail;
8996 	}
8997 
8998 	/* Initialize hardware and upload firmware. */
8999 	error = iwn_hw_init(sc);
9000 	iwn_unload_firmware(sc);
9001 	if (error != 0) {
9002 		device_printf(sc->sc_dev,
9003 		    "%s: could not initialize hardware, error %d\n", __func__,
9004 		    error);
9005 		goto fail;
9006 	}
9007 
9008 	/* Configure adapter now that it is ready. */
9009 	if ((error = iwn_config(sc)) != 0) {
9010 		device_printf(sc->sc_dev,
9011 		    "%s: could not configure device, error %d\n", __func__,
9012 		    error);
9013 		goto fail;
9014 	}
9015 
9016 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9017 
9018 end:
9019 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9020 
9021 	return (0);
9022 
9023 fail:
9024 	iwn_stop_locked(sc);
9025 
9026 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9027 
9028 	return (-1);
9029 }
9030 
9031 static int
9032 iwn_init(struct iwn_softc *sc)
9033 {
9034 	int error;
9035 
9036 	IWN_LOCK(sc);
9037 	error = iwn_init_locked(sc);
9038 	IWN_UNLOCK(sc);
9039 
9040 	return (error);
9041 }
9042 
9043 static void
9044 iwn_stop_locked(struct iwn_softc *sc)
9045 {
9046 
9047 	IWN_LOCK_ASSERT(sc);
9048 
9049 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9050 		return;
9051 
9052 	sc->sc_is_scanning = 0;
9053 	sc->sc_tx_timer = 0;
9054 	callout_stop(&sc->watchdog_to);
9055 	callout_stop(&sc->scan_timeout);
9056 	callout_stop(&sc->calib_to);
9057 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9058 
9059 	/* Power OFF hardware. */
9060 	iwn_hw_stop(sc);
9061 }
9062 
9063 static void
9064 iwn_stop(struct iwn_softc *sc)
9065 {
9066 	IWN_LOCK(sc);
9067 	iwn_stop_locked(sc);
9068 	IWN_UNLOCK(sc);
9069 }
9070 
9071 /*
9072  * Callback from net80211 to start a scan.
9073  */
9074 static void
9075 iwn_scan_start(struct ieee80211com *ic)
9076 {
9077 	struct iwn_softc *sc = ic->ic_softc;
9078 
9079 	IWN_LOCK(sc);
9080 	/* make the link LED blink while we're scanning */
9081 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9082 	IWN_UNLOCK(sc);
9083 }
9084 
9085 /*
9086  * Callback from net80211 to terminate a scan.
9087  */
9088 static void
9089 iwn_scan_end(struct ieee80211com *ic)
9090 {
9091 	struct iwn_softc *sc = ic->ic_softc;
9092 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9093 
9094 	IWN_LOCK(sc);
9095 	if (vap->iv_state == IEEE80211_S_RUN) {
9096 		/* Set link LED to ON status if we are associated */
9097 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9098 	}
9099 	IWN_UNLOCK(sc);
9100 }
9101 
9102 /*
9103  * Callback from net80211 to force a channel change.
9104  */
9105 static void
9106 iwn_set_channel(struct ieee80211com *ic)
9107 {
9108 	struct iwn_softc *sc = ic->ic_softc;
9109 	int error;
9110 
9111 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9112 
9113 	IWN_LOCK(sc);
9114 	/*
9115 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9116 	 * are already taken care of by their respective firmware commands.
9117 	 */
9118 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9119 		error = iwn_config(sc);
9120 		if (error != 0)
9121 		device_printf(sc->sc_dev,
9122 		    "%s: error %d settting channel\n", __func__, error);
9123 	}
9124 	IWN_UNLOCK(sc);
9125 }
9126 
9127 /*
9128  * Callback from net80211 to start scanning of the current channel.
9129  */
9130 static void
9131 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9132 {
9133 	struct ieee80211vap *vap = ss->ss_vap;
9134 	struct ieee80211com *ic = vap->iv_ic;
9135 	struct iwn_softc *sc = ic->ic_softc;
9136 	int error;
9137 
9138 	IWN_LOCK(sc);
9139 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9140 	IWN_UNLOCK(sc);
9141 	if (error != 0)
9142 		ieee80211_cancel_scan(vap);
9143 }
9144 
9145 /*
9146  * Callback from net80211 to handle the minimum dwell time being met.
9147  * The intent is to terminate the scan but we just let the firmware
9148  * notify us when it's finished as we have no safe way to abort it.
9149  */
9150 static void
9151 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9152 {
9153 	/* NB: don't try to abort scan; wait for firmware to finish */
9154 }
9155 #ifdef	IWN_DEBUG
9156 #define	IWN_DESC(x) case x:	return #x
9157 
9158 /*
9159  * Translate CSR code to string
9160  */
9161 static char *iwn_get_csr_string(int csr)
9162 {
9163 	switch (csr) {
9164 		IWN_DESC(IWN_HW_IF_CONFIG);
9165 		IWN_DESC(IWN_INT_COALESCING);
9166 		IWN_DESC(IWN_INT);
9167 		IWN_DESC(IWN_INT_MASK);
9168 		IWN_DESC(IWN_FH_INT);
9169 		IWN_DESC(IWN_GPIO_IN);
9170 		IWN_DESC(IWN_RESET);
9171 		IWN_DESC(IWN_GP_CNTRL);
9172 		IWN_DESC(IWN_HW_REV);
9173 		IWN_DESC(IWN_EEPROM);
9174 		IWN_DESC(IWN_EEPROM_GP);
9175 		IWN_DESC(IWN_OTP_GP);
9176 		IWN_DESC(IWN_GIO);
9177 		IWN_DESC(IWN_GP_UCODE);
9178 		IWN_DESC(IWN_GP_DRIVER);
9179 		IWN_DESC(IWN_UCODE_GP1);
9180 		IWN_DESC(IWN_UCODE_GP2);
9181 		IWN_DESC(IWN_LED);
9182 		IWN_DESC(IWN_DRAM_INT_TBL);
9183 		IWN_DESC(IWN_GIO_CHICKEN);
9184 		IWN_DESC(IWN_ANA_PLL);
9185 		IWN_DESC(IWN_HW_REV_WA);
9186 		IWN_DESC(IWN_DBG_HPET_MEM);
9187 	default:
9188 		return "UNKNOWN CSR";
9189 	}
9190 }
9191 
9192 /*
9193  * This function print firmware register
9194  */
9195 static void
9196 iwn_debug_register(struct iwn_softc *sc)
9197 {
9198 	int i;
9199 	static const uint32_t csr_tbl[] = {
9200 		IWN_HW_IF_CONFIG,
9201 		IWN_INT_COALESCING,
9202 		IWN_INT,
9203 		IWN_INT_MASK,
9204 		IWN_FH_INT,
9205 		IWN_GPIO_IN,
9206 		IWN_RESET,
9207 		IWN_GP_CNTRL,
9208 		IWN_HW_REV,
9209 		IWN_EEPROM,
9210 		IWN_EEPROM_GP,
9211 		IWN_OTP_GP,
9212 		IWN_GIO,
9213 		IWN_GP_UCODE,
9214 		IWN_GP_DRIVER,
9215 		IWN_UCODE_GP1,
9216 		IWN_UCODE_GP2,
9217 		IWN_LED,
9218 		IWN_DRAM_INT_TBL,
9219 		IWN_GIO_CHICKEN,
9220 		IWN_ANA_PLL,
9221 		IWN_HW_REV_WA,
9222 		IWN_DBG_HPET_MEM,
9223 	};
9224 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9225 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9226 	    "\n");
9227 	for (i = 0; i <  nitems(csr_tbl); i++){
9228 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9229 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9230 		if ((i+1) % 3 == 0)
9231 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9232 	}
9233 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9234 }
9235 #endif
9236 
9237 
9238