xref: /freebsd/sys/dev/iwn/if_iwn.c (revision f0157ce528a128e2abb181a5c766033a2ce49a5f)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_wlan.h"
30 
31 #include <sys/param.h>
32 #include <sys/sockio.h>
33 #include <sys/sysctl.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/bus.h>
40 #include <sys/rman.h>
41 #include <sys/endian.h>
42 #include <sys/firmware.h>
43 #include <sys/limits.h>
44 #include <sys/module.h>
45 #include <sys/queue.h>
46 #include <sys/taskqueue.h>
47 
48 #include <machine/bus.h>
49 #include <machine/resource.h>
50 #include <machine/clock.h>
51 
52 #include <dev/pci/pcireg.h>
53 #include <dev/pci/pcivar.h>
54 
55 #include <net/bpf.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/ethernet.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_types.h>
62 
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/if_ether.h>
67 #include <netinet/ip.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_radiotap.h>
71 #include <net80211/ieee80211_regdomain.h>
72 #include <net80211/ieee80211_ratectl.h>
73 
74 #include <dev/iwn/if_iwnreg.h>
75 #include <dev/iwn/if_iwnvar.h>
76 
77 struct iwn_ident {
78 	uint16_t	vendor;
79 	uint16_t	device;
80 	const char	*name;
81 };
82 
83 static const struct iwn_ident iwn_ident_table[] = {
84 	{ 0x8086, 0x0082, "Intel Centrino Advanced-N 6205"		},
85 	{ 0x8086, 0x0083, "Intel Centrino Wireless-N 1000"		},
86 	{ 0x8086, 0x0084, "Intel Centrino Wireless-N 1000"		},
87 	{ 0x8086, 0x0085, "Intel Centrino Advanced-N 6205"		},
88 	{ 0x8086, 0x0087, "Intel Centrino Advanced-N + WiMAX 6250"	},
89 	{ 0x8086, 0x0089, "Intel Centrino Advanced-N + WiMAX 6250"	},
90 	{ 0x8086, 0x008a, "Intel Centrino Wireless-N 1030"		},
91 	{ 0x8086, 0x008b, "Intel Centrino Wireless-N 1030"		},
92 	{ 0x8086, 0x0090, "Intel Centrino Advanced-N 6230"		},
93 	{ 0x8086, 0x0091, "Intel Centrino Advanced-N 6230"		},
94 	{ 0x8086, 0x0885, "Intel Centrino Wireless-N + WiMAX 6150"	},
95 	{ 0x8086, 0x0886, "Intel Centrino Wireless-N + WiMAX 6150"	},
96 	{ 0x8086, 0x0896, "Intel Centrino Wireless-N 130"		},
97 	{ 0x8086, 0x0897, "Intel Centrino Wireless-N 130"		},
98 	{ 0x8086, 0x08ae, "Intel Centrino Wireless-N 100"		},
99 	{ 0x8086, 0x08af, "Intel Centrino Wireless-N 100"		},
100 	{ 0x8086, 0x4229, "Intel Wireless WiFi Link 4965"		},
101 	{ 0x8086, 0x422b, "Intel Centrino Ultimate-N 6300"		},
102 	{ 0x8086, 0x422c, "Intel Centrino Advanced-N 6200"		},
103 	{ 0x8086, 0x422d, "Intel Wireless WiFi Link 4965"		},
104 	{ 0x8086, 0x4230, "Intel Wireless WiFi Link 4965"		},
105 	{ 0x8086, 0x4232, "Intel WiFi Link 5100"			},
106 	{ 0x8086, 0x4233, "Intel Wireless WiFi Link 4965"		},
107 	{ 0x8086, 0x4235, "Intel Ultimate N WiFi Link 5300"		},
108 	{ 0x8086, 0x4236, "Intel Ultimate N WiFi Link 5300"		},
109 	{ 0x8086, 0x4237, "Intel WiFi Link 5100"			},
110 	{ 0x8086, 0x4238, "Intel Centrino Ultimate-N 6300"		},
111 	{ 0x8086, 0x4239, "Intel Centrino Advanced-N 6200"		},
112 	{ 0x8086, 0x423a, "Intel WiMAX/WiFi Link 5350"			},
113 	{ 0x8086, 0x423b, "Intel WiMAX/WiFi Link 5350"			},
114 	{ 0x8086, 0x423c, "Intel WiMAX/WiFi Link 5150"			},
115 	{ 0x8086, 0x423d, "Intel WiMAX/WiFi Link 5150"			},
116 	{ 0, 0, NULL }
117 };
118 
119 static int	iwn_probe(device_t);
120 static int	iwn_attach(device_t);
121 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
122 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
123 static void	iwn_radiotap_attach(struct iwn_softc *);
124 static void	iwn_sysctlattach(struct iwn_softc *);
125 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
126 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
127 		    const uint8_t [IEEE80211_ADDR_LEN],
128 		    const uint8_t [IEEE80211_ADDR_LEN]);
129 static void	iwn_vap_delete(struct ieee80211vap *);
130 static int	iwn_detach(device_t);
131 static int	iwn_shutdown(device_t);
132 static int	iwn_suspend(device_t);
133 static int	iwn_resume(device_t);
134 static int	iwn_nic_lock(struct iwn_softc *);
135 static int	iwn_eeprom_lock(struct iwn_softc *);
136 static int	iwn_init_otprom(struct iwn_softc *);
137 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
138 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
139 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
140 		    void **, bus_size_t, bus_size_t);
141 static void	iwn_dma_contig_free(struct iwn_dma_info *);
142 static int	iwn_alloc_sched(struct iwn_softc *);
143 static void	iwn_free_sched(struct iwn_softc *);
144 static int	iwn_alloc_kw(struct iwn_softc *);
145 static void	iwn_free_kw(struct iwn_softc *);
146 static int	iwn_alloc_ict(struct iwn_softc *);
147 static void	iwn_free_ict(struct iwn_softc *);
148 static int	iwn_alloc_fwmem(struct iwn_softc *);
149 static void	iwn_free_fwmem(struct iwn_softc *);
150 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
151 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
152 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
153 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
154 		    int);
155 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
156 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
157 static void	iwn5000_ict_reset(struct iwn_softc *);
158 static int	iwn_read_eeprom(struct iwn_softc *,
159 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
160 static void	iwn4965_read_eeprom(struct iwn_softc *);
161 static void	iwn4965_print_power_group(struct iwn_softc *, int);
162 static void	iwn5000_read_eeprom(struct iwn_softc *);
163 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
164 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
165 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
166 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
167 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
168 		    struct ieee80211_channel *);
169 static int	iwn_setregdomain(struct ieee80211com *,
170 		    struct ieee80211_regdomain *, int,
171 		    struct ieee80211_channel[]);
172 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
173 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
174 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
175 static void	iwn_newassoc(struct ieee80211_node *, int);
176 static int	iwn_media_change(struct ifnet *);
177 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178 static void	iwn_calib_timeout(void *);
179 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
184 		    struct iwn_rx_data *);
185 static void	iwn5000_rx_calib_results(struct iwn_softc *,
186 		    struct iwn_rx_desc *, struct iwn_rx_data *);
187 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
188 		    struct iwn_rx_data *);
189 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 		    struct iwn_rx_data *);
191 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
192 		    struct iwn_rx_data *);
193 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
194 		    uint8_t);
195 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
196 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
197 static void	iwn_notif_intr(struct iwn_softc *);
198 static void	iwn_wakeup_intr(struct iwn_softc *);
199 static void	iwn_rftoggle_intr(struct iwn_softc *);
200 static void	iwn_fatal_intr(struct iwn_softc *);
201 static void	iwn_intr(void *);
202 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
203 		    uint16_t);
204 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
205 		    uint16_t);
206 #ifdef notyet
207 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
208 #endif
209 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
210 		    struct ieee80211_node *);
211 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
212 		    struct ieee80211_node *,
213 		    const struct ieee80211_bpf_params *params);
214 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
215 		    const struct ieee80211_bpf_params *);
216 static void	iwn_start(struct ifnet *);
217 static void	iwn_start_locked(struct ifnet *);
218 static void	iwn_watchdog(void *);
219 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
220 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
221 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
222 		    int);
223 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
224 		    int);
225 static int	iwn_set_link_quality(struct iwn_softc *,
226 		    struct ieee80211_node *);
227 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
228 static int	iwn_updateedca(struct ieee80211com *);
229 static void	iwn_update_mcast(struct ifnet *);
230 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
231 static int	iwn_set_critical_temp(struct iwn_softc *);
232 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
233 static void	iwn4965_power_calibration(struct iwn_softc *, int);
234 static int	iwn4965_set_txpower(struct iwn_softc *,
235 		    struct ieee80211_channel *, int);
236 static int	iwn5000_set_txpower(struct iwn_softc *,
237 		    struct ieee80211_channel *, int);
238 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
239 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
240 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
241 static int	iwn4965_get_temperature(struct iwn_softc *);
242 static int	iwn5000_get_temperature(struct iwn_softc *);
243 static int	iwn_init_sensitivity(struct iwn_softc *);
244 static void	iwn_collect_noise(struct iwn_softc *,
245 		    const struct iwn_rx_general_stats *);
246 static int	iwn4965_init_gains(struct iwn_softc *);
247 static int	iwn5000_init_gains(struct iwn_softc *);
248 static int	iwn4965_set_gains(struct iwn_softc *);
249 static int	iwn5000_set_gains(struct iwn_softc *);
250 static void	iwn_tune_sensitivity(struct iwn_softc *,
251 		    const struct iwn_rx_stats *);
252 static int	iwn_send_sensitivity(struct iwn_softc *);
253 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
254 static int	iwn_send_btcoex(struct iwn_softc *);
255 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
256 static int	iwn5000_runtime_calib(struct iwn_softc *);
257 static int	iwn_config(struct iwn_softc *);
258 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
259 static int	iwn_scan(struct iwn_softc *);
260 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
261 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
262 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
263 		    struct ieee80211_rx_ampdu *, int, int, int);
264 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
265 		    struct ieee80211_rx_ampdu *);
266 static int	iwn_addba_request(struct ieee80211_node *,
267 		    struct ieee80211_tx_ampdu *, int, int, int);
268 static int	iwn_addba_response(struct ieee80211_node *,
269 		    struct ieee80211_tx_ampdu *, int, int, int);
270 static int	iwn_ampdu_tx_start(struct ieee80211com *,
271 		    struct ieee80211_node *, uint8_t);
272 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
273 		    struct ieee80211_tx_ampdu *);
274 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
275 		    struct ieee80211_node *, int, uint8_t, uint16_t);
276 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
277 		    uint8_t, uint16_t);
278 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
279 		    struct ieee80211_node *, int, uint8_t, uint16_t);
280 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
281 		    uint8_t, uint16_t);
282 static int	iwn5000_query_calibration(struct iwn_softc *);
283 static int	iwn5000_send_calibration(struct iwn_softc *);
284 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
285 static int	iwn5000_crystal_calib(struct iwn_softc *);
286 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
287 static int	iwn4965_post_alive(struct iwn_softc *);
288 static int	iwn5000_post_alive(struct iwn_softc *);
289 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
290 		    int);
291 static int	iwn4965_load_firmware(struct iwn_softc *);
292 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
293 		    const uint8_t *, int);
294 static int	iwn5000_load_firmware(struct iwn_softc *);
295 static int	iwn_read_firmware_leg(struct iwn_softc *,
296 		    struct iwn_fw_info *);
297 static int	iwn_read_firmware_tlv(struct iwn_softc *,
298 		    struct iwn_fw_info *, uint16_t);
299 static int	iwn_read_firmware(struct iwn_softc *);
300 static int	iwn_clock_wait(struct iwn_softc *);
301 static int	iwn_apm_init(struct iwn_softc *);
302 static void	iwn_apm_stop_master(struct iwn_softc *);
303 static void	iwn_apm_stop(struct iwn_softc *);
304 static int	iwn4965_nic_config(struct iwn_softc *);
305 static int	iwn5000_nic_config(struct iwn_softc *);
306 static int	iwn_hw_prepare(struct iwn_softc *);
307 static int	iwn_hw_init(struct iwn_softc *);
308 static void	iwn_hw_stop(struct iwn_softc *);
309 static void	iwn_radio_on(void *, int);
310 static void	iwn_radio_off(void *, int);
311 static void	iwn_init_locked(struct iwn_softc *);
312 static void	iwn_init(void *);
313 static void	iwn_stop_locked(struct iwn_softc *);
314 static void	iwn_stop(struct iwn_softc *);
315 static void	iwn_scan_start(struct ieee80211com *);
316 static void	iwn_scan_end(struct ieee80211com *);
317 static void	iwn_set_channel(struct ieee80211com *);
318 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
319 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
320 static void	iwn_hw_reset(void *, int);
321 
322 #define IWN_DEBUG
323 #ifdef IWN_DEBUG
324 enum {
325 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
326 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
327 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
328 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
329 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
330 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
331 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
332 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
333 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
334 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
335 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
336 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
337 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
338 	IWN_DEBUG_TXRATE	= 0x00002000,	/* TX rate debugging */
339 	IWN_DEBUG_PWRSAVE	= 0x00004000,	/* Power save operations */
340 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
341 	IWN_DEBUG_ANY		= 0xffffffff
342 };
343 
344 #define DPRINTF(sc, m, fmt, ...) do {			\
345 	if (sc->sc_debug & (m))				\
346 		printf(fmt, __VA_ARGS__);		\
347 } while (0)
348 
349 static const char *
350 iwn_intr_str(uint8_t cmd)
351 {
352 	switch (cmd) {
353 	/* Notifications */
354 	case IWN_UC_READY:		return "UC_READY";
355 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
356 	case IWN_TX_DONE:		return "TX_DONE";
357 	case IWN_START_SCAN:		return "START_SCAN";
358 	case IWN_STOP_SCAN:		return "STOP_SCAN";
359 	case IWN_RX_STATISTICS:		return "RX_STATS";
360 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
361 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
362 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
363 	case IWN_RX_PHY:		return "RX_PHY";
364 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
365 	case IWN_RX_DONE:		return "RX_DONE";
366 
367 	/* Command Notifications */
368 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
369 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
370 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
371 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
372 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
373 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
374 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
375 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
376 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
377 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
378 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
379 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
380 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
381 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
382 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
383 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
384 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
385 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
386 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
387 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
388 	}
389 	return "UNKNOWN INTR NOTIF/CMD";
390 }
391 #else
392 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
393 #endif
394 
395 static device_method_t iwn_methods[] = {
396 	/* Device interface */
397 	DEVMETHOD(device_probe,		iwn_probe),
398 	DEVMETHOD(device_attach,	iwn_attach),
399 	DEVMETHOD(device_detach,	iwn_detach),
400 	DEVMETHOD(device_shutdown,	iwn_shutdown),
401 	DEVMETHOD(device_suspend,	iwn_suspend),
402 	DEVMETHOD(device_resume,	iwn_resume),
403 	{ 0, 0 }
404 };
405 
406 static driver_t iwn_driver = {
407 	"iwn",
408 	iwn_methods,
409 	sizeof(struct iwn_softc)
410 };
411 static devclass_t iwn_devclass;
412 
413 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
414 
415 MODULE_VERSION(iwn, 1);
416 
417 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
418 MODULE_DEPEND(iwn, pci, 1, 1, 1);
419 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
420 
421 static int
422 iwn_probe(device_t dev)
423 {
424 	const struct iwn_ident *ident;
425 
426 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
427 		if (pci_get_vendor(dev) == ident->vendor &&
428 		    pci_get_device(dev) == ident->device) {
429 			device_set_desc(dev, ident->name);
430 			return 0;
431 		}
432 	}
433 	return ENXIO;
434 }
435 
436 static int
437 iwn_attach(device_t dev)
438 {
439 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
440 	struct ieee80211com *ic;
441 	struct ifnet *ifp;
442 	uint32_t reg;
443 	int i, error, result;
444 	uint8_t macaddr[IEEE80211_ADDR_LEN];
445 
446 	sc->sc_dev = dev;
447 
448 	/*
449 	 * Get the offset of the PCI Express Capability Structure in PCI
450 	 * Configuration Space.
451 	 */
452 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
453 	if (error != 0) {
454 		device_printf(dev, "PCIe capability structure not found!\n");
455 		return error;
456 	}
457 
458 	/* Clear device-specific "PCI retry timeout" register (41h). */
459 	pci_write_config(dev, 0x41, 0, 1);
460 
461 	/* Hardware bug workaround. */
462 	reg = pci_read_config(dev, PCIR_COMMAND, 1);
463 	if (reg & PCIM_CMD_INTxDIS) {
464 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
465 		    __func__);
466 		reg &= ~PCIM_CMD_INTxDIS;
467 		pci_write_config(dev, PCIR_COMMAND, reg, 1);
468 	}
469 
470 	/* Enable bus-mastering. */
471 	pci_enable_busmaster(dev);
472 
473 	sc->mem_rid = PCIR_BAR(0);
474 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
475 	    RF_ACTIVE);
476 	if (sc->mem == NULL) {
477 		device_printf(dev, "can't map mem space\n");
478 		error = ENOMEM;
479 		return error;
480 	}
481 	sc->sc_st = rman_get_bustag(sc->mem);
482 	sc->sc_sh = rman_get_bushandle(sc->mem);
483 
484 	sc->irq_rid = 0;
485 	if ((result = pci_msi_count(dev)) == 1 &&
486 	    pci_alloc_msi(dev, &result) == 0)
487 		sc->irq_rid = 1;
488 	/* Install interrupt handler. */
489 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
490 	    RF_ACTIVE | RF_SHAREABLE);
491 	if (sc->irq == NULL) {
492 		device_printf(dev, "can't map interrupt\n");
493 		error = ENOMEM;
494 		goto fail;
495 	}
496 
497 	IWN_LOCK_INIT(sc);
498 
499 	/* Read hardware revision and attach. */
500 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
501 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
502 		error = iwn4965_attach(sc, pci_get_device(dev));
503 	else
504 		error = iwn5000_attach(sc, pci_get_device(dev));
505 	if (error != 0) {
506 		device_printf(dev, "could not attach device, error %d\n",
507 		    error);
508 		goto fail;
509 	}
510 
511 	if ((error = iwn_hw_prepare(sc)) != 0) {
512 		device_printf(dev, "hardware not ready, error %d\n", error);
513 		goto fail;
514 	}
515 
516 	/* Allocate DMA memory for firmware transfers. */
517 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
518 		device_printf(dev,
519 		    "could not allocate memory for firmware, error %d\n",
520 		    error);
521 		goto fail;
522 	}
523 
524 	/* Allocate "Keep Warm" page. */
525 	if ((error = iwn_alloc_kw(sc)) != 0) {
526 		device_printf(dev,
527 		    "could not allocate keep warm page, error %d\n", error);
528 		goto fail;
529 	}
530 
531 	/* Allocate ICT table for 5000 Series. */
532 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
533 	    (error = iwn_alloc_ict(sc)) != 0) {
534 		device_printf(dev, "could not allocate ICT table, error %d\n",
535 		    error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX scheduler "rings". */
540 	if ((error = iwn_alloc_sched(sc)) != 0) {
541 		device_printf(dev,
542 		    "could not allocate TX scheduler rings, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
547 	for (i = 0; i < sc->ntxqs; i++) {
548 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
549 			device_printf(dev,
550 			    "could not allocate TX ring %d, error %d\n", i,
551 			    error);
552 			goto fail;
553 		}
554 	}
555 
556 	/* Allocate RX ring. */
557 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
558 		device_printf(dev, "could not allocate RX ring, error %d\n",
559 		    error);
560 		goto fail;
561 	}
562 
563 	/* Clear pending interrupts. */
564 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
565 
566 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
567 	if (ifp == NULL) {
568 		device_printf(dev, "can not allocate ifnet structure\n");
569 		goto fail;
570 	}
571 
572 	ic = ifp->if_l2com;
573 	ic->ic_ifp = ifp;
574 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
575 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
576 
577 	/* Set device capabilities. */
578 	ic->ic_caps =
579 		  IEEE80211_C_STA		/* station mode supported */
580 		| IEEE80211_C_MONITOR		/* monitor mode supported */
581 		| IEEE80211_C_BGSCAN		/* background scanning */
582 		| IEEE80211_C_TXPMGT		/* tx power management */
583 		| IEEE80211_C_SHSLOT		/* short slot time supported */
584 		| IEEE80211_C_WPA
585 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
586 #if 0
587 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
588 #endif
589 		| IEEE80211_C_WME		/* WME */
590 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
591 		;
592 
593 	/* Read MAC address, channels, etc from EEPROM. */
594 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
595 		device_printf(dev, "could not read EEPROM, error %d\n",
596 		    error);
597 		goto fail;
598 	}
599 
600 	/* Count the number of available chains. */
601 	sc->ntxchains =
602 	    ((sc->txchainmask >> 2) & 1) +
603 	    ((sc->txchainmask >> 1) & 1) +
604 	    ((sc->txchainmask >> 0) & 1);
605 	sc->nrxchains =
606 	    ((sc->rxchainmask >> 2) & 1) +
607 	    ((sc->rxchainmask >> 1) & 1) +
608 	    ((sc->rxchainmask >> 0) & 1);
609 	if (bootverbose) {
610 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
611 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
612 		    macaddr, ":");
613 	}
614 
615 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
616 		ic->ic_rxstream = sc->nrxchains;
617 		ic->ic_txstream = sc->ntxchains;
618 		ic->ic_htcaps =
619 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
620 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
621 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
622 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
623 #ifdef notyet
624 			| IEEE80211_HTCAP_GREENFIELD
625 #if IWN_RBUF_SIZE == 8192
626 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
627 #else
628 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
629 #endif
630 #endif
631 			/* s/w capabilities */
632 			| IEEE80211_HTC_HT		/* HT operation */
633 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
634 #ifdef notyet
635 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
636 #endif
637 			;
638 	}
639 
640 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
641 	ifp->if_softc = sc;
642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_init = iwn_init;
644 	ifp->if_ioctl = iwn_ioctl;
645 	ifp->if_start = iwn_start;
646 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
647 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
648 	IFQ_SET_READY(&ifp->if_snd);
649 
650 	ieee80211_ifattach(ic, macaddr);
651 	ic->ic_vap_create = iwn_vap_create;
652 	ic->ic_vap_delete = iwn_vap_delete;
653 	ic->ic_raw_xmit = iwn_raw_xmit;
654 	ic->ic_node_alloc = iwn_node_alloc;
655 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
656 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
657 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
658 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
659 	sc->sc_addba_request = ic->ic_addba_request;
660 	ic->ic_addba_request = iwn_addba_request;
661 	sc->sc_addba_response = ic->ic_addba_response;
662 	ic->ic_addba_response = iwn_addba_response;
663 	sc->sc_addba_stop = ic->ic_addba_stop;
664 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
665 	ic->ic_newassoc = iwn_newassoc;
666 	ic->ic_wme.wme_update = iwn_updateedca;
667 	ic->ic_update_mcast = iwn_update_mcast;
668 	ic->ic_scan_start = iwn_scan_start;
669 	ic->ic_scan_end = iwn_scan_end;
670 	ic->ic_set_channel = iwn_set_channel;
671 	ic->ic_scan_curchan = iwn_scan_curchan;
672 	ic->ic_scan_mindwell = iwn_scan_mindwell;
673 	ic->ic_setregdomain = iwn_setregdomain;
674 
675 	iwn_radiotap_attach(sc);
676 
677 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
678 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
679 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
680 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
681 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
682 
683 	iwn_sysctlattach(sc);
684 
685 	/*
686 	 * Hook our interrupt after all initialization is complete.
687 	 */
688 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
689 	    NULL, iwn_intr, sc, &sc->sc_ih);
690 	if (error != 0) {
691 		device_printf(dev, "can't establish interrupt, error %d\n",
692 		    error);
693 		goto fail;
694 	}
695 
696 	if (bootverbose)
697 		ieee80211_announce(ic);
698 	return 0;
699 fail:
700 	iwn_detach(dev);
701 	return error;
702 }
703 
704 static int
705 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
706 {
707 	struct iwn_ops *ops = &sc->ops;
708 
709 	ops->load_firmware = iwn4965_load_firmware;
710 	ops->read_eeprom = iwn4965_read_eeprom;
711 	ops->post_alive = iwn4965_post_alive;
712 	ops->nic_config = iwn4965_nic_config;
713 	ops->update_sched = iwn4965_update_sched;
714 	ops->get_temperature = iwn4965_get_temperature;
715 	ops->get_rssi = iwn4965_get_rssi;
716 	ops->set_txpower = iwn4965_set_txpower;
717 	ops->init_gains = iwn4965_init_gains;
718 	ops->set_gains = iwn4965_set_gains;
719 	ops->add_node = iwn4965_add_node;
720 	ops->tx_done = iwn4965_tx_done;
721 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
722 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
723 	sc->ntxqs = IWN4965_NTXQUEUES;
724 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
725 	sc->ndmachnls = IWN4965_NDMACHNLS;
726 	sc->broadcast_id = IWN4965_ID_BROADCAST;
727 	sc->rxonsz = IWN4965_RXONSZ;
728 	sc->schedsz = IWN4965_SCHEDSZ;
729 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
730 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
731 	sc->fwsz = IWN4965_FWSZ;
732 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
733 	sc->limits = &iwn4965_sensitivity_limits;
734 	sc->fwname = "iwn4965fw";
735 	/* Override chains masks, ROM is known to be broken. */
736 	sc->txchainmask = IWN_ANT_AB;
737 	sc->rxchainmask = IWN_ANT_ABC;
738 
739 	return 0;
740 }
741 
742 static int
743 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
744 {
745 	struct iwn_ops *ops = &sc->ops;
746 
747 	ops->load_firmware = iwn5000_load_firmware;
748 	ops->read_eeprom = iwn5000_read_eeprom;
749 	ops->post_alive = iwn5000_post_alive;
750 	ops->nic_config = iwn5000_nic_config;
751 	ops->update_sched = iwn5000_update_sched;
752 	ops->get_temperature = iwn5000_get_temperature;
753 	ops->get_rssi = iwn5000_get_rssi;
754 	ops->set_txpower = iwn5000_set_txpower;
755 	ops->init_gains = iwn5000_init_gains;
756 	ops->set_gains = iwn5000_set_gains;
757 	ops->add_node = iwn5000_add_node;
758 	ops->tx_done = iwn5000_tx_done;
759 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
760 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
761 	sc->ntxqs = IWN5000_NTXQUEUES;
762 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
763 	sc->ndmachnls = IWN5000_NDMACHNLS;
764 	sc->broadcast_id = IWN5000_ID_BROADCAST;
765 	sc->rxonsz = IWN5000_RXONSZ;
766 	sc->schedsz = IWN5000_SCHEDSZ;
767 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
768 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
769 	sc->fwsz = IWN5000_FWSZ;
770 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
771 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
772 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
773 
774 	switch (sc->hw_type) {
775 	case IWN_HW_REV_TYPE_5100:
776 		sc->limits = &iwn5000_sensitivity_limits;
777 		sc->fwname = "iwn5000fw";
778 		/* Override chains masks, ROM is known to be broken. */
779 		sc->txchainmask = IWN_ANT_B;
780 		sc->rxchainmask = IWN_ANT_AB;
781 		break;
782 	case IWN_HW_REV_TYPE_5150:
783 		sc->limits = &iwn5150_sensitivity_limits;
784 		sc->fwname = "iwn5150fw";
785 		break;
786 	case IWN_HW_REV_TYPE_5300:
787 	case IWN_HW_REV_TYPE_5350:
788 		sc->limits = &iwn5000_sensitivity_limits;
789 		sc->fwname = "iwn5000fw";
790 		break;
791 	case IWN_HW_REV_TYPE_1000:
792 		sc->limits = &iwn1000_sensitivity_limits;
793 		sc->fwname = "iwn1000fw";
794 		break;
795 	case IWN_HW_REV_TYPE_6000:
796 		sc->limits = &iwn6000_sensitivity_limits;
797 		sc->fwname = "iwn6000fw";
798 		if (pid == 0x422c || pid == 0x4239) {
799 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
800 			/* Override chains masks, ROM is known to be broken. */
801 			sc->txchainmask = IWN_ANT_BC;
802 			sc->rxchainmask = IWN_ANT_BC;
803 		}
804 		break;
805 	case IWN_HW_REV_TYPE_6050:
806 		sc->limits = &iwn6000_sensitivity_limits;
807 		sc->fwname = "iwn6050fw";
808 		/* Override chains masks, ROM is known to be broken. */
809 		sc->txchainmask = IWN_ANT_AB;
810 		sc->rxchainmask = IWN_ANT_AB;
811 		break;
812 	case IWN_HW_REV_TYPE_6005:
813 		sc->limits = &iwn6000_sensitivity_limits;
814 		if (pid != 0x0082 && pid != 0x0085) {
815 			sc->fwname = "iwn6000g2bfw";
816 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
817 		} else
818 			sc->fwname = "iwn6000g2afw";
819 		break;
820 	default:
821 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
822 		    sc->hw_type);
823 		return ENOTSUP;
824 	}
825 	return 0;
826 }
827 
828 /*
829  * Attach the interface to 802.11 radiotap.
830  */
831 static void
832 iwn_radiotap_attach(struct iwn_softc *sc)
833 {
834 	struct ifnet *ifp = sc->sc_ifp;
835 	struct ieee80211com *ic = ifp->if_l2com;
836 
837 	ieee80211_radiotap_attach(ic,
838 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
839 		IWN_TX_RADIOTAP_PRESENT,
840 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
841 		IWN_RX_RADIOTAP_PRESENT);
842 }
843 
844 static void
845 iwn_sysctlattach(struct iwn_softc *sc)
846 {
847 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
848 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
849 
850 #ifdef IWN_DEBUG
851 	sc->sc_debug = 0;
852 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
853 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
854 #endif
855 }
856 
857 static struct ieee80211vap *
858 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
859     enum ieee80211_opmode opmode, int flags,
860     const uint8_t bssid[IEEE80211_ADDR_LEN],
861     const uint8_t mac[IEEE80211_ADDR_LEN])
862 {
863 	struct iwn_vap *ivp;
864 	struct ieee80211vap *vap;
865 
866 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
867 		return NULL;
868 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
869 	    M_80211_VAP, M_NOWAIT | M_ZERO);
870 	if (ivp == NULL)
871 		return NULL;
872 	vap = &ivp->iv_vap;
873 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
874 	vap->iv_bmissthreshold = 10;		/* override default */
875 	/* Override with driver methods. */
876 	ivp->iv_newstate = vap->iv_newstate;
877 	vap->iv_newstate = iwn_newstate;
878 
879 	ieee80211_ratectl_init(vap);
880 	/* Complete setup. */
881 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
882 	ic->ic_opmode = opmode;
883 	return vap;
884 }
885 
886 static void
887 iwn_vap_delete(struct ieee80211vap *vap)
888 {
889 	struct iwn_vap *ivp = IWN_VAP(vap);
890 
891 	ieee80211_ratectl_deinit(vap);
892 	ieee80211_vap_detach(vap);
893 	free(ivp, M_80211_VAP);
894 }
895 
896 static int
897 iwn_detach(device_t dev)
898 {
899 	struct iwn_softc *sc = device_get_softc(dev);
900 	struct ifnet *ifp = sc->sc_ifp;
901 	struct ieee80211com *ic;
902 	int qid;
903 
904 	if (ifp != NULL) {
905 		ic = ifp->if_l2com;
906 
907 		ieee80211_draintask(ic, &sc->sc_reinit_task);
908 		ieee80211_draintask(ic, &sc->sc_radioon_task);
909 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
910 
911 		iwn_stop(sc);
912 		callout_drain(&sc->watchdog_to);
913 		callout_drain(&sc->calib_to);
914 		ieee80211_ifdetach(ic);
915 	}
916 
917 	/* Uninstall interrupt handler. */
918 	if (sc->irq != NULL) {
919 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
920 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
921 		if (sc->irq_rid == 1)
922 			pci_release_msi(dev);
923 	}
924 
925 	/* Free DMA resources. */
926 	iwn_free_rx_ring(sc, &sc->rxq);
927 	for (qid = 0; qid < sc->ntxqs; qid++)
928 		iwn_free_tx_ring(sc, &sc->txq[qid]);
929 	iwn_free_sched(sc);
930 	iwn_free_kw(sc);
931 	if (sc->ict != NULL)
932 		iwn_free_ict(sc);
933 	iwn_free_fwmem(sc);
934 
935 	if (sc->mem != NULL)
936 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
937 
938 	if (ifp != NULL)
939 		if_free(ifp);
940 
941 	IWN_LOCK_DESTROY(sc);
942 	return 0;
943 }
944 
945 static int
946 iwn_shutdown(device_t dev)
947 {
948 	struct iwn_softc *sc = device_get_softc(dev);
949 
950 	iwn_stop(sc);
951 	return 0;
952 }
953 
954 static int
955 iwn_suspend(device_t dev)
956 {
957 	struct iwn_softc *sc = device_get_softc(dev);
958 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
959 
960 	ieee80211_suspend_all(ic);
961 	return 0;
962 }
963 
964 static int
965 iwn_resume(device_t dev)
966 {
967 	struct iwn_softc *sc = device_get_softc(dev);
968 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
969 
970 	/* Clear device-specific "PCI retry timeout" register (41h). */
971 	pci_write_config(dev, 0x41, 0, 1);
972 
973 	ieee80211_resume_all(ic);
974 	return 0;
975 }
976 
977 static int
978 iwn_nic_lock(struct iwn_softc *sc)
979 {
980 	int ntries;
981 
982 	/* Request exclusive access to NIC. */
983 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
984 
985 	/* Spin until we actually get the lock. */
986 	for (ntries = 0; ntries < 1000; ntries++) {
987 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
988 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
989 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
990 			return 0;
991 		DELAY(10);
992 	}
993 	return ETIMEDOUT;
994 }
995 
996 static __inline void
997 iwn_nic_unlock(struct iwn_softc *sc)
998 {
999 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1000 }
1001 
1002 static __inline uint32_t
1003 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1004 {
1005 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1006 	IWN_BARRIER_READ_WRITE(sc);
1007 	return IWN_READ(sc, IWN_PRPH_RDATA);
1008 }
1009 
1010 static __inline void
1011 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1012 {
1013 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1014 	IWN_BARRIER_WRITE(sc);
1015 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1016 }
1017 
1018 static __inline void
1019 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1020 {
1021 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1022 }
1023 
1024 static __inline void
1025 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1026 {
1027 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1028 }
1029 
1030 static __inline void
1031 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1032     const uint32_t *data, int count)
1033 {
1034 	for (; count > 0; count--, data++, addr += 4)
1035 		iwn_prph_write(sc, addr, *data);
1036 }
1037 
1038 static __inline uint32_t
1039 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1040 {
1041 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1042 	IWN_BARRIER_READ_WRITE(sc);
1043 	return IWN_READ(sc, IWN_MEM_RDATA);
1044 }
1045 
1046 static __inline void
1047 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1048 {
1049 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1050 	IWN_BARRIER_WRITE(sc);
1051 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1052 }
1053 
1054 static __inline void
1055 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1056 {
1057 	uint32_t tmp;
1058 
1059 	tmp = iwn_mem_read(sc, addr & ~3);
1060 	if (addr & 3)
1061 		tmp = (tmp & 0x0000ffff) | data << 16;
1062 	else
1063 		tmp = (tmp & 0xffff0000) | data;
1064 	iwn_mem_write(sc, addr & ~3, tmp);
1065 }
1066 
1067 static __inline void
1068 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1069     int count)
1070 {
1071 	for (; count > 0; count--, addr += 4)
1072 		*data++ = iwn_mem_read(sc, addr);
1073 }
1074 
1075 static __inline void
1076 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1077     int count)
1078 {
1079 	for (; count > 0; count--, addr += 4)
1080 		iwn_mem_write(sc, addr, val);
1081 }
1082 
1083 static int
1084 iwn_eeprom_lock(struct iwn_softc *sc)
1085 {
1086 	int i, ntries;
1087 
1088 	for (i = 0; i < 100; i++) {
1089 		/* Request exclusive access to EEPROM. */
1090 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1091 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1092 
1093 		/* Spin until we actually get the lock. */
1094 		for (ntries = 0; ntries < 100; ntries++) {
1095 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1096 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1097 				return 0;
1098 			DELAY(10);
1099 		}
1100 	}
1101 	return ETIMEDOUT;
1102 }
1103 
1104 static __inline void
1105 iwn_eeprom_unlock(struct iwn_softc *sc)
1106 {
1107 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1108 }
1109 
1110 /*
1111  * Initialize access by host to One Time Programmable ROM.
1112  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1113  */
1114 static int
1115 iwn_init_otprom(struct iwn_softc *sc)
1116 {
1117 	uint16_t prev, base, next;
1118 	int count, error;
1119 
1120 	/* Wait for clock stabilization before accessing prph. */
1121 	if ((error = iwn_clock_wait(sc)) != 0)
1122 		return error;
1123 
1124 	if ((error = iwn_nic_lock(sc)) != 0)
1125 		return error;
1126 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1127 	DELAY(5);
1128 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1129 	iwn_nic_unlock(sc);
1130 
1131 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1132 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1133 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1134 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1135 	}
1136 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1137 	/* Clear ECC status. */
1138 	IWN_SETBITS(sc, IWN_OTP_GP,
1139 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1140 
1141 	/*
1142 	 * Find the block before last block (contains the EEPROM image)
1143 	 * for HW without OTP shadow RAM.
1144 	 */
1145 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1146 		/* Switch to absolute addressing mode. */
1147 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1148 		base = prev = 0;
1149 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1150 			error = iwn_read_prom_data(sc, base, &next, 2);
1151 			if (error != 0)
1152 				return error;
1153 			if (next == 0)	/* End of linked-list. */
1154 				break;
1155 			prev = base;
1156 			base = le16toh(next);
1157 		}
1158 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1159 			return EIO;
1160 		/* Skip "next" word. */
1161 		sc->prom_base = prev + 1;
1162 	}
1163 	return 0;
1164 }
1165 
1166 static int
1167 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1168 {
1169 	uint8_t *out = data;
1170 	uint32_t val, tmp;
1171 	int ntries;
1172 
1173 	addr += sc->prom_base;
1174 	for (; count > 0; count -= 2, addr++) {
1175 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1176 		for (ntries = 0; ntries < 10; ntries++) {
1177 			val = IWN_READ(sc, IWN_EEPROM);
1178 			if (val & IWN_EEPROM_READ_VALID)
1179 				break;
1180 			DELAY(5);
1181 		}
1182 		if (ntries == 10) {
1183 			device_printf(sc->sc_dev,
1184 			    "timeout reading ROM at 0x%x\n", addr);
1185 			return ETIMEDOUT;
1186 		}
1187 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1188 			/* OTPROM, check for ECC errors. */
1189 			tmp = IWN_READ(sc, IWN_OTP_GP);
1190 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1191 				device_printf(sc->sc_dev,
1192 				    "OTPROM ECC error at 0x%x\n", addr);
1193 				return EIO;
1194 			}
1195 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1196 				/* Correctable ECC error, clear bit. */
1197 				IWN_SETBITS(sc, IWN_OTP_GP,
1198 				    IWN_OTP_GP_ECC_CORR_STTS);
1199 			}
1200 		}
1201 		*out++ = val >> 16;
1202 		if (count > 1)
1203 			*out++ = val >> 24;
1204 	}
1205 	return 0;
1206 }
1207 
1208 static void
1209 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1210 {
1211 	if (error != 0)
1212 		return;
1213 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1214 	*(bus_addr_t *)arg = segs[0].ds_addr;
1215 }
1216 
1217 static int
1218 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1219     void **kvap, bus_size_t size, bus_size_t alignment)
1220 {
1221 	int error;
1222 
1223 	dma->tag = NULL;
1224 	dma->size = size;
1225 
1226 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1227 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1228 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1229 	if (error != 0)
1230 		goto fail;
1231 
1232 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1233 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1234 	if (error != 0)
1235 		goto fail;
1236 
1237 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1238 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1239 	if (error != 0)
1240 		goto fail;
1241 
1242 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1243 
1244 	if (kvap != NULL)
1245 		*kvap = dma->vaddr;
1246 
1247 	return 0;
1248 
1249 fail:	iwn_dma_contig_free(dma);
1250 	return error;
1251 }
1252 
1253 static void
1254 iwn_dma_contig_free(struct iwn_dma_info *dma)
1255 {
1256 	if (dma->map != NULL) {
1257 		if (dma->vaddr != NULL) {
1258 			bus_dmamap_sync(dma->tag, dma->map,
1259 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1260 			bus_dmamap_unload(dma->tag, dma->map);
1261 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1262 			dma->vaddr = NULL;
1263 		}
1264 		bus_dmamap_destroy(dma->tag, dma->map);
1265 		dma->map = NULL;
1266 	}
1267 	if (dma->tag != NULL) {
1268 		bus_dma_tag_destroy(dma->tag);
1269 		dma->tag = NULL;
1270 	}
1271 }
1272 
1273 static int
1274 iwn_alloc_sched(struct iwn_softc *sc)
1275 {
1276 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1277 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1278 	    sc->schedsz, 1024);
1279 }
1280 
1281 static void
1282 iwn_free_sched(struct iwn_softc *sc)
1283 {
1284 	iwn_dma_contig_free(&sc->sched_dma);
1285 }
1286 
1287 static int
1288 iwn_alloc_kw(struct iwn_softc *sc)
1289 {
1290 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1291 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1292 }
1293 
1294 static void
1295 iwn_free_kw(struct iwn_softc *sc)
1296 {
1297 	iwn_dma_contig_free(&sc->kw_dma);
1298 }
1299 
1300 static int
1301 iwn_alloc_ict(struct iwn_softc *sc)
1302 {
1303 	/* ICT table must be aligned on a 4KB boundary. */
1304 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1305 	    IWN_ICT_SIZE, 4096);
1306 }
1307 
1308 static void
1309 iwn_free_ict(struct iwn_softc *sc)
1310 {
1311 	iwn_dma_contig_free(&sc->ict_dma);
1312 }
1313 
1314 static int
1315 iwn_alloc_fwmem(struct iwn_softc *sc)
1316 {
1317 	/* Must be aligned on a 16-byte boundary. */
1318 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1319 }
1320 
1321 static void
1322 iwn_free_fwmem(struct iwn_softc *sc)
1323 {
1324 	iwn_dma_contig_free(&sc->fw_dma);
1325 }
1326 
1327 static int
1328 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1329 {
1330 	bus_size_t size;
1331 	int i, error;
1332 
1333 	ring->cur = 0;
1334 
1335 	/* Allocate RX descriptors (256-byte aligned). */
1336 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1337 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1338 	    size, 256);
1339 	if (error != 0) {
1340 		device_printf(sc->sc_dev,
1341 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1342 		    __func__, error);
1343 		goto fail;
1344 	}
1345 
1346 	/* Allocate RX status area (16-byte aligned). */
1347 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1348 	    sizeof (struct iwn_rx_status), 16);
1349 	if (error != 0) {
1350 		device_printf(sc->sc_dev,
1351 		    "%s: could not allocate RX status DMA memory, error %d\n",
1352 		    __func__, error);
1353 		goto fail;
1354 	}
1355 
1356 	/* Create RX buffer DMA tag. */
1357 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1358 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1359 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1360 	    &ring->data_dmat);
1361 	if (error != 0) {
1362 		device_printf(sc->sc_dev,
1363 		    "%s: could not create RX buf DMA tag, error %d\n",
1364 		    __func__, error);
1365 		goto fail;
1366 	}
1367 
1368 	/*
1369 	 * Allocate and map RX buffers.
1370 	 */
1371 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1372 		struct iwn_rx_data *data = &ring->data[i];
1373 		bus_addr_t paddr;
1374 
1375 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1376 		if (error != 0) {
1377 			device_printf(sc->sc_dev,
1378 			    "%s: could not create RX buf DMA map, error %d\n",
1379 			    __func__, error);
1380 			goto fail;
1381 		}
1382 
1383 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1384 		    IWN_RBUF_SIZE);
1385 		if (data->m == NULL) {
1386 			device_printf(sc->sc_dev,
1387 			    "%s: could not allocate RX mbuf\n", __func__);
1388 			error = ENOBUFS;
1389 			goto fail;
1390 		}
1391 
1392 		error = bus_dmamap_load(ring->data_dmat, data->map,
1393 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1394 		    &paddr, BUS_DMA_NOWAIT);
1395 		if (error != 0 && error != EFBIG) {
1396 			device_printf(sc->sc_dev,
1397 			    "%s: can't not map mbuf, error %d\n", __func__,
1398 			    error);
1399 			goto fail;
1400 		}
1401 
1402 		/* Set physical address of RX buffer (256-byte aligned). */
1403 		ring->desc[i] = htole32(paddr >> 8);
1404 	}
1405 
1406 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1407 	    BUS_DMASYNC_PREWRITE);
1408 
1409 	return 0;
1410 
1411 fail:	iwn_free_rx_ring(sc, ring);
1412 	return error;
1413 }
1414 
1415 static void
1416 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1417 {
1418 	int ntries;
1419 
1420 	if (iwn_nic_lock(sc) == 0) {
1421 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1422 		for (ntries = 0; ntries < 1000; ntries++) {
1423 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1424 			    IWN_FH_RX_STATUS_IDLE)
1425 				break;
1426 			DELAY(10);
1427 		}
1428 		iwn_nic_unlock(sc);
1429 	}
1430 	ring->cur = 0;
1431 	sc->last_rx_valid = 0;
1432 }
1433 
1434 static void
1435 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1436 {
1437 	int i;
1438 
1439 	iwn_dma_contig_free(&ring->desc_dma);
1440 	iwn_dma_contig_free(&ring->stat_dma);
1441 
1442 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1443 		struct iwn_rx_data *data = &ring->data[i];
1444 
1445 		if (data->m != NULL) {
1446 			bus_dmamap_sync(ring->data_dmat, data->map,
1447 			    BUS_DMASYNC_POSTREAD);
1448 			bus_dmamap_unload(ring->data_dmat, data->map);
1449 			m_freem(data->m);
1450 			data->m = NULL;
1451 		}
1452 		if (data->map != NULL)
1453 			bus_dmamap_destroy(ring->data_dmat, data->map);
1454 	}
1455 	if (ring->data_dmat != NULL) {
1456 		bus_dma_tag_destroy(ring->data_dmat);
1457 		ring->data_dmat = NULL;
1458 	}
1459 }
1460 
1461 static int
1462 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1463 {
1464 	bus_addr_t paddr;
1465 	bus_size_t size;
1466 	int i, error;
1467 
1468 	ring->qid = qid;
1469 	ring->queued = 0;
1470 	ring->cur = 0;
1471 
1472 	/* Allocate TX descriptors (256-byte aligned). */
1473 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1474 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1475 	    size, 256);
1476 	if (error != 0) {
1477 		device_printf(sc->sc_dev,
1478 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1479 		    __func__, error);
1480 		goto fail;
1481 	}
1482 
1483 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1484 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1485 	    size, 4);
1486 	if (error != 0) {
1487 		device_printf(sc->sc_dev,
1488 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1489 		    __func__, error);
1490 		goto fail;
1491 	}
1492 
1493 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1494 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1495 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1496 	    &ring->data_dmat);
1497 	if (error != 0) {
1498 		device_printf(sc->sc_dev,
1499 		    "%s: could not create TX buf DMA tag, error %d\n",
1500 		    __func__, error);
1501 		goto fail;
1502 	}
1503 
1504 	paddr = ring->cmd_dma.paddr;
1505 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1506 		struct iwn_tx_data *data = &ring->data[i];
1507 
1508 		data->cmd_paddr = paddr;
1509 		data->scratch_paddr = paddr + 12;
1510 		paddr += sizeof (struct iwn_tx_cmd);
1511 
1512 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1513 		if (error != 0) {
1514 			device_printf(sc->sc_dev,
1515 			    "%s: could not create TX buf DMA map, error %d\n",
1516 			    __func__, error);
1517 			goto fail;
1518 		}
1519 	}
1520 	return 0;
1521 
1522 fail:	iwn_free_tx_ring(sc, ring);
1523 	return error;
1524 }
1525 
1526 static void
1527 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1528 {
1529 	int i;
1530 
1531 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1532 		struct iwn_tx_data *data = &ring->data[i];
1533 
1534 		if (data->m != NULL) {
1535 			bus_dmamap_sync(ring->data_dmat, data->map,
1536 			    BUS_DMASYNC_POSTWRITE);
1537 			bus_dmamap_unload(ring->data_dmat, data->map);
1538 			m_freem(data->m);
1539 			data->m = NULL;
1540 		}
1541 	}
1542 	/* Clear TX descriptors. */
1543 	memset(ring->desc, 0, ring->desc_dma.size);
1544 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1545 	    BUS_DMASYNC_PREWRITE);
1546 	sc->qfullmsk &= ~(1 << ring->qid);
1547 	ring->queued = 0;
1548 	ring->cur = 0;
1549 }
1550 
1551 static void
1552 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1553 {
1554 	int i;
1555 
1556 	iwn_dma_contig_free(&ring->desc_dma);
1557 	iwn_dma_contig_free(&ring->cmd_dma);
1558 
1559 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1560 		struct iwn_tx_data *data = &ring->data[i];
1561 
1562 		if (data->m != NULL) {
1563 			bus_dmamap_sync(ring->data_dmat, data->map,
1564 			    BUS_DMASYNC_POSTWRITE);
1565 			bus_dmamap_unload(ring->data_dmat, data->map);
1566 			m_freem(data->m);
1567 		}
1568 		if (data->map != NULL)
1569 			bus_dmamap_destroy(ring->data_dmat, data->map);
1570 	}
1571 	if (ring->data_dmat != NULL) {
1572 		bus_dma_tag_destroy(ring->data_dmat);
1573 		ring->data_dmat = NULL;
1574 	}
1575 }
1576 
1577 static void
1578 iwn5000_ict_reset(struct iwn_softc *sc)
1579 {
1580 	/* Disable interrupts. */
1581 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1582 
1583 	/* Reset ICT table. */
1584 	memset(sc->ict, 0, IWN_ICT_SIZE);
1585 	sc->ict_cur = 0;
1586 
1587 	/* Set physical address of ICT table (4KB aligned). */
1588 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1589 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1590 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1591 
1592 	/* Enable periodic RX interrupt. */
1593 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1594 	/* Switch to ICT interrupt mode in driver. */
1595 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1596 
1597 	/* Re-enable interrupts. */
1598 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1599 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1600 }
1601 
1602 static int
1603 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1604 {
1605 	struct iwn_ops *ops = &sc->ops;
1606 	uint16_t val;
1607 	int error;
1608 
1609 	/* Check whether adapter has an EEPROM or an OTPROM. */
1610 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1611 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1612 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1613 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1614 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1615 
1616 	/* Adapter has to be powered on for EEPROM access to work. */
1617 	if ((error = iwn_apm_init(sc)) != 0) {
1618 		device_printf(sc->sc_dev,
1619 		    "%s: could not power ON adapter, error %d\n", __func__,
1620 		    error);
1621 		return error;
1622 	}
1623 
1624 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1625 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1626 		return EIO;
1627 	}
1628 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1629 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1630 		    __func__, error);
1631 		return error;
1632 	}
1633 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1634 		if ((error = iwn_init_otprom(sc)) != 0) {
1635 			device_printf(sc->sc_dev,
1636 			    "%s: could not initialize OTPROM, error %d\n",
1637 			    __func__, error);
1638 			return error;
1639 		}
1640 	}
1641 
1642 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1643 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1644 	/* Check if HT support is bonded out. */
1645 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1646 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1647 
1648 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1649 	sc->rfcfg = le16toh(val);
1650 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1651 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1652 	if (sc->txchainmask == 0)
1653 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1654 	if (sc->rxchainmask == 0)
1655 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1656 
1657 	/* Read MAC address. */
1658 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1659 
1660 	/* Read adapter-specific information from EEPROM. */
1661 	ops->read_eeprom(sc);
1662 
1663 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1664 
1665 	iwn_eeprom_unlock(sc);
1666 	return 0;
1667 }
1668 
1669 static void
1670 iwn4965_read_eeprom(struct iwn_softc *sc)
1671 {
1672 	uint32_t addr;
1673 	uint16_t val;
1674 	int i;
1675 
1676 	/* Read regulatory domain (4 ASCII characters). */
1677 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1678 
1679 	/* Read the list of authorized channels (20MHz ones only). */
1680 	for (i = 0; i < 7; i++) {
1681 		addr = iwn4965_regulatory_bands[i];
1682 		iwn_read_eeprom_channels(sc, i, addr);
1683 	}
1684 
1685 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1686 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1687 	sc->maxpwr2GHz = val & 0xff;
1688 	sc->maxpwr5GHz = val >> 8;
1689 	/* Check that EEPROM values are within valid range. */
1690 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1691 		sc->maxpwr5GHz = 38;
1692 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1693 		sc->maxpwr2GHz = 38;
1694 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1695 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1696 
1697 	/* Read samples for each TX power group. */
1698 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1699 	    sizeof sc->bands);
1700 
1701 	/* Read voltage at which samples were taken. */
1702 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1703 	sc->eeprom_voltage = (int16_t)le16toh(val);
1704 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1705 	    sc->eeprom_voltage);
1706 
1707 #ifdef IWN_DEBUG
1708 	/* Print samples. */
1709 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1710 		for (i = 0; i < IWN_NBANDS; i++)
1711 			iwn4965_print_power_group(sc, i);
1712 	}
1713 #endif
1714 }
1715 
1716 #ifdef IWN_DEBUG
1717 static void
1718 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1719 {
1720 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1721 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1722 	int j, c;
1723 
1724 	printf("===band %d===\n", i);
1725 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1726 	printf("chan1 num=%d\n", chans[0].num);
1727 	for (c = 0; c < 2; c++) {
1728 		for (j = 0; j < IWN_NSAMPLES; j++) {
1729 			printf("chain %d, sample %d: temp=%d gain=%d "
1730 			    "power=%d pa_det=%d\n", c, j,
1731 			    chans[0].samples[c][j].temp,
1732 			    chans[0].samples[c][j].gain,
1733 			    chans[0].samples[c][j].power,
1734 			    chans[0].samples[c][j].pa_det);
1735 		}
1736 	}
1737 	printf("chan2 num=%d\n", chans[1].num);
1738 	for (c = 0; c < 2; c++) {
1739 		for (j = 0; j < IWN_NSAMPLES; j++) {
1740 			printf("chain %d, sample %d: temp=%d gain=%d "
1741 			    "power=%d pa_det=%d\n", c, j,
1742 			    chans[1].samples[c][j].temp,
1743 			    chans[1].samples[c][j].gain,
1744 			    chans[1].samples[c][j].power,
1745 			    chans[1].samples[c][j].pa_det);
1746 		}
1747 	}
1748 }
1749 #endif
1750 
1751 static void
1752 iwn5000_read_eeprom(struct iwn_softc *sc)
1753 {
1754 	struct iwn5000_eeprom_calib_hdr hdr;
1755 	int32_t volt;
1756 	uint32_t base, addr;
1757 	uint16_t val;
1758 	int i;
1759 
1760 	/* Read regulatory domain (4 ASCII characters). */
1761 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1762 	base = le16toh(val);
1763 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1764 	    sc->eeprom_domain, 4);
1765 
1766 	/* Read the list of authorized channels (20MHz ones only). */
1767 	for (i = 0; i < 7; i++) {
1768 		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1769 			addr = base + iwn6000_regulatory_bands[i];
1770 		else
1771 			addr = base + iwn5000_regulatory_bands[i];
1772 		iwn_read_eeprom_channels(sc, i, addr);
1773 	}
1774 
1775 	/* Read enhanced TX power information for 6000 Series. */
1776 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1777 		iwn_read_eeprom_enhinfo(sc);
1778 
1779 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1780 	base = le16toh(val);
1781 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1782 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1783 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1784 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1785 	sc->calib_ver = hdr.version;
1786 
1787 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1788 		/* Compute temperature offset. */
1789 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1790 		sc->eeprom_temp = le16toh(val);
1791 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1792 		volt = le16toh(val);
1793 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1794 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1795 		    sc->eeprom_temp, volt, sc->temp_off);
1796 	} else {
1797 		/* Read crystal calibration. */
1798 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1799 		    &sc->eeprom_crystal, sizeof (uint32_t));
1800 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1801 		    le32toh(sc->eeprom_crystal));
1802 	}
1803 }
1804 
1805 /*
1806  * Translate EEPROM flags to net80211.
1807  */
1808 static uint32_t
1809 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1810 {
1811 	uint32_t nflags;
1812 
1813 	nflags = 0;
1814 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1815 		nflags |= IEEE80211_CHAN_PASSIVE;
1816 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1817 		nflags |= IEEE80211_CHAN_NOADHOC;
1818 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1819 		nflags |= IEEE80211_CHAN_DFS;
1820 		/* XXX apparently IBSS may still be marked */
1821 		nflags |= IEEE80211_CHAN_NOADHOC;
1822 	}
1823 
1824 	return nflags;
1825 }
1826 
1827 static void
1828 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1829 {
1830 	struct ifnet *ifp = sc->sc_ifp;
1831 	struct ieee80211com *ic = ifp->if_l2com;
1832 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1833 	const struct iwn_chan_band *band = &iwn_bands[n];
1834 	struct ieee80211_channel *c;
1835 	uint8_t chan;
1836 	int i, nflags;
1837 
1838 	for (i = 0; i < band->nchan; i++) {
1839 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1840 			DPRINTF(sc, IWN_DEBUG_RESET,
1841 			    "skip chan %d flags 0x%x maxpwr %d\n",
1842 			    band->chan[i], channels[i].flags,
1843 			    channels[i].maxpwr);
1844 			continue;
1845 		}
1846 		chan = band->chan[i];
1847 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1848 
1849 		c = &ic->ic_channels[ic->ic_nchans++];
1850 		c->ic_ieee = chan;
1851 		c->ic_maxregpower = channels[i].maxpwr;
1852 		c->ic_maxpower = 2*c->ic_maxregpower;
1853 
1854 		if (n == 0) {	/* 2GHz band */
1855 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1856 			/* G =>'s B is supported */
1857 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1858 			c = &ic->ic_channels[ic->ic_nchans++];
1859 			c[0] = c[-1];
1860 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1861 		} else {	/* 5GHz band */
1862 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1863 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1864 		}
1865 
1866 		/* Save maximum allowed TX power for this channel. */
1867 		sc->maxpwr[chan] = channels[i].maxpwr;
1868 
1869 		DPRINTF(sc, IWN_DEBUG_RESET,
1870 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1871 		    channels[i].flags, channels[i].maxpwr);
1872 
1873 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1874 			/* add HT20, HT40 added separately */
1875 			c = &ic->ic_channels[ic->ic_nchans++];
1876 			c[0] = c[-1];
1877 			c->ic_flags |= IEEE80211_CHAN_HT20;
1878 		}
1879 	}
1880 }
1881 
1882 static void
1883 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1884 {
1885 	struct ifnet *ifp = sc->sc_ifp;
1886 	struct ieee80211com *ic = ifp->if_l2com;
1887 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1888 	const struct iwn_chan_band *band = &iwn_bands[n];
1889 	struct ieee80211_channel *c, *cent, *extc;
1890 	uint8_t chan;
1891 	int i, nflags;
1892 
1893 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N))
1894 		return;
1895 
1896 	for (i = 0; i < band->nchan; i++) {
1897 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1898 			DPRINTF(sc, IWN_DEBUG_RESET,
1899 			    "skip chan %d flags 0x%x maxpwr %d\n",
1900 			    band->chan[i], channels[i].flags,
1901 			    channels[i].maxpwr);
1902 			continue;
1903 		}
1904 		chan = band->chan[i];
1905 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1906 
1907 		/*
1908 		 * Each entry defines an HT40 channel pair; find the
1909 		 * center channel, then the extension channel above.
1910 		 */
1911 		cent = ieee80211_find_channel_byieee(ic, chan,
1912 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1913 		if (cent == NULL) {	/* XXX shouldn't happen */
1914 			device_printf(sc->sc_dev,
1915 			    "%s: no entry for channel %d\n", __func__, chan);
1916 			continue;
1917 		}
1918 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1919 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1920 		if (extc == NULL) {
1921 			DPRINTF(sc, IWN_DEBUG_RESET,
1922 			    "%s: skip chan %d, extension channel not found\n",
1923 			    __func__, chan);
1924 			continue;
1925 		}
1926 
1927 		DPRINTF(sc, IWN_DEBUG_RESET,
1928 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1929 		    chan, channels[i].flags, channels[i].maxpwr);
1930 
1931 		c = &ic->ic_channels[ic->ic_nchans++];
1932 		c[0] = cent[0];
1933 		c->ic_extieee = extc->ic_ieee;
1934 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1935 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
1936 		c = &ic->ic_channels[ic->ic_nchans++];
1937 		c[0] = extc[0];
1938 		c->ic_extieee = cent->ic_ieee;
1939 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1940 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
1941 	}
1942 }
1943 
1944 static void
1945 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1946 {
1947 	struct ifnet *ifp = sc->sc_ifp;
1948 	struct ieee80211com *ic = ifp->if_l2com;
1949 
1950 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1951 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1952 
1953 	if (n < 5)
1954 		iwn_read_eeprom_band(sc, n);
1955 	else
1956 		iwn_read_eeprom_ht40(sc, n);
1957 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1958 }
1959 
1960 static struct iwn_eeprom_chan *
1961 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
1962 {
1963 	int band, chan, i, j;
1964 
1965 	if (IEEE80211_IS_CHAN_HT40(c)) {
1966 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
1967 		if (IEEE80211_IS_CHAN_HT40D(c))
1968 			chan = c->ic_extieee;
1969 		else
1970 			chan = c->ic_ieee;
1971 		for (i = 0; i < iwn_bands[band].nchan; i++) {
1972 			if (iwn_bands[band].chan[i] == chan)
1973 				return &sc->eeprom_channels[band][i];
1974 		}
1975 	} else {
1976 		for (j = 0; j < 5; j++) {
1977 			for (i = 0; i < iwn_bands[j].nchan; i++) {
1978 				if (iwn_bands[j].chan[i] == c->ic_ieee)
1979 					return &sc->eeprom_channels[j][i];
1980 			}
1981 		}
1982 	}
1983 	return NULL;
1984 }
1985 
1986 /*
1987  * Enforce flags read from EEPROM.
1988  */
1989 static int
1990 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1991     int nchan, struct ieee80211_channel chans[])
1992 {
1993 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1994 	int i;
1995 
1996 	for (i = 0; i < nchan; i++) {
1997 		struct ieee80211_channel *c = &chans[i];
1998 		struct iwn_eeprom_chan *channel;
1999 
2000 		channel = iwn_find_eeprom_channel(sc, c);
2001 		if (channel == NULL) {
2002 			if_printf(ic->ic_ifp,
2003 			    "%s: invalid channel %u freq %u/0x%x\n",
2004 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2005 			return EINVAL;
2006 		}
2007 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2008 	}
2009 
2010 	return 0;
2011 }
2012 
2013 static void
2014 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2015 {
2016 	struct iwn_eeprom_enhinfo enhinfo[35];
2017 	struct ifnet *ifp = sc->sc_ifp;
2018 	struct ieee80211com *ic = ifp->if_l2com;
2019 	struct ieee80211_channel *c;
2020 	uint16_t val, base;
2021 	int8_t maxpwr;
2022 	uint8_t flags;
2023 	int i, j;
2024 
2025 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2026 	base = le16toh(val);
2027 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2028 	    enhinfo, sizeof enhinfo);
2029 
2030 	for (i = 0; i < nitems(enhinfo); i++) {
2031 		flags = enhinfo[i].flags;
2032 		if (!(flags & IWN_ENHINFO_VALID))
2033 			continue;	/* Skip invalid entries. */
2034 
2035 		maxpwr = 0;
2036 		if (sc->txchainmask & IWN_ANT_A)
2037 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2038 		if (sc->txchainmask & IWN_ANT_B)
2039 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2040 		if (sc->txchainmask & IWN_ANT_C)
2041 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2042 		if (sc->ntxchains == 2)
2043 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2044 		else if (sc->ntxchains == 3)
2045 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2046 
2047 		for (j = 0; j < ic->ic_nchans; j++) {
2048 			c = &ic->ic_channels[j];
2049 			if ((flags & IWN_ENHINFO_5GHZ)) {
2050 				if (!IEEE80211_IS_CHAN_A(c))
2051 					continue;
2052 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2053 				if (!IEEE80211_IS_CHAN_G(c))
2054 					continue;
2055 			} else if (!IEEE80211_IS_CHAN_B(c))
2056 				continue;
2057 			if ((flags & IWN_ENHINFO_HT40)) {
2058 				if (!IEEE80211_IS_CHAN_HT40(c))
2059 					continue;
2060 			} else {
2061 				if (IEEE80211_IS_CHAN_HT40(c))
2062 					continue;
2063 			}
2064 			if (enhinfo[i].chan != 0 &&
2065 			    enhinfo[i].chan != c->ic_ieee)
2066 				continue;
2067 
2068 			DPRINTF(sc, IWN_DEBUG_RESET,
2069 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2070 			    c->ic_flags, maxpwr / 2);
2071 			c->ic_maxregpower = maxpwr / 2;
2072 			c->ic_maxpower = maxpwr;
2073 		}
2074 	}
2075 }
2076 
2077 static struct ieee80211_node *
2078 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2079 {
2080 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2081 }
2082 
2083 static __inline int
2084 rate2plcp(int rate)
2085 {
2086 	switch (rate & 0xff) {
2087 	case 12:	return 0xd;
2088 	case 18:	return 0xf;
2089 	case 24:	return 0x5;
2090 	case 36:	return 0x7;
2091 	case 48:	return 0x9;
2092 	case 72:	return 0xb;
2093 	case 96:	return 0x1;
2094 	case 108:	return 0x3;
2095 	case 2:		return 10;
2096 	case 4:		return 20;
2097 	case 11:	return 55;
2098 	case 22:	return 110;
2099 	}
2100 	return 0;
2101 }
2102 
2103 /*
2104  * Calculate the required PLCP value from the given rate,
2105  * to the given node.
2106  *
2107  * This will take the node configuration (eg 11n, rate table
2108  * setup, etc) into consideration.
2109  */
2110 static uint32_t
2111 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2112     uint8_t rate)
2113 {
2114 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2115 	struct ieee80211com *ic = ni->ni_ic;
2116 	uint8_t txant1, txant2;
2117 	uint32_t plcp = 0;
2118 	int ridx;
2119 
2120 	/* Use the first valid TX antenna. */
2121 	txant1 = IWN_LSB(sc->txchainmask);
2122 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2123 
2124 	/*
2125 	 * If it's an MCS rate, let's set the plcp correctly
2126 	 * and set the relevant flags based on the node config.
2127 	 */
2128 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2129 		/*
2130 		 * Set the initial PLCP value to be between 0->31 for
2131 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2132 		 * flag.
2133 		 */
2134 		plcp = RV(rate) | IWN_RFLAG_MCS;
2135 
2136 		/*
2137 		 * XXX the following should only occur if both
2138 		 * the local configuration _and_ the remote node
2139 		 * advertise these capabilities.  Thus this code
2140 		 * may need fixing!
2141 		 */
2142 
2143 		/*
2144 		 * Set the channel width and guard interval.
2145 		 */
2146 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2147 			plcp |= IWN_RFLAG_HT40;
2148 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2149 				plcp |= IWN_RFLAG_SGI;
2150 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2151 			plcp |= IWN_RFLAG_SGI;
2152 		}
2153 
2154 		/*
2155 		 * If it's a two stream rate, enable TX on both
2156 		 * antennas.
2157 		 *
2158 		 * XXX three stream rates?
2159 		 */
2160 		if (rate > 0x87)
2161 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2162 		else
2163 			plcp |= IWN_RFLAG_ANT(txant1);
2164 	} else {
2165 		/*
2166 		 * Set the initial PLCP - fine for both
2167 		 * OFDM and CCK rates.
2168 		 */
2169 		plcp = rate2plcp(rate);
2170 
2171 		/* Set CCK flag if it's CCK */
2172 
2173 		/* XXX It would be nice to have a method
2174 		 * to map the ridx -> phy table entry
2175 		 * so we could just query that, rather than
2176 		 * this hack to check against IWN_RIDX_OFDM6.
2177 		 */
2178 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2179 		    rate & IEEE80211_RATE_VAL);
2180 		if (ridx < IWN_RIDX_OFDM6 &&
2181 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2182 			plcp |= IWN_RFLAG_CCK;
2183 
2184 		/* Set antenna configuration */
2185 		plcp |= IWN_RFLAG_ANT(txant1);
2186 	}
2187 
2188 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2189 	    __func__,
2190 	    rate,
2191 	    plcp);
2192 
2193 	return (htole32(plcp));
2194 #undef	RV
2195 }
2196 
2197 static void
2198 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2199 {
2200 	/* Doesn't do anything at the moment */
2201 }
2202 
2203 static int
2204 iwn_media_change(struct ifnet *ifp)
2205 {
2206 	int error;
2207 
2208 	error = ieee80211_media_change(ifp);
2209 	/* NB: only the fixed rate can change and that doesn't need a reset */
2210 	return (error == ENETRESET ? 0 : error);
2211 }
2212 
2213 static int
2214 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2215 {
2216 	struct iwn_vap *ivp = IWN_VAP(vap);
2217 	struct ieee80211com *ic = vap->iv_ic;
2218 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2219 	int error = 0;
2220 
2221 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2222 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2223 
2224 	IEEE80211_UNLOCK(ic);
2225 	IWN_LOCK(sc);
2226 	callout_stop(&sc->calib_to);
2227 
2228 	switch (nstate) {
2229 	case IEEE80211_S_ASSOC:
2230 		if (vap->iv_state != IEEE80211_S_RUN)
2231 			break;
2232 		/* FALLTHROUGH */
2233 	case IEEE80211_S_AUTH:
2234 		if (vap->iv_state == IEEE80211_S_AUTH)
2235 			break;
2236 
2237 		/*
2238 		 * !AUTH -> AUTH transition requires state reset to handle
2239 		 * reassociations correctly.
2240 		 */
2241 		sc->rxon.associd = 0;
2242 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2243 		sc->calib.state = IWN_CALIB_STATE_INIT;
2244 
2245 		if ((error = iwn_auth(sc, vap)) != 0) {
2246 			device_printf(sc->sc_dev,
2247 			    "%s: could not move to auth state\n", __func__);
2248 		}
2249 		break;
2250 
2251 	case IEEE80211_S_RUN:
2252 		/*
2253 		 * RUN -> RUN transition; Just restart the timers.
2254 		 */
2255 		if (vap->iv_state == IEEE80211_S_RUN) {
2256 			sc->calib_cnt = 0;
2257 			break;
2258 		}
2259 
2260 		/*
2261 		 * !RUN -> RUN requires setting the association id
2262 		 * which is done with a firmware cmd.  We also defer
2263 		 * starting the timers until that work is done.
2264 		 */
2265 		if ((error = iwn_run(sc, vap)) != 0) {
2266 			device_printf(sc->sc_dev,
2267 			    "%s: could not move to run state\n", __func__);
2268 		}
2269 		break;
2270 
2271 	case IEEE80211_S_INIT:
2272 		sc->calib.state = IWN_CALIB_STATE_INIT;
2273 		break;
2274 
2275 	default:
2276 		break;
2277 	}
2278 	IWN_UNLOCK(sc);
2279 	IEEE80211_LOCK(ic);
2280 	if (error != 0)
2281 		return error;
2282 	return ivp->iv_newstate(vap, nstate, arg);
2283 }
2284 
2285 static void
2286 iwn_calib_timeout(void *arg)
2287 {
2288 	struct iwn_softc *sc = arg;
2289 
2290 	IWN_LOCK_ASSERT(sc);
2291 
2292 	/* Force automatic TX power calibration every 60 secs. */
2293 	if (++sc->calib_cnt >= 120) {
2294 		uint32_t flags = 0;
2295 
2296 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2297 		    "sending request for statistics");
2298 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2299 		    sizeof flags, 1);
2300 		sc->calib_cnt = 0;
2301 	}
2302 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2303 	    sc);
2304 }
2305 
2306 /*
2307  * Process an RX_PHY firmware notification.  This is usually immediately
2308  * followed by an MPDU_RX_DONE notification.
2309  */
2310 static void
2311 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2312     struct iwn_rx_data *data)
2313 {
2314 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2315 
2316 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2317 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2318 
2319 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2320 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2321 	sc->last_rx_valid = 1;
2322 }
2323 
2324 /*
2325  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2326  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2327  */
2328 static void
2329 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2330     struct iwn_rx_data *data)
2331 {
2332 	struct iwn_ops *ops = &sc->ops;
2333 	struct ifnet *ifp = sc->sc_ifp;
2334 	struct ieee80211com *ic = ifp->if_l2com;
2335 	struct iwn_rx_ring *ring = &sc->rxq;
2336 	struct ieee80211_frame *wh;
2337 	struct ieee80211_node *ni;
2338 	struct mbuf *m, *m1;
2339 	struct iwn_rx_stat *stat;
2340 	caddr_t head;
2341 	bus_addr_t paddr;
2342 	uint32_t flags;
2343 	int error, len, rssi, nf;
2344 
2345 	if (desc->type == IWN_MPDU_RX_DONE) {
2346 		/* Check for prior RX_PHY notification. */
2347 		if (!sc->last_rx_valid) {
2348 			DPRINTF(sc, IWN_DEBUG_ANY,
2349 			    "%s: missing RX_PHY\n", __func__);
2350 			return;
2351 		}
2352 		stat = &sc->last_rx_stat;
2353 	} else
2354 		stat = (struct iwn_rx_stat *)(desc + 1);
2355 
2356 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2357 
2358 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2359 		device_printf(sc->sc_dev,
2360 		    "%s: invalid RX statistic header, len %d\n", __func__,
2361 		    stat->cfg_phy_len);
2362 		return;
2363 	}
2364 	if (desc->type == IWN_MPDU_RX_DONE) {
2365 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2366 		head = (caddr_t)(mpdu + 1);
2367 		len = le16toh(mpdu->len);
2368 	} else {
2369 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2370 		len = le16toh(stat->len);
2371 	}
2372 
2373 	flags = le32toh(*(uint32_t *)(head + len));
2374 
2375 	/* Discard frames with a bad FCS early. */
2376 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2377 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2378 		    __func__, flags);
2379 		ifp->if_ierrors++;
2380 		return;
2381 	}
2382 	/* Discard frames that are too short. */
2383 	if (len < sizeof (*wh)) {
2384 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2385 		    __func__, len);
2386 		ifp->if_ierrors++;
2387 		return;
2388 	}
2389 
2390 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2391 	if (m1 == NULL) {
2392 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2393 		    __func__);
2394 		ifp->if_ierrors++;
2395 		return;
2396 	}
2397 	bus_dmamap_unload(ring->data_dmat, data->map);
2398 
2399 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2400 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2401 	if (error != 0 && error != EFBIG) {
2402 		device_printf(sc->sc_dev,
2403 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2404 		m_freem(m1);
2405 
2406 		/* Try to reload the old mbuf. */
2407 		error = bus_dmamap_load(ring->data_dmat, data->map,
2408 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2409 		    &paddr, BUS_DMA_NOWAIT);
2410 		if (error != 0 && error != EFBIG) {
2411 			panic("%s: could not load old RX mbuf", __func__);
2412 		}
2413 		/* Physical address may have changed. */
2414 		ring->desc[ring->cur] = htole32(paddr >> 8);
2415 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2416 		    BUS_DMASYNC_PREWRITE);
2417 		ifp->if_ierrors++;
2418 		return;
2419 	}
2420 
2421 	m = data->m;
2422 	data->m = m1;
2423 	/* Update RX descriptor. */
2424 	ring->desc[ring->cur] = htole32(paddr >> 8);
2425 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2426 	    BUS_DMASYNC_PREWRITE);
2427 
2428 	/* Finalize mbuf. */
2429 	m->m_pkthdr.rcvif = ifp;
2430 	m->m_data = head;
2431 	m->m_pkthdr.len = m->m_len = len;
2432 
2433 	/* Grab a reference to the source node. */
2434 	wh = mtod(m, struct ieee80211_frame *);
2435 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2436 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2437 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2438 
2439 	rssi = ops->get_rssi(sc, stat);
2440 
2441 	if (ieee80211_radiotap_active(ic)) {
2442 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2443 
2444 		tap->wr_flags = 0;
2445 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2446 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2447 		tap->wr_dbm_antsignal = (int8_t)rssi;
2448 		tap->wr_dbm_antnoise = (int8_t)nf;
2449 		tap->wr_tsft = stat->tstamp;
2450 		switch (stat->rate) {
2451 		/* CCK rates. */
2452 		case  10: tap->wr_rate =   2; break;
2453 		case  20: tap->wr_rate =   4; break;
2454 		case  55: tap->wr_rate =  11; break;
2455 		case 110: tap->wr_rate =  22; break;
2456 		/* OFDM rates. */
2457 		case 0xd: tap->wr_rate =  12; break;
2458 		case 0xf: tap->wr_rate =  18; break;
2459 		case 0x5: tap->wr_rate =  24; break;
2460 		case 0x7: tap->wr_rate =  36; break;
2461 		case 0x9: tap->wr_rate =  48; break;
2462 		case 0xb: tap->wr_rate =  72; break;
2463 		case 0x1: tap->wr_rate =  96; break;
2464 		case 0x3: tap->wr_rate = 108; break;
2465 		/* Unknown rate: should not happen. */
2466 		default:  tap->wr_rate =   0;
2467 		}
2468 	}
2469 
2470 	IWN_UNLOCK(sc);
2471 
2472 	/* Send the frame to the 802.11 layer. */
2473 	if (ni != NULL) {
2474 		if (ni->ni_flags & IEEE80211_NODE_HT)
2475 			m->m_flags |= M_AMPDU;
2476 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2477 		/* Node is no longer needed. */
2478 		ieee80211_free_node(ni);
2479 	} else
2480 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2481 
2482 	IWN_LOCK(sc);
2483 }
2484 
2485 /* Process an incoming Compressed BlockAck. */
2486 static void
2487 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2488     struct iwn_rx_data *data)
2489 {
2490 	struct iwn_ops *ops = &sc->ops;
2491 	struct ifnet *ifp = sc->sc_ifp;
2492 	struct iwn_node *wn;
2493 	struct ieee80211_node *ni;
2494 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2495 	struct iwn_tx_ring *txq;
2496 	struct iwn_tx_data *txdata;
2497 	struct ieee80211_tx_ampdu *tap;
2498 	struct mbuf *m;
2499 	uint64_t bitmap;
2500 	uint16_t ssn;
2501 	uint8_t tid;
2502 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
2503 
2504 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2505 
2506 	qid = le16toh(ba->qid);
2507 	txq = &sc->txq[ba->qid];
2508 	tap = sc->qid2tap[ba->qid];
2509 	tid = tap->txa_tid;
2510 	wn = (void *)tap->txa_ni;
2511 
2512 	res = NULL;
2513 	ssn = 0;
2514 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2515 		res = tap->txa_private;
2516 		ssn = tap->txa_start & 0xfff;
2517 	}
2518 
2519 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
2520 		txdata = &txq->data[txq->read];
2521 
2522 		/* Unmap and free mbuf. */
2523 		bus_dmamap_sync(txq->data_dmat, txdata->map,
2524 		    BUS_DMASYNC_POSTWRITE);
2525 		bus_dmamap_unload(txq->data_dmat, txdata->map);
2526 		m = txdata->m, txdata->m = NULL;
2527 		ni = txdata->ni, txdata->ni = NULL;
2528 
2529 		KASSERT(ni != NULL, ("no node"));
2530 		KASSERT(m != NULL, ("no mbuf"));
2531 
2532 		if (m->m_flags & M_TXCB)
2533 			ieee80211_process_callback(ni, m, 1);
2534 
2535 		m_freem(m);
2536 		ieee80211_free_node(ni);
2537 
2538 		txq->queued--;
2539 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2540 	}
2541 
2542 	if (txq->queued == 0 && res != NULL) {
2543 		iwn_nic_lock(sc);
2544 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2545 		iwn_nic_unlock(sc);
2546 		sc->qid2tap[qid] = NULL;
2547 		free(res, M_DEVBUF);
2548 		return;
2549 	}
2550 
2551 	if (wn->agg[tid].bitmap == 0)
2552 		return;
2553 
2554 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2555 	if (shift < 0)
2556 		shift += 0x100;
2557 
2558 	if (wn->agg[tid].nframes > (64 - shift))
2559 		return;
2560 
2561 	ni = tap->txa_ni;
2562 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2563 	for (i = 0; bitmap; i++) {
2564 		if ((bitmap & 1) == 0) {
2565 			ifp->if_oerrors++;
2566 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2567 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2568 		} else {
2569 			ifp->if_opackets++;
2570 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2571 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2572 		}
2573 		bitmap >>= 1;
2574 	}
2575 }
2576 
2577 /*
2578  * Process a CALIBRATION_RESULT notification sent by the initialization
2579  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2580  */
2581 static void
2582 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2583     struct iwn_rx_data *data)
2584 {
2585 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2586 	int len, idx = -1;
2587 
2588 	/* Runtime firmware should not send such a notification. */
2589 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2590 		return;
2591 
2592 	len = (le32toh(desc->len) & 0x3fff) - 4;
2593 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2594 
2595 	switch (calib->code) {
2596 	case IWN5000_PHY_CALIB_DC:
2597 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2598 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2599 		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2600 		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2601 			idx = 0;
2602 		break;
2603 	case IWN5000_PHY_CALIB_LO:
2604 		idx = 1;
2605 		break;
2606 	case IWN5000_PHY_CALIB_TX_IQ:
2607 		idx = 2;
2608 		break;
2609 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2610 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2611 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2612 			idx = 3;
2613 		break;
2614 	case IWN5000_PHY_CALIB_BASE_BAND:
2615 		idx = 4;
2616 		break;
2617 	}
2618 	if (idx == -1)	/* Ignore other results. */
2619 		return;
2620 
2621 	/* Save calibration result. */
2622 	if (sc->calibcmd[idx].buf != NULL)
2623 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2624 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2625 	if (sc->calibcmd[idx].buf == NULL) {
2626 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2627 		    "not enough memory for calibration result %d\n",
2628 		    calib->code);
2629 		return;
2630 	}
2631 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2632 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2633 	sc->calibcmd[idx].len = len;
2634 	memcpy(sc->calibcmd[idx].buf, calib, len);
2635 }
2636 
2637 /*
2638  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2639  * The latter is sent by the firmware after each received beacon.
2640  */
2641 static void
2642 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2643     struct iwn_rx_data *data)
2644 {
2645 	struct iwn_ops *ops = &sc->ops;
2646 	struct ifnet *ifp = sc->sc_ifp;
2647 	struct ieee80211com *ic = ifp->if_l2com;
2648 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2649 	struct iwn_calib_state *calib = &sc->calib;
2650 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2651 	int temp;
2652 
2653 	/* Ignore statistics received during a scan. */
2654 	if (vap->iv_state != IEEE80211_S_RUN ||
2655 	    (ic->ic_flags & IEEE80211_F_SCAN))
2656 		return;
2657 
2658 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2659 
2660 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2661 	    __func__, desc->type);
2662 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2663 
2664 	/* Test if temperature has changed. */
2665 	if (stats->general.temp != sc->rawtemp) {
2666 		/* Convert "raw" temperature to degC. */
2667 		sc->rawtemp = stats->general.temp;
2668 		temp = ops->get_temperature(sc);
2669 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2670 		    __func__, temp);
2671 
2672 		/* Update TX power if need be (4965AGN only). */
2673 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2674 			iwn4965_power_calibration(sc, temp);
2675 	}
2676 
2677 	if (desc->type != IWN_BEACON_STATISTICS)
2678 		return;	/* Reply to a statistics request. */
2679 
2680 	sc->noise = iwn_get_noise(&stats->rx.general);
2681 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2682 
2683 	/* Test that RSSI and noise are present in stats report. */
2684 	if (le32toh(stats->rx.general.flags) != 1) {
2685 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2686 		    "received statistics without RSSI");
2687 		return;
2688 	}
2689 
2690 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2691 		iwn_collect_noise(sc, &stats->rx.general);
2692 	else if (calib->state == IWN_CALIB_STATE_RUN)
2693 		iwn_tune_sensitivity(sc, &stats->rx);
2694 }
2695 
2696 /*
2697  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2698  * and 5000 adapters have different incompatible TX status formats.
2699  */
2700 static void
2701 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2702     struct iwn_rx_data *data)
2703 {
2704 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2705 	struct iwn_tx_ring *ring;
2706 	int qid;
2707 
2708 	qid = desc->qid & 0xf;
2709 	ring = &sc->txq[qid];
2710 
2711 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2712 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2713 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2714 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2715 	    le32toh(stat->status));
2716 
2717 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2718 	if (qid >= sc->firstaggqueue) {
2719 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2720 		    &stat->status);
2721 	} else {
2722 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2723 		    le32toh(stat->status) & 0xff);
2724 	}
2725 }
2726 
2727 static void
2728 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2729     struct iwn_rx_data *data)
2730 {
2731 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2732 	struct iwn_tx_ring *ring;
2733 	int qid;
2734 
2735 	qid = desc->qid & 0xf;
2736 	ring = &sc->txq[qid];
2737 
2738 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2739 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2740 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2741 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2742 	    le32toh(stat->status));
2743 
2744 #ifdef notyet
2745 	/* Reset TX scheduler slot. */
2746 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2747 #endif
2748 
2749 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2750 	if (qid >= sc->firstaggqueue) {
2751 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2752 		    &stat->status);
2753 	} else {
2754 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2755 		    le16toh(stat->status) & 0xff);
2756 	}
2757 }
2758 
2759 /*
2760  * Adapter-independent backend for TX_DONE firmware notifications.
2761  */
2762 static void
2763 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2764     uint8_t status)
2765 {
2766 	struct ifnet *ifp = sc->sc_ifp;
2767 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2768 	struct iwn_tx_data *data = &ring->data[desc->idx];
2769 	struct mbuf *m;
2770 	struct ieee80211_node *ni;
2771 	struct ieee80211vap *vap;
2772 
2773 	KASSERT(data->ni != NULL, ("no node"));
2774 
2775 	/* Unmap and free mbuf. */
2776 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2777 	bus_dmamap_unload(ring->data_dmat, data->map);
2778 	m = data->m, data->m = NULL;
2779 	ni = data->ni, data->ni = NULL;
2780 	vap = ni->ni_vap;
2781 
2782 	if (m->m_flags & M_TXCB) {
2783 		/*
2784 		 * Channels marked for "radar" require traffic to be received
2785 		 * to unlock before we can transmit.  Until traffic is seen
2786 		 * any attempt to transmit is returned immediately with status
2787 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2788 		 * happen on first authenticate after scanning.  To workaround
2789 		 * this we ignore a failure of this sort in AUTH state so the
2790 		 * 802.11 layer will fall back to using a timeout to wait for
2791 		 * the AUTH reply.  This allows the firmware time to see
2792 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2793 		 * unclear why the firmware does not maintain state for
2794 		 * channels recently visited as this would allow immediate
2795 		 * use of the channel after a scan (where we see traffic).
2796 		 */
2797 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2798 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2799 			ieee80211_process_callback(ni, m, 0);
2800 		else
2801 			ieee80211_process_callback(ni, m,
2802 			    (status & IWN_TX_FAIL) != 0);
2803 	}
2804 
2805 	/*
2806 	 * Update rate control statistics for the node.
2807 	 */
2808 	if (status & IWN_TX_FAIL) {
2809 		ifp->if_oerrors++;
2810 		ieee80211_ratectl_tx_complete(vap, ni,
2811 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2812 	} else {
2813 		ifp->if_opackets++;
2814 		ieee80211_ratectl_tx_complete(vap, ni,
2815 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2816 	}
2817 	m_freem(m);
2818 	ieee80211_free_node(ni);
2819 
2820 	sc->sc_tx_timer = 0;
2821 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2822 		sc->qfullmsk &= ~(1 << ring->qid);
2823 		if (sc->qfullmsk == 0 &&
2824 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2825 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2826 			iwn_start_locked(ifp);
2827 		}
2828 	}
2829 }
2830 
2831 /*
2832  * Process a "command done" firmware notification.  This is where we wakeup
2833  * processes waiting for a synchronous command completion.
2834  */
2835 static void
2836 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2837 {
2838 	struct iwn_tx_ring *ring = &sc->txq[4];
2839 	struct iwn_tx_data *data;
2840 
2841 	if ((desc->qid & 0xf) != 4)
2842 		return;	/* Not a command ack. */
2843 
2844 	data = &ring->data[desc->idx];
2845 
2846 	/* If the command was mapped in an mbuf, free it. */
2847 	if (data->m != NULL) {
2848 		bus_dmamap_sync(ring->data_dmat, data->map,
2849 		    BUS_DMASYNC_POSTWRITE);
2850 		bus_dmamap_unload(ring->data_dmat, data->map);
2851 		m_freem(data->m);
2852 		data->m = NULL;
2853 	}
2854 	wakeup(&ring->desc[desc->idx]);
2855 }
2856 
2857 static void
2858 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
2859     void *stat)
2860 {
2861 	struct iwn_ops *ops = &sc->ops;
2862 	struct ifnet *ifp = sc->sc_ifp;
2863 	struct iwn_tx_ring *ring = &sc->txq[qid];
2864 	struct iwn_tx_data *data;
2865 	struct mbuf *m;
2866 	struct iwn_node *wn;
2867 	struct ieee80211_node *ni;
2868 	struct ieee80211_tx_ampdu *tap;
2869 	uint64_t bitmap;
2870 	uint32_t *status = stat;
2871 	uint16_t *aggstatus = stat;
2872 	uint16_t ssn;
2873 	uint8_t tid;
2874 	int bit, i, lastidx, *res, seqno, shift, start;
2875 
2876 #ifdef NOT_YET
2877 	if (nframes == 1) {
2878 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
2879 			printf("ieee80211_send_bar()\n");
2880 	}
2881 #endif
2882 
2883 	bitmap = 0;
2884 	start = idx;
2885 	for (i = 0; i < nframes; i++) {
2886 		if (le16toh(aggstatus[i * 2]) & 0xc)
2887 			continue;
2888 
2889 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
2890 		bit = idx - start;
2891 		shift = 0;
2892 		if (bit >= 64) {
2893 			shift = 0x100 - idx + start;
2894 			bit = 0;
2895 			start = idx;
2896 		} else if (bit <= -64)
2897 			bit = 0x100 - start + idx;
2898 		else if (bit < 0) {
2899 			shift = start - idx;
2900 			start = idx;
2901 			bit = 0;
2902 		}
2903 		bitmap = bitmap << shift;
2904 		bitmap |= 1ULL << bit;
2905 	}
2906 	tap = sc->qid2tap[qid];
2907 	tid = tap->txa_tid;
2908 	wn = (void *)tap->txa_ni;
2909 	wn->agg[tid].bitmap = bitmap;
2910 	wn->agg[tid].startidx = start;
2911 	wn->agg[tid].nframes = nframes;
2912 
2913 	res = NULL;
2914 	ssn = 0;
2915 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2916 		res = tap->txa_private;
2917 		ssn = tap->txa_start & 0xfff;
2918 	}
2919 
2920 	seqno = le32toh(*(status + nframes)) & 0xfff;
2921 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
2922 		data = &ring->data[ring->read];
2923 
2924 		/* Unmap and free mbuf. */
2925 		bus_dmamap_sync(ring->data_dmat, data->map,
2926 		    BUS_DMASYNC_POSTWRITE);
2927 		bus_dmamap_unload(ring->data_dmat, data->map);
2928 		m = data->m, data->m = NULL;
2929 		ni = data->ni, data->ni = NULL;
2930 
2931 		KASSERT(ni != NULL, ("no node"));
2932 		KASSERT(m != NULL, ("no mbuf"));
2933 
2934 		if (m->m_flags & M_TXCB)
2935 			ieee80211_process_callback(ni, m, 1);
2936 
2937 		m_freem(m);
2938 		ieee80211_free_node(ni);
2939 
2940 		ring->queued--;
2941 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
2942 	}
2943 
2944 	if (ring->queued == 0 && res != NULL) {
2945 		iwn_nic_lock(sc);
2946 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2947 		iwn_nic_unlock(sc);
2948 		sc->qid2tap[qid] = NULL;
2949 		free(res, M_DEVBUF);
2950 		return;
2951 	}
2952 
2953 	sc->sc_tx_timer = 0;
2954 	if (ring->queued < IWN_TX_RING_LOMARK) {
2955 		sc->qfullmsk &= ~(1 << ring->qid);
2956 		if (sc->qfullmsk == 0 &&
2957 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2958 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2959 			iwn_start_locked(ifp);
2960 		}
2961 	}
2962 }
2963 
2964 /*
2965  * Process an INT_FH_RX or INT_SW_RX interrupt.
2966  */
2967 static void
2968 iwn_notif_intr(struct iwn_softc *sc)
2969 {
2970 	struct iwn_ops *ops = &sc->ops;
2971 	struct ifnet *ifp = sc->sc_ifp;
2972 	struct ieee80211com *ic = ifp->if_l2com;
2973 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2974 	uint16_t hw;
2975 
2976 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2977 	    BUS_DMASYNC_POSTREAD);
2978 
2979 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2980 	while (sc->rxq.cur != hw) {
2981 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2982 		struct iwn_rx_desc *desc;
2983 
2984 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2985 		    BUS_DMASYNC_POSTREAD);
2986 		desc = mtod(data->m, struct iwn_rx_desc *);
2987 
2988 		DPRINTF(sc, IWN_DEBUG_RECV,
2989 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2990 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2991 		    desc->type, iwn_intr_str(desc->type),
2992 		    le16toh(desc->len));
2993 
2994 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2995 			iwn_cmd_done(sc, desc);
2996 
2997 		switch (desc->type) {
2998 		case IWN_RX_PHY:
2999 			iwn_rx_phy(sc, desc, data);
3000 			break;
3001 
3002 		case IWN_RX_DONE:		/* 4965AGN only. */
3003 		case IWN_MPDU_RX_DONE:
3004 			/* An 802.11 frame has been received. */
3005 			iwn_rx_done(sc, desc, data);
3006 			break;
3007 
3008 		case IWN_RX_COMPRESSED_BA:
3009 			/* A Compressed BlockAck has been received. */
3010 			iwn_rx_compressed_ba(sc, desc, data);
3011 			break;
3012 
3013 		case IWN_TX_DONE:
3014 			/* An 802.11 frame has been transmitted. */
3015 			ops->tx_done(sc, desc, data);
3016 			break;
3017 
3018 		case IWN_RX_STATISTICS:
3019 		case IWN_BEACON_STATISTICS:
3020 			iwn_rx_statistics(sc, desc, data);
3021 			break;
3022 
3023 		case IWN_BEACON_MISSED:
3024 		{
3025 			struct iwn_beacon_missed *miss =
3026 			    (struct iwn_beacon_missed *)(desc + 1);
3027 			int misses;
3028 
3029 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3030 			    BUS_DMASYNC_POSTREAD);
3031 			misses = le32toh(miss->consecutive);
3032 
3033 			DPRINTF(sc, IWN_DEBUG_STATE,
3034 			    "%s: beacons missed %d/%d\n", __func__,
3035 			    misses, le32toh(miss->total));
3036 			/*
3037 			 * If more than 5 consecutive beacons are missed,
3038 			 * reinitialize the sensitivity state machine.
3039 			 */
3040 			if (vap->iv_state == IEEE80211_S_RUN &&
3041 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3042 				if (misses > 5)
3043 					(void)iwn_init_sensitivity(sc);
3044 				if (misses >= vap->iv_bmissthreshold) {
3045 					IWN_UNLOCK(sc);
3046 					ieee80211_beacon_miss(ic);
3047 					IWN_LOCK(sc);
3048 				}
3049 			}
3050 			break;
3051 		}
3052 		case IWN_UC_READY:
3053 		{
3054 			struct iwn_ucode_info *uc =
3055 			    (struct iwn_ucode_info *)(desc + 1);
3056 
3057 			/* The microcontroller is ready. */
3058 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3059 			    BUS_DMASYNC_POSTREAD);
3060 			DPRINTF(sc, IWN_DEBUG_RESET,
3061 			    "microcode alive notification version=%d.%d "
3062 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3063 			    uc->subtype, le32toh(uc->valid));
3064 
3065 			if (le32toh(uc->valid) != 1) {
3066 				device_printf(sc->sc_dev,
3067 				    "microcontroller initialization failed");
3068 				break;
3069 			}
3070 			if (uc->subtype == IWN_UCODE_INIT) {
3071 				/* Save microcontroller report. */
3072 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3073 			}
3074 			/* Save the address of the error log in SRAM. */
3075 			sc->errptr = le32toh(uc->errptr);
3076 			break;
3077 		}
3078 		case IWN_STATE_CHANGED:
3079 		{
3080 			uint32_t *status = (uint32_t *)(desc + 1);
3081 
3082 			/*
3083 			 * State change allows hardware switch change to be
3084 			 * noted. However, we handle this in iwn_intr as we
3085 			 * get both the enable/disble intr.
3086 			 */
3087 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3088 			    BUS_DMASYNC_POSTREAD);
3089 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
3090 			    le32toh(*status));
3091 			break;
3092 		}
3093 		case IWN_START_SCAN:
3094 		{
3095 			struct iwn_start_scan *scan =
3096 			    (struct iwn_start_scan *)(desc + 1);
3097 
3098 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3099 			    BUS_DMASYNC_POSTREAD);
3100 			DPRINTF(sc, IWN_DEBUG_ANY,
3101 			    "%s: scanning channel %d status %x\n",
3102 			    __func__, scan->chan, le32toh(scan->status));
3103 			break;
3104 		}
3105 		case IWN_STOP_SCAN:
3106 		{
3107 			struct iwn_stop_scan *scan =
3108 			    (struct iwn_stop_scan *)(desc + 1);
3109 
3110 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3111 			    BUS_DMASYNC_POSTREAD);
3112 			DPRINTF(sc, IWN_DEBUG_STATE,
3113 			    "scan finished nchan=%d status=%d chan=%d\n",
3114 			    scan->nchan, scan->status, scan->chan);
3115 
3116 			IWN_UNLOCK(sc);
3117 			ieee80211_scan_next(vap);
3118 			IWN_LOCK(sc);
3119 			break;
3120 		}
3121 		case IWN5000_CALIBRATION_RESULT:
3122 			iwn5000_rx_calib_results(sc, desc, data);
3123 			break;
3124 
3125 		case IWN5000_CALIBRATION_DONE:
3126 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3127 			wakeup(sc);
3128 			break;
3129 		}
3130 
3131 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3132 	}
3133 
3134 	/* Tell the firmware what we have processed. */
3135 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3136 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3137 }
3138 
3139 /*
3140  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3141  * from power-down sleep mode.
3142  */
3143 static void
3144 iwn_wakeup_intr(struct iwn_softc *sc)
3145 {
3146 	int qid;
3147 
3148 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3149 	    __func__);
3150 
3151 	/* Wakeup RX and TX rings. */
3152 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3153 	for (qid = 0; qid < sc->ntxqs; qid++) {
3154 		struct iwn_tx_ring *ring = &sc->txq[qid];
3155 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3156 	}
3157 }
3158 
3159 static void
3160 iwn_rftoggle_intr(struct iwn_softc *sc)
3161 {
3162 	struct ifnet *ifp = sc->sc_ifp;
3163 	struct ieee80211com *ic = ifp->if_l2com;
3164 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3165 
3166 	IWN_LOCK_ASSERT(sc);
3167 
3168 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3169 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3170 	if (tmp & IWN_GP_CNTRL_RFKILL)
3171 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3172 	else
3173 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3174 }
3175 
3176 /*
3177  * Dump the error log of the firmware when a firmware panic occurs.  Although
3178  * we can't debug the firmware because it is neither open source nor free, it
3179  * can help us to identify certain classes of problems.
3180  */
3181 static void
3182 iwn_fatal_intr(struct iwn_softc *sc)
3183 {
3184 	struct iwn_fw_dump dump;
3185 	int i;
3186 
3187 	IWN_LOCK_ASSERT(sc);
3188 
3189 	/* Force a complete recalibration on next init. */
3190 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3191 
3192 	/* Check that the error log address is valid. */
3193 	if (sc->errptr < IWN_FW_DATA_BASE ||
3194 	    sc->errptr + sizeof (dump) >
3195 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3196 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3197 		    sc->errptr);
3198 		return;
3199 	}
3200 	if (iwn_nic_lock(sc) != 0) {
3201 		printf("%s: could not read firmware error log\n", __func__);
3202 		return;
3203 	}
3204 	/* Read firmware error log from SRAM. */
3205 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3206 	    sizeof (dump) / sizeof (uint32_t));
3207 	iwn_nic_unlock(sc);
3208 
3209 	if (dump.valid == 0) {
3210 		printf("%s: firmware error log is empty\n", __func__);
3211 		return;
3212 	}
3213 	printf("firmware error log:\n");
3214 	printf("  error type      = \"%s\" (0x%08X)\n",
3215 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3216 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3217 	    dump.id);
3218 	printf("  program counter = 0x%08X\n", dump.pc);
3219 	printf("  source line     = 0x%08X\n", dump.src_line);
3220 	printf("  error data      = 0x%08X%08X\n",
3221 	    dump.error_data[0], dump.error_data[1]);
3222 	printf("  branch link     = 0x%08X%08X\n",
3223 	    dump.branch_link[0], dump.branch_link[1]);
3224 	printf("  interrupt link  = 0x%08X%08X\n",
3225 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3226 	printf("  time            = %u\n", dump.time[0]);
3227 
3228 	/* Dump driver status (TX and RX rings) while we're here. */
3229 	printf("driver status:\n");
3230 	for (i = 0; i < sc->ntxqs; i++) {
3231 		struct iwn_tx_ring *ring = &sc->txq[i];
3232 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3233 		    i, ring->qid, ring->cur, ring->queued);
3234 	}
3235 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3236 }
3237 
3238 static void
3239 iwn_intr(void *arg)
3240 {
3241 	struct iwn_softc *sc = arg;
3242 	struct ifnet *ifp = sc->sc_ifp;
3243 	uint32_t r1, r2, tmp;
3244 
3245 	IWN_LOCK(sc);
3246 
3247 	/* Disable interrupts. */
3248 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3249 
3250 	/* Read interrupts from ICT (fast) or from registers (slow). */
3251 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3252 		tmp = 0;
3253 		while (sc->ict[sc->ict_cur] != 0) {
3254 			tmp |= sc->ict[sc->ict_cur];
3255 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3256 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3257 		}
3258 		tmp = le32toh(tmp);
3259 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3260 			tmp = 0;
3261 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3262 			tmp |= 0x8000;
3263 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3264 		r2 = 0;	/* Unused. */
3265 	} else {
3266 		r1 = IWN_READ(sc, IWN_INT);
3267 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3268 			return;	/* Hardware gone! */
3269 		r2 = IWN_READ(sc, IWN_FH_INT);
3270 	}
3271 
3272 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
3273 
3274 	if (r1 == 0 && r2 == 0)
3275 		goto done;	/* Interrupt not for us. */
3276 
3277 	/* Acknowledge interrupts. */
3278 	IWN_WRITE(sc, IWN_INT, r1);
3279 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3280 		IWN_WRITE(sc, IWN_FH_INT, r2);
3281 
3282 	if (r1 & IWN_INT_RF_TOGGLED) {
3283 		iwn_rftoggle_intr(sc);
3284 		goto done;
3285 	}
3286 	if (r1 & IWN_INT_CT_REACHED) {
3287 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3288 		    __func__);
3289 	}
3290 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3291 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3292 		    __func__);
3293 		/* Dump firmware error log and stop. */
3294 		iwn_fatal_intr(sc);
3295 		ifp->if_flags &= ~IFF_UP;
3296 		iwn_stop_locked(sc);
3297 		goto done;
3298 	}
3299 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3300 	    (r2 & IWN_FH_INT_RX)) {
3301 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3302 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3303 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3304 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3305 			    IWN_INT_PERIODIC_DIS);
3306 			iwn_notif_intr(sc);
3307 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3308 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3309 				    IWN_INT_PERIODIC_ENA);
3310 			}
3311 		} else
3312 			iwn_notif_intr(sc);
3313 	}
3314 
3315 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3316 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3317 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3318 		wakeup(sc);	/* FH DMA transfer completed. */
3319 	}
3320 
3321 	if (r1 & IWN_INT_ALIVE)
3322 		wakeup(sc);	/* Firmware is alive. */
3323 
3324 	if (r1 & IWN_INT_WAKEUP)
3325 		iwn_wakeup_intr(sc);
3326 
3327 done:
3328 	/* Re-enable interrupts. */
3329 	if (ifp->if_flags & IFF_UP)
3330 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3331 
3332 	IWN_UNLOCK(sc);
3333 }
3334 
3335 /*
3336  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3337  * 5000 adapters use a slightly different format).
3338  */
3339 static void
3340 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3341     uint16_t len)
3342 {
3343 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3344 
3345 	*w = htole16(len + 8);
3346 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3347 	    BUS_DMASYNC_PREWRITE);
3348 	if (idx < IWN_SCHED_WINSZ) {
3349 		*(w + IWN_TX_RING_COUNT) = *w;
3350 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3351 		    BUS_DMASYNC_PREWRITE);
3352 	}
3353 }
3354 
3355 static void
3356 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3357     uint16_t len)
3358 {
3359 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3360 
3361 	*w = htole16(id << 12 | (len + 8));
3362 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3363 	    BUS_DMASYNC_PREWRITE);
3364 	if (idx < IWN_SCHED_WINSZ) {
3365 		*(w + IWN_TX_RING_COUNT) = *w;
3366 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3367 		    BUS_DMASYNC_PREWRITE);
3368 	}
3369 }
3370 
3371 #ifdef notyet
3372 static void
3373 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3374 {
3375 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3376 
3377 	*w = (*w & htole16(0xf000)) | htole16(1);
3378 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3379 	    BUS_DMASYNC_PREWRITE);
3380 	if (idx < IWN_SCHED_WINSZ) {
3381 		*(w + IWN_TX_RING_COUNT) = *w;
3382 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3383 		    BUS_DMASYNC_PREWRITE);
3384 	}
3385 }
3386 #endif
3387 
3388 static int
3389 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3390 {
3391 	struct iwn_ops *ops = &sc->ops;
3392 	const struct ieee80211_txparam *tp;
3393 	struct ieee80211vap *vap = ni->ni_vap;
3394 	struct ieee80211com *ic = ni->ni_ic;
3395 	struct iwn_node *wn = (void *)ni;
3396 	struct iwn_tx_ring *ring;
3397 	struct iwn_tx_desc *desc;
3398 	struct iwn_tx_data *data;
3399 	struct iwn_tx_cmd *cmd;
3400 	struct iwn_cmd_data *tx;
3401 	struct ieee80211_frame *wh;
3402 	struct ieee80211_key *k = NULL;
3403 	struct mbuf *m1;
3404 	uint32_t flags;
3405 	uint16_t qos;
3406 	u_int hdrlen;
3407 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3408 	uint8_t tid, ridx, txant, type;
3409 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3410 
3411 	IWN_LOCK_ASSERT(sc);
3412 
3413 	wh = mtod(m, struct ieee80211_frame *);
3414 	hdrlen = ieee80211_anyhdrsize(wh);
3415 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3416 
3417 	/* Select EDCA Access Category and TX ring for this frame. */
3418 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3419 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3420 		tid = qos & IEEE80211_QOS_TID;
3421 	} else {
3422 		qos = 0;
3423 		tid = 0;
3424 	}
3425 	ac = M_WME_GETAC(m);
3426 	if (m->m_flags & M_AMPDU_MPDU) {
3427 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3428 
3429 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
3430 			m_freem(m);
3431 			return EINVAL;
3432 		}
3433 
3434 		ac = *(int *)tap->txa_private;
3435 		*(uint16_t *)wh->i_seq =
3436 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3437 		ni->ni_txseqs[tid]++;
3438 	}
3439 	ring = &sc->txq[ac];
3440 	desc = &ring->desc[ring->cur];
3441 	data = &ring->data[ring->cur];
3442 
3443 	/* Choose a TX rate index. */
3444 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3445 	if (type == IEEE80211_FC0_TYPE_MGT)
3446 		rate = tp->mgmtrate;
3447 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3448 		rate = tp->mcastrate;
3449 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3450 		rate = tp->ucastrate;
3451 	else {
3452 		/* XXX pass pktlen */
3453 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3454 		rate = ni->ni_txrate;
3455 	}
3456 	ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
3457 	    rate & IEEE80211_RATE_VAL);
3458 
3459 	/* Encrypt the frame if need be. */
3460 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3461 		/* Retrieve key for TX. */
3462 		k = ieee80211_crypto_encap(ni, m);
3463 		if (k == NULL) {
3464 			m_freem(m);
3465 			return ENOBUFS;
3466 		}
3467 		/* 802.11 header may have moved. */
3468 		wh = mtod(m, struct ieee80211_frame *);
3469 	}
3470 	totlen = m->m_pkthdr.len;
3471 
3472 	if (ieee80211_radiotap_active_vap(vap)) {
3473 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3474 
3475 		tap->wt_flags = 0;
3476 		tap->wt_rate = rate;
3477 		if (k != NULL)
3478 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3479 
3480 		ieee80211_radiotap_tx(vap, m);
3481 	}
3482 
3483 	/* Prepare TX firmware command. */
3484 	cmd = &ring->cmd[ring->cur];
3485 	cmd->code = IWN_CMD_TX_DATA;
3486 	cmd->flags = 0;
3487 	cmd->qid = ring->qid;
3488 	cmd->idx = ring->cur;
3489 
3490 	tx = (struct iwn_cmd_data *)cmd->data;
3491 	/* NB: No need to clear tx, all fields are reinitialized here. */
3492 	tx->scratch = 0;	/* clear "scratch" area */
3493 
3494 	flags = 0;
3495 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3496 		/* Unicast frame, check if an ACK is expected. */
3497 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3498 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3499 			flags |= IWN_TX_NEED_ACK;
3500 	}
3501 	if ((wh->i_fc[0] &
3502 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3503 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3504 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3505 
3506 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3507 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3508 
3509 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3510 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3511 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3512 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3513 			flags |= IWN_TX_NEED_RTS;
3514 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3515 		    ridx >= IWN_RIDX_OFDM6) {
3516 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3517 				flags |= IWN_TX_NEED_CTS;
3518 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3519 				flags |= IWN_TX_NEED_RTS;
3520 		}
3521 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3522 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3523 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3524 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3525 				flags |= IWN_TX_NEED_PROTECTION;
3526 			} else
3527 				flags |= IWN_TX_FULL_TXOP;
3528 		}
3529 	}
3530 
3531 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3532 	    type != IEEE80211_FC0_TYPE_DATA)
3533 		tx->id = sc->broadcast_id;
3534 	else
3535 		tx->id = wn->id;
3536 
3537 	if (type == IEEE80211_FC0_TYPE_MGT) {
3538 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3539 
3540 		/* Tell HW to set timestamp in probe responses. */
3541 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3542 			flags |= IWN_TX_INSERT_TSTAMP;
3543 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3544 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3545 			tx->timeout = htole16(3);
3546 		else
3547 			tx->timeout = htole16(2);
3548 	} else
3549 		tx->timeout = htole16(0);
3550 
3551 	if (hdrlen & 3) {
3552 		/* First segment length must be a multiple of 4. */
3553 		flags |= IWN_TX_NEED_PADDING;
3554 		pad = 4 - (hdrlen & 3);
3555 	} else
3556 		pad = 0;
3557 
3558 	tx->len = htole16(totlen);
3559 	tx->tid = tid;
3560 	tx->rts_ntries = 60;
3561 	tx->data_ntries = 15;
3562 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3563 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
3564 	if (tx->id == sc->broadcast_id) {
3565 		/* Group or management frame. */
3566 		tx->linkq = 0;
3567 		/* XXX Alternate between antenna A and B? */
3568 		txant = IWN_LSB(sc->txchainmask);
3569 		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3570 	} else {
3571 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3572 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3573 	}
3574 	/* Set physical address of "scratch area". */
3575 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3576 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3577 
3578 	/* Copy 802.11 header in TX command. */
3579 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3580 
3581 	/* Trim 802.11 header. */
3582 	m_adj(m, hdrlen);
3583 	tx->security = 0;
3584 	tx->flags = htole32(flags);
3585 
3586 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3587 	    &nsegs, BUS_DMA_NOWAIT);
3588 	if (error != 0) {
3589 		if (error != EFBIG) {
3590 			device_printf(sc->sc_dev,
3591 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3592 			m_freem(m);
3593 			return error;
3594 		}
3595 		/* Too many DMA segments, linearize mbuf. */
3596 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
3597 		if (m1 == NULL) {
3598 			device_printf(sc->sc_dev,
3599 			    "%s: could not defrag mbuf\n", __func__);
3600 			m_freem(m);
3601 			return ENOBUFS;
3602 		}
3603 		m = m1;
3604 
3605 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3606 		    segs, &nsegs, BUS_DMA_NOWAIT);
3607 		if (error != 0) {
3608 			device_printf(sc->sc_dev,
3609 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3610 			m_freem(m);
3611 			return error;
3612 		}
3613 	}
3614 
3615 	data->m = m;
3616 	data->ni = ni;
3617 
3618 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3619 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3620 
3621 	/* Fill TX descriptor. */
3622 	desc->nsegs = 1;
3623 	if (m->m_len != 0)
3624 		desc->nsegs += nsegs;
3625 	/* First DMA segment is used by the TX command. */
3626 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3627 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3628 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3629 	/* Other DMA segments are for data payload. */
3630 	seg = &segs[0];
3631 	for (i = 1; i <= nsegs; i++) {
3632 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3633 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3634 		    seg->ds_len << 4);
3635 		seg++;
3636 	}
3637 
3638 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3639 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3640 	    BUS_DMASYNC_PREWRITE);
3641 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3642 	    BUS_DMASYNC_PREWRITE);
3643 
3644 	/* Update TX scheduler. */
3645 	if (ring->qid >= sc->firstaggqueue)
3646 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3647 
3648 	/* Kick TX ring. */
3649 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3650 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3651 
3652 	/* Mark TX ring as full if we reach a certain threshold. */
3653 	if (++ring->queued > IWN_TX_RING_HIMARK)
3654 		sc->qfullmsk |= 1 << ring->qid;
3655 
3656 	return 0;
3657 }
3658 
3659 static int
3660 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3661     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3662 {
3663 	struct iwn_ops *ops = &sc->ops;
3664 	struct ifnet *ifp = sc->sc_ifp;
3665 	struct ieee80211vap *vap = ni->ni_vap;
3666 	struct ieee80211com *ic = ifp->if_l2com;
3667 	struct iwn_tx_cmd *cmd;
3668 	struct iwn_cmd_data *tx;
3669 	struct ieee80211_frame *wh;
3670 	struct iwn_tx_ring *ring;
3671 	struct iwn_tx_desc *desc;
3672 	struct iwn_tx_data *data;
3673 	struct mbuf *m1;
3674 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3675 	uint32_t flags;
3676 	u_int hdrlen;
3677 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3678 	uint8_t ridx, type, txant;
3679 
3680 	IWN_LOCK_ASSERT(sc);
3681 
3682 	wh = mtod(m, struct ieee80211_frame *);
3683 	hdrlen = ieee80211_anyhdrsize(wh);
3684 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3685 
3686 	ac = params->ibp_pri & 3;
3687 
3688 	ring = &sc->txq[ac];
3689 	desc = &ring->desc[ring->cur];
3690 	data = &ring->data[ring->cur];
3691 
3692 	/* Choose a TX rate index. */
3693 	rate = params->ibp_rate0;
3694 	ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
3695 	    rate & IEEE80211_RATE_VAL);
3696 	if (ridx == (uint8_t)-1) {
3697 		/* XXX fall back to mcast/mgmt rate? */
3698 		m_freem(m);
3699 		return EINVAL;
3700 	}
3701 
3702 	totlen = m->m_pkthdr.len;
3703 
3704 	/* Prepare TX firmware command. */
3705 	cmd = &ring->cmd[ring->cur];
3706 	cmd->code = IWN_CMD_TX_DATA;
3707 	cmd->flags = 0;
3708 	cmd->qid = ring->qid;
3709 	cmd->idx = ring->cur;
3710 
3711 	tx = (struct iwn_cmd_data *)cmd->data;
3712 	/* NB: No need to clear tx, all fields are reinitialized here. */
3713 	tx->scratch = 0;	/* clear "scratch" area */
3714 
3715 	flags = 0;
3716 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3717 		flags |= IWN_TX_NEED_ACK;
3718 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3719 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3720 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3721 			flags &= ~IWN_TX_NEED_RTS;
3722 			flags |= IWN_TX_NEED_PROTECTION;
3723 		} else
3724 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3725 	}
3726 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3727 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3728 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3729 			flags &= ~IWN_TX_NEED_CTS;
3730 			flags |= IWN_TX_NEED_PROTECTION;
3731 		} else
3732 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3733 	}
3734 	if (type == IEEE80211_FC0_TYPE_MGT) {
3735 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3736 
3737 		/* Tell HW to set timestamp in probe responses. */
3738 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3739 			flags |= IWN_TX_INSERT_TSTAMP;
3740 
3741 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3742 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3743 			tx->timeout = htole16(3);
3744 		else
3745 			tx->timeout = htole16(2);
3746 	} else
3747 		tx->timeout = htole16(0);
3748 
3749 	if (hdrlen & 3) {
3750 		/* First segment length must be a multiple of 4. */
3751 		flags |= IWN_TX_NEED_PADDING;
3752 		pad = 4 - (hdrlen & 3);
3753 	} else
3754 		pad = 0;
3755 
3756 	if (ieee80211_radiotap_active_vap(vap)) {
3757 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3758 
3759 		tap->wt_flags = 0;
3760 		tap->wt_rate = rate;
3761 
3762 		ieee80211_radiotap_tx(vap, m);
3763 	}
3764 
3765 	tx->len = htole16(totlen);
3766 	tx->tid = 0;
3767 	tx->id = sc->broadcast_id;
3768 	tx->rts_ntries = params->ibp_try1;
3769 	tx->data_ntries = params->ibp_try0;
3770 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3771 
3772 	/* XXX should just use  iwn_rate_to_plcp() */
3773 	tx->rate = htole32(rate2plcp(rate));
3774 	if (ridx < IWN_RIDX_OFDM6 &&
3775 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3776 		tx->rate |= htole32(IWN_RFLAG_CCK);
3777 
3778 	/* Group or management frame. */
3779 	tx->linkq = 0;
3780 	txant = IWN_LSB(sc->txchainmask);
3781 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3782 
3783 	/* Set physical address of "scratch area". */
3784 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3785 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3786 
3787 	/* Copy 802.11 header in TX command. */
3788 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3789 
3790 	/* Trim 802.11 header. */
3791 	m_adj(m, hdrlen);
3792 	tx->security = 0;
3793 	tx->flags = htole32(flags);
3794 
3795 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3796 	    &nsegs, BUS_DMA_NOWAIT);
3797 	if (error != 0) {
3798 		if (error != EFBIG) {
3799 			device_printf(sc->sc_dev,
3800 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3801 			m_freem(m);
3802 			return error;
3803 		}
3804 		/* Too many DMA segments, linearize mbuf. */
3805 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
3806 		if (m1 == NULL) {
3807 			device_printf(sc->sc_dev,
3808 			    "%s: could not defrag mbuf\n", __func__);
3809 			m_freem(m);
3810 			return ENOBUFS;
3811 		}
3812 		m = m1;
3813 
3814 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3815 		    segs, &nsegs, BUS_DMA_NOWAIT);
3816 		if (error != 0) {
3817 			device_printf(sc->sc_dev,
3818 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3819 			m_freem(m);
3820 			return error;
3821 		}
3822 	}
3823 
3824 	data->m = m;
3825 	data->ni = ni;
3826 
3827 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3828 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3829 
3830 	/* Fill TX descriptor. */
3831 	desc->nsegs = 1;
3832 	if (m->m_len != 0)
3833 		desc->nsegs += nsegs;
3834 	/* First DMA segment is used by the TX command. */
3835 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3836 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3837 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3838 	/* Other DMA segments are for data payload. */
3839 	seg = &segs[0];
3840 	for (i = 1; i <= nsegs; i++) {
3841 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3842 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3843 		    seg->ds_len << 4);
3844 		seg++;
3845 	}
3846 
3847 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3848 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3849 	    BUS_DMASYNC_PREWRITE);
3850 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3851 	    BUS_DMASYNC_PREWRITE);
3852 
3853 	/* Update TX scheduler. */
3854 	if (ring->qid >= sc->firstaggqueue)
3855 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3856 
3857 	/* Kick TX ring. */
3858 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3859 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3860 
3861 	/* Mark TX ring as full if we reach a certain threshold. */
3862 	if (++ring->queued > IWN_TX_RING_HIMARK)
3863 		sc->qfullmsk |= 1 << ring->qid;
3864 
3865 	return 0;
3866 }
3867 
3868 static int
3869 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3870     const struct ieee80211_bpf_params *params)
3871 {
3872 	struct ieee80211com *ic = ni->ni_ic;
3873 	struct ifnet *ifp = ic->ic_ifp;
3874 	struct iwn_softc *sc = ifp->if_softc;
3875 	int error = 0;
3876 
3877 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3878 		ieee80211_free_node(ni);
3879 		m_freem(m);
3880 		return ENETDOWN;
3881 	}
3882 
3883 	IWN_LOCK(sc);
3884 	if (params == NULL) {
3885 		/*
3886 		 * Legacy path; interpret frame contents to decide
3887 		 * precisely how to send the frame.
3888 		 */
3889 		error = iwn_tx_data(sc, m, ni);
3890 	} else {
3891 		/*
3892 		 * Caller supplied explicit parameters to use in
3893 		 * sending the frame.
3894 		 */
3895 		error = iwn_tx_data_raw(sc, m, ni, params);
3896 	}
3897 	if (error != 0) {
3898 		/* NB: m is reclaimed on tx failure */
3899 		ieee80211_free_node(ni);
3900 		ifp->if_oerrors++;
3901 	}
3902 	sc->sc_tx_timer = 5;
3903 
3904 	IWN_UNLOCK(sc);
3905 	return error;
3906 }
3907 
3908 static void
3909 iwn_start(struct ifnet *ifp)
3910 {
3911 	struct iwn_softc *sc = ifp->if_softc;
3912 
3913 	IWN_LOCK(sc);
3914 	iwn_start_locked(ifp);
3915 	IWN_UNLOCK(sc);
3916 }
3917 
3918 static void
3919 iwn_start_locked(struct ifnet *ifp)
3920 {
3921 	struct iwn_softc *sc = ifp->if_softc;
3922 	struct ieee80211_node *ni;
3923 	struct mbuf *m;
3924 
3925 	IWN_LOCK_ASSERT(sc);
3926 
3927 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3928 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
3929 		return;
3930 
3931 	for (;;) {
3932 		if (sc->qfullmsk != 0) {
3933 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3934 			break;
3935 		}
3936 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3937 		if (m == NULL)
3938 			break;
3939 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3940 		if (iwn_tx_data(sc, m, ni) != 0) {
3941 			ieee80211_free_node(ni);
3942 			ifp->if_oerrors++;
3943 			continue;
3944 		}
3945 		sc->sc_tx_timer = 5;
3946 	}
3947 }
3948 
3949 static void
3950 iwn_watchdog(void *arg)
3951 {
3952 	struct iwn_softc *sc = arg;
3953 	struct ifnet *ifp = sc->sc_ifp;
3954 	struct ieee80211com *ic = ifp->if_l2com;
3955 
3956 	IWN_LOCK_ASSERT(sc);
3957 
3958 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3959 
3960 	if (sc->sc_tx_timer > 0) {
3961 		if (--sc->sc_tx_timer == 0) {
3962 			if_printf(ifp, "device timeout\n");
3963 			ieee80211_runtask(ic, &sc->sc_reinit_task);
3964 			return;
3965 		}
3966 	}
3967 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
3968 }
3969 
3970 static int
3971 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3972 {
3973 	struct iwn_softc *sc = ifp->if_softc;
3974 	struct ieee80211com *ic = ifp->if_l2com;
3975 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3976 	struct ifreq *ifr = (struct ifreq *) data;
3977 	int error = 0, startall = 0, stop = 0;
3978 
3979 	switch (cmd) {
3980 	case SIOCGIFADDR:
3981 		error = ether_ioctl(ifp, cmd, data);
3982 		break;
3983 	case SIOCSIFFLAGS:
3984 		IWN_LOCK(sc);
3985 		if (ifp->if_flags & IFF_UP) {
3986 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3987 				iwn_init_locked(sc);
3988 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3989 					startall = 1;
3990 				else
3991 					stop = 1;
3992 			}
3993 		} else {
3994 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3995 				iwn_stop_locked(sc);
3996 		}
3997 		IWN_UNLOCK(sc);
3998 		if (startall)
3999 			ieee80211_start_all(ic);
4000 		else if (vap != NULL && stop)
4001 			ieee80211_stop(vap);
4002 		break;
4003 	case SIOCGIFMEDIA:
4004 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4005 		break;
4006 	default:
4007 		error = EINVAL;
4008 		break;
4009 	}
4010 	return error;
4011 }
4012 
4013 /*
4014  * Send a command to the firmware.
4015  */
4016 static int
4017 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4018 {
4019 	struct iwn_tx_ring *ring = &sc->txq[4];
4020 	struct iwn_tx_desc *desc;
4021 	struct iwn_tx_data *data;
4022 	struct iwn_tx_cmd *cmd;
4023 	struct mbuf *m;
4024 	bus_addr_t paddr;
4025 	int totlen, error;
4026 
4027 	if (async == 0)
4028 		IWN_LOCK_ASSERT(sc);
4029 
4030 	desc = &ring->desc[ring->cur];
4031 	data = &ring->data[ring->cur];
4032 	totlen = 4 + size;
4033 
4034 	if (size > sizeof cmd->data) {
4035 		/* Command is too large to fit in a descriptor. */
4036 		if (totlen > MCLBYTES)
4037 			return EINVAL;
4038 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4039 		if (m == NULL)
4040 			return ENOMEM;
4041 		cmd = mtod(m, struct iwn_tx_cmd *);
4042 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4043 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4044 		if (error != 0) {
4045 			m_freem(m);
4046 			return error;
4047 		}
4048 		data->m = m;
4049 	} else {
4050 		cmd = &ring->cmd[ring->cur];
4051 		paddr = data->cmd_paddr;
4052 	}
4053 
4054 	cmd->code = code;
4055 	cmd->flags = 0;
4056 	cmd->qid = ring->qid;
4057 	cmd->idx = ring->cur;
4058 	memcpy(cmd->data, buf, size);
4059 
4060 	desc->nsegs = 1;
4061 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4062 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4063 
4064 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4065 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4066 	    cmd->flags, cmd->qid, cmd->idx);
4067 
4068 	if (size > sizeof cmd->data) {
4069 		bus_dmamap_sync(ring->data_dmat, data->map,
4070 		    BUS_DMASYNC_PREWRITE);
4071 	} else {
4072 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4073 		    BUS_DMASYNC_PREWRITE);
4074 	}
4075 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4076 	    BUS_DMASYNC_PREWRITE);
4077 
4078 	/* Kick command ring. */
4079 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4080 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4081 
4082 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4083 }
4084 
4085 static int
4086 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4087 {
4088 	struct iwn4965_node_info hnode;
4089 	caddr_t src, dst;
4090 
4091 	/*
4092 	 * We use the node structure for 5000 Series internally (it is
4093 	 * a superset of the one for 4965AGN). We thus copy the common
4094 	 * fields before sending the command.
4095 	 */
4096 	src = (caddr_t)node;
4097 	dst = (caddr_t)&hnode;
4098 	memcpy(dst, src, 48);
4099 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4100 	memcpy(dst + 48, src + 72, 20);
4101 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4102 }
4103 
4104 static int
4105 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4106 {
4107 	/* Direct mapping. */
4108 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4109 }
4110 
4111 static int
4112 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4113 {
4114 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4115 	struct iwn_node *wn = (void *)ni;
4116 	struct ieee80211_rateset *rs = &ni->ni_rates;
4117 	struct iwn_cmd_link_quality linkq;
4118 	uint8_t txant;
4119 	int i, rate, txrate;
4120 
4121 	/* Use the first valid TX antenna. */
4122 	txant = IWN_LSB(sc->txchainmask);
4123 
4124 	memset(&linkq, 0, sizeof linkq);
4125 	linkq.id = wn->id;
4126 	linkq.antmsk_1stream = txant;
4127 	linkq.antmsk_2stream = IWN_ANT_AB;
4128 	linkq.ampdu_max = 64;
4129 	linkq.ampdu_threshold = 3;
4130 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4131 
4132 	/* Start at highest available bit-rate. */
4133 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4134 		txrate = ni->ni_htrates.rs_nrates - 1;
4135 	else
4136 		txrate = rs->rs_nrates - 1;
4137 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4138 		uint32_t plcp;
4139 
4140 		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4141 			rate = IEEE80211_RATE_MCS | txrate;
4142 		else
4143 			rate = RV(rs->rs_rates[txrate]);
4144 
4145 		/* Do rate -> PLCP config mapping */
4146 		plcp = iwn_rate_to_plcp(sc, ni, rate);
4147 		linkq.retry[i] = plcp;
4148 
4149 		/* Special case for dual-stream rates? */
4150 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
4151 		    RV(le32toh(plcp)) > 7)
4152 			linkq.mimo = i + 1;
4153 
4154 		/* Next retry at immediate lower bit-rate. */
4155 		if (txrate > 0)
4156 			txrate--;
4157 	}
4158 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4159 #undef	RV
4160 }
4161 
4162 /*
4163  * Broadcast node is used to send group-addressed and management frames.
4164  */
4165 static int
4166 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4167 {
4168 	struct iwn_ops *ops = &sc->ops;
4169 	struct ifnet *ifp = sc->sc_ifp;
4170 	struct ieee80211com *ic = ifp->if_l2com;
4171 	struct iwn_node_info node;
4172 	struct iwn_cmd_link_quality linkq;
4173 	uint8_t txant;
4174 	int i, error;
4175 
4176 	memset(&node, 0, sizeof node);
4177 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4178 	node.id = sc->broadcast_id;
4179 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4180 	if ((error = ops->add_node(sc, &node, async)) != 0)
4181 		return error;
4182 
4183 	/* Use the first valid TX antenna. */
4184 	txant = IWN_LSB(sc->txchainmask);
4185 
4186 	memset(&linkq, 0, sizeof linkq);
4187 	linkq.id = sc->broadcast_id;
4188 	linkq.antmsk_1stream = txant;
4189 	linkq.antmsk_2stream = IWN_ANT_AB;
4190 	linkq.ampdu_max = 64;
4191 	linkq.ampdu_threshold = 3;
4192 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4193 
4194 	/* Use lowest mandatory bit-rate. */
4195 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4196 		linkq.retry[0] = htole32(0xd);
4197 	else
4198 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4199 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4200 	/* Use same bit-rate for all TX retries. */
4201 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4202 		linkq.retry[i] = linkq.retry[0];
4203 	}
4204 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4205 }
4206 
4207 static int
4208 iwn_updateedca(struct ieee80211com *ic)
4209 {
4210 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4211 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4212 	struct iwn_edca_params cmd;
4213 	int aci;
4214 
4215 	memset(&cmd, 0, sizeof cmd);
4216 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4217 	for (aci = 0; aci < WME_NUM_AC; aci++) {
4218 		const struct wmeParams *ac =
4219 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4220 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4221 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4222 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4223 		cmd.ac[aci].txoplimit =
4224 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4225 	}
4226 	IEEE80211_UNLOCK(ic);
4227 	IWN_LOCK(sc);
4228 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4229 	IWN_UNLOCK(sc);
4230 	IEEE80211_LOCK(ic);
4231 	return 0;
4232 #undef IWN_EXP2
4233 }
4234 
4235 static void
4236 iwn_update_mcast(struct ifnet *ifp)
4237 {
4238 	/* Ignore */
4239 }
4240 
4241 static void
4242 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4243 {
4244 	struct iwn_cmd_led led;
4245 
4246 	/* Clear microcode LED ownership. */
4247 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4248 
4249 	led.which = which;
4250 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4251 	led.off = off;
4252 	led.on = on;
4253 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4254 }
4255 
4256 /*
4257  * Set the critical temperature at which the firmware will stop the radio
4258  * and notify us.
4259  */
4260 static int
4261 iwn_set_critical_temp(struct iwn_softc *sc)
4262 {
4263 	struct iwn_critical_temp crit;
4264 	int32_t temp;
4265 
4266 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4267 
4268 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4269 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4270 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4271 		temp = IWN_CTOK(110);
4272 	else
4273 		temp = 110;
4274 	memset(&crit, 0, sizeof crit);
4275 	crit.tempR = htole32(temp);
4276 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4277 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4278 }
4279 
4280 static int
4281 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4282 {
4283 	struct iwn_cmd_timing cmd;
4284 	uint64_t val, mod;
4285 
4286 	memset(&cmd, 0, sizeof cmd);
4287 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4288 	cmd.bintval = htole16(ni->ni_intval);
4289 	cmd.lintval = htole16(10);
4290 
4291 	/* Compute remaining time until next beacon. */
4292 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4293 	mod = le64toh(cmd.tstamp) % val;
4294 	cmd.binitval = htole32((uint32_t)(val - mod));
4295 
4296 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4297 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4298 
4299 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4300 }
4301 
4302 static void
4303 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4304 {
4305 	struct ifnet *ifp = sc->sc_ifp;
4306 	struct ieee80211com *ic = ifp->if_l2com;
4307 
4308 	/* Adjust TX power if need be (delta >= 3 degC). */
4309 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4310 	    __func__, sc->temp, temp);
4311 	if (abs(temp - sc->temp) >= 3) {
4312 		/* Record temperature of last calibration. */
4313 		sc->temp = temp;
4314 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4315 	}
4316 }
4317 
4318 /*
4319  * Set TX power for current channel (each rate has its own power settings).
4320  * This function takes into account the regulatory information from EEPROM,
4321  * the current temperature and the current voltage.
4322  */
4323 static int
4324 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4325     int async)
4326 {
4327 /* Fixed-point arithmetic division using a n-bit fractional part. */
4328 #define fdivround(a, b, n)	\
4329 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4330 /* Linear interpolation. */
4331 #define interpolate(x, x1, y1, x2, y2, n)	\
4332 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4333 
4334 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4335 	struct iwn_ucode_info *uc = &sc->ucode_info;
4336 	struct iwn4965_cmd_txpower cmd;
4337 	struct iwn4965_eeprom_chan_samples *chans;
4338 	const uint8_t *rf_gain, *dsp_gain;
4339 	int32_t vdiff, tdiff;
4340 	int i, c, grp, maxpwr;
4341 	uint8_t chan;
4342 
4343 	/* Retrieve current channel from last RXON. */
4344 	chan = sc->rxon.chan;
4345 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4346 	    chan);
4347 
4348 	memset(&cmd, 0, sizeof cmd);
4349 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4350 	cmd.chan = chan;
4351 
4352 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4353 		maxpwr   = sc->maxpwr5GHz;
4354 		rf_gain  = iwn4965_rf_gain_5ghz;
4355 		dsp_gain = iwn4965_dsp_gain_5ghz;
4356 	} else {
4357 		maxpwr   = sc->maxpwr2GHz;
4358 		rf_gain  = iwn4965_rf_gain_2ghz;
4359 		dsp_gain = iwn4965_dsp_gain_2ghz;
4360 	}
4361 
4362 	/* Compute voltage compensation. */
4363 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4364 	if (vdiff > 0)
4365 		vdiff *= 2;
4366 	if (abs(vdiff) > 2)
4367 		vdiff = 0;
4368 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4369 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4370 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4371 
4372 	/* Get channel attenuation group. */
4373 	if (chan <= 20)		/* 1-20 */
4374 		grp = 4;
4375 	else if (chan <= 43)	/* 34-43 */
4376 		grp = 0;
4377 	else if (chan <= 70)	/* 44-70 */
4378 		grp = 1;
4379 	else if (chan <= 124)	/* 71-124 */
4380 		grp = 2;
4381 	else			/* 125-200 */
4382 		grp = 3;
4383 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4384 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4385 
4386 	/* Get channel sub-band. */
4387 	for (i = 0; i < IWN_NBANDS; i++)
4388 		if (sc->bands[i].lo != 0 &&
4389 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4390 			break;
4391 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4392 		return EINVAL;
4393 	chans = sc->bands[i].chans;
4394 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4395 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4396 
4397 	for (c = 0; c < 2; c++) {
4398 		uint8_t power, gain, temp;
4399 		int maxchpwr, pwr, ridx, idx;
4400 
4401 		power = interpolate(chan,
4402 		    chans[0].num, chans[0].samples[c][1].power,
4403 		    chans[1].num, chans[1].samples[c][1].power, 1);
4404 		gain  = interpolate(chan,
4405 		    chans[0].num, chans[0].samples[c][1].gain,
4406 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4407 		temp  = interpolate(chan,
4408 		    chans[0].num, chans[0].samples[c][1].temp,
4409 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4410 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4411 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4412 		    __func__, c, power, gain, temp);
4413 
4414 		/* Compute temperature compensation. */
4415 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4416 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4417 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4418 		    __func__, tdiff, sc->temp, temp);
4419 
4420 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4421 			/* Convert dBm to half-dBm. */
4422 			maxchpwr = sc->maxpwr[chan] * 2;
4423 			if ((ridx / 8) & 1)
4424 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4425 
4426 			pwr = maxpwr;
4427 
4428 			/* Adjust TX power based on rate. */
4429 			if ((ridx % 8) == 5)
4430 				pwr -= 15;	/* OFDM48: -7.5dB */
4431 			else if ((ridx % 8) == 6)
4432 				pwr -= 17;	/* OFDM54: -8.5dB */
4433 			else if ((ridx % 8) == 7)
4434 				pwr -= 20;	/* OFDM60: -10dB */
4435 			else
4436 				pwr -= 10;	/* Others: -5dB */
4437 
4438 			/* Do not exceed channel max TX power. */
4439 			if (pwr > maxchpwr)
4440 				pwr = maxchpwr;
4441 
4442 			idx = gain - (pwr - power) - tdiff - vdiff;
4443 			if ((ridx / 8) & 1)	/* MIMO */
4444 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4445 
4446 			if (cmd.band == 0)
4447 				idx += 9;	/* 5GHz */
4448 			if (ridx == IWN_RIDX_MAX)
4449 				idx += 5;	/* CCK */
4450 
4451 			/* Make sure idx stays in a valid range. */
4452 			if (idx < 0)
4453 				idx = 0;
4454 			else if (idx > IWN4965_MAX_PWR_INDEX)
4455 				idx = IWN4965_MAX_PWR_INDEX;
4456 
4457 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4458 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4459 			    __func__, c, ridx, idx);
4460 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4461 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4462 		}
4463 	}
4464 
4465 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4466 	    "%s: set tx power for chan %d\n", __func__, chan);
4467 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4468 
4469 #undef interpolate
4470 #undef fdivround
4471 }
4472 
4473 static int
4474 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4475     int async)
4476 {
4477 	struct iwn5000_cmd_txpower cmd;
4478 
4479 	/*
4480 	 * TX power calibration is handled automatically by the firmware
4481 	 * for 5000 Series.
4482 	 */
4483 	memset(&cmd, 0, sizeof cmd);
4484 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4485 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4486 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4487 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4488 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4489 }
4490 
4491 /*
4492  * Retrieve the maximum RSSI (in dBm) among receivers.
4493  */
4494 static int
4495 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4496 {
4497 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4498 	uint8_t mask, agc;
4499 	int rssi;
4500 
4501 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4502 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4503 
4504 	rssi = 0;
4505 	if (mask & IWN_ANT_A)
4506 		rssi = MAX(rssi, phy->rssi[0]);
4507 	if (mask & IWN_ANT_B)
4508 		rssi = MAX(rssi, phy->rssi[2]);
4509 	if (mask & IWN_ANT_C)
4510 		rssi = MAX(rssi, phy->rssi[4]);
4511 
4512 	DPRINTF(sc, IWN_DEBUG_RECV,
4513 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4514 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4515 	    rssi - agc - IWN_RSSI_TO_DBM);
4516 	return rssi - agc - IWN_RSSI_TO_DBM;
4517 }
4518 
4519 static int
4520 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4521 {
4522 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4523 	uint8_t agc;
4524 	int rssi;
4525 
4526 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4527 
4528 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4529 		   le16toh(phy->rssi[1]) & 0xff);
4530 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4531 
4532 	DPRINTF(sc, IWN_DEBUG_RECV,
4533 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4534 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4535 	    rssi - agc - IWN_RSSI_TO_DBM);
4536 	return rssi - agc - IWN_RSSI_TO_DBM;
4537 }
4538 
4539 /*
4540  * Retrieve the average noise (in dBm) among receivers.
4541  */
4542 static int
4543 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4544 {
4545 	int i, total, nbant, noise;
4546 
4547 	total = nbant = 0;
4548 	for (i = 0; i < 3; i++) {
4549 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4550 			continue;
4551 		total += noise;
4552 		nbant++;
4553 	}
4554 	/* There should be at least one antenna but check anyway. */
4555 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4556 }
4557 
4558 /*
4559  * Compute temperature (in degC) from last received statistics.
4560  */
4561 static int
4562 iwn4965_get_temperature(struct iwn_softc *sc)
4563 {
4564 	struct iwn_ucode_info *uc = &sc->ucode_info;
4565 	int32_t r1, r2, r3, r4, temp;
4566 
4567 	r1 = le32toh(uc->temp[0].chan20MHz);
4568 	r2 = le32toh(uc->temp[1].chan20MHz);
4569 	r3 = le32toh(uc->temp[2].chan20MHz);
4570 	r4 = le32toh(sc->rawtemp);
4571 
4572 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4573 		return 0;
4574 
4575 	/* Sign-extend 23-bit R4 value to 32-bit. */
4576 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4577 	/* Compute temperature in Kelvin. */
4578 	temp = (259 * (r4 - r2)) / (r3 - r1);
4579 	temp = (temp * 97) / 100 + 8;
4580 
4581 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4582 	    IWN_KTOC(temp));
4583 	return IWN_KTOC(temp);
4584 }
4585 
4586 static int
4587 iwn5000_get_temperature(struct iwn_softc *sc)
4588 {
4589 	int32_t temp;
4590 
4591 	/*
4592 	 * Temperature is not used by the driver for 5000 Series because
4593 	 * TX power calibration is handled by firmware.
4594 	 */
4595 	temp = le32toh(sc->rawtemp);
4596 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4597 		temp = (temp / -5) + sc->temp_off;
4598 		temp = IWN_KTOC(temp);
4599 	}
4600 	return temp;
4601 }
4602 
4603 /*
4604  * Initialize sensitivity calibration state machine.
4605  */
4606 static int
4607 iwn_init_sensitivity(struct iwn_softc *sc)
4608 {
4609 	struct iwn_ops *ops = &sc->ops;
4610 	struct iwn_calib_state *calib = &sc->calib;
4611 	uint32_t flags;
4612 	int error;
4613 
4614 	/* Reset calibration state machine. */
4615 	memset(calib, 0, sizeof (*calib));
4616 	calib->state = IWN_CALIB_STATE_INIT;
4617 	calib->cck_state = IWN_CCK_STATE_HIFA;
4618 	/* Set initial correlation values. */
4619 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4620 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4621 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4622 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4623 	calib->cck_x4      = 125;
4624 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4625 	calib->energy_cck  = sc->limits->energy_cck;
4626 
4627 	/* Write initial sensitivity. */
4628 	if ((error = iwn_send_sensitivity(sc)) != 0)
4629 		return error;
4630 
4631 	/* Write initial gains. */
4632 	if ((error = ops->init_gains(sc)) != 0)
4633 		return error;
4634 
4635 	/* Request statistics at each beacon interval. */
4636 	flags = 0;
4637 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4638 	    __func__);
4639 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4640 }
4641 
4642 /*
4643  * Collect noise and RSSI statistics for the first 20 beacons received
4644  * after association and use them to determine connected antennas and
4645  * to set differential gains.
4646  */
4647 static void
4648 iwn_collect_noise(struct iwn_softc *sc,
4649     const struct iwn_rx_general_stats *stats)
4650 {
4651 	struct iwn_ops *ops = &sc->ops;
4652 	struct iwn_calib_state *calib = &sc->calib;
4653 	struct ifnet *ifp = sc->sc_ifp;
4654 	struct ieee80211com *ic = ifp->if_l2com;
4655 	uint32_t val;
4656 	int i;
4657 
4658 	/* Accumulate RSSI and noise for all 3 antennas. */
4659 	for (i = 0; i < 3; i++) {
4660 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4661 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4662 	}
4663 	/* NB: We update differential gains only once after 20 beacons. */
4664 	if (++calib->nbeacons < 20)
4665 		return;
4666 
4667 	/* Determine highest average RSSI. */
4668 	val = MAX(calib->rssi[0], calib->rssi[1]);
4669 	val = MAX(calib->rssi[2], val);
4670 
4671 	/* Determine which antennas are connected. */
4672 	sc->chainmask = sc->rxchainmask;
4673 	for (i = 0; i < 3; i++)
4674 		if (val - calib->rssi[i] > 15 * 20)
4675 			sc->chainmask &= ~(1 << i);
4676 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4677 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4678 	    __func__, sc->rxchainmask, sc->chainmask);
4679 
4680 	/* If none of the TX antennas are connected, keep at least one. */
4681 	if ((sc->chainmask & sc->txchainmask) == 0)
4682 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4683 
4684 	(void)ops->set_gains(sc);
4685 	calib->state = IWN_CALIB_STATE_RUN;
4686 
4687 #ifdef notyet
4688 	/* XXX Disable RX chains with no antennas connected. */
4689 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4690 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4691 #endif
4692 
4693 	/* Enable power-saving mode if requested by user. */
4694 	if (ic->ic_flags & IEEE80211_F_PMGTON)
4695 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4696 }
4697 
4698 static int
4699 iwn4965_init_gains(struct iwn_softc *sc)
4700 {
4701 	struct iwn_phy_calib_gain cmd;
4702 
4703 	memset(&cmd, 0, sizeof cmd);
4704 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4705 	/* Differential gains initially set to 0 for all 3 antennas. */
4706 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4707 	    "%s: setting initial differential gains\n", __func__);
4708 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4709 }
4710 
4711 static int
4712 iwn5000_init_gains(struct iwn_softc *sc)
4713 {
4714 	struct iwn_phy_calib cmd;
4715 
4716 	memset(&cmd, 0, sizeof cmd);
4717 	cmd.code = sc->reset_noise_gain;
4718 	cmd.ngroups = 1;
4719 	cmd.isvalid = 1;
4720 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4721 	    "%s: setting initial differential gains\n", __func__);
4722 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4723 }
4724 
4725 static int
4726 iwn4965_set_gains(struct iwn_softc *sc)
4727 {
4728 	struct iwn_calib_state *calib = &sc->calib;
4729 	struct iwn_phy_calib_gain cmd;
4730 	int i, delta, noise;
4731 
4732 	/* Get minimal noise among connected antennas. */
4733 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4734 	for (i = 0; i < 3; i++)
4735 		if (sc->chainmask & (1 << i))
4736 			noise = MIN(calib->noise[i], noise);
4737 
4738 	memset(&cmd, 0, sizeof cmd);
4739 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4740 	/* Set differential gains for connected antennas. */
4741 	for (i = 0; i < 3; i++) {
4742 		if (sc->chainmask & (1 << i)) {
4743 			/* Compute attenuation (in unit of 1.5dB). */
4744 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4745 			/* NB: delta <= 0 */
4746 			/* Limit to [-4.5dB,0]. */
4747 			cmd.gain[i] = MIN(abs(delta), 3);
4748 			if (delta < 0)
4749 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4750 		}
4751 	}
4752 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4753 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4754 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4755 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4756 }
4757 
4758 static int
4759 iwn5000_set_gains(struct iwn_softc *sc)
4760 {
4761 	struct iwn_calib_state *calib = &sc->calib;
4762 	struct iwn_phy_calib_gain cmd;
4763 	int i, ant, div, delta;
4764 
4765 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4766 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4767 
4768 	memset(&cmd, 0, sizeof cmd);
4769 	cmd.code = sc->noise_gain;
4770 	cmd.ngroups = 1;
4771 	cmd.isvalid = 1;
4772 	/* Get first available RX antenna as referential. */
4773 	ant = IWN_LSB(sc->rxchainmask);
4774 	/* Set differential gains for other antennas. */
4775 	for (i = ant + 1; i < 3; i++) {
4776 		if (sc->chainmask & (1 << i)) {
4777 			/* The delta is relative to antenna "ant". */
4778 			delta = ((int32_t)calib->noise[ant] -
4779 			    (int32_t)calib->noise[i]) / div;
4780 			/* Limit to [-4.5dB,+4.5dB]. */
4781 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4782 			if (delta < 0)
4783 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4784 		}
4785 	}
4786 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4787 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4788 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4789 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4790 }
4791 
4792 /*
4793  * Tune RF RX sensitivity based on the number of false alarms detected
4794  * during the last beacon period.
4795  */
4796 static void
4797 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4798 {
4799 #define inc(val, inc, max)			\
4800 	if ((val) < (max)) {			\
4801 		if ((val) < (max) - (inc))	\
4802 			(val) += (inc);		\
4803 		else				\
4804 			(val) = (max);		\
4805 		needs_update = 1;		\
4806 	}
4807 #define dec(val, dec, min)			\
4808 	if ((val) > (min)) {			\
4809 		if ((val) > (min) + (dec))	\
4810 			(val) -= (dec);		\
4811 		else				\
4812 			(val) = (min);		\
4813 		needs_update = 1;		\
4814 	}
4815 
4816 	const struct iwn_sensitivity_limits *limits = sc->limits;
4817 	struct iwn_calib_state *calib = &sc->calib;
4818 	uint32_t val, rxena, fa;
4819 	uint32_t energy[3], energy_min;
4820 	uint8_t noise[3], noise_ref;
4821 	int i, needs_update = 0;
4822 
4823 	/* Check that we've been enabled long enough. */
4824 	if ((rxena = le32toh(stats->general.load)) == 0)
4825 		return;
4826 
4827 	/* Compute number of false alarms since last call for OFDM. */
4828 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4829 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4830 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4831 
4832 	/* Save counters values for next call. */
4833 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4834 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4835 
4836 	if (fa > 50 * rxena) {
4837 		/* High false alarm count, decrease sensitivity. */
4838 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4839 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4840 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4841 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4842 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4843 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4844 
4845 	} else if (fa < 5 * rxena) {
4846 		/* Low false alarm count, increase sensitivity. */
4847 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4848 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4849 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4850 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4851 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4852 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4853 	}
4854 
4855 	/* Compute maximum noise among 3 receivers. */
4856 	for (i = 0; i < 3; i++)
4857 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4858 	val = MAX(noise[0], noise[1]);
4859 	val = MAX(noise[2], val);
4860 	/* Insert it into our samples table. */
4861 	calib->noise_samples[calib->cur_noise_sample] = val;
4862 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4863 
4864 	/* Compute maximum noise among last 20 samples. */
4865 	noise_ref = calib->noise_samples[0];
4866 	for (i = 1; i < 20; i++)
4867 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4868 
4869 	/* Compute maximum energy among 3 receivers. */
4870 	for (i = 0; i < 3; i++)
4871 		energy[i] = le32toh(stats->general.energy[i]);
4872 	val = MIN(energy[0], energy[1]);
4873 	val = MIN(energy[2], val);
4874 	/* Insert it into our samples table. */
4875 	calib->energy_samples[calib->cur_energy_sample] = val;
4876 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4877 
4878 	/* Compute minimum energy among last 10 samples. */
4879 	energy_min = calib->energy_samples[0];
4880 	for (i = 1; i < 10; i++)
4881 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4882 	energy_min += 6;
4883 
4884 	/* Compute number of false alarms since last call for CCK. */
4885 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4886 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4887 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4888 
4889 	/* Save counters values for next call. */
4890 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4891 	calib->fa_cck = le32toh(stats->cck.fa);
4892 
4893 	if (fa > 50 * rxena) {
4894 		/* High false alarm count, decrease sensitivity. */
4895 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4896 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4897 		calib->cck_state = IWN_CCK_STATE_HIFA;
4898 		calib->low_fa = 0;
4899 
4900 		if (calib->cck_x4 > 160) {
4901 			calib->noise_ref = noise_ref;
4902 			if (calib->energy_cck > 2)
4903 				dec(calib->energy_cck, 2, energy_min);
4904 		}
4905 		if (calib->cck_x4 < 160) {
4906 			calib->cck_x4 = 161;
4907 			needs_update = 1;
4908 		} else
4909 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4910 
4911 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4912 
4913 	} else if (fa < 5 * rxena) {
4914 		/* Low false alarm count, increase sensitivity. */
4915 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4916 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4917 		calib->cck_state = IWN_CCK_STATE_LOFA;
4918 		calib->low_fa++;
4919 
4920 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4921 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4922 		     calib->low_fa > 100)) {
4923 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4924 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4925 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4926 		}
4927 	} else {
4928 		/* Not worth to increase or decrease sensitivity. */
4929 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4930 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4931 		calib->low_fa = 0;
4932 		calib->noise_ref = noise_ref;
4933 
4934 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4935 			/* Previous interval had many false alarms. */
4936 			dec(calib->energy_cck, 8, energy_min);
4937 		}
4938 		calib->cck_state = IWN_CCK_STATE_INIT;
4939 	}
4940 
4941 	if (needs_update)
4942 		(void)iwn_send_sensitivity(sc);
4943 #undef dec
4944 #undef inc
4945 }
4946 
4947 static int
4948 iwn_send_sensitivity(struct iwn_softc *sc)
4949 {
4950 	struct iwn_calib_state *calib = &sc->calib;
4951 	struct iwn_enhanced_sensitivity_cmd cmd;
4952 	int len;
4953 
4954 	memset(&cmd, 0, sizeof cmd);
4955 	len = sizeof (struct iwn_sensitivity_cmd);
4956 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4957 	/* OFDM modulation. */
4958 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4959 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4960 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4961 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4962 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4963 	cmd.energy_ofdm_th     = htole16(62);
4964 	/* CCK modulation. */
4965 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4966 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4967 	cmd.energy_cck         = htole16(calib->energy_cck);
4968 	/* Barker modulation: use default values. */
4969 	cmd.corr_barker        = htole16(190);
4970 	cmd.corr_barker_mrc    = htole16(390);
4971 
4972 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4973 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4974 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4975 	    calib->ofdm_mrc_x4, calib->cck_x4,
4976 	    calib->cck_mrc_x4, calib->energy_cck);
4977 
4978 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4979 		goto send;
4980 	/* Enhanced sensitivity settings. */
4981 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4982 	cmd.ofdm_det_slope_mrc = htole16(668);
4983 	cmd.ofdm_det_icept_mrc = htole16(4);
4984 	cmd.ofdm_det_slope     = htole16(486);
4985 	cmd.ofdm_det_icept     = htole16(37);
4986 	cmd.cck_det_slope_mrc  = htole16(853);
4987 	cmd.cck_det_icept_mrc  = htole16(4);
4988 	cmd.cck_det_slope      = htole16(476);
4989 	cmd.cck_det_icept      = htole16(99);
4990 send:
4991 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4992 }
4993 
4994 /*
4995  * Set STA mode power saving level (between 0 and 5).
4996  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4997  */
4998 static int
4999 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
5000 {
5001 	struct iwn_pmgt_cmd cmd;
5002 	const struct iwn_pmgt *pmgt;
5003 	uint32_t max, skip_dtim;
5004 	uint32_t reg;
5005 	int i;
5006 
5007 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
5008 	    "%s: dtim=%d, level=%d, async=%d\n",
5009 	    __func__,
5010 	    dtim,
5011 	    level,
5012 	    async);
5013 
5014 	/* Select which PS parameters to use. */
5015 	if (dtim <= 2)
5016 		pmgt = &iwn_pmgt[0][level];
5017 	else if (dtim <= 10)
5018 		pmgt = &iwn_pmgt[1][level];
5019 	else
5020 		pmgt = &iwn_pmgt[2][level];
5021 
5022 	memset(&cmd, 0, sizeof cmd);
5023 	if (level != 0)	/* not CAM */
5024 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
5025 	if (level == 5)
5026 		cmd.flags |= htole16(IWN_PS_FAST_PD);
5027 	/* Retrieve PCIe Active State Power Management (ASPM). */
5028 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5029 	if (!(reg & 0x1))	/* L0s Entry disabled. */
5030 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
5031 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
5032 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
5033 
5034 	if (dtim == 0) {
5035 		dtim = 1;
5036 		skip_dtim = 0;
5037 	} else
5038 		skip_dtim = pmgt->skip_dtim;
5039 	if (skip_dtim != 0) {
5040 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
5041 		max = pmgt->intval[4];
5042 		if (max == (uint32_t)-1)
5043 			max = dtim * (skip_dtim + 1);
5044 		else if (max > dtim)
5045 			max = (max / dtim) * dtim;
5046 	} else
5047 		max = dtim;
5048 	for (i = 0; i < 5; i++)
5049 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
5050 
5051 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
5052 	    level);
5053 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
5054 }
5055 
5056 static int
5057 iwn_send_btcoex(struct iwn_softc *sc)
5058 {
5059 	struct iwn_bluetooth cmd;
5060 
5061 	memset(&cmd, 0, sizeof cmd);
5062 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
5063 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
5064 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
5065 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
5066 	    __func__);
5067 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
5068 }
5069 
5070 static int
5071 iwn_send_advanced_btcoex(struct iwn_softc *sc)
5072 {
5073 	static const uint32_t btcoex_3wire[12] = {
5074 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5075 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5076 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5077 	};
5078 	struct iwn6000_btcoex_config btconfig;
5079 	struct iwn_btcoex_priotable btprio;
5080 	struct iwn_btcoex_prot btprot;
5081 	int error, i;
5082 
5083 	memset(&btconfig, 0, sizeof btconfig);
5084 	btconfig.flags = 145;
5085 	btconfig.max_kill = 5;
5086 	btconfig.bt3_t7_timer = 1;
5087 	btconfig.kill_ack = htole32(0xffff0000);
5088 	btconfig.kill_cts = htole32(0xffff0000);
5089 	btconfig.sample_time = 2;
5090 	btconfig.bt3_t2_timer = 0xc;
5091 	for (i = 0; i < 12; i++)
5092 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5093 	btconfig.valid = htole16(0xff);
5094 	btconfig.prio_boost = 0xf0;
5095 	DPRINTF(sc, IWN_DEBUG_RESET,
5096 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
5097 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
5098 	if (error != 0)
5099 		return error;
5100 
5101 	memset(&btprio, 0, sizeof btprio);
5102 	btprio.calib_init1 = 0x6;
5103 	btprio.calib_init2 = 0x7;
5104 	btprio.calib_periodic_low1 = 0x2;
5105 	btprio.calib_periodic_low2 = 0x3;
5106 	btprio.calib_periodic_high1 = 0x4;
5107 	btprio.calib_periodic_high2 = 0x5;
5108 	btprio.dtim = 0x6;
5109 	btprio.scan52 = 0x8;
5110 	btprio.scan24 = 0xa;
5111 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
5112 	    1);
5113 	if (error != 0)
5114 		return error;
5115 
5116 	/* Force BT state machine change. */
5117 	memset(&btprot, 0, sizeof btprio);
5118 	btprot.open = 1;
5119 	btprot.type = 1;
5120 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5121 	if (error != 0)
5122 		return error;
5123 	btprot.open = 0;
5124 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5125 }
5126 
5127 static int
5128 iwn5000_runtime_calib(struct iwn_softc *sc)
5129 {
5130 	struct iwn5000_calib_config cmd;
5131 
5132 	memset(&cmd, 0, sizeof cmd);
5133 	cmd.ucode.once.enable = 0xffffffff;
5134 	cmd.ucode.once.start = IWN5000_CALIB_DC;
5135 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5136 	    "%s: configuring runtime calibration\n", __func__);
5137 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5138 }
5139 
5140 static int
5141 iwn_config(struct iwn_softc *sc)
5142 {
5143 	struct iwn_ops *ops = &sc->ops;
5144 	struct ifnet *ifp = sc->sc_ifp;
5145 	struct ieee80211com *ic = ifp->if_l2com;
5146 	uint32_t txmask;
5147 	uint16_t rxchain;
5148 	int error;
5149 
5150 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5151 		/* Set radio temperature sensor offset. */
5152 		error = iwn5000_temp_offset_calib(sc);
5153 		if (error != 0) {
5154 			device_printf(sc->sc_dev,
5155 			    "%s: could not set temperature offset\n", __func__);
5156 			return error;
5157 		}
5158 	}
5159 
5160 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5161 		/* Configure runtime DC calibration. */
5162 		error = iwn5000_runtime_calib(sc);
5163 		if (error != 0) {
5164 			device_printf(sc->sc_dev,
5165 			    "%s: could not configure runtime calibration\n",
5166 			    __func__);
5167 			return error;
5168 		}
5169 	}
5170 
5171 	/* Configure valid TX chains for >=5000 Series. */
5172 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5173 		txmask = htole32(sc->txchainmask);
5174 		DPRINTF(sc, IWN_DEBUG_RESET,
5175 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5176 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5177 		    sizeof txmask, 0);
5178 		if (error != 0) {
5179 			device_printf(sc->sc_dev,
5180 			    "%s: could not configure valid TX chains, "
5181 			    "error %d\n", __func__, error);
5182 			return error;
5183 		}
5184 	}
5185 
5186 	/* Configure bluetooth coexistence. */
5187 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5188 		error = iwn_send_advanced_btcoex(sc);
5189 	else
5190 		error = iwn_send_btcoex(sc);
5191 	if (error != 0) {
5192 		device_printf(sc->sc_dev,
5193 		    "%s: could not configure bluetooth coexistence, error %d\n",
5194 		    __func__, error);
5195 		return error;
5196 	}
5197 
5198 	/* Set mode, channel, RX filter and enable RX. */
5199 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5200 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
5201 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
5202 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5203 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5204 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5205 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5206 	switch (ic->ic_opmode) {
5207 	case IEEE80211_M_STA:
5208 		sc->rxon.mode = IWN_MODE_STA;
5209 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5210 		break;
5211 	case IEEE80211_M_MONITOR:
5212 		sc->rxon.mode = IWN_MODE_MONITOR;
5213 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5214 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5215 		break;
5216 	default:
5217 		/* Should not get there. */
5218 		break;
5219 	}
5220 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5221 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5222 	sc->rxon.ht_single_mask = 0xff;
5223 	sc->rxon.ht_dual_mask = 0xff;
5224 	sc->rxon.ht_triple_mask = 0xff;
5225 	rxchain =
5226 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5227 	    IWN_RXCHAIN_MIMO_COUNT(2) |
5228 	    IWN_RXCHAIN_IDLE_COUNT(2);
5229 	sc->rxon.rxchain = htole16(rxchain);
5230 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5231 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5232 	if (error != 0) {
5233 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5234 		    __func__);
5235 		return error;
5236 	}
5237 
5238 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5239 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5240 		    __func__);
5241 		return error;
5242 	}
5243 
5244 	/* Configuration has changed, set TX power accordingly. */
5245 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5246 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5247 		    __func__);
5248 		return error;
5249 	}
5250 
5251 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5252 		device_printf(sc->sc_dev,
5253 		    "%s: could not set critical temperature\n", __func__);
5254 		return error;
5255 	}
5256 
5257 	/* Set power saving level to CAM during initialization. */
5258 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5259 		device_printf(sc->sc_dev,
5260 		    "%s: could not set power saving level\n", __func__);
5261 		return error;
5262 	}
5263 	return 0;
5264 }
5265 
5266 /*
5267  * Add an ssid element to a frame.
5268  */
5269 static uint8_t *
5270 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5271 {
5272 	*frm++ = IEEE80211_ELEMID_SSID;
5273 	*frm++ = len;
5274 	memcpy(frm, ssid, len);
5275 	return frm + len;
5276 }
5277 
5278 static int
5279 iwn_scan(struct iwn_softc *sc)
5280 {
5281 	struct ifnet *ifp = sc->sc_ifp;
5282 	struct ieee80211com *ic = ifp->if_l2com;
5283 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5284 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5285 	struct iwn_scan_hdr *hdr;
5286 	struct iwn_cmd_data *tx;
5287 	struct iwn_scan_essid *essid;
5288 	struct iwn_scan_chan *chan;
5289 	struct ieee80211_frame *wh;
5290 	struct ieee80211_rateset *rs;
5291 	struct ieee80211_channel *c;
5292 	uint8_t *buf, *frm;
5293 	uint16_t rxchain;
5294 	uint8_t txant;
5295 	int buflen, error;
5296 
5297 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5298 	if (buf == NULL) {
5299 		device_printf(sc->sc_dev,
5300 		    "%s: could not allocate buffer for scan command\n",
5301 		    __func__);
5302 		return ENOMEM;
5303 	}
5304 	hdr = (struct iwn_scan_hdr *)buf;
5305 	/*
5306 	 * Move to the next channel if no frames are received within 10ms
5307 	 * after sending the probe request.
5308 	 */
5309 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5310 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5311 
5312 	/* Select antennas for scanning. */
5313 	rxchain =
5314 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5315 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5316 	    IWN_RXCHAIN_DRIVER_FORCE;
5317 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5318 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5319 		/* Ant A must be avoided in 5GHz because of an HW bug. */
5320 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5321 	} else	/* Use all available RX antennas. */
5322 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5323 	hdr->rxchain = htole16(rxchain);
5324 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5325 
5326 	tx = (struct iwn_cmd_data *)(hdr + 1);
5327 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5328 	tx->id = sc->broadcast_id;
5329 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5330 
5331 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5332 		/* Send probe requests at 6Mbps. */
5333 		tx->rate = htole32(0xd);
5334 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5335 	} else {
5336 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5337 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5338 		    sc->rxon.associd && sc->rxon.chan > 14)
5339 			tx->rate = htole32(0xd);
5340 		else {
5341 			/* Send probe requests at 1Mbps. */
5342 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5343 		}
5344 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5345 	}
5346 	/* Use the first valid TX antenna. */
5347 	txant = IWN_LSB(sc->txchainmask);
5348 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5349 
5350 	essid = (struct iwn_scan_essid *)(tx + 1);
5351 	if (ss->ss_ssid[0].len != 0) {
5352 		essid[0].id = IEEE80211_ELEMID_SSID;
5353 		essid[0].len = ss->ss_ssid[0].len;
5354 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5355 	}
5356 	/*
5357 	 * Build a probe request frame.  Most of the following code is a
5358 	 * copy & paste of what is done in net80211.
5359 	 */
5360 	wh = (struct ieee80211_frame *)(essid + 20);
5361 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5362 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5363 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5364 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5365 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5366 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5367 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5368 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5369 
5370 	frm = (uint8_t *)(wh + 1);
5371 	frm = ieee80211_add_ssid(frm, NULL, 0);
5372 	frm = ieee80211_add_rates(frm, rs);
5373 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5374 		frm = ieee80211_add_xrates(frm, rs);
5375 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5376 		frm = ieee80211_add_htcap(frm, ni);
5377 
5378 	/* Set length of probe request. */
5379 	tx->len = htole16(frm - (uint8_t *)wh);
5380 
5381 	c = ic->ic_curchan;
5382 	chan = (struct iwn_scan_chan *)frm;
5383 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5384 	chan->flags = 0;
5385 	if (ss->ss_nssid > 0)
5386 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5387 	chan->dsp_gain = 0x6e;
5388 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5389 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5390 		chan->rf_gain = 0x3b;
5391 		chan->active  = htole16(24);
5392 		chan->passive = htole16(110);
5393 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5394 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5395 		chan->rf_gain = 0x3b;
5396 		chan->active  = htole16(24);
5397 		if (sc->rxon.associd)
5398 			chan->passive = htole16(78);
5399 		else
5400 			chan->passive = htole16(110);
5401 		hdr->crc_threshold = 0xffff;
5402 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5403 		chan->rf_gain = 0x28;
5404 		chan->active  = htole16(36);
5405 		chan->passive = htole16(120);
5406 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5407 	} else {
5408 		chan->rf_gain = 0x28;
5409 		chan->active  = htole16(36);
5410 		if (sc->rxon.associd)
5411 			chan->passive = htole16(88);
5412 		else
5413 			chan->passive = htole16(120);
5414 		hdr->crc_threshold = 0xffff;
5415 	}
5416 
5417 	DPRINTF(sc, IWN_DEBUG_STATE,
5418 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5419 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5420 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5421 	    chan->active, chan->passive);
5422 
5423 	hdr->nchan++;
5424 	chan++;
5425 	buflen = (uint8_t *)chan - buf;
5426 	hdr->len = htole16(buflen);
5427 
5428 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5429 	    hdr->nchan);
5430 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5431 	free(buf, M_DEVBUF);
5432 	return error;
5433 }
5434 
5435 static int
5436 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5437 {
5438 	struct iwn_ops *ops = &sc->ops;
5439 	struct ifnet *ifp = sc->sc_ifp;
5440 	struct ieee80211com *ic = ifp->if_l2com;
5441 	struct ieee80211_node *ni = vap->iv_bss;
5442 	int error;
5443 
5444 	/* Update adapter configuration. */
5445 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5446 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5447 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5448 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5449 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5450 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5451 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5452 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5453 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5454 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5455 		sc->rxon.cck_mask  = 0;
5456 		sc->rxon.ofdm_mask = 0x15;
5457 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5458 		sc->rxon.cck_mask  = 0x03;
5459 		sc->rxon.ofdm_mask = 0;
5460 	} else {
5461 		/* Assume 802.11b/g. */
5462 		sc->rxon.cck_mask  = 0x0f;
5463 		sc->rxon.ofdm_mask = 0x15;
5464 	}
5465 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5466 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5467 	    sc->rxon.ofdm_mask);
5468 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5469 	if (error != 0) {
5470 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5471 		    __func__, error);
5472 		return error;
5473 	}
5474 
5475 	/* Configuration has changed, set TX power accordingly. */
5476 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5477 		device_printf(sc->sc_dev,
5478 		    "%s: could not set TX power, error %d\n", __func__, error);
5479 		return error;
5480 	}
5481 	/*
5482 	 * Reconfiguring RXON clears the firmware nodes table so we must
5483 	 * add the broadcast node again.
5484 	 */
5485 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5486 		device_printf(sc->sc_dev,
5487 		    "%s: could not add broadcast node, error %d\n", __func__,
5488 		    error);
5489 		return error;
5490 	}
5491 	return 0;
5492 }
5493 
5494 static int
5495 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5496 {
5497 	struct iwn_ops *ops = &sc->ops;
5498 	struct ifnet *ifp = sc->sc_ifp;
5499 	struct ieee80211com *ic = ifp->if_l2com;
5500 	struct ieee80211_node *ni = vap->iv_bss;
5501 	struct iwn_node_info node;
5502 	uint32_t htflags = 0;
5503 	int error;
5504 
5505 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5506 		/* Link LED blinks while monitoring. */
5507 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5508 		return 0;
5509 	}
5510 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5511 		device_printf(sc->sc_dev,
5512 		    "%s: could not set timing, error %d\n", __func__, error);
5513 		return error;
5514 	}
5515 
5516 	/* Update adapter configuration. */
5517 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5518 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5519 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5520 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5521 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5522 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5523 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5524 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5525 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5526 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5527 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5528 		sc->rxon.cck_mask  = 0;
5529 		sc->rxon.ofdm_mask = 0x15;
5530 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5531 		sc->rxon.cck_mask  = 0x03;
5532 		sc->rxon.ofdm_mask = 0;
5533 	} else {
5534 		/* Assume 802.11b/g. */
5535 		sc->rxon.cck_mask  = 0x0f;
5536 		sc->rxon.ofdm_mask = 0x15;
5537 	}
5538 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5539 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5540 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5541 			switch (ic->ic_curhtprotmode) {
5542 			case IEEE80211_HTINFO_OPMODE_HT20PR:
5543 				htflags |= IWN_RXON_HT_MODEPURE40;
5544 				break;
5545 			default:
5546 				htflags |= IWN_RXON_HT_MODEMIXED;
5547 				break;
5548 			}
5549 		}
5550 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5551 			htflags |= IWN_RXON_HT_HT40MINUS;
5552 	}
5553 	sc->rxon.flags |= htole32(htflags);
5554 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5555 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5556 	    sc->rxon.chan, sc->rxon.flags);
5557 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5558 	if (error != 0) {
5559 		device_printf(sc->sc_dev,
5560 		    "%s: could not update configuration, error %d\n", __func__,
5561 		    error);
5562 		return error;
5563 	}
5564 
5565 	/* Configuration has changed, set TX power accordingly. */
5566 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5567 		device_printf(sc->sc_dev,
5568 		    "%s: could not set TX power, error %d\n", __func__, error);
5569 		return error;
5570 	}
5571 
5572 	/* Fake a join to initialize the TX rate. */
5573 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5574 	iwn_newassoc(ni, 1);
5575 
5576 	/* Add BSS node. */
5577 	memset(&node, 0, sizeof node);
5578 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5579 	node.id = IWN_ID_BSS;
5580 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5581 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5582 		case IEEE80211_HTCAP_SMPS_ENA:
5583 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5584 			break;
5585 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5586 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5587 			break;
5588 		}
5589 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5590 		    IWN_AMDPU_DENSITY(5));	/* 4us */
5591 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5592 			node.htflags |= htole32(IWN_NODE_HT40);
5593 	}
5594 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5595 	error = ops->add_node(sc, &node, 1);
5596 	if (error != 0) {
5597 		device_printf(sc->sc_dev,
5598 		    "%s: could not add BSS node, error %d\n", __func__, error);
5599 		return error;
5600 	}
5601 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5602 	    __func__, node.id);
5603 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5604 		device_printf(sc->sc_dev,
5605 		    "%s: could not setup link quality for node %d, error %d\n",
5606 		    __func__, node.id, error);
5607 		return error;
5608 	}
5609 
5610 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5611 		device_printf(sc->sc_dev,
5612 		    "%s: could not set sensitivity, error %d\n", __func__,
5613 		    error);
5614 		return error;
5615 	}
5616 	/* Start periodic calibration timer. */
5617 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5618 	sc->calib_cnt = 0;
5619 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5620 	    sc);
5621 
5622 	/* Link LED always on while associated. */
5623 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5624 	return 0;
5625 }
5626 
5627 /*
5628  * This function is called by upper layer when an ADDBA request is received
5629  * from another STA and before the ADDBA response is sent.
5630  */
5631 static int
5632 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5633     int baparamset, int batimeout, int baseqctl)
5634 {
5635 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5636 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5637 	struct iwn_ops *ops = &sc->ops;
5638 	struct iwn_node *wn = (void *)ni;
5639 	struct iwn_node_info node;
5640 	uint16_t ssn;
5641 	uint8_t tid;
5642 	int error;
5643 
5644 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5645 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5646 
5647 	memset(&node, 0, sizeof node);
5648 	node.id = wn->id;
5649 	node.control = IWN_NODE_UPDATE;
5650 	node.flags = IWN_FLAG_SET_ADDBA;
5651 	node.addba_tid = tid;
5652 	node.addba_ssn = htole16(ssn);
5653 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5654 	    wn->id, tid, ssn);
5655 	error = ops->add_node(sc, &node, 1);
5656 	if (error != 0)
5657 		return error;
5658 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5659 #undef MS
5660 }
5661 
5662 /*
5663  * This function is called by upper layer on teardown of an HT-immediate
5664  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5665  */
5666 static void
5667 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5668 {
5669 	struct ieee80211com *ic = ni->ni_ic;
5670 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5671 	struct iwn_ops *ops = &sc->ops;
5672 	struct iwn_node *wn = (void *)ni;
5673 	struct iwn_node_info node;
5674 	uint8_t tid;
5675 
5676 	/* XXX: tid as an argument */
5677 	for (tid = 0; tid < WME_NUM_TID; tid++) {
5678 		if (&ni->ni_rx_ampdu[tid] == rap)
5679 			break;
5680 	}
5681 
5682 	memset(&node, 0, sizeof node);
5683 	node.id = wn->id;
5684 	node.control = IWN_NODE_UPDATE;
5685 	node.flags = IWN_FLAG_SET_DELBA;
5686 	node.delba_tid = tid;
5687 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5688 	(void)ops->add_node(sc, &node, 1);
5689 	sc->sc_ampdu_rx_stop(ni, rap);
5690 }
5691 
5692 static int
5693 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5694     int dialogtoken, int baparamset, int batimeout)
5695 {
5696 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5697 	int qid;
5698 
5699 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5700 		if (sc->qid2tap[qid] == NULL)
5701 			break;
5702 	}
5703 	if (qid == sc->ntxqs) {
5704 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5705 		    __func__);
5706 		return 0;
5707 	}
5708 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5709 	if (tap->txa_private == NULL) {
5710 		device_printf(sc->sc_dev,
5711 		    "%s: failed to alloc TX aggregation structure\n", __func__);
5712 		return 0;
5713 	}
5714 	sc->qid2tap[qid] = tap;
5715 	*(int *)tap->txa_private = qid;
5716 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5717 	    batimeout);
5718 }
5719 
5720 static int
5721 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5722     int code, int baparamset, int batimeout)
5723 {
5724 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5725 	int qid = *(int *)tap->txa_private;
5726 	uint8_t tid = tap->txa_tid;
5727 	int ret;
5728 
5729 	if (code == IEEE80211_STATUS_SUCCESS) {
5730 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
5731 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
5732 		if (ret != 1)
5733 			return ret;
5734 	} else {
5735 		sc->qid2tap[qid] = NULL;
5736 		free(tap->txa_private, M_DEVBUF);
5737 		tap->txa_private = NULL;
5738 	}
5739 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
5740 }
5741 
5742 /*
5743  * This function is called by upper layer when an ADDBA response is received
5744  * from another STA.
5745  */
5746 static int
5747 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5748     uint8_t tid)
5749 {
5750 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
5751 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5752 	struct iwn_ops *ops = &sc->ops;
5753 	struct iwn_node *wn = (void *)ni;
5754 	struct iwn_node_info node;
5755 	int error, qid;
5756 
5757 	/* Enable TX for the specified RA/TID. */
5758 	wn->disable_tid &= ~(1 << tid);
5759 	memset(&node, 0, sizeof node);
5760 	node.id = wn->id;
5761 	node.control = IWN_NODE_UPDATE;
5762 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5763 	node.disable_tid = htole16(wn->disable_tid);
5764 	error = ops->add_node(sc, &node, 1);
5765 	if (error != 0)
5766 		return 0;
5767 
5768 	if ((error = iwn_nic_lock(sc)) != 0)
5769 		return 0;
5770 	qid = *(int *)tap->txa_private;
5771 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
5772 	    __func__, wn->id, tid, tap->txa_start, qid);
5773 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
5774 	iwn_nic_unlock(sc);
5775 
5776 	iwn_set_link_quality(sc, ni);
5777 	return 1;
5778 }
5779 
5780 static void
5781 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5782 {
5783 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5784 	struct iwn_ops *ops = &sc->ops;
5785 	uint8_t tid = tap->txa_tid;
5786 	int qid;
5787 
5788 	sc->sc_addba_stop(ni, tap);
5789 
5790 	if (tap->txa_private == NULL)
5791 		return;
5792 
5793 	qid = *(int *)tap->txa_private;
5794 	if (sc->txq[qid].queued != 0)
5795 		return;
5796 	if (iwn_nic_lock(sc) != 0)
5797 		return;
5798 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
5799 	iwn_nic_unlock(sc);
5800 	sc->qid2tap[qid] = NULL;
5801 	free(tap->txa_private, M_DEVBUF);
5802 	tap->txa_private = NULL;
5803 }
5804 
5805 static void
5806 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5807     int qid, uint8_t tid, uint16_t ssn)
5808 {
5809 	struct iwn_node *wn = (void *)ni;
5810 
5811 	/* Stop TX scheduler while we're changing its configuration. */
5812 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5813 	    IWN4965_TXQ_STATUS_CHGACT);
5814 
5815 	/* Assign RA/TID translation to the queue. */
5816 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5817 	    wn->id << 4 | tid);
5818 
5819 	/* Enable chain-building mode for the queue. */
5820 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5821 
5822 	/* Set starting sequence number from the ADDBA request. */
5823 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5824 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5825 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5826 
5827 	/* Set scheduler window size. */
5828 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5829 	    IWN_SCHED_WINSZ);
5830 	/* Set scheduler frame limit. */
5831 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5832 	    IWN_SCHED_LIMIT << 16);
5833 
5834 	/* Enable interrupts for the queue. */
5835 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5836 
5837 	/* Mark the queue as active. */
5838 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5839 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5840 	    iwn_tid2fifo[tid] << 1);
5841 }
5842 
5843 static void
5844 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5845 {
5846 	/* Stop TX scheduler while we're changing its configuration. */
5847 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5848 	    IWN4965_TXQ_STATUS_CHGACT);
5849 
5850 	/* Set starting sequence number from the ADDBA request. */
5851 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5852 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5853 
5854 	/* Disable interrupts for the queue. */
5855 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5856 
5857 	/* Mark the queue as inactive. */
5858 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5859 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5860 }
5861 
5862 static void
5863 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5864     int qid, uint8_t tid, uint16_t ssn)
5865 {
5866 	struct iwn_node *wn = (void *)ni;
5867 
5868 	/* Stop TX scheduler while we're changing its configuration. */
5869 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5870 	    IWN5000_TXQ_STATUS_CHGACT);
5871 
5872 	/* Assign RA/TID translation to the queue. */
5873 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5874 	    wn->id << 4 | tid);
5875 
5876 	/* Enable chain-building mode for the queue. */
5877 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5878 
5879 	/* Enable aggregation for the queue. */
5880 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5881 
5882 	/* Set starting sequence number from the ADDBA request. */
5883 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5884 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5885 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5886 
5887 	/* Set scheduler window size and frame limit. */
5888 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5889 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5890 
5891 	/* Enable interrupts for the queue. */
5892 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5893 
5894 	/* Mark the queue as active. */
5895 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5896 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5897 }
5898 
5899 static void
5900 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5901 {
5902 	/* Stop TX scheduler while we're changing its configuration. */
5903 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5904 	    IWN5000_TXQ_STATUS_CHGACT);
5905 
5906 	/* Disable aggregation for the queue. */
5907 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5908 
5909 	/* Set starting sequence number from the ADDBA request. */
5910 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5911 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5912 
5913 	/* Disable interrupts for the queue. */
5914 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5915 
5916 	/* Mark the queue as inactive. */
5917 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5918 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5919 }
5920 
5921 /*
5922  * Query calibration tables from the initialization firmware.  We do this
5923  * only once at first boot.  Called from a process context.
5924  */
5925 static int
5926 iwn5000_query_calibration(struct iwn_softc *sc)
5927 {
5928 	struct iwn5000_calib_config cmd;
5929 	int error;
5930 
5931 	memset(&cmd, 0, sizeof cmd);
5932 	cmd.ucode.once.enable = 0xffffffff;
5933 	cmd.ucode.once.start  = 0xffffffff;
5934 	cmd.ucode.once.send   = 0xffffffff;
5935 	cmd.ucode.flags       = 0xffffffff;
5936 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5937 	    __func__);
5938 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5939 	if (error != 0)
5940 		return error;
5941 
5942 	/* Wait at most two seconds for calibration to complete. */
5943 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5944 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
5945 	return error;
5946 }
5947 
5948 /*
5949  * Send calibration results to the runtime firmware.  These results were
5950  * obtained on first boot from the initialization firmware.
5951  */
5952 static int
5953 iwn5000_send_calibration(struct iwn_softc *sc)
5954 {
5955 	int idx, error;
5956 
5957 	for (idx = 0; idx < 5; idx++) {
5958 		if (sc->calibcmd[idx].buf == NULL)
5959 			continue;	/* No results available. */
5960 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5961 		    "send calibration result idx=%d len=%d\n", idx,
5962 		    sc->calibcmd[idx].len);
5963 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5964 		    sc->calibcmd[idx].len, 0);
5965 		if (error != 0) {
5966 			device_printf(sc->sc_dev,
5967 			    "%s: could not send calibration result, error %d\n",
5968 			    __func__, error);
5969 			return error;
5970 		}
5971 	}
5972 	return 0;
5973 }
5974 
5975 static int
5976 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5977 {
5978 	struct iwn5000_wimax_coex wimax;
5979 
5980 #ifdef notyet
5981 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5982 		/* Enable WiMAX coexistence for combo adapters. */
5983 		wimax.flags =
5984 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5985 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5986 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5987 		    IWN_WIMAX_COEX_ENABLE;
5988 		memcpy(wimax.events, iwn6050_wimax_events,
5989 		    sizeof iwn6050_wimax_events);
5990 	} else
5991 #endif
5992 	{
5993 		/* Disable WiMAX coexistence. */
5994 		wimax.flags = 0;
5995 		memset(wimax.events, 0, sizeof wimax.events);
5996 	}
5997 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5998 	    __func__);
5999 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
6000 }
6001 
6002 static int
6003 iwn5000_crystal_calib(struct iwn_softc *sc)
6004 {
6005 	struct iwn5000_phy_calib_crystal cmd;
6006 
6007 	memset(&cmd, 0, sizeof cmd);
6008 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
6009 	cmd.ngroups = 1;
6010 	cmd.isvalid = 1;
6011 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
6012 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
6013 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
6014 	    cmd.cap_pin[0], cmd.cap_pin[1]);
6015 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6016 }
6017 
6018 static int
6019 iwn5000_temp_offset_calib(struct iwn_softc *sc)
6020 {
6021 	struct iwn5000_phy_calib_temp_offset cmd;
6022 
6023 	memset(&cmd, 0, sizeof cmd);
6024 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
6025 	cmd.ngroups = 1;
6026 	cmd.isvalid = 1;
6027 	if (sc->eeprom_temp != 0)
6028 		cmd.offset = htole16(sc->eeprom_temp);
6029 	else
6030 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
6031 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
6032 	    le16toh(cmd.offset));
6033 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6034 }
6035 
6036 /*
6037  * This function is called after the runtime firmware notifies us of its
6038  * readiness (called in a process context).
6039  */
6040 static int
6041 iwn4965_post_alive(struct iwn_softc *sc)
6042 {
6043 	int error, qid;
6044 
6045 	if ((error = iwn_nic_lock(sc)) != 0)
6046 		return error;
6047 
6048 	/* Clear TX scheduler state in SRAM. */
6049 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6050 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
6051 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
6052 
6053 	/* Set physical address of TX scheduler rings (1KB aligned). */
6054 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6055 
6056 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6057 
6058 	/* Disable chain mode for all our 16 queues. */
6059 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6060 
6061 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6062 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6063 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6064 
6065 		/* Set scheduler window size. */
6066 		iwn_mem_write(sc, sc->sched_base +
6067 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6068 		/* Set scheduler frame limit. */
6069 		iwn_mem_write(sc, sc->sched_base +
6070 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6071 		    IWN_SCHED_LIMIT << 16);
6072 	}
6073 
6074 	/* Enable interrupts for all our 16 queues. */
6075 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6076 	/* Identify TX FIFO rings (0-7). */
6077 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6078 
6079 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6080 	for (qid = 0; qid < 7; qid++) {
6081 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6082 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6083 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6084 	}
6085 	iwn_nic_unlock(sc);
6086 	return 0;
6087 }
6088 
6089 /*
6090  * This function is called after the initialization or runtime firmware
6091  * notifies us of its readiness (called in a process context).
6092  */
6093 static int
6094 iwn5000_post_alive(struct iwn_softc *sc)
6095 {
6096 	int error, qid;
6097 
6098 	/* Switch to using ICT interrupt mode. */
6099 	iwn5000_ict_reset(sc);
6100 
6101 	if ((error = iwn_nic_lock(sc)) != 0)
6102 		return error;
6103 
6104 	/* Clear TX scheduler state in SRAM. */
6105 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6106 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6107 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6108 
6109 	/* Set physical address of TX scheduler rings (1KB aligned). */
6110 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6111 
6112 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6113 
6114 	/* Enable chain mode for all queues, except command queue. */
6115 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6116 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6117 
6118 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6119 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6120 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6121 
6122 		iwn_mem_write(sc, sc->sched_base +
6123 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6124 		/* Set scheduler window size and frame limit. */
6125 		iwn_mem_write(sc, sc->sched_base +
6126 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6127 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6128 	}
6129 
6130 	/* Enable interrupts for all our 20 queues. */
6131 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6132 	/* Identify TX FIFO rings (0-7). */
6133 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6134 
6135 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6136 	for (qid = 0; qid < 7; qid++) {
6137 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6138 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6139 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6140 	}
6141 	iwn_nic_unlock(sc);
6142 
6143 	/* Configure WiMAX coexistence for combo adapters. */
6144 	error = iwn5000_send_wimax_coex(sc);
6145 	if (error != 0) {
6146 		device_printf(sc->sc_dev,
6147 		    "%s: could not configure WiMAX coexistence, error %d\n",
6148 		    __func__, error);
6149 		return error;
6150 	}
6151 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6152 		/* Perform crystal calibration. */
6153 		error = iwn5000_crystal_calib(sc);
6154 		if (error != 0) {
6155 			device_printf(sc->sc_dev,
6156 			    "%s: crystal calibration failed, error %d\n",
6157 			    __func__, error);
6158 			return error;
6159 		}
6160 	}
6161 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6162 		/* Query calibration from the initialization firmware. */
6163 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6164 			device_printf(sc->sc_dev,
6165 			    "%s: could not query calibration, error %d\n",
6166 			    __func__, error);
6167 			return error;
6168 		}
6169 		/*
6170 		 * We have the calibration results now, reboot with the
6171 		 * runtime firmware (call ourselves recursively!)
6172 		 */
6173 		iwn_hw_stop(sc);
6174 		error = iwn_hw_init(sc);
6175 	} else {
6176 		/* Send calibration results to runtime firmware. */
6177 		error = iwn5000_send_calibration(sc);
6178 	}
6179 	return error;
6180 }
6181 
6182 /*
6183  * The firmware boot code is small and is intended to be copied directly into
6184  * the NIC internal memory (no DMA transfer).
6185  */
6186 static int
6187 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6188 {
6189 	int error, ntries;
6190 
6191 	size /= sizeof (uint32_t);
6192 
6193 	if ((error = iwn_nic_lock(sc)) != 0)
6194 		return error;
6195 
6196 	/* Copy microcode image into NIC memory. */
6197 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6198 	    (const uint32_t *)ucode, size);
6199 
6200 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6201 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6202 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6203 
6204 	/* Start boot load now. */
6205 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6206 
6207 	/* Wait for transfer to complete. */
6208 	for (ntries = 0; ntries < 1000; ntries++) {
6209 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6210 		    IWN_BSM_WR_CTRL_START))
6211 			break;
6212 		DELAY(10);
6213 	}
6214 	if (ntries == 1000) {
6215 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6216 		    __func__);
6217 		iwn_nic_unlock(sc);
6218 		return ETIMEDOUT;
6219 	}
6220 
6221 	/* Enable boot after power up. */
6222 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6223 
6224 	iwn_nic_unlock(sc);
6225 	return 0;
6226 }
6227 
6228 static int
6229 iwn4965_load_firmware(struct iwn_softc *sc)
6230 {
6231 	struct iwn_fw_info *fw = &sc->fw;
6232 	struct iwn_dma_info *dma = &sc->fw_dma;
6233 	int error;
6234 
6235 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6236 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6237 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6238 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6239 	    fw->init.text, fw->init.textsz);
6240 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6241 
6242 	/* Tell adapter where to find initialization sections. */
6243 	if ((error = iwn_nic_lock(sc)) != 0)
6244 		return error;
6245 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6246 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6247 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6248 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6249 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6250 	iwn_nic_unlock(sc);
6251 
6252 	/* Load firmware boot code. */
6253 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6254 	if (error != 0) {
6255 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6256 		    __func__);
6257 		return error;
6258 	}
6259 	/* Now press "execute". */
6260 	IWN_WRITE(sc, IWN_RESET, 0);
6261 
6262 	/* Wait at most one second for first alive notification. */
6263 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6264 		device_printf(sc->sc_dev,
6265 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6266 		    __func__, error);
6267 		return error;
6268 	}
6269 
6270 	/* Retrieve current temperature for initial TX power calibration. */
6271 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6272 	sc->temp = iwn4965_get_temperature(sc);
6273 
6274 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6275 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6276 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6277 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6278 	    fw->main.text, fw->main.textsz);
6279 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6280 
6281 	/* Tell adapter where to find runtime sections. */
6282 	if ((error = iwn_nic_lock(sc)) != 0)
6283 		return error;
6284 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6285 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6286 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6287 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6288 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6289 	    IWN_FW_UPDATED | fw->main.textsz);
6290 	iwn_nic_unlock(sc);
6291 
6292 	return 0;
6293 }
6294 
6295 static int
6296 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6297     const uint8_t *section, int size)
6298 {
6299 	struct iwn_dma_info *dma = &sc->fw_dma;
6300 	int error;
6301 
6302 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6303 	memcpy(dma->vaddr, section, size);
6304 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6305 
6306 	if ((error = iwn_nic_lock(sc)) != 0)
6307 		return error;
6308 
6309 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6310 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6311 
6312 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6313 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6314 	    IWN_LOADDR(dma->paddr));
6315 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6316 	    IWN_HIADDR(dma->paddr) << 28 | size);
6317 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6318 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6319 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6320 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6321 
6322 	/* Kick Flow Handler to start DMA transfer. */
6323 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6324 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6325 
6326 	iwn_nic_unlock(sc);
6327 
6328 	/* Wait at most five seconds for FH DMA transfer to complete. */
6329 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6330 }
6331 
6332 static int
6333 iwn5000_load_firmware(struct iwn_softc *sc)
6334 {
6335 	struct iwn_fw_part *fw;
6336 	int error;
6337 
6338 	/* Load the initialization firmware on first boot only. */
6339 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6340 	    &sc->fw.main : &sc->fw.init;
6341 
6342 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6343 	    fw->text, fw->textsz);
6344 	if (error != 0) {
6345 		device_printf(sc->sc_dev,
6346 		    "%s: could not load firmware %s section, error %d\n",
6347 		    __func__, ".text", error);
6348 		return error;
6349 	}
6350 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6351 	    fw->data, fw->datasz);
6352 	if (error != 0) {
6353 		device_printf(sc->sc_dev,
6354 		    "%s: could not load firmware %s section, error %d\n",
6355 		    __func__, ".data", error);
6356 		return error;
6357 	}
6358 
6359 	/* Now press "execute". */
6360 	IWN_WRITE(sc, IWN_RESET, 0);
6361 	return 0;
6362 }
6363 
6364 /*
6365  * Extract text and data sections from a legacy firmware image.
6366  */
6367 static int
6368 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6369 {
6370 	const uint32_t *ptr;
6371 	size_t hdrlen = 24;
6372 	uint32_t rev;
6373 
6374 	ptr = (const uint32_t *)fw->data;
6375 	rev = le32toh(*ptr++);
6376 
6377 	/* Check firmware API version. */
6378 	if (IWN_FW_API(rev) <= 1) {
6379 		device_printf(sc->sc_dev,
6380 		    "%s: bad firmware, need API version >=2\n", __func__);
6381 		return EINVAL;
6382 	}
6383 	if (IWN_FW_API(rev) >= 3) {
6384 		/* Skip build number (version 2 header). */
6385 		hdrlen += 4;
6386 		ptr++;
6387 	}
6388 	if (fw->size < hdrlen) {
6389 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6390 		    __func__, fw->size);
6391 		return EINVAL;
6392 	}
6393 	fw->main.textsz = le32toh(*ptr++);
6394 	fw->main.datasz = le32toh(*ptr++);
6395 	fw->init.textsz = le32toh(*ptr++);
6396 	fw->init.datasz = le32toh(*ptr++);
6397 	fw->boot.textsz = le32toh(*ptr++);
6398 
6399 	/* Check that all firmware sections fit. */
6400 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6401 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6402 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6403 		    __func__, fw->size);
6404 		return EINVAL;
6405 	}
6406 
6407 	/* Get pointers to firmware sections. */
6408 	fw->main.text = (const uint8_t *)ptr;
6409 	fw->main.data = fw->main.text + fw->main.textsz;
6410 	fw->init.text = fw->main.data + fw->main.datasz;
6411 	fw->init.data = fw->init.text + fw->init.textsz;
6412 	fw->boot.text = fw->init.data + fw->init.datasz;
6413 	return 0;
6414 }
6415 
6416 /*
6417  * Extract text and data sections from a TLV firmware image.
6418  */
6419 static int
6420 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6421     uint16_t alt)
6422 {
6423 	const struct iwn_fw_tlv_hdr *hdr;
6424 	const struct iwn_fw_tlv *tlv;
6425 	const uint8_t *ptr, *end;
6426 	uint64_t altmask;
6427 	uint32_t len, tmp;
6428 
6429 	if (fw->size < sizeof (*hdr)) {
6430 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6431 		    __func__, fw->size);
6432 		return EINVAL;
6433 	}
6434 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6435 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6436 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6437 		    __func__, le32toh(hdr->signature));
6438 		return EINVAL;
6439 	}
6440 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6441 	    le32toh(hdr->build));
6442 
6443 	/*
6444 	 * Select the closest supported alternative that is less than
6445 	 * or equal to the specified one.
6446 	 */
6447 	altmask = le64toh(hdr->altmask);
6448 	while (alt > 0 && !(altmask & (1ULL << alt)))
6449 		alt--;	/* Downgrade. */
6450 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6451 
6452 	ptr = (const uint8_t *)(hdr + 1);
6453 	end = (const uint8_t *)(fw->data + fw->size);
6454 
6455 	/* Parse type-length-value fields. */
6456 	while (ptr + sizeof (*tlv) <= end) {
6457 		tlv = (const struct iwn_fw_tlv *)ptr;
6458 		len = le32toh(tlv->len);
6459 
6460 		ptr += sizeof (*tlv);
6461 		if (ptr + len > end) {
6462 			device_printf(sc->sc_dev,
6463 			    "%s: firmware too short: %zu bytes\n", __func__,
6464 			    fw->size);
6465 			return EINVAL;
6466 		}
6467 		/* Skip other alternatives. */
6468 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6469 			goto next;
6470 
6471 		switch (le16toh(tlv->type)) {
6472 		case IWN_FW_TLV_MAIN_TEXT:
6473 			fw->main.text = ptr;
6474 			fw->main.textsz = len;
6475 			break;
6476 		case IWN_FW_TLV_MAIN_DATA:
6477 			fw->main.data = ptr;
6478 			fw->main.datasz = len;
6479 			break;
6480 		case IWN_FW_TLV_INIT_TEXT:
6481 			fw->init.text = ptr;
6482 			fw->init.textsz = len;
6483 			break;
6484 		case IWN_FW_TLV_INIT_DATA:
6485 			fw->init.data = ptr;
6486 			fw->init.datasz = len;
6487 			break;
6488 		case IWN_FW_TLV_BOOT_TEXT:
6489 			fw->boot.text = ptr;
6490 			fw->boot.textsz = len;
6491 			break;
6492 		case IWN_FW_TLV_ENH_SENS:
6493 			if (!len)
6494 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6495 			break;
6496 		case IWN_FW_TLV_PHY_CALIB:
6497 			tmp = htole32(*ptr);
6498 			if (tmp < 253) {
6499 				sc->reset_noise_gain = tmp;
6500 				sc->noise_gain = tmp + 1;
6501 			}
6502 			break;
6503 		default:
6504 			DPRINTF(sc, IWN_DEBUG_RESET,
6505 			    "TLV type %d not handled\n", le16toh(tlv->type));
6506 			break;
6507 		}
6508  next:		/* TLV fields are 32-bit aligned. */
6509 		ptr += (len + 3) & ~3;
6510 	}
6511 	return 0;
6512 }
6513 
6514 static int
6515 iwn_read_firmware(struct iwn_softc *sc)
6516 {
6517 	struct iwn_fw_info *fw = &sc->fw;
6518 	int error;
6519 
6520 	IWN_UNLOCK(sc);
6521 
6522 	memset(fw, 0, sizeof (*fw));
6523 
6524 	/* Read firmware image from filesystem. */
6525 	sc->fw_fp = firmware_get(sc->fwname);
6526 	if (sc->fw_fp == NULL) {
6527 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6528 		    __func__, sc->fwname);
6529 		IWN_LOCK(sc);
6530 		return EINVAL;
6531 	}
6532 	IWN_LOCK(sc);
6533 
6534 	fw->size = sc->fw_fp->datasize;
6535 	fw->data = (const uint8_t *)sc->fw_fp->data;
6536 	if (fw->size < sizeof (uint32_t)) {
6537 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6538 		    __func__, fw->size);
6539 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6540 		sc->fw_fp = NULL;
6541 		return EINVAL;
6542 	}
6543 
6544 	/* Retrieve text and data sections. */
6545 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6546 		error = iwn_read_firmware_leg(sc, fw);
6547 	else
6548 		error = iwn_read_firmware_tlv(sc, fw, 1);
6549 	if (error != 0) {
6550 		device_printf(sc->sc_dev,
6551 		    "%s: could not read firmware sections, error %d\n",
6552 		    __func__, error);
6553 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6554 		sc->fw_fp = NULL;
6555 		return error;
6556 	}
6557 
6558 	/* Make sure text and data sections fit in hardware memory. */
6559 	if (fw->main.textsz > sc->fw_text_maxsz ||
6560 	    fw->main.datasz > sc->fw_data_maxsz ||
6561 	    fw->init.textsz > sc->fw_text_maxsz ||
6562 	    fw->init.datasz > sc->fw_data_maxsz ||
6563 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6564 	    (fw->boot.textsz & 3) != 0) {
6565 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6566 		    __func__);
6567 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6568 		sc->fw_fp = NULL;
6569 		return EINVAL;
6570 	}
6571 
6572 	/* We can proceed with loading the firmware. */
6573 	return 0;
6574 }
6575 
6576 static int
6577 iwn_clock_wait(struct iwn_softc *sc)
6578 {
6579 	int ntries;
6580 
6581 	/* Set "initialization complete" bit. */
6582 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6583 
6584 	/* Wait for clock stabilization. */
6585 	for (ntries = 0; ntries < 2500; ntries++) {
6586 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6587 			return 0;
6588 		DELAY(10);
6589 	}
6590 	device_printf(sc->sc_dev,
6591 	    "%s: timeout waiting for clock stabilization\n", __func__);
6592 	return ETIMEDOUT;
6593 }
6594 
6595 static int
6596 iwn_apm_init(struct iwn_softc *sc)
6597 {
6598 	uint32_t reg;
6599 	int error;
6600 
6601 	/* Disable L0s exit timer (NMI bug workaround). */
6602 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6603 	/* Don't wait for ICH L0s (ICH bug workaround). */
6604 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6605 
6606 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6607 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6608 
6609 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6610 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6611 
6612 	/* Retrieve PCIe Active State Power Management (ASPM). */
6613 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6614 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6615 	if (reg & 0x02)	/* L1 Entry enabled. */
6616 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6617 	else
6618 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6619 
6620 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6621 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6622 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6623 
6624 	/* Wait for clock stabilization before accessing prph. */
6625 	if ((error = iwn_clock_wait(sc)) != 0)
6626 		return error;
6627 
6628 	if ((error = iwn_nic_lock(sc)) != 0)
6629 		return error;
6630 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6631 		/* Enable DMA and BSM (Bootstrap State Machine). */
6632 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6633 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6634 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6635 	} else {
6636 		/* Enable DMA. */
6637 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6638 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6639 	}
6640 	DELAY(20);
6641 	/* Disable L1-Active. */
6642 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6643 	iwn_nic_unlock(sc);
6644 
6645 	return 0;
6646 }
6647 
6648 static void
6649 iwn_apm_stop_master(struct iwn_softc *sc)
6650 {
6651 	int ntries;
6652 
6653 	/* Stop busmaster DMA activity. */
6654 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6655 	for (ntries = 0; ntries < 100; ntries++) {
6656 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6657 			return;
6658 		DELAY(10);
6659 	}
6660 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6661 }
6662 
6663 static void
6664 iwn_apm_stop(struct iwn_softc *sc)
6665 {
6666 	iwn_apm_stop_master(sc);
6667 
6668 	/* Reset the entire device. */
6669 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6670 	DELAY(10);
6671 	/* Clear "initialization complete" bit. */
6672 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6673 }
6674 
6675 static int
6676 iwn4965_nic_config(struct iwn_softc *sc)
6677 {
6678 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6679 		/*
6680 		 * I don't believe this to be correct but this is what the
6681 		 * vendor driver is doing. Probably the bits should not be
6682 		 * shifted in IWN_RFCFG_*.
6683 		 */
6684 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6685 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6686 		    IWN_RFCFG_STEP(sc->rfcfg) |
6687 		    IWN_RFCFG_DASH(sc->rfcfg));
6688 	}
6689 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6690 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6691 	return 0;
6692 }
6693 
6694 static int
6695 iwn5000_nic_config(struct iwn_softc *sc)
6696 {
6697 	uint32_t tmp;
6698 	int error;
6699 
6700 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6701 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6702 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6703 		    IWN_RFCFG_STEP(sc->rfcfg) |
6704 		    IWN_RFCFG_DASH(sc->rfcfg));
6705 	}
6706 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6707 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6708 
6709 	if ((error = iwn_nic_lock(sc)) != 0)
6710 		return error;
6711 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6712 
6713 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6714 		/*
6715 		 * Select first Switching Voltage Regulator (1.32V) to
6716 		 * solve a stability issue related to noisy DC2DC line
6717 		 * in the silicon of 1000 Series.
6718 		 */
6719 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6720 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6721 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6722 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6723 	}
6724 	iwn_nic_unlock(sc);
6725 
6726 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6727 		/* Use internal power amplifier only. */
6728 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6729 	}
6730 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6731 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6732 		/* Indicate that ROM calibration version is >=6. */
6733 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6734 	}
6735 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6736 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6737 	return 0;
6738 }
6739 
6740 /*
6741  * Take NIC ownership over Intel Active Management Technology (AMT).
6742  */
6743 static int
6744 iwn_hw_prepare(struct iwn_softc *sc)
6745 {
6746 	int ntries;
6747 
6748 	/* Check if hardware is ready. */
6749 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6750 	for (ntries = 0; ntries < 5; ntries++) {
6751 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6752 		    IWN_HW_IF_CONFIG_NIC_READY)
6753 			return 0;
6754 		DELAY(10);
6755 	}
6756 
6757 	/* Hardware not ready, force into ready state. */
6758 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6759 	for (ntries = 0; ntries < 15000; ntries++) {
6760 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6761 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6762 			break;
6763 		DELAY(10);
6764 	}
6765 	if (ntries == 15000)
6766 		return ETIMEDOUT;
6767 
6768 	/* Hardware should be ready now. */
6769 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6770 	for (ntries = 0; ntries < 5; ntries++) {
6771 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6772 		    IWN_HW_IF_CONFIG_NIC_READY)
6773 			return 0;
6774 		DELAY(10);
6775 	}
6776 	return ETIMEDOUT;
6777 }
6778 
6779 static int
6780 iwn_hw_init(struct iwn_softc *sc)
6781 {
6782 	struct iwn_ops *ops = &sc->ops;
6783 	int error, chnl, qid;
6784 
6785 	/* Clear pending interrupts. */
6786 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6787 
6788 	if ((error = iwn_apm_init(sc)) != 0) {
6789 		device_printf(sc->sc_dev,
6790 		    "%s: could not power ON adapter, error %d\n", __func__,
6791 		    error);
6792 		return error;
6793 	}
6794 
6795 	/* Select VMAIN power source. */
6796 	if ((error = iwn_nic_lock(sc)) != 0)
6797 		return error;
6798 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6799 	iwn_nic_unlock(sc);
6800 
6801 	/* Perform adapter-specific initialization. */
6802 	if ((error = ops->nic_config(sc)) != 0)
6803 		return error;
6804 
6805 	/* Initialize RX ring. */
6806 	if ((error = iwn_nic_lock(sc)) != 0)
6807 		return error;
6808 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6809 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6810 	/* Set physical address of RX ring (256-byte aligned). */
6811 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6812 	/* Set physical address of RX status (16-byte aligned). */
6813 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6814 	/* Enable RX. */
6815 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6816 	    IWN_FH_RX_CONFIG_ENA           |
6817 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6818 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6819 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6820 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6821 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6822 	iwn_nic_unlock(sc);
6823 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6824 
6825 	if ((error = iwn_nic_lock(sc)) != 0)
6826 		return error;
6827 
6828 	/* Initialize TX scheduler. */
6829 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6830 
6831 	/* Set physical address of "keep warm" page (16-byte aligned). */
6832 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6833 
6834 	/* Initialize TX rings. */
6835 	for (qid = 0; qid < sc->ntxqs; qid++) {
6836 		struct iwn_tx_ring *txq = &sc->txq[qid];
6837 
6838 		/* Set physical address of TX ring (256-byte aligned). */
6839 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6840 		    txq->desc_dma.paddr >> 8);
6841 	}
6842 	iwn_nic_unlock(sc);
6843 
6844 	/* Enable DMA channels. */
6845 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6846 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6847 		    IWN_FH_TX_CONFIG_DMA_ENA |
6848 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6849 	}
6850 
6851 	/* Clear "radio off" and "commands blocked" bits. */
6852 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6853 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6854 
6855 	/* Clear pending interrupts. */
6856 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6857 	/* Enable interrupt coalescing. */
6858 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6859 	/* Enable interrupts. */
6860 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6861 
6862 	/* _Really_ make sure "radio off" bit is cleared! */
6863 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6864 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6865 
6866 	/* Enable shadow registers. */
6867 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6868 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6869 
6870 	if ((error = ops->load_firmware(sc)) != 0) {
6871 		device_printf(sc->sc_dev,
6872 		    "%s: could not load firmware, error %d\n", __func__,
6873 		    error);
6874 		return error;
6875 	}
6876 	/* Wait at most one second for firmware alive notification. */
6877 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6878 		device_printf(sc->sc_dev,
6879 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6880 		    __func__, error);
6881 		return error;
6882 	}
6883 	/* Do post-firmware initialization. */
6884 	return ops->post_alive(sc);
6885 }
6886 
6887 static void
6888 iwn_hw_stop(struct iwn_softc *sc)
6889 {
6890 	int chnl, qid, ntries;
6891 
6892 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6893 
6894 	/* Disable interrupts. */
6895 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6896 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6897 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6898 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6899 
6900 	/* Make sure we no longer hold the NIC lock. */
6901 	iwn_nic_unlock(sc);
6902 
6903 	/* Stop TX scheduler. */
6904 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6905 
6906 	/* Stop all DMA channels. */
6907 	if (iwn_nic_lock(sc) == 0) {
6908 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6909 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6910 			for (ntries = 0; ntries < 200; ntries++) {
6911 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6912 				    IWN_FH_TX_STATUS_IDLE(chnl))
6913 					break;
6914 				DELAY(10);
6915 			}
6916 		}
6917 		iwn_nic_unlock(sc);
6918 	}
6919 
6920 	/* Stop RX ring. */
6921 	iwn_reset_rx_ring(sc, &sc->rxq);
6922 
6923 	/* Reset all TX rings. */
6924 	for (qid = 0; qid < sc->ntxqs; qid++)
6925 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6926 
6927 	if (iwn_nic_lock(sc) == 0) {
6928 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6929 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6930 		iwn_nic_unlock(sc);
6931 	}
6932 	DELAY(5);
6933 	/* Power OFF adapter. */
6934 	iwn_apm_stop(sc);
6935 }
6936 
6937 static void
6938 iwn_radio_on(void *arg0, int pending)
6939 {
6940 	struct iwn_softc *sc = arg0;
6941 	struct ifnet *ifp = sc->sc_ifp;
6942 	struct ieee80211com *ic = ifp->if_l2com;
6943 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6944 
6945 	if (vap != NULL) {
6946 		iwn_init(sc);
6947 		ieee80211_init(vap);
6948 	}
6949 }
6950 
6951 static void
6952 iwn_radio_off(void *arg0, int pending)
6953 {
6954 	struct iwn_softc *sc = arg0;
6955 	struct ifnet *ifp = sc->sc_ifp;
6956 	struct ieee80211com *ic = ifp->if_l2com;
6957 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6958 
6959 	iwn_stop(sc);
6960 	if (vap != NULL)
6961 		ieee80211_stop(vap);
6962 
6963 	/* Enable interrupts to get RF toggle notification. */
6964 	IWN_LOCK(sc);
6965 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6966 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6967 	IWN_UNLOCK(sc);
6968 }
6969 
6970 static void
6971 iwn_init_locked(struct iwn_softc *sc)
6972 {
6973 	struct ifnet *ifp = sc->sc_ifp;
6974 	int error;
6975 
6976 	IWN_LOCK_ASSERT(sc);
6977 
6978 	if ((error = iwn_hw_prepare(sc)) != 0) {
6979 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
6980 		    __func__, error);
6981 		goto fail;
6982 	}
6983 
6984 	/* Initialize interrupt mask to default value. */
6985 	sc->int_mask = IWN_INT_MASK_DEF;
6986 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6987 
6988 	/* Check that the radio is not disabled by hardware switch. */
6989 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6990 		device_printf(sc->sc_dev,
6991 		    "radio is disabled by hardware switch\n");
6992 		/* Enable interrupts to get RF toggle notifications. */
6993 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6994 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6995 		return;
6996 	}
6997 
6998 	/* Read firmware images from the filesystem. */
6999 	if ((error = iwn_read_firmware(sc)) != 0) {
7000 		device_printf(sc->sc_dev,
7001 		    "%s: could not read firmware, error %d\n", __func__,
7002 		    error);
7003 		goto fail;
7004 	}
7005 
7006 	/* Initialize hardware and upload firmware. */
7007 	error = iwn_hw_init(sc);
7008 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
7009 	sc->fw_fp = NULL;
7010 	if (error != 0) {
7011 		device_printf(sc->sc_dev,
7012 		    "%s: could not initialize hardware, error %d\n", __func__,
7013 		    error);
7014 		goto fail;
7015 	}
7016 
7017 	/* Configure adapter now that it is ready. */
7018 	if ((error = iwn_config(sc)) != 0) {
7019 		device_printf(sc->sc_dev,
7020 		    "%s: could not configure device, error %d\n", __func__,
7021 		    error);
7022 		goto fail;
7023 	}
7024 
7025 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
7026 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
7027 
7028 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
7029 	return;
7030 
7031 fail:	iwn_stop_locked(sc);
7032 }
7033 
7034 static void
7035 iwn_init(void *arg)
7036 {
7037 	struct iwn_softc *sc = arg;
7038 	struct ifnet *ifp = sc->sc_ifp;
7039 	struct ieee80211com *ic = ifp->if_l2com;
7040 
7041 	IWN_LOCK(sc);
7042 	iwn_init_locked(sc);
7043 	IWN_UNLOCK(sc);
7044 
7045 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
7046 		ieee80211_start_all(ic);
7047 }
7048 
7049 static void
7050 iwn_stop_locked(struct iwn_softc *sc)
7051 {
7052 	struct ifnet *ifp = sc->sc_ifp;
7053 
7054 	IWN_LOCK_ASSERT(sc);
7055 
7056 	sc->sc_tx_timer = 0;
7057 	callout_stop(&sc->watchdog_to);
7058 	callout_stop(&sc->calib_to);
7059 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
7060 
7061 	/* Power OFF hardware. */
7062 	iwn_hw_stop(sc);
7063 }
7064 
7065 static void
7066 iwn_stop(struct iwn_softc *sc)
7067 {
7068 	IWN_LOCK(sc);
7069 	iwn_stop_locked(sc);
7070 	IWN_UNLOCK(sc);
7071 }
7072 
7073 /*
7074  * Callback from net80211 to start a scan.
7075  */
7076 static void
7077 iwn_scan_start(struct ieee80211com *ic)
7078 {
7079 	struct ifnet *ifp = ic->ic_ifp;
7080 	struct iwn_softc *sc = ifp->if_softc;
7081 
7082 	IWN_LOCK(sc);
7083 	/* make the link LED blink while we're scanning */
7084 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
7085 	IWN_UNLOCK(sc);
7086 }
7087 
7088 /*
7089  * Callback from net80211 to terminate a scan.
7090  */
7091 static void
7092 iwn_scan_end(struct ieee80211com *ic)
7093 {
7094 	struct ifnet *ifp = ic->ic_ifp;
7095 	struct iwn_softc *sc = ifp->if_softc;
7096 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7097 
7098 	IWN_LOCK(sc);
7099 	if (vap->iv_state == IEEE80211_S_RUN) {
7100 		/* Set link LED to ON status if we are associated */
7101 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7102 	}
7103 	IWN_UNLOCK(sc);
7104 }
7105 
7106 /*
7107  * Callback from net80211 to force a channel change.
7108  */
7109 static void
7110 iwn_set_channel(struct ieee80211com *ic)
7111 {
7112 	const struct ieee80211_channel *c = ic->ic_curchan;
7113 	struct ifnet *ifp = ic->ic_ifp;
7114 	struct iwn_softc *sc = ifp->if_softc;
7115 	int error;
7116 
7117 	IWN_LOCK(sc);
7118 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
7119 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
7120 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
7121 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
7122 
7123 	/*
7124 	 * Only need to set the channel in Monitor mode. AP scanning and auth
7125 	 * are already taken care of by their respective firmware commands.
7126 	 */
7127 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7128 		error = iwn_config(sc);
7129 		if (error != 0)
7130 		device_printf(sc->sc_dev,
7131 		    "%s: error %d settting channel\n", __func__, error);
7132 	}
7133 	IWN_UNLOCK(sc);
7134 }
7135 
7136 /*
7137  * Callback from net80211 to start scanning of the current channel.
7138  */
7139 static void
7140 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
7141 {
7142 	struct ieee80211vap *vap = ss->ss_vap;
7143 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7144 	int error;
7145 
7146 	IWN_LOCK(sc);
7147 	error = iwn_scan(sc);
7148 	IWN_UNLOCK(sc);
7149 	if (error != 0)
7150 		ieee80211_cancel_scan(vap);
7151 }
7152 
7153 /*
7154  * Callback from net80211 to handle the minimum dwell time being met.
7155  * The intent is to terminate the scan but we just let the firmware
7156  * notify us when it's finished as we have no safe way to abort it.
7157  */
7158 static void
7159 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7160 {
7161 	/* NB: don't try to abort scan; wait for firmware to finish */
7162 }
7163 
7164 static void
7165 iwn_hw_reset(void *arg0, int pending)
7166 {
7167 	struct iwn_softc *sc = arg0;
7168 	struct ifnet *ifp = sc->sc_ifp;
7169 	struct ieee80211com *ic = ifp->if_l2com;
7170 
7171 	iwn_stop(sc);
7172 	iwn_init(sc);
7173 	ieee80211_notify_radio(ic, 1);
7174 }
7175