xref: /freebsd/sys/dev/iwn/if_iwn.c (revision f0574f5cf69e168cc4ea71ebbe5fdec9ec9a3dfe)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
204 		    struct iwn_rx_data *);
205 static void	iwn5000_rx_calib_results(struct iwn_softc *,
206 		    struct iwn_rx_desc *, struct iwn_rx_data *);
207 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
214 		    uint8_t);
215 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
216 		    void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_task(void *, int);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static void	iwn_xmit_task(void *arg0, int pending);
236 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
237 		    const struct ieee80211_bpf_params *);
238 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
239 static void	iwn_scan_timeout(void *);
240 static void	iwn_watchdog(void *);
241 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
242 static void	iwn_parent(struct ieee80211com *);
243 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
244 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
245 		    int);
246 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn_set_link_quality(struct iwn_softc *,
249 		    struct ieee80211_node *);
250 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
251 static int	iwn_updateedca(struct ieee80211com *);
252 static void	iwn_set_promisc(struct iwn_softc *);
253 static void	iwn_update_promisc(struct ieee80211com *);
254 static void	iwn_update_mcast(struct ieee80211com *);
255 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
256 static int	iwn_set_critical_temp(struct iwn_softc *);
257 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
258 static void	iwn4965_power_calibration(struct iwn_softc *, int);
259 static int	iwn4965_set_txpower(struct iwn_softc *, int);
260 static int	iwn5000_set_txpower(struct iwn_softc *, int);
261 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
263 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
264 static int	iwn4965_get_temperature(struct iwn_softc *);
265 static int	iwn5000_get_temperature(struct iwn_softc *);
266 static int	iwn_init_sensitivity(struct iwn_softc *);
267 static void	iwn_collect_noise(struct iwn_softc *,
268 		    const struct iwn_rx_general_stats *);
269 static int	iwn4965_init_gains(struct iwn_softc *);
270 static int	iwn5000_init_gains(struct iwn_softc *);
271 static int	iwn4965_set_gains(struct iwn_softc *);
272 static int	iwn5000_set_gains(struct iwn_softc *);
273 static void	iwn_tune_sensitivity(struct iwn_softc *,
274 		    const struct iwn_rx_stats *);
275 static void	iwn_save_stats_counters(struct iwn_softc *,
276 		    const struct iwn_stats *);
277 static int	iwn_send_sensitivity(struct iwn_softc *);
278 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
279 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
280 static int	iwn_send_btcoex(struct iwn_softc *);
281 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
282 static int	iwn5000_runtime_calib(struct iwn_softc *);
283 static int	iwn_check_bss_filter(struct iwn_softc *);
284 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
285 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
286 static int	iwn_send_rxon(struct iwn_softc *, int, int);
287 static int	iwn_config(struct iwn_softc *);
288 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
289 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
290 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
291 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
292 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
293 		    struct ieee80211_rx_ampdu *, int, int, int);
294 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
295 		    struct ieee80211_rx_ampdu *);
296 static int	iwn_addba_request(struct ieee80211_node *,
297 		    struct ieee80211_tx_ampdu *, int, int, int);
298 static int	iwn_addba_response(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *, int, int, int);
300 static int	iwn_ampdu_tx_start(struct ieee80211com *,
301 		    struct ieee80211_node *, uint8_t);
302 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
303 		    struct ieee80211_tx_ampdu *);
304 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
305 		    struct ieee80211_node *, int, uint8_t, uint16_t);
306 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
307 		    uint8_t, uint16_t);
308 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
309 		    struct ieee80211_node *, int, uint8_t, uint16_t);
310 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
311 		    uint8_t, uint16_t);
312 static int	iwn5000_query_calibration(struct iwn_softc *);
313 static int	iwn5000_send_calibration(struct iwn_softc *);
314 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
315 static int	iwn5000_crystal_calib(struct iwn_softc *);
316 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
317 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
318 static int	iwn4965_post_alive(struct iwn_softc *);
319 static int	iwn5000_post_alive(struct iwn_softc *);
320 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
321 		    int);
322 static int	iwn4965_load_firmware(struct iwn_softc *);
323 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
324 		    const uint8_t *, int);
325 static int	iwn5000_load_firmware(struct iwn_softc *);
326 static int	iwn_read_firmware_leg(struct iwn_softc *,
327 		    struct iwn_fw_info *);
328 static int	iwn_read_firmware_tlv(struct iwn_softc *,
329 		    struct iwn_fw_info *, uint16_t);
330 static int	iwn_read_firmware(struct iwn_softc *);
331 static void	iwn_unload_firmware(struct iwn_softc *);
332 static int	iwn_clock_wait(struct iwn_softc *);
333 static int	iwn_apm_init(struct iwn_softc *);
334 static void	iwn_apm_stop_master(struct iwn_softc *);
335 static void	iwn_apm_stop(struct iwn_softc *);
336 static int	iwn4965_nic_config(struct iwn_softc *);
337 static int	iwn5000_nic_config(struct iwn_softc *);
338 static int	iwn_hw_prepare(struct iwn_softc *);
339 static int	iwn_hw_init(struct iwn_softc *);
340 static void	iwn_hw_stop(struct iwn_softc *);
341 static void	iwn_panicked(void *, int);
342 static int	iwn_init_locked(struct iwn_softc *);
343 static int	iwn_init(struct iwn_softc *);
344 static void	iwn_stop_locked(struct iwn_softc *);
345 static void	iwn_stop(struct iwn_softc *);
346 static void	iwn_scan_start(struct ieee80211com *);
347 static void	iwn_scan_end(struct ieee80211com *);
348 static void	iwn_set_channel(struct ieee80211com *);
349 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
350 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
351 #ifdef	IWN_DEBUG
352 static char	*iwn_get_csr_string(int);
353 static void	iwn_debug_register(struct iwn_softc *);
354 #endif
355 
356 static device_method_t iwn_methods[] = {
357 	/* Device interface */
358 	DEVMETHOD(device_probe,		iwn_probe),
359 	DEVMETHOD(device_attach,	iwn_attach),
360 	DEVMETHOD(device_detach,	iwn_detach),
361 	DEVMETHOD(device_shutdown,	iwn_shutdown),
362 	DEVMETHOD(device_suspend,	iwn_suspend),
363 	DEVMETHOD(device_resume,	iwn_resume),
364 
365 	DEVMETHOD_END
366 };
367 
368 static driver_t iwn_driver = {
369 	"iwn",
370 	iwn_methods,
371 	sizeof(struct iwn_softc)
372 };
373 static devclass_t iwn_devclass;
374 
375 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
376 
377 MODULE_VERSION(iwn, 1);
378 
379 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
380 MODULE_DEPEND(iwn, pci, 1, 1, 1);
381 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
382 
383 static d_ioctl_t iwn_cdev_ioctl;
384 static d_open_t iwn_cdev_open;
385 static d_close_t iwn_cdev_close;
386 
387 static struct cdevsw iwn_cdevsw = {
388 	.d_version = D_VERSION,
389 	.d_flags = 0,
390 	.d_open = iwn_cdev_open,
391 	.d_close = iwn_cdev_close,
392 	.d_ioctl = iwn_cdev_ioctl,
393 	.d_name = "iwn",
394 };
395 
396 static int
397 iwn_probe(device_t dev)
398 {
399 	const struct iwn_ident *ident;
400 
401 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
402 		if (pci_get_vendor(dev) == ident->vendor &&
403 		    pci_get_device(dev) == ident->device) {
404 			device_set_desc(dev, ident->name);
405 			return (BUS_PROBE_DEFAULT);
406 		}
407 	}
408 	return ENXIO;
409 }
410 
411 static int
412 iwn_is_3stream_device(struct iwn_softc *sc)
413 {
414 	/* XXX for now only 5300, until the 5350 can be tested */
415 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
416 		return (1);
417 	return (0);
418 }
419 
420 static int
421 iwn_attach(device_t dev)
422 {
423 	struct iwn_softc *sc = device_get_softc(dev);
424 	struct ieee80211com *ic;
425 	int i, error, rid;
426 
427 	sc->sc_dev = dev;
428 
429 #ifdef	IWN_DEBUG
430 	error = resource_int_value(device_get_name(sc->sc_dev),
431 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
432 	if (error != 0)
433 		sc->sc_debug = 0;
434 #else
435 	sc->sc_debug = 0;
436 #endif
437 
438 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
439 
440 	/*
441 	 * Get the offset of the PCI Express Capability Structure in PCI
442 	 * Configuration Space.
443 	 */
444 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
445 	if (error != 0) {
446 		device_printf(dev, "PCIe capability structure not found!\n");
447 		return error;
448 	}
449 
450 	/* Clear device-specific "PCI retry timeout" register (41h). */
451 	pci_write_config(dev, 0x41, 0, 1);
452 
453 	/* Enable bus-mastering. */
454 	pci_enable_busmaster(dev);
455 
456 	rid = PCIR_BAR(0);
457 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
458 	    RF_ACTIVE);
459 	if (sc->mem == NULL) {
460 		device_printf(dev, "can't map mem space\n");
461 		error = ENOMEM;
462 		return error;
463 	}
464 	sc->sc_st = rman_get_bustag(sc->mem);
465 	sc->sc_sh = rman_get_bushandle(sc->mem);
466 
467 	i = 1;
468 	rid = 0;
469 	if (pci_alloc_msi(dev, &i) == 0)
470 		rid = 1;
471 	/* Install interrupt handler. */
472 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
473 	    (rid != 0 ? 0 : RF_SHAREABLE));
474 	if (sc->irq == NULL) {
475 		device_printf(dev, "can't map interrupt\n");
476 		error = ENOMEM;
477 		goto fail;
478 	}
479 
480 	IWN_LOCK_INIT(sc);
481 
482 	/* Read hardware revision and attach. */
483 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
484 	    & IWN_HW_REV_TYPE_MASK;
485 	sc->subdevice_id = pci_get_subdevice(dev);
486 
487 	/*
488 	 * 4965 versus 5000 and later have different methods.
489 	 * Let's set those up first.
490 	 */
491 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
492 		error = iwn4965_attach(sc, pci_get_device(dev));
493 	else
494 		error = iwn5000_attach(sc, pci_get_device(dev));
495 	if (error != 0) {
496 		device_printf(dev, "could not attach device, error %d\n",
497 		    error);
498 		goto fail;
499 	}
500 
501 	/*
502 	 * Next, let's setup the various parameters of each NIC.
503 	 */
504 	error = iwn_config_specific(sc, pci_get_device(dev));
505 	if (error != 0) {
506 		device_printf(dev, "could not attach device, error %d\n",
507 		    error);
508 		goto fail;
509 	}
510 
511 	if ((error = iwn_hw_prepare(sc)) != 0) {
512 		device_printf(dev, "hardware not ready, error %d\n", error);
513 		goto fail;
514 	}
515 
516 	/* Allocate DMA memory for firmware transfers. */
517 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
518 		device_printf(dev,
519 		    "could not allocate memory for firmware, error %d\n",
520 		    error);
521 		goto fail;
522 	}
523 
524 	/* Allocate "Keep Warm" page. */
525 	if ((error = iwn_alloc_kw(sc)) != 0) {
526 		device_printf(dev,
527 		    "could not allocate keep warm page, error %d\n", error);
528 		goto fail;
529 	}
530 
531 	/* Allocate ICT table for 5000 Series. */
532 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
533 	    (error = iwn_alloc_ict(sc)) != 0) {
534 		device_printf(dev, "could not allocate ICT table, error %d\n",
535 		    error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX scheduler "rings". */
540 	if ((error = iwn_alloc_sched(sc)) != 0) {
541 		device_printf(dev,
542 		    "could not allocate TX scheduler rings, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
547 	for (i = 0; i < sc->ntxqs; i++) {
548 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
549 			device_printf(dev,
550 			    "could not allocate TX ring %d, error %d\n", i,
551 			    error);
552 			goto fail;
553 		}
554 	}
555 
556 	/* Allocate RX ring. */
557 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
558 		device_printf(dev, "could not allocate RX ring, error %d\n",
559 		    error);
560 		goto fail;
561 	}
562 
563 	/* Clear pending interrupts. */
564 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
565 
566 	ic = &sc->sc_ic;
567 	ic->ic_softc = sc;
568 	ic->ic_name = device_get_nameunit(dev);
569 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
570 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
571 
572 	/* Set device capabilities. */
573 	ic->ic_caps =
574 		  IEEE80211_C_STA		/* station mode supported */
575 		| IEEE80211_C_MONITOR		/* monitor mode supported */
576 #if 0
577 		| IEEE80211_C_BGSCAN		/* background scanning */
578 #endif
579 		| IEEE80211_C_TXPMGT		/* tx power management */
580 		| IEEE80211_C_SHSLOT		/* short slot time supported */
581 		| IEEE80211_C_WPA
582 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
583 #if 0
584 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
585 #endif
586 		| IEEE80211_C_WME		/* WME */
587 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
588 		;
589 
590 	/* Read MAC address, channels, etc from EEPROM. */
591 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
592 		device_printf(dev, "could not read EEPROM, error %d\n",
593 		    error);
594 		goto fail;
595 	}
596 
597 	/* Count the number of available chains. */
598 	sc->ntxchains =
599 	    ((sc->txchainmask >> 2) & 1) +
600 	    ((sc->txchainmask >> 1) & 1) +
601 	    ((sc->txchainmask >> 0) & 1);
602 	sc->nrxchains =
603 	    ((sc->rxchainmask >> 2) & 1) +
604 	    ((sc->rxchainmask >> 1) & 1) +
605 	    ((sc->rxchainmask >> 0) & 1);
606 	if (bootverbose) {
607 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
608 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
609 		    ic->ic_macaddr, ":");
610 	}
611 
612 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
613 		ic->ic_rxstream = sc->nrxchains;
614 		ic->ic_txstream = sc->ntxchains;
615 
616 		/*
617 		 * Some of the 3 antenna devices (ie, the 4965) only supports
618 		 * 2x2 operation.  So correct the number of streams if
619 		 * it's not a 3-stream device.
620 		 */
621 		if (! iwn_is_3stream_device(sc)) {
622 			if (ic->ic_rxstream > 2)
623 				ic->ic_rxstream = 2;
624 			if (ic->ic_txstream > 2)
625 				ic->ic_txstream = 2;
626 		}
627 
628 		ic->ic_htcaps =
629 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
630 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
631 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
632 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
633 #ifdef notyet
634 			| IEEE80211_HTCAP_GREENFIELD
635 #if IWN_RBUF_SIZE == 8192
636 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
637 #else
638 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
639 #endif
640 #endif
641 			/* s/w capabilities */
642 			| IEEE80211_HTC_HT		/* HT operation */
643 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
644 #ifdef notyet
645 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
646 #endif
647 			;
648 	}
649 
650 	ieee80211_ifattach(ic);
651 	ic->ic_vap_create = iwn_vap_create;
652 	ic->ic_ioctl = iwn_ioctl;
653 	ic->ic_parent = iwn_parent;
654 	ic->ic_vap_delete = iwn_vap_delete;
655 	ic->ic_transmit = iwn_transmit;
656 	ic->ic_raw_xmit = iwn_raw_xmit;
657 	ic->ic_node_alloc = iwn_node_alloc;
658 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
659 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
660 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
661 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
662 	sc->sc_addba_request = ic->ic_addba_request;
663 	ic->ic_addba_request = iwn_addba_request;
664 	sc->sc_addba_response = ic->ic_addba_response;
665 	ic->ic_addba_response = iwn_addba_response;
666 	sc->sc_addba_stop = ic->ic_addba_stop;
667 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
668 	ic->ic_newassoc = iwn_newassoc;
669 	ic->ic_wme.wme_update = iwn_updateedca;
670 	ic->ic_update_promisc = iwn_update_promisc;
671 	ic->ic_update_mcast = iwn_update_mcast;
672 	ic->ic_scan_start = iwn_scan_start;
673 	ic->ic_scan_end = iwn_scan_end;
674 	ic->ic_set_channel = iwn_set_channel;
675 	ic->ic_scan_curchan = iwn_scan_curchan;
676 	ic->ic_scan_mindwell = iwn_scan_mindwell;
677 	ic->ic_getradiocaps = iwn_getradiocaps;
678 	ic->ic_setregdomain = iwn_setregdomain;
679 
680 	iwn_radiotap_attach(sc);
681 
682 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
683 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
684 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
685 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
686 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
687 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
688 
689 	mbufq_init(&sc->sc_xmit_queue, 1024);
690 
691 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
692 	    taskqueue_thread_enqueue, &sc->sc_tq);
693 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
694 	if (error != 0) {
695 		device_printf(dev, "can't start threads, error %d\n", error);
696 		goto fail;
697 	}
698 
699 	iwn_sysctlattach(sc);
700 
701 	/*
702 	 * Hook our interrupt after all initialization is complete.
703 	 */
704 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
705 	    NULL, iwn_intr, sc, &sc->sc_ih);
706 	if (error != 0) {
707 		device_printf(dev, "can't establish interrupt, error %d\n",
708 		    error);
709 		goto fail;
710 	}
711 
712 #if 0
713 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
714 	    __func__,
715 	    sizeof(struct iwn_stats),
716 	    sizeof(struct iwn_stats_bt));
717 #endif
718 
719 	if (bootverbose)
720 		ieee80211_announce(ic);
721 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
722 
723 	/* Add debug ioctl right at the end */
724 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
725 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
726 	if (sc->sc_cdev == NULL) {
727 		device_printf(dev, "failed to create debug character device\n");
728 	} else {
729 		sc->sc_cdev->si_drv1 = sc;
730 	}
731 	return 0;
732 fail:
733 	iwn_detach(dev);
734 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
735 	return error;
736 }
737 
738 /*
739  * Define specific configuration based on device id and subdevice id
740  * pid : PCI device id
741  */
742 static int
743 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
744 {
745 
746 	switch (pid) {
747 /* 4965 series */
748 	case IWN_DID_4965_1:
749 	case IWN_DID_4965_2:
750 	case IWN_DID_4965_3:
751 	case IWN_DID_4965_4:
752 		sc->base_params = &iwn4965_base_params;
753 		sc->limits = &iwn4965_sensitivity_limits;
754 		sc->fwname = "iwn4965fw";
755 		/* Override chains masks, ROM is known to be broken. */
756 		sc->txchainmask = IWN_ANT_AB;
757 		sc->rxchainmask = IWN_ANT_ABC;
758 		/* Enable normal btcoex */
759 		sc->sc_flags |= IWN_FLAG_BTCOEX;
760 		break;
761 /* 1000 Series */
762 	case IWN_DID_1000_1:
763 	case IWN_DID_1000_2:
764 		switch(sc->subdevice_id) {
765 			case	IWN_SDID_1000_1:
766 			case	IWN_SDID_1000_2:
767 			case	IWN_SDID_1000_3:
768 			case	IWN_SDID_1000_4:
769 			case	IWN_SDID_1000_5:
770 			case	IWN_SDID_1000_6:
771 			case	IWN_SDID_1000_7:
772 			case	IWN_SDID_1000_8:
773 			case	IWN_SDID_1000_9:
774 			case	IWN_SDID_1000_10:
775 			case	IWN_SDID_1000_11:
776 			case	IWN_SDID_1000_12:
777 				sc->limits = &iwn1000_sensitivity_limits;
778 				sc->base_params = &iwn1000_base_params;
779 				sc->fwname = "iwn1000fw";
780 				break;
781 			default:
782 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
783 				    "0x%04x rev %d not supported (subdevice)\n", pid,
784 				    sc->subdevice_id,sc->hw_type);
785 				return ENOTSUP;
786 		}
787 		break;
788 /* 6x00 Series */
789 	case IWN_DID_6x00_2:
790 	case IWN_DID_6x00_4:
791 	case IWN_DID_6x00_1:
792 	case IWN_DID_6x00_3:
793 		sc->fwname = "iwn6000fw";
794 		sc->limits = &iwn6000_sensitivity_limits;
795 		switch(sc->subdevice_id) {
796 			case IWN_SDID_6x00_1:
797 			case IWN_SDID_6x00_2:
798 			case IWN_SDID_6x00_8:
799 				//iwl6000_3agn_cfg
800 				sc->base_params = &iwn_6000_base_params;
801 				break;
802 			case IWN_SDID_6x00_3:
803 			case IWN_SDID_6x00_6:
804 			case IWN_SDID_6x00_9:
805 				////iwl6000i_2agn
806 			case IWN_SDID_6x00_4:
807 			case IWN_SDID_6x00_7:
808 			case IWN_SDID_6x00_10:
809 				//iwl6000i_2abg_cfg
810 			case IWN_SDID_6x00_5:
811 				//iwl6000i_2bg_cfg
812 				sc->base_params = &iwn_6000i_base_params;
813 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
814 				sc->txchainmask = IWN_ANT_BC;
815 				sc->rxchainmask = IWN_ANT_BC;
816 				break;
817 			default:
818 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
819 				    "0x%04x rev %d not supported (subdevice)\n", pid,
820 				    sc->subdevice_id,sc->hw_type);
821 				return ENOTSUP;
822 		}
823 		break;
824 /* 6x05 Series */
825 	case IWN_DID_6x05_1:
826 	case IWN_DID_6x05_2:
827 		switch(sc->subdevice_id) {
828 			case IWN_SDID_6x05_1:
829 			case IWN_SDID_6x05_4:
830 			case IWN_SDID_6x05_6:
831 				//iwl6005_2agn_cfg
832 			case IWN_SDID_6x05_2:
833 			case IWN_SDID_6x05_5:
834 			case IWN_SDID_6x05_7:
835 				//iwl6005_2abg_cfg
836 			case IWN_SDID_6x05_3:
837 				//iwl6005_2bg_cfg
838 			case IWN_SDID_6x05_8:
839 			case IWN_SDID_6x05_9:
840 				//iwl6005_2agn_sff_cfg
841 			case IWN_SDID_6x05_10:
842 				//iwl6005_2agn_d_cfg
843 			case IWN_SDID_6x05_11:
844 				//iwl6005_2agn_mow1_cfg
845 			case IWN_SDID_6x05_12:
846 				//iwl6005_2agn_mow2_cfg
847 				sc->fwname = "iwn6000g2afw";
848 				sc->limits = &iwn6000_sensitivity_limits;
849 				sc->base_params = &iwn_6000g2_base_params;
850 				break;
851 			default:
852 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
853 				    "0x%04x rev %d not supported (subdevice)\n", pid,
854 				    sc->subdevice_id,sc->hw_type);
855 				return ENOTSUP;
856 		}
857 		break;
858 /* 6x35 Series */
859 	case IWN_DID_6035_1:
860 	case IWN_DID_6035_2:
861 		switch(sc->subdevice_id) {
862 			case IWN_SDID_6035_1:
863 			case IWN_SDID_6035_2:
864 			case IWN_SDID_6035_3:
865 			case IWN_SDID_6035_4:
866 				sc->fwname = "iwn6000g2bfw";
867 				sc->limits = &iwn6235_sensitivity_limits;
868 				sc->base_params = &iwn_6235_base_params;
869 				break;
870 			default:
871 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
872 				    "0x%04x rev %d not supported (subdevice)\n", pid,
873 				    sc->subdevice_id,sc->hw_type);
874 				return ENOTSUP;
875 		}
876 		break;
877 /* 6x50 WiFi/WiMax Series */
878 	case IWN_DID_6050_1:
879 	case IWN_DID_6050_2:
880 		switch(sc->subdevice_id) {
881 			case IWN_SDID_6050_1:
882 			case IWN_SDID_6050_3:
883 			case IWN_SDID_6050_5:
884 				//iwl6050_2agn_cfg
885 			case IWN_SDID_6050_2:
886 			case IWN_SDID_6050_4:
887 			case IWN_SDID_6050_6:
888 				//iwl6050_2abg_cfg
889 				sc->fwname = "iwn6050fw";
890 				sc->txchainmask = IWN_ANT_AB;
891 				sc->rxchainmask = IWN_ANT_AB;
892 				sc->limits = &iwn6000_sensitivity_limits;
893 				sc->base_params = &iwn_6050_base_params;
894 				break;
895 			default:
896 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
897 				    "0x%04x rev %d not supported (subdevice)\n", pid,
898 				    sc->subdevice_id,sc->hw_type);
899 				return ENOTSUP;
900 		}
901 		break;
902 /* 6150 WiFi/WiMax Series */
903 	case IWN_DID_6150_1:
904 	case IWN_DID_6150_2:
905 		switch(sc->subdevice_id) {
906 			case IWN_SDID_6150_1:
907 			case IWN_SDID_6150_3:
908 			case IWN_SDID_6150_5:
909 				// iwl6150_bgn_cfg
910 			case IWN_SDID_6150_2:
911 			case IWN_SDID_6150_4:
912 			case IWN_SDID_6150_6:
913 				//iwl6150_bg_cfg
914 				sc->fwname = "iwn6050fw";
915 				sc->limits = &iwn6000_sensitivity_limits;
916 				sc->base_params = &iwn_6150_base_params;
917 				break;
918 			default:
919 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
920 				    "0x%04x rev %d not supported (subdevice)\n", pid,
921 				    sc->subdevice_id,sc->hw_type);
922 				return ENOTSUP;
923 		}
924 		break;
925 /* 6030 Series and 1030 Series */
926 	case IWN_DID_x030_1:
927 	case IWN_DID_x030_2:
928 	case IWN_DID_x030_3:
929 	case IWN_DID_x030_4:
930 		switch(sc->subdevice_id) {
931 			case IWN_SDID_x030_1:
932 			case IWN_SDID_x030_3:
933 			case IWN_SDID_x030_5:
934 			// iwl1030_bgn_cfg
935 			case IWN_SDID_x030_2:
936 			case IWN_SDID_x030_4:
937 			case IWN_SDID_x030_6:
938 			//iwl1030_bg_cfg
939 			case IWN_SDID_x030_7:
940 			case IWN_SDID_x030_10:
941 			case IWN_SDID_x030_14:
942 			//iwl6030_2agn_cfg
943 			case IWN_SDID_x030_8:
944 			case IWN_SDID_x030_11:
945 			case IWN_SDID_x030_15:
946 			// iwl6030_2bgn_cfg
947 			case IWN_SDID_x030_9:
948 			case IWN_SDID_x030_12:
949 			case IWN_SDID_x030_16:
950 			// iwl6030_2abg_cfg
951 			case IWN_SDID_x030_13:
952 			//iwl6030_2bg_cfg
953 				sc->fwname = "iwn6000g2bfw";
954 				sc->limits = &iwn6000_sensitivity_limits;
955 				sc->base_params = &iwn_6000g2b_base_params;
956 				break;
957 			default:
958 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
959 				    "0x%04x rev %d not supported (subdevice)\n", pid,
960 				    sc->subdevice_id,sc->hw_type);
961 				return ENOTSUP;
962 		}
963 		break;
964 /* 130 Series WiFi */
965 /* XXX: This series will need adjustment for rate.
966  * see rx_with_siso_diversity in linux kernel
967  */
968 	case IWN_DID_130_1:
969 	case IWN_DID_130_2:
970 		switch(sc->subdevice_id) {
971 			case IWN_SDID_130_1:
972 			case IWN_SDID_130_3:
973 			case IWN_SDID_130_5:
974 			//iwl130_bgn_cfg
975 			case IWN_SDID_130_2:
976 			case IWN_SDID_130_4:
977 			case IWN_SDID_130_6:
978 			//iwl130_bg_cfg
979 				sc->fwname = "iwn6000g2bfw";
980 				sc->limits = &iwn6000_sensitivity_limits;
981 				sc->base_params = &iwn_6000g2b_base_params;
982 				break;
983 			default:
984 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
985 				    "0x%04x rev %d not supported (subdevice)\n", pid,
986 				    sc->subdevice_id,sc->hw_type);
987 				return ENOTSUP;
988 		}
989 		break;
990 /* 100 Series WiFi */
991 	case IWN_DID_100_1:
992 	case IWN_DID_100_2:
993 		switch(sc->subdevice_id) {
994 			case IWN_SDID_100_1:
995 			case IWN_SDID_100_2:
996 			case IWN_SDID_100_3:
997 			case IWN_SDID_100_4:
998 			case IWN_SDID_100_5:
999 			case IWN_SDID_100_6:
1000 				sc->limits = &iwn1000_sensitivity_limits;
1001 				sc->base_params = &iwn1000_base_params;
1002 				sc->fwname = "iwn100fw";
1003 				break;
1004 			default:
1005 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1006 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1007 				    sc->subdevice_id,sc->hw_type);
1008 				return ENOTSUP;
1009 		}
1010 		break;
1011 
1012 /* 105 Series */
1013 /* XXX: This series will need adjustment for rate.
1014  * see rx_with_siso_diversity in linux kernel
1015  */
1016 	case IWN_DID_105_1:
1017 	case IWN_DID_105_2:
1018 		switch(sc->subdevice_id) {
1019 			case IWN_SDID_105_1:
1020 			case IWN_SDID_105_2:
1021 			case IWN_SDID_105_3:
1022 			//iwl105_bgn_cfg
1023 			case IWN_SDID_105_4:
1024 			//iwl105_bgn_d_cfg
1025 				sc->limits = &iwn2030_sensitivity_limits;
1026 				sc->base_params = &iwn2000_base_params;
1027 				sc->fwname = "iwn105fw";
1028 				break;
1029 			default:
1030 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1031 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1032 				    sc->subdevice_id,sc->hw_type);
1033 				return ENOTSUP;
1034 		}
1035 		break;
1036 
1037 /* 135 Series */
1038 /* XXX: This series will need adjustment for rate.
1039  * see rx_with_siso_diversity in linux kernel
1040  */
1041 	case IWN_DID_135_1:
1042 	case IWN_DID_135_2:
1043 		switch(sc->subdevice_id) {
1044 			case IWN_SDID_135_1:
1045 			case IWN_SDID_135_2:
1046 			case IWN_SDID_135_3:
1047 				sc->limits = &iwn2030_sensitivity_limits;
1048 				sc->base_params = &iwn2030_base_params;
1049 				sc->fwname = "iwn135fw";
1050 				break;
1051 			default:
1052 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1053 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1054 				    sc->subdevice_id,sc->hw_type);
1055 				return ENOTSUP;
1056 		}
1057 		break;
1058 
1059 /* 2x00 Series */
1060 	case IWN_DID_2x00_1:
1061 	case IWN_DID_2x00_2:
1062 		switch(sc->subdevice_id) {
1063 			case IWN_SDID_2x00_1:
1064 			case IWN_SDID_2x00_2:
1065 			case IWN_SDID_2x00_3:
1066 			//iwl2000_2bgn_cfg
1067 			case IWN_SDID_2x00_4:
1068 			//iwl2000_2bgn_d_cfg
1069 				sc->limits = &iwn2030_sensitivity_limits;
1070 				sc->base_params = &iwn2000_base_params;
1071 				sc->fwname = "iwn2000fw";
1072 				break;
1073 			default:
1074 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1075 				    "0x%04x rev %d not supported (subdevice) \n",
1076 				    pid, sc->subdevice_id, sc->hw_type);
1077 				return ENOTSUP;
1078 		}
1079 		break;
1080 /* 2x30 Series */
1081 	case IWN_DID_2x30_1:
1082 	case IWN_DID_2x30_2:
1083 		switch(sc->subdevice_id) {
1084 			case IWN_SDID_2x30_1:
1085 			case IWN_SDID_2x30_3:
1086 			case IWN_SDID_2x30_5:
1087 			//iwl100_bgn_cfg
1088 			case IWN_SDID_2x30_2:
1089 			case IWN_SDID_2x30_4:
1090 			case IWN_SDID_2x30_6:
1091 			//iwl100_bg_cfg
1092 				sc->limits = &iwn2030_sensitivity_limits;
1093 				sc->base_params = &iwn2030_base_params;
1094 				sc->fwname = "iwn2030fw";
1095 				break;
1096 			default:
1097 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1098 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1099 				    sc->subdevice_id,sc->hw_type);
1100 				return ENOTSUP;
1101 		}
1102 		break;
1103 /* 5x00 Series */
1104 	case IWN_DID_5x00_1:
1105 	case IWN_DID_5x00_2:
1106 	case IWN_DID_5x00_3:
1107 	case IWN_DID_5x00_4:
1108 		sc->limits = &iwn5000_sensitivity_limits;
1109 		sc->base_params = &iwn5000_base_params;
1110 		sc->fwname = "iwn5000fw";
1111 		switch(sc->subdevice_id) {
1112 			case IWN_SDID_5x00_1:
1113 			case IWN_SDID_5x00_2:
1114 			case IWN_SDID_5x00_3:
1115 			case IWN_SDID_5x00_4:
1116 			case IWN_SDID_5x00_9:
1117 			case IWN_SDID_5x00_10:
1118 			case IWN_SDID_5x00_11:
1119 			case IWN_SDID_5x00_12:
1120 			case IWN_SDID_5x00_17:
1121 			case IWN_SDID_5x00_18:
1122 			case IWN_SDID_5x00_19:
1123 			case IWN_SDID_5x00_20:
1124 			//iwl5100_agn_cfg
1125 				sc->txchainmask = IWN_ANT_B;
1126 				sc->rxchainmask = IWN_ANT_AB;
1127 				break;
1128 			case IWN_SDID_5x00_5:
1129 			case IWN_SDID_5x00_6:
1130 			case IWN_SDID_5x00_13:
1131 			case IWN_SDID_5x00_14:
1132 			case IWN_SDID_5x00_21:
1133 			case IWN_SDID_5x00_22:
1134 			//iwl5100_bgn_cfg
1135 				sc->txchainmask = IWN_ANT_B;
1136 				sc->rxchainmask = IWN_ANT_AB;
1137 				break;
1138 			case IWN_SDID_5x00_7:
1139 			case IWN_SDID_5x00_8:
1140 			case IWN_SDID_5x00_15:
1141 			case IWN_SDID_5x00_16:
1142 			case IWN_SDID_5x00_23:
1143 			case IWN_SDID_5x00_24:
1144 			//iwl5100_abg_cfg
1145 				sc->txchainmask = IWN_ANT_B;
1146 				sc->rxchainmask = IWN_ANT_AB;
1147 				break;
1148 			case IWN_SDID_5x00_25:
1149 			case IWN_SDID_5x00_26:
1150 			case IWN_SDID_5x00_27:
1151 			case IWN_SDID_5x00_28:
1152 			case IWN_SDID_5x00_29:
1153 			case IWN_SDID_5x00_30:
1154 			case IWN_SDID_5x00_31:
1155 			case IWN_SDID_5x00_32:
1156 			case IWN_SDID_5x00_33:
1157 			case IWN_SDID_5x00_34:
1158 			case IWN_SDID_5x00_35:
1159 			case IWN_SDID_5x00_36:
1160 			//iwl5300_agn_cfg
1161 				sc->txchainmask = IWN_ANT_ABC;
1162 				sc->rxchainmask = IWN_ANT_ABC;
1163 				break;
1164 			default:
1165 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1166 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1167 				    sc->subdevice_id,sc->hw_type);
1168 				return ENOTSUP;
1169 		}
1170 		break;
1171 /* 5x50 Series */
1172 	case IWN_DID_5x50_1:
1173 	case IWN_DID_5x50_2:
1174 	case IWN_DID_5x50_3:
1175 	case IWN_DID_5x50_4:
1176 		sc->limits = &iwn5000_sensitivity_limits;
1177 		sc->base_params = &iwn5000_base_params;
1178 		sc->fwname = "iwn5000fw";
1179 		switch(sc->subdevice_id) {
1180 			case IWN_SDID_5x50_1:
1181 			case IWN_SDID_5x50_2:
1182 			case IWN_SDID_5x50_3:
1183 			//iwl5350_agn_cfg
1184 				sc->limits = &iwn5000_sensitivity_limits;
1185 				sc->base_params = &iwn5000_base_params;
1186 				sc->fwname = "iwn5000fw";
1187 				break;
1188 			case IWN_SDID_5x50_4:
1189 			case IWN_SDID_5x50_5:
1190 			case IWN_SDID_5x50_8:
1191 			case IWN_SDID_5x50_9:
1192 			case IWN_SDID_5x50_10:
1193 			case IWN_SDID_5x50_11:
1194 			//iwl5150_agn_cfg
1195 			case IWN_SDID_5x50_6:
1196 			case IWN_SDID_5x50_7:
1197 			case IWN_SDID_5x50_12:
1198 			case IWN_SDID_5x50_13:
1199 			//iwl5150_abg_cfg
1200 				sc->limits = &iwn5000_sensitivity_limits;
1201 				sc->fwname = "iwn5150fw";
1202 				sc->base_params = &iwn_5x50_base_params;
1203 				break;
1204 			default:
1205 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1206 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1207 				    sc->subdevice_id,sc->hw_type);
1208 				return ENOTSUP;
1209 		}
1210 		break;
1211 	default:
1212 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1213 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1214 		     sc->hw_type);
1215 		return ENOTSUP;
1216 	}
1217 	return 0;
1218 }
1219 
1220 static int
1221 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1222 {
1223 	struct iwn_ops *ops = &sc->ops;
1224 
1225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1226 	ops->load_firmware = iwn4965_load_firmware;
1227 	ops->read_eeprom = iwn4965_read_eeprom;
1228 	ops->post_alive = iwn4965_post_alive;
1229 	ops->nic_config = iwn4965_nic_config;
1230 	ops->update_sched = iwn4965_update_sched;
1231 	ops->get_temperature = iwn4965_get_temperature;
1232 	ops->get_rssi = iwn4965_get_rssi;
1233 	ops->set_txpower = iwn4965_set_txpower;
1234 	ops->init_gains = iwn4965_init_gains;
1235 	ops->set_gains = iwn4965_set_gains;
1236 	ops->rxon_assoc = iwn4965_rxon_assoc;
1237 	ops->add_node = iwn4965_add_node;
1238 	ops->tx_done = iwn4965_tx_done;
1239 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1240 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1241 	sc->ntxqs = IWN4965_NTXQUEUES;
1242 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1243 	sc->ndmachnls = IWN4965_NDMACHNLS;
1244 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1245 	sc->rxonsz = IWN4965_RXONSZ;
1246 	sc->schedsz = IWN4965_SCHEDSZ;
1247 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1248 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1249 	sc->fwsz = IWN4965_FWSZ;
1250 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1251 	sc->limits = &iwn4965_sensitivity_limits;
1252 	sc->fwname = "iwn4965fw";
1253 	/* Override chains masks, ROM is known to be broken. */
1254 	sc->txchainmask = IWN_ANT_AB;
1255 	sc->rxchainmask = IWN_ANT_ABC;
1256 	/* Enable normal btcoex */
1257 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1258 
1259 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1260 
1261 	return 0;
1262 }
1263 
1264 static int
1265 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1266 {
1267 	struct iwn_ops *ops = &sc->ops;
1268 
1269 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1270 
1271 	ops->load_firmware = iwn5000_load_firmware;
1272 	ops->read_eeprom = iwn5000_read_eeprom;
1273 	ops->post_alive = iwn5000_post_alive;
1274 	ops->nic_config = iwn5000_nic_config;
1275 	ops->update_sched = iwn5000_update_sched;
1276 	ops->get_temperature = iwn5000_get_temperature;
1277 	ops->get_rssi = iwn5000_get_rssi;
1278 	ops->set_txpower = iwn5000_set_txpower;
1279 	ops->init_gains = iwn5000_init_gains;
1280 	ops->set_gains = iwn5000_set_gains;
1281 	ops->rxon_assoc = iwn5000_rxon_assoc;
1282 	ops->add_node = iwn5000_add_node;
1283 	ops->tx_done = iwn5000_tx_done;
1284 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1285 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1286 	sc->ntxqs = IWN5000_NTXQUEUES;
1287 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1288 	sc->ndmachnls = IWN5000_NDMACHNLS;
1289 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1290 	sc->rxonsz = IWN5000_RXONSZ;
1291 	sc->schedsz = IWN5000_SCHEDSZ;
1292 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1293 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1294 	sc->fwsz = IWN5000_FWSZ;
1295 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1296 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1297 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1298 
1299 	return 0;
1300 }
1301 
1302 /*
1303  * Attach the interface to 802.11 radiotap.
1304  */
1305 static void
1306 iwn_radiotap_attach(struct iwn_softc *sc)
1307 {
1308 
1309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1310 	ieee80211_radiotap_attach(&sc->sc_ic,
1311 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1312 		IWN_TX_RADIOTAP_PRESENT,
1313 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1314 		IWN_RX_RADIOTAP_PRESENT);
1315 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1316 }
1317 
1318 static void
1319 iwn_sysctlattach(struct iwn_softc *sc)
1320 {
1321 #ifdef	IWN_DEBUG
1322 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1323 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1324 
1325 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1326 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1327 		"control debugging printfs");
1328 #endif
1329 }
1330 
1331 static struct ieee80211vap *
1332 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1333     enum ieee80211_opmode opmode, int flags,
1334     const uint8_t bssid[IEEE80211_ADDR_LEN],
1335     const uint8_t mac[IEEE80211_ADDR_LEN])
1336 {
1337 	struct iwn_softc *sc = ic->ic_softc;
1338 	struct iwn_vap *ivp;
1339 	struct ieee80211vap *vap;
1340 
1341 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1342 		return NULL;
1343 
1344 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1345 	vap = &ivp->iv_vap;
1346 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1347 	ivp->ctx = IWN_RXON_BSS_CTX;
1348 	vap->iv_bmissthreshold = 10;		/* override default */
1349 	/* Override with driver methods. */
1350 	ivp->iv_newstate = vap->iv_newstate;
1351 	vap->iv_newstate = iwn_newstate;
1352 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1353 
1354 	ieee80211_ratectl_init(vap);
1355 	/* Complete setup. */
1356 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1357 	    mac);
1358 	ic->ic_opmode = opmode;
1359 	return vap;
1360 }
1361 
1362 static void
1363 iwn_vap_delete(struct ieee80211vap *vap)
1364 {
1365 	struct iwn_vap *ivp = IWN_VAP(vap);
1366 
1367 	ieee80211_ratectl_deinit(vap);
1368 	ieee80211_vap_detach(vap);
1369 	free(ivp, M_80211_VAP);
1370 }
1371 
1372 static void
1373 iwn_xmit_queue_drain(struct iwn_softc *sc)
1374 {
1375 	struct mbuf *m;
1376 	struct ieee80211_node *ni;
1377 
1378 	IWN_LOCK_ASSERT(sc);
1379 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1380 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1381 		ieee80211_free_node(ni);
1382 		m_freem(m);
1383 	}
1384 }
1385 
1386 static int
1387 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1388 {
1389 
1390 	IWN_LOCK_ASSERT(sc);
1391 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1392 }
1393 
1394 static int
1395 iwn_detach(device_t dev)
1396 {
1397 	struct iwn_softc *sc = device_get_softc(dev);
1398 	int qid;
1399 
1400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1401 
1402 	if (sc->sc_ic.ic_softc != NULL) {
1403 		/* Free the mbuf queue and node references */
1404 		IWN_LOCK(sc);
1405 		iwn_xmit_queue_drain(sc);
1406 		IWN_UNLOCK(sc);
1407 
1408 		iwn_stop(sc);
1409 
1410 		taskqueue_drain_all(sc->sc_tq);
1411 		taskqueue_free(sc->sc_tq);
1412 
1413 		callout_drain(&sc->watchdog_to);
1414 		callout_drain(&sc->scan_timeout);
1415 		callout_drain(&sc->calib_to);
1416 		ieee80211_ifdetach(&sc->sc_ic);
1417 	}
1418 
1419 	/* Uninstall interrupt handler. */
1420 	if (sc->irq != NULL) {
1421 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1422 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1423 		    sc->irq);
1424 		pci_release_msi(dev);
1425 	}
1426 
1427 	/* Free DMA resources. */
1428 	iwn_free_rx_ring(sc, &sc->rxq);
1429 	for (qid = 0; qid < sc->ntxqs; qid++)
1430 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1431 	iwn_free_sched(sc);
1432 	iwn_free_kw(sc);
1433 	if (sc->ict != NULL)
1434 		iwn_free_ict(sc);
1435 	iwn_free_fwmem(sc);
1436 
1437 	if (sc->mem != NULL)
1438 		bus_release_resource(dev, SYS_RES_MEMORY,
1439 		    rman_get_rid(sc->mem), sc->mem);
1440 
1441 	if (sc->sc_cdev) {
1442 		destroy_dev(sc->sc_cdev);
1443 		sc->sc_cdev = NULL;
1444 	}
1445 
1446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1447 	IWN_LOCK_DESTROY(sc);
1448 	return 0;
1449 }
1450 
1451 static int
1452 iwn_shutdown(device_t dev)
1453 {
1454 	struct iwn_softc *sc = device_get_softc(dev);
1455 
1456 	iwn_stop(sc);
1457 	return 0;
1458 }
1459 
1460 static int
1461 iwn_suspend(device_t dev)
1462 {
1463 	struct iwn_softc *sc = device_get_softc(dev);
1464 
1465 	ieee80211_suspend_all(&sc->sc_ic);
1466 	return 0;
1467 }
1468 
1469 static int
1470 iwn_resume(device_t dev)
1471 {
1472 	struct iwn_softc *sc = device_get_softc(dev);
1473 
1474 	/* Clear device-specific "PCI retry timeout" register (41h). */
1475 	pci_write_config(dev, 0x41, 0, 1);
1476 
1477 	ieee80211_resume_all(&sc->sc_ic);
1478 	return 0;
1479 }
1480 
1481 static int
1482 iwn_nic_lock(struct iwn_softc *sc)
1483 {
1484 	int ntries;
1485 
1486 	/* Request exclusive access to NIC. */
1487 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1488 
1489 	/* Spin until we actually get the lock. */
1490 	for (ntries = 0; ntries < 1000; ntries++) {
1491 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1492 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1493 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1494 			return 0;
1495 		DELAY(10);
1496 	}
1497 	return ETIMEDOUT;
1498 }
1499 
1500 static __inline void
1501 iwn_nic_unlock(struct iwn_softc *sc)
1502 {
1503 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1504 }
1505 
1506 static __inline uint32_t
1507 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1508 {
1509 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1510 	IWN_BARRIER_READ_WRITE(sc);
1511 	return IWN_READ(sc, IWN_PRPH_RDATA);
1512 }
1513 
1514 static __inline void
1515 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1516 {
1517 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1518 	IWN_BARRIER_WRITE(sc);
1519 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1520 }
1521 
1522 static __inline void
1523 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1524 {
1525 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1526 }
1527 
1528 static __inline void
1529 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1530 {
1531 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1532 }
1533 
1534 static __inline void
1535 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1536     const uint32_t *data, int count)
1537 {
1538 	for (; count > 0; count--, data++, addr += 4)
1539 		iwn_prph_write(sc, addr, *data);
1540 }
1541 
1542 static __inline uint32_t
1543 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1544 {
1545 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1546 	IWN_BARRIER_READ_WRITE(sc);
1547 	return IWN_READ(sc, IWN_MEM_RDATA);
1548 }
1549 
1550 static __inline void
1551 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1552 {
1553 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1554 	IWN_BARRIER_WRITE(sc);
1555 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1556 }
1557 
1558 static __inline void
1559 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1560 {
1561 	uint32_t tmp;
1562 
1563 	tmp = iwn_mem_read(sc, addr & ~3);
1564 	if (addr & 3)
1565 		tmp = (tmp & 0x0000ffff) | data << 16;
1566 	else
1567 		tmp = (tmp & 0xffff0000) | data;
1568 	iwn_mem_write(sc, addr & ~3, tmp);
1569 }
1570 
1571 static __inline void
1572 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1573     int count)
1574 {
1575 	for (; count > 0; count--, addr += 4)
1576 		*data++ = iwn_mem_read(sc, addr);
1577 }
1578 
1579 static __inline void
1580 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1581     int count)
1582 {
1583 	for (; count > 0; count--, addr += 4)
1584 		iwn_mem_write(sc, addr, val);
1585 }
1586 
1587 static int
1588 iwn_eeprom_lock(struct iwn_softc *sc)
1589 {
1590 	int i, ntries;
1591 
1592 	for (i = 0; i < 100; i++) {
1593 		/* Request exclusive access to EEPROM. */
1594 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1595 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1596 
1597 		/* Spin until we actually get the lock. */
1598 		for (ntries = 0; ntries < 100; ntries++) {
1599 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1600 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1601 				return 0;
1602 			DELAY(10);
1603 		}
1604 	}
1605 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1606 	return ETIMEDOUT;
1607 }
1608 
1609 static __inline void
1610 iwn_eeprom_unlock(struct iwn_softc *sc)
1611 {
1612 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1613 }
1614 
1615 /*
1616  * Initialize access by host to One Time Programmable ROM.
1617  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1618  */
1619 static int
1620 iwn_init_otprom(struct iwn_softc *sc)
1621 {
1622 	uint16_t prev, base, next;
1623 	int count, error;
1624 
1625 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1626 
1627 	/* Wait for clock stabilization before accessing prph. */
1628 	if ((error = iwn_clock_wait(sc)) != 0)
1629 		return error;
1630 
1631 	if ((error = iwn_nic_lock(sc)) != 0)
1632 		return error;
1633 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1634 	DELAY(5);
1635 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1636 	iwn_nic_unlock(sc);
1637 
1638 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1639 	if (sc->base_params->shadow_ram_support) {
1640 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1641 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1642 	}
1643 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1644 	/* Clear ECC status. */
1645 	IWN_SETBITS(sc, IWN_OTP_GP,
1646 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1647 
1648 	/*
1649 	 * Find the block before last block (contains the EEPROM image)
1650 	 * for HW without OTP shadow RAM.
1651 	 */
1652 	if (! sc->base_params->shadow_ram_support) {
1653 		/* Switch to absolute addressing mode. */
1654 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1655 		base = prev = 0;
1656 		for (count = 0; count < sc->base_params->max_ll_items;
1657 		    count++) {
1658 			error = iwn_read_prom_data(sc, base, &next, 2);
1659 			if (error != 0)
1660 				return error;
1661 			if (next == 0)	/* End of linked-list. */
1662 				break;
1663 			prev = base;
1664 			base = le16toh(next);
1665 		}
1666 		if (count == 0 || count == sc->base_params->max_ll_items)
1667 			return EIO;
1668 		/* Skip "next" word. */
1669 		sc->prom_base = prev + 1;
1670 	}
1671 
1672 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1673 
1674 	return 0;
1675 }
1676 
1677 static int
1678 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1679 {
1680 	uint8_t *out = data;
1681 	uint32_t val, tmp;
1682 	int ntries;
1683 
1684 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1685 
1686 	addr += sc->prom_base;
1687 	for (; count > 0; count -= 2, addr++) {
1688 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1689 		for (ntries = 0; ntries < 10; ntries++) {
1690 			val = IWN_READ(sc, IWN_EEPROM);
1691 			if (val & IWN_EEPROM_READ_VALID)
1692 				break;
1693 			DELAY(5);
1694 		}
1695 		if (ntries == 10) {
1696 			device_printf(sc->sc_dev,
1697 			    "timeout reading ROM at 0x%x\n", addr);
1698 			return ETIMEDOUT;
1699 		}
1700 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1701 			/* OTPROM, check for ECC errors. */
1702 			tmp = IWN_READ(sc, IWN_OTP_GP);
1703 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1704 				device_printf(sc->sc_dev,
1705 				    "OTPROM ECC error at 0x%x\n", addr);
1706 				return EIO;
1707 			}
1708 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1709 				/* Correctable ECC error, clear bit. */
1710 				IWN_SETBITS(sc, IWN_OTP_GP,
1711 				    IWN_OTP_GP_ECC_CORR_STTS);
1712 			}
1713 		}
1714 		*out++ = val >> 16;
1715 		if (count > 1)
1716 			*out++ = val >> 24;
1717 	}
1718 
1719 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1720 
1721 	return 0;
1722 }
1723 
1724 static void
1725 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1726 {
1727 	if (error != 0)
1728 		return;
1729 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1730 	*(bus_addr_t *)arg = segs[0].ds_addr;
1731 }
1732 
1733 static int
1734 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1735     void **kvap, bus_size_t size, bus_size_t alignment)
1736 {
1737 	int error;
1738 
1739 	dma->tag = NULL;
1740 	dma->size = size;
1741 
1742 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1743 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1744 	    1, size, 0, NULL, NULL, &dma->tag);
1745 	if (error != 0)
1746 		goto fail;
1747 
1748 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1749 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1750 	if (error != 0)
1751 		goto fail;
1752 
1753 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1754 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1755 	if (error != 0)
1756 		goto fail;
1757 
1758 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1759 
1760 	if (kvap != NULL)
1761 		*kvap = dma->vaddr;
1762 
1763 	return 0;
1764 
1765 fail:	iwn_dma_contig_free(dma);
1766 	return error;
1767 }
1768 
1769 static void
1770 iwn_dma_contig_free(struct iwn_dma_info *dma)
1771 {
1772 	if (dma->vaddr != NULL) {
1773 		bus_dmamap_sync(dma->tag, dma->map,
1774 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1775 		bus_dmamap_unload(dma->tag, dma->map);
1776 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1777 		dma->vaddr = NULL;
1778 	}
1779 	if (dma->tag != NULL) {
1780 		bus_dma_tag_destroy(dma->tag);
1781 		dma->tag = NULL;
1782 	}
1783 }
1784 
1785 static int
1786 iwn_alloc_sched(struct iwn_softc *sc)
1787 {
1788 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1789 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1790 	    sc->schedsz, 1024);
1791 }
1792 
1793 static void
1794 iwn_free_sched(struct iwn_softc *sc)
1795 {
1796 	iwn_dma_contig_free(&sc->sched_dma);
1797 }
1798 
1799 static int
1800 iwn_alloc_kw(struct iwn_softc *sc)
1801 {
1802 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1803 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1804 }
1805 
1806 static void
1807 iwn_free_kw(struct iwn_softc *sc)
1808 {
1809 	iwn_dma_contig_free(&sc->kw_dma);
1810 }
1811 
1812 static int
1813 iwn_alloc_ict(struct iwn_softc *sc)
1814 {
1815 	/* ICT table must be aligned on a 4KB boundary. */
1816 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1817 	    IWN_ICT_SIZE, 4096);
1818 }
1819 
1820 static void
1821 iwn_free_ict(struct iwn_softc *sc)
1822 {
1823 	iwn_dma_contig_free(&sc->ict_dma);
1824 }
1825 
1826 static int
1827 iwn_alloc_fwmem(struct iwn_softc *sc)
1828 {
1829 	/* Must be aligned on a 16-byte boundary. */
1830 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1831 }
1832 
1833 static void
1834 iwn_free_fwmem(struct iwn_softc *sc)
1835 {
1836 	iwn_dma_contig_free(&sc->fw_dma);
1837 }
1838 
1839 static int
1840 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1841 {
1842 	bus_size_t size;
1843 	int i, error;
1844 
1845 	ring->cur = 0;
1846 
1847 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1848 
1849 	/* Allocate RX descriptors (256-byte aligned). */
1850 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1851 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1852 	    size, 256);
1853 	if (error != 0) {
1854 		device_printf(sc->sc_dev,
1855 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1856 		    __func__, error);
1857 		goto fail;
1858 	}
1859 
1860 	/* Allocate RX status area (16-byte aligned). */
1861 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1862 	    sizeof (struct iwn_rx_status), 16);
1863 	if (error != 0) {
1864 		device_printf(sc->sc_dev,
1865 		    "%s: could not allocate RX status DMA memory, error %d\n",
1866 		    __func__, error);
1867 		goto fail;
1868 	}
1869 
1870 	/* Create RX buffer DMA tag. */
1871 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1872 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1873 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1874 	if (error != 0) {
1875 		device_printf(sc->sc_dev,
1876 		    "%s: could not create RX buf DMA tag, error %d\n",
1877 		    __func__, error);
1878 		goto fail;
1879 	}
1880 
1881 	/*
1882 	 * Allocate and map RX buffers.
1883 	 */
1884 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1885 		struct iwn_rx_data *data = &ring->data[i];
1886 		bus_addr_t paddr;
1887 
1888 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1889 		if (error != 0) {
1890 			device_printf(sc->sc_dev,
1891 			    "%s: could not create RX buf DMA map, error %d\n",
1892 			    __func__, error);
1893 			goto fail;
1894 		}
1895 
1896 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1897 		    IWN_RBUF_SIZE);
1898 		if (data->m == NULL) {
1899 			device_printf(sc->sc_dev,
1900 			    "%s: could not allocate RX mbuf\n", __func__);
1901 			error = ENOBUFS;
1902 			goto fail;
1903 		}
1904 
1905 		error = bus_dmamap_load(ring->data_dmat, data->map,
1906 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1907 		    &paddr, BUS_DMA_NOWAIT);
1908 		if (error != 0 && error != EFBIG) {
1909 			device_printf(sc->sc_dev,
1910 			    "%s: can't map mbuf, error %d\n", __func__,
1911 			    error);
1912 			goto fail;
1913 		}
1914 
1915 		bus_dmamap_sync(ring->data_dmat, data->map,
1916 		    BUS_DMASYNC_PREREAD);
1917 
1918 		/* Set physical address of RX buffer (256-byte aligned). */
1919 		ring->desc[i] = htole32(paddr >> 8);
1920 	}
1921 
1922 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1923 	    BUS_DMASYNC_PREWRITE);
1924 
1925 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1926 
1927 	return 0;
1928 
1929 fail:	iwn_free_rx_ring(sc, ring);
1930 
1931 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1932 
1933 	return error;
1934 }
1935 
1936 static void
1937 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1938 {
1939 	int ntries;
1940 
1941 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1942 
1943 	if (iwn_nic_lock(sc) == 0) {
1944 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1945 		for (ntries = 0; ntries < 1000; ntries++) {
1946 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1947 			    IWN_FH_RX_STATUS_IDLE)
1948 				break;
1949 			DELAY(10);
1950 		}
1951 		iwn_nic_unlock(sc);
1952 	}
1953 	ring->cur = 0;
1954 	sc->last_rx_valid = 0;
1955 }
1956 
1957 static void
1958 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1959 {
1960 	int i;
1961 
1962 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1963 
1964 	iwn_dma_contig_free(&ring->desc_dma);
1965 	iwn_dma_contig_free(&ring->stat_dma);
1966 
1967 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1968 		struct iwn_rx_data *data = &ring->data[i];
1969 
1970 		if (data->m != NULL) {
1971 			bus_dmamap_sync(ring->data_dmat, data->map,
1972 			    BUS_DMASYNC_POSTREAD);
1973 			bus_dmamap_unload(ring->data_dmat, data->map);
1974 			m_freem(data->m);
1975 			data->m = NULL;
1976 		}
1977 		if (data->map != NULL)
1978 			bus_dmamap_destroy(ring->data_dmat, data->map);
1979 	}
1980 	if (ring->data_dmat != NULL) {
1981 		bus_dma_tag_destroy(ring->data_dmat);
1982 		ring->data_dmat = NULL;
1983 	}
1984 }
1985 
1986 static int
1987 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1988 {
1989 	bus_addr_t paddr;
1990 	bus_size_t size;
1991 	int i, error;
1992 
1993 	ring->qid = qid;
1994 	ring->queued = 0;
1995 	ring->cur = 0;
1996 
1997 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1998 
1999 	/* Allocate TX descriptors (256-byte aligned). */
2000 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2001 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2002 	    size, 256);
2003 	if (error != 0) {
2004 		device_printf(sc->sc_dev,
2005 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2006 		    __func__, error);
2007 		goto fail;
2008 	}
2009 
2010 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2011 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2012 	    size, 4);
2013 	if (error != 0) {
2014 		device_printf(sc->sc_dev,
2015 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2016 		    __func__, error);
2017 		goto fail;
2018 	}
2019 
2020 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2021 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2022 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2023 	if (error != 0) {
2024 		device_printf(sc->sc_dev,
2025 		    "%s: could not create TX buf DMA tag, error %d\n",
2026 		    __func__, error);
2027 		goto fail;
2028 	}
2029 
2030 	paddr = ring->cmd_dma.paddr;
2031 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2032 		struct iwn_tx_data *data = &ring->data[i];
2033 
2034 		data->cmd_paddr = paddr;
2035 		data->scratch_paddr = paddr + 12;
2036 		paddr += sizeof (struct iwn_tx_cmd);
2037 
2038 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2039 		if (error != 0) {
2040 			device_printf(sc->sc_dev,
2041 			    "%s: could not create TX buf DMA map, error %d\n",
2042 			    __func__, error);
2043 			goto fail;
2044 		}
2045 	}
2046 
2047 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2048 
2049 	return 0;
2050 
2051 fail:	iwn_free_tx_ring(sc, ring);
2052 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2053 	return error;
2054 }
2055 
2056 static void
2057 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2058 {
2059 	int i;
2060 
2061 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2062 
2063 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2064 		struct iwn_tx_data *data = &ring->data[i];
2065 
2066 		if (data->m != NULL) {
2067 			bus_dmamap_sync(ring->data_dmat, data->map,
2068 			    BUS_DMASYNC_POSTWRITE);
2069 			bus_dmamap_unload(ring->data_dmat, data->map);
2070 			m_freem(data->m);
2071 			data->m = NULL;
2072 		}
2073 		if (data->ni != NULL) {
2074 			ieee80211_free_node(data->ni);
2075 			data->ni = NULL;
2076 		}
2077 	}
2078 	/* Clear TX descriptors. */
2079 	memset(ring->desc, 0, ring->desc_dma.size);
2080 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2081 	    BUS_DMASYNC_PREWRITE);
2082 	sc->qfullmsk &= ~(1 << ring->qid);
2083 	ring->queued = 0;
2084 	ring->cur = 0;
2085 }
2086 
2087 static void
2088 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2089 {
2090 	int i;
2091 
2092 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2093 
2094 	iwn_dma_contig_free(&ring->desc_dma);
2095 	iwn_dma_contig_free(&ring->cmd_dma);
2096 
2097 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2098 		struct iwn_tx_data *data = &ring->data[i];
2099 
2100 		if (data->m != NULL) {
2101 			bus_dmamap_sync(ring->data_dmat, data->map,
2102 			    BUS_DMASYNC_POSTWRITE);
2103 			bus_dmamap_unload(ring->data_dmat, data->map);
2104 			m_freem(data->m);
2105 		}
2106 		if (data->map != NULL)
2107 			bus_dmamap_destroy(ring->data_dmat, data->map);
2108 	}
2109 	if (ring->data_dmat != NULL) {
2110 		bus_dma_tag_destroy(ring->data_dmat);
2111 		ring->data_dmat = NULL;
2112 	}
2113 }
2114 
2115 static void
2116 iwn5000_ict_reset(struct iwn_softc *sc)
2117 {
2118 	/* Disable interrupts. */
2119 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2120 
2121 	/* Reset ICT table. */
2122 	memset(sc->ict, 0, IWN_ICT_SIZE);
2123 	sc->ict_cur = 0;
2124 
2125 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2126 	    BUS_DMASYNC_PREWRITE);
2127 
2128 	/* Set physical address of ICT table (4KB aligned). */
2129 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2130 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2131 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2132 
2133 	/* Enable periodic RX interrupt. */
2134 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2135 	/* Switch to ICT interrupt mode in driver. */
2136 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2137 
2138 	/* Re-enable interrupts. */
2139 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2140 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2141 }
2142 
2143 static int
2144 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2145 {
2146 	struct iwn_ops *ops = &sc->ops;
2147 	uint16_t val;
2148 	int error;
2149 
2150 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2151 
2152 	/* Check whether adapter has an EEPROM or an OTPROM. */
2153 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2154 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2155 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2156 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2157 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2158 
2159 	/* Adapter has to be powered on for EEPROM access to work. */
2160 	if ((error = iwn_apm_init(sc)) != 0) {
2161 		device_printf(sc->sc_dev,
2162 		    "%s: could not power ON adapter, error %d\n", __func__,
2163 		    error);
2164 		return error;
2165 	}
2166 
2167 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2168 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2169 		return EIO;
2170 	}
2171 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2172 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2173 		    __func__, error);
2174 		return error;
2175 	}
2176 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2177 		if ((error = iwn_init_otprom(sc)) != 0) {
2178 			device_printf(sc->sc_dev,
2179 			    "%s: could not initialize OTPROM, error %d\n",
2180 			    __func__, error);
2181 			return error;
2182 		}
2183 	}
2184 
2185 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2186 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2187 	/* Check if HT support is bonded out. */
2188 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2189 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2190 
2191 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2192 	sc->rfcfg = le16toh(val);
2193 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2194 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2195 	if (sc->txchainmask == 0)
2196 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2197 	if (sc->rxchainmask == 0)
2198 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2199 
2200 	/* Read MAC address. */
2201 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2202 
2203 	/* Read adapter-specific information from EEPROM. */
2204 	ops->read_eeprom(sc);
2205 
2206 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2207 
2208 	iwn_eeprom_unlock(sc);
2209 
2210 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2211 
2212 	return 0;
2213 }
2214 
2215 static void
2216 iwn4965_read_eeprom(struct iwn_softc *sc)
2217 {
2218 	uint32_t addr;
2219 	uint16_t val;
2220 	int i;
2221 
2222 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2223 
2224 	/* Read regulatory domain (4 ASCII characters). */
2225 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2226 
2227 	/* Read the list of authorized channels (20MHz & 40MHz). */
2228 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2229 		addr = iwn4965_regulatory_bands[i];
2230 		iwn_read_eeprom_channels(sc, i, addr);
2231 	}
2232 
2233 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2234 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2235 	sc->maxpwr2GHz = val & 0xff;
2236 	sc->maxpwr5GHz = val >> 8;
2237 	/* Check that EEPROM values are within valid range. */
2238 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2239 		sc->maxpwr5GHz = 38;
2240 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2241 		sc->maxpwr2GHz = 38;
2242 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2243 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2244 
2245 	/* Read samples for each TX power group. */
2246 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2247 	    sizeof sc->bands);
2248 
2249 	/* Read voltage at which samples were taken. */
2250 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2251 	sc->eeprom_voltage = (int16_t)le16toh(val);
2252 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2253 	    sc->eeprom_voltage);
2254 
2255 #ifdef IWN_DEBUG
2256 	/* Print samples. */
2257 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2258 		for (i = 0; i < IWN_NBANDS - 1; i++)
2259 			iwn4965_print_power_group(sc, i);
2260 	}
2261 #endif
2262 
2263 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2264 }
2265 
2266 #ifdef IWN_DEBUG
2267 static void
2268 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2269 {
2270 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2271 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2272 	int j, c;
2273 
2274 	printf("===band %d===\n", i);
2275 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2276 	printf("chan1 num=%d\n", chans[0].num);
2277 	for (c = 0; c < 2; c++) {
2278 		for (j = 0; j < IWN_NSAMPLES; j++) {
2279 			printf("chain %d, sample %d: temp=%d gain=%d "
2280 			    "power=%d pa_det=%d\n", c, j,
2281 			    chans[0].samples[c][j].temp,
2282 			    chans[0].samples[c][j].gain,
2283 			    chans[0].samples[c][j].power,
2284 			    chans[0].samples[c][j].pa_det);
2285 		}
2286 	}
2287 	printf("chan2 num=%d\n", chans[1].num);
2288 	for (c = 0; c < 2; c++) {
2289 		for (j = 0; j < IWN_NSAMPLES; j++) {
2290 			printf("chain %d, sample %d: temp=%d gain=%d "
2291 			    "power=%d pa_det=%d\n", c, j,
2292 			    chans[1].samples[c][j].temp,
2293 			    chans[1].samples[c][j].gain,
2294 			    chans[1].samples[c][j].power,
2295 			    chans[1].samples[c][j].pa_det);
2296 		}
2297 	}
2298 }
2299 #endif
2300 
2301 static void
2302 iwn5000_read_eeprom(struct iwn_softc *sc)
2303 {
2304 	struct iwn5000_eeprom_calib_hdr hdr;
2305 	int32_t volt;
2306 	uint32_t base, addr;
2307 	uint16_t val;
2308 	int i;
2309 
2310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2311 
2312 	/* Read regulatory domain (4 ASCII characters). */
2313 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2314 	base = le16toh(val);
2315 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2316 	    sc->eeprom_domain, 4);
2317 
2318 	/* Read the list of authorized channels (20MHz & 40MHz). */
2319 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2320 		addr =  base + sc->base_params->regulatory_bands[i];
2321 		iwn_read_eeprom_channels(sc, i, addr);
2322 	}
2323 
2324 	/* Read enhanced TX power information for 6000 Series. */
2325 	if (sc->base_params->enhanced_TX_power)
2326 		iwn_read_eeprom_enhinfo(sc);
2327 
2328 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2329 	base = le16toh(val);
2330 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2331 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2332 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2333 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2334 	sc->calib_ver = hdr.version;
2335 
2336 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2337 		sc->eeprom_voltage = le16toh(hdr.volt);
2338 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2339 		sc->eeprom_temp_high=le16toh(val);
2340 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2341 		sc->eeprom_temp = le16toh(val);
2342 	}
2343 
2344 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2345 		/* Compute temperature offset. */
2346 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2347 		sc->eeprom_temp = le16toh(val);
2348 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2349 		volt = le16toh(val);
2350 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2351 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2352 		    sc->eeprom_temp, volt, sc->temp_off);
2353 	} else {
2354 		/* Read crystal calibration. */
2355 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2356 		    &sc->eeprom_crystal, sizeof (uint32_t));
2357 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2358 		    le32toh(sc->eeprom_crystal));
2359 	}
2360 
2361 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2362 
2363 }
2364 
2365 /*
2366  * Translate EEPROM flags to net80211.
2367  */
2368 static uint32_t
2369 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2370 {
2371 	uint32_t nflags;
2372 
2373 	nflags = 0;
2374 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2375 		nflags |= IEEE80211_CHAN_PASSIVE;
2376 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2377 		nflags |= IEEE80211_CHAN_NOADHOC;
2378 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2379 		nflags |= IEEE80211_CHAN_DFS;
2380 		/* XXX apparently IBSS may still be marked */
2381 		nflags |= IEEE80211_CHAN_NOADHOC;
2382 	}
2383 
2384 	return nflags;
2385 }
2386 
2387 static void
2388 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2389     struct ieee80211_channel chans[])
2390 {
2391 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2392 	const struct iwn_chan_band *band = &iwn_bands[n];
2393 	uint8_t bands[IEEE80211_MODE_BYTES];
2394 	uint8_t chan;
2395 	int i, error, nflags;
2396 
2397 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2398 
2399 	memset(bands, 0, sizeof(bands));
2400 	if (n == 0) {
2401 		setbit(bands, IEEE80211_MODE_11B);
2402 		setbit(bands, IEEE80211_MODE_11G);
2403 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2404 			setbit(bands, IEEE80211_MODE_11NG);
2405 	} else {
2406 		setbit(bands, IEEE80211_MODE_11A);
2407 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2408 			setbit(bands, IEEE80211_MODE_11NA);
2409 	}
2410 
2411 	for (i = 0; i < band->nchan; i++) {
2412 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2413 			DPRINTF(sc, IWN_DEBUG_RESET,
2414 			    "skip chan %d flags 0x%x maxpwr %d\n",
2415 			    band->chan[i], channels[i].flags,
2416 			    channels[i].maxpwr);
2417 			continue;
2418 		}
2419 
2420 		chan = band->chan[i];
2421 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2422 		error = ieee80211_add_channel(chans, maxchans, nchans,
2423 		    chan, 0, channels[i].maxpwr, nflags, bands);
2424 		if (error != 0)
2425 			break;
2426 
2427 		/* Save maximum allowed TX power for this channel. */
2428 		/* XXX wrong */
2429 		sc->maxpwr[chan] = channels[i].maxpwr;
2430 
2431 		DPRINTF(sc, IWN_DEBUG_RESET,
2432 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2433 		    channels[i].flags, channels[i].maxpwr);
2434 	}
2435 
2436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2437 
2438 }
2439 
2440 static void
2441 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2442     struct ieee80211_channel chans[])
2443 {
2444 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2445 	const struct iwn_chan_band *band = &iwn_bands[n];
2446 	uint8_t chan;
2447 	int i, error, nflags;
2448 
2449 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2450 
2451 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2452 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2453 		return;
2454 	}
2455 
2456 	for (i = 0; i < band->nchan; i++) {
2457 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2458 			DPRINTF(sc, IWN_DEBUG_RESET,
2459 			    "skip chan %d flags 0x%x maxpwr %d\n",
2460 			    band->chan[i], channels[i].flags,
2461 			    channels[i].maxpwr);
2462 			continue;
2463 		}
2464 
2465 		chan = band->chan[i];
2466 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2467 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2468 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2469 		    chan, channels[i].maxpwr, nflags);
2470 		switch (error) {
2471 		case EINVAL:
2472 			device_printf(sc->sc_dev,
2473 			    "%s: no entry for channel %d\n", __func__, chan);
2474 			continue;
2475 		case ENOENT:
2476 			DPRINTF(sc, IWN_DEBUG_RESET,
2477 			    "%s: skip chan %d, extension channel not found\n",
2478 			    __func__, chan);
2479 			continue;
2480 		case ENOBUFS:
2481 			device_printf(sc->sc_dev,
2482 			    "%s: channel table is full!\n", __func__);
2483 			break;
2484 		case 0:
2485 			DPRINTF(sc, IWN_DEBUG_RESET,
2486 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2487 			    chan, channels[i].flags, channels[i].maxpwr);
2488 			/* FALLTHROUGH */
2489 		default:
2490 			break;
2491 		}
2492 	}
2493 
2494 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2495 
2496 }
2497 
2498 static void
2499 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2500 {
2501 	struct ieee80211com *ic = &sc->sc_ic;
2502 
2503 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2504 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2505 
2506 	if (n < 5) {
2507 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2508 		    ic->ic_channels);
2509 	} else {
2510 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2511 		    ic->ic_channels);
2512 	}
2513 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2514 }
2515 
2516 static struct iwn_eeprom_chan *
2517 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2518 {
2519 	int band, chan, i, j;
2520 
2521 	if (IEEE80211_IS_CHAN_HT40(c)) {
2522 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2523 		if (IEEE80211_IS_CHAN_HT40D(c))
2524 			chan = c->ic_extieee;
2525 		else
2526 			chan = c->ic_ieee;
2527 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2528 			if (iwn_bands[band].chan[i] == chan)
2529 				return &sc->eeprom_channels[band][i];
2530 		}
2531 	} else {
2532 		for (j = 0; j < 5; j++) {
2533 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2534 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2535 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2536 					return &sc->eeprom_channels[j][i];
2537 			}
2538 		}
2539 	}
2540 	return NULL;
2541 }
2542 
2543 static void
2544 iwn_getradiocaps(struct ieee80211com *ic,
2545     int maxchans, int *nchans, struct ieee80211_channel chans[])
2546 {
2547 	struct iwn_softc *sc = ic->ic_softc;
2548 	int i;
2549 
2550 	/* Parse the list of authorized channels. */
2551 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2552 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2553 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2554 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2555 }
2556 
2557 /*
2558  * Enforce flags read from EEPROM.
2559  */
2560 static int
2561 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2562     int nchan, struct ieee80211_channel chans[])
2563 {
2564 	struct iwn_softc *sc = ic->ic_softc;
2565 	int i;
2566 
2567 	for (i = 0; i < nchan; i++) {
2568 		struct ieee80211_channel *c = &chans[i];
2569 		struct iwn_eeprom_chan *channel;
2570 
2571 		channel = iwn_find_eeprom_channel(sc, c);
2572 		if (channel == NULL) {
2573 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2574 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2575 			return EINVAL;
2576 		}
2577 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static void
2584 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2585 {
2586 	struct iwn_eeprom_enhinfo enhinfo[35];
2587 	struct ieee80211com *ic = &sc->sc_ic;
2588 	struct ieee80211_channel *c;
2589 	uint16_t val, base;
2590 	int8_t maxpwr;
2591 	uint8_t flags;
2592 	int i, j;
2593 
2594 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2595 
2596 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2597 	base = le16toh(val);
2598 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2599 	    enhinfo, sizeof enhinfo);
2600 
2601 	for (i = 0; i < nitems(enhinfo); i++) {
2602 		flags = enhinfo[i].flags;
2603 		if (!(flags & IWN_ENHINFO_VALID))
2604 			continue;	/* Skip invalid entries. */
2605 
2606 		maxpwr = 0;
2607 		if (sc->txchainmask & IWN_ANT_A)
2608 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2609 		if (sc->txchainmask & IWN_ANT_B)
2610 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2611 		if (sc->txchainmask & IWN_ANT_C)
2612 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2613 		if (sc->ntxchains == 2)
2614 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2615 		else if (sc->ntxchains == 3)
2616 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2617 
2618 		for (j = 0; j < ic->ic_nchans; j++) {
2619 			c = &ic->ic_channels[j];
2620 			if ((flags & IWN_ENHINFO_5GHZ)) {
2621 				if (!IEEE80211_IS_CHAN_A(c))
2622 					continue;
2623 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2624 				if (!IEEE80211_IS_CHAN_G(c))
2625 					continue;
2626 			} else if (!IEEE80211_IS_CHAN_B(c))
2627 				continue;
2628 			if ((flags & IWN_ENHINFO_HT40)) {
2629 				if (!IEEE80211_IS_CHAN_HT40(c))
2630 					continue;
2631 			} else {
2632 				if (IEEE80211_IS_CHAN_HT40(c))
2633 					continue;
2634 			}
2635 			if (enhinfo[i].chan != 0 &&
2636 			    enhinfo[i].chan != c->ic_ieee)
2637 				continue;
2638 
2639 			DPRINTF(sc, IWN_DEBUG_RESET,
2640 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2641 			    c->ic_flags, maxpwr / 2);
2642 			c->ic_maxregpower = maxpwr / 2;
2643 			c->ic_maxpower = maxpwr;
2644 		}
2645 	}
2646 
2647 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2648 
2649 }
2650 
2651 static struct ieee80211_node *
2652 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2653 {
2654 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2655 }
2656 
2657 static __inline int
2658 rate2plcp(int rate)
2659 {
2660 	switch (rate & 0xff) {
2661 	case 12:	return 0xd;
2662 	case 18:	return 0xf;
2663 	case 24:	return 0x5;
2664 	case 36:	return 0x7;
2665 	case 48:	return 0x9;
2666 	case 72:	return 0xb;
2667 	case 96:	return 0x1;
2668 	case 108:	return 0x3;
2669 	case 2:		return 10;
2670 	case 4:		return 20;
2671 	case 11:	return 55;
2672 	case 22:	return 110;
2673 	}
2674 	return 0;
2675 }
2676 
2677 static __inline uint8_t
2678 plcp2rate(const uint8_t rate_plcp)
2679 {
2680 	switch (rate_plcp) {
2681 	case 0xd:	return 12;
2682 	case 0xf:	return 18;
2683 	case 0x5:	return 24;
2684 	case 0x7:	return 36;
2685 	case 0x9:	return 48;
2686 	case 0xb:	return 72;
2687 	case 0x1:	return 96;
2688 	case 0x3:	return 108;
2689 	case 10:	return 2;
2690 	case 20:	return 4;
2691 	case 55:	return 11;
2692 	case 110:	return 22;
2693 	default:	return 0;
2694 	}
2695 }
2696 
2697 static int
2698 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2699 {
2700 
2701 	return IWN_LSB(sc->txchainmask);
2702 }
2703 
2704 static int
2705 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2706 {
2707 	int tx;
2708 
2709 	/*
2710 	 * The '2 stream' setup is a bit .. odd.
2711 	 *
2712 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2713 	 * the firmware panics (eg Intel 5100.)
2714 	 *
2715 	 * For NICs that support two antennas, we use ANT_AB.
2716 	 *
2717 	 * For NICs that support three antennas, we use the two that
2718 	 * wasn't the default one.
2719 	 *
2720 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2721 	 * this to only one antenna.
2722 	 */
2723 
2724 	/* Default - transmit on the other antennas */
2725 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2726 
2727 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2728 	if (tx == 0)
2729 		tx = IWN_ANT_AB;
2730 
2731 	/*
2732 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2733 	 * the default chainmask
2734 	 */
2735 	else if (sc->ntxchains == 2)
2736 		tx = sc->txchainmask;
2737 
2738 	return (tx);
2739 }
2740 
2741 
2742 
2743 /*
2744  * Calculate the required PLCP value from the given rate,
2745  * to the given node.
2746  *
2747  * This will take the node configuration (eg 11n, rate table
2748  * setup, etc) into consideration.
2749  */
2750 static uint32_t
2751 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2752     uint8_t rate)
2753 {
2754 	struct ieee80211com *ic = ni->ni_ic;
2755 	uint32_t plcp = 0;
2756 	int ridx;
2757 
2758 	/*
2759 	 * If it's an MCS rate, let's set the plcp correctly
2760 	 * and set the relevant flags based on the node config.
2761 	 */
2762 	if (rate & IEEE80211_RATE_MCS) {
2763 		/*
2764 		 * Set the initial PLCP value to be between 0->31 for
2765 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2766 		 * flag.
2767 		 */
2768 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2769 
2770 		/*
2771 		 * XXX the following should only occur if both
2772 		 * the local configuration _and_ the remote node
2773 		 * advertise these capabilities.  Thus this code
2774 		 * may need fixing!
2775 		 */
2776 
2777 		/*
2778 		 * Set the channel width and guard interval.
2779 		 */
2780 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2781 			plcp |= IWN_RFLAG_HT40;
2782 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2783 				plcp |= IWN_RFLAG_SGI;
2784 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2785 			plcp |= IWN_RFLAG_SGI;
2786 		}
2787 
2788 		/*
2789 		 * Ensure the selected rate matches the link quality
2790 		 * table entries being used.
2791 		 */
2792 		if (rate > 0x8f)
2793 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2794 		else if (rate > 0x87)
2795 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2796 		else
2797 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2798 	} else {
2799 		/*
2800 		 * Set the initial PLCP - fine for both
2801 		 * OFDM and CCK rates.
2802 		 */
2803 		plcp = rate2plcp(rate);
2804 
2805 		/* Set CCK flag if it's CCK */
2806 
2807 		/* XXX It would be nice to have a method
2808 		 * to map the ridx -> phy table entry
2809 		 * so we could just query that, rather than
2810 		 * this hack to check against IWN_RIDX_OFDM6.
2811 		 */
2812 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2813 		    rate & IEEE80211_RATE_VAL);
2814 		if (ridx < IWN_RIDX_OFDM6 &&
2815 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2816 			plcp |= IWN_RFLAG_CCK;
2817 
2818 		/* Set antenna configuration */
2819 		/* XXX TODO: is this the right antenna to use for legacy? */
2820 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2821 	}
2822 
2823 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2824 	    __func__,
2825 	    rate,
2826 	    plcp);
2827 
2828 	return (htole32(plcp));
2829 }
2830 
2831 static void
2832 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2833 {
2834 	/* Doesn't do anything at the moment */
2835 }
2836 
2837 static int
2838 iwn_media_change(struct ifnet *ifp)
2839 {
2840 	int error;
2841 
2842 	error = ieee80211_media_change(ifp);
2843 	/* NB: only the fixed rate can change and that doesn't need a reset */
2844 	return (error == ENETRESET ? 0 : error);
2845 }
2846 
2847 static int
2848 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2849 {
2850 	struct iwn_vap *ivp = IWN_VAP(vap);
2851 	struct ieee80211com *ic = vap->iv_ic;
2852 	struct iwn_softc *sc = ic->ic_softc;
2853 	int error = 0;
2854 
2855 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2856 
2857 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2858 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2859 
2860 	IEEE80211_UNLOCK(ic);
2861 	IWN_LOCK(sc);
2862 	callout_stop(&sc->calib_to);
2863 
2864 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2865 
2866 	switch (nstate) {
2867 	case IEEE80211_S_ASSOC:
2868 		if (vap->iv_state != IEEE80211_S_RUN)
2869 			break;
2870 		/* FALLTHROUGH */
2871 	case IEEE80211_S_AUTH:
2872 		if (vap->iv_state == IEEE80211_S_AUTH)
2873 			break;
2874 
2875 		/*
2876 		 * !AUTH -> AUTH transition requires state reset to handle
2877 		 * reassociations correctly.
2878 		 */
2879 		sc->rxon->associd = 0;
2880 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2881 		sc->calib.state = IWN_CALIB_STATE_INIT;
2882 
2883 		/* Wait until we hear a beacon before we transmit */
2884 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2885 			sc->sc_beacon_wait = 1;
2886 
2887 		if ((error = iwn_auth(sc, vap)) != 0) {
2888 			device_printf(sc->sc_dev,
2889 			    "%s: could not move to auth state\n", __func__);
2890 		}
2891 		break;
2892 
2893 	case IEEE80211_S_RUN:
2894 		/*
2895 		 * RUN -> RUN transition; Just restart the timers.
2896 		 */
2897 		if (vap->iv_state == IEEE80211_S_RUN) {
2898 			sc->calib_cnt = 0;
2899 			break;
2900 		}
2901 
2902 		/* Wait until we hear a beacon before we transmit */
2903 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2904 			sc->sc_beacon_wait = 1;
2905 
2906 		/*
2907 		 * !RUN -> RUN requires setting the association id
2908 		 * which is done with a firmware cmd.  We also defer
2909 		 * starting the timers until that work is done.
2910 		 */
2911 		if ((error = iwn_run(sc, vap)) != 0) {
2912 			device_printf(sc->sc_dev,
2913 			    "%s: could not move to run state\n", __func__);
2914 		}
2915 		break;
2916 
2917 	case IEEE80211_S_INIT:
2918 		sc->calib.state = IWN_CALIB_STATE_INIT;
2919 		/*
2920 		 * Purge the xmit queue so we don't have old frames
2921 		 * during a new association attempt.
2922 		 */
2923 		sc->sc_beacon_wait = 0;
2924 		iwn_xmit_queue_drain(sc);
2925 		break;
2926 
2927 	default:
2928 		break;
2929 	}
2930 	IWN_UNLOCK(sc);
2931 	IEEE80211_LOCK(ic);
2932 	if (error != 0){
2933 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2934 		return error;
2935 	}
2936 
2937 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2938 
2939 	return ivp->iv_newstate(vap, nstate, arg);
2940 }
2941 
2942 static void
2943 iwn_calib_timeout(void *arg)
2944 {
2945 	struct iwn_softc *sc = arg;
2946 
2947 	IWN_LOCK_ASSERT(sc);
2948 
2949 	/* Force automatic TX power calibration every 60 secs. */
2950 	if (++sc->calib_cnt >= 120) {
2951 		uint32_t flags = 0;
2952 
2953 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2954 		    "sending request for statistics");
2955 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2956 		    sizeof flags, 1);
2957 		sc->calib_cnt = 0;
2958 	}
2959 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2960 	    sc);
2961 }
2962 
2963 /*
2964  * Process an RX_PHY firmware notification.  This is usually immediately
2965  * followed by an MPDU_RX_DONE notification.
2966  */
2967 static void
2968 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2969     struct iwn_rx_data *data)
2970 {
2971 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2972 
2973 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2974 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2975 
2976 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2977 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2978 	sc->last_rx_valid = 1;
2979 }
2980 
2981 /*
2982  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2983  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2984  */
2985 static void
2986 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2987     struct iwn_rx_data *data)
2988 {
2989 	struct iwn_ops *ops = &sc->ops;
2990 	struct ieee80211com *ic = &sc->sc_ic;
2991 	struct iwn_rx_ring *ring = &sc->rxq;
2992 	struct ieee80211_frame *wh;
2993 	struct ieee80211_node *ni;
2994 	struct mbuf *m, *m1;
2995 	struct iwn_rx_stat *stat;
2996 	caddr_t head;
2997 	bus_addr_t paddr;
2998 	uint32_t flags;
2999 	int error, len, rssi, nf;
3000 
3001 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3002 
3003 	if (desc->type == IWN_MPDU_RX_DONE) {
3004 		/* Check for prior RX_PHY notification. */
3005 		if (!sc->last_rx_valid) {
3006 			DPRINTF(sc, IWN_DEBUG_ANY,
3007 			    "%s: missing RX_PHY\n", __func__);
3008 			return;
3009 		}
3010 		stat = &sc->last_rx_stat;
3011 	} else
3012 		stat = (struct iwn_rx_stat *)(desc + 1);
3013 
3014 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3015 
3016 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3017 		device_printf(sc->sc_dev,
3018 		    "%s: invalid RX statistic header, len %d\n", __func__,
3019 		    stat->cfg_phy_len);
3020 		return;
3021 	}
3022 	if (desc->type == IWN_MPDU_RX_DONE) {
3023 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3024 		head = (caddr_t)(mpdu + 1);
3025 		len = le16toh(mpdu->len);
3026 	} else {
3027 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3028 		len = le16toh(stat->len);
3029 	}
3030 
3031 	flags = le32toh(*(uint32_t *)(head + len));
3032 
3033 	/* Discard frames with a bad FCS early. */
3034 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3035 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3036 		    __func__, flags);
3037 		counter_u64_add(ic->ic_ierrors, 1);
3038 		return;
3039 	}
3040 	/* Discard frames that are too short. */
3041 	if (len < sizeof (struct ieee80211_frame_ack)) {
3042 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3043 		    __func__, len);
3044 		counter_u64_add(ic->ic_ierrors, 1);
3045 		return;
3046 	}
3047 
3048 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3049 	if (m1 == NULL) {
3050 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3051 		    __func__);
3052 		counter_u64_add(ic->ic_ierrors, 1);
3053 		return;
3054 	}
3055 	bus_dmamap_unload(ring->data_dmat, data->map);
3056 
3057 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3058 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3059 	if (error != 0 && error != EFBIG) {
3060 		device_printf(sc->sc_dev,
3061 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3062 		m_freem(m1);
3063 
3064 		/* Try to reload the old mbuf. */
3065 		error = bus_dmamap_load(ring->data_dmat, data->map,
3066 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3067 		    &paddr, BUS_DMA_NOWAIT);
3068 		if (error != 0 && error != EFBIG) {
3069 			panic("%s: could not load old RX mbuf", __func__);
3070 		}
3071 		bus_dmamap_sync(ring->data_dmat, data->map,
3072 		    BUS_DMASYNC_PREREAD);
3073 		/* Physical address may have changed. */
3074 		ring->desc[ring->cur] = htole32(paddr >> 8);
3075 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3076 		    BUS_DMASYNC_PREWRITE);
3077 		counter_u64_add(ic->ic_ierrors, 1);
3078 		return;
3079 	}
3080 
3081 	bus_dmamap_sync(ring->data_dmat, data->map,
3082 	    BUS_DMASYNC_PREREAD);
3083 
3084 	m = data->m;
3085 	data->m = m1;
3086 	/* Update RX descriptor. */
3087 	ring->desc[ring->cur] = htole32(paddr >> 8);
3088 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3089 	    BUS_DMASYNC_PREWRITE);
3090 
3091 	/* Finalize mbuf. */
3092 	m->m_data = head;
3093 	m->m_pkthdr.len = m->m_len = len;
3094 
3095 	/* Grab a reference to the source node. */
3096 	wh = mtod(m, struct ieee80211_frame *);
3097 	if (len >= sizeof(struct ieee80211_frame_min))
3098 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3099 	else
3100 		ni = NULL;
3101 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3102 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3103 
3104 	rssi = ops->get_rssi(sc, stat);
3105 
3106 	if (ieee80211_radiotap_active(ic)) {
3107 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3108 		uint32_t rate = le32toh(stat->rate);
3109 
3110 		tap->wr_flags = 0;
3111 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3112 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3113 		tap->wr_dbm_antsignal = (int8_t)rssi;
3114 		tap->wr_dbm_antnoise = (int8_t)nf;
3115 		tap->wr_tsft = stat->tstamp;
3116 		if (rate & IWN_RFLAG_MCS) {
3117 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3118 			tap->wr_rate |= IEEE80211_RATE_MCS;
3119 		} else
3120 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3121 	}
3122 
3123 	/*
3124 	 * If it's a beacon and we're waiting, then do the
3125 	 * wakeup.  This should unblock raw_xmit/start.
3126 	 */
3127 	if (sc->sc_beacon_wait) {
3128 		uint8_t type, subtype;
3129 		/* NB: Re-assign wh */
3130 		wh = mtod(m, struct ieee80211_frame *);
3131 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3132 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3133 		/*
3134 		 * This assumes at this point we've received our own
3135 		 * beacon.
3136 		 */
3137 		DPRINTF(sc, IWN_DEBUG_TRACE,
3138 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3139 		    __func__, type, subtype);
3140 		if (type == IEEE80211_FC0_TYPE_MGT &&
3141 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3142 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3143 			    "%s: waking things up\n", __func__);
3144 			/* queue taskqueue to transmit! */
3145 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3146 		}
3147 	}
3148 
3149 	IWN_UNLOCK(sc);
3150 
3151 	/* Send the frame to the 802.11 layer. */
3152 	if (ni != NULL) {
3153 		if (ni->ni_flags & IEEE80211_NODE_HT)
3154 			m->m_flags |= M_AMPDU;
3155 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3156 		/* Node is no longer needed. */
3157 		ieee80211_free_node(ni);
3158 	} else
3159 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3160 
3161 	IWN_LOCK(sc);
3162 
3163 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3164 
3165 }
3166 
3167 /* Process an incoming Compressed BlockAck. */
3168 static void
3169 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3170     struct iwn_rx_data *data)
3171 {
3172 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3173 	struct iwn_ops *ops = &sc->ops;
3174 	struct iwn_node *wn;
3175 	struct ieee80211_node *ni;
3176 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3177 	struct iwn_tx_ring *txq;
3178 	struct iwn_tx_data *txdata;
3179 	struct ieee80211_tx_ampdu *tap;
3180 	struct mbuf *m;
3181 	uint64_t bitmap;
3182 	uint16_t ssn;
3183 	uint8_t tid;
3184 	int i, lastidx, qid, *res, shift;
3185 	int tx_ok = 0, tx_err = 0;
3186 
3187 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3188 
3189 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3190 
3191 	qid = le16toh(ba->qid);
3192 	txq = &sc->txq[ba->qid];
3193 	tap = sc->qid2tap[ba->qid];
3194 	tid = tap->txa_tid;
3195 	wn = (void *)tap->txa_ni;
3196 
3197 	res = NULL;
3198 	ssn = 0;
3199 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3200 		res = tap->txa_private;
3201 		ssn = tap->txa_start & 0xfff;
3202 	}
3203 
3204 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3205 		txdata = &txq->data[txq->read];
3206 
3207 		/* Unmap and free mbuf. */
3208 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3209 		    BUS_DMASYNC_POSTWRITE);
3210 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3211 		m = txdata->m, txdata->m = NULL;
3212 		ni = txdata->ni, txdata->ni = NULL;
3213 
3214 		KASSERT(ni != NULL, ("no node"));
3215 		KASSERT(m != NULL, ("no mbuf"));
3216 
3217 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3218 		ieee80211_tx_complete(ni, m, 1);
3219 
3220 		txq->queued--;
3221 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3222 	}
3223 
3224 	if (txq->queued == 0 && res != NULL) {
3225 		iwn_nic_lock(sc);
3226 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3227 		iwn_nic_unlock(sc);
3228 		sc->qid2tap[qid] = NULL;
3229 		free(res, M_DEVBUF);
3230 		return;
3231 	}
3232 
3233 	if (wn->agg[tid].bitmap == 0)
3234 		return;
3235 
3236 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3237 	if (shift < 0)
3238 		shift += 0x100;
3239 
3240 	if (wn->agg[tid].nframes > (64 - shift))
3241 		return;
3242 
3243 	/*
3244 	 * Walk the bitmap and calculate how many successful and failed
3245 	 * attempts are made.
3246 	 *
3247 	 * Yes, the rate control code doesn't know these are A-MPDU
3248 	 * subframes and that it's okay to fail some of these.
3249 	 */
3250 	ni = tap->txa_ni;
3251 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3252 	for (i = 0; bitmap; i++) {
3253 		txs->flags = 0;		/* XXX TODO */
3254 		if ((bitmap & 1) == 0) {
3255 			tx_err ++;
3256 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3257 		} else {
3258 			tx_ok ++;
3259 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3260 		}
3261 		ieee80211_ratectl_tx_complete(ni, txs);
3262 		bitmap >>= 1;
3263 	}
3264 
3265 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3266 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3267 
3268 }
3269 
3270 /*
3271  * Process a CALIBRATION_RESULT notification sent by the initialization
3272  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3273  */
3274 static void
3275 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3276     struct iwn_rx_data *data)
3277 {
3278 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3279 	int len, idx = -1;
3280 
3281 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3282 
3283 	/* Runtime firmware should not send such a notification. */
3284 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3285 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3286 	    __func__);
3287 		return;
3288 	}
3289 	len = (le32toh(desc->len) & 0x3fff) - 4;
3290 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3291 
3292 	switch (calib->code) {
3293 	case IWN5000_PHY_CALIB_DC:
3294 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3295 			idx = 0;
3296 		break;
3297 	case IWN5000_PHY_CALIB_LO:
3298 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3299 			idx = 1;
3300 		break;
3301 	case IWN5000_PHY_CALIB_TX_IQ:
3302 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3303 			idx = 2;
3304 		break;
3305 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3306 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3307 			idx = 3;
3308 		break;
3309 	case IWN5000_PHY_CALIB_BASE_BAND:
3310 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3311 			idx = 4;
3312 		break;
3313 	}
3314 	if (idx == -1)	/* Ignore other results. */
3315 		return;
3316 
3317 	/* Save calibration result. */
3318 	if (sc->calibcmd[idx].buf != NULL)
3319 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3320 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3321 	if (sc->calibcmd[idx].buf == NULL) {
3322 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3323 		    "not enough memory for calibration result %d\n",
3324 		    calib->code);
3325 		return;
3326 	}
3327 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3328 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3329 	sc->calibcmd[idx].len = len;
3330 	memcpy(sc->calibcmd[idx].buf, calib, len);
3331 }
3332 
3333 static void
3334 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3335     struct iwn_stats *stats, int len)
3336 {
3337 	struct iwn_stats_bt *stats_bt;
3338 	struct iwn_stats *lstats;
3339 
3340 	/*
3341 	 * First - check whether the length is the bluetooth or normal.
3342 	 *
3343 	 * If it's normal - just copy it and bump out.
3344 	 * Otherwise we have to convert things.
3345 	 */
3346 
3347 	if (len == sizeof(struct iwn_stats) + 4) {
3348 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3349 		sc->last_stat_valid = 1;
3350 		return;
3351 	}
3352 
3353 	/*
3354 	 * If it's not the bluetooth size - log, then just copy.
3355 	 */
3356 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3357 		DPRINTF(sc, IWN_DEBUG_STATS,
3358 		    "%s: size of rx statistics (%d) not an expected size!\n",
3359 		    __func__,
3360 		    len);
3361 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3362 		sc->last_stat_valid = 1;
3363 		return;
3364 	}
3365 
3366 	/*
3367 	 * Ok. Time to copy.
3368 	 */
3369 	stats_bt = (struct iwn_stats_bt *) stats;
3370 	lstats = &sc->last_stat;
3371 
3372 	/* flags */
3373 	lstats->flags = stats_bt->flags;
3374 	/* rx_bt */
3375 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3376 	    sizeof(struct iwn_rx_phy_stats));
3377 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3378 	    sizeof(struct iwn_rx_phy_stats));
3379 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3380 	    sizeof(struct iwn_rx_general_stats));
3381 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3382 	    sizeof(struct iwn_rx_ht_phy_stats));
3383 	/* tx */
3384 	memcpy(&lstats->tx, &stats_bt->tx,
3385 	    sizeof(struct iwn_tx_stats));
3386 	/* general */
3387 	memcpy(&lstats->general, &stats_bt->general,
3388 	    sizeof(struct iwn_general_stats));
3389 
3390 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3391 	sc->last_stat_valid = 1;
3392 }
3393 
3394 /*
3395  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3396  * The latter is sent by the firmware after each received beacon.
3397  */
3398 static void
3399 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3400     struct iwn_rx_data *data)
3401 {
3402 	struct iwn_ops *ops = &sc->ops;
3403 	struct ieee80211com *ic = &sc->sc_ic;
3404 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3405 	struct iwn_calib_state *calib = &sc->calib;
3406 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3407 	struct iwn_stats *lstats;
3408 	int temp;
3409 
3410 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3411 
3412 	/* Ignore statistics received during a scan. */
3413 	if (vap->iv_state != IEEE80211_S_RUN ||
3414 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3415 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3416 	    __func__);
3417 		return;
3418 	}
3419 
3420 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3421 
3422 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3423 	    "%s: received statistics, cmd %d, len %d\n",
3424 	    __func__, desc->type, le16toh(desc->len));
3425 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3426 
3427 	/*
3428 	 * Collect/track general statistics for reporting.
3429 	 *
3430 	 * This takes care of ensuring that the bluetooth sized message
3431 	 * will be correctly converted to the legacy sized message.
3432 	 */
3433 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3434 
3435 	/*
3436 	 * And now, let's take a reference of it to use!
3437 	 */
3438 	lstats = &sc->last_stat;
3439 
3440 	/* Test if temperature has changed. */
3441 	if (lstats->general.temp != sc->rawtemp) {
3442 		/* Convert "raw" temperature to degC. */
3443 		sc->rawtemp = stats->general.temp;
3444 		temp = ops->get_temperature(sc);
3445 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3446 		    __func__, temp);
3447 
3448 		/* Update TX power if need be (4965AGN only). */
3449 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3450 			iwn4965_power_calibration(sc, temp);
3451 	}
3452 
3453 	if (desc->type != IWN_BEACON_STATISTICS)
3454 		return;	/* Reply to a statistics request. */
3455 
3456 	sc->noise = iwn_get_noise(&lstats->rx.general);
3457 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3458 
3459 	/* Test that RSSI and noise are present in stats report. */
3460 	if (le32toh(lstats->rx.general.flags) != 1) {
3461 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3462 		    "received statistics without RSSI");
3463 		return;
3464 	}
3465 
3466 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3467 		iwn_collect_noise(sc, &lstats->rx.general);
3468 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3469 		iwn_tune_sensitivity(sc, &lstats->rx);
3470 		/*
3471 		 * XXX TODO: Only run the RX recovery if we're associated!
3472 		 */
3473 		iwn_check_rx_recovery(sc, lstats);
3474 		iwn_save_stats_counters(sc, lstats);
3475 	}
3476 
3477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3478 }
3479 
3480 /*
3481  * Save the relevant statistic counters for the next calibration
3482  * pass.
3483  */
3484 static void
3485 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3486 {
3487 	struct iwn_calib_state *calib = &sc->calib;
3488 
3489 	/* Save counters values for next call. */
3490 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3491 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3492 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3493 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3494 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3495 
3496 	/* Last time we received these tick values */
3497 	sc->last_calib_ticks = ticks;
3498 }
3499 
3500 /*
3501  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3502  * and 5000 adapters have different incompatible TX status formats.
3503  */
3504 static void
3505 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3506     struct iwn_rx_data *data)
3507 {
3508 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3509 	struct iwn_tx_ring *ring;
3510 	int qid;
3511 
3512 	qid = desc->qid & 0xf;
3513 	ring = &sc->txq[qid];
3514 
3515 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3516 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3517 	    __func__, desc->qid, desc->idx,
3518 	    stat->rtsfailcnt,
3519 	    stat->ackfailcnt,
3520 	    stat->btkillcnt,
3521 	    stat->rate, le16toh(stat->duration),
3522 	    le32toh(stat->status));
3523 
3524 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3525 	if (qid >= sc->firstaggqueue) {
3526 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3527 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3528 	} else {
3529 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3530 		    le32toh(stat->status) & 0xff);
3531 	}
3532 }
3533 
3534 static void
3535 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3536     struct iwn_rx_data *data)
3537 {
3538 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3539 	struct iwn_tx_ring *ring;
3540 	int qid;
3541 
3542 	qid = desc->qid & 0xf;
3543 	ring = &sc->txq[qid];
3544 
3545 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3546 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3547 	    __func__, desc->qid, desc->idx,
3548 	    stat->rtsfailcnt,
3549 	    stat->ackfailcnt,
3550 	    stat->btkillcnt,
3551 	    stat->rate, le16toh(stat->duration),
3552 	    le32toh(stat->status));
3553 
3554 #ifdef notyet
3555 	/* Reset TX scheduler slot. */
3556 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3557 #endif
3558 
3559 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3560 	if (qid >= sc->firstaggqueue) {
3561 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3562 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3563 	} else {
3564 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3565 		    le16toh(stat->status) & 0xff);
3566 	}
3567 }
3568 
3569 /*
3570  * Adapter-independent backend for TX_DONE firmware notifications.
3571  */
3572 static void
3573 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3574     int ackfailcnt, uint8_t status)
3575 {
3576 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3577 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3578 	struct iwn_tx_data *data = &ring->data[desc->idx];
3579 	struct mbuf *m;
3580 	struct ieee80211_node *ni;
3581 
3582 	KASSERT(data->ni != NULL, ("no node"));
3583 
3584 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3585 
3586 	/* Unmap and free mbuf. */
3587 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3588 	bus_dmamap_unload(ring->data_dmat, data->map);
3589 	m = data->m, data->m = NULL;
3590 	ni = data->ni, data->ni = NULL;
3591 
3592 	/*
3593 	 * Update rate control statistics for the node.
3594 	 */
3595 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3596 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3597 	txs->short_retries = rtsfailcnt;
3598 	txs->long_retries = ackfailcnt;
3599 	if (!(status & IWN_TX_FAIL))
3600 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3601 	else {
3602 		switch (status) {
3603 		case IWN_TX_FAIL_SHORT_LIMIT:
3604 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3605 			break;
3606 		case IWN_TX_FAIL_LONG_LIMIT:
3607 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3608 			break;
3609 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3610 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3611 			break;
3612 		default:
3613 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3614 			break;
3615 		}
3616 	}
3617 	ieee80211_ratectl_tx_complete(ni, txs);
3618 
3619 	/*
3620 	 * Channels marked for "radar" require traffic to be received
3621 	 * to unlock before we can transmit.  Until traffic is seen
3622 	 * any attempt to transmit is returned immediately with status
3623 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3624 	 * happen on first authenticate after scanning.  To workaround
3625 	 * this we ignore a failure of this sort in AUTH state so the
3626 	 * 802.11 layer will fall back to using a timeout to wait for
3627 	 * the AUTH reply.  This allows the firmware time to see
3628 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3629 	 * unclear why the firmware does not maintain state for
3630 	 * channels recently visited as this would allow immediate
3631 	 * use of the channel after a scan (where we see traffic).
3632 	 */
3633 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3634 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3635 		ieee80211_tx_complete(ni, m, 0);
3636 	else
3637 		ieee80211_tx_complete(ni, m,
3638 		    (status & IWN_TX_FAIL) != 0);
3639 
3640 	sc->sc_tx_timer = 0;
3641 	if (--ring->queued < IWN_TX_RING_LOMARK)
3642 		sc->qfullmsk &= ~(1 << ring->qid);
3643 
3644 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3645 }
3646 
3647 /*
3648  * Process a "command done" firmware notification.  This is where we wakeup
3649  * processes waiting for a synchronous command completion.
3650  */
3651 static void
3652 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3653 {
3654 	struct iwn_tx_ring *ring;
3655 	struct iwn_tx_data *data;
3656 	int cmd_queue_num;
3657 
3658 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3659 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3660 	else
3661 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3662 
3663 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3664 		return;	/* Not a command ack. */
3665 
3666 	ring = &sc->txq[cmd_queue_num];
3667 	data = &ring->data[desc->idx];
3668 
3669 	/* If the command was mapped in an mbuf, free it. */
3670 	if (data->m != NULL) {
3671 		bus_dmamap_sync(ring->data_dmat, data->map,
3672 		    BUS_DMASYNC_POSTWRITE);
3673 		bus_dmamap_unload(ring->data_dmat, data->map);
3674 		m_freem(data->m);
3675 		data->m = NULL;
3676 	}
3677 	wakeup(&ring->desc[desc->idx]);
3678 }
3679 
3680 static void
3681 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3682     int rtsfailcnt, int ackfailcnt, void *stat)
3683 {
3684 	struct iwn_ops *ops = &sc->ops;
3685 	struct iwn_tx_ring *ring = &sc->txq[qid];
3686 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3687 	struct iwn_tx_data *data;
3688 	struct mbuf *m;
3689 	struct iwn_node *wn;
3690 	struct ieee80211_node *ni;
3691 	struct ieee80211_tx_ampdu *tap;
3692 	uint64_t bitmap;
3693 	uint32_t *status = stat;
3694 	uint16_t *aggstatus = stat;
3695 	uint16_t ssn;
3696 	uint8_t tid;
3697 	int bit, i, lastidx, *res, seqno, shift, start;
3698 
3699 	/* XXX TODO: status is le16 field! Grr */
3700 
3701 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3702 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3703 	    __func__,
3704 	    nframes,
3705 	    *status);
3706 
3707 	tap = sc->qid2tap[qid];
3708 	tid = tap->txa_tid;
3709 	wn = (void *)tap->txa_ni;
3710 	ni = tap->txa_ni;
3711 
3712 	/*
3713 	 * XXX TODO: ACK and RTS failures would be nice here!
3714 	 */
3715 
3716 	/*
3717 	 * A-MPDU single frame status - if we failed to transmit it
3718 	 * in A-MPDU, then it may be a permanent failure.
3719 	 *
3720 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3721 	 * there's some permanent and temporary failures that may be
3722 	 * handled differently.
3723 	 */
3724 	if (nframes == 1) {
3725 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3726 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3727 		txs->short_retries = rtsfailcnt;
3728 		txs->long_retries = ackfailcnt;
3729 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3730 #ifdef	NOT_YET
3731 			printf("ieee80211_send_bar()\n");
3732 #endif
3733 			/*
3734 			 * If we completely fail a transmit, make sure a
3735 			 * notification is pushed up to the rate control
3736 			 * layer.
3737 			 */
3738 			/* XXX */
3739 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3740 		} else {
3741 			/*
3742 			 * If nframes=1, then we won't be getting a BA for
3743 			 * this frame.  Ensure that we correctly update the
3744 			 * rate control code with how many retries were
3745 			 * needed to send it.
3746 			 */
3747 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3748 		}
3749 		ieee80211_ratectl_tx_complete(ni, txs);
3750 	}
3751 
3752 	bitmap = 0;
3753 	start = idx;
3754 	for (i = 0; i < nframes; i++) {
3755 		if (le16toh(aggstatus[i * 2]) & 0xc)
3756 			continue;
3757 
3758 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3759 		bit = idx - start;
3760 		shift = 0;
3761 		if (bit >= 64) {
3762 			shift = 0x100 - idx + start;
3763 			bit = 0;
3764 			start = idx;
3765 		} else if (bit <= -64)
3766 			bit = 0x100 - start + idx;
3767 		else if (bit < 0) {
3768 			shift = start - idx;
3769 			start = idx;
3770 			bit = 0;
3771 		}
3772 		bitmap = bitmap << shift;
3773 		bitmap |= 1ULL << bit;
3774 	}
3775 	tap = sc->qid2tap[qid];
3776 	tid = tap->txa_tid;
3777 	wn = (void *)tap->txa_ni;
3778 	wn->agg[tid].bitmap = bitmap;
3779 	wn->agg[tid].startidx = start;
3780 	wn->agg[tid].nframes = nframes;
3781 
3782 	res = NULL;
3783 	ssn = 0;
3784 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3785 		res = tap->txa_private;
3786 		ssn = tap->txa_start & 0xfff;
3787 	}
3788 
3789 	/* This is going nframes DWORDS into the descriptor? */
3790 	seqno = le32toh(*(status + nframes)) & 0xfff;
3791 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3792 		data = &ring->data[ring->read];
3793 
3794 		/* Unmap and free mbuf. */
3795 		bus_dmamap_sync(ring->data_dmat, data->map,
3796 		    BUS_DMASYNC_POSTWRITE);
3797 		bus_dmamap_unload(ring->data_dmat, data->map);
3798 		m = data->m, data->m = NULL;
3799 		ni = data->ni, data->ni = NULL;
3800 
3801 		KASSERT(ni != NULL, ("no node"));
3802 		KASSERT(m != NULL, ("no mbuf"));
3803 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3804 		ieee80211_tx_complete(ni, m, 1);
3805 
3806 		ring->queued--;
3807 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3808 	}
3809 
3810 	if (ring->queued == 0 && res != NULL) {
3811 		iwn_nic_lock(sc);
3812 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3813 		iwn_nic_unlock(sc);
3814 		sc->qid2tap[qid] = NULL;
3815 		free(res, M_DEVBUF);
3816 		return;
3817 	}
3818 
3819 	sc->sc_tx_timer = 0;
3820 	if (ring->queued < IWN_TX_RING_LOMARK)
3821 		sc->qfullmsk &= ~(1 << ring->qid);
3822 
3823 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3824 }
3825 
3826 /*
3827  * Process an INT_FH_RX or INT_SW_RX interrupt.
3828  */
3829 static void
3830 iwn_notif_intr(struct iwn_softc *sc)
3831 {
3832 	struct iwn_ops *ops = &sc->ops;
3833 	struct ieee80211com *ic = &sc->sc_ic;
3834 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3835 	uint16_t hw;
3836 
3837 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3838 	    BUS_DMASYNC_POSTREAD);
3839 
3840 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3841 	while (sc->rxq.cur != hw) {
3842 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3843 		struct iwn_rx_desc *desc;
3844 
3845 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3846 		    BUS_DMASYNC_POSTREAD);
3847 		desc = mtod(data->m, struct iwn_rx_desc *);
3848 
3849 		DPRINTF(sc, IWN_DEBUG_RECV,
3850 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3851 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3852 		    desc->type, iwn_intr_str(desc->type),
3853 		    le16toh(desc->len));
3854 
3855 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3856 			iwn_cmd_done(sc, desc);
3857 
3858 		switch (desc->type) {
3859 		case IWN_RX_PHY:
3860 			iwn_rx_phy(sc, desc, data);
3861 			break;
3862 
3863 		case IWN_RX_DONE:		/* 4965AGN only. */
3864 		case IWN_MPDU_RX_DONE:
3865 			/* An 802.11 frame has been received. */
3866 			iwn_rx_done(sc, desc, data);
3867 			break;
3868 
3869 		case IWN_RX_COMPRESSED_BA:
3870 			/* A Compressed BlockAck has been received. */
3871 			iwn_rx_compressed_ba(sc, desc, data);
3872 			break;
3873 
3874 		case IWN_TX_DONE:
3875 			/* An 802.11 frame has been transmitted. */
3876 			ops->tx_done(sc, desc, data);
3877 			break;
3878 
3879 		case IWN_RX_STATISTICS:
3880 		case IWN_BEACON_STATISTICS:
3881 			iwn_rx_statistics(sc, desc, data);
3882 			break;
3883 
3884 		case IWN_BEACON_MISSED:
3885 		{
3886 			struct iwn_beacon_missed *miss =
3887 			    (struct iwn_beacon_missed *)(desc + 1);
3888 			int misses;
3889 
3890 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3891 			    BUS_DMASYNC_POSTREAD);
3892 			misses = le32toh(miss->consecutive);
3893 
3894 			DPRINTF(sc, IWN_DEBUG_STATE,
3895 			    "%s: beacons missed %d/%d\n", __func__,
3896 			    misses, le32toh(miss->total));
3897 			/*
3898 			 * If more than 5 consecutive beacons are missed,
3899 			 * reinitialize the sensitivity state machine.
3900 			 */
3901 			if (vap->iv_state == IEEE80211_S_RUN &&
3902 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3903 				if (misses > 5)
3904 					(void)iwn_init_sensitivity(sc);
3905 				if (misses >= vap->iv_bmissthreshold) {
3906 					IWN_UNLOCK(sc);
3907 					ieee80211_beacon_miss(ic);
3908 					IWN_LOCK(sc);
3909 				}
3910 			}
3911 			break;
3912 		}
3913 		case IWN_UC_READY:
3914 		{
3915 			struct iwn_ucode_info *uc =
3916 			    (struct iwn_ucode_info *)(desc + 1);
3917 
3918 			/* The microcontroller is ready. */
3919 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3920 			    BUS_DMASYNC_POSTREAD);
3921 			DPRINTF(sc, IWN_DEBUG_RESET,
3922 			    "microcode alive notification version=%d.%d "
3923 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3924 			    uc->subtype, le32toh(uc->valid));
3925 
3926 			if (le32toh(uc->valid) != 1) {
3927 				device_printf(sc->sc_dev,
3928 				    "microcontroller initialization failed");
3929 				break;
3930 			}
3931 			if (uc->subtype == IWN_UCODE_INIT) {
3932 				/* Save microcontroller report. */
3933 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3934 			}
3935 			/* Save the address of the error log in SRAM. */
3936 			sc->errptr = le32toh(uc->errptr);
3937 			break;
3938 		}
3939 		case IWN_STATE_CHANGED:
3940 		{
3941 			/*
3942 			 * State change allows hardware switch change to be
3943 			 * noted. However, we handle this in iwn_intr as we
3944 			 * get both the enable/disble intr.
3945 			 */
3946 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3947 			    BUS_DMASYNC_POSTREAD);
3948 #ifdef	IWN_DEBUG
3949 			uint32_t *status = (uint32_t *)(desc + 1);
3950 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3951 			    "state changed to %x\n",
3952 			    le32toh(*status));
3953 #endif
3954 			break;
3955 		}
3956 		case IWN_START_SCAN:
3957 		{
3958 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3959 			    BUS_DMASYNC_POSTREAD);
3960 #ifdef	IWN_DEBUG
3961 			struct iwn_start_scan *scan =
3962 			    (struct iwn_start_scan *)(desc + 1);
3963 			DPRINTF(sc, IWN_DEBUG_ANY,
3964 			    "%s: scanning channel %d status %x\n",
3965 			    __func__, scan->chan, le32toh(scan->status));
3966 #endif
3967 			break;
3968 		}
3969 		case IWN_STOP_SCAN:
3970 		{
3971 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3972 			    BUS_DMASYNC_POSTREAD);
3973 #ifdef	IWN_DEBUG
3974 			struct iwn_stop_scan *scan =
3975 			    (struct iwn_stop_scan *)(desc + 1);
3976 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3977 			    "scan finished nchan=%d status=%d chan=%d\n",
3978 			    scan->nchan, scan->status, scan->chan);
3979 #endif
3980 			sc->sc_is_scanning = 0;
3981 			callout_stop(&sc->scan_timeout);
3982 			IWN_UNLOCK(sc);
3983 			ieee80211_scan_next(vap);
3984 			IWN_LOCK(sc);
3985 			break;
3986 		}
3987 		case IWN5000_CALIBRATION_RESULT:
3988 			iwn5000_rx_calib_results(sc, desc, data);
3989 			break;
3990 
3991 		case IWN5000_CALIBRATION_DONE:
3992 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3993 			wakeup(sc);
3994 			break;
3995 		}
3996 
3997 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3998 	}
3999 
4000 	/* Tell the firmware what we have processed. */
4001 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4002 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4003 }
4004 
4005 /*
4006  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4007  * from power-down sleep mode.
4008  */
4009 static void
4010 iwn_wakeup_intr(struct iwn_softc *sc)
4011 {
4012 	int qid;
4013 
4014 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4015 	    __func__);
4016 
4017 	/* Wakeup RX and TX rings. */
4018 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4019 	for (qid = 0; qid < sc->ntxqs; qid++) {
4020 		struct iwn_tx_ring *ring = &sc->txq[qid];
4021 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4022 	}
4023 }
4024 
4025 static void
4026 iwn_rftoggle_task(void *arg, int npending)
4027 {
4028 	struct iwn_softc *sc = arg;
4029 	struct ieee80211com *ic = &sc->sc_ic;
4030 	uint32_t tmp;
4031 
4032 	IWN_LOCK(sc);
4033 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4034 	IWN_UNLOCK(sc);
4035 
4036 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4037 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4038 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4039 		ieee80211_suspend_all(ic);
4040 
4041 		/* Enable interrupts to get RF toggle notification. */
4042 		IWN_LOCK(sc);
4043 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4044 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4045 		IWN_UNLOCK(sc);
4046 	} else
4047 		ieee80211_resume_all(ic);
4048 }
4049 
4050 /*
4051  * Dump the error log of the firmware when a firmware panic occurs.  Although
4052  * we can't debug the firmware because it is neither open source nor free, it
4053  * can help us to identify certain classes of problems.
4054  */
4055 static void
4056 iwn_fatal_intr(struct iwn_softc *sc)
4057 {
4058 	struct iwn_fw_dump dump;
4059 	int i;
4060 
4061 	IWN_LOCK_ASSERT(sc);
4062 
4063 	/* Force a complete recalibration on next init. */
4064 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4065 
4066 	/* Check that the error log address is valid. */
4067 	if (sc->errptr < IWN_FW_DATA_BASE ||
4068 	    sc->errptr + sizeof (dump) >
4069 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4070 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4071 		    sc->errptr);
4072 		return;
4073 	}
4074 	if (iwn_nic_lock(sc) != 0) {
4075 		printf("%s: could not read firmware error log\n", __func__);
4076 		return;
4077 	}
4078 	/* Read firmware error log from SRAM. */
4079 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4080 	    sizeof (dump) / sizeof (uint32_t));
4081 	iwn_nic_unlock(sc);
4082 
4083 	if (dump.valid == 0) {
4084 		printf("%s: firmware error log is empty\n", __func__);
4085 		return;
4086 	}
4087 	printf("firmware error log:\n");
4088 	printf("  error type      = \"%s\" (0x%08X)\n",
4089 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4090 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4091 	    dump.id);
4092 	printf("  program counter = 0x%08X\n", dump.pc);
4093 	printf("  source line     = 0x%08X\n", dump.src_line);
4094 	printf("  error data      = 0x%08X%08X\n",
4095 	    dump.error_data[0], dump.error_data[1]);
4096 	printf("  branch link     = 0x%08X%08X\n",
4097 	    dump.branch_link[0], dump.branch_link[1]);
4098 	printf("  interrupt link  = 0x%08X%08X\n",
4099 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4100 	printf("  time            = %u\n", dump.time[0]);
4101 
4102 	/* Dump driver status (TX and RX rings) while we're here. */
4103 	printf("driver status:\n");
4104 	for (i = 0; i < sc->ntxqs; i++) {
4105 		struct iwn_tx_ring *ring = &sc->txq[i];
4106 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4107 		    i, ring->qid, ring->cur, ring->queued);
4108 	}
4109 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4110 }
4111 
4112 static void
4113 iwn_intr(void *arg)
4114 {
4115 	struct iwn_softc *sc = arg;
4116 	uint32_t r1, r2, tmp;
4117 
4118 	IWN_LOCK(sc);
4119 
4120 	/* Disable interrupts. */
4121 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4122 
4123 	/* Read interrupts from ICT (fast) or from registers (slow). */
4124 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4125 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4126 		    BUS_DMASYNC_POSTREAD);
4127 		tmp = 0;
4128 		while (sc->ict[sc->ict_cur] != 0) {
4129 			tmp |= sc->ict[sc->ict_cur];
4130 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4131 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4132 		}
4133 		tmp = le32toh(tmp);
4134 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4135 			tmp = 0;
4136 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4137 			tmp |= 0x8000;
4138 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4139 		r2 = 0;	/* Unused. */
4140 	} else {
4141 		r1 = IWN_READ(sc, IWN_INT);
4142 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4143 			IWN_UNLOCK(sc);
4144 			return;	/* Hardware gone! */
4145 		}
4146 		r2 = IWN_READ(sc, IWN_FH_INT);
4147 	}
4148 
4149 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4150     , r1, r2);
4151 
4152 	if (r1 == 0 && r2 == 0)
4153 		goto done;	/* Interrupt not for us. */
4154 
4155 	/* Acknowledge interrupts. */
4156 	IWN_WRITE(sc, IWN_INT, r1);
4157 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4158 		IWN_WRITE(sc, IWN_FH_INT, r2);
4159 
4160 	if (r1 & IWN_INT_RF_TOGGLED) {
4161 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4162 		goto done;
4163 	}
4164 	if (r1 & IWN_INT_CT_REACHED) {
4165 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4166 		    __func__);
4167 	}
4168 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4169 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4170 		    __func__);
4171 #ifdef	IWN_DEBUG
4172 		iwn_debug_register(sc);
4173 #endif
4174 		/* Dump firmware error log and stop. */
4175 		iwn_fatal_intr(sc);
4176 
4177 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4178 		goto done;
4179 	}
4180 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4181 	    (r2 & IWN_FH_INT_RX)) {
4182 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4183 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4184 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4185 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4186 			    IWN_INT_PERIODIC_DIS);
4187 			iwn_notif_intr(sc);
4188 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4189 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4190 				    IWN_INT_PERIODIC_ENA);
4191 			}
4192 		} else
4193 			iwn_notif_intr(sc);
4194 	}
4195 
4196 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4197 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4198 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4199 		wakeup(sc);	/* FH DMA transfer completed. */
4200 	}
4201 
4202 	if (r1 & IWN_INT_ALIVE)
4203 		wakeup(sc);	/* Firmware is alive. */
4204 
4205 	if (r1 & IWN_INT_WAKEUP)
4206 		iwn_wakeup_intr(sc);
4207 
4208 done:
4209 	/* Re-enable interrupts. */
4210 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4211 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4212 
4213 	IWN_UNLOCK(sc);
4214 }
4215 
4216 /*
4217  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4218  * 5000 adapters use a slightly different format).
4219  */
4220 static void
4221 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4222     uint16_t len)
4223 {
4224 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4225 
4226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4227 
4228 	*w = htole16(len + 8);
4229 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4230 	    BUS_DMASYNC_PREWRITE);
4231 	if (idx < IWN_SCHED_WINSZ) {
4232 		*(w + IWN_TX_RING_COUNT) = *w;
4233 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4234 		    BUS_DMASYNC_PREWRITE);
4235 	}
4236 }
4237 
4238 static void
4239 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4240     uint16_t len)
4241 {
4242 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4243 
4244 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4245 
4246 	*w = htole16(id << 12 | (len + 8));
4247 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4248 	    BUS_DMASYNC_PREWRITE);
4249 	if (idx < IWN_SCHED_WINSZ) {
4250 		*(w + IWN_TX_RING_COUNT) = *w;
4251 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4252 		    BUS_DMASYNC_PREWRITE);
4253 	}
4254 }
4255 
4256 #ifdef notyet
4257 static void
4258 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4259 {
4260 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4261 
4262 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4263 
4264 	*w = (*w & htole16(0xf000)) | htole16(1);
4265 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4266 	    BUS_DMASYNC_PREWRITE);
4267 	if (idx < IWN_SCHED_WINSZ) {
4268 		*(w + IWN_TX_RING_COUNT) = *w;
4269 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4270 		    BUS_DMASYNC_PREWRITE);
4271 	}
4272 }
4273 #endif
4274 
4275 /*
4276  * Check whether OFDM 11g protection will be enabled for the given rate.
4277  *
4278  * The original driver code only enabled protection for OFDM rates.
4279  * It didn't check to see whether it was operating in 11a or 11bg mode.
4280  */
4281 static int
4282 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4283     struct ieee80211vap *vap, uint8_t rate)
4284 {
4285 	struct ieee80211com *ic = vap->iv_ic;
4286 
4287 	/*
4288 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4289 	 * 11bg protection.
4290 	 */
4291 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4292 		return (0);
4293 	}
4294 
4295 	/*
4296 	 * 11bg protection not enabled? Then don't use it.
4297 	 */
4298 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4299 		return (0);
4300 
4301 	/*
4302 	 * If it's an 11n rate - no protection.
4303 	 * We'll do it via a specific 11n check.
4304 	 */
4305 	if (rate & IEEE80211_RATE_MCS) {
4306 		return (0);
4307 	}
4308 
4309 	/*
4310 	 * Do a rate table lookup.  If the PHY is CCK,
4311 	 * don't do protection.
4312 	 */
4313 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4314 		return (0);
4315 
4316 	/*
4317 	 * Yup, enable protection.
4318 	 */
4319 	return (1);
4320 }
4321 
4322 /*
4323  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4324  * the link quality table that reflects this particular entry.
4325  */
4326 static int
4327 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4328     uint8_t rate)
4329 {
4330 	struct ieee80211_rateset *rs;
4331 	int is_11n;
4332 	int nr;
4333 	int i;
4334 	uint8_t cmp_rate;
4335 
4336 	/*
4337 	 * Figure out if we're using 11n or not here.
4338 	 */
4339 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4340 		is_11n = 1;
4341 	else
4342 		is_11n = 0;
4343 
4344 	/*
4345 	 * Use the correct rate table.
4346 	 */
4347 	if (is_11n) {
4348 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4349 		nr = ni->ni_htrates.rs_nrates;
4350 	} else {
4351 		rs = &ni->ni_rates;
4352 		nr = rs->rs_nrates;
4353 	}
4354 
4355 	/*
4356 	 * Find the relevant link quality entry in the table.
4357 	 */
4358 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4359 		/*
4360 		 * The link quality table index starts at 0 == highest
4361 		 * rate, so we walk the rate table backwards.
4362 		 */
4363 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4364 		if (rate & IEEE80211_RATE_MCS)
4365 			cmp_rate |= IEEE80211_RATE_MCS;
4366 
4367 #if 0
4368 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4369 		    __func__,
4370 		    i,
4371 		    nr,
4372 		    rate,
4373 		    cmp_rate);
4374 #endif
4375 
4376 		if (cmp_rate == rate)
4377 			return (i);
4378 	}
4379 
4380 	/* Failed? Start at the end */
4381 	return (IWN_MAX_TX_RETRIES - 1);
4382 }
4383 
4384 static int
4385 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4386 {
4387 	struct iwn_ops *ops = &sc->ops;
4388 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4389 	struct ieee80211vap *vap = ni->ni_vap;
4390 	struct ieee80211com *ic = ni->ni_ic;
4391 	struct iwn_node *wn = (void *)ni;
4392 	struct iwn_tx_ring *ring;
4393 	struct iwn_tx_desc *desc;
4394 	struct iwn_tx_data *data;
4395 	struct iwn_tx_cmd *cmd;
4396 	struct iwn_cmd_data *tx;
4397 	struct ieee80211_frame *wh;
4398 	struct ieee80211_key *k = NULL;
4399 	struct mbuf *m1;
4400 	uint32_t flags;
4401 	uint16_t qos;
4402 	u_int hdrlen;
4403 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4404 	uint8_t tid, type;
4405 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4406 
4407 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4408 
4409 	IWN_LOCK_ASSERT(sc);
4410 
4411 	wh = mtod(m, struct ieee80211_frame *);
4412 	hdrlen = ieee80211_anyhdrsize(wh);
4413 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4414 
4415 	/* Select EDCA Access Category and TX ring for this frame. */
4416 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4417 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4418 		tid = qos & IEEE80211_QOS_TID;
4419 	} else {
4420 		qos = 0;
4421 		tid = 0;
4422 	}
4423 	ac = M_WME_GETAC(m);
4424 
4425 	/*
4426 	 * XXX TODO: Group addressed frames aren't aggregated and must
4427 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4428 	 * assigned from net80211.
4429 	 */
4430 
4431 	if (m->m_flags & M_AMPDU_MPDU) {
4432 		uint16_t seqno;
4433 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4434 
4435 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4436 			return EINVAL;
4437 		}
4438 
4439 		/*
4440 		 * Queue this frame to the hardware ring that we've
4441 		 * negotiated AMPDU TX on.
4442 		 *
4443 		 * Note that the sequence number must match the TX slot
4444 		 * being used!
4445 		 */
4446 		ac = *(int *)tap->txa_private;
4447 		seqno = ni->ni_txseqs[tid];
4448 		*(uint16_t *)wh->i_seq =
4449 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4450 		ring = &sc->txq[ac];
4451 		if ((seqno % 256) != ring->cur) {
4452 			device_printf(sc->sc_dev,
4453 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4454 			    __func__,
4455 			    m,
4456 			    seqno,
4457 			    seqno % 256,
4458 			    ring->cur);
4459 		}
4460 		ni->ni_txseqs[tid]++;
4461 	}
4462 	ring = &sc->txq[ac];
4463 	desc = &ring->desc[ring->cur];
4464 	data = &ring->data[ring->cur];
4465 
4466 	/* Choose a TX rate index. */
4467 	if (type == IEEE80211_FC0_TYPE_MGT ||
4468 	    type == IEEE80211_FC0_TYPE_CTL ||
4469 	    (m->m_flags & M_EAPOL) != 0)
4470 		rate = tp->mgmtrate;
4471 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4472 		rate = tp->mcastrate;
4473 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4474 		rate = tp->ucastrate;
4475 	else {
4476 		/* XXX pass pktlen */
4477 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4478 		rate = ni->ni_txrate;
4479 	}
4480 
4481 	/* Encrypt the frame if need be. */
4482 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4483 		/* Retrieve key for TX. */
4484 		k = ieee80211_crypto_encap(ni, m);
4485 		if (k == NULL) {
4486 			return ENOBUFS;
4487 		}
4488 		/* 802.11 header may have moved. */
4489 		wh = mtod(m, struct ieee80211_frame *);
4490 	}
4491 	totlen = m->m_pkthdr.len;
4492 
4493 	if (ieee80211_radiotap_active_vap(vap)) {
4494 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4495 
4496 		tap->wt_flags = 0;
4497 		tap->wt_rate = rate;
4498 		if (k != NULL)
4499 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4500 
4501 		ieee80211_radiotap_tx(vap, m);
4502 	}
4503 
4504 	/* Prepare TX firmware command. */
4505 	cmd = &ring->cmd[ring->cur];
4506 	cmd->code = IWN_CMD_TX_DATA;
4507 	cmd->flags = 0;
4508 	cmd->qid = ring->qid;
4509 	cmd->idx = ring->cur;
4510 
4511 	tx = (struct iwn_cmd_data *)cmd->data;
4512 	/* NB: No need to clear tx, all fields are reinitialized here. */
4513 	tx->scratch = 0;	/* clear "scratch" area */
4514 
4515 	flags = 0;
4516 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4517 		/* Unicast frame, check if an ACK is expected. */
4518 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4519 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4520 			flags |= IWN_TX_NEED_ACK;
4521 	}
4522 	if ((wh->i_fc[0] &
4523 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4524 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4525 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4526 
4527 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4528 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4529 
4530 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4531 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4532 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4533 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4534 			flags |= IWN_TX_NEED_RTS;
4535 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4536 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4537 				flags |= IWN_TX_NEED_CTS;
4538 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4539 				flags |= IWN_TX_NEED_RTS;
4540 		} else if ((rate & IEEE80211_RATE_MCS) &&
4541 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4542 			flags |= IWN_TX_NEED_RTS;
4543 		}
4544 
4545 		/* XXX HT protection? */
4546 
4547 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4548 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4549 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4550 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4551 				flags |= IWN_TX_NEED_PROTECTION;
4552 			} else
4553 				flags |= IWN_TX_FULL_TXOP;
4554 		}
4555 	}
4556 
4557 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4558 	    type != IEEE80211_FC0_TYPE_DATA)
4559 		tx->id = sc->broadcast_id;
4560 	else
4561 		tx->id = wn->id;
4562 
4563 	if (type == IEEE80211_FC0_TYPE_MGT) {
4564 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4565 
4566 		/* Tell HW to set timestamp in probe responses. */
4567 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4568 			flags |= IWN_TX_INSERT_TSTAMP;
4569 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4570 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4571 			tx->timeout = htole16(3);
4572 		else
4573 			tx->timeout = htole16(2);
4574 	} else
4575 		tx->timeout = htole16(0);
4576 
4577 	if (hdrlen & 3) {
4578 		/* First segment length must be a multiple of 4. */
4579 		flags |= IWN_TX_NEED_PADDING;
4580 		pad = 4 - (hdrlen & 3);
4581 	} else
4582 		pad = 0;
4583 
4584 	tx->len = htole16(totlen);
4585 	tx->tid = tid;
4586 	tx->rts_ntries = 60;
4587 	tx->data_ntries = 15;
4588 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4589 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4590 	if (tx->id == sc->broadcast_id) {
4591 		/* Group or management frame. */
4592 		tx->linkq = 0;
4593 	} else {
4594 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4595 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4596 	}
4597 
4598 	/* Set physical address of "scratch area". */
4599 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4600 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4601 
4602 	/* Copy 802.11 header in TX command. */
4603 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4604 
4605 	/* Trim 802.11 header. */
4606 	m_adj(m, hdrlen);
4607 	tx->security = 0;
4608 	tx->flags = htole32(flags);
4609 
4610 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4611 	    &nsegs, BUS_DMA_NOWAIT);
4612 	if (error != 0) {
4613 		if (error != EFBIG) {
4614 			device_printf(sc->sc_dev,
4615 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4616 			return error;
4617 		}
4618 		/* Too many DMA segments, linearize mbuf. */
4619 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4620 		if (m1 == NULL) {
4621 			device_printf(sc->sc_dev,
4622 			    "%s: could not defrag mbuf\n", __func__);
4623 			return ENOBUFS;
4624 		}
4625 		m = m1;
4626 
4627 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4628 		    segs, &nsegs, BUS_DMA_NOWAIT);
4629 		if (error != 0) {
4630 			device_printf(sc->sc_dev,
4631 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4632 			return error;
4633 		}
4634 	}
4635 
4636 	data->m = m;
4637 	data->ni = ni;
4638 
4639 	DPRINTF(sc, IWN_DEBUG_XMIT,
4640 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4641 	    __func__,
4642 	    ring->qid,
4643 	    ring->cur,
4644 	    m->m_pkthdr.len,
4645 	    nsegs,
4646 	    flags,
4647 	    rate,
4648 	    tx->rate);
4649 
4650 	/* Fill TX descriptor. */
4651 	desc->nsegs = 1;
4652 	if (m->m_len != 0)
4653 		desc->nsegs += nsegs;
4654 	/* First DMA segment is used by the TX command. */
4655 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4656 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4657 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4658 	/* Other DMA segments are for data payload. */
4659 	seg = &segs[0];
4660 	for (i = 1; i <= nsegs; i++) {
4661 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4662 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4663 		    seg->ds_len << 4);
4664 		seg++;
4665 	}
4666 
4667 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4668 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4669 	    BUS_DMASYNC_PREWRITE);
4670 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4671 	    BUS_DMASYNC_PREWRITE);
4672 
4673 	/* Update TX scheduler. */
4674 	if (ring->qid >= sc->firstaggqueue)
4675 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4676 
4677 	/* Kick TX ring. */
4678 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4679 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4680 
4681 	/* Mark TX ring as full if we reach a certain threshold. */
4682 	if (++ring->queued > IWN_TX_RING_HIMARK)
4683 		sc->qfullmsk |= 1 << ring->qid;
4684 
4685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4686 
4687 	return 0;
4688 }
4689 
4690 static int
4691 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4692     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4693 {
4694 	struct iwn_ops *ops = &sc->ops;
4695 	struct ieee80211vap *vap = ni->ni_vap;
4696 	struct iwn_tx_cmd *cmd;
4697 	struct iwn_cmd_data *tx;
4698 	struct ieee80211_frame *wh;
4699 	struct iwn_tx_ring *ring;
4700 	struct iwn_tx_desc *desc;
4701 	struct iwn_tx_data *data;
4702 	struct mbuf *m1;
4703 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4704 	uint32_t flags;
4705 	u_int hdrlen;
4706 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4707 	uint8_t type;
4708 
4709 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4710 
4711 	IWN_LOCK_ASSERT(sc);
4712 
4713 	wh = mtod(m, struct ieee80211_frame *);
4714 	hdrlen = ieee80211_anyhdrsize(wh);
4715 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4716 
4717 	ac = params->ibp_pri & 3;
4718 
4719 	ring = &sc->txq[ac];
4720 	desc = &ring->desc[ring->cur];
4721 	data = &ring->data[ring->cur];
4722 
4723 	/* Choose a TX rate. */
4724 	rate = params->ibp_rate0;
4725 	totlen = m->m_pkthdr.len;
4726 
4727 	/* Prepare TX firmware command. */
4728 	cmd = &ring->cmd[ring->cur];
4729 	cmd->code = IWN_CMD_TX_DATA;
4730 	cmd->flags = 0;
4731 	cmd->qid = ring->qid;
4732 	cmd->idx = ring->cur;
4733 
4734 	tx = (struct iwn_cmd_data *)cmd->data;
4735 	/* NB: No need to clear tx, all fields are reinitialized here. */
4736 	tx->scratch = 0;	/* clear "scratch" area */
4737 
4738 	flags = 0;
4739 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4740 		flags |= IWN_TX_NEED_ACK;
4741 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4742 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4743 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4744 			flags &= ~IWN_TX_NEED_RTS;
4745 			flags |= IWN_TX_NEED_PROTECTION;
4746 		} else
4747 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4748 	}
4749 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4750 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4751 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4752 			flags &= ~IWN_TX_NEED_CTS;
4753 			flags |= IWN_TX_NEED_PROTECTION;
4754 		} else
4755 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4756 	}
4757 	if (type == IEEE80211_FC0_TYPE_MGT) {
4758 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4759 
4760 		/* Tell HW to set timestamp in probe responses. */
4761 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4762 			flags |= IWN_TX_INSERT_TSTAMP;
4763 
4764 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4765 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4766 			tx->timeout = htole16(3);
4767 		else
4768 			tx->timeout = htole16(2);
4769 	} else
4770 		tx->timeout = htole16(0);
4771 
4772 	if (hdrlen & 3) {
4773 		/* First segment length must be a multiple of 4. */
4774 		flags |= IWN_TX_NEED_PADDING;
4775 		pad = 4 - (hdrlen & 3);
4776 	} else
4777 		pad = 0;
4778 
4779 	if (ieee80211_radiotap_active_vap(vap)) {
4780 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4781 
4782 		tap->wt_flags = 0;
4783 		tap->wt_rate = rate;
4784 
4785 		ieee80211_radiotap_tx(vap, m);
4786 	}
4787 
4788 	tx->len = htole16(totlen);
4789 	tx->tid = 0;
4790 	tx->id = sc->broadcast_id;
4791 	tx->rts_ntries = params->ibp_try1;
4792 	tx->data_ntries = params->ibp_try0;
4793 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4794 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4795 
4796 	/* Group or management frame. */
4797 	tx->linkq = 0;
4798 
4799 	/* Set physical address of "scratch area". */
4800 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4801 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4802 
4803 	/* Copy 802.11 header in TX command. */
4804 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4805 
4806 	/* Trim 802.11 header. */
4807 	m_adj(m, hdrlen);
4808 	tx->security = 0;
4809 	tx->flags = htole32(flags);
4810 
4811 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4812 	    &nsegs, BUS_DMA_NOWAIT);
4813 	if (error != 0) {
4814 		if (error != EFBIG) {
4815 			device_printf(sc->sc_dev,
4816 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4817 			return error;
4818 		}
4819 		/* Too many DMA segments, linearize mbuf. */
4820 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4821 		if (m1 == NULL) {
4822 			device_printf(sc->sc_dev,
4823 			    "%s: could not defrag mbuf\n", __func__);
4824 			return ENOBUFS;
4825 		}
4826 		m = m1;
4827 
4828 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4829 		    segs, &nsegs, BUS_DMA_NOWAIT);
4830 		if (error != 0) {
4831 			device_printf(sc->sc_dev,
4832 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4833 			return error;
4834 		}
4835 	}
4836 
4837 	data->m = m;
4838 	data->ni = ni;
4839 
4840 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4841 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4842 
4843 	/* Fill TX descriptor. */
4844 	desc->nsegs = 1;
4845 	if (m->m_len != 0)
4846 		desc->nsegs += nsegs;
4847 	/* First DMA segment is used by the TX command. */
4848 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4849 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4850 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4851 	/* Other DMA segments are for data payload. */
4852 	seg = &segs[0];
4853 	for (i = 1; i <= nsegs; i++) {
4854 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4855 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4856 		    seg->ds_len << 4);
4857 		seg++;
4858 	}
4859 
4860 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4861 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4862 	    BUS_DMASYNC_PREWRITE);
4863 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4864 	    BUS_DMASYNC_PREWRITE);
4865 
4866 	/* Update TX scheduler. */
4867 	if (ring->qid >= sc->firstaggqueue)
4868 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4869 
4870 	/* Kick TX ring. */
4871 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4872 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4873 
4874 	/* Mark TX ring as full if we reach a certain threshold. */
4875 	if (++ring->queued > IWN_TX_RING_HIMARK)
4876 		sc->qfullmsk |= 1 << ring->qid;
4877 
4878 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4879 
4880 	return 0;
4881 }
4882 
4883 static void
4884 iwn_xmit_task(void *arg0, int pending)
4885 {
4886 	struct iwn_softc *sc = arg0;
4887 	struct ieee80211_node *ni;
4888 	struct mbuf *m;
4889 	int error;
4890 	struct ieee80211_bpf_params p;
4891 	int have_p;
4892 
4893 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4894 
4895 	IWN_LOCK(sc);
4896 	/*
4897 	 * Dequeue frames, attempt to transmit,
4898 	 * then disable beaconwait when we're done.
4899 	 */
4900 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4901 		have_p = 0;
4902 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4903 
4904 		/* Get xmit params if appropriate */
4905 		if (ieee80211_get_xmit_params(m, &p) == 0)
4906 			have_p = 1;
4907 
4908 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4909 		    __func__, m, have_p);
4910 
4911 		/* If we have xmit params, use them */
4912 		if (have_p)
4913 			error = iwn_tx_data_raw(sc, m, ni, &p);
4914 		else
4915 			error = iwn_tx_data(sc, m, ni);
4916 
4917 		if (error != 0) {
4918 			if_inc_counter(ni->ni_vap->iv_ifp,
4919 			    IFCOUNTER_OERRORS, 1);
4920 			ieee80211_free_node(ni);
4921 			m_freem(m);
4922 		}
4923 	}
4924 
4925 	sc->sc_beacon_wait = 0;
4926 	IWN_UNLOCK(sc);
4927 }
4928 
4929 /*
4930  * raw frame xmit - free node/reference if failed.
4931  */
4932 static int
4933 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4934     const struct ieee80211_bpf_params *params)
4935 {
4936 	struct ieee80211com *ic = ni->ni_ic;
4937 	struct iwn_softc *sc = ic->ic_softc;
4938 	int error = 0;
4939 
4940 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4941 
4942 	IWN_LOCK(sc);
4943 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4944 		m_freem(m);
4945 		IWN_UNLOCK(sc);
4946 		return (ENETDOWN);
4947 	}
4948 
4949 	/* queue frame if we have to */
4950 	if (sc->sc_beacon_wait) {
4951 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4952 			m_freem(m);
4953 			IWN_UNLOCK(sc);
4954 			return (ENOBUFS);
4955 		}
4956 		/* Queued, so just return OK */
4957 		IWN_UNLOCK(sc);
4958 		return (0);
4959 	}
4960 
4961 	if (params == NULL) {
4962 		/*
4963 		 * Legacy path; interpret frame contents to decide
4964 		 * precisely how to send the frame.
4965 		 */
4966 		error = iwn_tx_data(sc, m, ni);
4967 	} else {
4968 		/*
4969 		 * Caller supplied explicit parameters to use in
4970 		 * sending the frame.
4971 		 */
4972 		error = iwn_tx_data_raw(sc, m, ni, params);
4973 	}
4974 	if (error == 0)
4975 		sc->sc_tx_timer = 5;
4976 	else
4977 		m_freem(m);
4978 
4979 	IWN_UNLOCK(sc);
4980 
4981 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4982 
4983 	return (error);
4984 }
4985 
4986 /*
4987  * transmit - don't free mbuf if failed; don't free node ref if failed.
4988  */
4989 static int
4990 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4991 {
4992 	struct iwn_softc *sc = ic->ic_softc;
4993 	struct ieee80211_node *ni;
4994 	int error;
4995 
4996 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4997 
4998 	IWN_LOCK(sc);
4999 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5000 		IWN_UNLOCK(sc);
5001 		return (ENXIO);
5002 	}
5003 
5004 	if (sc->qfullmsk) {
5005 		IWN_UNLOCK(sc);
5006 		return (ENOBUFS);
5007 	}
5008 
5009 	error = iwn_tx_data(sc, m, ni);
5010 	if (!error)
5011 		sc->sc_tx_timer = 5;
5012 	IWN_UNLOCK(sc);
5013 	return (error);
5014 }
5015 
5016 static void
5017 iwn_scan_timeout(void *arg)
5018 {
5019 	struct iwn_softc *sc = arg;
5020 	struct ieee80211com *ic = &sc->sc_ic;
5021 
5022 	ic_printf(ic, "scan timeout\n");
5023 	ieee80211_restart_all(ic);
5024 }
5025 
5026 static void
5027 iwn_watchdog(void *arg)
5028 {
5029 	struct iwn_softc *sc = arg;
5030 	struct ieee80211com *ic = &sc->sc_ic;
5031 
5032 	IWN_LOCK_ASSERT(sc);
5033 
5034 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5035 
5036 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5037 
5038 	if (sc->sc_tx_timer > 0) {
5039 		if (--sc->sc_tx_timer == 0) {
5040 			ic_printf(ic, "device timeout\n");
5041 			ieee80211_restart_all(ic);
5042 			return;
5043 		}
5044 	}
5045 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5046 }
5047 
5048 static int
5049 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5050 {
5051 
5052 	return (0);
5053 }
5054 
5055 static int
5056 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5057 {
5058 
5059 	return (0);
5060 }
5061 
5062 static int
5063 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5064     struct thread *td)
5065 {
5066 	int rc;
5067 	struct iwn_softc *sc = dev->si_drv1;
5068 	struct iwn_ioctl_data *d;
5069 
5070 	rc = priv_check(td, PRIV_DRIVER);
5071 	if (rc != 0)
5072 		return (0);
5073 
5074 	switch (cmd) {
5075 	case SIOCGIWNSTATS:
5076 		d = (struct iwn_ioctl_data *) data;
5077 		IWN_LOCK(sc);
5078 		/* XXX validate permissions/memory/etc? */
5079 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5080 		IWN_UNLOCK(sc);
5081 		break;
5082 	case SIOCZIWNSTATS:
5083 		IWN_LOCK(sc);
5084 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5085 		IWN_UNLOCK(sc);
5086 		break;
5087 	default:
5088 		rc = EINVAL;
5089 		break;
5090 	}
5091 	return (rc);
5092 }
5093 
5094 static int
5095 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5096 {
5097 
5098 	return (ENOTTY);
5099 }
5100 
5101 static void
5102 iwn_parent(struct ieee80211com *ic)
5103 {
5104 	struct iwn_softc *sc = ic->ic_softc;
5105 	struct ieee80211vap *vap;
5106 	int error;
5107 
5108 	if (ic->ic_nrunning > 0) {
5109 		error = iwn_init(sc);
5110 
5111 		switch (error) {
5112 		case 0:
5113 			ieee80211_start_all(ic);
5114 			break;
5115 		case EAGAIN:
5116 			/* radio is disabled via RFkill switch */
5117 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5118 			break;
5119 		default:
5120 			vap = TAILQ_FIRST(&ic->ic_vaps);
5121 			if (vap != NULL)
5122 				ieee80211_stop(vap);
5123 			break;
5124 		}
5125 	} else
5126 		iwn_stop(sc);
5127 }
5128 
5129 /*
5130  * Send a command to the firmware.
5131  */
5132 static int
5133 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5134 {
5135 	struct iwn_tx_ring *ring;
5136 	struct iwn_tx_desc *desc;
5137 	struct iwn_tx_data *data;
5138 	struct iwn_tx_cmd *cmd;
5139 	struct mbuf *m;
5140 	bus_addr_t paddr;
5141 	int totlen, error;
5142 	int cmd_queue_num;
5143 
5144 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5145 
5146 	if (async == 0)
5147 		IWN_LOCK_ASSERT(sc);
5148 
5149 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5150 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5151 	else
5152 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5153 
5154 	ring = &sc->txq[cmd_queue_num];
5155 	desc = &ring->desc[ring->cur];
5156 	data = &ring->data[ring->cur];
5157 	totlen = 4 + size;
5158 
5159 	if (size > sizeof cmd->data) {
5160 		/* Command is too large to fit in a descriptor. */
5161 		if (totlen > MCLBYTES)
5162 			return EINVAL;
5163 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5164 		if (m == NULL)
5165 			return ENOMEM;
5166 		cmd = mtod(m, struct iwn_tx_cmd *);
5167 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5168 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5169 		if (error != 0) {
5170 			m_freem(m);
5171 			return error;
5172 		}
5173 		data->m = m;
5174 	} else {
5175 		cmd = &ring->cmd[ring->cur];
5176 		paddr = data->cmd_paddr;
5177 	}
5178 
5179 	cmd->code = code;
5180 	cmd->flags = 0;
5181 	cmd->qid = ring->qid;
5182 	cmd->idx = ring->cur;
5183 	memcpy(cmd->data, buf, size);
5184 
5185 	desc->nsegs = 1;
5186 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5187 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5188 
5189 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5190 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5191 	    cmd->flags, cmd->qid, cmd->idx);
5192 
5193 	if (size > sizeof cmd->data) {
5194 		bus_dmamap_sync(ring->data_dmat, data->map,
5195 		    BUS_DMASYNC_PREWRITE);
5196 	} else {
5197 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5198 		    BUS_DMASYNC_PREWRITE);
5199 	}
5200 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5201 	    BUS_DMASYNC_PREWRITE);
5202 
5203 	/* Kick command ring. */
5204 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5205 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5206 
5207 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5208 
5209 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5210 }
5211 
5212 static int
5213 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5214 {
5215 	struct iwn4965_node_info hnode;
5216 	caddr_t src, dst;
5217 
5218 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5219 
5220 	/*
5221 	 * We use the node structure for 5000 Series internally (it is
5222 	 * a superset of the one for 4965AGN). We thus copy the common
5223 	 * fields before sending the command.
5224 	 */
5225 	src = (caddr_t)node;
5226 	dst = (caddr_t)&hnode;
5227 	memcpy(dst, src, 48);
5228 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5229 	memcpy(dst + 48, src + 72, 20);
5230 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5231 }
5232 
5233 static int
5234 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5235 {
5236 
5237 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5238 
5239 	/* Direct mapping. */
5240 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5241 }
5242 
5243 static int
5244 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5245 {
5246 	struct iwn_node *wn = (void *)ni;
5247 	struct ieee80211_rateset *rs;
5248 	struct iwn_cmd_link_quality linkq;
5249 	int i, rate, txrate;
5250 	int is_11n;
5251 
5252 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5253 
5254 	memset(&linkq, 0, sizeof linkq);
5255 	linkq.id = wn->id;
5256 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5257 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5258 
5259 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5260 	linkq.ampdu_threshold = 3;
5261 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5262 
5263 	DPRINTF(sc, IWN_DEBUG_XMIT,
5264 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5265 	    __func__,
5266 	    linkq.antmsk_1stream,
5267 	    linkq.antmsk_2stream,
5268 	    sc->ntxchains);
5269 
5270 	/*
5271 	 * Are we using 11n rates? Ensure the channel is
5272 	 * 11n _and_ we have some 11n rates, or don't
5273 	 * try.
5274 	 */
5275 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5276 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5277 		is_11n = 1;
5278 	} else {
5279 		rs = &ni->ni_rates;
5280 		is_11n = 0;
5281 	}
5282 
5283 	/* Start at highest available bit-rate. */
5284 	/*
5285 	 * XXX this is all very dirty!
5286 	 */
5287 	if (is_11n)
5288 		txrate = ni->ni_htrates.rs_nrates - 1;
5289 	else
5290 		txrate = rs->rs_nrates - 1;
5291 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5292 		uint32_t plcp;
5293 
5294 		/*
5295 		 * XXX TODO: ensure the last two slots are the two lowest
5296 		 * rate entries, just for now.
5297 		 */
5298 		if (i == 14 || i == 15)
5299 			txrate = 0;
5300 
5301 		if (is_11n)
5302 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5303 		else
5304 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5305 
5306 		/* Do rate -> PLCP config mapping */
5307 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5308 		linkq.retry[i] = plcp;
5309 		DPRINTF(sc, IWN_DEBUG_XMIT,
5310 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5311 		    __func__,
5312 		    i,
5313 		    txrate,
5314 		    rate,
5315 		    le32toh(plcp));
5316 
5317 		/*
5318 		 * The mimo field is an index into the table which
5319 		 * indicates the first index where it and subsequent entries
5320 		 * will not be using MIMO.
5321 		 *
5322 		 * Since we're filling linkq from 0..15 and we're filling
5323 		 * from the highest MCS rates to the lowest rates, if we
5324 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5325 		 * the next entry.)  That way if the next entry is a non-MIMO
5326 		 * entry, we're already pointing at it.
5327 		 */
5328 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5329 		    IEEE80211_RV(le32toh(plcp)) > 7)
5330 			linkq.mimo = i + 1;
5331 
5332 		/* Next retry at immediate lower bit-rate. */
5333 		if (txrate > 0)
5334 			txrate--;
5335 	}
5336 	/*
5337 	 * If we reached the end of the list and indeed we hit
5338 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5339 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5340 	 */
5341 	if (linkq.mimo > 15)
5342 		linkq.mimo = 15;
5343 
5344 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5345 
5346 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5347 
5348 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5349 }
5350 
5351 /*
5352  * Broadcast node is used to send group-addressed and management frames.
5353  */
5354 static int
5355 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5356 {
5357 	struct iwn_ops *ops = &sc->ops;
5358 	struct ieee80211com *ic = &sc->sc_ic;
5359 	struct iwn_node_info node;
5360 	struct iwn_cmd_link_quality linkq;
5361 	uint8_t txant;
5362 	int i, error;
5363 
5364 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5365 
5366 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5367 
5368 	memset(&node, 0, sizeof node);
5369 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5370 	node.id = sc->broadcast_id;
5371 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5372 	if ((error = ops->add_node(sc, &node, async)) != 0)
5373 		return error;
5374 
5375 	/* Use the first valid TX antenna. */
5376 	txant = IWN_LSB(sc->txchainmask);
5377 
5378 	memset(&linkq, 0, sizeof linkq);
5379 	linkq.id = sc->broadcast_id;
5380 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5381 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5382 	linkq.ampdu_max = 64;
5383 	linkq.ampdu_threshold = 3;
5384 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5385 
5386 	/* Use lowest mandatory bit-rate. */
5387 	/* XXX rate table lookup? */
5388 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5389 		linkq.retry[0] = htole32(0xd);
5390 	else
5391 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5392 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5393 	/* Use same bit-rate for all TX retries. */
5394 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5395 		linkq.retry[i] = linkq.retry[0];
5396 	}
5397 
5398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5399 
5400 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5401 }
5402 
5403 static int
5404 iwn_updateedca(struct ieee80211com *ic)
5405 {
5406 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5407 	struct iwn_softc *sc = ic->ic_softc;
5408 	struct iwn_edca_params cmd;
5409 	int aci;
5410 
5411 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5412 
5413 	memset(&cmd, 0, sizeof cmd);
5414 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5415 
5416 	IEEE80211_LOCK(ic);
5417 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5418 		const struct wmeParams *ac =
5419 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5420 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5421 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5422 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5423 		cmd.ac[aci].txoplimit =
5424 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5425 	}
5426 	IEEE80211_UNLOCK(ic);
5427 
5428 	IWN_LOCK(sc);
5429 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5430 	IWN_UNLOCK(sc);
5431 
5432 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5433 
5434 	return 0;
5435 #undef IWN_EXP2
5436 }
5437 
5438 static void
5439 iwn_set_promisc(struct iwn_softc *sc)
5440 {
5441 	struct ieee80211com *ic = &sc->sc_ic;
5442 	uint32_t promisc_filter;
5443 
5444 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5445 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5446 		sc->rxon->filter |= htole32(promisc_filter);
5447 	else
5448 		sc->rxon->filter &= ~htole32(promisc_filter);
5449 }
5450 
5451 static void
5452 iwn_update_promisc(struct ieee80211com *ic)
5453 {
5454 	struct iwn_softc *sc = ic->ic_softc;
5455 	int error;
5456 
5457 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5458 		return;		/* nothing to do */
5459 
5460 	IWN_LOCK(sc);
5461 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5462 		IWN_UNLOCK(sc);
5463 		return;
5464 	}
5465 
5466 	iwn_set_promisc(sc);
5467 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5468 		device_printf(sc->sc_dev,
5469 		    "%s: could not send RXON, error %d\n",
5470 		    __func__, error);
5471 	}
5472 	IWN_UNLOCK(sc);
5473 }
5474 
5475 static void
5476 iwn_update_mcast(struct ieee80211com *ic)
5477 {
5478 	/* Ignore */
5479 }
5480 
5481 static void
5482 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5483 {
5484 	struct iwn_cmd_led led;
5485 
5486 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5487 
5488 #if 0
5489 	/* XXX don't set LEDs during scan? */
5490 	if (sc->sc_is_scanning)
5491 		return;
5492 #endif
5493 
5494 	/* Clear microcode LED ownership. */
5495 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5496 
5497 	led.which = which;
5498 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5499 	led.off = off;
5500 	led.on = on;
5501 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5502 }
5503 
5504 /*
5505  * Set the critical temperature at which the firmware will stop the radio
5506  * and notify us.
5507  */
5508 static int
5509 iwn_set_critical_temp(struct iwn_softc *sc)
5510 {
5511 	struct iwn_critical_temp crit;
5512 	int32_t temp;
5513 
5514 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5515 
5516 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5517 
5518 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5519 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5520 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5521 		temp = IWN_CTOK(110);
5522 	else
5523 		temp = 110;
5524 	memset(&crit, 0, sizeof crit);
5525 	crit.tempR = htole32(temp);
5526 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5527 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5528 }
5529 
5530 static int
5531 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5532 {
5533 	struct iwn_cmd_timing cmd;
5534 	uint64_t val, mod;
5535 
5536 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5537 
5538 	memset(&cmd, 0, sizeof cmd);
5539 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5540 	cmd.bintval = htole16(ni->ni_intval);
5541 	cmd.lintval = htole16(10);
5542 
5543 	/* Compute remaining time until next beacon. */
5544 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5545 	mod = le64toh(cmd.tstamp) % val;
5546 	cmd.binitval = htole32((uint32_t)(val - mod));
5547 
5548 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5549 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5550 
5551 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5552 }
5553 
5554 static void
5555 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5556 {
5557 
5558 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5559 
5560 	/* Adjust TX power if need be (delta >= 3 degC). */
5561 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5562 	    __func__, sc->temp, temp);
5563 	if (abs(temp - sc->temp) >= 3) {
5564 		/* Record temperature of last calibration. */
5565 		sc->temp = temp;
5566 		(void)iwn4965_set_txpower(sc, 1);
5567 	}
5568 }
5569 
5570 /*
5571  * Set TX power for current channel (each rate has its own power settings).
5572  * This function takes into account the regulatory information from EEPROM,
5573  * the current temperature and the current voltage.
5574  */
5575 static int
5576 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5577 {
5578 /* Fixed-point arithmetic division using a n-bit fractional part. */
5579 #define fdivround(a, b, n)	\
5580 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5581 /* Linear interpolation. */
5582 #define interpolate(x, x1, y1, x2, y2, n)	\
5583 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5584 
5585 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5586 	struct iwn_ucode_info *uc = &sc->ucode_info;
5587 	struct iwn4965_cmd_txpower cmd;
5588 	struct iwn4965_eeprom_chan_samples *chans;
5589 	const uint8_t *rf_gain, *dsp_gain;
5590 	int32_t vdiff, tdiff;
5591 	int i, is_chan_5ghz, c, grp, maxpwr;
5592 	uint8_t chan;
5593 
5594 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5595 	/* Retrieve current channel from last RXON. */
5596 	chan = sc->rxon->chan;
5597 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5598 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5599 	    chan);
5600 
5601 	memset(&cmd, 0, sizeof cmd);
5602 	cmd.band = is_chan_5ghz ? 0 : 1;
5603 	cmd.chan = chan;
5604 
5605 	if (is_chan_5ghz) {
5606 		maxpwr   = sc->maxpwr5GHz;
5607 		rf_gain  = iwn4965_rf_gain_5ghz;
5608 		dsp_gain = iwn4965_dsp_gain_5ghz;
5609 	} else {
5610 		maxpwr   = sc->maxpwr2GHz;
5611 		rf_gain  = iwn4965_rf_gain_2ghz;
5612 		dsp_gain = iwn4965_dsp_gain_2ghz;
5613 	}
5614 
5615 	/* Compute voltage compensation. */
5616 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5617 	if (vdiff > 0)
5618 		vdiff *= 2;
5619 	if (abs(vdiff) > 2)
5620 		vdiff = 0;
5621 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5622 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5623 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5624 
5625 	/* Get channel attenuation group. */
5626 	if (chan <= 20)		/* 1-20 */
5627 		grp = 4;
5628 	else if (chan <= 43)	/* 34-43 */
5629 		grp = 0;
5630 	else if (chan <= 70)	/* 44-70 */
5631 		grp = 1;
5632 	else if (chan <= 124)	/* 71-124 */
5633 		grp = 2;
5634 	else			/* 125-200 */
5635 		grp = 3;
5636 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5637 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5638 
5639 	/* Get channel sub-band. */
5640 	for (i = 0; i < IWN_NBANDS; i++)
5641 		if (sc->bands[i].lo != 0 &&
5642 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5643 			break;
5644 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5645 		return EINVAL;
5646 	chans = sc->bands[i].chans;
5647 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5648 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5649 
5650 	for (c = 0; c < 2; c++) {
5651 		uint8_t power, gain, temp;
5652 		int maxchpwr, pwr, ridx, idx;
5653 
5654 		power = interpolate(chan,
5655 		    chans[0].num, chans[0].samples[c][1].power,
5656 		    chans[1].num, chans[1].samples[c][1].power, 1);
5657 		gain  = interpolate(chan,
5658 		    chans[0].num, chans[0].samples[c][1].gain,
5659 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5660 		temp  = interpolate(chan,
5661 		    chans[0].num, chans[0].samples[c][1].temp,
5662 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5663 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5664 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5665 		    __func__, c, power, gain, temp);
5666 
5667 		/* Compute temperature compensation. */
5668 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5669 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5670 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5671 		    __func__, tdiff, sc->temp, temp);
5672 
5673 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5674 			/* Convert dBm to half-dBm. */
5675 			maxchpwr = sc->maxpwr[chan] * 2;
5676 			if ((ridx / 8) & 1)
5677 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5678 
5679 			pwr = maxpwr;
5680 
5681 			/* Adjust TX power based on rate. */
5682 			if ((ridx % 8) == 5)
5683 				pwr -= 15;	/* OFDM48: -7.5dB */
5684 			else if ((ridx % 8) == 6)
5685 				pwr -= 17;	/* OFDM54: -8.5dB */
5686 			else if ((ridx % 8) == 7)
5687 				pwr -= 20;	/* OFDM60: -10dB */
5688 			else
5689 				pwr -= 10;	/* Others: -5dB */
5690 
5691 			/* Do not exceed channel max TX power. */
5692 			if (pwr > maxchpwr)
5693 				pwr = maxchpwr;
5694 
5695 			idx = gain - (pwr - power) - tdiff - vdiff;
5696 			if ((ridx / 8) & 1)	/* MIMO */
5697 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5698 
5699 			if (cmd.band == 0)
5700 				idx += 9;	/* 5GHz */
5701 			if (ridx == IWN_RIDX_MAX)
5702 				idx += 5;	/* CCK */
5703 
5704 			/* Make sure idx stays in a valid range. */
5705 			if (idx < 0)
5706 				idx = 0;
5707 			else if (idx > IWN4965_MAX_PWR_INDEX)
5708 				idx = IWN4965_MAX_PWR_INDEX;
5709 
5710 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5711 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5712 			    __func__, c, ridx, idx);
5713 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5714 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5715 		}
5716 	}
5717 
5718 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5719 	    "%s: set tx power for chan %d\n", __func__, chan);
5720 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5721 
5722 #undef interpolate
5723 #undef fdivround
5724 }
5725 
5726 static int
5727 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5728 {
5729 	struct iwn5000_cmd_txpower cmd;
5730 	int cmdid;
5731 
5732 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5733 
5734 	/*
5735 	 * TX power calibration is handled automatically by the firmware
5736 	 * for 5000 Series.
5737 	 */
5738 	memset(&cmd, 0, sizeof cmd);
5739 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5740 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5741 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5742 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5743 	    "%s: setting TX power; rev=%d\n",
5744 	    __func__,
5745 	    IWN_UCODE_API(sc->ucode_rev));
5746 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5747 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5748 	else
5749 		cmdid = IWN_CMD_TXPOWER_DBM;
5750 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5751 }
5752 
5753 /*
5754  * Retrieve the maximum RSSI (in dBm) among receivers.
5755  */
5756 static int
5757 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5758 {
5759 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5760 	uint8_t mask, agc;
5761 	int rssi;
5762 
5763 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5764 
5765 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5766 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5767 
5768 	rssi = 0;
5769 	if (mask & IWN_ANT_A)
5770 		rssi = MAX(rssi, phy->rssi[0]);
5771 	if (mask & IWN_ANT_B)
5772 		rssi = MAX(rssi, phy->rssi[2]);
5773 	if (mask & IWN_ANT_C)
5774 		rssi = MAX(rssi, phy->rssi[4]);
5775 
5776 	DPRINTF(sc, IWN_DEBUG_RECV,
5777 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5778 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5779 	    rssi - agc - IWN_RSSI_TO_DBM);
5780 	return rssi - agc - IWN_RSSI_TO_DBM;
5781 }
5782 
5783 static int
5784 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5785 {
5786 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5787 	uint8_t agc;
5788 	int rssi;
5789 
5790 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5791 
5792 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5793 
5794 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5795 		   le16toh(phy->rssi[1]) & 0xff);
5796 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5797 
5798 	DPRINTF(sc, IWN_DEBUG_RECV,
5799 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5800 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5801 	    rssi - agc - IWN_RSSI_TO_DBM);
5802 	return rssi - agc - IWN_RSSI_TO_DBM;
5803 }
5804 
5805 /*
5806  * Retrieve the average noise (in dBm) among receivers.
5807  */
5808 static int
5809 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5810 {
5811 	int i, total, nbant, noise;
5812 
5813 	total = nbant = 0;
5814 	for (i = 0; i < 3; i++) {
5815 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5816 			continue;
5817 		total += noise;
5818 		nbant++;
5819 	}
5820 	/* There should be at least one antenna but check anyway. */
5821 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5822 }
5823 
5824 /*
5825  * Compute temperature (in degC) from last received statistics.
5826  */
5827 static int
5828 iwn4965_get_temperature(struct iwn_softc *sc)
5829 {
5830 	struct iwn_ucode_info *uc = &sc->ucode_info;
5831 	int32_t r1, r2, r3, r4, temp;
5832 
5833 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5834 
5835 	r1 = le32toh(uc->temp[0].chan20MHz);
5836 	r2 = le32toh(uc->temp[1].chan20MHz);
5837 	r3 = le32toh(uc->temp[2].chan20MHz);
5838 	r4 = le32toh(sc->rawtemp);
5839 
5840 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5841 		return 0;
5842 
5843 	/* Sign-extend 23-bit R4 value to 32-bit. */
5844 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5845 	/* Compute temperature in Kelvin. */
5846 	temp = (259 * (r4 - r2)) / (r3 - r1);
5847 	temp = (temp * 97) / 100 + 8;
5848 
5849 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5850 	    IWN_KTOC(temp));
5851 	return IWN_KTOC(temp);
5852 }
5853 
5854 static int
5855 iwn5000_get_temperature(struct iwn_softc *sc)
5856 {
5857 	int32_t temp;
5858 
5859 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5860 
5861 	/*
5862 	 * Temperature is not used by the driver for 5000 Series because
5863 	 * TX power calibration is handled by firmware.
5864 	 */
5865 	temp = le32toh(sc->rawtemp);
5866 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5867 		temp = (temp / -5) + sc->temp_off;
5868 		temp = IWN_KTOC(temp);
5869 	}
5870 	return temp;
5871 }
5872 
5873 /*
5874  * Initialize sensitivity calibration state machine.
5875  */
5876 static int
5877 iwn_init_sensitivity(struct iwn_softc *sc)
5878 {
5879 	struct iwn_ops *ops = &sc->ops;
5880 	struct iwn_calib_state *calib = &sc->calib;
5881 	uint32_t flags;
5882 	int error;
5883 
5884 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5885 
5886 	/* Reset calibration state machine. */
5887 	memset(calib, 0, sizeof (*calib));
5888 	calib->state = IWN_CALIB_STATE_INIT;
5889 	calib->cck_state = IWN_CCK_STATE_HIFA;
5890 	/* Set initial correlation values. */
5891 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5892 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5893 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5894 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5895 	calib->cck_x4      = 125;
5896 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5897 	calib->energy_cck  = sc->limits->energy_cck;
5898 
5899 	/* Write initial sensitivity. */
5900 	if ((error = iwn_send_sensitivity(sc)) != 0)
5901 		return error;
5902 
5903 	/* Write initial gains. */
5904 	if ((error = ops->init_gains(sc)) != 0)
5905 		return error;
5906 
5907 	/* Request statistics at each beacon interval. */
5908 	flags = 0;
5909 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5910 	    __func__);
5911 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5912 }
5913 
5914 /*
5915  * Collect noise and RSSI statistics for the first 20 beacons received
5916  * after association and use them to determine connected antennas and
5917  * to set differential gains.
5918  */
5919 static void
5920 iwn_collect_noise(struct iwn_softc *sc,
5921     const struct iwn_rx_general_stats *stats)
5922 {
5923 	struct iwn_ops *ops = &sc->ops;
5924 	struct iwn_calib_state *calib = &sc->calib;
5925 	struct ieee80211com *ic = &sc->sc_ic;
5926 	uint32_t val;
5927 	int i;
5928 
5929 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5930 
5931 	/* Accumulate RSSI and noise for all 3 antennas. */
5932 	for (i = 0; i < 3; i++) {
5933 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5934 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5935 	}
5936 	/* NB: We update differential gains only once after 20 beacons. */
5937 	if (++calib->nbeacons < 20)
5938 		return;
5939 
5940 	/* Determine highest average RSSI. */
5941 	val = MAX(calib->rssi[0], calib->rssi[1]);
5942 	val = MAX(calib->rssi[2], val);
5943 
5944 	/* Determine which antennas are connected. */
5945 	sc->chainmask = sc->rxchainmask;
5946 	for (i = 0; i < 3; i++)
5947 		if (val - calib->rssi[i] > 15 * 20)
5948 			sc->chainmask &= ~(1 << i);
5949 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5950 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5951 	    __func__, sc->rxchainmask, sc->chainmask);
5952 
5953 	/* If none of the TX antennas are connected, keep at least one. */
5954 	if ((sc->chainmask & sc->txchainmask) == 0)
5955 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5956 
5957 	(void)ops->set_gains(sc);
5958 	calib->state = IWN_CALIB_STATE_RUN;
5959 
5960 #ifdef notyet
5961 	/* XXX Disable RX chains with no antennas connected. */
5962 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5963 	if (sc->sc_is_scanning)
5964 		device_printf(sc->sc_dev,
5965 		    "%s: is_scanning set, before RXON\n",
5966 		    __func__);
5967 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5968 #endif
5969 
5970 	/* Enable power-saving mode if requested by user. */
5971 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5972 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5973 
5974 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5975 
5976 }
5977 
5978 static int
5979 iwn4965_init_gains(struct iwn_softc *sc)
5980 {
5981 	struct iwn_phy_calib_gain cmd;
5982 
5983 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5984 
5985 	memset(&cmd, 0, sizeof cmd);
5986 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5987 	/* Differential gains initially set to 0 for all 3 antennas. */
5988 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5989 	    "%s: setting initial differential gains\n", __func__);
5990 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5991 }
5992 
5993 static int
5994 iwn5000_init_gains(struct iwn_softc *sc)
5995 {
5996 	struct iwn_phy_calib cmd;
5997 
5998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5999 
6000 	memset(&cmd, 0, sizeof cmd);
6001 	cmd.code = sc->reset_noise_gain;
6002 	cmd.ngroups = 1;
6003 	cmd.isvalid = 1;
6004 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6005 	    "%s: setting initial differential gains\n", __func__);
6006 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6007 }
6008 
6009 static int
6010 iwn4965_set_gains(struct iwn_softc *sc)
6011 {
6012 	struct iwn_calib_state *calib = &sc->calib;
6013 	struct iwn_phy_calib_gain cmd;
6014 	int i, delta, noise;
6015 
6016 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6017 
6018 	/* Get minimal noise among connected antennas. */
6019 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6020 	for (i = 0; i < 3; i++)
6021 		if (sc->chainmask & (1 << i))
6022 			noise = MIN(calib->noise[i], noise);
6023 
6024 	memset(&cmd, 0, sizeof cmd);
6025 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6026 	/* Set differential gains for connected antennas. */
6027 	for (i = 0; i < 3; i++) {
6028 		if (sc->chainmask & (1 << i)) {
6029 			/* Compute attenuation (in unit of 1.5dB). */
6030 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6031 			/* NB: delta <= 0 */
6032 			/* Limit to [-4.5dB,0]. */
6033 			cmd.gain[i] = MIN(abs(delta), 3);
6034 			if (delta < 0)
6035 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6036 		}
6037 	}
6038 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6039 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6040 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6041 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6042 }
6043 
6044 static int
6045 iwn5000_set_gains(struct iwn_softc *sc)
6046 {
6047 	struct iwn_calib_state *calib = &sc->calib;
6048 	struct iwn_phy_calib_gain cmd;
6049 	int i, ant, div, delta;
6050 
6051 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6052 
6053 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6054 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6055 
6056 	memset(&cmd, 0, sizeof cmd);
6057 	cmd.code = sc->noise_gain;
6058 	cmd.ngroups = 1;
6059 	cmd.isvalid = 1;
6060 	/* Get first available RX antenna as referential. */
6061 	ant = IWN_LSB(sc->rxchainmask);
6062 	/* Set differential gains for other antennas. */
6063 	for (i = ant + 1; i < 3; i++) {
6064 		if (sc->chainmask & (1 << i)) {
6065 			/* The delta is relative to antenna "ant". */
6066 			delta = ((int32_t)calib->noise[ant] -
6067 			    (int32_t)calib->noise[i]) / div;
6068 			/* Limit to [-4.5dB,+4.5dB]. */
6069 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6070 			if (delta < 0)
6071 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6072 		}
6073 	}
6074 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6075 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6076 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6077 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6078 }
6079 
6080 /*
6081  * Tune RF RX sensitivity based on the number of false alarms detected
6082  * during the last beacon period.
6083  */
6084 static void
6085 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6086 {
6087 #define inc(val, inc, max)			\
6088 	if ((val) < (max)) {			\
6089 		if ((val) < (max) - (inc))	\
6090 			(val) += (inc);		\
6091 		else				\
6092 			(val) = (max);		\
6093 		needs_update = 1;		\
6094 	}
6095 #define dec(val, dec, min)			\
6096 	if ((val) > (min)) {			\
6097 		if ((val) > (min) + (dec))	\
6098 			(val) -= (dec);		\
6099 		else				\
6100 			(val) = (min);		\
6101 		needs_update = 1;		\
6102 	}
6103 
6104 	const struct iwn_sensitivity_limits *limits = sc->limits;
6105 	struct iwn_calib_state *calib = &sc->calib;
6106 	uint32_t val, rxena, fa;
6107 	uint32_t energy[3], energy_min;
6108 	uint8_t noise[3], noise_ref;
6109 	int i, needs_update = 0;
6110 
6111 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6112 
6113 	/* Check that we've been enabled long enough. */
6114 	if ((rxena = le32toh(stats->general.load)) == 0){
6115 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6116 		return;
6117 	}
6118 
6119 	/* Compute number of false alarms since last call for OFDM. */
6120 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6121 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6122 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6123 
6124 	if (fa > 50 * rxena) {
6125 		/* High false alarm count, decrease sensitivity. */
6126 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6127 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6128 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6129 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6130 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6131 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6132 
6133 	} else if (fa < 5 * rxena) {
6134 		/* Low false alarm count, increase sensitivity. */
6135 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6136 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6137 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6138 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6139 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6140 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6141 	}
6142 
6143 	/* Compute maximum noise among 3 receivers. */
6144 	for (i = 0; i < 3; i++)
6145 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6146 	val = MAX(noise[0], noise[1]);
6147 	val = MAX(noise[2], val);
6148 	/* Insert it into our samples table. */
6149 	calib->noise_samples[calib->cur_noise_sample] = val;
6150 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6151 
6152 	/* Compute maximum noise among last 20 samples. */
6153 	noise_ref = calib->noise_samples[0];
6154 	for (i = 1; i < 20; i++)
6155 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6156 
6157 	/* Compute maximum energy among 3 receivers. */
6158 	for (i = 0; i < 3; i++)
6159 		energy[i] = le32toh(stats->general.energy[i]);
6160 	val = MIN(energy[0], energy[1]);
6161 	val = MIN(energy[2], val);
6162 	/* Insert it into our samples table. */
6163 	calib->energy_samples[calib->cur_energy_sample] = val;
6164 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6165 
6166 	/* Compute minimum energy among last 10 samples. */
6167 	energy_min = calib->energy_samples[0];
6168 	for (i = 1; i < 10; i++)
6169 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6170 	energy_min += 6;
6171 
6172 	/* Compute number of false alarms since last call for CCK. */
6173 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6174 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6175 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6176 
6177 	if (fa > 50 * rxena) {
6178 		/* High false alarm count, decrease sensitivity. */
6179 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6180 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6181 		calib->cck_state = IWN_CCK_STATE_HIFA;
6182 		calib->low_fa = 0;
6183 
6184 		if (calib->cck_x4 > 160) {
6185 			calib->noise_ref = noise_ref;
6186 			if (calib->energy_cck > 2)
6187 				dec(calib->energy_cck, 2, energy_min);
6188 		}
6189 		if (calib->cck_x4 < 160) {
6190 			calib->cck_x4 = 161;
6191 			needs_update = 1;
6192 		} else
6193 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6194 
6195 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6196 
6197 	} else if (fa < 5 * rxena) {
6198 		/* Low false alarm count, increase sensitivity. */
6199 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6200 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6201 		calib->cck_state = IWN_CCK_STATE_LOFA;
6202 		calib->low_fa++;
6203 
6204 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6205 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6206 		     calib->low_fa > 100)) {
6207 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6208 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6209 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6210 		}
6211 	} else {
6212 		/* Not worth to increase or decrease sensitivity. */
6213 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6214 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6215 		calib->low_fa = 0;
6216 		calib->noise_ref = noise_ref;
6217 
6218 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6219 			/* Previous interval had many false alarms. */
6220 			dec(calib->energy_cck, 8, energy_min);
6221 		}
6222 		calib->cck_state = IWN_CCK_STATE_INIT;
6223 	}
6224 
6225 	if (needs_update)
6226 		(void)iwn_send_sensitivity(sc);
6227 
6228 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6229 
6230 #undef dec
6231 #undef inc
6232 }
6233 
6234 static int
6235 iwn_send_sensitivity(struct iwn_softc *sc)
6236 {
6237 	struct iwn_calib_state *calib = &sc->calib;
6238 	struct iwn_enhanced_sensitivity_cmd cmd;
6239 	int len;
6240 
6241 	memset(&cmd, 0, sizeof cmd);
6242 	len = sizeof (struct iwn_sensitivity_cmd);
6243 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6244 	/* OFDM modulation. */
6245 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6246 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6247 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6248 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6249 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6250 	cmd.energy_ofdm_th     = htole16(62);
6251 	/* CCK modulation. */
6252 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6253 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6254 	cmd.energy_cck         = htole16(calib->energy_cck);
6255 	/* Barker modulation: use default values. */
6256 	cmd.corr_barker        = htole16(190);
6257 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6258 
6259 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6260 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6261 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6262 	    calib->ofdm_mrc_x4, calib->cck_x4,
6263 	    calib->cck_mrc_x4, calib->energy_cck);
6264 
6265 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6266 		goto send;
6267 	/* Enhanced sensitivity settings. */
6268 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6269 	cmd.ofdm_det_slope_mrc = htole16(668);
6270 	cmd.ofdm_det_icept_mrc = htole16(4);
6271 	cmd.ofdm_det_slope     = htole16(486);
6272 	cmd.ofdm_det_icept     = htole16(37);
6273 	cmd.cck_det_slope_mrc  = htole16(853);
6274 	cmd.cck_det_icept_mrc  = htole16(4);
6275 	cmd.cck_det_slope      = htole16(476);
6276 	cmd.cck_det_icept      = htole16(99);
6277 send:
6278 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6279 }
6280 
6281 /*
6282  * Look at the increase of PLCP errors over time; if it exceeds
6283  * a programmed threshold then trigger an RF retune.
6284  */
6285 static void
6286 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6287 {
6288 	int32_t delta_ofdm, delta_ht, delta_cck;
6289 	struct iwn_calib_state *calib = &sc->calib;
6290 	int delta_ticks, cur_ticks;
6291 	int delta_msec;
6292 	int thresh;
6293 
6294 	/*
6295 	 * Calculate the difference between the current and
6296 	 * previous statistics.
6297 	 */
6298 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6299 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6300 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6301 
6302 	/*
6303 	 * Calculate the delta in time between successive statistics
6304 	 * messages.  Yes, it can roll over; so we make sure that
6305 	 * this doesn't happen.
6306 	 *
6307 	 * XXX go figure out what to do about rollover
6308 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6309 	 * XXX go stab signed integer overflow undefined-ness in the face.
6310 	 */
6311 	cur_ticks = ticks;
6312 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6313 
6314 	/*
6315 	 * If any are negative, then the firmware likely reset; so just
6316 	 * bail.  We'll pick this up next time.
6317 	 */
6318 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6319 		return;
6320 
6321 	/*
6322 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6323 	 * so we can do some useful math with it.
6324 	 */
6325 	delta_msec = ticks_to_msecs(delta_ticks);
6326 
6327 	/*
6328 	 * Calculate what our threshold is given the current delta_msec.
6329 	 */
6330 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6331 
6332 	DPRINTF(sc, IWN_DEBUG_STATE,
6333 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6334 	    __func__,
6335 	    delta_msec,
6336 	    delta_cck,
6337 	    delta_ofdm,
6338 	    delta_ht,
6339 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6340 	    thresh);
6341 
6342 	/*
6343 	 * If we need a retune, then schedule a single channel scan
6344 	 * to a channel that isn't the currently active one!
6345 	 *
6346 	 * The math from linux iwlwifi:
6347 	 *
6348 	 * if ((delta * 100 / msecs) > threshold)
6349 	 */
6350 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6351 		DPRINTF(sc, IWN_DEBUG_ANY,
6352 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6353 		    "over limit (%d); retune!\n",
6354 		    __func__,
6355 		    (delta_cck + delta_ofdm + delta_ht),
6356 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6357 		    thresh);
6358 	}
6359 }
6360 
6361 /*
6362  * Set STA mode power saving level (between 0 and 5).
6363  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6364  */
6365 static int
6366 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6367 {
6368 	struct iwn_pmgt_cmd cmd;
6369 	const struct iwn_pmgt *pmgt;
6370 	uint32_t max, skip_dtim;
6371 	uint32_t reg;
6372 	int i;
6373 
6374 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6375 	    "%s: dtim=%d, level=%d, async=%d\n",
6376 	    __func__,
6377 	    dtim,
6378 	    level,
6379 	    async);
6380 
6381 	/* Select which PS parameters to use. */
6382 	if (dtim <= 2)
6383 		pmgt = &iwn_pmgt[0][level];
6384 	else if (dtim <= 10)
6385 		pmgt = &iwn_pmgt[1][level];
6386 	else
6387 		pmgt = &iwn_pmgt[2][level];
6388 
6389 	memset(&cmd, 0, sizeof cmd);
6390 	if (level != 0)	/* not CAM */
6391 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6392 	if (level == 5)
6393 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6394 	/* Retrieve PCIe Active State Power Management (ASPM). */
6395 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6396 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6397 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6398 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6399 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6400 
6401 	if (dtim == 0) {
6402 		dtim = 1;
6403 		skip_dtim = 0;
6404 	} else
6405 		skip_dtim = pmgt->skip_dtim;
6406 	if (skip_dtim != 0) {
6407 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6408 		max = pmgt->intval[4];
6409 		if (max == (uint32_t)-1)
6410 			max = dtim * (skip_dtim + 1);
6411 		else if (max > dtim)
6412 			max = rounddown(max, dtim);
6413 	} else
6414 		max = dtim;
6415 	for (i = 0; i < 5; i++)
6416 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6417 
6418 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6419 	    level);
6420 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6421 }
6422 
6423 static int
6424 iwn_send_btcoex(struct iwn_softc *sc)
6425 {
6426 	struct iwn_bluetooth cmd;
6427 
6428 	memset(&cmd, 0, sizeof cmd);
6429 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6430 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6431 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6432 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6433 	    __func__);
6434 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6435 }
6436 
6437 static int
6438 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6439 {
6440 	static const uint32_t btcoex_3wire[12] = {
6441 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6442 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6443 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6444 	};
6445 	struct iwn6000_btcoex_config btconfig;
6446 	struct iwn2000_btcoex_config btconfig2k;
6447 	struct iwn_btcoex_priotable btprio;
6448 	struct iwn_btcoex_prot btprot;
6449 	int error, i;
6450 	uint8_t flags;
6451 
6452 	memset(&btconfig, 0, sizeof btconfig);
6453 	memset(&btconfig2k, 0, sizeof btconfig2k);
6454 
6455 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6456 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6457 
6458 	if (sc->base_params->bt_sco_disable)
6459 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6460 	else
6461 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6462 
6463 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6464 
6465 	/* Default flags result is 145 as old value */
6466 
6467 	/*
6468 	 * Flags value has to be review. Values must change if we
6469 	 * which to disable it
6470 	 */
6471 	if (sc->base_params->bt_session_2) {
6472 		btconfig2k.flags = flags;
6473 		btconfig2k.max_kill = 5;
6474 		btconfig2k.bt3_t7_timer = 1;
6475 		btconfig2k.kill_ack = htole32(0xffff0000);
6476 		btconfig2k.kill_cts = htole32(0xffff0000);
6477 		btconfig2k.sample_time = 2;
6478 		btconfig2k.bt3_t2_timer = 0xc;
6479 
6480 		for (i = 0; i < 12; i++)
6481 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6482 		btconfig2k.valid = htole16(0xff);
6483 		btconfig2k.prio_boost = htole32(0xf0);
6484 		DPRINTF(sc, IWN_DEBUG_RESET,
6485 		    "%s: configuring advanced bluetooth coexistence"
6486 		    " session 2, flags : 0x%x\n",
6487 		    __func__,
6488 		    flags);
6489 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6490 		    sizeof(btconfig2k), 1);
6491 	} else {
6492 		btconfig.flags = flags;
6493 		btconfig.max_kill = 5;
6494 		btconfig.bt3_t7_timer = 1;
6495 		btconfig.kill_ack = htole32(0xffff0000);
6496 		btconfig.kill_cts = htole32(0xffff0000);
6497 		btconfig.sample_time = 2;
6498 		btconfig.bt3_t2_timer = 0xc;
6499 
6500 		for (i = 0; i < 12; i++)
6501 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6502 		btconfig.valid = htole16(0xff);
6503 		btconfig.prio_boost = 0xf0;
6504 		DPRINTF(sc, IWN_DEBUG_RESET,
6505 		    "%s: configuring advanced bluetooth coexistence,"
6506 		    " flags : 0x%x\n",
6507 		    __func__,
6508 		    flags);
6509 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6510 		    sizeof(btconfig), 1);
6511 	}
6512 
6513 	if (error != 0)
6514 		return error;
6515 
6516 	memset(&btprio, 0, sizeof btprio);
6517 	btprio.calib_init1 = 0x6;
6518 	btprio.calib_init2 = 0x7;
6519 	btprio.calib_periodic_low1 = 0x2;
6520 	btprio.calib_periodic_low2 = 0x3;
6521 	btprio.calib_periodic_high1 = 0x4;
6522 	btprio.calib_periodic_high2 = 0x5;
6523 	btprio.dtim = 0x6;
6524 	btprio.scan52 = 0x8;
6525 	btprio.scan24 = 0xa;
6526 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6527 	    1);
6528 	if (error != 0)
6529 		return error;
6530 
6531 	/* Force BT state machine change. */
6532 	memset(&btprot, 0, sizeof btprot);
6533 	btprot.open = 1;
6534 	btprot.type = 1;
6535 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6536 	if (error != 0)
6537 		return error;
6538 	btprot.open = 0;
6539 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6540 }
6541 
6542 static int
6543 iwn5000_runtime_calib(struct iwn_softc *sc)
6544 {
6545 	struct iwn5000_calib_config cmd;
6546 
6547 	memset(&cmd, 0, sizeof cmd);
6548 	cmd.ucode.once.enable = 0xffffffff;
6549 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6550 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6551 	    "%s: configuring runtime calibration\n", __func__);
6552 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6553 }
6554 
6555 static uint32_t
6556 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6557 {
6558 	struct ieee80211com *ic = &sc->sc_ic;
6559 	uint32_t htflags = 0;
6560 
6561 	if (! IEEE80211_IS_CHAN_HT(c))
6562 		return (0);
6563 
6564 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6565 
6566 	if (IEEE80211_IS_CHAN_HT40(c)) {
6567 		switch (ic->ic_curhtprotmode) {
6568 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6569 			htflags |= IWN_RXON_HT_MODEPURE40;
6570 			break;
6571 		default:
6572 			htflags |= IWN_RXON_HT_MODEMIXED;
6573 			break;
6574 		}
6575 	}
6576 	if (IEEE80211_IS_CHAN_HT40D(c))
6577 		htflags |= IWN_RXON_HT_HT40MINUS;
6578 
6579 	return (htflags);
6580 }
6581 
6582 static int
6583 iwn_check_bss_filter(struct iwn_softc *sc)
6584 {
6585 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6586 }
6587 
6588 static int
6589 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6590 {
6591 	struct iwn4965_rxon_assoc cmd;
6592 	struct iwn_rxon *rxon = sc->rxon;
6593 
6594 	cmd.flags = rxon->flags;
6595 	cmd.filter = rxon->filter;
6596 	cmd.ofdm_mask = rxon->ofdm_mask;
6597 	cmd.cck_mask = rxon->cck_mask;
6598 	cmd.ht_single_mask = rxon->ht_single_mask;
6599 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6600 	cmd.rxchain = rxon->rxchain;
6601 	cmd.reserved = 0;
6602 
6603 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6604 }
6605 
6606 static int
6607 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6608 {
6609 	struct iwn5000_rxon_assoc cmd;
6610 	struct iwn_rxon *rxon = sc->rxon;
6611 
6612 	cmd.flags = rxon->flags;
6613 	cmd.filter = rxon->filter;
6614 	cmd.ofdm_mask = rxon->ofdm_mask;
6615 	cmd.cck_mask = rxon->cck_mask;
6616 	cmd.reserved1 = 0;
6617 	cmd.ht_single_mask = rxon->ht_single_mask;
6618 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6619 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6620 	cmd.reserved2 = 0;
6621 	cmd.rxchain = rxon->rxchain;
6622 	cmd.acquisition = rxon->acquisition;
6623 	cmd.reserved3 = 0;
6624 
6625 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6626 }
6627 
6628 static int
6629 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6630 {
6631 	struct iwn_ops *ops = &sc->ops;
6632 	int error;
6633 
6634 	IWN_LOCK_ASSERT(sc);
6635 
6636 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6637 		error = ops->rxon_assoc(sc, async);
6638 		if (error != 0) {
6639 			device_printf(sc->sc_dev,
6640 			    "%s: RXON_ASSOC command failed, error %d\n",
6641 			    __func__, error);
6642 			return (error);
6643 		}
6644 	} else {
6645 		if (sc->sc_is_scanning)
6646 			device_printf(sc->sc_dev,
6647 			    "%s: is_scanning set, before RXON\n",
6648 			    __func__);
6649 
6650 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6651 		if (error != 0) {
6652 			device_printf(sc->sc_dev,
6653 			    "%s: RXON command failed, error %d\n",
6654 			    __func__, error);
6655 			return (error);
6656 		}
6657 
6658 		/*
6659 		 * Reconfiguring RXON clears the firmware nodes table so
6660 		 * we must add the broadcast node again.
6661 		 */
6662 		if (iwn_check_bss_filter(sc) == 0 &&
6663 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6664 			device_printf(sc->sc_dev,
6665 			    "%s: could not add broadcast node, error %d\n",
6666 			    __func__, error);
6667 			return (error);
6668 		}
6669 	}
6670 
6671 	/* Configuration has changed, set TX power accordingly. */
6672 	if ((error = ops->set_txpower(sc, async)) != 0) {
6673 		device_printf(sc->sc_dev,
6674 		    "%s: could not set TX power, error %d\n",
6675 		    __func__, error);
6676 		return (error);
6677 	}
6678 
6679 	return (0);
6680 }
6681 
6682 static int
6683 iwn_config(struct iwn_softc *sc)
6684 {
6685 	struct ieee80211com *ic = &sc->sc_ic;
6686 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6687 	const uint8_t *macaddr;
6688 	uint32_t txmask;
6689 	uint16_t rxchain;
6690 	int error;
6691 
6692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6693 
6694 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6695 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6696 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6697 		    " exclusive each together. Review NIC config file. Conf"
6698 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6699 		    sc->base_params->calib_need,
6700 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6701 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6702 		return (EINVAL);
6703 	}
6704 
6705 	/* Compute temperature calib if needed. Will be send by send calib */
6706 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6707 		error = iwn5000_temp_offset_calib(sc);
6708 		if (error != 0) {
6709 			device_printf(sc->sc_dev,
6710 			    "%s: could not set temperature offset\n", __func__);
6711 			return (error);
6712 		}
6713 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6714 		error = iwn5000_temp_offset_calibv2(sc);
6715 		if (error != 0) {
6716 			device_printf(sc->sc_dev,
6717 			    "%s: could not compute temperature offset v2\n",
6718 			    __func__);
6719 			return (error);
6720 		}
6721 	}
6722 
6723 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6724 		/* Configure runtime DC calibration. */
6725 		error = iwn5000_runtime_calib(sc);
6726 		if (error != 0) {
6727 			device_printf(sc->sc_dev,
6728 			    "%s: could not configure runtime calibration\n",
6729 			    __func__);
6730 			return error;
6731 		}
6732 	}
6733 
6734 	/* Configure valid TX chains for >=5000 Series. */
6735 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6736 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6737 		txmask = htole32(sc->txchainmask);
6738 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6739 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6740 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6741 		    sizeof txmask, 0);
6742 		if (error != 0) {
6743 			device_printf(sc->sc_dev,
6744 			    "%s: could not configure valid TX chains, "
6745 			    "error %d\n", __func__, error);
6746 			return error;
6747 		}
6748 	}
6749 
6750 	/* Configure bluetooth coexistence. */
6751 	error = 0;
6752 
6753 	/* Configure bluetooth coexistence if needed. */
6754 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6755 		error = iwn_send_advanced_btcoex(sc);
6756 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6757 		error = iwn_send_btcoex(sc);
6758 
6759 	if (error != 0) {
6760 		device_printf(sc->sc_dev,
6761 		    "%s: could not configure bluetooth coexistence, error %d\n",
6762 		    __func__, error);
6763 		return error;
6764 	}
6765 
6766 	/* Set mode, channel, RX filter and enable RX. */
6767 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6768 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6769 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6770 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6771 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6772 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6773 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6774 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6775 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6776 
6777 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6778 	switch (ic->ic_opmode) {
6779 	case IEEE80211_M_STA:
6780 		sc->rxon->mode = IWN_MODE_STA;
6781 		break;
6782 	case IEEE80211_M_MONITOR:
6783 		sc->rxon->mode = IWN_MODE_MONITOR;
6784 		break;
6785 	default:
6786 		/* Should not get there. */
6787 		break;
6788 	}
6789 	iwn_set_promisc(sc);
6790 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6791 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6792 	sc->rxon->ht_single_mask = 0xff;
6793 	sc->rxon->ht_dual_mask = 0xff;
6794 	sc->rxon->ht_triple_mask = 0xff;
6795 	/*
6796 	 * In active association mode, ensure that
6797 	 * all the receive chains are enabled.
6798 	 *
6799 	 * Since we're not yet doing SMPS, don't allow the
6800 	 * number of idle RX chains to be less than the active
6801 	 * number.
6802 	 */
6803 	rxchain =
6804 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6805 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6806 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6807 	sc->rxon->rxchain = htole16(rxchain);
6808 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6809 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6810 	    __func__,
6811 	    sc->rxchainmask,
6812 	    sc->nrxchains);
6813 
6814 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6815 
6816 	DPRINTF(sc, IWN_DEBUG_RESET,
6817 	    "%s: setting configuration; flags=0x%08x\n",
6818 	    __func__, le32toh(sc->rxon->flags));
6819 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6820 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6821 		    __func__);
6822 		return error;
6823 	}
6824 
6825 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6826 		device_printf(sc->sc_dev,
6827 		    "%s: could not set critical temperature\n", __func__);
6828 		return error;
6829 	}
6830 
6831 	/* Set power saving level to CAM during initialization. */
6832 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6833 		device_printf(sc->sc_dev,
6834 		    "%s: could not set power saving level\n", __func__);
6835 		return error;
6836 	}
6837 
6838 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6839 
6840 	return 0;
6841 }
6842 
6843 static uint16_t
6844 iwn_get_active_dwell_time(struct iwn_softc *sc,
6845     struct ieee80211_channel *c, uint8_t n_probes)
6846 {
6847 	/* No channel? Default to 2GHz settings */
6848 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6849 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6850 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6851 	}
6852 
6853 	/* 5GHz dwell time */
6854 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6855 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6856 }
6857 
6858 /*
6859  * Limit the total dwell time to 85% of the beacon interval.
6860  *
6861  * Returns the dwell time in milliseconds.
6862  */
6863 static uint16_t
6864 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6865 {
6866 	struct ieee80211com *ic = &sc->sc_ic;
6867 	struct ieee80211vap *vap = NULL;
6868 	int bintval = 0;
6869 
6870 	/* bintval is in TU (1.024mS) */
6871 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6872 		vap = TAILQ_FIRST(&ic->ic_vaps);
6873 		bintval = vap->iv_bss->ni_intval;
6874 	}
6875 
6876 	/*
6877 	 * If it's non-zero, we should calculate the minimum of
6878 	 * it and the DWELL_BASE.
6879 	 *
6880 	 * XXX Yes, the math should take into account that bintval
6881 	 * is 1.024mS, not 1mS..
6882 	 */
6883 	if (bintval > 0) {
6884 		DPRINTF(sc, IWN_DEBUG_SCAN,
6885 		    "%s: bintval=%d\n",
6886 		    __func__,
6887 		    bintval);
6888 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6889 	}
6890 
6891 	/* No association context? Default */
6892 	return (IWN_PASSIVE_DWELL_BASE);
6893 }
6894 
6895 static uint16_t
6896 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6897 {
6898 	uint16_t passive;
6899 
6900 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6901 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6902 	} else {
6903 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6904 	}
6905 
6906 	/* Clamp to the beacon interval if we're associated */
6907 	return (iwn_limit_dwell(sc, passive));
6908 }
6909 
6910 static int
6911 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6912     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6913 {
6914 	struct ieee80211com *ic = &sc->sc_ic;
6915 	struct ieee80211_node *ni = vap->iv_bss;
6916 	struct iwn_scan_hdr *hdr;
6917 	struct iwn_cmd_data *tx;
6918 	struct iwn_scan_essid *essid;
6919 	struct iwn_scan_chan *chan;
6920 	struct ieee80211_frame *wh;
6921 	struct ieee80211_rateset *rs;
6922 	uint8_t *buf, *frm;
6923 	uint16_t rxchain;
6924 	uint8_t txant;
6925 	int buflen, error;
6926 	int is_active;
6927 	uint16_t dwell_active, dwell_passive;
6928 	uint32_t extra, scan_service_time;
6929 
6930 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6931 
6932 	/*
6933 	 * We are absolutely not allowed to send a scan command when another
6934 	 * scan command is pending.
6935 	 */
6936 	if (sc->sc_is_scanning) {
6937 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6938 		    __func__);
6939 		return (EAGAIN);
6940 	}
6941 
6942 	/* Assign the scan channel */
6943 	c = ic->ic_curchan;
6944 
6945 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6946 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6947 	if (buf == NULL) {
6948 		device_printf(sc->sc_dev,
6949 		    "%s: could not allocate buffer for scan command\n",
6950 		    __func__);
6951 		return ENOMEM;
6952 	}
6953 	hdr = (struct iwn_scan_hdr *)buf;
6954 	/*
6955 	 * Move to the next channel if no frames are received within 10ms
6956 	 * after sending the probe request.
6957 	 */
6958 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6959 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6960 	/*
6961 	 * Max needs to be greater than active and passive and quiet!
6962 	 * It's also in microseconds!
6963 	 */
6964 	hdr->max_svc = htole32(250 * 1024);
6965 
6966 	/*
6967 	 * Reset scan: interval=100
6968 	 * Normal scan: interval=becaon interval
6969 	 * suspend_time: 100 (TU)
6970 	 *
6971 	 */
6972 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6973 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6974 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6975 	hdr->pause_svc = htole32(scan_service_time);
6976 
6977 	/* Select antennas for scanning. */
6978 	rxchain =
6979 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6980 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6981 	    IWN_RXCHAIN_DRIVER_FORCE;
6982 	if (IEEE80211_IS_CHAN_A(c) &&
6983 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6984 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6985 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6986 	} else	/* Use all available RX antennas. */
6987 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6988 	hdr->rxchain = htole16(rxchain);
6989 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6990 
6991 	tx = (struct iwn_cmd_data *)(hdr + 1);
6992 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6993 	tx->id = sc->broadcast_id;
6994 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6995 
6996 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6997 		/* Send probe requests at 6Mbps. */
6998 		tx->rate = htole32(0xd);
6999 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7000 	} else {
7001 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7002 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7003 		    sc->rxon->associd && sc->rxon->chan > 14)
7004 			tx->rate = htole32(0xd);
7005 		else {
7006 			/* Send probe requests at 1Mbps. */
7007 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7008 		}
7009 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7010 	}
7011 	/* Use the first valid TX antenna. */
7012 	txant = IWN_LSB(sc->txchainmask);
7013 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7014 
7015 	/*
7016 	 * Only do active scanning if we're announcing a probe request
7017 	 * for a given SSID (or more, if we ever add it to the driver.)
7018 	 */
7019 	is_active = 0;
7020 
7021 	/*
7022 	 * If we're scanning for a specific SSID, add it to the command.
7023 	 *
7024 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7025 	 */
7026 	essid = (struct iwn_scan_essid *)(tx + 1);
7027 	if (ss != NULL) {
7028 		if (ss->ss_ssid[0].len != 0) {
7029 			essid[0].id = IEEE80211_ELEMID_SSID;
7030 			essid[0].len = ss->ss_ssid[0].len;
7031 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7032 		}
7033 
7034 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7035 		    __func__,
7036 		    ss->ss_ssid[0].len,
7037 		    ss->ss_ssid[0].len,
7038 		    ss->ss_ssid[0].ssid);
7039 
7040 		if (ss->ss_nssid > 0)
7041 			is_active = 1;
7042 	}
7043 
7044 	/*
7045 	 * Build a probe request frame.  Most of the following code is a
7046 	 * copy & paste of what is done in net80211.
7047 	 */
7048 	wh = (struct ieee80211_frame *)(essid + 20);
7049 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7050 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7051 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7052 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7053 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7054 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7055 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7056 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7057 
7058 	frm = (uint8_t *)(wh + 1);
7059 	frm = ieee80211_add_ssid(frm, NULL, 0);
7060 	frm = ieee80211_add_rates(frm, rs);
7061 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7062 		frm = ieee80211_add_xrates(frm, rs);
7063 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7064 		frm = ieee80211_add_htcap(frm, ni);
7065 
7066 	/* Set length of probe request. */
7067 	tx->len = htole16(frm - (uint8_t *)wh);
7068 
7069 	/*
7070 	 * If active scanning is requested but a certain channel is
7071 	 * marked passive, we can do active scanning if we detect
7072 	 * transmissions.
7073 	 *
7074 	 * There is an issue with some firmware versions that triggers
7075 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7076 	 * on a radar channel even though this means that we should NOT
7077 	 * send probes.
7078 	 *
7079 	 * The "good CRC threshold" is the number of frames that we
7080 	 * need to receive during our dwell time on a channel before
7081 	 * sending out probes -- setting this to a huge value will
7082 	 * mean we never reach it, but at the same time work around
7083 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7084 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7085 	 *
7086 	 * This was fixed in later versions along with some other
7087 	 * scan changes, and the threshold behaves as a flag in those
7088 	 * versions.
7089 	 */
7090 
7091 	/*
7092 	 * If we're doing active scanning, set the crc_threshold
7093 	 * to a suitable value.  This is different to active veruss
7094 	 * passive scanning depending upon the channel flags; the
7095 	 * firmware will obey that particular check for us.
7096 	 */
7097 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7098 		hdr->crc_threshold = is_active ?
7099 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7100 	else
7101 		hdr->crc_threshold = is_active ?
7102 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7103 
7104 	chan = (struct iwn_scan_chan *)frm;
7105 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7106 	chan->flags = 0;
7107 	if (ss->ss_nssid > 0)
7108 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7109 	chan->dsp_gain = 0x6e;
7110 
7111 	/*
7112 	 * Set the passive/active flag depending upon the channel mode.
7113 	 * XXX TODO: take the is_active flag into account as well?
7114 	 */
7115 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7116 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7117 	else
7118 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7119 
7120 	/*
7121 	 * Calculate the active/passive dwell times.
7122 	 */
7123 
7124 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7125 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7126 
7127 	/* Make sure they're valid */
7128 	if (dwell_passive <= dwell_active)
7129 		dwell_passive = dwell_active + 1;
7130 
7131 	chan->active = htole16(dwell_active);
7132 	chan->passive = htole16(dwell_passive);
7133 
7134 	if (IEEE80211_IS_CHAN_5GHZ(c))
7135 		chan->rf_gain = 0x3b;
7136 	else
7137 		chan->rf_gain = 0x28;
7138 
7139 	DPRINTF(sc, IWN_DEBUG_STATE,
7140 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7141 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7142 	    "isactive=%d numssid=%d\n", __func__,
7143 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7144 	    dwell_active, dwell_passive, scan_service_time,
7145 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7146 
7147 	hdr->nchan++;
7148 	chan++;
7149 	buflen = (uint8_t *)chan - buf;
7150 	hdr->len = htole16(buflen);
7151 
7152 	if (sc->sc_is_scanning) {
7153 		device_printf(sc->sc_dev,
7154 		    "%s: called with is_scanning set!\n",
7155 		    __func__);
7156 	}
7157 	sc->sc_is_scanning = 1;
7158 
7159 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7160 	    hdr->nchan);
7161 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7162 	free(buf, M_DEVBUF);
7163 	if (error == 0)
7164 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7165 
7166 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7167 
7168 	return error;
7169 }
7170 
7171 static int
7172 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7173 {
7174 	struct ieee80211com *ic = &sc->sc_ic;
7175 	struct ieee80211_node *ni = vap->iv_bss;
7176 	int error;
7177 
7178 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7179 
7180 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7181 	/* Update adapter configuration. */
7182 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7183 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7184 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7185 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7186 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7187 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7188 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7189 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7190 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7191 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7192 		sc->rxon->cck_mask  = 0;
7193 		sc->rxon->ofdm_mask = 0x15;
7194 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7195 		sc->rxon->cck_mask  = 0x03;
7196 		sc->rxon->ofdm_mask = 0;
7197 	} else {
7198 		/* Assume 802.11b/g. */
7199 		sc->rxon->cck_mask  = 0x03;
7200 		sc->rxon->ofdm_mask = 0x15;
7201 	}
7202 
7203 	/* try HT */
7204 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7205 
7206 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7207 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7208 	    sc->rxon->ofdm_mask);
7209 
7210 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7211 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7212 		    __func__);
7213 		return (error);
7214 	}
7215 
7216 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7217 
7218 	return (0);
7219 }
7220 
7221 static int
7222 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7223 {
7224 	struct iwn_ops *ops = &sc->ops;
7225 	struct ieee80211com *ic = &sc->sc_ic;
7226 	struct ieee80211_node *ni = vap->iv_bss;
7227 	struct iwn_node_info node;
7228 	int error;
7229 
7230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7231 
7232 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7233 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7234 		/* Link LED blinks while monitoring. */
7235 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7236 		return 0;
7237 	}
7238 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7239 		device_printf(sc->sc_dev,
7240 		    "%s: could not set timing, error %d\n", __func__, error);
7241 		return error;
7242 	}
7243 
7244 	/* Update adapter configuration. */
7245 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7246 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7247 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7248 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7249 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7250 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7251 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7252 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7253 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7254 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7255 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7256 		sc->rxon->cck_mask  = 0;
7257 		sc->rxon->ofdm_mask = 0x15;
7258 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7259 		sc->rxon->cck_mask  = 0x03;
7260 		sc->rxon->ofdm_mask = 0;
7261 	} else {
7262 		/* Assume 802.11b/g. */
7263 		sc->rxon->cck_mask  = 0x0f;
7264 		sc->rxon->ofdm_mask = 0x15;
7265 	}
7266 	/* try HT */
7267 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7268 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7269 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7270 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7271 
7272 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7273 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7274 		    __func__);
7275 		return error;
7276 	}
7277 
7278 	/* Fake a join to initialize the TX rate. */
7279 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7280 	iwn_newassoc(ni, 1);
7281 
7282 	/* Add BSS node. */
7283 	memset(&node, 0, sizeof node);
7284 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7285 	node.id = IWN_ID_BSS;
7286 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7287 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7288 		case IEEE80211_HTCAP_SMPS_ENA:
7289 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7290 			break;
7291 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7292 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7293 			break;
7294 		}
7295 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7296 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7297 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7298 			node.htflags |= htole32(IWN_NODE_HT40);
7299 	}
7300 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7301 	error = ops->add_node(sc, &node, 1);
7302 	if (error != 0) {
7303 		device_printf(sc->sc_dev,
7304 		    "%s: could not add BSS node, error %d\n", __func__, error);
7305 		return error;
7306 	}
7307 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7308 	    __func__, node.id);
7309 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7310 		device_printf(sc->sc_dev,
7311 		    "%s: could not setup link quality for node %d, error %d\n",
7312 		    __func__, node.id, error);
7313 		return error;
7314 	}
7315 
7316 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7317 		device_printf(sc->sc_dev,
7318 		    "%s: could not set sensitivity, error %d\n", __func__,
7319 		    error);
7320 		return error;
7321 	}
7322 	/* Start periodic calibration timer. */
7323 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7324 	sc->calib_cnt = 0;
7325 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7326 	    sc);
7327 
7328 	/* Link LED always on while associated. */
7329 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7330 
7331 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7332 
7333 	return 0;
7334 }
7335 
7336 /*
7337  * This function is called by upper layer when an ADDBA request is received
7338  * from another STA and before the ADDBA response is sent.
7339  */
7340 static int
7341 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7342     int baparamset, int batimeout, int baseqctl)
7343 {
7344 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7345 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7346 	struct iwn_ops *ops = &sc->ops;
7347 	struct iwn_node *wn = (void *)ni;
7348 	struct iwn_node_info node;
7349 	uint16_t ssn;
7350 	uint8_t tid;
7351 	int error;
7352 
7353 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7354 
7355 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7356 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7357 
7358 	memset(&node, 0, sizeof node);
7359 	node.id = wn->id;
7360 	node.control = IWN_NODE_UPDATE;
7361 	node.flags = IWN_FLAG_SET_ADDBA;
7362 	node.addba_tid = tid;
7363 	node.addba_ssn = htole16(ssn);
7364 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7365 	    wn->id, tid, ssn);
7366 	error = ops->add_node(sc, &node, 1);
7367 	if (error != 0)
7368 		return error;
7369 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7370 #undef MS
7371 }
7372 
7373 /*
7374  * This function is called by upper layer on teardown of an HT-immediate
7375  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7376  */
7377 static void
7378 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7379 {
7380 	struct ieee80211com *ic = ni->ni_ic;
7381 	struct iwn_softc *sc = ic->ic_softc;
7382 	struct iwn_ops *ops = &sc->ops;
7383 	struct iwn_node *wn = (void *)ni;
7384 	struct iwn_node_info node;
7385 	uint8_t tid;
7386 
7387 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7388 
7389 	/* XXX: tid as an argument */
7390 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7391 		if (&ni->ni_rx_ampdu[tid] == rap)
7392 			break;
7393 	}
7394 
7395 	memset(&node, 0, sizeof node);
7396 	node.id = wn->id;
7397 	node.control = IWN_NODE_UPDATE;
7398 	node.flags = IWN_FLAG_SET_DELBA;
7399 	node.delba_tid = tid;
7400 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7401 	(void)ops->add_node(sc, &node, 1);
7402 	sc->sc_ampdu_rx_stop(ni, rap);
7403 }
7404 
7405 static int
7406 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7407     int dialogtoken, int baparamset, int batimeout)
7408 {
7409 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7410 	int qid;
7411 
7412 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7413 
7414 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7415 		if (sc->qid2tap[qid] == NULL)
7416 			break;
7417 	}
7418 	if (qid == sc->ntxqs) {
7419 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7420 		    __func__);
7421 		return 0;
7422 	}
7423 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7424 	if (tap->txa_private == NULL) {
7425 		device_printf(sc->sc_dev,
7426 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7427 		return 0;
7428 	}
7429 	sc->qid2tap[qid] = tap;
7430 	*(int *)tap->txa_private = qid;
7431 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7432 	    batimeout);
7433 }
7434 
7435 static int
7436 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7437     int code, int baparamset, int batimeout)
7438 {
7439 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7440 	int qid = *(int *)tap->txa_private;
7441 	uint8_t tid = tap->txa_tid;
7442 	int ret;
7443 
7444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7445 
7446 	if (code == IEEE80211_STATUS_SUCCESS) {
7447 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7448 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7449 		if (ret != 1)
7450 			return ret;
7451 	} else {
7452 		sc->qid2tap[qid] = NULL;
7453 		free(tap->txa_private, M_DEVBUF);
7454 		tap->txa_private = NULL;
7455 	}
7456 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7457 }
7458 
7459 /*
7460  * This function is called by upper layer when an ADDBA response is received
7461  * from another STA.
7462  */
7463 static int
7464 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7465     uint8_t tid)
7466 {
7467 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7468 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7469 	struct iwn_ops *ops = &sc->ops;
7470 	struct iwn_node *wn = (void *)ni;
7471 	struct iwn_node_info node;
7472 	int error, qid;
7473 
7474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7475 
7476 	/* Enable TX for the specified RA/TID. */
7477 	wn->disable_tid &= ~(1 << tid);
7478 	memset(&node, 0, sizeof node);
7479 	node.id = wn->id;
7480 	node.control = IWN_NODE_UPDATE;
7481 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7482 	node.disable_tid = htole16(wn->disable_tid);
7483 	error = ops->add_node(sc, &node, 1);
7484 	if (error != 0)
7485 		return 0;
7486 
7487 	if ((error = iwn_nic_lock(sc)) != 0)
7488 		return 0;
7489 	qid = *(int *)tap->txa_private;
7490 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7491 	    __func__, wn->id, tid, tap->txa_start, qid);
7492 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7493 	iwn_nic_unlock(sc);
7494 
7495 	iwn_set_link_quality(sc, ni);
7496 	return 1;
7497 }
7498 
7499 static void
7500 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7501 {
7502 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7503 	struct iwn_ops *ops = &sc->ops;
7504 	uint8_t tid = tap->txa_tid;
7505 	int qid;
7506 
7507 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7508 
7509 	sc->sc_addba_stop(ni, tap);
7510 
7511 	if (tap->txa_private == NULL)
7512 		return;
7513 
7514 	qid = *(int *)tap->txa_private;
7515 	if (sc->txq[qid].queued != 0)
7516 		return;
7517 	if (iwn_nic_lock(sc) != 0)
7518 		return;
7519 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7520 	iwn_nic_unlock(sc);
7521 	sc->qid2tap[qid] = NULL;
7522 	free(tap->txa_private, M_DEVBUF);
7523 	tap->txa_private = NULL;
7524 }
7525 
7526 static void
7527 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7528     int qid, uint8_t tid, uint16_t ssn)
7529 {
7530 	struct iwn_node *wn = (void *)ni;
7531 
7532 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7533 
7534 	/* Stop TX scheduler while we're changing its configuration. */
7535 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7536 	    IWN4965_TXQ_STATUS_CHGACT);
7537 
7538 	/* Assign RA/TID translation to the queue. */
7539 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7540 	    wn->id << 4 | tid);
7541 
7542 	/* Enable chain-building mode for the queue. */
7543 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7544 
7545 	/* Set starting sequence number from the ADDBA request. */
7546 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7547 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7548 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7549 
7550 	/* Set scheduler window size. */
7551 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7552 	    IWN_SCHED_WINSZ);
7553 	/* Set scheduler frame limit. */
7554 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7555 	    IWN_SCHED_LIMIT << 16);
7556 
7557 	/* Enable interrupts for the queue. */
7558 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7559 
7560 	/* Mark the queue as active. */
7561 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7562 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7563 	    iwn_tid2fifo[tid] << 1);
7564 }
7565 
7566 static void
7567 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7568 {
7569 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7570 
7571 	/* Stop TX scheduler while we're changing its configuration. */
7572 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7573 	    IWN4965_TXQ_STATUS_CHGACT);
7574 
7575 	/* Set starting sequence number from the ADDBA request. */
7576 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7577 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7578 
7579 	/* Disable interrupts for the queue. */
7580 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7581 
7582 	/* Mark the queue as inactive. */
7583 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7584 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7585 }
7586 
7587 static void
7588 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7589     int qid, uint8_t tid, uint16_t ssn)
7590 {
7591 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7592 
7593 	struct iwn_node *wn = (void *)ni;
7594 
7595 	/* Stop TX scheduler while we're changing its configuration. */
7596 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7597 	    IWN5000_TXQ_STATUS_CHGACT);
7598 
7599 	/* Assign RA/TID translation to the queue. */
7600 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7601 	    wn->id << 4 | tid);
7602 
7603 	/* Enable chain-building mode for the queue. */
7604 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7605 
7606 	/* Enable aggregation for the queue. */
7607 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7608 
7609 	/* Set starting sequence number from the ADDBA request. */
7610 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7611 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7612 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7613 
7614 	/* Set scheduler window size and frame limit. */
7615 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7616 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7617 
7618 	/* Enable interrupts for the queue. */
7619 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7620 
7621 	/* Mark the queue as active. */
7622 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7623 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7624 }
7625 
7626 static void
7627 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7628 {
7629 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7630 
7631 	/* Stop TX scheduler while we're changing its configuration. */
7632 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7633 	    IWN5000_TXQ_STATUS_CHGACT);
7634 
7635 	/* Disable aggregation for the queue. */
7636 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7637 
7638 	/* Set starting sequence number from the ADDBA request. */
7639 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7640 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7641 
7642 	/* Disable interrupts for the queue. */
7643 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7644 
7645 	/* Mark the queue as inactive. */
7646 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7647 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7648 }
7649 
7650 /*
7651  * Query calibration tables from the initialization firmware.  We do this
7652  * only once at first boot.  Called from a process context.
7653  */
7654 static int
7655 iwn5000_query_calibration(struct iwn_softc *sc)
7656 {
7657 	struct iwn5000_calib_config cmd;
7658 	int error;
7659 
7660 	memset(&cmd, 0, sizeof cmd);
7661 	cmd.ucode.once.enable = htole32(0xffffffff);
7662 	cmd.ucode.once.start  = htole32(0xffffffff);
7663 	cmd.ucode.once.send   = htole32(0xffffffff);
7664 	cmd.ucode.flags       = htole32(0xffffffff);
7665 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7666 	    __func__);
7667 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7668 	if (error != 0)
7669 		return error;
7670 
7671 	/* Wait at most two seconds for calibration to complete. */
7672 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7673 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7674 	return error;
7675 }
7676 
7677 /*
7678  * Send calibration results to the runtime firmware.  These results were
7679  * obtained on first boot from the initialization firmware.
7680  */
7681 static int
7682 iwn5000_send_calibration(struct iwn_softc *sc)
7683 {
7684 	int idx, error;
7685 
7686 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7687 		if (!(sc->base_params->calib_need & (1<<idx))) {
7688 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7689 			    "No need of calib %d\n",
7690 			    idx);
7691 			continue; /* no need for this calib */
7692 		}
7693 		if (sc->calibcmd[idx].buf == NULL) {
7694 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7695 			    "Need calib idx : %d but no available data\n",
7696 			    idx);
7697 			continue;
7698 		}
7699 
7700 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7701 		    "send calibration result idx=%d len=%d\n", idx,
7702 		    sc->calibcmd[idx].len);
7703 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7704 		    sc->calibcmd[idx].len, 0);
7705 		if (error != 0) {
7706 			device_printf(sc->sc_dev,
7707 			    "%s: could not send calibration result, error %d\n",
7708 			    __func__, error);
7709 			return error;
7710 		}
7711 	}
7712 	return 0;
7713 }
7714 
7715 static int
7716 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7717 {
7718 	struct iwn5000_wimax_coex wimax;
7719 
7720 #if 0
7721 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7722 		/* Enable WiMAX coexistence for combo adapters. */
7723 		wimax.flags =
7724 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7725 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7726 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7727 		    IWN_WIMAX_COEX_ENABLE;
7728 		memcpy(wimax.events, iwn6050_wimax_events,
7729 		    sizeof iwn6050_wimax_events);
7730 	} else
7731 #endif
7732 	{
7733 		/* Disable WiMAX coexistence. */
7734 		wimax.flags = 0;
7735 		memset(wimax.events, 0, sizeof wimax.events);
7736 	}
7737 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7738 	    __func__);
7739 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7740 }
7741 
7742 static int
7743 iwn5000_crystal_calib(struct iwn_softc *sc)
7744 {
7745 	struct iwn5000_phy_calib_crystal cmd;
7746 
7747 	memset(&cmd, 0, sizeof cmd);
7748 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7749 	cmd.ngroups = 1;
7750 	cmd.isvalid = 1;
7751 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7752 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7753 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7754 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7755 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7756 }
7757 
7758 static int
7759 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7760 {
7761 	struct iwn5000_phy_calib_temp_offset cmd;
7762 
7763 	memset(&cmd, 0, sizeof cmd);
7764 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7765 	cmd.ngroups = 1;
7766 	cmd.isvalid = 1;
7767 	if (sc->eeprom_temp != 0)
7768 		cmd.offset = htole16(sc->eeprom_temp);
7769 	else
7770 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7771 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7772 	    le16toh(cmd.offset));
7773 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7774 }
7775 
7776 static int
7777 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7778 {
7779 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7780 
7781 	memset(&cmd, 0, sizeof cmd);
7782 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7783 	cmd.ngroups = 1;
7784 	cmd.isvalid = 1;
7785 	if (sc->eeprom_temp != 0) {
7786 		cmd.offset_low = htole16(sc->eeprom_temp);
7787 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7788 	} else {
7789 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7790 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7791 	}
7792 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7793 
7794 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7795 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7796 	    le16toh(cmd.offset_low),
7797 	    le16toh(cmd.offset_high),
7798 	    le16toh(cmd.burnt_voltage_ref));
7799 
7800 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7801 }
7802 
7803 /*
7804  * This function is called after the runtime firmware notifies us of its
7805  * readiness (called in a process context).
7806  */
7807 static int
7808 iwn4965_post_alive(struct iwn_softc *sc)
7809 {
7810 	int error, qid;
7811 
7812 	if ((error = iwn_nic_lock(sc)) != 0)
7813 		return error;
7814 
7815 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7816 
7817 	/* Clear TX scheduler state in SRAM. */
7818 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7819 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7820 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7821 
7822 	/* Set physical address of TX scheduler rings (1KB aligned). */
7823 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7824 
7825 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7826 
7827 	/* Disable chain mode for all our 16 queues. */
7828 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7829 
7830 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7831 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7832 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7833 
7834 		/* Set scheduler window size. */
7835 		iwn_mem_write(sc, sc->sched_base +
7836 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7837 		/* Set scheduler frame limit. */
7838 		iwn_mem_write(sc, sc->sched_base +
7839 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7840 		    IWN_SCHED_LIMIT << 16);
7841 	}
7842 
7843 	/* Enable interrupts for all our 16 queues. */
7844 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7845 	/* Identify TX FIFO rings (0-7). */
7846 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7847 
7848 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7849 	for (qid = 0; qid < 7; qid++) {
7850 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7851 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7852 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7853 	}
7854 	iwn_nic_unlock(sc);
7855 	return 0;
7856 }
7857 
7858 /*
7859  * This function is called after the initialization or runtime firmware
7860  * notifies us of its readiness (called in a process context).
7861  */
7862 static int
7863 iwn5000_post_alive(struct iwn_softc *sc)
7864 {
7865 	int error, qid;
7866 
7867 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7868 
7869 	/* Switch to using ICT interrupt mode. */
7870 	iwn5000_ict_reset(sc);
7871 
7872 	if ((error = iwn_nic_lock(sc)) != 0){
7873 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7874 		return error;
7875 	}
7876 
7877 	/* Clear TX scheduler state in SRAM. */
7878 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7879 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7880 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7881 
7882 	/* Set physical address of TX scheduler rings (1KB aligned). */
7883 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7884 
7885 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7886 
7887 	/* Enable chain mode for all queues, except command queue. */
7888 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7889 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7890 	else
7891 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7892 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7893 
7894 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7895 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7896 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7897 
7898 		iwn_mem_write(sc, sc->sched_base +
7899 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7900 		/* Set scheduler window size and frame limit. */
7901 		iwn_mem_write(sc, sc->sched_base +
7902 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7903 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7904 	}
7905 
7906 	/* Enable interrupts for all our 20 queues. */
7907 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7908 	/* Identify TX FIFO rings (0-7). */
7909 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7910 
7911 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7912 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7913 		/* Mark TX rings as active. */
7914 		for (qid = 0; qid < 11; qid++) {
7915 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7916 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7917 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7918 		}
7919 	} else {
7920 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7921 		for (qid = 0; qid < 7; qid++) {
7922 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7923 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7924 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7925 		}
7926 	}
7927 	iwn_nic_unlock(sc);
7928 
7929 	/* Configure WiMAX coexistence for combo adapters. */
7930 	error = iwn5000_send_wimax_coex(sc);
7931 	if (error != 0) {
7932 		device_printf(sc->sc_dev,
7933 		    "%s: could not configure WiMAX coexistence, error %d\n",
7934 		    __func__, error);
7935 		return error;
7936 	}
7937 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7938 		/* Perform crystal calibration. */
7939 		error = iwn5000_crystal_calib(sc);
7940 		if (error != 0) {
7941 			device_printf(sc->sc_dev,
7942 			    "%s: crystal calibration failed, error %d\n",
7943 			    __func__, error);
7944 			return error;
7945 		}
7946 	}
7947 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7948 		/* Query calibration from the initialization firmware. */
7949 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7950 			device_printf(sc->sc_dev,
7951 			    "%s: could not query calibration, error %d\n",
7952 			    __func__, error);
7953 			return error;
7954 		}
7955 		/*
7956 		 * We have the calibration results now, reboot with the
7957 		 * runtime firmware (call ourselves recursively!)
7958 		 */
7959 		iwn_hw_stop(sc);
7960 		error = iwn_hw_init(sc);
7961 	} else {
7962 		/* Send calibration results to runtime firmware. */
7963 		error = iwn5000_send_calibration(sc);
7964 	}
7965 
7966 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7967 
7968 	return error;
7969 }
7970 
7971 /*
7972  * The firmware boot code is small and is intended to be copied directly into
7973  * the NIC internal memory (no DMA transfer).
7974  */
7975 static int
7976 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7977 {
7978 	int error, ntries;
7979 
7980 	size /= sizeof (uint32_t);
7981 
7982 	if ((error = iwn_nic_lock(sc)) != 0)
7983 		return error;
7984 
7985 	/* Copy microcode image into NIC memory. */
7986 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7987 	    (const uint32_t *)ucode, size);
7988 
7989 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7990 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7991 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7992 
7993 	/* Start boot load now. */
7994 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7995 
7996 	/* Wait for transfer to complete. */
7997 	for (ntries = 0; ntries < 1000; ntries++) {
7998 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7999 		    IWN_BSM_WR_CTRL_START))
8000 			break;
8001 		DELAY(10);
8002 	}
8003 	if (ntries == 1000) {
8004 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8005 		    __func__);
8006 		iwn_nic_unlock(sc);
8007 		return ETIMEDOUT;
8008 	}
8009 
8010 	/* Enable boot after power up. */
8011 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8012 
8013 	iwn_nic_unlock(sc);
8014 	return 0;
8015 }
8016 
8017 static int
8018 iwn4965_load_firmware(struct iwn_softc *sc)
8019 {
8020 	struct iwn_fw_info *fw = &sc->fw;
8021 	struct iwn_dma_info *dma = &sc->fw_dma;
8022 	int error;
8023 
8024 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8025 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8026 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8027 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8028 	    fw->init.text, fw->init.textsz);
8029 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8030 
8031 	/* Tell adapter where to find initialization sections. */
8032 	if ((error = iwn_nic_lock(sc)) != 0)
8033 		return error;
8034 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8035 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8036 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8037 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8038 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8039 	iwn_nic_unlock(sc);
8040 
8041 	/* Load firmware boot code. */
8042 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8043 	if (error != 0) {
8044 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8045 		    __func__);
8046 		return error;
8047 	}
8048 	/* Now press "execute". */
8049 	IWN_WRITE(sc, IWN_RESET, 0);
8050 
8051 	/* Wait at most one second for first alive notification. */
8052 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8053 		device_printf(sc->sc_dev,
8054 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8055 		    __func__, error);
8056 		return error;
8057 	}
8058 
8059 	/* Retrieve current temperature for initial TX power calibration. */
8060 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8061 	sc->temp = iwn4965_get_temperature(sc);
8062 
8063 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8064 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8065 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8066 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8067 	    fw->main.text, fw->main.textsz);
8068 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8069 
8070 	/* Tell adapter where to find runtime sections. */
8071 	if ((error = iwn_nic_lock(sc)) != 0)
8072 		return error;
8073 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8074 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8075 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8076 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8077 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8078 	    IWN_FW_UPDATED | fw->main.textsz);
8079 	iwn_nic_unlock(sc);
8080 
8081 	return 0;
8082 }
8083 
8084 static int
8085 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8086     const uint8_t *section, int size)
8087 {
8088 	struct iwn_dma_info *dma = &sc->fw_dma;
8089 	int error;
8090 
8091 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8092 
8093 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8094 	memcpy(dma->vaddr, section, size);
8095 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8096 
8097 	if ((error = iwn_nic_lock(sc)) != 0)
8098 		return error;
8099 
8100 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8101 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8102 
8103 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8104 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8105 	    IWN_LOADDR(dma->paddr));
8106 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8107 	    IWN_HIADDR(dma->paddr) << 28 | size);
8108 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8109 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8110 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8111 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8112 
8113 	/* Kick Flow Handler to start DMA transfer. */
8114 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8115 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8116 
8117 	iwn_nic_unlock(sc);
8118 
8119 	/* Wait at most five seconds for FH DMA transfer to complete. */
8120 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8121 }
8122 
8123 static int
8124 iwn5000_load_firmware(struct iwn_softc *sc)
8125 {
8126 	struct iwn_fw_part *fw;
8127 	int error;
8128 
8129 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8130 
8131 	/* Load the initialization firmware on first boot only. */
8132 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8133 	    &sc->fw.main : &sc->fw.init;
8134 
8135 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8136 	    fw->text, fw->textsz);
8137 	if (error != 0) {
8138 		device_printf(sc->sc_dev,
8139 		    "%s: could not load firmware %s section, error %d\n",
8140 		    __func__, ".text", error);
8141 		return error;
8142 	}
8143 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8144 	    fw->data, fw->datasz);
8145 	if (error != 0) {
8146 		device_printf(sc->sc_dev,
8147 		    "%s: could not load firmware %s section, error %d\n",
8148 		    __func__, ".data", error);
8149 		return error;
8150 	}
8151 
8152 	/* Now press "execute". */
8153 	IWN_WRITE(sc, IWN_RESET, 0);
8154 	return 0;
8155 }
8156 
8157 /*
8158  * Extract text and data sections from a legacy firmware image.
8159  */
8160 static int
8161 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8162 {
8163 	const uint32_t *ptr;
8164 	size_t hdrlen = 24;
8165 	uint32_t rev;
8166 
8167 	ptr = (const uint32_t *)fw->data;
8168 	rev = le32toh(*ptr++);
8169 
8170 	sc->ucode_rev = rev;
8171 
8172 	/* Check firmware API version. */
8173 	if (IWN_FW_API(rev) <= 1) {
8174 		device_printf(sc->sc_dev,
8175 		    "%s: bad firmware, need API version >=2\n", __func__);
8176 		return EINVAL;
8177 	}
8178 	if (IWN_FW_API(rev) >= 3) {
8179 		/* Skip build number (version 2 header). */
8180 		hdrlen += 4;
8181 		ptr++;
8182 	}
8183 	if (fw->size < hdrlen) {
8184 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8185 		    __func__, fw->size);
8186 		return EINVAL;
8187 	}
8188 	fw->main.textsz = le32toh(*ptr++);
8189 	fw->main.datasz = le32toh(*ptr++);
8190 	fw->init.textsz = le32toh(*ptr++);
8191 	fw->init.datasz = le32toh(*ptr++);
8192 	fw->boot.textsz = le32toh(*ptr++);
8193 
8194 	/* Check that all firmware sections fit. */
8195 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8196 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8197 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8198 		    __func__, fw->size);
8199 		return EINVAL;
8200 	}
8201 
8202 	/* Get pointers to firmware sections. */
8203 	fw->main.text = (const uint8_t *)ptr;
8204 	fw->main.data = fw->main.text + fw->main.textsz;
8205 	fw->init.text = fw->main.data + fw->main.datasz;
8206 	fw->init.data = fw->init.text + fw->init.textsz;
8207 	fw->boot.text = fw->init.data + fw->init.datasz;
8208 	return 0;
8209 }
8210 
8211 /*
8212  * Extract text and data sections from a TLV firmware image.
8213  */
8214 static int
8215 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8216     uint16_t alt)
8217 {
8218 	const struct iwn_fw_tlv_hdr *hdr;
8219 	const struct iwn_fw_tlv *tlv;
8220 	const uint8_t *ptr, *end;
8221 	uint64_t altmask;
8222 	uint32_t len, tmp;
8223 
8224 	if (fw->size < sizeof (*hdr)) {
8225 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8226 		    __func__, fw->size);
8227 		return EINVAL;
8228 	}
8229 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8230 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8231 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8232 		    __func__, le32toh(hdr->signature));
8233 		return EINVAL;
8234 	}
8235 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8236 	    le32toh(hdr->build));
8237 	sc->ucode_rev = le32toh(hdr->rev);
8238 
8239 	/*
8240 	 * Select the closest supported alternative that is less than
8241 	 * or equal to the specified one.
8242 	 */
8243 	altmask = le64toh(hdr->altmask);
8244 	while (alt > 0 && !(altmask & (1ULL << alt)))
8245 		alt--;	/* Downgrade. */
8246 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8247 
8248 	ptr = (const uint8_t *)(hdr + 1);
8249 	end = (const uint8_t *)(fw->data + fw->size);
8250 
8251 	/* Parse type-length-value fields. */
8252 	while (ptr + sizeof (*tlv) <= end) {
8253 		tlv = (const struct iwn_fw_tlv *)ptr;
8254 		len = le32toh(tlv->len);
8255 
8256 		ptr += sizeof (*tlv);
8257 		if (ptr + len > end) {
8258 			device_printf(sc->sc_dev,
8259 			    "%s: firmware too short: %zu bytes\n", __func__,
8260 			    fw->size);
8261 			return EINVAL;
8262 		}
8263 		/* Skip other alternatives. */
8264 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8265 			goto next;
8266 
8267 		switch (le16toh(tlv->type)) {
8268 		case IWN_FW_TLV_MAIN_TEXT:
8269 			fw->main.text = ptr;
8270 			fw->main.textsz = len;
8271 			break;
8272 		case IWN_FW_TLV_MAIN_DATA:
8273 			fw->main.data = ptr;
8274 			fw->main.datasz = len;
8275 			break;
8276 		case IWN_FW_TLV_INIT_TEXT:
8277 			fw->init.text = ptr;
8278 			fw->init.textsz = len;
8279 			break;
8280 		case IWN_FW_TLV_INIT_DATA:
8281 			fw->init.data = ptr;
8282 			fw->init.datasz = len;
8283 			break;
8284 		case IWN_FW_TLV_BOOT_TEXT:
8285 			fw->boot.text = ptr;
8286 			fw->boot.textsz = len;
8287 			break;
8288 		case IWN_FW_TLV_ENH_SENS:
8289 			if (!len)
8290 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8291 			break;
8292 		case IWN_FW_TLV_PHY_CALIB:
8293 			tmp = le32toh(*ptr);
8294 			if (tmp < 253) {
8295 				sc->reset_noise_gain = tmp;
8296 				sc->noise_gain = tmp + 1;
8297 			}
8298 			break;
8299 		case IWN_FW_TLV_PAN:
8300 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8301 			DPRINTF(sc, IWN_DEBUG_RESET,
8302 			    "PAN Support found: %d\n", 1);
8303 			break;
8304 		case IWN_FW_TLV_FLAGS:
8305 			if (len < sizeof(uint32_t))
8306 				break;
8307 			if (len % sizeof(uint32_t))
8308 				break;
8309 			sc->tlv_feature_flags = le32toh(*ptr);
8310 			DPRINTF(sc, IWN_DEBUG_RESET,
8311 			    "%s: feature: 0x%08x\n",
8312 			    __func__,
8313 			    sc->tlv_feature_flags);
8314 			break;
8315 		case IWN_FW_TLV_PBREQ_MAXLEN:
8316 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8317 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8318 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8319 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8320 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8321 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8322 		case IWN_FW_TLV_WOWLAN_INST:
8323 		case IWN_FW_TLV_WOWLAN_DATA:
8324 			DPRINTF(sc, IWN_DEBUG_RESET,
8325 			    "TLV type %d recognized but not handled\n",
8326 			    le16toh(tlv->type));
8327 			break;
8328 		default:
8329 			DPRINTF(sc, IWN_DEBUG_RESET,
8330 			    "TLV type %d not handled\n", le16toh(tlv->type));
8331 			break;
8332 		}
8333  next:		/* TLV fields are 32-bit aligned. */
8334 		ptr += (len + 3) & ~3;
8335 	}
8336 	return 0;
8337 }
8338 
8339 static int
8340 iwn_read_firmware(struct iwn_softc *sc)
8341 {
8342 	struct iwn_fw_info *fw = &sc->fw;
8343 	int error;
8344 
8345 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8346 
8347 	IWN_UNLOCK(sc);
8348 
8349 	memset(fw, 0, sizeof (*fw));
8350 
8351 	/* Read firmware image from filesystem. */
8352 	sc->fw_fp = firmware_get(sc->fwname);
8353 	if (sc->fw_fp == NULL) {
8354 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8355 		    __func__, sc->fwname);
8356 		IWN_LOCK(sc);
8357 		return EINVAL;
8358 	}
8359 	IWN_LOCK(sc);
8360 
8361 	fw->size = sc->fw_fp->datasize;
8362 	fw->data = (const uint8_t *)sc->fw_fp->data;
8363 	if (fw->size < sizeof (uint32_t)) {
8364 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8365 		    __func__, fw->size);
8366 		error = EINVAL;
8367 		goto fail;
8368 	}
8369 
8370 	/* Retrieve text and data sections. */
8371 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8372 		error = iwn_read_firmware_leg(sc, fw);
8373 	else
8374 		error = iwn_read_firmware_tlv(sc, fw, 1);
8375 	if (error != 0) {
8376 		device_printf(sc->sc_dev,
8377 		    "%s: could not read firmware sections, error %d\n",
8378 		    __func__, error);
8379 		goto fail;
8380 	}
8381 
8382 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8383 
8384 	/* Make sure text and data sections fit in hardware memory. */
8385 	if (fw->main.textsz > sc->fw_text_maxsz ||
8386 	    fw->main.datasz > sc->fw_data_maxsz ||
8387 	    fw->init.textsz > sc->fw_text_maxsz ||
8388 	    fw->init.datasz > sc->fw_data_maxsz ||
8389 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8390 	    (fw->boot.textsz & 3) != 0) {
8391 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8392 		    __func__);
8393 		error = EINVAL;
8394 		goto fail;
8395 	}
8396 
8397 	/* We can proceed with loading the firmware. */
8398 	return 0;
8399 
8400 fail:	iwn_unload_firmware(sc);
8401 	return error;
8402 }
8403 
8404 static void
8405 iwn_unload_firmware(struct iwn_softc *sc)
8406 {
8407 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8408 	sc->fw_fp = NULL;
8409 }
8410 
8411 static int
8412 iwn_clock_wait(struct iwn_softc *sc)
8413 {
8414 	int ntries;
8415 
8416 	/* Set "initialization complete" bit. */
8417 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8418 
8419 	/* Wait for clock stabilization. */
8420 	for (ntries = 0; ntries < 2500; ntries++) {
8421 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8422 			return 0;
8423 		DELAY(10);
8424 	}
8425 	device_printf(sc->sc_dev,
8426 	    "%s: timeout waiting for clock stabilization\n", __func__);
8427 	return ETIMEDOUT;
8428 }
8429 
8430 static int
8431 iwn_apm_init(struct iwn_softc *sc)
8432 {
8433 	uint32_t reg;
8434 	int error;
8435 
8436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8437 
8438 	/* Disable L0s exit timer (NMI bug workaround). */
8439 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8440 	/* Don't wait for ICH L0s (ICH bug workaround). */
8441 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8442 
8443 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8444 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8445 
8446 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8447 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8448 
8449 	/* Retrieve PCIe Active State Power Management (ASPM). */
8450 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8451 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8452 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8453 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8454 	else
8455 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8456 
8457 	if (sc->base_params->pll_cfg_val)
8458 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8459 
8460 	/* Wait for clock stabilization before accessing prph. */
8461 	if ((error = iwn_clock_wait(sc)) != 0)
8462 		return error;
8463 
8464 	if ((error = iwn_nic_lock(sc)) != 0)
8465 		return error;
8466 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8467 		/* Enable DMA and BSM (Bootstrap State Machine). */
8468 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8469 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8470 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8471 	} else {
8472 		/* Enable DMA. */
8473 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8474 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8475 	}
8476 	DELAY(20);
8477 	/* Disable L1-Active. */
8478 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8479 	iwn_nic_unlock(sc);
8480 
8481 	return 0;
8482 }
8483 
8484 static void
8485 iwn_apm_stop_master(struct iwn_softc *sc)
8486 {
8487 	int ntries;
8488 
8489 	/* Stop busmaster DMA activity. */
8490 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8491 	for (ntries = 0; ntries < 100; ntries++) {
8492 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8493 			return;
8494 		DELAY(10);
8495 	}
8496 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8497 }
8498 
8499 static void
8500 iwn_apm_stop(struct iwn_softc *sc)
8501 {
8502 	iwn_apm_stop_master(sc);
8503 
8504 	/* Reset the entire device. */
8505 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8506 	DELAY(10);
8507 	/* Clear "initialization complete" bit. */
8508 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8509 }
8510 
8511 static int
8512 iwn4965_nic_config(struct iwn_softc *sc)
8513 {
8514 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8515 
8516 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8517 		/*
8518 		 * I don't believe this to be correct but this is what the
8519 		 * vendor driver is doing. Probably the bits should not be
8520 		 * shifted in IWN_RFCFG_*.
8521 		 */
8522 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8523 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8524 		    IWN_RFCFG_STEP(sc->rfcfg) |
8525 		    IWN_RFCFG_DASH(sc->rfcfg));
8526 	}
8527 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8528 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8529 	return 0;
8530 }
8531 
8532 static int
8533 iwn5000_nic_config(struct iwn_softc *sc)
8534 {
8535 	uint32_t tmp;
8536 	int error;
8537 
8538 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8539 
8540 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8541 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8542 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8543 		    IWN_RFCFG_STEP(sc->rfcfg) |
8544 		    IWN_RFCFG_DASH(sc->rfcfg));
8545 	}
8546 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8547 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8548 
8549 	if ((error = iwn_nic_lock(sc)) != 0)
8550 		return error;
8551 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8552 
8553 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8554 		/*
8555 		 * Select first Switching Voltage Regulator (1.32V) to
8556 		 * solve a stability issue related to noisy DC2DC line
8557 		 * in the silicon of 1000 Series.
8558 		 */
8559 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8560 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8561 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8562 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8563 	}
8564 	iwn_nic_unlock(sc);
8565 
8566 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8567 		/* Use internal power amplifier only. */
8568 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8569 	}
8570 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8571 		/* Indicate that ROM calibration version is >=6. */
8572 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8573 	}
8574 	if (sc->base_params->additional_gp_drv_bit)
8575 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8576 		    sc->base_params->additional_gp_drv_bit);
8577 	return 0;
8578 }
8579 
8580 /*
8581  * Take NIC ownership over Intel Active Management Technology (AMT).
8582  */
8583 static int
8584 iwn_hw_prepare(struct iwn_softc *sc)
8585 {
8586 	int ntries;
8587 
8588 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8589 
8590 	/* Check if hardware is ready. */
8591 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8592 	for (ntries = 0; ntries < 5; ntries++) {
8593 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8594 		    IWN_HW_IF_CONFIG_NIC_READY)
8595 			return 0;
8596 		DELAY(10);
8597 	}
8598 
8599 	/* Hardware not ready, force into ready state. */
8600 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8601 	for (ntries = 0; ntries < 15000; ntries++) {
8602 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8603 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8604 			break;
8605 		DELAY(10);
8606 	}
8607 	if (ntries == 15000)
8608 		return ETIMEDOUT;
8609 
8610 	/* Hardware should be ready now. */
8611 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8612 	for (ntries = 0; ntries < 5; ntries++) {
8613 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8614 		    IWN_HW_IF_CONFIG_NIC_READY)
8615 			return 0;
8616 		DELAY(10);
8617 	}
8618 	return ETIMEDOUT;
8619 }
8620 
8621 static int
8622 iwn_hw_init(struct iwn_softc *sc)
8623 {
8624 	struct iwn_ops *ops = &sc->ops;
8625 	int error, chnl, qid;
8626 
8627 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8628 
8629 	/* Clear pending interrupts. */
8630 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8631 
8632 	if ((error = iwn_apm_init(sc)) != 0) {
8633 		device_printf(sc->sc_dev,
8634 		    "%s: could not power ON adapter, error %d\n", __func__,
8635 		    error);
8636 		return error;
8637 	}
8638 
8639 	/* Select VMAIN power source. */
8640 	if ((error = iwn_nic_lock(sc)) != 0)
8641 		return error;
8642 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8643 	iwn_nic_unlock(sc);
8644 
8645 	/* Perform adapter-specific initialization. */
8646 	if ((error = ops->nic_config(sc)) != 0)
8647 		return error;
8648 
8649 	/* Initialize RX ring. */
8650 	if ((error = iwn_nic_lock(sc)) != 0)
8651 		return error;
8652 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8653 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8654 	/* Set physical address of RX ring (256-byte aligned). */
8655 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8656 	/* Set physical address of RX status (16-byte aligned). */
8657 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8658 	/* Enable RX. */
8659 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8660 	    IWN_FH_RX_CONFIG_ENA           |
8661 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8662 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8663 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8664 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8665 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8666 	iwn_nic_unlock(sc);
8667 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8668 
8669 	if ((error = iwn_nic_lock(sc)) != 0)
8670 		return error;
8671 
8672 	/* Initialize TX scheduler. */
8673 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8674 
8675 	/* Set physical address of "keep warm" page (16-byte aligned). */
8676 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8677 
8678 	/* Initialize TX rings. */
8679 	for (qid = 0; qid < sc->ntxqs; qid++) {
8680 		struct iwn_tx_ring *txq = &sc->txq[qid];
8681 
8682 		/* Set physical address of TX ring (256-byte aligned). */
8683 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8684 		    txq->desc_dma.paddr >> 8);
8685 	}
8686 	iwn_nic_unlock(sc);
8687 
8688 	/* Enable DMA channels. */
8689 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8690 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8691 		    IWN_FH_TX_CONFIG_DMA_ENA |
8692 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8693 	}
8694 
8695 	/* Clear "radio off" and "commands blocked" bits. */
8696 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8697 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8698 
8699 	/* Clear pending interrupts. */
8700 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8701 	/* Enable interrupt coalescing. */
8702 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8703 	/* Enable interrupts. */
8704 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8705 
8706 	/* _Really_ make sure "radio off" bit is cleared! */
8707 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8708 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8709 
8710 	/* Enable shadow registers. */
8711 	if (sc->base_params->shadow_reg_enable)
8712 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8713 
8714 	if ((error = ops->load_firmware(sc)) != 0) {
8715 		device_printf(sc->sc_dev,
8716 		    "%s: could not load firmware, error %d\n", __func__,
8717 		    error);
8718 		return error;
8719 	}
8720 	/* Wait at most one second for firmware alive notification. */
8721 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8722 		device_printf(sc->sc_dev,
8723 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8724 		    __func__, error);
8725 		return error;
8726 	}
8727 	/* Do post-firmware initialization. */
8728 
8729 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8730 
8731 	return ops->post_alive(sc);
8732 }
8733 
8734 static void
8735 iwn_hw_stop(struct iwn_softc *sc)
8736 {
8737 	int chnl, qid, ntries;
8738 
8739 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8740 
8741 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8742 
8743 	/* Disable interrupts. */
8744 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8745 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8746 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8747 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8748 
8749 	/* Make sure we no longer hold the NIC lock. */
8750 	iwn_nic_unlock(sc);
8751 
8752 	/* Stop TX scheduler. */
8753 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8754 
8755 	/* Stop all DMA channels. */
8756 	if (iwn_nic_lock(sc) == 0) {
8757 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8758 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8759 			for (ntries = 0; ntries < 200; ntries++) {
8760 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8761 				    IWN_FH_TX_STATUS_IDLE(chnl))
8762 					break;
8763 				DELAY(10);
8764 			}
8765 		}
8766 		iwn_nic_unlock(sc);
8767 	}
8768 
8769 	/* Stop RX ring. */
8770 	iwn_reset_rx_ring(sc, &sc->rxq);
8771 
8772 	/* Reset all TX rings. */
8773 	for (qid = 0; qid < sc->ntxqs; qid++)
8774 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8775 
8776 	if (iwn_nic_lock(sc) == 0) {
8777 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8778 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8779 		iwn_nic_unlock(sc);
8780 	}
8781 	DELAY(5);
8782 	/* Power OFF adapter. */
8783 	iwn_apm_stop(sc);
8784 }
8785 
8786 static void
8787 iwn_panicked(void *arg0, int pending)
8788 {
8789 	struct iwn_softc *sc = arg0;
8790 	struct ieee80211com *ic = &sc->sc_ic;
8791 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8792 #if 0
8793 	int error;
8794 #endif
8795 
8796 	if (vap == NULL) {
8797 		printf("%s: null vap\n", __func__);
8798 		return;
8799 	}
8800 
8801 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8802 	    "restarting\n", __func__, vap->iv_state);
8803 
8804 	/*
8805 	 * This is not enough work. We need to also reinitialise
8806 	 * the correct transmit state for aggregation enabled queues,
8807 	 * which has a very specific requirement of
8808 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8809 	 * we definitely don't!) then the firmware will just panic again.
8810 	 */
8811 #if 1
8812 	ieee80211_restart_all(ic);
8813 #else
8814 	IWN_LOCK(sc);
8815 
8816 	iwn_stop_locked(sc);
8817 	if ((error = iwn_init_locked(sc)) != 0) {
8818 		device_printf(sc->sc_dev,
8819 		    "%s: could not init hardware\n", __func__);
8820 		goto unlock;
8821 	}
8822 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8823 	    (error = iwn_auth(sc, vap)) != 0) {
8824 		device_printf(sc->sc_dev,
8825 		    "%s: could not move to auth state\n", __func__);
8826 	}
8827 	if (vap->iv_state >= IEEE80211_S_RUN &&
8828 	    (error = iwn_run(sc, vap)) != 0) {
8829 		device_printf(sc->sc_dev,
8830 		    "%s: could not move to run state\n", __func__);
8831 	}
8832 
8833 unlock:
8834 	IWN_UNLOCK(sc);
8835 #endif
8836 }
8837 
8838 static int
8839 iwn_init_locked(struct iwn_softc *sc)
8840 {
8841 	int error;
8842 
8843 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8844 
8845 	IWN_LOCK_ASSERT(sc);
8846 
8847 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8848 		goto end;
8849 
8850 	sc->sc_flags |= IWN_FLAG_RUNNING;
8851 
8852 	if ((error = iwn_hw_prepare(sc)) != 0) {
8853 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8854 		    __func__, error);
8855 		goto fail;
8856 	}
8857 
8858 	/* Initialize interrupt mask to default value. */
8859 	sc->int_mask = IWN_INT_MASK_DEF;
8860 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8861 
8862 	/* Check that the radio is not disabled by hardware switch. */
8863 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8864 		error = EAGAIN;
8865 		goto fail;
8866 	}
8867 
8868 	/* Read firmware images from the filesystem. */
8869 	if ((error = iwn_read_firmware(sc)) != 0) {
8870 		device_printf(sc->sc_dev,
8871 		    "%s: could not read firmware, error %d\n", __func__,
8872 		    error);
8873 		goto fail;
8874 	}
8875 
8876 	/* Initialize hardware and upload firmware. */
8877 	error = iwn_hw_init(sc);
8878 	iwn_unload_firmware(sc);
8879 	if (error != 0) {
8880 		device_printf(sc->sc_dev,
8881 		    "%s: could not initialize hardware, error %d\n", __func__,
8882 		    error);
8883 		goto fail;
8884 	}
8885 
8886 	/* Configure adapter now that it is ready. */
8887 	if ((error = iwn_config(sc)) != 0) {
8888 		device_printf(sc->sc_dev,
8889 		    "%s: could not configure device, error %d\n", __func__,
8890 		    error);
8891 		goto fail;
8892 	}
8893 
8894 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8895 
8896 end:
8897 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8898 
8899 	return (0);
8900 
8901 fail:
8902 	iwn_stop_locked(sc);
8903 
8904 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8905 
8906 	return (error);
8907 }
8908 
8909 static int
8910 iwn_init(struct iwn_softc *sc)
8911 {
8912 	int error;
8913 
8914 	IWN_LOCK(sc);
8915 	error = iwn_init_locked(sc);
8916 	IWN_UNLOCK(sc);
8917 
8918 	return (error);
8919 }
8920 
8921 static void
8922 iwn_stop_locked(struct iwn_softc *sc)
8923 {
8924 
8925 	IWN_LOCK_ASSERT(sc);
8926 
8927 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
8928 		return;
8929 
8930 	sc->sc_is_scanning = 0;
8931 	sc->sc_tx_timer = 0;
8932 	callout_stop(&sc->watchdog_to);
8933 	callout_stop(&sc->scan_timeout);
8934 	callout_stop(&sc->calib_to);
8935 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8936 
8937 	/* Power OFF hardware. */
8938 	iwn_hw_stop(sc);
8939 }
8940 
8941 static void
8942 iwn_stop(struct iwn_softc *sc)
8943 {
8944 	IWN_LOCK(sc);
8945 	iwn_stop_locked(sc);
8946 	IWN_UNLOCK(sc);
8947 }
8948 
8949 /*
8950  * Callback from net80211 to start a scan.
8951  */
8952 static void
8953 iwn_scan_start(struct ieee80211com *ic)
8954 {
8955 	struct iwn_softc *sc = ic->ic_softc;
8956 
8957 	IWN_LOCK(sc);
8958 	/* make the link LED blink while we're scanning */
8959 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8960 	IWN_UNLOCK(sc);
8961 }
8962 
8963 /*
8964  * Callback from net80211 to terminate a scan.
8965  */
8966 static void
8967 iwn_scan_end(struct ieee80211com *ic)
8968 {
8969 	struct iwn_softc *sc = ic->ic_softc;
8970 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8971 
8972 	IWN_LOCK(sc);
8973 	if (vap->iv_state == IEEE80211_S_RUN) {
8974 		/* Set link LED to ON status if we are associated */
8975 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8976 	}
8977 	IWN_UNLOCK(sc);
8978 }
8979 
8980 /*
8981  * Callback from net80211 to force a channel change.
8982  */
8983 static void
8984 iwn_set_channel(struct ieee80211com *ic)
8985 {
8986 	const struct ieee80211_channel *c = ic->ic_curchan;
8987 	struct iwn_softc *sc = ic->ic_softc;
8988 	int error;
8989 
8990 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8991 
8992 	IWN_LOCK(sc);
8993 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8994 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8995 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8996 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8997 
8998 	/*
8999 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9000 	 * are already taken care of by their respective firmware commands.
9001 	 */
9002 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9003 		error = iwn_config(sc);
9004 		if (error != 0)
9005 		device_printf(sc->sc_dev,
9006 		    "%s: error %d settting channel\n", __func__, error);
9007 	}
9008 	IWN_UNLOCK(sc);
9009 }
9010 
9011 /*
9012  * Callback from net80211 to start scanning of the current channel.
9013  */
9014 static void
9015 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9016 {
9017 	struct ieee80211vap *vap = ss->ss_vap;
9018 	struct ieee80211com *ic = vap->iv_ic;
9019 	struct iwn_softc *sc = ic->ic_softc;
9020 	int error;
9021 
9022 	IWN_LOCK(sc);
9023 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9024 	IWN_UNLOCK(sc);
9025 	if (error != 0)
9026 		ieee80211_cancel_scan(vap);
9027 }
9028 
9029 /*
9030  * Callback from net80211 to handle the minimum dwell time being met.
9031  * The intent is to terminate the scan but we just let the firmware
9032  * notify us when it's finished as we have no safe way to abort it.
9033  */
9034 static void
9035 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9036 {
9037 	/* NB: don't try to abort scan; wait for firmware to finish */
9038 }
9039 #ifdef	IWN_DEBUG
9040 #define	IWN_DESC(x) case x:	return #x
9041 
9042 /*
9043  * Translate CSR code to string
9044  */
9045 static char *iwn_get_csr_string(int csr)
9046 {
9047 	switch (csr) {
9048 		IWN_DESC(IWN_HW_IF_CONFIG);
9049 		IWN_DESC(IWN_INT_COALESCING);
9050 		IWN_DESC(IWN_INT);
9051 		IWN_DESC(IWN_INT_MASK);
9052 		IWN_DESC(IWN_FH_INT);
9053 		IWN_DESC(IWN_GPIO_IN);
9054 		IWN_DESC(IWN_RESET);
9055 		IWN_DESC(IWN_GP_CNTRL);
9056 		IWN_DESC(IWN_HW_REV);
9057 		IWN_DESC(IWN_EEPROM);
9058 		IWN_DESC(IWN_EEPROM_GP);
9059 		IWN_DESC(IWN_OTP_GP);
9060 		IWN_DESC(IWN_GIO);
9061 		IWN_DESC(IWN_GP_UCODE);
9062 		IWN_DESC(IWN_GP_DRIVER);
9063 		IWN_DESC(IWN_UCODE_GP1);
9064 		IWN_DESC(IWN_UCODE_GP2);
9065 		IWN_DESC(IWN_LED);
9066 		IWN_DESC(IWN_DRAM_INT_TBL);
9067 		IWN_DESC(IWN_GIO_CHICKEN);
9068 		IWN_DESC(IWN_ANA_PLL);
9069 		IWN_DESC(IWN_HW_REV_WA);
9070 		IWN_DESC(IWN_DBG_HPET_MEM);
9071 	default:
9072 		return "UNKNOWN CSR";
9073 	}
9074 }
9075 
9076 /*
9077  * This function print firmware register
9078  */
9079 static void
9080 iwn_debug_register(struct iwn_softc *sc)
9081 {
9082 	int i;
9083 	static const uint32_t csr_tbl[] = {
9084 		IWN_HW_IF_CONFIG,
9085 		IWN_INT_COALESCING,
9086 		IWN_INT,
9087 		IWN_INT_MASK,
9088 		IWN_FH_INT,
9089 		IWN_GPIO_IN,
9090 		IWN_RESET,
9091 		IWN_GP_CNTRL,
9092 		IWN_HW_REV,
9093 		IWN_EEPROM,
9094 		IWN_EEPROM_GP,
9095 		IWN_OTP_GP,
9096 		IWN_GIO,
9097 		IWN_GP_UCODE,
9098 		IWN_GP_DRIVER,
9099 		IWN_UCODE_GP1,
9100 		IWN_UCODE_GP2,
9101 		IWN_LED,
9102 		IWN_DRAM_INT_TBL,
9103 		IWN_GIO_CHICKEN,
9104 		IWN_ANA_PLL,
9105 		IWN_HW_REV_WA,
9106 		IWN_DBG_HPET_MEM,
9107 	};
9108 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9109 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9110 	    "\n");
9111 	for (i = 0; i <  nitems(csr_tbl); i++){
9112 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9113 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9114 		if ((i+1) % 3 == 0)
9115 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9116 	}
9117 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9118 }
9119 #endif
9120 
9121 
9122