1 /*- 2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr> 3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org> 4 * Copyright (c) 2008 Sam Leffler, Errno Consulting 5 * Copyright (c) 2011 Intel Corporation 6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 24 * adapters. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_wlan.h" 31 #include "opt_iwn.h" 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/sysctl.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/socket.h> 39 #include <sys/systm.h> 40 #include <sys/malloc.h> 41 #include <sys/bus.h> 42 #include <sys/conf.h> 43 #include <sys/rman.h> 44 #include <sys/endian.h> 45 #include <sys/firmware.h> 46 #include <sys/limits.h> 47 #include <sys/module.h> 48 #include <sys/priv.h> 49 #include <sys/queue.h> 50 #include <sys/taskqueue.h> 51 52 #include <machine/bus.h> 53 #include <machine/resource.h> 54 #include <machine/clock.h> 55 56 #include <dev/pci/pcireg.h> 57 #include <dev/pci/pcivar.h> 58 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_dl.h> 62 #include <net/if_media.h> 63 64 #include <netinet/in.h> 65 #include <netinet/if_ether.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 #include <dev/iwn/if_iwn_devid.h> 75 #include <dev/iwn/if_iwn_chip_cfg.h> 76 #include <dev/iwn/if_iwn_debug.h> 77 #include <dev/iwn/if_iwn_ioctl.h> 78 79 struct iwn_ident { 80 uint16_t vendor; 81 uint16_t device; 82 const char *name; 83 }; 84 85 static const struct iwn_ident iwn_ident_table[] = { 86 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 87 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 88 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 89 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 90 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 91 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 92 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 93 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 94 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 95 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 96 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 97 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 98 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 99 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 100 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ 101 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 102 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 103 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 104 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 105 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 106 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 107 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, 108 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, 109 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, 110 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, 111 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 112 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 113 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 114 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 115 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 116 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 117 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 118 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 119 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 120 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 121 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 122 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 123 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 124 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 125 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 126 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 127 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, 128 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, 129 { 0, 0, NULL } 130 }; 131 132 static int iwn_probe(device_t); 133 static int iwn_attach(device_t); 134 static int iwn4965_attach(struct iwn_softc *, uint16_t); 135 static int iwn5000_attach(struct iwn_softc *, uint16_t); 136 static int iwn_config_specific(struct iwn_softc *, uint16_t); 137 static void iwn_radiotap_attach(struct iwn_softc *); 138 static void iwn_sysctlattach(struct iwn_softc *); 139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 140 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 141 const uint8_t [IEEE80211_ADDR_LEN], 142 const uint8_t [IEEE80211_ADDR_LEN]); 143 static void iwn_vap_delete(struct ieee80211vap *); 144 static int iwn_detach(device_t); 145 static int iwn_shutdown(device_t); 146 static int iwn_suspend(device_t); 147 static int iwn_resume(device_t); 148 static int iwn_nic_lock(struct iwn_softc *); 149 static int iwn_eeprom_lock(struct iwn_softc *); 150 static int iwn_init_otprom(struct iwn_softc *); 151 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 152 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 153 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 154 void **, bus_size_t, bus_size_t); 155 static void iwn_dma_contig_free(struct iwn_dma_info *); 156 static int iwn_alloc_sched(struct iwn_softc *); 157 static void iwn_free_sched(struct iwn_softc *); 158 static int iwn_alloc_kw(struct iwn_softc *); 159 static void iwn_free_kw(struct iwn_softc *); 160 static int iwn_alloc_ict(struct iwn_softc *); 161 static void iwn_free_ict(struct iwn_softc *); 162 static int iwn_alloc_fwmem(struct iwn_softc *); 163 static void iwn_free_fwmem(struct iwn_softc *); 164 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 165 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 166 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 167 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 168 int); 169 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 170 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 171 static void iwn5000_ict_reset(struct iwn_softc *); 172 static int iwn_read_eeprom(struct iwn_softc *, 173 uint8_t macaddr[IEEE80211_ADDR_LEN]); 174 static void iwn4965_read_eeprom(struct iwn_softc *); 175 #ifdef IWN_DEBUG 176 static void iwn4965_print_power_group(struct iwn_softc *, int); 177 #endif 178 static void iwn5000_read_eeprom(struct iwn_softc *); 179 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 180 static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *, 181 struct ieee80211_channel[]); 182 static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *, 183 struct ieee80211_channel[]); 184 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 186 struct ieee80211_channel *); 187 static void iwn_getradiocaps(struct ieee80211com *, int, int *, 188 struct ieee80211_channel[]); 189 static int iwn_setregdomain(struct ieee80211com *, 190 struct ieee80211_regdomain *, int, 191 struct ieee80211_channel[]); 192 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 194 const uint8_t mac[IEEE80211_ADDR_LEN]); 195 static void iwn_newassoc(struct ieee80211_node *, int); 196 static int iwn_media_change(struct ifnet *); 197 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void iwn_calib_timeout(void *); 199 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 200 struct iwn_rx_data *); 201 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 202 struct iwn_rx_data *); 203 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 204 struct iwn_rx_data *); 205 static void iwn5000_rx_calib_results(struct iwn_softc *, 206 struct iwn_rx_desc *, struct iwn_rx_data *); 207 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 208 struct iwn_rx_data *); 209 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 210 struct iwn_rx_data *); 211 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 212 struct iwn_rx_data *); 213 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int, 214 uint8_t); 215 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int, 216 void *); 217 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 218 static void iwn_notif_intr(struct iwn_softc *); 219 static void iwn_wakeup_intr(struct iwn_softc *); 220 static void iwn_rftoggle_task(void *, int); 221 static void iwn_fatal_intr(struct iwn_softc *); 222 static void iwn_intr(void *); 223 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 224 uint16_t); 225 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 226 uint16_t); 227 #ifdef notyet 228 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 229 #endif 230 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 231 struct ieee80211_node *); 232 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 233 struct ieee80211_node *, 234 const struct ieee80211_bpf_params *params); 235 static void iwn_xmit_task(void *arg0, int pending); 236 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 237 const struct ieee80211_bpf_params *); 238 static int iwn_transmit(struct ieee80211com *, struct mbuf *); 239 static void iwn_scan_timeout(void *); 240 static void iwn_watchdog(void *); 241 static int iwn_ioctl(struct ieee80211com *, u_long , void *); 242 static void iwn_parent(struct ieee80211com *); 243 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 244 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 245 int); 246 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 247 int); 248 static int iwn_set_link_quality(struct iwn_softc *, 249 struct ieee80211_node *); 250 static int iwn_add_broadcast_node(struct iwn_softc *, int); 251 static int iwn_updateedca(struct ieee80211com *); 252 static void iwn_set_promisc(struct iwn_softc *); 253 static void iwn_update_promisc(struct ieee80211com *); 254 static void iwn_update_mcast(struct ieee80211com *); 255 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 256 static int iwn_set_critical_temp(struct iwn_softc *); 257 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 258 static void iwn4965_power_calibration(struct iwn_softc *, int); 259 static int iwn4965_set_txpower(struct iwn_softc *, int); 260 static int iwn5000_set_txpower(struct iwn_softc *, int); 261 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 262 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 263 static int iwn_get_noise(const struct iwn_rx_general_stats *); 264 static int iwn4965_get_temperature(struct iwn_softc *); 265 static int iwn5000_get_temperature(struct iwn_softc *); 266 static int iwn_init_sensitivity(struct iwn_softc *); 267 static void iwn_collect_noise(struct iwn_softc *, 268 const struct iwn_rx_general_stats *); 269 static int iwn4965_init_gains(struct iwn_softc *); 270 static int iwn5000_init_gains(struct iwn_softc *); 271 static int iwn4965_set_gains(struct iwn_softc *); 272 static int iwn5000_set_gains(struct iwn_softc *); 273 static void iwn_tune_sensitivity(struct iwn_softc *, 274 const struct iwn_rx_stats *); 275 static void iwn_save_stats_counters(struct iwn_softc *, 276 const struct iwn_stats *); 277 static int iwn_send_sensitivity(struct iwn_softc *); 278 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); 279 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 280 static int iwn_send_btcoex(struct iwn_softc *); 281 static int iwn_send_advanced_btcoex(struct iwn_softc *); 282 static int iwn5000_runtime_calib(struct iwn_softc *); 283 static int iwn_check_bss_filter(struct iwn_softc *); 284 static int iwn4965_rxon_assoc(struct iwn_softc *, int); 285 static int iwn5000_rxon_assoc(struct iwn_softc *, int); 286 static int iwn_send_rxon(struct iwn_softc *, int, int); 287 static int iwn_config(struct iwn_softc *); 288 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, 289 struct ieee80211_scan_state *, struct ieee80211_channel *); 290 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 291 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 292 static int iwn_ampdu_rx_start(struct ieee80211_node *, 293 struct ieee80211_rx_ampdu *, int, int, int); 294 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 295 struct ieee80211_rx_ampdu *); 296 static int iwn_addba_request(struct ieee80211_node *, 297 struct ieee80211_tx_ampdu *, int, int, int); 298 static int iwn_addba_response(struct ieee80211_node *, 299 struct ieee80211_tx_ampdu *, int, int, int); 300 static int iwn_ampdu_tx_start(struct ieee80211com *, 301 struct ieee80211_node *, uint8_t); 302 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 303 struct ieee80211_tx_ampdu *); 304 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 305 struct ieee80211_node *, int, uint8_t, uint16_t); 306 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 307 uint8_t, uint16_t); 308 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 309 struct ieee80211_node *, int, uint8_t, uint16_t); 310 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 311 uint8_t, uint16_t); 312 static int iwn5000_query_calibration(struct iwn_softc *); 313 static int iwn5000_send_calibration(struct iwn_softc *); 314 static int iwn5000_send_wimax_coex(struct iwn_softc *); 315 static int iwn5000_crystal_calib(struct iwn_softc *); 316 static int iwn5000_temp_offset_calib(struct iwn_softc *); 317 static int iwn5000_temp_offset_calibv2(struct iwn_softc *); 318 static int iwn4965_post_alive(struct iwn_softc *); 319 static int iwn5000_post_alive(struct iwn_softc *); 320 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 321 int); 322 static int iwn4965_load_firmware(struct iwn_softc *); 323 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 324 const uint8_t *, int); 325 static int iwn5000_load_firmware(struct iwn_softc *); 326 static int iwn_read_firmware_leg(struct iwn_softc *, 327 struct iwn_fw_info *); 328 static int iwn_read_firmware_tlv(struct iwn_softc *, 329 struct iwn_fw_info *, uint16_t); 330 static int iwn_read_firmware(struct iwn_softc *); 331 static void iwn_unload_firmware(struct iwn_softc *); 332 static int iwn_clock_wait(struct iwn_softc *); 333 static int iwn_apm_init(struct iwn_softc *); 334 static void iwn_apm_stop_master(struct iwn_softc *); 335 static void iwn_apm_stop(struct iwn_softc *); 336 static int iwn4965_nic_config(struct iwn_softc *); 337 static int iwn5000_nic_config(struct iwn_softc *); 338 static int iwn_hw_prepare(struct iwn_softc *); 339 static int iwn_hw_init(struct iwn_softc *); 340 static void iwn_hw_stop(struct iwn_softc *); 341 static void iwn_panicked(void *, int); 342 static int iwn_init_locked(struct iwn_softc *); 343 static int iwn_init(struct iwn_softc *); 344 static void iwn_stop_locked(struct iwn_softc *); 345 static void iwn_stop(struct iwn_softc *); 346 static void iwn_scan_start(struct ieee80211com *); 347 static void iwn_scan_end(struct ieee80211com *); 348 static void iwn_set_channel(struct ieee80211com *); 349 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 350 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 351 #ifdef IWN_DEBUG 352 static char *iwn_get_csr_string(int); 353 static void iwn_debug_register(struct iwn_softc *); 354 #endif 355 356 static device_method_t iwn_methods[] = { 357 /* Device interface */ 358 DEVMETHOD(device_probe, iwn_probe), 359 DEVMETHOD(device_attach, iwn_attach), 360 DEVMETHOD(device_detach, iwn_detach), 361 DEVMETHOD(device_shutdown, iwn_shutdown), 362 DEVMETHOD(device_suspend, iwn_suspend), 363 DEVMETHOD(device_resume, iwn_resume), 364 365 DEVMETHOD_END 366 }; 367 368 static driver_t iwn_driver = { 369 "iwn", 370 iwn_methods, 371 sizeof(struct iwn_softc) 372 }; 373 static devclass_t iwn_devclass; 374 375 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL); 376 377 MODULE_VERSION(iwn, 1); 378 379 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 380 MODULE_DEPEND(iwn, pci, 1, 1, 1); 381 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 382 383 static d_ioctl_t iwn_cdev_ioctl; 384 static d_open_t iwn_cdev_open; 385 static d_close_t iwn_cdev_close; 386 387 static struct cdevsw iwn_cdevsw = { 388 .d_version = D_VERSION, 389 .d_flags = 0, 390 .d_open = iwn_cdev_open, 391 .d_close = iwn_cdev_close, 392 .d_ioctl = iwn_cdev_ioctl, 393 .d_name = "iwn", 394 }; 395 396 static int 397 iwn_probe(device_t dev) 398 { 399 const struct iwn_ident *ident; 400 401 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 402 if (pci_get_vendor(dev) == ident->vendor && 403 pci_get_device(dev) == ident->device) { 404 device_set_desc(dev, ident->name); 405 return (BUS_PROBE_DEFAULT); 406 } 407 } 408 return ENXIO; 409 } 410 411 static int 412 iwn_is_3stream_device(struct iwn_softc *sc) 413 { 414 /* XXX for now only 5300, until the 5350 can be tested */ 415 if (sc->hw_type == IWN_HW_REV_TYPE_5300) 416 return (1); 417 return (0); 418 } 419 420 static int 421 iwn_attach(device_t dev) 422 { 423 struct iwn_softc *sc = device_get_softc(dev); 424 struct ieee80211com *ic; 425 int i, error, rid; 426 427 sc->sc_dev = dev; 428 429 #ifdef IWN_DEBUG 430 error = resource_int_value(device_get_name(sc->sc_dev), 431 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 432 if (error != 0) 433 sc->sc_debug = 0; 434 #else 435 sc->sc_debug = 0; 436 #endif 437 438 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 439 440 /* 441 * Get the offset of the PCI Express Capability Structure in PCI 442 * Configuration Space. 443 */ 444 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 445 if (error != 0) { 446 device_printf(dev, "PCIe capability structure not found!\n"); 447 return error; 448 } 449 450 /* Clear device-specific "PCI retry timeout" register (41h). */ 451 pci_write_config(dev, 0x41, 0, 1); 452 453 /* Enable bus-mastering. */ 454 pci_enable_busmaster(dev); 455 456 rid = PCIR_BAR(0); 457 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 458 RF_ACTIVE); 459 if (sc->mem == NULL) { 460 device_printf(dev, "can't map mem space\n"); 461 error = ENOMEM; 462 return error; 463 } 464 sc->sc_st = rman_get_bustag(sc->mem); 465 sc->sc_sh = rman_get_bushandle(sc->mem); 466 467 i = 1; 468 rid = 0; 469 if (pci_alloc_msi(dev, &i) == 0) 470 rid = 1; 471 /* Install interrupt handler. */ 472 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 473 (rid != 0 ? 0 : RF_SHAREABLE)); 474 if (sc->irq == NULL) { 475 device_printf(dev, "can't map interrupt\n"); 476 error = ENOMEM; 477 goto fail; 478 } 479 480 IWN_LOCK_INIT(sc); 481 482 /* Read hardware revision and attach. */ 483 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 484 & IWN_HW_REV_TYPE_MASK; 485 sc->subdevice_id = pci_get_subdevice(dev); 486 487 /* 488 * 4965 versus 5000 and later have different methods. 489 * Let's set those up first. 490 */ 491 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 492 error = iwn4965_attach(sc, pci_get_device(dev)); 493 else 494 error = iwn5000_attach(sc, pci_get_device(dev)); 495 if (error != 0) { 496 device_printf(dev, "could not attach device, error %d\n", 497 error); 498 goto fail; 499 } 500 501 /* 502 * Next, let's setup the various parameters of each NIC. 503 */ 504 error = iwn_config_specific(sc, pci_get_device(dev)); 505 if (error != 0) { 506 device_printf(dev, "could not attach device, error %d\n", 507 error); 508 goto fail; 509 } 510 511 if ((error = iwn_hw_prepare(sc)) != 0) { 512 device_printf(dev, "hardware not ready, error %d\n", error); 513 goto fail; 514 } 515 516 /* Allocate DMA memory for firmware transfers. */ 517 if ((error = iwn_alloc_fwmem(sc)) != 0) { 518 device_printf(dev, 519 "could not allocate memory for firmware, error %d\n", 520 error); 521 goto fail; 522 } 523 524 /* Allocate "Keep Warm" page. */ 525 if ((error = iwn_alloc_kw(sc)) != 0) { 526 device_printf(dev, 527 "could not allocate keep warm page, error %d\n", error); 528 goto fail; 529 } 530 531 /* Allocate ICT table for 5000 Series. */ 532 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 533 (error = iwn_alloc_ict(sc)) != 0) { 534 device_printf(dev, "could not allocate ICT table, error %d\n", 535 error); 536 goto fail; 537 } 538 539 /* Allocate TX scheduler "rings". */ 540 if ((error = iwn_alloc_sched(sc)) != 0) { 541 device_printf(dev, 542 "could not allocate TX scheduler rings, error %d\n", error); 543 goto fail; 544 } 545 546 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 547 for (i = 0; i < sc->ntxqs; i++) { 548 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 549 device_printf(dev, 550 "could not allocate TX ring %d, error %d\n", i, 551 error); 552 goto fail; 553 } 554 } 555 556 /* Allocate RX ring. */ 557 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 558 device_printf(dev, "could not allocate RX ring, error %d\n", 559 error); 560 goto fail; 561 } 562 563 /* Clear pending interrupts. */ 564 IWN_WRITE(sc, IWN_INT, 0xffffffff); 565 566 ic = &sc->sc_ic; 567 ic->ic_softc = sc; 568 ic->ic_name = device_get_nameunit(dev); 569 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 570 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 571 572 /* Set device capabilities. */ 573 ic->ic_caps = 574 IEEE80211_C_STA /* station mode supported */ 575 | IEEE80211_C_MONITOR /* monitor mode supported */ 576 #if 0 577 | IEEE80211_C_BGSCAN /* background scanning */ 578 #endif 579 | IEEE80211_C_TXPMGT /* tx power management */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA 582 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 583 #if 0 584 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 585 #endif 586 | IEEE80211_C_WME /* WME */ 587 | IEEE80211_C_PMGT /* Station-side power mgmt */ 588 ; 589 590 /* Read MAC address, channels, etc from EEPROM. */ 591 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { 592 device_printf(dev, "could not read EEPROM, error %d\n", 593 error); 594 goto fail; 595 } 596 597 /* Count the number of available chains. */ 598 sc->ntxchains = 599 ((sc->txchainmask >> 2) & 1) + 600 ((sc->txchainmask >> 1) & 1) + 601 ((sc->txchainmask >> 0) & 1); 602 sc->nrxchains = 603 ((sc->rxchainmask >> 2) & 1) + 604 ((sc->rxchainmask >> 1) & 1) + 605 ((sc->rxchainmask >> 0) & 1); 606 if (bootverbose) { 607 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 608 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 609 ic->ic_macaddr, ":"); 610 } 611 612 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 613 ic->ic_rxstream = sc->nrxchains; 614 ic->ic_txstream = sc->ntxchains; 615 616 /* 617 * Some of the 3 antenna devices (ie, the 4965) only supports 618 * 2x2 operation. So correct the number of streams if 619 * it's not a 3-stream device. 620 */ 621 if (! iwn_is_3stream_device(sc)) { 622 if (ic->ic_rxstream > 2) 623 ic->ic_rxstream = 2; 624 if (ic->ic_txstream > 2) 625 ic->ic_txstream = 2; 626 } 627 628 ic->ic_htcaps = 629 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 630 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 631 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 632 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 633 #ifdef notyet 634 | IEEE80211_HTCAP_GREENFIELD 635 #if IWN_RBUF_SIZE == 8192 636 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 637 #else 638 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 639 #endif 640 #endif 641 /* s/w capabilities */ 642 | IEEE80211_HTC_HT /* HT operation */ 643 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 644 #ifdef notyet 645 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 646 #endif 647 ; 648 } 649 650 ieee80211_ifattach(ic); 651 ic->ic_vap_create = iwn_vap_create; 652 ic->ic_ioctl = iwn_ioctl; 653 ic->ic_parent = iwn_parent; 654 ic->ic_vap_delete = iwn_vap_delete; 655 ic->ic_transmit = iwn_transmit; 656 ic->ic_raw_xmit = iwn_raw_xmit; 657 ic->ic_node_alloc = iwn_node_alloc; 658 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 659 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 660 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 661 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 662 sc->sc_addba_request = ic->ic_addba_request; 663 ic->ic_addba_request = iwn_addba_request; 664 sc->sc_addba_response = ic->ic_addba_response; 665 ic->ic_addba_response = iwn_addba_response; 666 sc->sc_addba_stop = ic->ic_addba_stop; 667 ic->ic_addba_stop = iwn_ampdu_tx_stop; 668 ic->ic_newassoc = iwn_newassoc; 669 ic->ic_wme.wme_update = iwn_updateedca; 670 ic->ic_update_promisc = iwn_update_promisc; 671 ic->ic_update_mcast = iwn_update_mcast; 672 ic->ic_scan_start = iwn_scan_start; 673 ic->ic_scan_end = iwn_scan_end; 674 ic->ic_set_channel = iwn_set_channel; 675 ic->ic_scan_curchan = iwn_scan_curchan; 676 ic->ic_scan_mindwell = iwn_scan_mindwell; 677 ic->ic_getradiocaps = iwn_getradiocaps; 678 ic->ic_setregdomain = iwn_setregdomain; 679 680 iwn_radiotap_attach(sc); 681 682 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 683 callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0); 684 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 685 TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc); 686 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); 687 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); 688 689 mbufq_init(&sc->sc_xmit_queue, 1024); 690 691 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, 692 taskqueue_thread_enqueue, &sc->sc_tq); 693 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); 694 if (error != 0) { 695 device_printf(dev, "can't start threads, error %d\n", error); 696 goto fail; 697 } 698 699 iwn_sysctlattach(sc); 700 701 /* 702 * Hook our interrupt after all initialization is complete. 703 */ 704 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 705 NULL, iwn_intr, sc, &sc->sc_ih); 706 if (error != 0) { 707 device_printf(dev, "can't establish interrupt, error %d\n", 708 error); 709 goto fail; 710 } 711 712 #if 0 713 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", 714 __func__, 715 sizeof(struct iwn_stats), 716 sizeof(struct iwn_stats_bt)); 717 #endif 718 719 if (bootverbose) 720 ieee80211_announce(ic); 721 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 722 723 /* Add debug ioctl right at the end */ 724 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), 725 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); 726 if (sc->sc_cdev == NULL) { 727 device_printf(dev, "failed to create debug character device\n"); 728 } else { 729 sc->sc_cdev->si_drv1 = sc; 730 } 731 return 0; 732 fail: 733 iwn_detach(dev); 734 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 735 return error; 736 } 737 738 /* 739 * Define specific configuration based on device id and subdevice id 740 * pid : PCI device id 741 */ 742 static int 743 iwn_config_specific(struct iwn_softc *sc, uint16_t pid) 744 { 745 746 switch (pid) { 747 /* 4965 series */ 748 case IWN_DID_4965_1: 749 case IWN_DID_4965_2: 750 case IWN_DID_4965_3: 751 case IWN_DID_4965_4: 752 sc->base_params = &iwn4965_base_params; 753 sc->limits = &iwn4965_sensitivity_limits; 754 sc->fwname = "iwn4965fw"; 755 /* Override chains masks, ROM is known to be broken. */ 756 sc->txchainmask = IWN_ANT_AB; 757 sc->rxchainmask = IWN_ANT_ABC; 758 /* Enable normal btcoex */ 759 sc->sc_flags |= IWN_FLAG_BTCOEX; 760 break; 761 /* 1000 Series */ 762 case IWN_DID_1000_1: 763 case IWN_DID_1000_2: 764 switch(sc->subdevice_id) { 765 case IWN_SDID_1000_1: 766 case IWN_SDID_1000_2: 767 case IWN_SDID_1000_3: 768 case IWN_SDID_1000_4: 769 case IWN_SDID_1000_5: 770 case IWN_SDID_1000_6: 771 case IWN_SDID_1000_7: 772 case IWN_SDID_1000_8: 773 case IWN_SDID_1000_9: 774 case IWN_SDID_1000_10: 775 case IWN_SDID_1000_11: 776 case IWN_SDID_1000_12: 777 sc->limits = &iwn1000_sensitivity_limits; 778 sc->base_params = &iwn1000_base_params; 779 sc->fwname = "iwn1000fw"; 780 break; 781 default: 782 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 783 "0x%04x rev %d not supported (subdevice)\n", pid, 784 sc->subdevice_id,sc->hw_type); 785 return ENOTSUP; 786 } 787 break; 788 /* 6x00 Series */ 789 case IWN_DID_6x00_2: 790 case IWN_DID_6x00_4: 791 case IWN_DID_6x00_1: 792 case IWN_DID_6x00_3: 793 sc->fwname = "iwn6000fw"; 794 sc->limits = &iwn6000_sensitivity_limits; 795 switch(sc->subdevice_id) { 796 case IWN_SDID_6x00_1: 797 case IWN_SDID_6x00_2: 798 case IWN_SDID_6x00_8: 799 //iwl6000_3agn_cfg 800 sc->base_params = &iwn_6000_base_params; 801 break; 802 case IWN_SDID_6x00_3: 803 case IWN_SDID_6x00_6: 804 case IWN_SDID_6x00_9: 805 ////iwl6000i_2agn 806 case IWN_SDID_6x00_4: 807 case IWN_SDID_6x00_7: 808 case IWN_SDID_6x00_10: 809 //iwl6000i_2abg_cfg 810 case IWN_SDID_6x00_5: 811 //iwl6000i_2bg_cfg 812 sc->base_params = &iwn_6000i_base_params; 813 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 814 sc->txchainmask = IWN_ANT_BC; 815 sc->rxchainmask = IWN_ANT_BC; 816 break; 817 default: 818 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 819 "0x%04x rev %d not supported (subdevice)\n", pid, 820 sc->subdevice_id,sc->hw_type); 821 return ENOTSUP; 822 } 823 break; 824 /* 6x05 Series */ 825 case IWN_DID_6x05_1: 826 case IWN_DID_6x05_2: 827 switch(sc->subdevice_id) { 828 case IWN_SDID_6x05_1: 829 case IWN_SDID_6x05_4: 830 case IWN_SDID_6x05_6: 831 //iwl6005_2agn_cfg 832 case IWN_SDID_6x05_2: 833 case IWN_SDID_6x05_5: 834 case IWN_SDID_6x05_7: 835 //iwl6005_2abg_cfg 836 case IWN_SDID_6x05_3: 837 //iwl6005_2bg_cfg 838 case IWN_SDID_6x05_8: 839 case IWN_SDID_6x05_9: 840 //iwl6005_2agn_sff_cfg 841 case IWN_SDID_6x05_10: 842 //iwl6005_2agn_d_cfg 843 case IWN_SDID_6x05_11: 844 //iwl6005_2agn_mow1_cfg 845 case IWN_SDID_6x05_12: 846 //iwl6005_2agn_mow2_cfg 847 sc->fwname = "iwn6000g2afw"; 848 sc->limits = &iwn6000_sensitivity_limits; 849 sc->base_params = &iwn_6000g2_base_params; 850 break; 851 default: 852 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 853 "0x%04x rev %d not supported (subdevice)\n", pid, 854 sc->subdevice_id,sc->hw_type); 855 return ENOTSUP; 856 } 857 break; 858 /* 6x35 Series */ 859 case IWN_DID_6035_1: 860 case IWN_DID_6035_2: 861 switch(sc->subdevice_id) { 862 case IWN_SDID_6035_1: 863 case IWN_SDID_6035_2: 864 case IWN_SDID_6035_3: 865 case IWN_SDID_6035_4: 866 sc->fwname = "iwn6000g2bfw"; 867 sc->limits = &iwn6235_sensitivity_limits; 868 sc->base_params = &iwn_6235_base_params; 869 break; 870 default: 871 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 872 "0x%04x rev %d not supported (subdevice)\n", pid, 873 sc->subdevice_id,sc->hw_type); 874 return ENOTSUP; 875 } 876 break; 877 /* 6x50 WiFi/WiMax Series */ 878 case IWN_DID_6050_1: 879 case IWN_DID_6050_2: 880 switch(sc->subdevice_id) { 881 case IWN_SDID_6050_1: 882 case IWN_SDID_6050_3: 883 case IWN_SDID_6050_5: 884 //iwl6050_2agn_cfg 885 case IWN_SDID_6050_2: 886 case IWN_SDID_6050_4: 887 case IWN_SDID_6050_6: 888 //iwl6050_2abg_cfg 889 sc->fwname = "iwn6050fw"; 890 sc->txchainmask = IWN_ANT_AB; 891 sc->rxchainmask = IWN_ANT_AB; 892 sc->limits = &iwn6000_sensitivity_limits; 893 sc->base_params = &iwn_6050_base_params; 894 break; 895 default: 896 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 897 "0x%04x rev %d not supported (subdevice)\n", pid, 898 sc->subdevice_id,sc->hw_type); 899 return ENOTSUP; 900 } 901 break; 902 /* 6150 WiFi/WiMax Series */ 903 case IWN_DID_6150_1: 904 case IWN_DID_6150_2: 905 switch(sc->subdevice_id) { 906 case IWN_SDID_6150_1: 907 case IWN_SDID_6150_3: 908 case IWN_SDID_6150_5: 909 // iwl6150_bgn_cfg 910 case IWN_SDID_6150_2: 911 case IWN_SDID_6150_4: 912 case IWN_SDID_6150_6: 913 //iwl6150_bg_cfg 914 sc->fwname = "iwn6050fw"; 915 sc->limits = &iwn6000_sensitivity_limits; 916 sc->base_params = &iwn_6150_base_params; 917 break; 918 default: 919 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 920 "0x%04x rev %d not supported (subdevice)\n", pid, 921 sc->subdevice_id,sc->hw_type); 922 return ENOTSUP; 923 } 924 break; 925 /* 6030 Series and 1030 Series */ 926 case IWN_DID_x030_1: 927 case IWN_DID_x030_2: 928 case IWN_DID_x030_3: 929 case IWN_DID_x030_4: 930 switch(sc->subdevice_id) { 931 case IWN_SDID_x030_1: 932 case IWN_SDID_x030_3: 933 case IWN_SDID_x030_5: 934 // iwl1030_bgn_cfg 935 case IWN_SDID_x030_2: 936 case IWN_SDID_x030_4: 937 case IWN_SDID_x030_6: 938 //iwl1030_bg_cfg 939 case IWN_SDID_x030_7: 940 case IWN_SDID_x030_10: 941 case IWN_SDID_x030_14: 942 //iwl6030_2agn_cfg 943 case IWN_SDID_x030_8: 944 case IWN_SDID_x030_11: 945 case IWN_SDID_x030_15: 946 // iwl6030_2bgn_cfg 947 case IWN_SDID_x030_9: 948 case IWN_SDID_x030_12: 949 case IWN_SDID_x030_16: 950 // iwl6030_2abg_cfg 951 case IWN_SDID_x030_13: 952 //iwl6030_2bg_cfg 953 sc->fwname = "iwn6000g2bfw"; 954 sc->limits = &iwn6000_sensitivity_limits; 955 sc->base_params = &iwn_6000g2b_base_params; 956 break; 957 default: 958 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 959 "0x%04x rev %d not supported (subdevice)\n", pid, 960 sc->subdevice_id,sc->hw_type); 961 return ENOTSUP; 962 } 963 break; 964 /* 130 Series WiFi */ 965 /* XXX: This series will need adjustment for rate. 966 * see rx_with_siso_diversity in linux kernel 967 */ 968 case IWN_DID_130_1: 969 case IWN_DID_130_2: 970 switch(sc->subdevice_id) { 971 case IWN_SDID_130_1: 972 case IWN_SDID_130_3: 973 case IWN_SDID_130_5: 974 //iwl130_bgn_cfg 975 case IWN_SDID_130_2: 976 case IWN_SDID_130_4: 977 case IWN_SDID_130_6: 978 //iwl130_bg_cfg 979 sc->fwname = "iwn6000g2bfw"; 980 sc->limits = &iwn6000_sensitivity_limits; 981 sc->base_params = &iwn_6000g2b_base_params; 982 break; 983 default: 984 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 985 "0x%04x rev %d not supported (subdevice)\n", pid, 986 sc->subdevice_id,sc->hw_type); 987 return ENOTSUP; 988 } 989 break; 990 /* 100 Series WiFi */ 991 case IWN_DID_100_1: 992 case IWN_DID_100_2: 993 switch(sc->subdevice_id) { 994 case IWN_SDID_100_1: 995 case IWN_SDID_100_2: 996 case IWN_SDID_100_3: 997 case IWN_SDID_100_4: 998 case IWN_SDID_100_5: 999 case IWN_SDID_100_6: 1000 sc->limits = &iwn1000_sensitivity_limits; 1001 sc->base_params = &iwn1000_base_params; 1002 sc->fwname = "iwn100fw"; 1003 break; 1004 default: 1005 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1006 "0x%04x rev %d not supported (subdevice)\n", pid, 1007 sc->subdevice_id,sc->hw_type); 1008 return ENOTSUP; 1009 } 1010 break; 1011 1012 /* 105 Series */ 1013 /* XXX: This series will need adjustment for rate. 1014 * see rx_with_siso_diversity in linux kernel 1015 */ 1016 case IWN_DID_105_1: 1017 case IWN_DID_105_2: 1018 switch(sc->subdevice_id) { 1019 case IWN_SDID_105_1: 1020 case IWN_SDID_105_2: 1021 case IWN_SDID_105_3: 1022 //iwl105_bgn_cfg 1023 case IWN_SDID_105_4: 1024 //iwl105_bgn_d_cfg 1025 sc->limits = &iwn2030_sensitivity_limits; 1026 sc->base_params = &iwn2000_base_params; 1027 sc->fwname = "iwn105fw"; 1028 break; 1029 default: 1030 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1031 "0x%04x rev %d not supported (subdevice)\n", pid, 1032 sc->subdevice_id,sc->hw_type); 1033 return ENOTSUP; 1034 } 1035 break; 1036 1037 /* 135 Series */ 1038 /* XXX: This series will need adjustment for rate. 1039 * see rx_with_siso_diversity in linux kernel 1040 */ 1041 case IWN_DID_135_1: 1042 case IWN_DID_135_2: 1043 switch(sc->subdevice_id) { 1044 case IWN_SDID_135_1: 1045 case IWN_SDID_135_2: 1046 case IWN_SDID_135_3: 1047 sc->limits = &iwn2030_sensitivity_limits; 1048 sc->base_params = &iwn2030_base_params; 1049 sc->fwname = "iwn135fw"; 1050 break; 1051 default: 1052 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1053 "0x%04x rev %d not supported (subdevice)\n", pid, 1054 sc->subdevice_id,sc->hw_type); 1055 return ENOTSUP; 1056 } 1057 break; 1058 1059 /* 2x00 Series */ 1060 case IWN_DID_2x00_1: 1061 case IWN_DID_2x00_2: 1062 switch(sc->subdevice_id) { 1063 case IWN_SDID_2x00_1: 1064 case IWN_SDID_2x00_2: 1065 case IWN_SDID_2x00_3: 1066 //iwl2000_2bgn_cfg 1067 case IWN_SDID_2x00_4: 1068 //iwl2000_2bgn_d_cfg 1069 sc->limits = &iwn2030_sensitivity_limits; 1070 sc->base_params = &iwn2000_base_params; 1071 sc->fwname = "iwn2000fw"; 1072 break; 1073 default: 1074 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1075 "0x%04x rev %d not supported (subdevice) \n", 1076 pid, sc->subdevice_id, sc->hw_type); 1077 return ENOTSUP; 1078 } 1079 break; 1080 /* 2x30 Series */ 1081 case IWN_DID_2x30_1: 1082 case IWN_DID_2x30_2: 1083 switch(sc->subdevice_id) { 1084 case IWN_SDID_2x30_1: 1085 case IWN_SDID_2x30_3: 1086 case IWN_SDID_2x30_5: 1087 //iwl100_bgn_cfg 1088 case IWN_SDID_2x30_2: 1089 case IWN_SDID_2x30_4: 1090 case IWN_SDID_2x30_6: 1091 //iwl100_bg_cfg 1092 sc->limits = &iwn2030_sensitivity_limits; 1093 sc->base_params = &iwn2030_base_params; 1094 sc->fwname = "iwn2030fw"; 1095 break; 1096 default: 1097 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1098 "0x%04x rev %d not supported (subdevice)\n", pid, 1099 sc->subdevice_id,sc->hw_type); 1100 return ENOTSUP; 1101 } 1102 break; 1103 /* 5x00 Series */ 1104 case IWN_DID_5x00_1: 1105 case IWN_DID_5x00_2: 1106 case IWN_DID_5x00_3: 1107 case IWN_DID_5x00_4: 1108 sc->limits = &iwn5000_sensitivity_limits; 1109 sc->base_params = &iwn5000_base_params; 1110 sc->fwname = "iwn5000fw"; 1111 switch(sc->subdevice_id) { 1112 case IWN_SDID_5x00_1: 1113 case IWN_SDID_5x00_2: 1114 case IWN_SDID_5x00_3: 1115 case IWN_SDID_5x00_4: 1116 case IWN_SDID_5x00_9: 1117 case IWN_SDID_5x00_10: 1118 case IWN_SDID_5x00_11: 1119 case IWN_SDID_5x00_12: 1120 case IWN_SDID_5x00_17: 1121 case IWN_SDID_5x00_18: 1122 case IWN_SDID_5x00_19: 1123 case IWN_SDID_5x00_20: 1124 //iwl5100_agn_cfg 1125 sc->txchainmask = IWN_ANT_B; 1126 sc->rxchainmask = IWN_ANT_AB; 1127 break; 1128 case IWN_SDID_5x00_5: 1129 case IWN_SDID_5x00_6: 1130 case IWN_SDID_5x00_13: 1131 case IWN_SDID_5x00_14: 1132 case IWN_SDID_5x00_21: 1133 case IWN_SDID_5x00_22: 1134 //iwl5100_bgn_cfg 1135 sc->txchainmask = IWN_ANT_B; 1136 sc->rxchainmask = IWN_ANT_AB; 1137 break; 1138 case IWN_SDID_5x00_7: 1139 case IWN_SDID_5x00_8: 1140 case IWN_SDID_5x00_15: 1141 case IWN_SDID_5x00_16: 1142 case IWN_SDID_5x00_23: 1143 case IWN_SDID_5x00_24: 1144 //iwl5100_abg_cfg 1145 sc->txchainmask = IWN_ANT_B; 1146 sc->rxchainmask = IWN_ANT_AB; 1147 break; 1148 case IWN_SDID_5x00_25: 1149 case IWN_SDID_5x00_26: 1150 case IWN_SDID_5x00_27: 1151 case IWN_SDID_5x00_28: 1152 case IWN_SDID_5x00_29: 1153 case IWN_SDID_5x00_30: 1154 case IWN_SDID_5x00_31: 1155 case IWN_SDID_5x00_32: 1156 case IWN_SDID_5x00_33: 1157 case IWN_SDID_5x00_34: 1158 case IWN_SDID_5x00_35: 1159 case IWN_SDID_5x00_36: 1160 //iwl5300_agn_cfg 1161 sc->txchainmask = IWN_ANT_ABC; 1162 sc->rxchainmask = IWN_ANT_ABC; 1163 break; 1164 default: 1165 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1166 "0x%04x rev %d not supported (subdevice)\n", pid, 1167 sc->subdevice_id,sc->hw_type); 1168 return ENOTSUP; 1169 } 1170 break; 1171 /* 5x50 Series */ 1172 case IWN_DID_5x50_1: 1173 case IWN_DID_5x50_2: 1174 case IWN_DID_5x50_3: 1175 case IWN_DID_5x50_4: 1176 sc->limits = &iwn5000_sensitivity_limits; 1177 sc->base_params = &iwn5000_base_params; 1178 sc->fwname = "iwn5000fw"; 1179 switch(sc->subdevice_id) { 1180 case IWN_SDID_5x50_1: 1181 case IWN_SDID_5x50_2: 1182 case IWN_SDID_5x50_3: 1183 //iwl5350_agn_cfg 1184 sc->limits = &iwn5000_sensitivity_limits; 1185 sc->base_params = &iwn5000_base_params; 1186 sc->fwname = "iwn5000fw"; 1187 break; 1188 case IWN_SDID_5x50_4: 1189 case IWN_SDID_5x50_5: 1190 case IWN_SDID_5x50_8: 1191 case IWN_SDID_5x50_9: 1192 case IWN_SDID_5x50_10: 1193 case IWN_SDID_5x50_11: 1194 //iwl5150_agn_cfg 1195 case IWN_SDID_5x50_6: 1196 case IWN_SDID_5x50_7: 1197 case IWN_SDID_5x50_12: 1198 case IWN_SDID_5x50_13: 1199 //iwl5150_abg_cfg 1200 sc->limits = &iwn5000_sensitivity_limits; 1201 sc->fwname = "iwn5150fw"; 1202 sc->base_params = &iwn_5x50_base_params; 1203 break; 1204 default: 1205 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1206 "0x%04x rev %d not supported (subdevice)\n", pid, 1207 sc->subdevice_id,sc->hw_type); 1208 return ENOTSUP; 1209 } 1210 break; 1211 default: 1212 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" 1213 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, 1214 sc->hw_type); 1215 return ENOTSUP; 1216 } 1217 return 0; 1218 } 1219 1220 static int 1221 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 1222 { 1223 struct iwn_ops *ops = &sc->ops; 1224 1225 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1226 ops->load_firmware = iwn4965_load_firmware; 1227 ops->read_eeprom = iwn4965_read_eeprom; 1228 ops->post_alive = iwn4965_post_alive; 1229 ops->nic_config = iwn4965_nic_config; 1230 ops->update_sched = iwn4965_update_sched; 1231 ops->get_temperature = iwn4965_get_temperature; 1232 ops->get_rssi = iwn4965_get_rssi; 1233 ops->set_txpower = iwn4965_set_txpower; 1234 ops->init_gains = iwn4965_init_gains; 1235 ops->set_gains = iwn4965_set_gains; 1236 ops->rxon_assoc = iwn4965_rxon_assoc; 1237 ops->add_node = iwn4965_add_node; 1238 ops->tx_done = iwn4965_tx_done; 1239 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1240 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1241 sc->ntxqs = IWN4965_NTXQUEUES; 1242 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 1243 sc->ndmachnls = IWN4965_NDMACHNLS; 1244 sc->broadcast_id = IWN4965_ID_BROADCAST; 1245 sc->rxonsz = IWN4965_RXONSZ; 1246 sc->schedsz = IWN4965_SCHEDSZ; 1247 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1248 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1249 sc->fwsz = IWN4965_FWSZ; 1250 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1251 sc->limits = &iwn4965_sensitivity_limits; 1252 sc->fwname = "iwn4965fw"; 1253 /* Override chains masks, ROM is known to be broken. */ 1254 sc->txchainmask = IWN_ANT_AB; 1255 sc->rxchainmask = IWN_ANT_ABC; 1256 /* Enable normal btcoex */ 1257 sc->sc_flags |= IWN_FLAG_BTCOEX; 1258 1259 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1260 1261 return 0; 1262 } 1263 1264 static int 1265 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1266 { 1267 struct iwn_ops *ops = &sc->ops; 1268 1269 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1270 1271 ops->load_firmware = iwn5000_load_firmware; 1272 ops->read_eeprom = iwn5000_read_eeprom; 1273 ops->post_alive = iwn5000_post_alive; 1274 ops->nic_config = iwn5000_nic_config; 1275 ops->update_sched = iwn5000_update_sched; 1276 ops->get_temperature = iwn5000_get_temperature; 1277 ops->get_rssi = iwn5000_get_rssi; 1278 ops->set_txpower = iwn5000_set_txpower; 1279 ops->init_gains = iwn5000_init_gains; 1280 ops->set_gains = iwn5000_set_gains; 1281 ops->rxon_assoc = iwn5000_rxon_assoc; 1282 ops->add_node = iwn5000_add_node; 1283 ops->tx_done = iwn5000_tx_done; 1284 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1285 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1286 sc->ntxqs = IWN5000_NTXQUEUES; 1287 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 1288 sc->ndmachnls = IWN5000_NDMACHNLS; 1289 sc->broadcast_id = IWN5000_ID_BROADCAST; 1290 sc->rxonsz = IWN5000_RXONSZ; 1291 sc->schedsz = IWN5000_SCHEDSZ; 1292 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1293 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1294 sc->fwsz = IWN5000_FWSZ; 1295 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1296 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 1297 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 1298 1299 return 0; 1300 } 1301 1302 /* 1303 * Attach the interface to 802.11 radiotap. 1304 */ 1305 static void 1306 iwn_radiotap_attach(struct iwn_softc *sc) 1307 { 1308 1309 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1310 ieee80211_radiotap_attach(&sc->sc_ic, 1311 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 1312 IWN_TX_RADIOTAP_PRESENT, 1313 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 1314 IWN_RX_RADIOTAP_PRESENT); 1315 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1316 } 1317 1318 static void 1319 iwn_sysctlattach(struct iwn_softc *sc) 1320 { 1321 #ifdef IWN_DEBUG 1322 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 1323 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 1324 1325 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1326 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 1327 "control debugging printfs"); 1328 #endif 1329 } 1330 1331 static struct ieee80211vap * 1332 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1333 enum ieee80211_opmode opmode, int flags, 1334 const uint8_t bssid[IEEE80211_ADDR_LEN], 1335 const uint8_t mac[IEEE80211_ADDR_LEN]) 1336 { 1337 struct iwn_softc *sc = ic->ic_softc; 1338 struct iwn_vap *ivp; 1339 struct ieee80211vap *vap; 1340 1341 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1342 return NULL; 1343 1344 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1345 vap = &ivp->iv_vap; 1346 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1347 ivp->ctx = IWN_RXON_BSS_CTX; 1348 vap->iv_bmissthreshold = 10; /* override default */ 1349 /* Override with driver methods. */ 1350 ivp->iv_newstate = vap->iv_newstate; 1351 vap->iv_newstate = iwn_newstate; 1352 sc->ivap[IWN_RXON_BSS_CTX] = vap; 1353 1354 ieee80211_ratectl_init(vap); 1355 /* Complete setup. */ 1356 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status, 1357 mac); 1358 ic->ic_opmode = opmode; 1359 return vap; 1360 } 1361 1362 static void 1363 iwn_vap_delete(struct ieee80211vap *vap) 1364 { 1365 struct iwn_vap *ivp = IWN_VAP(vap); 1366 1367 ieee80211_ratectl_deinit(vap); 1368 ieee80211_vap_detach(vap); 1369 free(ivp, M_80211_VAP); 1370 } 1371 1372 static void 1373 iwn_xmit_queue_drain(struct iwn_softc *sc) 1374 { 1375 struct mbuf *m; 1376 struct ieee80211_node *ni; 1377 1378 IWN_LOCK_ASSERT(sc); 1379 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 1380 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1381 ieee80211_free_node(ni); 1382 m_freem(m); 1383 } 1384 } 1385 1386 static int 1387 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) 1388 { 1389 1390 IWN_LOCK_ASSERT(sc); 1391 return (mbufq_enqueue(&sc->sc_xmit_queue, m)); 1392 } 1393 1394 static int 1395 iwn_detach(device_t dev) 1396 { 1397 struct iwn_softc *sc = device_get_softc(dev); 1398 int qid; 1399 1400 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1401 1402 if (sc->sc_ic.ic_softc != NULL) { 1403 /* Free the mbuf queue and node references */ 1404 IWN_LOCK(sc); 1405 iwn_xmit_queue_drain(sc); 1406 IWN_UNLOCK(sc); 1407 1408 iwn_stop(sc); 1409 1410 taskqueue_drain_all(sc->sc_tq); 1411 taskqueue_free(sc->sc_tq); 1412 1413 callout_drain(&sc->watchdog_to); 1414 callout_drain(&sc->scan_timeout); 1415 callout_drain(&sc->calib_to); 1416 ieee80211_ifdetach(&sc->sc_ic); 1417 } 1418 1419 /* Uninstall interrupt handler. */ 1420 if (sc->irq != NULL) { 1421 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 1422 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 1423 sc->irq); 1424 pci_release_msi(dev); 1425 } 1426 1427 /* Free DMA resources. */ 1428 iwn_free_rx_ring(sc, &sc->rxq); 1429 for (qid = 0; qid < sc->ntxqs; qid++) 1430 iwn_free_tx_ring(sc, &sc->txq[qid]); 1431 iwn_free_sched(sc); 1432 iwn_free_kw(sc); 1433 if (sc->ict != NULL) 1434 iwn_free_ict(sc); 1435 iwn_free_fwmem(sc); 1436 1437 if (sc->mem != NULL) 1438 bus_release_resource(dev, SYS_RES_MEMORY, 1439 rman_get_rid(sc->mem), sc->mem); 1440 1441 if (sc->sc_cdev) { 1442 destroy_dev(sc->sc_cdev); 1443 sc->sc_cdev = NULL; 1444 } 1445 1446 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1447 IWN_LOCK_DESTROY(sc); 1448 return 0; 1449 } 1450 1451 static int 1452 iwn_shutdown(device_t dev) 1453 { 1454 struct iwn_softc *sc = device_get_softc(dev); 1455 1456 iwn_stop(sc); 1457 return 0; 1458 } 1459 1460 static int 1461 iwn_suspend(device_t dev) 1462 { 1463 struct iwn_softc *sc = device_get_softc(dev); 1464 1465 ieee80211_suspend_all(&sc->sc_ic); 1466 return 0; 1467 } 1468 1469 static int 1470 iwn_resume(device_t dev) 1471 { 1472 struct iwn_softc *sc = device_get_softc(dev); 1473 1474 /* Clear device-specific "PCI retry timeout" register (41h). */ 1475 pci_write_config(dev, 0x41, 0, 1); 1476 1477 ieee80211_resume_all(&sc->sc_ic); 1478 return 0; 1479 } 1480 1481 static int 1482 iwn_nic_lock(struct iwn_softc *sc) 1483 { 1484 int ntries; 1485 1486 /* Request exclusive access to NIC. */ 1487 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1488 1489 /* Spin until we actually get the lock. */ 1490 for (ntries = 0; ntries < 1000; ntries++) { 1491 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1492 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1493 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1494 return 0; 1495 DELAY(10); 1496 } 1497 return ETIMEDOUT; 1498 } 1499 1500 static __inline void 1501 iwn_nic_unlock(struct iwn_softc *sc) 1502 { 1503 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1504 } 1505 1506 static __inline uint32_t 1507 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1508 { 1509 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1510 IWN_BARRIER_READ_WRITE(sc); 1511 return IWN_READ(sc, IWN_PRPH_RDATA); 1512 } 1513 1514 static __inline void 1515 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1516 { 1517 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1518 IWN_BARRIER_WRITE(sc); 1519 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1520 } 1521 1522 static __inline void 1523 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1524 { 1525 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1526 } 1527 1528 static __inline void 1529 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1530 { 1531 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1532 } 1533 1534 static __inline void 1535 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1536 const uint32_t *data, int count) 1537 { 1538 for (; count > 0; count--, data++, addr += 4) 1539 iwn_prph_write(sc, addr, *data); 1540 } 1541 1542 static __inline uint32_t 1543 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1544 { 1545 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1546 IWN_BARRIER_READ_WRITE(sc); 1547 return IWN_READ(sc, IWN_MEM_RDATA); 1548 } 1549 1550 static __inline void 1551 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1552 { 1553 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1554 IWN_BARRIER_WRITE(sc); 1555 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1556 } 1557 1558 static __inline void 1559 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1560 { 1561 uint32_t tmp; 1562 1563 tmp = iwn_mem_read(sc, addr & ~3); 1564 if (addr & 3) 1565 tmp = (tmp & 0x0000ffff) | data << 16; 1566 else 1567 tmp = (tmp & 0xffff0000) | data; 1568 iwn_mem_write(sc, addr & ~3, tmp); 1569 } 1570 1571 static __inline void 1572 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1573 int count) 1574 { 1575 for (; count > 0; count--, addr += 4) 1576 *data++ = iwn_mem_read(sc, addr); 1577 } 1578 1579 static __inline void 1580 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1581 int count) 1582 { 1583 for (; count > 0; count--, addr += 4) 1584 iwn_mem_write(sc, addr, val); 1585 } 1586 1587 static int 1588 iwn_eeprom_lock(struct iwn_softc *sc) 1589 { 1590 int i, ntries; 1591 1592 for (i = 0; i < 100; i++) { 1593 /* Request exclusive access to EEPROM. */ 1594 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1595 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1596 1597 /* Spin until we actually get the lock. */ 1598 for (ntries = 0; ntries < 100; ntries++) { 1599 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1600 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1601 return 0; 1602 DELAY(10); 1603 } 1604 } 1605 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1606 return ETIMEDOUT; 1607 } 1608 1609 static __inline void 1610 iwn_eeprom_unlock(struct iwn_softc *sc) 1611 { 1612 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1613 } 1614 1615 /* 1616 * Initialize access by host to One Time Programmable ROM. 1617 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1618 */ 1619 static int 1620 iwn_init_otprom(struct iwn_softc *sc) 1621 { 1622 uint16_t prev, base, next; 1623 int count, error; 1624 1625 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1626 1627 /* Wait for clock stabilization before accessing prph. */ 1628 if ((error = iwn_clock_wait(sc)) != 0) 1629 return error; 1630 1631 if ((error = iwn_nic_lock(sc)) != 0) 1632 return error; 1633 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1634 DELAY(5); 1635 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1636 iwn_nic_unlock(sc); 1637 1638 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1639 if (sc->base_params->shadow_ram_support) { 1640 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1641 IWN_RESET_LINK_PWR_MGMT_DIS); 1642 } 1643 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1644 /* Clear ECC status. */ 1645 IWN_SETBITS(sc, IWN_OTP_GP, 1646 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1647 1648 /* 1649 * Find the block before last block (contains the EEPROM image) 1650 * for HW without OTP shadow RAM. 1651 */ 1652 if (! sc->base_params->shadow_ram_support) { 1653 /* Switch to absolute addressing mode. */ 1654 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1655 base = prev = 0; 1656 for (count = 0; count < sc->base_params->max_ll_items; 1657 count++) { 1658 error = iwn_read_prom_data(sc, base, &next, 2); 1659 if (error != 0) 1660 return error; 1661 if (next == 0) /* End of linked-list. */ 1662 break; 1663 prev = base; 1664 base = le16toh(next); 1665 } 1666 if (count == 0 || count == sc->base_params->max_ll_items) 1667 return EIO; 1668 /* Skip "next" word. */ 1669 sc->prom_base = prev + 1; 1670 } 1671 1672 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1673 1674 return 0; 1675 } 1676 1677 static int 1678 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1679 { 1680 uint8_t *out = data; 1681 uint32_t val, tmp; 1682 int ntries; 1683 1684 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1685 1686 addr += sc->prom_base; 1687 for (; count > 0; count -= 2, addr++) { 1688 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1689 for (ntries = 0; ntries < 10; ntries++) { 1690 val = IWN_READ(sc, IWN_EEPROM); 1691 if (val & IWN_EEPROM_READ_VALID) 1692 break; 1693 DELAY(5); 1694 } 1695 if (ntries == 10) { 1696 device_printf(sc->sc_dev, 1697 "timeout reading ROM at 0x%x\n", addr); 1698 return ETIMEDOUT; 1699 } 1700 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1701 /* OTPROM, check for ECC errors. */ 1702 tmp = IWN_READ(sc, IWN_OTP_GP); 1703 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1704 device_printf(sc->sc_dev, 1705 "OTPROM ECC error at 0x%x\n", addr); 1706 return EIO; 1707 } 1708 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1709 /* Correctable ECC error, clear bit. */ 1710 IWN_SETBITS(sc, IWN_OTP_GP, 1711 IWN_OTP_GP_ECC_CORR_STTS); 1712 } 1713 } 1714 *out++ = val >> 16; 1715 if (count > 1) 1716 *out++ = val >> 24; 1717 } 1718 1719 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1720 1721 return 0; 1722 } 1723 1724 static void 1725 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1726 { 1727 if (error != 0) 1728 return; 1729 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1730 *(bus_addr_t *)arg = segs[0].ds_addr; 1731 } 1732 1733 static int 1734 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1735 void **kvap, bus_size_t size, bus_size_t alignment) 1736 { 1737 int error; 1738 1739 dma->tag = NULL; 1740 dma->size = size; 1741 1742 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1743 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1744 1, size, 0, NULL, NULL, &dma->tag); 1745 if (error != 0) 1746 goto fail; 1747 1748 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1749 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1750 if (error != 0) 1751 goto fail; 1752 1753 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1754 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1755 if (error != 0) 1756 goto fail; 1757 1758 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1759 1760 if (kvap != NULL) 1761 *kvap = dma->vaddr; 1762 1763 return 0; 1764 1765 fail: iwn_dma_contig_free(dma); 1766 return error; 1767 } 1768 1769 static void 1770 iwn_dma_contig_free(struct iwn_dma_info *dma) 1771 { 1772 if (dma->vaddr != NULL) { 1773 bus_dmamap_sync(dma->tag, dma->map, 1774 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1775 bus_dmamap_unload(dma->tag, dma->map); 1776 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1777 dma->vaddr = NULL; 1778 } 1779 if (dma->tag != NULL) { 1780 bus_dma_tag_destroy(dma->tag); 1781 dma->tag = NULL; 1782 } 1783 } 1784 1785 static int 1786 iwn_alloc_sched(struct iwn_softc *sc) 1787 { 1788 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1789 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1790 sc->schedsz, 1024); 1791 } 1792 1793 static void 1794 iwn_free_sched(struct iwn_softc *sc) 1795 { 1796 iwn_dma_contig_free(&sc->sched_dma); 1797 } 1798 1799 static int 1800 iwn_alloc_kw(struct iwn_softc *sc) 1801 { 1802 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1803 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1804 } 1805 1806 static void 1807 iwn_free_kw(struct iwn_softc *sc) 1808 { 1809 iwn_dma_contig_free(&sc->kw_dma); 1810 } 1811 1812 static int 1813 iwn_alloc_ict(struct iwn_softc *sc) 1814 { 1815 /* ICT table must be aligned on a 4KB boundary. */ 1816 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1817 IWN_ICT_SIZE, 4096); 1818 } 1819 1820 static void 1821 iwn_free_ict(struct iwn_softc *sc) 1822 { 1823 iwn_dma_contig_free(&sc->ict_dma); 1824 } 1825 1826 static int 1827 iwn_alloc_fwmem(struct iwn_softc *sc) 1828 { 1829 /* Must be aligned on a 16-byte boundary. */ 1830 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1831 } 1832 1833 static void 1834 iwn_free_fwmem(struct iwn_softc *sc) 1835 { 1836 iwn_dma_contig_free(&sc->fw_dma); 1837 } 1838 1839 static int 1840 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1841 { 1842 bus_size_t size; 1843 int i, error; 1844 1845 ring->cur = 0; 1846 1847 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1848 1849 /* Allocate RX descriptors (256-byte aligned). */ 1850 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1851 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1852 size, 256); 1853 if (error != 0) { 1854 device_printf(sc->sc_dev, 1855 "%s: could not allocate RX ring DMA memory, error %d\n", 1856 __func__, error); 1857 goto fail; 1858 } 1859 1860 /* Allocate RX status area (16-byte aligned). */ 1861 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1862 sizeof (struct iwn_rx_status), 16); 1863 if (error != 0) { 1864 device_printf(sc->sc_dev, 1865 "%s: could not allocate RX status DMA memory, error %d\n", 1866 __func__, error); 1867 goto fail; 1868 } 1869 1870 /* Create RX buffer DMA tag. */ 1871 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1872 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1873 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 1874 if (error != 0) { 1875 device_printf(sc->sc_dev, 1876 "%s: could not create RX buf DMA tag, error %d\n", 1877 __func__, error); 1878 goto fail; 1879 } 1880 1881 /* 1882 * Allocate and map RX buffers. 1883 */ 1884 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1885 struct iwn_rx_data *data = &ring->data[i]; 1886 bus_addr_t paddr; 1887 1888 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1889 if (error != 0) { 1890 device_printf(sc->sc_dev, 1891 "%s: could not create RX buf DMA map, error %d\n", 1892 __func__, error); 1893 goto fail; 1894 } 1895 1896 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1897 IWN_RBUF_SIZE); 1898 if (data->m == NULL) { 1899 device_printf(sc->sc_dev, 1900 "%s: could not allocate RX mbuf\n", __func__); 1901 error = ENOBUFS; 1902 goto fail; 1903 } 1904 1905 error = bus_dmamap_load(ring->data_dmat, data->map, 1906 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1907 &paddr, BUS_DMA_NOWAIT); 1908 if (error != 0 && error != EFBIG) { 1909 device_printf(sc->sc_dev, 1910 "%s: can't map mbuf, error %d\n", __func__, 1911 error); 1912 goto fail; 1913 } 1914 1915 bus_dmamap_sync(ring->data_dmat, data->map, 1916 BUS_DMASYNC_PREREAD); 1917 1918 /* Set physical address of RX buffer (256-byte aligned). */ 1919 ring->desc[i] = htole32(paddr >> 8); 1920 } 1921 1922 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1923 BUS_DMASYNC_PREWRITE); 1924 1925 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1926 1927 return 0; 1928 1929 fail: iwn_free_rx_ring(sc, ring); 1930 1931 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1932 1933 return error; 1934 } 1935 1936 static void 1937 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1938 { 1939 int ntries; 1940 1941 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1942 1943 if (iwn_nic_lock(sc) == 0) { 1944 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1945 for (ntries = 0; ntries < 1000; ntries++) { 1946 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1947 IWN_FH_RX_STATUS_IDLE) 1948 break; 1949 DELAY(10); 1950 } 1951 iwn_nic_unlock(sc); 1952 } 1953 ring->cur = 0; 1954 sc->last_rx_valid = 0; 1955 } 1956 1957 static void 1958 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1959 { 1960 int i; 1961 1962 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1963 1964 iwn_dma_contig_free(&ring->desc_dma); 1965 iwn_dma_contig_free(&ring->stat_dma); 1966 1967 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1968 struct iwn_rx_data *data = &ring->data[i]; 1969 1970 if (data->m != NULL) { 1971 bus_dmamap_sync(ring->data_dmat, data->map, 1972 BUS_DMASYNC_POSTREAD); 1973 bus_dmamap_unload(ring->data_dmat, data->map); 1974 m_freem(data->m); 1975 data->m = NULL; 1976 } 1977 if (data->map != NULL) 1978 bus_dmamap_destroy(ring->data_dmat, data->map); 1979 } 1980 if (ring->data_dmat != NULL) { 1981 bus_dma_tag_destroy(ring->data_dmat); 1982 ring->data_dmat = NULL; 1983 } 1984 } 1985 1986 static int 1987 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1988 { 1989 bus_addr_t paddr; 1990 bus_size_t size; 1991 int i, error; 1992 1993 ring->qid = qid; 1994 ring->queued = 0; 1995 ring->cur = 0; 1996 1997 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1998 1999 /* Allocate TX descriptors (256-byte aligned). */ 2000 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 2001 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 2002 size, 256); 2003 if (error != 0) { 2004 device_printf(sc->sc_dev, 2005 "%s: could not allocate TX ring DMA memory, error %d\n", 2006 __func__, error); 2007 goto fail; 2008 } 2009 2010 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2011 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 2012 size, 4); 2013 if (error != 0) { 2014 device_printf(sc->sc_dev, 2015 "%s: could not allocate TX cmd DMA memory, error %d\n", 2016 __func__, error); 2017 goto fail; 2018 } 2019 2020 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 2021 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 2022 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 2023 if (error != 0) { 2024 device_printf(sc->sc_dev, 2025 "%s: could not create TX buf DMA tag, error %d\n", 2026 __func__, error); 2027 goto fail; 2028 } 2029 2030 paddr = ring->cmd_dma.paddr; 2031 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2032 struct iwn_tx_data *data = &ring->data[i]; 2033 2034 data->cmd_paddr = paddr; 2035 data->scratch_paddr = paddr + 12; 2036 paddr += sizeof (struct iwn_tx_cmd); 2037 2038 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2039 if (error != 0) { 2040 device_printf(sc->sc_dev, 2041 "%s: could not create TX buf DMA map, error %d\n", 2042 __func__, error); 2043 goto fail; 2044 } 2045 } 2046 2047 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2048 2049 return 0; 2050 2051 fail: iwn_free_tx_ring(sc, ring); 2052 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2053 return error; 2054 } 2055 2056 static void 2057 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2058 { 2059 int i; 2060 2061 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 2062 2063 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2064 struct iwn_tx_data *data = &ring->data[i]; 2065 2066 if (data->m != NULL) { 2067 bus_dmamap_sync(ring->data_dmat, data->map, 2068 BUS_DMASYNC_POSTWRITE); 2069 bus_dmamap_unload(ring->data_dmat, data->map); 2070 m_freem(data->m); 2071 data->m = NULL; 2072 } 2073 if (data->ni != NULL) { 2074 ieee80211_free_node(data->ni); 2075 data->ni = NULL; 2076 } 2077 } 2078 /* Clear TX descriptors. */ 2079 memset(ring->desc, 0, ring->desc_dma.size); 2080 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2081 BUS_DMASYNC_PREWRITE); 2082 sc->qfullmsk &= ~(1 << ring->qid); 2083 ring->queued = 0; 2084 ring->cur = 0; 2085 } 2086 2087 static void 2088 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2089 { 2090 int i; 2091 2092 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 2093 2094 iwn_dma_contig_free(&ring->desc_dma); 2095 iwn_dma_contig_free(&ring->cmd_dma); 2096 2097 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2098 struct iwn_tx_data *data = &ring->data[i]; 2099 2100 if (data->m != NULL) { 2101 bus_dmamap_sync(ring->data_dmat, data->map, 2102 BUS_DMASYNC_POSTWRITE); 2103 bus_dmamap_unload(ring->data_dmat, data->map); 2104 m_freem(data->m); 2105 } 2106 if (data->map != NULL) 2107 bus_dmamap_destroy(ring->data_dmat, data->map); 2108 } 2109 if (ring->data_dmat != NULL) { 2110 bus_dma_tag_destroy(ring->data_dmat); 2111 ring->data_dmat = NULL; 2112 } 2113 } 2114 2115 static void 2116 iwn5000_ict_reset(struct iwn_softc *sc) 2117 { 2118 /* Disable interrupts. */ 2119 IWN_WRITE(sc, IWN_INT_MASK, 0); 2120 2121 /* Reset ICT table. */ 2122 memset(sc->ict, 0, IWN_ICT_SIZE); 2123 sc->ict_cur = 0; 2124 2125 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, 2126 BUS_DMASYNC_PREWRITE); 2127 2128 /* Set physical address of ICT table (4KB aligned). */ 2129 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 2130 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2131 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2132 2133 /* Enable periodic RX interrupt. */ 2134 sc->int_mask |= IWN_INT_RX_PERIODIC; 2135 /* Switch to ICT interrupt mode in driver. */ 2136 sc->sc_flags |= IWN_FLAG_USE_ICT; 2137 2138 /* Re-enable interrupts. */ 2139 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2140 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2141 } 2142 2143 static int 2144 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2145 { 2146 struct iwn_ops *ops = &sc->ops; 2147 uint16_t val; 2148 int error; 2149 2150 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2151 2152 /* Check whether adapter has an EEPROM or an OTPROM. */ 2153 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2154 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2155 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2156 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 2157 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2158 2159 /* Adapter has to be powered on for EEPROM access to work. */ 2160 if ((error = iwn_apm_init(sc)) != 0) { 2161 device_printf(sc->sc_dev, 2162 "%s: could not power ON adapter, error %d\n", __func__, 2163 error); 2164 return error; 2165 } 2166 2167 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2168 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 2169 return EIO; 2170 } 2171 if ((error = iwn_eeprom_lock(sc)) != 0) { 2172 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 2173 __func__, error); 2174 return error; 2175 } 2176 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2177 if ((error = iwn_init_otprom(sc)) != 0) { 2178 device_printf(sc->sc_dev, 2179 "%s: could not initialize OTPROM, error %d\n", 2180 __func__, error); 2181 return error; 2182 } 2183 } 2184 2185 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2186 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 2187 /* Check if HT support is bonded out. */ 2188 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2189 sc->sc_flags |= IWN_FLAG_HAS_11N; 2190 2191 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2192 sc->rfcfg = le16toh(val); 2193 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 2194 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2195 if (sc->txchainmask == 0) 2196 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2197 if (sc->rxchainmask == 0) 2198 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2199 2200 /* Read MAC address. */ 2201 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 2202 2203 /* Read adapter-specific information from EEPROM. */ 2204 ops->read_eeprom(sc); 2205 2206 iwn_apm_stop(sc); /* Power OFF adapter. */ 2207 2208 iwn_eeprom_unlock(sc); 2209 2210 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2211 2212 return 0; 2213 } 2214 2215 static void 2216 iwn4965_read_eeprom(struct iwn_softc *sc) 2217 { 2218 uint32_t addr; 2219 uint16_t val; 2220 int i; 2221 2222 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2223 2224 /* Read regulatory domain (4 ASCII characters). */ 2225 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2226 2227 /* Read the list of authorized channels (20MHz & 40MHz). */ 2228 for (i = 0; i < IWN_NBANDS - 1; i++) { 2229 addr = iwn4965_regulatory_bands[i]; 2230 iwn_read_eeprom_channels(sc, i, addr); 2231 } 2232 2233 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2234 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2235 sc->maxpwr2GHz = val & 0xff; 2236 sc->maxpwr5GHz = val >> 8; 2237 /* Check that EEPROM values are within valid range. */ 2238 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2239 sc->maxpwr5GHz = 38; 2240 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2241 sc->maxpwr2GHz = 38; 2242 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 2243 sc->maxpwr2GHz, sc->maxpwr5GHz); 2244 2245 /* Read samples for each TX power group. */ 2246 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2247 sizeof sc->bands); 2248 2249 /* Read voltage at which samples were taken. */ 2250 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2251 sc->eeprom_voltage = (int16_t)le16toh(val); 2252 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 2253 sc->eeprom_voltage); 2254 2255 #ifdef IWN_DEBUG 2256 /* Print samples. */ 2257 if (sc->sc_debug & IWN_DEBUG_ANY) { 2258 for (i = 0; i < IWN_NBANDS - 1; i++) 2259 iwn4965_print_power_group(sc, i); 2260 } 2261 #endif 2262 2263 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2264 } 2265 2266 #ifdef IWN_DEBUG 2267 static void 2268 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2269 { 2270 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2271 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2272 int j, c; 2273 2274 printf("===band %d===\n", i); 2275 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 2276 printf("chan1 num=%d\n", chans[0].num); 2277 for (c = 0; c < 2; c++) { 2278 for (j = 0; j < IWN_NSAMPLES; j++) { 2279 printf("chain %d, sample %d: temp=%d gain=%d " 2280 "power=%d pa_det=%d\n", c, j, 2281 chans[0].samples[c][j].temp, 2282 chans[0].samples[c][j].gain, 2283 chans[0].samples[c][j].power, 2284 chans[0].samples[c][j].pa_det); 2285 } 2286 } 2287 printf("chan2 num=%d\n", chans[1].num); 2288 for (c = 0; c < 2; c++) { 2289 for (j = 0; j < IWN_NSAMPLES; j++) { 2290 printf("chain %d, sample %d: temp=%d gain=%d " 2291 "power=%d pa_det=%d\n", c, j, 2292 chans[1].samples[c][j].temp, 2293 chans[1].samples[c][j].gain, 2294 chans[1].samples[c][j].power, 2295 chans[1].samples[c][j].pa_det); 2296 } 2297 } 2298 } 2299 #endif 2300 2301 static void 2302 iwn5000_read_eeprom(struct iwn_softc *sc) 2303 { 2304 struct iwn5000_eeprom_calib_hdr hdr; 2305 int32_t volt; 2306 uint32_t base, addr; 2307 uint16_t val; 2308 int i; 2309 2310 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2311 2312 /* Read regulatory domain (4 ASCII characters). */ 2313 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2314 base = le16toh(val); 2315 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2316 sc->eeprom_domain, 4); 2317 2318 /* Read the list of authorized channels (20MHz & 40MHz). */ 2319 for (i = 0; i < IWN_NBANDS - 1; i++) { 2320 addr = base + sc->base_params->regulatory_bands[i]; 2321 iwn_read_eeprom_channels(sc, i, addr); 2322 } 2323 2324 /* Read enhanced TX power information for 6000 Series. */ 2325 if (sc->base_params->enhanced_TX_power) 2326 iwn_read_eeprom_enhinfo(sc); 2327 2328 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2329 base = le16toh(val); 2330 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2331 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2332 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 2333 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2334 sc->calib_ver = hdr.version; 2335 2336 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 2337 sc->eeprom_voltage = le16toh(hdr.volt); 2338 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2339 sc->eeprom_temp_high=le16toh(val); 2340 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2341 sc->eeprom_temp = le16toh(val); 2342 } 2343 2344 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2345 /* Compute temperature offset. */ 2346 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2347 sc->eeprom_temp = le16toh(val); 2348 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2349 volt = le16toh(val); 2350 sc->temp_off = sc->eeprom_temp - (volt / -5); 2351 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 2352 sc->eeprom_temp, volt, sc->temp_off); 2353 } else { 2354 /* Read crystal calibration. */ 2355 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2356 &sc->eeprom_crystal, sizeof (uint32_t)); 2357 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 2358 le32toh(sc->eeprom_crystal)); 2359 } 2360 2361 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2362 2363 } 2364 2365 /* 2366 * Translate EEPROM flags to net80211. 2367 */ 2368 static uint32_t 2369 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 2370 { 2371 uint32_t nflags; 2372 2373 nflags = 0; 2374 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 2375 nflags |= IEEE80211_CHAN_PASSIVE; 2376 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 2377 nflags |= IEEE80211_CHAN_NOADHOC; 2378 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 2379 nflags |= IEEE80211_CHAN_DFS; 2380 /* XXX apparently IBSS may still be marked */ 2381 nflags |= IEEE80211_CHAN_NOADHOC; 2382 } 2383 2384 return nflags; 2385 } 2386 2387 static void 2388 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2389 struct ieee80211_channel chans[]) 2390 { 2391 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2392 const struct iwn_chan_band *band = &iwn_bands[n]; 2393 uint8_t bands[IEEE80211_MODE_BYTES]; 2394 uint8_t chan; 2395 int i, error, nflags; 2396 2397 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2398 2399 memset(bands, 0, sizeof(bands)); 2400 if (n == 0) { 2401 setbit(bands, IEEE80211_MODE_11B); 2402 setbit(bands, IEEE80211_MODE_11G); 2403 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2404 setbit(bands, IEEE80211_MODE_11NG); 2405 } else { 2406 setbit(bands, IEEE80211_MODE_11A); 2407 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2408 setbit(bands, IEEE80211_MODE_11NA); 2409 } 2410 2411 for (i = 0; i < band->nchan; i++) { 2412 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2413 DPRINTF(sc, IWN_DEBUG_RESET, 2414 "skip chan %d flags 0x%x maxpwr %d\n", 2415 band->chan[i], channels[i].flags, 2416 channels[i].maxpwr); 2417 continue; 2418 } 2419 2420 chan = band->chan[i]; 2421 nflags = iwn_eeprom_channel_flags(&channels[i]); 2422 error = ieee80211_add_channel(chans, maxchans, nchans, 2423 chan, 0, channels[i].maxpwr, nflags, bands); 2424 if (error != 0) 2425 break; 2426 2427 /* Save maximum allowed TX power for this channel. */ 2428 /* XXX wrong */ 2429 sc->maxpwr[chan] = channels[i].maxpwr; 2430 2431 DPRINTF(sc, IWN_DEBUG_RESET, 2432 "add chan %d flags 0x%x maxpwr %d\n", chan, 2433 channels[i].flags, channels[i].maxpwr); 2434 } 2435 2436 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2437 2438 } 2439 2440 static void 2441 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2442 struct ieee80211_channel chans[]) 2443 { 2444 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2445 const struct iwn_chan_band *band = &iwn_bands[n]; 2446 uint8_t chan; 2447 int i, error, nflags; 2448 2449 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2450 2451 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2452 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2453 return; 2454 } 2455 2456 for (i = 0; i < band->nchan; i++) { 2457 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2458 DPRINTF(sc, IWN_DEBUG_RESET, 2459 "skip chan %d flags 0x%x maxpwr %d\n", 2460 band->chan[i], channels[i].flags, 2461 channels[i].maxpwr); 2462 continue; 2463 } 2464 2465 chan = band->chan[i]; 2466 nflags = iwn_eeprom_channel_flags(&channels[i]); 2467 nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A); 2468 error = ieee80211_add_channel_ht40(chans, maxchans, nchans, 2469 chan, channels[i].maxpwr, nflags); 2470 switch (error) { 2471 case EINVAL: 2472 device_printf(sc->sc_dev, 2473 "%s: no entry for channel %d\n", __func__, chan); 2474 continue; 2475 case ENOENT: 2476 DPRINTF(sc, IWN_DEBUG_RESET, 2477 "%s: skip chan %d, extension channel not found\n", 2478 __func__, chan); 2479 continue; 2480 case ENOBUFS: 2481 device_printf(sc->sc_dev, 2482 "%s: channel table is full!\n", __func__); 2483 break; 2484 case 0: 2485 DPRINTF(sc, IWN_DEBUG_RESET, 2486 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2487 chan, channels[i].flags, channels[i].maxpwr); 2488 /* FALLTHROUGH */ 2489 default: 2490 break; 2491 } 2492 } 2493 2494 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2495 2496 } 2497 2498 static void 2499 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2500 { 2501 struct ieee80211com *ic = &sc->sc_ic; 2502 2503 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2504 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2505 2506 if (n < 5) { 2507 iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2508 ic->ic_channels); 2509 } else { 2510 iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2511 ic->ic_channels); 2512 } 2513 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2514 } 2515 2516 static struct iwn_eeprom_chan * 2517 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2518 { 2519 int band, chan, i, j; 2520 2521 if (IEEE80211_IS_CHAN_HT40(c)) { 2522 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2523 if (IEEE80211_IS_CHAN_HT40D(c)) 2524 chan = c->ic_extieee; 2525 else 2526 chan = c->ic_ieee; 2527 for (i = 0; i < iwn_bands[band].nchan; i++) { 2528 if (iwn_bands[band].chan[i] == chan) 2529 return &sc->eeprom_channels[band][i]; 2530 } 2531 } else { 2532 for (j = 0; j < 5; j++) { 2533 for (i = 0; i < iwn_bands[j].nchan; i++) { 2534 if (iwn_bands[j].chan[i] == c->ic_ieee && 2535 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 2536 return &sc->eeprom_channels[j][i]; 2537 } 2538 } 2539 } 2540 return NULL; 2541 } 2542 2543 static void 2544 iwn_getradiocaps(struct ieee80211com *ic, 2545 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2546 { 2547 struct iwn_softc *sc = ic->ic_softc; 2548 int i; 2549 2550 /* Parse the list of authorized channels. */ 2551 for (i = 0; i < 5 && *nchans < maxchans; i++) 2552 iwn_read_eeprom_band(sc, i, maxchans, nchans, chans); 2553 for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++) 2554 iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans); 2555 } 2556 2557 /* 2558 * Enforce flags read from EEPROM. 2559 */ 2560 static int 2561 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2562 int nchan, struct ieee80211_channel chans[]) 2563 { 2564 struct iwn_softc *sc = ic->ic_softc; 2565 int i; 2566 2567 for (i = 0; i < nchan; i++) { 2568 struct ieee80211_channel *c = &chans[i]; 2569 struct iwn_eeprom_chan *channel; 2570 2571 channel = iwn_find_eeprom_channel(sc, c); 2572 if (channel == NULL) { 2573 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 2574 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2575 return EINVAL; 2576 } 2577 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2578 } 2579 2580 return 0; 2581 } 2582 2583 static void 2584 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2585 { 2586 struct iwn_eeprom_enhinfo enhinfo[35]; 2587 struct ieee80211com *ic = &sc->sc_ic; 2588 struct ieee80211_channel *c; 2589 uint16_t val, base; 2590 int8_t maxpwr; 2591 uint8_t flags; 2592 int i, j; 2593 2594 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2595 2596 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2597 base = le16toh(val); 2598 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2599 enhinfo, sizeof enhinfo); 2600 2601 for (i = 0; i < nitems(enhinfo); i++) { 2602 flags = enhinfo[i].flags; 2603 if (!(flags & IWN_ENHINFO_VALID)) 2604 continue; /* Skip invalid entries. */ 2605 2606 maxpwr = 0; 2607 if (sc->txchainmask & IWN_ANT_A) 2608 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2609 if (sc->txchainmask & IWN_ANT_B) 2610 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2611 if (sc->txchainmask & IWN_ANT_C) 2612 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2613 if (sc->ntxchains == 2) 2614 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2615 else if (sc->ntxchains == 3) 2616 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2617 2618 for (j = 0; j < ic->ic_nchans; j++) { 2619 c = &ic->ic_channels[j]; 2620 if ((flags & IWN_ENHINFO_5GHZ)) { 2621 if (!IEEE80211_IS_CHAN_A(c)) 2622 continue; 2623 } else if ((flags & IWN_ENHINFO_OFDM)) { 2624 if (!IEEE80211_IS_CHAN_G(c)) 2625 continue; 2626 } else if (!IEEE80211_IS_CHAN_B(c)) 2627 continue; 2628 if ((flags & IWN_ENHINFO_HT40)) { 2629 if (!IEEE80211_IS_CHAN_HT40(c)) 2630 continue; 2631 } else { 2632 if (IEEE80211_IS_CHAN_HT40(c)) 2633 continue; 2634 } 2635 if (enhinfo[i].chan != 0 && 2636 enhinfo[i].chan != c->ic_ieee) 2637 continue; 2638 2639 DPRINTF(sc, IWN_DEBUG_RESET, 2640 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2641 c->ic_flags, maxpwr / 2); 2642 c->ic_maxregpower = maxpwr / 2; 2643 c->ic_maxpower = maxpwr; 2644 } 2645 } 2646 2647 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2648 2649 } 2650 2651 static struct ieee80211_node * 2652 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2653 { 2654 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 2655 } 2656 2657 static __inline int 2658 rate2plcp(int rate) 2659 { 2660 switch (rate & 0xff) { 2661 case 12: return 0xd; 2662 case 18: return 0xf; 2663 case 24: return 0x5; 2664 case 36: return 0x7; 2665 case 48: return 0x9; 2666 case 72: return 0xb; 2667 case 96: return 0x1; 2668 case 108: return 0x3; 2669 case 2: return 10; 2670 case 4: return 20; 2671 case 11: return 55; 2672 case 22: return 110; 2673 } 2674 return 0; 2675 } 2676 2677 static __inline uint8_t 2678 plcp2rate(const uint8_t rate_plcp) 2679 { 2680 switch (rate_plcp) { 2681 case 0xd: return 12; 2682 case 0xf: return 18; 2683 case 0x5: return 24; 2684 case 0x7: return 36; 2685 case 0x9: return 48; 2686 case 0xb: return 72; 2687 case 0x1: return 96; 2688 case 0x3: return 108; 2689 case 10: return 2; 2690 case 20: return 4; 2691 case 55: return 11; 2692 case 110: return 22; 2693 default: return 0; 2694 } 2695 } 2696 2697 static int 2698 iwn_get_1stream_tx_antmask(struct iwn_softc *sc) 2699 { 2700 2701 return IWN_LSB(sc->txchainmask); 2702 } 2703 2704 static int 2705 iwn_get_2stream_tx_antmask(struct iwn_softc *sc) 2706 { 2707 int tx; 2708 2709 /* 2710 * The '2 stream' setup is a bit .. odd. 2711 * 2712 * For NICs that support only 1 antenna, default to IWN_ANT_AB or 2713 * the firmware panics (eg Intel 5100.) 2714 * 2715 * For NICs that support two antennas, we use ANT_AB. 2716 * 2717 * For NICs that support three antennas, we use the two that 2718 * wasn't the default one. 2719 * 2720 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict 2721 * this to only one antenna. 2722 */ 2723 2724 /* Default - transmit on the other antennas */ 2725 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); 2726 2727 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ 2728 if (tx == 0) 2729 tx = IWN_ANT_AB; 2730 2731 /* 2732 * If the NIC is a two-stream TX NIC, configure the TX mask to 2733 * the default chainmask 2734 */ 2735 else if (sc->ntxchains == 2) 2736 tx = sc->txchainmask; 2737 2738 return (tx); 2739 } 2740 2741 2742 2743 /* 2744 * Calculate the required PLCP value from the given rate, 2745 * to the given node. 2746 * 2747 * This will take the node configuration (eg 11n, rate table 2748 * setup, etc) into consideration. 2749 */ 2750 static uint32_t 2751 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2752 uint8_t rate) 2753 { 2754 struct ieee80211com *ic = ni->ni_ic; 2755 uint32_t plcp = 0; 2756 int ridx; 2757 2758 /* 2759 * If it's an MCS rate, let's set the plcp correctly 2760 * and set the relevant flags based on the node config. 2761 */ 2762 if (rate & IEEE80211_RATE_MCS) { 2763 /* 2764 * Set the initial PLCP value to be between 0->31 for 2765 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2766 * flag. 2767 */ 2768 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; 2769 2770 /* 2771 * XXX the following should only occur if both 2772 * the local configuration _and_ the remote node 2773 * advertise these capabilities. Thus this code 2774 * may need fixing! 2775 */ 2776 2777 /* 2778 * Set the channel width and guard interval. 2779 */ 2780 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2781 plcp |= IWN_RFLAG_HT40; 2782 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2783 plcp |= IWN_RFLAG_SGI; 2784 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2785 plcp |= IWN_RFLAG_SGI; 2786 } 2787 2788 /* 2789 * Ensure the selected rate matches the link quality 2790 * table entries being used. 2791 */ 2792 if (rate > 0x8f) 2793 plcp |= IWN_RFLAG_ANT(sc->txchainmask); 2794 else if (rate > 0x87) 2795 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); 2796 else 2797 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2798 } else { 2799 /* 2800 * Set the initial PLCP - fine for both 2801 * OFDM and CCK rates. 2802 */ 2803 plcp = rate2plcp(rate); 2804 2805 /* Set CCK flag if it's CCK */ 2806 2807 /* XXX It would be nice to have a method 2808 * to map the ridx -> phy table entry 2809 * so we could just query that, rather than 2810 * this hack to check against IWN_RIDX_OFDM6. 2811 */ 2812 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2813 rate & IEEE80211_RATE_VAL); 2814 if (ridx < IWN_RIDX_OFDM6 && 2815 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2816 plcp |= IWN_RFLAG_CCK; 2817 2818 /* Set antenna configuration */ 2819 /* XXX TODO: is this the right antenna to use for legacy? */ 2820 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2821 } 2822 2823 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2824 __func__, 2825 rate, 2826 plcp); 2827 2828 return (htole32(plcp)); 2829 } 2830 2831 static void 2832 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2833 { 2834 /* Doesn't do anything at the moment */ 2835 } 2836 2837 static int 2838 iwn_media_change(struct ifnet *ifp) 2839 { 2840 int error; 2841 2842 error = ieee80211_media_change(ifp); 2843 /* NB: only the fixed rate can change and that doesn't need a reset */ 2844 return (error == ENETRESET ? 0 : error); 2845 } 2846 2847 static int 2848 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2849 { 2850 struct iwn_vap *ivp = IWN_VAP(vap); 2851 struct ieee80211com *ic = vap->iv_ic; 2852 struct iwn_softc *sc = ic->ic_softc; 2853 int error = 0; 2854 2855 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2856 2857 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2858 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2859 2860 IEEE80211_UNLOCK(ic); 2861 IWN_LOCK(sc); 2862 callout_stop(&sc->calib_to); 2863 2864 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2865 2866 switch (nstate) { 2867 case IEEE80211_S_ASSOC: 2868 if (vap->iv_state != IEEE80211_S_RUN) 2869 break; 2870 /* FALLTHROUGH */ 2871 case IEEE80211_S_AUTH: 2872 if (vap->iv_state == IEEE80211_S_AUTH) 2873 break; 2874 2875 /* 2876 * !AUTH -> AUTH transition requires state reset to handle 2877 * reassociations correctly. 2878 */ 2879 sc->rxon->associd = 0; 2880 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2881 sc->calib.state = IWN_CALIB_STATE_INIT; 2882 2883 /* Wait until we hear a beacon before we transmit */ 2884 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2885 sc->sc_beacon_wait = 1; 2886 2887 if ((error = iwn_auth(sc, vap)) != 0) { 2888 device_printf(sc->sc_dev, 2889 "%s: could not move to auth state\n", __func__); 2890 } 2891 break; 2892 2893 case IEEE80211_S_RUN: 2894 /* 2895 * RUN -> RUN transition; Just restart the timers. 2896 */ 2897 if (vap->iv_state == IEEE80211_S_RUN) { 2898 sc->calib_cnt = 0; 2899 break; 2900 } 2901 2902 /* Wait until we hear a beacon before we transmit */ 2903 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2904 sc->sc_beacon_wait = 1; 2905 2906 /* 2907 * !RUN -> RUN requires setting the association id 2908 * which is done with a firmware cmd. We also defer 2909 * starting the timers until that work is done. 2910 */ 2911 if ((error = iwn_run(sc, vap)) != 0) { 2912 device_printf(sc->sc_dev, 2913 "%s: could not move to run state\n", __func__); 2914 } 2915 break; 2916 2917 case IEEE80211_S_INIT: 2918 sc->calib.state = IWN_CALIB_STATE_INIT; 2919 /* 2920 * Purge the xmit queue so we don't have old frames 2921 * during a new association attempt. 2922 */ 2923 sc->sc_beacon_wait = 0; 2924 iwn_xmit_queue_drain(sc); 2925 break; 2926 2927 default: 2928 break; 2929 } 2930 IWN_UNLOCK(sc); 2931 IEEE80211_LOCK(ic); 2932 if (error != 0){ 2933 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2934 return error; 2935 } 2936 2937 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2938 2939 return ivp->iv_newstate(vap, nstate, arg); 2940 } 2941 2942 static void 2943 iwn_calib_timeout(void *arg) 2944 { 2945 struct iwn_softc *sc = arg; 2946 2947 IWN_LOCK_ASSERT(sc); 2948 2949 /* Force automatic TX power calibration every 60 secs. */ 2950 if (++sc->calib_cnt >= 120) { 2951 uint32_t flags = 0; 2952 2953 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2954 "sending request for statistics"); 2955 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2956 sizeof flags, 1); 2957 sc->calib_cnt = 0; 2958 } 2959 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2960 sc); 2961 } 2962 2963 /* 2964 * Process an RX_PHY firmware notification. This is usually immediately 2965 * followed by an MPDU_RX_DONE notification. 2966 */ 2967 static void 2968 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2969 struct iwn_rx_data *data) 2970 { 2971 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 2972 2973 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 2974 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2975 2976 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 2977 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 2978 sc->last_rx_valid = 1; 2979 } 2980 2981 /* 2982 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 2983 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 2984 */ 2985 static void 2986 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2987 struct iwn_rx_data *data) 2988 { 2989 struct iwn_ops *ops = &sc->ops; 2990 struct ieee80211com *ic = &sc->sc_ic; 2991 struct iwn_rx_ring *ring = &sc->rxq; 2992 struct ieee80211_frame *wh; 2993 struct ieee80211_node *ni; 2994 struct mbuf *m, *m1; 2995 struct iwn_rx_stat *stat; 2996 caddr_t head; 2997 bus_addr_t paddr; 2998 uint32_t flags; 2999 int error, len, rssi, nf; 3000 3001 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3002 3003 if (desc->type == IWN_MPDU_RX_DONE) { 3004 /* Check for prior RX_PHY notification. */ 3005 if (!sc->last_rx_valid) { 3006 DPRINTF(sc, IWN_DEBUG_ANY, 3007 "%s: missing RX_PHY\n", __func__); 3008 return; 3009 } 3010 stat = &sc->last_rx_stat; 3011 } else 3012 stat = (struct iwn_rx_stat *)(desc + 1); 3013 3014 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3015 3016 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 3017 device_printf(sc->sc_dev, 3018 "%s: invalid RX statistic header, len %d\n", __func__, 3019 stat->cfg_phy_len); 3020 return; 3021 } 3022 if (desc->type == IWN_MPDU_RX_DONE) { 3023 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 3024 head = (caddr_t)(mpdu + 1); 3025 len = le16toh(mpdu->len); 3026 } else { 3027 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 3028 len = le16toh(stat->len); 3029 } 3030 3031 flags = le32toh(*(uint32_t *)(head + len)); 3032 3033 /* Discard frames with a bad FCS early. */ 3034 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 3035 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 3036 __func__, flags); 3037 counter_u64_add(ic->ic_ierrors, 1); 3038 return; 3039 } 3040 /* Discard frames that are too short. */ 3041 if (len < sizeof (struct ieee80211_frame_ack)) { 3042 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 3043 __func__, len); 3044 counter_u64_add(ic->ic_ierrors, 1); 3045 return; 3046 } 3047 3048 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 3049 if (m1 == NULL) { 3050 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 3051 __func__); 3052 counter_u64_add(ic->ic_ierrors, 1); 3053 return; 3054 } 3055 bus_dmamap_unload(ring->data_dmat, data->map); 3056 3057 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 3058 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3059 if (error != 0 && error != EFBIG) { 3060 device_printf(sc->sc_dev, 3061 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 3062 m_freem(m1); 3063 3064 /* Try to reload the old mbuf. */ 3065 error = bus_dmamap_load(ring->data_dmat, data->map, 3066 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 3067 &paddr, BUS_DMA_NOWAIT); 3068 if (error != 0 && error != EFBIG) { 3069 panic("%s: could not load old RX mbuf", __func__); 3070 } 3071 bus_dmamap_sync(ring->data_dmat, data->map, 3072 BUS_DMASYNC_PREREAD); 3073 /* Physical address may have changed. */ 3074 ring->desc[ring->cur] = htole32(paddr >> 8); 3075 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3076 BUS_DMASYNC_PREWRITE); 3077 counter_u64_add(ic->ic_ierrors, 1); 3078 return; 3079 } 3080 3081 bus_dmamap_sync(ring->data_dmat, data->map, 3082 BUS_DMASYNC_PREREAD); 3083 3084 m = data->m; 3085 data->m = m1; 3086 /* Update RX descriptor. */ 3087 ring->desc[ring->cur] = htole32(paddr >> 8); 3088 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3089 BUS_DMASYNC_PREWRITE); 3090 3091 /* Finalize mbuf. */ 3092 m->m_data = head; 3093 m->m_pkthdr.len = m->m_len = len; 3094 3095 /* Grab a reference to the source node. */ 3096 wh = mtod(m, struct ieee80211_frame *); 3097 if (len >= sizeof(struct ieee80211_frame_min)) 3098 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 3099 else 3100 ni = NULL; 3101 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 3102 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 3103 3104 rssi = ops->get_rssi(sc, stat); 3105 3106 if (ieee80211_radiotap_active(ic)) { 3107 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 3108 uint32_t rate = le32toh(stat->rate); 3109 3110 tap->wr_flags = 0; 3111 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 3112 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3113 tap->wr_dbm_antsignal = (int8_t)rssi; 3114 tap->wr_dbm_antnoise = (int8_t)nf; 3115 tap->wr_tsft = stat->tstamp; 3116 if (rate & IWN_RFLAG_MCS) { 3117 tap->wr_rate = rate & IWN_RFLAG_RATE_MCS; 3118 tap->wr_rate |= IEEE80211_RATE_MCS; 3119 } else 3120 tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE); 3121 } 3122 3123 /* 3124 * If it's a beacon and we're waiting, then do the 3125 * wakeup. This should unblock raw_xmit/start. 3126 */ 3127 if (sc->sc_beacon_wait) { 3128 uint8_t type, subtype; 3129 /* NB: Re-assign wh */ 3130 wh = mtod(m, struct ieee80211_frame *); 3131 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3132 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3133 /* 3134 * This assumes at this point we've received our own 3135 * beacon. 3136 */ 3137 DPRINTF(sc, IWN_DEBUG_TRACE, 3138 "%s: beacon_wait, type=%d, subtype=%d\n", 3139 __func__, type, subtype); 3140 if (type == IEEE80211_FC0_TYPE_MGT && 3141 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 3142 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3143 "%s: waking things up\n", __func__); 3144 /* queue taskqueue to transmit! */ 3145 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); 3146 } 3147 } 3148 3149 IWN_UNLOCK(sc); 3150 3151 /* Send the frame to the 802.11 layer. */ 3152 if (ni != NULL) { 3153 if (ni->ni_flags & IEEE80211_NODE_HT) 3154 m->m_flags |= M_AMPDU; 3155 (void)ieee80211_input(ni, m, rssi - nf, nf); 3156 /* Node is no longer needed. */ 3157 ieee80211_free_node(ni); 3158 } else 3159 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 3160 3161 IWN_LOCK(sc); 3162 3163 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3164 3165 } 3166 3167 /* Process an incoming Compressed BlockAck. */ 3168 static void 3169 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3170 struct iwn_rx_data *data) 3171 { 3172 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3173 struct iwn_ops *ops = &sc->ops; 3174 struct iwn_node *wn; 3175 struct ieee80211_node *ni; 3176 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 3177 struct iwn_tx_ring *txq; 3178 struct iwn_tx_data *txdata; 3179 struct ieee80211_tx_ampdu *tap; 3180 struct mbuf *m; 3181 uint64_t bitmap; 3182 uint16_t ssn; 3183 uint8_t tid; 3184 int i, lastidx, qid, *res, shift; 3185 int tx_ok = 0, tx_err = 0; 3186 3187 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__); 3188 3189 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3190 3191 qid = le16toh(ba->qid); 3192 txq = &sc->txq[ba->qid]; 3193 tap = sc->qid2tap[ba->qid]; 3194 tid = tap->txa_tid; 3195 wn = (void *)tap->txa_ni; 3196 3197 res = NULL; 3198 ssn = 0; 3199 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3200 res = tap->txa_private; 3201 ssn = tap->txa_start & 0xfff; 3202 } 3203 3204 for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) { 3205 txdata = &txq->data[txq->read]; 3206 3207 /* Unmap and free mbuf. */ 3208 bus_dmamap_sync(txq->data_dmat, txdata->map, 3209 BUS_DMASYNC_POSTWRITE); 3210 bus_dmamap_unload(txq->data_dmat, txdata->map); 3211 m = txdata->m, txdata->m = NULL; 3212 ni = txdata->ni, txdata->ni = NULL; 3213 3214 KASSERT(ni != NULL, ("no node")); 3215 KASSERT(m != NULL, ("no mbuf")); 3216 3217 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3218 ieee80211_tx_complete(ni, m, 1); 3219 3220 txq->queued--; 3221 txq->read = (txq->read + 1) % IWN_TX_RING_COUNT; 3222 } 3223 3224 if (txq->queued == 0 && res != NULL) { 3225 iwn_nic_lock(sc); 3226 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3227 iwn_nic_unlock(sc); 3228 sc->qid2tap[qid] = NULL; 3229 free(res, M_DEVBUF); 3230 return; 3231 } 3232 3233 if (wn->agg[tid].bitmap == 0) 3234 return; 3235 3236 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 3237 if (shift < 0) 3238 shift += 0x100; 3239 3240 if (wn->agg[tid].nframes > (64 - shift)) 3241 return; 3242 3243 /* 3244 * Walk the bitmap and calculate how many successful and failed 3245 * attempts are made. 3246 * 3247 * Yes, the rate control code doesn't know these are A-MPDU 3248 * subframes and that it's okay to fail some of these. 3249 */ 3250 ni = tap->txa_ni; 3251 bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap; 3252 for (i = 0; bitmap; i++) { 3253 txs->flags = 0; /* XXX TODO */ 3254 if ((bitmap & 1) == 0) { 3255 tx_err ++; 3256 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3257 } else { 3258 tx_ok ++; 3259 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3260 } 3261 ieee80211_ratectl_tx_complete(ni, txs); 3262 bitmap >>= 1; 3263 } 3264 3265 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3266 "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err); 3267 3268 } 3269 3270 /* 3271 * Process a CALIBRATION_RESULT notification sent by the initialization 3272 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 3273 */ 3274 static void 3275 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3276 struct iwn_rx_data *data) 3277 { 3278 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 3279 int len, idx = -1; 3280 3281 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3282 3283 /* Runtime firmware should not send such a notification. */ 3284 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 3285 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n", 3286 __func__); 3287 return; 3288 } 3289 len = (le32toh(desc->len) & 0x3fff) - 4; 3290 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3291 3292 switch (calib->code) { 3293 case IWN5000_PHY_CALIB_DC: 3294 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) 3295 idx = 0; 3296 break; 3297 case IWN5000_PHY_CALIB_LO: 3298 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) 3299 idx = 1; 3300 break; 3301 case IWN5000_PHY_CALIB_TX_IQ: 3302 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) 3303 idx = 2; 3304 break; 3305 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 3306 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) 3307 idx = 3; 3308 break; 3309 case IWN5000_PHY_CALIB_BASE_BAND: 3310 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) 3311 idx = 4; 3312 break; 3313 } 3314 if (idx == -1) /* Ignore other results. */ 3315 return; 3316 3317 /* Save calibration result. */ 3318 if (sc->calibcmd[idx].buf != NULL) 3319 free(sc->calibcmd[idx].buf, M_DEVBUF); 3320 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 3321 if (sc->calibcmd[idx].buf == NULL) { 3322 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3323 "not enough memory for calibration result %d\n", 3324 calib->code); 3325 return; 3326 } 3327 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3328 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); 3329 sc->calibcmd[idx].len = len; 3330 memcpy(sc->calibcmd[idx].buf, calib, len); 3331 } 3332 3333 static void 3334 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, 3335 struct iwn_stats *stats, int len) 3336 { 3337 struct iwn_stats_bt *stats_bt; 3338 struct iwn_stats *lstats; 3339 3340 /* 3341 * First - check whether the length is the bluetooth or normal. 3342 * 3343 * If it's normal - just copy it and bump out. 3344 * Otherwise we have to convert things. 3345 */ 3346 3347 if (len == sizeof(struct iwn_stats) + 4) { 3348 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3349 sc->last_stat_valid = 1; 3350 return; 3351 } 3352 3353 /* 3354 * If it's not the bluetooth size - log, then just copy. 3355 */ 3356 if (len != sizeof(struct iwn_stats_bt) + 4) { 3357 DPRINTF(sc, IWN_DEBUG_STATS, 3358 "%s: size of rx statistics (%d) not an expected size!\n", 3359 __func__, 3360 len); 3361 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3362 sc->last_stat_valid = 1; 3363 return; 3364 } 3365 3366 /* 3367 * Ok. Time to copy. 3368 */ 3369 stats_bt = (struct iwn_stats_bt *) stats; 3370 lstats = &sc->last_stat; 3371 3372 /* flags */ 3373 lstats->flags = stats_bt->flags; 3374 /* rx_bt */ 3375 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, 3376 sizeof(struct iwn_rx_phy_stats)); 3377 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, 3378 sizeof(struct iwn_rx_phy_stats)); 3379 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, 3380 sizeof(struct iwn_rx_general_stats)); 3381 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, 3382 sizeof(struct iwn_rx_ht_phy_stats)); 3383 /* tx */ 3384 memcpy(&lstats->tx, &stats_bt->tx, 3385 sizeof(struct iwn_tx_stats)); 3386 /* general */ 3387 memcpy(&lstats->general, &stats_bt->general, 3388 sizeof(struct iwn_general_stats)); 3389 3390 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ 3391 sc->last_stat_valid = 1; 3392 } 3393 3394 /* 3395 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 3396 * The latter is sent by the firmware after each received beacon. 3397 */ 3398 static void 3399 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3400 struct iwn_rx_data *data) 3401 { 3402 struct iwn_ops *ops = &sc->ops; 3403 struct ieee80211com *ic = &sc->sc_ic; 3404 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3405 struct iwn_calib_state *calib = &sc->calib; 3406 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 3407 struct iwn_stats *lstats; 3408 int temp; 3409 3410 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3411 3412 /* Ignore statistics received during a scan. */ 3413 if (vap->iv_state != IEEE80211_S_RUN || 3414 (ic->ic_flags & IEEE80211_F_SCAN)){ 3415 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 3416 __func__); 3417 return; 3418 } 3419 3420 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3421 3422 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, 3423 "%s: received statistics, cmd %d, len %d\n", 3424 __func__, desc->type, le16toh(desc->len)); 3425 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 3426 3427 /* 3428 * Collect/track general statistics for reporting. 3429 * 3430 * This takes care of ensuring that the bluetooth sized message 3431 * will be correctly converted to the legacy sized message. 3432 */ 3433 iwn_stats_update(sc, calib, stats, le16toh(desc->len)); 3434 3435 /* 3436 * And now, let's take a reference of it to use! 3437 */ 3438 lstats = &sc->last_stat; 3439 3440 /* Test if temperature has changed. */ 3441 if (lstats->general.temp != sc->rawtemp) { 3442 /* Convert "raw" temperature to degC. */ 3443 sc->rawtemp = stats->general.temp; 3444 temp = ops->get_temperature(sc); 3445 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 3446 __func__, temp); 3447 3448 /* Update TX power if need be (4965AGN only). */ 3449 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3450 iwn4965_power_calibration(sc, temp); 3451 } 3452 3453 if (desc->type != IWN_BEACON_STATISTICS) 3454 return; /* Reply to a statistics request. */ 3455 3456 sc->noise = iwn_get_noise(&lstats->rx.general); 3457 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 3458 3459 /* Test that RSSI and noise are present in stats report. */ 3460 if (le32toh(lstats->rx.general.flags) != 1) { 3461 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 3462 "received statistics without RSSI"); 3463 return; 3464 } 3465 3466 if (calib->state == IWN_CALIB_STATE_ASSOC) 3467 iwn_collect_noise(sc, &lstats->rx.general); 3468 else if (calib->state == IWN_CALIB_STATE_RUN) { 3469 iwn_tune_sensitivity(sc, &lstats->rx); 3470 /* 3471 * XXX TODO: Only run the RX recovery if we're associated! 3472 */ 3473 iwn_check_rx_recovery(sc, lstats); 3474 iwn_save_stats_counters(sc, lstats); 3475 } 3476 3477 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3478 } 3479 3480 /* 3481 * Save the relevant statistic counters for the next calibration 3482 * pass. 3483 */ 3484 static void 3485 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) 3486 { 3487 struct iwn_calib_state *calib = &sc->calib; 3488 3489 /* Save counters values for next call. */ 3490 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); 3491 calib->fa_cck = le32toh(rs->rx.cck.fa); 3492 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); 3493 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); 3494 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); 3495 3496 /* Last time we received these tick values */ 3497 sc->last_calib_ticks = ticks; 3498 } 3499 3500 /* 3501 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 3502 * and 5000 adapters have different incompatible TX status formats. 3503 */ 3504 static void 3505 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3506 struct iwn_rx_data *data) 3507 { 3508 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 3509 struct iwn_tx_ring *ring; 3510 int qid; 3511 3512 qid = desc->qid & 0xf; 3513 ring = &sc->txq[qid]; 3514 3515 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3516 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3517 __func__, desc->qid, desc->idx, 3518 stat->rtsfailcnt, 3519 stat->ackfailcnt, 3520 stat->btkillcnt, 3521 stat->rate, le16toh(stat->duration), 3522 le32toh(stat->status)); 3523 3524 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3525 if (qid >= sc->firstaggqueue) { 3526 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3527 stat->rtsfailcnt, stat->ackfailcnt, &stat->status); 3528 } else { 3529 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, 3530 le32toh(stat->status) & 0xff); 3531 } 3532 } 3533 3534 static void 3535 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3536 struct iwn_rx_data *data) 3537 { 3538 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 3539 struct iwn_tx_ring *ring; 3540 int qid; 3541 3542 qid = desc->qid & 0xf; 3543 ring = &sc->txq[qid]; 3544 3545 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3546 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3547 __func__, desc->qid, desc->idx, 3548 stat->rtsfailcnt, 3549 stat->ackfailcnt, 3550 stat->btkillcnt, 3551 stat->rate, le16toh(stat->duration), 3552 le32toh(stat->status)); 3553 3554 #ifdef notyet 3555 /* Reset TX scheduler slot. */ 3556 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 3557 #endif 3558 3559 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 3560 if (qid >= sc->firstaggqueue) { 3561 iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes, 3562 stat->rtsfailcnt, stat->ackfailcnt, &stat->status); 3563 } else { 3564 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, 3565 le16toh(stat->status) & 0xff); 3566 } 3567 } 3568 3569 /* 3570 * Adapter-independent backend for TX_DONE firmware notifications. 3571 */ 3572 static void 3573 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt, 3574 int ackfailcnt, uint8_t status) 3575 { 3576 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3577 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 3578 struct iwn_tx_data *data = &ring->data[desc->idx]; 3579 struct mbuf *m; 3580 struct ieee80211_node *ni; 3581 3582 KASSERT(data->ni != NULL, ("no node")); 3583 3584 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3585 3586 /* Unmap and free mbuf. */ 3587 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 3588 bus_dmamap_unload(ring->data_dmat, data->map); 3589 m = data->m, data->m = NULL; 3590 ni = data->ni, data->ni = NULL; 3591 3592 /* 3593 * Update rate control statistics for the node. 3594 */ 3595 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3596 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3597 txs->short_retries = rtsfailcnt; 3598 txs->long_retries = ackfailcnt; 3599 if (!(status & IWN_TX_FAIL)) 3600 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3601 else { 3602 switch (status) { 3603 case IWN_TX_FAIL_SHORT_LIMIT: 3604 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 3605 break; 3606 case IWN_TX_FAIL_LONG_LIMIT: 3607 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 3608 break; 3609 case IWN_TX_STATUS_FAIL_LIFE_EXPIRE: 3610 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 3611 break; 3612 default: 3613 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3614 break; 3615 } 3616 } 3617 ieee80211_ratectl_tx_complete(ni, txs); 3618 3619 /* 3620 * Channels marked for "radar" require traffic to be received 3621 * to unlock before we can transmit. Until traffic is seen 3622 * any attempt to transmit is returned immediately with status 3623 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 3624 * happen on first authenticate after scanning. To workaround 3625 * this we ignore a failure of this sort in AUTH state so the 3626 * 802.11 layer will fall back to using a timeout to wait for 3627 * the AUTH reply. This allows the firmware time to see 3628 * traffic so a subsequent retry of AUTH succeeds. It's 3629 * unclear why the firmware does not maintain state for 3630 * channels recently visited as this would allow immediate 3631 * use of the channel after a scan (where we see traffic). 3632 */ 3633 if (status == IWN_TX_FAIL_TX_LOCKED && 3634 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 3635 ieee80211_tx_complete(ni, m, 0); 3636 else 3637 ieee80211_tx_complete(ni, m, 3638 (status & IWN_TX_FAIL) != 0); 3639 3640 sc->sc_tx_timer = 0; 3641 if (--ring->queued < IWN_TX_RING_LOMARK) 3642 sc->qfullmsk &= ~(1 << ring->qid); 3643 3644 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3645 } 3646 3647 /* 3648 * Process a "command done" firmware notification. This is where we wakeup 3649 * processes waiting for a synchronous command completion. 3650 */ 3651 static void 3652 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3653 { 3654 struct iwn_tx_ring *ring; 3655 struct iwn_tx_data *data; 3656 int cmd_queue_num; 3657 3658 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 3659 cmd_queue_num = IWN_PAN_CMD_QUEUE; 3660 else 3661 cmd_queue_num = IWN_CMD_QUEUE_NUM; 3662 3663 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) 3664 return; /* Not a command ack. */ 3665 3666 ring = &sc->txq[cmd_queue_num]; 3667 data = &ring->data[desc->idx]; 3668 3669 /* If the command was mapped in an mbuf, free it. */ 3670 if (data->m != NULL) { 3671 bus_dmamap_sync(ring->data_dmat, data->map, 3672 BUS_DMASYNC_POSTWRITE); 3673 bus_dmamap_unload(ring->data_dmat, data->map); 3674 m_freem(data->m); 3675 data->m = NULL; 3676 } 3677 wakeup(&ring->desc[desc->idx]); 3678 } 3679 3680 static void 3681 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes, 3682 int rtsfailcnt, int ackfailcnt, void *stat) 3683 { 3684 struct iwn_ops *ops = &sc->ops; 3685 struct iwn_tx_ring *ring = &sc->txq[qid]; 3686 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3687 struct iwn_tx_data *data; 3688 struct mbuf *m; 3689 struct iwn_node *wn; 3690 struct ieee80211_node *ni; 3691 struct ieee80211_tx_ampdu *tap; 3692 uint64_t bitmap; 3693 uint32_t *status = stat; 3694 uint16_t *aggstatus = stat; 3695 uint16_t ssn; 3696 uint8_t tid; 3697 int bit, i, lastidx, *res, seqno, shift, start; 3698 3699 /* XXX TODO: status is le16 field! Grr */ 3700 3701 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3702 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n", 3703 __func__, 3704 nframes, 3705 *status); 3706 3707 tap = sc->qid2tap[qid]; 3708 tid = tap->txa_tid; 3709 wn = (void *)tap->txa_ni; 3710 ni = tap->txa_ni; 3711 3712 /* 3713 * XXX TODO: ACK and RTS failures would be nice here! 3714 */ 3715 3716 /* 3717 * A-MPDU single frame status - if we failed to transmit it 3718 * in A-MPDU, then it may be a permanent failure. 3719 * 3720 * XXX TODO: check what the Linux iwlwifi driver does here; 3721 * there's some permanent and temporary failures that may be 3722 * handled differently. 3723 */ 3724 if (nframes == 1) { 3725 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3726 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3727 txs->short_retries = rtsfailcnt; 3728 txs->long_retries = ackfailcnt; 3729 if ((*status & 0xff) != 1 && (*status & 0xff) != 2) { 3730 #ifdef NOT_YET 3731 printf("ieee80211_send_bar()\n"); 3732 #endif 3733 /* 3734 * If we completely fail a transmit, make sure a 3735 * notification is pushed up to the rate control 3736 * layer. 3737 */ 3738 /* XXX */ 3739 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3740 } else { 3741 /* 3742 * If nframes=1, then we won't be getting a BA for 3743 * this frame. Ensure that we correctly update the 3744 * rate control code with how many retries were 3745 * needed to send it. 3746 */ 3747 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3748 } 3749 ieee80211_ratectl_tx_complete(ni, txs); 3750 } 3751 3752 bitmap = 0; 3753 start = idx; 3754 for (i = 0; i < nframes; i++) { 3755 if (le16toh(aggstatus[i * 2]) & 0xc) 3756 continue; 3757 3758 idx = le16toh(aggstatus[2*i + 1]) & 0xff; 3759 bit = idx - start; 3760 shift = 0; 3761 if (bit >= 64) { 3762 shift = 0x100 - idx + start; 3763 bit = 0; 3764 start = idx; 3765 } else if (bit <= -64) 3766 bit = 0x100 - start + idx; 3767 else if (bit < 0) { 3768 shift = start - idx; 3769 start = idx; 3770 bit = 0; 3771 } 3772 bitmap = bitmap << shift; 3773 bitmap |= 1ULL << bit; 3774 } 3775 tap = sc->qid2tap[qid]; 3776 tid = tap->txa_tid; 3777 wn = (void *)tap->txa_ni; 3778 wn->agg[tid].bitmap = bitmap; 3779 wn->agg[tid].startidx = start; 3780 wn->agg[tid].nframes = nframes; 3781 3782 res = NULL; 3783 ssn = 0; 3784 if (!IEEE80211_AMPDU_RUNNING(tap)) { 3785 res = tap->txa_private; 3786 ssn = tap->txa_start & 0xfff; 3787 } 3788 3789 /* This is going nframes DWORDS into the descriptor? */ 3790 seqno = le32toh(*(status + nframes)) & 0xfff; 3791 for (lastidx = (seqno & 0xff); ring->read != lastidx;) { 3792 data = &ring->data[ring->read]; 3793 3794 /* Unmap and free mbuf. */ 3795 bus_dmamap_sync(ring->data_dmat, data->map, 3796 BUS_DMASYNC_POSTWRITE); 3797 bus_dmamap_unload(ring->data_dmat, data->map); 3798 m = data->m, data->m = NULL; 3799 ni = data->ni, data->ni = NULL; 3800 3801 KASSERT(ni != NULL, ("no node")); 3802 KASSERT(m != NULL, ("no mbuf")); 3803 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m); 3804 ieee80211_tx_complete(ni, m, 1); 3805 3806 ring->queued--; 3807 ring->read = (ring->read + 1) % IWN_TX_RING_COUNT; 3808 } 3809 3810 if (ring->queued == 0 && res != NULL) { 3811 iwn_nic_lock(sc); 3812 ops->ampdu_tx_stop(sc, qid, tid, ssn); 3813 iwn_nic_unlock(sc); 3814 sc->qid2tap[qid] = NULL; 3815 free(res, M_DEVBUF); 3816 return; 3817 } 3818 3819 sc->sc_tx_timer = 0; 3820 if (ring->queued < IWN_TX_RING_LOMARK) 3821 sc->qfullmsk &= ~(1 << ring->qid); 3822 3823 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3824 } 3825 3826 /* 3827 * Process an INT_FH_RX or INT_SW_RX interrupt. 3828 */ 3829 static void 3830 iwn_notif_intr(struct iwn_softc *sc) 3831 { 3832 struct iwn_ops *ops = &sc->ops; 3833 struct ieee80211com *ic = &sc->sc_ic; 3834 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3835 uint16_t hw; 3836 3837 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3838 BUS_DMASYNC_POSTREAD); 3839 3840 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3841 while (sc->rxq.cur != hw) { 3842 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3843 struct iwn_rx_desc *desc; 3844 3845 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3846 BUS_DMASYNC_POSTREAD); 3847 desc = mtod(data->m, struct iwn_rx_desc *); 3848 3849 DPRINTF(sc, IWN_DEBUG_RECV, 3850 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 3851 __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags, 3852 desc->type, iwn_intr_str(desc->type), 3853 le16toh(desc->len)); 3854 3855 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ 3856 iwn_cmd_done(sc, desc); 3857 3858 switch (desc->type) { 3859 case IWN_RX_PHY: 3860 iwn_rx_phy(sc, desc, data); 3861 break; 3862 3863 case IWN_RX_DONE: /* 4965AGN only. */ 3864 case IWN_MPDU_RX_DONE: 3865 /* An 802.11 frame has been received. */ 3866 iwn_rx_done(sc, desc, data); 3867 break; 3868 3869 case IWN_RX_COMPRESSED_BA: 3870 /* A Compressed BlockAck has been received. */ 3871 iwn_rx_compressed_ba(sc, desc, data); 3872 break; 3873 3874 case IWN_TX_DONE: 3875 /* An 802.11 frame has been transmitted. */ 3876 ops->tx_done(sc, desc, data); 3877 break; 3878 3879 case IWN_RX_STATISTICS: 3880 case IWN_BEACON_STATISTICS: 3881 iwn_rx_statistics(sc, desc, data); 3882 break; 3883 3884 case IWN_BEACON_MISSED: 3885 { 3886 struct iwn_beacon_missed *miss = 3887 (struct iwn_beacon_missed *)(desc + 1); 3888 int misses; 3889 3890 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3891 BUS_DMASYNC_POSTREAD); 3892 misses = le32toh(miss->consecutive); 3893 3894 DPRINTF(sc, IWN_DEBUG_STATE, 3895 "%s: beacons missed %d/%d\n", __func__, 3896 misses, le32toh(miss->total)); 3897 /* 3898 * If more than 5 consecutive beacons are missed, 3899 * reinitialize the sensitivity state machine. 3900 */ 3901 if (vap->iv_state == IEEE80211_S_RUN && 3902 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 3903 if (misses > 5) 3904 (void)iwn_init_sensitivity(sc); 3905 if (misses >= vap->iv_bmissthreshold) { 3906 IWN_UNLOCK(sc); 3907 ieee80211_beacon_miss(ic); 3908 IWN_LOCK(sc); 3909 } 3910 } 3911 break; 3912 } 3913 case IWN_UC_READY: 3914 { 3915 struct iwn_ucode_info *uc = 3916 (struct iwn_ucode_info *)(desc + 1); 3917 3918 /* The microcontroller is ready. */ 3919 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3920 BUS_DMASYNC_POSTREAD); 3921 DPRINTF(sc, IWN_DEBUG_RESET, 3922 "microcode alive notification version=%d.%d " 3923 "subtype=%x alive=%x\n", uc->major, uc->minor, 3924 uc->subtype, le32toh(uc->valid)); 3925 3926 if (le32toh(uc->valid) != 1) { 3927 device_printf(sc->sc_dev, 3928 "microcontroller initialization failed"); 3929 break; 3930 } 3931 if (uc->subtype == IWN_UCODE_INIT) { 3932 /* Save microcontroller report. */ 3933 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 3934 } 3935 /* Save the address of the error log in SRAM. */ 3936 sc->errptr = le32toh(uc->errptr); 3937 break; 3938 } 3939 case IWN_STATE_CHANGED: 3940 { 3941 /* 3942 * State change allows hardware switch change to be 3943 * noted. However, we handle this in iwn_intr as we 3944 * get both the enable/disble intr. 3945 */ 3946 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3947 BUS_DMASYNC_POSTREAD); 3948 #ifdef IWN_DEBUG 3949 uint32_t *status = (uint32_t *)(desc + 1); 3950 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, 3951 "state changed to %x\n", 3952 le32toh(*status)); 3953 #endif 3954 break; 3955 } 3956 case IWN_START_SCAN: 3957 { 3958 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3959 BUS_DMASYNC_POSTREAD); 3960 #ifdef IWN_DEBUG 3961 struct iwn_start_scan *scan = 3962 (struct iwn_start_scan *)(desc + 1); 3963 DPRINTF(sc, IWN_DEBUG_ANY, 3964 "%s: scanning channel %d status %x\n", 3965 __func__, scan->chan, le32toh(scan->status)); 3966 #endif 3967 break; 3968 } 3969 case IWN_STOP_SCAN: 3970 { 3971 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3972 BUS_DMASYNC_POSTREAD); 3973 #ifdef IWN_DEBUG 3974 struct iwn_stop_scan *scan = 3975 (struct iwn_stop_scan *)(desc + 1); 3976 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, 3977 "scan finished nchan=%d status=%d chan=%d\n", 3978 scan->nchan, scan->status, scan->chan); 3979 #endif 3980 sc->sc_is_scanning = 0; 3981 callout_stop(&sc->scan_timeout); 3982 IWN_UNLOCK(sc); 3983 ieee80211_scan_next(vap); 3984 IWN_LOCK(sc); 3985 break; 3986 } 3987 case IWN5000_CALIBRATION_RESULT: 3988 iwn5000_rx_calib_results(sc, desc, data); 3989 break; 3990 3991 case IWN5000_CALIBRATION_DONE: 3992 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 3993 wakeup(sc); 3994 break; 3995 } 3996 3997 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 3998 } 3999 4000 /* Tell the firmware what we have processed. */ 4001 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 4002 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 4003 } 4004 4005 /* 4006 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 4007 * from power-down sleep mode. 4008 */ 4009 static void 4010 iwn_wakeup_intr(struct iwn_softc *sc) 4011 { 4012 int qid; 4013 4014 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 4015 __func__); 4016 4017 /* Wakeup RX and TX rings. */ 4018 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 4019 for (qid = 0; qid < sc->ntxqs; qid++) { 4020 struct iwn_tx_ring *ring = &sc->txq[qid]; 4021 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 4022 } 4023 } 4024 4025 static void 4026 iwn_rftoggle_task(void *arg, int npending) 4027 { 4028 struct iwn_softc *sc = arg; 4029 struct ieee80211com *ic = &sc->sc_ic; 4030 uint32_t tmp; 4031 4032 IWN_LOCK(sc); 4033 tmp = IWN_READ(sc, IWN_GP_CNTRL); 4034 IWN_UNLOCK(sc); 4035 4036 device_printf(sc->sc_dev, "RF switch: radio %s\n", 4037 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 4038 if (!(tmp & IWN_GP_CNTRL_RFKILL)) { 4039 ieee80211_suspend_all(ic); 4040 4041 /* Enable interrupts to get RF toggle notification. */ 4042 IWN_LOCK(sc); 4043 IWN_WRITE(sc, IWN_INT, 0xffffffff); 4044 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4045 IWN_UNLOCK(sc); 4046 } else 4047 ieee80211_resume_all(ic); 4048 } 4049 4050 /* 4051 * Dump the error log of the firmware when a firmware panic occurs. Although 4052 * we can't debug the firmware because it is neither open source nor free, it 4053 * can help us to identify certain classes of problems. 4054 */ 4055 static void 4056 iwn_fatal_intr(struct iwn_softc *sc) 4057 { 4058 struct iwn_fw_dump dump; 4059 int i; 4060 4061 IWN_LOCK_ASSERT(sc); 4062 4063 /* Force a complete recalibration on next init. */ 4064 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 4065 4066 /* Check that the error log address is valid. */ 4067 if (sc->errptr < IWN_FW_DATA_BASE || 4068 sc->errptr + sizeof (dump) > 4069 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 4070 printf("%s: bad firmware error log address 0x%08x\n", __func__, 4071 sc->errptr); 4072 return; 4073 } 4074 if (iwn_nic_lock(sc) != 0) { 4075 printf("%s: could not read firmware error log\n", __func__); 4076 return; 4077 } 4078 /* Read firmware error log from SRAM. */ 4079 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 4080 sizeof (dump) / sizeof (uint32_t)); 4081 iwn_nic_unlock(sc); 4082 4083 if (dump.valid == 0) { 4084 printf("%s: firmware error log is empty\n", __func__); 4085 return; 4086 } 4087 printf("firmware error log:\n"); 4088 printf(" error type = \"%s\" (0x%08X)\n", 4089 (dump.id < nitems(iwn_fw_errmsg)) ? 4090 iwn_fw_errmsg[dump.id] : "UNKNOWN", 4091 dump.id); 4092 printf(" program counter = 0x%08X\n", dump.pc); 4093 printf(" source line = 0x%08X\n", dump.src_line); 4094 printf(" error data = 0x%08X%08X\n", 4095 dump.error_data[0], dump.error_data[1]); 4096 printf(" branch link = 0x%08X%08X\n", 4097 dump.branch_link[0], dump.branch_link[1]); 4098 printf(" interrupt link = 0x%08X%08X\n", 4099 dump.interrupt_link[0], dump.interrupt_link[1]); 4100 printf(" time = %u\n", dump.time[0]); 4101 4102 /* Dump driver status (TX and RX rings) while we're here. */ 4103 printf("driver status:\n"); 4104 for (i = 0; i < sc->ntxqs; i++) { 4105 struct iwn_tx_ring *ring = &sc->txq[i]; 4106 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 4107 i, ring->qid, ring->cur, ring->queued); 4108 } 4109 printf(" rx ring: cur=%d\n", sc->rxq.cur); 4110 } 4111 4112 static void 4113 iwn_intr(void *arg) 4114 { 4115 struct iwn_softc *sc = arg; 4116 uint32_t r1, r2, tmp; 4117 4118 IWN_LOCK(sc); 4119 4120 /* Disable interrupts. */ 4121 IWN_WRITE(sc, IWN_INT_MASK, 0); 4122 4123 /* Read interrupts from ICT (fast) or from registers (slow). */ 4124 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4125 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, 4126 BUS_DMASYNC_POSTREAD); 4127 tmp = 0; 4128 while (sc->ict[sc->ict_cur] != 0) { 4129 tmp |= sc->ict[sc->ict_cur]; 4130 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 4131 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 4132 } 4133 tmp = le32toh(tmp); 4134 if (tmp == 0xffffffff) /* Shouldn't happen. */ 4135 tmp = 0; 4136 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 4137 tmp |= 0x8000; 4138 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 4139 r2 = 0; /* Unused. */ 4140 } else { 4141 r1 = IWN_READ(sc, IWN_INT); 4142 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { 4143 IWN_UNLOCK(sc); 4144 return; /* Hardware gone! */ 4145 } 4146 r2 = IWN_READ(sc, IWN_FH_INT); 4147 } 4148 4149 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 4150 , r1, r2); 4151 4152 if (r1 == 0 && r2 == 0) 4153 goto done; /* Interrupt not for us. */ 4154 4155 /* Acknowledge interrupts. */ 4156 IWN_WRITE(sc, IWN_INT, r1); 4157 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 4158 IWN_WRITE(sc, IWN_FH_INT, r2); 4159 4160 if (r1 & IWN_INT_RF_TOGGLED) { 4161 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 4162 goto done; 4163 } 4164 if (r1 & IWN_INT_CT_REACHED) { 4165 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 4166 __func__); 4167 } 4168 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 4169 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 4170 __func__); 4171 #ifdef IWN_DEBUG 4172 iwn_debug_register(sc); 4173 #endif 4174 /* Dump firmware error log and stop. */ 4175 iwn_fatal_intr(sc); 4176 4177 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); 4178 goto done; 4179 } 4180 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 4181 (r2 & IWN_FH_INT_RX)) { 4182 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4183 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 4184 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 4185 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4186 IWN_INT_PERIODIC_DIS); 4187 iwn_notif_intr(sc); 4188 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 4189 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4190 IWN_INT_PERIODIC_ENA); 4191 } 4192 } else 4193 iwn_notif_intr(sc); 4194 } 4195 4196 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 4197 if (sc->sc_flags & IWN_FLAG_USE_ICT) 4198 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 4199 wakeup(sc); /* FH DMA transfer completed. */ 4200 } 4201 4202 if (r1 & IWN_INT_ALIVE) 4203 wakeup(sc); /* Firmware is alive. */ 4204 4205 if (r1 & IWN_INT_WAKEUP) 4206 iwn_wakeup_intr(sc); 4207 4208 done: 4209 /* Re-enable interrupts. */ 4210 if (sc->sc_flags & IWN_FLAG_RUNNING) 4211 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4212 4213 IWN_UNLOCK(sc); 4214 } 4215 4216 /* 4217 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 4218 * 5000 adapters use a slightly different format). 4219 */ 4220 static void 4221 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4222 uint16_t len) 4223 { 4224 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 4225 4226 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4227 4228 *w = htole16(len + 8); 4229 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4230 BUS_DMASYNC_PREWRITE); 4231 if (idx < IWN_SCHED_WINSZ) { 4232 *(w + IWN_TX_RING_COUNT) = *w; 4233 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4234 BUS_DMASYNC_PREWRITE); 4235 } 4236 } 4237 4238 static void 4239 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4240 uint16_t len) 4241 { 4242 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4243 4244 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4245 4246 *w = htole16(id << 12 | (len + 8)); 4247 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4248 BUS_DMASYNC_PREWRITE); 4249 if (idx < IWN_SCHED_WINSZ) { 4250 *(w + IWN_TX_RING_COUNT) = *w; 4251 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4252 BUS_DMASYNC_PREWRITE); 4253 } 4254 } 4255 4256 #ifdef notyet 4257 static void 4258 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 4259 { 4260 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4261 4262 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4263 4264 *w = (*w & htole16(0xf000)) | htole16(1); 4265 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4266 BUS_DMASYNC_PREWRITE); 4267 if (idx < IWN_SCHED_WINSZ) { 4268 *(w + IWN_TX_RING_COUNT) = *w; 4269 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4270 BUS_DMASYNC_PREWRITE); 4271 } 4272 } 4273 #endif 4274 4275 /* 4276 * Check whether OFDM 11g protection will be enabled for the given rate. 4277 * 4278 * The original driver code only enabled protection for OFDM rates. 4279 * It didn't check to see whether it was operating in 11a or 11bg mode. 4280 */ 4281 static int 4282 iwn_check_rate_needs_protection(struct iwn_softc *sc, 4283 struct ieee80211vap *vap, uint8_t rate) 4284 { 4285 struct ieee80211com *ic = vap->iv_ic; 4286 4287 /* 4288 * Not in 2GHz mode? Then there's no need to enable OFDM 4289 * 11bg protection. 4290 */ 4291 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 4292 return (0); 4293 } 4294 4295 /* 4296 * 11bg protection not enabled? Then don't use it. 4297 */ 4298 if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0) 4299 return (0); 4300 4301 /* 4302 * If it's an 11n rate - no protection. 4303 * We'll do it via a specific 11n check. 4304 */ 4305 if (rate & IEEE80211_RATE_MCS) { 4306 return (0); 4307 } 4308 4309 /* 4310 * Do a rate table lookup. If the PHY is CCK, 4311 * don't do protection. 4312 */ 4313 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) 4314 return (0); 4315 4316 /* 4317 * Yup, enable protection. 4318 */ 4319 return (1); 4320 } 4321 4322 /* 4323 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into 4324 * the link quality table that reflects this particular entry. 4325 */ 4326 static int 4327 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, 4328 uint8_t rate) 4329 { 4330 struct ieee80211_rateset *rs; 4331 int is_11n; 4332 int nr; 4333 int i; 4334 uint8_t cmp_rate; 4335 4336 /* 4337 * Figure out if we're using 11n or not here. 4338 */ 4339 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) 4340 is_11n = 1; 4341 else 4342 is_11n = 0; 4343 4344 /* 4345 * Use the correct rate table. 4346 */ 4347 if (is_11n) { 4348 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 4349 nr = ni->ni_htrates.rs_nrates; 4350 } else { 4351 rs = &ni->ni_rates; 4352 nr = rs->rs_nrates; 4353 } 4354 4355 /* 4356 * Find the relevant link quality entry in the table. 4357 */ 4358 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { 4359 /* 4360 * The link quality table index starts at 0 == highest 4361 * rate, so we walk the rate table backwards. 4362 */ 4363 cmp_rate = rs->rs_rates[(nr - 1) - i]; 4364 if (rate & IEEE80211_RATE_MCS) 4365 cmp_rate |= IEEE80211_RATE_MCS; 4366 4367 #if 0 4368 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", 4369 __func__, 4370 i, 4371 nr, 4372 rate, 4373 cmp_rate); 4374 #endif 4375 4376 if (cmp_rate == rate) 4377 return (i); 4378 } 4379 4380 /* Failed? Start at the end */ 4381 return (IWN_MAX_TX_RETRIES - 1); 4382 } 4383 4384 static int 4385 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 4386 { 4387 struct iwn_ops *ops = &sc->ops; 4388 const struct ieee80211_txparam *tp = ni->ni_txparms; 4389 struct ieee80211vap *vap = ni->ni_vap; 4390 struct ieee80211com *ic = ni->ni_ic; 4391 struct iwn_node *wn = (void *)ni; 4392 struct iwn_tx_ring *ring; 4393 struct iwn_tx_desc *desc; 4394 struct iwn_tx_data *data; 4395 struct iwn_tx_cmd *cmd; 4396 struct iwn_cmd_data *tx; 4397 struct ieee80211_frame *wh; 4398 struct ieee80211_key *k = NULL; 4399 struct mbuf *m1; 4400 uint32_t flags; 4401 uint16_t qos; 4402 u_int hdrlen; 4403 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4404 uint8_t tid, type; 4405 int ac, i, totlen, error, pad, nsegs = 0, rate; 4406 4407 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4408 4409 IWN_LOCK_ASSERT(sc); 4410 4411 wh = mtod(m, struct ieee80211_frame *); 4412 hdrlen = ieee80211_anyhdrsize(wh); 4413 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4414 4415 /* Select EDCA Access Category and TX ring for this frame. */ 4416 if (IEEE80211_QOS_HAS_SEQ(wh)) { 4417 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 4418 tid = qos & IEEE80211_QOS_TID; 4419 } else { 4420 qos = 0; 4421 tid = 0; 4422 } 4423 ac = M_WME_GETAC(m); 4424 4425 /* 4426 * XXX TODO: Group addressed frames aren't aggregated and must 4427 * go to the normal non-aggregation queue, and have a NONQOS TID 4428 * assigned from net80211. 4429 */ 4430 4431 if (m->m_flags & M_AMPDU_MPDU) { 4432 uint16_t seqno; 4433 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 4434 4435 if (!IEEE80211_AMPDU_RUNNING(tap)) { 4436 return EINVAL; 4437 } 4438 4439 /* 4440 * Queue this frame to the hardware ring that we've 4441 * negotiated AMPDU TX on. 4442 * 4443 * Note that the sequence number must match the TX slot 4444 * being used! 4445 */ 4446 ac = *(int *)tap->txa_private; 4447 seqno = ni->ni_txseqs[tid]; 4448 *(uint16_t *)wh->i_seq = 4449 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4450 ring = &sc->txq[ac]; 4451 if ((seqno % 256) != ring->cur) { 4452 device_printf(sc->sc_dev, 4453 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", 4454 __func__, 4455 m, 4456 seqno, 4457 seqno % 256, 4458 ring->cur); 4459 } 4460 ni->ni_txseqs[tid]++; 4461 } 4462 ring = &sc->txq[ac]; 4463 desc = &ring->desc[ring->cur]; 4464 data = &ring->data[ring->cur]; 4465 4466 /* Choose a TX rate index. */ 4467 if (type == IEEE80211_FC0_TYPE_MGT || 4468 type == IEEE80211_FC0_TYPE_CTL || 4469 (m->m_flags & M_EAPOL) != 0) 4470 rate = tp->mgmtrate; 4471 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4472 rate = tp->mcastrate; 4473 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 4474 rate = tp->ucastrate; 4475 else { 4476 /* XXX pass pktlen */ 4477 (void) ieee80211_ratectl_rate(ni, NULL, 0); 4478 rate = ni->ni_txrate; 4479 } 4480 4481 /* Encrypt the frame if need be. */ 4482 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 4483 /* Retrieve key for TX. */ 4484 k = ieee80211_crypto_encap(ni, m); 4485 if (k == NULL) { 4486 return ENOBUFS; 4487 } 4488 /* 802.11 header may have moved. */ 4489 wh = mtod(m, struct ieee80211_frame *); 4490 } 4491 totlen = m->m_pkthdr.len; 4492 4493 if (ieee80211_radiotap_active_vap(vap)) { 4494 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4495 4496 tap->wt_flags = 0; 4497 tap->wt_rate = rate; 4498 if (k != NULL) 4499 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4500 4501 ieee80211_radiotap_tx(vap, m); 4502 } 4503 4504 /* Prepare TX firmware command. */ 4505 cmd = &ring->cmd[ring->cur]; 4506 cmd->code = IWN_CMD_TX_DATA; 4507 cmd->flags = 0; 4508 cmd->qid = ring->qid; 4509 cmd->idx = ring->cur; 4510 4511 tx = (struct iwn_cmd_data *)cmd->data; 4512 /* NB: No need to clear tx, all fields are reinitialized here. */ 4513 tx->scratch = 0; /* clear "scratch" area */ 4514 4515 flags = 0; 4516 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4517 /* Unicast frame, check if an ACK is expected. */ 4518 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 4519 IEEE80211_QOS_ACKPOLICY_NOACK) 4520 flags |= IWN_TX_NEED_ACK; 4521 } 4522 if ((wh->i_fc[0] & 4523 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 4524 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 4525 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 4526 4527 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 4528 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 4529 4530 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 4531 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4532 /* NB: Group frames are sent using CCK in 802.11b/g. */ 4533 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 4534 flags |= IWN_TX_NEED_RTS; 4535 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { 4536 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4537 flags |= IWN_TX_NEED_CTS; 4538 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4539 flags |= IWN_TX_NEED_RTS; 4540 } else if ((rate & IEEE80211_RATE_MCS) && 4541 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { 4542 flags |= IWN_TX_NEED_RTS; 4543 } 4544 4545 /* XXX HT protection? */ 4546 4547 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 4548 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4549 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4550 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 4551 flags |= IWN_TX_NEED_PROTECTION; 4552 } else 4553 flags |= IWN_TX_FULL_TXOP; 4554 } 4555 } 4556 4557 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 4558 type != IEEE80211_FC0_TYPE_DATA) 4559 tx->id = sc->broadcast_id; 4560 else 4561 tx->id = wn->id; 4562 4563 if (type == IEEE80211_FC0_TYPE_MGT) { 4564 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4565 4566 /* Tell HW to set timestamp in probe responses. */ 4567 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4568 flags |= IWN_TX_INSERT_TSTAMP; 4569 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4570 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4571 tx->timeout = htole16(3); 4572 else 4573 tx->timeout = htole16(2); 4574 } else 4575 tx->timeout = htole16(0); 4576 4577 if (hdrlen & 3) { 4578 /* First segment length must be a multiple of 4. */ 4579 flags |= IWN_TX_NEED_PADDING; 4580 pad = 4 - (hdrlen & 3); 4581 } else 4582 pad = 0; 4583 4584 tx->len = htole16(totlen); 4585 tx->tid = tid; 4586 tx->rts_ntries = 60; 4587 tx->data_ntries = 15; 4588 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4589 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4590 if (tx->id == sc->broadcast_id) { 4591 /* Group or management frame. */ 4592 tx->linkq = 0; 4593 } else { 4594 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); 4595 flags |= IWN_TX_LINKQ; /* enable MRR */ 4596 } 4597 4598 /* Set physical address of "scratch area". */ 4599 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4600 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4601 4602 /* Copy 802.11 header in TX command. */ 4603 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4604 4605 /* Trim 802.11 header. */ 4606 m_adj(m, hdrlen); 4607 tx->security = 0; 4608 tx->flags = htole32(flags); 4609 4610 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4611 &nsegs, BUS_DMA_NOWAIT); 4612 if (error != 0) { 4613 if (error != EFBIG) { 4614 device_printf(sc->sc_dev, 4615 "%s: can't map mbuf (error %d)\n", __func__, error); 4616 return error; 4617 } 4618 /* Too many DMA segments, linearize mbuf. */ 4619 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4620 if (m1 == NULL) { 4621 device_printf(sc->sc_dev, 4622 "%s: could not defrag mbuf\n", __func__); 4623 return ENOBUFS; 4624 } 4625 m = m1; 4626 4627 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4628 segs, &nsegs, BUS_DMA_NOWAIT); 4629 if (error != 0) { 4630 device_printf(sc->sc_dev, 4631 "%s: can't map mbuf (error %d)\n", __func__, error); 4632 return error; 4633 } 4634 } 4635 4636 data->m = m; 4637 data->ni = ni; 4638 4639 DPRINTF(sc, IWN_DEBUG_XMIT, 4640 "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n", 4641 __func__, 4642 ring->qid, 4643 ring->cur, 4644 m->m_pkthdr.len, 4645 nsegs, 4646 flags, 4647 rate, 4648 tx->rate); 4649 4650 /* Fill TX descriptor. */ 4651 desc->nsegs = 1; 4652 if (m->m_len != 0) 4653 desc->nsegs += nsegs; 4654 /* First DMA segment is used by the TX command. */ 4655 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4656 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4657 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4658 /* Other DMA segments are for data payload. */ 4659 seg = &segs[0]; 4660 for (i = 1; i <= nsegs; i++) { 4661 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4662 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4663 seg->ds_len << 4); 4664 seg++; 4665 } 4666 4667 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4668 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 4669 BUS_DMASYNC_PREWRITE); 4670 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4671 BUS_DMASYNC_PREWRITE); 4672 4673 /* Update TX scheduler. */ 4674 if (ring->qid >= sc->firstaggqueue) 4675 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4676 4677 /* Kick TX ring. */ 4678 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4679 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4680 4681 /* Mark TX ring as full if we reach a certain threshold. */ 4682 if (++ring->queued > IWN_TX_RING_HIMARK) 4683 sc->qfullmsk |= 1 << ring->qid; 4684 4685 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4686 4687 return 0; 4688 } 4689 4690 static int 4691 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 4692 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 4693 { 4694 struct iwn_ops *ops = &sc->ops; 4695 struct ieee80211vap *vap = ni->ni_vap; 4696 struct iwn_tx_cmd *cmd; 4697 struct iwn_cmd_data *tx; 4698 struct ieee80211_frame *wh; 4699 struct iwn_tx_ring *ring; 4700 struct iwn_tx_desc *desc; 4701 struct iwn_tx_data *data; 4702 struct mbuf *m1; 4703 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4704 uint32_t flags; 4705 u_int hdrlen; 4706 int ac, totlen, error, pad, nsegs = 0, i, rate; 4707 uint8_t type; 4708 4709 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4710 4711 IWN_LOCK_ASSERT(sc); 4712 4713 wh = mtod(m, struct ieee80211_frame *); 4714 hdrlen = ieee80211_anyhdrsize(wh); 4715 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4716 4717 ac = params->ibp_pri & 3; 4718 4719 ring = &sc->txq[ac]; 4720 desc = &ring->desc[ring->cur]; 4721 data = &ring->data[ring->cur]; 4722 4723 /* Choose a TX rate. */ 4724 rate = params->ibp_rate0; 4725 totlen = m->m_pkthdr.len; 4726 4727 /* Prepare TX firmware command. */ 4728 cmd = &ring->cmd[ring->cur]; 4729 cmd->code = IWN_CMD_TX_DATA; 4730 cmd->flags = 0; 4731 cmd->qid = ring->qid; 4732 cmd->idx = ring->cur; 4733 4734 tx = (struct iwn_cmd_data *)cmd->data; 4735 /* NB: No need to clear tx, all fields are reinitialized here. */ 4736 tx->scratch = 0; /* clear "scratch" area */ 4737 4738 flags = 0; 4739 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 4740 flags |= IWN_TX_NEED_ACK; 4741 if (params->ibp_flags & IEEE80211_BPF_RTS) { 4742 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4743 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4744 flags &= ~IWN_TX_NEED_RTS; 4745 flags |= IWN_TX_NEED_PROTECTION; 4746 } else 4747 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 4748 } 4749 if (params->ibp_flags & IEEE80211_BPF_CTS) { 4750 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4751 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4752 flags &= ~IWN_TX_NEED_CTS; 4753 flags |= IWN_TX_NEED_PROTECTION; 4754 } else 4755 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 4756 } 4757 if (type == IEEE80211_FC0_TYPE_MGT) { 4758 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4759 4760 /* Tell HW to set timestamp in probe responses. */ 4761 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4762 flags |= IWN_TX_INSERT_TSTAMP; 4763 4764 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4765 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4766 tx->timeout = htole16(3); 4767 else 4768 tx->timeout = htole16(2); 4769 } else 4770 tx->timeout = htole16(0); 4771 4772 if (hdrlen & 3) { 4773 /* First segment length must be a multiple of 4. */ 4774 flags |= IWN_TX_NEED_PADDING; 4775 pad = 4 - (hdrlen & 3); 4776 } else 4777 pad = 0; 4778 4779 if (ieee80211_radiotap_active_vap(vap)) { 4780 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4781 4782 tap->wt_flags = 0; 4783 tap->wt_rate = rate; 4784 4785 ieee80211_radiotap_tx(vap, m); 4786 } 4787 4788 tx->len = htole16(totlen); 4789 tx->tid = 0; 4790 tx->id = sc->broadcast_id; 4791 tx->rts_ntries = params->ibp_try1; 4792 tx->data_ntries = params->ibp_try0; 4793 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4794 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4795 4796 /* Group or management frame. */ 4797 tx->linkq = 0; 4798 4799 /* Set physical address of "scratch area". */ 4800 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4801 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4802 4803 /* Copy 802.11 header in TX command. */ 4804 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4805 4806 /* Trim 802.11 header. */ 4807 m_adj(m, hdrlen); 4808 tx->security = 0; 4809 tx->flags = htole32(flags); 4810 4811 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4812 &nsegs, BUS_DMA_NOWAIT); 4813 if (error != 0) { 4814 if (error != EFBIG) { 4815 device_printf(sc->sc_dev, 4816 "%s: can't map mbuf (error %d)\n", __func__, error); 4817 return error; 4818 } 4819 /* Too many DMA segments, linearize mbuf. */ 4820 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4821 if (m1 == NULL) { 4822 device_printf(sc->sc_dev, 4823 "%s: could not defrag mbuf\n", __func__); 4824 return ENOBUFS; 4825 } 4826 m = m1; 4827 4828 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4829 segs, &nsegs, BUS_DMA_NOWAIT); 4830 if (error != 0) { 4831 device_printf(sc->sc_dev, 4832 "%s: can't map mbuf (error %d)\n", __func__, error); 4833 return error; 4834 } 4835 } 4836 4837 data->m = m; 4838 data->ni = ni; 4839 4840 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 4841 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 4842 4843 /* Fill TX descriptor. */ 4844 desc->nsegs = 1; 4845 if (m->m_len != 0) 4846 desc->nsegs += nsegs; 4847 /* First DMA segment is used by the TX command. */ 4848 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4849 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4850 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4851 /* Other DMA segments are for data payload. */ 4852 seg = &segs[0]; 4853 for (i = 1; i <= nsegs; i++) { 4854 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4855 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4856 seg->ds_len << 4); 4857 seg++; 4858 } 4859 4860 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4861 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 4862 BUS_DMASYNC_PREWRITE); 4863 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4864 BUS_DMASYNC_PREWRITE); 4865 4866 /* Update TX scheduler. */ 4867 if (ring->qid >= sc->firstaggqueue) 4868 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4869 4870 /* Kick TX ring. */ 4871 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4872 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4873 4874 /* Mark TX ring as full if we reach a certain threshold. */ 4875 if (++ring->queued > IWN_TX_RING_HIMARK) 4876 sc->qfullmsk |= 1 << ring->qid; 4877 4878 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4879 4880 return 0; 4881 } 4882 4883 static void 4884 iwn_xmit_task(void *arg0, int pending) 4885 { 4886 struct iwn_softc *sc = arg0; 4887 struct ieee80211_node *ni; 4888 struct mbuf *m; 4889 int error; 4890 struct ieee80211_bpf_params p; 4891 int have_p; 4892 4893 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); 4894 4895 IWN_LOCK(sc); 4896 /* 4897 * Dequeue frames, attempt to transmit, 4898 * then disable beaconwait when we're done. 4899 */ 4900 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 4901 have_p = 0; 4902 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4903 4904 /* Get xmit params if appropriate */ 4905 if (ieee80211_get_xmit_params(m, &p) == 0) 4906 have_p = 1; 4907 4908 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", 4909 __func__, m, have_p); 4910 4911 /* If we have xmit params, use them */ 4912 if (have_p) 4913 error = iwn_tx_data_raw(sc, m, ni, &p); 4914 else 4915 error = iwn_tx_data(sc, m, ni); 4916 4917 if (error != 0) { 4918 if_inc_counter(ni->ni_vap->iv_ifp, 4919 IFCOUNTER_OERRORS, 1); 4920 ieee80211_free_node(ni); 4921 m_freem(m); 4922 } 4923 } 4924 4925 sc->sc_beacon_wait = 0; 4926 IWN_UNLOCK(sc); 4927 } 4928 4929 /* 4930 * raw frame xmit - free node/reference if failed. 4931 */ 4932 static int 4933 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 4934 const struct ieee80211_bpf_params *params) 4935 { 4936 struct ieee80211com *ic = ni->ni_ic; 4937 struct iwn_softc *sc = ic->ic_softc; 4938 int error = 0; 4939 4940 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4941 4942 IWN_LOCK(sc); 4943 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { 4944 m_freem(m); 4945 IWN_UNLOCK(sc); 4946 return (ENETDOWN); 4947 } 4948 4949 /* queue frame if we have to */ 4950 if (sc->sc_beacon_wait) { 4951 if (iwn_xmit_queue_enqueue(sc, m) != 0) { 4952 m_freem(m); 4953 IWN_UNLOCK(sc); 4954 return (ENOBUFS); 4955 } 4956 /* Queued, so just return OK */ 4957 IWN_UNLOCK(sc); 4958 return (0); 4959 } 4960 4961 if (params == NULL) { 4962 /* 4963 * Legacy path; interpret frame contents to decide 4964 * precisely how to send the frame. 4965 */ 4966 error = iwn_tx_data(sc, m, ni); 4967 } else { 4968 /* 4969 * Caller supplied explicit parameters to use in 4970 * sending the frame. 4971 */ 4972 error = iwn_tx_data_raw(sc, m, ni, params); 4973 } 4974 if (error == 0) 4975 sc->sc_tx_timer = 5; 4976 else 4977 m_freem(m); 4978 4979 IWN_UNLOCK(sc); 4980 4981 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); 4982 4983 return (error); 4984 } 4985 4986 /* 4987 * transmit - don't free mbuf if failed; don't free node ref if failed. 4988 */ 4989 static int 4990 iwn_transmit(struct ieee80211com *ic, struct mbuf *m) 4991 { 4992 struct iwn_softc *sc = ic->ic_softc; 4993 struct ieee80211_node *ni; 4994 int error; 4995 4996 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4997 4998 IWN_LOCK(sc); 4999 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { 5000 IWN_UNLOCK(sc); 5001 return (ENXIO); 5002 } 5003 5004 if (sc->qfullmsk) { 5005 IWN_UNLOCK(sc); 5006 return (ENOBUFS); 5007 } 5008 5009 error = iwn_tx_data(sc, m, ni); 5010 if (!error) 5011 sc->sc_tx_timer = 5; 5012 IWN_UNLOCK(sc); 5013 return (error); 5014 } 5015 5016 static void 5017 iwn_scan_timeout(void *arg) 5018 { 5019 struct iwn_softc *sc = arg; 5020 struct ieee80211com *ic = &sc->sc_ic; 5021 5022 ic_printf(ic, "scan timeout\n"); 5023 ieee80211_restart_all(ic); 5024 } 5025 5026 static void 5027 iwn_watchdog(void *arg) 5028 { 5029 struct iwn_softc *sc = arg; 5030 struct ieee80211com *ic = &sc->sc_ic; 5031 5032 IWN_LOCK_ASSERT(sc); 5033 5034 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); 5035 5036 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5037 5038 if (sc->sc_tx_timer > 0) { 5039 if (--sc->sc_tx_timer == 0) { 5040 ic_printf(ic, "device timeout\n"); 5041 ieee80211_restart_all(ic); 5042 return; 5043 } 5044 } 5045 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 5046 } 5047 5048 static int 5049 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) 5050 { 5051 5052 return (0); 5053 } 5054 5055 static int 5056 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) 5057 { 5058 5059 return (0); 5060 } 5061 5062 static int 5063 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 5064 struct thread *td) 5065 { 5066 int rc; 5067 struct iwn_softc *sc = dev->si_drv1; 5068 struct iwn_ioctl_data *d; 5069 5070 rc = priv_check(td, PRIV_DRIVER); 5071 if (rc != 0) 5072 return (0); 5073 5074 switch (cmd) { 5075 case SIOCGIWNSTATS: 5076 d = (struct iwn_ioctl_data *) data; 5077 IWN_LOCK(sc); 5078 /* XXX validate permissions/memory/etc? */ 5079 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); 5080 IWN_UNLOCK(sc); 5081 break; 5082 case SIOCZIWNSTATS: 5083 IWN_LOCK(sc); 5084 memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); 5085 IWN_UNLOCK(sc); 5086 break; 5087 default: 5088 rc = EINVAL; 5089 break; 5090 } 5091 return (rc); 5092 } 5093 5094 static int 5095 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 5096 { 5097 5098 return (ENOTTY); 5099 } 5100 5101 static void 5102 iwn_parent(struct ieee80211com *ic) 5103 { 5104 struct iwn_softc *sc = ic->ic_softc; 5105 struct ieee80211vap *vap; 5106 int error; 5107 5108 if (ic->ic_nrunning > 0) { 5109 error = iwn_init(sc); 5110 5111 switch (error) { 5112 case 0: 5113 ieee80211_start_all(ic); 5114 break; 5115 case EAGAIN: 5116 /* radio is disabled via RFkill switch */ 5117 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 5118 break; 5119 default: 5120 vap = TAILQ_FIRST(&ic->ic_vaps); 5121 if (vap != NULL) 5122 ieee80211_stop(vap); 5123 break; 5124 } 5125 } else 5126 iwn_stop(sc); 5127 } 5128 5129 /* 5130 * Send a command to the firmware. 5131 */ 5132 static int 5133 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 5134 { 5135 struct iwn_tx_ring *ring; 5136 struct iwn_tx_desc *desc; 5137 struct iwn_tx_data *data; 5138 struct iwn_tx_cmd *cmd; 5139 struct mbuf *m; 5140 bus_addr_t paddr; 5141 int totlen, error; 5142 int cmd_queue_num; 5143 5144 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5145 5146 if (async == 0) 5147 IWN_LOCK_ASSERT(sc); 5148 5149 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 5150 cmd_queue_num = IWN_PAN_CMD_QUEUE; 5151 else 5152 cmd_queue_num = IWN_CMD_QUEUE_NUM; 5153 5154 ring = &sc->txq[cmd_queue_num]; 5155 desc = &ring->desc[ring->cur]; 5156 data = &ring->data[ring->cur]; 5157 totlen = 4 + size; 5158 5159 if (size > sizeof cmd->data) { 5160 /* Command is too large to fit in a descriptor. */ 5161 if (totlen > MCLBYTES) 5162 return EINVAL; 5163 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 5164 if (m == NULL) 5165 return ENOMEM; 5166 cmd = mtod(m, struct iwn_tx_cmd *); 5167 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 5168 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 5169 if (error != 0) { 5170 m_freem(m); 5171 return error; 5172 } 5173 data->m = m; 5174 } else { 5175 cmd = &ring->cmd[ring->cur]; 5176 paddr = data->cmd_paddr; 5177 } 5178 5179 cmd->code = code; 5180 cmd->flags = 0; 5181 cmd->qid = ring->qid; 5182 cmd->idx = ring->cur; 5183 memcpy(cmd->data, buf, size); 5184 5185 desc->nsegs = 1; 5186 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 5187 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 5188 5189 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 5190 __func__, iwn_intr_str(cmd->code), cmd->code, 5191 cmd->flags, cmd->qid, cmd->idx); 5192 5193 if (size > sizeof cmd->data) { 5194 bus_dmamap_sync(ring->data_dmat, data->map, 5195 BUS_DMASYNC_PREWRITE); 5196 } else { 5197 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 5198 BUS_DMASYNC_PREWRITE); 5199 } 5200 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 5201 BUS_DMASYNC_PREWRITE); 5202 5203 /* Kick command ring. */ 5204 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 5205 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 5206 5207 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5208 5209 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 5210 } 5211 5212 static int 5213 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5214 { 5215 struct iwn4965_node_info hnode; 5216 caddr_t src, dst; 5217 5218 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5219 5220 /* 5221 * We use the node structure for 5000 Series internally (it is 5222 * a superset of the one for 4965AGN). We thus copy the common 5223 * fields before sending the command. 5224 */ 5225 src = (caddr_t)node; 5226 dst = (caddr_t)&hnode; 5227 memcpy(dst, src, 48); 5228 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 5229 memcpy(dst + 48, src + 72, 20); 5230 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 5231 } 5232 5233 static int 5234 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5235 { 5236 5237 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5238 5239 /* Direct mapping. */ 5240 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 5241 } 5242 5243 static int 5244 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 5245 { 5246 struct iwn_node *wn = (void *)ni; 5247 struct ieee80211_rateset *rs; 5248 struct iwn_cmd_link_quality linkq; 5249 int i, rate, txrate; 5250 int is_11n; 5251 5252 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5253 5254 memset(&linkq, 0, sizeof linkq); 5255 linkq.id = wn->id; 5256 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5257 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5258 5259 linkq.ampdu_max = 32; /* XXX negotiated? */ 5260 linkq.ampdu_threshold = 3; 5261 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5262 5263 DPRINTF(sc, IWN_DEBUG_XMIT, 5264 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", 5265 __func__, 5266 linkq.antmsk_1stream, 5267 linkq.antmsk_2stream, 5268 sc->ntxchains); 5269 5270 /* 5271 * Are we using 11n rates? Ensure the channel is 5272 * 11n _and_ we have some 11n rates, or don't 5273 * try. 5274 */ 5275 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { 5276 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 5277 is_11n = 1; 5278 } else { 5279 rs = &ni->ni_rates; 5280 is_11n = 0; 5281 } 5282 5283 /* Start at highest available bit-rate. */ 5284 /* 5285 * XXX this is all very dirty! 5286 */ 5287 if (is_11n) 5288 txrate = ni->ni_htrates.rs_nrates - 1; 5289 else 5290 txrate = rs->rs_nrates - 1; 5291 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 5292 uint32_t plcp; 5293 5294 /* 5295 * XXX TODO: ensure the last two slots are the two lowest 5296 * rate entries, just for now. 5297 */ 5298 if (i == 14 || i == 15) 5299 txrate = 0; 5300 5301 if (is_11n) 5302 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; 5303 else 5304 rate = IEEE80211_RV(rs->rs_rates[txrate]); 5305 5306 /* Do rate -> PLCP config mapping */ 5307 plcp = iwn_rate_to_plcp(sc, ni, rate); 5308 linkq.retry[i] = plcp; 5309 DPRINTF(sc, IWN_DEBUG_XMIT, 5310 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", 5311 __func__, 5312 i, 5313 txrate, 5314 rate, 5315 le32toh(plcp)); 5316 5317 /* 5318 * The mimo field is an index into the table which 5319 * indicates the first index where it and subsequent entries 5320 * will not be using MIMO. 5321 * 5322 * Since we're filling linkq from 0..15 and we're filling 5323 * from the highest MCS rates to the lowest rates, if we 5324 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, 5325 * the next entry.) That way if the next entry is a non-MIMO 5326 * entry, we're already pointing at it. 5327 */ 5328 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 5329 IEEE80211_RV(le32toh(plcp)) > 7) 5330 linkq.mimo = i + 1; 5331 5332 /* Next retry at immediate lower bit-rate. */ 5333 if (txrate > 0) 5334 txrate--; 5335 } 5336 /* 5337 * If we reached the end of the list and indeed we hit 5338 * all MIMO rates (eg 5300 doing MCS23-15) then yes, 5339 * set mimo to 15. Setting it to 16 panics the firmware. 5340 */ 5341 if (linkq.mimo > 15) 5342 linkq.mimo = 15; 5343 5344 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); 5345 5346 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5347 5348 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 5349 } 5350 5351 /* 5352 * Broadcast node is used to send group-addressed and management frames. 5353 */ 5354 static int 5355 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 5356 { 5357 struct iwn_ops *ops = &sc->ops; 5358 struct ieee80211com *ic = &sc->sc_ic; 5359 struct iwn_node_info node; 5360 struct iwn_cmd_link_quality linkq; 5361 uint8_t txant; 5362 int i, error; 5363 5364 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5365 5366 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5367 5368 memset(&node, 0, sizeof node); 5369 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 5370 node.id = sc->broadcast_id; 5371 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 5372 if ((error = ops->add_node(sc, &node, async)) != 0) 5373 return error; 5374 5375 /* Use the first valid TX antenna. */ 5376 txant = IWN_LSB(sc->txchainmask); 5377 5378 memset(&linkq, 0, sizeof linkq); 5379 linkq.id = sc->broadcast_id; 5380 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5381 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5382 linkq.ampdu_max = 64; 5383 linkq.ampdu_threshold = 3; 5384 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5385 5386 /* Use lowest mandatory bit-rate. */ 5387 /* XXX rate table lookup? */ 5388 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 5389 linkq.retry[0] = htole32(0xd); 5390 else 5391 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 5392 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 5393 /* Use same bit-rate for all TX retries. */ 5394 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 5395 linkq.retry[i] = linkq.retry[0]; 5396 } 5397 5398 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5399 5400 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 5401 } 5402 5403 static int 5404 iwn_updateedca(struct ieee80211com *ic) 5405 { 5406 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 5407 struct iwn_softc *sc = ic->ic_softc; 5408 struct iwn_edca_params cmd; 5409 int aci; 5410 5411 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5412 5413 memset(&cmd, 0, sizeof cmd); 5414 cmd.flags = htole32(IWN_EDCA_UPDATE); 5415 5416 IEEE80211_LOCK(ic); 5417 for (aci = 0; aci < WME_NUM_AC; aci++) { 5418 const struct wmeParams *ac = 5419 &ic->ic_wme.wme_chanParams.cap_wmeParams[aci]; 5420 cmd.ac[aci].aifsn = ac->wmep_aifsn; 5421 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 5422 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 5423 cmd.ac[aci].txoplimit = 5424 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 5425 } 5426 IEEE80211_UNLOCK(ic); 5427 5428 IWN_LOCK(sc); 5429 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5430 IWN_UNLOCK(sc); 5431 5432 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5433 5434 return 0; 5435 #undef IWN_EXP2 5436 } 5437 5438 static void 5439 iwn_set_promisc(struct iwn_softc *sc) 5440 { 5441 struct ieee80211com *ic = &sc->sc_ic; 5442 uint32_t promisc_filter; 5443 5444 promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC; 5445 if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR) 5446 sc->rxon->filter |= htole32(promisc_filter); 5447 else 5448 sc->rxon->filter &= ~htole32(promisc_filter); 5449 } 5450 5451 static void 5452 iwn_update_promisc(struct ieee80211com *ic) 5453 { 5454 struct iwn_softc *sc = ic->ic_softc; 5455 int error; 5456 5457 if (ic->ic_opmode == IEEE80211_M_MONITOR) 5458 return; /* nothing to do */ 5459 5460 IWN_LOCK(sc); 5461 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { 5462 IWN_UNLOCK(sc); 5463 return; 5464 } 5465 5466 iwn_set_promisc(sc); 5467 if ((error = iwn_send_rxon(sc, 1, 1)) != 0) { 5468 device_printf(sc->sc_dev, 5469 "%s: could not send RXON, error %d\n", 5470 __func__, error); 5471 } 5472 IWN_UNLOCK(sc); 5473 } 5474 5475 static void 5476 iwn_update_mcast(struct ieee80211com *ic) 5477 { 5478 /* Ignore */ 5479 } 5480 5481 static void 5482 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 5483 { 5484 struct iwn_cmd_led led; 5485 5486 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5487 5488 #if 0 5489 /* XXX don't set LEDs during scan? */ 5490 if (sc->sc_is_scanning) 5491 return; 5492 #endif 5493 5494 /* Clear microcode LED ownership. */ 5495 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 5496 5497 led.which = which; 5498 led.unit = htole32(10000); /* on/off in unit of 100ms */ 5499 led.off = off; 5500 led.on = on; 5501 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 5502 } 5503 5504 /* 5505 * Set the critical temperature at which the firmware will stop the radio 5506 * and notify us. 5507 */ 5508 static int 5509 iwn_set_critical_temp(struct iwn_softc *sc) 5510 { 5511 struct iwn_critical_temp crit; 5512 int32_t temp; 5513 5514 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5515 5516 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 5517 5518 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 5519 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 5520 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 5521 temp = IWN_CTOK(110); 5522 else 5523 temp = 110; 5524 memset(&crit, 0, sizeof crit); 5525 crit.tempR = htole32(temp); 5526 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 5527 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 5528 } 5529 5530 static int 5531 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 5532 { 5533 struct iwn_cmd_timing cmd; 5534 uint64_t val, mod; 5535 5536 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5537 5538 memset(&cmd, 0, sizeof cmd); 5539 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 5540 cmd.bintval = htole16(ni->ni_intval); 5541 cmd.lintval = htole16(10); 5542 5543 /* Compute remaining time until next beacon. */ 5544 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 5545 mod = le64toh(cmd.tstamp) % val; 5546 cmd.binitval = htole32((uint32_t)(val - mod)); 5547 5548 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 5549 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 5550 5551 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 5552 } 5553 5554 static void 5555 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 5556 { 5557 5558 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5559 5560 /* Adjust TX power if need be (delta >= 3 degC). */ 5561 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 5562 __func__, sc->temp, temp); 5563 if (abs(temp - sc->temp) >= 3) { 5564 /* Record temperature of last calibration. */ 5565 sc->temp = temp; 5566 (void)iwn4965_set_txpower(sc, 1); 5567 } 5568 } 5569 5570 /* 5571 * Set TX power for current channel (each rate has its own power settings). 5572 * This function takes into account the regulatory information from EEPROM, 5573 * the current temperature and the current voltage. 5574 */ 5575 static int 5576 iwn4965_set_txpower(struct iwn_softc *sc, int async) 5577 { 5578 /* Fixed-point arithmetic division using a n-bit fractional part. */ 5579 #define fdivround(a, b, n) \ 5580 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 5581 /* Linear interpolation. */ 5582 #define interpolate(x, x1, y1, x2, y2, n) \ 5583 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 5584 5585 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 5586 struct iwn_ucode_info *uc = &sc->ucode_info; 5587 struct iwn4965_cmd_txpower cmd; 5588 struct iwn4965_eeprom_chan_samples *chans; 5589 const uint8_t *rf_gain, *dsp_gain; 5590 int32_t vdiff, tdiff; 5591 int i, is_chan_5ghz, c, grp, maxpwr; 5592 uint8_t chan; 5593 5594 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5595 /* Retrieve current channel from last RXON. */ 5596 chan = sc->rxon->chan; 5597 is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0; 5598 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 5599 chan); 5600 5601 memset(&cmd, 0, sizeof cmd); 5602 cmd.band = is_chan_5ghz ? 0 : 1; 5603 cmd.chan = chan; 5604 5605 if (is_chan_5ghz) { 5606 maxpwr = sc->maxpwr5GHz; 5607 rf_gain = iwn4965_rf_gain_5ghz; 5608 dsp_gain = iwn4965_dsp_gain_5ghz; 5609 } else { 5610 maxpwr = sc->maxpwr2GHz; 5611 rf_gain = iwn4965_rf_gain_2ghz; 5612 dsp_gain = iwn4965_dsp_gain_2ghz; 5613 } 5614 5615 /* Compute voltage compensation. */ 5616 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 5617 if (vdiff > 0) 5618 vdiff *= 2; 5619 if (abs(vdiff) > 2) 5620 vdiff = 0; 5621 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5622 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 5623 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 5624 5625 /* Get channel attenuation group. */ 5626 if (chan <= 20) /* 1-20 */ 5627 grp = 4; 5628 else if (chan <= 43) /* 34-43 */ 5629 grp = 0; 5630 else if (chan <= 70) /* 44-70 */ 5631 grp = 1; 5632 else if (chan <= 124) /* 71-124 */ 5633 grp = 2; 5634 else /* 125-200 */ 5635 grp = 3; 5636 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5637 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 5638 5639 /* Get channel sub-band. */ 5640 for (i = 0; i < IWN_NBANDS; i++) 5641 if (sc->bands[i].lo != 0 && 5642 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 5643 break; 5644 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 5645 return EINVAL; 5646 chans = sc->bands[i].chans; 5647 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5648 "%s: chan %d sub-band=%d\n", __func__, chan, i); 5649 5650 for (c = 0; c < 2; c++) { 5651 uint8_t power, gain, temp; 5652 int maxchpwr, pwr, ridx, idx; 5653 5654 power = interpolate(chan, 5655 chans[0].num, chans[0].samples[c][1].power, 5656 chans[1].num, chans[1].samples[c][1].power, 1); 5657 gain = interpolate(chan, 5658 chans[0].num, chans[0].samples[c][1].gain, 5659 chans[1].num, chans[1].samples[c][1].gain, 1); 5660 temp = interpolate(chan, 5661 chans[0].num, chans[0].samples[c][1].temp, 5662 chans[1].num, chans[1].samples[c][1].temp, 1); 5663 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5664 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 5665 __func__, c, power, gain, temp); 5666 5667 /* Compute temperature compensation. */ 5668 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 5669 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5670 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 5671 __func__, tdiff, sc->temp, temp); 5672 5673 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 5674 /* Convert dBm to half-dBm. */ 5675 maxchpwr = sc->maxpwr[chan] * 2; 5676 if ((ridx / 8) & 1) 5677 maxchpwr -= 6; /* MIMO 2T: -3dB */ 5678 5679 pwr = maxpwr; 5680 5681 /* Adjust TX power based on rate. */ 5682 if ((ridx % 8) == 5) 5683 pwr -= 15; /* OFDM48: -7.5dB */ 5684 else if ((ridx % 8) == 6) 5685 pwr -= 17; /* OFDM54: -8.5dB */ 5686 else if ((ridx % 8) == 7) 5687 pwr -= 20; /* OFDM60: -10dB */ 5688 else 5689 pwr -= 10; /* Others: -5dB */ 5690 5691 /* Do not exceed channel max TX power. */ 5692 if (pwr > maxchpwr) 5693 pwr = maxchpwr; 5694 5695 idx = gain - (pwr - power) - tdiff - vdiff; 5696 if ((ridx / 8) & 1) /* MIMO */ 5697 idx += (int32_t)le32toh(uc->atten[grp][c]); 5698 5699 if (cmd.band == 0) 5700 idx += 9; /* 5GHz */ 5701 if (ridx == IWN_RIDX_MAX) 5702 idx += 5; /* CCK */ 5703 5704 /* Make sure idx stays in a valid range. */ 5705 if (idx < 0) 5706 idx = 0; 5707 else if (idx > IWN4965_MAX_PWR_INDEX) 5708 idx = IWN4965_MAX_PWR_INDEX; 5709 5710 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5711 "%s: Tx chain %d, rate idx %d: power=%d\n", 5712 __func__, c, ridx, idx); 5713 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 5714 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 5715 } 5716 } 5717 5718 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5719 "%s: set tx power for chan %d\n", __func__, chan); 5720 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 5721 5722 #undef interpolate 5723 #undef fdivround 5724 } 5725 5726 static int 5727 iwn5000_set_txpower(struct iwn_softc *sc, int async) 5728 { 5729 struct iwn5000_cmd_txpower cmd; 5730 int cmdid; 5731 5732 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5733 5734 /* 5735 * TX power calibration is handled automatically by the firmware 5736 * for 5000 Series. 5737 */ 5738 memset(&cmd, 0, sizeof cmd); 5739 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 5740 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 5741 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 5742 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5743 "%s: setting TX power; rev=%d\n", 5744 __func__, 5745 IWN_UCODE_API(sc->ucode_rev)); 5746 if (IWN_UCODE_API(sc->ucode_rev) == 1) 5747 cmdid = IWN_CMD_TXPOWER_DBM_V1; 5748 else 5749 cmdid = IWN_CMD_TXPOWER_DBM; 5750 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 5751 } 5752 5753 /* 5754 * Retrieve the maximum RSSI (in dBm) among receivers. 5755 */ 5756 static int 5757 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5758 { 5759 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 5760 uint8_t mask, agc; 5761 int rssi; 5762 5763 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5764 5765 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 5766 agc = (le16toh(phy->agc) >> 7) & 0x7f; 5767 5768 rssi = 0; 5769 if (mask & IWN_ANT_A) 5770 rssi = MAX(rssi, phy->rssi[0]); 5771 if (mask & IWN_ANT_B) 5772 rssi = MAX(rssi, phy->rssi[2]); 5773 if (mask & IWN_ANT_C) 5774 rssi = MAX(rssi, phy->rssi[4]); 5775 5776 DPRINTF(sc, IWN_DEBUG_RECV, 5777 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 5778 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 5779 rssi - agc - IWN_RSSI_TO_DBM); 5780 return rssi - agc - IWN_RSSI_TO_DBM; 5781 } 5782 5783 static int 5784 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5785 { 5786 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 5787 uint8_t agc; 5788 int rssi; 5789 5790 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5791 5792 agc = (le32toh(phy->agc) >> 9) & 0x7f; 5793 5794 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 5795 le16toh(phy->rssi[1]) & 0xff); 5796 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 5797 5798 DPRINTF(sc, IWN_DEBUG_RECV, 5799 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 5800 phy->rssi[0], phy->rssi[1], phy->rssi[2], 5801 rssi - agc - IWN_RSSI_TO_DBM); 5802 return rssi - agc - IWN_RSSI_TO_DBM; 5803 } 5804 5805 /* 5806 * Retrieve the average noise (in dBm) among receivers. 5807 */ 5808 static int 5809 iwn_get_noise(const struct iwn_rx_general_stats *stats) 5810 { 5811 int i, total, nbant, noise; 5812 5813 total = nbant = 0; 5814 for (i = 0; i < 3; i++) { 5815 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 5816 continue; 5817 total += noise; 5818 nbant++; 5819 } 5820 /* There should be at least one antenna but check anyway. */ 5821 return (nbant == 0) ? -127 : (total / nbant) - 107; 5822 } 5823 5824 /* 5825 * Compute temperature (in degC) from last received statistics. 5826 */ 5827 static int 5828 iwn4965_get_temperature(struct iwn_softc *sc) 5829 { 5830 struct iwn_ucode_info *uc = &sc->ucode_info; 5831 int32_t r1, r2, r3, r4, temp; 5832 5833 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5834 5835 r1 = le32toh(uc->temp[0].chan20MHz); 5836 r2 = le32toh(uc->temp[1].chan20MHz); 5837 r3 = le32toh(uc->temp[2].chan20MHz); 5838 r4 = le32toh(sc->rawtemp); 5839 5840 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 5841 return 0; 5842 5843 /* Sign-extend 23-bit R4 value to 32-bit. */ 5844 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 5845 /* Compute temperature in Kelvin. */ 5846 temp = (259 * (r4 - r2)) / (r3 - r1); 5847 temp = (temp * 97) / 100 + 8; 5848 5849 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 5850 IWN_KTOC(temp)); 5851 return IWN_KTOC(temp); 5852 } 5853 5854 static int 5855 iwn5000_get_temperature(struct iwn_softc *sc) 5856 { 5857 int32_t temp; 5858 5859 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5860 5861 /* 5862 * Temperature is not used by the driver for 5000 Series because 5863 * TX power calibration is handled by firmware. 5864 */ 5865 temp = le32toh(sc->rawtemp); 5866 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 5867 temp = (temp / -5) + sc->temp_off; 5868 temp = IWN_KTOC(temp); 5869 } 5870 return temp; 5871 } 5872 5873 /* 5874 * Initialize sensitivity calibration state machine. 5875 */ 5876 static int 5877 iwn_init_sensitivity(struct iwn_softc *sc) 5878 { 5879 struct iwn_ops *ops = &sc->ops; 5880 struct iwn_calib_state *calib = &sc->calib; 5881 uint32_t flags; 5882 int error; 5883 5884 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5885 5886 /* Reset calibration state machine. */ 5887 memset(calib, 0, sizeof (*calib)); 5888 calib->state = IWN_CALIB_STATE_INIT; 5889 calib->cck_state = IWN_CCK_STATE_HIFA; 5890 /* Set initial correlation values. */ 5891 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 5892 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 5893 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 5894 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 5895 calib->cck_x4 = 125; 5896 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 5897 calib->energy_cck = sc->limits->energy_cck; 5898 5899 /* Write initial sensitivity. */ 5900 if ((error = iwn_send_sensitivity(sc)) != 0) 5901 return error; 5902 5903 /* Write initial gains. */ 5904 if ((error = ops->init_gains(sc)) != 0) 5905 return error; 5906 5907 /* Request statistics at each beacon interval. */ 5908 flags = 0; 5909 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 5910 __func__); 5911 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 5912 } 5913 5914 /* 5915 * Collect noise and RSSI statistics for the first 20 beacons received 5916 * after association and use them to determine connected antennas and 5917 * to set differential gains. 5918 */ 5919 static void 5920 iwn_collect_noise(struct iwn_softc *sc, 5921 const struct iwn_rx_general_stats *stats) 5922 { 5923 struct iwn_ops *ops = &sc->ops; 5924 struct iwn_calib_state *calib = &sc->calib; 5925 struct ieee80211com *ic = &sc->sc_ic; 5926 uint32_t val; 5927 int i; 5928 5929 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5930 5931 /* Accumulate RSSI and noise for all 3 antennas. */ 5932 for (i = 0; i < 3; i++) { 5933 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 5934 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 5935 } 5936 /* NB: We update differential gains only once after 20 beacons. */ 5937 if (++calib->nbeacons < 20) 5938 return; 5939 5940 /* Determine highest average RSSI. */ 5941 val = MAX(calib->rssi[0], calib->rssi[1]); 5942 val = MAX(calib->rssi[2], val); 5943 5944 /* Determine which antennas are connected. */ 5945 sc->chainmask = sc->rxchainmask; 5946 for (i = 0; i < 3; i++) 5947 if (val - calib->rssi[i] > 15 * 20) 5948 sc->chainmask &= ~(1 << i); 5949 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5950 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 5951 __func__, sc->rxchainmask, sc->chainmask); 5952 5953 /* If none of the TX antennas are connected, keep at least one. */ 5954 if ((sc->chainmask & sc->txchainmask) == 0) 5955 sc->chainmask |= IWN_LSB(sc->txchainmask); 5956 5957 (void)ops->set_gains(sc); 5958 calib->state = IWN_CALIB_STATE_RUN; 5959 5960 #ifdef notyet 5961 /* XXX Disable RX chains with no antennas connected. */ 5962 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 5963 if (sc->sc_is_scanning) 5964 device_printf(sc->sc_dev, 5965 "%s: is_scanning set, before RXON\n", 5966 __func__); 5967 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 5968 #endif 5969 5970 /* Enable power-saving mode if requested by user. */ 5971 if (ic->ic_flags & IEEE80211_F_PMGTON) 5972 (void)iwn_set_pslevel(sc, 0, 3, 1); 5973 5974 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5975 5976 } 5977 5978 static int 5979 iwn4965_init_gains(struct iwn_softc *sc) 5980 { 5981 struct iwn_phy_calib_gain cmd; 5982 5983 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5984 5985 memset(&cmd, 0, sizeof cmd); 5986 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 5987 /* Differential gains initially set to 0 for all 3 antennas. */ 5988 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5989 "%s: setting initial differential gains\n", __func__); 5990 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 5991 } 5992 5993 static int 5994 iwn5000_init_gains(struct iwn_softc *sc) 5995 { 5996 struct iwn_phy_calib cmd; 5997 5998 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5999 6000 memset(&cmd, 0, sizeof cmd); 6001 cmd.code = sc->reset_noise_gain; 6002 cmd.ngroups = 1; 6003 cmd.isvalid = 1; 6004 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6005 "%s: setting initial differential gains\n", __func__); 6006 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6007 } 6008 6009 static int 6010 iwn4965_set_gains(struct iwn_softc *sc) 6011 { 6012 struct iwn_calib_state *calib = &sc->calib; 6013 struct iwn_phy_calib_gain cmd; 6014 int i, delta, noise; 6015 6016 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6017 6018 /* Get minimal noise among connected antennas. */ 6019 noise = INT_MAX; /* NB: There's at least one antenna. */ 6020 for (i = 0; i < 3; i++) 6021 if (sc->chainmask & (1 << i)) 6022 noise = MIN(calib->noise[i], noise); 6023 6024 memset(&cmd, 0, sizeof cmd); 6025 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 6026 /* Set differential gains for connected antennas. */ 6027 for (i = 0; i < 3; i++) { 6028 if (sc->chainmask & (1 << i)) { 6029 /* Compute attenuation (in unit of 1.5dB). */ 6030 delta = (noise - (int32_t)calib->noise[i]) / 30; 6031 /* NB: delta <= 0 */ 6032 /* Limit to [-4.5dB,0]. */ 6033 cmd.gain[i] = MIN(abs(delta), 3); 6034 if (delta < 0) 6035 cmd.gain[i] |= 1 << 2; /* sign bit */ 6036 } 6037 } 6038 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6039 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 6040 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 6041 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6042 } 6043 6044 static int 6045 iwn5000_set_gains(struct iwn_softc *sc) 6046 { 6047 struct iwn_calib_state *calib = &sc->calib; 6048 struct iwn_phy_calib_gain cmd; 6049 int i, ant, div, delta; 6050 6051 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6052 6053 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 6054 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 6055 6056 memset(&cmd, 0, sizeof cmd); 6057 cmd.code = sc->noise_gain; 6058 cmd.ngroups = 1; 6059 cmd.isvalid = 1; 6060 /* Get first available RX antenna as referential. */ 6061 ant = IWN_LSB(sc->rxchainmask); 6062 /* Set differential gains for other antennas. */ 6063 for (i = ant + 1; i < 3; i++) { 6064 if (sc->chainmask & (1 << i)) { 6065 /* The delta is relative to antenna "ant". */ 6066 delta = ((int32_t)calib->noise[ant] - 6067 (int32_t)calib->noise[i]) / div; 6068 /* Limit to [-4.5dB,+4.5dB]. */ 6069 cmd.gain[i - 1] = MIN(abs(delta), 3); 6070 if (delta < 0) 6071 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 6072 } 6073 } 6074 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 6075 "setting differential gains Ant B/C: %x/%x (%x)\n", 6076 cmd.gain[0], cmd.gain[1], sc->chainmask); 6077 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6078 } 6079 6080 /* 6081 * Tune RF RX sensitivity based on the number of false alarms detected 6082 * during the last beacon period. 6083 */ 6084 static void 6085 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 6086 { 6087 #define inc(val, inc, max) \ 6088 if ((val) < (max)) { \ 6089 if ((val) < (max) - (inc)) \ 6090 (val) += (inc); \ 6091 else \ 6092 (val) = (max); \ 6093 needs_update = 1; \ 6094 } 6095 #define dec(val, dec, min) \ 6096 if ((val) > (min)) { \ 6097 if ((val) > (min) + (dec)) \ 6098 (val) -= (dec); \ 6099 else \ 6100 (val) = (min); \ 6101 needs_update = 1; \ 6102 } 6103 6104 const struct iwn_sensitivity_limits *limits = sc->limits; 6105 struct iwn_calib_state *calib = &sc->calib; 6106 uint32_t val, rxena, fa; 6107 uint32_t energy[3], energy_min; 6108 uint8_t noise[3], noise_ref; 6109 int i, needs_update = 0; 6110 6111 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6112 6113 /* Check that we've been enabled long enough. */ 6114 if ((rxena = le32toh(stats->general.load)) == 0){ 6115 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 6116 return; 6117 } 6118 6119 /* Compute number of false alarms since last call for OFDM. */ 6120 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6121 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 6122 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6123 6124 if (fa > 50 * rxena) { 6125 /* High false alarm count, decrease sensitivity. */ 6126 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6127 "%s: OFDM high false alarm count: %u\n", __func__, fa); 6128 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 6129 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 6130 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 6131 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 6132 6133 } else if (fa < 5 * rxena) { 6134 /* Low false alarm count, increase sensitivity. */ 6135 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6136 "%s: OFDM low false alarm count: %u\n", __func__, fa); 6137 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 6138 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 6139 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 6140 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 6141 } 6142 6143 /* Compute maximum noise among 3 receivers. */ 6144 for (i = 0; i < 3; i++) 6145 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 6146 val = MAX(noise[0], noise[1]); 6147 val = MAX(noise[2], val); 6148 /* Insert it into our samples table. */ 6149 calib->noise_samples[calib->cur_noise_sample] = val; 6150 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 6151 6152 /* Compute maximum noise among last 20 samples. */ 6153 noise_ref = calib->noise_samples[0]; 6154 for (i = 1; i < 20; i++) 6155 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 6156 6157 /* Compute maximum energy among 3 receivers. */ 6158 for (i = 0; i < 3; i++) 6159 energy[i] = le32toh(stats->general.energy[i]); 6160 val = MIN(energy[0], energy[1]); 6161 val = MIN(energy[2], val); 6162 /* Insert it into our samples table. */ 6163 calib->energy_samples[calib->cur_energy_sample] = val; 6164 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 6165 6166 /* Compute minimum energy among last 10 samples. */ 6167 energy_min = calib->energy_samples[0]; 6168 for (i = 1; i < 10; i++) 6169 energy_min = MAX(energy_min, calib->energy_samples[i]); 6170 energy_min += 6; 6171 6172 /* Compute number of false alarms since last call for CCK. */ 6173 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 6174 fa += le32toh(stats->cck.fa) - calib->fa_cck; 6175 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6176 6177 if (fa > 50 * rxena) { 6178 /* High false alarm count, decrease sensitivity. */ 6179 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6180 "%s: CCK high false alarm count: %u\n", __func__, fa); 6181 calib->cck_state = IWN_CCK_STATE_HIFA; 6182 calib->low_fa = 0; 6183 6184 if (calib->cck_x4 > 160) { 6185 calib->noise_ref = noise_ref; 6186 if (calib->energy_cck > 2) 6187 dec(calib->energy_cck, 2, energy_min); 6188 } 6189 if (calib->cck_x4 < 160) { 6190 calib->cck_x4 = 161; 6191 needs_update = 1; 6192 } else 6193 inc(calib->cck_x4, 3, limits->max_cck_x4); 6194 6195 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 6196 6197 } else if (fa < 5 * rxena) { 6198 /* Low false alarm count, increase sensitivity. */ 6199 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6200 "%s: CCK low false alarm count: %u\n", __func__, fa); 6201 calib->cck_state = IWN_CCK_STATE_LOFA; 6202 calib->low_fa++; 6203 6204 if (calib->cck_state != IWN_CCK_STATE_INIT && 6205 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 6206 calib->low_fa > 100)) { 6207 inc(calib->energy_cck, 2, limits->min_energy_cck); 6208 dec(calib->cck_x4, 3, limits->min_cck_x4); 6209 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 6210 } 6211 } else { 6212 /* Not worth to increase or decrease sensitivity. */ 6213 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6214 "%s: CCK normal false alarm count: %u\n", __func__, fa); 6215 calib->low_fa = 0; 6216 calib->noise_ref = noise_ref; 6217 6218 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 6219 /* Previous interval had many false alarms. */ 6220 dec(calib->energy_cck, 8, energy_min); 6221 } 6222 calib->cck_state = IWN_CCK_STATE_INIT; 6223 } 6224 6225 if (needs_update) 6226 (void)iwn_send_sensitivity(sc); 6227 6228 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6229 6230 #undef dec 6231 #undef inc 6232 } 6233 6234 static int 6235 iwn_send_sensitivity(struct iwn_softc *sc) 6236 { 6237 struct iwn_calib_state *calib = &sc->calib; 6238 struct iwn_enhanced_sensitivity_cmd cmd; 6239 int len; 6240 6241 memset(&cmd, 0, sizeof cmd); 6242 len = sizeof (struct iwn_sensitivity_cmd); 6243 cmd.which = IWN_SENSITIVITY_WORKTBL; 6244 /* OFDM modulation. */ 6245 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 6246 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 6247 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 6248 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 6249 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 6250 cmd.energy_ofdm_th = htole16(62); 6251 /* CCK modulation. */ 6252 cmd.corr_cck_x4 = htole16(calib->cck_x4); 6253 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 6254 cmd.energy_cck = htole16(calib->energy_cck); 6255 /* Barker modulation: use default values. */ 6256 cmd.corr_barker = htole16(190); 6257 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 6258 6259 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6260 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 6261 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 6262 calib->ofdm_mrc_x4, calib->cck_x4, 6263 calib->cck_mrc_x4, calib->energy_cck); 6264 6265 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 6266 goto send; 6267 /* Enhanced sensitivity settings. */ 6268 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 6269 cmd.ofdm_det_slope_mrc = htole16(668); 6270 cmd.ofdm_det_icept_mrc = htole16(4); 6271 cmd.ofdm_det_slope = htole16(486); 6272 cmd.ofdm_det_icept = htole16(37); 6273 cmd.cck_det_slope_mrc = htole16(853); 6274 cmd.cck_det_icept_mrc = htole16(4); 6275 cmd.cck_det_slope = htole16(476); 6276 cmd.cck_det_icept = htole16(99); 6277 send: 6278 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 6279 } 6280 6281 /* 6282 * Look at the increase of PLCP errors over time; if it exceeds 6283 * a programmed threshold then trigger an RF retune. 6284 */ 6285 static void 6286 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) 6287 { 6288 int32_t delta_ofdm, delta_ht, delta_cck; 6289 struct iwn_calib_state *calib = &sc->calib; 6290 int delta_ticks, cur_ticks; 6291 int delta_msec; 6292 int thresh; 6293 6294 /* 6295 * Calculate the difference between the current and 6296 * previous statistics. 6297 */ 6298 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; 6299 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6300 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; 6301 6302 /* 6303 * Calculate the delta in time between successive statistics 6304 * messages. Yes, it can roll over; so we make sure that 6305 * this doesn't happen. 6306 * 6307 * XXX go figure out what to do about rollover 6308 * XXX go figure out what to do if ticks rolls over to -ve instead! 6309 * XXX go stab signed integer overflow undefined-ness in the face. 6310 */ 6311 cur_ticks = ticks; 6312 delta_ticks = cur_ticks - sc->last_calib_ticks; 6313 6314 /* 6315 * If any are negative, then the firmware likely reset; so just 6316 * bail. We'll pick this up next time. 6317 */ 6318 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) 6319 return; 6320 6321 /* 6322 * delta_ticks is in ticks; we need to convert it up to milliseconds 6323 * so we can do some useful math with it. 6324 */ 6325 delta_msec = ticks_to_msecs(delta_ticks); 6326 6327 /* 6328 * Calculate what our threshold is given the current delta_msec. 6329 */ 6330 thresh = sc->base_params->plcp_err_threshold * delta_msec; 6331 6332 DPRINTF(sc, IWN_DEBUG_STATE, 6333 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", 6334 __func__, 6335 delta_msec, 6336 delta_cck, 6337 delta_ofdm, 6338 delta_ht, 6339 (delta_msec + delta_cck + delta_ofdm + delta_ht), 6340 thresh); 6341 6342 /* 6343 * If we need a retune, then schedule a single channel scan 6344 * to a channel that isn't the currently active one! 6345 * 6346 * The math from linux iwlwifi: 6347 * 6348 * if ((delta * 100 / msecs) > threshold) 6349 */ 6350 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { 6351 DPRINTF(sc, IWN_DEBUG_ANY, 6352 "%s: PLCP error threshold raw (%d) comparison (%d) " 6353 "over limit (%d); retune!\n", 6354 __func__, 6355 (delta_cck + delta_ofdm + delta_ht), 6356 (delta_cck + delta_ofdm + delta_ht) * 100, 6357 thresh); 6358 } 6359 } 6360 6361 /* 6362 * Set STA mode power saving level (between 0 and 5). 6363 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 6364 */ 6365 static int 6366 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 6367 { 6368 struct iwn_pmgt_cmd cmd; 6369 const struct iwn_pmgt *pmgt; 6370 uint32_t max, skip_dtim; 6371 uint32_t reg; 6372 int i; 6373 6374 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 6375 "%s: dtim=%d, level=%d, async=%d\n", 6376 __func__, 6377 dtim, 6378 level, 6379 async); 6380 6381 /* Select which PS parameters to use. */ 6382 if (dtim <= 2) 6383 pmgt = &iwn_pmgt[0][level]; 6384 else if (dtim <= 10) 6385 pmgt = &iwn_pmgt[1][level]; 6386 else 6387 pmgt = &iwn_pmgt[2][level]; 6388 6389 memset(&cmd, 0, sizeof cmd); 6390 if (level != 0) /* not CAM */ 6391 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 6392 if (level == 5) 6393 cmd.flags |= htole16(IWN_PS_FAST_PD); 6394 /* Retrieve PCIe Active State Power Management (ASPM). */ 6395 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 6396 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 6397 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 6398 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 6399 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 6400 6401 if (dtim == 0) { 6402 dtim = 1; 6403 skip_dtim = 0; 6404 } else 6405 skip_dtim = pmgt->skip_dtim; 6406 if (skip_dtim != 0) { 6407 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 6408 max = pmgt->intval[4]; 6409 if (max == (uint32_t)-1) 6410 max = dtim * (skip_dtim + 1); 6411 else if (max > dtim) 6412 max = rounddown(max, dtim); 6413 } else 6414 max = dtim; 6415 for (i = 0; i < 5; i++) 6416 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 6417 6418 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 6419 level); 6420 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 6421 } 6422 6423 static int 6424 iwn_send_btcoex(struct iwn_softc *sc) 6425 { 6426 struct iwn_bluetooth cmd; 6427 6428 memset(&cmd, 0, sizeof cmd); 6429 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 6430 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 6431 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 6432 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 6433 __func__); 6434 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 6435 } 6436 6437 static int 6438 iwn_send_advanced_btcoex(struct iwn_softc *sc) 6439 { 6440 static const uint32_t btcoex_3wire[12] = { 6441 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 6442 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 6443 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 6444 }; 6445 struct iwn6000_btcoex_config btconfig; 6446 struct iwn2000_btcoex_config btconfig2k; 6447 struct iwn_btcoex_priotable btprio; 6448 struct iwn_btcoex_prot btprot; 6449 int error, i; 6450 uint8_t flags; 6451 6452 memset(&btconfig, 0, sizeof btconfig); 6453 memset(&btconfig2k, 0, sizeof btconfig2k); 6454 6455 flags = IWN_BT_FLAG_COEX6000_MODE_3W << 6456 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 6457 6458 if (sc->base_params->bt_sco_disable) 6459 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6460 else 6461 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6462 6463 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; 6464 6465 /* Default flags result is 145 as old value */ 6466 6467 /* 6468 * Flags value has to be review. Values must change if we 6469 * which to disable it 6470 */ 6471 if (sc->base_params->bt_session_2) { 6472 btconfig2k.flags = flags; 6473 btconfig2k.max_kill = 5; 6474 btconfig2k.bt3_t7_timer = 1; 6475 btconfig2k.kill_ack = htole32(0xffff0000); 6476 btconfig2k.kill_cts = htole32(0xffff0000); 6477 btconfig2k.sample_time = 2; 6478 btconfig2k.bt3_t2_timer = 0xc; 6479 6480 for (i = 0; i < 12; i++) 6481 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); 6482 btconfig2k.valid = htole16(0xff); 6483 btconfig2k.prio_boost = htole32(0xf0); 6484 DPRINTF(sc, IWN_DEBUG_RESET, 6485 "%s: configuring advanced bluetooth coexistence" 6486 " session 2, flags : 0x%x\n", 6487 __func__, 6488 flags); 6489 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, 6490 sizeof(btconfig2k), 1); 6491 } else { 6492 btconfig.flags = flags; 6493 btconfig.max_kill = 5; 6494 btconfig.bt3_t7_timer = 1; 6495 btconfig.kill_ack = htole32(0xffff0000); 6496 btconfig.kill_cts = htole32(0xffff0000); 6497 btconfig.sample_time = 2; 6498 btconfig.bt3_t2_timer = 0xc; 6499 6500 for (i = 0; i < 12; i++) 6501 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 6502 btconfig.valid = htole16(0xff); 6503 btconfig.prio_boost = 0xf0; 6504 DPRINTF(sc, IWN_DEBUG_RESET, 6505 "%s: configuring advanced bluetooth coexistence," 6506 " flags : 0x%x\n", 6507 __func__, 6508 flags); 6509 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 6510 sizeof(btconfig), 1); 6511 } 6512 6513 if (error != 0) 6514 return error; 6515 6516 memset(&btprio, 0, sizeof btprio); 6517 btprio.calib_init1 = 0x6; 6518 btprio.calib_init2 = 0x7; 6519 btprio.calib_periodic_low1 = 0x2; 6520 btprio.calib_periodic_low2 = 0x3; 6521 btprio.calib_periodic_high1 = 0x4; 6522 btprio.calib_periodic_high2 = 0x5; 6523 btprio.dtim = 0x6; 6524 btprio.scan52 = 0x8; 6525 btprio.scan24 = 0xa; 6526 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 6527 1); 6528 if (error != 0) 6529 return error; 6530 6531 /* Force BT state machine change. */ 6532 memset(&btprot, 0, sizeof btprot); 6533 btprot.open = 1; 6534 btprot.type = 1; 6535 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6536 if (error != 0) 6537 return error; 6538 btprot.open = 0; 6539 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6540 } 6541 6542 static int 6543 iwn5000_runtime_calib(struct iwn_softc *sc) 6544 { 6545 struct iwn5000_calib_config cmd; 6546 6547 memset(&cmd, 0, sizeof cmd); 6548 cmd.ucode.once.enable = 0xffffffff; 6549 cmd.ucode.once.start = IWN5000_CALIB_DC; 6550 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6551 "%s: configuring runtime calibration\n", __func__); 6552 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 6553 } 6554 6555 static uint32_t 6556 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c) 6557 { 6558 struct ieee80211com *ic = &sc->sc_ic; 6559 uint32_t htflags = 0; 6560 6561 if (! IEEE80211_IS_CHAN_HT(c)) 6562 return (0); 6563 6564 htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode); 6565 6566 if (IEEE80211_IS_CHAN_HT40(c)) { 6567 switch (ic->ic_curhtprotmode) { 6568 case IEEE80211_HTINFO_OPMODE_HT20PR: 6569 htflags |= IWN_RXON_HT_MODEPURE40; 6570 break; 6571 default: 6572 htflags |= IWN_RXON_HT_MODEMIXED; 6573 break; 6574 } 6575 } 6576 if (IEEE80211_IS_CHAN_HT40D(c)) 6577 htflags |= IWN_RXON_HT_HT40MINUS; 6578 6579 return (htflags); 6580 } 6581 6582 static int 6583 iwn_check_bss_filter(struct iwn_softc *sc) 6584 { 6585 return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0); 6586 } 6587 6588 static int 6589 iwn4965_rxon_assoc(struct iwn_softc *sc, int async) 6590 { 6591 struct iwn4965_rxon_assoc cmd; 6592 struct iwn_rxon *rxon = sc->rxon; 6593 6594 cmd.flags = rxon->flags; 6595 cmd.filter = rxon->filter; 6596 cmd.ofdm_mask = rxon->ofdm_mask; 6597 cmd.cck_mask = rxon->cck_mask; 6598 cmd.ht_single_mask = rxon->ht_single_mask; 6599 cmd.ht_dual_mask = rxon->ht_dual_mask; 6600 cmd.rxchain = rxon->rxchain; 6601 cmd.reserved = 0; 6602 6603 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); 6604 } 6605 6606 static int 6607 iwn5000_rxon_assoc(struct iwn_softc *sc, int async) 6608 { 6609 struct iwn5000_rxon_assoc cmd; 6610 struct iwn_rxon *rxon = sc->rxon; 6611 6612 cmd.flags = rxon->flags; 6613 cmd.filter = rxon->filter; 6614 cmd.ofdm_mask = rxon->ofdm_mask; 6615 cmd.cck_mask = rxon->cck_mask; 6616 cmd.reserved1 = 0; 6617 cmd.ht_single_mask = rxon->ht_single_mask; 6618 cmd.ht_dual_mask = rxon->ht_dual_mask; 6619 cmd.ht_triple_mask = rxon->ht_triple_mask; 6620 cmd.reserved2 = 0; 6621 cmd.rxchain = rxon->rxchain; 6622 cmd.acquisition = rxon->acquisition; 6623 cmd.reserved3 = 0; 6624 6625 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); 6626 } 6627 6628 static int 6629 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async) 6630 { 6631 struct iwn_ops *ops = &sc->ops; 6632 int error; 6633 6634 IWN_LOCK_ASSERT(sc); 6635 6636 if (assoc && iwn_check_bss_filter(sc) != 0) { 6637 error = ops->rxon_assoc(sc, async); 6638 if (error != 0) { 6639 device_printf(sc->sc_dev, 6640 "%s: RXON_ASSOC command failed, error %d\n", 6641 __func__, error); 6642 return (error); 6643 } 6644 } else { 6645 if (sc->sc_is_scanning) 6646 device_printf(sc->sc_dev, 6647 "%s: is_scanning set, before RXON\n", 6648 __func__); 6649 6650 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async); 6651 if (error != 0) { 6652 device_printf(sc->sc_dev, 6653 "%s: RXON command failed, error %d\n", 6654 __func__, error); 6655 return (error); 6656 } 6657 6658 /* 6659 * Reconfiguring RXON clears the firmware nodes table so 6660 * we must add the broadcast node again. 6661 */ 6662 if (iwn_check_bss_filter(sc) == 0 && 6663 (error = iwn_add_broadcast_node(sc, async)) != 0) { 6664 device_printf(sc->sc_dev, 6665 "%s: could not add broadcast node, error %d\n", 6666 __func__, error); 6667 return (error); 6668 } 6669 } 6670 6671 /* Configuration has changed, set TX power accordingly. */ 6672 if ((error = ops->set_txpower(sc, async)) != 0) { 6673 device_printf(sc->sc_dev, 6674 "%s: could not set TX power, error %d\n", 6675 __func__, error); 6676 return (error); 6677 } 6678 6679 return (0); 6680 } 6681 6682 static int 6683 iwn_config(struct iwn_softc *sc) 6684 { 6685 struct ieee80211com *ic = &sc->sc_ic; 6686 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6687 const uint8_t *macaddr; 6688 uint32_t txmask; 6689 uint16_t rxchain; 6690 int error; 6691 6692 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6693 6694 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) 6695 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { 6696 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" 6697 " exclusive each together. Review NIC config file. Conf" 6698 " : 0x%08x Flags : 0x%08x \n", __func__, 6699 sc->base_params->calib_need, 6700 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | 6701 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); 6702 return (EINVAL); 6703 } 6704 6705 /* Compute temperature calib if needed. Will be send by send calib */ 6706 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { 6707 error = iwn5000_temp_offset_calib(sc); 6708 if (error != 0) { 6709 device_printf(sc->sc_dev, 6710 "%s: could not set temperature offset\n", __func__); 6711 return (error); 6712 } 6713 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 6714 error = iwn5000_temp_offset_calibv2(sc); 6715 if (error != 0) { 6716 device_printf(sc->sc_dev, 6717 "%s: could not compute temperature offset v2\n", 6718 __func__); 6719 return (error); 6720 } 6721 } 6722 6723 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6724 /* Configure runtime DC calibration. */ 6725 error = iwn5000_runtime_calib(sc); 6726 if (error != 0) { 6727 device_printf(sc->sc_dev, 6728 "%s: could not configure runtime calibration\n", 6729 __func__); 6730 return error; 6731 } 6732 } 6733 6734 /* Configure valid TX chains for >=5000 Series. */ 6735 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6736 IWN_UCODE_API(sc->ucode_rev) > 1) { 6737 txmask = htole32(sc->txchainmask); 6738 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6739 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 6740 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 6741 sizeof txmask, 0); 6742 if (error != 0) { 6743 device_printf(sc->sc_dev, 6744 "%s: could not configure valid TX chains, " 6745 "error %d\n", __func__, error); 6746 return error; 6747 } 6748 } 6749 6750 /* Configure bluetooth coexistence. */ 6751 error = 0; 6752 6753 /* Configure bluetooth coexistence if needed. */ 6754 if (sc->base_params->bt_mode == IWN_BT_ADVANCED) 6755 error = iwn_send_advanced_btcoex(sc); 6756 if (sc->base_params->bt_mode == IWN_BT_SIMPLE) 6757 error = iwn_send_btcoex(sc); 6758 6759 if (error != 0) { 6760 device_printf(sc->sc_dev, 6761 "%s: could not configure bluetooth coexistence, error %d\n", 6762 __func__, error); 6763 return error; 6764 } 6765 6766 /* Set mode, channel, RX filter and enable RX. */ 6767 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6768 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 6769 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 6770 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); 6771 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); 6772 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 6773 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6774 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 6775 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6776 6777 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 6778 switch (ic->ic_opmode) { 6779 case IEEE80211_M_STA: 6780 sc->rxon->mode = IWN_MODE_STA; 6781 break; 6782 case IEEE80211_M_MONITOR: 6783 sc->rxon->mode = IWN_MODE_MONITOR; 6784 break; 6785 default: 6786 /* Should not get there. */ 6787 break; 6788 } 6789 iwn_set_promisc(sc); 6790 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 6791 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 6792 sc->rxon->ht_single_mask = 0xff; 6793 sc->rxon->ht_dual_mask = 0xff; 6794 sc->rxon->ht_triple_mask = 0xff; 6795 /* 6796 * In active association mode, ensure that 6797 * all the receive chains are enabled. 6798 * 6799 * Since we're not yet doing SMPS, don't allow the 6800 * number of idle RX chains to be less than the active 6801 * number. 6802 */ 6803 rxchain = 6804 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6805 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 6806 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 6807 sc->rxon->rxchain = htole16(rxchain); 6808 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6809 "%s: rxchainmask=0x%x, nrxchains=%d\n", 6810 __func__, 6811 sc->rxchainmask, 6812 sc->nrxchains); 6813 6814 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 6815 6816 DPRINTF(sc, IWN_DEBUG_RESET, 6817 "%s: setting configuration; flags=0x%08x\n", 6818 __func__, le32toh(sc->rxon->flags)); 6819 if ((error = iwn_send_rxon(sc, 0, 0)) != 0) { 6820 device_printf(sc->sc_dev, "%s: could not send RXON\n", 6821 __func__); 6822 return error; 6823 } 6824 6825 if ((error = iwn_set_critical_temp(sc)) != 0) { 6826 device_printf(sc->sc_dev, 6827 "%s: could not set critical temperature\n", __func__); 6828 return error; 6829 } 6830 6831 /* Set power saving level to CAM during initialization. */ 6832 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 6833 device_printf(sc->sc_dev, 6834 "%s: could not set power saving level\n", __func__); 6835 return error; 6836 } 6837 6838 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6839 6840 return 0; 6841 } 6842 6843 static uint16_t 6844 iwn_get_active_dwell_time(struct iwn_softc *sc, 6845 struct ieee80211_channel *c, uint8_t n_probes) 6846 { 6847 /* No channel? Default to 2GHz settings */ 6848 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6849 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 6850 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 6851 } 6852 6853 /* 5GHz dwell time */ 6854 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 6855 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 6856 } 6857 6858 /* 6859 * Limit the total dwell time to 85% of the beacon interval. 6860 * 6861 * Returns the dwell time in milliseconds. 6862 */ 6863 static uint16_t 6864 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 6865 { 6866 struct ieee80211com *ic = &sc->sc_ic; 6867 struct ieee80211vap *vap = NULL; 6868 int bintval = 0; 6869 6870 /* bintval is in TU (1.024mS) */ 6871 if (! TAILQ_EMPTY(&ic->ic_vaps)) { 6872 vap = TAILQ_FIRST(&ic->ic_vaps); 6873 bintval = vap->iv_bss->ni_intval; 6874 } 6875 6876 /* 6877 * If it's non-zero, we should calculate the minimum of 6878 * it and the DWELL_BASE. 6879 * 6880 * XXX Yes, the math should take into account that bintval 6881 * is 1.024mS, not 1mS.. 6882 */ 6883 if (bintval > 0) { 6884 DPRINTF(sc, IWN_DEBUG_SCAN, 6885 "%s: bintval=%d\n", 6886 __func__, 6887 bintval); 6888 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 6889 } 6890 6891 /* No association context? Default */ 6892 return (IWN_PASSIVE_DWELL_BASE); 6893 } 6894 6895 static uint16_t 6896 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) 6897 { 6898 uint16_t passive; 6899 6900 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6901 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 6902 } else { 6903 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 6904 } 6905 6906 /* Clamp to the beacon interval if we're associated */ 6907 return (iwn_limit_dwell(sc, passive)); 6908 } 6909 6910 static int 6911 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, 6912 struct ieee80211_scan_state *ss, struct ieee80211_channel *c) 6913 { 6914 struct ieee80211com *ic = &sc->sc_ic; 6915 struct ieee80211_node *ni = vap->iv_bss; 6916 struct iwn_scan_hdr *hdr; 6917 struct iwn_cmd_data *tx; 6918 struct iwn_scan_essid *essid; 6919 struct iwn_scan_chan *chan; 6920 struct ieee80211_frame *wh; 6921 struct ieee80211_rateset *rs; 6922 uint8_t *buf, *frm; 6923 uint16_t rxchain; 6924 uint8_t txant; 6925 int buflen, error; 6926 int is_active; 6927 uint16_t dwell_active, dwell_passive; 6928 uint32_t extra, scan_service_time; 6929 6930 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6931 6932 /* 6933 * We are absolutely not allowed to send a scan command when another 6934 * scan command is pending. 6935 */ 6936 if (sc->sc_is_scanning) { 6937 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 6938 __func__); 6939 return (EAGAIN); 6940 } 6941 6942 /* Assign the scan channel */ 6943 c = ic->ic_curchan; 6944 6945 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6946 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 6947 if (buf == NULL) { 6948 device_printf(sc->sc_dev, 6949 "%s: could not allocate buffer for scan command\n", 6950 __func__); 6951 return ENOMEM; 6952 } 6953 hdr = (struct iwn_scan_hdr *)buf; 6954 /* 6955 * Move to the next channel if no frames are received within 10ms 6956 * after sending the probe request. 6957 */ 6958 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 6959 hdr->quiet_threshold = htole16(1); /* min # of packets */ 6960 /* 6961 * Max needs to be greater than active and passive and quiet! 6962 * It's also in microseconds! 6963 */ 6964 hdr->max_svc = htole32(250 * 1024); 6965 6966 /* 6967 * Reset scan: interval=100 6968 * Normal scan: interval=becaon interval 6969 * suspend_time: 100 (TU) 6970 * 6971 */ 6972 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; 6973 //scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); 6974 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ 6975 hdr->pause_svc = htole32(scan_service_time); 6976 6977 /* Select antennas for scanning. */ 6978 rxchain = 6979 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6980 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 6981 IWN_RXCHAIN_DRIVER_FORCE; 6982 if (IEEE80211_IS_CHAN_A(c) && 6983 sc->hw_type == IWN_HW_REV_TYPE_4965) { 6984 /* Ant A must be avoided in 5GHz because of an HW bug. */ 6985 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 6986 } else /* Use all available RX antennas. */ 6987 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 6988 hdr->rxchain = htole16(rxchain); 6989 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 6990 6991 tx = (struct iwn_cmd_data *)(hdr + 1); 6992 tx->flags = htole32(IWN_TX_AUTO_SEQ); 6993 tx->id = sc->broadcast_id; 6994 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 6995 6996 if (IEEE80211_IS_CHAN_5GHZ(c)) { 6997 /* Send probe requests at 6Mbps. */ 6998 tx->rate = htole32(0xd); 6999 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 7000 } else { 7001 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 7002 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 7003 sc->rxon->associd && sc->rxon->chan > 14) 7004 tx->rate = htole32(0xd); 7005 else { 7006 /* Send probe requests at 1Mbps. */ 7007 tx->rate = htole32(10 | IWN_RFLAG_CCK); 7008 } 7009 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 7010 } 7011 /* Use the first valid TX antenna. */ 7012 txant = IWN_LSB(sc->txchainmask); 7013 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 7014 7015 /* 7016 * Only do active scanning if we're announcing a probe request 7017 * for a given SSID (or more, if we ever add it to the driver.) 7018 */ 7019 is_active = 0; 7020 7021 /* 7022 * If we're scanning for a specific SSID, add it to the command. 7023 * 7024 * XXX maybe look at adding support for scanning multiple SSIDs? 7025 */ 7026 essid = (struct iwn_scan_essid *)(tx + 1); 7027 if (ss != NULL) { 7028 if (ss->ss_ssid[0].len != 0) { 7029 essid[0].id = IEEE80211_ELEMID_SSID; 7030 essid[0].len = ss->ss_ssid[0].len; 7031 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 7032 } 7033 7034 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", 7035 __func__, 7036 ss->ss_ssid[0].len, 7037 ss->ss_ssid[0].len, 7038 ss->ss_ssid[0].ssid); 7039 7040 if (ss->ss_nssid > 0) 7041 is_active = 1; 7042 } 7043 7044 /* 7045 * Build a probe request frame. Most of the following code is a 7046 * copy & paste of what is done in net80211. 7047 */ 7048 wh = (struct ieee80211_frame *)(essid + 20); 7049 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 7050 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 7051 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 7052 IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr); 7053 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp)); 7054 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr); 7055 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 7056 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 7057 7058 frm = (uint8_t *)(wh + 1); 7059 frm = ieee80211_add_ssid(frm, NULL, 0); 7060 frm = ieee80211_add_rates(frm, rs); 7061 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 7062 frm = ieee80211_add_xrates(frm, rs); 7063 if (ic->ic_htcaps & IEEE80211_HTC_HT) 7064 frm = ieee80211_add_htcap(frm, ni); 7065 7066 /* Set length of probe request. */ 7067 tx->len = htole16(frm - (uint8_t *)wh); 7068 7069 /* 7070 * If active scanning is requested but a certain channel is 7071 * marked passive, we can do active scanning if we detect 7072 * transmissions. 7073 * 7074 * There is an issue with some firmware versions that triggers 7075 * a sysassert on a "good CRC threshold" of zero (== disabled), 7076 * on a radar channel even though this means that we should NOT 7077 * send probes. 7078 * 7079 * The "good CRC threshold" is the number of frames that we 7080 * need to receive during our dwell time on a channel before 7081 * sending out probes -- setting this to a huge value will 7082 * mean we never reach it, but at the same time work around 7083 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER 7084 * here instead of IWL_GOOD_CRC_TH_DISABLED. 7085 * 7086 * This was fixed in later versions along with some other 7087 * scan changes, and the threshold behaves as a flag in those 7088 * versions. 7089 */ 7090 7091 /* 7092 * If we're doing active scanning, set the crc_threshold 7093 * to a suitable value. This is different to active veruss 7094 * passive scanning depending upon the channel flags; the 7095 * firmware will obey that particular check for us. 7096 */ 7097 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 7098 hdr->crc_threshold = is_active ? 7099 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 7100 else 7101 hdr->crc_threshold = is_active ? 7102 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 7103 7104 chan = (struct iwn_scan_chan *)frm; 7105 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 7106 chan->flags = 0; 7107 if (ss->ss_nssid > 0) 7108 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 7109 chan->dsp_gain = 0x6e; 7110 7111 /* 7112 * Set the passive/active flag depending upon the channel mode. 7113 * XXX TODO: take the is_active flag into account as well? 7114 */ 7115 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 7116 chan->flags |= htole32(IWN_CHAN_PASSIVE); 7117 else 7118 chan->flags |= htole32(IWN_CHAN_ACTIVE); 7119 7120 /* 7121 * Calculate the active/passive dwell times. 7122 */ 7123 7124 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); 7125 dwell_passive = iwn_get_passive_dwell_time(sc, c); 7126 7127 /* Make sure they're valid */ 7128 if (dwell_passive <= dwell_active) 7129 dwell_passive = dwell_active + 1; 7130 7131 chan->active = htole16(dwell_active); 7132 chan->passive = htole16(dwell_passive); 7133 7134 if (IEEE80211_IS_CHAN_5GHZ(c)) 7135 chan->rf_gain = 0x3b; 7136 else 7137 chan->rf_gain = 0x28; 7138 7139 DPRINTF(sc, IWN_DEBUG_STATE, 7140 "%s: chan %u flags 0x%x rf_gain 0x%x " 7141 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " 7142 "isactive=%d numssid=%d\n", __func__, 7143 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 7144 dwell_active, dwell_passive, scan_service_time, 7145 hdr->crc_threshold, is_active, ss->ss_nssid); 7146 7147 hdr->nchan++; 7148 chan++; 7149 buflen = (uint8_t *)chan - buf; 7150 hdr->len = htole16(buflen); 7151 7152 if (sc->sc_is_scanning) { 7153 device_printf(sc->sc_dev, 7154 "%s: called with is_scanning set!\n", 7155 __func__); 7156 } 7157 sc->sc_is_scanning = 1; 7158 7159 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 7160 hdr->nchan); 7161 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 7162 free(buf, M_DEVBUF); 7163 if (error == 0) 7164 callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc); 7165 7166 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7167 7168 return error; 7169 } 7170 7171 static int 7172 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 7173 { 7174 struct ieee80211com *ic = &sc->sc_ic; 7175 struct ieee80211_node *ni = vap->iv_bss; 7176 int error; 7177 7178 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7179 7180 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7181 /* Update adapter configuration. */ 7182 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7183 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7184 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7185 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7186 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7187 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7188 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7189 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7190 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7191 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7192 sc->rxon->cck_mask = 0; 7193 sc->rxon->ofdm_mask = 0x15; 7194 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7195 sc->rxon->cck_mask = 0x03; 7196 sc->rxon->ofdm_mask = 0; 7197 } else { 7198 /* Assume 802.11b/g. */ 7199 sc->rxon->cck_mask = 0x03; 7200 sc->rxon->ofdm_mask = 0x15; 7201 } 7202 7203 /* try HT */ 7204 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan)); 7205 7206 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 7207 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 7208 sc->rxon->ofdm_mask); 7209 7210 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { 7211 device_printf(sc->sc_dev, "%s: could not send RXON\n", 7212 __func__); 7213 return (error); 7214 } 7215 7216 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7217 7218 return (0); 7219 } 7220 7221 static int 7222 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 7223 { 7224 struct iwn_ops *ops = &sc->ops; 7225 struct ieee80211com *ic = &sc->sc_ic; 7226 struct ieee80211_node *ni = vap->iv_bss; 7227 struct iwn_node_info node; 7228 int error; 7229 7230 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7231 7232 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7233 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7234 /* Link LED blinks while monitoring. */ 7235 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 7236 return 0; 7237 } 7238 if ((error = iwn_set_timing(sc, ni)) != 0) { 7239 device_printf(sc->sc_dev, 7240 "%s: could not set timing, error %d\n", __func__, error); 7241 return error; 7242 } 7243 7244 /* Update adapter configuration. */ 7245 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7246 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 7247 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7248 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7249 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7250 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7251 if (ic->ic_flags & IEEE80211_F_SHSLOT) 7252 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7253 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 7254 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7255 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7256 sc->rxon->cck_mask = 0; 7257 sc->rxon->ofdm_mask = 0x15; 7258 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7259 sc->rxon->cck_mask = 0x03; 7260 sc->rxon->ofdm_mask = 0; 7261 } else { 7262 /* Assume 802.11b/g. */ 7263 sc->rxon->cck_mask = 0x0f; 7264 sc->rxon->ofdm_mask = 0x15; 7265 } 7266 /* try HT */ 7267 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan)); 7268 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 7269 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", 7270 sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode); 7271 7272 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { 7273 device_printf(sc->sc_dev, "%s: could not send RXON\n", 7274 __func__); 7275 return error; 7276 } 7277 7278 /* Fake a join to initialize the TX rate. */ 7279 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 7280 iwn_newassoc(ni, 1); 7281 7282 /* Add BSS node. */ 7283 memset(&node, 0, sizeof node); 7284 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 7285 node.id = IWN_ID_BSS; 7286 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 7287 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 7288 case IEEE80211_HTCAP_SMPS_ENA: 7289 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 7290 break; 7291 case IEEE80211_HTCAP_SMPS_DYNAMIC: 7292 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 7293 break; 7294 } 7295 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 7296 IWN_AMDPU_DENSITY(5)); /* 4us */ 7297 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 7298 node.htflags |= htole32(IWN_NODE_HT40); 7299 } 7300 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 7301 error = ops->add_node(sc, &node, 1); 7302 if (error != 0) { 7303 device_printf(sc->sc_dev, 7304 "%s: could not add BSS node, error %d\n", __func__, error); 7305 return error; 7306 } 7307 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 7308 __func__, node.id); 7309 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 7310 device_printf(sc->sc_dev, 7311 "%s: could not setup link quality for node %d, error %d\n", 7312 __func__, node.id, error); 7313 return error; 7314 } 7315 7316 if ((error = iwn_init_sensitivity(sc)) != 0) { 7317 device_printf(sc->sc_dev, 7318 "%s: could not set sensitivity, error %d\n", __func__, 7319 error); 7320 return error; 7321 } 7322 /* Start periodic calibration timer. */ 7323 sc->calib.state = IWN_CALIB_STATE_ASSOC; 7324 sc->calib_cnt = 0; 7325 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 7326 sc); 7327 7328 /* Link LED always on while associated. */ 7329 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7330 7331 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7332 7333 return 0; 7334 } 7335 7336 /* 7337 * This function is called by upper layer when an ADDBA request is received 7338 * from another STA and before the ADDBA response is sent. 7339 */ 7340 static int 7341 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 7342 int baparamset, int batimeout, int baseqctl) 7343 { 7344 #define MS(_v, _f) (((_v) & _f) >> _f##_S) 7345 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7346 struct iwn_ops *ops = &sc->ops; 7347 struct iwn_node *wn = (void *)ni; 7348 struct iwn_node_info node; 7349 uint16_t ssn; 7350 uint8_t tid; 7351 int error; 7352 7353 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7354 7355 tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID); 7356 ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START); 7357 7358 memset(&node, 0, sizeof node); 7359 node.id = wn->id; 7360 node.control = IWN_NODE_UPDATE; 7361 node.flags = IWN_FLAG_SET_ADDBA; 7362 node.addba_tid = tid; 7363 node.addba_ssn = htole16(ssn); 7364 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 7365 wn->id, tid, ssn); 7366 error = ops->add_node(sc, &node, 1); 7367 if (error != 0) 7368 return error; 7369 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 7370 #undef MS 7371 } 7372 7373 /* 7374 * This function is called by upper layer on teardown of an HT-immediate 7375 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 7376 */ 7377 static void 7378 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 7379 { 7380 struct ieee80211com *ic = ni->ni_ic; 7381 struct iwn_softc *sc = ic->ic_softc; 7382 struct iwn_ops *ops = &sc->ops; 7383 struct iwn_node *wn = (void *)ni; 7384 struct iwn_node_info node; 7385 uint8_t tid; 7386 7387 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7388 7389 /* XXX: tid as an argument */ 7390 for (tid = 0; tid < WME_NUM_TID; tid++) { 7391 if (&ni->ni_rx_ampdu[tid] == rap) 7392 break; 7393 } 7394 7395 memset(&node, 0, sizeof node); 7396 node.id = wn->id; 7397 node.control = IWN_NODE_UPDATE; 7398 node.flags = IWN_FLAG_SET_DELBA; 7399 node.delba_tid = tid; 7400 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 7401 (void)ops->add_node(sc, &node, 1); 7402 sc->sc_ampdu_rx_stop(ni, rap); 7403 } 7404 7405 static int 7406 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7407 int dialogtoken, int baparamset, int batimeout) 7408 { 7409 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7410 int qid; 7411 7412 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7413 7414 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 7415 if (sc->qid2tap[qid] == NULL) 7416 break; 7417 } 7418 if (qid == sc->ntxqs) { 7419 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n", 7420 __func__); 7421 return 0; 7422 } 7423 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 7424 if (tap->txa_private == NULL) { 7425 device_printf(sc->sc_dev, 7426 "%s: failed to alloc TX aggregation structure\n", __func__); 7427 return 0; 7428 } 7429 sc->qid2tap[qid] = tap; 7430 *(int *)tap->txa_private = qid; 7431 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 7432 batimeout); 7433 } 7434 7435 static int 7436 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7437 int code, int baparamset, int batimeout) 7438 { 7439 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7440 int qid = *(int *)tap->txa_private; 7441 uint8_t tid = tap->txa_tid; 7442 int ret; 7443 7444 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7445 7446 if (code == IEEE80211_STATUS_SUCCESS) { 7447 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 7448 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 7449 if (ret != 1) 7450 return ret; 7451 } else { 7452 sc->qid2tap[qid] = NULL; 7453 free(tap->txa_private, M_DEVBUF); 7454 tap->txa_private = NULL; 7455 } 7456 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 7457 } 7458 7459 /* 7460 * This function is called by upper layer when an ADDBA response is received 7461 * from another STA. 7462 */ 7463 static int 7464 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 7465 uint8_t tid) 7466 { 7467 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 7468 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7469 struct iwn_ops *ops = &sc->ops; 7470 struct iwn_node *wn = (void *)ni; 7471 struct iwn_node_info node; 7472 int error, qid; 7473 7474 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7475 7476 /* Enable TX for the specified RA/TID. */ 7477 wn->disable_tid &= ~(1 << tid); 7478 memset(&node, 0, sizeof node); 7479 node.id = wn->id; 7480 node.control = IWN_NODE_UPDATE; 7481 node.flags = IWN_FLAG_SET_DISABLE_TID; 7482 node.disable_tid = htole16(wn->disable_tid); 7483 error = ops->add_node(sc, &node, 1); 7484 if (error != 0) 7485 return 0; 7486 7487 if ((error = iwn_nic_lock(sc)) != 0) 7488 return 0; 7489 qid = *(int *)tap->txa_private; 7490 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 7491 __func__, wn->id, tid, tap->txa_start, qid); 7492 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 7493 iwn_nic_unlock(sc); 7494 7495 iwn_set_link_quality(sc, ni); 7496 return 1; 7497 } 7498 7499 static void 7500 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 7501 { 7502 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7503 struct iwn_ops *ops = &sc->ops; 7504 uint8_t tid = tap->txa_tid; 7505 int qid; 7506 7507 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7508 7509 sc->sc_addba_stop(ni, tap); 7510 7511 if (tap->txa_private == NULL) 7512 return; 7513 7514 qid = *(int *)tap->txa_private; 7515 if (sc->txq[qid].queued != 0) 7516 return; 7517 if (iwn_nic_lock(sc) != 0) 7518 return; 7519 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 7520 iwn_nic_unlock(sc); 7521 sc->qid2tap[qid] = NULL; 7522 free(tap->txa_private, M_DEVBUF); 7523 tap->txa_private = NULL; 7524 } 7525 7526 static void 7527 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7528 int qid, uint8_t tid, uint16_t ssn) 7529 { 7530 struct iwn_node *wn = (void *)ni; 7531 7532 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7533 7534 /* Stop TX scheduler while we're changing its configuration. */ 7535 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7536 IWN4965_TXQ_STATUS_CHGACT); 7537 7538 /* Assign RA/TID translation to the queue. */ 7539 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 7540 wn->id << 4 | tid); 7541 7542 /* Enable chain-building mode for the queue. */ 7543 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 7544 7545 /* Set starting sequence number from the ADDBA request. */ 7546 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7547 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7548 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7549 7550 /* Set scheduler window size. */ 7551 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 7552 IWN_SCHED_WINSZ); 7553 /* Set scheduler frame limit. */ 7554 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7555 IWN_SCHED_LIMIT << 16); 7556 7557 /* Enable interrupts for the queue. */ 7558 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7559 7560 /* Mark the queue as active. */ 7561 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7562 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 7563 iwn_tid2fifo[tid] << 1); 7564 } 7565 7566 static void 7567 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7568 { 7569 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7570 7571 /* Stop TX scheduler while we're changing its configuration. */ 7572 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7573 IWN4965_TXQ_STATUS_CHGACT); 7574 7575 /* Set starting sequence number from the ADDBA request. */ 7576 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7577 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7578 7579 /* Disable interrupts for the queue. */ 7580 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7581 7582 /* Mark the queue as inactive. */ 7583 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7584 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 7585 } 7586 7587 static void 7588 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7589 int qid, uint8_t tid, uint16_t ssn) 7590 { 7591 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7592 7593 struct iwn_node *wn = (void *)ni; 7594 7595 /* Stop TX scheduler while we're changing its configuration. */ 7596 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7597 IWN5000_TXQ_STATUS_CHGACT); 7598 7599 /* Assign RA/TID translation to the queue. */ 7600 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 7601 wn->id << 4 | tid); 7602 7603 /* Enable chain-building mode for the queue. */ 7604 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 7605 7606 /* Enable aggregation for the queue. */ 7607 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7608 7609 /* Set starting sequence number from the ADDBA request. */ 7610 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7611 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7612 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7613 7614 /* Set scheduler window size and frame limit. */ 7615 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7616 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7617 7618 /* Enable interrupts for the queue. */ 7619 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7620 7621 /* Mark the queue as active. */ 7622 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7623 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 7624 } 7625 7626 static void 7627 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7628 { 7629 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7630 7631 /* Stop TX scheduler while we're changing its configuration. */ 7632 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7633 IWN5000_TXQ_STATUS_CHGACT); 7634 7635 /* Disable aggregation for the queue. */ 7636 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7637 7638 /* Set starting sequence number from the ADDBA request. */ 7639 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7640 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7641 7642 /* Disable interrupts for the queue. */ 7643 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7644 7645 /* Mark the queue as inactive. */ 7646 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7647 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 7648 } 7649 7650 /* 7651 * Query calibration tables from the initialization firmware. We do this 7652 * only once at first boot. Called from a process context. 7653 */ 7654 static int 7655 iwn5000_query_calibration(struct iwn_softc *sc) 7656 { 7657 struct iwn5000_calib_config cmd; 7658 int error; 7659 7660 memset(&cmd, 0, sizeof cmd); 7661 cmd.ucode.once.enable = htole32(0xffffffff); 7662 cmd.ucode.once.start = htole32(0xffffffff); 7663 cmd.ucode.once.send = htole32(0xffffffff); 7664 cmd.ucode.flags = htole32(0xffffffff); 7665 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 7666 __func__); 7667 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 7668 if (error != 0) 7669 return error; 7670 7671 /* Wait at most two seconds for calibration to complete. */ 7672 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 7673 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 7674 return error; 7675 } 7676 7677 /* 7678 * Send calibration results to the runtime firmware. These results were 7679 * obtained on first boot from the initialization firmware. 7680 */ 7681 static int 7682 iwn5000_send_calibration(struct iwn_softc *sc) 7683 { 7684 int idx, error; 7685 7686 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { 7687 if (!(sc->base_params->calib_need & (1<<idx))) { 7688 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7689 "No need of calib %d\n", 7690 idx); 7691 continue; /* no need for this calib */ 7692 } 7693 if (sc->calibcmd[idx].buf == NULL) { 7694 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7695 "Need calib idx : %d but no available data\n", 7696 idx); 7697 continue; 7698 } 7699 7700 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7701 "send calibration result idx=%d len=%d\n", idx, 7702 sc->calibcmd[idx].len); 7703 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 7704 sc->calibcmd[idx].len, 0); 7705 if (error != 0) { 7706 device_printf(sc->sc_dev, 7707 "%s: could not send calibration result, error %d\n", 7708 __func__, error); 7709 return error; 7710 } 7711 } 7712 return 0; 7713 } 7714 7715 static int 7716 iwn5000_send_wimax_coex(struct iwn_softc *sc) 7717 { 7718 struct iwn5000_wimax_coex wimax; 7719 7720 #if 0 7721 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 7722 /* Enable WiMAX coexistence for combo adapters. */ 7723 wimax.flags = 7724 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 7725 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 7726 IWN_WIMAX_COEX_STA_TABLE_VALID | 7727 IWN_WIMAX_COEX_ENABLE; 7728 memcpy(wimax.events, iwn6050_wimax_events, 7729 sizeof iwn6050_wimax_events); 7730 } else 7731 #endif 7732 { 7733 /* Disable WiMAX coexistence. */ 7734 wimax.flags = 0; 7735 memset(wimax.events, 0, sizeof wimax.events); 7736 } 7737 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 7738 __func__); 7739 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 7740 } 7741 7742 static int 7743 iwn5000_crystal_calib(struct iwn_softc *sc) 7744 { 7745 struct iwn5000_phy_calib_crystal cmd; 7746 7747 memset(&cmd, 0, sizeof cmd); 7748 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 7749 cmd.ngroups = 1; 7750 cmd.isvalid = 1; 7751 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 7752 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 7753 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 7754 cmd.cap_pin[0], cmd.cap_pin[1]); 7755 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7756 } 7757 7758 static int 7759 iwn5000_temp_offset_calib(struct iwn_softc *sc) 7760 { 7761 struct iwn5000_phy_calib_temp_offset cmd; 7762 7763 memset(&cmd, 0, sizeof cmd); 7764 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7765 cmd.ngroups = 1; 7766 cmd.isvalid = 1; 7767 if (sc->eeprom_temp != 0) 7768 cmd.offset = htole16(sc->eeprom_temp); 7769 else 7770 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 7771 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 7772 le16toh(cmd.offset)); 7773 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7774 } 7775 7776 static int 7777 iwn5000_temp_offset_calibv2(struct iwn_softc *sc) 7778 { 7779 struct iwn5000_phy_calib_temp_offsetv2 cmd; 7780 7781 memset(&cmd, 0, sizeof cmd); 7782 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7783 cmd.ngroups = 1; 7784 cmd.isvalid = 1; 7785 if (sc->eeprom_temp != 0) { 7786 cmd.offset_low = htole16(sc->eeprom_temp); 7787 cmd.offset_high = htole16(sc->eeprom_temp_high); 7788 } else { 7789 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 7790 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 7791 } 7792 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 7793 7794 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7795 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", 7796 le16toh(cmd.offset_low), 7797 le16toh(cmd.offset_high), 7798 le16toh(cmd.burnt_voltage_ref)); 7799 7800 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7801 } 7802 7803 /* 7804 * This function is called after the runtime firmware notifies us of its 7805 * readiness (called in a process context). 7806 */ 7807 static int 7808 iwn4965_post_alive(struct iwn_softc *sc) 7809 { 7810 int error, qid; 7811 7812 if ((error = iwn_nic_lock(sc)) != 0) 7813 return error; 7814 7815 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7816 7817 /* Clear TX scheduler state in SRAM. */ 7818 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7819 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 7820 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 7821 7822 /* Set physical address of TX scheduler rings (1KB aligned). */ 7823 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7824 7825 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7826 7827 /* Disable chain mode for all our 16 queues. */ 7828 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 7829 7830 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 7831 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 7832 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7833 7834 /* Set scheduler window size. */ 7835 iwn_mem_write(sc, sc->sched_base + 7836 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 7837 /* Set scheduler frame limit. */ 7838 iwn_mem_write(sc, sc->sched_base + 7839 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7840 IWN_SCHED_LIMIT << 16); 7841 } 7842 7843 /* Enable interrupts for all our 16 queues. */ 7844 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 7845 /* Identify TX FIFO rings (0-7). */ 7846 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 7847 7848 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7849 for (qid = 0; qid < 7; qid++) { 7850 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 7851 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7852 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 7853 } 7854 iwn_nic_unlock(sc); 7855 return 0; 7856 } 7857 7858 /* 7859 * This function is called after the initialization or runtime firmware 7860 * notifies us of its readiness (called in a process context). 7861 */ 7862 static int 7863 iwn5000_post_alive(struct iwn_softc *sc) 7864 { 7865 int error, qid; 7866 7867 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7868 7869 /* Switch to using ICT interrupt mode. */ 7870 iwn5000_ict_reset(sc); 7871 7872 if ((error = iwn_nic_lock(sc)) != 0){ 7873 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 7874 return error; 7875 } 7876 7877 /* Clear TX scheduler state in SRAM. */ 7878 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7879 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 7880 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 7881 7882 /* Set physical address of TX scheduler rings (1KB aligned). */ 7883 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7884 7885 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7886 7887 /* Enable chain mode for all queues, except command queue. */ 7888 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 7889 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); 7890 else 7891 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 7892 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 7893 7894 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 7895 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 7896 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7897 7898 iwn_mem_write(sc, sc->sched_base + 7899 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 7900 /* Set scheduler window size and frame limit. */ 7901 iwn_mem_write(sc, sc->sched_base + 7902 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7903 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7904 } 7905 7906 /* Enable interrupts for all our 20 queues. */ 7907 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 7908 /* Identify TX FIFO rings (0-7). */ 7909 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 7910 7911 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7912 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { 7913 /* Mark TX rings as active. */ 7914 for (qid = 0; qid < 11; qid++) { 7915 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; 7916 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7917 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7918 } 7919 } else { 7920 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7921 for (qid = 0; qid < 7; qid++) { 7922 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 7923 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7924 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 7925 } 7926 } 7927 iwn_nic_unlock(sc); 7928 7929 /* Configure WiMAX coexistence for combo adapters. */ 7930 error = iwn5000_send_wimax_coex(sc); 7931 if (error != 0) { 7932 device_printf(sc->sc_dev, 7933 "%s: could not configure WiMAX coexistence, error %d\n", 7934 __func__, error); 7935 return error; 7936 } 7937 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 7938 /* Perform crystal calibration. */ 7939 error = iwn5000_crystal_calib(sc); 7940 if (error != 0) { 7941 device_printf(sc->sc_dev, 7942 "%s: crystal calibration failed, error %d\n", 7943 __func__, error); 7944 return error; 7945 } 7946 } 7947 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 7948 /* Query calibration from the initialization firmware. */ 7949 if ((error = iwn5000_query_calibration(sc)) != 0) { 7950 device_printf(sc->sc_dev, 7951 "%s: could not query calibration, error %d\n", 7952 __func__, error); 7953 return error; 7954 } 7955 /* 7956 * We have the calibration results now, reboot with the 7957 * runtime firmware (call ourselves recursively!) 7958 */ 7959 iwn_hw_stop(sc); 7960 error = iwn_hw_init(sc); 7961 } else { 7962 /* Send calibration results to runtime firmware. */ 7963 error = iwn5000_send_calibration(sc); 7964 } 7965 7966 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7967 7968 return error; 7969 } 7970 7971 /* 7972 * The firmware boot code is small and is intended to be copied directly into 7973 * the NIC internal memory (no DMA transfer). 7974 */ 7975 static int 7976 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 7977 { 7978 int error, ntries; 7979 7980 size /= sizeof (uint32_t); 7981 7982 if ((error = iwn_nic_lock(sc)) != 0) 7983 return error; 7984 7985 /* Copy microcode image into NIC memory. */ 7986 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 7987 (const uint32_t *)ucode, size); 7988 7989 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 7990 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 7991 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 7992 7993 /* Start boot load now. */ 7994 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 7995 7996 /* Wait for transfer to complete. */ 7997 for (ntries = 0; ntries < 1000; ntries++) { 7998 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 7999 IWN_BSM_WR_CTRL_START)) 8000 break; 8001 DELAY(10); 8002 } 8003 if (ntries == 1000) { 8004 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 8005 __func__); 8006 iwn_nic_unlock(sc); 8007 return ETIMEDOUT; 8008 } 8009 8010 /* Enable boot after power up. */ 8011 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 8012 8013 iwn_nic_unlock(sc); 8014 return 0; 8015 } 8016 8017 static int 8018 iwn4965_load_firmware(struct iwn_softc *sc) 8019 { 8020 struct iwn_fw_info *fw = &sc->fw; 8021 struct iwn_dma_info *dma = &sc->fw_dma; 8022 int error; 8023 8024 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 8025 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 8026 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8027 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 8028 fw->init.text, fw->init.textsz); 8029 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8030 8031 /* Tell adapter where to find initialization sections. */ 8032 if ((error = iwn_nic_lock(sc)) != 0) 8033 return error; 8034 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 8035 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 8036 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 8037 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 8038 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 8039 iwn_nic_unlock(sc); 8040 8041 /* Load firmware boot code. */ 8042 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 8043 if (error != 0) { 8044 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 8045 __func__); 8046 return error; 8047 } 8048 /* Now press "execute". */ 8049 IWN_WRITE(sc, IWN_RESET, 0); 8050 8051 /* Wait at most one second for first alive notification. */ 8052 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8053 device_printf(sc->sc_dev, 8054 "%s: timeout waiting for adapter to initialize, error %d\n", 8055 __func__, error); 8056 return error; 8057 } 8058 8059 /* Retrieve current temperature for initial TX power calibration. */ 8060 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 8061 sc->temp = iwn4965_get_temperature(sc); 8062 8063 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 8064 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 8065 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8066 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 8067 fw->main.text, fw->main.textsz); 8068 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8069 8070 /* Tell adapter where to find runtime sections. */ 8071 if ((error = iwn_nic_lock(sc)) != 0) 8072 return error; 8073 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 8074 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 8075 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 8076 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 8077 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 8078 IWN_FW_UPDATED | fw->main.textsz); 8079 iwn_nic_unlock(sc); 8080 8081 return 0; 8082 } 8083 8084 static int 8085 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 8086 const uint8_t *section, int size) 8087 { 8088 struct iwn_dma_info *dma = &sc->fw_dma; 8089 int error; 8090 8091 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8092 8093 /* Copy firmware section into pre-allocated DMA-safe memory. */ 8094 memcpy(dma->vaddr, section, size); 8095 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8096 8097 if ((error = iwn_nic_lock(sc)) != 0) 8098 return error; 8099 8100 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 8101 IWN_FH_TX_CONFIG_DMA_PAUSE); 8102 8103 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 8104 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 8105 IWN_LOADDR(dma->paddr)); 8106 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 8107 IWN_HIADDR(dma->paddr) << 28 | size); 8108 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 8109 IWN_FH_TXBUF_STATUS_TBNUM(1) | 8110 IWN_FH_TXBUF_STATUS_TBIDX(1) | 8111 IWN_FH_TXBUF_STATUS_TFBD_VALID); 8112 8113 /* Kick Flow Handler to start DMA transfer. */ 8114 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 8115 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 8116 8117 iwn_nic_unlock(sc); 8118 8119 /* Wait at most five seconds for FH DMA transfer to complete. */ 8120 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 8121 } 8122 8123 static int 8124 iwn5000_load_firmware(struct iwn_softc *sc) 8125 { 8126 struct iwn_fw_part *fw; 8127 int error; 8128 8129 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8130 8131 /* Load the initialization firmware on first boot only. */ 8132 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 8133 &sc->fw.main : &sc->fw.init; 8134 8135 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 8136 fw->text, fw->textsz); 8137 if (error != 0) { 8138 device_printf(sc->sc_dev, 8139 "%s: could not load firmware %s section, error %d\n", 8140 __func__, ".text", error); 8141 return error; 8142 } 8143 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 8144 fw->data, fw->datasz); 8145 if (error != 0) { 8146 device_printf(sc->sc_dev, 8147 "%s: could not load firmware %s section, error %d\n", 8148 __func__, ".data", error); 8149 return error; 8150 } 8151 8152 /* Now press "execute". */ 8153 IWN_WRITE(sc, IWN_RESET, 0); 8154 return 0; 8155 } 8156 8157 /* 8158 * Extract text and data sections from a legacy firmware image. 8159 */ 8160 static int 8161 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 8162 { 8163 const uint32_t *ptr; 8164 size_t hdrlen = 24; 8165 uint32_t rev; 8166 8167 ptr = (const uint32_t *)fw->data; 8168 rev = le32toh(*ptr++); 8169 8170 sc->ucode_rev = rev; 8171 8172 /* Check firmware API version. */ 8173 if (IWN_FW_API(rev) <= 1) { 8174 device_printf(sc->sc_dev, 8175 "%s: bad firmware, need API version >=2\n", __func__); 8176 return EINVAL; 8177 } 8178 if (IWN_FW_API(rev) >= 3) { 8179 /* Skip build number (version 2 header). */ 8180 hdrlen += 4; 8181 ptr++; 8182 } 8183 if (fw->size < hdrlen) { 8184 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8185 __func__, fw->size); 8186 return EINVAL; 8187 } 8188 fw->main.textsz = le32toh(*ptr++); 8189 fw->main.datasz = le32toh(*ptr++); 8190 fw->init.textsz = le32toh(*ptr++); 8191 fw->init.datasz = le32toh(*ptr++); 8192 fw->boot.textsz = le32toh(*ptr++); 8193 8194 /* Check that all firmware sections fit. */ 8195 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 8196 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 8197 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8198 __func__, fw->size); 8199 return EINVAL; 8200 } 8201 8202 /* Get pointers to firmware sections. */ 8203 fw->main.text = (const uint8_t *)ptr; 8204 fw->main.data = fw->main.text + fw->main.textsz; 8205 fw->init.text = fw->main.data + fw->main.datasz; 8206 fw->init.data = fw->init.text + fw->init.textsz; 8207 fw->boot.text = fw->init.data + fw->init.datasz; 8208 return 0; 8209 } 8210 8211 /* 8212 * Extract text and data sections from a TLV firmware image. 8213 */ 8214 static int 8215 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 8216 uint16_t alt) 8217 { 8218 const struct iwn_fw_tlv_hdr *hdr; 8219 const struct iwn_fw_tlv *tlv; 8220 const uint8_t *ptr, *end; 8221 uint64_t altmask; 8222 uint32_t len, tmp; 8223 8224 if (fw->size < sizeof (*hdr)) { 8225 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8226 __func__, fw->size); 8227 return EINVAL; 8228 } 8229 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 8230 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 8231 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 8232 __func__, le32toh(hdr->signature)); 8233 return EINVAL; 8234 } 8235 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 8236 le32toh(hdr->build)); 8237 sc->ucode_rev = le32toh(hdr->rev); 8238 8239 /* 8240 * Select the closest supported alternative that is less than 8241 * or equal to the specified one. 8242 */ 8243 altmask = le64toh(hdr->altmask); 8244 while (alt > 0 && !(altmask & (1ULL << alt))) 8245 alt--; /* Downgrade. */ 8246 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 8247 8248 ptr = (const uint8_t *)(hdr + 1); 8249 end = (const uint8_t *)(fw->data + fw->size); 8250 8251 /* Parse type-length-value fields. */ 8252 while (ptr + sizeof (*tlv) <= end) { 8253 tlv = (const struct iwn_fw_tlv *)ptr; 8254 len = le32toh(tlv->len); 8255 8256 ptr += sizeof (*tlv); 8257 if (ptr + len > end) { 8258 device_printf(sc->sc_dev, 8259 "%s: firmware too short: %zu bytes\n", __func__, 8260 fw->size); 8261 return EINVAL; 8262 } 8263 /* Skip other alternatives. */ 8264 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 8265 goto next; 8266 8267 switch (le16toh(tlv->type)) { 8268 case IWN_FW_TLV_MAIN_TEXT: 8269 fw->main.text = ptr; 8270 fw->main.textsz = len; 8271 break; 8272 case IWN_FW_TLV_MAIN_DATA: 8273 fw->main.data = ptr; 8274 fw->main.datasz = len; 8275 break; 8276 case IWN_FW_TLV_INIT_TEXT: 8277 fw->init.text = ptr; 8278 fw->init.textsz = len; 8279 break; 8280 case IWN_FW_TLV_INIT_DATA: 8281 fw->init.data = ptr; 8282 fw->init.datasz = len; 8283 break; 8284 case IWN_FW_TLV_BOOT_TEXT: 8285 fw->boot.text = ptr; 8286 fw->boot.textsz = len; 8287 break; 8288 case IWN_FW_TLV_ENH_SENS: 8289 if (!len) 8290 sc->sc_flags |= IWN_FLAG_ENH_SENS; 8291 break; 8292 case IWN_FW_TLV_PHY_CALIB: 8293 tmp = le32toh(*ptr); 8294 if (tmp < 253) { 8295 sc->reset_noise_gain = tmp; 8296 sc->noise_gain = tmp + 1; 8297 } 8298 break; 8299 case IWN_FW_TLV_PAN: 8300 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 8301 DPRINTF(sc, IWN_DEBUG_RESET, 8302 "PAN Support found: %d\n", 1); 8303 break; 8304 case IWN_FW_TLV_FLAGS: 8305 if (len < sizeof(uint32_t)) 8306 break; 8307 if (len % sizeof(uint32_t)) 8308 break; 8309 sc->tlv_feature_flags = le32toh(*ptr); 8310 DPRINTF(sc, IWN_DEBUG_RESET, 8311 "%s: feature: 0x%08x\n", 8312 __func__, 8313 sc->tlv_feature_flags); 8314 break; 8315 case IWN_FW_TLV_PBREQ_MAXLEN: 8316 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 8317 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 8318 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 8319 case IWN_FW_TLV_INIT_EVTLOG_PTR: 8320 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 8321 case IWN_FW_TLV_INIT_ERRLOG_PTR: 8322 case IWN_FW_TLV_WOWLAN_INST: 8323 case IWN_FW_TLV_WOWLAN_DATA: 8324 DPRINTF(sc, IWN_DEBUG_RESET, 8325 "TLV type %d recognized but not handled\n", 8326 le16toh(tlv->type)); 8327 break; 8328 default: 8329 DPRINTF(sc, IWN_DEBUG_RESET, 8330 "TLV type %d not handled\n", le16toh(tlv->type)); 8331 break; 8332 } 8333 next: /* TLV fields are 32-bit aligned. */ 8334 ptr += (len + 3) & ~3; 8335 } 8336 return 0; 8337 } 8338 8339 static int 8340 iwn_read_firmware(struct iwn_softc *sc) 8341 { 8342 struct iwn_fw_info *fw = &sc->fw; 8343 int error; 8344 8345 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8346 8347 IWN_UNLOCK(sc); 8348 8349 memset(fw, 0, sizeof (*fw)); 8350 8351 /* Read firmware image from filesystem. */ 8352 sc->fw_fp = firmware_get(sc->fwname); 8353 if (sc->fw_fp == NULL) { 8354 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 8355 __func__, sc->fwname); 8356 IWN_LOCK(sc); 8357 return EINVAL; 8358 } 8359 IWN_LOCK(sc); 8360 8361 fw->size = sc->fw_fp->datasize; 8362 fw->data = (const uint8_t *)sc->fw_fp->data; 8363 if (fw->size < sizeof (uint32_t)) { 8364 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8365 __func__, fw->size); 8366 error = EINVAL; 8367 goto fail; 8368 } 8369 8370 /* Retrieve text and data sections. */ 8371 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 8372 error = iwn_read_firmware_leg(sc, fw); 8373 else 8374 error = iwn_read_firmware_tlv(sc, fw, 1); 8375 if (error != 0) { 8376 device_printf(sc->sc_dev, 8377 "%s: could not read firmware sections, error %d\n", 8378 __func__, error); 8379 goto fail; 8380 } 8381 8382 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); 8383 8384 /* Make sure text and data sections fit in hardware memory. */ 8385 if (fw->main.textsz > sc->fw_text_maxsz || 8386 fw->main.datasz > sc->fw_data_maxsz || 8387 fw->init.textsz > sc->fw_text_maxsz || 8388 fw->init.datasz > sc->fw_data_maxsz || 8389 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 8390 (fw->boot.textsz & 3) != 0) { 8391 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 8392 __func__); 8393 error = EINVAL; 8394 goto fail; 8395 } 8396 8397 /* We can proceed with loading the firmware. */ 8398 return 0; 8399 8400 fail: iwn_unload_firmware(sc); 8401 return error; 8402 } 8403 8404 static void 8405 iwn_unload_firmware(struct iwn_softc *sc) 8406 { 8407 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 8408 sc->fw_fp = NULL; 8409 } 8410 8411 static int 8412 iwn_clock_wait(struct iwn_softc *sc) 8413 { 8414 int ntries; 8415 8416 /* Set "initialization complete" bit. */ 8417 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8418 8419 /* Wait for clock stabilization. */ 8420 for (ntries = 0; ntries < 2500; ntries++) { 8421 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 8422 return 0; 8423 DELAY(10); 8424 } 8425 device_printf(sc->sc_dev, 8426 "%s: timeout waiting for clock stabilization\n", __func__); 8427 return ETIMEDOUT; 8428 } 8429 8430 static int 8431 iwn_apm_init(struct iwn_softc *sc) 8432 { 8433 uint32_t reg; 8434 int error; 8435 8436 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8437 8438 /* Disable L0s exit timer (NMI bug workaround). */ 8439 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 8440 /* Don't wait for ICH L0s (ICH bug workaround). */ 8441 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 8442 8443 /* Set FH wait threshold to max (HW bug under stress workaround). */ 8444 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 8445 8446 /* Enable HAP INTA to move adapter from L1a to L0s. */ 8447 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 8448 8449 /* Retrieve PCIe Active State Power Management (ASPM). */ 8450 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 8451 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 8452 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 8453 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8454 else 8455 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8456 8457 if (sc->base_params->pll_cfg_val) 8458 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); 8459 8460 /* Wait for clock stabilization before accessing prph. */ 8461 if ((error = iwn_clock_wait(sc)) != 0) 8462 return error; 8463 8464 if ((error = iwn_nic_lock(sc)) != 0) 8465 return error; 8466 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 8467 /* Enable DMA and BSM (Bootstrap State Machine). */ 8468 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8469 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 8470 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 8471 } else { 8472 /* Enable DMA. */ 8473 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8474 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8475 } 8476 DELAY(20); 8477 /* Disable L1-Active. */ 8478 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 8479 iwn_nic_unlock(sc); 8480 8481 return 0; 8482 } 8483 8484 static void 8485 iwn_apm_stop_master(struct iwn_softc *sc) 8486 { 8487 int ntries; 8488 8489 /* Stop busmaster DMA activity. */ 8490 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 8491 for (ntries = 0; ntries < 100; ntries++) { 8492 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 8493 return; 8494 DELAY(10); 8495 } 8496 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 8497 } 8498 8499 static void 8500 iwn_apm_stop(struct iwn_softc *sc) 8501 { 8502 iwn_apm_stop_master(sc); 8503 8504 /* Reset the entire device. */ 8505 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 8506 DELAY(10); 8507 /* Clear "initialization complete" bit. */ 8508 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8509 } 8510 8511 static int 8512 iwn4965_nic_config(struct iwn_softc *sc) 8513 { 8514 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8515 8516 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 8517 /* 8518 * I don't believe this to be correct but this is what the 8519 * vendor driver is doing. Probably the bits should not be 8520 * shifted in IWN_RFCFG_*. 8521 */ 8522 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8523 IWN_RFCFG_TYPE(sc->rfcfg) | 8524 IWN_RFCFG_STEP(sc->rfcfg) | 8525 IWN_RFCFG_DASH(sc->rfcfg)); 8526 } 8527 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8528 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8529 return 0; 8530 } 8531 8532 static int 8533 iwn5000_nic_config(struct iwn_softc *sc) 8534 { 8535 uint32_t tmp; 8536 int error; 8537 8538 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8539 8540 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 8541 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8542 IWN_RFCFG_TYPE(sc->rfcfg) | 8543 IWN_RFCFG_STEP(sc->rfcfg) | 8544 IWN_RFCFG_DASH(sc->rfcfg)); 8545 } 8546 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8547 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8548 8549 if ((error = iwn_nic_lock(sc)) != 0) 8550 return error; 8551 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 8552 8553 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 8554 /* 8555 * Select first Switching Voltage Regulator (1.32V) to 8556 * solve a stability issue related to noisy DC2DC line 8557 * in the silicon of 1000 Series. 8558 */ 8559 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 8560 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 8561 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 8562 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 8563 } 8564 iwn_nic_unlock(sc); 8565 8566 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 8567 /* Use internal power amplifier only. */ 8568 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 8569 } 8570 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { 8571 /* Indicate that ROM calibration version is >=6. */ 8572 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 8573 } 8574 if (sc->base_params->additional_gp_drv_bit) 8575 IWN_SETBITS(sc, IWN_GP_DRIVER, 8576 sc->base_params->additional_gp_drv_bit); 8577 return 0; 8578 } 8579 8580 /* 8581 * Take NIC ownership over Intel Active Management Technology (AMT). 8582 */ 8583 static int 8584 iwn_hw_prepare(struct iwn_softc *sc) 8585 { 8586 int ntries; 8587 8588 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8589 8590 /* Check if hardware is ready. */ 8591 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8592 for (ntries = 0; ntries < 5; ntries++) { 8593 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8594 IWN_HW_IF_CONFIG_NIC_READY) 8595 return 0; 8596 DELAY(10); 8597 } 8598 8599 /* Hardware not ready, force into ready state. */ 8600 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 8601 for (ntries = 0; ntries < 15000; ntries++) { 8602 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 8603 IWN_HW_IF_CONFIG_PREPARE_DONE)) 8604 break; 8605 DELAY(10); 8606 } 8607 if (ntries == 15000) 8608 return ETIMEDOUT; 8609 8610 /* Hardware should be ready now. */ 8611 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8612 for (ntries = 0; ntries < 5; ntries++) { 8613 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8614 IWN_HW_IF_CONFIG_NIC_READY) 8615 return 0; 8616 DELAY(10); 8617 } 8618 return ETIMEDOUT; 8619 } 8620 8621 static int 8622 iwn_hw_init(struct iwn_softc *sc) 8623 { 8624 struct iwn_ops *ops = &sc->ops; 8625 int error, chnl, qid; 8626 8627 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8628 8629 /* Clear pending interrupts. */ 8630 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8631 8632 if ((error = iwn_apm_init(sc)) != 0) { 8633 device_printf(sc->sc_dev, 8634 "%s: could not power ON adapter, error %d\n", __func__, 8635 error); 8636 return error; 8637 } 8638 8639 /* Select VMAIN power source. */ 8640 if ((error = iwn_nic_lock(sc)) != 0) 8641 return error; 8642 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 8643 iwn_nic_unlock(sc); 8644 8645 /* Perform adapter-specific initialization. */ 8646 if ((error = ops->nic_config(sc)) != 0) 8647 return error; 8648 8649 /* Initialize RX ring. */ 8650 if ((error = iwn_nic_lock(sc)) != 0) 8651 return error; 8652 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 8653 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 8654 /* Set physical address of RX ring (256-byte aligned). */ 8655 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 8656 /* Set physical address of RX status (16-byte aligned). */ 8657 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 8658 /* Enable RX. */ 8659 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 8660 IWN_FH_RX_CONFIG_ENA | 8661 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 8662 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 8663 IWN_FH_RX_CONFIG_SINGLE_FRAME | 8664 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 8665 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 8666 iwn_nic_unlock(sc); 8667 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 8668 8669 if ((error = iwn_nic_lock(sc)) != 0) 8670 return error; 8671 8672 /* Initialize TX scheduler. */ 8673 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8674 8675 /* Set physical address of "keep warm" page (16-byte aligned). */ 8676 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 8677 8678 /* Initialize TX rings. */ 8679 for (qid = 0; qid < sc->ntxqs; qid++) { 8680 struct iwn_tx_ring *txq = &sc->txq[qid]; 8681 8682 /* Set physical address of TX ring (256-byte aligned). */ 8683 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 8684 txq->desc_dma.paddr >> 8); 8685 } 8686 iwn_nic_unlock(sc); 8687 8688 /* Enable DMA channels. */ 8689 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8690 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 8691 IWN_FH_TX_CONFIG_DMA_ENA | 8692 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 8693 } 8694 8695 /* Clear "radio off" and "commands blocked" bits. */ 8696 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8697 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 8698 8699 /* Clear pending interrupts. */ 8700 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8701 /* Enable interrupt coalescing. */ 8702 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 8703 /* Enable interrupts. */ 8704 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8705 8706 /* _Really_ make sure "radio off" bit is cleared! */ 8707 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8708 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8709 8710 /* Enable shadow registers. */ 8711 if (sc->base_params->shadow_reg_enable) 8712 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 8713 8714 if ((error = ops->load_firmware(sc)) != 0) { 8715 device_printf(sc->sc_dev, 8716 "%s: could not load firmware, error %d\n", __func__, 8717 error); 8718 return error; 8719 } 8720 /* Wait at most one second for firmware alive notification. */ 8721 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8722 device_printf(sc->sc_dev, 8723 "%s: timeout waiting for adapter to initialize, error %d\n", 8724 __func__, error); 8725 return error; 8726 } 8727 /* Do post-firmware initialization. */ 8728 8729 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8730 8731 return ops->post_alive(sc); 8732 } 8733 8734 static void 8735 iwn_hw_stop(struct iwn_softc *sc) 8736 { 8737 int chnl, qid, ntries; 8738 8739 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8740 8741 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 8742 8743 /* Disable interrupts. */ 8744 IWN_WRITE(sc, IWN_INT_MASK, 0); 8745 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8746 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 8747 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8748 8749 /* Make sure we no longer hold the NIC lock. */ 8750 iwn_nic_unlock(sc); 8751 8752 /* Stop TX scheduler. */ 8753 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8754 8755 /* Stop all DMA channels. */ 8756 if (iwn_nic_lock(sc) == 0) { 8757 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8758 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 8759 for (ntries = 0; ntries < 200; ntries++) { 8760 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 8761 IWN_FH_TX_STATUS_IDLE(chnl)) 8762 break; 8763 DELAY(10); 8764 } 8765 } 8766 iwn_nic_unlock(sc); 8767 } 8768 8769 /* Stop RX ring. */ 8770 iwn_reset_rx_ring(sc, &sc->rxq); 8771 8772 /* Reset all TX rings. */ 8773 for (qid = 0; qid < sc->ntxqs; qid++) 8774 iwn_reset_tx_ring(sc, &sc->txq[qid]); 8775 8776 if (iwn_nic_lock(sc) == 0) { 8777 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 8778 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8779 iwn_nic_unlock(sc); 8780 } 8781 DELAY(5); 8782 /* Power OFF adapter. */ 8783 iwn_apm_stop(sc); 8784 } 8785 8786 static void 8787 iwn_panicked(void *arg0, int pending) 8788 { 8789 struct iwn_softc *sc = arg0; 8790 struct ieee80211com *ic = &sc->sc_ic; 8791 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8792 #if 0 8793 int error; 8794 #endif 8795 8796 if (vap == NULL) { 8797 printf("%s: null vap\n", __func__); 8798 return; 8799 } 8800 8801 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 8802 "restarting\n", __func__, vap->iv_state); 8803 8804 /* 8805 * This is not enough work. We need to also reinitialise 8806 * the correct transmit state for aggregation enabled queues, 8807 * which has a very specific requirement of 8808 * ring index = 802.11 seqno % 256. If we don't do this (which 8809 * we definitely don't!) then the firmware will just panic again. 8810 */ 8811 #if 1 8812 ieee80211_restart_all(ic); 8813 #else 8814 IWN_LOCK(sc); 8815 8816 iwn_stop_locked(sc); 8817 if ((error = iwn_init_locked(sc)) != 0) { 8818 device_printf(sc->sc_dev, 8819 "%s: could not init hardware\n", __func__); 8820 goto unlock; 8821 } 8822 if (vap->iv_state >= IEEE80211_S_AUTH && 8823 (error = iwn_auth(sc, vap)) != 0) { 8824 device_printf(sc->sc_dev, 8825 "%s: could not move to auth state\n", __func__); 8826 } 8827 if (vap->iv_state >= IEEE80211_S_RUN && 8828 (error = iwn_run(sc, vap)) != 0) { 8829 device_printf(sc->sc_dev, 8830 "%s: could not move to run state\n", __func__); 8831 } 8832 8833 unlock: 8834 IWN_UNLOCK(sc); 8835 #endif 8836 } 8837 8838 static int 8839 iwn_init_locked(struct iwn_softc *sc) 8840 { 8841 int error; 8842 8843 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8844 8845 IWN_LOCK_ASSERT(sc); 8846 8847 if (sc->sc_flags & IWN_FLAG_RUNNING) 8848 goto end; 8849 8850 sc->sc_flags |= IWN_FLAG_RUNNING; 8851 8852 if ((error = iwn_hw_prepare(sc)) != 0) { 8853 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 8854 __func__, error); 8855 goto fail; 8856 } 8857 8858 /* Initialize interrupt mask to default value. */ 8859 sc->int_mask = IWN_INT_MASK_DEF; 8860 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8861 8862 /* Check that the radio is not disabled by hardware switch. */ 8863 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 8864 error = EAGAIN; 8865 goto fail; 8866 } 8867 8868 /* Read firmware images from the filesystem. */ 8869 if ((error = iwn_read_firmware(sc)) != 0) { 8870 device_printf(sc->sc_dev, 8871 "%s: could not read firmware, error %d\n", __func__, 8872 error); 8873 goto fail; 8874 } 8875 8876 /* Initialize hardware and upload firmware. */ 8877 error = iwn_hw_init(sc); 8878 iwn_unload_firmware(sc); 8879 if (error != 0) { 8880 device_printf(sc->sc_dev, 8881 "%s: could not initialize hardware, error %d\n", __func__, 8882 error); 8883 goto fail; 8884 } 8885 8886 /* Configure adapter now that it is ready. */ 8887 if ((error = iwn_config(sc)) != 0) { 8888 device_printf(sc->sc_dev, 8889 "%s: could not configure device, error %d\n", __func__, 8890 error); 8891 goto fail; 8892 } 8893 8894 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 8895 8896 end: 8897 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8898 8899 return (0); 8900 8901 fail: 8902 iwn_stop_locked(sc); 8903 8904 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 8905 8906 return (error); 8907 } 8908 8909 static int 8910 iwn_init(struct iwn_softc *sc) 8911 { 8912 int error; 8913 8914 IWN_LOCK(sc); 8915 error = iwn_init_locked(sc); 8916 IWN_UNLOCK(sc); 8917 8918 return (error); 8919 } 8920 8921 static void 8922 iwn_stop_locked(struct iwn_softc *sc) 8923 { 8924 8925 IWN_LOCK_ASSERT(sc); 8926 8927 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) 8928 return; 8929 8930 sc->sc_is_scanning = 0; 8931 sc->sc_tx_timer = 0; 8932 callout_stop(&sc->watchdog_to); 8933 callout_stop(&sc->scan_timeout); 8934 callout_stop(&sc->calib_to); 8935 sc->sc_flags &= ~IWN_FLAG_RUNNING; 8936 8937 /* Power OFF hardware. */ 8938 iwn_hw_stop(sc); 8939 } 8940 8941 static void 8942 iwn_stop(struct iwn_softc *sc) 8943 { 8944 IWN_LOCK(sc); 8945 iwn_stop_locked(sc); 8946 IWN_UNLOCK(sc); 8947 } 8948 8949 /* 8950 * Callback from net80211 to start a scan. 8951 */ 8952 static void 8953 iwn_scan_start(struct ieee80211com *ic) 8954 { 8955 struct iwn_softc *sc = ic->ic_softc; 8956 8957 IWN_LOCK(sc); 8958 /* make the link LED blink while we're scanning */ 8959 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 8960 IWN_UNLOCK(sc); 8961 } 8962 8963 /* 8964 * Callback from net80211 to terminate a scan. 8965 */ 8966 static void 8967 iwn_scan_end(struct ieee80211com *ic) 8968 { 8969 struct iwn_softc *sc = ic->ic_softc; 8970 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8971 8972 IWN_LOCK(sc); 8973 if (vap->iv_state == IEEE80211_S_RUN) { 8974 /* Set link LED to ON status if we are associated */ 8975 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 8976 } 8977 IWN_UNLOCK(sc); 8978 } 8979 8980 /* 8981 * Callback from net80211 to force a channel change. 8982 */ 8983 static void 8984 iwn_set_channel(struct ieee80211com *ic) 8985 { 8986 const struct ieee80211_channel *c = ic->ic_curchan; 8987 struct iwn_softc *sc = ic->ic_softc; 8988 int error; 8989 8990 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8991 8992 IWN_LOCK(sc); 8993 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 8994 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 8995 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 8996 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 8997 8998 /* 8999 * Only need to set the channel in Monitor mode. AP scanning and auth 9000 * are already taken care of by their respective firmware commands. 9001 */ 9002 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 9003 error = iwn_config(sc); 9004 if (error != 0) 9005 device_printf(sc->sc_dev, 9006 "%s: error %d settting channel\n", __func__, error); 9007 } 9008 IWN_UNLOCK(sc); 9009 } 9010 9011 /* 9012 * Callback from net80211 to start scanning of the current channel. 9013 */ 9014 static void 9015 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 9016 { 9017 struct ieee80211vap *vap = ss->ss_vap; 9018 struct ieee80211com *ic = vap->iv_ic; 9019 struct iwn_softc *sc = ic->ic_softc; 9020 int error; 9021 9022 IWN_LOCK(sc); 9023 error = iwn_scan(sc, vap, ss, ic->ic_curchan); 9024 IWN_UNLOCK(sc); 9025 if (error != 0) 9026 ieee80211_cancel_scan(vap); 9027 } 9028 9029 /* 9030 * Callback from net80211 to handle the minimum dwell time being met. 9031 * The intent is to terminate the scan but we just let the firmware 9032 * notify us when it's finished as we have no safe way to abort it. 9033 */ 9034 static void 9035 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 9036 { 9037 /* NB: don't try to abort scan; wait for firmware to finish */ 9038 } 9039 #ifdef IWN_DEBUG 9040 #define IWN_DESC(x) case x: return #x 9041 9042 /* 9043 * Translate CSR code to string 9044 */ 9045 static char *iwn_get_csr_string(int csr) 9046 { 9047 switch (csr) { 9048 IWN_DESC(IWN_HW_IF_CONFIG); 9049 IWN_DESC(IWN_INT_COALESCING); 9050 IWN_DESC(IWN_INT); 9051 IWN_DESC(IWN_INT_MASK); 9052 IWN_DESC(IWN_FH_INT); 9053 IWN_DESC(IWN_GPIO_IN); 9054 IWN_DESC(IWN_RESET); 9055 IWN_DESC(IWN_GP_CNTRL); 9056 IWN_DESC(IWN_HW_REV); 9057 IWN_DESC(IWN_EEPROM); 9058 IWN_DESC(IWN_EEPROM_GP); 9059 IWN_DESC(IWN_OTP_GP); 9060 IWN_DESC(IWN_GIO); 9061 IWN_DESC(IWN_GP_UCODE); 9062 IWN_DESC(IWN_GP_DRIVER); 9063 IWN_DESC(IWN_UCODE_GP1); 9064 IWN_DESC(IWN_UCODE_GP2); 9065 IWN_DESC(IWN_LED); 9066 IWN_DESC(IWN_DRAM_INT_TBL); 9067 IWN_DESC(IWN_GIO_CHICKEN); 9068 IWN_DESC(IWN_ANA_PLL); 9069 IWN_DESC(IWN_HW_REV_WA); 9070 IWN_DESC(IWN_DBG_HPET_MEM); 9071 default: 9072 return "UNKNOWN CSR"; 9073 } 9074 } 9075 9076 /* 9077 * This function print firmware register 9078 */ 9079 static void 9080 iwn_debug_register(struct iwn_softc *sc) 9081 { 9082 int i; 9083 static const uint32_t csr_tbl[] = { 9084 IWN_HW_IF_CONFIG, 9085 IWN_INT_COALESCING, 9086 IWN_INT, 9087 IWN_INT_MASK, 9088 IWN_FH_INT, 9089 IWN_GPIO_IN, 9090 IWN_RESET, 9091 IWN_GP_CNTRL, 9092 IWN_HW_REV, 9093 IWN_EEPROM, 9094 IWN_EEPROM_GP, 9095 IWN_OTP_GP, 9096 IWN_GIO, 9097 IWN_GP_UCODE, 9098 IWN_GP_DRIVER, 9099 IWN_UCODE_GP1, 9100 IWN_UCODE_GP2, 9101 IWN_LED, 9102 IWN_DRAM_INT_TBL, 9103 IWN_GIO_CHICKEN, 9104 IWN_ANA_PLL, 9105 IWN_HW_REV_WA, 9106 IWN_DBG_HPET_MEM, 9107 }; 9108 DPRINTF(sc, IWN_DEBUG_REGISTER, 9109 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 9110 "\n"); 9111 for (i = 0; i < nitems(csr_tbl); i++){ 9112 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 9113 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 9114 if ((i+1) % 3 == 0) 9115 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9116 } 9117 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9118 } 9119 #endif 9120 9121 9122