xref: /freebsd/sys/dev/iwn/if_iwn.c (revision ebacd8013fe5f7fdf9f6a5b286f6680dd2891036)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static void	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static void	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn_check_tx_ring(struct iwn_softc *, int);
172 static void	iwn5000_ict_reset(struct iwn_softc *);
173 static int	iwn_read_eeprom(struct iwn_softc *,
174 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
175 static void	iwn4965_read_eeprom(struct iwn_softc *);
176 #ifdef	IWN_DEBUG
177 static void	iwn4965_print_power_group(struct iwn_softc *, int);
178 #endif
179 static void	iwn5000_read_eeprom(struct iwn_softc *);
180 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
181 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
182 		    struct ieee80211_channel[]);
183 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
184 		    struct ieee80211_channel[]);
185 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
186 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
187 		    struct ieee80211_channel *);
188 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
189 		    struct ieee80211_channel[]);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *,
203 		    int, int, int);
204 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
205 static void	iwn5000_rx_calib_results(struct iwn_softc *,
206 		    struct iwn_rx_desc *);
207 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
208 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
211 		    struct iwn_rx_data *);
212 static void	iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *);
213 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
214 		    uint8_t);
215 static int	iwn_ampdu_check_bitmap(uint64_t, int, int);
216 static int	iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *,
217 		    uint64_t, int, int);
218 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
219 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
220 static void	iwn_notif_intr(struct iwn_softc *);
221 static void	iwn_wakeup_intr(struct iwn_softc *);
222 static void	iwn_rftoggle_task(void *, int);
223 static void	iwn_fatal_intr(struct iwn_softc *);
224 static void	iwn_intr(void *);
225 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
228 		    uint16_t);
229 #ifdef notyet
230 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
231 #endif
232 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *);
234 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
235 		    struct ieee80211_node *,
236 		    const struct ieee80211_bpf_params *params);
237 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
238 		    struct ieee80211_node *, struct iwn_tx_ring *);
239 static void	iwn_xmit_task(void *arg0, int pending);
240 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
241 		    const struct ieee80211_bpf_params *);
242 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
243 static void	iwn_scan_timeout(void *);
244 static void	iwn_watchdog(void *);
245 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
246 static void	iwn_parent(struct ieee80211com *);
247 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
248 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
249 		    int);
250 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
251 		    int);
252 static int	iwn_set_link_quality(struct iwn_softc *,
253 		    struct ieee80211_node *);
254 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
255 static int	iwn_updateedca(struct ieee80211com *);
256 static void	iwn_set_promisc(struct iwn_softc *);
257 static void	iwn_update_promisc(struct ieee80211com *);
258 static void	iwn_update_mcast(struct ieee80211com *);
259 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
260 static int	iwn_set_critical_temp(struct iwn_softc *);
261 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
262 static void	iwn4965_power_calibration(struct iwn_softc *, int);
263 static int	iwn4965_set_txpower(struct iwn_softc *, int);
264 static int	iwn5000_set_txpower(struct iwn_softc *, int);
265 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
266 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
267 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
268 static int	iwn4965_get_temperature(struct iwn_softc *);
269 static int	iwn5000_get_temperature(struct iwn_softc *);
270 static int	iwn_init_sensitivity(struct iwn_softc *);
271 static void	iwn_collect_noise(struct iwn_softc *,
272 		    const struct iwn_rx_general_stats *);
273 static int	iwn4965_init_gains(struct iwn_softc *);
274 static int	iwn5000_init_gains(struct iwn_softc *);
275 static int	iwn4965_set_gains(struct iwn_softc *);
276 static int	iwn5000_set_gains(struct iwn_softc *);
277 static void	iwn_tune_sensitivity(struct iwn_softc *,
278 		    const struct iwn_rx_stats *);
279 static void	iwn_save_stats_counters(struct iwn_softc *,
280 		    const struct iwn_stats *);
281 static int	iwn_send_sensitivity(struct iwn_softc *);
282 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
283 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
284 static int	iwn_send_btcoex(struct iwn_softc *);
285 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
286 static int	iwn5000_runtime_calib(struct iwn_softc *);
287 static int	iwn_check_bss_filter(struct iwn_softc *);
288 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
289 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
290 static int	iwn_send_rxon(struct iwn_softc *, int, int);
291 static int	iwn_config(struct iwn_softc *);
292 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
293 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
294 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
295 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
296 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
297 		    struct ieee80211_rx_ampdu *, int, int, int);
298 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
299 		    struct ieee80211_rx_ampdu *);
300 static int	iwn_addba_request(struct ieee80211_node *,
301 		    struct ieee80211_tx_ampdu *, int, int, int);
302 static int	iwn_addba_response(struct ieee80211_node *,
303 		    struct ieee80211_tx_ampdu *, int, int, int);
304 static int	iwn_ampdu_tx_start(struct ieee80211com *,
305 		    struct ieee80211_node *, uint8_t);
306 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
307 		    struct ieee80211_tx_ampdu *);
308 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
309 		    struct ieee80211_node *, int, uint8_t, uint16_t);
310 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
311 		    uint8_t, uint16_t);
312 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
313 		    struct ieee80211_node *, int, uint8_t, uint16_t);
314 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
315 		    uint8_t, uint16_t);
316 static int	iwn5000_query_calibration(struct iwn_softc *);
317 static int	iwn5000_send_calibration(struct iwn_softc *);
318 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
319 static int	iwn5000_crystal_calib(struct iwn_softc *);
320 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
321 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
322 static int	iwn4965_post_alive(struct iwn_softc *);
323 static int	iwn5000_post_alive(struct iwn_softc *);
324 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
325 		    int);
326 static int	iwn4965_load_firmware(struct iwn_softc *);
327 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
328 		    const uint8_t *, int);
329 static int	iwn5000_load_firmware(struct iwn_softc *);
330 static int	iwn_read_firmware_leg(struct iwn_softc *,
331 		    struct iwn_fw_info *);
332 static int	iwn_read_firmware_tlv(struct iwn_softc *,
333 		    struct iwn_fw_info *, uint16_t);
334 static int	iwn_read_firmware(struct iwn_softc *);
335 static void	iwn_unload_firmware(struct iwn_softc *);
336 static int	iwn_clock_wait(struct iwn_softc *);
337 static int	iwn_apm_init(struct iwn_softc *);
338 static void	iwn_apm_stop_master(struct iwn_softc *);
339 static void	iwn_apm_stop(struct iwn_softc *);
340 static int	iwn4965_nic_config(struct iwn_softc *);
341 static int	iwn5000_nic_config(struct iwn_softc *);
342 static int	iwn_hw_prepare(struct iwn_softc *);
343 static int	iwn_hw_init(struct iwn_softc *);
344 static void	iwn_hw_stop(struct iwn_softc *);
345 static void	iwn_panicked(void *, int);
346 static int	iwn_init_locked(struct iwn_softc *);
347 static int	iwn_init(struct iwn_softc *);
348 static void	iwn_stop_locked(struct iwn_softc *);
349 static void	iwn_stop(struct iwn_softc *);
350 static void	iwn_scan_start(struct ieee80211com *);
351 static void	iwn_scan_end(struct ieee80211com *);
352 static void	iwn_set_channel(struct ieee80211com *);
353 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
354 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
355 #ifdef	IWN_DEBUG
356 static char	*iwn_get_csr_string(int);
357 static void	iwn_debug_register(struct iwn_softc *);
358 #endif
359 
360 static device_method_t iwn_methods[] = {
361 	/* Device interface */
362 	DEVMETHOD(device_probe,		iwn_probe),
363 	DEVMETHOD(device_attach,	iwn_attach),
364 	DEVMETHOD(device_detach,	iwn_detach),
365 	DEVMETHOD(device_shutdown,	iwn_shutdown),
366 	DEVMETHOD(device_suspend,	iwn_suspend),
367 	DEVMETHOD(device_resume,	iwn_resume),
368 
369 	DEVMETHOD_END
370 };
371 
372 static driver_t iwn_driver = {
373 	"iwn",
374 	iwn_methods,
375 	sizeof(struct iwn_softc)
376 };
377 
378 DRIVER_MODULE(iwn, pci, iwn_driver, NULL, NULL);
379 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
380     nitems(iwn_ident_table) - 1);
381 MODULE_VERSION(iwn, 1);
382 
383 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
384 MODULE_DEPEND(iwn, pci, 1, 1, 1);
385 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
386 
387 static d_ioctl_t iwn_cdev_ioctl;
388 static d_open_t iwn_cdev_open;
389 static d_close_t iwn_cdev_close;
390 
391 static struct cdevsw iwn_cdevsw = {
392 	.d_version = D_VERSION,
393 	.d_flags = 0,
394 	.d_open = iwn_cdev_open,
395 	.d_close = iwn_cdev_close,
396 	.d_ioctl = iwn_cdev_ioctl,
397 	.d_name = "iwn",
398 };
399 
400 static int
401 iwn_probe(device_t dev)
402 {
403 	const struct iwn_ident *ident;
404 
405 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
406 		if (pci_get_vendor(dev) == ident->vendor &&
407 		    pci_get_device(dev) == ident->device) {
408 			device_set_desc(dev, ident->name);
409 			return (BUS_PROBE_DEFAULT);
410 		}
411 	}
412 	return ENXIO;
413 }
414 
415 static int
416 iwn_is_3stream_device(struct iwn_softc *sc)
417 {
418 	/* XXX for now only 5300, until the 5350 can be tested */
419 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
420 		return (1);
421 	return (0);
422 }
423 
424 static int
425 iwn_attach(device_t dev)
426 {
427 	struct iwn_softc *sc = device_get_softc(dev);
428 	struct ieee80211com *ic;
429 	int i, error, rid;
430 
431 	sc->sc_dev = dev;
432 
433 #ifdef	IWN_DEBUG
434 	error = resource_int_value(device_get_name(sc->sc_dev),
435 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
436 	if (error != 0)
437 		sc->sc_debug = 0;
438 #else
439 	sc->sc_debug = 0;
440 #endif
441 
442 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
443 
444 	/*
445 	 * Get the offset of the PCI Express Capability Structure in PCI
446 	 * Configuration Space.
447 	 */
448 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
449 	if (error != 0) {
450 		device_printf(dev, "PCIe capability structure not found!\n");
451 		return error;
452 	}
453 
454 	/* Clear device-specific "PCI retry timeout" register (41h). */
455 	pci_write_config(dev, 0x41, 0, 1);
456 
457 	/* Enable bus-mastering. */
458 	pci_enable_busmaster(dev);
459 
460 	rid = PCIR_BAR(0);
461 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
462 	    RF_ACTIVE);
463 	if (sc->mem == NULL) {
464 		device_printf(dev, "can't map mem space\n");
465 		error = ENOMEM;
466 		return error;
467 	}
468 	sc->sc_st = rman_get_bustag(sc->mem);
469 	sc->sc_sh = rman_get_bushandle(sc->mem);
470 
471 	i = 1;
472 	rid = 0;
473 	if (pci_alloc_msi(dev, &i) == 0)
474 		rid = 1;
475 	/* Install interrupt handler. */
476 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
477 	    (rid != 0 ? 0 : RF_SHAREABLE));
478 	if (sc->irq == NULL) {
479 		device_printf(dev, "can't map interrupt\n");
480 		error = ENOMEM;
481 		goto fail;
482 	}
483 
484 	IWN_LOCK_INIT(sc);
485 
486 	/* Read hardware revision and attach. */
487 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
488 	    & IWN_HW_REV_TYPE_MASK;
489 	sc->subdevice_id = pci_get_subdevice(dev);
490 
491 	/*
492 	 * 4965 versus 5000 and later have different methods.
493 	 * Let's set those up first.
494 	 */
495 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
496 		iwn4965_attach(sc, pci_get_device(dev));
497 	else
498 		iwn5000_attach(sc, pci_get_device(dev));
499 
500 	/*
501 	 * Next, let's setup the various parameters of each NIC.
502 	 */
503 	error = iwn_config_specific(sc, pci_get_device(dev));
504 	if (error != 0) {
505 		device_printf(dev, "could not attach device, error %d\n",
506 		    error);
507 		goto fail;
508 	}
509 
510 	if ((error = iwn_hw_prepare(sc)) != 0) {
511 		device_printf(dev, "hardware not ready, error %d\n", error);
512 		goto fail;
513 	}
514 
515 	/* Allocate DMA memory for firmware transfers. */
516 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
517 		device_printf(dev,
518 		    "could not allocate memory for firmware, error %d\n",
519 		    error);
520 		goto fail;
521 	}
522 
523 	/* Allocate "Keep Warm" page. */
524 	if ((error = iwn_alloc_kw(sc)) != 0) {
525 		device_printf(dev,
526 		    "could not allocate keep warm page, error %d\n", error);
527 		goto fail;
528 	}
529 
530 	/* Allocate ICT table for 5000 Series. */
531 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
532 	    (error = iwn_alloc_ict(sc)) != 0) {
533 		device_printf(dev, "could not allocate ICT table, error %d\n",
534 		    error);
535 		goto fail;
536 	}
537 
538 	/* Allocate TX scheduler "rings". */
539 	if ((error = iwn_alloc_sched(sc)) != 0) {
540 		device_printf(dev,
541 		    "could not allocate TX scheduler rings, error %d\n", error);
542 		goto fail;
543 	}
544 
545 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
546 	for (i = 0; i < sc->ntxqs; i++) {
547 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
548 			device_printf(dev,
549 			    "could not allocate TX ring %d, error %d\n", i,
550 			    error);
551 			goto fail;
552 		}
553 	}
554 
555 	/* Allocate RX ring. */
556 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
557 		device_printf(dev, "could not allocate RX ring, error %d\n",
558 		    error);
559 		goto fail;
560 	}
561 
562 	/* Clear pending interrupts. */
563 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
564 
565 	ic = &sc->sc_ic;
566 	ic->ic_softc = sc;
567 	ic->ic_name = device_get_nameunit(dev);
568 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
569 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
570 
571 	/* Set device capabilities. */
572 	ic->ic_caps =
573 		  IEEE80211_C_STA		/* station mode supported */
574 		| IEEE80211_C_MONITOR		/* monitor mode supported */
575 #if 0
576 		| IEEE80211_C_BGSCAN		/* background scanning */
577 #endif
578 		| IEEE80211_C_TXPMGT		/* tx power management */
579 		| IEEE80211_C_SHSLOT		/* short slot time supported */
580 		| IEEE80211_C_WPA
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 #if 0
583 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
584 #endif
585 		| IEEE80211_C_WME		/* WME */
586 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
587 		;
588 
589 	/* Read MAC address, channels, etc from EEPROM. */
590 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
591 		device_printf(dev, "could not read EEPROM, error %d\n",
592 		    error);
593 		goto fail;
594 	}
595 
596 	/* Count the number of available chains. */
597 	sc->ntxchains =
598 	    ((sc->txchainmask >> 2) & 1) +
599 	    ((sc->txchainmask >> 1) & 1) +
600 	    ((sc->txchainmask >> 0) & 1);
601 	sc->nrxchains =
602 	    ((sc->rxchainmask >> 2) & 1) +
603 	    ((sc->rxchainmask >> 1) & 1) +
604 	    ((sc->rxchainmask >> 0) & 1);
605 	if (bootverbose) {
606 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
607 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
608 		    ic->ic_macaddr, ":");
609 	}
610 
611 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
612 		ic->ic_rxstream = sc->nrxchains;
613 		ic->ic_txstream = sc->ntxchains;
614 
615 		/*
616 		 * Some of the 3 antenna devices (ie, the 4965) only supports
617 		 * 2x2 operation.  So correct the number of streams if
618 		 * it's not a 3-stream device.
619 		 */
620 		if (! iwn_is_3stream_device(sc)) {
621 			if (ic->ic_rxstream > 2)
622 				ic->ic_rxstream = 2;
623 			if (ic->ic_txstream > 2)
624 				ic->ic_txstream = 2;
625 		}
626 
627 		ic->ic_htcaps =
628 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
629 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
630 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
631 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
632 #ifdef notyet
633 			| IEEE80211_HTCAP_GREENFIELD
634 #if IWN_RBUF_SIZE == 8192
635 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
636 #else
637 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
638 #endif
639 #endif
640 			/* s/w capabilities */
641 			| IEEE80211_HTC_HT		/* HT operation */
642 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
643 #ifdef notyet
644 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
645 #endif
646 			;
647 	}
648 
649 	ieee80211_ifattach(ic);
650 	ic->ic_vap_create = iwn_vap_create;
651 	ic->ic_ioctl = iwn_ioctl;
652 	ic->ic_parent = iwn_parent;
653 	ic->ic_vap_delete = iwn_vap_delete;
654 	ic->ic_transmit = iwn_transmit;
655 	ic->ic_raw_xmit = iwn_raw_xmit;
656 	ic->ic_node_alloc = iwn_node_alloc;
657 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
658 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
659 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
660 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
661 	sc->sc_addba_request = ic->ic_addba_request;
662 	ic->ic_addba_request = iwn_addba_request;
663 	sc->sc_addba_response = ic->ic_addba_response;
664 	ic->ic_addba_response = iwn_addba_response;
665 	sc->sc_addba_stop = ic->ic_addba_stop;
666 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
667 	ic->ic_newassoc = iwn_newassoc;
668 	ic->ic_wme.wme_update = iwn_updateedca;
669 	ic->ic_update_promisc = iwn_update_promisc;
670 	ic->ic_update_mcast = iwn_update_mcast;
671 	ic->ic_scan_start = iwn_scan_start;
672 	ic->ic_scan_end = iwn_scan_end;
673 	ic->ic_set_channel = iwn_set_channel;
674 	ic->ic_scan_curchan = iwn_scan_curchan;
675 	ic->ic_scan_mindwell = iwn_scan_mindwell;
676 	ic->ic_getradiocaps = iwn_getradiocaps;
677 	ic->ic_setregdomain = iwn_setregdomain;
678 
679 	iwn_radiotap_attach(sc);
680 
681 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
682 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
683 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
684 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
685 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
686 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
687 
688 	mbufq_init(&sc->sc_xmit_queue, 1024);
689 
690 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
691 	    taskqueue_thread_enqueue, &sc->sc_tq);
692 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
693 	if (error != 0) {
694 		device_printf(dev, "can't start threads, error %d\n", error);
695 		goto fail;
696 	}
697 
698 	iwn_sysctlattach(sc);
699 
700 	/*
701 	 * Hook our interrupt after all initialization is complete.
702 	 */
703 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
704 	    NULL, iwn_intr, sc, &sc->sc_ih);
705 	if (error != 0) {
706 		device_printf(dev, "can't establish interrupt, error %d\n",
707 		    error);
708 		goto fail;
709 	}
710 
711 #if 0
712 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
713 	    __func__,
714 	    sizeof(struct iwn_stats),
715 	    sizeof(struct iwn_stats_bt));
716 #endif
717 
718 	if (bootverbose)
719 		ieee80211_announce(ic);
720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
721 
722 	/* Add debug ioctl right at the end */
723 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
724 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
725 	if (sc->sc_cdev == NULL) {
726 		device_printf(dev, "failed to create debug character device\n");
727 	} else {
728 		sc->sc_cdev->si_drv1 = sc;
729 	}
730 	return 0;
731 fail:
732 	iwn_detach(dev);
733 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
734 	return error;
735 }
736 
737 /*
738  * Define specific configuration based on device id and subdevice id
739  * pid : PCI device id
740  */
741 static int
742 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
743 {
744 
745 	switch (pid) {
746 /* 4965 series */
747 	case IWN_DID_4965_1:
748 	case IWN_DID_4965_2:
749 	case IWN_DID_4965_3:
750 	case IWN_DID_4965_4:
751 		sc->base_params = &iwn4965_base_params;
752 		sc->limits = &iwn4965_sensitivity_limits;
753 		sc->fwname = "iwn4965fw";
754 		/* Override chains masks, ROM is known to be broken. */
755 		sc->txchainmask = IWN_ANT_AB;
756 		sc->rxchainmask = IWN_ANT_ABC;
757 		/* Enable normal btcoex */
758 		sc->sc_flags |= IWN_FLAG_BTCOEX;
759 		break;
760 /* 1000 Series */
761 	case IWN_DID_1000_1:
762 	case IWN_DID_1000_2:
763 		switch(sc->subdevice_id) {
764 			case	IWN_SDID_1000_1:
765 			case	IWN_SDID_1000_2:
766 			case	IWN_SDID_1000_3:
767 			case	IWN_SDID_1000_4:
768 			case	IWN_SDID_1000_5:
769 			case	IWN_SDID_1000_6:
770 			case	IWN_SDID_1000_7:
771 			case	IWN_SDID_1000_8:
772 			case	IWN_SDID_1000_9:
773 			case	IWN_SDID_1000_10:
774 			case	IWN_SDID_1000_11:
775 			case	IWN_SDID_1000_12:
776 				sc->limits = &iwn1000_sensitivity_limits;
777 				sc->base_params = &iwn1000_base_params;
778 				sc->fwname = "iwn1000fw";
779 				break;
780 			default:
781 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
782 				    "0x%04x rev %d not supported (subdevice)\n", pid,
783 				    sc->subdevice_id,sc->hw_type);
784 				return ENOTSUP;
785 		}
786 		break;
787 /* 6x00 Series */
788 	case IWN_DID_6x00_2:
789 	case IWN_DID_6x00_4:
790 	case IWN_DID_6x00_1:
791 	case IWN_DID_6x00_3:
792 		sc->fwname = "iwn6000fw";
793 		sc->limits = &iwn6000_sensitivity_limits;
794 		switch(sc->subdevice_id) {
795 			case IWN_SDID_6x00_1:
796 			case IWN_SDID_6x00_2:
797 			case IWN_SDID_6x00_8:
798 				//iwl6000_3agn_cfg
799 				sc->base_params = &iwn_6000_base_params;
800 				break;
801 			case IWN_SDID_6x00_3:
802 			case IWN_SDID_6x00_6:
803 			case IWN_SDID_6x00_9:
804 				////iwl6000i_2agn
805 			case IWN_SDID_6x00_4:
806 			case IWN_SDID_6x00_7:
807 			case IWN_SDID_6x00_10:
808 				//iwl6000i_2abg_cfg
809 			case IWN_SDID_6x00_5:
810 				//iwl6000i_2bg_cfg
811 				sc->base_params = &iwn_6000i_base_params;
812 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
813 				sc->txchainmask = IWN_ANT_BC;
814 				sc->rxchainmask = IWN_ANT_BC;
815 				break;
816 			default:
817 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
818 				    "0x%04x rev %d not supported (subdevice)\n", pid,
819 				    sc->subdevice_id,sc->hw_type);
820 				return ENOTSUP;
821 		}
822 		break;
823 /* 6x05 Series */
824 	case IWN_DID_6x05_1:
825 	case IWN_DID_6x05_2:
826 		switch(sc->subdevice_id) {
827 			case IWN_SDID_6x05_1:
828 			case IWN_SDID_6x05_4:
829 			case IWN_SDID_6x05_6:
830 				//iwl6005_2agn_cfg
831 			case IWN_SDID_6x05_2:
832 			case IWN_SDID_6x05_5:
833 			case IWN_SDID_6x05_7:
834 				//iwl6005_2abg_cfg
835 			case IWN_SDID_6x05_3:
836 				//iwl6005_2bg_cfg
837 			case IWN_SDID_6x05_8:
838 			case IWN_SDID_6x05_9:
839 				//iwl6005_2agn_sff_cfg
840 			case IWN_SDID_6x05_10:
841 				//iwl6005_2agn_d_cfg
842 			case IWN_SDID_6x05_11:
843 				//iwl6005_2agn_mow1_cfg
844 			case IWN_SDID_6x05_12:
845 				//iwl6005_2agn_mow2_cfg
846 				sc->fwname = "iwn6000g2afw";
847 				sc->limits = &iwn6000_sensitivity_limits;
848 				sc->base_params = &iwn_6000g2_base_params;
849 				break;
850 			default:
851 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
852 				    "0x%04x rev %d not supported (subdevice)\n", pid,
853 				    sc->subdevice_id,sc->hw_type);
854 				return ENOTSUP;
855 		}
856 		break;
857 /* 6x35 Series */
858 	case IWN_DID_6035_1:
859 	case IWN_DID_6035_2:
860 		switch(sc->subdevice_id) {
861 			case IWN_SDID_6035_1:
862 			case IWN_SDID_6035_2:
863 			case IWN_SDID_6035_3:
864 			case IWN_SDID_6035_4:
865 			case IWN_SDID_6035_5:
866 				sc->fwname = "iwn6000g2bfw";
867 				sc->limits = &iwn6235_sensitivity_limits;
868 				sc->base_params = &iwn_6235_base_params;
869 				break;
870 			default:
871 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
872 				    "0x%04x rev %d not supported (subdevice)\n", pid,
873 				    sc->subdevice_id,sc->hw_type);
874 				return ENOTSUP;
875 		}
876 		break;
877 /* 6x50 WiFi/WiMax Series */
878 	case IWN_DID_6050_1:
879 	case IWN_DID_6050_2:
880 		switch(sc->subdevice_id) {
881 			case IWN_SDID_6050_1:
882 			case IWN_SDID_6050_3:
883 			case IWN_SDID_6050_5:
884 				//iwl6050_2agn_cfg
885 			case IWN_SDID_6050_2:
886 			case IWN_SDID_6050_4:
887 			case IWN_SDID_6050_6:
888 				//iwl6050_2abg_cfg
889 				sc->fwname = "iwn6050fw";
890 				sc->txchainmask = IWN_ANT_AB;
891 				sc->rxchainmask = IWN_ANT_AB;
892 				sc->limits = &iwn6000_sensitivity_limits;
893 				sc->base_params = &iwn_6050_base_params;
894 				break;
895 			default:
896 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
897 				    "0x%04x rev %d not supported (subdevice)\n", pid,
898 				    sc->subdevice_id,sc->hw_type);
899 				return ENOTSUP;
900 		}
901 		break;
902 /* 6150 WiFi/WiMax Series */
903 	case IWN_DID_6150_1:
904 	case IWN_DID_6150_2:
905 		switch(sc->subdevice_id) {
906 			case IWN_SDID_6150_1:
907 			case IWN_SDID_6150_3:
908 			case IWN_SDID_6150_5:
909 				// iwl6150_bgn_cfg
910 			case IWN_SDID_6150_2:
911 			case IWN_SDID_6150_4:
912 			case IWN_SDID_6150_6:
913 				//iwl6150_bg_cfg
914 				sc->fwname = "iwn6050fw";
915 				sc->limits = &iwn6000_sensitivity_limits;
916 				sc->base_params = &iwn_6150_base_params;
917 				break;
918 			default:
919 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
920 				    "0x%04x rev %d not supported (subdevice)\n", pid,
921 				    sc->subdevice_id,sc->hw_type);
922 				return ENOTSUP;
923 		}
924 		break;
925 /* 6030 Series and 1030 Series */
926 	case IWN_DID_x030_1:
927 	case IWN_DID_x030_2:
928 	case IWN_DID_x030_3:
929 	case IWN_DID_x030_4:
930 		switch(sc->subdevice_id) {
931 			case IWN_SDID_x030_1:
932 			case IWN_SDID_x030_3:
933 			case IWN_SDID_x030_5:
934 			// iwl1030_bgn_cfg
935 			case IWN_SDID_x030_2:
936 			case IWN_SDID_x030_4:
937 			case IWN_SDID_x030_6:
938 			//iwl1030_bg_cfg
939 			case IWN_SDID_x030_7:
940 			case IWN_SDID_x030_10:
941 			case IWN_SDID_x030_14:
942 			//iwl6030_2agn_cfg
943 			case IWN_SDID_x030_8:
944 			case IWN_SDID_x030_11:
945 			case IWN_SDID_x030_15:
946 			// iwl6030_2bgn_cfg
947 			case IWN_SDID_x030_9:
948 			case IWN_SDID_x030_12:
949 			case IWN_SDID_x030_16:
950 			// iwl6030_2abg_cfg
951 			case IWN_SDID_x030_13:
952 			//iwl6030_2bg_cfg
953 				sc->fwname = "iwn6000g2bfw";
954 				sc->limits = &iwn6000_sensitivity_limits;
955 				sc->base_params = &iwn_6000g2b_base_params;
956 				break;
957 			default:
958 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
959 				    "0x%04x rev %d not supported (subdevice)\n", pid,
960 				    sc->subdevice_id,sc->hw_type);
961 				return ENOTSUP;
962 		}
963 		break;
964 /* 130 Series WiFi */
965 /* XXX: This series will need adjustment for rate.
966  * see rx_with_siso_diversity in linux kernel
967  */
968 	case IWN_DID_130_1:
969 	case IWN_DID_130_2:
970 		switch(sc->subdevice_id) {
971 			case IWN_SDID_130_1:
972 			case IWN_SDID_130_3:
973 			case IWN_SDID_130_5:
974 			//iwl130_bgn_cfg
975 			case IWN_SDID_130_2:
976 			case IWN_SDID_130_4:
977 			case IWN_SDID_130_6:
978 			//iwl130_bg_cfg
979 				sc->fwname = "iwn6000g2bfw";
980 				sc->limits = &iwn6000_sensitivity_limits;
981 				sc->base_params = &iwn_6000g2b_base_params;
982 				break;
983 			default:
984 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
985 				    "0x%04x rev %d not supported (subdevice)\n", pid,
986 				    sc->subdevice_id,sc->hw_type);
987 				return ENOTSUP;
988 		}
989 		break;
990 /* 100 Series WiFi */
991 	case IWN_DID_100_1:
992 	case IWN_DID_100_2:
993 		switch(sc->subdevice_id) {
994 			case IWN_SDID_100_1:
995 			case IWN_SDID_100_2:
996 			case IWN_SDID_100_3:
997 			case IWN_SDID_100_4:
998 			case IWN_SDID_100_5:
999 			case IWN_SDID_100_6:
1000 				sc->limits = &iwn1000_sensitivity_limits;
1001 				sc->base_params = &iwn1000_base_params;
1002 				sc->fwname = "iwn100fw";
1003 				break;
1004 			default:
1005 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1006 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1007 				    sc->subdevice_id,sc->hw_type);
1008 				return ENOTSUP;
1009 		}
1010 		break;
1011 
1012 /* 105 Series */
1013 /* XXX: This series will need adjustment for rate.
1014  * see rx_with_siso_diversity in linux kernel
1015  */
1016 	case IWN_DID_105_1:
1017 	case IWN_DID_105_2:
1018 		switch(sc->subdevice_id) {
1019 			case IWN_SDID_105_1:
1020 			case IWN_SDID_105_2:
1021 			case IWN_SDID_105_3:
1022 			//iwl105_bgn_cfg
1023 			case IWN_SDID_105_4:
1024 			//iwl105_bgn_d_cfg
1025 				sc->limits = &iwn2030_sensitivity_limits;
1026 				sc->base_params = &iwn2000_base_params;
1027 				sc->fwname = "iwn105fw";
1028 				break;
1029 			default:
1030 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1031 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1032 				    sc->subdevice_id,sc->hw_type);
1033 				return ENOTSUP;
1034 		}
1035 		break;
1036 
1037 /* 135 Series */
1038 /* XXX: This series will need adjustment for rate.
1039  * see rx_with_siso_diversity in linux kernel
1040  */
1041 	case IWN_DID_135_1:
1042 	case IWN_DID_135_2:
1043 		switch(sc->subdevice_id) {
1044 			case IWN_SDID_135_1:
1045 			case IWN_SDID_135_2:
1046 			case IWN_SDID_135_3:
1047 				sc->limits = &iwn2030_sensitivity_limits;
1048 				sc->base_params = &iwn2030_base_params;
1049 				sc->fwname = "iwn135fw";
1050 				break;
1051 			default:
1052 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1053 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1054 				    sc->subdevice_id,sc->hw_type);
1055 				return ENOTSUP;
1056 		}
1057 		break;
1058 
1059 /* 2x00 Series */
1060 	case IWN_DID_2x00_1:
1061 	case IWN_DID_2x00_2:
1062 		switch(sc->subdevice_id) {
1063 			case IWN_SDID_2x00_1:
1064 			case IWN_SDID_2x00_2:
1065 			case IWN_SDID_2x00_3:
1066 			//iwl2000_2bgn_cfg
1067 			case IWN_SDID_2x00_4:
1068 			//iwl2000_2bgn_d_cfg
1069 				sc->limits = &iwn2030_sensitivity_limits;
1070 				sc->base_params = &iwn2000_base_params;
1071 				sc->fwname = "iwn2000fw";
1072 				break;
1073 			default:
1074 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1075 				    "0x%04x rev %d not supported (subdevice) \n",
1076 				    pid, sc->subdevice_id, sc->hw_type);
1077 				return ENOTSUP;
1078 		}
1079 		break;
1080 /* 2x30 Series */
1081 	case IWN_DID_2x30_1:
1082 	case IWN_DID_2x30_2:
1083 		switch(sc->subdevice_id) {
1084 			case IWN_SDID_2x30_1:
1085 			case IWN_SDID_2x30_3:
1086 			case IWN_SDID_2x30_5:
1087 			//iwl100_bgn_cfg
1088 			case IWN_SDID_2x30_2:
1089 			case IWN_SDID_2x30_4:
1090 			case IWN_SDID_2x30_6:
1091 			//iwl100_bg_cfg
1092 				sc->limits = &iwn2030_sensitivity_limits;
1093 				sc->base_params = &iwn2030_base_params;
1094 				sc->fwname = "iwn2030fw";
1095 				break;
1096 			default:
1097 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1098 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1099 				    sc->subdevice_id,sc->hw_type);
1100 				return ENOTSUP;
1101 		}
1102 		break;
1103 /* 5x00 Series */
1104 	case IWN_DID_5x00_1:
1105 	case IWN_DID_5x00_2:
1106 	case IWN_DID_5x00_3:
1107 	case IWN_DID_5x00_4:
1108 		sc->limits = &iwn5000_sensitivity_limits;
1109 		sc->base_params = &iwn5000_base_params;
1110 		sc->fwname = "iwn5000fw";
1111 		switch(sc->subdevice_id) {
1112 			case IWN_SDID_5x00_1:
1113 			case IWN_SDID_5x00_2:
1114 			case IWN_SDID_5x00_3:
1115 			case IWN_SDID_5x00_4:
1116 			case IWN_SDID_5x00_9:
1117 			case IWN_SDID_5x00_10:
1118 			case IWN_SDID_5x00_11:
1119 			case IWN_SDID_5x00_12:
1120 			case IWN_SDID_5x00_17:
1121 			case IWN_SDID_5x00_18:
1122 			case IWN_SDID_5x00_19:
1123 			case IWN_SDID_5x00_20:
1124 			//iwl5100_agn_cfg
1125 				sc->txchainmask = IWN_ANT_B;
1126 				sc->rxchainmask = IWN_ANT_AB;
1127 				break;
1128 			case IWN_SDID_5x00_5:
1129 			case IWN_SDID_5x00_6:
1130 			case IWN_SDID_5x00_13:
1131 			case IWN_SDID_5x00_14:
1132 			case IWN_SDID_5x00_21:
1133 			case IWN_SDID_5x00_22:
1134 			//iwl5100_bgn_cfg
1135 				sc->txchainmask = IWN_ANT_B;
1136 				sc->rxchainmask = IWN_ANT_AB;
1137 				break;
1138 			case IWN_SDID_5x00_7:
1139 			case IWN_SDID_5x00_8:
1140 			case IWN_SDID_5x00_15:
1141 			case IWN_SDID_5x00_16:
1142 			case IWN_SDID_5x00_23:
1143 			case IWN_SDID_5x00_24:
1144 			//iwl5100_abg_cfg
1145 				sc->txchainmask = IWN_ANT_B;
1146 				sc->rxchainmask = IWN_ANT_AB;
1147 				break;
1148 			case IWN_SDID_5x00_25:
1149 			case IWN_SDID_5x00_26:
1150 			case IWN_SDID_5x00_27:
1151 			case IWN_SDID_5x00_28:
1152 			case IWN_SDID_5x00_29:
1153 			case IWN_SDID_5x00_30:
1154 			case IWN_SDID_5x00_31:
1155 			case IWN_SDID_5x00_32:
1156 			case IWN_SDID_5x00_33:
1157 			case IWN_SDID_5x00_34:
1158 			case IWN_SDID_5x00_35:
1159 			case IWN_SDID_5x00_36:
1160 			//iwl5300_agn_cfg
1161 				sc->txchainmask = IWN_ANT_ABC;
1162 				sc->rxchainmask = IWN_ANT_ABC;
1163 				break;
1164 			default:
1165 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1166 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1167 				    sc->subdevice_id,sc->hw_type);
1168 				return ENOTSUP;
1169 		}
1170 		break;
1171 /* 5x50 Series */
1172 	case IWN_DID_5x50_1:
1173 	case IWN_DID_5x50_2:
1174 	case IWN_DID_5x50_3:
1175 	case IWN_DID_5x50_4:
1176 		sc->limits = &iwn5000_sensitivity_limits;
1177 		sc->base_params = &iwn5000_base_params;
1178 		sc->fwname = "iwn5000fw";
1179 		switch(sc->subdevice_id) {
1180 			case IWN_SDID_5x50_1:
1181 			case IWN_SDID_5x50_2:
1182 			case IWN_SDID_5x50_3:
1183 			//iwl5350_agn_cfg
1184 				sc->limits = &iwn5000_sensitivity_limits;
1185 				sc->base_params = &iwn5000_base_params;
1186 				sc->fwname = "iwn5000fw";
1187 				break;
1188 			case IWN_SDID_5x50_4:
1189 			case IWN_SDID_5x50_5:
1190 			case IWN_SDID_5x50_8:
1191 			case IWN_SDID_5x50_9:
1192 			case IWN_SDID_5x50_10:
1193 			case IWN_SDID_5x50_11:
1194 			//iwl5150_agn_cfg
1195 			case IWN_SDID_5x50_6:
1196 			case IWN_SDID_5x50_7:
1197 			case IWN_SDID_5x50_12:
1198 			case IWN_SDID_5x50_13:
1199 			//iwl5150_abg_cfg
1200 				sc->limits = &iwn5000_sensitivity_limits;
1201 				sc->fwname = "iwn5150fw";
1202 				sc->base_params = &iwn_5x50_base_params;
1203 				break;
1204 			default:
1205 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1206 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1207 				    sc->subdevice_id,sc->hw_type);
1208 				return ENOTSUP;
1209 		}
1210 		break;
1211 	default:
1212 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1213 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1214 		     sc->hw_type);
1215 		return ENOTSUP;
1216 	}
1217 	return 0;
1218 }
1219 
1220 static void
1221 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1222 {
1223 	struct iwn_ops *ops = &sc->ops;
1224 
1225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1226 
1227 	ops->load_firmware = iwn4965_load_firmware;
1228 	ops->read_eeprom = iwn4965_read_eeprom;
1229 	ops->post_alive = iwn4965_post_alive;
1230 	ops->nic_config = iwn4965_nic_config;
1231 	ops->update_sched = iwn4965_update_sched;
1232 	ops->get_temperature = iwn4965_get_temperature;
1233 	ops->get_rssi = iwn4965_get_rssi;
1234 	ops->set_txpower = iwn4965_set_txpower;
1235 	ops->init_gains = iwn4965_init_gains;
1236 	ops->set_gains = iwn4965_set_gains;
1237 	ops->rxon_assoc = iwn4965_rxon_assoc;
1238 	ops->add_node = iwn4965_add_node;
1239 	ops->tx_done = iwn4965_tx_done;
1240 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1241 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1242 	sc->ntxqs = IWN4965_NTXQUEUES;
1243 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1244 	sc->ndmachnls = IWN4965_NDMACHNLS;
1245 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1246 	sc->rxonsz = IWN4965_RXONSZ;
1247 	sc->schedsz = IWN4965_SCHEDSZ;
1248 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1249 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1250 	sc->fwsz = IWN4965_FWSZ;
1251 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1252 	sc->limits = &iwn4965_sensitivity_limits;
1253 	sc->fwname = "iwn4965fw";
1254 	/* Override chains masks, ROM is known to be broken. */
1255 	sc->txchainmask = IWN_ANT_AB;
1256 	sc->rxchainmask = IWN_ANT_ABC;
1257 	/* Enable normal btcoex */
1258 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1259 
1260 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1261 }
1262 
1263 static void
1264 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1265 {
1266 	struct iwn_ops *ops = &sc->ops;
1267 
1268 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1269 
1270 	ops->load_firmware = iwn5000_load_firmware;
1271 	ops->read_eeprom = iwn5000_read_eeprom;
1272 	ops->post_alive = iwn5000_post_alive;
1273 	ops->nic_config = iwn5000_nic_config;
1274 	ops->update_sched = iwn5000_update_sched;
1275 	ops->get_temperature = iwn5000_get_temperature;
1276 	ops->get_rssi = iwn5000_get_rssi;
1277 	ops->set_txpower = iwn5000_set_txpower;
1278 	ops->init_gains = iwn5000_init_gains;
1279 	ops->set_gains = iwn5000_set_gains;
1280 	ops->rxon_assoc = iwn5000_rxon_assoc;
1281 	ops->add_node = iwn5000_add_node;
1282 	ops->tx_done = iwn5000_tx_done;
1283 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1284 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1285 	sc->ntxqs = IWN5000_NTXQUEUES;
1286 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1287 	sc->ndmachnls = IWN5000_NDMACHNLS;
1288 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1289 	sc->rxonsz = IWN5000_RXONSZ;
1290 	sc->schedsz = IWN5000_SCHEDSZ;
1291 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1292 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1293 	sc->fwsz = IWN5000_FWSZ;
1294 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1295 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1296 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1297 
1298 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1299 }
1300 
1301 /*
1302  * Attach the interface to 802.11 radiotap.
1303  */
1304 static void
1305 iwn_radiotap_attach(struct iwn_softc *sc)
1306 {
1307 
1308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1309 	ieee80211_radiotap_attach(&sc->sc_ic,
1310 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1311 		IWN_TX_RADIOTAP_PRESENT,
1312 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1313 		IWN_RX_RADIOTAP_PRESENT);
1314 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1315 }
1316 
1317 static void
1318 iwn_sysctlattach(struct iwn_softc *sc)
1319 {
1320 #ifdef	IWN_DEBUG
1321 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1322 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1323 
1324 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1325 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1326 		"control debugging printfs");
1327 #endif
1328 }
1329 
1330 static struct ieee80211vap *
1331 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1332     enum ieee80211_opmode opmode, int flags,
1333     const uint8_t bssid[IEEE80211_ADDR_LEN],
1334     const uint8_t mac[IEEE80211_ADDR_LEN])
1335 {
1336 	struct iwn_softc *sc = ic->ic_softc;
1337 	struct iwn_vap *ivp;
1338 	struct ieee80211vap *vap;
1339 
1340 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1341 		return NULL;
1342 
1343 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1344 	vap = &ivp->iv_vap;
1345 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1346 	ivp->ctx = IWN_RXON_BSS_CTX;
1347 	vap->iv_bmissthreshold = 10;		/* override default */
1348 	/* Override with driver methods. */
1349 	ivp->iv_newstate = vap->iv_newstate;
1350 	vap->iv_newstate = iwn_newstate;
1351 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1352 	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1353 	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */
1354 
1355 	ieee80211_ratectl_init(vap);
1356 	/* Complete setup. */
1357 	ieee80211_vap_attach(vap, ieee80211_media_change,
1358 	    ieee80211_media_status, mac);
1359 	ic->ic_opmode = opmode;
1360 	return vap;
1361 }
1362 
1363 static void
1364 iwn_vap_delete(struct ieee80211vap *vap)
1365 {
1366 	struct iwn_vap *ivp = IWN_VAP(vap);
1367 
1368 	ieee80211_ratectl_deinit(vap);
1369 	ieee80211_vap_detach(vap);
1370 	free(ivp, M_80211_VAP);
1371 }
1372 
1373 static void
1374 iwn_xmit_queue_drain(struct iwn_softc *sc)
1375 {
1376 	struct mbuf *m;
1377 	struct ieee80211_node *ni;
1378 
1379 	IWN_LOCK_ASSERT(sc);
1380 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1381 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1382 		ieee80211_free_node(ni);
1383 		m_freem(m);
1384 	}
1385 }
1386 
1387 static int
1388 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1389 {
1390 
1391 	IWN_LOCK_ASSERT(sc);
1392 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1393 }
1394 
1395 static int
1396 iwn_detach(device_t dev)
1397 {
1398 	struct iwn_softc *sc = device_get_softc(dev);
1399 	int qid;
1400 
1401 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1402 
1403 	if (sc->sc_ic.ic_softc != NULL) {
1404 		/* Free the mbuf queue and node references */
1405 		IWN_LOCK(sc);
1406 		iwn_xmit_queue_drain(sc);
1407 		IWN_UNLOCK(sc);
1408 
1409 		iwn_stop(sc);
1410 
1411 		taskqueue_drain_all(sc->sc_tq);
1412 		taskqueue_free(sc->sc_tq);
1413 
1414 		callout_drain(&sc->watchdog_to);
1415 		callout_drain(&sc->scan_timeout);
1416 		callout_drain(&sc->calib_to);
1417 		ieee80211_ifdetach(&sc->sc_ic);
1418 	}
1419 
1420 	/* Uninstall interrupt handler. */
1421 	if (sc->irq != NULL) {
1422 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1423 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1424 		    sc->irq);
1425 		pci_release_msi(dev);
1426 	}
1427 
1428 	/* Free DMA resources. */
1429 	iwn_free_rx_ring(sc, &sc->rxq);
1430 	for (qid = 0; qid < sc->ntxqs; qid++)
1431 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1432 	iwn_free_sched(sc);
1433 	iwn_free_kw(sc);
1434 	if (sc->ict != NULL)
1435 		iwn_free_ict(sc);
1436 	iwn_free_fwmem(sc);
1437 
1438 	if (sc->mem != NULL)
1439 		bus_release_resource(dev, SYS_RES_MEMORY,
1440 		    rman_get_rid(sc->mem), sc->mem);
1441 
1442 	if (sc->sc_cdev) {
1443 		destroy_dev(sc->sc_cdev);
1444 		sc->sc_cdev = NULL;
1445 	}
1446 
1447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1448 	IWN_LOCK_DESTROY(sc);
1449 	return 0;
1450 }
1451 
1452 static int
1453 iwn_shutdown(device_t dev)
1454 {
1455 	struct iwn_softc *sc = device_get_softc(dev);
1456 
1457 	iwn_stop(sc);
1458 	return 0;
1459 }
1460 
1461 static int
1462 iwn_suspend(device_t dev)
1463 {
1464 	struct iwn_softc *sc = device_get_softc(dev);
1465 
1466 	ieee80211_suspend_all(&sc->sc_ic);
1467 	return 0;
1468 }
1469 
1470 static int
1471 iwn_resume(device_t dev)
1472 {
1473 	struct iwn_softc *sc = device_get_softc(dev);
1474 
1475 	/* Clear device-specific "PCI retry timeout" register (41h). */
1476 	pci_write_config(dev, 0x41, 0, 1);
1477 
1478 	ieee80211_resume_all(&sc->sc_ic);
1479 	return 0;
1480 }
1481 
1482 static int
1483 iwn_nic_lock(struct iwn_softc *sc)
1484 {
1485 	int ntries;
1486 
1487 	/* Request exclusive access to NIC. */
1488 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1489 
1490 	/* Spin until we actually get the lock. */
1491 	for (ntries = 0; ntries < 1000; ntries++) {
1492 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1493 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1494 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1495 			return 0;
1496 		DELAY(10);
1497 	}
1498 	return ETIMEDOUT;
1499 }
1500 
1501 static __inline void
1502 iwn_nic_unlock(struct iwn_softc *sc)
1503 {
1504 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1505 }
1506 
1507 static __inline uint32_t
1508 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1509 {
1510 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1511 	IWN_BARRIER_READ_WRITE(sc);
1512 	return IWN_READ(sc, IWN_PRPH_RDATA);
1513 }
1514 
1515 static __inline void
1516 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1517 {
1518 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1519 	IWN_BARRIER_WRITE(sc);
1520 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1521 }
1522 
1523 static __inline void
1524 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1525 {
1526 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1527 }
1528 
1529 static __inline void
1530 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1531 {
1532 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1533 }
1534 
1535 static __inline void
1536 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1537     const uint32_t *data, int count)
1538 {
1539 	for (; count > 0; count--, data++, addr += 4)
1540 		iwn_prph_write(sc, addr, *data);
1541 }
1542 
1543 static __inline uint32_t
1544 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1545 {
1546 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1547 	IWN_BARRIER_READ_WRITE(sc);
1548 	return IWN_READ(sc, IWN_MEM_RDATA);
1549 }
1550 
1551 static __inline void
1552 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1553 {
1554 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1555 	IWN_BARRIER_WRITE(sc);
1556 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1557 }
1558 
1559 static __inline void
1560 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1561 {
1562 	uint32_t tmp;
1563 
1564 	tmp = iwn_mem_read(sc, addr & ~3);
1565 	if (addr & 3)
1566 		tmp = (tmp & 0x0000ffff) | data << 16;
1567 	else
1568 		tmp = (tmp & 0xffff0000) | data;
1569 	iwn_mem_write(sc, addr & ~3, tmp);
1570 }
1571 
1572 static __inline void
1573 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1574     int count)
1575 {
1576 	for (; count > 0; count--, addr += 4)
1577 		*data++ = iwn_mem_read(sc, addr);
1578 }
1579 
1580 static __inline void
1581 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1582     int count)
1583 {
1584 	for (; count > 0; count--, addr += 4)
1585 		iwn_mem_write(sc, addr, val);
1586 }
1587 
1588 static int
1589 iwn_eeprom_lock(struct iwn_softc *sc)
1590 {
1591 	int i, ntries;
1592 
1593 	for (i = 0; i < 100; i++) {
1594 		/* Request exclusive access to EEPROM. */
1595 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1596 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1597 
1598 		/* Spin until we actually get the lock. */
1599 		for (ntries = 0; ntries < 100; ntries++) {
1600 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1601 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1602 				return 0;
1603 			DELAY(10);
1604 		}
1605 	}
1606 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1607 	return ETIMEDOUT;
1608 }
1609 
1610 static __inline void
1611 iwn_eeprom_unlock(struct iwn_softc *sc)
1612 {
1613 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1614 }
1615 
1616 /*
1617  * Initialize access by host to One Time Programmable ROM.
1618  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1619  */
1620 static int
1621 iwn_init_otprom(struct iwn_softc *sc)
1622 {
1623 	uint16_t prev, base, next;
1624 	int count, error;
1625 
1626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1627 
1628 	/* Wait for clock stabilization before accessing prph. */
1629 	if ((error = iwn_clock_wait(sc)) != 0)
1630 		return error;
1631 
1632 	if ((error = iwn_nic_lock(sc)) != 0)
1633 		return error;
1634 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	DELAY(5);
1636 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1637 	iwn_nic_unlock(sc);
1638 
1639 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1640 	if (sc->base_params->shadow_ram_support) {
1641 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1642 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1643 	}
1644 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1645 	/* Clear ECC status. */
1646 	IWN_SETBITS(sc, IWN_OTP_GP,
1647 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1648 
1649 	/*
1650 	 * Find the block before last block (contains the EEPROM image)
1651 	 * for HW without OTP shadow RAM.
1652 	 */
1653 	if (! sc->base_params->shadow_ram_support) {
1654 		/* Switch to absolute addressing mode. */
1655 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1656 		base = prev = 0;
1657 		for (count = 0; count < sc->base_params->max_ll_items;
1658 		    count++) {
1659 			error = iwn_read_prom_data(sc, base, &next, 2);
1660 			if (error != 0)
1661 				return error;
1662 			if (next == 0)	/* End of linked-list. */
1663 				break;
1664 			prev = base;
1665 			base = le16toh(next);
1666 		}
1667 		if (count == 0 || count == sc->base_params->max_ll_items)
1668 			return EIO;
1669 		/* Skip "next" word. */
1670 		sc->prom_base = prev + 1;
1671 	}
1672 
1673 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1674 
1675 	return 0;
1676 }
1677 
1678 static int
1679 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1680 {
1681 	uint8_t *out = data;
1682 	uint32_t val, tmp;
1683 	int ntries;
1684 
1685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1686 
1687 	addr += sc->prom_base;
1688 	for (; count > 0; count -= 2, addr++) {
1689 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1690 		for (ntries = 0; ntries < 20; ntries++) {
1691 			val = IWN_READ(sc, IWN_EEPROM);
1692 			if (val & IWN_EEPROM_READ_VALID)
1693 				break;
1694 			DELAY(5);
1695 		}
1696 		if (ntries == 20) {
1697 			device_printf(sc->sc_dev,
1698 			    "timeout reading ROM at 0x%x\n", addr);
1699 			return ETIMEDOUT;
1700 		}
1701 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1702 			/* OTPROM, check for ECC errors. */
1703 			tmp = IWN_READ(sc, IWN_OTP_GP);
1704 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1705 				device_printf(sc->sc_dev,
1706 				    "OTPROM ECC error at 0x%x\n", addr);
1707 				return EIO;
1708 			}
1709 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1710 				/* Correctable ECC error, clear bit. */
1711 				IWN_SETBITS(sc, IWN_OTP_GP,
1712 				    IWN_OTP_GP_ECC_CORR_STTS);
1713 			}
1714 		}
1715 		*out++ = val >> 16;
1716 		if (count > 1)
1717 			*out++ = val >> 24;
1718 	}
1719 
1720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1721 
1722 	return 0;
1723 }
1724 
1725 static void
1726 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1727 {
1728 	if (error != 0)
1729 		return;
1730 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1731 	*(bus_addr_t *)arg = segs[0].ds_addr;
1732 }
1733 
1734 static int
1735 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1736     void **kvap, bus_size_t size, bus_size_t alignment)
1737 {
1738 	int error;
1739 
1740 	dma->tag = NULL;
1741 	dma->size = size;
1742 
1743 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1744 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1745 	    1, size, 0, NULL, NULL, &dma->tag);
1746 	if (error != 0)
1747 		goto fail;
1748 
1749 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1750 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1751 	if (error != 0)
1752 		goto fail;
1753 
1754 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1755 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1756 	if (error != 0)
1757 		goto fail;
1758 
1759 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1760 
1761 	if (kvap != NULL)
1762 		*kvap = dma->vaddr;
1763 
1764 	return 0;
1765 
1766 fail:	iwn_dma_contig_free(dma);
1767 	return error;
1768 }
1769 
1770 static void
1771 iwn_dma_contig_free(struct iwn_dma_info *dma)
1772 {
1773 	if (dma->vaddr != NULL) {
1774 		bus_dmamap_sync(dma->tag, dma->map,
1775 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1776 		bus_dmamap_unload(dma->tag, dma->map);
1777 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1778 		dma->vaddr = NULL;
1779 	}
1780 	if (dma->tag != NULL) {
1781 		bus_dma_tag_destroy(dma->tag);
1782 		dma->tag = NULL;
1783 	}
1784 }
1785 
1786 static int
1787 iwn_alloc_sched(struct iwn_softc *sc)
1788 {
1789 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1790 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1791 	    sc->schedsz, 1024);
1792 }
1793 
1794 static void
1795 iwn_free_sched(struct iwn_softc *sc)
1796 {
1797 	iwn_dma_contig_free(&sc->sched_dma);
1798 }
1799 
1800 static int
1801 iwn_alloc_kw(struct iwn_softc *sc)
1802 {
1803 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1804 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1805 }
1806 
1807 static void
1808 iwn_free_kw(struct iwn_softc *sc)
1809 {
1810 	iwn_dma_contig_free(&sc->kw_dma);
1811 }
1812 
1813 static int
1814 iwn_alloc_ict(struct iwn_softc *sc)
1815 {
1816 	/* ICT table must be aligned on a 4KB boundary. */
1817 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1818 	    IWN_ICT_SIZE, 4096);
1819 }
1820 
1821 static void
1822 iwn_free_ict(struct iwn_softc *sc)
1823 {
1824 	iwn_dma_contig_free(&sc->ict_dma);
1825 }
1826 
1827 static int
1828 iwn_alloc_fwmem(struct iwn_softc *sc)
1829 {
1830 	/* Must be aligned on a 16-byte boundary. */
1831 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1832 }
1833 
1834 static void
1835 iwn_free_fwmem(struct iwn_softc *sc)
1836 {
1837 	iwn_dma_contig_free(&sc->fw_dma);
1838 }
1839 
1840 static int
1841 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1842 {
1843 	bus_size_t size;
1844 	int i, error;
1845 
1846 	ring->cur = 0;
1847 
1848 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1849 
1850 	/* Allocate RX descriptors (256-byte aligned). */
1851 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1852 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1853 	    size, 256);
1854 	if (error != 0) {
1855 		device_printf(sc->sc_dev,
1856 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1857 		    __func__, error);
1858 		goto fail;
1859 	}
1860 
1861 	/* Allocate RX status area (16-byte aligned). */
1862 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1863 	    sizeof (struct iwn_rx_status), 16);
1864 	if (error != 0) {
1865 		device_printf(sc->sc_dev,
1866 		    "%s: could not allocate RX status DMA memory, error %d\n",
1867 		    __func__, error);
1868 		goto fail;
1869 	}
1870 
1871 	/* Create RX buffer DMA tag. */
1872 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1873 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1874 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1875 	if (error != 0) {
1876 		device_printf(sc->sc_dev,
1877 		    "%s: could not create RX buf DMA tag, error %d\n",
1878 		    __func__, error);
1879 		goto fail;
1880 	}
1881 
1882 	/*
1883 	 * Allocate and map RX buffers.
1884 	 */
1885 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1886 		struct iwn_rx_data *data = &ring->data[i];
1887 		bus_addr_t paddr;
1888 
1889 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1890 		if (error != 0) {
1891 			device_printf(sc->sc_dev,
1892 			    "%s: could not create RX buf DMA map, error %d\n",
1893 			    __func__, error);
1894 			goto fail;
1895 		}
1896 
1897 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1898 		    IWN_RBUF_SIZE);
1899 		if (data->m == NULL) {
1900 			device_printf(sc->sc_dev,
1901 			    "%s: could not allocate RX mbuf\n", __func__);
1902 			error = ENOBUFS;
1903 			goto fail;
1904 		}
1905 
1906 		error = bus_dmamap_load(ring->data_dmat, data->map,
1907 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1908 		    &paddr, BUS_DMA_NOWAIT);
1909 		if (error != 0 && error != EFBIG) {
1910 			device_printf(sc->sc_dev,
1911 			    "%s: can't map mbuf, error %d\n", __func__,
1912 			    error);
1913 			goto fail;
1914 		}
1915 
1916 		bus_dmamap_sync(ring->data_dmat, data->map,
1917 		    BUS_DMASYNC_PREREAD);
1918 
1919 		/* Set physical address of RX buffer (256-byte aligned). */
1920 		ring->desc[i] = htole32(paddr >> 8);
1921 	}
1922 
1923 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1924 	    BUS_DMASYNC_PREWRITE);
1925 
1926 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1927 
1928 	return 0;
1929 
1930 fail:	iwn_free_rx_ring(sc, ring);
1931 
1932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1933 
1934 	return error;
1935 }
1936 
1937 static void
1938 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1939 {
1940 	int ntries;
1941 
1942 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1943 
1944 	if (iwn_nic_lock(sc) == 0) {
1945 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1946 		for (ntries = 0; ntries < 1000; ntries++) {
1947 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1948 			    IWN_FH_RX_STATUS_IDLE)
1949 				break;
1950 			DELAY(10);
1951 		}
1952 		iwn_nic_unlock(sc);
1953 	}
1954 	ring->cur = 0;
1955 	sc->last_rx_valid = 0;
1956 }
1957 
1958 static void
1959 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1960 {
1961 	int i;
1962 
1963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1964 
1965 	iwn_dma_contig_free(&ring->desc_dma);
1966 	iwn_dma_contig_free(&ring->stat_dma);
1967 
1968 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1969 		struct iwn_rx_data *data = &ring->data[i];
1970 
1971 		if (data->m != NULL) {
1972 			bus_dmamap_sync(ring->data_dmat, data->map,
1973 			    BUS_DMASYNC_POSTREAD);
1974 			bus_dmamap_unload(ring->data_dmat, data->map);
1975 			m_freem(data->m);
1976 			data->m = NULL;
1977 		}
1978 		if (data->map != NULL)
1979 			bus_dmamap_destroy(ring->data_dmat, data->map);
1980 	}
1981 	if (ring->data_dmat != NULL) {
1982 		bus_dma_tag_destroy(ring->data_dmat);
1983 		ring->data_dmat = NULL;
1984 	}
1985 }
1986 
1987 static int
1988 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1989 {
1990 	bus_addr_t paddr;
1991 	bus_size_t size;
1992 	int i, error;
1993 
1994 	ring->qid = qid;
1995 	ring->queued = 0;
1996 	ring->cur = 0;
1997 
1998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1999 
2000 	/* Allocate TX descriptors (256-byte aligned). */
2001 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2002 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2003 	    size, 256);
2004 	if (error != 0) {
2005 		device_printf(sc->sc_dev,
2006 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2007 		    __func__, error);
2008 		goto fail;
2009 	}
2010 
2011 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2012 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2013 	    size, 4);
2014 	if (error != 0) {
2015 		device_printf(sc->sc_dev,
2016 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2017 		    __func__, error);
2018 		goto fail;
2019 	}
2020 
2021 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2022 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2023 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2024 	if (error != 0) {
2025 		device_printf(sc->sc_dev,
2026 		    "%s: could not create TX buf DMA tag, error %d\n",
2027 		    __func__, error);
2028 		goto fail;
2029 	}
2030 
2031 	paddr = ring->cmd_dma.paddr;
2032 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2033 		struct iwn_tx_data *data = &ring->data[i];
2034 
2035 		data->cmd_paddr = paddr;
2036 		data->scratch_paddr = paddr + 12;
2037 		paddr += sizeof (struct iwn_tx_cmd);
2038 
2039 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2040 		if (error != 0) {
2041 			device_printf(sc->sc_dev,
2042 			    "%s: could not create TX buf DMA map, error %d\n",
2043 			    __func__, error);
2044 			goto fail;
2045 		}
2046 	}
2047 
2048 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2049 
2050 	return 0;
2051 
2052 fail:	iwn_free_tx_ring(sc, ring);
2053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2054 	return error;
2055 }
2056 
2057 static void
2058 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2059 {
2060 	int i;
2061 
2062 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2063 
2064 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2065 		struct iwn_tx_data *data = &ring->data[i];
2066 
2067 		if (data->m != NULL) {
2068 			bus_dmamap_sync(ring->data_dmat, data->map,
2069 			    BUS_DMASYNC_POSTWRITE);
2070 			bus_dmamap_unload(ring->data_dmat, data->map);
2071 			m_freem(data->m);
2072 			data->m = NULL;
2073 		}
2074 		if (data->ni != NULL) {
2075 			ieee80211_free_node(data->ni);
2076 			data->ni = NULL;
2077 		}
2078 		data->remapped = 0;
2079 		data->long_retries = 0;
2080 	}
2081 	/* Clear TX descriptors. */
2082 	memset(ring->desc, 0, ring->desc_dma.size);
2083 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2084 	    BUS_DMASYNC_PREWRITE);
2085 	sc->qfullmsk &= ~(1 << ring->qid);
2086 	ring->queued = 0;
2087 	ring->cur = 0;
2088 }
2089 
2090 static void
2091 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2092 {
2093 	int i;
2094 
2095 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2096 
2097 	iwn_dma_contig_free(&ring->desc_dma);
2098 	iwn_dma_contig_free(&ring->cmd_dma);
2099 
2100 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2101 		struct iwn_tx_data *data = &ring->data[i];
2102 
2103 		if (data->m != NULL) {
2104 			bus_dmamap_sync(ring->data_dmat, data->map,
2105 			    BUS_DMASYNC_POSTWRITE);
2106 			bus_dmamap_unload(ring->data_dmat, data->map);
2107 			m_freem(data->m);
2108 		}
2109 		if (data->map != NULL)
2110 			bus_dmamap_destroy(ring->data_dmat, data->map);
2111 	}
2112 	if (ring->data_dmat != NULL) {
2113 		bus_dma_tag_destroy(ring->data_dmat);
2114 		ring->data_dmat = NULL;
2115 	}
2116 }
2117 
2118 static void
2119 iwn_check_tx_ring(struct iwn_softc *sc, int qid)
2120 {
2121 	struct iwn_tx_ring *ring = &sc->txq[qid];
2122 
2123 	KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!",
2124 	    __func__, ring->queued, qid));
2125 
2126 	if (qid >= sc->firstaggqueue) {
2127 		struct iwn_ops *ops = &sc->ops;
2128 		struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
2129 
2130 		if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) {
2131 			uint16_t ssn = tap->txa_start & 0xfff;
2132 			uint8_t tid = tap->txa_tid;
2133 			int *res = tap->txa_private;
2134 
2135 			iwn_nic_lock(sc);
2136 			ops->ampdu_tx_stop(sc, qid, tid, ssn);
2137 			iwn_nic_unlock(sc);
2138 
2139 			sc->qid2tap[qid] = NULL;
2140 			free(res, M_DEVBUF);
2141 		}
2142 	}
2143 
2144 	if (ring->queued < IWN_TX_RING_LOMARK) {
2145 		sc->qfullmsk &= ~(1 << qid);
2146 
2147 		if (ring->queued == 0)
2148 			sc->sc_tx_timer = 0;
2149 		else
2150 			sc->sc_tx_timer = 5;
2151 	}
2152 }
2153 
2154 static void
2155 iwn5000_ict_reset(struct iwn_softc *sc)
2156 {
2157 	/* Disable interrupts. */
2158 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2159 
2160 	/* Reset ICT table. */
2161 	memset(sc->ict, 0, IWN_ICT_SIZE);
2162 	sc->ict_cur = 0;
2163 
2164 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2165 	    BUS_DMASYNC_PREWRITE);
2166 
2167 	/* Set physical address of ICT table (4KB aligned). */
2168 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2169 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2170 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2171 
2172 	/* Enable periodic RX interrupt. */
2173 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2174 	/* Switch to ICT interrupt mode in driver. */
2175 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2176 
2177 	/* Re-enable interrupts. */
2178 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2179 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2180 }
2181 
2182 static int
2183 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2184 {
2185 	struct iwn_ops *ops = &sc->ops;
2186 	uint16_t val;
2187 	int error;
2188 
2189 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2190 
2191 	/* Check whether adapter has an EEPROM or an OTPROM. */
2192 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2193 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2194 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2195 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2196 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2197 
2198 	/* Adapter has to be powered on for EEPROM access to work. */
2199 	if ((error = iwn_apm_init(sc)) != 0) {
2200 		device_printf(sc->sc_dev,
2201 		    "%s: could not power ON adapter, error %d\n", __func__,
2202 		    error);
2203 		return error;
2204 	}
2205 
2206 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2207 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2208 		return EIO;
2209 	}
2210 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2211 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2212 		    __func__, error);
2213 		return error;
2214 	}
2215 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2216 		if ((error = iwn_init_otprom(sc)) != 0) {
2217 			device_printf(sc->sc_dev,
2218 			    "%s: could not initialize OTPROM, error %d\n",
2219 			    __func__, error);
2220 			return error;
2221 		}
2222 	}
2223 
2224 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2225 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2226 	/* Check if HT support is bonded out. */
2227 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2228 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2229 
2230 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2231 	sc->rfcfg = le16toh(val);
2232 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2233 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2234 	if (sc->txchainmask == 0)
2235 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2236 	if (sc->rxchainmask == 0)
2237 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2238 
2239 	/* Read MAC address. */
2240 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2241 
2242 	/* Read adapter-specific information from EEPROM. */
2243 	ops->read_eeprom(sc);
2244 
2245 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2246 
2247 	iwn_eeprom_unlock(sc);
2248 
2249 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2250 
2251 	return 0;
2252 }
2253 
2254 static void
2255 iwn4965_read_eeprom(struct iwn_softc *sc)
2256 {
2257 	uint32_t addr;
2258 	uint16_t val;
2259 	int i;
2260 
2261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2262 
2263 	/* Read regulatory domain (4 ASCII characters). */
2264 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2265 
2266 	/* Read the list of authorized channels (20MHz & 40MHz). */
2267 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2268 		addr = iwn4965_regulatory_bands[i];
2269 		iwn_read_eeprom_channels(sc, i, addr);
2270 	}
2271 
2272 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2273 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2274 	sc->maxpwr2GHz = val & 0xff;
2275 	sc->maxpwr5GHz = val >> 8;
2276 	/* Check that EEPROM values are within valid range. */
2277 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2278 		sc->maxpwr5GHz = 38;
2279 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2280 		sc->maxpwr2GHz = 38;
2281 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2282 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2283 
2284 	/* Read samples for each TX power group. */
2285 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2286 	    sizeof sc->bands);
2287 
2288 	/* Read voltage at which samples were taken. */
2289 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2290 	sc->eeprom_voltage = (int16_t)le16toh(val);
2291 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2292 	    sc->eeprom_voltage);
2293 
2294 #ifdef IWN_DEBUG
2295 	/* Print samples. */
2296 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2297 		for (i = 0; i < IWN_NBANDS - 1; i++)
2298 			iwn4965_print_power_group(sc, i);
2299 	}
2300 #endif
2301 
2302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2303 }
2304 
2305 #ifdef IWN_DEBUG
2306 static void
2307 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2308 {
2309 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2310 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2311 	int j, c;
2312 
2313 	printf("===band %d===\n", i);
2314 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2315 	printf("chan1 num=%d\n", chans[0].num);
2316 	for (c = 0; c < 2; c++) {
2317 		for (j = 0; j < IWN_NSAMPLES; j++) {
2318 			printf("chain %d, sample %d: temp=%d gain=%d "
2319 			    "power=%d pa_det=%d\n", c, j,
2320 			    chans[0].samples[c][j].temp,
2321 			    chans[0].samples[c][j].gain,
2322 			    chans[0].samples[c][j].power,
2323 			    chans[0].samples[c][j].pa_det);
2324 		}
2325 	}
2326 	printf("chan2 num=%d\n", chans[1].num);
2327 	for (c = 0; c < 2; c++) {
2328 		for (j = 0; j < IWN_NSAMPLES; j++) {
2329 			printf("chain %d, sample %d: temp=%d gain=%d "
2330 			    "power=%d pa_det=%d\n", c, j,
2331 			    chans[1].samples[c][j].temp,
2332 			    chans[1].samples[c][j].gain,
2333 			    chans[1].samples[c][j].power,
2334 			    chans[1].samples[c][j].pa_det);
2335 		}
2336 	}
2337 }
2338 #endif
2339 
2340 static void
2341 iwn5000_read_eeprom(struct iwn_softc *sc)
2342 {
2343 	struct iwn5000_eeprom_calib_hdr hdr;
2344 	int32_t volt;
2345 	uint32_t base, addr;
2346 	uint16_t val;
2347 	int i;
2348 
2349 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2350 
2351 	/* Read regulatory domain (4 ASCII characters). */
2352 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2353 	base = le16toh(val);
2354 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2355 	    sc->eeprom_domain, 4);
2356 
2357 	/* Read the list of authorized channels (20MHz & 40MHz). */
2358 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2359 		addr =  base + sc->base_params->regulatory_bands[i];
2360 		iwn_read_eeprom_channels(sc, i, addr);
2361 	}
2362 
2363 	/* Read enhanced TX power information for 6000 Series. */
2364 	if (sc->base_params->enhanced_TX_power)
2365 		iwn_read_eeprom_enhinfo(sc);
2366 
2367 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2368 	base = le16toh(val);
2369 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2370 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2371 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2372 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2373 	sc->calib_ver = hdr.version;
2374 
2375 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2376 		sc->eeprom_voltage = le16toh(hdr.volt);
2377 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2378 		sc->eeprom_temp_high=le16toh(val);
2379 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2380 		sc->eeprom_temp = le16toh(val);
2381 	}
2382 
2383 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2384 		/* Compute temperature offset. */
2385 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2386 		sc->eeprom_temp = le16toh(val);
2387 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2388 		volt = le16toh(val);
2389 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2390 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2391 		    sc->eeprom_temp, volt, sc->temp_off);
2392 	} else {
2393 		/* Read crystal calibration. */
2394 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2395 		    &sc->eeprom_crystal, sizeof (uint32_t));
2396 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2397 		    le32toh(sc->eeprom_crystal));
2398 	}
2399 
2400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2401 
2402 }
2403 
2404 /*
2405  * Translate EEPROM flags to net80211.
2406  */
2407 static uint32_t
2408 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2409 {
2410 	uint32_t nflags;
2411 
2412 	nflags = 0;
2413 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2414 		nflags |= IEEE80211_CHAN_PASSIVE;
2415 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2416 		nflags |= IEEE80211_CHAN_NOADHOC;
2417 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2418 		nflags |= IEEE80211_CHAN_DFS;
2419 		/* XXX apparently IBSS may still be marked */
2420 		nflags |= IEEE80211_CHAN_NOADHOC;
2421 	}
2422 
2423 	return nflags;
2424 }
2425 
2426 static void
2427 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2428     struct ieee80211_channel chans[])
2429 {
2430 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2431 	const struct iwn_chan_band *band = &iwn_bands[n];
2432 	uint8_t bands[IEEE80211_MODE_BYTES];
2433 	uint8_t chan;
2434 	int i, error, nflags;
2435 
2436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2437 
2438 	memset(bands, 0, sizeof(bands));
2439 	if (n == 0) {
2440 		setbit(bands, IEEE80211_MODE_11B);
2441 		setbit(bands, IEEE80211_MODE_11G);
2442 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2443 			setbit(bands, IEEE80211_MODE_11NG);
2444 	} else {
2445 		setbit(bands, IEEE80211_MODE_11A);
2446 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2447 			setbit(bands, IEEE80211_MODE_11NA);
2448 	}
2449 
2450 	for (i = 0; i < band->nchan; i++) {
2451 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2452 			DPRINTF(sc, IWN_DEBUG_RESET,
2453 			    "skip chan %d flags 0x%x maxpwr %d\n",
2454 			    band->chan[i], channels[i].flags,
2455 			    channels[i].maxpwr);
2456 			continue;
2457 		}
2458 
2459 		chan = band->chan[i];
2460 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2461 		error = ieee80211_add_channel(chans, maxchans, nchans,
2462 		    chan, 0, channels[i].maxpwr, nflags, bands);
2463 		if (error != 0)
2464 			break;
2465 
2466 		/* Save maximum allowed TX power for this channel. */
2467 		/* XXX wrong */
2468 		sc->maxpwr[chan] = channels[i].maxpwr;
2469 
2470 		DPRINTF(sc, IWN_DEBUG_RESET,
2471 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2472 		    channels[i].flags, channels[i].maxpwr);
2473 	}
2474 
2475 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2476 
2477 }
2478 
2479 static void
2480 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2481     struct ieee80211_channel chans[])
2482 {
2483 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2484 	const struct iwn_chan_band *band = &iwn_bands[n];
2485 	uint8_t chan;
2486 	int i, error, nflags;
2487 
2488 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2489 
2490 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2491 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2492 		return;
2493 	}
2494 
2495 	for (i = 0; i < band->nchan; i++) {
2496 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2497 			DPRINTF(sc, IWN_DEBUG_RESET,
2498 			    "skip chan %d flags 0x%x maxpwr %d\n",
2499 			    band->chan[i], channels[i].flags,
2500 			    channels[i].maxpwr);
2501 			continue;
2502 		}
2503 
2504 		chan = band->chan[i];
2505 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2506 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2507 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2508 		    chan, channels[i].maxpwr, nflags);
2509 		switch (error) {
2510 		case EINVAL:
2511 			device_printf(sc->sc_dev,
2512 			    "%s: no entry for channel %d\n", __func__, chan);
2513 			continue;
2514 		case ENOENT:
2515 			DPRINTF(sc, IWN_DEBUG_RESET,
2516 			    "%s: skip chan %d, extension channel not found\n",
2517 			    __func__, chan);
2518 			continue;
2519 		case ENOBUFS:
2520 			device_printf(sc->sc_dev,
2521 			    "%s: channel table is full!\n", __func__);
2522 			break;
2523 		case 0:
2524 			DPRINTF(sc, IWN_DEBUG_RESET,
2525 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2526 			    chan, channels[i].flags, channels[i].maxpwr);
2527 			/* FALLTHROUGH */
2528 		default:
2529 			break;
2530 		}
2531 	}
2532 
2533 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2534 
2535 }
2536 
2537 static void
2538 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2539 {
2540 	struct ieee80211com *ic = &sc->sc_ic;
2541 
2542 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2543 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2544 
2545 	if (n < 5) {
2546 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2547 		    ic->ic_channels);
2548 	} else {
2549 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2550 		    ic->ic_channels);
2551 	}
2552 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2553 }
2554 
2555 static struct iwn_eeprom_chan *
2556 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2557 {
2558 	int band, chan, i, j;
2559 
2560 	if (IEEE80211_IS_CHAN_HT40(c)) {
2561 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2562 		if (IEEE80211_IS_CHAN_HT40D(c))
2563 			chan = c->ic_extieee;
2564 		else
2565 			chan = c->ic_ieee;
2566 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2567 			if (iwn_bands[band].chan[i] == chan)
2568 				return &sc->eeprom_channels[band][i];
2569 		}
2570 	} else {
2571 		for (j = 0; j < 5; j++) {
2572 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2573 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2574 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2575 					return &sc->eeprom_channels[j][i];
2576 			}
2577 		}
2578 	}
2579 	return NULL;
2580 }
2581 
2582 static void
2583 iwn_getradiocaps(struct ieee80211com *ic,
2584     int maxchans, int *nchans, struct ieee80211_channel chans[])
2585 {
2586 	struct iwn_softc *sc = ic->ic_softc;
2587 	int i;
2588 
2589 	/* Parse the list of authorized channels. */
2590 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2591 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2592 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2593 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2594 }
2595 
2596 /*
2597  * Enforce flags read from EEPROM.
2598  */
2599 static int
2600 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2601     int nchan, struct ieee80211_channel chans[])
2602 {
2603 	struct iwn_softc *sc = ic->ic_softc;
2604 	int i;
2605 
2606 	for (i = 0; i < nchan; i++) {
2607 		struct ieee80211_channel *c = &chans[i];
2608 		struct iwn_eeprom_chan *channel;
2609 
2610 		channel = iwn_find_eeprom_channel(sc, c);
2611 		if (channel == NULL) {
2612 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2613 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2614 			return EINVAL;
2615 		}
2616 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static void
2623 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2624 {
2625 	struct iwn_eeprom_enhinfo enhinfo[35];
2626 	struct ieee80211com *ic = &sc->sc_ic;
2627 	struct ieee80211_channel *c;
2628 	uint16_t val, base;
2629 	int8_t maxpwr;
2630 	uint8_t flags;
2631 	int i, j;
2632 
2633 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2634 
2635 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2636 	base = le16toh(val);
2637 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2638 	    enhinfo, sizeof enhinfo);
2639 
2640 	for (i = 0; i < nitems(enhinfo); i++) {
2641 		flags = enhinfo[i].flags;
2642 		if (!(flags & IWN_ENHINFO_VALID))
2643 			continue;	/* Skip invalid entries. */
2644 
2645 		maxpwr = 0;
2646 		if (sc->txchainmask & IWN_ANT_A)
2647 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2648 		if (sc->txchainmask & IWN_ANT_B)
2649 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2650 		if (sc->txchainmask & IWN_ANT_C)
2651 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2652 		if (sc->ntxchains == 2)
2653 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2654 		else if (sc->ntxchains == 3)
2655 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2656 
2657 		for (j = 0; j < ic->ic_nchans; j++) {
2658 			c = &ic->ic_channels[j];
2659 			if ((flags & IWN_ENHINFO_5GHZ)) {
2660 				if (!IEEE80211_IS_CHAN_A(c))
2661 					continue;
2662 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2663 				if (!IEEE80211_IS_CHAN_G(c))
2664 					continue;
2665 			} else if (!IEEE80211_IS_CHAN_B(c))
2666 				continue;
2667 			if ((flags & IWN_ENHINFO_HT40)) {
2668 				if (!IEEE80211_IS_CHAN_HT40(c))
2669 					continue;
2670 			} else {
2671 				if (IEEE80211_IS_CHAN_HT40(c))
2672 					continue;
2673 			}
2674 			if (enhinfo[i].chan != 0 &&
2675 			    enhinfo[i].chan != c->ic_ieee)
2676 				continue;
2677 
2678 			DPRINTF(sc, IWN_DEBUG_RESET,
2679 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2680 			    c->ic_flags, maxpwr / 2);
2681 			c->ic_maxregpower = maxpwr / 2;
2682 			c->ic_maxpower = maxpwr;
2683 		}
2684 	}
2685 
2686 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2687 
2688 }
2689 
2690 static struct ieee80211_node *
2691 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2692 {
2693 	struct iwn_node *wn;
2694 
2695 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2696 	if (wn == NULL)
2697 		return (NULL);
2698 
2699 	wn->id = IWN_ID_UNDEFINED;
2700 
2701 	return (&wn->ni);
2702 }
2703 
2704 static __inline int
2705 rate2plcp(int rate)
2706 {
2707 	switch (rate & 0xff) {
2708 	case 12:	return 0xd;
2709 	case 18:	return 0xf;
2710 	case 24:	return 0x5;
2711 	case 36:	return 0x7;
2712 	case 48:	return 0x9;
2713 	case 72:	return 0xb;
2714 	case 96:	return 0x1;
2715 	case 108:	return 0x3;
2716 	case 2:		return 10;
2717 	case 4:		return 20;
2718 	case 11:	return 55;
2719 	case 22:	return 110;
2720 	}
2721 	return 0;
2722 }
2723 
2724 static __inline uint8_t
2725 plcp2rate(const uint8_t rate_plcp)
2726 {
2727 	switch (rate_plcp) {
2728 	case 0xd:	return 12;
2729 	case 0xf:	return 18;
2730 	case 0x5:	return 24;
2731 	case 0x7:	return 36;
2732 	case 0x9:	return 48;
2733 	case 0xb:	return 72;
2734 	case 0x1:	return 96;
2735 	case 0x3:	return 108;
2736 	case 10:	return 2;
2737 	case 20:	return 4;
2738 	case 55:	return 11;
2739 	case 110:	return 22;
2740 	default:	return 0;
2741 	}
2742 }
2743 
2744 static int
2745 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2746 {
2747 
2748 	return IWN_LSB(sc->txchainmask);
2749 }
2750 
2751 static int
2752 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2753 {
2754 	int tx;
2755 
2756 	/*
2757 	 * The '2 stream' setup is a bit .. odd.
2758 	 *
2759 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2760 	 * the firmware panics (eg Intel 5100.)
2761 	 *
2762 	 * For NICs that support two antennas, we use ANT_AB.
2763 	 *
2764 	 * For NICs that support three antennas, we use the two that
2765 	 * wasn't the default one.
2766 	 *
2767 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2768 	 * this to only one antenna.
2769 	 */
2770 
2771 	/* Default - transmit on the other antennas */
2772 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2773 
2774 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2775 	if (tx == 0)
2776 		tx = IWN_ANT_AB;
2777 
2778 	/*
2779 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2780 	 * the default chainmask
2781 	 */
2782 	else if (sc->ntxchains == 2)
2783 		tx = sc->txchainmask;
2784 
2785 	return (tx);
2786 }
2787 
2788 
2789 
2790 /*
2791  * Calculate the required PLCP value from the given rate,
2792  * to the given node.
2793  *
2794  * This will take the node configuration (eg 11n, rate table
2795  * setup, etc) into consideration.
2796  */
2797 static uint32_t
2798 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2799     uint8_t rate)
2800 {
2801 	struct ieee80211com *ic = ni->ni_ic;
2802 	uint32_t plcp = 0;
2803 	int ridx;
2804 
2805 	/*
2806 	 * If it's an MCS rate, let's set the plcp correctly
2807 	 * and set the relevant flags based on the node config.
2808 	 */
2809 	if (rate & IEEE80211_RATE_MCS) {
2810 		/*
2811 		 * Set the initial PLCP value to be between 0->31 for
2812 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2813 		 * flag.
2814 		 */
2815 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2816 
2817 		/*
2818 		 * XXX the following should only occur if both
2819 		 * the local configuration _and_ the remote node
2820 		 * advertise these capabilities.  Thus this code
2821 		 * may need fixing!
2822 		 */
2823 
2824 		/*
2825 		 * Set the channel width and guard interval.
2826 		 */
2827 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2828 			plcp |= IWN_RFLAG_HT40;
2829 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2830 				plcp |= IWN_RFLAG_SGI;
2831 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2832 			plcp |= IWN_RFLAG_SGI;
2833 		}
2834 
2835 		/*
2836 		 * Ensure the selected rate matches the link quality
2837 		 * table entries being used.
2838 		 */
2839 		if (rate > 0x8f)
2840 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2841 		else if (rate > 0x87)
2842 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2843 		else
2844 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2845 	} else {
2846 		/*
2847 		 * Set the initial PLCP - fine for both
2848 		 * OFDM and CCK rates.
2849 		 */
2850 		plcp = rate2plcp(rate);
2851 
2852 		/* Set CCK flag if it's CCK */
2853 
2854 		/* XXX It would be nice to have a method
2855 		 * to map the ridx -> phy table entry
2856 		 * so we could just query that, rather than
2857 		 * this hack to check against IWN_RIDX_OFDM6.
2858 		 */
2859 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2860 		    rate & IEEE80211_RATE_VAL);
2861 		if (ridx < IWN_RIDX_OFDM6 &&
2862 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2863 			plcp |= IWN_RFLAG_CCK;
2864 
2865 		/* Set antenna configuration */
2866 		/* XXX TODO: is this the right antenna to use for legacy? */
2867 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2868 	}
2869 
2870 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2871 	    __func__,
2872 	    rate,
2873 	    plcp);
2874 
2875 	return (htole32(plcp));
2876 }
2877 
2878 static void
2879 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2880 {
2881 	/* Doesn't do anything at the moment */
2882 }
2883 
2884 static int
2885 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2886 {
2887 	struct iwn_vap *ivp = IWN_VAP(vap);
2888 	struct ieee80211com *ic = vap->iv_ic;
2889 	struct iwn_softc *sc = ic->ic_softc;
2890 	int error = 0;
2891 
2892 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2893 
2894 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2895 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2896 
2897 	IEEE80211_UNLOCK(ic);
2898 	IWN_LOCK(sc);
2899 	callout_stop(&sc->calib_to);
2900 
2901 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2902 
2903 	switch (nstate) {
2904 	case IEEE80211_S_ASSOC:
2905 		if (vap->iv_state != IEEE80211_S_RUN)
2906 			break;
2907 		/* FALLTHROUGH */
2908 	case IEEE80211_S_AUTH:
2909 		if (vap->iv_state == IEEE80211_S_AUTH)
2910 			break;
2911 
2912 		/*
2913 		 * !AUTH -> AUTH transition requires state reset to handle
2914 		 * reassociations correctly.
2915 		 */
2916 		sc->rxon->associd = 0;
2917 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2918 		sc->calib.state = IWN_CALIB_STATE_INIT;
2919 
2920 		/* Wait until we hear a beacon before we transmit */
2921 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2922 			sc->sc_beacon_wait = 1;
2923 
2924 		if ((error = iwn_auth(sc, vap)) != 0) {
2925 			device_printf(sc->sc_dev,
2926 			    "%s: could not move to auth state\n", __func__);
2927 		}
2928 		break;
2929 
2930 	case IEEE80211_S_RUN:
2931 		/*
2932 		 * RUN -> RUN transition; Just restart the timers.
2933 		 */
2934 		if (vap->iv_state == IEEE80211_S_RUN) {
2935 			sc->calib_cnt = 0;
2936 			break;
2937 		}
2938 
2939 		/* Wait until we hear a beacon before we transmit */
2940 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2941 			sc->sc_beacon_wait = 1;
2942 
2943 		/*
2944 		 * !RUN -> RUN requires setting the association id
2945 		 * which is done with a firmware cmd.  We also defer
2946 		 * starting the timers until that work is done.
2947 		 */
2948 		if ((error = iwn_run(sc, vap)) != 0) {
2949 			device_printf(sc->sc_dev,
2950 			    "%s: could not move to run state\n", __func__);
2951 		}
2952 		break;
2953 
2954 	case IEEE80211_S_INIT:
2955 		sc->calib.state = IWN_CALIB_STATE_INIT;
2956 		/*
2957 		 * Purge the xmit queue so we don't have old frames
2958 		 * during a new association attempt.
2959 		 */
2960 		sc->sc_beacon_wait = 0;
2961 		iwn_xmit_queue_drain(sc);
2962 		break;
2963 
2964 	default:
2965 		break;
2966 	}
2967 	IWN_UNLOCK(sc);
2968 	IEEE80211_LOCK(ic);
2969 	if (error != 0){
2970 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2971 		return error;
2972 	}
2973 
2974 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2975 
2976 	return ivp->iv_newstate(vap, nstate, arg);
2977 }
2978 
2979 static void
2980 iwn_calib_timeout(void *arg)
2981 {
2982 	struct iwn_softc *sc = arg;
2983 
2984 	IWN_LOCK_ASSERT(sc);
2985 
2986 	/* Force automatic TX power calibration every 60 secs. */
2987 	if (++sc->calib_cnt >= 120) {
2988 		uint32_t flags = 0;
2989 
2990 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2991 		    "sending request for statistics");
2992 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2993 		    sizeof flags, 1);
2994 		sc->calib_cnt = 0;
2995 	}
2996 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2997 	    sc);
2998 }
2999 
3000 /*
3001  * Process an RX_PHY firmware notification.  This is usually immediately
3002  * followed by an MPDU_RX_DONE notification.
3003  */
3004 static void
3005 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3006 {
3007 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
3008 
3009 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
3010 
3011 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
3012 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
3013 	sc->last_rx_valid = 1;
3014 }
3015 
3016 /*
3017  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
3018  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
3019  */
3020 static void
3021 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3022     struct iwn_rx_data *data)
3023 {
3024 	struct epoch_tracker et;
3025 	struct iwn_ops *ops = &sc->ops;
3026 	struct ieee80211com *ic = &sc->sc_ic;
3027 	struct iwn_rx_ring *ring = &sc->rxq;
3028 	struct ieee80211_frame_min *wh;
3029 	struct ieee80211_node *ni;
3030 	struct mbuf *m, *m1;
3031 	struct iwn_rx_stat *stat;
3032 	caddr_t head;
3033 	bus_addr_t paddr;
3034 	uint32_t flags;
3035 	int error, len, rssi, nf;
3036 
3037 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3038 
3039 	if (desc->type == IWN_MPDU_RX_DONE) {
3040 		/* Check for prior RX_PHY notification. */
3041 		if (!sc->last_rx_valid) {
3042 			DPRINTF(sc, IWN_DEBUG_ANY,
3043 			    "%s: missing RX_PHY\n", __func__);
3044 			return;
3045 		}
3046 		stat = &sc->last_rx_stat;
3047 	} else
3048 		stat = (struct iwn_rx_stat *)(desc + 1);
3049 
3050 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3051 		device_printf(sc->sc_dev,
3052 		    "%s: invalid RX statistic header, len %d\n", __func__,
3053 		    stat->cfg_phy_len);
3054 		return;
3055 	}
3056 	if (desc->type == IWN_MPDU_RX_DONE) {
3057 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3058 		head = (caddr_t)(mpdu + 1);
3059 		len = le16toh(mpdu->len);
3060 	} else {
3061 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3062 		len = le16toh(stat->len);
3063 	}
3064 
3065 	flags = le32toh(*(uint32_t *)(head + len));
3066 
3067 	/* Discard frames with a bad FCS early. */
3068 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3069 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3070 		    __func__, flags);
3071 		counter_u64_add(ic->ic_ierrors, 1);
3072 		return;
3073 	}
3074 	/* Discard frames that are too short. */
3075 	if (len < sizeof (struct ieee80211_frame_ack)) {
3076 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3077 		    __func__, len);
3078 		counter_u64_add(ic->ic_ierrors, 1);
3079 		return;
3080 	}
3081 
3082 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3083 	if (m1 == NULL) {
3084 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3085 		    __func__);
3086 		counter_u64_add(ic->ic_ierrors, 1);
3087 		return;
3088 	}
3089 	bus_dmamap_unload(ring->data_dmat, data->map);
3090 
3091 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3092 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3093 	if (error != 0 && error != EFBIG) {
3094 		device_printf(sc->sc_dev,
3095 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3096 		m_freem(m1);
3097 
3098 		/* Try to reload the old mbuf. */
3099 		error = bus_dmamap_load(ring->data_dmat, data->map,
3100 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3101 		    &paddr, BUS_DMA_NOWAIT);
3102 		if (error != 0 && error != EFBIG) {
3103 			panic("%s: could not load old RX mbuf", __func__);
3104 		}
3105 		bus_dmamap_sync(ring->data_dmat, data->map,
3106 		    BUS_DMASYNC_PREREAD);
3107 		/* Physical address may have changed. */
3108 		ring->desc[ring->cur] = htole32(paddr >> 8);
3109 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3110 		    BUS_DMASYNC_PREWRITE);
3111 		counter_u64_add(ic->ic_ierrors, 1);
3112 		return;
3113 	}
3114 
3115 	bus_dmamap_sync(ring->data_dmat, data->map,
3116 	    BUS_DMASYNC_PREREAD);
3117 
3118 	m = data->m;
3119 	data->m = m1;
3120 	/* Update RX descriptor. */
3121 	ring->desc[ring->cur] = htole32(paddr >> 8);
3122 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3123 	    BUS_DMASYNC_PREWRITE);
3124 
3125 	/* Finalize mbuf. */
3126 	m->m_data = head;
3127 	m->m_pkthdr.len = m->m_len = len;
3128 
3129 	/* Grab a reference to the source node. */
3130 	wh = mtod(m, struct ieee80211_frame_min *);
3131 	if (len >= sizeof(struct ieee80211_frame_min))
3132 		ni = ieee80211_find_rxnode(ic, wh);
3133 	else
3134 		ni = NULL;
3135 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3136 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3137 
3138 	rssi = ops->get_rssi(sc, stat);
3139 
3140 	if (ieee80211_radiotap_active(ic)) {
3141 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3142 		uint32_t rate = le32toh(stat->rate);
3143 
3144 		tap->wr_flags = 0;
3145 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3146 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3147 		tap->wr_dbm_antsignal = (int8_t)rssi;
3148 		tap->wr_dbm_antnoise = (int8_t)nf;
3149 		tap->wr_tsft = stat->tstamp;
3150 		if (rate & IWN_RFLAG_MCS) {
3151 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3152 			tap->wr_rate |= IEEE80211_RATE_MCS;
3153 		} else
3154 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3155 	}
3156 
3157 	/*
3158 	 * If it's a beacon and we're waiting, then do the
3159 	 * wakeup.  This should unblock raw_xmit/start.
3160 	 */
3161 	if (sc->sc_beacon_wait) {
3162 		uint8_t type, subtype;
3163 		/* NB: Re-assign wh */
3164 		wh = mtod(m, struct ieee80211_frame_min *);
3165 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3166 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3167 		/*
3168 		 * This assumes at this point we've received our own
3169 		 * beacon.
3170 		 */
3171 		DPRINTF(sc, IWN_DEBUG_TRACE,
3172 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3173 		    __func__, type, subtype);
3174 		if (type == IEEE80211_FC0_TYPE_MGT &&
3175 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3176 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3177 			    "%s: waking things up\n", __func__);
3178 			/* queue taskqueue to transmit! */
3179 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3180 		}
3181 	}
3182 
3183 	IWN_UNLOCK(sc);
3184 	NET_EPOCH_ENTER(et);
3185 
3186 	/* Send the frame to the 802.11 layer. */
3187 	if (ni != NULL) {
3188 		if (ni->ni_flags & IEEE80211_NODE_HT)
3189 			m->m_flags |= M_AMPDU;
3190 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3191 		/* Node is no longer needed. */
3192 		ieee80211_free_node(ni);
3193 	} else
3194 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3195 
3196 	NET_EPOCH_EXIT(et);
3197 	IWN_LOCK(sc);
3198 
3199 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3200 
3201 }
3202 
3203 static void
3204 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid,
3205     int idx, int success)
3206 {
3207 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3208 	struct iwn_tx_data *data = &ring->data[idx];
3209 	struct iwn_node *wn;
3210 	struct mbuf *m;
3211 	struct ieee80211_node *ni;
3212 
3213 	KASSERT(data->ni != NULL, ("idx %d: no node", idx));
3214 	KASSERT(data->m != NULL, ("idx %d: no mbuf", idx));
3215 
3216 	/* Unmap and free mbuf. */
3217 	bus_dmamap_sync(ring->data_dmat, data->map,
3218 	    BUS_DMASYNC_POSTWRITE);
3219 	bus_dmamap_unload(ring->data_dmat, data->map);
3220 	m = data->m, data->m = NULL;
3221 	ni = data->ni, data->ni = NULL;
3222 	wn = (void *)ni;
3223 
3224 #if 0
3225 	/* XXX causes significant performance degradation. */
3226 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3227 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3228 	txs->long_retries = data->long_retries - 1;
3229 #else
3230 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY;
3231 #endif
3232 	txs->short_retries = wn->agg[tid].short_retries;
3233 	if (success)
3234 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3235 	else
3236 		txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3237 
3238 	wn->agg[tid].short_retries = 0;
3239 	data->long_retries = 0;
3240 
3241 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n",
3242 	    __func__, m, ni, idx, ring->qid);
3243 	ieee80211_ratectl_tx_complete(ni, txs);
3244 	ieee80211_tx_complete(ni, m, !success);
3245 }
3246 
3247 /* Process an incoming Compressed BlockAck. */
3248 static void
3249 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3250 {
3251 	struct iwn_tx_ring *ring;
3252 	struct iwn_tx_data *data;
3253 	struct iwn_node *wn;
3254 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3255 	struct ieee80211_tx_ampdu *tap;
3256 	uint64_t bitmap;
3257 	uint8_t tid;
3258 	int i, qid, shift;
3259 	int tx_ok = 0;
3260 
3261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3262 
3263 	qid = le16toh(ba->qid);
3264 	tap = sc->qid2tap[qid];
3265 	ring = &sc->txq[qid];
3266 	tid = tap->txa_tid;
3267 	wn = (void *)tap->txa_ni;
3268 
3269 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n"
3270 	    "bitmap: ba %016jX wn %016jX, start %d\n",
3271 	    __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn),
3272 	    (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap,
3273 	    wn->agg[tid].startidx);
3274 
3275 	if (wn->agg[tid].bitmap == 0)
3276 		return;
3277 
3278 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3279 	if (shift <= -64)
3280 		shift += 0x100;
3281 
3282 	/*
3283 	 * Walk the bitmap and calculate how many successful attempts
3284 	 * are made.
3285 	 *
3286 	 * Yes, the rate control code doesn't know these are A-MPDU
3287 	 * subframes; due to that long_retries stats are not used here.
3288 	 */
3289 	bitmap = le64toh(ba->bitmap);
3290 	if (shift >= 0)
3291 		bitmap >>= shift;
3292 	else
3293 		bitmap <<= -shift;
3294 	bitmap &= wn->agg[tid].bitmap;
3295 	wn->agg[tid].bitmap = 0;
3296 
3297 	for (i = wn->agg[tid].startidx;
3298 	     bitmap;
3299 	     bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) {
3300 		if ((bitmap & 1) == 0)
3301 			continue;
3302 
3303 		data = &ring->data[i];
3304 		if (__predict_false(data->m == NULL)) {
3305 			/*
3306 			 * There is no frame; skip this entry.
3307 			 *
3308 			 * NB: it is "ok" to have both
3309 			 * 'tx done' + 'compressed BA' replies for frame
3310 			 * with STATE_SCD_QUERY status.
3311 			 */
3312 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3313 			    "%s: ring %d: no entry %d\n", __func__, qid, i);
3314 			continue;
3315 		}
3316 
3317 		tx_ok++;
3318 		iwn_agg_tx_complete(sc, ring, tid, i, 1);
3319 	}
3320 
3321 	ring->queued -= tx_ok;
3322 	iwn_check_tx_ring(sc, qid);
3323 
3324 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU,
3325 	    "->%s: end; %d ok\n",__func__, tx_ok);
3326 }
3327 
3328 /*
3329  * Process a CALIBRATION_RESULT notification sent by the initialization
3330  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3331  */
3332 static void
3333 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3334 {
3335 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3336 	int len, idx = -1;
3337 
3338 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3339 
3340 	/* Runtime firmware should not send such a notification. */
3341 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3342 		DPRINTF(sc, IWN_DEBUG_TRACE,
3343 		    "->%s received after calib done\n", __func__);
3344 		return;
3345 	}
3346 	len = (le32toh(desc->len) & 0x3fff) - 4;
3347 
3348 	switch (calib->code) {
3349 	case IWN5000_PHY_CALIB_DC:
3350 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3351 			idx = 0;
3352 		break;
3353 	case IWN5000_PHY_CALIB_LO:
3354 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3355 			idx = 1;
3356 		break;
3357 	case IWN5000_PHY_CALIB_TX_IQ:
3358 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3359 			idx = 2;
3360 		break;
3361 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3362 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3363 			idx = 3;
3364 		break;
3365 	case IWN5000_PHY_CALIB_BASE_BAND:
3366 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3367 			idx = 4;
3368 		break;
3369 	}
3370 	if (idx == -1)	/* Ignore other results. */
3371 		return;
3372 
3373 	/* Save calibration result. */
3374 	if (sc->calibcmd[idx].buf != NULL)
3375 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3376 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3377 	if (sc->calibcmd[idx].buf == NULL) {
3378 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3379 		    "not enough memory for calibration result %d\n",
3380 		    calib->code);
3381 		return;
3382 	}
3383 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3384 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3385 	sc->calibcmd[idx].len = len;
3386 	memcpy(sc->calibcmd[idx].buf, calib, len);
3387 }
3388 
3389 static void
3390 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3391     struct iwn_stats *stats, int len)
3392 {
3393 	struct iwn_stats_bt *stats_bt;
3394 	struct iwn_stats *lstats;
3395 
3396 	/*
3397 	 * First - check whether the length is the bluetooth or normal.
3398 	 *
3399 	 * If it's normal - just copy it and bump out.
3400 	 * Otherwise we have to convert things.
3401 	 */
3402 
3403 	if (len == sizeof(struct iwn_stats) + 4) {
3404 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3405 		sc->last_stat_valid = 1;
3406 		return;
3407 	}
3408 
3409 	/*
3410 	 * If it's not the bluetooth size - log, then just copy.
3411 	 */
3412 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3413 		DPRINTF(sc, IWN_DEBUG_STATS,
3414 		    "%s: size of rx statistics (%d) not an expected size!\n",
3415 		    __func__,
3416 		    len);
3417 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3418 		sc->last_stat_valid = 1;
3419 		return;
3420 	}
3421 
3422 	/*
3423 	 * Ok. Time to copy.
3424 	 */
3425 	stats_bt = (struct iwn_stats_bt *) stats;
3426 	lstats = &sc->last_stat;
3427 
3428 	/* flags */
3429 	lstats->flags = stats_bt->flags;
3430 	/* rx_bt */
3431 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3432 	    sizeof(struct iwn_rx_phy_stats));
3433 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3434 	    sizeof(struct iwn_rx_phy_stats));
3435 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3436 	    sizeof(struct iwn_rx_general_stats));
3437 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3438 	    sizeof(struct iwn_rx_ht_phy_stats));
3439 	/* tx */
3440 	memcpy(&lstats->tx, &stats_bt->tx,
3441 	    sizeof(struct iwn_tx_stats));
3442 	/* general */
3443 	memcpy(&lstats->general, &stats_bt->general,
3444 	    sizeof(struct iwn_general_stats));
3445 
3446 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3447 	sc->last_stat_valid = 1;
3448 }
3449 
3450 /*
3451  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3452  * The latter is sent by the firmware after each received beacon.
3453  */
3454 static void
3455 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3456 {
3457 	struct iwn_ops *ops = &sc->ops;
3458 	struct ieee80211com *ic = &sc->sc_ic;
3459 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3460 	struct iwn_calib_state *calib = &sc->calib;
3461 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3462 	struct iwn_stats *lstats;
3463 	int temp;
3464 
3465 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3466 
3467 	/* Ignore statistics received during a scan. */
3468 	if (vap->iv_state != IEEE80211_S_RUN ||
3469 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3470 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3471 	    __func__);
3472 		return;
3473 	}
3474 
3475 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3476 	    "%s: received statistics, cmd %d, len %d\n",
3477 	    __func__, desc->type, le16toh(desc->len));
3478 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3479 
3480 	/*
3481 	 * Collect/track general statistics for reporting.
3482 	 *
3483 	 * This takes care of ensuring that the bluetooth sized message
3484 	 * will be correctly converted to the legacy sized message.
3485 	 */
3486 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3487 
3488 	/*
3489 	 * And now, let's take a reference of it to use!
3490 	 */
3491 	lstats = &sc->last_stat;
3492 
3493 	/* Test if temperature has changed. */
3494 	if (lstats->general.temp != sc->rawtemp) {
3495 		/* Convert "raw" temperature to degC. */
3496 		sc->rawtemp = stats->general.temp;
3497 		temp = ops->get_temperature(sc);
3498 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3499 		    __func__, temp);
3500 
3501 		/* Update TX power if need be (4965AGN only). */
3502 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3503 			iwn4965_power_calibration(sc, temp);
3504 	}
3505 
3506 	if (desc->type != IWN_BEACON_STATISTICS)
3507 		return;	/* Reply to a statistics request. */
3508 
3509 	sc->noise = iwn_get_noise(&lstats->rx.general);
3510 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3511 
3512 	/* Test that RSSI and noise are present in stats report. */
3513 	if (le32toh(lstats->rx.general.flags) != 1) {
3514 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3515 		    "received statistics without RSSI");
3516 		return;
3517 	}
3518 
3519 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3520 		iwn_collect_noise(sc, &lstats->rx.general);
3521 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3522 		iwn_tune_sensitivity(sc, &lstats->rx);
3523 		/*
3524 		 * XXX TODO: Only run the RX recovery if we're associated!
3525 		 */
3526 		iwn_check_rx_recovery(sc, lstats);
3527 		iwn_save_stats_counters(sc, lstats);
3528 	}
3529 
3530 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3531 }
3532 
3533 /*
3534  * Save the relevant statistic counters for the next calibration
3535  * pass.
3536  */
3537 static void
3538 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3539 {
3540 	struct iwn_calib_state *calib = &sc->calib;
3541 
3542 	/* Save counters values for next call. */
3543 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3544 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3545 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3546 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3547 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3548 
3549 	/* Last time we received these tick values */
3550 	sc->last_calib_ticks = ticks;
3551 }
3552 
3553 /*
3554  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3555  * and 5000 adapters have different incompatible TX status formats.
3556  */
3557 static void
3558 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3559     struct iwn_rx_data *data)
3560 {
3561 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3562 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3563 
3564 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3565 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3566 	    __func__, desc->qid, desc->idx,
3567 	    stat->rtsfailcnt,
3568 	    stat->ackfailcnt,
3569 	    stat->btkillcnt,
3570 	    stat->rate, le16toh(stat->duration),
3571 	    le32toh(stat->status));
3572 
3573 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3574 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3575 		    &stat->status);
3576 	} else {
3577 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3578 		    le32toh(stat->status) & 0xff);
3579 	}
3580 }
3581 
3582 static void
3583 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3584     struct iwn_rx_data *data)
3585 {
3586 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3587 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3588 
3589 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3590 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3591 	    __func__, desc->qid, desc->idx,
3592 	    stat->rtsfailcnt,
3593 	    stat->ackfailcnt,
3594 	    stat->btkillcnt,
3595 	    stat->rate, le16toh(stat->duration),
3596 	    le32toh(stat->status));
3597 
3598 #ifdef notyet
3599 	/* Reset TX scheduler slot. */
3600 	iwn5000_reset_sched(sc, qid, desc->idx);
3601 #endif
3602 
3603 	if (qid >= sc->firstaggqueue && stat->nframes != 1) {
3604 		iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt,
3605 		    &stat->status);
3606 	} else {
3607 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3608 		    le16toh(stat->status) & 0xff);
3609 	}
3610 }
3611 
3612 static void
3613 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring)
3614 {
3615 	int i;
3616 
3617 	for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) {
3618 		struct iwn_tx_data *data = &ring->data[i];
3619 
3620 		if (data->m != NULL)
3621 			break;
3622 
3623 		data->remapped = 0;
3624 	}
3625 
3626 	ring->read = i;
3627 }
3628 
3629 /*
3630  * Adapter-independent backend for TX_DONE firmware notifications.
3631  */
3632 static void
3633 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3634     int ackfailcnt, uint8_t status)
3635 {
3636 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3637 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3638 	struct iwn_tx_data *data = &ring->data[desc->idx];
3639 	struct mbuf *m;
3640 	struct ieee80211_node *ni;
3641 
3642 	if (__predict_false(data->m == NULL &&
3643 	    ring->qid >= sc->firstaggqueue)) {
3644 		/*
3645 		 * There is no frame; skip this entry.
3646 		 */
3647 		DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n",
3648 		    __func__, ring->qid, desc->idx);
3649 		return;
3650 	}
3651 
3652 	KASSERT(data->ni != NULL, ("no node"));
3653 	KASSERT(data->m != NULL, ("no mbuf"));
3654 
3655 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3656 
3657 	/* Unmap and free mbuf. */
3658 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3659 	bus_dmamap_unload(ring->data_dmat, data->map);
3660 	m = data->m, data->m = NULL;
3661 	ni = data->ni, data->ni = NULL;
3662 
3663 	data->long_retries = 0;
3664 
3665 	if (ring->qid >= sc->firstaggqueue)
3666 		iwn_adj_ampdu_ptr(sc, ring);
3667 
3668 	/*
3669 	 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64
3670 	 * (aggregation queues only).
3671 	 */
3672 
3673 	ring->queued--;
3674 	iwn_check_tx_ring(sc, ring->qid);
3675 
3676 	/*
3677 	 * Update rate control statistics for the node.
3678 	 */
3679 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3680 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3681 	txs->short_retries = rtsfailcnt;
3682 	txs->long_retries = ackfailcnt;
3683 	if (!(status & IWN_TX_FAIL))
3684 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3685 	else {
3686 		switch (status) {
3687 		case IWN_TX_FAIL_SHORT_LIMIT:
3688 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3689 			break;
3690 		case IWN_TX_FAIL_LONG_LIMIT:
3691 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3692 			break;
3693 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3694 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3695 			break;
3696 		default:
3697 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3698 			break;
3699 		}
3700 	}
3701 	ieee80211_ratectl_tx_complete(ni, txs);
3702 
3703 	/*
3704 	 * Channels marked for "radar" require traffic to be received
3705 	 * to unlock before we can transmit.  Until traffic is seen
3706 	 * any attempt to transmit is returned immediately with status
3707 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3708 	 * happen on first authenticate after scanning.  To workaround
3709 	 * this we ignore a failure of this sort in AUTH state so the
3710 	 * 802.11 layer will fall back to using a timeout to wait for
3711 	 * the AUTH reply.  This allows the firmware time to see
3712 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3713 	 * unclear why the firmware does not maintain state for
3714 	 * channels recently visited as this would allow immediate
3715 	 * use of the channel after a scan (where we see traffic).
3716 	 */
3717 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3718 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3719 		ieee80211_tx_complete(ni, m, 0);
3720 	else
3721 		ieee80211_tx_complete(ni, m,
3722 		    (status & IWN_TX_FAIL) != 0);
3723 
3724 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3725 }
3726 
3727 /*
3728  * Process a "command done" firmware notification.  This is where we wakeup
3729  * processes waiting for a synchronous command completion.
3730  */
3731 static void
3732 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3733 {
3734 	struct iwn_tx_ring *ring;
3735 	struct iwn_tx_data *data;
3736 	int cmd_queue_num;
3737 
3738 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3739 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3740 	else
3741 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3742 
3743 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3744 		return;	/* Not a command ack. */
3745 
3746 	ring = &sc->txq[cmd_queue_num];
3747 	data = &ring->data[desc->idx];
3748 
3749 	/* If the command was mapped in an mbuf, free it. */
3750 	if (data->m != NULL) {
3751 		bus_dmamap_sync(ring->data_dmat, data->map,
3752 		    BUS_DMASYNC_POSTWRITE);
3753 		bus_dmamap_unload(ring->data_dmat, data->map);
3754 		m_freem(data->m);
3755 		data->m = NULL;
3756 	}
3757 	wakeup(&ring->desc[desc->idx]);
3758 }
3759 
3760 static int
3761 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx)
3762 {
3763 	int bit, shift;
3764 
3765 	bit = idx - start;
3766 	shift = 0;
3767 	if (bit >= 64) {
3768 		shift = 0x100 - bit;
3769 		bit = 0;
3770 	} else if (bit <= -64)
3771 		bit = 0x100 + bit;
3772 	else if (bit < 0) {
3773 		shift = -bit;
3774 		bit = 0;
3775 	}
3776 
3777 	if (bit - shift >= 64)
3778 		return (0);
3779 
3780 	return ((bitmap & (1ULL << (bit - shift))) != 0);
3781 }
3782 
3783 /*
3784  * Firmware bug workaround: in case if 'retries' counter
3785  * overflows 'seqno' field will be incremented:
3786  *    status|sequence|status|sequence|status|sequence
3787  *     0000    0A48    0001    0A49    0000    0A6A
3788  *     1000    0A48    1000    0A49    1000    0A6A
3789  *     2000    0A48    2000    0A49    2000    0A6A
3790  * ...
3791  *     E000    0A48    E000    0A49    E000    0A6A
3792  *     F000    0A48    F000    0A49    F000    0A6A
3793  *     0000    0A49    0000    0A49    0000    0A6B
3794  *     1000    0A49    1000    0A49    1000    0A6B
3795  * ...
3796  *     D000    0A49    D000    0A49    D000    0A6B
3797  *     E000    0A49    E001    0A49    E000    0A6B
3798  *     F000    0A49    F001    0A49    F000    0A6B
3799  *     0000    0A4A    0000    0A4B    0000    0A6A
3800  *     1000    0A4A    1000    0A4B    1000    0A6A
3801  * ...
3802  *
3803  * Odd 'seqno' numbers are incremened by 2 every 2 overflows.
3804  * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0).
3805  * Not checked with nretries >= 64.
3806  *
3807  */
3808 static int
3809 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring,
3810     uint64_t bitmap, int start, int idx)
3811 {
3812 	struct ieee80211com *ic = &sc->sc_ic;
3813 	struct iwn_tx_data *data;
3814 	int diff, min_retries, max_retries, new_idx, loop_end;
3815 
3816 	new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG;
3817 	if (new_idx < 0)
3818 		new_idx += IWN_TX_RING_COUNT;
3819 
3820 	/*
3821 	 * Corner case: check if retry count is not too big;
3822 	 * reset device otherwise.
3823 	 */
3824 	if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) {
3825 		data = &ring->data[new_idx];
3826 		if (data->long_retries > IWN_LONG_RETRY_LIMIT) {
3827 			device_printf(sc->sc_dev,
3828 			    "%s: retry count (%d) for idx %d/%d overflow, "
3829 			    "resetting...\n", __func__, data->long_retries,
3830 			    ring->qid, new_idx);
3831 			ieee80211_restart_all(ic);
3832 			return (-1);
3833 		}
3834 	}
3835 
3836 	/* Correct index if needed. */
3837 	loop_end = idx;
3838 	do {
3839 		data = &ring->data[new_idx];
3840 		diff = idx - new_idx;
3841 		if (diff < 0)
3842 			diff += IWN_TX_RING_COUNT;
3843 
3844 		min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff;
3845 		if ((new_idx % 2) == 0)
3846 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1);
3847 		else
3848 			max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2);
3849 
3850 		if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) &&
3851 		    ((data->long_retries >= min_retries &&
3852 		      data->long_retries < max_retries) ||
3853 		     (diff == 1 &&
3854 		      (new_idx & 0x03) == 0x02 &&
3855 		      data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) {
3856 			DPRINTF(sc, IWN_DEBUG_AMPDU,
3857 			    "%s: correcting index %d -> %d in queue %d"
3858 			    " (retries %d)\n", __func__, idx, new_idx,
3859 			    ring->qid, data->long_retries);
3860 			return (new_idx);
3861 		}
3862 
3863 		new_idx = (new_idx + 1) % IWN_TX_RING_COUNT;
3864 	} while (new_idx != loop_end);
3865 
3866 	return (idx);
3867 }
3868 
3869 static void
3870 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt,
3871     void *stat)
3872 {
3873 	struct iwn_tx_ring *ring = &sc->txq[qid];
3874 	struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid];
3875 	struct iwn_node *wn = (void *)tap->txa_ni;
3876 	struct iwn_tx_data *data;
3877 	uint64_t bitmap = 0;
3878 	uint16_t *aggstatus = stat;
3879 	uint8_t tid = tap->txa_tid;
3880 	int bit, i, idx, shift, start, tx_err;
3881 
3882 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3883 
3884 	start = le16toh(*(aggstatus + nframes * 2)) & 0xff;
3885 
3886 	for (i = 0; i < nframes; i++) {
3887 		uint16_t status = le16toh(aggstatus[i * 2]);
3888 
3889 		if (status & IWN_AGG_TX_STATE_IGNORE_MASK)
3890 			continue;
3891 
3892 		idx = le16toh(aggstatus[i * 2 + 1]) & 0xff;
3893 		data = &ring->data[idx];
3894 		if (data->remapped) {
3895 			idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx);
3896 			if (idx == -1) {
3897 				/* skip error (device will be restarted anyway). */
3898 				continue;
3899 			}
3900 
3901 			/* Index may have changed. */
3902 			data = &ring->data[idx];
3903 		}
3904 
3905 		/*
3906 		 * XXX Sometimes (rarely) some frames are excluded from events.
3907 		 * XXX Due to that long_retries counter may be wrong.
3908 		 */
3909 		data->long_retries &= ~0x0f;
3910 		data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1;
3911 
3912 		if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) {
3913 			int diff, wrong_idx;
3914 
3915 			diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW;
3916 			wrong_idx = (idx + diff) % IWN_TX_RING_COUNT;
3917 
3918 			/*
3919 			 * Mark the entry so the above code will check it
3920 			 * next time.
3921 			 */
3922 			ring->data[wrong_idx].remapped = 1;
3923 		}
3924 
3925 		if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) {
3926 			/*
3927 			 * NB: count retries but postpone - it was not
3928 			 * transmitted.
3929 			 */
3930 			continue;
3931 		}
3932 
3933 		bit = idx - start;
3934 		shift = 0;
3935 		if (bit >= 64) {
3936 			shift = 0x100 - bit;
3937 			bit = 0;
3938 		} else if (bit <= -64)
3939 			bit = 0x100 + bit;
3940 		else if (bit < 0) {
3941 			shift = -bit;
3942 			bit = 0;
3943 		}
3944 		bitmap = bitmap << shift;
3945 		bitmap |= 1ULL << bit;
3946 	}
3947 	wn->agg[tid].startidx = start;
3948 	wn->agg[tid].bitmap = bitmap;
3949 	wn->agg[tid].short_retries = rtsfailcnt;
3950 
3951 	DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n",
3952 	    __func__, nframes, start, (uintmax_t)bitmap);
3953 
3954 	i = ring->read;
3955 
3956 	for (tx_err = 0;
3957 	     i != wn->agg[tid].startidx;
3958 	     i = (i + 1) % IWN_TX_RING_COUNT) {
3959 		data = &ring->data[i];
3960 		data->remapped = 0;
3961 		if (data->m == NULL)
3962 			continue;
3963 
3964 		tx_err++;
3965 		iwn_agg_tx_complete(sc, ring, tid, i, 0);
3966 	}
3967 
3968 	ring->read = wn->agg[tid].startidx;
3969 	ring->queued -= tx_err;
3970 
3971 	iwn_check_tx_ring(sc, qid);
3972 
3973 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3974 }
3975 
3976 /*
3977  * Process an INT_FH_RX or INT_SW_RX interrupt.
3978  */
3979 static void
3980 iwn_notif_intr(struct iwn_softc *sc)
3981 {
3982 	struct iwn_ops *ops = &sc->ops;
3983 	struct ieee80211com *ic = &sc->sc_ic;
3984 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3985 	uint16_t hw;
3986 	int is_stopped;
3987 
3988 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3989 	    BUS_DMASYNC_POSTREAD);
3990 
3991 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3992 	while (sc->rxq.cur != hw) {
3993 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3994 		struct iwn_rx_desc *desc;
3995 
3996 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3997 		    BUS_DMASYNC_POSTREAD);
3998 		desc = mtod(data->m, struct iwn_rx_desc *);
3999 
4000 		DPRINTF(sc, IWN_DEBUG_RECV,
4001 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
4002 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
4003 		    desc->idx, desc->flags, desc->type,
4004 		    iwn_intr_str(desc->type), le16toh(desc->len));
4005 
4006 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
4007 			iwn_cmd_done(sc, desc);
4008 
4009 		switch (desc->type) {
4010 		case IWN_RX_PHY:
4011 			iwn_rx_phy(sc, desc);
4012 			break;
4013 
4014 		case IWN_RX_DONE:		/* 4965AGN only. */
4015 		case IWN_MPDU_RX_DONE:
4016 			/* An 802.11 frame has been received. */
4017 			iwn_rx_done(sc, desc, data);
4018 
4019 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4020 			if (__predict_false(is_stopped))
4021 				return;
4022 
4023 			break;
4024 
4025 		case IWN_RX_COMPRESSED_BA:
4026 			/* A Compressed BlockAck has been received. */
4027 			iwn_rx_compressed_ba(sc, desc);
4028 			break;
4029 
4030 		case IWN_TX_DONE:
4031 			/* An 802.11 frame has been transmitted. */
4032 			ops->tx_done(sc, desc, data);
4033 			break;
4034 
4035 		case IWN_RX_STATISTICS:
4036 		case IWN_BEACON_STATISTICS:
4037 			iwn_rx_statistics(sc, desc);
4038 			break;
4039 
4040 		case IWN_BEACON_MISSED:
4041 		{
4042 			struct iwn_beacon_missed *miss =
4043 			    (struct iwn_beacon_missed *)(desc + 1);
4044 			int misses;
4045 
4046 			misses = le32toh(miss->consecutive);
4047 
4048 			DPRINTF(sc, IWN_DEBUG_STATE,
4049 			    "%s: beacons missed %d/%d\n", __func__,
4050 			    misses, le32toh(miss->total));
4051 			/*
4052 			 * If more than 5 consecutive beacons are missed,
4053 			 * reinitialize the sensitivity state machine.
4054 			 */
4055 			if (vap->iv_state == IEEE80211_S_RUN &&
4056 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
4057 				if (misses > 5)
4058 					(void)iwn_init_sensitivity(sc);
4059 				if (misses >= vap->iv_bmissthreshold) {
4060 					IWN_UNLOCK(sc);
4061 					ieee80211_beacon_miss(ic);
4062 					IWN_LOCK(sc);
4063 
4064 					is_stopped = (sc->sc_flags &
4065 					    IWN_FLAG_RUNNING) == 0;
4066 					if (__predict_false(is_stopped))
4067 						return;
4068 				}
4069 			}
4070 			break;
4071 		}
4072 		case IWN_UC_READY:
4073 		{
4074 			struct iwn_ucode_info *uc =
4075 			    (struct iwn_ucode_info *)(desc + 1);
4076 
4077 			/* The microcontroller is ready. */
4078 			DPRINTF(sc, IWN_DEBUG_RESET,
4079 			    "microcode alive notification version=%d.%d "
4080 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
4081 			    uc->subtype, le32toh(uc->valid));
4082 
4083 			if (le32toh(uc->valid) != 1) {
4084 				device_printf(sc->sc_dev,
4085 				    "microcontroller initialization failed");
4086 				break;
4087 			}
4088 			if (uc->subtype == IWN_UCODE_INIT) {
4089 				/* Save microcontroller report. */
4090 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
4091 			}
4092 			/* Save the address of the error log in SRAM. */
4093 			sc->errptr = le32toh(uc->errptr);
4094 			break;
4095 		}
4096 #ifdef IWN_DEBUG
4097 		case IWN_STATE_CHANGED:
4098 		{
4099 			/*
4100 			 * State change allows hardware switch change to be
4101 			 * noted. However, we handle this in iwn_intr as we
4102 			 * get both the enable/disble intr.
4103 			 */
4104 			uint32_t *status = (uint32_t *)(desc + 1);
4105 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
4106 			    "state changed to %x\n",
4107 			    le32toh(*status));
4108 			break;
4109 		}
4110 		case IWN_START_SCAN:
4111 		{
4112 			struct iwn_start_scan *scan =
4113 			    (struct iwn_start_scan *)(desc + 1);
4114 			DPRINTF(sc, IWN_DEBUG_ANY,
4115 			    "%s: scanning channel %d status %x\n",
4116 			    __func__, scan->chan, le32toh(scan->status));
4117 			break;
4118 		}
4119 #endif
4120 		case IWN_STOP_SCAN:
4121 		{
4122 #ifdef	IWN_DEBUG
4123 			struct iwn_stop_scan *scan =
4124 			    (struct iwn_stop_scan *)(desc + 1);
4125 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
4126 			    "scan finished nchan=%d status=%d chan=%d\n",
4127 			    scan->nchan, scan->status, scan->chan);
4128 #endif
4129 			sc->sc_is_scanning = 0;
4130 			callout_stop(&sc->scan_timeout);
4131 			IWN_UNLOCK(sc);
4132 			ieee80211_scan_next(vap);
4133 			IWN_LOCK(sc);
4134 
4135 			is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0;
4136 			if (__predict_false(is_stopped))
4137 				return;
4138 
4139 			break;
4140 		}
4141 		case IWN5000_CALIBRATION_RESULT:
4142 			iwn5000_rx_calib_results(sc, desc);
4143 			break;
4144 
4145 		case IWN5000_CALIBRATION_DONE:
4146 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
4147 			wakeup(sc);
4148 			break;
4149 		}
4150 
4151 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
4152 	}
4153 
4154 	/* Tell the firmware what we have processed. */
4155 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
4156 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
4157 }
4158 
4159 /*
4160  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
4161  * from power-down sleep mode.
4162  */
4163 static void
4164 iwn_wakeup_intr(struct iwn_softc *sc)
4165 {
4166 	int qid;
4167 
4168 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4169 	    __func__);
4170 
4171 	/* Wakeup RX and TX rings. */
4172 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4173 	for (qid = 0; qid < sc->ntxqs; qid++) {
4174 		struct iwn_tx_ring *ring = &sc->txq[qid];
4175 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4176 	}
4177 }
4178 
4179 static void
4180 iwn_rftoggle_task(void *arg, int npending)
4181 {
4182 	struct iwn_softc *sc = arg;
4183 	struct ieee80211com *ic = &sc->sc_ic;
4184 	uint32_t tmp;
4185 
4186 	IWN_LOCK(sc);
4187 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4188 	IWN_UNLOCK(sc);
4189 
4190 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4191 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4192 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4193 		ieee80211_suspend_all(ic);
4194 
4195 		/* Enable interrupts to get RF toggle notification. */
4196 		IWN_LOCK(sc);
4197 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4198 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4199 		IWN_UNLOCK(sc);
4200 	} else
4201 		ieee80211_resume_all(ic);
4202 }
4203 
4204 /*
4205  * Dump the error log of the firmware when a firmware panic occurs.  Although
4206  * we can't debug the firmware because it is neither open source nor free, it
4207  * can help us to identify certain classes of problems.
4208  */
4209 static void
4210 iwn_fatal_intr(struct iwn_softc *sc)
4211 {
4212 	struct iwn_fw_dump dump;
4213 	int i;
4214 
4215 	IWN_LOCK_ASSERT(sc);
4216 
4217 	/* Force a complete recalibration on next init. */
4218 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4219 
4220 	/* Check that the error log address is valid. */
4221 	if (sc->errptr < IWN_FW_DATA_BASE ||
4222 	    sc->errptr + sizeof (dump) >
4223 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4224 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4225 		    sc->errptr);
4226 		return;
4227 	}
4228 	if (iwn_nic_lock(sc) != 0) {
4229 		printf("%s: could not read firmware error log\n", __func__);
4230 		return;
4231 	}
4232 	/* Read firmware error log from SRAM. */
4233 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4234 	    sizeof (dump) / sizeof (uint32_t));
4235 	iwn_nic_unlock(sc);
4236 
4237 	if (dump.valid == 0) {
4238 		printf("%s: firmware error log is empty\n", __func__);
4239 		return;
4240 	}
4241 	printf("firmware error log:\n");
4242 	printf("  error type      = \"%s\" (0x%08X)\n",
4243 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4244 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4245 	    dump.id);
4246 	printf("  program counter = 0x%08X\n", dump.pc);
4247 	printf("  source line     = 0x%08X\n", dump.src_line);
4248 	printf("  error data      = 0x%08X%08X\n",
4249 	    dump.error_data[0], dump.error_data[1]);
4250 	printf("  branch link     = 0x%08X%08X\n",
4251 	    dump.branch_link[0], dump.branch_link[1]);
4252 	printf("  interrupt link  = 0x%08X%08X\n",
4253 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4254 	printf("  time            = %u\n", dump.time[0]);
4255 
4256 	/* Dump driver status (TX and RX rings) while we're here. */
4257 	printf("driver status:\n");
4258 	for (i = 0; i < sc->ntxqs; i++) {
4259 		struct iwn_tx_ring *ring = &sc->txq[i];
4260 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4261 		    i, ring->qid, ring->cur, ring->queued);
4262 	}
4263 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4264 }
4265 
4266 static void
4267 iwn_intr(void *arg)
4268 {
4269 	struct iwn_softc *sc = arg;
4270 	uint32_t r1, r2, tmp;
4271 
4272 	IWN_LOCK(sc);
4273 
4274 	/* Disable interrupts. */
4275 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4276 
4277 	/* Read interrupts from ICT (fast) or from registers (slow). */
4278 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4279 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4280 		    BUS_DMASYNC_POSTREAD);
4281 		tmp = 0;
4282 		while (sc->ict[sc->ict_cur] != 0) {
4283 			tmp |= sc->ict[sc->ict_cur];
4284 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4285 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4286 		}
4287 		tmp = le32toh(tmp);
4288 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4289 			tmp = 0;
4290 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4291 			tmp |= 0x8000;
4292 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4293 		r2 = 0;	/* Unused. */
4294 	} else {
4295 		r1 = IWN_READ(sc, IWN_INT);
4296 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4297 			IWN_UNLOCK(sc);
4298 			return;	/* Hardware gone! */
4299 		}
4300 		r2 = IWN_READ(sc, IWN_FH_INT);
4301 	}
4302 
4303 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4304     , r1, r2);
4305 
4306 	if (r1 == 0 && r2 == 0)
4307 		goto done;	/* Interrupt not for us. */
4308 
4309 	/* Acknowledge interrupts. */
4310 	IWN_WRITE(sc, IWN_INT, r1);
4311 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4312 		IWN_WRITE(sc, IWN_FH_INT, r2);
4313 
4314 	if (r1 & IWN_INT_RF_TOGGLED) {
4315 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4316 		goto done;
4317 	}
4318 	if (r1 & IWN_INT_CT_REACHED) {
4319 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4320 		    __func__);
4321 	}
4322 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4323 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4324 		    __func__);
4325 #ifdef	IWN_DEBUG
4326 		iwn_debug_register(sc);
4327 #endif
4328 		/* Dump firmware error log and stop. */
4329 		iwn_fatal_intr(sc);
4330 
4331 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4332 		goto done;
4333 	}
4334 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4335 	    (r2 & IWN_FH_INT_RX)) {
4336 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4337 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4338 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4339 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4340 			    IWN_INT_PERIODIC_DIS);
4341 			iwn_notif_intr(sc);
4342 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4343 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4344 				    IWN_INT_PERIODIC_ENA);
4345 			}
4346 		} else
4347 			iwn_notif_intr(sc);
4348 	}
4349 
4350 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4351 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4352 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4353 		wakeup(sc);	/* FH DMA transfer completed. */
4354 	}
4355 
4356 	if (r1 & IWN_INT_ALIVE)
4357 		wakeup(sc);	/* Firmware is alive. */
4358 
4359 	if (r1 & IWN_INT_WAKEUP)
4360 		iwn_wakeup_intr(sc);
4361 
4362 done:
4363 	/* Re-enable interrupts. */
4364 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4365 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4366 
4367 	IWN_UNLOCK(sc);
4368 }
4369 
4370 /*
4371  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4372  * 5000 adapters use a slightly different format).
4373  */
4374 static void
4375 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4376     uint16_t len)
4377 {
4378 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4379 
4380 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4381 
4382 	*w = htole16(len + 8);
4383 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4384 	    BUS_DMASYNC_PREWRITE);
4385 	if (idx < IWN_SCHED_WINSZ) {
4386 		*(w + IWN_TX_RING_COUNT) = *w;
4387 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4388 		    BUS_DMASYNC_PREWRITE);
4389 	}
4390 }
4391 
4392 static void
4393 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4394     uint16_t len)
4395 {
4396 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4397 
4398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4399 
4400 	*w = htole16(id << 12 | (len + 8));
4401 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4402 	    BUS_DMASYNC_PREWRITE);
4403 	if (idx < IWN_SCHED_WINSZ) {
4404 		*(w + IWN_TX_RING_COUNT) = *w;
4405 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4406 		    BUS_DMASYNC_PREWRITE);
4407 	}
4408 }
4409 
4410 #ifdef notyet
4411 static void
4412 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4413 {
4414 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4415 
4416 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4417 
4418 	*w = (*w & htole16(0xf000)) | htole16(1);
4419 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4420 	    BUS_DMASYNC_PREWRITE);
4421 	if (idx < IWN_SCHED_WINSZ) {
4422 		*(w + IWN_TX_RING_COUNT) = *w;
4423 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4424 		    BUS_DMASYNC_PREWRITE);
4425 	}
4426 }
4427 #endif
4428 
4429 /*
4430  * Check whether OFDM 11g protection will be enabled for the given rate.
4431  *
4432  * The original driver code only enabled protection for OFDM rates.
4433  * It didn't check to see whether it was operating in 11a or 11bg mode.
4434  */
4435 static int
4436 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4437     struct ieee80211vap *vap, uint8_t rate)
4438 {
4439 	struct ieee80211com *ic = vap->iv_ic;
4440 
4441 	/*
4442 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4443 	 * 11bg protection.
4444 	 */
4445 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4446 		return (0);
4447 	}
4448 
4449 	/*
4450 	 * 11bg protection not enabled? Then don't use it.
4451 	 */
4452 	if ((vap->iv_flags & IEEE80211_F_USEPROT) == 0)
4453 		return (0);
4454 
4455 	/*
4456 	 * If it's an 11n rate - no protection.
4457 	 * We'll do it via a specific 11n check.
4458 	 */
4459 	if (rate & IEEE80211_RATE_MCS) {
4460 		return (0);
4461 	}
4462 
4463 	/*
4464 	 * Do a rate table lookup.  If the PHY is CCK,
4465 	 * don't do protection.
4466 	 */
4467 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4468 		return (0);
4469 
4470 	/*
4471 	 * Yup, enable protection.
4472 	 */
4473 	return (1);
4474 }
4475 
4476 /*
4477  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4478  * the link quality table that reflects this particular entry.
4479  */
4480 static int
4481 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4482     uint8_t rate)
4483 {
4484 	struct ieee80211_rateset *rs;
4485 	int is_11n;
4486 	int nr;
4487 	int i;
4488 	uint8_t cmp_rate;
4489 
4490 	/*
4491 	 * Figure out if we're using 11n or not here.
4492 	 */
4493 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4494 		is_11n = 1;
4495 	else
4496 		is_11n = 0;
4497 
4498 	/*
4499 	 * Use the correct rate table.
4500 	 */
4501 	if (is_11n) {
4502 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4503 		nr = ni->ni_htrates.rs_nrates;
4504 	} else {
4505 		rs = &ni->ni_rates;
4506 		nr = rs->rs_nrates;
4507 	}
4508 
4509 	/*
4510 	 * Find the relevant link quality entry in the table.
4511 	 */
4512 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4513 		/*
4514 		 * The link quality table index starts at 0 == highest
4515 		 * rate, so we walk the rate table backwards.
4516 		 */
4517 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4518 		if (rate & IEEE80211_RATE_MCS)
4519 			cmp_rate |= IEEE80211_RATE_MCS;
4520 
4521 #if 0
4522 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4523 		    __func__,
4524 		    i,
4525 		    nr,
4526 		    rate,
4527 		    cmp_rate);
4528 #endif
4529 
4530 		if (cmp_rate == rate)
4531 			return (i);
4532 	}
4533 
4534 	/* Failed? Start at the end */
4535 	return (IWN_MAX_TX_RETRIES - 1);
4536 }
4537 
4538 static int
4539 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4540 {
4541 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4542 	struct ieee80211vap *vap = ni->ni_vap;
4543 	struct ieee80211com *ic = ni->ni_ic;
4544 	struct iwn_node *wn = (void *)ni;
4545 	struct iwn_tx_ring *ring;
4546 	struct iwn_tx_cmd *cmd;
4547 	struct iwn_cmd_data *tx;
4548 	struct ieee80211_frame *wh;
4549 	struct ieee80211_key *k = NULL;
4550 	uint32_t flags;
4551 	uint16_t qos;
4552 	uint8_t tid, type;
4553 	int ac, totlen, rate;
4554 
4555 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4556 
4557 	IWN_LOCK_ASSERT(sc);
4558 
4559 	wh = mtod(m, struct ieee80211_frame *);
4560 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4561 
4562 	/* Select EDCA Access Category and TX ring for this frame. */
4563 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4564 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4565 		tid = qos & IEEE80211_QOS_TID;
4566 	} else {
4567 		qos = 0;
4568 		tid = 0;
4569 	}
4570 
4571 	/* Choose a TX rate index. */
4572 	if (type == IEEE80211_FC0_TYPE_MGT ||
4573 	    type == IEEE80211_FC0_TYPE_CTL ||
4574 	    (m->m_flags & M_EAPOL) != 0)
4575 		rate = tp->mgmtrate;
4576 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4577 		rate = tp->mcastrate;
4578 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4579 		rate = tp->ucastrate;
4580 	else {
4581 		/* XXX pass pktlen */
4582 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4583 		rate = ni->ni_txrate;
4584 	}
4585 
4586 	/*
4587 	 * XXX TODO: Group addressed frames aren't aggregated and must
4588 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4589 	 * assigned from net80211.
4590 	 */
4591 
4592 	ac = M_WME_GETAC(m);
4593 	if (m->m_flags & M_AMPDU_MPDU) {
4594 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4595 
4596 		if (!IEEE80211_AMPDU_RUNNING(tap))
4597 			return (EINVAL);
4598 
4599 		ac = *(int *)tap->txa_private;
4600 	}
4601 
4602 	/* Encrypt the frame if need be. */
4603 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4604 		/* Retrieve key for TX. */
4605 		k = ieee80211_crypto_encap(ni, m);
4606 		if (k == NULL) {
4607 			return ENOBUFS;
4608 		}
4609 		/* 802.11 header may have moved. */
4610 		wh = mtod(m, struct ieee80211_frame *);
4611 	}
4612 	totlen = m->m_pkthdr.len;
4613 
4614 	if (ieee80211_radiotap_active_vap(vap)) {
4615 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4616 
4617 		tap->wt_flags = 0;
4618 		tap->wt_rate = rate;
4619 		if (k != NULL)
4620 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4621 
4622 		ieee80211_radiotap_tx(vap, m);
4623 	}
4624 
4625 	flags = 0;
4626 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4627 		/* Unicast frame, check if an ACK is expected. */
4628 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4629 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4630 			flags |= IWN_TX_NEED_ACK;
4631 	}
4632 	if ((wh->i_fc[0] &
4633 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4634 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4635 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4636 
4637 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4638 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4639 
4640 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4641 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4642 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4643 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4644 			flags |= IWN_TX_NEED_RTS;
4645 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4646 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4647 				flags |= IWN_TX_NEED_CTS;
4648 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4649 				flags |= IWN_TX_NEED_RTS;
4650 		} else if ((rate & IEEE80211_RATE_MCS) &&
4651 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4652 			flags |= IWN_TX_NEED_RTS;
4653 		}
4654 
4655 		/* XXX HT protection? */
4656 
4657 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4658 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4659 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4660 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4661 				flags |= IWN_TX_NEED_PROTECTION;
4662 			} else
4663 				flags |= IWN_TX_FULL_TXOP;
4664 		}
4665 	}
4666 
4667 	ring = &sc->txq[ac];
4668 	if (m->m_flags & M_AMPDU_MPDU) {
4669 		uint16_t seqno = ni->ni_txseqs[tid];
4670 
4671 		if (ring->queued > IWN_TX_RING_COUNT / 2 &&
4672 		    (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) {
4673 			DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space "
4674 			    "(queued %d) left in %d queue!\n",
4675 			    __func__, ring->queued, ac);
4676 			return (ENOBUFS);
4677 		}
4678 
4679 		/*
4680 		 * Queue this frame to the hardware ring that we've
4681 		 * negotiated AMPDU TX on.
4682 		 *
4683 		 * Note that the sequence number must match the TX slot
4684 		 * being used!
4685 		 */
4686 		if ((seqno % 256) != ring->cur) {
4687 			device_printf(sc->sc_dev,
4688 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4689 			    __func__,
4690 			    m,
4691 			    seqno,
4692 			    seqno % 256,
4693 			    ring->cur);
4694 
4695 			/* XXX until D9195 will not be committed */
4696 			ni->ni_txseqs[tid] &= ~0xff;
4697 			ni->ni_txseqs[tid] += ring->cur;
4698 			seqno = ni->ni_txseqs[tid];
4699 		}
4700 
4701 		*(uint16_t *)wh->i_seq =
4702 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4703 		ni->ni_txseqs[tid]++;
4704 	}
4705 
4706 	/* Prepare TX firmware command. */
4707 	cmd = &ring->cmd[ring->cur];
4708 	tx = (struct iwn_cmd_data *)cmd->data;
4709 
4710 	/* NB: No need to clear tx, all fields are reinitialized here. */
4711 	tx->scratch = 0;	/* clear "scratch" area */
4712 
4713 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4714 	    type != IEEE80211_FC0_TYPE_DATA)
4715 		tx->id = sc->broadcast_id;
4716 	else
4717 		tx->id = wn->id;
4718 
4719 	if (type == IEEE80211_FC0_TYPE_MGT) {
4720 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4721 
4722 		/* Tell HW to set timestamp in probe responses. */
4723 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4724 			flags |= IWN_TX_INSERT_TSTAMP;
4725 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4726 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4727 			tx->timeout = htole16(3);
4728 		else
4729 			tx->timeout = htole16(2);
4730 	} else
4731 		tx->timeout = htole16(0);
4732 
4733 	if (tx->id == sc->broadcast_id) {
4734 		/* Group or management frame. */
4735 		tx->linkq = 0;
4736 	} else {
4737 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4738 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4739 	}
4740 
4741 	tx->tid = tid;
4742 	tx->rts_ntries = 60;
4743 	tx->data_ntries = 15;
4744 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4745 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4746 	tx->security = 0;
4747 	tx->flags = htole32(flags);
4748 
4749 	return (iwn_tx_cmd(sc, m, ni, ring));
4750 }
4751 
4752 static int
4753 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4754     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4755 {
4756 	struct ieee80211vap *vap = ni->ni_vap;
4757 	struct iwn_tx_cmd *cmd;
4758 	struct iwn_cmd_data *tx;
4759 	struct ieee80211_frame *wh;
4760 	struct iwn_tx_ring *ring;
4761 	uint32_t flags;
4762 	int ac, rate;
4763 	uint8_t type;
4764 
4765 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4766 
4767 	IWN_LOCK_ASSERT(sc);
4768 
4769 	wh = mtod(m, struct ieee80211_frame *);
4770 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4771 
4772 	ac = params->ibp_pri & 3;
4773 
4774 	/* Choose a TX rate. */
4775 	rate = params->ibp_rate0;
4776 
4777 	flags = 0;
4778 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4779 		flags |= IWN_TX_NEED_ACK;
4780 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4781 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4782 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4783 			flags &= ~IWN_TX_NEED_RTS;
4784 			flags |= IWN_TX_NEED_PROTECTION;
4785 		} else
4786 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4787 	}
4788 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4789 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4790 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4791 			flags &= ~IWN_TX_NEED_CTS;
4792 			flags |= IWN_TX_NEED_PROTECTION;
4793 		} else
4794 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4795 	}
4796 
4797 	if (ieee80211_radiotap_active_vap(vap)) {
4798 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4799 
4800 		tap->wt_flags = 0;
4801 		tap->wt_rate = rate;
4802 
4803 		ieee80211_radiotap_tx(vap, m);
4804 	}
4805 
4806 	ring = &sc->txq[ac];
4807 	cmd = &ring->cmd[ring->cur];
4808 
4809 	tx = (struct iwn_cmd_data *)cmd->data;
4810 	/* NB: No need to clear tx, all fields are reinitialized here. */
4811 	tx->scratch = 0;	/* clear "scratch" area */
4812 
4813 	if (type == IEEE80211_FC0_TYPE_MGT) {
4814 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4815 
4816 		/* Tell HW to set timestamp in probe responses. */
4817 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4818 			flags |= IWN_TX_INSERT_TSTAMP;
4819 
4820 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4821 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4822 			tx->timeout = htole16(3);
4823 		else
4824 			tx->timeout = htole16(2);
4825 	} else
4826 		tx->timeout = htole16(0);
4827 
4828 	tx->tid = 0;
4829 	tx->id = sc->broadcast_id;
4830 	tx->rts_ntries = params->ibp_try1;
4831 	tx->data_ntries = params->ibp_try0;
4832 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4833 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4834 	tx->security = 0;
4835 	tx->flags = htole32(flags);
4836 
4837 	/* Group or management frame. */
4838 	tx->linkq = 0;
4839 
4840 	return (iwn_tx_cmd(sc, m, ni, ring));
4841 }
4842 
4843 static int
4844 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4845     struct iwn_tx_ring *ring)
4846 {
4847 	struct iwn_ops *ops = &sc->ops;
4848 	struct iwn_tx_cmd *cmd;
4849 	struct iwn_cmd_data *tx;
4850 	struct ieee80211_frame *wh;
4851 	struct iwn_tx_desc *desc;
4852 	struct iwn_tx_data *data;
4853 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4854 	struct mbuf *m1;
4855 	u_int hdrlen;
4856 	int totlen, error, pad, nsegs = 0, i;
4857 
4858 	wh = mtod(m, struct ieee80211_frame *);
4859 	hdrlen = ieee80211_anyhdrsize(wh);
4860 	totlen = m->m_pkthdr.len;
4861 
4862 	desc = &ring->desc[ring->cur];
4863 	data = &ring->data[ring->cur];
4864 
4865 	if (__predict_false(data->m != NULL || data->ni != NULL)) {
4866 		device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d "
4867 		    "in queue %d is not NULL!\n", __func__, data->ni, data->m,
4868 		    ring->cur, ring->qid);
4869 		return EIO;
4870 	}
4871 
4872 	/* Prepare TX firmware command. */
4873 	cmd = &ring->cmd[ring->cur];
4874 	cmd->code = IWN_CMD_TX_DATA;
4875 	cmd->flags = 0;
4876 	cmd->qid = ring->qid;
4877 	cmd->idx = ring->cur;
4878 
4879 	tx = (struct iwn_cmd_data *)cmd->data;
4880 	tx->len = htole16(totlen);
4881 
4882 	/* Set physical address of "scratch area". */
4883 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4884 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4885 	if (hdrlen & 3) {
4886 		/* First segment length must be a multiple of 4. */
4887 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4888 		pad = 4 - (hdrlen & 3);
4889 	} else
4890 		pad = 0;
4891 
4892 	/* Copy 802.11 header in TX command. */
4893 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4894 
4895 	/* Trim 802.11 header. */
4896 	m_adj(m, hdrlen);
4897 
4898 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4899 	    &nsegs, BUS_DMA_NOWAIT);
4900 	if (error != 0) {
4901 		if (error != EFBIG) {
4902 			device_printf(sc->sc_dev,
4903 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4904 			return error;
4905 		}
4906 		/* Too many DMA segments, linearize mbuf. */
4907 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4908 		if (m1 == NULL) {
4909 			device_printf(sc->sc_dev,
4910 			    "%s: could not defrag mbuf\n", __func__);
4911 			return ENOBUFS;
4912 		}
4913 		m = m1;
4914 
4915 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4916 		    segs, &nsegs, BUS_DMA_NOWAIT);
4917 		if (error != 0) {
4918 			/* XXX fix this */
4919 			/*
4920 			 * NB: Do not return error;
4921 			 * original mbuf does not exist anymore.
4922 			 */
4923 			device_printf(sc->sc_dev,
4924 			    "%s: can't map mbuf (error %d)\n",
4925 			    __func__, error);
4926 			if_inc_counter(ni->ni_vap->iv_ifp,
4927 			    IFCOUNTER_OERRORS, 1);
4928 			ieee80211_free_node(ni);
4929 			m_freem(m);
4930 			return 0;
4931 		}
4932 	}
4933 
4934 	data->m = m;
4935 	data->ni = ni;
4936 
4937 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4938 	    "plcp 0x%x\n",
4939 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4940 
4941 	/* Fill TX descriptor. */
4942 	desc->nsegs = 1;
4943 	if (m->m_len != 0)
4944 		desc->nsegs += nsegs;
4945 	/* First DMA segment is used by the TX command. */
4946 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4947 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4948 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4949 	/* Other DMA segments are for data payload. */
4950 	seg = &segs[0];
4951 	for (i = 1; i <= nsegs; i++) {
4952 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4953 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4954 		    seg->ds_len << 4);
4955 		seg++;
4956 	}
4957 
4958 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4959 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4960 	    BUS_DMASYNC_PREWRITE);
4961 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4962 	    BUS_DMASYNC_PREWRITE);
4963 
4964 	/* Update TX scheduler. */
4965 	if (ring->qid >= sc->firstaggqueue)
4966 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4967 
4968 	/* Kick TX ring. */
4969 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4970 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4971 
4972 	/* Mark TX ring as full if we reach a certain threshold. */
4973 	if (++ring->queued > IWN_TX_RING_HIMARK)
4974 		sc->qfullmsk |= 1 << ring->qid;
4975 
4976 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4977 
4978 	return 0;
4979 }
4980 
4981 static void
4982 iwn_xmit_task(void *arg0, int pending)
4983 {
4984 	struct iwn_softc *sc = arg0;
4985 	struct ieee80211_node *ni;
4986 	struct mbuf *m;
4987 	int error;
4988 	struct ieee80211_bpf_params p;
4989 	int have_p;
4990 
4991 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4992 
4993 	IWN_LOCK(sc);
4994 	/*
4995 	 * Dequeue frames, attempt to transmit,
4996 	 * then disable beaconwait when we're done.
4997 	 */
4998 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4999 		have_p = 0;
5000 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5001 
5002 		/* Get xmit params if appropriate */
5003 		if (ieee80211_get_xmit_params(m, &p) == 0)
5004 			have_p = 1;
5005 
5006 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
5007 		    __func__, m, have_p);
5008 
5009 		/* If we have xmit params, use them */
5010 		if (have_p)
5011 			error = iwn_tx_data_raw(sc, m, ni, &p);
5012 		else
5013 			error = iwn_tx_data(sc, m, ni);
5014 
5015 		if (error != 0) {
5016 			if_inc_counter(ni->ni_vap->iv_ifp,
5017 			    IFCOUNTER_OERRORS, 1);
5018 			ieee80211_free_node(ni);
5019 			m_freem(m);
5020 		}
5021 	}
5022 
5023 	sc->sc_beacon_wait = 0;
5024 	IWN_UNLOCK(sc);
5025 }
5026 
5027 /*
5028  * raw frame xmit - free node/reference if failed.
5029  */
5030 static int
5031 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
5032     const struct ieee80211_bpf_params *params)
5033 {
5034 	struct ieee80211com *ic = ni->ni_ic;
5035 	struct iwn_softc *sc = ic->ic_softc;
5036 	int error = 0;
5037 
5038 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5039 
5040 	IWN_LOCK(sc);
5041 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
5042 		m_freem(m);
5043 		IWN_UNLOCK(sc);
5044 		return (ENETDOWN);
5045 	}
5046 
5047 	/* queue frame if we have to */
5048 	if (sc->sc_beacon_wait) {
5049 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
5050 			m_freem(m);
5051 			IWN_UNLOCK(sc);
5052 			return (ENOBUFS);
5053 		}
5054 		/* Queued, so just return OK */
5055 		IWN_UNLOCK(sc);
5056 		return (0);
5057 	}
5058 
5059 	if (params == NULL) {
5060 		/*
5061 		 * Legacy path; interpret frame contents to decide
5062 		 * precisely how to send the frame.
5063 		 */
5064 		error = iwn_tx_data(sc, m, ni);
5065 	} else {
5066 		/*
5067 		 * Caller supplied explicit parameters to use in
5068 		 * sending the frame.
5069 		 */
5070 		error = iwn_tx_data_raw(sc, m, ni, params);
5071 	}
5072 	if (error == 0)
5073 		sc->sc_tx_timer = 5;
5074 	else
5075 		m_freem(m);
5076 
5077 	IWN_UNLOCK(sc);
5078 
5079 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
5080 
5081 	return (error);
5082 }
5083 
5084 /*
5085  * transmit - don't free mbuf if failed; don't free node ref if failed.
5086  */
5087 static int
5088 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
5089 {
5090 	struct iwn_softc *sc = ic->ic_softc;
5091 	struct ieee80211_node *ni;
5092 	int error;
5093 
5094 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
5095 
5096 	IWN_LOCK(sc);
5097 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
5098 		IWN_UNLOCK(sc);
5099 		return (ENXIO);
5100 	}
5101 
5102 	if (sc->qfullmsk) {
5103 		IWN_UNLOCK(sc);
5104 		return (ENOBUFS);
5105 	}
5106 
5107 	error = iwn_tx_data(sc, m, ni);
5108 	if (!error)
5109 		sc->sc_tx_timer = 5;
5110 	IWN_UNLOCK(sc);
5111 	return (error);
5112 }
5113 
5114 static void
5115 iwn_scan_timeout(void *arg)
5116 {
5117 	struct iwn_softc *sc = arg;
5118 	struct ieee80211com *ic = &sc->sc_ic;
5119 
5120 	ic_printf(ic, "scan timeout\n");
5121 	ieee80211_restart_all(ic);
5122 }
5123 
5124 static void
5125 iwn_watchdog(void *arg)
5126 {
5127 	struct iwn_softc *sc = arg;
5128 	struct ieee80211com *ic = &sc->sc_ic;
5129 
5130 	IWN_LOCK_ASSERT(sc);
5131 
5132 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5133 
5134 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5135 
5136 	if (sc->sc_tx_timer > 0) {
5137 		if (--sc->sc_tx_timer == 0) {
5138 			ic_printf(ic, "device timeout\n");
5139 			ieee80211_restart_all(ic);
5140 			return;
5141 		}
5142 	}
5143 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5144 }
5145 
5146 static int
5147 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5148 {
5149 
5150 	return (0);
5151 }
5152 
5153 static int
5154 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5155 {
5156 
5157 	return (0);
5158 }
5159 
5160 static int
5161 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5162     struct thread *td)
5163 {
5164 	int rc;
5165 	struct iwn_softc *sc = dev->si_drv1;
5166 	struct iwn_ioctl_data *d;
5167 
5168 	rc = priv_check(td, PRIV_DRIVER);
5169 	if (rc != 0)
5170 		return (0);
5171 
5172 	switch (cmd) {
5173 	case SIOCGIWNSTATS:
5174 		d = (struct iwn_ioctl_data *) data;
5175 		IWN_LOCK(sc);
5176 		/* XXX validate permissions/memory/etc? */
5177 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5178 		IWN_UNLOCK(sc);
5179 		break;
5180 	case SIOCZIWNSTATS:
5181 		IWN_LOCK(sc);
5182 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5183 		IWN_UNLOCK(sc);
5184 		break;
5185 	default:
5186 		rc = EINVAL;
5187 		break;
5188 	}
5189 	return (rc);
5190 }
5191 
5192 static int
5193 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5194 {
5195 
5196 	return (ENOTTY);
5197 }
5198 
5199 static void
5200 iwn_parent(struct ieee80211com *ic)
5201 {
5202 	struct iwn_softc *sc = ic->ic_softc;
5203 	struct ieee80211vap *vap;
5204 	int error;
5205 
5206 	if (ic->ic_nrunning > 0) {
5207 		error = iwn_init(sc);
5208 
5209 		switch (error) {
5210 		case 0:
5211 			ieee80211_start_all(ic);
5212 			break;
5213 		case 1:
5214 			/* radio is disabled via RFkill switch */
5215 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5216 			break;
5217 		default:
5218 			vap = TAILQ_FIRST(&ic->ic_vaps);
5219 			if (vap != NULL)
5220 				ieee80211_stop(vap);
5221 			break;
5222 		}
5223 	} else
5224 		iwn_stop(sc);
5225 }
5226 
5227 /*
5228  * Send a command to the firmware.
5229  */
5230 static int
5231 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5232 {
5233 	struct iwn_tx_ring *ring;
5234 	struct iwn_tx_desc *desc;
5235 	struct iwn_tx_data *data;
5236 	struct iwn_tx_cmd *cmd;
5237 	struct mbuf *m;
5238 	bus_addr_t paddr;
5239 	int totlen, error;
5240 	int cmd_queue_num;
5241 
5242 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5243 
5244 	if (async == 0)
5245 		IWN_LOCK_ASSERT(sc);
5246 
5247 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5248 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5249 	else
5250 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5251 
5252 	ring = &sc->txq[cmd_queue_num];
5253 	desc = &ring->desc[ring->cur];
5254 	data = &ring->data[ring->cur];
5255 	totlen = 4 + size;
5256 
5257 	if (size > sizeof cmd->data) {
5258 		/* Command is too large to fit in a descriptor. */
5259 		if (totlen > MCLBYTES)
5260 			return EINVAL;
5261 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5262 		if (m == NULL)
5263 			return ENOMEM;
5264 		cmd = mtod(m, struct iwn_tx_cmd *);
5265 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5266 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5267 		if (error != 0) {
5268 			m_freem(m);
5269 			return error;
5270 		}
5271 		data->m = m;
5272 	} else {
5273 		cmd = &ring->cmd[ring->cur];
5274 		paddr = data->cmd_paddr;
5275 	}
5276 
5277 	cmd->code = code;
5278 	cmd->flags = 0;
5279 	cmd->qid = ring->qid;
5280 	cmd->idx = ring->cur;
5281 	memcpy(cmd->data, buf, size);
5282 
5283 	desc->nsegs = 1;
5284 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5285 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5286 
5287 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5288 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5289 	    cmd->flags, cmd->qid, cmd->idx);
5290 
5291 	if (size > sizeof cmd->data) {
5292 		bus_dmamap_sync(ring->data_dmat, data->map,
5293 		    BUS_DMASYNC_PREWRITE);
5294 	} else {
5295 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5296 		    BUS_DMASYNC_PREWRITE);
5297 	}
5298 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5299 	    BUS_DMASYNC_PREWRITE);
5300 
5301 	/* Kick command ring. */
5302 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5303 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5304 
5305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5306 
5307 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5308 }
5309 
5310 static int
5311 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5312 {
5313 	struct iwn4965_node_info hnode;
5314 	caddr_t src, dst;
5315 
5316 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5317 
5318 	/*
5319 	 * We use the node structure for 5000 Series internally (it is
5320 	 * a superset of the one for 4965AGN). We thus copy the common
5321 	 * fields before sending the command.
5322 	 */
5323 	src = (caddr_t)node;
5324 	dst = (caddr_t)&hnode;
5325 	memcpy(dst, src, 48);
5326 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5327 	memcpy(dst + 48, src + 72, 20);
5328 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5329 }
5330 
5331 static int
5332 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5333 {
5334 
5335 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5336 
5337 	/* Direct mapping. */
5338 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5339 }
5340 
5341 static int
5342 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5343 {
5344 	struct iwn_node *wn = (void *)ni;
5345 	struct ieee80211_rateset *rs;
5346 	struct iwn_cmd_link_quality linkq;
5347 	int i, rate, txrate;
5348 	int is_11n;
5349 
5350 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5351 
5352 	memset(&linkq, 0, sizeof linkq);
5353 	linkq.id = wn->id;
5354 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5355 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5356 
5357 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5358 	linkq.ampdu_threshold = 3;
5359 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5360 
5361 	DPRINTF(sc, IWN_DEBUG_XMIT,
5362 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5363 	    __func__,
5364 	    linkq.antmsk_1stream,
5365 	    linkq.antmsk_2stream,
5366 	    sc->ntxchains);
5367 
5368 	/*
5369 	 * Are we using 11n rates? Ensure the channel is
5370 	 * 11n _and_ we have some 11n rates, or don't
5371 	 * try.
5372 	 */
5373 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5374 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5375 		is_11n = 1;
5376 	} else {
5377 		rs = &ni->ni_rates;
5378 		is_11n = 0;
5379 	}
5380 
5381 	/* Start at highest available bit-rate. */
5382 	/*
5383 	 * XXX this is all very dirty!
5384 	 */
5385 	if (is_11n)
5386 		txrate = ni->ni_htrates.rs_nrates - 1;
5387 	else
5388 		txrate = rs->rs_nrates - 1;
5389 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5390 		uint32_t plcp;
5391 
5392 		/*
5393 		 * XXX TODO: ensure the last two slots are the two lowest
5394 		 * rate entries, just for now.
5395 		 */
5396 		if (i == 14 || i == 15)
5397 			txrate = 0;
5398 
5399 		if (is_11n)
5400 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5401 		else
5402 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5403 
5404 		/* Do rate -> PLCP config mapping */
5405 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5406 		linkq.retry[i] = plcp;
5407 		DPRINTF(sc, IWN_DEBUG_XMIT,
5408 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5409 		    __func__,
5410 		    i,
5411 		    txrate,
5412 		    rate,
5413 		    le32toh(plcp));
5414 
5415 		/*
5416 		 * The mimo field is an index into the table which
5417 		 * indicates the first index where it and subsequent entries
5418 		 * will not be using MIMO.
5419 		 *
5420 		 * Since we're filling linkq from 0..15 and we're filling
5421 		 * from the highest MCS rates to the lowest rates, if we
5422 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5423 		 * the next entry.)  That way if the next entry is a non-MIMO
5424 		 * entry, we're already pointing at it.
5425 		 */
5426 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5427 		    IEEE80211_RV(le32toh(plcp)) > 7)
5428 			linkq.mimo = i + 1;
5429 
5430 		/* Next retry at immediate lower bit-rate. */
5431 		if (txrate > 0)
5432 			txrate--;
5433 	}
5434 	/*
5435 	 * If we reached the end of the list and indeed we hit
5436 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5437 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5438 	 */
5439 	if (linkq.mimo > 15)
5440 		linkq.mimo = 15;
5441 
5442 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5443 
5444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5445 
5446 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5447 }
5448 
5449 /*
5450  * Broadcast node is used to send group-addressed and management frames.
5451  */
5452 static int
5453 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5454 {
5455 	struct iwn_ops *ops = &sc->ops;
5456 	struct ieee80211com *ic = &sc->sc_ic;
5457 	struct iwn_node_info node;
5458 	struct iwn_cmd_link_quality linkq;
5459 	uint8_t txant;
5460 	int i, error;
5461 
5462 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5463 
5464 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5465 
5466 	memset(&node, 0, sizeof node);
5467 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5468 	node.id = sc->broadcast_id;
5469 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5470 	if ((error = ops->add_node(sc, &node, async)) != 0)
5471 		return error;
5472 
5473 	/* Use the first valid TX antenna. */
5474 	txant = IWN_LSB(sc->txchainmask);
5475 
5476 	memset(&linkq, 0, sizeof linkq);
5477 	linkq.id = sc->broadcast_id;
5478 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5479 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5480 	linkq.ampdu_max = 64;
5481 	linkq.ampdu_threshold = 3;
5482 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5483 
5484 	/* Use lowest mandatory bit-rate. */
5485 	/* XXX rate table lookup? */
5486 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5487 		linkq.retry[0] = htole32(0xd);
5488 	else
5489 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5490 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5491 	/* Use same bit-rate for all TX retries. */
5492 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5493 		linkq.retry[i] = linkq.retry[0];
5494 	}
5495 
5496 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5497 
5498 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5499 }
5500 
5501 static int
5502 iwn_updateedca(struct ieee80211com *ic)
5503 {
5504 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5505 	struct iwn_softc *sc = ic->ic_softc;
5506 	struct iwn_edca_params cmd;
5507 	struct chanAccParams chp;
5508 	int aci;
5509 
5510 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5511 
5512 	ieee80211_wme_ic_getparams(ic, &chp);
5513 
5514 	memset(&cmd, 0, sizeof cmd);
5515 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5516 
5517 	IEEE80211_LOCK(ic);
5518 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5519 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5520 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5521 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5522 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5523 		cmd.ac[aci].txoplimit =
5524 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5525 	}
5526 	IEEE80211_UNLOCK(ic);
5527 
5528 	IWN_LOCK(sc);
5529 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5530 	IWN_UNLOCK(sc);
5531 
5532 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5533 
5534 	return 0;
5535 #undef IWN_EXP2
5536 }
5537 
5538 static void
5539 iwn_set_promisc(struct iwn_softc *sc)
5540 {
5541 	struct ieee80211com *ic = &sc->sc_ic;
5542 	uint32_t promisc_filter;
5543 
5544 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5545 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5546 		sc->rxon->filter |= htole32(promisc_filter);
5547 	else
5548 		sc->rxon->filter &= ~htole32(promisc_filter);
5549 }
5550 
5551 static void
5552 iwn_update_promisc(struct ieee80211com *ic)
5553 {
5554 	struct iwn_softc *sc = ic->ic_softc;
5555 	int error;
5556 
5557 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5558 		return;		/* nothing to do */
5559 
5560 	IWN_LOCK(sc);
5561 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5562 		IWN_UNLOCK(sc);
5563 		return;
5564 	}
5565 
5566 	iwn_set_promisc(sc);
5567 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5568 		device_printf(sc->sc_dev,
5569 		    "%s: could not send RXON, error %d\n",
5570 		    __func__, error);
5571 	}
5572 	IWN_UNLOCK(sc);
5573 }
5574 
5575 static void
5576 iwn_update_mcast(struct ieee80211com *ic)
5577 {
5578 	/* Ignore */
5579 }
5580 
5581 static void
5582 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5583 {
5584 	struct iwn_cmd_led led;
5585 
5586 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5587 
5588 #if 0
5589 	/* XXX don't set LEDs during scan? */
5590 	if (sc->sc_is_scanning)
5591 		return;
5592 #endif
5593 
5594 	/* Clear microcode LED ownership. */
5595 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5596 
5597 	led.which = which;
5598 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5599 	led.off = off;
5600 	led.on = on;
5601 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5602 }
5603 
5604 /*
5605  * Set the critical temperature at which the firmware will stop the radio
5606  * and notify us.
5607  */
5608 static int
5609 iwn_set_critical_temp(struct iwn_softc *sc)
5610 {
5611 	struct iwn_critical_temp crit;
5612 	int32_t temp;
5613 
5614 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5615 
5616 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5617 
5618 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5619 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5620 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5621 		temp = IWN_CTOK(110);
5622 	else
5623 		temp = 110;
5624 	memset(&crit, 0, sizeof crit);
5625 	crit.tempR = htole32(temp);
5626 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5627 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5628 }
5629 
5630 static int
5631 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5632 {
5633 	struct iwn_cmd_timing cmd;
5634 	uint64_t val, mod;
5635 
5636 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5637 
5638 	memset(&cmd, 0, sizeof cmd);
5639 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5640 	cmd.bintval = htole16(ni->ni_intval);
5641 	cmd.lintval = htole16(10);
5642 
5643 	/* Compute remaining time until next beacon. */
5644 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5645 	mod = le64toh(cmd.tstamp) % val;
5646 	cmd.binitval = htole32((uint32_t)(val - mod));
5647 
5648 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5649 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5650 
5651 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5652 }
5653 
5654 static void
5655 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5656 {
5657 
5658 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5659 
5660 	/* Adjust TX power if need be (delta >= 3 degC). */
5661 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5662 	    __func__, sc->temp, temp);
5663 	if (abs(temp - sc->temp) >= 3) {
5664 		/* Record temperature of last calibration. */
5665 		sc->temp = temp;
5666 		(void)iwn4965_set_txpower(sc, 1);
5667 	}
5668 }
5669 
5670 /*
5671  * Set TX power for current channel (each rate has its own power settings).
5672  * This function takes into account the regulatory information from EEPROM,
5673  * the current temperature and the current voltage.
5674  */
5675 static int
5676 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5677 {
5678 /* Fixed-point arithmetic division using a n-bit fractional part. */
5679 #define fdivround(a, b, n)	\
5680 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5681 /* Linear interpolation. */
5682 #define interpolate(x, x1, y1, x2, y2, n)	\
5683 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5684 
5685 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5686 	struct iwn_ucode_info *uc = &sc->ucode_info;
5687 	struct iwn4965_cmd_txpower cmd;
5688 	struct iwn4965_eeprom_chan_samples *chans;
5689 	const uint8_t *rf_gain, *dsp_gain;
5690 	int32_t vdiff, tdiff;
5691 	int i, is_chan_5ghz, c, grp, maxpwr;
5692 	uint8_t chan;
5693 
5694 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5695 	/* Retrieve current channel from last RXON. */
5696 	chan = sc->rxon->chan;
5697 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5698 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5699 	    chan);
5700 
5701 	memset(&cmd, 0, sizeof cmd);
5702 	cmd.band = is_chan_5ghz ? 0 : 1;
5703 	cmd.chan = chan;
5704 
5705 	if (is_chan_5ghz) {
5706 		maxpwr   = sc->maxpwr5GHz;
5707 		rf_gain  = iwn4965_rf_gain_5ghz;
5708 		dsp_gain = iwn4965_dsp_gain_5ghz;
5709 	} else {
5710 		maxpwr   = sc->maxpwr2GHz;
5711 		rf_gain  = iwn4965_rf_gain_2ghz;
5712 		dsp_gain = iwn4965_dsp_gain_2ghz;
5713 	}
5714 
5715 	/* Compute voltage compensation. */
5716 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5717 	if (vdiff > 0)
5718 		vdiff *= 2;
5719 	if (abs(vdiff) > 2)
5720 		vdiff = 0;
5721 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5722 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5723 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5724 
5725 	/* Get channel attenuation group. */
5726 	if (chan <= 20)		/* 1-20 */
5727 		grp = 4;
5728 	else if (chan <= 43)	/* 34-43 */
5729 		grp = 0;
5730 	else if (chan <= 70)	/* 44-70 */
5731 		grp = 1;
5732 	else if (chan <= 124)	/* 71-124 */
5733 		grp = 2;
5734 	else			/* 125-200 */
5735 		grp = 3;
5736 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5737 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5738 
5739 	/* Get channel sub-band. */
5740 	for (i = 0; i < IWN_NBANDS; i++)
5741 		if (sc->bands[i].lo != 0 &&
5742 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5743 			break;
5744 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5745 		return EINVAL;
5746 	chans = sc->bands[i].chans;
5747 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5748 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5749 
5750 	for (c = 0; c < 2; c++) {
5751 		uint8_t power, gain, temp;
5752 		int maxchpwr, pwr, ridx, idx;
5753 
5754 		power = interpolate(chan,
5755 		    chans[0].num, chans[0].samples[c][1].power,
5756 		    chans[1].num, chans[1].samples[c][1].power, 1);
5757 		gain  = interpolate(chan,
5758 		    chans[0].num, chans[0].samples[c][1].gain,
5759 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5760 		temp  = interpolate(chan,
5761 		    chans[0].num, chans[0].samples[c][1].temp,
5762 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5763 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5764 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5765 		    __func__, c, power, gain, temp);
5766 
5767 		/* Compute temperature compensation. */
5768 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5769 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5770 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5771 		    __func__, tdiff, sc->temp, temp);
5772 
5773 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5774 			/* Convert dBm to half-dBm. */
5775 			maxchpwr = sc->maxpwr[chan] * 2;
5776 			if ((ridx / 8) & 1)
5777 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5778 
5779 			pwr = maxpwr;
5780 
5781 			/* Adjust TX power based on rate. */
5782 			if ((ridx % 8) == 5)
5783 				pwr -= 15;	/* OFDM48: -7.5dB */
5784 			else if ((ridx % 8) == 6)
5785 				pwr -= 17;	/* OFDM54: -8.5dB */
5786 			else if ((ridx % 8) == 7)
5787 				pwr -= 20;	/* OFDM60: -10dB */
5788 			else
5789 				pwr -= 10;	/* Others: -5dB */
5790 
5791 			/* Do not exceed channel max TX power. */
5792 			if (pwr > maxchpwr)
5793 				pwr = maxchpwr;
5794 
5795 			idx = gain - (pwr - power) - tdiff - vdiff;
5796 			if ((ridx / 8) & 1)	/* MIMO */
5797 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5798 
5799 			if (cmd.band == 0)
5800 				idx += 9;	/* 5GHz */
5801 			if (ridx == IWN_RIDX_MAX)
5802 				idx += 5;	/* CCK */
5803 
5804 			/* Make sure idx stays in a valid range. */
5805 			if (idx < 0)
5806 				idx = 0;
5807 			else if (idx > IWN4965_MAX_PWR_INDEX)
5808 				idx = IWN4965_MAX_PWR_INDEX;
5809 
5810 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5811 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5812 			    __func__, c, ridx, idx);
5813 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5814 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5815 		}
5816 	}
5817 
5818 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5819 	    "%s: set tx power for chan %d\n", __func__, chan);
5820 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5821 
5822 #undef interpolate
5823 #undef fdivround
5824 }
5825 
5826 static int
5827 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5828 {
5829 	struct iwn5000_cmd_txpower cmd;
5830 	int cmdid;
5831 
5832 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5833 
5834 	/*
5835 	 * TX power calibration is handled automatically by the firmware
5836 	 * for 5000 Series.
5837 	 */
5838 	memset(&cmd, 0, sizeof cmd);
5839 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5840 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5841 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5842 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5843 	    "%s: setting TX power; rev=%d\n",
5844 	    __func__,
5845 	    IWN_UCODE_API(sc->ucode_rev));
5846 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5847 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5848 	else
5849 		cmdid = IWN_CMD_TXPOWER_DBM;
5850 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5851 }
5852 
5853 /*
5854  * Retrieve the maximum RSSI (in dBm) among receivers.
5855  */
5856 static int
5857 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5858 {
5859 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5860 	uint8_t mask, agc;
5861 	int rssi;
5862 
5863 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5864 
5865 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5866 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5867 
5868 	rssi = 0;
5869 	if (mask & IWN_ANT_A)
5870 		rssi = MAX(rssi, phy->rssi[0]);
5871 	if (mask & IWN_ANT_B)
5872 		rssi = MAX(rssi, phy->rssi[2]);
5873 	if (mask & IWN_ANT_C)
5874 		rssi = MAX(rssi, phy->rssi[4]);
5875 
5876 	DPRINTF(sc, IWN_DEBUG_RECV,
5877 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5878 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5879 	    rssi - agc - IWN_RSSI_TO_DBM);
5880 	return rssi - agc - IWN_RSSI_TO_DBM;
5881 }
5882 
5883 static int
5884 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5885 {
5886 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5887 	uint8_t agc;
5888 	int rssi;
5889 
5890 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5891 
5892 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5893 
5894 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5895 		   le16toh(phy->rssi[1]) & 0xff);
5896 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5897 
5898 	DPRINTF(sc, IWN_DEBUG_RECV,
5899 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5900 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5901 	    rssi - agc - IWN_RSSI_TO_DBM);
5902 	return rssi - agc - IWN_RSSI_TO_DBM;
5903 }
5904 
5905 /*
5906  * Retrieve the average noise (in dBm) among receivers.
5907  */
5908 static int
5909 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5910 {
5911 	int i, total, nbant, noise;
5912 
5913 	total = nbant = 0;
5914 	for (i = 0; i < 3; i++) {
5915 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5916 			continue;
5917 		total += noise;
5918 		nbant++;
5919 	}
5920 	/* There should be at least one antenna but check anyway. */
5921 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5922 }
5923 
5924 /*
5925  * Compute temperature (in degC) from last received statistics.
5926  */
5927 static int
5928 iwn4965_get_temperature(struct iwn_softc *sc)
5929 {
5930 	struct iwn_ucode_info *uc = &sc->ucode_info;
5931 	int32_t r1, r2, r3, r4, temp;
5932 
5933 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5934 
5935 	r1 = le32toh(uc->temp[0].chan20MHz);
5936 	r2 = le32toh(uc->temp[1].chan20MHz);
5937 	r3 = le32toh(uc->temp[2].chan20MHz);
5938 	r4 = le32toh(sc->rawtemp);
5939 
5940 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5941 		return 0;
5942 
5943 	/* Sign-extend 23-bit R4 value to 32-bit. */
5944 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5945 	/* Compute temperature in Kelvin. */
5946 	temp = (259 * (r4 - r2)) / (r3 - r1);
5947 	temp = (temp * 97) / 100 + 8;
5948 
5949 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5950 	    IWN_KTOC(temp));
5951 	return IWN_KTOC(temp);
5952 }
5953 
5954 static int
5955 iwn5000_get_temperature(struct iwn_softc *sc)
5956 {
5957 	int32_t temp;
5958 
5959 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5960 
5961 	/*
5962 	 * Temperature is not used by the driver for 5000 Series because
5963 	 * TX power calibration is handled by firmware.
5964 	 */
5965 	temp = le32toh(sc->rawtemp);
5966 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5967 		temp = (temp / -5) + sc->temp_off;
5968 		temp = IWN_KTOC(temp);
5969 	}
5970 	return temp;
5971 }
5972 
5973 /*
5974  * Initialize sensitivity calibration state machine.
5975  */
5976 static int
5977 iwn_init_sensitivity(struct iwn_softc *sc)
5978 {
5979 	struct iwn_ops *ops = &sc->ops;
5980 	struct iwn_calib_state *calib = &sc->calib;
5981 	uint32_t flags;
5982 	int error;
5983 
5984 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5985 
5986 	/* Reset calibration state machine. */
5987 	memset(calib, 0, sizeof (*calib));
5988 	calib->state = IWN_CALIB_STATE_INIT;
5989 	calib->cck_state = IWN_CCK_STATE_HIFA;
5990 	/* Set initial correlation values. */
5991 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5992 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5993 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5994 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5995 	calib->cck_x4      = 125;
5996 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5997 	calib->energy_cck  = sc->limits->energy_cck;
5998 
5999 	/* Write initial sensitivity. */
6000 	if ((error = iwn_send_sensitivity(sc)) != 0)
6001 		return error;
6002 
6003 	/* Write initial gains. */
6004 	if ((error = ops->init_gains(sc)) != 0)
6005 		return error;
6006 
6007 	/* Request statistics at each beacon interval. */
6008 	flags = 0;
6009 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
6010 	    __func__);
6011 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
6012 }
6013 
6014 /*
6015  * Collect noise and RSSI statistics for the first 20 beacons received
6016  * after association and use them to determine connected antennas and
6017  * to set differential gains.
6018  */
6019 static void
6020 iwn_collect_noise(struct iwn_softc *sc,
6021     const struct iwn_rx_general_stats *stats)
6022 {
6023 	struct iwn_ops *ops = &sc->ops;
6024 	struct iwn_calib_state *calib = &sc->calib;
6025 	struct ieee80211com *ic = &sc->sc_ic;
6026 	uint32_t val;
6027 	int i;
6028 
6029 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6030 
6031 	/* Accumulate RSSI and noise for all 3 antennas. */
6032 	for (i = 0; i < 3; i++) {
6033 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
6034 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
6035 	}
6036 	/* NB: We update differential gains only once after 20 beacons. */
6037 	if (++calib->nbeacons < 20)
6038 		return;
6039 
6040 	/* Determine highest average RSSI. */
6041 	val = MAX(calib->rssi[0], calib->rssi[1]);
6042 	val = MAX(calib->rssi[2], val);
6043 
6044 	/* Determine which antennas are connected. */
6045 	sc->chainmask = sc->rxchainmask;
6046 	for (i = 0; i < 3; i++)
6047 		if (val - calib->rssi[i] > 15 * 20)
6048 			sc->chainmask &= ~(1 << i);
6049 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6050 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
6051 	    __func__, sc->rxchainmask, sc->chainmask);
6052 
6053 	/* If none of the TX antennas are connected, keep at least one. */
6054 	if ((sc->chainmask & sc->txchainmask) == 0)
6055 		sc->chainmask |= IWN_LSB(sc->txchainmask);
6056 
6057 	(void)ops->set_gains(sc);
6058 	calib->state = IWN_CALIB_STATE_RUN;
6059 
6060 #ifdef notyet
6061 	/* XXX Disable RX chains with no antennas connected. */
6062 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
6063 	if (sc->sc_is_scanning)
6064 		device_printf(sc->sc_dev,
6065 		    "%s: is_scanning set, before RXON\n",
6066 		    __func__);
6067 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6068 #endif
6069 
6070 	/* Enable power-saving mode if requested by user. */
6071 	if (ic->ic_flags & IEEE80211_F_PMGTON)
6072 		(void)iwn_set_pslevel(sc, 0, 3, 1);
6073 
6074 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6075 
6076 }
6077 
6078 static int
6079 iwn4965_init_gains(struct iwn_softc *sc)
6080 {
6081 	struct iwn_phy_calib_gain cmd;
6082 
6083 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6084 
6085 	memset(&cmd, 0, sizeof cmd);
6086 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6087 	/* Differential gains initially set to 0 for all 3 antennas. */
6088 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6089 	    "%s: setting initial differential gains\n", __func__);
6090 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6091 }
6092 
6093 static int
6094 iwn5000_init_gains(struct iwn_softc *sc)
6095 {
6096 	struct iwn_phy_calib cmd;
6097 
6098 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6099 
6100 	memset(&cmd, 0, sizeof cmd);
6101 	cmd.code = sc->reset_noise_gain;
6102 	cmd.ngroups = 1;
6103 	cmd.isvalid = 1;
6104 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6105 	    "%s: setting initial differential gains\n", __func__);
6106 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6107 }
6108 
6109 static int
6110 iwn4965_set_gains(struct iwn_softc *sc)
6111 {
6112 	struct iwn_calib_state *calib = &sc->calib;
6113 	struct iwn_phy_calib_gain cmd;
6114 	int i, delta, noise;
6115 
6116 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6117 
6118 	/* Get minimal noise among connected antennas. */
6119 	noise = INT_MAX;	/* NB: There's at least one antenna. */
6120 	for (i = 0; i < 3; i++)
6121 		if (sc->chainmask & (1 << i))
6122 			noise = MIN(calib->noise[i], noise);
6123 
6124 	memset(&cmd, 0, sizeof cmd);
6125 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
6126 	/* Set differential gains for connected antennas. */
6127 	for (i = 0; i < 3; i++) {
6128 		if (sc->chainmask & (1 << i)) {
6129 			/* Compute attenuation (in unit of 1.5dB). */
6130 			delta = (noise - (int32_t)calib->noise[i]) / 30;
6131 			/* NB: delta <= 0 */
6132 			/* Limit to [-4.5dB,0]. */
6133 			cmd.gain[i] = MIN(abs(delta), 3);
6134 			if (delta < 0)
6135 				cmd.gain[i] |= 1 << 2;	/* sign bit */
6136 		}
6137 	}
6138 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6139 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
6140 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
6141 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6142 }
6143 
6144 static int
6145 iwn5000_set_gains(struct iwn_softc *sc)
6146 {
6147 	struct iwn_calib_state *calib = &sc->calib;
6148 	struct iwn_phy_calib_gain cmd;
6149 	int i, ant, div, delta;
6150 
6151 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6152 
6153 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6154 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6155 
6156 	memset(&cmd, 0, sizeof cmd);
6157 	cmd.code = sc->noise_gain;
6158 	cmd.ngroups = 1;
6159 	cmd.isvalid = 1;
6160 	/* Get first available RX antenna as referential. */
6161 	ant = IWN_LSB(sc->rxchainmask);
6162 	/* Set differential gains for other antennas. */
6163 	for (i = ant + 1; i < 3; i++) {
6164 		if (sc->chainmask & (1 << i)) {
6165 			/* The delta is relative to antenna "ant". */
6166 			delta = ((int32_t)calib->noise[ant] -
6167 			    (int32_t)calib->noise[i]) / div;
6168 			/* Limit to [-4.5dB,+4.5dB]. */
6169 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6170 			if (delta < 0)
6171 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6172 		}
6173 	}
6174 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6175 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6176 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6177 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6178 }
6179 
6180 /*
6181  * Tune RF RX sensitivity based on the number of false alarms detected
6182  * during the last beacon period.
6183  */
6184 static void
6185 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6186 {
6187 #define inc(val, inc, max)			\
6188 	if ((val) < (max)) {			\
6189 		if ((val) < (max) - (inc))	\
6190 			(val) += (inc);		\
6191 		else				\
6192 			(val) = (max);		\
6193 		needs_update = 1;		\
6194 	}
6195 #define dec(val, dec, min)			\
6196 	if ((val) > (min)) {			\
6197 		if ((val) > (min) + (dec))	\
6198 			(val) -= (dec);		\
6199 		else				\
6200 			(val) = (min);		\
6201 		needs_update = 1;		\
6202 	}
6203 
6204 	const struct iwn_sensitivity_limits *limits = sc->limits;
6205 	struct iwn_calib_state *calib = &sc->calib;
6206 	uint32_t val, rxena, fa;
6207 	uint32_t energy[3], energy_min;
6208 	uint8_t noise[3], noise_ref;
6209 	int i, needs_update = 0;
6210 
6211 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6212 
6213 	/* Check that we've been enabled long enough. */
6214 	if ((rxena = le32toh(stats->general.load)) == 0){
6215 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6216 		return;
6217 	}
6218 
6219 	/* Compute number of false alarms since last call for OFDM. */
6220 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6221 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6222 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6223 
6224 	if (fa > 50 * rxena) {
6225 		/* High false alarm count, decrease sensitivity. */
6226 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6227 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6228 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6229 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6230 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6231 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6232 
6233 	} else if (fa < 5 * rxena) {
6234 		/* Low false alarm count, increase sensitivity. */
6235 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6236 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6237 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6238 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6239 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6240 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6241 	}
6242 
6243 	/* Compute maximum noise among 3 receivers. */
6244 	for (i = 0; i < 3; i++)
6245 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6246 	val = MAX(noise[0], noise[1]);
6247 	val = MAX(noise[2], val);
6248 	/* Insert it into our samples table. */
6249 	calib->noise_samples[calib->cur_noise_sample] = val;
6250 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6251 
6252 	/* Compute maximum noise among last 20 samples. */
6253 	noise_ref = calib->noise_samples[0];
6254 	for (i = 1; i < 20; i++)
6255 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6256 
6257 	/* Compute maximum energy among 3 receivers. */
6258 	for (i = 0; i < 3; i++)
6259 		energy[i] = le32toh(stats->general.energy[i]);
6260 	val = MIN(energy[0], energy[1]);
6261 	val = MIN(energy[2], val);
6262 	/* Insert it into our samples table. */
6263 	calib->energy_samples[calib->cur_energy_sample] = val;
6264 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6265 
6266 	/* Compute minimum energy among last 10 samples. */
6267 	energy_min = calib->energy_samples[0];
6268 	for (i = 1; i < 10; i++)
6269 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6270 	energy_min += 6;
6271 
6272 	/* Compute number of false alarms since last call for CCK. */
6273 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6274 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6275 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6276 
6277 	if (fa > 50 * rxena) {
6278 		/* High false alarm count, decrease sensitivity. */
6279 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6280 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6281 		calib->cck_state = IWN_CCK_STATE_HIFA;
6282 		calib->low_fa = 0;
6283 
6284 		if (calib->cck_x4 > 160) {
6285 			calib->noise_ref = noise_ref;
6286 			if (calib->energy_cck > 2)
6287 				dec(calib->energy_cck, 2, energy_min);
6288 		}
6289 		if (calib->cck_x4 < 160) {
6290 			calib->cck_x4 = 161;
6291 			needs_update = 1;
6292 		} else
6293 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6294 
6295 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6296 
6297 	} else if (fa < 5 * rxena) {
6298 		/* Low false alarm count, increase sensitivity. */
6299 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6300 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6301 		calib->cck_state = IWN_CCK_STATE_LOFA;
6302 		calib->low_fa++;
6303 
6304 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6305 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6306 		     calib->low_fa > 100)) {
6307 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6308 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6309 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6310 		}
6311 	} else {
6312 		/* Not worth to increase or decrease sensitivity. */
6313 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6314 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6315 		calib->low_fa = 0;
6316 		calib->noise_ref = noise_ref;
6317 
6318 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6319 			/* Previous interval had many false alarms. */
6320 			dec(calib->energy_cck, 8, energy_min);
6321 		}
6322 		calib->cck_state = IWN_CCK_STATE_INIT;
6323 	}
6324 
6325 	if (needs_update)
6326 		(void)iwn_send_sensitivity(sc);
6327 
6328 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6329 
6330 #undef dec
6331 #undef inc
6332 }
6333 
6334 static int
6335 iwn_send_sensitivity(struct iwn_softc *sc)
6336 {
6337 	struct iwn_calib_state *calib = &sc->calib;
6338 	struct iwn_enhanced_sensitivity_cmd cmd;
6339 	int len;
6340 
6341 	memset(&cmd, 0, sizeof cmd);
6342 	len = sizeof (struct iwn_sensitivity_cmd);
6343 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6344 	/* OFDM modulation. */
6345 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6346 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6347 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6348 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6349 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6350 	cmd.energy_ofdm_th     = htole16(62);
6351 	/* CCK modulation. */
6352 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6353 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6354 	cmd.energy_cck         = htole16(calib->energy_cck);
6355 	/* Barker modulation: use default values. */
6356 	cmd.corr_barker        = htole16(190);
6357 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6358 
6359 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6360 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6361 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6362 	    calib->ofdm_mrc_x4, calib->cck_x4,
6363 	    calib->cck_mrc_x4, calib->energy_cck);
6364 
6365 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6366 		goto send;
6367 	/* Enhanced sensitivity settings. */
6368 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6369 	cmd.ofdm_det_slope_mrc = htole16(668);
6370 	cmd.ofdm_det_icept_mrc = htole16(4);
6371 	cmd.ofdm_det_slope     = htole16(486);
6372 	cmd.ofdm_det_icept     = htole16(37);
6373 	cmd.cck_det_slope_mrc  = htole16(853);
6374 	cmd.cck_det_icept_mrc  = htole16(4);
6375 	cmd.cck_det_slope      = htole16(476);
6376 	cmd.cck_det_icept      = htole16(99);
6377 send:
6378 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6379 }
6380 
6381 /*
6382  * Look at the increase of PLCP errors over time; if it exceeds
6383  * a programmed threshold then trigger an RF retune.
6384  */
6385 static void
6386 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6387 {
6388 	int32_t delta_ofdm, delta_ht, delta_cck;
6389 	struct iwn_calib_state *calib = &sc->calib;
6390 	int delta_ticks, cur_ticks;
6391 	int delta_msec;
6392 	int thresh;
6393 
6394 	/*
6395 	 * Calculate the difference between the current and
6396 	 * previous statistics.
6397 	 */
6398 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6399 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6400 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6401 
6402 	/*
6403 	 * Calculate the delta in time between successive statistics
6404 	 * messages.  Yes, it can roll over; so we make sure that
6405 	 * this doesn't happen.
6406 	 *
6407 	 * XXX go figure out what to do about rollover
6408 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6409 	 * XXX go stab signed integer overflow undefined-ness in the face.
6410 	 */
6411 	cur_ticks = ticks;
6412 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6413 
6414 	/*
6415 	 * If any are negative, then the firmware likely reset; so just
6416 	 * bail.  We'll pick this up next time.
6417 	 */
6418 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6419 		return;
6420 
6421 	/*
6422 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6423 	 * so we can do some useful math with it.
6424 	 */
6425 	delta_msec = ticks_to_msecs(delta_ticks);
6426 
6427 	/*
6428 	 * Calculate what our threshold is given the current delta_msec.
6429 	 */
6430 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6431 
6432 	DPRINTF(sc, IWN_DEBUG_STATE,
6433 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6434 	    __func__,
6435 	    delta_msec,
6436 	    delta_cck,
6437 	    delta_ofdm,
6438 	    delta_ht,
6439 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6440 	    thresh);
6441 
6442 	/*
6443 	 * If we need a retune, then schedule a single channel scan
6444 	 * to a channel that isn't the currently active one!
6445 	 *
6446 	 * The math from linux iwlwifi:
6447 	 *
6448 	 * if ((delta * 100 / msecs) > threshold)
6449 	 */
6450 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6451 		DPRINTF(sc, IWN_DEBUG_ANY,
6452 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6453 		    "over limit (%d); retune!\n",
6454 		    __func__,
6455 		    (delta_cck + delta_ofdm + delta_ht),
6456 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6457 		    thresh);
6458 	}
6459 }
6460 
6461 /*
6462  * Set STA mode power saving level (between 0 and 5).
6463  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6464  */
6465 static int
6466 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6467 {
6468 	struct iwn_pmgt_cmd cmd;
6469 	const struct iwn_pmgt *pmgt;
6470 	uint32_t max, skip_dtim;
6471 	uint32_t reg;
6472 	int i;
6473 
6474 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6475 	    "%s: dtim=%d, level=%d, async=%d\n",
6476 	    __func__,
6477 	    dtim,
6478 	    level,
6479 	    async);
6480 
6481 	/* Select which PS parameters to use. */
6482 	if (dtim <= 2)
6483 		pmgt = &iwn_pmgt[0][level];
6484 	else if (dtim <= 10)
6485 		pmgt = &iwn_pmgt[1][level];
6486 	else
6487 		pmgt = &iwn_pmgt[2][level];
6488 
6489 	memset(&cmd, 0, sizeof cmd);
6490 	if (level != 0)	/* not CAM */
6491 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6492 	if (level == 5)
6493 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6494 	/* Retrieve PCIe Active State Power Management (ASPM). */
6495 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6496 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6497 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6498 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6499 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6500 
6501 	if (dtim == 0) {
6502 		dtim = 1;
6503 		skip_dtim = 0;
6504 	} else
6505 		skip_dtim = pmgt->skip_dtim;
6506 	if (skip_dtim != 0) {
6507 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6508 		max = pmgt->intval[4];
6509 		if (max == (uint32_t)-1)
6510 			max = dtim * (skip_dtim + 1);
6511 		else if (max > dtim)
6512 			max = rounddown(max, dtim);
6513 	} else
6514 		max = dtim;
6515 	for (i = 0; i < 5; i++)
6516 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6517 
6518 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6519 	    level);
6520 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6521 }
6522 
6523 static int
6524 iwn_send_btcoex(struct iwn_softc *sc)
6525 {
6526 	struct iwn_bluetooth cmd;
6527 
6528 	memset(&cmd, 0, sizeof cmd);
6529 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6530 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6531 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6532 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6533 	    __func__);
6534 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6535 }
6536 
6537 static int
6538 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6539 {
6540 	static const uint32_t btcoex_3wire[12] = {
6541 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6542 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6543 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6544 	};
6545 	struct iwn6000_btcoex_config btconfig;
6546 	struct iwn2000_btcoex_config btconfig2k;
6547 	struct iwn_btcoex_priotable btprio;
6548 	struct iwn_btcoex_prot btprot;
6549 	int error, i;
6550 	uint8_t flags;
6551 
6552 	memset(&btconfig, 0, sizeof btconfig);
6553 	memset(&btconfig2k, 0, sizeof btconfig2k);
6554 
6555 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6556 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6557 
6558 	if (sc->base_params->bt_sco_disable)
6559 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6560 	else
6561 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6562 
6563 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6564 
6565 	/* Default flags result is 145 as old value */
6566 
6567 	/*
6568 	 * Flags value has to be review. Values must change if we
6569 	 * which to disable it
6570 	 */
6571 	if (sc->base_params->bt_session_2) {
6572 		btconfig2k.flags = flags;
6573 		btconfig2k.max_kill = 5;
6574 		btconfig2k.bt3_t7_timer = 1;
6575 		btconfig2k.kill_ack = htole32(0xffff0000);
6576 		btconfig2k.kill_cts = htole32(0xffff0000);
6577 		btconfig2k.sample_time = 2;
6578 		btconfig2k.bt3_t2_timer = 0xc;
6579 
6580 		for (i = 0; i < 12; i++)
6581 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6582 		btconfig2k.valid = htole16(0xff);
6583 		btconfig2k.prio_boost = htole32(0xf0);
6584 		DPRINTF(sc, IWN_DEBUG_RESET,
6585 		    "%s: configuring advanced bluetooth coexistence"
6586 		    " session 2, flags : 0x%x\n",
6587 		    __func__,
6588 		    flags);
6589 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6590 		    sizeof(btconfig2k), 1);
6591 	} else {
6592 		btconfig.flags = flags;
6593 		btconfig.max_kill = 5;
6594 		btconfig.bt3_t7_timer = 1;
6595 		btconfig.kill_ack = htole32(0xffff0000);
6596 		btconfig.kill_cts = htole32(0xffff0000);
6597 		btconfig.sample_time = 2;
6598 		btconfig.bt3_t2_timer = 0xc;
6599 
6600 		for (i = 0; i < 12; i++)
6601 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6602 		btconfig.valid = htole16(0xff);
6603 		btconfig.prio_boost = 0xf0;
6604 		DPRINTF(sc, IWN_DEBUG_RESET,
6605 		    "%s: configuring advanced bluetooth coexistence,"
6606 		    " flags : 0x%x\n",
6607 		    __func__,
6608 		    flags);
6609 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6610 		    sizeof(btconfig), 1);
6611 	}
6612 
6613 	if (error != 0)
6614 		return error;
6615 
6616 	memset(&btprio, 0, sizeof btprio);
6617 	btprio.calib_init1 = 0x6;
6618 	btprio.calib_init2 = 0x7;
6619 	btprio.calib_periodic_low1 = 0x2;
6620 	btprio.calib_periodic_low2 = 0x3;
6621 	btprio.calib_periodic_high1 = 0x4;
6622 	btprio.calib_periodic_high2 = 0x5;
6623 	btprio.dtim = 0x6;
6624 	btprio.scan52 = 0x8;
6625 	btprio.scan24 = 0xa;
6626 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6627 	    1);
6628 	if (error != 0)
6629 		return error;
6630 
6631 	/* Force BT state machine change. */
6632 	memset(&btprot, 0, sizeof btprot);
6633 	btprot.open = 1;
6634 	btprot.type = 1;
6635 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6636 	if (error != 0)
6637 		return error;
6638 	btprot.open = 0;
6639 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6640 }
6641 
6642 static int
6643 iwn5000_runtime_calib(struct iwn_softc *sc)
6644 {
6645 	struct iwn5000_calib_config cmd;
6646 
6647 	memset(&cmd, 0, sizeof cmd);
6648 	cmd.ucode.once.enable = 0xffffffff;
6649 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6650 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6651 	    "%s: configuring runtime calibration\n", __func__);
6652 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6653 }
6654 
6655 static uint32_t
6656 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211vap *vap,
6657     struct ieee80211_channel *c)
6658 {
6659 	uint32_t htflags = 0;
6660 
6661 	if (! IEEE80211_IS_CHAN_HT(c))
6662 		return (0);
6663 
6664 	htflags |= IWN_RXON_HT_PROTMODE(vap->iv_curhtprotmode);
6665 
6666 	if (IEEE80211_IS_CHAN_HT40(c)) {
6667 		switch (vap->iv_curhtprotmode) {
6668 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6669 			htflags |= IWN_RXON_HT_MODEPURE40;
6670 			break;
6671 		default:
6672 			htflags |= IWN_RXON_HT_MODEMIXED;
6673 			break;
6674 		}
6675 	}
6676 	if (IEEE80211_IS_CHAN_HT40D(c))
6677 		htflags |= IWN_RXON_HT_HT40MINUS;
6678 
6679 	return (htflags);
6680 }
6681 
6682 static int
6683 iwn_check_bss_filter(struct iwn_softc *sc)
6684 {
6685 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6686 }
6687 
6688 static int
6689 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6690 {
6691 	struct iwn4965_rxon_assoc cmd;
6692 	struct iwn_rxon *rxon = sc->rxon;
6693 
6694 	cmd.flags = rxon->flags;
6695 	cmd.filter = rxon->filter;
6696 	cmd.ofdm_mask = rxon->ofdm_mask;
6697 	cmd.cck_mask = rxon->cck_mask;
6698 	cmd.ht_single_mask = rxon->ht_single_mask;
6699 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6700 	cmd.rxchain = rxon->rxchain;
6701 	cmd.reserved = 0;
6702 
6703 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6704 }
6705 
6706 static int
6707 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6708 {
6709 	struct iwn5000_rxon_assoc cmd;
6710 	struct iwn_rxon *rxon = sc->rxon;
6711 
6712 	cmd.flags = rxon->flags;
6713 	cmd.filter = rxon->filter;
6714 	cmd.ofdm_mask = rxon->ofdm_mask;
6715 	cmd.cck_mask = rxon->cck_mask;
6716 	cmd.reserved1 = 0;
6717 	cmd.ht_single_mask = rxon->ht_single_mask;
6718 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6719 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6720 	cmd.reserved2 = 0;
6721 	cmd.rxchain = rxon->rxchain;
6722 	cmd.acquisition = rxon->acquisition;
6723 	cmd.reserved3 = 0;
6724 
6725 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6726 }
6727 
6728 static int
6729 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6730 {
6731 	struct iwn_ops *ops = &sc->ops;
6732 	int error;
6733 
6734 	IWN_LOCK_ASSERT(sc);
6735 
6736 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6737 		error = ops->rxon_assoc(sc, async);
6738 		if (error != 0) {
6739 			device_printf(sc->sc_dev,
6740 			    "%s: RXON_ASSOC command failed, error %d\n",
6741 			    __func__, error);
6742 			return (error);
6743 		}
6744 	} else {
6745 		if (sc->sc_is_scanning)
6746 			device_printf(sc->sc_dev,
6747 			    "%s: is_scanning set, before RXON\n",
6748 			    __func__);
6749 
6750 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6751 		if (error != 0) {
6752 			device_printf(sc->sc_dev,
6753 			    "%s: RXON command failed, error %d\n",
6754 			    __func__, error);
6755 			return (error);
6756 		}
6757 
6758 		/*
6759 		 * Reconfiguring RXON clears the firmware nodes table so
6760 		 * we must add the broadcast node again.
6761 		 */
6762 		if (iwn_check_bss_filter(sc) == 0 &&
6763 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6764 			device_printf(sc->sc_dev,
6765 			    "%s: could not add broadcast node, error %d\n",
6766 			    __func__, error);
6767 			return (error);
6768 		}
6769 	}
6770 
6771 	/* Configuration has changed, set TX power accordingly. */
6772 	if ((error = ops->set_txpower(sc, async)) != 0) {
6773 		device_printf(sc->sc_dev,
6774 		    "%s: could not set TX power, error %d\n",
6775 		    __func__, error);
6776 		return (error);
6777 	}
6778 
6779 	return (0);
6780 }
6781 
6782 static int
6783 iwn_config(struct iwn_softc *sc)
6784 {
6785 	struct ieee80211com *ic = &sc->sc_ic;
6786 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6787 	const uint8_t *macaddr;
6788 	uint32_t txmask;
6789 	uint16_t rxchain;
6790 	int error;
6791 
6792 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6793 
6794 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6795 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6796 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6797 		    " exclusive each together. Review NIC config file. Conf"
6798 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6799 		    sc->base_params->calib_need,
6800 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6801 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6802 		return (EINVAL);
6803 	}
6804 
6805 	/* Compute temperature calib if needed. Will be send by send calib */
6806 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6807 		error = iwn5000_temp_offset_calib(sc);
6808 		if (error != 0) {
6809 			device_printf(sc->sc_dev,
6810 			    "%s: could not set temperature offset\n", __func__);
6811 			return (error);
6812 		}
6813 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6814 		error = iwn5000_temp_offset_calibv2(sc);
6815 		if (error != 0) {
6816 			device_printf(sc->sc_dev,
6817 			    "%s: could not compute temperature offset v2\n",
6818 			    __func__);
6819 			return (error);
6820 		}
6821 	}
6822 
6823 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6824 		/* Configure runtime DC calibration. */
6825 		error = iwn5000_runtime_calib(sc);
6826 		if (error != 0) {
6827 			device_printf(sc->sc_dev,
6828 			    "%s: could not configure runtime calibration\n",
6829 			    __func__);
6830 			return error;
6831 		}
6832 	}
6833 
6834 	/* Configure valid TX chains for >=5000 Series. */
6835 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6836 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6837 		txmask = htole32(sc->txchainmask);
6838 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6839 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6840 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6841 		    sizeof txmask, 0);
6842 		if (error != 0) {
6843 			device_printf(sc->sc_dev,
6844 			    "%s: could not configure valid TX chains, "
6845 			    "error %d\n", __func__, error);
6846 			return error;
6847 		}
6848 	}
6849 
6850 	/* Configure bluetooth coexistence. */
6851 	error = 0;
6852 
6853 	/* Configure bluetooth coexistence if needed. */
6854 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6855 		error = iwn_send_advanced_btcoex(sc);
6856 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6857 		error = iwn_send_btcoex(sc);
6858 
6859 	if (error != 0) {
6860 		device_printf(sc->sc_dev,
6861 		    "%s: could not configure bluetooth coexistence, error %d\n",
6862 		    __func__, error);
6863 		return error;
6864 	}
6865 
6866 	/* Set mode, channel, RX filter and enable RX. */
6867 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6868 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6869 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6870 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6871 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6872 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6873 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6874 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6875 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6876 
6877 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6878 	switch (ic->ic_opmode) {
6879 	case IEEE80211_M_STA:
6880 		sc->rxon->mode = IWN_MODE_STA;
6881 		break;
6882 	case IEEE80211_M_MONITOR:
6883 		sc->rxon->mode = IWN_MODE_MONITOR;
6884 		break;
6885 	default:
6886 		/* Should not get there. */
6887 		break;
6888 	}
6889 	iwn_set_promisc(sc);
6890 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6891 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6892 	sc->rxon->ht_single_mask = 0xff;
6893 	sc->rxon->ht_dual_mask = 0xff;
6894 	sc->rxon->ht_triple_mask = 0xff;
6895 	/*
6896 	 * In active association mode, ensure that
6897 	 * all the receive chains are enabled.
6898 	 *
6899 	 * Since we're not yet doing SMPS, don't allow the
6900 	 * number of idle RX chains to be less than the active
6901 	 * number.
6902 	 */
6903 	rxchain =
6904 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6905 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6906 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6907 	sc->rxon->rxchain = htole16(rxchain);
6908 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6909 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6910 	    __func__,
6911 	    sc->rxchainmask,
6912 	    sc->nrxchains);
6913 
6914 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
6915 
6916 	DPRINTF(sc, IWN_DEBUG_RESET,
6917 	    "%s: setting configuration; flags=0x%08x\n",
6918 	    __func__, le32toh(sc->rxon->flags));
6919 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6920 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6921 		    __func__);
6922 		return error;
6923 	}
6924 
6925 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6926 		device_printf(sc->sc_dev,
6927 		    "%s: could not set critical temperature\n", __func__);
6928 		return error;
6929 	}
6930 
6931 	/* Set power saving level to CAM during initialization. */
6932 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6933 		device_printf(sc->sc_dev,
6934 		    "%s: could not set power saving level\n", __func__);
6935 		return error;
6936 	}
6937 
6938 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6939 
6940 	return 0;
6941 }
6942 
6943 static uint16_t
6944 iwn_get_active_dwell_time(struct iwn_softc *sc,
6945     struct ieee80211_channel *c, uint8_t n_probes)
6946 {
6947 	/* No channel? Default to 2GHz settings */
6948 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6949 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6950 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6951 	}
6952 
6953 	/* 5GHz dwell time */
6954 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6955 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6956 }
6957 
6958 /*
6959  * Limit the total dwell time to 85% of the beacon interval.
6960  *
6961  * Returns the dwell time in milliseconds.
6962  */
6963 static uint16_t
6964 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6965 {
6966 	struct ieee80211com *ic = &sc->sc_ic;
6967 	struct ieee80211vap *vap = NULL;
6968 	int bintval = 0;
6969 
6970 	/* bintval is in TU (1.024mS) */
6971 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6972 		vap = TAILQ_FIRST(&ic->ic_vaps);
6973 		bintval = vap->iv_bss->ni_intval;
6974 	}
6975 
6976 	/*
6977 	 * If it's non-zero, we should calculate the minimum of
6978 	 * it and the DWELL_BASE.
6979 	 *
6980 	 * XXX Yes, the math should take into account that bintval
6981 	 * is 1.024mS, not 1mS..
6982 	 */
6983 	if (bintval > 0) {
6984 		DPRINTF(sc, IWN_DEBUG_SCAN,
6985 		    "%s: bintval=%d\n",
6986 		    __func__,
6987 		    bintval);
6988 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6989 	}
6990 
6991 	/* No association context? Default */
6992 	return (IWN_PASSIVE_DWELL_BASE);
6993 }
6994 
6995 static uint16_t
6996 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6997 {
6998 	uint16_t passive;
6999 
7000 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
7001 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
7002 	} else {
7003 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
7004 	}
7005 
7006 	/* Clamp to the beacon interval if we're associated */
7007 	return (iwn_limit_dwell(sc, passive));
7008 }
7009 
7010 static int
7011 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
7012     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
7013 {
7014 	struct ieee80211com *ic = &sc->sc_ic;
7015 	struct ieee80211_node *ni = vap->iv_bss;
7016 	struct iwn_scan_hdr *hdr;
7017 	struct iwn_cmd_data *tx;
7018 	struct iwn_scan_essid *essid;
7019 	struct iwn_scan_chan *chan;
7020 	struct ieee80211_frame *wh;
7021 	struct ieee80211_rateset *rs;
7022 	uint8_t *buf, *frm;
7023 	uint16_t rxchain;
7024 	uint8_t txant;
7025 	int buflen, error;
7026 	int is_active;
7027 	uint16_t dwell_active, dwell_passive;
7028 	uint32_t scan_service_time;
7029 
7030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7031 
7032 	/*
7033 	 * We are absolutely not allowed to send a scan command when another
7034 	 * scan command is pending.
7035 	 */
7036 	if (sc->sc_is_scanning) {
7037 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
7038 		    __func__);
7039 		return (EAGAIN);
7040 	}
7041 
7042 	/* Assign the scan channel */
7043 	c = ic->ic_curchan;
7044 
7045 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7046 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
7047 	if (buf == NULL) {
7048 		device_printf(sc->sc_dev,
7049 		    "%s: could not allocate buffer for scan command\n",
7050 		    __func__);
7051 		return ENOMEM;
7052 	}
7053 	hdr = (struct iwn_scan_hdr *)buf;
7054 	/*
7055 	 * Move to the next channel if no frames are received within 10ms
7056 	 * after sending the probe request.
7057 	 */
7058 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
7059 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
7060 	/*
7061 	 * Max needs to be greater than active and passive and quiet!
7062 	 * It's also in microseconds!
7063 	 */
7064 	hdr->max_svc = htole32(250 * 1024);
7065 
7066 	/*
7067 	 * Reset scan: interval=100
7068 	 * Normal scan: interval=becaon interval
7069 	 * suspend_time: 100 (TU)
7070 	 *
7071 	 */
7072 #if 0
7073 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
7074 	scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
7075 #else
7076 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
7077 #endif
7078 	hdr->pause_svc = htole32(scan_service_time);
7079 
7080 	/* Select antennas for scanning. */
7081 	rxchain =
7082 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
7083 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
7084 	    IWN_RXCHAIN_DRIVER_FORCE;
7085 	if (IEEE80211_IS_CHAN_A(c) &&
7086 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
7087 		/* Ant A must be avoided in 5GHz because of an HW bug. */
7088 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
7089 	} else	/* Use all available RX antennas. */
7090 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
7091 	hdr->rxchain = htole16(rxchain);
7092 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
7093 
7094 	tx = (struct iwn_cmd_data *)(hdr + 1);
7095 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
7096 	tx->id = sc->broadcast_id;
7097 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
7098 
7099 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
7100 		/* Send probe requests at 6Mbps. */
7101 		tx->rate = htole32(0xd);
7102 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
7103 	} else {
7104 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
7105 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
7106 		    sc->rxon->associd && sc->rxon->chan > 14)
7107 			tx->rate = htole32(0xd);
7108 		else {
7109 			/* Send probe requests at 1Mbps. */
7110 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
7111 		}
7112 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
7113 	}
7114 	/* Use the first valid TX antenna. */
7115 	txant = IWN_LSB(sc->txchainmask);
7116 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
7117 
7118 	/*
7119 	 * Only do active scanning if we're announcing a probe request
7120 	 * for a given SSID (or more, if we ever add it to the driver.)
7121 	 */
7122 	is_active = 0;
7123 
7124 	/*
7125 	 * If we're scanning for a specific SSID, add it to the command.
7126 	 *
7127 	 * XXX maybe look at adding support for scanning multiple SSIDs?
7128 	 */
7129 	essid = (struct iwn_scan_essid *)(tx + 1);
7130 	if (ss != NULL) {
7131 		if (ss->ss_ssid[0].len != 0) {
7132 			essid[0].id = IEEE80211_ELEMID_SSID;
7133 			essid[0].len = ss->ss_ssid[0].len;
7134 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
7135 		}
7136 
7137 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
7138 		    __func__,
7139 		    ss->ss_ssid[0].len,
7140 		    ss->ss_ssid[0].len,
7141 		    ss->ss_ssid[0].ssid);
7142 
7143 		if (ss->ss_nssid > 0)
7144 			is_active = 1;
7145 	}
7146 
7147 	/*
7148 	 * Build a probe request frame.  Most of the following code is a
7149 	 * copy & paste of what is done in net80211.
7150 	 */
7151 	wh = (struct ieee80211_frame *)(essid + 20);
7152 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
7153 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
7154 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
7155 	IEEE80211_ADDR_COPY(wh->i_addr1, if_getbroadcastaddr(vap->iv_ifp));
7156 	IEEE80211_ADDR_COPY(wh->i_addr2, if_getlladdr(vap->iv_ifp));
7157 	IEEE80211_ADDR_COPY(wh->i_addr3, if_getbroadcastaddr(vap->iv_ifp));
7158 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
7159 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
7160 
7161 	frm = (uint8_t *)(wh + 1);
7162 	frm = ieee80211_add_ssid(frm, NULL, 0);
7163 	frm = ieee80211_add_rates(frm, rs);
7164 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
7165 		frm = ieee80211_add_xrates(frm, rs);
7166 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
7167 		frm = ieee80211_add_htcap(frm, ni);
7168 
7169 	/* Set length of probe request. */
7170 	tx->len = htole16(frm - (uint8_t *)wh);
7171 
7172 	/*
7173 	 * If active scanning is requested but a certain channel is
7174 	 * marked passive, we can do active scanning if we detect
7175 	 * transmissions.
7176 	 *
7177 	 * There is an issue with some firmware versions that triggers
7178 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
7179 	 * on a radar channel even though this means that we should NOT
7180 	 * send probes.
7181 	 *
7182 	 * The "good CRC threshold" is the number of frames that we
7183 	 * need to receive during our dwell time on a channel before
7184 	 * sending out probes -- setting this to a huge value will
7185 	 * mean we never reach it, but at the same time work around
7186 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
7187 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
7188 	 *
7189 	 * This was fixed in later versions along with some other
7190 	 * scan changes, and the threshold behaves as a flag in those
7191 	 * versions.
7192 	 */
7193 
7194 	/*
7195 	 * If we're doing active scanning, set the crc_threshold
7196 	 * to a suitable value.  This is different to active veruss
7197 	 * passive scanning depending upon the channel flags; the
7198 	 * firmware will obey that particular check for us.
7199 	 */
7200 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
7201 		hdr->crc_threshold = is_active ?
7202 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
7203 	else
7204 		hdr->crc_threshold = is_active ?
7205 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7206 
7207 	chan = (struct iwn_scan_chan *)frm;
7208 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7209 	chan->flags = 0;
7210 	if (ss->ss_nssid > 0)
7211 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7212 	chan->dsp_gain = 0x6e;
7213 
7214 	/*
7215 	 * Set the passive/active flag depending upon the channel mode.
7216 	 * XXX TODO: take the is_active flag into account as well?
7217 	 */
7218 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7219 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7220 	else
7221 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7222 
7223 	/*
7224 	 * Calculate the active/passive dwell times.
7225 	 */
7226 
7227 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7228 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7229 
7230 	/* Make sure they're valid */
7231 	if (dwell_passive <= dwell_active)
7232 		dwell_passive = dwell_active + 1;
7233 
7234 	chan->active = htole16(dwell_active);
7235 	chan->passive = htole16(dwell_passive);
7236 
7237 	if (IEEE80211_IS_CHAN_5GHZ(c))
7238 		chan->rf_gain = 0x3b;
7239 	else
7240 		chan->rf_gain = 0x28;
7241 
7242 	DPRINTF(sc, IWN_DEBUG_STATE,
7243 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7244 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7245 	    "isactive=%d numssid=%d\n", __func__,
7246 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7247 	    dwell_active, dwell_passive, scan_service_time,
7248 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7249 
7250 	hdr->nchan++;
7251 	chan++;
7252 	buflen = (uint8_t *)chan - buf;
7253 	hdr->len = htole16(buflen);
7254 
7255 	if (sc->sc_is_scanning) {
7256 		device_printf(sc->sc_dev,
7257 		    "%s: called with is_scanning set!\n",
7258 		    __func__);
7259 	}
7260 	sc->sc_is_scanning = 1;
7261 
7262 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7263 	    hdr->nchan);
7264 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7265 	free(buf, M_DEVBUF);
7266 	if (error == 0)
7267 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7268 
7269 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7270 
7271 	return error;
7272 }
7273 
7274 static int
7275 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7276 {
7277 	struct ieee80211com *ic = &sc->sc_ic;
7278 	struct ieee80211_node *ni = vap->iv_bss;
7279 	int error;
7280 
7281 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7282 
7283 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7284 	/* Update adapter configuration. */
7285 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7286 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7287 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7288 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7289 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7290 
7291 	/*
7292 	 * We always set short slot on 5GHz channels.
7293 	 * We optionally set it for 2.4GHz channels.
7294 	 */
7295 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7296 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7297 	else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7298 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7299 
7300 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7301 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7302 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7303 		sc->rxon->cck_mask  = 0;
7304 		sc->rxon->ofdm_mask = 0x15;
7305 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7306 		sc->rxon->cck_mask  = 0x03;
7307 		sc->rxon->ofdm_mask = 0;
7308 	} else {
7309 		/* Assume 802.11b/g. */
7310 		sc->rxon->cck_mask  = 0x03;
7311 		sc->rxon->ofdm_mask = 0x15;
7312 	}
7313 
7314 	/* try HT */
7315 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan));
7316 
7317 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7318 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7319 	    sc->rxon->ofdm_mask);
7320 
7321 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7322 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7323 		    __func__);
7324 		return (error);
7325 	}
7326 
7327 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7328 
7329 	return (0);
7330 }
7331 
7332 static int
7333 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7334 {
7335 	struct iwn_ops *ops = &sc->ops;
7336 	struct ieee80211com *ic = &sc->sc_ic;
7337 	struct ieee80211_node *ni = vap->iv_bss;
7338 	struct iwn_node_info node;
7339 	int error;
7340 
7341 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7342 
7343 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7344 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7345 		/* Link LED blinks while monitoring. */
7346 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7347 		return 0;
7348 	}
7349 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7350 		device_printf(sc->sc_dev,
7351 		    "%s: could not set timing, error %d\n", __func__, error);
7352 		return error;
7353 	}
7354 
7355 	/* Update adapter configuration. */
7356 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7357 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7358 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7359 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7360 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7361 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7362 
7363 	/* As previously - short slot only on 5GHz */
7364 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
7365 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7366 	else if (vap->iv_flags & IEEE80211_F_SHSLOT)
7367 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7368 
7369 	if (vap->iv_flags & IEEE80211_F_SHPREAMBLE)
7370 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7371 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7372 		sc->rxon->cck_mask  = 0;
7373 		sc->rxon->ofdm_mask = 0x15;
7374 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7375 		sc->rxon->cck_mask  = 0x03;
7376 		sc->rxon->ofdm_mask = 0;
7377 	} else {
7378 		/* Assume 802.11b/g. */
7379 		sc->rxon->cck_mask  = 0x0f;
7380 		sc->rxon->ofdm_mask = 0x15;
7381 	}
7382 	/* try HT */
7383 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ni->ni_chan));
7384 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7385 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7386 	    sc->rxon->chan, le32toh(sc->rxon->flags), vap->iv_curhtprotmode);
7387 
7388 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7389 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7390 		    __func__);
7391 		return error;
7392 	}
7393 
7394 	/* Fake a join to initialize the TX rate. */
7395 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7396 	iwn_newassoc(ni, 1);
7397 
7398 	/* Add BSS node. */
7399 	memset(&node, 0, sizeof node);
7400 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7401 	node.id = IWN_ID_BSS;
7402 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7403 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7404 		case IEEE80211_HTCAP_SMPS_ENA:
7405 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7406 			break;
7407 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7408 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7409 			break;
7410 		}
7411 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7412 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7413 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7414 			node.htflags |= htole32(IWN_NODE_HT40);
7415 	}
7416 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7417 	error = ops->add_node(sc, &node, 1);
7418 	if (error != 0) {
7419 		device_printf(sc->sc_dev,
7420 		    "%s: could not add BSS node, error %d\n", __func__, error);
7421 		return error;
7422 	}
7423 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7424 	    __func__, node.id);
7425 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7426 		device_printf(sc->sc_dev,
7427 		    "%s: could not setup link quality for node %d, error %d\n",
7428 		    __func__, node.id, error);
7429 		return error;
7430 	}
7431 
7432 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7433 		device_printf(sc->sc_dev,
7434 		    "%s: could not set sensitivity, error %d\n", __func__,
7435 		    error);
7436 		return error;
7437 	}
7438 	/* Start periodic calibration timer. */
7439 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7440 	sc->calib_cnt = 0;
7441 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7442 	    sc);
7443 
7444 	/* Link LED always on while associated. */
7445 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7446 
7447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7448 
7449 	return 0;
7450 }
7451 
7452 /*
7453  * This function is called by upper layer when an ADDBA request is received
7454  * from another STA and before the ADDBA response is sent.
7455  */
7456 static int
7457 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7458     int baparamset, int batimeout, int baseqctl)
7459 {
7460 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7461 	struct iwn_ops *ops = &sc->ops;
7462 	struct iwn_node *wn = (void *)ni;
7463 	struct iwn_node_info node;
7464 	uint16_t ssn;
7465 	uint8_t tid;
7466 	int error;
7467 
7468 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7469 
7470 	tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID);
7471 	ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START);
7472 
7473 	if (wn->id == IWN_ID_UNDEFINED)
7474 		return (ENOENT);
7475 
7476 	memset(&node, 0, sizeof node);
7477 	node.id = wn->id;
7478 	node.control = IWN_NODE_UPDATE;
7479 	node.flags = IWN_FLAG_SET_ADDBA;
7480 	node.addba_tid = tid;
7481 	node.addba_ssn = htole16(ssn);
7482 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7483 	    wn->id, tid, ssn);
7484 	error = ops->add_node(sc, &node, 1);
7485 	if (error != 0)
7486 		return error;
7487 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7488 }
7489 
7490 /*
7491  * This function is called by upper layer on teardown of an HT-immediate
7492  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7493  */
7494 static void
7495 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7496 {
7497 	struct ieee80211com *ic = ni->ni_ic;
7498 	struct iwn_softc *sc = ic->ic_softc;
7499 	struct iwn_ops *ops = &sc->ops;
7500 	struct iwn_node *wn = (void *)ni;
7501 	struct iwn_node_info node;
7502 	uint8_t tid;
7503 
7504 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7505 
7506 	if (wn->id == IWN_ID_UNDEFINED)
7507 		goto end;
7508 
7509 	/* XXX: tid as an argument */
7510 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7511 		if (&ni->ni_rx_ampdu[tid] == rap)
7512 			break;
7513 	}
7514 
7515 	memset(&node, 0, sizeof node);
7516 	node.id = wn->id;
7517 	node.control = IWN_NODE_UPDATE;
7518 	node.flags = IWN_FLAG_SET_DELBA;
7519 	node.delba_tid = tid;
7520 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7521 	(void)ops->add_node(sc, &node, 1);
7522 end:
7523 	sc->sc_ampdu_rx_stop(ni, rap);
7524 }
7525 
7526 static int
7527 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7528     int dialogtoken, int baparamset, int batimeout)
7529 {
7530 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7531 	int qid;
7532 
7533 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7534 
7535 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7536 		if (sc->qid2tap[qid] == NULL)
7537 			break;
7538 	}
7539 	if (qid == sc->ntxqs) {
7540 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7541 		    __func__);
7542 		return 0;
7543 	}
7544 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7545 	if (tap->txa_private == NULL) {
7546 		device_printf(sc->sc_dev,
7547 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7548 		return 0;
7549 	}
7550 	sc->qid2tap[qid] = tap;
7551 	*(int *)tap->txa_private = qid;
7552 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7553 	    batimeout);
7554 }
7555 
7556 static int
7557 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7558     int code, int baparamset, int batimeout)
7559 {
7560 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7561 	int qid = *(int *)tap->txa_private;
7562 	uint8_t tid = tap->txa_tid;
7563 	int ret;
7564 
7565 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7566 
7567 	if (code == IEEE80211_STATUS_SUCCESS) {
7568 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7569 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7570 		if (ret != 1)
7571 			return ret;
7572 	} else {
7573 		sc->qid2tap[qid] = NULL;
7574 		free(tap->txa_private, M_DEVBUF);
7575 		tap->txa_private = NULL;
7576 	}
7577 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7578 }
7579 
7580 /*
7581  * This function is called by upper layer when an ADDBA response is received
7582  * from another STA.
7583  */
7584 static int
7585 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7586     uint8_t tid)
7587 {
7588 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7589 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7590 	struct iwn_ops *ops = &sc->ops;
7591 	struct iwn_node *wn = (void *)ni;
7592 	struct iwn_node_info node;
7593 	int error, qid;
7594 
7595 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7596 
7597 	if (wn->id == IWN_ID_UNDEFINED)
7598 		return (0);
7599 
7600 	/* Enable TX for the specified RA/TID. */
7601 	wn->disable_tid &= ~(1 << tid);
7602 	memset(&node, 0, sizeof node);
7603 	node.id = wn->id;
7604 	node.control = IWN_NODE_UPDATE;
7605 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7606 	node.disable_tid = htole16(wn->disable_tid);
7607 	error = ops->add_node(sc, &node, 1);
7608 	if (error != 0)
7609 		return 0;
7610 
7611 	if ((error = iwn_nic_lock(sc)) != 0)
7612 		return 0;
7613 	qid = *(int *)tap->txa_private;
7614 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7615 	    __func__, wn->id, tid, tap->txa_start, qid);
7616 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7617 	iwn_nic_unlock(sc);
7618 
7619 	iwn_set_link_quality(sc, ni);
7620 	return 1;
7621 }
7622 
7623 static void
7624 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7625 {
7626 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7627 	struct iwn_ops *ops = &sc->ops;
7628 	uint8_t tid = tap->txa_tid;
7629 	int qid;
7630 
7631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7632 
7633 	sc->sc_addba_stop(ni, tap);
7634 
7635 	if (tap->txa_private == NULL)
7636 		return;
7637 
7638 	qid = *(int *)tap->txa_private;
7639 	if (sc->txq[qid].queued != 0)
7640 		return;
7641 	if (iwn_nic_lock(sc) != 0)
7642 		return;
7643 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7644 	iwn_nic_unlock(sc);
7645 	sc->qid2tap[qid] = NULL;
7646 	free(tap->txa_private, M_DEVBUF);
7647 	tap->txa_private = NULL;
7648 }
7649 
7650 static void
7651 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7652     int qid, uint8_t tid, uint16_t ssn)
7653 {
7654 	struct iwn_node *wn = (void *)ni;
7655 
7656 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7657 
7658 	/* Stop TX scheduler while we're changing its configuration. */
7659 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7660 	    IWN4965_TXQ_STATUS_CHGACT);
7661 
7662 	/* Assign RA/TID translation to the queue. */
7663 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7664 	    wn->id << 4 | tid);
7665 
7666 	/* Enable chain-building mode for the queue. */
7667 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7668 
7669 	/* Set starting sequence number from the ADDBA request. */
7670 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7671 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7672 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7673 
7674 	/* Set scheduler window size. */
7675 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7676 	    IWN_SCHED_WINSZ);
7677 	/* Set scheduler frame limit. */
7678 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7679 	    IWN_SCHED_LIMIT << 16);
7680 
7681 	/* Enable interrupts for the queue. */
7682 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7683 
7684 	/* Mark the queue as active. */
7685 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7686 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7687 	    iwn_tid2fifo[tid] << 1);
7688 }
7689 
7690 static void
7691 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7692 {
7693 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7694 
7695 	/* Stop TX scheduler while we're changing its configuration. */
7696 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7697 	    IWN4965_TXQ_STATUS_CHGACT);
7698 
7699 	/* Set starting sequence number from the ADDBA request. */
7700 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7701 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7702 
7703 	/* Disable interrupts for the queue. */
7704 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7705 
7706 	/* Mark the queue as inactive. */
7707 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7708 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7709 }
7710 
7711 static void
7712 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7713     int qid, uint8_t tid, uint16_t ssn)
7714 {
7715 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7716 
7717 	struct iwn_node *wn = (void *)ni;
7718 
7719 	/* Stop TX scheduler while we're changing its configuration. */
7720 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7721 	    IWN5000_TXQ_STATUS_CHGACT);
7722 
7723 	/* Assign RA/TID translation to the queue. */
7724 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7725 	    wn->id << 4 | tid);
7726 
7727 	/* Enable chain-building mode for the queue. */
7728 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7729 
7730 	/* Enable aggregation for the queue. */
7731 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7732 
7733 	/* Set starting sequence number from the ADDBA request. */
7734 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7735 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7736 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7737 
7738 	/* Set scheduler window size and frame limit. */
7739 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7740 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7741 
7742 	/* Enable interrupts for the queue. */
7743 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7744 
7745 	/* Mark the queue as active. */
7746 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7747 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7748 }
7749 
7750 static void
7751 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7752 {
7753 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7754 
7755 	/* Stop TX scheduler while we're changing its configuration. */
7756 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7757 	    IWN5000_TXQ_STATUS_CHGACT);
7758 
7759 	/* Disable aggregation for the queue. */
7760 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7761 
7762 	/* Set starting sequence number from the ADDBA request. */
7763 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7764 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7765 
7766 	/* Disable interrupts for the queue. */
7767 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7768 
7769 	/* Mark the queue as inactive. */
7770 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7771 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7772 }
7773 
7774 /*
7775  * Query calibration tables from the initialization firmware.  We do this
7776  * only once at first boot.  Called from a process context.
7777  */
7778 static int
7779 iwn5000_query_calibration(struct iwn_softc *sc)
7780 {
7781 	struct iwn5000_calib_config cmd;
7782 	int error;
7783 
7784 	memset(&cmd, 0, sizeof cmd);
7785 	cmd.ucode.once.enable = htole32(0xffffffff);
7786 	cmd.ucode.once.start  = htole32(0xffffffff);
7787 	cmd.ucode.once.send   = htole32(0xffffffff);
7788 	cmd.ucode.flags       = htole32(0xffffffff);
7789 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7790 	    __func__);
7791 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7792 	if (error != 0)
7793 		return error;
7794 
7795 	/* Wait at most two seconds for calibration to complete. */
7796 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7797 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7798 	return error;
7799 }
7800 
7801 /*
7802  * Send calibration results to the runtime firmware.  These results were
7803  * obtained on first boot from the initialization firmware.
7804  */
7805 static int
7806 iwn5000_send_calibration(struct iwn_softc *sc)
7807 {
7808 	int idx, error;
7809 
7810 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7811 		if (!(sc->base_params->calib_need & (1<<idx))) {
7812 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7813 			    "No need of calib %d\n",
7814 			    idx);
7815 			continue; /* no need for this calib */
7816 		}
7817 		if (sc->calibcmd[idx].buf == NULL) {
7818 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7819 			    "Need calib idx : %d but no available data\n",
7820 			    idx);
7821 			continue;
7822 		}
7823 
7824 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7825 		    "send calibration result idx=%d len=%d\n", idx,
7826 		    sc->calibcmd[idx].len);
7827 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7828 		    sc->calibcmd[idx].len, 0);
7829 		if (error != 0) {
7830 			device_printf(sc->sc_dev,
7831 			    "%s: could not send calibration result, error %d\n",
7832 			    __func__, error);
7833 			return error;
7834 		}
7835 	}
7836 	return 0;
7837 }
7838 
7839 static int
7840 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7841 {
7842 	struct iwn5000_wimax_coex wimax;
7843 
7844 #if 0
7845 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7846 		/* Enable WiMAX coexistence for combo adapters. */
7847 		wimax.flags =
7848 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7849 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7850 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7851 		    IWN_WIMAX_COEX_ENABLE;
7852 		memcpy(wimax.events, iwn6050_wimax_events,
7853 		    sizeof iwn6050_wimax_events);
7854 	} else
7855 #endif
7856 	{
7857 		/* Disable WiMAX coexistence. */
7858 		wimax.flags = 0;
7859 		memset(wimax.events, 0, sizeof wimax.events);
7860 	}
7861 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7862 	    __func__);
7863 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7864 }
7865 
7866 static int
7867 iwn5000_crystal_calib(struct iwn_softc *sc)
7868 {
7869 	struct iwn5000_phy_calib_crystal cmd;
7870 
7871 	memset(&cmd, 0, sizeof cmd);
7872 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7873 	cmd.ngroups = 1;
7874 	cmd.isvalid = 1;
7875 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7876 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7877 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7878 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7879 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7880 }
7881 
7882 static int
7883 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7884 {
7885 	struct iwn5000_phy_calib_temp_offset cmd;
7886 
7887 	memset(&cmd, 0, sizeof cmd);
7888 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7889 	cmd.ngroups = 1;
7890 	cmd.isvalid = 1;
7891 	if (sc->eeprom_temp != 0)
7892 		cmd.offset = htole16(sc->eeprom_temp);
7893 	else
7894 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7895 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7896 	    le16toh(cmd.offset));
7897 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7898 }
7899 
7900 static int
7901 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7902 {
7903 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7904 
7905 	memset(&cmd, 0, sizeof cmd);
7906 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7907 	cmd.ngroups = 1;
7908 	cmd.isvalid = 1;
7909 	if (sc->eeprom_temp != 0) {
7910 		cmd.offset_low = htole16(sc->eeprom_temp);
7911 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7912 	} else {
7913 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7914 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7915 	}
7916 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7917 
7918 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7919 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7920 	    le16toh(cmd.offset_low),
7921 	    le16toh(cmd.offset_high),
7922 	    le16toh(cmd.burnt_voltage_ref));
7923 
7924 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7925 }
7926 
7927 /*
7928  * This function is called after the runtime firmware notifies us of its
7929  * readiness (called in a process context).
7930  */
7931 static int
7932 iwn4965_post_alive(struct iwn_softc *sc)
7933 {
7934 	int error, qid;
7935 
7936 	if ((error = iwn_nic_lock(sc)) != 0)
7937 		return error;
7938 
7939 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7940 
7941 	/* Clear TX scheduler state in SRAM. */
7942 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7943 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7944 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7945 
7946 	/* Set physical address of TX scheduler rings (1KB aligned). */
7947 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7948 
7949 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7950 
7951 	/* Disable chain mode for all our 16 queues. */
7952 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7953 
7954 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7955 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7956 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7957 
7958 		/* Set scheduler window size. */
7959 		iwn_mem_write(sc, sc->sched_base +
7960 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7961 		/* Set scheduler frame limit. */
7962 		iwn_mem_write(sc, sc->sched_base +
7963 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7964 		    IWN_SCHED_LIMIT << 16);
7965 	}
7966 
7967 	/* Enable interrupts for all our 16 queues. */
7968 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7969 	/* Identify TX FIFO rings (0-7). */
7970 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7971 
7972 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7973 	for (qid = 0; qid < 7; qid++) {
7974 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7975 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7976 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7977 	}
7978 	iwn_nic_unlock(sc);
7979 	return 0;
7980 }
7981 
7982 /*
7983  * This function is called after the initialization or runtime firmware
7984  * notifies us of its readiness (called in a process context).
7985  */
7986 static int
7987 iwn5000_post_alive(struct iwn_softc *sc)
7988 {
7989 	int error, qid;
7990 
7991 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7992 
7993 	/* Switch to using ICT interrupt mode. */
7994 	iwn5000_ict_reset(sc);
7995 
7996 	if ((error = iwn_nic_lock(sc)) != 0){
7997 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7998 		return error;
7999 	}
8000 
8001 	/* Clear TX scheduler state in SRAM. */
8002 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
8003 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
8004 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
8005 
8006 	/* Set physical address of TX scheduler rings (1KB aligned). */
8007 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
8008 
8009 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
8010 
8011 	/* Enable chain mode for all queues, except command queue. */
8012 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
8013 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
8014 	else
8015 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
8016 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
8017 
8018 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
8019 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
8020 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
8021 
8022 		iwn_mem_write(sc, sc->sched_base +
8023 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
8024 		/* Set scheduler window size and frame limit. */
8025 		iwn_mem_write(sc, sc->sched_base +
8026 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
8027 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
8028 	}
8029 
8030 	/* Enable interrupts for all our 20 queues. */
8031 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
8032 	/* Identify TX FIFO rings (0-7). */
8033 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
8034 
8035 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8036 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
8037 		/* Mark TX rings as active. */
8038 		for (qid = 0; qid < 11; qid++) {
8039 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
8040 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8041 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8042 		}
8043 	} else {
8044 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
8045 		for (qid = 0; qid < 7; qid++) {
8046 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
8047 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
8048 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
8049 		}
8050 	}
8051 	iwn_nic_unlock(sc);
8052 
8053 	/* Configure WiMAX coexistence for combo adapters. */
8054 	error = iwn5000_send_wimax_coex(sc);
8055 	if (error != 0) {
8056 		device_printf(sc->sc_dev,
8057 		    "%s: could not configure WiMAX coexistence, error %d\n",
8058 		    __func__, error);
8059 		return error;
8060 	}
8061 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
8062 		/* Perform crystal calibration. */
8063 		error = iwn5000_crystal_calib(sc);
8064 		if (error != 0) {
8065 			device_printf(sc->sc_dev,
8066 			    "%s: crystal calibration failed, error %d\n",
8067 			    __func__, error);
8068 			return error;
8069 		}
8070 	}
8071 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
8072 		/* Query calibration from the initialization firmware. */
8073 		if ((error = iwn5000_query_calibration(sc)) != 0) {
8074 			device_printf(sc->sc_dev,
8075 			    "%s: could not query calibration, error %d\n",
8076 			    __func__, error);
8077 			return error;
8078 		}
8079 		/*
8080 		 * We have the calibration results now, reboot with the
8081 		 * runtime firmware (call ourselves recursively!)
8082 		 */
8083 		iwn_hw_stop(sc);
8084 		error = iwn_hw_init(sc);
8085 	} else {
8086 		/* Send calibration results to runtime firmware. */
8087 		error = iwn5000_send_calibration(sc);
8088 	}
8089 
8090 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8091 
8092 	return error;
8093 }
8094 
8095 /*
8096  * The firmware boot code is small and is intended to be copied directly into
8097  * the NIC internal memory (no DMA transfer).
8098  */
8099 static int
8100 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
8101 {
8102 	int error, ntries;
8103 
8104 	size /= sizeof (uint32_t);
8105 
8106 	if ((error = iwn_nic_lock(sc)) != 0)
8107 		return error;
8108 
8109 	/* Copy microcode image into NIC memory. */
8110 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
8111 	    (const uint32_t *)ucode, size);
8112 
8113 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
8114 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
8115 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
8116 
8117 	/* Start boot load now. */
8118 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
8119 
8120 	/* Wait for transfer to complete. */
8121 	for (ntries = 0; ntries < 1000; ntries++) {
8122 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
8123 		    IWN_BSM_WR_CTRL_START))
8124 			break;
8125 		DELAY(10);
8126 	}
8127 	if (ntries == 1000) {
8128 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8129 		    __func__);
8130 		iwn_nic_unlock(sc);
8131 		return ETIMEDOUT;
8132 	}
8133 
8134 	/* Enable boot after power up. */
8135 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
8136 
8137 	iwn_nic_unlock(sc);
8138 	return 0;
8139 }
8140 
8141 static int
8142 iwn4965_load_firmware(struct iwn_softc *sc)
8143 {
8144 	struct iwn_fw_info *fw = &sc->fw;
8145 	struct iwn_dma_info *dma = &sc->fw_dma;
8146 	int error;
8147 
8148 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
8149 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
8150 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8151 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8152 	    fw->init.text, fw->init.textsz);
8153 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8154 
8155 	/* Tell adapter where to find initialization sections. */
8156 	if ((error = iwn_nic_lock(sc)) != 0)
8157 		return error;
8158 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8159 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
8160 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8161 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8162 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
8163 	iwn_nic_unlock(sc);
8164 
8165 	/* Load firmware boot code. */
8166 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
8167 	if (error != 0) {
8168 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
8169 		    __func__);
8170 		return error;
8171 	}
8172 	/* Now press "execute". */
8173 	IWN_WRITE(sc, IWN_RESET, 0);
8174 
8175 	/* Wait at most one second for first alive notification. */
8176 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8177 		device_printf(sc->sc_dev,
8178 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8179 		    __func__, error);
8180 		return error;
8181 	}
8182 
8183 	/* Retrieve current temperature for initial TX power calibration. */
8184 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
8185 	sc->temp = iwn4965_get_temperature(sc);
8186 
8187 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
8188 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
8189 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8190 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
8191 	    fw->main.text, fw->main.textsz);
8192 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8193 
8194 	/* Tell adapter where to find runtime sections. */
8195 	if ((error = iwn_nic_lock(sc)) != 0)
8196 		return error;
8197 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
8198 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
8199 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
8200 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
8201 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
8202 	    IWN_FW_UPDATED | fw->main.textsz);
8203 	iwn_nic_unlock(sc);
8204 
8205 	return 0;
8206 }
8207 
8208 static int
8209 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
8210     const uint8_t *section, int size)
8211 {
8212 	struct iwn_dma_info *dma = &sc->fw_dma;
8213 	int error;
8214 
8215 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8216 
8217 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8218 	memcpy(dma->vaddr, section, size);
8219 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8220 
8221 	if ((error = iwn_nic_lock(sc)) != 0)
8222 		return error;
8223 
8224 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8225 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8226 
8227 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8228 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8229 	    IWN_LOADDR(dma->paddr));
8230 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8231 	    IWN_HIADDR(dma->paddr) << 28 | size);
8232 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8233 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8234 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8235 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8236 
8237 	/* Kick Flow Handler to start DMA transfer. */
8238 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8239 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8240 
8241 	iwn_nic_unlock(sc);
8242 
8243 	/* Wait at most five seconds for FH DMA transfer to complete. */
8244 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8245 }
8246 
8247 static int
8248 iwn5000_load_firmware(struct iwn_softc *sc)
8249 {
8250 	struct iwn_fw_part *fw;
8251 	int error;
8252 
8253 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8254 
8255 	/* Load the initialization firmware on first boot only. */
8256 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8257 	    &sc->fw.main : &sc->fw.init;
8258 
8259 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8260 	    fw->text, fw->textsz);
8261 	if (error != 0) {
8262 		device_printf(sc->sc_dev,
8263 		    "%s: could not load firmware %s section, error %d\n",
8264 		    __func__, ".text", error);
8265 		return error;
8266 	}
8267 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8268 	    fw->data, fw->datasz);
8269 	if (error != 0) {
8270 		device_printf(sc->sc_dev,
8271 		    "%s: could not load firmware %s section, error %d\n",
8272 		    __func__, ".data", error);
8273 		return error;
8274 	}
8275 
8276 	/* Now press "execute". */
8277 	IWN_WRITE(sc, IWN_RESET, 0);
8278 	return 0;
8279 }
8280 
8281 /*
8282  * Extract text and data sections from a legacy firmware image.
8283  */
8284 static int
8285 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8286 {
8287 	const uint32_t *ptr;
8288 	size_t hdrlen = 24;
8289 	uint32_t rev;
8290 
8291 	ptr = (const uint32_t *)fw->data;
8292 	rev = le32toh(*ptr++);
8293 
8294 	sc->ucode_rev = rev;
8295 
8296 	/* Check firmware API version. */
8297 	if (IWN_FW_API(rev) <= 1) {
8298 		device_printf(sc->sc_dev,
8299 		    "%s: bad firmware, need API version >=2\n", __func__);
8300 		return EINVAL;
8301 	}
8302 	if (IWN_FW_API(rev) >= 3) {
8303 		/* Skip build number (version 2 header). */
8304 		hdrlen += 4;
8305 		ptr++;
8306 	}
8307 	if (fw->size < hdrlen) {
8308 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8309 		    __func__, fw->size);
8310 		return EINVAL;
8311 	}
8312 	fw->main.textsz = le32toh(*ptr++);
8313 	fw->main.datasz = le32toh(*ptr++);
8314 	fw->init.textsz = le32toh(*ptr++);
8315 	fw->init.datasz = le32toh(*ptr++);
8316 	fw->boot.textsz = le32toh(*ptr++);
8317 
8318 	/* Check that all firmware sections fit. */
8319 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8320 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8321 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8322 		    __func__, fw->size);
8323 		return EINVAL;
8324 	}
8325 
8326 	/* Get pointers to firmware sections. */
8327 	fw->main.text = (const uint8_t *)ptr;
8328 	fw->main.data = fw->main.text + fw->main.textsz;
8329 	fw->init.text = fw->main.data + fw->main.datasz;
8330 	fw->init.data = fw->init.text + fw->init.textsz;
8331 	fw->boot.text = fw->init.data + fw->init.datasz;
8332 	return 0;
8333 }
8334 
8335 /*
8336  * Extract text and data sections from a TLV firmware image.
8337  */
8338 static int
8339 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8340     uint16_t alt)
8341 {
8342 	const struct iwn_fw_tlv_hdr *hdr;
8343 	const struct iwn_fw_tlv *tlv;
8344 	const uint8_t *ptr, *end;
8345 	uint64_t altmask;
8346 	uint32_t len, tmp;
8347 
8348 	if (fw->size < sizeof (*hdr)) {
8349 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8350 		    __func__, fw->size);
8351 		return EINVAL;
8352 	}
8353 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8354 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8355 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8356 		    __func__, le32toh(hdr->signature));
8357 		return EINVAL;
8358 	}
8359 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8360 	    le32toh(hdr->build));
8361 	sc->ucode_rev = le32toh(hdr->rev);
8362 
8363 	/*
8364 	 * Select the closest supported alternative that is less than
8365 	 * or equal to the specified one.
8366 	 */
8367 	altmask = le64toh(hdr->altmask);
8368 	while (alt > 0 && !(altmask & (1ULL << alt)))
8369 		alt--;	/* Downgrade. */
8370 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8371 
8372 	ptr = (const uint8_t *)(hdr + 1);
8373 	end = (const uint8_t *)(fw->data + fw->size);
8374 
8375 	/* Parse type-length-value fields. */
8376 	while (ptr + sizeof (*tlv) <= end) {
8377 		tlv = (const struct iwn_fw_tlv *)ptr;
8378 		len = le32toh(tlv->len);
8379 
8380 		ptr += sizeof (*tlv);
8381 		if (ptr + len > end) {
8382 			device_printf(sc->sc_dev,
8383 			    "%s: firmware too short: %zu bytes\n", __func__,
8384 			    fw->size);
8385 			return EINVAL;
8386 		}
8387 		/* Skip other alternatives. */
8388 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8389 			goto next;
8390 
8391 		switch (le16toh(tlv->type)) {
8392 		case IWN_FW_TLV_MAIN_TEXT:
8393 			fw->main.text = ptr;
8394 			fw->main.textsz = len;
8395 			break;
8396 		case IWN_FW_TLV_MAIN_DATA:
8397 			fw->main.data = ptr;
8398 			fw->main.datasz = len;
8399 			break;
8400 		case IWN_FW_TLV_INIT_TEXT:
8401 			fw->init.text = ptr;
8402 			fw->init.textsz = len;
8403 			break;
8404 		case IWN_FW_TLV_INIT_DATA:
8405 			fw->init.data = ptr;
8406 			fw->init.datasz = len;
8407 			break;
8408 		case IWN_FW_TLV_BOOT_TEXT:
8409 			fw->boot.text = ptr;
8410 			fw->boot.textsz = len;
8411 			break;
8412 		case IWN_FW_TLV_ENH_SENS:
8413 			if (!len)
8414 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8415 			break;
8416 		case IWN_FW_TLV_PHY_CALIB:
8417 			tmp = le32toh(*ptr);
8418 			if (tmp < 253) {
8419 				sc->reset_noise_gain = tmp;
8420 				sc->noise_gain = tmp + 1;
8421 			}
8422 			break;
8423 		case IWN_FW_TLV_PAN:
8424 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8425 			DPRINTF(sc, IWN_DEBUG_RESET,
8426 			    "PAN Support found: %d\n", 1);
8427 			break;
8428 		case IWN_FW_TLV_FLAGS:
8429 			if (len < sizeof(uint32_t))
8430 				break;
8431 			if (len % sizeof(uint32_t))
8432 				break;
8433 			sc->tlv_feature_flags = le32toh(*ptr);
8434 			DPRINTF(sc, IWN_DEBUG_RESET,
8435 			    "%s: feature: 0x%08x\n",
8436 			    __func__,
8437 			    sc->tlv_feature_flags);
8438 			break;
8439 		case IWN_FW_TLV_PBREQ_MAXLEN:
8440 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8441 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8442 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8443 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8444 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8445 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8446 		case IWN_FW_TLV_WOWLAN_INST:
8447 		case IWN_FW_TLV_WOWLAN_DATA:
8448 			DPRINTF(sc, IWN_DEBUG_RESET,
8449 			    "TLV type %d recognized but not handled\n",
8450 			    le16toh(tlv->type));
8451 			break;
8452 		default:
8453 			DPRINTF(sc, IWN_DEBUG_RESET,
8454 			    "TLV type %d not handled\n", le16toh(tlv->type));
8455 			break;
8456 		}
8457  next:		/* TLV fields are 32-bit aligned. */
8458 		ptr += (len + 3) & ~3;
8459 	}
8460 	return 0;
8461 }
8462 
8463 static int
8464 iwn_read_firmware(struct iwn_softc *sc)
8465 {
8466 	struct iwn_fw_info *fw = &sc->fw;
8467 	int error;
8468 
8469 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8470 
8471 	IWN_UNLOCK(sc);
8472 
8473 	memset(fw, 0, sizeof (*fw));
8474 
8475 	/* Read firmware image from filesystem. */
8476 	sc->fw_fp = firmware_get(sc->fwname);
8477 	if (sc->fw_fp == NULL) {
8478 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8479 		    __func__, sc->fwname);
8480 		IWN_LOCK(sc);
8481 		return EINVAL;
8482 	}
8483 	IWN_LOCK(sc);
8484 
8485 	fw->size = sc->fw_fp->datasize;
8486 	fw->data = (const uint8_t *)sc->fw_fp->data;
8487 	if (fw->size < sizeof (uint32_t)) {
8488 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8489 		    __func__, fw->size);
8490 		error = EINVAL;
8491 		goto fail;
8492 	}
8493 
8494 	/* Retrieve text and data sections. */
8495 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8496 		error = iwn_read_firmware_leg(sc, fw);
8497 	else
8498 		error = iwn_read_firmware_tlv(sc, fw, 1);
8499 	if (error != 0) {
8500 		device_printf(sc->sc_dev,
8501 		    "%s: could not read firmware sections, error %d\n",
8502 		    __func__, error);
8503 		goto fail;
8504 	}
8505 
8506 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8507 
8508 	/* Make sure text and data sections fit in hardware memory. */
8509 	if (fw->main.textsz > sc->fw_text_maxsz ||
8510 	    fw->main.datasz > sc->fw_data_maxsz ||
8511 	    fw->init.textsz > sc->fw_text_maxsz ||
8512 	    fw->init.datasz > sc->fw_data_maxsz ||
8513 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8514 	    (fw->boot.textsz & 3) != 0) {
8515 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8516 		    __func__);
8517 		error = EINVAL;
8518 		goto fail;
8519 	}
8520 
8521 	/* We can proceed with loading the firmware. */
8522 	return 0;
8523 
8524 fail:	iwn_unload_firmware(sc);
8525 	return error;
8526 }
8527 
8528 static void
8529 iwn_unload_firmware(struct iwn_softc *sc)
8530 {
8531 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8532 	sc->fw_fp = NULL;
8533 }
8534 
8535 static int
8536 iwn_clock_wait(struct iwn_softc *sc)
8537 {
8538 	int ntries;
8539 
8540 	/* Set "initialization complete" bit. */
8541 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8542 
8543 	/* Wait for clock stabilization. */
8544 	for (ntries = 0; ntries < 2500; ntries++) {
8545 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8546 			return 0;
8547 		DELAY(10);
8548 	}
8549 	device_printf(sc->sc_dev,
8550 	    "%s: timeout waiting for clock stabilization\n", __func__);
8551 	return ETIMEDOUT;
8552 }
8553 
8554 static int
8555 iwn_apm_init(struct iwn_softc *sc)
8556 {
8557 	uint32_t reg;
8558 	int error;
8559 
8560 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8561 
8562 	/* Disable L0s exit timer (NMI bug workaround). */
8563 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8564 	/* Don't wait for ICH L0s (ICH bug workaround). */
8565 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8566 
8567 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8568 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8569 
8570 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8571 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8572 
8573 	/* Retrieve PCIe Active State Power Management (ASPM). */
8574 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8575 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8576 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8577 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8578 	else
8579 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8580 
8581 	if (sc->base_params->pll_cfg_val)
8582 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8583 
8584 	/* Wait for clock stabilization before accessing prph. */
8585 	if ((error = iwn_clock_wait(sc)) != 0)
8586 		return error;
8587 
8588 	if ((error = iwn_nic_lock(sc)) != 0)
8589 		return error;
8590 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8591 		/* Enable DMA and BSM (Bootstrap State Machine). */
8592 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8593 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8594 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8595 	} else {
8596 		/* Enable DMA. */
8597 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8598 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8599 	}
8600 	DELAY(20);
8601 	/* Disable L1-Active. */
8602 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8603 	iwn_nic_unlock(sc);
8604 
8605 	return 0;
8606 }
8607 
8608 static void
8609 iwn_apm_stop_master(struct iwn_softc *sc)
8610 {
8611 	int ntries;
8612 
8613 	/* Stop busmaster DMA activity. */
8614 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8615 	for (ntries = 0; ntries < 100; ntries++) {
8616 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8617 			return;
8618 		DELAY(10);
8619 	}
8620 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8621 }
8622 
8623 static void
8624 iwn_apm_stop(struct iwn_softc *sc)
8625 {
8626 	iwn_apm_stop_master(sc);
8627 
8628 	/* Reset the entire device. */
8629 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8630 	DELAY(10);
8631 	/* Clear "initialization complete" bit. */
8632 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8633 }
8634 
8635 static int
8636 iwn4965_nic_config(struct iwn_softc *sc)
8637 {
8638 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8639 
8640 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8641 		/*
8642 		 * I don't believe this to be correct but this is what the
8643 		 * vendor driver is doing. Probably the bits should not be
8644 		 * shifted in IWN_RFCFG_*.
8645 		 */
8646 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8647 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8648 		    IWN_RFCFG_STEP(sc->rfcfg) |
8649 		    IWN_RFCFG_DASH(sc->rfcfg));
8650 	}
8651 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8652 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8653 	return 0;
8654 }
8655 
8656 static int
8657 iwn5000_nic_config(struct iwn_softc *sc)
8658 {
8659 	uint32_t tmp;
8660 	int error;
8661 
8662 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8663 
8664 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8665 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8666 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8667 		    IWN_RFCFG_STEP(sc->rfcfg) |
8668 		    IWN_RFCFG_DASH(sc->rfcfg));
8669 	}
8670 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8671 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8672 
8673 	if ((error = iwn_nic_lock(sc)) != 0)
8674 		return error;
8675 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8676 
8677 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8678 		/*
8679 		 * Select first Switching Voltage Regulator (1.32V) to
8680 		 * solve a stability issue related to noisy DC2DC line
8681 		 * in the silicon of 1000 Series.
8682 		 */
8683 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8684 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8685 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8686 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8687 	}
8688 	iwn_nic_unlock(sc);
8689 
8690 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8691 		/* Use internal power amplifier only. */
8692 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8693 	}
8694 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8695 		/* Indicate that ROM calibration version is >=6. */
8696 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8697 	}
8698 	if (sc->base_params->additional_gp_drv_bit)
8699 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8700 		    sc->base_params->additional_gp_drv_bit);
8701 	return 0;
8702 }
8703 
8704 /*
8705  * Take NIC ownership over Intel Active Management Technology (AMT).
8706  */
8707 static int
8708 iwn_hw_prepare(struct iwn_softc *sc)
8709 {
8710 	int ntries;
8711 
8712 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8713 
8714 	/* Check if hardware is ready. */
8715 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8716 	for (ntries = 0; ntries < 5; ntries++) {
8717 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8718 		    IWN_HW_IF_CONFIG_NIC_READY)
8719 			return 0;
8720 		DELAY(10);
8721 	}
8722 
8723 	/* Hardware not ready, force into ready state. */
8724 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8725 	for (ntries = 0; ntries < 15000; ntries++) {
8726 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8727 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8728 			break;
8729 		DELAY(10);
8730 	}
8731 	if (ntries == 15000)
8732 		return ETIMEDOUT;
8733 
8734 	/* Hardware should be ready now. */
8735 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8736 	for (ntries = 0; ntries < 5; ntries++) {
8737 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8738 		    IWN_HW_IF_CONFIG_NIC_READY)
8739 			return 0;
8740 		DELAY(10);
8741 	}
8742 	return ETIMEDOUT;
8743 }
8744 
8745 static int
8746 iwn_hw_init(struct iwn_softc *sc)
8747 {
8748 	struct iwn_ops *ops = &sc->ops;
8749 	int error, chnl, qid;
8750 
8751 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8752 
8753 	/* Clear pending interrupts. */
8754 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8755 
8756 	if ((error = iwn_apm_init(sc)) != 0) {
8757 		device_printf(sc->sc_dev,
8758 		    "%s: could not power ON adapter, error %d\n", __func__,
8759 		    error);
8760 		return error;
8761 	}
8762 
8763 	/* Select VMAIN power source. */
8764 	if ((error = iwn_nic_lock(sc)) != 0)
8765 		return error;
8766 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8767 	iwn_nic_unlock(sc);
8768 
8769 	/* Perform adapter-specific initialization. */
8770 	if ((error = ops->nic_config(sc)) != 0)
8771 		return error;
8772 
8773 	/* Initialize RX ring. */
8774 	if ((error = iwn_nic_lock(sc)) != 0)
8775 		return error;
8776 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8777 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8778 	/* Set physical address of RX ring (256-byte aligned). */
8779 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8780 	/* Set physical address of RX status (16-byte aligned). */
8781 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8782 	/* Enable RX. */
8783 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8784 	    IWN_FH_RX_CONFIG_ENA           |
8785 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8786 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8787 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8788 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8789 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8790 	iwn_nic_unlock(sc);
8791 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8792 
8793 	if ((error = iwn_nic_lock(sc)) != 0)
8794 		return error;
8795 
8796 	/* Initialize TX scheduler. */
8797 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8798 
8799 	/* Set physical address of "keep warm" page (16-byte aligned). */
8800 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8801 
8802 	/* Initialize TX rings. */
8803 	for (qid = 0; qid < sc->ntxqs; qid++) {
8804 		struct iwn_tx_ring *txq = &sc->txq[qid];
8805 
8806 		/* Set physical address of TX ring (256-byte aligned). */
8807 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8808 		    txq->desc_dma.paddr >> 8);
8809 	}
8810 	iwn_nic_unlock(sc);
8811 
8812 	/* Enable DMA channels. */
8813 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8814 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8815 		    IWN_FH_TX_CONFIG_DMA_ENA |
8816 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8817 	}
8818 
8819 	/* Clear "radio off" and "commands blocked" bits. */
8820 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8821 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8822 
8823 	/* Clear pending interrupts. */
8824 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8825 	/* Enable interrupt coalescing. */
8826 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8827 	/* Enable interrupts. */
8828 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8829 
8830 	/* _Really_ make sure "radio off" bit is cleared! */
8831 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8832 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8833 
8834 	/* Enable shadow registers. */
8835 	if (sc->base_params->shadow_reg_enable)
8836 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8837 
8838 	if ((error = ops->load_firmware(sc)) != 0) {
8839 		device_printf(sc->sc_dev,
8840 		    "%s: could not load firmware, error %d\n", __func__,
8841 		    error);
8842 		return error;
8843 	}
8844 	/* Wait at most one second for firmware alive notification. */
8845 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8846 		device_printf(sc->sc_dev,
8847 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8848 		    __func__, error);
8849 		return error;
8850 	}
8851 	/* Do post-firmware initialization. */
8852 
8853 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8854 
8855 	return ops->post_alive(sc);
8856 }
8857 
8858 static void
8859 iwn_hw_stop(struct iwn_softc *sc)
8860 {
8861 	int chnl, qid, ntries;
8862 
8863 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8864 
8865 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8866 
8867 	/* Disable interrupts. */
8868 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8869 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8870 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8871 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8872 
8873 	/* Make sure we no longer hold the NIC lock. */
8874 	iwn_nic_unlock(sc);
8875 
8876 	/* Stop TX scheduler. */
8877 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8878 
8879 	/* Stop all DMA channels. */
8880 	if (iwn_nic_lock(sc) == 0) {
8881 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8882 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8883 			for (ntries = 0; ntries < 200; ntries++) {
8884 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8885 				    IWN_FH_TX_STATUS_IDLE(chnl))
8886 					break;
8887 				DELAY(10);
8888 			}
8889 		}
8890 		iwn_nic_unlock(sc);
8891 	}
8892 
8893 	/* Stop RX ring. */
8894 	iwn_reset_rx_ring(sc, &sc->rxq);
8895 
8896 	/* Reset all TX rings. */
8897 	for (qid = 0; qid < sc->ntxqs; qid++)
8898 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8899 
8900 	if (iwn_nic_lock(sc) == 0) {
8901 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8902 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8903 		iwn_nic_unlock(sc);
8904 	}
8905 	DELAY(5);
8906 	/* Power OFF adapter. */
8907 	iwn_apm_stop(sc);
8908 }
8909 
8910 static void
8911 iwn_panicked(void *arg0, int pending)
8912 {
8913 	struct iwn_softc *sc = arg0;
8914 	struct ieee80211com *ic = &sc->sc_ic;
8915 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8916 #if 0
8917 	int error;
8918 #endif
8919 
8920 	if (vap == NULL) {
8921 		printf("%s: null vap\n", __func__);
8922 		return;
8923 	}
8924 
8925 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8926 	    "restarting\n", __func__, vap->iv_state);
8927 
8928 	/*
8929 	 * This is not enough work. We need to also reinitialise
8930 	 * the correct transmit state for aggregation enabled queues,
8931 	 * which has a very specific requirement of
8932 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8933 	 * we definitely don't!) then the firmware will just panic again.
8934 	 */
8935 #if 1
8936 	ieee80211_restart_all(ic);
8937 #else
8938 	IWN_LOCK(sc);
8939 
8940 	iwn_stop_locked(sc);
8941 	if ((error = iwn_init_locked(sc)) != 0) {
8942 		device_printf(sc->sc_dev,
8943 		    "%s: could not init hardware\n", __func__);
8944 		goto unlock;
8945 	}
8946 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8947 	    (error = iwn_auth(sc, vap)) != 0) {
8948 		device_printf(sc->sc_dev,
8949 		    "%s: could not move to auth state\n", __func__);
8950 	}
8951 	if (vap->iv_state >= IEEE80211_S_RUN &&
8952 	    (error = iwn_run(sc, vap)) != 0) {
8953 		device_printf(sc->sc_dev,
8954 		    "%s: could not move to run state\n", __func__);
8955 	}
8956 
8957 unlock:
8958 	IWN_UNLOCK(sc);
8959 #endif
8960 }
8961 
8962 static int
8963 iwn_init_locked(struct iwn_softc *sc)
8964 {
8965 	int error;
8966 
8967 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8968 
8969 	IWN_LOCK_ASSERT(sc);
8970 
8971 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8972 		goto end;
8973 
8974 	sc->sc_flags |= IWN_FLAG_RUNNING;
8975 
8976 	if ((error = iwn_hw_prepare(sc)) != 0) {
8977 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8978 		    __func__, error);
8979 		goto fail;
8980 	}
8981 
8982 	/* Initialize interrupt mask to default value. */
8983 	sc->int_mask = IWN_INT_MASK_DEF;
8984 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8985 
8986 	/* Check that the radio is not disabled by hardware switch. */
8987 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8988 		iwn_stop_locked(sc);
8989 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8990 
8991 		return (1);
8992 	}
8993 
8994 	/* Read firmware images from the filesystem. */
8995 	if ((error = iwn_read_firmware(sc)) != 0) {
8996 		device_printf(sc->sc_dev,
8997 		    "%s: could not read firmware, error %d\n", __func__,
8998 		    error);
8999 		goto fail;
9000 	}
9001 
9002 	/* Initialize hardware and upload firmware. */
9003 	error = iwn_hw_init(sc);
9004 	iwn_unload_firmware(sc);
9005 	if (error != 0) {
9006 		device_printf(sc->sc_dev,
9007 		    "%s: could not initialize hardware, error %d\n", __func__,
9008 		    error);
9009 		goto fail;
9010 	}
9011 
9012 	/* Configure adapter now that it is ready. */
9013 	if ((error = iwn_config(sc)) != 0) {
9014 		device_printf(sc->sc_dev,
9015 		    "%s: could not configure device, error %d\n", __func__,
9016 		    error);
9017 		goto fail;
9018 	}
9019 
9020 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
9021 
9022 end:
9023 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
9024 
9025 	return (0);
9026 
9027 fail:
9028 	iwn_stop_locked(sc);
9029 
9030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
9031 
9032 	return (-1);
9033 }
9034 
9035 static int
9036 iwn_init(struct iwn_softc *sc)
9037 {
9038 	int error;
9039 
9040 	IWN_LOCK(sc);
9041 	error = iwn_init_locked(sc);
9042 	IWN_UNLOCK(sc);
9043 
9044 	return (error);
9045 }
9046 
9047 static void
9048 iwn_stop_locked(struct iwn_softc *sc)
9049 {
9050 
9051 	IWN_LOCK_ASSERT(sc);
9052 
9053 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
9054 		return;
9055 
9056 	sc->sc_is_scanning = 0;
9057 	sc->sc_tx_timer = 0;
9058 	callout_stop(&sc->watchdog_to);
9059 	callout_stop(&sc->scan_timeout);
9060 	callout_stop(&sc->calib_to);
9061 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
9062 
9063 	/* Power OFF hardware. */
9064 	iwn_hw_stop(sc);
9065 }
9066 
9067 static void
9068 iwn_stop(struct iwn_softc *sc)
9069 {
9070 	IWN_LOCK(sc);
9071 	iwn_stop_locked(sc);
9072 	IWN_UNLOCK(sc);
9073 }
9074 
9075 /*
9076  * Callback from net80211 to start a scan.
9077  */
9078 static void
9079 iwn_scan_start(struct ieee80211com *ic)
9080 {
9081 	struct iwn_softc *sc = ic->ic_softc;
9082 
9083 	IWN_LOCK(sc);
9084 	/* make the link LED blink while we're scanning */
9085 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
9086 	IWN_UNLOCK(sc);
9087 }
9088 
9089 /*
9090  * Callback from net80211 to terminate a scan.
9091  */
9092 static void
9093 iwn_scan_end(struct ieee80211com *ic)
9094 {
9095 	struct iwn_softc *sc = ic->ic_softc;
9096 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
9097 
9098 	IWN_LOCK(sc);
9099 	if (vap->iv_state == IEEE80211_S_RUN) {
9100 		/* Set link LED to ON status if we are associated */
9101 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
9102 	}
9103 	IWN_UNLOCK(sc);
9104 }
9105 
9106 /*
9107  * Callback from net80211 to force a channel change.
9108  */
9109 static void
9110 iwn_set_channel(struct ieee80211com *ic)
9111 {
9112 	struct iwn_softc *sc = ic->ic_softc;
9113 	int error;
9114 
9115 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
9116 
9117 	IWN_LOCK(sc);
9118 	/*
9119 	 * Only need to set the channel in Monitor mode. AP scanning and auth
9120 	 * are already taken care of by their respective firmware commands.
9121 	 */
9122 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
9123 		error = iwn_config(sc);
9124 		if (error != 0)
9125 		device_printf(sc->sc_dev,
9126 		    "%s: error %d setting channel\n", __func__, error);
9127 	}
9128 	IWN_UNLOCK(sc);
9129 }
9130 
9131 /*
9132  * Callback from net80211 to start scanning of the current channel.
9133  */
9134 static void
9135 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
9136 {
9137 	struct ieee80211vap *vap = ss->ss_vap;
9138 	struct ieee80211com *ic = vap->iv_ic;
9139 	struct iwn_softc *sc = ic->ic_softc;
9140 	int error;
9141 
9142 	IWN_LOCK(sc);
9143 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
9144 	IWN_UNLOCK(sc);
9145 	if (error != 0)
9146 		ieee80211_cancel_scan(vap);
9147 }
9148 
9149 /*
9150  * Callback from net80211 to handle the minimum dwell time being met.
9151  * The intent is to terminate the scan but we just let the firmware
9152  * notify us when it's finished as we have no safe way to abort it.
9153  */
9154 static void
9155 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
9156 {
9157 	/* NB: don't try to abort scan; wait for firmware to finish */
9158 }
9159 #ifdef	IWN_DEBUG
9160 #define	IWN_DESC(x) case x:	return #x
9161 
9162 /*
9163  * Translate CSR code to string
9164  */
9165 static char *iwn_get_csr_string(int csr)
9166 {
9167 	switch (csr) {
9168 		IWN_DESC(IWN_HW_IF_CONFIG);
9169 		IWN_DESC(IWN_INT_COALESCING);
9170 		IWN_DESC(IWN_INT);
9171 		IWN_DESC(IWN_INT_MASK);
9172 		IWN_DESC(IWN_FH_INT);
9173 		IWN_DESC(IWN_GPIO_IN);
9174 		IWN_DESC(IWN_RESET);
9175 		IWN_DESC(IWN_GP_CNTRL);
9176 		IWN_DESC(IWN_HW_REV);
9177 		IWN_DESC(IWN_EEPROM);
9178 		IWN_DESC(IWN_EEPROM_GP);
9179 		IWN_DESC(IWN_OTP_GP);
9180 		IWN_DESC(IWN_GIO);
9181 		IWN_DESC(IWN_GP_UCODE);
9182 		IWN_DESC(IWN_GP_DRIVER);
9183 		IWN_DESC(IWN_UCODE_GP1);
9184 		IWN_DESC(IWN_UCODE_GP2);
9185 		IWN_DESC(IWN_LED);
9186 		IWN_DESC(IWN_DRAM_INT_TBL);
9187 		IWN_DESC(IWN_GIO_CHICKEN);
9188 		IWN_DESC(IWN_ANA_PLL);
9189 		IWN_DESC(IWN_HW_REV_WA);
9190 		IWN_DESC(IWN_DBG_HPET_MEM);
9191 	default:
9192 		return "UNKNOWN CSR";
9193 	}
9194 }
9195 
9196 /*
9197  * This function print firmware register
9198  */
9199 static void
9200 iwn_debug_register(struct iwn_softc *sc)
9201 {
9202 	int i;
9203 	static const uint32_t csr_tbl[] = {
9204 		IWN_HW_IF_CONFIG,
9205 		IWN_INT_COALESCING,
9206 		IWN_INT,
9207 		IWN_INT_MASK,
9208 		IWN_FH_INT,
9209 		IWN_GPIO_IN,
9210 		IWN_RESET,
9211 		IWN_GP_CNTRL,
9212 		IWN_HW_REV,
9213 		IWN_EEPROM,
9214 		IWN_EEPROM_GP,
9215 		IWN_OTP_GP,
9216 		IWN_GIO,
9217 		IWN_GP_UCODE,
9218 		IWN_GP_DRIVER,
9219 		IWN_UCODE_GP1,
9220 		IWN_UCODE_GP2,
9221 		IWN_LED,
9222 		IWN_DRAM_INT_TBL,
9223 		IWN_GIO_CHICKEN,
9224 		IWN_ANA_PLL,
9225 		IWN_HW_REV_WA,
9226 		IWN_DBG_HPET_MEM,
9227 	};
9228 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9229 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9230 	    "\n");
9231 	for (i = 0; i <  nitems(csr_tbl); i++){
9232 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9233 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9234 		if ((i+1) % 3 == 0)
9235 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9236 	}
9237 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9238 }
9239 #endif
9240 
9241 
9242