xref: /freebsd/sys/dev/iwn/if_iwn.c (revision ec4deee4e4f2aef1b97d9424f25d04e91fd7dc10)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static void	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static void	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn_check_tx_ring(struct iwn_softc *, int);
172 static void	iwn5000_ict_reset(struct iwn_softc *);
173 static int	iwn_read_eeprom(struct iwn_softc *,
174 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
175 static void	iwn4965_read_eeprom(struct iwn_softc *);
176 #ifdef	IWN_DEBUG
177 static void	iwn4965_print_power_group(struct iwn_softc *, int);
178 #endif
179 static void	iwn5000_read_eeprom(struct iwn_softc *);
180 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
181 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
182 		    struct ieee80211_channel[]);
183 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
184 		    struct ieee80211_channel[]);
185 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
186 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
187 		    struct ieee80211_channel *);
188 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
189 		    struct ieee80211_channel[]);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
204 		    int, int, int);
205 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
215 		    uint8_t);
216 static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
217 static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
218 		    uint64_t, int, int);
219 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
220 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
221 static void	iwn_notif_intr(struct iwn_softc *);
222 static void	iwn_wakeup_intr(struct iwn_softc *);
223 static void	iwn_rftoggle_task(void *, int);
224 static void	iwn_fatal_intr(struct iwn_softc *);
225 static void	iwn_intr(void *);
226 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
227 		    uint16_t);
228 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
229 		    uint16_t);
230 #ifdef notyet
231 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
232 #endif
233 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
234 		    struct ieee80211_node *);
235 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
236 		    struct ieee80211_node *,
237 		    const struct ieee80211_bpf_params *params);
238 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
239 		    struct ieee80211_node *, struct iwn_tx_ring *);
240 static void	iwn_xmit_task(void *arg0, int pending);
241 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
242 		    const struct ieee80211_bpf_params *);
243 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
244 static void	iwn_scan_timeout(void *);
245 static void	iwn_watchdog(void *);
246 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
247 static void	iwn_parent(struct ieee80211com *);
248 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
249 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
250 		    int);
251 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
252 		    int);
253 static int	iwn_set_link_quality(struct iwn_softc *,
254 		    struct ieee80211_node *);
255 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
256 static int	iwn_updateedca(struct ieee80211com *);
257 static void	iwn_set_promisc(struct iwn_softc *);
258 static void	iwn_update_promisc(struct ieee80211com *);
259 static void	iwn_update_mcast(struct ieee80211com *);
260 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
261 static int	iwn_set_critical_temp(struct iwn_softc *);
262 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
263 static void	iwn4965_power_calibration(struct iwn_softc *, int);
264 static int	iwn4965_set_txpower(struct iwn_softc *, int);
265 static int	iwn5000_set_txpower(struct iwn_softc *, int);
266 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
267 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
268 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
269 static int	iwn4965_get_temperature(struct iwn_softc *);
270 static int	iwn5000_get_temperature(struct iwn_softc *);
271 static int	iwn_init_sensitivity(struct iwn_softc *);
272 static void	iwn_collect_noise(struct iwn_softc *,
273 		    const struct iwn_rx_general_stats *);
274 static int	iwn4965_init_gains(struct iwn_softc *);
275 static int	iwn5000_init_gains(struct iwn_softc *);
276 static int	iwn4965_set_gains(struct iwn_softc *);
277 static int	iwn5000_set_gains(struct iwn_softc *);
278 static void	iwn_tune_sensitivity(struct iwn_softc *,
279 		    const struct iwn_rx_stats *);
280 static void	iwn_save_stats_counters(struct iwn_softc *,
281 		    const struct iwn_stats *);
282 static int	iwn_send_sensitivity(struct iwn_softc *);
283 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
284 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
285 static int	iwn_send_btcoex(struct iwn_softc *);
286 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
287 static int	iwn5000_runtime_calib(struct iwn_softc *);
288 static int	iwn_check_bss_filter(struct iwn_softc *);
289 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
290 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
291 static int	iwn_send_rxon(struct iwn_softc *, int, int);
292 static int	iwn_config(struct iwn_softc *);
293 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
294 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
295 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
296 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
297 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
298 		    struct ieee80211_rx_ampdu *, int, int, int);
299 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
300 		    struct ieee80211_rx_ampdu *);
301 static int	iwn_addba_request(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *, int, int, int);
303 static int	iwn_addba_response(struct ieee80211_node *,
304 		    struct ieee80211_tx_ampdu *, int, int, int);
305 static int	iwn_ampdu_tx_start(struct ieee80211com *,
306 		    struct ieee80211_node *, uint8_t);
307 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
308 		    struct ieee80211_tx_ampdu *);
309 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
310 		    struct ieee80211_node *, int, uint8_t, uint16_t);
311 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
312 		    uint8_t, uint16_t);
313 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
314 		    struct ieee80211_node *, int, uint8_t, uint16_t);
315 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
316 		    uint8_t, uint16_t);
317 static int	iwn5000_query_calibration(struct iwn_softc *);
318 static int	iwn5000_send_calibration(struct iwn_softc *);
319 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
320 static int	iwn5000_crystal_calib(struct iwn_softc *);
321 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
322 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
323 static int	iwn4965_post_alive(struct iwn_softc *);
324 static int	iwn5000_post_alive(struct iwn_softc *);
325 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
326 		    int);
327 static int	iwn4965_load_firmware(struct iwn_softc *);
328 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
329 		    const uint8_t *, int);
330 static int	iwn5000_load_firmware(struct iwn_softc *);
331 static int	iwn_read_firmware_leg(struct iwn_softc *,
332 		    struct iwn_fw_info *);
333 static int	iwn_read_firmware_tlv(struct iwn_softc *,
334 		    struct iwn_fw_info *, uint16_t);
335 static int	iwn_read_firmware(struct iwn_softc *);
336 static void	iwn_unload_firmware(struct iwn_softc *);
337 static int	iwn_clock_wait(struct iwn_softc *);
338 static int	iwn_apm_init(struct iwn_softc *);
339 static void	iwn_apm_stop_master(struct iwn_softc *);
340 static void	iwn_apm_stop(struct iwn_softc *);
341 static int	iwn4965_nic_config(struct iwn_softc *);
342 static int	iwn5000_nic_config(struct iwn_softc *);
343 static int	iwn_hw_prepare(struct iwn_softc *);
344 static int	iwn_hw_init(struct iwn_softc *);
345 static void	iwn_hw_stop(struct iwn_softc *);
346 static void	iwn_panicked(void *, int);
347 static int	iwn_init_locked(struct iwn_softc *);
348 static int	iwn_init(struct iwn_softc *);
349 static void	iwn_stop_locked(struct iwn_softc *);
350 static void	iwn_stop(struct iwn_softc *);
351 static void	iwn_scan_start(struct ieee80211com *);
352 static void	iwn_scan_end(struct ieee80211com *);
353 static void	iwn_set_channel(struct ieee80211com *);
354 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
355 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
356 #ifdef	IWN_DEBUG
357 static char	*iwn_get_csr_string(int);
358 static void	iwn_debug_register(struct iwn_softc *);
359 #endif
360 
361 static device_method_t iwn_methods[] = {
362 	/* Device interface */
363 	DEVMETHOD(device_probe,		iwn_probe),
364 	DEVMETHOD(device_attach,	iwn_attach),
365 	DEVMETHOD(device_detach,	iwn_detach),
366 	DEVMETHOD(device_shutdown,	iwn_shutdown),
367 	DEVMETHOD(device_suspend,	iwn_suspend),
368 	DEVMETHOD(device_resume,	iwn_resume),
369 
370 	DEVMETHOD_END
371 };
372 
373 static driver_t iwn_driver = {
374 	"iwn",
375 	iwn_methods,
376 	sizeof(struct iwn_softc)
377 };
378 static devclass_t iwn_devclass;
379 
380 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
381 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
382     nitems(iwn_ident_table) - 1);
383 MODULE_VERSION(iwn, 1);
384 
385 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
386 MODULE_DEPEND(iwn, pci, 1, 1, 1);
387 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
388 
389 static d_ioctl_t iwn_cdev_ioctl;
390 static d_open_t iwn_cdev_open;
391 static d_close_t iwn_cdev_close;
392 
393 static struct cdevsw iwn_cdevsw = {
394 	.d_version = D_VERSION,
395 	.d_flags = 0,
396 	.d_open = iwn_cdev_open,
397 	.d_close = iwn_cdev_close,
398 	.d_ioctl = iwn_cdev_ioctl,
399 	.d_name = "iwn",
400 };
401 
402 static int
403 iwn_probe(device_t dev)
404 {
405 	const struct iwn_ident *ident;
406 
407 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
408 		if (pci_get_vendor(dev) == ident->vendor &&
409 		    pci_get_device(dev) == ident->device) {
410 			device_set_desc(dev, ident->name);
411 			return (BUS_PROBE_DEFAULT);
412 		}
413 	}
414 	return ENXIO;
415 }
416 
417 static int
418 iwn_is_3stream_device(struct iwn_softc *sc)
419 {
420 	/* XXX for now only 5300, until the 5350 can be tested */
421 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
422 		return (1);
423 	return (0);
424 }
425 
426 static int
427 iwn_attach(device_t dev)
428 {
429 	struct iwn_softc *sc = device_get_softc(dev);
430 	struct ieee80211com *ic;
431 	int i, error, rid;
432 
433 	sc->sc_dev = dev;
434 
435 #ifdef	IWN_DEBUG
436 	error = resource_int_value(device_get_name(sc->sc_dev),
437 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
438 	if (error != 0)
439 		sc->sc_debug = 0;
440 #else
441 	sc->sc_debug = 0;
442 #endif
443 
444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
445 
446 	/*
447 	 * Get the offset of the PCI Express Capability Structure in PCI
448 	 * Configuration Space.
449 	 */
450 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
451 	if (error != 0) {
452 		device_printf(dev, "PCIe capability structure not found!\n");
453 		return error;
454 	}
455 
456 	/* Clear device-specific "PCI retry timeout" register (41h). */
457 	pci_write_config(dev, 0x41, 0, 1);
458 
459 	/* Enable bus-mastering. */
460 	pci_enable_busmaster(dev);
461 
462 	rid = PCIR_BAR(0);
463 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
464 	    RF_ACTIVE);
465 	if (sc->mem == NULL) {
466 		device_printf(dev, "can't map mem space\n");
467 		error = ENOMEM;
468 		return error;
469 	}
470 	sc->sc_st = rman_get_bustag(sc->mem);
471 	sc->sc_sh = rman_get_bushandle(sc->mem);
472 
473 	i = 1;
474 	rid = 0;
475 	if (pci_alloc_msi(dev, &i) == 0)
476 		rid = 1;
477 	/* Install interrupt handler. */
478 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
479 	    (rid != 0 ? 0 : RF_SHAREABLE));
480 	if (sc->irq == NULL) {
481 		device_printf(dev, "can't map interrupt\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	IWN_LOCK_INIT(sc);
487 
488 	/* Read hardware revision and attach. */
489 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
490 	    & IWN_HW_REV_TYPE_MASK;
491 	sc->subdevice_id = pci_get_subdevice(dev);
492 
493 	/*
494 	 * 4965 versus 5000 and later have different methods.
495 	 * Let's set those up first.
496 	 */
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		iwn5000_attach(sc, pci_get_device(dev));
501 
502 	/*
503 	 * Next, let's setup the various parameters of each NIC.
504 	 */
505 	error = iwn_config_specific(sc, pci_get_device(dev));
506 	if (error != 0) {
507 		device_printf(dev, "could not attach device, error %d\n",
508 		    error);
509 		goto fail;
510 	}
511 
512 	if ((error = iwn_hw_prepare(sc)) != 0) {
513 		device_printf(dev, "hardware not ready, error %d\n", error);
514 		goto fail;
515 	}
516 
517 	/* Allocate DMA memory for firmware transfers. */
518 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
519 		device_printf(dev,
520 		    "could not allocate memory for firmware, error %d\n",
521 		    error);
522 		goto fail;
523 	}
524 
525 	/* Allocate "Keep Warm" page. */
526 	if ((error = iwn_alloc_kw(sc)) != 0) {
527 		device_printf(dev,
528 		    "could not allocate keep warm page, error %d\n", error);
529 		goto fail;
530 	}
531 
532 	/* Allocate ICT table for 5000 Series. */
533 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
534 	    (error = iwn_alloc_ict(sc)) != 0) {
535 		device_printf(dev, "could not allocate ICT table, error %d\n",
536 		    error);
537 		goto fail;
538 	}
539 
540 	/* Allocate TX scheduler "rings". */
541 	if ((error = iwn_alloc_sched(sc)) != 0) {
542 		device_printf(dev,
543 		    "could not allocate TX scheduler rings, error %d\n", error);
544 		goto fail;
545 	}
546 
547 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
548 	for (i = 0; i < sc->ntxqs; i++) {
549 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
550 			device_printf(dev,
551 			    "could not allocate TX ring %d, error %d\n", i,
552 			    error);
553 			goto fail;
554 		}
555 	}
556 
557 	/* Allocate RX ring. */
558 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
559 		device_printf(dev, "could not allocate RX ring, error %d\n",
560 		    error);
561 		goto fail;
562 	}
563 
564 	/* Clear pending interrupts. */
565 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
566 
567 	ic = &sc->sc_ic;
568 	ic->ic_softc = sc;
569 	ic->ic_name = device_get_nameunit(dev);
570 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
571 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
572 
573 	/* Set device capabilities. */
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode supported */
576 		| IEEE80211_C_MONITOR		/* monitor mode supported */
577 #if 0
578 		| IEEE80211_C_BGSCAN		/* background scanning */
579 #endif
580 		| IEEE80211_C_TXPMGT		/* tx power management */
581 		| IEEE80211_C_SHSLOT		/* short slot time supported */
582 		| IEEE80211_C_WPA
583 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
584 #if 0
585 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
586 #endif
587 		| IEEE80211_C_WME		/* WME */
588 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
589 		;
590 
591 	/* Read MAC address, channels, etc from EEPROM. */
592 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
593 		device_printf(dev, "could not read EEPROM, error %d\n",
594 		    error);
595 		goto fail;
596 	}
597 
598 	/* Count the number of available chains. */
599 	sc->ntxchains =
600 	    ((sc->txchainmask >> 2) & 1) +
601 	    ((sc->txchainmask >> 1) & 1) +
602 	    ((sc->txchainmask >> 0) & 1);
603 	sc->nrxchains =
604 	    ((sc->rxchainmask >> 2) & 1) +
605 	    ((sc->rxchainmask >> 1) & 1) +
606 	    ((sc->rxchainmask >> 0) & 1);
607 	if (bootverbose) {
608 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
609 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
610 		    ic->ic_macaddr, ":");
611 	}
612 
613 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
614 		ic->ic_rxstream = sc->nrxchains;
615 		ic->ic_txstream = sc->ntxchains;
616 
617 		/*
618 		 * Some of the 3 antenna devices (ie, the 4965) only supports
619 		 * 2x2 operation.  So correct the number of streams if
620 		 * it's not a 3-stream device.
621 		 */
622 		if (! iwn_is_3stream_device(sc)) {
623 			if (ic->ic_rxstream > 2)
624 				ic->ic_rxstream = 2;
625 			if (ic->ic_txstream > 2)
626 				ic->ic_txstream = 2;
627 		}
628 
629 		ic->ic_htcaps =
630 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
631 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
632 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
633 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
634 #ifdef notyet
635 			| IEEE80211_HTCAP_GREENFIELD
636 #if IWN_RBUF_SIZE == 8192
637 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
638 #else
639 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
640 #endif
641 #endif
642 			/* s/w capabilities */
643 			| IEEE80211_HTC_HT		/* HT operation */
644 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
645 #ifdef notyet
646 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
647 #endif
648 			;
649 	}
650 
651 	ieee80211_ifattach(ic);
652 	ic->ic_vap_create = iwn_vap_create;
653 	ic->ic_ioctl = iwn_ioctl;
654 	ic->ic_parent = iwn_parent;
655 	ic->ic_vap_delete = iwn_vap_delete;
656 	ic->ic_transmit = iwn_transmit;
657 	ic->ic_raw_xmit = iwn_raw_xmit;
658 	ic->ic_node_alloc = iwn_node_alloc;
659 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
660 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
661 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
662 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
663 	sc->sc_addba_request = ic->ic_addba_request;
664 	ic->ic_addba_request = iwn_addba_request;
665 	sc->sc_addba_response = ic->ic_addba_response;
666 	ic->ic_addba_response = iwn_addba_response;
667 	sc->sc_addba_stop = ic->ic_addba_stop;
668 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
669 	ic->ic_newassoc = iwn_newassoc;
670 	ic->ic_wme.wme_update = iwn_updateedca;
671 	ic->ic_update_promisc = iwn_update_promisc;
672 	ic->ic_update_mcast = iwn_update_mcast;
673 	ic->ic_scan_start = iwn_scan_start;
674 	ic->ic_scan_end = iwn_scan_end;
675 	ic->ic_set_channel = iwn_set_channel;
676 	ic->ic_scan_curchan = iwn_scan_curchan;
677 	ic->ic_scan_mindwell = iwn_scan_mindwell;
678 	ic->ic_getradiocaps = iwn_getradiocaps;
679 	ic->ic_setregdomain = iwn_setregdomain;
680 
681 	iwn_radiotap_attach(sc);
682 
683 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
684 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
685 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
686 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
687 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
688 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
689 
690 	mbufq_init(&sc->sc_xmit_queue, 1024);
691 
692 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
693 	    taskqueue_thread_enqueue, &sc->sc_tq);
694 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
695 	if (error != 0) {
696 		device_printf(dev, "can't start threads, error %d\n", error);
697 		goto fail;
698 	}
699 
700 	iwn_sysctlattach(sc);
701 
702 	/*
703 	 * Hook our interrupt after all initialization is complete.
704 	 */
705 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
706 	    NULL, iwn_intr, sc, &sc->sc_ih);
707 	if (error != 0) {
708 		device_printf(dev, "can't establish interrupt, error %d\n",
709 		    error);
710 		goto fail;
711 	}
712 
713 #if 0
714 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
715 	    __func__,
716 	    sizeof(struct iwn_stats),
717 	    sizeof(struct iwn_stats_bt));
718 #endif
719 
720 	if (bootverbose)
721 		ieee80211_announce(ic);
722 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
723 
724 	/* Add debug ioctl right at the end */
725 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
726 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
727 	if (sc->sc_cdev == NULL) {
728 		device_printf(dev, "failed to create debug character device\n");
729 	} else {
730 		sc->sc_cdev->si_drv1 = sc;
731 	}
732 	return 0;
733 fail:
734 	iwn_detach(dev);
735 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
736 	return error;
737 }
738 
739 /*
740  * Define specific configuration based on device id and subdevice id
741  * pid : PCI device id
742  */
743 static int
744 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
745 {
746 
747 	switch (pid) {
748 /* 4965 series */
749 	case IWN_DID_4965_1:
750 	case IWN_DID_4965_2:
751 	case IWN_DID_4965_3:
752 	case IWN_DID_4965_4:
753 		sc->base_params = &iwn4965_base_params;
754 		sc->limits = &iwn4965_sensitivity_limits;
755 		sc->fwname = "iwn4965fw";
756 		/* Override chains masks, ROM is known to be broken. */
757 		sc->txchainmask = IWN_ANT_AB;
758 		sc->rxchainmask = IWN_ANT_ABC;
759 		/* Enable normal btcoex */
760 		sc->sc_flags |= IWN_FLAG_BTCOEX;
761 		break;
762 /* 1000 Series */
763 	case IWN_DID_1000_1:
764 	case IWN_DID_1000_2:
765 		switch(sc->subdevice_id) {
766 			case	IWN_SDID_1000_1:
767 			case	IWN_SDID_1000_2:
768 			case	IWN_SDID_1000_3:
769 			case	IWN_SDID_1000_4:
770 			case	IWN_SDID_1000_5:
771 			case	IWN_SDID_1000_6:
772 			case	IWN_SDID_1000_7:
773 			case	IWN_SDID_1000_8:
774 			case	IWN_SDID_1000_9:
775 			case	IWN_SDID_1000_10:
776 			case	IWN_SDID_1000_11:
777 			case	IWN_SDID_1000_12:
778 				sc->limits = &iwn1000_sensitivity_limits;
779 				sc->base_params = &iwn1000_base_params;
780 				sc->fwname = "iwn1000fw";
781 				break;
782 			default:
783 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
784 				    "0x%04x rev %d not supported (subdevice)\n", pid,
785 				    sc->subdevice_id,sc->hw_type);
786 				return ENOTSUP;
787 		}
788 		break;
789 /* 6x00 Series */
790 	case IWN_DID_6x00_2:
791 	case IWN_DID_6x00_4:
792 	case IWN_DID_6x00_1:
793 	case IWN_DID_6x00_3:
794 		sc->fwname = "iwn6000fw";
795 		sc->limits = &iwn6000_sensitivity_limits;
796 		switch(sc->subdevice_id) {
797 			case IWN_SDID_6x00_1:
798 			case IWN_SDID_6x00_2:
799 			case IWN_SDID_6x00_8:
800 				//iwl6000_3agn_cfg
801 				sc->base_params = &iwn_6000_base_params;
802 				break;
803 			case IWN_SDID_6x00_3:
804 			case IWN_SDID_6x00_6:
805 			case IWN_SDID_6x00_9:
806 				////iwl6000i_2agn
807 			case IWN_SDID_6x00_4:
808 			case IWN_SDID_6x00_7:
809 			case IWN_SDID_6x00_10:
810 				//iwl6000i_2abg_cfg
811 			case IWN_SDID_6x00_5:
812 				//iwl6000i_2bg_cfg
813 				sc->base_params = &iwn_6000i_base_params;
814 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
815 				sc->txchainmask = IWN_ANT_BC;
816 				sc->rxchainmask = IWN_ANT_BC;
817 				break;
818 			default:
819 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
820 				    "0x%04x rev %d not supported (subdevice)\n", pid,
821 				    sc->subdevice_id,sc->hw_type);
822 				return ENOTSUP;
823 		}
824 		break;
825 /* 6x05 Series */
826 	case IWN_DID_6x05_1:
827 	case IWN_DID_6x05_2:
828 		switch(sc->subdevice_id) {
829 			case IWN_SDID_6x05_1:
830 			case IWN_SDID_6x05_4:
831 			case IWN_SDID_6x05_6:
832 				//iwl6005_2agn_cfg
833 			case IWN_SDID_6x05_2:
834 			case IWN_SDID_6x05_5:
835 			case IWN_SDID_6x05_7:
836 				//iwl6005_2abg_cfg
837 			case IWN_SDID_6x05_3:
838 				//iwl6005_2bg_cfg
839 			case IWN_SDID_6x05_8:
840 			case IWN_SDID_6x05_9:
841 				//iwl6005_2agn_sff_cfg
842 			case IWN_SDID_6x05_10:
843 				//iwl6005_2agn_d_cfg
844 			case IWN_SDID_6x05_11:
845 				//iwl6005_2agn_mow1_cfg
846 			case IWN_SDID_6x05_12:
847 				//iwl6005_2agn_mow2_cfg
848 				sc->fwname = "iwn6000g2afw";
849 				sc->limits = &iwn6000_sensitivity_limits;
850 				sc->base_params = &iwn_6000g2_base_params;
851 				break;
852 			default:
853 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
854 				    "0x%04x rev %d not supported (subdevice)\n", pid,
855 				    sc->subdevice_id,sc->hw_type);
856 				return ENOTSUP;
857 		}
858 		break;
859 /* 6x35 Series */
860 	case IWN_DID_6035_1:
861 	case IWN_DID_6035_2:
862 		switch(sc->subdevice_id) {
863 			case IWN_SDID_6035_1:
864 			case IWN_SDID_6035_2:
865 			case IWN_SDID_6035_3:
866 			case IWN_SDID_6035_4:
867 			case IWN_SDID_6035_5:
868 				sc->fwname = "iwn6000g2bfw";
869 				sc->limits = &iwn6235_sensitivity_limits;
870 				sc->base_params = &iwn_6235_base_params;
871 				break;
872 			default:
873 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
874 				    "0x%04x rev %d not supported (subdevice)\n", pid,
875 				    sc->subdevice_id,sc->hw_type);
876 				return ENOTSUP;
877 		}
878 		break;
879 /* 6x50 WiFi/WiMax Series */
880 	case IWN_DID_6050_1:
881 	case IWN_DID_6050_2:
882 		switch(sc->subdevice_id) {
883 			case IWN_SDID_6050_1:
884 			case IWN_SDID_6050_3:
885 			case IWN_SDID_6050_5:
886 				//iwl6050_2agn_cfg
887 			case IWN_SDID_6050_2:
888 			case IWN_SDID_6050_4:
889 			case IWN_SDID_6050_6:
890 				//iwl6050_2abg_cfg
891 				sc->fwname = "iwn6050fw";
892 				sc->txchainmask = IWN_ANT_AB;
893 				sc->rxchainmask = IWN_ANT_AB;
894 				sc->limits = &iwn6000_sensitivity_limits;
895 				sc->base_params = &iwn_6050_base_params;
896 				break;
897 			default:
898 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
899 				    "0x%04x rev %d not supported (subdevice)\n", pid,
900 				    sc->subdevice_id,sc->hw_type);
901 				return ENOTSUP;
902 		}
903 		break;
904 /* 6150 WiFi/WiMax Series */
905 	case IWN_DID_6150_1:
906 	case IWN_DID_6150_2:
907 		switch(sc->subdevice_id) {
908 			case IWN_SDID_6150_1:
909 			case IWN_SDID_6150_3:
910 			case IWN_SDID_6150_5:
911 				// iwl6150_bgn_cfg
912 			case IWN_SDID_6150_2:
913 			case IWN_SDID_6150_4:
914 			case IWN_SDID_6150_6:
915 				//iwl6150_bg_cfg
916 				sc->fwname = "iwn6050fw";
917 				sc->limits = &iwn6000_sensitivity_limits;
918 				sc->base_params = &iwn_6150_base_params;
919 				break;
920 			default:
921 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
922 				    "0x%04x rev %d not supported (subdevice)\n", pid,
923 				    sc->subdevice_id,sc->hw_type);
924 				return ENOTSUP;
925 		}
926 		break;
927 /* 6030 Series and 1030 Series */
928 	case IWN_DID_x030_1:
929 	case IWN_DID_x030_2:
930 	case IWN_DID_x030_3:
931 	case IWN_DID_x030_4:
932 		switch(sc->subdevice_id) {
933 			case IWN_SDID_x030_1:
934 			case IWN_SDID_x030_3:
935 			case IWN_SDID_x030_5:
936 			// iwl1030_bgn_cfg
937 			case IWN_SDID_x030_2:
938 			case IWN_SDID_x030_4:
939 			case IWN_SDID_x030_6:
940 			//iwl1030_bg_cfg
941 			case IWN_SDID_x030_7:
942 			case IWN_SDID_x030_10:
943 			case IWN_SDID_x030_14:
944 			//iwl6030_2agn_cfg
945 			case IWN_SDID_x030_8:
946 			case IWN_SDID_x030_11:
947 			case IWN_SDID_x030_15:
948 			// iwl6030_2bgn_cfg
949 			case IWN_SDID_x030_9:
950 			case IWN_SDID_x030_12:
951 			case IWN_SDID_x030_16:
952 			// iwl6030_2abg_cfg
953 			case IWN_SDID_x030_13:
954 			//iwl6030_2bg_cfg
955 				sc->fwname = "iwn6000g2bfw";
956 				sc->limits = &iwn6000_sensitivity_limits;
957 				sc->base_params = &iwn_6000g2b_base_params;
958 				break;
959 			default:
960 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
961 				    "0x%04x rev %d not supported (subdevice)\n", pid,
962 				    sc->subdevice_id,sc->hw_type);
963 				return ENOTSUP;
964 		}
965 		break;
966 /* 130 Series WiFi */
967 /* XXX: This series will need adjustment for rate.
968  * see rx_with_siso_diversity in linux kernel
969  */
970 	case IWN_DID_130_1:
971 	case IWN_DID_130_2:
972 		switch(sc->subdevice_id) {
973 			case IWN_SDID_130_1:
974 			case IWN_SDID_130_3:
975 			case IWN_SDID_130_5:
976 			//iwl130_bgn_cfg
977 			case IWN_SDID_130_2:
978 			case IWN_SDID_130_4:
979 			case IWN_SDID_130_6:
980 			//iwl130_bg_cfg
981 				sc->fwname = "iwn6000g2bfw";
982 				sc->limits = &iwn6000_sensitivity_limits;
983 				sc->base_params = &iwn_6000g2b_base_params;
984 				break;
985 			default:
986 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
987 				    "0x%04x rev %d not supported (subdevice)\n", pid,
988 				    sc->subdevice_id,sc->hw_type);
989 				return ENOTSUP;
990 		}
991 		break;
992 /* 100 Series WiFi */
993 	case IWN_DID_100_1:
994 	case IWN_DID_100_2:
995 		switch(sc->subdevice_id) {
996 			case IWN_SDID_100_1:
997 			case IWN_SDID_100_2:
998 			case IWN_SDID_100_3:
999 			case IWN_SDID_100_4:
1000 			case IWN_SDID_100_5:
1001 			case IWN_SDID_100_6:
1002 				sc->limits = &iwn1000_sensitivity_limits;
1003 				sc->base_params = &iwn1000_base_params;
1004 				sc->fwname = "iwn100fw";
1005 				break;
1006 			default:
1007 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1008 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1009 				    sc->subdevice_id,sc->hw_type);
1010 				return ENOTSUP;
1011 		}
1012 		break;
1013 
1014 /* 105 Series */
1015 /* XXX: This series will need adjustment for rate.
1016  * see rx_with_siso_diversity in linux kernel
1017  */
1018 	case IWN_DID_105_1:
1019 	case IWN_DID_105_2:
1020 		switch(sc->subdevice_id) {
1021 			case IWN_SDID_105_1:
1022 			case IWN_SDID_105_2:
1023 			case IWN_SDID_105_3:
1024 			//iwl105_bgn_cfg
1025 			case IWN_SDID_105_4:
1026 			//iwl105_bgn_d_cfg
1027 				sc->limits = &iwn2030_sensitivity_limits;
1028 				sc->base_params = &iwn2000_base_params;
1029 				sc->fwname = "iwn105fw";
1030 				break;
1031 			default:
1032 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1033 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1034 				    sc->subdevice_id,sc->hw_type);
1035 				return ENOTSUP;
1036 		}
1037 		break;
1038 
1039 /* 135 Series */
1040 /* XXX: This series will need adjustment for rate.
1041  * see rx_with_siso_diversity in linux kernel
1042  */
1043 	case IWN_DID_135_1:
1044 	case IWN_DID_135_2:
1045 		switch(sc->subdevice_id) {
1046 			case IWN_SDID_135_1:
1047 			case IWN_SDID_135_2:
1048 			case IWN_SDID_135_3:
1049 				sc->limits = &iwn2030_sensitivity_limits;
1050 				sc->base_params = &iwn2030_base_params;
1051 				sc->fwname = "iwn135fw";
1052 				break;
1053 			default:
1054 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1055 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1056 				    sc->subdevice_id,sc->hw_type);
1057 				return ENOTSUP;
1058 		}
1059 		break;
1060 
1061 /* 2x00 Series */
1062 	case IWN_DID_2x00_1:
1063 	case IWN_DID_2x00_2:
1064 		switch(sc->subdevice_id) {
1065 			case IWN_SDID_2x00_1:
1066 			case IWN_SDID_2x00_2:
1067 			case IWN_SDID_2x00_3:
1068 			//iwl2000_2bgn_cfg
1069 			case IWN_SDID_2x00_4:
1070 			//iwl2000_2bgn_d_cfg
1071 				sc->limits = &iwn2030_sensitivity_limits;
1072 				sc->base_params = &iwn2000_base_params;
1073 				sc->fwname = "iwn2000fw";
1074 				break;
1075 			default:
1076 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1077 				    "0x%04x rev %d not supported (subdevice) \n",
1078 				    pid, sc->subdevice_id, sc->hw_type);
1079 				return ENOTSUP;
1080 		}
1081 		break;
1082 /* 2x30 Series */
1083 	case IWN_DID_2x30_1:
1084 	case IWN_DID_2x30_2:
1085 		switch(sc->subdevice_id) {
1086 			case IWN_SDID_2x30_1:
1087 			case IWN_SDID_2x30_3:
1088 			case IWN_SDID_2x30_5:
1089 			//iwl100_bgn_cfg
1090 			case IWN_SDID_2x30_2:
1091 			case IWN_SDID_2x30_4:
1092 			case IWN_SDID_2x30_6:
1093 			//iwl100_bg_cfg
1094 				sc->limits = &iwn2030_sensitivity_limits;
1095 				sc->base_params = &iwn2030_base_params;
1096 				sc->fwname = "iwn2030fw";
1097 				break;
1098 			default:
1099 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1100 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1101 				    sc->subdevice_id,sc->hw_type);
1102 				return ENOTSUP;
1103 		}
1104 		break;
1105 /* 5x00 Series */
1106 	case IWN_DID_5x00_1:
1107 	case IWN_DID_5x00_2:
1108 	case IWN_DID_5x00_3:
1109 	case IWN_DID_5x00_4:
1110 		sc->limits = &iwn5000_sensitivity_limits;
1111 		sc->base_params = &iwn5000_base_params;
1112 		sc->fwname = "iwn5000fw";
1113 		switch(sc->subdevice_id) {
1114 			case IWN_SDID_5x00_1:
1115 			case IWN_SDID_5x00_2:
1116 			case IWN_SDID_5x00_3:
1117 			case IWN_SDID_5x00_4:
1118 			case IWN_SDID_5x00_9:
1119 			case IWN_SDID_5x00_10:
1120 			case IWN_SDID_5x00_11:
1121 			case IWN_SDID_5x00_12:
1122 			case IWN_SDID_5x00_17:
1123 			case IWN_SDID_5x00_18:
1124 			case IWN_SDID_5x00_19:
1125 			case IWN_SDID_5x00_20:
1126 			//iwl5100_agn_cfg
1127 				sc->txchainmask = IWN_ANT_B;
1128 				sc->rxchainmask = IWN_ANT_AB;
1129 				break;
1130 			case IWN_SDID_5x00_5:
1131 			case IWN_SDID_5x00_6:
1132 			case IWN_SDID_5x00_13:
1133 			case IWN_SDID_5x00_14:
1134 			case IWN_SDID_5x00_21:
1135 			case IWN_SDID_5x00_22:
1136 			//iwl5100_bgn_cfg
1137 				sc->txchainmask = IWN_ANT_B;
1138 				sc->rxchainmask = IWN_ANT_AB;
1139 				break;
1140 			case IWN_SDID_5x00_7:
1141 			case IWN_SDID_5x00_8:
1142 			case IWN_SDID_5x00_15:
1143 			case IWN_SDID_5x00_16:
1144 			case IWN_SDID_5x00_23:
1145 			case IWN_SDID_5x00_24:
1146 			//iwl5100_abg_cfg
1147 				sc->txchainmask = IWN_ANT_B;
1148 				sc->rxchainmask = IWN_ANT_AB;
1149 				break;
1150 			case IWN_SDID_5x00_25:
1151 			case IWN_SDID_5x00_26:
1152 			case IWN_SDID_5x00_27:
1153 			case IWN_SDID_5x00_28:
1154 			case IWN_SDID_5x00_29:
1155 			case IWN_SDID_5x00_30:
1156 			case IWN_SDID_5x00_31:
1157 			case IWN_SDID_5x00_32:
1158 			case IWN_SDID_5x00_33:
1159 			case IWN_SDID_5x00_34:
1160 			case IWN_SDID_5x00_35:
1161 			case IWN_SDID_5x00_36:
1162 			//iwl5300_agn_cfg
1163 				sc->txchainmask = IWN_ANT_ABC;
1164 				sc->rxchainmask = IWN_ANT_ABC;
1165 				break;
1166 			default:
1167 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1168 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1169 				    sc->subdevice_id,sc->hw_type);
1170 				return ENOTSUP;
1171 		}
1172 		break;
1173 /* 5x50 Series */
1174 	case IWN_DID_5x50_1:
1175 	case IWN_DID_5x50_2:
1176 	case IWN_DID_5x50_3:
1177 	case IWN_DID_5x50_4:
1178 		sc->limits = &iwn5000_sensitivity_limits;
1179 		sc->base_params = &iwn5000_base_params;
1180 		sc->fwname = "iwn5000fw";
1181 		switch(sc->subdevice_id) {
1182 			case IWN_SDID_5x50_1:
1183 			case IWN_SDID_5x50_2:
1184 			case IWN_SDID_5x50_3:
1185 			//iwl5350_agn_cfg
1186 				sc->limits = &iwn5000_sensitivity_limits;
1187 				sc->base_params = &iwn5000_base_params;
1188 				sc->fwname = "iwn5000fw";
1189 				break;
1190 			case IWN_SDID_5x50_4:
1191 			case IWN_SDID_5x50_5:
1192 			case IWN_SDID_5x50_8:
1193 			case IWN_SDID_5x50_9:
1194 			case IWN_SDID_5x50_10:
1195 			case IWN_SDID_5x50_11:
1196 			//iwl5150_agn_cfg
1197 			case IWN_SDID_5x50_6:
1198 			case IWN_SDID_5x50_7:
1199 			case IWN_SDID_5x50_12:
1200 			case IWN_SDID_5x50_13:
1201 			//iwl5150_abg_cfg
1202 				sc->limits = &iwn5000_sensitivity_limits;
1203 				sc->fwname = "iwn5150fw";
1204 				sc->base_params = &iwn_5x50_base_params;
1205 				break;
1206 			default:
1207 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1208 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1209 				    sc->subdevice_id,sc->hw_type);
1210 				return ENOTSUP;
1211 		}
1212 		break;
1213 	default:
1214 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1215 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1216 		     sc->hw_type);
1217 		return ENOTSUP;
1218 	}
1219 	return 0;
1220 }
1221 
1222 static void
1223 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1224 {
1225 	struct iwn_ops *ops = &sc->ops;
1226 
1227 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1228 
1229 	ops->load_firmware = iwn4965_load_firmware;
1230 	ops->read_eeprom = iwn4965_read_eeprom;
1231 	ops->post_alive = iwn4965_post_alive;
1232 	ops->nic_config = iwn4965_nic_config;
1233 	ops->update_sched = iwn4965_update_sched;
1234 	ops->get_temperature = iwn4965_get_temperature;
1235 	ops->get_rssi = iwn4965_get_rssi;
1236 	ops->set_txpower = iwn4965_set_txpower;
1237 	ops->init_gains = iwn4965_init_gains;
1238 	ops->set_gains = iwn4965_set_gains;
1239 	ops->rxon_assoc = iwn4965_rxon_assoc;
1240 	ops->add_node = iwn4965_add_node;
1241 	ops->tx_done = iwn4965_tx_done;
1242 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1243 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1244 	sc->ntxqs = IWN4965_NTXQUEUES;
1245 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1246 	sc->ndmachnls = IWN4965_NDMACHNLS;
1247 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1248 	sc->rxonsz = IWN4965_RXONSZ;
1249 	sc->schedsz = IWN4965_SCHEDSZ;
1250 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1251 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1252 	sc->fwsz = IWN4965_FWSZ;
1253 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1254 	sc->limits = &iwn4965_sensitivity_limits;
1255 	sc->fwname = "iwn4965fw";
1256 	/* Override chains masks, ROM is known to be broken. */
1257 	sc->txchainmask = IWN_ANT_AB;
1258 	sc->rxchainmask = IWN_ANT_ABC;
1259 	/* Enable normal btcoex */
1260 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1261 
1262 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1263 }
1264 
1265 static void
1266 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1267 {
1268 	struct iwn_ops *ops = &sc->ops;
1269 
1270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1271 
1272 	ops->load_firmware = iwn5000_load_firmware;
1273 	ops->read_eeprom = iwn5000_read_eeprom;
1274 	ops->post_alive = iwn5000_post_alive;
1275 	ops->nic_config = iwn5000_nic_config;
1276 	ops->update_sched = iwn5000_update_sched;
1277 	ops->get_temperature = iwn5000_get_temperature;
1278 	ops->get_rssi = iwn5000_get_rssi;
1279 	ops->set_txpower = iwn5000_set_txpower;
1280 	ops->init_gains = iwn5000_init_gains;
1281 	ops->set_gains = iwn5000_set_gains;
1282 	ops->rxon_assoc = iwn5000_rxon_assoc;
1283 	ops->add_node = iwn5000_add_node;
1284 	ops->tx_done = iwn5000_tx_done;
1285 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1286 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1287 	sc->ntxqs = IWN5000_NTXQUEUES;
1288 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1289 	sc->ndmachnls = IWN5000_NDMACHNLS;
1290 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1291 	sc->rxonsz = IWN5000_RXONSZ;
1292 	sc->schedsz = IWN5000_SCHEDSZ;
1293 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1294 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1295 	sc->fwsz = IWN5000_FWSZ;
1296 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1297 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1298 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1299 
1300 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1301 }
1302 
1303 /*
1304  * Attach the interface to 802.11 radiotap.
1305  */
1306 static void
1307 iwn_radiotap_attach(struct iwn_softc *sc)
1308 {
1309 
1310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1311 	ieee80211_radiotap_attach(&sc->sc_ic,
1312 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1313 		IWN_TX_RADIOTAP_PRESENT,
1314 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1315 		IWN_RX_RADIOTAP_PRESENT);
1316 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1317 }
1318 
1319 static void
1320 iwn_sysctlattach(struct iwn_softc *sc)
1321 {
1322 #ifdef	IWN_DEBUG
1323 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1324 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1325 
1326 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1327 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1328 		"control debugging printfs");
1329 #endif
1330 }
1331 
1332 static struct ieee80211vap *
1333 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1334     enum ieee80211_opmode opmode, int flags,
1335     const uint8_t bssid[IEEE80211_ADDR_LEN],
1336     const uint8_t mac[IEEE80211_ADDR_LEN])
1337 {
1338 	struct iwn_softc *sc = ic->ic_softc;
1339 	struct iwn_vap *ivp;
1340 	struct ieee80211vap *vap;
1341 
1342 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1343 		return NULL;
1344 
1345 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1346 	vap = &ivp->iv_vap;
1347 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1348 	ivp->ctx = IWN_RXON_BSS_CTX;
1349 	vap->iv_bmissthreshold = 10;		/* override default */
1350 	/* Override with driver methods. */
1351 	ivp->iv_newstate = vap->iv_newstate;
1352 	vap->iv_newstate = iwn_newstate;
1353 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1354 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1355 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */
1356 
1357 	ieee80211_ratectl_init(vap);
1358 	/* Complete setup. */
1359 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1360 	    mac);
1361 	ic->ic_opmode = opmode;
1362 	return vap;
1363 }
1364 
1365 static void
1366 iwn_vap_delete(struct ieee80211vap *vap)
1367 {
1368 	struct iwn_vap *ivp = IWN_VAP(vap);
1369 
1370 	ieee80211_ratectl_deinit(vap);
1371 	ieee80211_vap_detach(vap);
1372 	free(ivp, M_80211_VAP);
1373 }
1374 
1375 static void
1376 iwn_xmit_queue_drain(struct iwn_softc *sc)
1377 {
1378 	struct mbuf *m;
1379 	struct ieee80211_node *ni;
1380 
1381 	IWN_LOCK_ASSERT(sc);
1382 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1383 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1384 		ieee80211_free_node(ni);
1385 		m_freem(m);
1386 	}
1387 }
1388 
1389 static int
1390 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1391 {
1392 
1393 	IWN_LOCK_ASSERT(sc);
1394 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1395 }
1396 
1397 static int
1398 iwn_detach(device_t dev)
1399 {
1400 	struct iwn_softc *sc = device_get_softc(dev);
1401 	int qid;
1402 
1403 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1404 
1405 	if (sc->sc_ic.ic_softc != NULL) {
1406 		/* Free the mbuf queue and node references */
1407 		IWN_LOCK(sc);
1408 		iwn_xmit_queue_drain(sc);
1409 		IWN_UNLOCK(sc);
1410 
1411 		iwn_stop(sc);
1412 
1413 		taskqueue_drain_all(sc->sc_tq);
1414 		taskqueue_free(sc->sc_tq);
1415 
1416 		callout_drain(&sc->watchdog_to);
1417 		callout_drain(&sc->scan_timeout);
1418 		callout_drain(&sc->calib_to);
1419 		ieee80211_ifdetach(&sc->sc_ic);
1420 	}
1421 
1422 	/* Uninstall interrupt handler. */
1423 	if (sc->irq != NULL) {
1424 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1425 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1426 		    sc->irq);
1427 		pci_release_msi(dev);
1428 	}
1429 
1430 	/* Free DMA resources. */
1431 	iwn_free_rx_ring(sc, &sc->rxq);
1432 	for (qid = 0; qid < sc->ntxqs; qid++)
1433 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1434 	iwn_free_sched(sc);
1435 	iwn_free_kw(sc);
1436 	if (sc->ict != NULL)
1437 		iwn_free_ict(sc);
1438 	iwn_free_fwmem(sc);
1439 
1440 	if (sc->mem != NULL)
1441 		bus_release_resource(dev, SYS_RES_MEMORY,
1442 		    rman_get_rid(sc->mem), sc->mem);
1443 
1444 	if (sc->sc_cdev) {
1445 		destroy_dev(sc->sc_cdev);
1446 		sc->sc_cdev = NULL;
1447 	}
1448 
1449 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1450 	IWN_LOCK_DESTROY(sc);
1451 	return 0;
1452 }
1453 
1454 static int
1455 iwn_shutdown(device_t dev)
1456 {
1457 	struct iwn_softc *sc = device_get_softc(dev);
1458 
1459 	iwn_stop(sc);
1460 	return 0;
1461 }
1462 
1463 static int
1464 iwn_suspend(device_t dev)
1465 {
1466 	struct iwn_softc *sc = device_get_softc(dev);
1467 
1468 	ieee80211_suspend_all(&sc->sc_ic);
1469 	return 0;
1470 }
1471 
1472 static int
1473 iwn_resume(device_t dev)
1474 {
1475 	struct iwn_softc *sc = device_get_softc(dev);
1476 
1477 	/* Clear device-specific "PCI retry timeout" register (41h). */
1478 	pci_write_config(dev, 0x41, 0, 1);
1479 
1480 	ieee80211_resume_all(&sc->sc_ic);
1481 	return 0;
1482 }
1483 
1484 static int
1485 iwn_nic_lock(struct iwn_softc *sc)
1486 {
1487 	int ntries;
1488 
1489 	/* Request exclusive access to NIC. */
1490 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1491 
1492 	/* Spin until we actually get the lock. */
1493 	for (ntries = 0; ntries < 1000; ntries++) {
1494 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1495 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1496 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1497 			return 0;
1498 		DELAY(10);
1499 	}
1500 	return ETIMEDOUT;
1501 }
1502 
1503 static __inline void
1504 iwn_nic_unlock(struct iwn_softc *sc)
1505 {
1506 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1507 }
1508 
1509 static __inline uint32_t
1510 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1511 {
1512 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1513 	IWN_BARRIER_READ_WRITE(sc);
1514 	return IWN_READ(sc, IWN_PRPH_RDATA);
1515 }
1516 
1517 static __inline void
1518 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1519 {
1520 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1521 	IWN_BARRIER_WRITE(sc);
1522 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1523 }
1524 
1525 static __inline void
1526 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1527 {
1528 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1529 }
1530 
1531 static __inline void
1532 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1533 {
1534 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1535 }
1536 
1537 static __inline void
1538 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1539     const uint32_t *data, int count)
1540 {
1541 	for (; count > 0; count--, data++, addr += 4)
1542 		iwn_prph_write(sc, addr, *data);
1543 }
1544 
1545 static __inline uint32_t
1546 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1547 {
1548 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1549 	IWN_BARRIER_READ_WRITE(sc);
1550 	return IWN_READ(sc, IWN_MEM_RDATA);
1551 }
1552 
1553 static __inline void
1554 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1555 {
1556 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1557 	IWN_BARRIER_WRITE(sc);
1558 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1559 }
1560 
1561 static __inline void
1562 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1563 {
1564 	uint32_t tmp;
1565 
1566 	tmp = iwn_mem_read(sc, addr & ~3);
1567 	if (addr & 3)
1568 		tmp = (tmp & 0x0000ffff) | data << 16;
1569 	else
1570 		tmp = (tmp & 0xffff0000) | data;
1571 	iwn_mem_write(sc, addr & ~3, tmp);
1572 }
1573 
1574 static __inline void
1575 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1576     int count)
1577 {
1578 	for (; count > 0; count--, addr += 4)
1579 		*data++ = iwn_mem_read(sc, addr);
1580 }
1581 
1582 static __inline void
1583 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1584     int count)
1585 {
1586 	for (; count > 0; count--, addr += 4)
1587 		iwn_mem_write(sc, addr, val);
1588 }
1589 
1590 static int
1591 iwn_eeprom_lock(struct iwn_softc *sc)
1592 {
1593 	int i, ntries;
1594 
1595 	for (i = 0; i < 100; i++) {
1596 		/* Request exclusive access to EEPROM. */
1597 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1598 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1599 
1600 		/* Spin until we actually get the lock. */
1601 		for (ntries = 0; ntries < 100; ntries++) {
1602 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1603 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1604 				return 0;
1605 			DELAY(10);
1606 		}
1607 	}
1608 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1609 	return ETIMEDOUT;
1610 }
1611 
1612 static __inline void
1613 iwn_eeprom_unlock(struct iwn_softc *sc)
1614 {
1615 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1616 }
1617 
1618 /*
1619  * Initialize access by host to One Time Programmable ROM.
1620  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1621  */
1622 static int
1623 iwn_init_otprom(struct iwn_softc *sc)
1624 {
1625 	uint16_t prev, base, next;
1626 	int count, error;
1627 
1628 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1629 
1630 	/* Wait for clock stabilization before accessing prph. */
1631 	if ((error = iwn_clock_wait(sc)) != 0)
1632 		return error;
1633 
1634 	if ((error = iwn_nic_lock(sc)) != 0)
1635 		return error;
1636 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1637 	DELAY(5);
1638 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1639 	iwn_nic_unlock(sc);
1640 
1641 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1642 	if (sc->base_params->shadow_ram_support) {
1643 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1644 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1645 	}
1646 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1647 	/* Clear ECC status. */
1648 	IWN_SETBITS(sc, IWN_OTP_GP,
1649 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1650 
1651 	/*
1652 	 * Find the block before last block (contains the EEPROM image)
1653 	 * for HW without OTP shadow RAM.
1654 	 */
1655 	if (! sc->base_params->shadow_ram_support) {
1656 		/* Switch to absolute addressing mode. */
1657 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1658 		base = prev = 0;
1659 		for (count = 0; count < sc->base_params->max_ll_items;
1660 		    count++) {
1661 			error = iwn_read_prom_data(sc, base, &next, 2);
1662 			if (error != 0)
1663 				return error;
1664 			if (next == 0)	/* End of linked-list. */
1665 				break;
1666 			prev = base;
1667 			base = le16toh(next);
1668 		}
1669 		if (count == 0 || count == sc->base_params->max_ll_items)
1670 			return EIO;
1671 		/* Skip "next" word. */
1672 		sc->prom_base = prev + 1;
1673 	}
1674 
1675 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1676 
1677 	return 0;
1678 }
1679 
1680 static int
1681 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1682 {
1683 	uint8_t *out = data;
1684 	uint32_t val, tmp;
1685 	int ntries;
1686 
1687 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1688 
1689 	addr += sc->prom_base;
1690 	for (; count > 0; count -= 2, addr++) {
1691 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1692 		for (ntries = 0; ntries < 10; ntries++) {
1693 			val = IWN_READ(sc, IWN_EEPROM);
1694 			if (val & IWN_EEPROM_READ_VALID)
1695 				break;
1696 			DELAY(5);
1697 		}
1698 		if (ntries == 10) {
1699 			device_printf(sc->sc_dev,
1700 			    "timeout reading ROM at 0x%x\n", addr);
1701 			return ETIMEDOUT;
1702 		}
1703 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1704 			/* OTPROM, check for ECC errors. */
1705 			tmp = IWN_READ(sc, IWN_OTP_GP);
1706 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1707 				device_printf(sc->sc_dev,
1708 				    "OTPROM ECC error at 0x%x\n", addr);
1709 				return EIO;
1710 			}
1711 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1712 				/* Correctable ECC error, clear bit. */
1713 				IWN_SETBITS(sc, IWN_OTP_GP,
1714 				    IWN_OTP_GP_ECC_CORR_STTS);
1715 			}
1716 		}
1717 		*out++ = val >> 16;
1718 		if (count > 1)
1719 			*out++ = val >> 24;
1720 	}
1721 
1722 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1723 
1724 	return 0;
1725 }
1726 
1727 static void
1728 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1729 {
1730 	if (error != 0)
1731 		return;
1732 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1733 	*(bus_addr_t *)arg = segs[0].ds_addr;
1734 }
1735 
1736 static int
1737 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1738     void **kvap, bus_size_t size, bus_size_t alignment)
1739 {
1740 	int error;
1741 
1742 	dma->tag = NULL;
1743 	dma->size = size;
1744 
1745 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1746 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1747 	    1, size, 0, NULL, NULL, &dma->tag);
1748 	if (error != 0)
1749 		goto fail;
1750 
1751 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1752 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1753 	if (error != 0)
1754 		goto fail;
1755 
1756 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1757 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1758 	if (error != 0)
1759 		goto fail;
1760 
1761 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1762 
1763 	if (kvap != NULL)
1764 		*kvap = dma->vaddr;
1765 
1766 	return 0;
1767 
1768 fail:	iwn_dma_contig_free(dma);
1769 	return error;
1770 }
1771 
1772 static void
1773 iwn_dma_contig_free(struct iwn_dma_info *dma)
1774 {
1775 	if (dma->vaddr != NULL) {
1776 		bus_dmamap_sync(dma->tag, dma->map,
1777 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1778 		bus_dmamap_unload(dma->tag, dma->map);
1779 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1780 		dma->vaddr = NULL;
1781 	}
1782 	if (dma->tag != NULL) {
1783 		bus_dma_tag_destroy(dma->tag);
1784 		dma->tag = NULL;
1785 	}
1786 }
1787 
1788 static int
1789 iwn_alloc_sched(struct iwn_softc *sc)
1790 {
1791 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1792 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1793 	    sc->schedsz, 1024);
1794 }
1795 
1796 static void
1797 iwn_free_sched(struct iwn_softc *sc)
1798 {
1799 	iwn_dma_contig_free(&sc->sched_dma);
1800 }
1801 
1802 static int
1803 iwn_alloc_kw(struct iwn_softc *sc)
1804 {
1805 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1806 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1807 }
1808 
1809 static void
1810 iwn_free_kw(struct iwn_softc *sc)
1811 {
1812 	iwn_dma_contig_free(&sc->kw_dma);
1813 }
1814 
1815 static int
1816 iwn_alloc_ict(struct iwn_softc *sc)
1817 {
1818 	/* ICT table must be aligned on a 4KB boundary. */
1819 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1820 	    IWN_ICT_SIZE, 4096);
1821 }
1822 
1823 static void
1824 iwn_free_ict(struct iwn_softc *sc)
1825 {
1826 	iwn_dma_contig_free(&sc->ict_dma);
1827 }
1828 
1829 static int
1830 iwn_alloc_fwmem(struct iwn_softc *sc)
1831 {
1832 	/* Must be aligned on a 16-byte boundary. */
1833 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1834 }
1835 
1836 static void
1837 iwn_free_fwmem(struct iwn_softc *sc)
1838 {
1839 	iwn_dma_contig_free(&sc->fw_dma);
1840 }
1841 
1842 static int
1843 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1844 {
1845 	bus_size_t size;
1846 	int i, error;
1847 
1848 	ring->cur = 0;
1849 
1850 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1851 
1852 	/* Allocate RX descriptors (256-byte aligned). */
1853 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1854 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1855 	    size, 256);
1856 	if (error != 0) {
1857 		device_printf(sc->sc_dev,
1858 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1859 		    __func__, error);
1860 		goto fail;
1861 	}
1862 
1863 	/* Allocate RX status area (16-byte aligned). */
1864 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1865 	    sizeof (struct iwn_rx_status), 16);
1866 	if (error != 0) {
1867 		device_printf(sc->sc_dev,
1868 		    "%s: could not allocate RX status DMA memory, error %d\n",
1869 		    __func__, error);
1870 		goto fail;
1871 	}
1872 
1873 	/* Create RX buffer DMA tag. */
1874 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1875 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1876 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1877 	if (error != 0) {
1878 		device_printf(sc->sc_dev,
1879 		    "%s: could not create RX buf DMA tag, error %d\n",
1880 		    __func__, error);
1881 		goto fail;
1882 	}
1883 
1884 	/*
1885 	 * Allocate and map RX buffers.
1886 	 */
1887 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1888 		struct iwn_rx_data *data = &ring->data[i];
1889 		bus_addr_t paddr;
1890 
1891 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1892 		if (error != 0) {
1893 			device_printf(sc->sc_dev,
1894 			    "%s: could not create RX buf DMA map, error %d\n",
1895 			    __func__, error);
1896 			goto fail;
1897 		}
1898 
1899 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1900 		    IWN_RBUF_SIZE);
1901 		if (data->m == NULL) {
1902 			device_printf(sc->sc_dev,
1903 			    "%s: could not allocate RX mbuf\n", __func__);
1904 			error = ENOBUFS;
1905 			goto fail;
1906 		}
1907 
1908 		error = bus_dmamap_load(ring->data_dmat, data->map,
1909 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1910 		    &paddr, BUS_DMA_NOWAIT);
1911 		if (error != 0 && error != EFBIG) {
1912 			device_printf(sc->sc_dev,
1913 			    "%s: can't map mbuf, error %d\n", __func__,
1914 			    error);
1915 			goto fail;
1916 		}
1917 
1918 		bus_dmamap_sync(ring->data_dmat, data->map,
1919 		    BUS_DMASYNC_PREREAD);
1920 
1921 		/* Set physical address of RX buffer (256-byte aligned). */
1922 		ring->desc[i] = htole32(paddr >> 8);
1923 	}
1924 
1925 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1926 	    BUS_DMASYNC_PREWRITE);
1927 
1928 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1929 
1930 	return 0;
1931 
1932 fail:	iwn_free_rx_ring(sc, ring);
1933 
1934 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1935 
1936 	return error;
1937 }
1938 
1939 static void
1940 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1941 {
1942 	int ntries;
1943 
1944 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1945 
1946 	if (iwn_nic_lock(sc) == 0) {
1947 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1948 		for (ntries = 0; ntries < 1000; ntries++) {
1949 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1950 			    IWN_FH_RX_STATUS_IDLE)
1951 				break;
1952 			DELAY(10);
1953 		}
1954 		iwn_nic_unlock(sc);
1955 	}
1956 	ring->cur = 0;
1957 	sc->last_rx_valid = 0;
1958 }
1959 
1960 static void
1961 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1962 {
1963 	int i;
1964 
1965 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1966 
1967 	iwn_dma_contig_free(&ring->desc_dma);
1968 	iwn_dma_contig_free(&ring->stat_dma);
1969 
1970 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1971 		struct iwn_rx_data *data = &ring->data[i];
1972 
1973 		if (data->m != NULL) {
1974 			bus_dmamap_sync(ring->data_dmat, data->map,
1975 			    BUS_DMASYNC_POSTREAD);
1976 			bus_dmamap_unload(ring->data_dmat, data->map);
1977 			m_freem(data->m);
1978 			data->m = NULL;
1979 		}
1980 		if (data->map != NULL)
1981 			bus_dmamap_destroy(ring->data_dmat, data->map);
1982 	}
1983 	if (ring->data_dmat != NULL) {
1984 		bus_dma_tag_destroy(ring->data_dmat);
1985 		ring->data_dmat = NULL;
1986 	}
1987 }
1988 
1989 static int
1990 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1991 {
1992 	bus_addr_t paddr;
1993 	bus_size_t size;
1994 	int i, error;
1995 
1996 	ring->qid = qid;
1997 	ring->queued = 0;
1998 	ring->cur = 0;
1999 
2000 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2001 
2002 	/* Allocate TX descriptors (256-byte aligned). */
2003 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2004 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2005 	    size, 256);
2006 	if (error != 0) {
2007 		device_printf(sc->sc_dev,
2008 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2009 		    __func__, error);
2010 		goto fail;
2011 	}
2012 
2013 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2014 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2015 	    size, 4);
2016 	if (error != 0) {
2017 		device_printf(sc->sc_dev,
2018 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2019 		    __func__, error);
2020 		goto fail;
2021 	}
2022 
2023 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2024 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2025 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2026 	if (error != 0) {
2027 		device_printf(sc->sc_dev,
2028 		    "%s: could not create TX buf DMA tag, error %d\n",
2029 		    __func__, error);
2030 		goto fail;
2031 	}
2032 
2033 	paddr = ring->cmd_dma.paddr;
2034 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2035 		struct iwn_tx_data *data = &ring->data[i];
2036 
2037 		data->cmd_paddr = paddr;
2038 		data->scratch_paddr = paddr + 12;
2039 		paddr += sizeof (struct iwn_tx_cmd);
2040 
2041 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2042 		if (error != 0) {
2043 			device_printf(sc->sc_dev,
2044 			    "%s: could not create TX buf DMA map, error %d\n",
2045 			    __func__, error);
2046 			goto fail;
2047 		}
2048 	}
2049 
2050 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2051 
2052 	return 0;
2053 
2054 fail:	iwn_free_tx_ring(sc, ring);
2055 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2056 	return error;
2057 }
2058 
2059 static void
2060 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2061 {
2062 	int i;
2063 
2064 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2065 
2066 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2067 		struct iwn_tx_data *data = &ring->data[i];
2068 
2069 		if (data->m != NULL) {
2070 			bus_dmamap_sync(ring->data_dmat, data->map,
2071 			    BUS_DMASYNC_POSTWRITE);
2072 			bus_dmamap_unload(ring->data_dmat, data->map);
2073 			m_freem(data->m);
2074 			data->m = NULL;
2075 		}
2076 		if (data->ni != NULL) {
2077 			ieee80211_free_node(data->ni);
2078 			data->ni = NULL;
2079 		}
2080 		data->remapped = 0;
2081 		data->long_retries = 0;
2082 	}
2083 	/* Clear TX descriptors. */
2084 	memset(ring->desc, 0, ring->desc_dma.size);
2085 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2086 	    BUS_DMASYNC_PREWRITE);
2087 	sc->qfullmsk &= ~(1 << ring->qid);
2088 	ring->queued = 0;
2089 	ring->cur = 0;
2090 }
2091 
2092 static void
2093 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2094 {
2095 	int i;
2096 
2097 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2098 
2099 	iwn_dma_contig_free(&ring->desc_dma);
2100 	iwn_dma_contig_free(&ring->cmd_dma);
2101 
2102 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2103 		struct iwn_tx_data *data = &ring->data[i];
2104 
2105 		if (data->m != NULL) {
2106 			bus_dmamap_sync(ring->data_dmat, data->map,
2107 			    BUS_DMASYNC_POSTWRITE);
2108 			bus_dmamap_unload(ring->data_dmat, data->map);
2109 			m_freem(data->m);
2110 		}
2111 		if (data->map != NULL)
2112 			bus_dmamap_destroy(ring->data_dmat, data->map);
2113 	}
2114 	if (ring->data_dmat != NULL) {
2115 		bus_dma_tag_destroy(ring->data_dmat);
2116 		ring->data_dmat = NULL;
2117 	}
2118 }
2119 
2120 static void
2121 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2122 {
2123 	struct iwn_tx_ring *ring = &sc->txq[qid];
2124 
2125 	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2126 	    __func__, ring->queued, qid));
2127 
2128 	if (qid >= sc->firstaggqueue) {
2129 		struct iwn_ops *ops = &sc->ops;
2130 		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2131 
2132 		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2133 			uint16_t ssn = tap->txa_start & 0xfff;
2134 			uint8_t tid = tap->txa_tid;
2135 			int *res = tap->txa_private;
2136 
2137 			iwn_nic_lock(sc);
2138 			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2139 			iwn_nic_unlock(sc);
2140 
2141 			sc->qid2tap[qid] = NULL;
2142 			free(res, M_DEVBUF);
2143 		}
2144 	}
2145 
2146 	if (ring->queued < IWN_TX_RING_LOMARK) {
2147 		sc->qfullmsk &= ~(1 << qid);
2148 
2149 		if (ring->queued == 0)
2150 			sc->sc_tx_timer = 0;
2151 		else
2152 			sc->sc_tx_timer = 5;
2153 	}
2154 }
2155 
2156 static void
2157 iwn5000_ict_reset(struct iwn_softc *sc)
2158 {
2159 	/* Disable interrupts. */
2160 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2161 
2162 	/* Reset ICT table. */
2163 	memset(sc->ict, 0, IWN_ICT_SIZE);
2164 	sc->ict_cur = 0;
2165 
2166 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2167 	    BUS_DMASYNC_PREWRITE);
2168 
2169 	/* Set physical address of ICT table (4KB aligned). */
2170 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2171 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2172 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2173 
2174 	/* Enable periodic RX interrupt. */
2175 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2176 	/* Switch to ICT interrupt mode in driver. */
2177 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2178 
2179 	/* Re-enable interrupts. */
2180 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2181 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2182 }
2183 
2184 static int
2185 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2186 {
2187 	struct iwn_ops *ops = &sc->ops;
2188 	uint16_t val;
2189 	int error;
2190 
2191 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2192 
2193 	/* Check whether adapter has an EEPROM or an OTPROM. */
2194 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2195 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2196 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2197 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2198 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2199 
2200 	/* Adapter has to be powered on for EEPROM access to work. */
2201 	if ((error = iwn_apm_init(sc)) != 0) {
2202 		device_printf(sc->sc_dev,
2203 		    "%s: could not power ON adapter, error %d\n", __func__,
2204 		    error);
2205 		return error;
2206 	}
2207 
2208 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2209 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2210 		return EIO;
2211 	}
2212 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2213 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2214 		    __func__, error);
2215 		return error;
2216 	}
2217 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2218 		if ((error = iwn_init_otprom(sc)) != 0) {
2219 			device_printf(sc->sc_dev,
2220 			    "%s: could not initialize OTPROM, error %d\n",
2221 			    __func__, error);
2222 			return error;
2223 		}
2224 	}
2225 
2226 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2227 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2228 	/* Check if HT support is bonded out. */
2229 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2230 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2231 
2232 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2233 	sc->rfcfg = le16toh(val);
2234 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2235 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2236 	if (sc->txchainmask == 0)
2237 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2238 	if (sc->rxchainmask == 0)
2239 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2240 
2241 	/* Read MAC address. */
2242 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2243 
2244 	/* Read adapter-specific information from EEPROM. */
2245 	ops->read_eeprom(sc);
2246 
2247 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2248 
2249 	iwn_eeprom_unlock(sc);
2250 
2251 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2252 
2253 	return 0;
2254 }
2255 
2256 static void
2257 iwn4965_read_eeprom(struct iwn_softc *sc)
2258 {
2259 	uint32_t addr;
2260 	uint16_t val;
2261 	int i;
2262 
2263 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2264 
2265 	/* Read regulatory domain (4 ASCII characters). */
2266 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2267 
2268 	/* Read the list of authorized channels (20MHz & 40MHz). */
2269 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2270 		addr = iwn4965_regulatory_bands[i];
2271 		iwn_read_eeprom_channels(sc, i, addr);
2272 	}
2273 
2274 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2275 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2276 	sc->maxpwr2GHz = val & 0xff;
2277 	sc->maxpwr5GHz = val >> 8;
2278 	/* Check that EEPROM values are within valid range. */
2279 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2280 		sc->maxpwr5GHz = 38;
2281 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2282 		sc->maxpwr2GHz = 38;
2283 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2284 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2285 
2286 	/* Read samples for each TX power group. */
2287 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2288 	    sizeof sc->bands);
2289 
2290 	/* Read voltage at which samples were taken. */
2291 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2292 	sc->eeprom_voltage = (int16_t)le16toh(val);
2293 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2294 	    sc->eeprom_voltage);
2295 
2296 #ifdef IWN_DEBUG
2297 	/* Print samples. */
2298 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2299 		for (i = 0; i < IWN_NBANDS - 1; i++)
2300 			iwn4965_print_power_group(sc, i);
2301 	}
2302 #endif
2303 
2304 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2305 }
2306 
2307 #ifdef IWN_DEBUG
2308 static void
2309 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2310 {
2311 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2312 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2313 	int j, c;
2314 
2315 	printf("===band %d===\n", i);
2316 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2317 	printf("chan1 num=%d\n", chans[0].num);
2318 	for (c = 0; c < 2; c++) {
2319 		for (j = 0; j < IWN_NSAMPLES; j++) {
2320 			printf("chain %d, sample %d: temp=%d gain=%d "
2321 			    "power=%d pa_det=%d\n", c, j,
2322 			    chans[0].samples[c][j].temp,
2323 			    chans[0].samples[c][j].gain,
2324 			    chans[0].samples[c][j].power,
2325 			    chans[0].samples[c][j].pa_det);
2326 		}
2327 	}
2328 	printf("chan2 num=%d\n", chans[1].num);
2329 	for (c = 0; c < 2; c++) {
2330 		for (j = 0; j < IWN_NSAMPLES; j++) {
2331 			printf("chain %d, sample %d: temp=%d gain=%d "
2332 			    "power=%d pa_det=%d\n", c, j,
2333 			    chans[1].samples[c][j].temp,
2334 			    chans[1].samples[c][j].gain,
2335 			    chans[1].samples[c][j].power,
2336 			    chans[1].samples[c][j].pa_det);
2337 		}
2338 	}
2339 }
2340 #endif
2341 
2342 static void
2343 iwn5000_read_eeprom(struct iwn_softc *sc)
2344 {
2345 	struct iwn5000_eeprom_calib_hdr hdr;
2346 	int32_t volt;
2347 	uint32_t base, addr;
2348 	uint16_t val;
2349 	int i;
2350 
2351 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2352 
2353 	/* Read regulatory domain (4 ASCII characters). */
2354 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2355 	base = le16toh(val);
2356 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2357 	    sc->eeprom_domain, 4);
2358 
2359 	/* Read the list of authorized channels (20MHz & 40MHz). */
2360 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2361 		addr =  base + sc->base_params->regulatory_bands[i];
2362 		iwn_read_eeprom_channels(sc, i, addr);
2363 	}
2364 
2365 	/* Read enhanced TX power information for 6000 Series. */
2366 	if (sc->base_params->enhanced_TX_power)
2367 		iwn_read_eeprom_enhinfo(sc);
2368 
2369 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2370 	base = le16toh(val);
2371 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2372 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2373 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2374 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2375 	sc->calib_ver = hdr.version;
2376 
2377 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2378 		sc->eeprom_voltage = le16toh(hdr.volt);
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2380 		sc->eeprom_temp_high=le16toh(val);
2381 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2382 		sc->eeprom_temp = le16toh(val);
2383 	}
2384 
2385 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2386 		/* Compute temperature offset. */
2387 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2388 		sc->eeprom_temp = le16toh(val);
2389 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2390 		volt = le16toh(val);
2391 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2392 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2393 		    sc->eeprom_temp, volt, sc->temp_off);
2394 	} else {
2395 		/* Read crystal calibration. */
2396 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2397 		    &sc->eeprom_crystal, sizeof (uint32_t));
2398 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2399 		    le32toh(sc->eeprom_crystal));
2400 	}
2401 
2402 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2403 
2404 }
2405 
2406 /*
2407  * Translate EEPROM flags to net80211.
2408  */
2409 static uint32_t
2410 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2411 {
2412 	uint32_t nflags;
2413 
2414 	nflags = 0;
2415 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2416 		nflags |= IEEE80211_CHAN_PASSIVE;
2417 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2418 		nflags |= IEEE80211_CHAN_NOADHOC;
2419 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2420 		nflags |= IEEE80211_CHAN_DFS;
2421 		/* XXX apparently IBSS may still be marked */
2422 		nflags |= IEEE80211_CHAN_NOADHOC;
2423 	}
2424 
2425 	return nflags;
2426 }
2427 
2428 static void
2429 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2430     struct ieee80211_channel chans[])
2431 {
2432 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2433 	const struct iwn_chan_band *band = &iwn_bands[n];
2434 	uint8_t bands[IEEE80211_MODE_BYTES];
2435 	uint8_t chan;
2436 	int i, error, nflags;
2437 
2438 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2439 
2440 	memset(bands, 0, sizeof(bands));
2441 	if (n == 0) {
2442 		setbit(bands, IEEE80211_MODE_11B);
2443 		setbit(bands, IEEE80211_MODE_11G);
2444 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2445 			setbit(bands, IEEE80211_MODE_11NG);
2446 	} else {
2447 		setbit(bands, IEEE80211_MODE_11A);
2448 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2449 			setbit(bands, IEEE80211_MODE_11NA);
2450 	}
2451 
2452 	for (i = 0; i < band->nchan; i++) {
2453 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2454 			DPRINTF(sc, IWN_DEBUG_RESET,
2455 			    "skip chan %d flags 0x%x maxpwr %d\n",
2456 			    band->chan[i], channels[i].flags,
2457 			    channels[i].maxpwr);
2458 			continue;
2459 		}
2460 
2461 		chan = band->chan[i];
2462 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2463 		error = ieee80211_add_channel(chans, maxchans, nchans,
2464 		    chan, 0, channels[i].maxpwr, nflags, bands);
2465 		if (error != 0)
2466 			break;
2467 
2468 		/* Save maximum allowed TX power for this channel. */
2469 		/* XXX wrong */
2470 		sc->maxpwr[chan] = channels[i].maxpwr;
2471 
2472 		DPRINTF(sc, IWN_DEBUG_RESET,
2473 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2474 		    channels[i].flags, channels[i].maxpwr);
2475 	}
2476 
2477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2478 
2479 }
2480 
2481 static void
2482 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2483     struct ieee80211_channel chans[])
2484 {
2485 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2486 	const struct iwn_chan_band *band = &iwn_bands[n];
2487 	uint8_t chan;
2488 	int i, error, nflags;
2489 
2490 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2491 
2492 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2493 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2494 		return;
2495 	}
2496 
2497 	for (i = 0; i < band->nchan; i++) {
2498 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2499 			DPRINTF(sc, IWN_DEBUG_RESET,
2500 			    "skip chan %d flags 0x%x maxpwr %d\n",
2501 			    band->chan[i], channels[i].flags,
2502 			    channels[i].maxpwr);
2503 			continue;
2504 		}
2505 
2506 		chan = band->chan[i];
2507 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2508 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2509 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2510 		    chan, channels[i].maxpwr, nflags);
2511 		switch (error) {
2512 		case EINVAL:
2513 			device_printf(sc->sc_dev,
2514 			    "%s: no entry for channel %d\n", __func__, chan);
2515 			continue;
2516 		case ENOENT:
2517 			DPRINTF(sc, IWN_DEBUG_RESET,
2518 			    "%s: skip chan %d, extension channel not found\n",
2519 			    __func__, chan);
2520 			continue;
2521 		case ENOBUFS:
2522 			device_printf(sc->sc_dev,
2523 			    "%s: channel table is full!\n", __func__);
2524 			break;
2525 		case 0:
2526 			DPRINTF(sc, IWN_DEBUG_RESET,
2527 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2528 			    chan, channels[i].flags, channels[i].maxpwr);
2529 			/* FALLTHROUGH */
2530 		default:
2531 			break;
2532 		}
2533 	}
2534 
2535 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2536 
2537 }
2538 
2539 static void
2540 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2541 {
2542 	struct ieee80211com *ic = &sc->sc_ic;
2543 
2544 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2545 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2546 
2547 	if (n < 5) {
2548 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2549 		    ic->ic_channels);
2550 	} else {
2551 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2552 		    ic->ic_channels);
2553 	}
2554 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2555 }
2556 
2557 static struct iwn_eeprom_chan *
2558 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2559 {
2560 	int band, chan, i, j;
2561 
2562 	if (IEEE80211_IS_CHAN_HT40(c)) {
2563 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2564 		if (IEEE80211_IS_CHAN_HT40D(c))
2565 			chan = c->ic_extieee;
2566 		else
2567 			chan = c->ic_ieee;
2568 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2569 			if (iwn_bands[band].chan[i] == chan)
2570 				return &sc->eeprom_channels[band][i];
2571 		}
2572 	} else {
2573 		for (j = 0; j < 5; j++) {
2574 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2575 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2576 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2577 					return &sc->eeprom_channels[j][i];
2578 			}
2579 		}
2580 	}
2581 	return NULL;
2582 }
2583 
2584 static void
2585 iwn_getradiocaps(struct ieee80211com *ic,
2586     int maxchans, int *nchans, struct ieee80211_channel chans[])
2587 {
2588 	struct iwn_softc *sc = ic->ic_softc;
2589 	int i;
2590 
2591 	/* Parse the list of authorized channels. */
2592 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2593 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2594 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2595 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2596 }
2597 
2598 /*
2599  * Enforce flags read from EEPROM.
2600  */
2601 static int
2602 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2603     int nchan, struct ieee80211_channel chans[])
2604 {
2605 	struct iwn_softc *sc = ic->ic_softc;
2606 	int i;
2607 
2608 	for (i = 0; i < nchan; i++) {
2609 		struct ieee80211_channel *c = &chans[i];
2610 		struct iwn_eeprom_chan *channel;
2611 
2612 		channel = iwn_find_eeprom_channel(sc, c);
2613 		if (channel == NULL) {
2614 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2615 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2616 			return EINVAL;
2617 		}
2618 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static void
2625 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2626 {
2627 	struct iwn_eeprom_enhinfo enhinfo[35];
2628 	struct ieee80211com *ic = &sc->sc_ic;
2629 	struct ieee80211_channel *c;
2630 	uint16_t val, base;
2631 	int8_t maxpwr;
2632 	uint8_t flags;
2633 	int i, j;
2634 
2635 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2636 
2637 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2638 	base = le16toh(val);
2639 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2640 	    enhinfo, sizeof enhinfo);
2641 
2642 	for (i = 0; i < nitems(enhinfo); i++) {
2643 		flags = enhinfo[i].flags;
2644 		if (!(flags & IWN_ENHINFO_VALID))
2645 			continue;	/* Skip invalid entries. */
2646 
2647 		maxpwr = 0;
2648 		if (sc->txchainmask & IWN_ANT_A)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2650 		if (sc->txchainmask & IWN_ANT_B)
2651 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2652 		if (sc->txchainmask & IWN_ANT_C)
2653 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2654 		if (sc->ntxchains == 2)
2655 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2656 		else if (sc->ntxchains == 3)
2657 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2658 
2659 		for (j = 0; j < ic->ic_nchans; j++) {
2660 			c = &ic->ic_channels[j];
2661 			if ((flags & IWN_ENHINFO_5GHZ)) {
2662 				if (!IEEE80211_IS_CHAN_A(c))
2663 					continue;
2664 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2665 				if (!IEEE80211_IS_CHAN_G(c))
2666 					continue;
2667 			} else if (!IEEE80211_IS_CHAN_B(c))
2668 				continue;
2669 			if ((flags & IWN_ENHINFO_HT40)) {
2670 				if (!IEEE80211_IS_CHAN_HT40(c))
2671 					continue;
2672 			} else {
2673 				if (IEEE80211_IS_CHAN_HT40(c))
2674 					continue;
2675 			}
2676 			if (enhinfo[i].chan != 0 &&
2677 			    enhinfo[i].chan != c->ic_ieee)
2678 				continue;
2679 
2680 			DPRINTF(sc, IWN_DEBUG_RESET,
2681 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2682 			    c->ic_flags, maxpwr / 2);
2683 			c->ic_maxregpower = maxpwr / 2;
2684 			c->ic_maxpower = maxpwr;
2685 		}
2686 	}
2687 
2688 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2689 
2690 }
2691 
2692 static struct ieee80211_node *
2693 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2694 {
2695 	struct iwn_node *wn;
2696 
2697 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2698 	if (wn == NULL)
2699 		return (NULL);
2700 
2701 	wn->id = IWN_ID_UNDEFINED;
2702 
2703 	return (&wn->ni);
2704 }
2705 
2706 static __inline int
2707 rate2plcp(int rate)
2708 {
2709 	switch (rate & 0xff) {
2710 	case 12:	return 0xd;
2711 	case 18:	return 0xf;
2712 	case 24:	return 0x5;
2713 	case 36:	return 0x7;
2714 	case 48:	return 0x9;
2715 	case 72:	return 0xb;
2716 	case 96:	return 0x1;
2717 	case 108:	return 0x3;
2718 	case 2:		return 10;
2719 	case 4:		return 20;
2720 	case 11:	return 55;
2721 	case 22:	return 110;
2722 	}
2723 	return 0;
2724 }
2725 
2726 static __inline uint8_t
2727 plcp2rate(const uint8_t rate_plcp)
2728 {
2729 	switch (rate_plcp) {
2730 	case 0xd:	return 12;
2731 	case 0xf:	return 18;
2732 	case 0x5:	return 24;
2733 	case 0x7:	return 36;
2734 	case 0x9:	return 48;
2735 	case 0xb:	return 72;
2736 	case 0x1:	return 96;
2737 	case 0x3:	return 108;
2738 	case 10:	return 2;
2739 	case 20:	return 4;
2740 	case 55:	return 11;
2741 	case 110:	return 22;
2742 	default:	return 0;
2743 	}
2744 }
2745 
2746 static int
2747 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2748 {
2749 
2750 	return IWN_LSB(sc->txchainmask);
2751 }
2752 
2753 static int
2754 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2755 {
2756 	int tx;
2757 
2758 	/*
2759 	 * The '2 stream' setup is a bit .. odd.
2760 	 *
2761 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2762 	 * the firmware panics (eg Intel 5100.)
2763 	 *
2764 	 * For NICs that support two antennas, we use ANT_AB.
2765 	 *
2766 	 * For NICs that support three antennas, we use the two that
2767 	 * wasn't the default one.
2768 	 *
2769 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2770 	 * this to only one antenna.
2771 	 */
2772 
2773 	/* Default - transmit on the other antennas */
2774 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2775 
2776 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2777 	if (tx == 0)
2778 		tx = IWN_ANT_AB;
2779 
2780 	/*
2781 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2782 	 * the default chainmask
2783 	 */
2784 	else if (sc->ntxchains == 2)
2785 		tx = sc->txchainmask;
2786 
2787 	return (tx);
2788 }
2789 
2790 
2791 
2792 /*
2793  * Calculate the required PLCP value from the given rate,
2794  * to the given node.
2795  *
2796  * This will take the node configuration (eg 11n, rate table
2797  * setup, etc) into consideration.
2798  */
2799 static uint32_t
2800 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2801     uint8_t rate)
2802 {
2803 	struct ieee80211com *ic = ni->ni_ic;
2804 	uint32_t plcp = 0;
2805 	int ridx;
2806 
2807 	/*
2808 	 * If it's an MCS rate, let's set the plcp correctly
2809 	 * and set the relevant flags based on the node config.
2810 	 */
2811 	if (rate & IEEE80211_RATE_MCS) {
2812 		/*
2813 		 * Set the initial PLCP value to be between 0->31 for
2814 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2815 		 * flag.
2816 		 */
2817 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2818 
2819 		/*
2820 		 * XXX the following should only occur if both
2821 		 * the local configuration _and_ the remote node
2822 		 * advertise these capabilities.  Thus this code
2823 		 * may need fixing!
2824 		 */
2825 
2826 		/*
2827 		 * Set the channel width and guard interval.
2828 		 */
2829 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2830 			plcp |= IWN_RFLAG_HT40;
2831 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2832 				plcp |= IWN_RFLAG_SGI;
2833 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2834 			plcp |= IWN_RFLAG_SGI;
2835 		}
2836 
2837 		/*
2838 		 * Ensure the selected rate matches the link quality
2839 		 * table entries being used.
2840 		 */
2841 		if (rate > 0x8f)
2842 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2843 		else if (rate > 0x87)
2844 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2845 		else
2846 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2847 	} else {
2848 		/*
2849 		 * Set the initial PLCP - fine for both
2850 		 * OFDM and CCK rates.
2851 		 */
2852 		plcp = rate2plcp(rate);
2853 
2854 		/* Set CCK flag if it's CCK */
2855 
2856 		/* XXX It would be nice to have a method
2857 		 * to map the ridx -> phy table entry
2858 		 * so we could just query that, rather than
2859 		 * this hack to check against IWN_RIDX_OFDM6.
2860 		 */
2861 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2862 		    rate & IEEE80211_RATE_VAL);
2863 		if (ridx < IWN_RIDX_OFDM6 &&
2864 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2865 			plcp |= IWN_RFLAG_CCK;
2866 
2867 		/* Set antenna configuration */
2868 		/* XXX TODO: is this the right antenna to use for legacy? */
2869 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2870 	}
2871 
2872 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2873 	    __func__,
2874 	    rate,
2875 	    plcp);
2876 
2877 	return (htole32(plcp));
2878 }
2879 
2880 static void
2881 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2882 {
2883 	/* Doesn't do anything at the moment */
2884 }
2885 
2886 static int
2887 iwn_media_change(struct ifnet *ifp)
2888 {
2889 	int error;
2890 
2891 	error = ieee80211_media_change(ifp);
2892 	/* NB: only the fixed rate can change and that doesn't need a reset */
2893 	return (error == ENETRESET ? 0 : error);
2894 }
2895 
2896 static int
2897 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2898 {
2899 	struct iwn_vap *ivp = IWN_VAP(vap);
2900 	struct ieee80211com *ic = vap->iv_ic;
2901 	struct iwn_softc *sc = ic->ic_softc;
2902 	int error = 0;
2903 
2904 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2905 
2906 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2907 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2908 
2909 	IEEE80211_UNLOCK(ic);
2910 	IWN_LOCK(sc);
2911 	callout_stop(&sc->calib_to);
2912 
2913 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2914 
2915 	switch (nstate) {
2916 	case IEEE80211_S_ASSOC:
2917 		if (vap->iv_state != IEEE80211_S_RUN)
2918 			break;
2919 		/* FALLTHROUGH */
2920 	case IEEE80211_S_AUTH:
2921 		if (vap->iv_state == IEEE80211_S_AUTH)
2922 			break;
2923 
2924 		/*
2925 		 * !AUTH -> AUTH transition requires state reset to handle
2926 		 * reassociations correctly.
2927 		 */
2928 		sc->rxon->associd = 0;
2929 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2930 		sc->calib.state = IWN_CALIB_STATE_INIT;
2931 
2932 		/* Wait until we hear a beacon before we transmit */
2933 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2934 			sc->sc_beacon_wait = 1;
2935 
2936 		if ((error = iwn_auth(sc, vap)) != 0) {
2937 			device_printf(sc->sc_dev,
2938 			    "%s: could not move to auth state\n", __func__);
2939 		}
2940 		break;
2941 
2942 	case IEEE80211_S_RUN:
2943 		/*
2944 		 * RUN -> RUN transition; Just restart the timers.
2945 		 */
2946 		if (vap->iv_state == IEEE80211_S_RUN) {
2947 			sc->calib_cnt = 0;
2948 			break;
2949 		}
2950 
2951 		/* Wait until we hear a beacon before we transmit */
2952 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2953 			sc->sc_beacon_wait = 1;
2954 
2955 		/*
2956 		 * !RUN -> RUN requires setting the association id
2957 		 * which is done with a firmware cmd.  We also defer
2958 		 * starting the timers until that work is done.
2959 		 */
2960 		if ((error = iwn_run(sc, vap)) != 0) {
2961 			device_printf(sc->sc_dev,
2962 			    "%s: could not move to run state\n", __func__);
2963 		}
2964 		break;
2965 
2966 	case IEEE80211_S_INIT:
2967 		sc->calib.state = IWN_CALIB_STATE_INIT;
2968 		/*
2969 		 * Purge the xmit queue so we don't have old frames
2970 		 * during a new association attempt.
2971 		 */
2972 		sc->sc_beacon_wait = 0;
2973 		iwn_xmit_queue_drain(sc);
2974 		break;
2975 
2976 	default:
2977 		break;
2978 	}
2979 	IWN_UNLOCK(sc);
2980 	IEEE80211_LOCK(ic);
2981 	if (error != 0){
2982 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2983 		return error;
2984 	}
2985 
2986 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2987 
2988 	return ivp->iv_newstate(vap, nstate, arg);
2989 }
2990 
2991 static void
2992 iwn_calib_timeout(void *arg)
2993 {
2994 	struct iwn_softc *sc = arg;
2995 
2996 	IWN_LOCK_ASSERT(sc);
2997 
2998 	/* Force automatic TX power calibration every 60 secs. */
2999 	if (++sc->calib_cnt >= 120) {
3000 		uint32_t flags = 0;
3001 
3002 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
3003 		    "sending request for statistics");
3004 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
3005 		    sizeof flags, 1);
3006 		sc->calib_cnt = 0;
3007 	}
3008 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
3009 	    sc);
3010 }
3011 
3012 /*
3013  * Process an RX_PHY firmware notification.  This is usually immediately
3014  * followed by an MPDU_RX_DONE notification.
3015  */
3016 static void
3017 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3018 {
3019 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3020 
3021 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3022 
3023 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3024 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3025 	sc->last_rx_valid = 1;
3026 }
3027 
3028 /*
3029  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3030  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3031  */
3032 static void
3033 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3034     struct iwn_rx_data *data)
3035 {
3036 	struct epoch_tracker et;
3037 	struct iwn_ops *ops = &sc->ops;
3038 	struct ieee80211com *ic = &sc->sc_ic;
3039 	struct iwn_rx_ring *ring = &sc->rxq;
3040 	struct ieee80211_frame_min *wh;
3041 	struct ieee80211_node *ni;
3042 	struct mbuf *m, *m1;
3043 	struct iwn_rx_stat *stat;
3044 	caddr_t head;
3045 	bus_addr_t paddr;
3046 	uint32_t flags;
3047 	int error, len, rssi, nf;
3048 
3049 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3050 
3051 	if (desc->type == IWN_MPDU_RX_DONE) {
3052 		/* Check for prior RX_PHY notification. */
3053 		if (!sc->last_rx_valid) {
3054 			DPRINTF(sc, IWN_DEBUG_ANY,
3055 			    "%s: missing RX_PHY\n", __func__);
3056 			return;
3057 		}
3058 		stat = &sc->last_rx_stat;
3059 	} else
3060 		stat = (struct iwn_rx_stat *)(desc + 1);
3061 
3062 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3063 		device_printf(sc->sc_dev,
3064 		    "%s: invalid RX statistic header, len %d\n", __func__,
3065 		    stat->cfg_phy_len);
3066 		return;
3067 	}
3068 	if (desc->type == IWN_MPDU_RX_DONE) {
3069 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3070 		head = (caddr_t)(mpdu + 1);
3071 		len = le16toh(mpdu->len);
3072 	} else {
3073 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3074 		len = le16toh(stat->len);
3075 	}
3076 
3077 	flags = le32toh(*(uint32_t *)(head + len));
3078 
3079 	/* Discard frames with a bad FCS early. */
3080 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3081 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3082 		    __func__, flags);
3083 		counter_u64_add(ic->ic_ierrors, 1);
3084 		return;
3085 	}
3086 	/* Discard frames that are too short. */
3087 	if (len < sizeof (struct ieee80211_frame_ack)) {
3088 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3089 		    __func__, len);
3090 		counter_u64_add(ic->ic_ierrors, 1);
3091 		return;
3092 	}
3093 
3094 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3095 	if (m1 == NULL) {
3096 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3097 		    __func__);
3098 		counter_u64_add(ic->ic_ierrors, 1);
3099 		return;
3100 	}
3101 	bus_dmamap_unload(ring->data_dmat, data->map);
3102 
3103 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3104 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3105 	if (error != 0 && error != EFBIG) {
3106 		device_printf(sc->sc_dev,
3107 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3108 		m_freem(m1);
3109 
3110 		/* Try to reload the old mbuf. */
3111 		error = bus_dmamap_load(ring->data_dmat, data->map,
3112 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3113 		    &paddr, BUS_DMA_NOWAIT);
3114 		if (error != 0 && error != EFBIG) {
3115 			panic("%s: could not load old RX mbuf", __func__);
3116 		}
3117 		bus_dmamap_sync(ring->data_dmat, data->map,
3118 		    BUS_DMASYNC_PREREAD);
3119 		/* Physical address may have changed. */
3120 		ring->desc[ring->cur] = htole32(paddr >> 8);
3121 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3122 		    BUS_DMASYNC_PREWRITE);
3123 		counter_u64_add(ic->ic_ierrors, 1);
3124 		return;
3125 	}
3126 
3127 	bus_dmamap_sync(ring->data_dmat, data->map,
3128 	    BUS_DMASYNC_PREREAD);
3129 
3130 	m = data->m;
3131 	data->m = m1;
3132 	/* Update RX descriptor. */
3133 	ring->desc[ring->cur] = htole32(paddr >> 8);
3134 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3135 	    BUS_DMASYNC_PREWRITE);
3136 
3137 	/* Finalize mbuf. */
3138 	m->m_data = head;
3139 	m->m_pkthdr.len = m->m_len = len;
3140 
3141 	/* Grab a reference to the source node. */
3142 	wh = mtod(m, struct ieee80211_frame_min *);
3143 	if (len >= sizeof(struct ieee80211_frame_min))
3144 		ni = ieee80211_find_rxnode(ic, wh);
3145 	else
3146 		ni = NULL;
3147 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3148 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3149 
3150 	rssi = ops->get_rssi(sc, stat);
3151 
3152 	if (ieee80211_radiotap_active(ic)) {
3153 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3154 		uint32_t rate = le32toh(stat->rate);
3155 
3156 		tap->wr_flags = 0;
3157 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3158 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3159 		tap->wr_dbm_antsignal = (int8_t)rssi;
3160 		tap->wr_dbm_antnoise = (int8_t)nf;
3161 		tap->wr_tsft = stat->tstamp;
3162 		if (rate & IWN_RFLAG_MCS) {
3163 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3164 			tap->wr_rate |= IEEE80211_RATE_MCS;
3165 		} else
3166 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3167 	}
3168 
3169 	/*
3170 	 * If it's a beacon and we're waiting, then do the
3171 	 * wakeup.  This should unblock raw_xmit/start.
3172 	 */
3173 	if (sc->sc_beacon_wait) {
3174 		uint8_t type, subtype;
3175 		/* NB: Re-assign wh */
3176 		wh = mtod(m, struct ieee80211_frame_min *);
3177 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3178 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3179 		/*
3180 		 * This assumes at this point we've received our own
3181 		 * beacon.
3182 		 */
3183 		DPRINTF(sc, IWN_DEBUG_TRACE,
3184 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3185 		    __func__, type, subtype);
3186 		if (type == IEEE80211_FC0_TYPE_MGT &&
3187 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3188 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3189 			    "%s: waking things up\n", __func__);
3190 			/* queue taskqueue to transmit! */
3191 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3192 		}
3193 	}
3194 
3195 	IWN_UNLOCK(sc);
3196 	NET_EPOCH_ENTER(et);
3197 
3198 	/* Send the frame to the 802.11 layer. */
3199 	if (ni != NULL) {
3200 		if (ni->ni_flags & IEEE80211_NODE_HT)
3201 			m->m_flags |= M_AMPDU;
3202 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3203 		/* Node is no longer needed. */
3204 		ieee80211_free_node(ni);
3205 	} else
3206 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3207 
3208 	NET_EPOCH_EXIT(et);
3209 	IWN_LOCK(sc);
3210 
3211 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3212 
3213 }
3214 
3215 static void
3216 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3217     int idx, int success)
3218 {
3219 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3220 	struct iwn_tx_data *data = &ring->data[idx];
3221 	struct iwn_node *wn;
3222 	struct mbuf *m;
3223 	struct ieee80211_node *ni;
3224 
3225 	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3226 	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3227 
3228 	/* Unmap and free mbuf. */
3229 	bus_dmamap_sync(ring->data_dmat, data->map,
3230 	    BUS_DMASYNC_POSTWRITE);
3231 	bus_dmamap_unload(ring->data_dmat, data->map);
3232 	m = data->m, data->m = NULL;
3233 	ni = data->ni, data->ni = NULL;
3234 	wn = (void *)ni;
3235 
3236 #if 0
3237 	/* XXX causes significant performance degradation. */
3238 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3239 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3240 	txs->long_retries = data->long_retries - 1;
3241 #else
3242 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3243 #endif
3244 	txs->short_retries = wn->agg[tid].short_retries;
3245 	if (success)
3246 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3247 	else
3248 		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3249 
3250 	wn->agg[tid].short_retries = 0;
3251 	data->long_retries = 0;
3252 
3253 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3254 	    __func__, m, ni, idx, ring->qid);
3255 	ieee80211_ratectl_tx_complete(ni, txs);
3256 	ieee80211_tx_complete(ni, m, !success);
3257 }
3258 
3259 /* Process an incoming Compressed BlockAck. */
3260 static void
3261 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3262 {
3263 	struct iwn_tx_ring *ring;
3264 	struct iwn_tx_data *data;
3265 	struct iwn_node *wn;
3266 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3267 	struct ieee80211_tx_ampdu *tap;
3268 	uint64_t bitmap;
3269 	uint8_t tid;
3270 	int i, qid, shift;
3271 	int tx_ok = 0;
3272 
3273 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3274 
3275 	qid = le16toh(ba->qid);
3276 	tap = sc->qid2tap[qid];
3277 	ring = &sc->txq[qid];
3278 	tid = tap->txa_tid;
3279 	wn = (void *)tap->txa_ni;
3280 
3281 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3282 	    "bitmap: ba %016jX wn %016jX, start %d\n",
3283 	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3284 	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3285 	    wn->agg[tid].startidx);
3286 
3287 	if (wn->agg[tid].bitmap == 0)
3288 		return;
3289 
3290 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3291 	if (shift <= -64)
3292 		shift += 0x100;
3293 
3294 	/*
3295 	 * Walk the bitmap and calculate how many successful attempts
3296 	 * are made.
3297 	 *
3298 	 * Yes, the rate control code doesn't know these are A-MPDU
3299 	 * subframes; due to that long_retries stats are not used here.
3300 	 */
3301 	bitmap = le64toh(ba->bitmap);
3302 	if (shift >= 0)
3303 		bitmap >>= shift;
3304 	else
3305 		bitmap <<= -shift;
3306 	bitmap &= wn->agg[tid].bitmap;
3307 	wn->agg[tid].bitmap = 0;
3308 
3309 	for (i = wn->agg[tid].startidx;
3310 	     bitmap;
3311 	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3312 		if ((bitmap & 1) == 0)
3313 			continue;
3314 
3315 		data = &ring->data[i];
3316 		if (__predict_false(data->m == NULL)) {
3317 			/*
3318 			 * There is no frame; skip this entry.
3319 			 *
3320 			 * NB: it is "ok" to have both
3321 			 * 'tx done' + 'compressed BA' replies for frame
3322 			 * with STATE_SCD_QUERY status.
3323 			 */
3324 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3325 			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3326 			continue;
3327 		}
3328 
3329 		tx_ok++;
3330 		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3331 	}
3332 
3333 	ring->queued -= tx_ok;
3334 	iwn_check_tx_ring(sc, qid);
3335 
3336 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3337 	    "->%s: end; %d ok\n",__func__, tx_ok);
3338 }
3339 
3340 /*
3341  * Process a CALIBRATION_RESULT notification sent by the initialization
3342  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3343  */
3344 static void
3345 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3346 {
3347 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3348 	int len, idx = -1;
3349 
3350 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3351 
3352 	/* Runtime firmware should not send such a notification. */
3353 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3354 		DPRINTF(sc, IWN_DEBUG_TRACE,
3355 		    "->%s received after calib done\n", __func__);
3356 		return;
3357 	}
3358 	len = (le32toh(desc->len) & 0x3fff) - 4;
3359 
3360 	switch (calib->code) {
3361 	case IWN5000_PHY_CALIB_DC:
3362 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3363 			idx = 0;
3364 		break;
3365 	case IWN5000_PHY_CALIB_LO:
3366 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3367 			idx = 1;
3368 		break;
3369 	case IWN5000_PHY_CALIB_TX_IQ:
3370 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3371 			idx = 2;
3372 		break;
3373 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3374 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3375 			idx = 3;
3376 		break;
3377 	case IWN5000_PHY_CALIB_BASE_BAND:
3378 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3379 			idx = 4;
3380 		break;
3381 	}
3382 	if (idx == -1)	/* Ignore other results. */
3383 		return;
3384 
3385 	/* Save calibration result. */
3386 	if (sc->calibcmd[idx].buf != NULL)
3387 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3388 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3389 	if (sc->calibcmd[idx].buf == NULL) {
3390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3391 		    "not enough memory for calibration result %d\n",
3392 		    calib->code);
3393 		return;
3394 	}
3395 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3396 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3397 	sc->calibcmd[idx].len = len;
3398 	memcpy(sc->calibcmd[idx].buf, calib, len);
3399 }
3400 
3401 static void
3402 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3403     struct iwn_stats *stats, int len)
3404 {
3405 	struct iwn_stats_bt *stats_bt;
3406 	struct iwn_stats *lstats;
3407 
3408 	/*
3409 	 * First - check whether the length is the bluetooth or normal.
3410 	 *
3411 	 * If it's normal - just copy it and bump out.
3412 	 * Otherwise we have to convert things.
3413 	 */
3414 
3415 	if (len == sizeof(struct iwn_stats) + 4) {
3416 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3417 		sc->last_stat_valid = 1;
3418 		return;
3419 	}
3420 
3421 	/*
3422 	 * If it's not the bluetooth size - log, then just copy.
3423 	 */
3424 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3425 		DPRINTF(sc, IWN_DEBUG_STATS,
3426 		    "%s: size of rx statistics (%d) not an expected size!\n",
3427 		    __func__,
3428 		    len);
3429 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3430 		sc->last_stat_valid = 1;
3431 		return;
3432 	}
3433 
3434 	/*
3435 	 * Ok. Time to copy.
3436 	 */
3437 	stats_bt = (struct iwn_stats_bt *) stats;
3438 	lstats = &sc->last_stat;
3439 
3440 	/* flags */
3441 	lstats->flags = stats_bt->flags;
3442 	/* rx_bt */
3443 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3444 	    sizeof(struct iwn_rx_phy_stats));
3445 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3446 	    sizeof(struct iwn_rx_phy_stats));
3447 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3448 	    sizeof(struct iwn_rx_general_stats));
3449 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3450 	    sizeof(struct iwn_rx_ht_phy_stats));
3451 	/* tx */
3452 	memcpy(&lstats->tx, &stats_bt->tx,
3453 	    sizeof(struct iwn_tx_stats));
3454 	/* general */
3455 	memcpy(&lstats->general, &stats_bt->general,
3456 	    sizeof(struct iwn_general_stats));
3457 
3458 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3459 	sc->last_stat_valid = 1;
3460 }
3461 
3462 /*
3463  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3464  * The latter is sent by the firmware after each received beacon.
3465  */
3466 static void
3467 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3468 {
3469 	struct iwn_ops *ops = &sc->ops;
3470 	struct ieee80211com *ic = &sc->sc_ic;
3471 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3472 	struct iwn_calib_state *calib = &sc->calib;
3473 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3474 	struct iwn_stats *lstats;
3475 	int temp;
3476 
3477 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3478 
3479 	/* Ignore statistics received during a scan. */
3480 	if (vap->iv_state != IEEE80211_S_RUN ||
3481 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3482 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3483 	    __func__);
3484 		return;
3485 	}
3486 
3487 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3488 	    "%s: received statistics, cmd %d, len %d\n",
3489 	    __func__, desc->type, le16toh(desc->len));
3490 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3491 
3492 	/*
3493 	 * Collect/track general statistics for reporting.
3494 	 *
3495 	 * This takes care of ensuring that the bluetooth sized message
3496 	 * will be correctly converted to the legacy sized message.
3497 	 */
3498 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3499 
3500 	/*
3501 	 * And now, let's take a reference of it to use!
3502 	 */
3503 	lstats = &sc->last_stat;
3504 
3505 	/* Test if temperature has changed. */
3506 	if (lstats->general.temp != sc->rawtemp) {
3507 		/* Convert "raw" temperature to degC. */
3508 		sc->rawtemp = stats->general.temp;
3509 		temp = ops->get_temperature(sc);
3510 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3511 		    __func__, temp);
3512 
3513 		/* Update TX power if need be (4965AGN only). */
3514 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3515 			iwn4965_power_calibration(sc, temp);
3516 	}
3517 
3518 	if (desc->type != IWN_BEACON_STATISTICS)
3519 		return;	/* Reply to a statistics request. */
3520 
3521 	sc->noise = iwn_get_noise(&lstats->rx.general);
3522 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3523 
3524 	/* Test that RSSI and noise are present in stats report. */
3525 	if (le32toh(lstats->rx.general.flags) != 1) {
3526 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3527 		    "received statistics without RSSI");
3528 		return;
3529 	}
3530 
3531 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3532 		iwn_collect_noise(sc, &lstats->rx.general);
3533 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3534 		iwn_tune_sensitivity(sc, &lstats->rx);
3535 		/*
3536 		 * XXX TODO: Only run the RX recovery if we're associated!
3537 		 */
3538 		iwn_check_rx_recovery(sc, lstats);
3539 		iwn_save_stats_counters(sc, lstats);
3540 	}
3541 
3542 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3543 }
3544 
3545 /*
3546  * Save the relevant statistic counters for the next calibration
3547  * pass.
3548  */
3549 static void
3550 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3551 {
3552 	struct iwn_calib_state *calib = &sc->calib;
3553 
3554 	/* Save counters values for next call. */
3555 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3556 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3557 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3558 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3559 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3560 
3561 	/* Last time we received these tick values */
3562 	sc->last_calib_ticks = ticks;
3563 }
3564 
3565 /*
3566  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3567  * and 5000 adapters have different incompatible TX status formats.
3568  */
3569 static void
3570 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3571     struct iwn_rx_data *data)
3572 {
3573 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3574 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3575 
3576 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3577 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3578 	    __func__, desc->qid, desc->idx,
3579 	    stat->rtsfailcnt,
3580 	    stat->ackfailcnt,
3581 	    stat->btkillcnt,
3582 	    stat->rate, le16toh(stat->duration),
3583 	    le32toh(stat->status));
3584 
3585 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3586 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3587 		    &stat->status);
3588 	} else {
3589 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3590 		    le32toh(stat->status) & 0xff);
3591 	}
3592 }
3593 
3594 static void
3595 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3596     struct iwn_rx_data *data)
3597 {
3598 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3599 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3600 
3601 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3602 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3603 	    __func__, desc->qid, desc->idx,
3604 	    stat->rtsfailcnt,
3605 	    stat->ackfailcnt,
3606 	    stat->btkillcnt,
3607 	    stat->rate, le16toh(stat->duration),
3608 	    le32toh(stat->status));
3609 
3610 #ifdef notyet
3611 	/* Reset TX scheduler slot. */
3612 	iwn5000_reset_sched(sc, qid, desc->idx);
3613 #endif
3614 
3615 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3616 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3617 		    &stat->status);
3618 	} else {
3619 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3620 		    le16toh(stat->status) & 0xff);
3621 	}
3622 }
3623 
3624 static void
3625 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3626 {
3627 	int i;
3628 
3629 	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3630 		struct iwn_tx_data *data = &ring->data[i];
3631 
3632 		if (data->m != NULL)
3633 			break;
3634 
3635 		data->remapped = 0;
3636 	}
3637 
3638 	ring->read = i;
3639 }
3640 
3641 /*
3642  * Adapter-independent backend for TX_DONE firmware notifications.
3643  */
3644 static void
3645 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3646     int ackfailcnt, uint8_t status)
3647 {
3648 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3649 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3650 	struct iwn_tx_data *data = &ring->data[desc->idx];
3651 	struct mbuf *m;
3652 	struct ieee80211_node *ni;
3653 
3654 	if (__predict_false(data->m == NULL &&
3655 	    ring->qid >= sc->firstaggqueue)) {
3656 		/*
3657 		 * There is no frame; skip this entry.
3658 		 */
3659 		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3660 		    __func__, ring->qid, desc->idx);
3661 		return;
3662 	}
3663 
3664 	KASSERT(data->ni != NULL, ("no node"));
3665 	KASSERT(data->m != NULL, ("no mbuf"));
3666 
3667 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3668 
3669 	/* Unmap and free mbuf. */
3670 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3671 	bus_dmamap_unload(ring->data_dmat, data->map);
3672 	m = data->m, data->m = NULL;
3673 	ni = data->ni, data->ni = NULL;
3674 
3675 	data->long_retries = 0;
3676 
3677 	if (ring->qid >= sc->firstaggqueue)
3678 		iwn_adj_ampdu_ptr(sc, ring);
3679 
3680 	/*
3681 	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3682 	 * (aggregation queues only).
3683 	 */
3684 
3685 	ring->queued--;
3686 	iwn_check_tx_ring(sc, ring->qid);
3687 
3688 	/*
3689 	 * Update rate control statistics for the node.
3690 	 */
3691 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3692 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3693 	txs->short_retries = rtsfailcnt;
3694 	txs->long_retries = ackfailcnt;
3695 	if (!(status & IWN_TX_FAIL))
3696 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3697 	else {
3698 		switch (status) {
3699 		case IWN_TX_FAIL_SHORT_LIMIT:
3700 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3701 			break;
3702 		case IWN_TX_FAIL_LONG_LIMIT:
3703 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3704 			break;
3705 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3706 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3707 			break;
3708 		default:
3709 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3710 			break;
3711 		}
3712 	}
3713 	ieee80211_ratectl_tx_complete(ni, txs);
3714 
3715 	/*
3716 	 * Channels marked for "radar" require traffic to be received
3717 	 * to unlock before we can transmit.  Until traffic is seen
3718 	 * any attempt to transmit is returned immediately with status
3719 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3720 	 * happen on first authenticate after scanning.  To workaround
3721 	 * this we ignore a failure of this sort in AUTH state so the
3722 	 * 802.11 layer will fall back to using a timeout to wait for
3723 	 * the AUTH reply.  This allows the firmware time to see
3724 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3725 	 * unclear why the firmware does not maintain state for
3726 	 * channels recently visited as this would allow immediate
3727 	 * use of the channel after a scan (where we see traffic).
3728 	 */
3729 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3730 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3731 		ieee80211_tx_complete(ni, m, 0);
3732 	else
3733 		ieee80211_tx_complete(ni, m,
3734 		    (status & IWN_TX_FAIL) != 0);
3735 
3736 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3737 }
3738 
3739 /*
3740  * Process a "command done" firmware notification.  This is where we wakeup
3741  * processes waiting for a synchronous command completion.
3742  */
3743 static void
3744 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3745 {
3746 	struct iwn_tx_ring *ring;
3747 	struct iwn_tx_data *data;
3748 	int cmd_queue_num;
3749 
3750 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3751 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3752 	else
3753 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3754 
3755 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3756 		return;	/* Not a command ack. */
3757 
3758 	ring = &sc->txq[cmd_queue_num];
3759 	data = &ring->data[desc->idx];
3760 
3761 	/* If the command was mapped in an mbuf, free it. */
3762 	if (data->m != NULL) {
3763 		bus_dmamap_sync(ring->data_dmat, data->map,
3764 		    BUS_DMASYNC_POSTWRITE);
3765 		bus_dmamap_unload(ring->data_dmat, data->map);
3766 		m_freem(data->m);
3767 		data->m = NULL;
3768 	}
3769 	wakeup(&ring->desc[desc->idx]);
3770 }
3771 
3772 static int
3773 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3774 {
3775 	int bit, shift;
3776 
3777 	bit = idx - start;
3778 	shift = 0;
3779 	if (bit >= 64) {
3780 		shift = 0x100 - bit;
3781 		bit = 0;
3782 	} else if (bit <= -64)
3783 		bit = 0x100 + bit;
3784 	else if (bit < 0) {
3785 		shift = -bit;
3786 		bit = 0;
3787 	}
3788 
3789 	if (bit - shift >= 64)
3790 		return (0);
3791 
3792 	return ((bitmap & (1ULL << (bit - shift))) != 0);
3793 }
3794 
3795 /*
3796  * Firmware bug workaround: in case if 'retries' counter
3797  * overflows 'seqno' field will be incremented:
3798  *    status|sequence|status|sequence|status|sequence
3799  *     0000    0A48    0001    0A49    0000    0A6A
3800  *     1000    0A48    1000    0A49    1000    0A6A
3801  *     2000    0A48    2000    0A49    2000    0A6A
3802  * ...
3803  *     E000    0A48    E000    0A49    E000    0A6A
3804  *     F000    0A48    F000    0A49    F000    0A6A
3805  *     0000    0A49    0000    0A49    0000    0A6B
3806  *     1000    0A49    1000    0A49    1000    0A6B
3807  * ...
3808  *     D000    0A49    D000    0A49    D000    0A6B
3809  *     E000    0A49    E001    0A49    E000    0A6B
3810  *     F000    0A49    F001    0A49    F000    0A6B
3811  *     0000    0A4A    0000    0A4B    0000    0A6A
3812  *     1000    0A4A    1000    0A4B    1000    0A6A
3813  * ...
3814  *
3815  * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3816  * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3817  * Not checked with nretries >= 64.
3818  *
3819  */
3820 static int
3821 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3822     uint64_t bitmap, int start, int idx)
3823 {
3824 	struct ieee80211com *ic = &sc->sc_ic;
3825 	struct iwn_tx_data *data;
3826 	int diff, min_retries, max_retries, new_idx, loop_end;
3827 
3828 	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3829 	if (new_idx < 0)
3830 		new_idx += IWN_TX_RING_COUNT;
3831 
3832 	/*
3833 	 * Corner case: check if retry count is not too big;
3834 	 * reset device otherwise.
3835 	 */
3836 	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3837 		data = &ring->data[new_idx];
3838 		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3839 			device_printf(sc->sc_dev,
3840 			    "%s: retry count (%d) for idx %d/%d overflow, "
3841 			    "resetting...\n", __func__, data->long_retries,
3842 			    ring->qid, new_idx);
3843 			ieee80211_restart_all(ic);
3844 			return (-1);
3845 		}
3846 	}
3847 
3848 	/* Correct index if needed. */
3849 	loop_end = idx;
3850 	do {
3851 		data = &ring->data[new_idx];
3852 		diff = idx - new_idx;
3853 		if (diff < 0)
3854 			diff += IWN_TX_RING_COUNT;
3855 
3856 		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3857 		if ((new_idx % 2) == 0)
3858 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3859 		else
3860 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3861 
3862 		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3863 		    ((data->long_retries >= min_retries &&
3864 		      data->long_retries < max_retries) ||
3865 		     (diff == 1 &&
3866 		      (new_idx & 0x03) == 0x02 &&
3867 		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3868 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3869 			    "%s: correcting index %d -> %d in queue %d"
3870 			    " (retries %d)\n", __func__, idx, new_idx,
3871 			    ring->qid, data->long_retries);
3872 			return (new_idx);
3873 		}
3874 
3875 		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3876 	} while (new_idx != loop_end);
3877 
3878 	return (idx);
3879 }
3880 
3881 static void
3882 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3883     void *stat)
3884 {
3885 	struct iwn_tx_ring *ring = &sc->txq[qid];
3886 	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3887 	struct iwn_node *wn = (void *)tap->txa_ni;
3888 	struct iwn_tx_data *data;
3889 	uint64_t bitmap = 0;
3890 	uint16_t *aggstatus = stat;
3891 	uint8_t tid = tap->txa_tid;
3892 	int bit, i, idx, shift, start, tx_err;
3893 
3894 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3895 
3896 	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3897 
3898 	for (i = 0; i < nframes; i++) {
3899 		uint16_t status = le16toh(aggstatus[i * 2]);
3900 
3901 		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3902 			continue;
3903 
3904 		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3905 		data = &ring->data[idx];
3906 		if (data->remapped) {
3907 			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3908 			if (idx == -1) {
3909 				/* skip error (device will be restarted anyway). */
3910 				continue;
3911 			}
3912 
3913 			/* Index may have changed. */
3914 			data = &ring->data[idx];
3915 		}
3916 
3917 		/*
3918 		 * XXX Sometimes (rarely) some frames are excluded from events.
3919 		 * XXX Due to that long_retries counter may be wrong.
3920 		 */
3921 		data->long_retries &= ~0x0f;
3922 		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3923 
3924 		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3925 			int diff, wrong_idx;
3926 
3927 			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3928 			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3929 
3930 			/*
3931 			 * Mark the entry so the above code will check it
3932 			 * next time.
3933 			 */
3934 			ring->data[wrong_idx].remapped = 1;
3935 		}
3936 
3937 		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3938 			/*
3939 			 * NB: count retries but postpone - it was not
3940 			 * transmitted.
3941 			 */
3942 			continue;
3943 		}
3944 
3945 		bit = idx - start;
3946 		shift = 0;
3947 		if (bit >= 64) {
3948 			shift = 0x100 - bit;
3949 			bit = 0;
3950 		} else if (bit <= -64)
3951 			bit = 0x100 + bit;
3952 		else if (bit < 0) {
3953 			shift = -bit;
3954 			bit = 0;
3955 		}
3956 		bitmap = bitmap << shift;
3957 		bitmap |= 1ULL << bit;
3958 	}
3959 	wn->agg[tid].startidx = start;
3960 	wn->agg[tid].bitmap = bitmap;
3961 	wn->agg[tid].short_retries = rtsfailcnt;
3962 
3963 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3964 	    __func__, nframes, start, (uintmax_t)bitmap);
3965 
3966 	i = ring->read;
3967 
3968 	for (tx_err = 0;
3969 	     i != wn->agg[tid].startidx;
3970 	     i = (i + 1) % IWN_TX_RING_COUNT) {
3971 		data = &ring->data[i];
3972 		data->remapped = 0;
3973 		if (data->m == NULL)
3974 			continue;
3975 
3976 		tx_err++;
3977 		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3978 	}
3979 
3980 	ring->read = wn->agg[tid].startidx;
3981 	ring->queued -= tx_err;
3982 
3983 	iwn_check_tx_ring(sc, qid);
3984 
3985 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3986 }
3987 
3988 /*
3989  * Process an INT_FH_RX or INT_SW_RX interrupt.
3990  */
3991 static void
3992 iwn_notif_intr(struct iwn_softc *sc)
3993 {
3994 	struct iwn_ops *ops = &sc->ops;
3995 	struct ieee80211com *ic = &sc->sc_ic;
3996 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3997 	uint16_t hw;
3998 	int is_stopped;
3999 
4000 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
4001 	    BUS_DMASYNC_POSTREAD);
4002 
4003 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
4004 	while (sc->rxq.cur != hw) {
4005 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
4006 		struct iwn_rx_desc *desc;
4007 
4008 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
4009 		    BUS_DMASYNC_POSTREAD);
4010 		desc = mtod(data->m, struct iwn_rx_desc *);
4011 
4012 		DPRINTF(sc, IWN_DEBUG_RECV,
4013 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4014 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4015 		    desc->idx, desc->flags, desc->type,
4016 		    iwn_intr_str(desc->type), le16toh(desc->len));
4017 
4018 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
4019 			iwn_cmd_done(sc, desc);
4020 
4021 		switch (desc->type) {
4022 		case IWN_RX_PHY:
4023 			iwn_rx_phy(sc, desc);
4024 			break;
4025 
4026 		case IWN_RX_DONE:		/* 4965AGN only. */
4027 		case IWN_MPDU_RX_DONE:
4028 			/* An 802.11 frame has been received. */
4029 			iwn_rx_done(sc, desc, data);
4030 
4031 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4032 			if (__predict_false(is_stopped))
4033 				return;
4034 
4035 			break;
4036 
4037 		case IWN_RX_COMPRESSED_BA:
4038 			/* A Compressed BlockAck has been received. */
4039 			iwn_rx_compressed_ba(sc, desc);
4040 			break;
4041 
4042 		case IWN_TX_DONE:
4043 			/* An 802.11 frame has been transmitted. */
4044 			ops->tx_done(sc, desc, data);
4045 			break;
4046 
4047 		case IWN_RX_STATISTICS:
4048 		case IWN_BEACON_STATISTICS:
4049 			iwn_rx_statistics(sc, desc);
4050 			break;
4051 
4052 		case IWN_BEACON_MISSED:
4053 		{
4054 			struct iwn_beacon_missed *miss =
4055 			    (struct iwn_beacon_missed *)(desc + 1);
4056 			int misses;
4057 
4058 			misses = le32toh(miss->consecutive);
4059 
4060 			DPRINTF(sc, IWN_DEBUG_STATE,
4061 			    "%s: beacons missed %d/%d\n", __func__,
4062 			    misses, le32toh(miss->total));
4063 			/*
4064 			 * If more than 5 consecutive beacons are missed,
4065 			 * reinitialize the sensitivity state machine.
4066 			 */
4067 			if (vap->iv_state == IEEE80211_S_RUN &&
4068 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4069 				if (misses > 5)
4070 					(void)iwn_init_sensitivity(sc);
4071 				if (misses >= vap->iv_bmissthreshold) {
4072 					IWN_UNLOCK(sc);
4073 					ieee80211_beacon_miss(ic);
4074 					IWN_LOCK(sc);
4075 
4076 					is_stopped = (sc->sc_flags &
4077 					    IWN_FLAG_RUNNING) == 0;
4078 					if (__predict_false(is_stopped))
4079 						return;
4080 				}
4081 			}
4082 			break;
4083 		}
4084 		case IWN_UC_READY:
4085 		{
4086 			struct iwn_ucode_info *uc =
4087 			    (struct iwn_ucode_info *)(desc + 1);
4088 
4089 			/* The microcontroller is ready. */
4090 			DPRINTF(sc, IWN_DEBUG_RESET,
4091 			    "microcode alive notification version=%d.%d "
4092 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4093 			    uc->subtype, le32toh(uc->valid));
4094 
4095 			if (le32toh(uc->valid) != 1) {
4096 				device_printf(sc->sc_dev,
4097 				    "microcontroller initialization failed");
4098 				break;
4099 			}
4100 			if (uc->subtype == IWN_UCODE_INIT) {
4101 				/* Save microcontroller report. */
4102 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4103 			}
4104 			/* Save the address of the error log in SRAM. */
4105 			sc->errptr = le32toh(uc->errptr);
4106 			break;
4107 		}
4108 #ifdef IWN_DEBUG
4109 		case IWN_STATE_CHANGED:
4110 		{
4111 			/*
4112 			 * State change allows hardware switch change to be
4113 			 * noted. However, we handle this in iwn_intr as we
4114 			 * get both the enable/disble intr.
4115 			 */
4116 			uint32_t *status = (uint32_t *)(desc + 1);
4117 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4118 			    "state changed to %x\n",
4119 			    le32toh(*status));
4120 			break;
4121 		}
4122 		case IWN_START_SCAN:
4123 		{
4124 			struct iwn_start_scan *scan =
4125 			    (struct iwn_start_scan *)(desc + 1);
4126 			DPRINTF(sc, IWN_DEBUG_ANY,
4127 			    "%s: scanning channel %d status %x\n",
4128 			    __func__, scan->chan, le32toh(scan->status));
4129 			break;
4130 		}
4131 #endif
4132 		case IWN_STOP_SCAN:
4133 		{
4134 #ifdef	IWN_DEBUG
4135 			struct iwn_stop_scan *scan =
4136 			    (struct iwn_stop_scan *)(desc + 1);
4137 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4138 			    "scan finished nchan=%d status=%d chan=%d\n",
4139 			    scan->nchan, scan->status, scan->chan);
4140 #endif
4141 			sc->sc_is_scanning = 0;
4142 			callout_stop(&sc->scan_timeout);
4143 			IWN_UNLOCK(sc);
4144 			ieee80211_scan_next(vap);
4145 			IWN_LOCK(sc);
4146 
4147 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4148 			if (__predict_false(is_stopped))
4149 				return;
4150 
4151 			break;
4152 		}
4153 		case IWN5000_CALIBRATION_RESULT:
4154 			iwn5000_rx_calib_results(sc, desc);
4155 			break;
4156 
4157 		case IWN5000_CALIBRATION_DONE:
4158 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4159 			wakeup(sc);
4160 			break;
4161 		}
4162 
4163 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4164 	}
4165 
4166 	/* Tell the firmware what we have processed. */
4167 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4168 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4169 }
4170 
4171 /*
4172  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4173  * from power-down sleep mode.
4174  */
4175 static void
4176 iwn_wakeup_intr(struct iwn_softc *sc)
4177 {
4178 	int qid;
4179 
4180 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4181 	    __func__);
4182 
4183 	/* Wakeup RX and TX rings. */
4184 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4185 	for (qid = 0; qid < sc->ntxqs; qid++) {
4186 		struct iwn_tx_ring *ring = &sc->txq[qid];
4187 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4188 	}
4189 }
4190 
4191 static void
4192 iwn_rftoggle_task(void *arg, int npending)
4193 {
4194 	struct iwn_softc *sc = arg;
4195 	struct ieee80211com *ic = &sc->sc_ic;
4196 	uint32_t tmp;
4197 
4198 	IWN_LOCK(sc);
4199 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4200 	IWN_UNLOCK(sc);
4201 
4202 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4203 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4204 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4205 		ieee80211_suspend_all(ic);
4206 
4207 		/* Enable interrupts to get RF toggle notification. */
4208 		IWN_LOCK(sc);
4209 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4210 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4211 		IWN_UNLOCK(sc);
4212 	} else
4213 		ieee80211_resume_all(ic);
4214 }
4215 
4216 /*
4217  * Dump the error log of the firmware when a firmware panic occurs.  Although
4218  * we can't debug the firmware because it is neither open source nor free, it
4219  * can help us to identify certain classes of problems.
4220  */
4221 static void
4222 iwn_fatal_intr(struct iwn_softc *sc)
4223 {
4224 	struct iwn_fw_dump dump;
4225 	int i;
4226 
4227 	IWN_LOCK_ASSERT(sc);
4228 
4229 	/* Force a complete recalibration on next init. */
4230 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4231 
4232 	/* Check that the error log address is valid. */
4233 	if (sc->errptr < IWN_FW_DATA_BASE ||
4234 	    sc->errptr + sizeof (dump) >
4235 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4236 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4237 		    sc->errptr);
4238 		return;
4239 	}
4240 	if (iwn_nic_lock(sc) != 0) {
4241 		printf("%s: could not read firmware error log\n", __func__);
4242 		return;
4243 	}
4244 	/* Read firmware error log from SRAM. */
4245 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4246 	    sizeof (dump) / sizeof (uint32_t));
4247 	iwn_nic_unlock(sc);
4248 
4249 	if (dump.valid == 0) {
4250 		printf("%s: firmware error log is empty\n", __func__);
4251 		return;
4252 	}
4253 	printf("firmware error log:\n");
4254 	printf("  error type      = \"%s\" (0x%08X)\n",
4255 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4256 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4257 	    dump.id);
4258 	printf("  program counter = 0x%08X\n", dump.pc);
4259 	printf("  source line     = 0x%08X\n", dump.src_line);
4260 	printf("  error data      = 0x%08X%08X\n",
4261 	    dump.error_data[0], dump.error_data[1]);
4262 	printf("  branch link     = 0x%08X%08X\n",
4263 	    dump.branch_link[0], dump.branch_link[1]);
4264 	printf("  interrupt link  = 0x%08X%08X\n",
4265 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4266 	printf("  time            = %u\n", dump.time[0]);
4267 
4268 	/* Dump driver status (TX and RX rings) while we're here. */
4269 	printf("driver status:\n");
4270 	for (i = 0; i < sc->ntxqs; i++) {
4271 		struct iwn_tx_ring *ring = &sc->txq[i];
4272 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4273 		    i, ring->qid, ring->cur, ring->queued);
4274 	}
4275 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4276 }
4277 
4278 static void
4279 iwn_intr(void *arg)
4280 {
4281 	struct iwn_softc *sc = arg;
4282 	uint32_t r1, r2, tmp;
4283 
4284 	IWN_LOCK(sc);
4285 
4286 	/* Disable interrupts. */
4287 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4288 
4289 	/* Read interrupts from ICT (fast) or from registers (slow). */
4290 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4291 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4292 		    BUS_DMASYNC_POSTREAD);
4293 		tmp = 0;
4294 		while (sc->ict[sc->ict_cur] != 0) {
4295 			tmp |= sc->ict[sc->ict_cur];
4296 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4297 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4298 		}
4299 		tmp = le32toh(tmp);
4300 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4301 			tmp = 0;
4302 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4303 			tmp |= 0x8000;
4304 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4305 		r2 = 0;	/* Unused. */
4306 	} else {
4307 		r1 = IWN_READ(sc, IWN_INT);
4308 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4309 			IWN_UNLOCK(sc);
4310 			return;	/* Hardware gone! */
4311 		}
4312 		r2 = IWN_READ(sc, IWN_FH_INT);
4313 	}
4314 
4315 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4316     , r1, r2);
4317 
4318 	if (r1 == 0 && r2 == 0)
4319 		goto done;	/* Interrupt not for us. */
4320 
4321 	/* Acknowledge interrupts. */
4322 	IWN_WRITE(sc, IWN_INT, r1);
4323 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4324 		IWN_WRITE(sc, IWN_FH_INT, r2);
4325 
4326 	if (r1 & IWN_INT_RF_TOGGLED) {
4327 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4328 		goto done;
4329 	}
4330 	if (r1 & IWN_INT_CT_REACHED) {
4331 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4332 		    __func__);
4333 	}
4334 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4335 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4336 		    __func__);
4337 #ifdef	IWN_DEBUG
4338 		iwn_debug_register(sc);
4339 #endif
4340 		/* Dump firmware error log and stop. */
4341 		iwn_fatal_intr(sc);
4342 
4343 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4344 		goto done;
4345 	}
4346 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4347 	    (r2 & IWN_FH_INT_RX)) {
4348 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4349 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4350 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4351 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4352 			    IWN_INT_PERIODIC_DIS);
4353 			iwn_notif_intr(sc);
4354 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4355 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4356 				    IWN_INT_PERIODIC_ENA);
4357 			}
4358 		} else
4359 			iwn_notif_intr(sc);
4360 	}
4361 
4362 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4363 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4364 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4365 		wakeup(sc);	/* FH DMA transfer completed. */
4366 	}
4367 
4368 	if (r1 & IWN_INT_ALIVE)
4369 		wakeup(sc);	/* Firmware is alive. */
4370 
4371 	if (r1 & IWN_INT_WAKEUP)
4372 		iwn_wakeup_intr(sc);
4373 
4374 done:
4375 	/* Re-enable interrupts. */
4376 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4377 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4378 
4379 	IWN_UNLOCK(sc);
4380 }
4381 
4382 /*
4383  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4384  * 5000 adapters use a slightly different format).
4385  */
4386 static void
4387 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4388     uint16_t len)
4389 {
4390 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4391 
4392 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4393 
4394 	*w = htole16(len + 8);
4395 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4396 	    BUS_DMASYNC_PREWRITE);
4397 	if (idx < IWN_SCHED_WINSZ) {
4398 		*(w + IWN_TX_RING_COUNT) = *w;
4399 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4400 		    BUS_DMASYNC_PREWRITE);
4401 	}
4402 }
4403 
4404 static void
4405 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4406     uint16_t len)
4407 {
4408 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4409 
4410 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4411 
4412 	*w = htole16(id << 12 | (len + 8));
4413 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4414 	    BUS_DMASYNC_PREWRITE);
4415 	if (idx < IWN_SCHED_WINSZ) {
4416 		*(w + IWN_TX_RING_COUNT) = *w;
4417 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4418 		    BUS_DMASYNC_PREWRITE);
4419 	}
4420 }
4421 
4422 #ifdef notyet
4423 static void
4424 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4425 {
4426 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4427 
4428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4429 
4430 	*w = (*w & htole16(0xf000)) | htole16(1);
4431 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4432 	    BUS_DMASYNC_PREWRITE);
4433 	if (idx < IWN_SCHED_WINSZ) {
4434 		*(w + IWN_TX_RING_COUNT) = *w;
4435 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4436 		    BUS_DMASYNC_PREWRITE);
4437 	}
4438 }
4439 #endif
4440 
4441 /*
4442  * Check whether OFDM 11g protection will be enabled for the given rate.
4443  *
4444  * The original driver code only enabled protection for OFDM rates.
4445  * It didn't check to see whether it was operating in 11a or 11bg mode.
4446  */
4447 static int
4448 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4449     struct ieee80211vap *vap, uint8_t rate)
4450 {
4451 	struct ieee80211com *ic = vap->iv_ic;
4452 
4453 	/*
4454 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4455 	 * 11bg protection.
4456 	 */
4457 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4458 		return (0);
4459 	}
4460 
4461 	/*
4462 	 * 11bg protection not enabled? Then don't use it.
4463 	 */
4464 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4465 		return (0);
4466 
4467 	/*
4468 	 * If it's an 11n rate - no protection.
4469 	 * We'll do it via a specific 11n check.
4470 	 */
4471 	if (rate & IEEE80211_RATE_MCS) {
4472 		return (0);
4473 	}
4474 
4475 	/*
4476 	 * Do a rate table lookup.  If the PHY is CCK,
4477 	 * don't do protection.
4478 	 */
4479 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4480 		return (0);
4481 
4482 	/*
4483 	 * Yup, enable protection.
4484 	 */
4485 	return (1);
4486 }
4487 
4488 /*
4489  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4490  * the link quality table that reflects this particular entry.
4491  */
4492 static int
4493 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4494     uint8_t rate)
4495 {
4496 	struct ieee80211_rateset *rs;
4497 	int is_11n;
4498 	int nr;
4499 	int i;
4500 	uint8_t cmp_rate;
4501 
4502 	/*
4503 	 * Figure out if we're using 11n or not here.
4504 	 */
4505 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4506 		is_11n = 1;
4507 	else
4508 		is_11n = 0;
4509 
4510 	/*
4511 	 * Use the correct rate table.
4512 	 */
4513 	if (is_11n) {
4514 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4515 		nr = ni->ni_htrates.rs_nrates;
4516 	} else {
4517 		rs = &ni->ni_rates;
4518 		nr = rs->rs_nrates;
4519 	}
4520 
4521 	/*
4522 	 * Find the relevant link quality entry in the table.
4523 	 */
4524 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4525 		/*
4526 		 * The link quality table index starts at 0 == highest
4527 		 * rate, so we walk the rate table backwards.
4528 		 */
4529 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4530 		if (rate & IEEE80211_RATE_MCS)
4531 			cmp_rate |= IEEE80211_RATE_MCS;
4532 
4533 #if 0
4534 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4535 		    __func__,
4536 		    i,
4537 		    nr,
4538 		    rate,
4539 		    cmp_rate);
4540 #endif
4541 
4542 		if (cmp_rate == rate)
4543 			return (i);
4544 	}
4545 
4546 	/* Failed? Start at the end */
4547 	return (IWN_MAX_TX_RETRIES - 1);
4548 }
4549 
4550 static int
4551 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4552 {
4553 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4554 	struct ieee80211vap *vap = ni->ni_vap;
4555 	struct ieee80211com *ic = ni->ni_ic;
4556 	struct iwn_node *wn = (void *)ni;
4557 	struct iwn_tx_ring *ring;
4558 	struct iwn_tx_cmd *cmd;
4559 	struct iwn_cmd_data *tx;
4560 	struct ieee80211_frame *wh;
4561 	struct ieee80211_key *k = NULL;
4562 	uint32_t flags;
4563 	uint16_t qos;
4564 	uint8_t tid, type;
4565 	int ac, totlen, rate;
4566 
4567 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4568 
4569 	IWN_LOCK_ASSERT(sc);
4570 
4571 	wh = mtod(m, struct ieee80211_frame *);
4572 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4573 
4574 	/* Select EDCA Access Category and TX ring for this frame. */
4575 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4576 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4577 		tid = qos & IEEE80211_QOS_TID;
4578 	} else {
4579 		qos = 0;
4580 		tid = 0;
4581 	}
4582 
4583 	/* Choose a TX rate index. */
4584 	if (type == IEEE80211_FC0_TYPE_MGT ||
4585 	    type == IEEE80211_FC0_TYPE_CTL ||
4586 	    (m->m_flags & M_EAPOL) != 0)
4587 		rate = tp->mgmtrate;
4588 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4589 		rate = tp->mcastrate;
4590 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4591 		rate = tp->ucastrate;
4592 	else {
4593 		/* XXX pass pktlen */
4594 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4595 		rate = ni->ni_txrate;
4596 	}
4597 
4598 	/*
4599 	 * XXX TODO: Group addressed frames aren't aggregated and must
4600 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4601 	 * assigned from net80211.
4602 	 */
4603 
4604 	ac = M_WME_GETAC(m);
4605 	if (m->m_flags & M_AMPDU_MPDU) {
4606 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4607 
4608 		if (!IEEE80211_AMPDU_RUNNING(tap))
4609 			return (EINVAL);
4610 
4611 		ac = *(int *)tap->txa_private;
4612 	}
4613 
4614 	/* Encrypt the frame if need be. */
4615 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4616 		/* Retrieve key for TX. */
4617 		k = ieee80211_crypto_encap(ni, m);
4618 		if (k == NULL) {
4619 			return ENOBUFS;
4620 		}
4621 		/* 802.11 header may have moved. */
4622 		wh = mtod(m, struct ieee80211_frame *);
4623 	}
4624 	totlen = m->m_pkthdr.len;
4625 
4626 	if (ieee80211_radiotap_active_vap(vap)) {
4627 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4628 
4629 		tap->wt_flags = 0;
4630 		tap->wt_rate = rate;
4631 		if (k != NULL)
4632 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4633 
4634 		ieee80211_radiotap_tx(vap, m);
4635 	}
4636 
4637 	flags = 0;
4638 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4639 		/* Unicast frame, check if an ACK is expected. */
4640 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4641 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4642 			flags |= IWN_TX_NEED_ACK;
4643 	}
4644 	if ((wh->i_fc[0] &
4645 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4646 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4647 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4648 
4649 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4650 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4651 
4652 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4653 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4654 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4655 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4656 			flags |= IWN_TX_NEED_RTS;
4657 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4658 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4659 				flags |= IWN_TX_NEED_CTS;
4660 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4661 				flags |= IWN_TX_NEED_RTS;
4662 		} else if ((rate & IEEE80211_RATE_MCS) &&
4663 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4664 			flags |= IWN_TX_NEED_RTS;
4665 		}
4666 
4667 		/* XXX HT protection? */
4668 
4669 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4670 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4671 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4672 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4673 				flags |= IWN_TX_NEED_PROTECTION;
4674 			} else
4675 				flags |= IWN_TX_FULL_TXOP;
4676 		}
4677 	}
4678 
4679 	ring = &sc->txq[ac];
4680 	if (m->m_flags & M_AMPDU_MPDU) {
4681 		uint16_t seqno = ni->ni_txseqs[tid];
4682 
4683 		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4684 		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4685 			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4686 			    "(queued %d) left in %d queue!\n",
4687 			    __func__, ring->queued, ac);
4688 			return (ENOBUFS);
4689 		}
4690 
4691 		/*
4692 		 * Queue this frame to the hardware ring that we've
4693 		 * negotiated AMPDU TX on.
4694 		 *
4695 		 * Note that the sequence number must match the TX slot
4696 		 * being used!
4697 		 */
4698 		if ((seqno % 256) != ring->cur) {
4699 			device_printf(sc->sc_dev,
4700 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4701 			    __func__,
4702 			    m,
4703 			    seqno,
4704 			    seqno % 256,
4705 			    ring->cur);
4706 
4707 			/* XXX until D9195 will not be committed */
4708 			ni->ni_txseqs[tid] &= ~0xff;
4709 			ni->ni_txseqs[tid] += ring->cur;
4710 			seqno = ni->ni_txseqs[tid];
4711 		}
4712 
4713 		*(uint16_t *)wh->i_seq =
4714 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4715 		ni->ni_txseqs[tid]++;
4716 	}
4717 
4718 	/* Prepare TX firmware command. */
4719 	cmd = &ring->cmd[ring->cur];
4720 	tx = (struct iwn_cmd_data *)cmd->data;
4721 
4722 	/* NB: No need to clear tx, all fields are reinitialized here. */
4723 	tx->scratch = 0;	/* clear "scratch" area */
4724 
4725 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4726 	    type != IEEE80211_FC0_TYPE_DATA)
4727 		tx->id = sc->broadcast_id;
4728 	else
4729 		tx->id = wn->id;
4730 
4731 	if (type == IEEE80211_FC0_TYPE_MGT) {
4732 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4733 
4734 		/* Tell HW to set timestamp in probe responses. */
4735 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4736 			flags |= IWN_TX_INSERT_TSTAMP;
4737 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4738 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4739 			tx->timeout = htole16(3);
4740 		else
4741 			tx->timeout = htole16(2);
4742 	} else
4743 		tx->timeout = htole16(0);
4744 
4745 	if (tx->id == sc->broadcast_id) {
4746 		/* Group or management frame. */
4747 		tx->linkq = 0;
4748 	} else {
4749 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4750 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4751 	}
4752 
4753 	tx->tid = tid;
4754 	tx->rts_ntries = 60;
4755 	tx->data_ntries = 15;
4756 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4757 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4758 	tx->security = 0;
4759 	tx->flags = htole32(flags);
4760 
4761 	return (iwn_tx_cmd(sc, m, ni, ring));
4762 }
4763 
4764 static int
4765 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4766     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4767 {
4768 	struct ieee80211vap *vap = ni->ni_vap;
4769 	struct iwn_tx_cmd *cmd;
4770 	struct iwn_cmd_data *tx;
4771 	struct ieee80211_frame *wh;
4772 	struct iwn_tx_ring *ring;
4773 	uint32_t flags;
4774 	int ac, rate;
4775 	uint8_t type;
4776 
4777 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4778 
4779 	IWN_LOCK_ASSERT(sc);
4780 
4781 	wh = mtod(m, struct ieee80211_frame *);
4782 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4783 
4784 	ac = params->ibp_pri & 3;
4785 
4786 	/* Choose a TX rate. */
4787 	rate = params->ibp_rate0;
4788 
4789 	flags = 0;
4790 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4791 		flags |= IWN_TX_NEED_ACK;
4792 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4793 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4794 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4795 			flags &= ~IWN_TX_NEED_RTS;
4796 			flags |= IWN_TX_NEED_PROTECTION;
4797 		} else
4798 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4799 	}
4800 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4801 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4802 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4803 			flags &= ~IWN_TX_NEED_CTS;
4804 			flags |= IWN_TX_NEED_PROTECTION;
4805 		} else
4806 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4807 	}
4808 
4809 	if (ieee80211_radiotap_active_vap(vap)) {
4810 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4811 
4812 		tap->wt_flags = 0;
4813 		tap->wt_rate = rate;
4814 
4815 		ieee80211_radiotap_tx(vap, m);
4816 	}
4817 
4818 	ring = &sc->txq[ac];
4819 	cmd = &ring->cmd[ring->cur];
4820 
4821 	tx = (struct iwn_cmd_data *)cmd->data;
4822 	/* NB: No need to clear tx, all fields are reinitialized here. */
4823 	tx->scratch = 0;	/* clear "scratch" area */
4824 
4825 	if (type == IEEE80211_FC0_TYPE_MGT) {
4826 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4827 
4828 		/* Tell HW to set timestamp in probe responses. */
4829 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4830 			flags |= IWN_TX_INSERT_TSTAMP;
4831 
4832 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4833 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4834 			tx->timeout = htole16(3);
4835 		else
4836 			tx->timeout = htole16(2);
4837 	} else
4838 		tx->timeout = htole16(0);
4839 
4840 	tx->tid = 0;
4841 	tx->id = sc->broadcast_id;
4842 	tx->rts_ntries = params->ibp_try1;
4843 	tx->data_ntries = params->ibp_try0;
4844 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4845 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4846 	tx->security = 0;
4847 	tx->flags = htole32(flags);
4848 
4849 	/* Group or management frame. */
4850 	tx->linkq = 0;
4851 
4852 	return (iwn_tx_cmd(sc, m, ni, ring));
4853 }
4854 
4855 static int
4856 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4857     struct iwn_tx_ring *ring)
4858 {
4859 	struct iwn_ops *ops = &sc->ops;
4860 	struct iwn_tx_cmd *cmd;
4861 	struct iwn_cmd_data *tx;
4862 	struct ieee80211_frame *wh;
4863 	struct iwn_tx_desc *desc;
4864 	struct iwn_tx_data *data;
4865 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4866 	struct mbuf *m1;
4867 	u_int hdrlen;
4868 	int totlen, error, pad, nsegs = 0, i;
4869 
4870 	wh = mtod(m, struct ieee80211_frame *);
4871 	hdrlen = ieee80211_anyhdrsize(wh);
4872 	totlen = m->m_pkthdr.len;
4873 
4874 	desc = &ring->desc[ring->cur];
4875 	data = &ring->data[ring->cur];
4876 
4877 	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4878 		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4879 		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4880 		    ring->cur, ring->qid);
4881 		return EIO;
4882 	}
4883 
4884 	/* Prepare TX firmware command. */
4885 	cmd = &ring->cmd[ring->cur];
4886 	cmd->code = IWN_CMD_TX_DATA;
4887 	cmd->flags = 0;
4888 	cmd->qid = ring->qid;
4889 	cmd->idx = ring->cur;
4890 
4891 	tx = (struct iwn_cmd_data *)cmd->data;
4892 	tx->len = htole16(totlen);
4893 
4894 	/* Set physical address of "scratch area". */
4895 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4896 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4897 	if (hdrlen & 3) {
4898 		/* First segment length must be a multiple of 4. */
4899 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4900 		pad = 4 - (hdrlen & 3);
4901 	} else
4902 		pad = 0;
4903 
4904 	/* Copy 802.11 header in TX command. */
4905 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4906 
4907 	/* Trim 802.11 header. */
4908 	m_adj(m, hdrlen);
4909 
4910 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4911 	    &nsegs, BUS_DMA_NOWAIT);
4912 	if (error != 0) {
4913 		if (error != EFBIG) {
4914 			device_printf(sc->sc_dev,
4915 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4916 			return error;
4917 		}
4918 		/* Too many DMA segments, linearize mbuf. */
4919 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4920 		if (m1 == NULL) {
4921 			device_printf(sc->sc_dev,
4922 			    "%s: could not defrag mbuf\n", __func__);
4923 			return ENOBUFS;
4924 		}
4925 		m = m1;
4926 
4927 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4928 		    segs, &nsegs, BUS_DMA_NOWAIT);
4929 		if (error != 0) {
4930 			/* XXX fix this */
4931 			/*
4932 			 * NB: Do not return error;
4933 			 * original mbuf does not exist anymore.
4934 			 */
4935 			device_printf(sc->sc_dev,
4936 			    "%s: can't map mbuf (error %d)\n",
4937 			    __func__, error);
4938 			if_inc_counter(ni->ni_vap->iv_ifp,
4939 			    IFCOUNTER_OERRORS, 1);
4940 			ieee80211_free_node(ni);
4941 			m_freem(m);
4942 			return 0;
4943 		}
4944 	}
4945 
4946 	data->m = m;
4947 	data->ni = ni;
4948 
4949 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4950 	    "plcp %d\n",
4951 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4952 
4953 	/* Fill TX descriptor. */
4954 	desc->nsegs = 1;
4955 	if (m->m_len != 0)
4956 		desc->nsegs += nsegs;
4957 	/* First DMA segment is used by the TX command. */
4958 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4959 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4960 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4961 	/* Other DMA segments are for data payload. */
4962 	seg = &segs[0];
4963 	for (i = 1; i <= nsegs; i++) {
4964 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4965 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4966 		    seg->ds_len << 4);
4967 		seg++;
4968 	}
4969 
4970 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4971 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4972 	    BUS_DMASYNC_PREWRITE);
4973 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4974 	    BUS_DMASYNC_PREWRITE);
4975 
4976 	/* Update TX scheduler. */
4977 	if (ring->qid >= sc->firstaggqueue)
4978 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4979 
4980 	/* Kick TX ring. */
4981 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4982 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4983 
4984 	/* Mark TX ring as full if we reach a certain threshold. */
4985 	if (++ring->queued > IWN_TX_RING_HIMARK)
4986 		sc->qfullmsk |= 1 << ring->qid;
4987 
4988 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4989 
4990 	return 0;
4991 }
4992 
4993 static void
4994 iwn_xmit_task(void *arg0, int pending)
4995 {
4996 	struct iwn_softc *sc = arg0;
4997 	struct ieee80211_node *ni;
4998 	struct mbuf *m;
4999 	int error;
5000 	struct ieee80211_bpf_params p;
5001 	int have_p;
5002 
5003 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
5004 
5005 	IWN_LOCK(sc);
5006 	/*
5007 	 * Dequeue frames, attempt to transmit,
5008 	 * then disable beaconwait when we're done.
5009 	 */
5010 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
5011 		have_p = 0;
5012 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5013 
5014 		/* Get xmit params if appropriate */
5015 		if (ieee80211_get_xmit_params(m, &p) == 0)
5016 			have_p = 1;
5017 
5018 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
5019 		    __func__, m, have_p);
5020 
5021 		/* If we have xmit params, use them */
5022 		if (have_p)
5023 			error = iwn_tx_data_raw(sc, m, ni, &p);
5024 		else
5025 			error = iwn_tx_data(sc, m, ni);
5026 
5027 		if (error != 0) {
5028 			if_inc_counter(ni->ni_vap->iv_ifp,
5029 			    IFCOUNTER_OERRORS, 1);
5030 			ieee80211_free_node(ni);
5031 			m_freem(m);
5032 		}
5033 	}
5034 
5035 	sc->sc_beacon_wait = 0;
5036 	IWN_UNLOCK(sc);
5037 }
5038 
5039 /*
5040  * raw frame xmit - free node/reference if failed.
5041  */
5042 static int
5043 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5044     const struct ieee80211_bpf_params *params)
5045 {
5046 	struct ieee80211com *ic = ni->ni_ic;
5047 	struct iwn_softc *sc = ic->ic_softc;
5048 	int error = 0;
5049 
5050 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5051 
5052 	IWN_LOCK(sc);
5053 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5054 		m_freem(m);
5055 		IWN_UNLOCK(sc);
5056 		return (ENETDOWN);
5057 	}
5058 
5059 	/* queue frame if we have to */
5060 	if (sc->sc_beacon_wait) {
5061 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5062 			m_freem(m);
5063 			IWN_UNLOCK(sc);
5064 			return (ENOBUFS);
5065 		}
5066 		/* Queued, so just return OK */
5067 		IWN_UNLOCK(sc);
5068 		return (0);
5069 	}
5070 
5071 	if (params == NULL) {
5072 		/*
5073 		 * Legacy path; interpret frame contents to decide
5074 		 * precisely how to send the frame.
5075 		 */
5076 		error = iwn_tx_data(sc, m, ni);
5077 	} else {
5078 		/*
5079 		 * Caller supplied explicit parameters to use in
5080 		 * sending the frame.
5081 		 */
5082 		error = iwn_tx_data_raw(sc, m, ni, params);
5083 	}
5084 	if (error == 0)
5085 		sc->sc_tx_timer = 5;
5086 	else
5087 		m_freem(m);
5088 
5089 	IWN_UNLOCK(sc);
5090 
5091 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5092 
5093 	return (error);
5094 }
5095 
5096 /*
5097  * transmit - don't free mbuf if failed; don't free node ref if failed.
5098  */
5099 static int
5100 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5101 {
5102 	struct iwn_softc *sc = ic->ic_softc;
5103 	struct ieee80211_node *ni;
5104 	int error;
5105 
5106 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5107 
5108 	IWN_LOCK(sc);
5109 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5110 		IWN_UNLOCK(sc);
5111 		return (ENXIO);
5112 	}
5113 
5114 	if (sc->qfullmsk) {
5115 		IWN_UNLOCK(sc);
5116 		return (ENOBUFS);
5117 	}
5118 
5119 	error = iwn_tx_data(sc, m, ni);
5120 	if (!error)
5121 		sc->sc_tx_timer = 5;
5122 	IWN_UNLOCK(sc);
5123 	return (error);
5124 }
5125 
5126 static void
5127 iwn_scan_timeout(void *arg)
5128 {
5129 	struct iwn_softc *sc = arg;
5130 	struct ieee80211com *ic = &sc->sc_ic;
5131 
5132 	ic_printf(ic, "scan timeout\n");
5133 	ieee80211_restart_all(ic);
5134 }
5135 
5136 static void
5137 iwn_watchdog(void *arg)
5138 {
5139 	struct iwn_softc *sc = arg;
5140 	struct ieee80211com *ic = &sc->sc_ic;
5141 
5142 	IWN_LOCK_ASSERT(sc);
5143 
5144 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5145 
5146 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5147 
5148 	if (sc->sc_tx_timer > 0) {
5149 		if (--sc->sc_tx_timer == 0) {
5150 			ic_printf(ic, "device timeout\n");
5151 			ieee80211_restart_all(ic);
5152 			return;
5153 		}
5154 	}
5155 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5156 }
5157 
5158 static int
5159 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5160 {
5161 
5162 	return (0);
5163 }
5164 
5165 static int
5166 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5167 {
5168 
5169 	return (0);
5170 }
5171 
5172 static int
5173 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5174     struct thread *td)
5175 {
5176 	int rc;
5177 	struct iwn_softc *sc = dev->si_drv1;
5178 	struct iwn_ioctl_data *d;
5179 
5180 	rc = priv_check(td, PRIV_DRIVER);
5181 	if (rc != 0)
5182 		return (0);
5183 
5184 	switch (cmd) {
5185 	case SIOCGIWNSTATS:
5186 		d = (struct iwn_ioctl_data *) data;
5187 		IWN_LOCK(sc);
5188 		/* XXX validate permissions/memory/etc? */
5189 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5190 		IWN_UNLOCK(sc);
5191 		break;
5192 	case SIOCZIWNSTATS:
5193 		IWN_LOCK(sc);
5194 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5195 		IWN_UNLOCK(sc);
5196 		break;
5197 	default:
5198 		rc = EINVAL;
5199 		break;
5200 	}
5201 	return (rc);
5202 }
5203 
5204 static int
5205 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5206 {
5207 
5208 	return (ENOTTY);
5209 }
5210 
5211 static void
5212 iwn_parent(struct ieee80211com *ic)
5213 {
5214 	struct iwn_softc *sc = ic->ic_softc;
5215 	struct ieee80211vap *vap;
5216 	int error;
5217 
5218 	if (ic->ic_nrunning > 0) {
5219 		error = iwn_init(sc);
5220 
5221 		switch (error) {
5222 		case 0:
5223 			ieee80211_start_all(ic);
5224 			break;
5225 		case 1:
5226 			/* radio is disabled via RFkill switch */
5227 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5228 			break;
5229 		default:
5230 			vap = TAILQ_FIRST(&ic->ic_vaps);
5231 			if (vap != NULL)
5232 				ieee80211_stop(vap);
5233 			break;
5234 		}
5235 	} else
5236 		iwn_stop(sc);
5237 }
5238 
5239 /*
5240  * Send a command to the firmware.
5241  */
5242 static int
5243 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5244 {
5245 	struct iwn_tx_ring *ring;
5246 	struct iwn_tx_desc *desc;
5247 	struct iwn_tx_data *data;
5248 	struct iwn_tx_cmd *cmd;
5249 	struct mbuf *m;
5250 	bus_addr_t paddr;
5251 	int totlen, error;
5252 	int cmd_queue_num;
5253 
5254 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5255 
5256 	if (async == 0)
5257 		IWN_LOCK_ASSERT(sc);
5258 
5259 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5260 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5261 	else
5262 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5263 
5264 	ring = &sc->txq[cmd_queue_num];
5265 	desc = &ring->desc[ring->cur];
5266 	data = &ring->data[ring->cur];
5267 	totlen = 4 + size;
5268 
5269 	if (size > sizeof cmd->data) {
5270 		/* Command is too large to fit in a descriptor. */
5271 		if (totlen > MCLBYTES)
5272 			return EINVAL;
5273 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5274 		if (m == NULL)
5275 			return ENOMEM;
5276 		cmd = mtod(m, struct iwn_tx_cmd *);
5277 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5278 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5279 		if (error != 0) {
5280 			m_freem(m);
5281 			return error;
5282 		}
5283 		data->m = m;
5284 	} else {
5285 		cmd = &ring->cmd[ring->cur];
5286 		paddr = data->cmd_paddr;
5287 	}
5288 
5289 	cmd->code = code;
5290 	cmd->flags = 0;
5291 	cmd->qid = ring->qid;
5292 	cmd->idx = ring->cur;
5293 	memcpy(cmd->data, buf, size);
5294 
5295 	desc->nsegs = 1;
5296 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5297 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5298 
5299 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5300 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5301 	    cmd->flags, cmd->qid, cmd->idx);
5302 
5303 	if (size > sizeof cmd->data) {
5304 		bus_dmamap_sync(ring->data_dmat, data->map,
5305 		    BUS_DMASYNC_PREWRITE);
5306 	} else {
5307 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5308 		    BUS_DMASYNC_PREWRITE);
5309 	}
5310 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5311 	    BUS_DMASYNC_PREWRITE);
5312 
5313 	/* Kick command ring. */
5314 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5315 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5316 
5317 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5318 
5319 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5320 }
5321 
5322 static int
5323 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5324 {
5325 	struct iwn4965_node_info hnode;
5326 	caddr_t src, dst;
5327 
5328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5329 
5330 	/*
5331 	 * We use the node structure for 5000 Series internally (it is
5332 	 * a superset of the one for 4965AGN). We thus copy the common
5333 	 * fields before sending the command.
5334 	 */
5335 	src = (caddr_t)node;
5336 	dst = (caddr_t)&hnode;
5337 	memcpy(dst, src, 48);
5338 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5339 	memcpy(dst + 48, src + 72, 20);
5340 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5341 }
5342 
5343 static int
5344 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5345 {
5346 
5347 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5348 
5349 	/* Direct mapping. */
5350 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5351 }
5352 
5353 static int
5354 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5355 {
5356 	struct iwn_node *wn = (void *)ni;
5357 	struct ieee80211_rateset *rs;
5358 	struct iwn_cmd_link_quality linkq;
5359 	int i, rate, txrate;
5360 	int is_11n;
5361 
5362 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5363 
5364 	memset(&linkq, 0, sizeof linkq);
5365 	linkq.id = wn->id;
5366 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5367 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5368 
5369 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5370 	linkq.ampdu_threshold = 3;
5371 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5372 
5373 	DPRINTF(sc, IWN_DEBUG_XMIT,
5374 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5375 	    __func__,
5376 	    linkq.antmsk_1stream,
5377 	    linkq.antmsk_2stream,
5378 	    sc->ntxchains);
5379 
5380 	/*
5381 	 * Are we using 11n rates? Ensure the channel is
5382 	 * 11n _and_ we have some 11n rates, or don't
5383 	 * try.
5384 	 */
5385 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5386 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5387 		is_11n = 1;
5388 	} else {
5389 		rs = &ni->ni_rates;
5390 		is_11n = 0;
5391 	}
5392 
5393 	/* Start at highest available bit-rate. */
5394 	/*
5395 	 * XXX this is all very dirty!
5396 	 */
5397 	if (is_11n)
5398 		txrate = ni->ni_htrates.rs_nrates - 1;
5399 	else
5400 		txrate = rs->rs_nrates - 1;
5401 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5402 		uint32_t plcp;
5403 
5404 		/*
5405 		 * XXX TODO: ensure the last two slots are the two lowest
5406 		 * rate entries, just for now.
5407 		 */
5408 		if (i == 14 || i == 15)
5409 			txrate = 0;
5410 
5411 		if (is_11n)
5412 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5413 		else
5414 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5415 
5416 		/* Do rate -> PLCP config mapping */
5417 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5418 		linkq.retry[i] = plcp;
5419 		DPRINTF(sc, IWN_DEBUG_XMIT,
5420 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5421 		    __func__,
5422 		    i,
5423 		    txrate,
5424 		    rate,
5425 		    le32toh(plcp));
5426 
5427 		/*
5428 		 * The mimo field is an index into the table which
5429 		 * indicates the first index where it and subsequent entries
5430 		 * will not be using MIMO.
5431 		 *
5432 		 * Since we're filling linkq from 0..15 and we're filling
5433 		 * from the highest MCS rates to the lowest rates, if we
5434 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5435 		 * the next entry.)  That way if the next entry is a non-MIMO
5436 		 * entry, we're already pointing at it.
5437 		 */
5438 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5439 		    IEEE80211_RV(le32toh(plcp)) > 7)
5440 			linkq.mimo = i + 1;
5441 
5442 		/* Next retry at immediate lower bit-rate. */
5443 		if (txrate > 0)
5444 			txrate--;
5445 	}
5446 	/*
5447 	 * If we reached the end of the list and indeed we hit
5448 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5449 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5450 	 */
5451 	if (linkq.mimo > 15)
5452 		linkq.mimo = 15;
5453 
5454 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5455 
5456 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5457 
5458 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5459 }
5460 
5461 /*
5462  * Broadcast node is used to send group-addressed and management frames.
5463  */
5464 static int
5465 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5466 {
5467 	struct iwn_ops *ops = &sc->ops;
5468 	struct ieee80211com *ic = &sc->sc_ic;
5469 	struct iwn_node_info node;
5470 	struct iwn_cmd_link_quality linkq;
5471 	uint8_t txant;
5472 	int i, error;
5473 
5474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5475 
5476 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5477 
5478 	memset(&node, 0, sizeof node);
5479 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5480 	node.id = sc->broadcast_id;
5481 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5482 	if ((error = ops->add_node(sc, &node, async)) != 0)
5483 		return error;
5484 
5485 	/* Use the first valid TX antenna. */
5486 	txant = IWN_LSB(sc->txchainmask);
5487 
5488 	memset(&linkq, 0, sizeof linkq);
5489 	linkq.id = sc->broadcast_id;
5490 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5491 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5492 	linkq.ampdu_max = 64;
5493 	linkq.ampdu_threshold = 3;
5494 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5495 
5496 	/* Use lowest mandatory bit-rate. */
5497 	/* XXX rate table lookup? */
5498 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5499 		linkq.retry[0] = htole32(0xd);
5500 	else
5501 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5502 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5503 	/* Use same bit-rate for all TX retries. */
5504 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5505 		linkq.retry[i] = linkq.retry[0];
5506 	}
5507 
5508 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5509 
5510 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5511 }
5512 
5513 static int
5514 iwn_updateedca(struct ieee80211com *ic)
5515 {
5516 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5517 	struct iwn_softc *sc = ic->ic_softc;
5518 	struct iwn_edca_params cmd;
5519 	struct chanAccParams chp;
5520 	int aci;
5521 
5522 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5523 
5524 	ieee80211_wme_ic_getparams(ic, &chp);
5525 
5526 	memset(&cmd, 0, sizeof cmd);
5527 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5528 
5529 	IEEE80211_LOCK(ic);
5530 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5531 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5532 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5533 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5534 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5535 		cmd.ac[aci].txoplimit =
5536 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5537 	}
5538 	IEEE80211_UNLOCK(ic);
5539 
5540 	IWN_LOCK(sc);
5541 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5542 	IWN_UNLOCK(sc);
5543 
5544 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5545 
5546 	return 0;
5547 #undef IWN_EXP2
5548 }
5549 
5550 static void
5551 iwn_set_promisc(struct iwn_softc *sc)
5552 {
5553 	struct ieee80211com *ic = &sc->sc_ic;
5554 	uint32_t promisc_filter;
5555 
5556 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5557 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5558 		sc->rxon->filter |= htole32(promisc_filter);
5559 	else
5560 		sc->rxon->filter &= ~htole32(promisc_filter);
5561 }
5562 
5563 static void
5564 iwn_update_promisc(struct ieee80211com *ic)
5565 {
5566 	struct iwn_softc *sc = ic->ic_softc;
5567 	int error;
5568 
5569 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5570 		return;		/* nothing to do */
5571 
5572 	IWN_LOCK(sc);
5573 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5574 		IWN_UNLOCK(sc);
5575 		return;
5576 	}
5577 
5578 	iwn_set_promisc(sc);
5579 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5580 		device_printf(sc->sc_dev,
5581 		    "%s: could not send RXON, error %d\n",
5582 		    __func__, error);
5583 	}
5584 	IWN_UNLOCK(sc);
5585 }
5586 
5587 static void
5588 iwn_update_mcast(struct ieee80211com *ic)
5589 {
5590 	/* Ignore */
5591 }
5592 
5593 static void
5594 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5595 {
5596 	struct iwn_cmd_led led;
5597 
5598 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5599 
5600 #if 0
5601 	/* XXX don't set LEDs during scan? */
5602 	if (sc->sc_is_scanning)
5603 		return;
5604 #endif
5605 
5606 	/* Clear microcode LED ownership. */
5607 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5608 
5609 	led.which = which;
5610 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5611 	led.off = off;
5612 	led.on = on;
5613 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5614 }
5615 
5616 /*
5617  * Set the critical temperature at which the firmware will stop the radio
5618  * and notify us.
5619  */
5620 static int
5621 iwn_set_critical_temp(struct iwn_softc *sc)
5622 {
5623 	struct iwn_critical_temp crit;
5624 	int32_t temp;
5625 
5626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5627 
5628 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5629 
5630 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5631 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5632 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5633 		temp = IWN_CTOK(110);
5634 	else
5635 		temp = 110;
5636 	memset(&crit, 0, sizeof crit);
5637 	crit.tempR = htole32(temp);
5638 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5639 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5640 }
5641 
5642 static int
5643 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5644 {
5645 	struct iwn_cmd_timing cmd;
5646 	uint64_t val, mod;
5647 
5648 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5649 
5650 	memset(&cmd, 0, sizeof cmd);
5651 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5652 	cmd.bintval = htole16(ni->ni_intval);
5653 	cmd.lintval = htole16(10);
5654 
5655 	/* Compute remaining time until next beacon. */
5656 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5657 	mod = le64toh(cmd.tstamp) % val;
5658 	cmd.binitval = htole32((uint32_t)(val - mod));
5659 
5660 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5661 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5662 
5663 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5664 }
5665 
5666 static void
5667 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5668 {
5669 
5670 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5671 
5672 	/* Adjust TX power if need be (delta >= 3 degC). */
5673 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5674 	    __func__, sc->temp, temp);
5675 	if (abs(temp - sc->temp) >= 3) {
5676 		/* Record temperature of last calibration. */
5677 		sc->temp = temp;
5678 		(void)iwn4965_set_txpower(sc, 1);
5679 	}
5680 }
5681 
5682 /*
5683  * Set TX power for current channel (each rate has its own power settings).
5684  * This function takes into account the regulatory information from EEPROM,
5685  * the current temperature and the current voltage.
5686  */
5687 static int
5688 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5689 {
5690 /* Fixed-point arithmetic division using a n-bit fractional part. */
5691 #define fdivround(a, b, n)	\
5692 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5693 /* Linear interpolation. */
5694 #define interpolate(x, x1, y1, x2, y2, n)	\
5695 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5696 
5697 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5698 	struct iwn_ucode_info *uc = &sc->ucode_info;
5699 	struct iwn4965_cmd_txpower cmd;
5700 	struct iwn4965_eeprom_chan_samples *chans;
5701 	const uint8_t *rf_gain, *dsp_gain;
5702 	int32_t vdiff, tdiff;
5703 	int i, is_chan_5ghz, c, grp, maxpwr;
5704 	uint8_t chan;
5705 
5706 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5707 	/* Retrieve current channel from last RXON. */
5708 	chan = sc->rxon->chan;
5709 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5710 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5711 	    chan);
5712 
5713 	memset(&cmd, 0, sizeof cmd);
5714 	cmd.band = is_chan_5ghz ? 0 : 1;
5715 	cmd.chan = chan;
5716 
5717 	if (is_chan_5ghz) {
5718 		maxpwr   = sc->maxpwr5GHz;
5719 		rf_gain  = iwn4965_rf_gain_5ghz;
5720 		dsp_gain = iwn4965_dsp_gain_5ghz;
5721 	} else {
5722 		maxpwr   = sc->maxpwr2GHz;
5723 		rf_gain  = iwn4965_rf_gain_2ghz;
5724 		dsp_gain = iwn4965_dsp_gain_2ghz;
5725 	}
5726 
5727 	/* Compute voltage compensation. */
5728 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5729 	if (vdiff > 0)
5730 		vdiff *= 2;
5731 	if (abs(vdiff) > 2)
5732 		vdiff = 0;
5733 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5734 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5735 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5736 
5737 	/* Get channel attenuation group. */
5738 	if (chan <= 20)		/* 1-20 */
5739 		grp = 4;
5740 	else if (chan <= 43)	/* 34-43 */
5741 		grp = 0;
5742 	else if (chan <= 70)	/* 44-70 */
5743 		grp = 1;
5744 	else if (chan <= 124)	/* 71-124 */
5745 		grp = 2;
5746 	else			/* 125-200 */
5747 		grp = 3;
5748 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5749 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5750 
5751 	/* Get channel sub-band. */
5752 	for (i = 0; i < IWN_NBANDS; i++)
5753 		if (sc->bands[i].lo != 0 &&
5754 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5755 			break;
5756 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5757 		return EINVAL;
5758 	chans = sc->bands[i].chans;
5759 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5760 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5761 
5762 	for (c = 0; c < 2; c++) {
5763 		uint8_t power, gain, temp;
5764 		int maxchpwr, pwr, ridx, idx;
5765 
5766 		power = interpolate(chan,
5767 		    chans[0].num, chans[0].samples[c][1].power,
5768 		    chans[1].num, chans[1].samples[c][1].power, 1);
5769 		gain  = interpolate(chan,
5770 		    chans[0].num, chans[0].samples[c][1].gain,
5771 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5772 		temp  = interpolate(chan,
5773 		    chans[0].num, chans[0].samples[c][1].temp,
5774 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5775 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5776 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5777 		    __func__, c, power, gain, temp);
5778 
5779 		/* Compute temperature compensation. */
5780 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5781 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5782 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5783 		    __func__, tdiff, sc->temp, temp);
5784 
5785 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5786 			/* Convert dBm to half-dBm. */
5787 			maxchpwr = sc->maxpwr[chan] * 2;
5788 			if ((ridx / 8) & 1)
5789 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5790 
5791 			pwr = maxpwr;
5792 
5793 			/* Adjust TX power based on rate. */
5794 			if ((ridx % 8) == 5)
5795 				pwr -= 15;	/* OFDM48: -7.5dB */
5796 			else if ((ridx % 8) == 6)
5797 				pwr -= 17;	/* OFDM54: -8.5dB */
5798 			else if ((ridx % 8) == 7)
5799 				pwr -= 20;	/* OFDM60: -10dB */
5800 			else
5801 				pwr -= 10;	/* Others: -5dB */
5802 
5803 			/* Do not exceed channel max TX power. */
5804 			if (pwr > maxchpwr)
5805 				pwr = maxchpwr;
5806 
5807 			idx = gain - (pwr - power) - tdiff - vdiff;
5808 			if ((ridx / 8) & 1)	/* MIMO */
5809 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5810 
5811 			if (cmd.band == 0)
5812 				idx += 9;	/* 5GHz */
5813 			if (ridx == IWN_RIDX_MAX)
5814 				idx += 5;	/* CCK */
5815 
5816 			/* Make sure idx stays in a valid range. */
5817 			if (idx < 0)
5818 				idx = 0;
5819 			else if (idx > IWN4965_MAX_PWR_INDEX)
5820 				idx = IWN4965_MAX_PWR_INDEX;
5821 
5822 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5823 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5824 			    __func__, c, ridx, idx);
5825 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5826 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5827 		}
5828 	}
5829 
5830 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5831 	    "%s: set tx power for chan %d\n", __func__, chan);
5832 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5833 
5834 #undef interpolate
5835 #undef fdivround
5836 }
5837 
5838 static int
5839 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5840 {
5841 	struct iwn5000_cmd_txpower cmd;
5842 	int cmdid;
5843 
5844 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5845 
5846 	/*
5847 	 * TX power calibration is handled automatically by the firmware
5848 	 * for 5000 Series.
5849 	 */
5850 	memset(&cmd, 0, sizeof cmd);
5851 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5852 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5853 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5854 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5855 	    "%s: setting TX power; rev=%d\n",
5856 	    __func__,
5857 	    IWN_UCODE_API(sc->ucode_rev));
5858 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5859 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5860 	else
5861 		cmdid = IWN_CMD_TXPOWER_DBM;
5862 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5863 }
5864 
5865 /*
5866  * Retrieve the maximum RSSI (in dBm) among receivers.
5867  */
5868 static int
5869 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5870 {
5871 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5872 	uint8_t mask, agc;
5873 	int rssi;
5874 
5875 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5876 
5877 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5878 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5879 
5880 	rssi = 0;
5881 	if (mask & IWN_ANT_A)
5882 		rssi = MAX(rssi, phy->rssi[0]);
5883 	if (mask & IWN_ANT_B)
5884 		rssi = MAX(rssi, phy->rssi[2]);
5885 	if (mask & IWN_ANT_C)
5886 		rssi = MAX(rssi, phy->rssi[4]);
5887 
5888 	DPRINTF(sc, IWN_DEBUG_RECV,
5889 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5890 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5891 	    rssi - agc - IWN_RSSI_TO_DBM);
5892 	return rssi - agc - IWN_RSSI_TO_DBM;
5893 }
5894 
5895 static int
5896 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5897 {
5898 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5899 	uint8_t agc;
5900 	int rssi;
5901 
5902 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5903 
5904 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5905 
5906 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5907 		   le16toh(phy->rssi[1]) & 0xff);
5908 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5909 
5910 	DPRINTF(sc, IWN_DEBUG_RECV,
5911 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5912 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5913 	    rssi - agc - IWN_RSSI_TO_DBM);
5914 	return rssi - agc - IWN_RSSI_TO_DBM;
5915 }
5916 
5917 /*
5918  * Retrieve the average noise (in dBm) among receivers.
5919  */
5920 static int
5921 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5922 {
5923 	int i, total, nbant, noise;
5924 
5925 	total = nbant = 0;
5926 	for (i = 0; i < 3; i++) {
5927 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5928 			continue;
5929 		total += noise;
5930 		nbant++;
5931 	}
5932 	/* There should be at least one antenna but check anyway. */
5933 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5934 }
5935 
5936 /*
5937  * Compute temperature (in degC) from last received statistics.
5938  */
5939 static int
5940 iwn4965_get_temperature(struct iwn_softc *sc)
5941 {
5942 	struct iwn_ucode_info *uc = &sc->ucode_info;
5943 	int32_t r1, r2, r3, r4, temp;
5944 
5945 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5946 
5947 	r1 = le32toh(uc->temp[0].chan20MHz);
5948 	r2 = le32toh(uc->temp[1].chan20MHz);
5949 	r3 = le32toh(uc->temp[2].chan20MHz);
5950 	r4 = le32toh(sc->rawtemp);
5951 
5952 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5953 		return 0;
5954 
5955 	/* Sign-extend 23-bit R4 value to 32-bit. */
5956 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5957 	/* Compute temperature in Kelvin. */
5958 	temp = (259 * (r4 - r2)) / (r3 - r1);
5959 	temp = (temp * 97) / 100 + 8;
5960 
5961 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5962 	    IWN_KTOC(temp));
5963 	return IWN_KTOC(temp);
5964 }
5965 
5966 static int
5967 iwn5000_get_temperature(struct iwn_softc *sc)
5968 {
5969 	int32_t temp;
5970 
5971 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5972 
5973 	/*
5974 	 * Temperature is not used by the driver for 5000 Series because
5975 	 * TX power calibration is handled by firmware.
5976 	 */
5977 	temp = le32toh(sc->rawtemp);
5978 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5979 		temp = (temp / -5) + sc->temp_off;
5980 		temp = IWN_KTOC(temp);
5981 	}
5982 	return temp;
5983 }
5984 
5985 /*
5986  * Initialize sensitivity calibration state machine.
5987  */
5988 static int
5989 iwn_init_sensitivity(struct iwn_softc *sc)
5990 {
5991 	struct iwn_ops *ops = &sc->ops;
5992 	struct iwn_calib_state *calib = &sc->calib;
5993 	uint32_t flags;
5994 	int error;
5995 
5996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5997 
5998 	/* Reset calibration state machine. */
5999 	memset(calib, 0, sizeof (*calib));
6000 	calib->state = IWN_CALIB_STATE_INIT;
6001 	calib->cck_state = IWN_CCK_STATE_HIFA;
6002 	/* Set initial correlation values. */
6003 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
6004 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
6005 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
6006 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
6007 	calib->cck_x4      = 125;
6008 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
6009 	calib->energy_cck  = sc->limits->energy_cck;
6010 
6011 	/* Write initial sensitivity. */
6012 	if ((error = iwn_send_sensitivity(sc)) != 0)
6013 		return error;
6014 
6015 	/* Write initial gains. */
6016 	if ((error = ops->init_gains(sc)) != 0)
6017 		return error;
6018 
6019 	/* Request statistics at each beacon interval. */
6020 	flags = 0;
6021 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6022 	    __func__);
6023 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6024 }
6025 
6026 /*
6027  * Collect noise and RSSI statistics for the first 20 beacons received
6028  * after association and use them to determine connected antennas and
6029  * to set differential gains.
6030  */
6031 static void
6032 iwn_collect_noise(struct iwn_softc *sc,
6033     const struct iwn_rx_general_stats *stats)
6034 {
6035 	struct iwn_ops *ops = &sc->ops;
6036 	struct iwn_calib_state *calib = &sc->calib;
6037 	struct ieee80211com *ic = &sc->sc_ic;
6038 	uint32_t val;
6039 	int i;
6040 
6041 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6042 
6043 	/* Accumulate RSSI and noise for all 3 antennas. */
6044 	for (i = 0; i < 3; i++) {
6045 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6046 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6047 	}
6048 	/* NB: We update differential gains only once after 20 beacons. */
6049 	if (++calib->nbeacons < 20)
6050 		return;
6051 
6052 	/* Determine highest average RSSI. */
6053 	val = MAX(calib->rssi[0], calib->rssi[1]);
6054 	val = MAX(calib->rssi[2], val);
6055 
6056 	/* Determine which antennas are connected. */
6057 	sc->chainmask = sc->rxchainmask;
6058 	for (i = 0; i < 3; i++)
6059 		if (val - calib->rssi[i] > 15 * 20)
6060 			sc->chainmask &= ~(1 << i);
6061 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6062 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6063 	    __func__, sc->rxchainmask, sc->chainmask);
6064 
6065 	/* If none of the TX antennas are connected, keep at least one. */
6066 	if ((sc->chainmask & sc->txchainmask) == 0)
6067 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6068 
6069 	(void)ops->set_gains(sc);
6070 	calib->state = IWN_CALIB_STATE_RUN;
6071 
6072 #ifdef notyet
6073 	/* XXX Disable RX chains with no antennas connected. */
6074 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6075 	if (sc->sc_is_scanning)
6076 		device_printf(sc->sc_dev,
6077 		    "%s: is_scanning set, before RXON\n",
6078 		    __func__);
6079 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6080 #endif
6081 
6082 	/* Enable power-saving mode if requested by user. */
6083 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6084 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6085 
6086 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6087 
6088 }
6089 
6090 static int
6091 iwn4965_init_gains(struct iwn_softc *sc)
6092 {
6093 	struct iwn_phy_calib_gain cmd;
6094 
6095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6096 
6097 	memset(&cmd, 0, sizeof cmd);
6098 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6099 	/* Differential gains initially set to 0 for all 3 antennas. */
6100 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6101 	    "%s: setting initial differential gains\n", __func__);
6102 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6103 }
6104 
6105 static int
6106 iwn5000_init_gains(struct iwn_softc *sc)
6107 {
6108 	struct iwn_phy_calib cmd;
6109 
6110 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6111 
6112 	memset(&cmd, 0, sizeof cmd);
6113 	cmd.code = sc->reset_noise_gain;
6114 	cmd.ngroups = 1;
6115 	cmd.isvalid = 1;
6116 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6117 	    "%s: setting initial differential gains\n", __func__);
6118 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6119 }
6120 
6121 static int
6122 iwn4965_set_gains(struct iwn_softc *sc)
6123 {
6124 	struct iwn_calib_state *calib = &sc->calib;
6125 	struct iwn_phy_calib_gain cmd;
6126 	int i, delta, noise;
6127 
6128 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6129 
6130 	/* Get minimal noise among connected antennas. */
6131 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6132 	for (i = 0; i < 3; i++)
6133 		if (sc->chainmask & (1 << i))
6134 			noise = MIN(calib->noise[i], noise);
6135 
6136 	memset(&cmd, 0, sizeof cmd);
6137 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6138 	/* Set differential gains for connected antennas. */
6139 	for (i = 0; i < 3; i++) {
6140 		if (sc->chainmask & (1 << i)) {
6141 			/* Compute attenuation (in unit of 1.5dB). */
6142 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6143 			/* NB: delta <= 0 */
6144 			/* Limit to [-4.5dB,0]. */
6145 			cmd.gain[i] = MIN(abs(delta), 3);
6146 			if (delta < 0)
6147 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6148 		}
6149 	}
6150 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6151 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6152 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6153 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6154 }
6155 
6156 static int
6157 iwn5000_set_gains(struct iwn_softc *sc)
6158 {
6159 	struct iwn_calib_state *calib = &sc->calib;
6160 	struct iwn_phy_calib_gain cmd;
6161 	int i, ant, div, delta;
6162 
6163 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6164 
6165 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6166 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6167 
6168 	memset(&cmd, 0, sizeof cmd);
6169 	cmd.code = sc->noise_gain;
6170 	cmd.ngroups = 1;
6171 	cmd.isvalid = 1;
6172 	/* Get first available RX antenna as referential. */
6173 	ant = IWN_LSB(sc->rxchainmask);
6174 	/* Set differential gains for other antennas. */
6175 	for (i = ant + 1; i < 3; i++) {
6176 		if (sc->chainmask & (1 << i)) {
6177 			/* The delta is relative to antenna "ant". */
6178 			delta = ((int32_t)calib->noise[ant] -
6179 			    (int32_t)calib->noise[i]) / div;
6180 			/* Limit to [-4.5dB,+4.5dB]. */
6181 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6182 			if (delta < 0)
6183 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6184 		}
6185 	}
6186 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6187 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6188 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6189 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6190 }
6191 
6192 /*
6193  * Tune RF RX sensitivity based on the number of false alarms detected
6194  * during the last beacon period.
6195  */
6196 static void
6197 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6198 {
6199 #define inc(val, inc, max)			\
6200 	if ((val) < (max)) {			\
6201 		if ((val) < (max) - (inc))	\
6202 			(val) += (inc);		\
6203 		else				\
6204 			(val) = (max);		\
6205 		needs_update = 1;		\
6206 	}
6207 #define dec(val, dec, min)			\
6208 	if ((val) > (min)) {			\
6209 		if ((val) > (min) + (dec))	\
6210 			(val) -= (dec);		\
6211 		else				\
6212 			(val) = (min);		\
6213 		needs_update = 1;		\
6214 	}
6215 
6216 	const struct iwn_sensitivity_limits *limits = sc->limits;
6217 	struct iwn_calib_state *calib = &sc->calib;
6218 	uint32_t val, rxena, fa;
6219 	uint32_t energy[3], energy_min;
6220 	uint8_t noise[3], noise_ref;
6221 	int i, needs_update = 0;
6222 
6223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6224 
6225 	/* Check that we've been enabled long enough. */
6226 	if ((rxena = le32toh(stats->general.load)) == 0){
6227 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6228 		return;
6229 	}
6230 
6231 	/* Compute number of false alarms since last call for OFDM. */
6232 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6233 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6234 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6235 
6236 	if (fa > 50 * rxena) {
6237 		/* High false alarm count, decrease sensitivity. */
6238 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6239 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6240 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6241 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6242 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6243 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6244 
6245 	} else if (fa < 5 * rxena) {
6246 		/* Low false alarm count, increase sensitivity. */
6247 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6248 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6249 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6250 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6251 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6252 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6253 	}
6254 
6255 	/* Compute maximum noise among 3 receivers. */
6256 	for (i = 0; i < 3; i++)
6257 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6258 	val = MAX(noise[0], noise[1]);
6259 	val = MAX(noise[2], val);
6260 	/* Insert it into our samples table. */
6261 	calib->noise_samples[calib->cur_noise_sample] = val;
6262 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6263 
6264 	/* Compute maximum noise among last 20 samples. */
6265 	noise_ref = calib->noise_samples[0];
6266 	for (i = 1; i < 20; i++)
6267 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6268 
6269 	/* Compute maximum energy among 3 receivers. */
6270 	for (i = 0; i < 3; i++)
6271 		energy[i] = le32toh(stats->general.energy[i]);
6272 	val = MIN(energy[0], energy[1]);
6273 	val = MIN(energy[2], val);
6274 	/* Insert it into our samples table. */
6275 	calib->energy_samples[calib->cur_energy_sample] = val;
6276 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6277 
6278 	/* Compute minimum energy among last 10 samples. */
6279 	energy_min = calib->energy_samples[0];
6280 	for (i = 1; i < 10; i++)
6281 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6282 	energy_min += 6;
6283 
6284 	/* Compute number of false alarms since last call for CCK. */
6285 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6286 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6287 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6288 
6289 	if (fa > 50 * rxena) {
6290 		/* High false alarm count, decrease sensitivity. */
6291 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6292 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6293 		calib->cck_state = IWN_CCK_STATE_HIFA;
6294 		calib->low_fa = 0;
6295 
6296 		if (calib->cck_x4 > 160) {
6297 			calib->noise_ref = noise_ref;
6298 			if (calib->energy_cck > 2)
6299 				dec(calib->energy_cck, 2, energy_min);
6300 		}
6301 		if (calib->cck_x4 < 160) {
6302 			calib->cck_x4 = 161;
6303 			needs_update = 1;
6304 		} else
6305 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6306 
6307 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6308 
6309 	} else if (fa < 5 * rxena) {
6310 		/* Low false alarm count, increase sensitivity. */
6311 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6312 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6313 		calib->cck_state = IWN_CCK_STATE_LOFA;
6314 		calib->low_fa++;
6315 
6316 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6317 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6318 		     calib->low_fa > 100)) {
6319 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6320 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6321 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6322 		}
6323 	} else {
6324 		/* Not worth to increase or decrease sensitivity. */
6325 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6326 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6327 		calib->low_fa = 0;
6328 		calib->noise_ref = noise_ref;
6329 
6330 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6331 			/* Previous interval had many false alarms. */
6332 			dec(calib->energy_cck, 8, energy_min);
6333 		}
6334 		calib->cck_state = IWN_CCK_STATE_INIT;
6335 	}
6336 
6337 	if (needs_update)
6338 		(void)iwn_send_sensitivity(sc);
6339 
6340 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6341 
6342 #undef dec
6343 #undef inc
6344 }
6345 
6346 static int
6347 iwn_send_sensitivity(struct iwn_softc *sc)
6348 {
6349 	struct iwn_calib_state *calib = &sc->calib;
6350 	struct iwn_enhanced_sensitivity_cmd cmd;
6351 	int len;
6352 
6353 	memset(&cmd, 0, sizeof cmd);
6354 	len = sizeof (struct iwn_sensitivity_cmd);
6355 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6356 	/* OFDM modulation. */
6357 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6358 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6359 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6360 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6361 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6362 	cmd.energy_ofdm_th     = htole16(62);
6363 	/* CCK modulation. */
6364 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6365 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6366 	cmd.energy_cck         = htole16(calib->energy_cck);
6367 	/* Barker modulation: use default values. */
6368 	cmd.corr_barker        = htole16(190);
6369 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6370 
6371 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6372 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6373 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6374 	    calib->ofdm_mrc_x4, calib->cck_x4,
6375 	    calib->cck_mrc_x4, calib->energy_cck);
6376 
6377 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6378 		goto send;
6379 	/* Enhanced sensitivity settings. */
6380 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6381 	cmd.ofdm_det_slope_mrc = htole16(668);
6382 	cmd.ofdm_det_icept_mrc = htole16(4);
6383 	cmd.ofdm_det_slope     = htole16(486);
6384 	cmd.ofdm_det_icept     = htole16(37);
6385 	cmd.cck_det_slope_mrc  = htole16(853);
6386 	cmd.cck_det_icept_mrc  = htole16(4);
6387 	cmd.cck_det_slope      = htole16(476);
6388 	cmd.cck_det_icept      = htole16(99);
6389 send:
6390 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6391 }
6392 
6393 /*
6394  * Look at the increase of PLCP errors over time; if it exceeds
6395  * a programmed threshold then trigger an RF retune.
6396  */
6397 static void
6398 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6399 {
6400 	int32_t delta_ofdm, delta_ht, delta_cck;
6401 	struct iwn_calib_state *calib = &sc->calib;
6402 	int delta_ticks, cur_ticks;
6403 	int delta_msec;
6404 	int thresh;
6405 
6406 	/*
6407 	 * Calculate the difference between the current and
6408 	 * previous statistics.
6409 	 */
6410 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6411 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6412 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6413 
6414 	/*
6415 	 * Calculate the delta in time between successive statistics
6416 	 * messages.  Yes, it can roll over; so we make sure that
6417 	 * this doesn't happen.
6418 	 *
6419 	 * XXX go figure out what to do about rollover
6420 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6421 	 * XXX go stab signed integer overflow undefined-ness in the face.
6422 	 */
6423 	cur_ticks = ticks;
6424 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6425 
6426 	/*
6427 	 * If any are negative, then the firmware likely reset; so just
6428 	 * bail.  We'll pick this up next time.
6429 	 */
6430 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6431 		return;
6432 
6433 	/*
6434 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6435 	 * so we can do some useful math with it.
6436 	 */
6437 	delta_msec = ticks_to_msecs(delta_ticks);
6438 
6439 	/*
6440 	 * Calculate what our threshold is given the current delta_msec.
6441 	 */
6442 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6443 
6444 	DPRINTF(sc, IWN_DEBUG_STATE,
6445 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6446 	    __func__,
6447 	    delta_msec,
6448 	    delta_cck,
6449 	    delta_ofdm,
6450 	    delta_ht,
6451 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6452 	    thresh);
6453 
6454 	/*
6455 	 * If we need a retune, then schedule a single channel scan
6456 	 * to a channel that isn't the currently active one!
6457 	 *
6458 	 * The math from linux iwlwifi:
6459 	 *
6460 	 * if ((delta * 100 / msecs) > threshold)
6461 	 */
6462 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6463 		DPRINTF(sc, IWN_DEBUG_ANY,
6464 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6465 		    "over limit (%d); retune!\n",
6466 		    __func__,
6467 		    (delta_cck + delta_ofdm + delta_ht),
6468 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6469 		    thresh);
6470 	}
6471 }
6472 
6473 /*
6474  * Set STA mode power saving level (between 0 and 5).
6475  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6476  */
6477 static int
6478 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6479 {
6480 	struct iwn_pmgt_cmd cmd;
6481 	const struct iwn_pmgt *pmgt;
6482 	uint32_t max, skip_dtim;
6483 	uint32_t reg;
6484 	int i;
6485 
6486 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6487 	    "%s: dtim=%d, level=%d, async=%d\n",
6488 	    __func__,
6489 	    dtim,
6490 	    level,
6491 	    async);
6492 
6493 	/* Select which PS parameters to use. */
6494 	if (dtim <= 2)
6495 		pmgt = &iwn_pmgt[0][level];
6496 	else if (dtim <= 10)
6497 		pmgt = &iwn_pmgt[1][level];
6498 	else
6499 		pmgt = &iwn_pmgt[2][level];
6500 
6501 	memset(&cmd, 0, sizeof cmd);
6502 	if (level != 0)	/* not CAM */
6503 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6504 	if (level == 5)
6505 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6506 	/* Retrieve PCIe Active State Power Management (ASPM). */
6507 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6508 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6509 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6510 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6511 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6512 
6513 	if (dtim == 0) {
6514 		dtim = 1;
6515 		skip_dtim = 0;
6516 	} else
6517 		skip_dtim = pmgt->skip_dtim;
6518 	if (skip_dtim != 0) {
6519 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6520 		max = pmgt->intval[4];
6521 		if (max == (uint32_t)-1)
6522 			max = dtim * (skip_dtim + 1);
6523 		else if (max > dtim)
6524 			max = rounddown(max, dtim);
6525 	} else
6526 		max = dtim;
6527 	for (i = 0; i < 5; i++)
6528 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6529 
6530 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6531 	    level);
6532 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6533 }
6534 
6535 static int
6536 iwn_send_btcoex(struct iwn_softc *sc)
6537 {
6538 	struct iwn_bluetooth cmd;
6539 
6540 	memset(&cmd, 0, sizeof cmd);
6541 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6542 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6543 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6544 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6545 	    __func__);
6546 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6547 }
6548 
6549 static int
6550 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6551 {
6552 	static const uint32_t btcoex_3wire[12] = {
6553 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6554 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6555 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6556 	};
6557 	struct iwn6000_btcoex_config btconfig;
6558 	struct iwn2000_btcoex_config btconfig2k;
6559 	struct iwn_btcoex_priotable btprio;
6560 	struct iwn_btcoex_prot btprot;
6561 	int error, i;
6562 	uint8_t flags;
6563 
6564 	memset(&btconfig, 0, sizeof btconfig);
6565 	memset(&btconfig2k, 0, sizeof btconfig2k);
6566 
6567 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6568 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6569 
6570 	if (sc->base_params->bt_sco_disable)
6571 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6572 	else
6573 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6574 
6575 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6576 
6577 	/* Default flags result is 145 as old value */
6578 
6579 	/*
6580 	 * Flags value has to be review. Values must change if we
6581 	 * which to disable it
6582 	 */
6583 	if (sc->base_params->bt_session_2) {
6584 		btconfig2k.flags = flags;
6585 		btconfig2k.max_kill = 5;
6586 		btconfig2k.bt3_t7_timer = 1;
6587 		btconfig2k.kill_ack = htole32(0xffff0000);
6588 		btconfig2k.kill_cts = htole32(0xffff0000);
6589 		btconfig2k.sample_time = 2;
6590 		btconfig2k.bt3_t2_timer = 0xc;
6591 
6592 		for (i = 0; i < 12; i++)
6593 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6594 		btconfig2k.valid = htole16(0xff);
6595 		btconfig2k.prio_boost = htole32(0xf0);
6596 		DPRINTF(sc, IWN_DEBUG_RESET,
6597 		    "%s: configuring advanced bluetooth coexistence"
6598 		    " session 2, flags : 0x%x\n",
6599 		    __func__,
6600 		    flags);
6601 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6602 		    sizeof(btconfig2k), 1);
6603 	} else {
6604 		btconfig.flags = flags;
6605 		btconfig.max_kill = 5;
6606 		btconfig.bt3_t7_timer = 1;
6607 		btconfig.kill_ack = htole32(0xffff0000);
6608 		btconfig.kill_cts = htole32(0xffff0000);
6609 		btconfig.sample_time = 2;
6610 		btconfig.bt3_t2_timer = 0xc;
6611 
6612 		for (i = 0; i < 12; i++)
6613 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6614 		btconfig.valid = htole16(0xff);
6615 		btconfig.prio_boost = 0xf0;
6616 		DPRINTF(sc, IWN_DEBUG_RESET,
6617 		    "%s: configuring advanced bluetooth coexistence,"
6618 		    " flags : 0x%x\n",
6619 		    __func__,
6620 		    flags);
6621 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6622 		    sizeof(btconfig), 1);
6623 	}
6624 
6625 	if (error != 0)
6626 		return error;
6627 
6628 	memset(&btprio, 0, sizeof btprio);
6629 	btprio.calib_init1 = 0x6;
6630 	btprio.calib_init2 = 0x7;
6631 	btprio.calib_periodic_low1 = 0x2;
6632 	btprio.calib_periodic_low2 = 0x3;
6633 	btprio.calib_periodic_high1 = 0x4;
6634 	btprio.calib_periodic_high2 = 0x5;
6635 	btprio.dtim = 0x6;
6636 	btprio.scan52 = 0x8;
6637 	btprio.scan24 = 0xa;
6638 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6639 	    1);
6640 	if (error != 0)
6641 		return error;
6642 
6643 	/* Force BT state machine change. */
6644 	memset(&btprot, 0, sizeof btprot);
6645 	btprot.open = 1;
6646 	btprot.type = 1;
6647 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6648 	if (error != 0)
6649 		return error;
6650 	btprot.open = 0;
6651 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6652 }
6653 
6654 static int
6655 iwn5000_runtime_calib(struct iwn_softc *sc)
6656 {
6657 	struct iwn5000_calib_config cmd;
6658 
6659 	memset(&cmd, 0, sizeof cmd);
6660 	cmd.ucode.once.enable = 0xffffffff;
6661 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6662 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6663 	    "%s: configuring runtime calibration\n", __func__);
6664 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6665 }
6666 
6667 static uint32_t
6668 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6669 {
6670 	struct ieee80211com *ic = &sc->sc_ic;
6671 	uint32_t htflags = 0;
6672 
6673 	if (! IEEE80211_IS_CHAN_HT(c))
6674 		return (0);
6675 
6676 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6677 
6678 	if (IEEE80211_IS_CHAN_HT40(c)) {
6679 		switch (ic->ic_curhtprotmode) {
6680 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6681 			htflags |= IWN_RXON_HT_MODEPURE40;
6682 			break;
6683 		default:
6684 			htflags |= IWN_RXON_HT_MODEMIXED;
6685 			break;
6686 		}
6687 	}
6688 	if (IEEE80211_IS_CHAN_HT40D(c))
6689 		htflags |= IWN_RXON_HT_HT40MINUS;
6690 
6691 	return (htflags);
6692 }
6693 
6694 static int
6695 iwn_check_bss_filter(struct iwn_softc *sc)
6696 {
6697 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6698 }
6699 
6700 static int
6701 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6702 {
6703 	struct iwn4965_rxon_assoc cmd;
6704 	struct iwn_rxon *rxon = sc->rxon;
6705 
6706 	cmd.flags = rxon->flags;
6707 	cmd.filter = rxon->filter;
6708 	cmd.ofdm_mask = rxon->ofdm_mask;
6709 	cmd.cck_mask = rxon->cck_mask;
6710 	cmd.ht_single_mask = rxon->ht_single_mask;
6711 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6712 	cmd.rxchain = rxon->rxchain;
6713 	cmd.reserved = 0;
6714 
6715 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6716 }
6717 
6718 static int
6719 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6720 {
6721 	struct iwn5000_rxon_assoc cmd;
6722 	struct iwn_rxon *rxon = sc->rxon;
6723 
6724 	cmd.flags = rxon->flags;
6725 	cmd.filter = rxon->filter;
6726 	cmd.ofdm_mask = rxon->ofdm_mask;
6727 	cmd.cck_mask = rxon->cck_mask;
6728 	cmd.reserved1 = 0;
6729 	cmd.ht_single_mask = rxon->ht_single_mask;
6730 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6731 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6732 	cmd.reserved2 = 0;
6733 	cmd.rxchain = rxon->rxchain;
6734 	cmd.acquisition = rxon->acquisition;
6735 	cmd.reserved3 = 0;
6736 
6737 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6738 }
6739 
6740 static int
6741 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6742 {
6743 	struct iwn_ops *ops = &sc->ops;
6744 	int error;
6745 
6746 	IWN_LOCK_ASSERT(sc);
6747 
6748 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6749 		error = ops->rxon_assoc(sc, async);
6750 		if (error != 0) {
6751 			device_printf(sc->sc_dev,
6752 			    "%s: RXON_ASSOC command failed, error %d\n",
6753 			    __func__, error);
6754 			return (error);
6755 		}
6756 	} else {
6757 		if (sc->sc_is_scanning)
6758 			device_printf(sc->sc_dev,
6759 			    "%s: is_scanning set, before RXON\n",
6760 			    __func__);
6761 
6762 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6763 		if (error != 0) {
6764 			device_printf(sc->sc_dev,
6765 			    "%s: RXON command failed, error %d\n",
6766 			    __func__, error);
6767 			return (error);
6768 		}
6769 
6770 		/*
6771 		 * Reconfiguring RXON clears the firmware nodes table so
6772 		 * we must add the broadcast node again.
6773 		 */
6774 		if (iwn_check_bss_filter(sc) == 0 &&
6775 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6776 			device_printf(sc->sc_dev,
6777 			    "%s: could not add broadcast node, error %d\n",
6778 			    __func__, error);
6779 			return (error);
6780 		}
6781 	}
6782 
6783 	/* Configuration has changed, set TX power accordingly. */
6784 	if ((error = ops->set_txpower(sc, async)) != 0) {
6785 		device_printf(sc->sc_dev,
6786 		    "%s: could not set TX power, error %d\n",
6787 		    __func__, error);
6788 		return (error);
6789 	}
6790 
6791 	return (0);
6792 }
6793 
6794 static int
6795 iwn_config(struct iwn_softc *sc)
6796 {
6797 	struct ieee80211com *ic = &sc->sc_ic;
6798 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6799 	const uint8_t *macaddr;
6800 	uint32_t txmask;
6801 	uint16_t rxchain;
6802 	int error;
6803 
6804 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6805 
6806 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6807 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6808 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6809 		    " exclusive each together. Review NIC config file. Conf"
6810 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6811 		    sc->base_params->calib_need,
6812 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6813 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6814 		return (EINVAL);
6815 	}
6816 
6817 	/* Compute temperature calib if needed. Will be send by send calib */
6818 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6819 		error = iwn5000_temp_offset_calib(sc);
6820 		if (error != 0) {
6821 			device_printf(sc->sc_dev,
6822 			    "%s: could not set temperature offset\n", __func__);
6823 			return (error);
6824 		}
6825 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6826 		error = iwn5000_temp_offset_calibv2(sc);
6827 		if (error != 0) {
6828 			device_printf(sc->sc_dev,
6829 			    "%s: could not compute temperature offset v2\n",
6830 			    __func__);
6831 			return (error);
6832 		}
6833 	}
6834 
6835 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6836 		/* Configure runtime DC calibration. */
6837 		error = iwn5000_runtime_calib(sc);
6838 		if (error != 0) {
6839 			device_printf(sc->sc_dev,
6840 			    "%s: could not configure runtime calibration\n",
6841 			    __func__);
6842 			return error;
6843 		}
6844 	}
6845 
6846 	/* Configure valid TX chains for >=5000 Series. */
6847 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6848 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6849 		txmask = htole32(sc->txchainmask);
6850 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6851 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6852 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6853 		    sizeof txmask, 0);
6854 		if (error != 0) {
6855 			device_printf(sc->sc_dev,
6856 			    "%s: could not configure valid TX chains, "
6857 			    "error %d\n", __func__, error);
6858 			return error;
6859 		}
6860 	}
6861 
6862 	/* Configure bluetooth coexistence. */
6863 	error = 0;
6864 
6865 	/* Configure bluetooth coexistence if needed. */
6866 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6867 		error = iwn_send_advanced_btcoex(sc);
6868 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6869 		error = iwn_send_btcoex(sc);
6870 
6871 	if (error != 0) {
6872 		device_printf(sc->sc_dev,
6873 		    "%s: could not configure bluetooth coexistence, error %d\n",
6874 		    __func__, error);
6875 		return error;
6876 	}
6877 
6878 	/* Set mode, channel, RX filter and enable RX. */
6879 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6880 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6881 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6882 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6883 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6884 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6885 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6886 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6887 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6888 
6889 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6890 	switch (ic->ic_opmode) {
6891 	case IEEE80211_M_STA:
6892 		sc->rxon->mode = IWN_MODE_STA;
6893 		break;
6894 	case IEEE80211_M_MONITOR:
6895 		sc->rxon->mode = IWN_MODE_MONITOR;
6896 		break;
6897 	default:
6898 		/* Should not get there. */
6899 		break;
6900 	}
6901 	iwn_set_promisc(sc);
6902 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6903 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6904 	sc->rxon->ht_single_mask = 0xff;
6905 	sc->rxon->ht_dual_mask = 0xff;
6906 	sc->rxon->ht_triple_mask = 0xff;
6907 	/*
6908 	 * In active association mode, ensure that
6909 	 * all the receive chains are enabled.
6910 	 *
6911 	 * Since we're not yet doing SMPS, don't allow the
6912 	 * number of idle RX chains to be less than the active
6913 	 * number.
6914 	 */
6915 	rxchain =
6916 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6917 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6918 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6919 	sc->rxon->rxchain = htole16(rxchain);
6920 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6921 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6922 	    __func__,
6923 	    sc->rxchainmask,
6924 	    sc->nrxchains);
6925 
6926 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6927 
6928 	DPRINTF(sc, IWN_DEBUG_RESET,
6929 	    "%s: setting configuration; flags=0x%08x\n",
6930 	    __func__, le32toh(sc->rxon->flags));
6931 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6932 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6933 		    __func__);
6934 		return error;
6935 	}
6936 
6937 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6938 		device_printf(sc->sc_dev,
6939 		    "%s: could not set critical temperature\n", __func__);
6940 		return error;
6941 	}
6942 
6943 	/* Set power saving level to CAM during initialization. */
6944 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6945 		device_printf(sc->sc_dev,
6946 		    "%s: could not set power saving level\n", __func__);
6947 		return error;
6948 	}
6949 
6950 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6951 
6952 	return 0;
6953 }
6954 
6955 static uint16_t
6956 iwn_get_active_dwell_time(struct iwn_softc *sc,
6957     struct ieee80211_channel *c, uint8_t n_probes)
6958 {
6959 	/* No channel? Default to 2GHz settings */
6960 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6961 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6962 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6963 	}
6964 
6965 	/* 5GHz dwell time */
6966 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6967 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6968 }
6969 
6970 /*
6971  * Limit the total dwell time to 85% of the beacon interval.
6972  *
6973  * Returns the dwell time in milliseconds.
6974  */
6975 static uint16_t
6976 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6977 {
6978 	struct ieee80211com *ic = &sc->sc_ic;
6979 	struct ieee80211vap *vap = NULL;
6980 	int bintval = 0;
6981 
6982 	/* bintval is in TU (1.024mS) */
6983 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6984 		vap = TAILQ_FIRST(&ic->ic_vaps);
6985 		bintval = vap->iv_bss->ni_intval;
6986 	}
6987 
6988 	/*
6989 	 * If it's non-zero, we should calculate the minimum of
6990 	 * it and the DWELL_BASE.
6991 	 *
6992 	 * XXX Yes, the math should take into account that bintval
6993 	 * is 1.024mS, not 1mS..
6994 	 */
6995 	if (bintval > 0) {
6996 		DPRINTF(sc, IWN_DEBUG_SCAN,
6997 		    "%s: bintval=%d\n",
6998 		    __func__,
6999 		    bintval);
7000 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
7001 	}
7002 
7003 	/* No association context? Default */
7004 	return (IWN_PASSIVE_DWELL_BASE);
7005 }
7006 
7007 static uint16_t
7008 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
7009 {
7010 	uint16_t passive;
7011 
7012 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
7013 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
7014 	} else {
7015 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
7016 	}
7017 
7018 	/* Clamp to the beacon interval if we're associated */
7019 	return (iwn_limit_dwell(sc, passive));
7020 }
7021 
7022 static int
7023 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7024     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7025 {
7026 	struct ieee80211com *ic = &sc->sc_ic;
7027 	struct ieee80211_node *ni = vap->iv_bss;
7028 	struct iwn_scan_hdr *hdr;
7029 	struct iwn_cmd_data *tx;
7030 	struct iwn_scan_essid *essid;
7031 	struct iwn_scan_chan *chan;
7032 	struct ieee80211_frame *wh;
7033 	struct ieee80211_rateset *rs;
7034 	uint8_t *buf, *frm;
7035 	uint16_t rxchain;
7036 	uint8_t txant;
7037 	int buflen, error;
7038 	int is_active;
7039 	uint16_t dwell_active, dwell_passive;
7040 	uint32_t extra, scan_service_time;
7041 
7042 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7043 
7044 	/*
7045 	 * We are absolutely not allowed to send a scan command when another
7046 	 * scan command is pending.
7047 	 */
7048 	if (sc->sc_is_scanning) {
7049 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7050 		    __func__);
7051 		return (EAGAIN);
7052 	}
7053 
7054 	/* Assign the scan channel */
7055 	c = ic->ic_curchan;
7056 
7057 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7058 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7059 	if (buf == NULL) {
7060 		device_printf(sc->sc_dev,
7061 		    "%s: could not allocate buffer for scan command\n",
7062 		    __func__);
7063 		return ENOMEM;
7064 	}
7065 	hdr = (struct iwn_scan_hdr *)buf;
7066 	/*
7067 	 * Move to the next channel if no frames are received within 10ms
7068 	 * after sending the probe request.
7069 	 */
7070 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7071 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7072 	/*
7073 	 * Max needs to be greater than active and passive and quiet!
7074 	 * It's also in microseconds!
7075 	 */
7076 	hdr->max_svc = htole32(250 * 1024);
7077 
7078 	/*
7079 	 * Reset scan: interval=100
7080 	 * Normal scan: interval=becaon interval
7081 	 * suspend_time: 100 (TU)
7082 	 *
7083 	 */
7084 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7085 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7086 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7087 	hdr->pause_svc = htole32(scan_service_time);
7088 
7089 	/* Select antennas for scanning. */
7090 	rxchain =
7091 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7092 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7093 	    IWN_RXCHAIN_DRIVER_FORCE;
7094 	if (IEEE80211_IS_CHAN_A(c) &&
7095 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7096 		/* Ant A must be avoided in 5GHz because of an HW bug. */
7097 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7098 	} else	/* Use all available RX antennas. */
7099 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7100 	hdr->rxchain = htole16(rxchain);
7101 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7102 
7103 	tx = (struct iwn_cmd_data *)(hdr + 1);
7104 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7105 	tx->id = sc->broadcast_id;
7106 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7107 
7108 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7109 		/* Send probe requests at 6Mbps. */
7110 		tx->rate = htole32(0xd);
7111 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7112 	} else {
7113 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7114 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7115 		    sc->rxon->associd && sc->rxon->chan > 14)
7116 			tx->rate = htole32(0xd);
7117 		else {
7118 			/* Send probe requests at 1Mbps. */
7119 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7120 		}
7121 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7122 	}
7123 	/* Use the first valid TX antenna. */
7124 	txant = IWN_LSB(sc->txchainmask);
7125 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7126 
7127 	/*
7128 	 * Only do active scanning if we're announcing a probe request
7129 	 * for a given SSID (or more, if we ever add it to the driver.)
7130 	 */
7131 	is_active = 0;
7132 
7133 	/*
7134 	 * If we're scanning for a specific SSID, add it to the command.
7135 	 *
7136 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7137 	 */
7138 	essid = (struct iwn_scan_essid *)(tx + 1);
7139 	if (ss != NULL) {
7140 		if (ss->ss_ssid[0].len != 0) {
7141 			essid[0].id = IEEE80211_ELEMID_SSID;
7142 			essid[0].len = ss->ss_ssid[0].len;
7143 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7144 		}
7145 
7146 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7147 		    __func__,
7148 		    ss->ss_ssid[0].len,
7149 		    ss->ss_ssid[0].len,
7150 		    ss->ss_ssid[0].ssid);
7151 
7152 		if (ss->ss_nssid > 0)
7153 			is_active = 1;
7154 	}
7155 
7156 	/*
7157 	 * Build a probe request frame.  Most of the following code is a
7158 	 * copy & paste of what is done in net80211.
7159 	 */
7160 	wh = (struct ieee80211_frame *)(essid + 20);
7161 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7162 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7163 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7164 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
7165 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
7166 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
7167 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7168 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7169 
7170 	frm = (uint8_t *)(wh + 1);
7171 	frm = ieee80211_add_ssid(frm, NULL, 0);
7172 	frm = ieee80211_add_rates(frm, rs);
7173 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7174 		frm = ieee80211_add_xrates(frm, rs);
7175 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7176 		frm = ieee80211_add_htcap(frm, ni);
7177 
7178 	/* Set length of probe request. */
7179 	tx->len = htole16(frm - (uint8_t *)wh);
7180 
7181 	/*
7182 	 * If active scanning is requested but a certain channel is
7183 	 * marked passive, we can do active scanning if we detect
7184 	 * transmissions.
7185 	 *
7186 	 * There is an issue with some firmware versions that triggers
7187 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7188 	 * on a radar channel even though this means that we should NOT
7189 	 * send probes.
7190 	 *
7191 	 * The "good CRC threshold" is the number of frames that we
7192 	 * need to receive during our dwell time on a channel before
7193 	 * sending out probes -- setting this to a huge value will
7194 	 * mean we never reach it, but at the same time work around
7195 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7196 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7197 	 *
7198 	 * This was fixed in later versions along with some other
7199 	 * scan changes, and the threshold behaves as a flag in those
7200 	 * versions.
7201 	 */
7202 
7203 	/*
7204 	 * If we're doing active scanning, set the crc_threshold
7205 	 * to a suitable value.  This is different to active veruss
7206 	 * passive scanning depending upon the channel flags; the
7207 	 * firmware will obey that particular check for us.
7208 	 */
7209 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7210 		hdr->crc_threshold = is_active ?
7211 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7212 	else
7213 		hdr->crc_threshold = is_active ?
7214 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7215 
7216 	chan = (struct iwn_scan_chan *)frm;
7217 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7218 	chan->flags = 0;
7219 	if (ss->ss_nssid > 0)
7220 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7221 	chan->dsp_gain = 0x6e;
7222 
7223 	/*
7224 	 * Set the passive/active flag depending upon the channel mode.
7225 	 * XXX TODO: take the is_active flag into account as well?
7226 	 */
7227 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7228 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7229 	else
7230 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7231 
7232 	/*
7233 	 * Calculate the active/passive dwell times.
7234 	 */
7235 
7236 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7237 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7238 
7239 	/* Make sure they're valid */
7240 	if (dwell_passive <= dwell_active)
7241 		dwell_passive = dwell_active + 1;
7242 
7243 	chan->active = htole16(dwell_active);
7244 	chan->passive = htole16(dwell_passive);
7245 
7246 	if (IEEE80211_IS_CHAN_5GHZ(c))
7247 		chan->rf_gain = 0x3b;
7248 	else
7249 		chan->rf_gain = 0x28;
7250 
7251 	DPRINTF(sc, IWN_DEBUG_STATE,
7252 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7253 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7254 	    "isactive=%d numssid=%d\n", __func__,
7255 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7256 	    dwell_active, dwell_passive, scan_service_time,
7257 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7258 
7259 	hdr->nchan++;
7260 	chan++;
7261 	buflen = (uint8_t *)chan - buf;
7262 	hdr->len = htole16(buflen);
7263 
7264 	if (sc->sc_is_scanning) {
7265 		device_printf(sc->sc_dev,
7266 		    "%s: called with is_scanning set!\n",
7267 		    __func__);
7268 	}
7269 	sc->sc_is_scanning = 1;
7270 
7271 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7272 	    hdr->nchan);
7273 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7274 	free(buf, M_DEVBUF);
7275 	if (error == 0)
7276 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7277 
7278 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7279 
7280 	return error;
7281 }
7282 
7283 static int
7284 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7285 {
7286 	struct ieee80211com *ic = &sc->sc_ic;
7287 	struct ieee80211_node *ni = vap->iv_bss;
7288 	int error;
7289 
7290 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7291 
7292 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7293 	/* Update adapter configuration. */
7294 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7295 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7296 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7297 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7298 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7299 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7300 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7301 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7302 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7303 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7304 		sc->rxon->cck_mask  = 0;
7305 		sc->rxon->ofdm_mask = 0x15;
7306 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7307 		sc->rxon->cck_mask  = 0x03;
7308 		sc->rxon->ofdm_mask = 0;
7309 	} else {
7310 		/* Assume 802.11b/g. */
7311 		sc->rxon->cck_mask  = 0x03;
7312 		sc->rxon->ofdm_mask = 0x15;
7313 	}
7314 
7315 	/* try HT */
7316 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7317 
7318 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7319 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7320 	    sc->rxon->ofdm_mask);
7321 
7322 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7323 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7324 		    __func__);
7325 		return (error);
7326 	}
7327 
7328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7329 
7330 	return (0);
7331 }
7332 
7333 static int
7334 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7335 {
7336 	struct iwn_ops *ops = &sc->ops;
7337 	struct ieee80211com *ic = &sc->sc_ic;
7338 	struct ieee80211_node *ni = vap->iv_bss;
7339 	struct iwn_node_info node;
7340 	int error;
7341 
7342 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7343 
7344 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7345 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7346 		/* Link LED blinks while monitoring. */
7347 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7348 		return 0;
7349 	}
7350 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7351 		device_printf(sc->sc_dev,
7352 		    "%s: could not set timing, error %d\n", __func__, error);
7353 		return error;
7354 	}
7355 
7356 	/* Update adapter configuration. */
7357 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7358 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7359 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7360 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7361 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7362 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7363 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7364 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7365 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7366 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7367 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7368 		sc->rxon->cck_mask  = 0;
7369 		sc->rxon->ofdm_mask = 0x15;
7370 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7371 		sc->rxon->cck_mask  = 0x03;
7372 		sc->rxon->ofdm_mask = 0;
7373 	} else {
7374 		/* Assume 802.11b/g. */
7375 		sc->rxon->cck_mask  = 0x0f;
7376 		sc->rxon->ofdm_mask = 0x15;
7377 	}
7378 	/* try HT */
7379 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7380 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7381 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7382 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7383 
7384 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7385 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7386 		    __func__);
7387 		return error;
7388 	}
7389 
7390 	/* Fake a join to initialize the TX rate. */
7391 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7392 	iwn_newassoc(ni, 1);
7393 
7394 	/* Add BSS node. */
7395 	memset(&node, 0, sizeof node);
7396 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7397 	node.id = IWN_ID_BSS;
7398 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7399 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7400 		case IEEE80211_HTCAP_SMPS_ENA:
7401 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7402 			break;
7403 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7404 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7405 			break;
7406 		}
7407 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7408 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7409 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7410 			node.htflags |= htole32(IWN_NODE_HT40);
7411 	}
7412 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7413 	error = ops->add_node(sc, &node, 1);
7414 	if (error != 0) {
7415 		device_printf(sc->sc_dev,
7416 		    "%s: could not add BSS node, error %d\n", __func__, error);
7417 		return error;
7418 	}
7419 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7420 	    __func__, node.id);
7421 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7422 		device_printf(sc->sc_dev,
7423 		    "%s: could not setup link quality for node %d, error %d\n",
7424 		    __func__, node.id, error);
7425 		return error;
7426 	}
7427 
7428 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7429 		device_printf(sc->sc_dev,
7430 		    "%s: could not set sensitivity, error %d\n", __func__,
7431 		    error);
7432 		return error;
7433 	}
7434 	/* Start periodic calibration timer. */
7435 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7436 	sc->calib_cnt = 0;
7437 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7438 	    sc);
7439 
7440 	/* Link LED always on while associated. */
7441 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7442 
7443 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7444 
7445 	return 0;
7446 }
7447 
7448 /*
7449  * This function is called by upper layer when an ADDBA request is received
7450  * from another STA and before the ADDBA response is sent.
7451  */
7452 static int
7453 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7454     int baparamset, int batimeout, int baseqctl)
7455 {
7456 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7457 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7458 	struct iwn_ops *ops = &sc->ops;
7459 	struct iwn_node *wn = (void *)ni;
7460 	struct iwn_node_info node;
7461 	uint16_t ssn;
7462 	uint8_t tid;
7463 	int error;
7464 
7465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7466 
7467 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7468 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7469 
7470 	if (wn->id == IWN_ID_UNDEFINED)
7471 		return (ENOENT);
7472 
7473 	memset(&node, 0, sizeof node);
7474 	node.id = wn->id;
7475 	node.control = IWN_NODE_UPDATE;
7476 	node.flags = IWN_FLAG_SET_ADDBA;
7477 	node.addba_tid = tid;
7478 	node.addba_ssn = htole16(ssn);
7479 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7480 	    wn->id, tid, ssn);
7481 	error = ops->add_node(sc, &node, 1);
7482 	if (error != 0)
7483 		return error;
7484 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7485 #undef MS
7486 }
7487 
7488 /*
7489  * This function is called by upper layer on teardown of an HT-immediate
7490  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7491  */
7492 static void
7493 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7494 {
7495 	struct ieee80211com *ic = ni->ni_ic;
7496 	struct iwn_softc *sc = ic->ic_softc;
7497 	struct iwn_ops *ops = &sc->ops;
7498 	struct iwn_node *wn = (void *)ni;
7499 	struct iwn_node_info node;
7500 	uint8_t tid;
7501 
7502 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7503 
7504 	if (wn->id == IWN_ID_UNDEFINED)
7505 		goto end;
7506 
7507 	/* XXX: tid as an argument */
7508 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7509 		if (&ni->ni_rx_ampdu[tid] == rap)
7510 			break;
7511 	}
7512 
7513 	memset(&node, 0, sizeof node);
7514 	node.id = wn->id;
7515 	node.control = IWN_NODE_UPDATE;
7516 	node.flags = IWN_FLAG_SET_DELBA;
7517 	node.delba_tid = tid;
7518 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7519 	(void)ops->add_node(sc, &node, 1);
7520 end:
7521 	sc->sc_ampdu_rx_stop(ni, rap);
7522 }
7523 
7524 static int
7525 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7526     int dialogtoken, int baparamset, int batimeout)
7527 {
7528 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7529 	int qid;
7530 
7531 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7532 
7533 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7534 		if (sc->qid2tap[qid] == NULL)
7535 			break;
7536 	}
7537 	if (qid == sc->ntxqs) {
7538 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7539 		    __func__);
7540 		return 0;
7541 	}
7542 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7543 	if (tap->txa_private == NULL) {
7544 		device_printf(sc->sc_dev,
7545 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7546 		return 0;
7547 	}
7548 	sc->qid2tap[qid] = tap;
7549 	*(int *)tap->txa_private = qid;
7550 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7551 	    batimeout);
7552 }
7553 
7554 static int
7555 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7556     int code, int baparamset, int batimeout)
7557 {
7558 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7559 	int qid = *(int *)tap->txa_private;
7560 	uint8_t tid = tap->txa_tid;
7561 	int ret;
7562 
7563 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7564 
7565 	if (code == IEEE80211_STATUS_SUCCESS) {
7566 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7567 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7568 		if (ret != 1)
7569 			return ret;
7570 	} else {
7571 		sc->qid2tap[qid] = NULL;
7572 		free(tap->txa_private, M_DEVBUF);
7573 		tap->txa_private = NULL;
7574 	}
7575 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7576 }
7577 
7578 /*
7579  * This function is called by upper layer when an ADDBA response is received
7580  * from another STA.
7581  */
7582 static int
7583 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7584     uint8_t tid)
7585 {
7586 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7587 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7588 	struct iwn_ops *ops = &sc->ops;
7589 	struct iwn_node *wn = (void *)ni;
7590 	struct iwn_node_info node;
7591 	int error, qid;
7592 
7593 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7594 
7595 	if (wn->id == IWN_ID_UNDEFINED)
7596 		return (0);
7597 
7598 	/* Enable TX for the specified RA/TID. */
7599 	wn->disable_tid &= ~(1 << tid);
7600 	memset(&node, 0, sizeof node);
7601 	node.id = wn->id;
7602 	node.control = IWN_NODE_UPDATE;
7603 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7604 	node.disable_tid = htole16(wn->disable_tid);
7605 	error = ops->add_node(sc, &node, 1);
7606 	if (error != 0)
7607 		return 0;
7608 
7609 	if ((error = iwn_nic_lock(sc)) != 0)
7610 		return 0;
7611 	qid = *(int *)tap->txa_private;
7612 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7613 	    __func__, wn->id, tid, tap->txa_start, qid);
7614 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7615 	iwn_nic_unlock(sc);
7616 
7617 	iwn_set_link_quality(sc, ni);
7618 	return 1;
7619 }
7620 
7621 static void
7622 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7623 {
7624 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7625 	struct iwn_ops *ops = &sc->ops;
7626 	uint8_t tid = tap->txa_tid;
7627 	int qid;
7628 
7629 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7630 
7631 	sc->sc_addba_stop(ni, tap);
7632 
7633 	if (tap->txa_private == NULL)
7634 		return;
7635 
7636 	qid = *(int *)tap->txa_private;
7637 	if (sc->txq[qid].queued != 0)
7638 		return;
7639 	if (iwn_nic_lock(sc) != 0)
7640 		return;
7641 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7642 	iwn_nic_unlock(sc);
7643 	sc->qid2tap[qid] = NULL;
7644 	free(tap->txa_private, M_DEVBUF);
7645 	tap->txa_private = NULL;
7646 }
7647 
7648 static void
7649 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7650     int qid, uint8_t tid, uint16_t ssn)
7651 {
7652 	struct iwn_node *wn = (void *)ni;
7653 
7654 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7655 
7656 	/* Stop TX scheduler while we're changing its configuration. */
7657 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7658 	    IWN4965_TXQ_STATUS_CHGACT);
7659 
7660 	/* Assign RA/TID translation to the queue. */
7661 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7662 	    wn->id << 4 | tid);
7663 
7664 	/* Enable chain-building mode for the queue. */
7665 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7666 
7667 	/* Set starting sequence number from the ADDBA request. */
7668 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7669 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7670 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7671 
7672 	/* Set scheduler window size. */
7673 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7674 	    IWN_SCHED_WINSZ);
7675 	/* Set scheduler frame limit. */
7676 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7677 	    IWN_SCHED_LIMIT << 16);
7678 
7679 	/* Enable interrupts for the queue. */
7680 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7681 
7682 	/* Mark the queue as active. */
7683 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7684 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7685 	    iwn_tid2fifo[tid] << 1);
7686 }
7687 
7688 static void
7689 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7690 {
7691 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7692 
7693 	/* Stop TX scheduler while we're changing its configuration. */
7694 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7695 	    IWN4965_TXQ_STATUS_CHGACT);
7696 
7697 	/* Set starting sequence number from the ADDBA request. */
7698 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7699 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7700 
7701 	/* Disable interrupts for the queue. */
7702 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7703 
7704 	/* Mark the queue as inactive. */
7705 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7706 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7707 }
7708 
7709 static void
7710 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7711     int qid, uint8_t tid, uint16_t ssn)
7712 {
7713 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7714 
7715 	struct iwn_node *wn = (void *)ni;
7716 
7717 	/* Stop TX scheduler while we're changing its configuration. */
7718 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7719 	    IWN5000_TXQ_STATUS_CHGACT);
7720 
7721 	/* Assign RA/TID translation to the queue. */
7722 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7723 	    wn->id << 4 | tid);
7724 
7725 	/* Enable chain-building mode for the queue. */
7726 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7727 
7728 	/* Enable aggregation for the queue. */
7729 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7730 
7731 	/* Set starting sequence number from the ADDBA request. */
7732 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7733 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7734 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7735 
7736 	/* Set scheduler window size and frame limit. */
7737 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7738 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7739 
7740 	/* Enable interrupts for the queue. */
7741 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7742 
7743 	/* Mark the queue as active. */
7744 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7745 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7746 }
7747 
7748 static void
7749 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7750 {
7751 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7752 
7753 	/* Stop TX scheduler while we're changing its configuration. */
7754 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7755 	    IWN5000_TXQ_STATUS_CHGACT);
7756 
7757 	/* Disable aggregation for the queue. */
7758 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7759 
7760 	/* Set starting sequence number from the ADDBA request. */
7761 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7762 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7763 
7764 	/* Disable interrupts for the queue. */
7765 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7766 
7767 	/* Mark the queue as inactive. */
7768 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7769 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7770 }
7771 
7772 /*
7773  * Query calibration tables from the initialization firmware.  We do this
7774  * only once at first boot.  Called from a process context.
7775  */
7776 static int
7777 iwn5000_query_calibration(struct iwn_softc *sc)
7778 {
7779 	struct iwn5000_calib_config cmd;
7780 	int error;
7781 
7782 	memset(&cmd, 0, sizeof cmd);
7783 	cmd.ucode.once.enable = htole32(0xffffffff);
7784 	cmd.ucode.once.start  = htole32(0xffffffff);
7785 	cmd.ucode.once.send   = htole32(0xffffffff);
7786 	cmd.ucode.flags       = htole32(0xffffffff);
7787 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7788 	    __func__);
7789 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7790 	if (error != 0)
7791 		return error;
7792 
7793 	/* Wait at most two seconds for calibration to complete. */
7794 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7795 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7796 	return error;
7797 }
7798 
7799 /*
7800  * Send calibration results to the runtime firmware.  These results were
7801  * obtained on first boot from the initialization firmware.
7802  */
7803 static int
7804 iwn5000_send_calibration(struct iwn_softc *sc)
7805 {
7806 	int idx, error;
7807 
7808 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7809 		if (!(sc->base_params->calib_need & (1<<idx))) {
7810 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7811 			    "No need of calib %d\n",
7812 			    idx);
7813 			continue; /* no need for this calib */
7814 		}
7815 		if (sc->calibcmd[idx].buf == NULL) {
7816 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7817 			    "Need calib idx : %d but no available data\n",
7818 			    idx);
7819 			continue;
7820 		}
7821 
7822 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7823 		    "send calibration result idx=%d len=%d\n", idx,
7824 		    sc->calibcmd[idx].len);
7825 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7826 		    sc->calibcmd[idx].len, 0);
7827 		if (error != 0) {
7828 			device_printf(sc->sc_dev,
7829 			    "%s: could not send calibration result, error %d\n",
7830 			    __func__, error);
7831 			return error;
7832 		}
7833 	}
7834 	return 0;
7835 }
7836 
7837 static int
7838 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7839 {
7840 	struct iwn5000_wimax_coex wimax;
7841 
7842 #if 0
7843 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7844 		/* Enable WiMAX coexistence for combo adapters. */
7845 		wimax.flags =
7846 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7847 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7848 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7849 		    IWN_WIMAX_COEX_ENABLE;
7850 		memcpy(wimax.events, iwn6050_wimax_events,
7851 		    sizeof iwn6050_wimax_events);
7852 	} else
7853 #endif
7854 	{
7855 		/* Disable WiMAX coexistence. */
7856 		wimax.flags = 0;
7857 		memset(wimax.events, 0, sizeof wimax.events);
7858 	}
7859 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7860 	    __func__);
7861 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7862 }
7863 
7864 static int
7865 iwn5000_crystal_calib(struct iwn_softc *sc)
7866 {
7867 	struct iwn5000_phy_calib_crystal cmd;
7868 
7869 	memset(&cmd, 0, sizeof cmd);
7870 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7871 	cmd.ngroups = 1;
7872 	cmd.isvalid = 1;
7873 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7874 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7875 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7876 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7877 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7878 }
7879 
7880 static int
7881 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7882 {
7883 	struct iwn5000_phy_calib_temp_offset cmd;
7884 
7885 	memset(&cmd, 0, sizeof cmd);
7886 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7887 	cmd.ngroups = 1;
7888 	cmd.isvalid = 1;
7889 	if (sc->eeprom_temp != 0)
7890 		cmd.offset = htole16(sc->eeprom_temp);
7891 	else
7892 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7893 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7894 	    le16toh(cmd.offset));
7895 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7896 }
7897 
7898 static int
7899 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7900 {
7901 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7902 
7903 	memset(&cmd, 0, sizeof cmd);
7904 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7905 	cmd.ngroups = 1;
7906 	cmd.isvalid = 1;
7907 	if (sc->eeprom_temp != 0) {
7908 		cmd.offset_low = htole16(sc->eeprom_temp);
7909 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7910 	} else {
7911 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7912 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7913 	}
7914 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7915 
7916 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7917 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7918 	    le16toh(cmd.offset_low),
7919 	    le16toh(cmd.offset_high),
7920 	    le16toh(cmd.burnt_voltage_ref));
7921 
7922 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7923 }
7924 
7925 /*
7926  * This function is called after the runtime firmware notifies us of its
7927  * readiness (called in a process context).
7928  */
7929 static int
7930 iwn4965_post_alive(struct iwn_softc *sc)
7931 {
7932 	int error, qid;
7933 
7934 	if ((error = iwn_nic_lock(sc)) != 0)
7935 		return error;
7936 
7937 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7938 
7939 	/* Clear TX scheduler state in SRAM. */
7940 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7941 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7942 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7943 
7944 	/* Set physical address of TX scheduler rings (1KB aligned). */
7945 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7946 
7947 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7948 
7949 	/* Disable chain mode for all our 16 queues. */
7950 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7951 
7952 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7953 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7954 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7955 
7956 		/* Set scheduler window size. */
7957 		iwn_mem_write(sc, sc->sched_base +
7958 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7959 		/* Set scheduler frame limit. */
7960 		iwn_mem_write(sc, sc->sched_base +
7961 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7962 		    IWN_SCHED_LIMIT << 16);
7963 	}
7964 
7965 	/* Enable interrupts for all our 16 queues. */
7966 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7967 	/* Identify TX FIFO rings (0-7). */
7968 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7969 
7970 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7971 	for (qid = 0; qid < 7; qid++) {
7972 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7973 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7974 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7975 	}
7976 	iwn_nic_unlock(sc);
7977 	return 0;
7978 }
7979 
7980 /*
7981  * This function is called after the initialization or runtime firmware
7982  * notifies us of its readiness (called in a process context).
7983  */
7984 static int
7985 iwn5000_post_alive(struct iwn_softc *sc)
7986 {
7987 	int error, qid;
7988 
7989 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7990 
7991 	/* Switch to using ICT interrupt mode. */
7992 	iwn5000_ict_reset(sc);
7993 
7994 	if ((error = iwn_nic_lock(sc)) != 0){
7995 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7996 		return error;
7997 	}
7998 
7999 	/* Clear TX scheduler state in SRAM. */
8000 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
8001 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
8002 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
8003 
8004 	/* Set physical address of TX scheduler rings (1KB aligned). */
8005 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
8006 
8007 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
8008 
8009 	/* Enable chain mode for all queues, except command queue. */
8010 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8011 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8012 	else
8013 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8014 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8015 
8016 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8017 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8018 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8019 
8020 		iwn_mem_write(sc, sc->sched_base +
8021 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8022 		/* Set scheduler window size and frame limit. */
8023 		iwn_mem_write(sc, sc->sched_base +
8024 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8025 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8026 	}
8027 
8028 	/* Enable interrupts for all our 20 queues. */
8029 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8030 	/* Identify TX FIFO rings (0-7). */
8031 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8032 
8033 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8034 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8035 		/* Mark TX rings as active. */
8036 		for (qid = 0; qid < 11; qid++) {
8037 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8038 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8039 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8040 		}
8041 	} else {
8042 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8043 		for (qid = 0; qid < 7; qid++) {
8044 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8045 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8046 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8047 		}
8048 	}
8049 	iwn_nic_unlock(sc);
8050 
8051 	/* Configure WiMAX coexistence for combo adapters. */
8052 	error = iwn5000_send_wimax_coex(sc);
8053 	if (error != 0) {
8054 		device_printf(sc->sc_dev,
8055 		    "%s: could not configure WiMAX coexistence, error %d\n",
8056 		    __func__, error);
8057 		return error;
8058 	}
8059 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8060 		/* Perform crystal calibration. */
8061 		error = iwn5000_crystal_calib(sc);
8062 		if (error != 0) {
8063 			device_printf(sc->sc_dev,
8064 			    "%s: crystal calibration failed, error %d\n",
8065 			    __func__, error);
8066 			return error;
8067 		}
8068 	}
8069 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8070 		/* Query calibration from the initialization firmware. */
8071 		if ((error = iwn5000_query_calibration(sc)) != 0) {
8072 			device_printf(sc->sc_dev,
8073 			    "%s: could not query calibration, error %d\n",
8074 			    __func__, error);
8075 			return error;
8076 		}
8077 		/*
8078 		 * We have the calibration results now, reboot with the
8079 		 * runtime firmware (call ourselves recursively!)
8080 		 */
8081 		iwn_hw_stop(sc);
8082 		error = iwn_hw_init(sc);
8083 	} else {
8084 		/* Send calibration results to runtime firmware. */
8085 		error = iwn5000_send_calibration(sc);
8086 	}
8087 
8088 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8089 
8090 	return error;
8091 }
8092 
8093 /*
8094  * The firmware boot code is small and is intended to be copied directly into
8095  * the NIC internal memory (no DMA transfer).
8096  */
8097 static int
8098 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8099 {
8100 	int error, ntries;
8101 
8102 	size /= sizeof (uint32_t);
8103 
8104 	if ((error = iwn_nic_lock(sc)) != 0)
8105 		return error;
8106 
8107 	/* Copy microcode image into NIC memory. */
8108 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8109 	    (const uint32_t *)ucode, size);
8110 
8111 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8112 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8113 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8114 
8115 	/* Start boot load now. */
8116 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8117 
8118 	/* Wait for transfer to complete. */
8119 	for (ntries = 0; ntries < 1000; ntries++) {
8120 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8121 		    IWN_BSM_WR_CTRL_START))
8122 			break;
8123 		DELAY(10);
8124 	}
8125 	if (ntries == 1000) {
8126 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8127 		    __func__);
8128 		iwn_nic_unlock(sc);
8129 		return ETIMEDOUT;
8130 	}
8131 
8132 	/* Enable boot after power up. */
8133 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8134 
8135 	iwn_nic_unlock(sc);
8136 	return 0;
8137 }
8138 
8139 static int
8140 iwn4965_load_firmware(struct iwn_softc *sc)
8141 {
8142 	struct iwn_fw_info *fw = &sc->fw;
8143 	struct iwn_dma_info *dma = &sc->fw_dma;
8144 	int error;
8145 
8146 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8147 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8148 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8149 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8150 	    fw->init.text, fw->init.textsz);
8151 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8152 
8153 	/* Tell adapter where to find initialization sections. */
8154 	if ((error = iwn_nic_lock(sc)) != 0)
8155 		return error;
8156 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8157 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8158 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8159 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8160 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8161 	iwn_nic_unlock(sc);
8162 
8163 	/* Load firmware boot code. */
8164 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8165 	if (error != 0) {
8166 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8167 		    __func__);
8168 		return error;
8169 	}
8170 	/* Now press "execute". */
8171 	IWN_WRITE(sc, IWN_RESET, 0);
8172 
8173 	/* Wait at most one second for first alive notification. */
8174 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8175 		device_printf(sc->sc_dev,
8176 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8177 		    __func__, error);
8178 		return error;
8179 	}
8180 
8181 	/* Retrieve current temperature for initial TX power calibration. */
8182 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8183 	sc->temp = iwn4965_get_temperature(sc);
8184 
8185 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8186 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8187 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8188 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8189 	    fw->main.text, fw->main.textsz);
8190 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8191 
8192 	/* Tell adapter where to find runtime sections. */
8193 	if ((error = iwn_nic_lock(sc)) != 0)
8194 		return error;
8195 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8196 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8197 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8198 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8199 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8200 	    IWN_FW_UPDATED | fw->main.textsz);
8201 	iwn_nic_unlock(sc);
8202 
8203 	return 0;
8204 }
8205 
8206 static int
8207 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8208     const uint8_t *section, int size)
8209 {
8210 	struct iwn_dma_info *dma = &sc->fw_dma;
8211 	int error;
8212 
8213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8214 
8215 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8216 	memcpy(dma->vaddr, section, size);
8217 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8218 
8219 	if ((error = iwn_nic_lock(sc)) != 0)
8220 		return error;
8221 
8222 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8223 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8224 
8225 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8226 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8227 	    IWN_LOADDR(dma->paddr));
8228 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8229 	    IWN_HIADDR(dma->paddr) << 28 | size);
8230 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8231 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8232 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8233 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8234 
8235 	/* Kick Flow Handler to start DMA transfer. */
8236 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8237 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8238 
8239 	iwn_nic_unlock(sc);
8240 
8241 	/* Wait at most five seconds for FH DMA transfer to complete. */
8242 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8243 }
8244 
8245 static int
8246 iwn5000_load_firmware(struct iwn_softc *sc)
8247 {
8248 	struct iwn_fw_part *fw;
8249 	int error;
8250 
8251 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8252 
8253 	/* Load the initialization firmware on first boot only. */
8254 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8255 	    &sc->fw.main : &sc->fw.init;
8256 
8257 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8258 	    fw->text, fw->textsz);
8259 	if (error != 0) {
8260 		device_printf(sc->sc_dev,
8261 		    "%s: could not load firmware %s section, error %d\n",
8262 		    __func__, ".text", error);
8263 		return error;
8264 	}
8265 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8266 	    fw->data, fw->datasz);
8267 	if (error != 0) {
8268 		device_printf(sc->sc_dev,
8269 		    "%s: could not load firmware %s section, error %d\n",
8270 		    __func__, ".data", error);
8271 		return error;
8272 	}
8273 
8274 	/* Now press "execute". */
8275 	IWN_WRITE(sc, IWN_RESET, 0);
8276 	return 0;
8277 }
8278 
8279 /*
8280  * Extract text and data sections from a legacy firmware image.
8281  */
8282 static int
8283 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8284 {
8285 	const uint32_t *ptr;
8286 	size_t hdrlen = 24;
8287 	uint32_t rev;
8288 
8289 	ptr = (const uint32_t *)fw->data;
8290 	rev = le32toh(*ptr++);
8291 
8292 	sc->ucode_rev = rev;
8293 
8294 	/* Check firmware API version. */
8295 	if (IWN_FW_API(rev) <= 1) {
8296 		device_printf(sc->sc_dev,
8297 		    "%s: bad firmware, need API version >=2\n", __func__);
8298 		return EINVAL;
8299 	}
8300 	if (IWN_FW_API(rev) >= 3) {
8301 		/* Skip build number (version 2 header). */
8302 		hdrlen += 4;
8303 		ptr++;
8304 	}
8305 	if (fw->size < hdrlen) {
8306 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8307 		    __func__, fw->size);
8308 		return EINVAL;
8309 	}
8310 	fw->main.textsz = le32toh(*ptr++);
8311 	fw->main.datasz = le32toh(*ptr++);
8312 	fw->init.textsz = le32toh(*ptr++);
8313 	fw->init.datasz = le32toh(*ptr++);
8314 	fw->boot.textsz = le32toh(*ptr++);
8315 
8316 	/* Check that all firmware sections fit. */
8317 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8318 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8319 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8320 		    __func__, fw->size);
8321 		return EINVAL;
8322 	}
8323 
8324 	/* Get pointers to firmware sections. */
8325 	fw->main.text = (const uint8_t *)ptr;
8326 	fw->main.data = fw->main.text + fw->main.textsz;
8327 	fw->init.text = fw->main.data + fw->main.datasz;
8328 	fw->init.data = fw->init.text + fw->init.textsz;
8329 	fw->boot.text = fw->init.data + fw->init.datasz;
8330 	return 0;
8331 }
8332 
8333 /*
8334  * Extract text and data sections from a TLV firmware image.
8335  */
8336 static int
8337 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8338     uint16_t alt)
8339 {
8340 	const struct iwn_fw_tlv_hdr *hdr;
8341 	const struct iwn_fw_tlv *tlv;
8342 	const uint8_t *ptr, *end;
8343 	uint64_t altmask;
8344 	uint32_t len, tmp;
8345 
8346 	if (fw->size < sizeof (*hdr)) {
8347 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8348 		    __func__, fw->size);
8349 		return EINVAL;
8350 	}
8351 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8352 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8353 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8354 		    __func__, le32toh(hdr->signature));
8355 		return EINVAL;
8356 	}
8357 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8358 	    le32toh(hdr->build));
8359 	sc->ucode_rev = le32toh(hdr->rev);
8360 
8361 	/*
8362 	 * Select the closest supported alternative that is less than
8363 	 * or equal to the specified one.
8364 	 */
8365 	altmask = le64toh(hdr->altmask);
8366 	while (alt > 0 && !(altmask & (1ULL << alt)))
8367 		alt--;	/* Downgrade. */
8368 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8369 
8370 	ptr = (const uint8_t *)(hdr + 1);
8371 	end = (const uint8_t *)(fw->data + fw->size);
8372 
8373 	/* Parse type-length-value fields. */
8374 	while (ptr + sizeof (*tlv) <= end) {
8375 		tlv = (const struct iwn_fw_tlv *)ptr;
8376 		len = le32toh(tlv->len);
8377 
8378 		ptr += sizeof (*tlv);
8379 		if (ptr + len > end) {
8380 			device_printf(sc->sc_dev,
8381 			    "%s: firmware too short: %zu bytes\n", __func__,
8382 			    fw->size);
8383 			return EINVAL;
8384 		}
8385 		/* Skip other alternatives. */
8386 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8387 			goto next;
8388 
8389 		switch (le16toh(tlv->type)) {
8390 		case IWN_FW_TLV_MAIN_TEXT:
8391 			fw->main.text = ptr;
8392 			fw->main.textsz = len;
8393 			break;
8394 		case IWN_FW_TLV_MAIN_DATA:
8395 			fw->main.data = ptr;
8396 			fw->main.datasz = len;
8397 			break;
8398 		case IWN_FW_TLV_INIT_TEXT:
8399 			fw->init.text = ptr;
8400 			fw->init.textsz = len;
8401 			break;
8402 		case IWN_FW_TLV_INIT_DATA:
8403 			fw->init.data = ptr;
8404 			fw->init.datasz = len;
8405 			break;
8406 		case IWN_FW_TLV_BOOT_TEXT:
8407 			fw->boot.text = ptr;
8408 			fw->boot.textsz = len;
8409 			break;
8410 		case IWN_FW_TLV_ENH_SENS:
8411 			if (!len)
8412 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8413 			break;
8414 		case IWN_FW_TLV_PHY_CALIB:
8415 			tmp = le32toh(*ptr);
8416 			if (tmp < 253) {
8417 				sc->reset_noise_gain = tmp;
8418 				sc->noise_gain = tmp + 1;
8419 			}
8420 			break;
8421 		case IWN_FW_TLV_PAN:
8422 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8423 			DPRINTF(sc, IWN_DEBUG_RESET,
8424 			    "PAN Support found: %d\n", 1);
8425 			break;
8426 		case IWN_FW_TLV_FLAGS:
8427 			if (len < sizeof(uint32_t))
8428 				break;
8429 			if (len % sizeof(uint32_t))
8430 				break;
8431 			sc->tlv_feature_flags = le32toh(*ptr);
8432 			DPRINTF(sc, IWN_DEBUG_RESET,
8433 			    "%s: feature: 0x%08x\n",
8434 			    __func__,
8435 			    sc->tlv_feature_flags);
8436 			break;
8437 		case IWN_FW_TLV_PBREQ_MAXLEN:
8438 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8439 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8440 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8441 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8442 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8443 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8444 		case IWN_FW_TLV_WOWLAN_INST:
8445 		case IWN_FW_TLV_WOWLAN_DATA:
8446 			DPRINTF(sc, IWN_DEBUG_RESET,
8447 			    "TLV type %d recognized but not handled\n",
8448 			    le16toh(tlv->type));
8449 			break;
8450 		default:
8451 			DPRINTF(sc, IWN_DEBUG_RESET,
8452 			    "TLV type %d not handled\n", le16toh(tlv->type));
8453 			break;
8454 		}
8455  next:		/* TLV fields are 32-bit aligned. */
8456 		ptr += (len + 3) & ~3;
8457 	}
8458 	return 0;
8459 }
8460 
8461 static int
8462 iwn_read_firmware(struct iwn_softc *sc)
8463 {
8464 	struct iwn_fw_info *fw = &sc->fw;
8465 	int error;
8466 
8467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8468 
8469 	IWN_UNLOCK(sc);
8470 
8471 	memset(fw, 0, sizeof (*fw));
8472 
8473 	/* Read firmware image from filesystem. */
8474 	sc->fw_fp = firmware_get(sc->fwname);
8475 	if (sc->fw_fp == NULL) {
8476 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8477 		    __func__, sc->fwname);
8478 		IWN_LOCK(sc);
8479 		return EINVAL;
8480 	}
8481 	IWN_LOCK(sc);
8482 
8483 	fw->size = sc->fw_fp->datasize;
8484 	fw->data = (const uint8_t *)sc->fw_fp->data;
8485 	if (fw->size < sizeof (uint32_t)) {
8486 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8487 		    __func__, fw->size);
8488 		error = EINVAL;
8489 		goto fail;
8490 	}
8491 
8492 	/* Retrieve text and data sections. */
8493 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8494 		error = iwn_read_firmware_leg(sc, fw);
8495 	else
8496 		error = iwn_read_firmware_tlv(sc, fw, 1);
8497 	if (error != 0) {
8498 		device_printf(sc->sc_dev,
8499 		    "%s: could not read firmware sections, error %d\n",
8500 		    __func__, error);
8501 		goto fail;
8502 	}
8503 
8504 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8505 
8506 	/* Make sure text and data sections fit in hardware memory. */
8507 	if (fw->main.textsz > sc->fw_text_maxsz ||
8508 	    fw->main.datasz > sc->fw_data_maxsz ||
8509 	    fw->init.textsz > sc->fw_text_maxsz ||
8510 	    fw->init.datasz > sc->fw_data_maxsz ||
8511 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8512 	    (fw->boot.textsz & 3) != 0) {
8513 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8514 		    __func__);
8515 		error = EINVAL;
8516 		goto fail;
8517 	}
8518 
8519 	/* We can proceed with loading the firmware. */
8520 	return 0;
8521 
8522 fail:	iwn_unload_firmware(sc);
8523 	return error;
8524 }
8525 
8526 static void
8527 iwn_unload_firmware(struct iwn_softc *sc)
8528 {
8529 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8530 	sc->fw_fp = NULL;
8531 }
8532 
8533 static int
8534 iwn_clock_wait(struct iwn_softc *sc)
8535 {
8536 	int ntries;
8537 
8538 	/* Set "initialization complete" bit. */
8539 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8540 
8541 	/* Wait for clock stabilization. */
8542 	for (ntries = 0; ntries < 2500; ntries++) {
8543 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8544 			return 0;
8545 		DELAY(10);
8546 	}
8547 	device_printf(sc->sc_dev,
8548 	    "%s: timeout waiting for clock stabilization\n", __func__);
8549 	return ETIMEDOUT;
8550 }
8551 
8552 static int
8553 iwn_apm_init(struct iwn_softc *sc)
8554 {
8555 	uint32_t reg;
8556 	int error;
8557 
8558 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8559 
8560 	/* Disable L0s exit timer (NMI bug workaround). */
8561 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8562 	/* Don't wait for ICH L0s (ICH bug workaround). */
8563 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8564 
8565 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8566 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8567 
8568 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8569 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8570 
8571 	/* Retrieve PCIe Active State Power Management (ASPM). */
8572 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8573 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8574 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8575 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8576 	else
8577 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8578 
8579 	if (sc->base_params->pll_cfg_val)
8580 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8581 
8582 	/* Wait for clock stabilization before accessing prph. */
8583 	if ((error = iwn_clock_wait(sc)) != 0)
8584 		return error;
8585 
8586 	if ((error = iwn_nic_lock(sc)) != 0)
8587 		return error;
8588 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8589 		/* Enable DMA and BSM (Bootstrap State Machine). */
8590 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8591 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8592 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8593 	} else {
8594 		/* Enable DMA. */
8595 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8596 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8597 	}
8598 	DELAY(20);
8599 	/* Disable L1-Active. */
8600 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8601 	iwn_nic_unlock(sc);
8602 
8603 	return 0;
8604 }
8605 
8606 static void
8607 iwn_apm_stop_master(struct iwn_softc *sc)
8608 {
8609 	int ntries;
8610 
8611 	/* Stop busmaster DMA activity. */
8612 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8613 	for (ntries = 0; ntries < 100; ntries++) {
8614 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8615 			return;
8616 		DELAY(10);
8617 	}
8618 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8619 }
8620 
8621 static void
8622 iwn_apm_stop(struct iwn_softc *sc)
8623 {
8624 	iwn_apm_stop_master(sc);
8625 
8626 	/* Reset the entire device. */
8627 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8628 	DELAY(10);
8629 	/* Clear "initialization complete" bit. */
8630 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8631 }
8632 
8633 static int
8634 iwn4965_nic_config(struct iwn_softc *sc)
8635 {
8636 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8637 
8638 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8639 		/*
8640 		 * I don't believe this to be correct but this is what the
8641 		 * vendor driver is doing. Probably the bits should not be
8642 		 * shifted in IWN_RFCFG_*.
8643 		 */
8644 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8645 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8646 		    IWN_RFCFG_STEP(sc->rfcfg) |
8647 		    IWN_RFCFG_DASH(sc->rfcfg));
8648 	}
8649 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8650 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8651 	return 0;
8652 }
8653 
8654 static int
8655 iwn5000_nic_config(struct iwn_softc *sc)
8656 {
8657 	uint32_t tmp;
8658 	int error;
8659 
8660 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8661 
8662 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8663 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8664 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8665 		    IWN_RFCFG_STEP(sc->rfcfg) |
8666 		    IWN_RFCFG_DASH(sc->rfcfg));
8667 	}
8668 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8669 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8670 
8671 	if ((error = iwn_nic_lock(sc)) != 0)
8672 		return error;
8673 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8674 
8675 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8676 		/*
8677 		 * Select first Switching Voltage Regulator (1.32V) to
8678 		 * solve a stability issue related to noisy DC2DC line
8679 		 * in the silicon of 1000 Series.
8680 		 */
8681 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8682 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8683 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8684 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8685 	}
8686 	iwn_nic_unlock(sc);
8687 
8688 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8689 		/* Use internal power amplifier only. */
8690 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8691 	}
8692 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8693 		/* Indicate that ROM calibration version is >=6. */
8694 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8695 	}
8696 	if (sc->base_params->additional_gp_drv_bit)
8697 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8698 		    sc->base_params->additional_gp_drv_bit);
8699 	return 0;
8700 }
8701 
8702 /*
8703  * Take NIC ownership over Intel Active Management Technology (AMT).
8704  */
8705 static int
8706 iwn_hw_prepare(struct iwn_softc *sc)
8707 {
8708 	int ntries;
8709 
8710 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8711 
8712 	/* Check if hardware is ready. */
8713 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8714 	for (ntries = 0; ntries < 5; ntries++) {
8715 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8716 		    IWN_HW_IF_CONFIG_NIC_READY)
8717 			return 0;
8718 		DELAY(10);
8719 	}
8720 
8721 	/* Hardware not ready, force into ready state. */
8722 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8723 	for (ntries = 0; ntries < 15000; ntries++) {
8724 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8725 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8726 			break;
8727 		DELAY(10);
8728 	}
8729 	if (ntries == 15000)
8730 		return ETIMEDOUT;
8731 
8732 	/* Hardware should be ready now. */
8733 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8734 	for (ntries = 0; ntries < 5; ntries++) {
8735 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8736 		    IWN_HW_IF_CONFIG_NIC_READY)
8737 			return 0;
8738 		DELAY(10);
8739 	}
8740 	return ETIMEDOUT;
8741 }
8742 
8743 static int
8744 iwn_hw_init(struct iwn_softc *sc)
8745 {
8746 	struct iwn_ops *ops = &sc->ops;
8747 	int error, chnl, qid;
8748 
8749 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8750 
8751 	/* Clear pending interrupts. */
8752 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8753 
8754 	if ((error = iwn_apm_init(sc)) != 0) {
8755 		device_printf(sc->sc_dev,
8756 		    "%s: could not power ON adapter, error %d\n", __func__,
8757 		    error);
8758 		return error;
8759 	}
8760 
8761 	/* Select VMAIN power source. */
8762 	if ((error = iwn_nic_lock(sc)) != 0)
8763 		return error;
8764 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8765 	iwn_nic_unlock(sc);
8766 
8767 	/* Perform adapter-specific initialization. */
8768 	if ((error = ops->nic_config(sc)) != 0)
8769 		return error;
8770 
8771 	/* Initialize RX ring. */
8772 	if ((error = iwn_nic_lock(sc)) != 0)
8773 		return error;
8774 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8775 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8776 	/* Set physical address of RX ring (256-byte aligned). */
8777 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8778 	/* Set physical address of RX status (16-byte aligned). */
8779 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8780 	/* Enable RX. */
8781 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8782 	    IWN_FH_RX_CONFIG_ENA           |
8783 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8784 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8785 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8786 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8787 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8788 	iwn_nic_unlock(sc);
8789 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8790 
8791 	if ((error = iwn_nic_lock(sc)) != 0)
8792 		return error;
8793 
8794 	/* Initialize TX scheduler. */
8795 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8796 
8797 	/* Set physical address of "keep warm" page (16-byte aligned). */
8798 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8799 
8800 	/* Initialize TX rings. */
8801 	for (qid = 0; qid < sc->ntxqs; qid++) {
8802 		struct iwn_tx_ring *txq = &sc->txq[qid];
8803 
8804 		/* Set physical address of TX ring (256-byte aligned). */
8805 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8806 		    txq->desc_dma.paddr >> 8);
8807 	}
8808 	iwn_nic_unlock(sc);
8809 
8810 	/* Enable DMA channels. */
8811 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8812 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8813 		    IWN_FH_TX_CONFIG_DMA_ENA |
8814 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8815 	}
8816 
8817 	/* Clear "radio off" and "commands blocked" bits. */
8818 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8819 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8820 
8821 	/* Clear pending interrupts. */
8822 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8823 	/* Enable interrupt coalescing. */
8824 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8825 	/* Enable interrupts. */
8826 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8827 
8828 	/* _Really_ make sure "radio off" bit is cleared! */
8829 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8830 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8831 
8832 	/* Enable shadow registers. */
8833 	if (sc->base_params->shadow_reg_enable)
8834 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8835 
8836 	if ((error = ops->load_firmware(sc)) != 0) {
8837 		device_printf(sc->sc_dev,
8838 		    "%s: could not load firmware, error %d\n", __func__,
8839 		    error);
8840 		return error;
8841 	}
8842 	/* Wait at most one second for firmware alive notification. */
8843 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8844 		device_printf(sc->sc_dev,
8845 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8846 		    __func__, error);
8847 		return error;
8848 	}
8849 	/* Do post-firmware initialization. */
8850 
8851 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8852 
8853 	return ops->post_alive(sc);
8854 }
8855 
8856 static void
8857 iwn_hw_stop(struct iwn_softc *sc)
8858 {
8859 	int chnl, qid, ntries;
8860 
8861 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8862 
8863 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8864 
8865 	/* Disable interrupts. */
8866 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8867 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8868 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8869 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8870 
8871 	/* Make sure we no longer hold the NIC lock. */
8872 	iwn_nic_unlock(sc);
8873 
8874 	/* Stop TX scheduler. */
8875 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8876 
8877 	/* Stop all DMA channels. */
8878 	if (iwn_nic_lock(sc) == 0) {
8879 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8880 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8881 			for (ntries = 0; ntries < 200; ntries++) {
8882 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8883 				    IWN_FH_TX_STATUS_IDLE(chnl))
8884 					break;
8885 				DELAY(10);
8886 			}
8887 		}
8888 		iwn_nic_unlock(sc);
8889 	}
8890 
8891 	/* Stop RX ring. */
8892 	iwn_reset_rx_ring(sc, &sc->rxq);
8893 
8894 	/* Reset all TX rings. */
8895 	for (qid = 0; qid < sc->ntxqs; qid++)
8896 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8897 
8898 	if (iwn_nic_lock(sc) == 0) {
8899 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8900 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8901 		iwn_nic_unlock(sc);
8902 	}
8903 	DELAY(5);
8904 	/* Power OFF adapter. */
8905 	iwn_apm_stop(sc);
8906 }
8907 
8908 static void
8909 iwn_panicked(void *arg0, int pending)
8910 {
8911 	struct iwn_softc *sc = arg0;
8912 	struct ieee80211com *ic = &sc->sc_ic;
8913 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8914 #if 0
8915 	int error;
8916 #endif
8917 
8918 	if (vap == NULL) {
8919 		printf("%s: null vap\n", __func__);
8920 		return;
8921 	}
8922 
8923 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8924 	    "restarting\n", __func__, vap->iv_state);
8925 
8926 	/*
8927 	 * This is not enough work. We need to also reinitialise
8928 	 * the correct transmit state for aggregation enabled queues,
8929 	 * which has a very specific requirement of
8930 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8931 	 * we definitely don't!) then the firmware will just panic again.
8932 	 */
8933 #if 1
8934 	ieee80211_restart_all(ic);
8935 #else
8936 	IWN_LOCK(sc);
8937 
8938 	iwn_stop_locked(sc);
8939 	if ((error = iwn_init_locked(sc)) != 0) {
8940 		device_printf(sc->sc_dev,
8941 		    "%s: could not init hardware\n", __func__);
8942 		goto unlock;
8943 	}
8944 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8945 	    (error = iwn_auth(sc, vap)) != 0) {
8946 		device_printf(sc->sc_dev,
8947 		    "%s: could not move to auth state\n", __func__);
8948 	}
8949 	if (vap->iv_state >= IEEE80211_S_RUN &&
8950 	    (error = iwn_run(sc, vap)) != 0) {
8951 		device_printf(sc->sc_dev,
8952 		    "%s: could not move to run state\n", __func__);
8953 	}
8954 
8955 unlock:
8956 	IWN_UNLOCK(sc);
8957 #endif
8958 }
8959 
8960 static int
8961 iwn_init_locked(struct iwn_softc *sc)
8962 {
8963 	int error;
8964 
8965 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8966 
8967 	IWN_LOCK_ASSERT(sc);
8968 
8969 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8970 		goto end;
8971 
8972 	sc->sc_flags |= IWN_FLAG_RUNNING;
8973 
8974 	if ((error = iwn_hw_prepare(sc)) != 0) {
8975 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8976 		    __func__, error);
8977 		goto fail;
8978 	}
8979 
8980 	/* Initialize interrupt mask to default value. */
8981 	sc->int_mask = IWN_INT_MASK_DEF;
8982 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8983 
8984 	/* Check that the radio is not disabled by hardware switch. */
8985 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8986 		iwn_stop_locked(sc);
8987 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8988 
8989 		return (1);
8990 	}
8991 
8992 	/* Read firmware images from the filesystem. */
8993 	if ((error = iwn_read_firmware(sc)) != 0) {
8994 		device_printf(sc->sc_dev,
8995 		    "%s: could not read firmware, error %d\n", __func__,
8996 		    error);
8997 		goto fail;
8998 	}
8999 
9000 	/* Initialize hardware and upload firmware. */
9001 	error = iwn_hw_init(sc);
9002 	iwn_unload_firmware(sc);
9003 	if (error != 0) {
9004 		device_printf(sc->sc_dev,
9005 		    "%s: could not initialize hardware, error %d\n", __func__,
9006 		    error);
9007 		goto fail;
9008 	}
9009 
9010 	/* Configure adapter now that it is ready. */
9011 	if ((error = iwn_config(sc)) != 0) {
9012 		device_printf(sc->sc_dev,
9013 		    "%s: could not configure device, error %d\n", __func__,
9014 		    error);
9015 		goto fail;
9016 	}
9017 
9018 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9019 
9020 end:
9021 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9022 
9023 	return (0);
9024 
9025 fail:
9026 	iwn_stop_locked(sc);
9027 
9028 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9029 
9030 	return (-1);
9031 }
9032 
9033 static int
9034 iwn_init(struct iwn_softc *sc)
9035 {
9036 	int error;
9037 
9038 	IWN_LOCK(sc);
9039 	error = iwn_init_locked(sc);
9040 	IWN_UNLOCK(sc);
9041 
9042 	return (error);
9043 }
9044 
9045 static void
9046 iwn_stop_locked(struct iwn_softc *sc)
9047 {
9048 
9049 	IWN_LOCK_ASSERT(sc);
9050 
9051 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9052 		return;
9053 
9054 	sc->sc_is_scanning = 0;
9055 	sc->sc_tx_timer = 0;
9056 	callout_stop(&sc->watchdog_to);
9057 	callout_stop(&sc->scan_timeout);
9058 	callout_stop(&sc->calib_to);
9059 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9060 
9061 	/* Power OFF hardware. */
9062 	iwn_hw_stop(sc);
9063 }
9064 
9065 static void
9066 iwn_stop(struct iwn_softc *sc)
9067 {
9068 	IWN_LOCK(sc);
9069 	iwn_stop_locked(sc);
9070 	IWN_UNLOCK(sc);
9071 }
9072 
9073 /*
9074  * Callback from net80211 to start a scan.
9075  */
9076 static void
9077 iwn_scan_start(struct ieee80211com *ic)
9078 {
9079 	struct iwn_softc *sc = ic->ic_softc;
9080 
9081 	IWN_LOCK(sc);
9082 	/* make the link LED blink while we're scanning */
9083 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9084 	IWN_UNLOCK(sc);
9085 }
9086 
9087 /*
9088  * Callback from net80211 to terminate a scan.
9089  */
9090 static void
9091 iwn_scan_end(struct ieee80211com *ic)
9092 {
9093 	struct iwn_softc *sc = ic->ic_softc;
9094 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9095 
9096 	IWN_LOCK(sc);
9097 	if (vap->iv_state == IEEE80211_S_RUN) {
9098 		/* Set link LED to ON status if we are associated */
9099 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9100 	}
9101 	IWN_UNLOCK(sc);
9102 }
9103 
9104 /*
9105  * Callback from net80211 to force a channel change.
9106  */
9107 static void
9108 iwn_set_channel(struct ieee80211com *ic)
9109 {
9110 	struct iwn_softc *sc = ic->ic_softc;
9111 	int error;
9112 
9113 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9114 
9115 	IWN_LOCK(sc);
9116 	/*
9117 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9118 	 * are already taken care of by their respective firmware commands.
9119 	 */
9120 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9121 		error = iwn_config(sc);
9122 		if (error != 0)
9123 		device_printf(sc->sc_dev,
9124 		    "%s: error %d settting channel\n", __func__, error);
9125 	}
9126 	IWN_UNLOCK(sc);
9127 }
9128 
9129 /*
9130  * Callback from net80211 to start scanning of the current channel.
9131  */
9132 static void
9133 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9134 {
9135 	struct ieee80211vap *vap = ss->ss_vap;
9136 	struct ieee80211com *ic = vap->iv_ic;
9137 	struct iwn_softc *sc = ic->ic_softc;
9138 	int error;
9139 
9140 	IWN_LOCK(sc);
9141 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9142 	IWN_UNLOCK(sc);
9143 	if (error != 0)
9144 		ieee80211_cancel_scan(vap);
9145 }
9146 
9147 /*
9148  * Callback from net80211 to handle the minimum dwell time being met.
9149  * The intent is to terminate the scan but we just let the firmware
9150  * notify us when it's finished as we have no safe way to abort it.
9151  */
9152 static void
9153 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9154 {
9155 	/* NB: don't try to abort scan; wait for firmware to finish */
9156 }
9157 #ifdef	IWN_DEBUG
9158 #define	IWN_DESC(x) case x:	return #x
9159 
9160 /*
9161  * Translate CSR code to string
9162  */
9163 static char *iwn_get_csr_string(int csr)
9164 {
9165 	switch (csr) {
9166 		IWN_DESC(IWN_HW_IF_CONFIG);
9167 		IWN_DESC(IWN_INT_COALESCING);
9168 		IWN_DESC(IWN_INT);
9169 		IWN_DESC(IWN_INT_MASK);
9170 		IWN_DESC(IWN_FH_INT);
9171 		IWN_DESC(IWN_GPIO_IN);
9172 		IWN_DESC(IWN_RESET);
9173 		IWN_DESC(IWN_GP_CNTRL);
9174 		IWN_DESC(IWN_HW_REV);
9175 		IWN_DESC(IWN_EEPROM);
9176 		IWN_DESC(IWN_EEPROM_GP);
9177 		IWN_DESC(IWN_OTP_GP);
9178 		IWN_DESC(IWN_GIO);
9179 		IWN_DESC(IWN_GP_UCODE);
9180 		IWN_DESC(IWN_GP_DRIVER);
9181 		IWN_DESC(IWN_UCODE_GP1);
9182 		IWN_DESC(IWN_UCODE_GP2);
9183 		IWN_DESC(IWN_LED);
9184 		IWN_DESC(IWN_DRAM_INT_TBL);
9185 		IWN_DESC(IWN_GIO_CHICKEN);
9186 		IWN_DESC(IWN_ANA_PLL);
9187 		IWN_DESC(IWN_HW_REV_WA);
9188 		IWN_DESC(IWN_DBG_HPET_MEM);
9189 	default:
9190 		return "UNKNOWN CSR";
9191 	}
9192 }
9193 
9194 /*
9195  * This function print firmware register
9196  */
9197 static void
9198 iwn_debug_register(struct iwn_softc *sc)
9199 {
9200 	int i;
9201 	static const uint32_t csr_tbl[] = {
9202 		IWN_HW_IF_CONFIG,
9203 		IWN_INT_COALESCING,
9204 		IWN_INT,
9205 		IWN_INT_MASK,
9206 		IWN_FH_INT,
9207 		IWN_GPIO_IN,
9208 		IWN_RESET,
9209 		IWN_GP_CNTRL,
9210 		IWN_HW_REV,
9211 		IWN_EEPROM,
9212 		IWN_EEPROM_GP,
9213 		IWN_OTP_GP,
9214 		IWN_GIO,
9215 		IWN_GP_UCODE,
9216 		IWN_GP_DRIVER,
9217 		IWN_UCODE_GP1,
9218 		IWN_UCODE_GP2,
9219 		IWN_LED,
9220 		IWN_DRAM_INT_TBL,
9221 		IWN_GIO_CHICKEN,
9222 		IWN_ANA_PLL,
9223 		IWN_HW_REV_WA,
9224 		IWN_DBG_HPET_MEM,
9225 	};
9226 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9227 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9228 	    "\n");
9229 	for (i = 0; i <  nitems(csr_tbl); i++){
9230 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9231 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9232 		if ((i+1) % 3 == 0)
9233 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9234 	}
9235 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9236 }
9237 #endif
9238 
9239 
9240