xref: /freebsd/sys/dev/iwn/if_iwn.c (revision ca86bcf2531c7b149c95244a67853d44323e7855)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
204 		    struct iwn_rx_data *);
205 static void	iwn5000_rx_calib_results(struct iwn_softc *,
206 		    struct iwn_rx_desc *, struct iwn_rx_data *);
207 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
214 		    uint8_t);
215 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
216 		    void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_task(void *, int);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static void	iwn_xmit_task(void *arg0, int pending);
236 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
237 		    const struct ieee80211_bpf_params *);
238 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
239 static void	iwn_scan_timeout(void *);
240 static void	iwn_watchdog(void *);
241 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
242 static void	iwn_parent(struct ieee80211com *);
243 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
244 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
245 		    int);
246 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn_set_link_quality(struct iwn_softc *,
249 		    struct ieee80211_node *);
250 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
251 static int	iwn_updateedca(struct ieee80211com *);
252 static void	iwn_update_mcast(struct ieee80211com *);
253 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
254 static int	iwn_set_critical_temp(struct iwn_softc *);
255 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
256 static void	iwn4965_power_calibration(struct iwn_softc *, int);
257 static int	iwn4965_set_txpower(struct iwn_softc *, int);
258 static int	iwn5000_set_txpower(struct iwn_softc *, int);
259 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
260 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
262 static int	iwn4965_get_temperature(struct iwn_softc *);
263 static int	iwn5000_get_temperature(struct iwn_softc *);
264 static int	iwn_init_sensitivity(struct iwn_softc *);
265 static void	iwn_collect_noise(struct iwn_softc *,
266 		    const struct iwn_rx_general_stats *);
267 static int	iwn4965_init_gains(struct iwn_softc *);
268 static int	iwn5000_init_gains(struct iwn_softc *);
269 static int	iwn4965_set_gains(struct iwn_softc *);
270 static int	iwn5000_set_gains(struct iwn_softc *);
271 static void	iwn_tune_sensitivity(struct iwn_softc *,
272 		    const struct iwn_rx_stats *);
273 static void	iwn_save_stats_counters(struct iwn_softc *,
274 		    const struct iwn_stats *);
275 static int	iwn_send_sensitivity(struct iwn_softc *);
276 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
277 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
278 static int	iwn_send_btcoex(struct iwn_softc *);
279 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
280 static int	iwn5000_runtime_calib(struct iwn_softc *);
281 static int	iwn_config(struct iwn_softc *);
282 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
283 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
284 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
285 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
286 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
287 		    struct ieee80211_rx_ampdu *, int, int, int);
288 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
289 		    struct ieee80211_rx_ampdu *);
290 static int	iwn_addba_request(struct ieee80211_node *,
291 		    struct ieee80211_tx_ampdu *, int, int, int);
292 static int	iwn_addba_response(struct ieee80211_node *,
293 		    struct ieee80211_tx_ampdu *, int, int, int);
294 static int	iwn_ampdu_tx_start(struct ieee80211com *,
295 		    struct ieee80211_node *, uint8_t);
296 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
297 		    struct ieee80211_tx_ampdu *);
298 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
299 		    struct ieee80211_node *, int, uint8_t, uint16_t);
300 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
301 		    uint8_t, uint16_t);
302 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
303 		    struct ieee80211_node *, int, uint8_t, uint16_t);
304 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
305 		    uint8_t, uint16_t);
306 static int	iwn5000_query_calibration(struct iwn_softc *);
307 static int	iwn5000_send_calibration(struct iwn_softc *);
308 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
309 static int	iwn5000_crystal_calib(struct iwn_softc *);
310 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
311 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
312 static int	iwn4965_post_alive(struct iwn_softc *);
313 static int	iwn5000_post_alive(struct iwn_softc *);
314 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
315 		    int);
316 static int	iwn4965_load_firmware(struct iwn_softc *);
317 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
318 		    const uint8_t *, int);
319 static int	iwn5000_load_firmware(struct iwn_softc *);
320 static int	iwn_read_firmware_leg(struct iwn_softc *,
321 		    struct iwn_fw_info *);
322 static int	iwn_read_firmware_tlv(struct iwn_softc *,
323 		    struct iwn_fw_info *, uint16_t);
324 static int	iwn_read_firmware(struct iwn_softc *);
325 static void	iwn_unload_firmware(struct iwn_softc *);
326 static int	iwn_clock_wait(struct iwn_softc *);
327 static int	iwn_apm_init(struct iwn_softc *);
328 static void	iwn_apm_stop_master(struct iwn_softc *);
329 static void	iwn_apm_stop(struct iwn_softc *);
330 static int	iwn4965_nic_config(struct iwn_softc *);
331 static int	iwn5000_nic_config(struct iwn_softc *);
332 static int	iwn_hw_prepare(struct iwn_softc *);
333 static int	iwn_hw_init(struct iwn_softc *);
334 static void	iwn_hw_stop(struct iwn_softc *);
335 static void	iwn_panicked(void *, int);
336 static int	iwn_init_locked(struct iwn_softc *);
337 static int	iwn_init(struct iwn_softc *);
338 static void	iwn_stop_locked(struct iwn_softc *);
339 static void	iwn_stop(struct iwn_softc *);
340 static void	iwn_scan_start(struct ieee80211com *);
341 static void	iwn_scan_end(struct ieee80211com *);
342 static void	iwn_set_channel(struct ieee80211com *);
343 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
344 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
345 #ifdef	IWN_DEBUG
346 static char	*iwn_get_csr_string(int);
347 static void	iwn_debug_register(struct iwn_softc *);
348 #endif
349 
350 static device_method_t iwn_methods[] = {
351 	/* Device interface */
352 	DEVMETHOD(device_probe,		iwn_probe),
353 	DEVMETHOD(device_attach,	iwn_attach),
354 	DEVMETHOD(device_detach,	iwn_detach),
355 	DEVMETHOD(device_shutdown,	iwn_shutdown),
356 	DEVMETHOD(device_suspend,	iwn_suspend),
357 	DEVMETHOD(device_resume,	iwn_resume),
358 
359 	DEVMETHOD_END
360 };
361 
362 static driver_t iwn_driver = {
363 	"iwn",
364 	iwn_methods,
365 	sizeof(struct iwn_softc)
366 };
367 static devclass_t iwn_devclass;
368 
369 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
370 
371 MODULE_VERSION(iwn, 1);
372 
373 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
374 MODULE_DEPEND(iwn, pci, 1, 1, 1);
375 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
376 
377 static d_ioctl_t iwn_cdev_ioctl;
378 static d_open_t iwn_cdev_open;
379 static d_close_t iwn_cdev_close;
380 
381 static struct cdevsw iwn_cdevsw = {
382 	.d_version = D_VERSION,
383 	.d_flags = 0,
384 	.d_open = iwn_cdev_open,
385 	.d_close = iwn_cdev_close,
386 	.d_ioctl = iwn_cdev_ioctl,
387 	.d_name = "iwn",
388 };
389 
390 static int
391 iwn_probe(device_t dev)
392 {
393 	const struct iwn_ident *ident;
394 
395 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
396 		if (pci_get_vendor(dev) == ident->vendor &&
397 		    pci_get_device(dev) == ident->device) {
398 			device_set_desc(dev, ident->name);
399 			return (BUS_PROBE_DEFAULT);
400 		}
401 	}
402 	return ENXIO;
403 }
404 
405 static int
406 iwn_is_3stream_device(struct iwn_softc *sc)
407 {
408 	/* XXX for now only 5300, until the 5350 can be tested */
409 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
410 		return (1);
411 	return (0);
412 }
413 
414 static int
415 iwn_attach(device_t dev)
416 {
417 	struct iwn_softc *sc = device_get_softc(dev);
418 	struct ieee80211com *ic;
419 	int i, error, rid;
420 
421 	sc->sc_dev = dev;
422 
423 #ifdef	IWN_DEBUG
424 	error = resource_int_value(device_get_name(sc->sc_dev),
425 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
426 	if (error != 0)
427 		sc->sc_debug = 0;
428 #else
429 	sc->sc_debug = 0;
430 #endif
431 
432 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
433 
434 	/*
435 	 * Get the offset of the PCI Express Capability Structure in PCI
436 	 * Configuration Space.
437 	 */
438 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
439 	if (error != 0) {
440 		device_printf(dev, "PCIe capability structure not found!\n");
441 		return error;
442 	}
443 
444 	/* Clear device-specific "PCI retry timeout" register (41h). */
445 	pci_write_config(dev, 0x41, 0, 1);
446 
447 	/* Enable bus-mastering. */
448 	pci_enable_busmaster(dev);
449 
450 	rid = PCIR_BAR(0);
451 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
452 	    RF_ACTIVE);
453 	if (sc->mem == NULL) {
454 		device_printf(dev, "can't map mem space\n");
455 		error = ENOMEM;
456 		return error;
457 	}
458 	sc->sc_st = rman_get_bustag(sc->mem);
459 	sc->sc_sh = rman_get_bushandle(sc->mem);
460 
461 	i = 1;
462 	rid = 0;
463 	if (pci_alloc_msi(dev, &i) == 0)
464 		rid = 1;
465 	/* Install interrupt handler. */
466 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
467 	    (rid != 0 ? 0 : RF_SHAREABLE));
468 	if (sc->irq == NULL) {
469 		device_printf(dev, "can't map interrupt\n");
470 		error = ENOMEM;
471 		goto fail;
472 	}
473 
474 	IWN_LOCK_INIT(sc);
475 
476 	/* Read hardware revision and attach. */
477 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
478 	    & IWN_HW_REV_TYPE_MASK;
479 	sc->subdevice_id = pci_get_subdevice(dev);
480 
481 	/*
482 	 * 4965 versus 5000 and later have different methods.
483 	 * Let's set those up first.
484 	 */
485 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
486 		error = iwn4965_attach(sc, pci_get_device(dev));
487 	else
488 		error = iwn5000_attach(sc, pci_get_device(dev));
489 	if (error != 0) {
490 		device_printf(dev, "could not attach device, error %d\n",
491 		    error);
492 		goto fail;
493 	}
494 
495 	/*
496 	 * Next, let's setup the various parameters of each NIC.
497 	 */
498 	error = iwn_config_specific(sc, pci_get_device(dev));
499 	if (error != 0) {
500 		device_printf(dev, "could not attach device, error %d\n",
501 		    error);
502 		goto fail;
503 	}
504 
505 	if ((error = iwn_hw_prepare(sc)) != 0) {
506 		device_printf(dev, "hardware not ready, error %d\n", error);
507 		goto fail;
508 	}
509 
510 	/* Allocate DMA memory for firmware transfers. */
511 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
512 		device_printf(dev,
513 		    "could not allocate memory for firmware, error %d\n",
514 		    error);
515 		goto fail;
516 	}
517 
518 	/* Allocate "Keep Warm" page. */
519 	if ((error = iwn_alloc_kw(sc)) != 0) {
520 		device_printf(dev,
521 		    "could not allocate keep warm page, error %d\n", error);
522 		goto fail;
523 	}
524 
525 	/* Allocate ICT table for 5000 Series. */
526 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
527 	    (error = iwn_alloc_ict(sc)) != 0) {
528 		device_printf(dev, "could not allocate ICT table, error %d\n",
529 		    error);
530 		goto fail;
531 	}
532 
533 	/* Allocate TX scheduler "rings". */
534 	if ((error = iwn_alloc_sched(sc)) != 0) {
535 		device_printf(dev,
536 		    "could not allocate TX scheduler rings, error %d\n", error);
537 		goto fail;
538 	}
539 
540 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
541 	for (i = 0; i < sc->ntxqs; i++) {
542 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
543 			device_printf(dev,
544 			    "could not allocate TX ring %d, error %d\n", i,
545 			    error);
546 			goto fail;
547 		}
548 	}
549 
550 	/* Allocate RX ring. */
551 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
552 		device_printf(dev, "could not allocate RX ring, error %d\n",
553 		    error);
554 		goto fail;
555 	}
556 
557 	/* Clear pending interrupts. */
558 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
559 
560 	ic = &sc->sc_ic;
561 	ic->ic_softc = sc;
562 	ic->ic_name = device_get_nameunit(dev);
563 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
564 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
565 
566 	/* Set device capabilities. */
567 	ic->ic_caps =
568 		  IEEE80211_C_STA		/* station mode supported */
569 		| IEEE80211_C_MONITOR		/* monitor mode supported */
570 #if 0
571 		| IEEE80211_C_BGSCAN		/* background scanning */
572 #endif
573 		| IEEE80211_C_TXPMGT		/* tx power management */
574 		| IEEE80211_C_SHSLOT		/* short slot time supported */
575 		| IEEE80211_C_WPA
576 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
577 #if 0
578 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
579 #endif
580 		| IEEE80211_C_WME		/* WME */
581 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
582 		;
583 
584 	/* Read MAC address, channels, etc from EEPROM. */
585 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
586 		device_printf(dev, "could not read EEPROM, error %d\n",
587 		    error);
588 		goto fail;
589 	}
590 
591 	/* Count the number of available chains. */
592 	sc->ntxchains =
593 	    ((sc->txchainmask >> 2) & 1) +
594 	    ((sc->txchainmask >> 1) & 1) +
595 	    ((sc->txchainmask >> 0) & 1);
596 	sc->nrxchains =
597 	    ((sc->rxchainmask >> 2) & 1) +
598 	    ((sc->rxchainmask >> 1) & 1) +
599 	    ((sc->rxchainmask >> 0) & 1);
600 	if (bootverbose) {
601 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
602 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
603 		    ic->ic_macaddr, ":");
604 	}
605 
606 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
607 		ic->ic_rxstream = sc->nrxchains;
608 		ic->ic_txstream = sc->ntxchains;
609 
610 		/*
611 		 * Some of the 3 antenna devices (ie, the 4965) only supports
612 		 * 2x2 operation.  So correct the number of streams if
613 		 * it's not a 3-stream device.
614 		 */
615 		if (! iwn_is_3stream_device(sc)) {
616 			if (ic->ic_rxstream > 2)
617 				ic->ic_rxstream = 2;
618 			if (ic->ic_txstream > 2)
619 				ic->ic_txstream = 2;
620 		}
621 
622 		ic->ic_htcaps =
623 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
624 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
625 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
626 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
627 #ifdef notyet
628 			| IEEE80211_HTCAP_GREENFIELD
629 #if IWN_RBUF_SIZE == 8192
630 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
631 #else
632 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
633 #endif
634 #endif
635 			/* s/w capabilities */
636 			| IEEE80211_HTC_HT		/* HT operation */
637 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
638 #ifdef notyet
639 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
640 #endif
641 			;
642 	}
643 
644 	ieee80211_ifattach(ic);
645 	ic->ic_vap_create = iwn_vap_create;
646 	ic->ic_ioctl = iwn_ioctl;
647 	ic->ic_parent = iwn_parent;
648 	ic->ic_vap_delete = iwn_vap_delete;
649 	ic->ic_transmit = iwn_transmit;
650 	ic->ic_raw_xmit = iwn_raw_xmit;
651 	ic->ic_node_alloc = iwn_node_alloc;
652 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
653 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
654 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
655 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
656 	sc->sc_addba_request = ic->ic_addba_request;
657 	ic->ic_addba_request = iwn_addba_request;
658 	sc->sc_addba_response = ic->ic_addba_response;
659 	ic->ic_addba_response = iwn_addba_response;
660 	sc->sc_addba_stop = ic->ic_addba_stop;
661 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
662 	ic->ic_newassoc = iwn_newassoc;
663 	ic->ic_wme.wme_update = iwn_updateedca;
664 	ic->ic_update_mcast = iwn_update_mcast;
665 	ic->ic_scan_start = iwn_scan_start;
666 	ic->ic_scan_end = iwn_scan_end;
667 	ic->ic_set_channel = iwn_set_channel;
668 	ic->ic_scan_curchan = iwn_scan_curchan;
669 	ic->ic_scan_mindwell = iwn_scan_mindwell;
670 	ic->ic_getradiocaps = iwn_getradiocaps;
671 	ic->ic_setregdomain = iwn_setregdomain;
672 
673 	iwn_radiotap_attach(sc);
674 
675 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
676 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
677 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
678 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
679 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
680 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
681 
682 	mbufq_init(&sc->sc_xmit_queue, 1024);
683 
684 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
685 	    taskqueue_thread_enqueue, &sc->sc_tq);
686 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
687 	if (error != 0) {
688 		device_printf(dev, "can't start threads, error %d\n", error);
689 		goto fail;
690 	}
691 
692 	iwn_sysctlattach(sc);
693 
694 	/*
695 	 * Hook our interrupt after all initialization is complete.
696 	 */
697 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
698 	    NULL, iwn_intr, sc, &sc->sc_ih);
699 	if (error != 0) {
700 		device_printf(dev, "can't establish interrupt, error %d\n",
701 		    error);
702 		goto fail;
703 	}
704 
705 #if 0
706 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
707 	    __func__,
708 	    sizeof(struct iwn_stats),
709 	    sizeof(struct iwn_stats_bt));
710 #endif
711 
712 	if (bootverbose)
713 		ieee80211_announce(ic);
714 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
715 
716 	/* Add debug ioctl right at the end */
717 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
718 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
719 	if (sc->sc_cdev == NULL) {
720 		device_printf(dev, "failed to create debug character device\n");
721 	} else {
722 		sc->sc_cdev->si_drv1 = sc;
723 	}
724 	return 0;
725 fail:
726 	iwn_detach(dev);
727 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
728 	return error;
729 }
730 
731 /*
732  * Define specific configuration based on device id and subdevice id
733  * pid : PCI device id
734  */
735 static int
736 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
737 {
738 
739 	switch (pid) {
740 /* 4965 series */
741 	case IWN_DID_4965_1:
742 	case IWN_DID_4965_2:
743 	case IWN_DID_4965_3:
744 	case IWN_DID_4965_4:
745 		sc->base_params = &iwn4965_base_params;
746 		sc->limits = &iwn4965_sensitivity_limits;
747 		sc->fwname = "iwn4965fw";
748 		/* Override chains masks, ROM is known to be broken. */
749 		sc->txchainmask = IWN_ANT_AB;
750 		sc->rxchainmask = IWN_ANT_ABC;
751 		/* Enable normal btcoex */
752 		sc->sc_flags |= IWN_FLAG_BTCOEX;
753 		break;
754 /* 1000 Series */
755 	case IWN_DID_1000_1:
756 	case IWN_DID_1000_2:
757 		switch(sc->subdevice_id) {
758 			case	IWN_SDID_1000_1:
759 			case	IWN_SDID_1000_2:
760 			case	IWN_SDID_1000_3:
761 			case	IWN_SDID_1000_4:
762 			case	IWN_SDID_1000_5:
763 			case	IWN_SDID_1000_6:
764 			case	IWN_SDID_1000_7:
765 			case	IWN_SDID_1000_8:
766 			case	IWN_SDID_1000_9:
767 			case	IWN_SDID_1000_10:
768 			case	IWN_SDID_1000_11:
769 			case	IWN_SDID_1000_12:
770 				sc->limits = &iwn1000_sensitivity_limits;
771 				sc->base_params = &iwn1000_base_params;
772 				sc->fwname = "iwn1000fw";
773 				break;
774 			default:
775 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
776 				    "0x%04x rev %d not supported (subdevice)\n", pid,
777 				    sc->subdevice_id,sc->hw_type);
778 				return ENOTSUP;
779 		}
780 		break;
781 /* 6x00 Series */
782 	case IWN_DID_6x00_2:
783 	case IWN_DID_6x00_4:
784 	case IWN_DID_6x00_1:
785 	case IWN_DID_6x00_3:
786 		sc->fwname = "iwn6000fw";
787 		sc->limits = &iwn6000_sensitivity_limits;
788 		switch(sc->subdevice_id) {
789 			case IWN_SDID_6x00_1:
790 			case IWN_SDID_6x00_2:
791 			case IWN_SDID_6x00_8:
792 				//iwl6000_3agn_cfg
793 				sc->base_params = &iwn_6000_base_params;
794 				break;
795 			case IWN_SDID_6x00_3:
796 			case IWN_SDID_6x00_6:
797 			case IWN_SDID_6x00_9:
798 				////iwl6000i_2agn
799 			case IWN_SDID_6x00_4:
800 			case IWN_SDID_6x00_7:
801 			case IWN_SDID_6x00_10:
802 				//iwl6000i_2abg_cfg
803 			case IWN_SDID_6x00_5:
804 				//iwl6000i_2bg_cfg
805 				sc->base_params = &iwn_6000i_base_params;
806 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
807 				sc->txchainmask = IWN_ANT_BC;
808 				sc->rxchainmask = IWN_ANT_BC;
809 				break;
810 			default:
811 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
812 				    "0x%04x rev %d not supported (subdevice)\n", pid,
813 				    sc->subdevice_id,sc->hw_type);
814 				return ENOTSUP;
815 		}
816 		break;
817 /* 6x05 Series */
818 	case IWN_DID_6x05_1:
819 	case IWN_DID_6x05_2:
820 		switch(sc->subdevice_id) {
821 			case IWN_SDID_6x05_1:
822 			case IWN_SDID_6x05_4:
823 			case IWN_SDID_6x05_6:
824 				//iwl6005_2agn_cfg
825 			case IWN_SDID_6x05_2:
826 			case IWN_SDID_6x05_5:
827 			case IWN_SDID_6x05_7:
828 				//iwl6005_2abg_cfg
829 			case IWN_SDID_6x05_3:
830 				//iwl6005_2bg_cfg
831 			case IWN_SDID_6x05_8:
832 			case IWN_SDID_6x05_9:
833 				//iwl6005_2agn_sff_cfg
834 			case IWN_SDID_6x05_10:
835 				//iwl6005_2agn_d_cfg
836 			case IWN_SDID_6x05_11:
837 				//iwl6005_2agn_mow1_cfg
838 			case IWN_SDID_6x05_12:
839 				//iwl6005_2agn_mow2_cfg
840 				sc->fwname = "iwn6000g2afw";
841 				sc->limits = &iwn6000_sensitivity_limits;
842 				sc->base_params = &iwn_6000g2_base_params;
843 				break;
844 			default:
845 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
846 				    "0x%04x rev %d not supported (subdevice)\n", pid,
847 				    sc->subdevice_id,sc->hw_type);
848 				return ENOTSUP;
849 		}
850 		break;
851 /* 6x35 Series */
852 	case IWN_DID_6035_1:
853 	case IWN_DID_6035_2:
854 		switch(sc->subdevice_id) {
855 			case IWN_SDID_6035_1:
856 			case IWN_SDID_6035_2:
857 			case IWN_SDID_6035_3:
858 			case IWN_SDID_6035_4:
859 				sc->fwname = "iwn6000g2bfw";
860 				sc->limits = &iwn6235_sensitivity_limits;
861 				sc->base_params = &iwn_6235_base_params;
862 				break;
863 			default:
864 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
865 				    "0x%04x rev %d not supported (subdevice)\n", pid,
866 				    sc->subdevice_id,sc->hw_type);
867 				return ENOTSUP;
868 		}
869 		break;
870 /* 6x50 WiFi/WiMax Series */
871 	case IWN_DID_6050_1:
872 	case IWN_DID_6050_2:
873 		switch(sc->subdevice_id) {
874 			case IWN_SDID_6050_1:
875 			case IWN_SDID_6050_3:
876 			case IWN_SDID_6050_5:
877 				//iwl6050_2agn_cfg
878 			case IWN_SDID_6050_2:
879 			case IWN_SDID_6050_4:
880 			case IWN_SDID_6050_6:
881 				//iwl6050_2abg_cfg
882 				sc->fwname = "iwn6050fw";
883 				sc->txchainmask = IWN_ANT_AB;
884 				sc->rxchainmask = IWN_ANT_AB;
885 				sc->limits = &iwn6000_sensitivity_limits;
886 				sc->base_params = &iwn_6050_base_params;
887 				break;
888 			default:
889 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
890 				    "0x%04x rev %d not supported (subdevice)\n", pid,
891 				    sc->subdevice_id,sc->hw_type);
892 				return ENOTSUP;
893 		}
894 		break;
895 /* 6150 WiFi/WiMax Series */
896 	case IWN_DID_6150_1:
897 	case IWN_DID_6150_2:
898 		switch(sc->subdevice_id) {
899 			case IWN_SDID_6150_1:
900 			case IWN_SDID_6150_3:
901 			case IWN_SDID_6150_5:
902 				// iwl6150_bgn_cfg
903 			case IWN_SDID_6150_2:
904 			case IWN_SDID_6150_4:
905 			case IWN_SDID_6150_6:
906 				//iwl6150_bg_cfg
907 				sc->fwname = "iwn6050fw";
908 				sc->limits = &iwn6000_sensitivity_limits;
909 				sc->base_params = &iwn_6150_base_params;
910 				break;
911 			default:
912 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
913 				    "0x%04x rev %d not supported (subdevice)\n", pid,
914 				    sc->subdevice_id,sc->hw_type);
915 				return ENOTSUP;
916 		}
917 		break;
918 /* 6030 Series and 1030 Series */
919 	case IWN_DID_x030_1:
920 	case IWN_DID_x030_2:
921 	case IWN_DID_x030_3:
922 	case IWN_DID_x030_4:
923 		switch(sc->subdevice_id) {
924 			case IWN_SDID_x030_1:
925 			case IWN_SDID_x030_3:
926 			case IWN_SDID_x030_5:
927 			// iwl1030_bgn_cfg
928 			case IWN_SDID_x030_2:
929 			case IWN_SDID_x030_4:
930 			case IWN_SDID_x030_6:
931 			//iwl1030_bg_cfg
932 			case IWN_SDID_x030_7:
933 			case IWN_SDID_x030_10:
934 			case IWN_SDID_x030_14:
935 			//iwl6030_2agn_cfg
936 			case IWN_SDID_x030_8:
937 			case IWN_SDID_x030_11:
938 			case IWN_SDID_x030_15:
939 			// iwl6030_2bgn_cfg
940 			case IWN_SDID_x030_9:
941 			case IWN_SDID_x030_12:
942 			case IWN_SDID_x030_16:
943 			// iwl6030_2abg_cfg
944 			case IWN_SDID_x030_13:
945 			//iwl6030_2bg_cfg
946 				sc->fwname = "iwn6000g2bfw";
947 				sc->limits = &iwn6000_sensitivity_limits;
948 				sc->base_params = &iwn_6000g2b_base_params;
949 				break;
950 			default:
951 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
952 				    "0x%04x rev %d not supported (subdevice)\n", pid,
953 				    sc->subdevice_id,sc->hw_type);
954 				return ENOTSUP;
955 		}
956 		break;
957 /* 130 Series WiFi */
958 /* XXX: This series will need adjustment for rate.
959  * see rx_with_siso_diversity in linux kernel
960  */
961 	case IWN_DID_130_1:
962 	case IWN_DID_130_2:
963 		switch(sc->subdevice_id) {
964 			case IWN_SDID_130_1:
965 			case IWN_SDID_130_3:
966 			case IWN_SDID_130_5:
967 			//iwl130_bgn_cfg
968 			case IWN_SDID_130_2:
969 			case IWN_SDID_130_4:
970 			case IWN_SDID_130_6:
971 			//iwl130_bg_cfg
972 				sc->fwname = "iwn6000g2bfw";
973 				sc->limits = &iwn6000_sensitivity_limits;
974 				sc->base_params = &iwn_6000g2b_base_params;
975 				break;
976 			default:
977 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
978 				    "0x%04x rev %d not supported (subdevice)\n", pid,
979 				    sc->subdevice_id,sc->hw_type);
980 				return ENOTSUP;
981 		}
982 		break;
983 /* 100 Series WiFi */
984 	case IWN_DID_100_1:
985 	case IWN_DID_100_2:
986 		switch(sc->subdevice_id) {
987 			case IWN_SDID_100_1:
988 			case IWN_SDID_100_2:
989 			case IWN_SDID_100_3:
990 			case IWN_SDID_100_4:
991 			case IWN_SDID_100_5:
992 			case IWN_SDID_100_6:
993 				sc->limits = &iwn1000_sensitivity_limits;
994 				sc->base_params = &iwn1000_base_params;
995 				sc->fwname = "iwn100fw";
996 				break;
997 			default:
998 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
999 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1000 				    sc->subdevice_id,sc->hw_type);
1001 				return ENOTSUP;
1002 		}
1003 		break;
1004 
1005 /* 105 Series */
1006 /* XXX: This series will need adjustment for rate.
1007  * see rx_with_siso_diversity in linux kernel
1008  */
1009 	case IWN_DID_105_1:
1010 	case IWN_DID_105_2:
1011 		switch(sc->subdevice_id) {
1012 			case IWN_SDID_105_1:
1013 			case IWN_SDID_105_2:
1014 			case IWN_SDID_105_3:
1015 			//iwl105_bgn_cfg
1016 			case IWN_SDID_105_4:
1017 			//iwl105_bgn_d_cfg
1018 				sc->limits = &iwn2030_sensitivity_limits;
1019 				sc->base_params = &iwn2000_base_params;
1020 				sc->fwname = "iwn105fw";
1021 				break;
1022 			default:
1023 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1024 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1025 				    sc->subdevice_id,sc->hw_type);
1026 				return ENOTSUP;
1027 		}
1028 		break;
1029 
1030 /* 135 Series */
1031 /* XXX: This series will need adjustment for rate.
1032  * see rx_with_siso_diversity in linux kernel
1033  */
1034 	case IWN_DID_135_1:
1035 	case IWN_DID_135_2:
1036 		switch(sc->subdevice_id) {
1037 			case IWN_SDID_135_1:
1038 			case IWN_SDID_135_2:
1039 			case IWN_SDID_135_3:
1040 				sc->limits = &iwn2030_sensitivity_limits;
1041 				sc->base_params = &iwn2030_base_params;
1042 				sc->fwname = "iwn135fw";
1043 				break;
1044 			default:
1045 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1046 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1047 				    sc->subdevice_id,sc->hw_type);
1048 				return ENOTSUP;
1049 		}
1050 		break;
1051 
1052 /* 2x00 Series */
1053 	case IWN_DID_2x00_1:
1054 	case IWN_DID_2x00_2:
1055 		switch(sc->subdevice_id) {
1056 			case IWN_SDID_2x00_1:
1057 			case IWN_SDID_2x00_2:
1058 			case IWN_SDID_2x00_3:
1059 			//iwl2000_2bgn_cfg
1060 			case IWN_SDID_2x00_4:
1061 			//iwl2000_2bgn_d_cfg
1062 				sc->limits = &iwn2030_sensitivity_limits;
1063 				sc->base_params = &iwn2000_base_params;
1064 				sc->fwname = "iwn2000fw";
1065 				break;
1066 			default:
1067 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1068 				    "0x%04x rev %d not supported (subdevice) \n",
1069 				    pid, sc->subdevice_id, sc->hw_type);
1070 				return ENOTSUP;
1071 		}
1072 		break;
1073 /* 2x30 Series */
1074 	case IWN_DID_2x30_1:
1075 	case IWN_DID_2x30_2:
1076 		switch(sc->subdevice_id) {
1077 			case IWN_SDID_2x30_1:
1078 			case IWN_SDID_2x30_3:
1079 			case IWN_SDID_2x30_5:
1080 			//iwl100_bgn_cfg
1081 			case IWN_SDID_2x30_2:
1082 			case IWN_SDID_2x30_4:
1083 			case IWN_SDID_2x30_6:
1084 			//iwl100_bg_cfg
1085 				sc->limits = &iwn2030_sensitivity_limits;
1086 				sc->base_params = &iwn2030_base_params;
1087 				sc->fwname = "iwn2030fw";
1088 				break;
1089 			default:
1090 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1091 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1092 				    sc->subdevice_id,sc->hw_type);
1093 				return ENOTSUP;
1094 		}
1095 		break;
1096 /* 5x00 Series */
1097 	case IWN_DID_5x00_1:
1098 	case IWN_DID_5x00_2:
1099 	case IWN_DID_5x00_3:
1100 	case IWN_DID_5x00_4:
1101 		sc->limits = &iwn5000_sensitivity_limits;
1102 		sc->base_params = &iwn5000_base_params;
1103 		sc->fwname = "iwn5000fw";
1104 		switch(sc->subdevice_id) {
1105 			case IWN_SDID_5x00_1:
1106 			case IWN_SDID_5x00_2:
1107 			case IWN_SDID_5x00_3:
1108 			case IWN_SDID_5x00_4:
1109 			case IWN_SDID_5x00_9:
1110 			case IWN_SDID_5x00_10:
1111 			case IWN_SDID_5x00_11:
1112 			case IWN_SDID_5x00_12:
1113 			case IWN_SDID_5x00_17:
1114 			case IWN_SDID_5x00_18:
1115 			case IWN_SDID_5x00_19:
1116 			case IWN_SDID_5x00_20:
1117 			//iwl5100_agn_cfg
1118 				sc->txchainmask = IWN_ANT_B;
1119 				sc->rxchainmask = IWN_ANT_AB;
1120 				break;
1121 			case IWN_SDID_5x00_5:
1122 			case IWN_SDID_5x00_6:
1123 			case IWN_SDID_5x00_13:
1124 			case IWN_SDID_5x00_14:
1125 			case IWN_SDID_5x00_21:
1126 			case IWN_SDID_5x00_22:
1127 			//iwl5100_bgn_cfg
1128 				sc->txchainmask = IWN_ANT_B;
1129 				sc->rxchainmask = IWN_ANT_AB;
1130 				break;
1131 			case IWN_SDID_5x00_7:
1132 			case IWN_SDID_5x00_8:
1133 			case IWN_SDID_5x00_15:
1134 			case IWN_SDID_5x00_16:
1135 			case IWN_SDID_5x00_23:
1136 			case IWN_SDID_5x00_24:
1137 			//iwl5100_abg_cfg
1138 				sc->txchainmask = IWN_ANT_B;
1139 				sc->rxchainmask = IWN_ANT_AB;
1140 				break;
1141 			case IWN_SDID_5x00_25:
1142 			case IWN_SDID_5x00_26:
1143 			case IWN_SDID_5x00_27:
1144 			case IWN_SDID_5x00_28:
1145 			case IWN_SDID_5x00_29:
1146 			case IWN_SDID_5x00_30:
1147 			case IWN_SDID_5x00_31:
1148 			case IWN_SDID_5x00_32:
1149 			case IWN_SDID_5x00_33:
1150 			case IWN_SDID_5x00_34:
1151 			case IWN_SDID_5x00_35:
1152 			case IWN_SDID_5x00_36:
1153 			//iwl5300_agn_cfg
1154 				sc->txchainmask = IWN_ANT_ABC;
1155 				sc->rxchainmask = IWN_ANT_ABC;
1156 				break;
1157 			default:
1158 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1159 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1160 				    sc->subdevice_id,sc->hw_type);
1161 				return ENOTSUP;
1162 		}
1163 		break;
1164 /* 5x50 Series */
1165 	case IWN_DID_5x50_1:
1166 	case IWN_DID_5x50_2:
1167 	case IWN_DID_5x50_3:
1168 	case IWN_DID_5x50_4:
1169 		sc->limits = &iwn5000_sensitivity_limits;
1170 		sc->base_params = &iwn5000_base_params;
1171 		sc->fwname = "iwn5000fw";
1172 		switch(sc->subdevice_id) {
1173 			case IWN_SDID_5x50_1:
1174 			case IWN_SDID_5x50_2:
1175 			case IWN_SDID_5x50_3:
1176 			//iwl5350_agn_cfg
1177 				sc->limits = &iwn5000_sensitivity_limits;
1178 				sc->base_params = &iwn5000_base_params;
1179 				sc->fwname = "iwn5000fw";
1180 				break;
1181 			case IWN_SDID_5x50_4:
1182 			case IWN_SDID_5x50_5:
1183 			case IWN_SDID_5x50_8:
1184 			case IWN_SDID_5x50_9:
1185 			case IWN_SDID_5x50_10:
1186 			case IWN_SDID_5x50_11:
1187 			//iwl5150_agn_cfg
1188 			case IWN_SDID_5x50_6:
1189 			case IWN_SDID_5x50_7:
1190 			case IWN_SDID_5x50_12:
1191 			case IWN_SDID_5x50_13:
1192 			//iwl5150_abg_cfg
1193 				sc->limits = &iwn5000_sensitivity_limits;
1194 				sc->fwname = "iwn5150fw";
1195 				sc->base_params = &iwn_5x50_base_params;
1196 				break;
1197 			default:
1198 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1199 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1200 				    sc->subdevice_id,sc->hw_type);
1201 				return ENOTSUP;
1202 		}
1203 		break;
1204 	default:
1205 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1206 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1207 		     sc->hw_type);
1208 		return ENOTSUP;
1209 	}
1210 	return 0;
1211 }
1212 
1213 static int
1214 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1215 {
1216 	struct iwn_ops *ops = &sc->ops;
1217 
1218 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1219 	ops->load_firmware = iwn4965_load_firmware;
1220 	ops->read_eeprom = iwn4965_read_eeprom;
1221 	ops->post_alive = iwn4965_post_alive;
1222 	ops->nic_config = iwn4965_nic_config;
1223 	ops->update_sched = iwn4965_update_sched;
1224 	ops->get_temperature = iwn4965_get_temperature;
1225 	ops->get_rssi = iwn4965_get_rssi;
1226 	ops->set_txpower = iwn4965_set_txpower;
1227 	ops->init_gains = iwn4965_init_gains;
1228 	ops->set_gains = iwn4965_set_gains;
1229 	ops->add_node = iwn4965_add_node;
1230 	ops->tx_done = iwn4965_tx_done;
1231 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1232 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1233 	sc->ntxqs = IWN4965_NTXQUEUES;
1234 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1235 	sc->ndmachnls = IWN4965_NDMACHNLS;
1236 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1237 	sc->rxonsz = IWN4965_RXONSZ;
1238 	sc->schedsz = IWN4965_SCHEDSZ;
1239 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1240 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1241 	sc->fwsz = IWN4965_FWSZ;
1242 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1243 	sc->limits = &iwn4965_sensitivity_limits;
1244 	sc->fwname = "iwn4965fw";
1245 	/* Override chains masks, ROM is known to be broken. */
1246 	sc->txchainmask = IWN_ANT_AB;
1247 	sc->rxchainmask = IWN_ANT_ABC;
1248 	/* Enable normal btcoex */
1249 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1250 
1251 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1252 
1253 	return 0;
1254 }
1255 
1256 static int
1257 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1258 {
1259 	struct iwn_ops *ops = &sc->ops;
1260 
1261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1262 
1263 	ops->load_firmware = iwn5000_load_firmware;
1264 	ops->read_eeprom = iwn5000_read_eeprom;
1265 	ops->post_alive = iwn5000_post_alive;
1266 	ops->nic_config = iwn5000_nic_config;
1267 	ops->update_sched = iwn5000_update_sched;
1268 	ops->get_temperature = iwn5000_get_temperature;
1269 	ops->get_rssi = iwn5000_get_rssi;
1270 	ops->set_txpower = iwn5000_set_txpower;
1271 	ops->init_gains = iwn5000_init_gains;
1272 	ops->set_gains = iwn5000_set_gains;
1273 	ops->add_node = iwn5000_add_node;
1274 	ops->tx_done = iwn5000_tx_done;
1275 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1276 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1277 	sc->ntxqs = IWN5000_NTXQUEUES;
1278 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1279 	sc->ndmachnls = IWN5000_NDMACHNLS;
1280 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1281 	sc->rxonsz = IWN5000_RXONSZ;
1282 	sc->schedsz = IWN5000_SCHEDSZ;
1283 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1284 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1285 	sc->fwsz = IWN5000_FWSZ;
1286 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1287 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1288 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1289 
1290 	return 0;
1291 }
1292 
1293 /*
1294  * Attach the interface to 802.11 radiotap.
1295  */
1296 static void
1297 iwn_radiotap_attach(struct iwn_softc *sc)
1298 {
1299 
1300 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1301 	ieee80211_radiotap_attach(&sc->sc_ic,
1302 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1303 		IWN_TX_RADIOTAP_PRESENT,
1304 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1305 		IWN_RX_RADIOTAP_PRESENT);
1306 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1307 }
1308 
1309 static void
1310 iwn_sysctlattach(struct iwn_softc *sc)
1311 {
1312 #ifdef	IWN_DEBUG
1313 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1314 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1315 
1316 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1317 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1318 		"control debugging printfs");
1319 #endif
1320 }
1321 
1322 static struct ieee80211vap *
1323 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1324     enum ieee80211_opmode opmode, int flags,
1325     const uint8_t bssid[IEEE80211_ADDR_LEN],
1326     const uint8_t mac[IEEE80211_ADDR_LEN])
1327 {
1328 	struct iwn_softc *sc = ic->ic_softc;
1329 	struct iwn_vap *ivp;
1330 	struct ieee80211vap *vap;
1331 
1332 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1333 		return NULL;
1334 
1335 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1336 	vap = &ivp->iv_vap;
1337 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1338 	ivp->ctx = IWN_RXON_BSS_CTX;
1339 	vap->iv_bmissthreshold = 10;		/* override default */
1340 	/* Override with driver methods. */
1341 	ivp->iv_newstate = vap->iv_newstate;
1342 	vap->iv_newstate = iwn_newstate;
1343 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1344 
1345 	ieee80211_ratectl_init(vap);
1346 	/* Complete setup. */
1347 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1348 	    mac);
1349 	ic->ic_opmode = opmode;
1350 	return vap;
1351 }
1352 
1353 static void
1354 iwn_vap_delete(struct ieee80211vap *vap)
1355 {
1356 	struct iwn_vap *ivp = IWN_VAP(vap);
1357 
1358 	ieee80211_ratectl_deinit(vap);
1359 	ieee80211_vap_detach(vap);
1360 	free(ivp, M_80211_VAP);
1361 }
1362 
1363 static void
1364 iwn_xmit_queue_drain(struct iwn_softc *sc)
1365 {
1366 	struct mbuf *m;
1367 	struct ieee80211_node *ni;
1368 
1369 	IWN_LOCK_ASSERT(sc);
1370 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1371 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1372 		ieee80211_free_node(ni);
1373 		m_freem(m);
1374 	}
1375 }
1376 
1377 static int
1378 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1379 {
1380 
1381 	IWN_LOCK_ASSERT(sc);
1382 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1383 }
1384 
1385 static int
1386 iwn_detach(device_t dev)
1387 {
1388 	struct iwn_softc *sc = device_get_softc(dev);
1389 	int qid;
1390 
1391 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1392 
1393 	if (sc->sc_ic.ic_softc != NULL) {
1394 		/* Free the mbuf queue and node references */
1395 		IWN_LOCK(sc);
1396 		iwn_xmit_queue_drain(sc);
1397 		IWN_UNLOCK(sc);
1398 
1399 		iwn_stop(sc);
1400 
1401 		taskqueue_drain_all(sc->sc_tq);
1402 		taskqueue_free(sc->sc_tq);
1403 
1404 		callout_drain(&sc->watchdog_to);
1405 		callout_drain(&sc->scan_timeout);
1406 		callout_drain(&sc->calib_to);
1407 		ieee80211_ifdetach(&sc->sc_ic);
1408 	}
1409 
1410 	/* Uninstall interrupt handler. */
1411 	if (sc->irq != NULL) {
1412 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1413 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1414 		    sc->irq);
1415 		pci_release_msi(dev);
1416 	}
1417 
1418 	/* Free DMA resources. */
1419 	iwn_free_rx_ring(sc, &sc->rxq);
1420 	for (qid = 0; qid < sc->ntxqs; qid++)
1421 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1422 	iwn_free_sched(sc);
1423 	iwn_free_kw(sc);
1424 	if (sc->ict != NULL)
1425 		iwn_free_ict(sc);
1426 	iwn_free_fwmem(sc);
1427 
1428 	if (sc->mem != NULL)
1429 		bus_release_resource(dev, SYS_RES_MEMORY,
1430 		    rman_get_rid(sc->mem), sc->mem);
1431 
1432 	if (sc->sc_cdev) {
1433 		destroy_dev(sc->sc_cdev);
1434 		sc->sc_cdev = NULL;
1435 	}
1436 
1437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1438 	IWN_LOCK_DESTROY(sc);
1439 	return 0;
1440 }
1441 
1442 static int
1443 iwn_shutdown(device_t dev)
1444 {
1445 	struct iwn_softc *sc = device_get_softc(dev);
1446 
1447 	iwn_stop(sc);
1448 	return 0;
1449 }
1450 
1451 static int
1452 iwn_suspend(device_t dev)
1453 {
1454 	struct iwn_softc *sc = device_get_softc(dev);
1455 
1456 	ieee80211_suspend_all(&sc->sc_ic);
1457 	return 0;
1458 }
1459 
1460 static int
1461 iwn_resume(device_t dev)
1462 {
1463 	struct iwn_softc *sc = device_get_softc(dev);
1464 
1465 	/* Clear device-specific "PCI retry timeout" register (41h). */
1466 	pci_write_config(dev, 0x41, 0, 1);
1467 
1468 	ieee80211_resume_all(&sc->sc_ic);
1469 	return 0;
1470 }
1471 
1472 static int
1473 iwn_nic_lock(struct iwn_softc *sc)
1474 {
1475 	int ntries;
1476 
1477 	/* Request exclusive access to NIC. */
1478 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1479 
1480 	/* Spin until we actually get the lock. */
1481 	for (ntries = 0; ntries < 1000; ntries++) {
1482 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1483 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1484 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1485 			return 0;
1486 		DELAY(10);
1487 	}
1488 	return ETIMEDOUT;
1489 }
1490 
1491 static __inline void
1492 iwn_nic_unlock(struct iwn_softc *sc)
1493 {
1494 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1495 }
1496 
1497 static __inline uint32_t
1498 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1499 {
1500 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1501 	IWN_BARRIER_READ_WRITE(sc);
1502 	return IWN_READ(sc, IWN_PRPH_RDATA);
1503 }
1504 
1505 static __inline void
1506 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1507 {
1508 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1509 	IWN_BARRIER_WRITE(sc);
1510 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1511 }
1512 
1513 static __inline void
1514 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1515 {
1516 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1517 }
1518 
1519 static __inline void
1520 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1521 {
1522 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1523 }
1524 
1525 static __inline void
1526 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1527     const uint32_t *data, int count)
1528 {
1529 	for (; count > 0; count--, data++, addr += 4)
1530 		iwn_prph_write(sc, addr, *data);
1531 }
1532 
1533 static __inline uint32_t
1534 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1535 {
1536 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1537 	IWN_BARRIER_READ_WRITE(sc);
1538 	return IWN_READ(sc, IWN_MEM_RDATA);
1539 }
1540 
1541 static __inline void
1542 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1543 {
1544 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1545 	IWN_BARRIER_WRITE(sc);
1546 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1547 }
1548 
1549 static __inline void
1550 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1551 {
1552 	uint32_t tmp;
1553 
1554 	tmp = iwn_mem_read(sc, addr & ~3);
1555 	if (addr & 3)
1556 		tmp = (tmp & 0x0000ffff) | data << 16;
1557 	else
1558 		tmp = (tmp & 0xffff0000) | data;
1559 	iwn_mem_write(sc, addr & ~3, tmp);
1560 }
1561 
1562 static __inline void
1563 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1564     int count)
1565 {
1566 	for (; count > 0; count--, addr += 4)
1567 		*data++ = iwn_mem_read(sc, addr);
1568 }
1569 
1570 static __inline void
1571 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1572     int count)
1573 {
1574 	for (; count > 0; count--, addr += 4)
1575 		iwn_mem_write(sc, addr, val);
1576 }
1577 
1578 static int
1579 iwn_eeprom_lock(struct iwn_softc *sc)
1580 {
1581 	int i, ntries;
1582 
1583 	for (i = 0; i < 100; i++) {
1584 		/* Request exclusive access to EEPROM. */
1585 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1586 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1587 
1588 		/* Spin until we actually get the lock. */
1589 		for (ntries = 0; ntries < 100; ntries++) {
1590 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1591 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1592 				return 0;
1593 			DELAY(10);
1594 		}
1595 	}
1596 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1597 	return ETIMEDOUT;
1598 }
1599 
1600 static __inline void
1601 iwn_eeprom_unlock(struct iwn_softc *sc)
1602 {
1603 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1604 }
1605 
1606 /*
1607  * Initialize access by host to One Time Programmable ROM.
1608  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1609  */
1610 static int
1611 iwn_init_otprom(struct iwn_softc *sc)
1612 {
1613 	uint16_t prev, base, next;
1614 	int count, error;
1615 
1616 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1617 
1618 	/* Wait for clock stabilization before accessing prph. */
1619 	if ((error = iwn_clock_wait(sc)) != 0)
1620 		return error;
1621 
1622 	if ((error = iwn_nic_lock(sc)) != 0)
1623 		return error;
1624 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1625 	DELAY(5);
1626 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1627 	iwn_nic_unlock(sc);
1628 
1629 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1630 	if (sc->base_params->shadow_ram_support) {
1631 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1632 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1633 	}
1634 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1635 	/* Clear ECC status. */
1636 	IWN_SETBITS(sc, IWN_OTP_GP,
1637 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1638 
1639 	/*
1640 	 * Find the block before last block (contains the EEPROM image)
1641 	 * for HW without OTP shadow RAM.
1642 	 */
1643 	if (! sc->base_params->shadow_ram_support) {
1644 		/* Switch to absolute addressing mode. */
1645 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1646 		base = prev = 0;
1647 		for (count = 0; count < sc->base_params->max_ll_items;
1648 		    count++) {
1649 			error = iwn_read_prom_data(sc, base, &next, 2);
1650 			if (error != 0)
1651 				return error;
1652 			if (next == 0)	/* End of linked-list. */
1653 				break;
1654 			prev = base;
1655 			base = le16toh(next);
1656 		}
1657 		if (count == 0 || count == sc->base_params->max_ll_items)
1658 			return EIO;
1659 		/* Skip "next" word. */
1660 		sc->prom_base = prev + 1;
1661 	}
1662 
1663 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1664 
1665 	return 0;
1666 }
1667 
1668 static int
1669 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1670 {
1671 	uint8_t *out = data;
1672 	uint32_t val, tmp;
1673 	int ntries;
1674 
1675 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1676 
1677 	addr += sc->prom_base;
1678 	for (; count > 0; count -= 2, addr++) {
1679 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1680 		for (ntries = 0; ntries < 10; ntries++) {
1681 			val = IWN_READ(sc, IWN_EEPROM);
1682 			if (val & IWN_EEPROM_READ_VALID)
1683 				break;
1684 			DELAY(5);
1685 		}
1686 		if (ntries == 10) {
1687 			device_printf(sc->sc_dev,
1688 			    "timeout reading ROM at 0x%x\n", addr);
1689 			return ETIMEDOUT;
1690 		}
1691 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1692 			/* OTPROM, check for ECC errors. */
1693 			tmp = IWN_READ(sc, IWN_OTP_GP);
1694 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1695 				device_printf(sc->sc_dev,
1696 				    "OTPROM ECC error at 0x%x\n", addr);
1697 				return EIO;
1698 			}
1699 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1700 				/* Correctable ECC error, clear bit. */
1701 				IWN_SETBITS(sc, IWN_OTP_GP,
1702 				    IWN_OTP_GP_ECC_CORR_STTS);
1703 			}
1704 		}
1705 		*out++ = val >> 16;
1706 		if (count > 1)
1707 			*out++ = val >> 24;
1708 	}
1709 
1710 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1711 
1712 	return 0;
1713 }
1714 
1715 static void
1716 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1717 {
1718 	if (error != 0)
1719 		return;
1720 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1721 	*(bus_addr_t *)arg = segs[0].ds_addr;
1722 }
1723 
1724 static int
1725 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1726     void **kvap, bus_size_t size, bus_size_t alignment)
1727 {
1728 	int error;
1729 
1730 	dma->tag = NULL;
1731 	dma->size = size;
1732 
1733 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1734 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1735 	    1, size, 0, NULL, NULL, &dma->tag);
1736 	if (error != 0)
1737 		goto fail;
1738 
1739 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1740 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1741 	if (error != 0)
1742 		goto fail;
1743 
1744 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1745 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1746 	if (error != 0)
1747 		goto fail;
1748 
1749 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1750 
1751 	if (kvap != NULL)
1752 		*kvap = dma->vaddr;
1753 
1754 	return 0;
1755 
1756 fail:	iwn_dma_contig_free(dma);
1757 	return error;
1758 }
1759 
1760 static void
1761 iwn_dma_contig_free(struct iwn_dma_info *dma)
1762 {
1763 	if (dma->vaddr != NULL) {
1764 		bus_dmamap_sync(dma->tag, dma->map,
1765 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1766 		bus_dmamap_unload(dma->tag, dma->map);
1767 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1768 		dma->vaddr = NULL;
1769 	}
1770 	if (dma->tag != NULL) {
1771 		bus_dma_tag_destroy(dma->tag);
1772 		dma->tag = NULL;
1773 	}
1774 }
1775 
1776 static int
1777 iwn_alloc_sched(struct iwn_softc *sc)
1778 {
1779 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1780 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1781 	    sc->schedsz, 1024);
1782 }
1783 
1784 static void
1785 iwn_free_sched(struct iwn_softc *sc)
1786 {
1787 	iwn_dma_contig_free(&sc->sched_dma);
1788 }
1789 
1790 static int
1791 iwn_alloc_kw(struct iwn_softc *sc)
1792 {
1793 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1794 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1795 }
1796 
1797 static void
1798 iwn_free_kw(struct iwn_softc *sc)
1799 {
1800 	iwn_dma_contig_free(&sc->kw_dma);
1801 }
1802 
1803 static int
1804 iwn_alloc_ict(struct iwn_softc *sc)
1805 {
1806 	/* ICT table must be aligned on a 4KB boundary. */
1807 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1808 	    IWN_ICT_SIZE, 4096);
1809 }
1810 
1811 static void
1812 iwn_free_ict(struct iwn_softc *sc)
1813 {
1814 	iwn_dma_contig_free(&sc->ict_dma);
1815 }
1816 
1817 static int
1818 iwn_alloc_fwmem(struct iwn_softc *sc)
1819 {
1820 	/* Must be aligned on a 16-byte boundary. */
1821 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1822 }
1823 
1824 static void
1825 iwn_free_fwmem(struct iwn_softc *sc)
1826 {
1827 	iwn_dma_contig_free(&sc->fw_dma);
1828 }
1829 
1830 static int
1831 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1832 {
1833 	bus_size_t size;
1834 	int i, error;
1835 
1836 	ring->cur = 0;
1837 
1838 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1839 
1840 	/* Allocate RX descriptors (256-byte aligned). */
1841 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1842 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1843 	    size, 256);
1844 	if (error != 0) {
1845 		device_printf(sc->sc_dev,
1846 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1847 		    __func__, error);
1848 		goto fail;
1849 	}
1850 
1851 	/* Allocate RX status area (16-byte aligned). */
1852 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1853 	    sizeof (struct iwn_rx_status), 16);
1854 	if (error != 0) {
1855 		device_printf(sc->sc_dev,
1856 		    "%s: could not allocate RX status DMA memory, error %d\n",
1857 		    __func__, error);
1858 		goto fail;
1859 	}
1860 
1861 	/* Create RX buffer DMA tag. */
1862 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1863 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1864 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1865 	if (error != 0) {
1866 		device_printf(sc->sc_dev,
1867 		    "%s: could not create RX buf DMA tag, error %d\n",
1868 		    __func__, error);
1869 		goto fail;
1870 	}
1871 
1872 	/*
1873 	 * Allocate and map RX buffers.
1874 	 */
1875 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1876 		struct iwn_rx_data *data = &ring->data[i];
1877 		bus_addr_t paddr;
1878 
1879 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1880 		if (error != 0) {
1881 			device_printf(sc->sc_dev,
1882 			    "%s: could not create RX buf DMA map, error %d\n",
1883 			    __func__, error);
1884 			goto fail;
1885 		}
1886 
1887 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1888 		    IWN_RBUF_SIZE);
1889 		if (data->m == NULL) {
1890 			device_printf(sc->sc_dev,
1891 			    "%s: could not allocate RX mbuf\n", __func__);
1892 			error = ENOBUFS;
1893 			goto fail;
1894 		}
1895 
1896 		error = bus_dmamap_load(ring->data_dmat, data->map,
1897 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1898 		    &paddr, BUS_DMA_NOWAIT);
1899 		if (error != 0 && error != EFBIG) {
1900 			device_printf(sc->sc_dev,
1901 			    "%s: can't map mbuf, error %d\n", __func__,
1902 			    error);
1903 			goto fail;
1904 		}
1905 
1906 		bus_dmamap_sync(ring->data_dmat, data->map,
1907 		    BUS_DMASYNC_PREREAD);
1908 
1909 		/* Set physical address of RX buffer (256-byte aligned). */
1910 		ring->desc[i] = htole32(paddr >> 8);
1911 	}
1912 
1913 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1914 	    BUS_DMASYNC_PREWRITE);
1915 
1916 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1917 
1918 	return 0;
1919 
1920 fail:	iwn_free_rx_ring(sc, ring);
1921 
1922 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1923 
1924 	return error;
1925 }
1926 
1927 static void
1928 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1929 {
1930 	int ntries;
1931 
1932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1933 
1934 	if (iwn_nic_lock(sc) == 0) {
1935 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1936 		for (ntries = 0; ntries < 1000; ntries++) {
1937 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1938 			    IWN_FH_RX_STATUS_IDLE)
1939 				break;
1940 			DELAY(10);
1941 		}
1942 		iwn_nic_unlock(sc);
1943 	}
1944 	ring->cur = 0;
1945 	sc->last_rx_valid = 0;
1946 }
1947 
1948 static void
1949 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1950 {
1951 	int i;
1952 
1953 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1954 
1955 	iwn_dma_contig_free(&ring->desc_dma);
1956 	iwn_dma_contig_free(&ring->stat_dma);
1957 
1958 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1959 		struct iwn_rx_data *data = &ring->data[i];
1960 
1961 		if (data->m != NULL) {
1962 			bus_dmamap_sync(ring->data_dmat, data->map,
1963 			    BUS_DMASYNC_POSTREAD);
1964 			bus_dmamap_unload(ring->data_dmat, data->map);
1965 			m_freem(data->m);
1966 			data->m = NULL;
1967 		}
1968 		if (data->map != NULL)
1969 			bus_dmamap_destroy(ring->data_dmat, data->map);
1970 	}
1971 	if (ring->data_dmat != NULL) {
1972 		bus_dma_tag_destroy(ring->data_dmat);
1973 		ring->data_dmat = NULL;
1974 	}
1975 }
1976 
1977 static int
1978 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1979 {
1980 	bus_addr_t paddr;
1981 	bus_size_t size;
1982 	int i, error;
1983 
1984 	ring->qid = qid;
1985 	ring->queued = 0;
1986 	ring->cur = 0;
1987 
1988 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1989 
1990 	/* Allocate TX descriptors (256-byte aligned). */
1991 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1992 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1993 	    size, 256);
1994 	if (error != 0) {
1995 		device_printf(sc->sc_dev,
1996 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1997 		    __func__, error);
1998 		goto fail;
1999 	}
2000 
2001 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2002 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2003 	    size, 4);
2004 	if (error != 0) {
2005 		device_printf(sc->sc_dev,
2006 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2007 		    __func__, error);
2008 		goto fail;
2009 	}
2010 
2011 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2012 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2013 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2014 	if (error != 0) {
2015 		device_printf(sc->sc_dev,
2016 		    "%s: could not create TX buf DMA tag, error %d\n",
2017 		    __func__, error);
2018 		goto fail;
2019 	}
2020 
2021 	paddr = ring->cmd_dma.paddr;
2022 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2023 		struct iwn_tx_data *data = &ring->data[i];
2024 
2025 		data->cmd_paddr = paddr;
2026 		data->scratch_paddr = paddr + 12;
2027 		paddr += sizeof (struct iwn_tx_cmd);
2028 
2029 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2030 		if (error != 0) {
2031 			device_printf(sc->sc_dev,
2032 			    "%s: could not create TX buf DMA map, error %d\n",
2033 			    __func__, error);
2034 			goto fail;
2035 		}
2036 	}
2037 
2038 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2039 
2040 	return 0;
2041 
2042 fail:	iwn_free_tx_ring(sc, ring);
2043 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2044 	return error;
2045 }
2046 
2047 static void
2048 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2049 {
2050 	int i;
2051 
2052 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2053 
2054 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2055 		struct iwn_tx_data *data = &ring->data[i];
2056 
2057 		if (data->m != NULL) {
2058 			bus_dmamap_sync(ring->data_dmat, data->map,
2059 			    BUS_DMASYNC_POSTWRITE);
2060 			bus_dmamap_unload(ring->data_dmat, data->map);
2061 			m_freem(data->m);
2062 			data->m = NULL;
2063 		}
2064 		if (data->ni != NULL) {
2065 			ieee80211_free_node(data->ni);
2066 			data->ni = NULL;
2067 		}
2068 	}
2069 	/* Clear TX descriptors. */
2070 	memset(ring->desc, 0, ring->desc_dma.size);
2071 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2072 	    BUS_DMASYNC_PREWRITE);
2073 	sc->qfullmsk &= ~(1 << ring->qid);
2074 	ring->queued = 0;
2075 	ring->cur = 0;
2076 }
2077 
2078 static void
2079 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2080 {
2081 	int i;
2082 
2083 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2084 
2085 	iwn_dma_contig_free(&ring->desc_dma);
2086 	iwn_dma_contig_free(&ring->cmd_dma);
2087 
2088 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2089 		struct iwn_tx_data *data = &ring->data[i];
2090 
2091 		if (data->m != NULL) {
2092 			bus_dmamap_sync(ring->data_dmat, data->map,
2093 			    BUS_DMASYNC_POSTWRITE);
2094 			bus_dmamap_unload(ring->data_dmat, data->map);
2095 			m_freem(data->m);
2096 		}
2097 		if (data->map != NULL)
2098 			bus_dmamap_destroy(ring->data_dmat, data->map);
2099 	}
2100 	if (ring->data_dmat != NULL) {
2101 		bus_dma_tag_destroy(ring->data_dmat);
2102 		ring->data_dmat = NULL;
2103 	}
2104 }
2105 
2106 static void
2107 iwn5000_ict_reset(struct iwn_softc *sc)
2108 {
2109 	/* Disable interrupts. */
2110 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2111 
2112 	/* Reset ICT table. */
2113 	memset(sc->ict, 0, IWN_ICT_SIZE);
2114 	sc->ict_cur = 0;
2115 
2116 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2117 	    BUS_DMASYNC_PREWRITE);
2118 
2119 	/* Set physical address of ICT table (4KB aligned). */
2120 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2121 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2122 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2123 
2124 	/* Enable periodic RX interrupt. */
2125 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2126 	/* Switch to ICT interrupt mode in driver. */
2127 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2128 
2129 	/* Re-enable interrupts. */
2130 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2131 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2132 }
2133 
2134 static int
2135 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2136 {
2137 	struct iwn_ops *ops = &sc->ops;
2138 	uint16_t val;
2139 	int error;
2140 
2141 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2142 
2143 	/* Check whether adapter has an EEPROM or an OTPROM. */
2144 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2145 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2146 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2147 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2148 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2149 
2150 	/* Adapter has to be powered on for EEPROM access to work. */
2151 	if ((error = iwn_apm_init(sc)) != 0) {
2152 		device_printf(sc->sc_dev,
2153 		    "%s: could not power ON adapter, error %d\n", __func__,
2154 		    error);
2155 		return error;
2156 	}
2157 
2158 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2159 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2160 		return EIO;
2161 	}
2162 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2163 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2164 		    __func__, error);
2165 		return error;
2166 	}
2167 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2168 		if ((error = iwn_init_otprom(sc)) != 0) {
2169 			device_printf(sc->sc_dev,
2170 			    "%s: could not initialize OTPROM, error %d\n",
2171 			    __func__, error);
2172 			return error;
2173 		}
2174 	}
2175 
2176 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2177 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2178 	/* Check if HT support is bonded out. */
2179 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2180 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2181 
2182 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2183 	sc->rfcfg = le16toh(val);
2184 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2185 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2186 	if (sc->txchainmask == 0)
2187 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2188 	if (sc->rxchainmask == 0)
2189 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2190 
2191 	/* Read MAC address. */
2192 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2193 
2194 	/* Read adapter-specific information from EEPROM. */
2195 	ops->read_eeprom(sc);
2196 
2197 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2198 
2199 	iwn_eeprom_unlock(sc);
2200 
2201 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2202 
2203 	return 0;
2204 }
2205 
2206 static void
2207 iwn4965_read_eeprom(struct iwn_softc *sc)
2208 {
2209 	uint32_t addr;
2210 	uint16_t val;
2211 	int i;
2212 
2213 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2214 
2215 	/* Read regulatory domain (4 ASCII characters). */
2216 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2217 
2218 	/* Read the list of authorized channels (20MHz & 40MHz). */
2219 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2220 		addr = iwn4965_regulatory_bands[i];
2221 		iwn_read_eeprom_channels(sc, i, addr);
2222 	}
2223 
2224 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2225 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2226 	sc->maxpwr2GHz = val & 0xff;
2227 	sc->maxpwr5GHz = val >> 8;
2228 	/* Check that EEPROM values are within valid range. */
2229 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2230 		sc->maxpwr5GHz = 38;
2231 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2232 		sc->maxpwr2GHz = 38;
2233 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2234 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2235 
2236 	/* Read samples for each TX power group. */
2237 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2238 	    sizeof sc->bands);
2239 
2240 	/* Read voltage at which samples were taken. */
2241 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2242 	sc->eeprom_voltage = (int16_t)le16toh(val);
2243 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2244 	    sc->eeprom_voltage);
2245 
2246 #ifdef IWN_DEBUG
2247 	/* Print samples. */
2248 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2249 		for (i = 0; i < IWN_NBANDS - 1; i++)
2250 			iwn4965_print_power_group(sc, i);
2251 	}
2252 #endif
2253 
2254 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2255 }
2256 
2257 #ifdef IWN_DEBUG
2258 static void
2259 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2260 {
2261 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2262 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2263 	int j, c;
2264 
2265 	printf("===band %d===\n", i);
2266 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2267 	printf("chan1 num=%d\n", chans[0].num);
2268 	for (c = 0; c < 2; c++) {
2269 		for (j = 0; j < IWN_NSAMPLES; j++) {
2270 			printf("chain %d, sample %d: temp=%d gain=%d "
2271 			    "power=%d pa_det=%d\n", c, j,
2272 			    chans[0].samples[c][j].temp,
2273 			    chans[0].samples[c][j].gain,
2274 			    chans[0].samples[c][j].power,
2275 			    chans[0].samples[c][j].pa_det);
2276 		}
2277 	}
2278 	printf("chan2 num=%d\n", chans[1].num);
2279 	for (c = 0; c < 2; c++) {
2280 		for (j = 0; j < IWN_NSAMPLES; j++) {
2281 			printf("chain %d, sample %d: temp=%d gain=%d "
2282 			    "power=%d pa_det=%d\n", c, j,
2283 			    chans[1].samples[c][j].temp,
2284 			    chans[1].samples[c][j].gain,
2285 			    chans[1].samples[c][j].power,
2286 			    chans[1].samples[c][j].pa_det);
2287 		}
2288 	}
2289 }
2290 #endif
2291 
2292 static void
2293 iwn5000_read_eeprom(struct iwn_softc *sc)
2294 {
2295 	struct iwn5000_eeprom_calib_hdr hdr;
2296 	int32_t volt;
2297 	uint32_t base, addr;
2298 	uint16_t val;
2299 	int i;
2300 
2301 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2302 
2303 	/* Read regulatory domain (4 ASCII characters). */
2304 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2305 	base = le16toh(val);
2306 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2307 	    sc->eeprom_domain, 4);
2308 
2309 	/* Read the list of authorized channels (20MHz & 40MHz). */
2310 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2311 		addr =  base + sc->base_params->regulatory_bands[i];
2312 		iwn_read_eeprom_channels(sc, i, addr);
2313 	}
2314 
2315 	/* Read enhanced TX power information for 6000 Series. */
2316 	if (sc->base_params->enhanced_TX_power)
2317 		iwn_read_eeprom_enhinfo(sc);
2318 
2319 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2320 	base = le16toh(val);
2321 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2322 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2323 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2324 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2325 	sc->calib_ver = hdr.version;
2326 
2327 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2328 		sc->eeprom_voltage = le16toh(hdr.volt);
2329 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2330 		sc->eeprom_temp_high=le16toh(val);
2331 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2332 		sc->eeprom_temp = le16toh(val);
2333 	}
2334 
2335 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2336 		/* Compute temperature offset. */
2337 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2338 		sc->eeprom_temp = le16toh(val);
2339 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2340 		volt = le16toh(val);
2341 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2342 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2343 		    sc->eeprom_temp, volt, sc->temp_off);
2344 	} else {
2345 		/* Read crystal calibration. */
2346 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2347 		    &sc->eeprom_crystal, sizeof (uint32_t));
2348 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2349 		    le32toh(sc->eeprom_crystal));
2350 	}
2351 
2352 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2353 
2354 }
2355 
2356 /*
2357  * Translate EEPROM flags to net80211.
2358  */
2359 static uint32_t
2360 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2361 {
2362 	uint32_t nflags;
2363 
2364 	nflags = 0;
2365 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2366 		nflags |= IEEE80211_CHAN_PASSIVE;
2367 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2368 		nflags |= IEEE80211_CHAN_NOADHOC;
2369 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2370 		nflags |= IEEE80211_CHAN_DFS;
2371 		/* XXX apparently IBSS may still be marked */
2372 		nflags |= IEEE80211_CHAN_NOADHOC;
2373 	}
2374 
2375 	return nflags;
2376 }
2377 
2378 static void
2379 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2380     struct ieee80211_channel chans[])
2381 {
2382 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2383 	const struct iwn_chan_band *band = &iwn_bands[n];
2384 	uint8_t bands[IEEE80211_MODE_BYTES];
2385 	uint8_t chan;
2386 	int i, error, nflags;
2387 
2388 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2389 
2390 	memset(bands, 0, sizeof(bands));
2391 	if (n == 0) {
2392 		setbit(bands, IEEE80211_MODE_11B);
2393 		setbit(bands, IEEE80211_MODE_11G);
2394 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2395 			setbit(bands, IEEE80211_MODE_11NG);
2396 	} else {
2397 		setbit(bands, IEEE80211_MODE_11A);
2398 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2399 			setbit(bands, IEEE80211_MODE_11NA);
2400 	}
2401 
2402 	for (i = 0; i < band->nchan; i++) {
2403 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2404 			DPRINTF(sc, IWN_DEBUG_RESET,
2405 			    "skip chan %d flags 0x%x maxpwr %d\n",
2406 			    band->chan[i], channels[i].flags,
2407 			    channels[i].maxpwr);
2408 			continue;
2409 		}
2410 
2411 		chan = band->chan[i];
2412 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2413 		error = ieee80211_add_channel(chans, maxchans, nchans,
2414 		    chan, 0, channels[i].maxpwr, nflags, bands);
2415 		if (error != 0)
2416 			break;
2417 
2418 		/* Save maximum allowed TX power for this channel. */
2419 		/* XXX wrong */
2420 		sc->maxpwr[chan] = channels[i].maxpwr;
2421 
2422 		DPRINTF(sc, IWN_DEBUG_RESET,
2423 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2424 		    channels[i].flags, channels[i].maxpwr);
2425 	}
2426 
2427 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2428 
2429 }
2430 
2431 static void
2432 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2433     struct ieee80211_channel chans[])
2434 {
2435 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2436 	const struct iwn_chan_band *band = &iwn_bands[n];
2437 	uint8_t chan;
2438 	int i, error, nflags;
2439 
2440 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2441 
2442 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2443 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2444 		return;
2445 	}
2446 
2447 	for (i = 0; i < band->nchan; i++) {
2448 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2449 			DPRINTF(sc, IWN_DEBUG_RESET,
2450 			    "skip chan %d flags 0x%x maxpwr %d\n",
2451 			    band->chan[i], channels[i].flags,
2452 			    channels[i].maxpwr);
2453 			continue;
2454 		}
2455 
2456 		chan = band->chan[i];
2457 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2458 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2459 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2460 		    chan, channels[i].maxpwr, nflags);
2461 		switch (error) {
2462 		case EINVAL:
2463 			device_printf(sc->sc_dev,
2464 			    "%s: no entry for channel %d\n", __func__, chan);
2465 			continue;
2466 		case ENOENT:
2467 			DPRINTF(sc, IWN_DEBUG_RESET,
2468 			    "%s: skip chan %d, extension channel not found\n",
2469 			    __func__, chan);
2470 			continue;
2471 		case ENOBUFS:
2472 			device_printf(sc->sc_dev,
2473 			    "%s: channel table is full!\n", __func__);
2474 			break;
2475 		case 0:
2476 			DPRINTF(sc, IWN_DEBUG_RESET,
2477 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2478 			    chan, channels[i].flags, channels[i].maxpwr);
2479 			/* FALLTHROUGH */
2480 		default:
2481 			break;
2482 		}
2483 	}
2484 
2485 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2486 
2487 }
2488 
2489 static void
2490 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2491 {
2492 	struct ieee80211com *ic = &sc->sc_ic;
2493 
2494 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2495 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2496 
2497 	if (n < 5) {
2498 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2499 		    ic->ic_channels);
2500 	} else {
2501 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2502 		    ic->ic_channels);
2503 	}
2504 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2505 }
2506 
2507 static struct iwn_eeprom_chan *
2508 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2509 {
2510 	int band, chan, i, j;
2511 
2512 	if (IEEE80211_IS_CHAN_HT40(c)) {
2513 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2514 		if (IEEE80211_IS_CHAN_HT40D(c))
2515 			chan = c->ic_extieee;
2516 		else
2517 			chan = c->ic_ieee;
2518 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2519 			if (iwn_bands[band].chan[i] == chan)
2520 				return &sc->eeprom_channels[band][i];
2521 		}
2522 	} else {
2523 		for (j = 0; j < 5; j++) {
2524 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2525 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2526 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2527 					return &sc->eeprom_channels[j][i];
2528 			}
2529 		}
2530 	}
2531 	return NULL;
2532 }
2533 
2534 static void
2535 iwn_getradiocaps(struct ieee80211com *ic,
2536     int maxchans, int *nchans, struct ieee80211_channel chans[])
2537 {
2538 	struct iwn_softc *sc = ic->ic_softc;
2539 	int i;
2540 
2541 	/* Parse the list of authorized channels. */
2542 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2543 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2544 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2545 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2546 }
2547 
2548 /*
2549  * Enforce flags read from EEPROM.
2550  */
2551 static int
2552 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2553     int nchan, struct ieee80211_channel chans[])
2554 {
2555 	struct iwn_softc *sc = ic->ic_softc;
2556 	int i;
2557 
2558 	for (i = 0; i < nchan; i++) {
2559 		struct ieee80211_channel *c = &chans[i];
2560 		struct iwn_eeprom_chan *channel;
2561 
2562 		channel = iwn_find_eeprom_channel(sc, c);
2563 		if (channel == NULL) {
2564 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2565 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2566 			return EINVAL;
2567 		}
2568 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static void
2575 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2576 {
2577 	struct iwn_eeprom_enhinfo enhinfo[35];
2578 	struct ieee80211com *ic = &sc->sc_ic;
2579 	struct ieee80211_channel *c;
2580 	uint16_t val, base;
2581 	int8_t maxpwr;
2582 	uint8_t flags;
2583 	int i, j;
2584 
2585 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2586 
2587 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2588 	base = le16toh(val);
2589 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2590 	    enhinfo, sizeof enhinfo);
2591 
2592 	for (i = 0; i < nitems(enhinfo); i++) {
2593 		flags = enhinfo[i].flags;
2594 		if (!(flags & IWN_ENHINFO_VALID))
2595 			continue;	/* Skip invalid entries. */
2596 
2597 		maxpwr = 0;
2598 		if (sc->txchainmask & IWN_ANT_A)
2599 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2600 		if (sc->txchainmask & IWN_ANT_B)
2601 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2602 		if (sc->txchainmask & IWN_ANT_C)
2603 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2604 		if (sc->ntxchains == 2)
2605 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2606 		else if (sc->ntxchains == 3)
2607 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2608 
2609 		for (j = 0; j < ic->ic_nchans; j++) {
2610 			c = &ic->ic_channels[j];
2611 			if ((flags & IWN_ENHINFO_5GHZ)) {
2612 				if (!IEEE80211_IS_CHAN_A(c))
2613 					continue;
2614 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2615 				if (!IEEE80211_IS_CHAN_G(c))
2616 					continue;
2617 			} else if (!IEEE80211_IS_CHAN_B(c))
2618 				continue;
2619 			if ((flags & IWN_ENHINFO_HT40)) {
2620 				if (!IEEE80211_IS_CHAN_HT40(c))
2621 					continue;
2622 			} else {
2623 				if (IEEE80211_IS_CHAN_HT40(c))
2624 					continue;
2625 			}
2626 			if (enhinfo[i].chan != 0 &&
2627 			    enhinfo[i].chan != c->ic_ieee)
2628 				continue;
2629 
2630 			DPRINTF(sc, IWN_DEBUG_RESET,
2631 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2632 			    c->ic_flags, maxpwr / 2);
2633 			c->ic_maxregpower = maxpwr / 2;
2634 			c->ic_maxpower = maxpwr;
2635 		}
2636 	}
2637 
2638 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2639 
2640 }
2641 
2642 static struct ieee80211_node *
2643 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2644 {
2645 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2646 }
2647 
2648 static __inline int
2649 rate2plcp(int rate)
2650 {
2651 	switch (rate & 0xff) {
2652 	case 12:	return 0xd;
2653 	case 18:	return 0xf;
2654 	case 24:	return 0x5;
2655 	case 36:	return 0x7;
2656 	case 48:	return 0x9;
2657 	case 72:	return 0xb;
2658 	case 96:	return 0x1;
2659 	case 108:	return 0x3;
2660 	case 2:		return 10;
2661 	case 4:		return 20;
2662 	case 11:	return 55;
2663 	case 22:	return 110;
2664 	}
2665 	return 0;
2666 }
2667 
2668 static __inline uint8_t
2669 plcp2rate(const uint8_t rate_plcp)
2670 {
2671 	switch (rate_plcp) {
2672 	case 0xd:	return 12;
2673 	case 0xf:	return 18;
2674 	case 0x5:	return 24;
2675 	case 0x7:	return 36;
2676 	case 0x9:	return 48;
2677 	case 0xb:	return 72;
2678 	case 0x1:	return 96;
2679 	case 0x3:	return 108;
2680 	case 10:	return 2;
2681 	case 20:	return 4;
2682 	case 55:	return 11;
2683 	case 110:	return 22;
2684 	default:	return 0;
2685 	}
2686 }
2687 
2688 static int
2689 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2690 {
2691 
2692 	return IWN_LSB(sc->txchainmask);
2693 }
2694 
2695 static int
2696 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2697 {
2698 	int tx;
2699 
2700 	/*
2701 	 * The '2 stream' setup is a bit .. odd.
2702 	 *
2703 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2704 	 * the firmware panics (eg Intel 5100.)
2705 	 *
2706 	 * For NICs that support two antennas, we use ANT_AB.
2707 	 *
2708 	 * For NICs that support three antennas, we use the two that
2709 	 * wasn't the default one.
2710 	 *
2711 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2712 	 * this to only one antenna.
2713 	 */
2714 
2715 	/* Default - transmit on the other antennas */
2716 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2717 
2718 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2719 	if (tx == 0)
2720 		tx = IWN_ANT_AB;
2721 
2722 	/*
2723 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2724 	 * the default chainmask
2725 	 */
2726 	else if (sc->ntxchains == 2)
2727 		tx = sc->txchainmask;
2728 
2729 	return (tx);
2730 }
2731 
2732 
2733 
2734 /*
2735  * Calculate the required PLCP value from the given rate,
2736  * to the given node.
2737  *
2738  * This will take the node configuration (eg 11n, rate table
2739  * setup, etc) into consideration.
2740  */
2741 static uint32_t
2742 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2743     uint8_t rate)
2744 {
2745 	struct ieee80211com *ic = ni->ni_ic;
2746 	uint32_t plcp = 0;
2747 	int ridx;
2748 
2749 	/*
2750 	 * If it's an MCS rate, let's set the plcp correctly
2751 	 * and set the relevant flags based on the node config.
2752 	 */
2753 	if (rate & IEEE80211_RATE_MCS) {
2754 		/*
2755 		 * Set the initial PLCP value to be between 0->31 for
2756 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2757 		 * flag.
2758 		 */
2759 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2760 
2761 		/*
2762 		 * XXX the following should only occur if both
2763 		 * the local configuration _and_ the remote node
2764 		 * advertise these capabilities.  Thus this code
2765 		 * may need fixing!
2766 		 */
2767 
2768 		/*
2769 		 * Set the channel width and guard interval.
2770 		 */
2771 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2772 			plcp |= IWN_RFLAG_HT40;
2773 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2774 				plcp |= IWN_RFLAG_SGI;
2775 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2776 			plcp |= IWN_RFLAG_SGI;
2777 		}
2778 
2779 		/*
2780 		 * Ensure the selected rate matches the link quality
2781 		 * table entries being used.
2782 		 */
2783 		if (rate > 0x8f)
2784 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2785 		else if (rate > 0x87)
2786 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2787 		else
2788 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2789 	} else {
2790 		/*
2791 		 * Set the initial PLCP - fine for both
2792 		 * OFDM and CCK rates.
2793 		 */
2794 		plcp = rate2plcp(rate);
2795 
2796 		/* Set CCK flag if it's CCK */
2797 
2798 		/* XXX It would be nice to have a method
2799 		 * to map the ridx -> phy table entry
2800 		 * so we could just query that, rather than
2801 		 * this hack to check against IWN_RIDX_OFDM6.
2802 		 */
2803 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2804 		    rate & IEEE80211_RATE_VAL);
2805 		if (ridx < IWN_RIDX_OFDM6 &&
2806 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2807 			plcp |= IWN_RFLAG_CCK;
2808 
2809 		/* Set antenna configuration */
2810 		/* XXX TODO: is this the right antenna to use for legacy? */
2811 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2812 	}
2813 
2814 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2815 	    __func__,
2816 	    rate,
2817 	    plcp);
2818 
2819 	return (htole32(plcp));
2820 }
2821 
2822 static void
2823 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2824 {
2825 	/* Doesn't do anything at the moment */
2826 }
2827 
2828 static int
2829 iwn_media_change(struct ifnet *ifp)
2830 {
2831 	int error;
2832 
2833 	error = ieee80211_media_change(ifp);
2834 	/* NB: only the fixed rate can change and that doesn't need a reset */
2835 	return (error == ENETRESET ? 0 : error);
2836 }
2837 
2838 static int
2839 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2840 {
2841 	struct iwn_vap *ivp = IWN_VAP(vap);
2842 	struct ieee80211com *ic = vap->iv_ic;
2843 	struct iwn_softc *sc = ic->ic_softc;
2844 	int error = 0;
2845 
2846 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2847 
2848 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2849 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2850 
2851 	IEEE80211_UNLOCK(ic);
2852 	IWN_LOCK(sc);
2853 	callout_stop(&sc->calib_to);
2854 
2855 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2856 
2857 	switch (nstate) {
2858 	case IEEE80211_S_ASSOC:
2859 		if (vap->iv_state != IEEE80211_S_RUN)
2860 			break;
2861 		/* FALLTHROUGH */
2862 	case IEEE80211_S_AUTH:
2863 		if (vap->iv_state == IEEE80211_S_AUTH)
2864 			break;
2865 
2866 		/*
2867 		 * !AUTH -> AUTH transition requires state reset to handle
2868 		 * reassociations correctly.
2869 		 */
2870 		sc->rxon->associd = 0;
2871 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2872 		sc->calib.state = IWN_CALIB_STATE_INIT;
2873 
2874 		/* Wait until we hear a beacon before we transmit */
2875 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2876 			sc->sc_beacon_wait = 1;
2877 
2878 		if ((error = iwn_auth(sc, vap)) != 0) {
2879 			device_printf(sc->sc_dev,
2880 			    "%s: could not move to auth state\n", __func__);
2881 		}
2882 		break;
2883 
2884 	case IEEE80211_S_RUN:
2885 		/*
2886 		 * RUN -> RUN transition; Just restart the timers.
2887 		 */
2888 		if (vap->iv_state == IEEE80211_S_RUN) {
2889 			sc->calib_cnt = 0;
2890 			break;
2891 		}
2892 
2893 		/* Wait until we hear a beacon before we transmit */
2894 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2895 			sc->sc_beacon_wait = 1;
2896 
2897 		/*
2898 		 * !RUN -> RUN requires setting the association id
2899 		 * which is done with a firmware cmd.  We also defer
2900 		 * starting the timers until that work is done.
2901 		 */
2902 		if ((error = iwn_run(sc, vap)) != 0) {
2903 			device_printf(sc->sc_dev,
2904 			    "%s: could not move to run state\n", __func__);
2905 		}
2906 		break;
2907 
2908 	case IEEE80211_S_INIT:
2909 		sc->calib.state = IWN_CALIB_STATE_INIT;
2910 		/*
2911 		 * Purge the xmit queue so we don't have old frames
2912 		 * during a new association attempt.
2913 		 */
2914 		sc->sc_beacon_wait = 0;
2915 		iwn_xmit_queue_drain(sc);
2916 		break;
2917 
2918 	default:
2919 		break;
2920 	}
2921 	IWN_UNLOCK(sc);
2922 	IEEE80211_LOCK(ic);
2923 	if (error != 0){
2924 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2925 		return error;
2926 	}
2927 
2928 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2929 
2930 	return ivp->iv_newstate(vap, nstate, arg);
2931 }
2932 
2933 static void
2934 iwn_calib_timeout(void *arg)
2935 {
2936 	struct iwn_softc *sc = arg;
2937 
2938 	IWN_LOCK_ASSERT(sc);
2939 
2940 	/* Force automatic TX power calibration every 60 secs. */
2941 	if (++sc->calib_cnt >= 120) {
2942 		uint32_t flags = 0;
2943 
2944 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2945 		    "sending request for statistics");
2946 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2947 		    sizeof flags, 1);
2948 		sc->calib_cnt = 0;
2949 	}
2950 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2951 	    sc);
2952 }
2953 
2954 /*
2955  * Process an RX_PHY firmware notification.  This is usually immediately
2956  * followed by an MPDU_RX_DONE notification.
2957  */
2958 static void
2959 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2960     struct iwn_rx_data *data)
2961 {
2962 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2963 
2964 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2965 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2966 
2967 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2968 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2969 	sc->last_rx_valid = 1;
2970 }
2971 
2972 /*
2973  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2974  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2975  */
2976 static void
2977 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2978     struct iwn_rx_data *data)
2979 {
2980 	struct iwn_ops *ops = &sc->ops;
2981 	struct ieee80211com *ic = &sc->sc_ic;
2982 	struct iwn_rx_ring *ring = &sc->rxq;
2983 	struct ieee80211_frame *wh;
2984 	struct ieee80211_node *ni;
2985 	struct mbuf *m, *m1;
2986 	struct iwn_rx_stat *stat;
2987 	caddr_t head;
2988 	bus_addr_t paddr;
2989 	uint32_t flags;
2990 	int error, len, rssi, nf;
2991 
2992 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2993 
2994 	if (desc->type == IWN_MPDU_RX_DONE) {
2995 		/* Check for prior RX_PHY notification. */
2996 		if (!sc->last_rx_valid) {
2997 			DPRINTF(sc, IWN_DEBUG_ANY,
2998 			    "%s: missing RX_PHY\n", __func__);
2999 			return;
3000 		}
3001 		stat = &sc->last_rx_stat;
3002 	} else
3003 		stat = (struct iwn_rx_stat *)(desc + 1);
3004 
3005 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3006 
3007 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3008 		device_printf(sc->sc_dev,
3009 		    "%s: invalid RX statistic header, len %d\n", __func__,
3010 		    stat->cfg_phy_len);
3011 		return;
3012 	}
3013 	if (desc->type == IWN_MPDU_RX_DONE) {
3014 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3015 		head = (caddr_t)(mpdu + 1);
3016 		len = le16toh(mpdu->len);
3017 	} else {
3018 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3019 		len = le16toh(stat->len);
3020 	}
3021 
3022 	flags = le32toh(*(uint32_t *)(head + len));
3023 
3024 	/* Discard frames with a bad FCS early. */
3025 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3026 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3027 		    __func__, flags);
3028 		counter_u64_add(ic->ic_ierrors, 1);
3029 		return;
3030 	}
3031 	/* Discard frames that are too short. */
3032 	if (len < sizeof (struct ieee80211_frame_ack)) {
3033 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3034 		    __func__, len);
3035 		counter_u64_add(ic->ic_ierrors, 1);
3036 		return;
3037 	}
3038 
3039 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3040 	if (m1 == NULL) {
3041 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3042 		    __func__);
3043 		counter_u64_add(ic->ic_ierrors, 1);
3044 		return;
3045 	}
3046 	bus_dmamap_unload(ring->data_dmat, data->map);
3047 
3048 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3049 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3050 	if (error != 0 && error != EFBIG) {
3051 		device_printf(sc->sc_dev,
3052 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3053 		m_freem(m1);
3054 
3055 		/* Try to reload the old mbuf. */
3056 		error = bus_dmamap_load(ring->data_dmat, data->map,
3057 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3058 		    &paddr, BUS_DMA_NOWAIT);
3059 		if (error != 0 && error != EFBIG) {
3060 			panic("%s: could not load old RX mbuf", __func__);
3061 		}
3062 		bus_dmamap_sync(ring->data_dmat, data->map,
3063 		    BUS_DMASYNC_PREREAD);
3064 		/* Physical address may have changed. */
3065 		ring->desc[ring->cur] = htole32(paddr >> 8);
3066 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3067 		    BUS_DMASYNC_PREWRITE);
3068 		counter_u64_add(ic->ic_ierrors, 1);
3069 		return;
3070 	}
3071 
3072 	bus_dmamap_sync(ring->data_dmat, data->map,
3073 	    BUS_DMASYNC_PREREAD);
3074 
3075 	m = data->m;
3076 	data->m = m1;
3077 	/* Update RX descriptor. */
3078 	ring->desc[ring->cur] = htole32(paddr >> 8);
3079 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3080 	    BUS_DMASYNC_PREWRITE);
3081 
3082 	/* Finalize mbuf. */
3083 	m->m_data = head;
3084 	m->m_pkthdr.len = m->m_len = len;
3085 
3086 	/* Grab a reference to the source node. */
3087 	wh = mtod(m, struct ieee80211_frame *);
3088 	if (len >= sizeof(struct ieee80211_frame_min))
3089 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3090 	else
3091 		ni = NULL;
3092 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3093 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3094 
3095 	rssi = ops->get_rssi(sc, stat);
3096 
3097 	if (ieee80211_radiotap_active(ic)) {
3098 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3099 		uint32_t rate = le32toh(stat->rate);
3100 
3101 		tap->wr_flags = 0;
3102 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3103 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3104 		tap->wr_dbm_antsignal = (int8_t)rssi;
3105 		tap->wr_dbm_antnoise = (int8_t)nf;
3106 		tap->wr_tsft = stat->tstamp;
3107 		if (rate & IWN_RFLAG_MCS) {
3108 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3109 			tap->wr_rate |= IEEE80211_RATE_MCS;
3110 		} else
3111 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3112 	}
3113 
3114 	/*
3115 	 * If it's a beacon and we're waiting, then do the
3116 	 * wakeup.  This should unblock raw_xmit/start.
3117 	 */
3118 	if (sc->sc_beacon_wait) {
3119 		uint8_t type, subtype;
3120 		/* NB: Re-assign wh */
3121 		wh = mtod(m, struct ieee80211_frame *);
3122 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3123 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3124 		/*
3125 		 * This assumes at this point we've received our own
3126 		 * beacon.
3127 		 */
3128 		DPRINTF(sc, IWN_DEBUG_TRACE,
3129 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3130 		    __func__, type, subtype);
3131 		if (type == IEEE80211_FC0_TYPE_MGT &&
3132 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3133 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3134 			    "%s: waking things up\n", __func__);
3135 			/* queue taskqueue to transmit! */
3136 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3137 		}
3138 	}
3139 
3140 	IWN_UNLOCK(sc);
3141 
3142 	/* Send the frame to the 802.11 layer. */
3143 	if (ni != NULL) {
3144 		if (ni->ni_flags & IEEE80211_NODE_HT)
3145 			m->m_flags |= M_AMPDU;
3146 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3147 		/* Node is no longer needed. */
3148 		ieee80211_free_node(ni);
3149 	} else
3150 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3151 
3152 	IWN_LOCK(sc);
3153 
3154 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3155 
3156 }
3157 
3158 /* Process an incoming Compressed BlockAck. */
3159 static void
3160 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3161     struct iwn_rx_data *data)
3162 {
3163 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3164 	struct iwn_ops *ops = &sc->ops;
3165 	struct iwn_node *wn;
3166 	struct ieee80211_node *ni;
3167 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3168 	struct iwn_tx_ring *txq;
3169 	struct iwn_tx_data *txdata;
3170 	struct ieee80211_tx_ampdu *tap;
3171 	struct mbuf *m;
3172 	uint64_t bitmap;
3173 	uint16_t ssn;
3174 	uint8_t tid;
3175 	int i, lastidx, qid, *res, shift;
3176 	int tx_ok = 0, tx_err = 0;
3177 
3178 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3179 
3180 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3181 
3182 	qid = le16toh(ba->qid);
3183 	txq = &sc->txq[ba->qid];
3184 	tap = sc->qid2tap[ba->qid];
3185 	tid = tap->txa_tid;
3186 	wn = (void *)tap->txa_ni;
3187 
3188 	res = NULL;
3189 	ssn = 0;
3190 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3191 		res = tap->txa_private;
3192 		ssn = tap->txa_start & 0xfff;
3193 	}
3194 
3195 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3196 		txdata = &txq->data[txq->read];
3197 
3198 		/* Unmap and free mbuf. */
3199 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3200 		    BUS_DMASYNC_POSTWRITE);
3201 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3202 		m = txdata->m, txdata->m = NULL;
3203 		ni = txdata->ni, txdata->ni = NULL;
3204 
3205 		KASSERT(ni != NULL, ("no node"));
3206 		KASSERT(m != NULL, ("no mbuf"));
3207 
3208 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3209 		ieee80211_tx_complete(ni, m, 1);
3210 
3211 		txq->queued--;
3212 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3213 	}
3214 
3215 	if (txq->queued == 0 && res != NULL) {
3216 		iwn_nic_lock(sc);
3217 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3218 		iwn_nic_unlock(sc);
3219 		sc->qid2tap[qid] = NULL;
3220 		free(res, M_DEVBUF);
3221 		return;
3222 	}
3223 
3224 	if (wn->agg[tid].bitmap == 0)
3225 		return;
3226 
3227 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3228 	if (shift < 0)
3229 		shift += 0x100;
3230 
3231 	if (wn->agg[tid].nframes > (64 - shift))
3232 		return;
3233 
3234 	/*
3235 	 * Walk the bitmap and calculate how many successful and failed
3236 	 * attempts are made.
3237 	 *
3238 	 * Yes, the rate control code doesn't know these are A-MPDU
3239 	 * subframes and that it's okay to fail some of these.
3240 	 */
3241 	ni = tap->txa_ni;
3242 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3243 	for (i = 0; bitmap; i++) {
3244 		txs->flags = 0;		/* XXX TODO */
3245 		if ((bitmap & 1) == 0) {
3246 			tx_err ++;
3247 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3248 		} else {
3249 			tx_ok ++;
3250 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3251 		}
3252 		ieee80211_ratectl_tx_complete(ni, txs);
3253 		bitmap >>= 1;
3254 	}
3255 
3256 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3257 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3258 
3259 }
3260 
3261 /*
3262  * Process a CALIBRATION_RESULT notification sent by the initialization
3263  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3264  */
3265 static void
3266 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3267     struct iwn_rx_data *data)
3268 {
3269 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3270 	int len, idx = -1;
3271 
3272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3273 
3274 	/* Runtime firmware should not send such a notification. */
3275 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3276 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3277 	    __func__);
3278 		return;
3279 	}
3280 	len = (le32toh(desc->len) & 0x3fff) - 4;
3281 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3282 
3283 	switch (calib->code) {
3284 	case IWN5000_PHY_CALIB_DC:
3285 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3286 			idx = 0;
3287 		break;
3288 	case IWN5000_PHY_CALIB_LO:
3289 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3290 			idx = 1;
3291 		break;
3292 	case IWN5000_PHY_CALIB_TX_IQ:
3293 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3294 			idx = 2;
3295 		break;
3296 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3297 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3298 			idx = 3;
3299 		break;
3300 	case IWN5000_PHY_CALIB_BASE_BAND:
3301 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3302 			idx = 4;
3303 		break;
3304 	}
3305 	if (idx == -1)	/* Ignore other results. */
3306 		return;
3307 
3308 	/* Save calibration result. */
3309 	if (sc->calibcmd[idx].buf != NULL)
3310 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3311 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3312 	if (sc->calibcmd[idx].buf == NULL) {
3313 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3314 		    "not enough memory for calibration result %d\n",
3315 		    calib->code);
3316 		return;
3317 	}
3318 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3319 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3320 	sc->calibcmd[idx].len = len;
3321 	memcpy(sc->calibcmd[idx].buf, calib, len);
3322 }
3323 
3324 static void
3325 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3326     struct iwn_stats *stats, int len)
3327 {
3328 	struct iwn_stats_bt *stats_bt;
3329 	struct iwn_stats *lstats;
3330 
3331 	/*
3332 	 * First - check whether the length is the bluetooth or normal.
3333 	 *
3334 	 * If it's normal - just copy it and bump out.
3335 	 * Otherwise we have to convert things.
3336 	 */
3337 
3338 	if (len == sizeof(struct iwn_stats) + 4) {
3339 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3340 		sc->last_stat_valid = 1;
3341 		return;
3342 	}
3343 
3344 	/*
3345 	 * If it's not the bluetooth size - log, then just copy.
3346 	 */
3347 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3348 		DPRINTF(sc, IWN_DEBUG_STATS,
3349 		    "%s: size of rx statistics (%d) not an expected size!\n",
3350 		    __func__,
3351 		    len);
3352 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3353 		sc->last_stat_valid = 1;
3354 		return;
3355 	}
3356 
3357 	/*
3358 	 * Ok. Time to copy.
3359 	 */
3360 	stats_bt = (struct iwn_stats_bt *) stats;
3361 	lstats = &sc->last_stat;
3362 
3363 	/* flags */
3364 	lstats->flags = stats_bt->flags;
3365 	/* rx_bt */
3366 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3367 	    sizeof(struct iwn_rx_phy_stats));
3368 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3369 	    sizeof(struct iwn_rx_phy_stats));
3370 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3371 	    sizeof(struct iwn_rx_general_stats));
3372 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3373 	    sizeof(struct iwn_rx_ht_phy_stats));
3374 	/* tx */
3375 	memcpy(&lstats->tx, &stats_bt->tx,
3376 	    sizeof(struct iwn_tx_stats));
3377 	/* general */
3378 	memcpy(&lstats->general, &stats_bt->general,
3379 	    sizeof(struct iwn_general_stats));
3380 
3381 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3382 	sc->last_stat_valid = 1;
3383 }
3384 
3385 /*
3386  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3387  * The latter is sent by the firmware after each received beacon.
3388  */
3389 static void
3390 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3391     struct iwn_rx_data *data)
3392 {
3393 	struct iwn_ops *ops = &sc->ops;
3394 	struct ieee80211com *ic = &sc->sc_ic;
3395 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3396 	struct iwn_calib_state *calib = &sc->calib;
3397 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3398 	struct iwn_stats *lstats;
3399 	int temp;
3400 
3401 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3402 
3403 	/* Ignore statistics received during a scan. */
3404 	if (vap->iv_state != IEEE80211_S_RUN ||
3405 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3406 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3407 	    __func__);
3408 		return;
3409 	}
3410 
3411 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3412 
3413 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3414 	    "%s: received statistics, cmd %d, len %d\n",
3415 	    __func__, desc->type, le16toh(desc->len));
3416 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3417 
3418 	/*
3419 	 * Collect/track general statistics for reporting.
3420 	 *
3421 	 * This takes care of ensuring that the bluetooth sized message
3422 	 * will be correctly converted to the legacy sized message.
3423 	 */
3424 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3425 
3426 	/*
3427 	 * And now, let's take a reference of it to use!
3428 	 */
3429 	lstats = &sc->last_stat;
3430 
3431 	/* Test if temperature has changed. */
3432 	if (lstats->general.temp != sc->rawtemp) {
3433 		/* Convert "raw" temperature to degC. */
3434 		sc->rawtemp = stats->general.temp;
3435 		temp = ops->get_temperature(sc);
3436 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3437 		    __func__, temp);
3438 
3439 		/* Update TX power if need be (4965AGN only). */
3440 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3441 			iwn4965_power_calibration(sc, temp);
3442 	}
3443 
3444 	if (desc->type != IWN_BEACON_STATISTICS)
3445 		return;	/* Reply to a statistics request. */
3446 
3447 	sc->noise = iwn_get_noise(&lstats->rx.general);
3448 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3449 
3450 	/* Test that RSSI and noise are present in stats report. */
3451 	if (le32toh(lstats->rx.general.flags) != 1) {
3452 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3453 		    "received statistics without RSSI");
3454 		return;
3455 	}
3456 
3457 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3458 		iwn_collect_noise(sc, &lstats->rx.general);
3459 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3460 		iwn_tune_sensitivity(sc, &lstats->rx);
3461 		/*
3462 		 * XXX TODO: Only run the RX recovery if we're associated!
3463 		 */
3464 		iwn_check_rx_recovery(sc, lstats);
3465 		iwn_save_stats_counters(sc, lstats);
3466 	}
3467 
3468 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3469 }
3470 
3471 /*
3472  * Save the relevant statistic counters for the next calibration
3473  * pass.
3474  */
3475 static void
3476 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3477 {
3478 	struct iwn_calib_state *calib = &sc->calib;
3479 
3480 	/* Save counters values for next call. */
3481 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3482 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3483 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3484 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3485 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3486 
3487 	/* Last time we received these tick values */
3488 	sc->last_calib_ticks = ticks;
3489 }
3490 
3491 /*
3492  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3493  * and 5000 adapters have different incompatible TX status formats.
3494  */
3495 static void
3496 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3497     struct iwn_rx_data *data)
3498 {
3499 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3500 	struct iwn_tx_ring *ring;
3501 	int qid;
3502 
3503 	qid = desc->qid & 0xf;
3504 	ring = &sc->txq[qid];
3505 
3506 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3507 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3508 	    __func__, desc->qid, desc->idx,
3509 	    stat->rtsfailcnt,
3510 	    stat->ackfailcnt,
3511 	    stat->btkillcnt,
3512 	    stat->rate, le16toh(stat->duration),
3513 	    le32toh(stat->status));
3514 
3515 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3516 	if (qid >= sc->firstaggqueue) {
3517 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3518 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3519 	} else {
3520 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3521 		    le32toh(stat->status) & 0xff);
3522 	}
3523 }
3524 
3525 static void
3526 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3527     struct iwn_rx_data *data)
3528 {
3529 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3530 	struct iwn_tx_ring *ring;
3531 	int qid;
3532 
3533 	qid = desc->qid & 0xf;
3534 	ring = &sc->txq[qid];
3535 
3536 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3537 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3538 	    __func__, desc->qid, desc->idx,
3539 	    stat->rtsfailcnt,
3540 	    stat->ackfailcnt,
3541 	    stat->btkillcnt,
3542 	    stat->rate, le16toh(stat->duration),
3543 	    le32toh(stat->status));
3544 
3545 #ifdef notyet
3546 	/* Reset TX scheduler slot. */
3547 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3548 #endif
3549 
3550 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3551 	if (qid >= sc->firstaggqueue) {
3552 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3553 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3554 	} else {
3555 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3556 		    le16toh(stat->status) & 0xff);
3557 	}
3558 }
3559 
3560 /*
3561  * Adapter-independent backend for TX_DONE firmware notifications.
3562  */
3563 static void
3564 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3565     int ackfailcnt, uint8_t status)
3566 {
3567 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3568 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3569 	struct iwn_tx_data *data = &ring->data[desc->idx];
3570 	struct mbuf *m;
3571 	struct ieee80211_node *ni;
3572 
3573 	KASSERT(data->ni != NULL, ("no node"));
3574 
3575 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3576 
3577 	/* Unmap and free mbuf. */
3578 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3579 	bus_dmamap_unload(ring->data_dmat, data->map);
3580 	m = data->m, data->m = NULL;
3581 	ni = data->ni, data->ni = NULL;
3582 
3583 	/*
3584 	 * Update rate control statistics for the node.
3585 	 */
3586 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3587 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3588 	txs->short_retries = rtsfailcnt;
3589 	txs->long_retries = ackfailcnt;
3590 	if (!(status & IWN_TX_FAIL))
3591 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3592 	else {
3593 		switch (status) {
3594 		case IWN_TX_FAIL_SHORT_LIMIT:
3595 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3596 			break;
3597 		case IWN_TX_FAIL_LONG_LIMIT:
3598 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3599 			break;
3600 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3601 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3602 			break;
3603 		default:
3604 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3605 			break;
3606 		}
3607 	}
3608 	ieee80211_ratectl_tx_complete(ni, txs);
3609 
3610 	/*
3611 	 * Channels marked for "radar" require traffic to be received
3612 	 * to unlock before we can transmit.  Until traffic is seen
3613 	 * any attempt to transmit is returned immediately with status
3614 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3615 	 * happen on first authenticate after scanning.  To workaround
3616 	 * this we ignore a failure of this sort in AUTH state so the
3617 	 * 802.11 layer will fall back to using a timeout to wait for
3618 	 * the AUTH reply.  This allows the firmware time to see
3619 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3620 	 * unclear why the firmware does not maintain state for
3621 	 * channels recently visited as this would allow immediate
3622 	 * use of the channel after a scan (where we see traffic).
3623 	 */
3624 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3625 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3626 		ieee80211_tx_complete(ni, m, 0);
3627 	else
3628 		ieee80211_tx_complete(ni, m,
3629 		    (status & IWN_TX_FAIL) != 0);
3630 
3631 	sc->sc_tx_timer = 0;
3632 	if (--ring->queued < IWN_TX_RING_LOMARK)
3633 		sc->qfullmsk &= ~(1 << ring->qid);
3634 
3635 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3636 }
3637 
3638 /*
3639  * Process a "command done" firmware notification.  This is where we wakeup
3640  * processes waiting for a synchronous command completion.
3641  */
3642 static void
3643 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3644 {
3645 	struct iwn_tx_ring *ring;
3646 	struct iwn_tx_data *data;
3647 	int cmd_queue_num;
3648 
3649 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3650 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3651 	else
3652 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3653 
3654 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3655 		return;	/* Not a command ack. */
3656 
3657 	ring = &sc->txq[cmd_queue_num];
3658 	data = &ring->data[desc->idx];
3659 
3660 	/* If the command was mapped in an mbuf, free it. */
3661 	if (data->m != NULL) {
3662 		bus_dmamap_sync(ring->data_dmat, data->map,
3663 		    BUS_DMASYNC_POSTWRITE);
3664 		bus_dmamap_unload(ring->data_dmat, data->map);
3665 		m_freem(data->m);
3666 		data->m = NULL;
3667 	}
3668 	wakeup(&ring->desc[desc->idx]);
3669 }
3670 
3671 static void
3672 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3673     int rtsfailcnt, int ackfailcnt, void *stat)
3674 {
3675 	struct iwn_ops *ops = &sc->ops;
3676 	struct iwn_tx_ring *ring = &sc->txq[qid];
3677 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3678 	struct iwn_tx_data *data;
3679 	struct mbuf *m;
3680 	struct iwn_node *wn;
3681 	struct ieee80211_node *ni;
3682 	struct ieee80211_tx_ampdu *tap;
3683 	uint64_t bitmap;
3684 	uint32_t *status = stat;
3685 	uint16_t *aggstatus = stat;
3686 	uint16_t ssn;
3687 	uint8_t tid;
3688 	int bit, i, lastidx, *res, seqno, shift, start;
3689 
3690 	/* XXX TODO: status is le16 field! Grr */
3691 
3692 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3693 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3694 	    __func__,
3695 	    nframes,
3696 	    *status);
3697 
3698 	tap = sc->qid2tap[qid];
3699 	tid = tap->txa_tid;
3700 	wn = (void *)tap->txa_ni;
3701 	ni = tap->txa_ni;
3702 
3703 	/*
3704 	 * XXX TODO: ACK and RTS failures would be nice here!
3705 	 */
3706 
3707 	/*
3708 	 * A-MPDU single frame status - if we failed to transmit it
3709 	 * in A-MPDU, then it may be a permanent failure.
3710 	 *
3711 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3712 	 * there's some permanent and temporary failures that may be
3713 	 * handled differently.
3714 	 */
3715 	if (nframes == 1) {
3716 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3717 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3718 		txs->short_retries = rtsfailcnt;
3719 		txs->long_retries = ackfailcnt;
3720 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3721 #ifdef	NOT_YET
3722 			printf("ieee80211_send_bar()\n");
3723 #endif
3724 			/*
3725 			 * If we completely fail a transmit, make sure a
3726 			 * notification is pushed up to the rate control
3727 			 * layer.
3728 			 */
3729 			/* XXX */
3730 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3731 		} else {
3732 			/*
3733 			 * If nframes=1, then we won't be getting a BA for
3734 			 * this frame.  Ensure that we correctly update the
3735 			 * rate control code with how many retries were
3736 			 * needed to send it.
3737 			 */
3738 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3739 		}
3740 		ieee80211_ratectl_tx_complete(ni, txs);
3741 	}
3742 
3743 	bitmap = 0;
3744 	start = idx;
3745 	for (i = 0; i < nframes; i++) {
3746 		if (le16toh(aggstatus[i * 2]) & 0xc)
3747 			continue;
3748 
3749 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3750 		bit = idx - start;
3751 		shift = 0;
3752 		if (bit >= 64) {
3753 			shift = 0x100 - idx + start;
3754 			bit = 0;
3755 			start = idx;
3756 		} else if (bit <= -64)
3757 			bit = 0x100 - start + idx;
3758 		else if (bit < 0) {
3759 			shift = start - idx;
3760 			start = idx;
3761 			bit = 0;
3762 		}
3763 		bitmap = bitmap << shift;
3764 		bitmap |= 1ULL << bit;
3765 	}
3766 	tap = sc->qid2tap[qid];
3767 	tid = tap->txa_tid;
3768 	wn = (void *)tap->txa_ni;
3769 	wn->agg[tid].bitmap = bitmap;
3770 	wn->agg[tid].startidx = start;
3771 	wn->agg[tid].nframes = nframes;
3772 
3773 	res = NULL;
3774 	ssn = 0;
3775 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3776 		res = tap->txa_private;
3777 		ssn = tap->txa_start & 0xfff;
3778 	}
3779 
3780 	/* This is going nframes DWORDS into the descriptor? */
3781 	seqno = le32toh(*(status + nframes)) & 0xfff;
3782 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3783 		data = &ring->data[ring->read];
3784 
3785 		/* Unmap and free mbuf. */
3786 		bus_dmamap_sync(ring->data_dmat, data->map,
3787 		    BUS_DMASYNC_POSTWRITE);
3788 		bus_dmamap_unload(ring->data_dmat, data->map);
3789 		m = data->m, data->m = NULL;
3790 		ni = data->ni, data->ni = NULL;
3791 
3792 		KASSERT(ni != NULL, ("no node"));
3793 		KASSERT(m != NULL, ("no mbuf"));
3794 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3795 		ieee80211_tx_complete(ni, m, 1);
3796 
3797 		ring->queued--;
3798 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3799 	}
3800 
3801 	if (ring->queued == 0 && res != NULL) {
3802 		iwn_nic_lock(sc);
3803 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3804 		iwn_nic_unlock(sc);
3805 		sc->qid2tap[qid] = NULL;
3806 		free(res, M_DEVBUF);
3807 		return;
3808 	}
3809 
3810 	sc->sc_tx_timer = 0;
3811 	if (ring->queued < IWN_TX_RING_LOMARK)
3812 		sc->qfullmsk &= ~(1 << ring->qid);
3813 
3814 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3815 }
3816 
3817 /*
3818  * Process an INT_FH_RX or INT_SW_RX interrupt.
3819  */
3820 static void
3821 iwn_notif_intr(struct iwn_softc *sc)
3822 {
3823 	struct iwn_ops *ops = &sc->ops;
3824 	struct ieee80211com *ic = &sc->sc_ic;
3825 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3826 	uint16_t hw;
3827 
3828 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3829 	    BUS_DMASYNC_POSTREAD);
3830 
3831 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3832 	while (sc->rxq.cur != hw) {
3833 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3834 		struct iwn_rx_desc *desc;
3835 
3836 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3837 		    BUS_DMASYNC_POSTREAD);
3838 		desc = mtod(data->m, struct iwn_rx_desc *);
3839 
3840 		DPRINTF(sc, IWN_DEBUG_RECV,
3841 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3842 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3843 		    desc->type, iwn_intr_str(desc->type),
3844 		    le16toh(desc->len));
3845 
3846 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3847 			iwn_cmd_done(sc, desc);
3848 
3849 		switch (desc->type) {
3850 		case IWN_RX_PHY:
3851 			iwn_rx_phy(sc, desc, data);
3852 			break;
3853 
3854 		case IWN_RX_DONE:		/* 4965AGN only. */
3855 		case IWN_MPDU_RX_DONE:
3856 			/* An 802.11 frame has been received. */
3857 			iwn_rx_done(sc, desc, data);
3858 			break;
3859 
3860 		case IWN_RX_COMPRESSED_BA:
3861 			/* A Compressed BlockAck has been received. */
3862 			iwn_rx_compressed_ba(sc, desc, data);
3863 			break;
3864 
3865 		case IWN_TX_DONE:
3866 			/* An 802.11 frame has been transmitted. */
3867 			ops->tx_done(sc, desc, data);
3868 			break;
3869 
3870 		case IWN_RX_STATISTICS:
3871 		case IWN_BEACON_STATISTICS:
3872 			iwn_rx_statistics(sc, desc, data);
3873 			break;
3874 
3875 		case IWN_BEACON_MISSED:
3876 		{
3877 			struct iwn_beacon_missed *miss =
3878 			    (struct iwn_beacon_missed *)(desc + 1);
3879 			int misses;
3880 
3881 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3882 			    BUS_DMASYNC_POSTREAD);
3883 			misses = le32toh(miss->consecutive);
3884 
3885 			DPRINTF(sc, IWN_DEBUG_STATE,
3886 			    "%s: beacons missed %d/%d\n", __func__,
3887 			    misses, le32toh(miss->total));
3888 			/*
3889 			 * If more than 5 consecutive beacons are missed,
3890 			 * reinitialize the sensitivity state machine.
3891 			 */
3892 			if (vap->iv_state == IEEE80211_S_RUN &&
3893 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3894 				if (misses > 5)
3895 					(void)iwn_init_sensitivity(sc);
3896 				if (misses >= vap->iv_bmissthreshold) {
3897 					IWN_UNLOCK(sc);
3898 					ieee80211_beacon_miss(ic);
3899 					IWN_LOCK(sc);
3900 				}
3901 			}
3902 			break;
3903 		}
3904 		case IWN_UC_READY:
3905 		{
3906 			struct iwn_ucode_info *uc =
3907 			    (struct iwn_ucode_info *)(desc + 1);
3908 
3909 			/* The microcontroller is ready. */
3910 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3911 			    BUS_DMASYNC_POSTREAD);
3912 			DPRINTF(sc, IWN_DEBUG_RESET,
3913 			    "microcode alive notification version=%d.%d "
3914 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3915 			    uc->subtype, le32toh(uc->valid));
3916 
3917 			if (le32toh(uc->valid) != 1) {
3918 				device_printf(sc->sc_dev,
3919 				    "microcontroller initialization failed");
3920 				break;
3921 			}
3922 			if (uc->subtype == IWN_UCODE_INIT) {
3923 				/* Save microcontroller report. */
3924 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3925 			}
3926 			/* Save the address of the error log in SRAM. */
3927 			sc->errptr = le32toh(uc->errptr);
3928 			break;
3929 		}
3930 		case IWN_STATE_CHANGED:
3931 		{
3932 			/*
3933 			 * State change allows hardware switch change to be
3934 			 * noted. However, we handle this in iwn_intr as we
3935 			 * get both the enable/disble intr.
3936 			 */
3937 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3938 			    BUS_DMASYNC_POSTREAD);
3939 #ifdef	IWN_DEBUG
3940 			uint32_t *status = (uint32_t *)(desc + 1);
3941 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3942 			    "state changed to %x\n",
3943 			    le32toh(*status));
3944 #endif
3945 			break;
3946 		}
3947 		case IWN_START_SCAN:
3948 		{
3949 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3950 			    BUS_DMASYNC_POSTREAD);
3951 #ifdef	IWN_DEBUG
3952 			struct iwn_start_scan *scan =
3953 			    (struct iwn_start_scan *)(desc + 1);
3954 			DPRINTF(sc, IWN_DEBUG_ANY,
3955 			    "%s: scanning channel %d status %x\n",
3956 			    __func__, scan->chan, le32toh(scan->status));
3957 #endif
3958 			break;
3959 		}
3960 		case IWN_STOP_SCAN:
3961 		{
3962 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3963 			    BUS_DMASYNC_POSTREAD);
3964 #ifdef	IWN_DEBUG
3965 			struct iwn_stop_scan *scan =
3966 			    (struct iwn_stop_scan *)(desc + 1);
3967 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3968 			    "scan finished nchan=%d status=%d chan=%d\n",
3969 			    scan->nchan, scan->status, scan->chan);
3970 #endif
3971 			sc->sc_is_scanning = 0;
3972 			callout_stop(&sc->scan_timeout);
3973 			IWN_UNLOCK(sc);
3974 			ieee80211_scan_next(vap);
3975 			IWN_LOCK(sc);
3976 			break;
3977 		}
3978 		case IWN5000_CALIBRATION_RESULT:
3979 			iwn5000_rx_calib_results(sc, desc, data);
3980 			break;
3981 
3982 		case IWN5000_CALIBRATION_DONE:
3983 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3984 			wakeup(sc);
3985 			break;
3986 		}
3987 
3988 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3989 	}
3990 
3991 	/* Tell the firmware what we have processed. */
3992 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3993 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3994 }
3995 
3996 /*
3997  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3998  * from power-down sleep mode.
3999  */
4000 static void
4001 iwn_wakeup_intr(struct iwn_softc *sc)
4002 {
4003 	int qid;
4004 
4005 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4006 	    __func__);
4007 
4008 	/* Wakeup RX and TX rings. */
4009 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4010 	for (qid = 0; qid < sc->ntxqs; qid++) {
4011 		struct iwn_tx_ring *ring = &sc->txq[qid];
4012 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4013 	}
4014 }
4015 
4016 static void
4017 iwn_rftoggle_task(void *arg, int npending)
4018 {
4019 	struct iwn_softc *sc = arg;
4020 	struct ieee80211com *ic = &sc->sc_ic;
4021 	uint32_t tmp;
4022 
4023 	IWN_LOCK(sc);
4024 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4025 	IWN_UNLOCK(sc);
4026 
4027 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4028 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4029 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4030 		ieee80211_suspend_all(ic);
4031 
4032 		/* Enable interrupts to get RF toggle notification. */
4033 		IWN_LOCK(sc);
4034 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4035 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4036 		IWN_UNLOCK(sc);
4037 	} else
4038 		ieee80211_resume_all(ic);
4039 }
4040 
4041 /*
4042  * Dump the error log of the firmware when a firmware panic occurs.  Although
4043  * we can't debug the firmware because it is neither open source nor free, it
4044  * can help us to identify certain classes of problems.
4045  */
4046 static void
4047 iwn_fatal_intr(struct iwn_softc *sc)
4048 {
4049 	struct iwn_fw_dump dump;
4050 	int i;
4051 
4052 	IWN_LOCK_ASSERT(sc);
4053 
4054 	/* Force a complete recalibration on next init. */
4055 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4056 
4057 	/* Check that the error log address is valid. */
4058 	if (sc->errptr < IWN_FW_DATA_BASE ||
4059 	    sc->errptr + sizeof (dump) >
4060 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4061 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4062 		    sc->errptr);
4063 		return;
4064 	}
4065 	if (iwn_nic_lock(sc) != 0) {
4066 		printf("%s: could not read firmware error log\n", __func__);
4067 		return;
4068 	}
4069 	/* Read firmware error log from SRAM. */
4070 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4071 	    sizeof (dump) / sizeof (uint32_t));
4072 	iwn_nic_unlock(sc);
4073 
4074 	if (dump.valid == 0) {
4075 		printf("%s: firmware error log is empty\n", __func__);
4076 		return;
4077 	}
4078 	printf("firmware error log:\n");
4079 	printf("  error type      = \"%s\" (0x%08X)\n",
4080 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4081 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4082 	    dump.id);
4083 	printf("  program counter = 0x%08X\n", dump.pc);
4084 	printf("  source line     = 0x%08X\n", dump.src_line);
4085 	printf("  error data      = 0x%08X%08X\n",
4086 	    dump.error_data[0], dump.error_data[1]);
4087 	printf("  branch link     = 0x%08X%08X\n",
4088 	    dump.branch_link[0], dump.branch_link[1]);
4089 	printf("  interrupt link  = 0x%08X%08X\n",
4090 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4091 	printf("  time            = %u\n", dump.time[0]);
4092 
4093 	/* Dump driver status (TX and RX rings) while we're here. */
4094 	printf("driver status:\n");
4095 	for (i = 0; i < sc->ntxqs; i++) {
4096 		struct iwn_tx_ring *ring = &sc->txq[i];
4097 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4098 		    i, ring->qid, ring->cur, ring->queued);
4099 	}
4100 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4101 }
4102 
4103 static void
4104 iwn_intr(void *arg)
4105 {
4106 	struct iwn_softc *sc = arg;
4107 	uint32_t r1, r2, tmp;
4108 
4109 	IWN_LOCK(sc);
4110 
4111 	/* Disable interrupts. */
4112 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4113 
4114 	/* Read interrupts from ICT (fast) or from registers (slow). */
4115 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4116 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4117 		    BUS_DMASYNC_POSTREAD);
4118 		tmp = 0;
4119 		while (sc->ict[sc->ict_cur] != 0) {
4120 			tmp |= sc->ict[sc->ict_cur];
4121 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4122 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4123 		}
4124 		tmp = le32toh(tmp);
4125 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4126 			tmp = 0;
4127 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4128 			tmp |= 0x8000;
4129 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4130 		r2 = 0;	/* Unused. */
4131 	} else {
4132 		r1 = IWN_READ(sc, IWN_INT);
4133 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4134 			IWN_UNLOCK(sc);
4135 			return;	/* Hardware gone! */
4136 		}
4137 		r2 = IWN_READ(sc, IWN_FH_INT);
4138 	}
4139 
4140 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4141     , r1, r2);
4142 
4143 	if (r1 == 0 && r2 == 0)
4144 		goto done;	/* Interrupt not for us. */
4145 
4146 	/* Acknowledge interrupts. */
4147 	IWN_WRITE(sc, IWN_INT, r1);
4148 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4149 		IWN_WRITE(sc, IWN_FH_INT, r2);
4150 
4151 	if (r1 & IWN_INT_RF_TOGGLED) {
4152 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4153 		goto done;
4154 	}
4155 	if (r1 & IWN_INT_CT_REACHED) {
4156 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4157 		    __func__);
4158 	}
4159 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4160 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4161 		    __func__);
4162 #ifdef	IWN_DEBUG
4163 		iwn_debug_register(sc);
4164 #endif
4165 		/* Dump firmware error log and stop. */
4166 		iwn_fatal_intr(sc);
4167 
4168 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4169 		goto done;
4170 	}
4171 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4172 	    (r2 & IWN_FH_INT_RX)) {
4173 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4174 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4175 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4176 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4177 			    IWN_INT_PERIODIC_DIS);
4178 			iwn_notif_intr(sc);
4179 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4180 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4181 				    IWN_INT_PERIODIC_ENA);
4182 			}
4183 		} else
4184 			iwn_notif_intr(sc);
4185 	}
4186 
4187 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4188 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4189 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4190 		wakeup(sc);	/* FH DMA transfer completed. */
4191 	}
4192 
4193 	if (r1 & IWN_INT_ALIVE)
4194 		wakeup(sc);	/* Firmware is alive. */
4195 
4196 	if (r1 & IWN_INT_WAKEUP)
4197 		iwn_wakeup_intr(sc);
4198 
4199 done:
4200 	/* Re-enable interrupts. */
4201 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4202 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4203 
4204 	IWN_UNLOCK(sc);
4205 }
4206 
4207 /*
4208  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4209  * 5000 adapters use a slightly different format).
4210  */
4211 static void
4212 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4213     uint16_t len)
4214 {
4215 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4216 
4217 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4218 
4219 	*w = htole16(len + 8);
4220 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4221 	    BUS_DMASYNC_PREWRITE);
4222 	if (idx < IWN_SCHED_WINSZ) {
4223 		*(w + IWN_TX_RING_COUNT) = *w;
4224 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4225 		    BUS_DMASYNC_PREWRITE);
4226 	}
4227 }
4228 
4229 static void
4230 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4231     uint16_t len)
4232 {
4233 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4234 
4235 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4236 
4237 	*w = htole16(id << 12 | (len + 8));
4238 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4239 	    BUS_DMASYNC_PREWRITE);
4240 	if (idx < IWN_SCHED_WINSZ) {
4241 		*(w + IWN_TX_RING_COUNT) = *w;
4242 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4243 		    BUS_DMASYNC_PREWRITE);
4244 	}
4245 }
4246 
4247 #ifdef notyet
4248 static void
4249 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4250 {
4251 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4252 
4253 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4254 
4255 	*w = (*w & htole16(0xf000)) | htole16(1);
4256 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4257 	    BUS_DMASYNC_PREWRITE);
4258 	if (idx < IWN_SCHED_WINSZ) {
4259 		*(w + IWN_TX_RING_COUNT) = *w;
4260 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4261 		    BUS_DMASYNC_PREWRITE);
4262 	}
4263 }
4264 #endif
4265 
4266 /*
4267  * Check whether OFDM 11g protection will be enabled for the given rate.
4268  *
4269  * The original driver code only enabled protection for OFDM rates.
4270  * It didn't check to see whether it was operating in 11a or 11bg mode.
4271  */
4272 static int
4273 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4274     struct ieee80211vap *vap, uint8_t rate)
4275 {
4276 	struct ieee80211com *ic = vap->iv_ic;
4277 
4278 	/*
4279 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4280 	 * 11bg protection.
4281 	 */
4282 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4283 		return (0);
4284 	}
4285 
4286 	/*
4287 	 * 11bg protection not enabled? Then don't use it.
4288 	 */
4289 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4290 		return (0);
4291 
4292 	/*
4293 	 * If it's an 11n rate - no protection.
4294 	 * We'll do it via a specific 11n check.
4295 	 */
4296 	if (rate & IEEE80211_RATE_MCS) {
4297 		return (0);
4298 	}
4299 
4300 	/*
4301 	 * Do a rate table lookup.  If the PHY is CCK,
4302 	 * don't do protection.
4303 	 */
4304 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4305 		return (0);
4306 
4307 	/*
4308 	 * Yup, enable protection.
4309 	 */
4310 	return (1);
4311 }
4312 
4313 /*
4314  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4315  * the link quality table that reflects this particular entry.
4316  */
4317 static int
4318 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4319     uint8_t rate)
4320 {
4321 	struct ieee80211_rateset *rs;
4322 	int is_11n;
4323 	int nr;
4324 	int i;
4325 	uint8_t cmp_rate;
4326 
4327 	/*
4328 	 * Figure out if we're using 11n or not here.
4329 	 */
4330 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4331 		is_11n = 1;
4332 	else
4333 		is_11n = 0;
4334 
4335 	/*
4336 	 * Use the correct rate table.
4337 	 */
4338 	if (is_11n) {
4339 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4340 		nr = ni->ni_htrates.rs_nrates;
4341 	} else {
4342 		rs = &ni->ni_rates;
4343 		nr = rs->rs_nrates;
4344 	}
4345 
4346 	/*
4347 	 * Find the relevant link quality entry in the table.
4348 	 */
4349 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4350 		/*
4351 		 * The link quality table index starts at 0 == highest
4352 		 * rate, so we walk the rate table backwards.
4353 		 */
4354 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4355 		if (rate & IEEE80211_RATE_MCS)
4356 			cmp_rate |= IEEE80211_RATE_MCS;
4357 
4358 #if 0
4359 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4360 		    __func__,
4361 		    i,
4362 		    nr,
4363 		    rate,
4364 		    cmp_rate);
4365 #endif
4366 
4367 		if (cmp_rate == rate)
4368 			return (i);
4369 	}
4370 
4371 	/* Failed? Start at the end */
4372 	return (IWN_MAX_TX_RETRIES - 1);
4373 }
4374 
4375 static int
4376 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4377 {
4378 	struct iwn_ops *ops = &sc->ops;
4379 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4380 	struct ieee80211vap *vap = ni->ni_vap;
4381 	struct ieee80211com *ic = ni->ni_ic;
4382 	struct iwn_node *wn = (void *)ni;
4383 	struct iwn_tx_ring *ring;
4384 	struct iwn_tx_desc *desc;
4385 	struct iwn_tx_data *data;
4386 	struct iwn_tx_cmd *cmd;
4387 	struct iwn_cmd_data *tx;
4388 	struct ieee80211_frame *wh;
4389 	struct ieee80211_key *k = NULL;
4390 	struct mbuf *m1;
4391 	uint32_t flags;
4392 	uint16_t qos;
4393 	u_int hdrlen;
4394 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4395 	uint8_t tid, type;
4396 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4397 
4398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4399 
4400 	IWN_LOCK_ASSERT(sc);
4401 
4402 	wh = mtod(m, struct ieee80211_frame *);
4403 	hdrlen = ieee80211_anyhdrsize(wh);
4404 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4405 
4406 	/* Select EDCA Access Category and TX ring for this frame. */
4407 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4408 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4409 		tid = qos & IEEE80211_QOS_TID;
4410 	} else {
4411 		qos = 0;
4412 		tid = 0;
4413 	}
4414 	ac = M_WME_GETAC(m);
4415 
4416 	/*
4417 	 * XXX TODO: Group addressed frames aren't aggregated and must
4418 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4419 	 * assigned from net80211.
4420 	 */
4421 
4422 	if (m->m_flags & M_AMPDU_MPDU) {
4423 		uint16_t seqno;
4424 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4425 
4426 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4427 			return EINVAL;
4428 		}
4429 
4430 		/*
4431 		 * Queue this frame to the hardware ring that we've
4432 		 * negotiated AMPDU TX on.
4433 		 *
4434 		 * Note that the sequence number must match the TX slot
4435 		 * being used!
4436 		 */
4437 		ac = *(int *)tap->txa_private;
4438 		seqno = ni->ni_txseqs[tid];
4439 		*(uint16_t *)wh->i_seq =
4440 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4441 		ring = &sc->txq[ac];
4442 		if ((seqno % 256) != ring->cur) {
4443 			device_printf(sc->sc_dev,
4444 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4445 			    __func__,
4446 			    m,
4447 			    seqno,
4448 			    seqno % 256,
4449 			    ring->cur);
4450 		}
4451 		ni->ni_txseqs[tid]++;
4452 	}
4453 	ring = &sc->txq[ac];
4454 	desc = &ring->desc[ring->cur];
4455 	data = &ring->data[ring->cur];
4456 
4457 	/* Choose a TX rate index. */
4458 	if (type == IEEE80211_FC0_TYPE_MGT ||
4459 	    type == IEEE80211_FC0_TYPE_CTL ||
4460 	    (m->m_flags & M_EAPOL) != 0)
4461 		rate = tp->mgmtrate;
4462 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4463 		rate = tp->mcastrate;
4464 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4465 		rate = tp->ucastrate;
4466 	else {
4467 		/* XXX pass pktlen */
4468 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4469 		rate = ni->ni_txrate;
4470 	}
4471 
4472 	/* Encrypt the frame if need be. */
4473 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4474 		/* Retrieve key for TX. */
4475 		k = ieee80211_crypto_encap(ni, m);
4476 		if (k == NULL) {
4477 			return ENOBUFS;
4478 		}
4479 		/* 802.11 header may have moved. */
4480 		wh = mtod(m, struct ieee80211_frame *);
4481 	}
4482 	totlen = m->m_pkthdr.len;
4483 
4484 	if (ieee80211_radiotap_active_vap(vap)) {
4485 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4486 
4487 		tap->wt_flags = 0;
4488 		tap->wt_rate = rate;
4489 		if (k != NULL)
4490 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4491 
4492 		ieee80211_radiotap_tx(vap, m);
4493 	}
4494 
4495 	/* Prepare TX firmware command. */
4496 	cmd = &ring->cmd[ring->cur];
4497 	cmd->code = IWN_CMD_TX_DATA;
4498 	cmd->flags = 0;
4499 	cmd->qid = ring->qid;
4500 	cmd->idx = ring->cur;
4501 
4502 	tx = (struct iwn_cmd_data *)cmd->data;
4503 	/* NB: No need to clear tx, all fields are reinitialized here. */
4504 	tx->scratch = 0;	/* clear "scratch" area */
4505 
4506 	flags = 0;
4507 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4508 		/* Unicast frame, check if an ACK is expected. */
4509 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4510 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4511 			flags |= IWN_TX_NEED_ACK;
4512 	}
4513 	if ((wh->i_fc[0] &
4514 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4515 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4516 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4517 
4518 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4519 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4520 
4521 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4522 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4523 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4524 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4525 			flags |= IWN_TX_NEED_RTS;
4526 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4527 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4528 				flags |= IWN_TX_NEED_CTS;
4529 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4530 				flags |= IWN_TX_NEED_RTS;
4531 		} else if ((rate & IEEE80211_RATE_MCS) &&
4532 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4533 			flags |= IWN_TX_NEED_RTS;
4534 		}
4535 
4536 		/* XXX HT protection? */
4537 
4538 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4539 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4540 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4541 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4542 				flags |= IWN_TX_NEED_PROTECTION;
4543 			} else
4544 				flags |= IWN_TX_FULL_TXOP;
4545 		}
4546 	}
4547 
4548 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4549 	    type != IEEE80211_FC0_TYPE_DATA)
4550 		tx->id = sc->broadcast_id;
4551 	else
4552 		tx->id = wn->id;
4553 
4554 	if (type == IEEE80211_FC0_TYPE_MGT) {
4555 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4556 
4557 		/* Tell HW to set timestamp in probe responses. */
4558 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4559 			flags |= IWN_TX_INSERT_TSTAMP;
4560 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4561 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4562 			tx->timeout = htole16(3);
4563 		else
4564 			tx->timeout = htole16(2);
4565 	} else
4566 		tx->timeout = htole16(0);
4567 
4568 	if (hdrlen & 3) {
4569 		/* First segment length must be a multiple of 4. */
4570 		flags |= IWN_TX_NEED_PADDING;
4571 		pad = 4 - (hdrlen & 3);
4572 	} else
4573 		pad = 0;
4574 
4575 	tx->len = htole16(totlen);
4576 	tx->tid = tid;
4577 	tx->rts_ntries = 60;
4578 	tx->data_ntries = 15;
4579 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4580 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4581 	if (tx->id == sc->broadcast_id) {
4582 		/* Group or management frame. */
4583 		tx->linkq = 0;
4584 	} else {
4585 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4586 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4587 	}
4588 
4589 	/* Set physical address of "scratch area". */
4590 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4591 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4592 
4593 	/* Copy 802.11 header in TX command. */
4594 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4595 
4596 	/* Trim 802.11 header. */
4597 	m_adj(m, hdrlen);
4598 	tx->security = 0;
4599 	tx->flags = htole32(flags);
4600 
4601 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4602 	    &nsegs, BUS_DMA_NOWAIT);
4603 	if (error != 0) {
4604 		if (error != EFBIG) {
4605 			device_printf(sc->sc_dev,
4606 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4607 			return error;
4608 		}
4609 		/* Too many DMA segments, linearize mbuf. */
4610 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4611 		if (m1 == NULL) {
4612 			device_printf(sc->sc_dev,
4613 			    "%s: could not defrag mbuf\n", __func__);
4614 			return ENOBUFS;
4615 		}
4616 		m = m1;
4617 
4618 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4619 		    segs, &nsegs, BUS_DMA_NOWAIT);
4620 		if (error != 0) {
4621 			device_printf(sc->sc_dev,
4622 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4623 			return error;
4624 		}
4625 	}
4626 
4627 	data->m = m;
4628 	data->ni = ni;
4629 
4630 	DPRINTF(sc, IWN_DEBUG_XMIT,
4631 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4632 	    __func__,
4633 	    ring->qid,
4634 	    ring->cur,
4635 	    m->m_pkthdr.len,
4636 	    nsegs,
4637 	    flags,
4638 	    rate,
4639 	    tx->rate);
4640 
4641 	/* Fill TX descriptor. */
4642 	desc->nsegs = 1;
4643 	if (m->m_len != 0)
4644 		desc->nsegs += nsegs;
4645 	/* First DMA segment is used by the TX command. */
4646 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4647 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4648 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4649 	/* Other DMA segments are for data payload. */
4650 	seg = &segs[0];
4651 	for (i = 1; i <= nsegs; i++) {
4652 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4653 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4654 		    seg->ds_len << 4);
4655 		seg++;
4656 	}
4657 
4658 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4659 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4660 	    BUS_DMASYNC_PREWRITE);
4661 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4662 	    BUS_DMASYNC_PREWRITE);
4663 
4664 	/* Update TX scheduler. */
4665 	if (ring->qid >= sc->firstaggqueue)
4666 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4667 
4668 	/* Kick TX ring. */
4669 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4670 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4671 
4672 	/* Mark TX ring as full if we reach a certain threshold. */
4673 	if (++ring->queued > IWN_TX_RING_HIMARK)
4674 		sc->qfullmsk |= 1 << ring->qid;
4675 
4676 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4677 
4678 	return 0;
4679 }
4680 
4681 static int
4682 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4683     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4684 {
4685 	struct iwn_ops *ops = &sc->ops;
4686 	struct ieee80211vap *vap = ni->ni_vap;
4687 	struct iwn_tx_cmd *cmd;
4688 	struct iwn_cmd_data *tx;
4689 	struct ieee80211_frame *wh;
4690 	struct iwn_tx_ring *ring;
4691 	struct iwn_tx_desc *desc;
4692 	struct iwn_tx_data *data;
4693 	struct mbuf *m1;
4694 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4695 	uint32_t flags;
4696 	u_int hdrlen;
4697 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4698 	uint8_t type;
4699 
4700 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4701 
4702 	IWN_LOCK_ASSERT(sc);
4703 
4704 	wh = mtod(m, struct ieee80211_frame *);
4705 	hdrlen = ieee80211_anyhdrsize(wh);
4706 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4707 
4708 	ac = params->ibp_pri & 3;
4709 
4710 	ring = &sc->txq[ac];
4711 	desc = &ring->desc[ring->cur];
4712 	data = &ring->data[ring->cur];
4713 
4714 	/* Choose a TX rate. */
4715 	rate = params->ibp_rate0;
4716 	totlen = m->m_pkthdr.len;
4717 
4718 	/* Prepare TX firmware command. */
4719 	cmd = &ring->cmd[ring->cur];
4720 	cmd->code = IWN_CMD_TX_DATA;
4721 	cmd->flags = 0;
4722 	cmd->qid = ring->qid;
4723 	cmd->idx = ring->cur;
4724 
4725 	tx = (struct iwn_cmd_data *)cmd->data;
4726 	/* NB: No need to clear tx, all fields are reinitialized here. */
4727 	tx->scratch = 0;	/* clear "scratch" area */
4728 
4729 	flags = 0;
4730 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4731 		flags |= IWN_TX_NEED_ACK;
4732 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4733 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4734 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4735 			flags &= ~IWN_TX_NEED_RTS;
4736 			flags |= IWN_TX_NEED_PROTECTION;
4737 		} else
4738 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4739 	}
4740 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4741 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4742 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4743 			flags &= ~IWN_TX_NEED_CTS;
4744 			flags |= IWN_TX_NEED_PROTECTION;
4745 		} else
4746 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4747 	}
4748 	if (type == IEEE80211_FC0_TYPE_MGT) {
4749 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4750 
4751 		/* Tell HW to set timestamp in probe responses. */
4752 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4753 			flags |= IWN_TX_INSERT_TSTAMP;
4754 
4755 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4756 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4757 			tx->timeout = htole16(3);
4758 		else
4759 			tx->timeout = htole16(2);
4760 	} else
4761 		tx->timeout = htole16(0);
4762 
4763 	if (hdrlen & 3) {
4764 		/* First segment length must be a multiple of 4. */
4765 		flags |= IWN_TX_NEED_PADDING;
4766 		pad = 4 - (hdrlen & 3);
4767 	} else
4768 		pad = 0;
4769 
4770 	if (ieee80211_radiotap_active_vap(vap)) {
4771 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4772 
4773 		tap->wt_flags = 0;
4774 		tap->wt_rate = rate;
4775 
4776 		ieee80211_radiotap_tx(vap, m);
4777 	}
4778 
4779 	tx->len = htole16(totlen);
4780 	tx->tid = 0;
4781 	tx->id = sc->broadcast_id;
4782 	tx->rts_ntries = params->ibp_try1;
4783 	tx->data_ntries = params->ibp_try0;
4784 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4785 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4786 
4787 	/* Group or management frame. */
4788 	tx->linkq = 0;
4789 
4790 	/* Set physical address of "scratch area". */
4791 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4792 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4793 
4794 	/* Copy 802.11 header in TX command. */
4795 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4796 
4797 	/* Trim 802.11 header. */
4798 	m_adj(m, hdrlen);
4799 	tx->security = 0;
4800 	tx->flags = htole32(flags);
4801 
4802 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4803 	    &nsegs, BUS_DMA_NOWAIT);
4804 	if (error != 0) {
4805 		if (error != EFBIG) {
4806 			device_printf(sc->sc_dev,
4807 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4808 			return error;
4809 		}
4810 		/* Too many DMA segments, linearize mbuf. */
4811 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4812 		if (m1 == NULL) {
4813 			device_printf(sc->sc_dev,
4814 			    "%s: could not defrag mbuf\n", __func__);
4815 			return ENOBUFS;
4816 		}
4817 		m = m1;
4818 
4819 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4820 		    segs, &nsegs, BUS_DMA_NOWAIT);
4821 		if (error != 0) {
4822 			device_printf(sc->sc_dev,
4823 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4824 			return error;
4825 		}
4826 	}
4827 
4828 	data->m = m;
4829 	data->ni = ni;
4830 
4831 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4832 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4833 
4834 	/* Fill TX descriptor. */
4835 	desc->nsegs = 1;
4836 	if (m->m_len != 0)
4837 		desc->nsegs += nsegs;
4838 	/* First DMA segment is used by the TX command. */
4839 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4840 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4841 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4842 	/* Other DMA segments are for data payload. */
4843 	seg = &segs[0];
4844 	for (i = 1; i <= nsegs; i++) {
4845 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4846 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4847 		    seg->ds_len << 4);
4848 		seg++;
4849 	}
4850 
4851 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4852 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4853 	    BUS_DMASYNC_PREWRITE);
4854 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4855 	    BUS_DMASYNC_PREWRITE);
4856 
4857 	/* Update TX scheduler. */
4858 	if (ring->qid >= sc->firstaggqueue)
4859 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4860 
4861 	/* Kick TX ring. */
4862 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4863 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4864 
4865 	/* Mark TX ring as full if we reach a certain threshold. */
4866 	if (++ring->queued > IWN_TX_RING_HIMARK)
4867 		sc->qfullmsk |= 1 << ring->qid;
4868 
4869 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4870 
4871 	return 0;
4872 }
4873 
4874 static void
4875 iwn_xmit_task(void *arg0, int pending)
4876 {
4877 	struct iwn_softc *sc = arg0;
4878 	struct ieee80211_node *ni;
4879 	struct mbuf *m;
4880 	int error;
4881 	struct ieee80211_bpf_params p;
4882 	int have_p;
4883 
4884 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4885 
4886 	IWN_LOCK(sc);
4887 	/*
4888 	 * Dequeue frames, attempt to transmit,
4889 	 * then disable beaconwait when we're done.
4890 	 */
4891 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4892 		have_p = 0;
4893 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4894 
4895 		/* Get xmit params if appropriate */
4896 		if (ieee80211_get_xmit_params(m, &p) == 0)
4897 			have_p = 1;
4898 
4899 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4900 		    __func__, m, have_p);
4901 
4902 		/* If we have xmit params, use them */
4903 		if (have_p)
4904 			error = iwn_tx_data_raw(sc, m, ni, &p);
4905 		else
4906 			error = iwn_tx_data(sc, m, ni);
4907 
4908 		if (error != 0) {
4909 			if_inc_counter(ni->ni_vap->iv_ifp,
4910 			    IFCOUNTER_OERRORS, 1);
4911 			ieee80211_free_node(ni);
4912 			m_freem(m);
4913 		}
4914 	}
4915 
4916 	sc->sc_beacon_wait = 0;
4917 	IWN_UNLOCK(sc);
4918 }
4919 
4920 /*
4921  * raw frame xmit - free node/reference if failed.
4922  */
4923 static int
4924 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4925     const struct ieee80211_bpf_params *params)
4926 {
4927 	struct ieee80211com *ic = ni->ni_ic;
4928 	struct iwn_softc *sc = ic->ic_softc;
4929 	int error = 0;
4930 
4931 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4932 
4933 	IWN_LOCK(sc);
4934 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4935 		m_freem(m);
4936 		IWN_UNLOCK(sc);
4937 		return (ENETDOWN);
4938 	}
4939 
4940 	/* queue frame if we have to */
4941 	if (sc->sc_beacon_wait) {
4942 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4943 			m_freem(m);
4944 			IWN_UNLOCK(sc);
4945 			return (ENOBUFS);
4946 		}
4947 		/* Queued, so just return OK */
4948 		IWN_UNLOCK(sc);
4949 		return (0);
4950 	}
4951 
4952 	if (params == NULL) {
4953 		/*
4954 		 * Legacy path; interpret frame contents to decide
4955 		 * precisely how to send the frame.
4956 		 */
4957 		error = iwn_tx_data(sc, m, ni);
4958 	} else {
4959 		/*
4960 		 * Caller supplied explicit parameters to use in
4961 		 * sending the frame.
4962 		 */
4963 		error = iwn_tx_data_raw(sc, m, ni, params);
4964 	}
4965 	if (error == 0)
4966 		sc->sc_tx_timer = 5;
4967 	else
4968 		m_freem(m);
4969 
4970 	IWN_UNLOCK(sc);
4971 
4972 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4973 
4974 	return (error);
4975 }
4976 
4977 /*
4978  * transmit - don't free mbuf if failed; don't free node ref if failed.
4979  */
4980 static int
4981 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4982 {
4983 	struct iwn_softc *sc = ic->ic_softc;
4984 	struct ieee80211_node *ni;
4985 	int error;
4986 
4987 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4988 
4989 	IWN_LOCK(sc);
4990 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4991 		IWN_UNLOCK(sc);
4992 		return (ENXIO);
4993 	}
4994 
4995 	if (sc->qfullmsk) {
4996 		IWN_UNLOCK(sc);
4997 		return (ENOBUFS);
4998 	}
4999 
5000 	error = iwn_tx_data(sc, m, ni);
5001 	if (!error)
5002 		sc->sc_tx_timer = 5;
5003 	IWN_UNLOCK(sc);
5004 	return (error);
5005 }
5006 
5007 static void
5008 iwn_scan_timeout(void *arg)
5009 {
5010 	struct iwn_softc *sc = arg;
5011 	struct ieee80211com *ic = &sc->sc_ic;
5012 
5013 	ic_printf(ic, "scan timeout\n");
5014 	ieee80211_restart_all(ic);
5015 }
5016 
5017 static void
5018 iwn_watchdog(void *arg)
5019 {
5020 	struct iwn_softc *sc = arg;
5021 	struct ieee80211com *ic = &sc->sc_ic;
5022 
5023 	IWN_LOCK_ASSERT(sc);
5024 
5025 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5026 
5027 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5028 
5029 	if (sc->sc_tx_timer > 0) {
5030 		if (--sc->sc_tx_timer == 0) {
5031 			ic_printf(ic, "device timeout\n");
5032 			ieee80211_restart_all(ic);
5033 			return;
5034 		}
5035 	}
5036 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5037 }
5038 
5039 static int
5040 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5041 {
5042 
5043 	return (0);
5044 }
5045 
5046 static int
5047 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5048 {
5049 
5050 	return (0);
5051 }
5052 
5053 static int
5054 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5055     struct thread *td)
5056 {
5057 	int rc;
5058 	struct iwn_softc *sc = dev->si_drv1;
5059 	struct iwn_ioctl_data *d;
5060 
5061 	rc = priv_check(td, PRIV_DRIVER);
5062 	if (rc != 0)
5063 		return (0);
5064 
5065 	switch (cmd) {
5066 	case SIOCGIWNSTATS:
5067 		d = (struct iwn_ioctl_data *) data;
5068 		IWN_LOCK(sc);
5069 		/* XXX validate permissions/memory/etc? */
5070 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5071 		IWN_UNLOCK(sc);
5072 		break;
5073 	case SIOCZIWNSTATS:
5074 		IWN_LOCK(sc);
5075 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5076 		IWN_UNLOCK(sc);
5077 		break;
5078 	default:
5079 		rc = EINVAL;
5080 		break;
5081 	}
5082 	return (rc);
5083 }
5084 
5085 static int
5086 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5087 {
5088 
5089 	return (ENOTTY);
5090 }
5091 
5092 static void
5093 iwn_parent(struct ieee80211com *ic)
5094 {
5095 	struct iwn_softc *sc = ic->ic_softc;
5096 	struct ieee80211vap *vap;
5097 	int error;
5098 
5099 	if (ic->ic_nrunning > 0) {
5100 		error = iwn_init(sc);
5101 
5102 		switch (error) {
5103 		case 0:
5104 			ieee80211_start_all(ic);
5105 			break;
5106 		case EAGAIN:
5107 			/* radio is disabled via RFkill switch */
5108 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5109 			break;
5110 		default:
5111 			vap = TAILQ_FIRST(&ic->ic_vaps);
5112 			if (vap != NULL)
5113 				ieee80211_stop(vap);
5114 			break;
5115 		}
5116 	} else
5117 		iwn_stop(sc);
5118 }
5119 
5120 /*
5121  * Send a command to the firmware.
5122  */
5123 static int
5124 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5125 {
5126 	struct iwn_tx_ring *ring;
5127 	struct iwn_tx_desc *desc;
5128 	struct iwn_tx_data *data;
5129 	struct iwn_tx_cmd *cmd;
5130 	struct mbuf *m;
5131 	bus_addr_t paddr;
5132 	int totlen, error;
5133 	int cmd_queue_num;
5134 
5135 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5136 
5137 	if (async == 0)
5138 		IWN_LOCK_ASSERT(sc);
5139 
5140 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5141 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5142 	else
5143 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5144 
5145 	ring = &sc->txq[cmd_queue_num];
5146 	desc = &ring->desc[ring->cur];
5147 	data = &ring->data[ring->cur];
5148 	totlen = 4 + size;
5149 
5150 	if (size > sizeof cmd->data) {
5151 		/* Command is too large to fit in a descriptor. */
5152 		if (totlen > MCLBYTES)
5153 			return EINVAL;
5154 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5155 		if (m == NULL)
5156 			return ENOMEM;
5157 		cmd = mtod(m, struct iwn_tx_cmd *);
5158 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5159 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5160 		if (error != 0) {
5161 			m_freem(m);
5162 			return error;
5163 		}
5164 		data->m = m;
5165 	} else {
5166 		cmd = &ring->cmd[ring->cur];
5167 		paddr = data->cmd_paddr;
5168 	}
5169 
5170 	cmd->code = code;
5171 	cmd->flags = 0;
5172 	cmd->qid = ring->qid;
5173 	cmd->idx = ring->cur;
5174 	memcpy(cmd->data, buf, size);
5175 
5176 	desc->nsegs = 1;
5177 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5178 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5179 
5180 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5181 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5182 	    cmd->flags, cmd->qid, cmd->idx);
5183 
5184 	if (size > sizeof cmd->data) {
5185 		bus_dmamap_sync(ring->data_dmat, data->map,
5186 		    BUS_DMASYNC_PREWRITE);
5187 	} else {
5188 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5189 		    BUS_DMASYNC_PREWRITE);
5190 	}
5191 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5192 	    BUS_DMASYNC_PREWRITE);
5193 
5194 	/* Kick command ring. */
5195 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5196 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5197 
5198 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5199 
5200 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5201 }
5202 
5203 static int
5204 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5205 {
5206 	struct iwn4965_node_info hnode;
5207 	caddr_t src, dst;
5208 
5209 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5210 
5211 	/*
5212 	 * We use the node structure for 5000 Series internally (it is
5213 	 * a superset of the one for 4965AGN). We thus copy the common
5214 	 * fields before sending the command.
5215 	 */
5216 	src = (caddr_t)node;
5217 	dst = (caddr_t)&hnode;
5218 	memcpy(dst, src, 48);
5219 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5220 	memcpy(dst + 48, src + 72, 20);
5221 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5222 }
5223 
5224 static int
5225 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5226 {
5227 
5228 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5229 
5230 	/* Direct mapping. */
5231 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5232 }
5233 
5234 static int
5235 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5236 {
5237 	struct iwn_node *wn = (void *)ni;
5238 	struct ieee80211_rateset *rs;
5239 	struct iwn_cmd_link_quality linkq;
5240 	int i, rate, txrate;
5241 	int is_11n;
5242 
5243 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5244 
5245 	memset(&linkq, 0, sizeof linkq);
5246 	linkq.id = wn->id;
5247 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5248 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5249 
5250 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5251 	linkq.ampdu_threshold = 3;
5252 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5253 
5254 	DPRINTF(sc, IWN_DEBUG_XMIT,
5255 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5256 	    __func__,
5257 	    linkq.antmsk_1stream,
5258 	    linkq.antmsk_2stream,
5259 	    sc->ntxchains);
5260 
5261 	/*
5262 	 * Are we using 11n rates? Ensure the channel is
5263 	 * 11n _and_ we have some 11n rates, or don't
5264 	 * try.
5265 	 */
5266 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5267 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5268 		is_11n = 1;
5269 	} else {
5270 		rs = &ni->ni_rates;
5271 		is_11n = 0;
5272 	}
5273 
5274 	/* Start at highest available bit-rate. */
5275 	/*
5276 	 * XXX this is all very dirty!
5277 	 */
5278 	if (is_11n)
5279 		txrate = ni->ni_htrates.rs_nrates - 1;
5280 	else
5281 		txrate = rs->rs_nrates - 1;
5282 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5283 		uint32_t plcp;
5284 
5285 		/*
5286 		 * XXX TODO: ensure the last two slots are the two lowest
5287 		 * rate entries, just for now.
5288 		 */
5289 		if (i == 14 || i == 15)
5290 			txrate = 0;
5291 
5292 		if (is_11n)
5293 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5294 		else
5295 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5296 
5297 		/* Do rate -> PLCP config mapping */
5298 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5299 		linkq.retry[i] = plcp;
5300 		DPRINTF(sc, IWN_DEBUG_XMIT,
5301 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5302 		    __func__,
5303 		    i,
5304 		    txrate,
5305 		    rate,
5306 		    le32toh(plcp));
5307 
5308 		/*
5309 		 * The mimo field is an index into the table which
5310 		 * indicates the first index where it and subsequent entries
5311 		 * will not be using MIMO.
5312 		 *
5313 		 * Since we're filling linkq from 0..15 and we're filling
5314 		 * from the highest MCS rates to the lowest rates, if we
5315 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5316 		 * the next entry.)  That way if the next entry is a non-MIMO
5317 		 * entry, we're already pointing at it.
5318 		 */
5319 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5320 		    IEEE80211_RV(le32toh(plcp)) > 7)
5321 			linkq.mimo = i + 1;
5322 
5323 		/* Next retry at immediate lower bit-rate. */
5324 		if (txrate > 0)
5325 			txrate--;
5326 	}
5327 	/*
5328 	 * If we reached the end of the list and indeed we hit
5329 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5330 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5331 	 */
5332 	if (linkq.mimo > 15)
5333 		linkq.mimo = 15;
5334 
5335 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5336 
5337 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5338 
5339 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5340 }
5341 
5342 /*
5343  * Broadcast node is used to send group-addressed and management frames.
5344  */
5345 static int
5346 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5347 {
5348 	struct iwn_ops *ops = &sc->ops;
5349 	struct ieee80211com *ic = &sc->sc_ic;
5350 	struct iwn_node_info node;
5351 	struct iwn_cmd_link_quality linkq;
5352 	uint8_t txant;
5353 	int i, error;
5354 
5355 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5356 
5357 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5358 
5359 	memset(&node, 0, sizeof node);
5360 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5361 	node.id = sc->broadcast_id;
5362 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5363 	if ((error = ops->add_node(sc, &node, async)) != 0)
5364 		return error;
5365 
5366 	/* Use the first valid TX antenna. */
5367 	txant = IWN_LSB(sc->txchainmask);
5368 
5369 	memset(&linkq, 0, sizeof linkq);
5370 	linkq.id = sc->broadcast_id;
5371 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5372 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5373 	linkq.ampdu_max = 64;
5374 	linkq.ampdu_threshold = 3;
5375 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5376 
5377 	/* Use lowest mandatory bit-rate. */
5378 	/* XXX rate table lookup? */
5379 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5380 		linkq.retry[0] = htole32(0xd);
5381 	else
5382 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5383 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5384 	/* Use same bit-rate for all TX retries. */
5385 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5386 		linkq.retry[i] = linkq.retry[0];
5387 	}
5388 
5389 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5390 
5391 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5392 }
5393 
5394 static int
5395 iwn_updateedca(struct ieee80211com *ic)
5396 {
5397 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5398 	struct iwn_softc *sc = ic->ic_softc;
5399 	struct iwn_edca_params cmd;
5400 	int aci;
5401 
5402 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5403 
5404 	memset(&cmd, 0, sizeof cmd);
5405 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5406 
5407 	IEEE80211_LOCK(ic);
5408 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5409 		const struct wmeParams *ac =
5410 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5411 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5412 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5413 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5414 		cmd.ac[aci].txoplimit =
5415 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5416 	}
5417 	IEEE80211_UNLOCK(ic);
5418 
5419 	IWN_LOCK(sc);
5420 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5421 	IWN_UNLOCK(sc);
5422 
5423 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5424 
5425 	return 0;
5426 #undef IWN_EXP2
5427 }
5428 
5429 static void
5430 iwn_update_mcast(struct ieee80211com *ic)
5431 {
5432 	/* Ignore */
5433 }
5434 
5435 static void
5436 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5437 {
5438 	struct iwn_cmd_led led;
5439 
5440 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5441 
5442 #if 0
5443 	/* XXX don't set LEDs during scan? */
5444 	if (sc->sc_is_scanning)
5445 		return;
5446 #endif
5447 
5448 	/* Clear microcode LED ownership. */
5449 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5450 
5451 	led.which = which;
5452 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5453 	led.off = off;
5454 	led.on = on;
5455 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5456 }
5457 
5458 /*
5459  * Set the critical temperature at which the firmware will stop the radio
5460  * and notify us.
5461  */
5462 static int
5463 iwn_set_critical_temp(struct iwn_softc *sc)
5464 {
5465 	struct iwn_critical_temp crit;
5466 	int32_t temp;
5467 
5468 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5469 
5470 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5471 
5472 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5473 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5474 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5475 		temp = IWN_CTOK(110);
5476 	else
5477 		temp = 110;
5478 	memset(&crit, 0, sizeof crit);
5479 	crit.tempR = htole32(temp);
5480 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5481 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5482 }
5483 
5484 static int
5485 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5486 {
5487 	struct iwn_cmd_timing cmd;
5488 	uint64_t val, mod;
5489 
5490 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5491 
5492 	memset(&cmd, 0, sizeof cmd);
5493 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5494 	cmd.bintval = htole16(ni->ni_intval);
5495 	cmd.lintval = htole16(10);
5496 
5497 	/* Compute remaining time until next beacon. */
5498 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5499 	mod = le64toh(cmd.tstamp) % val;
5500 	cmd.binitval = htole32((uint32_t)(val - mod));
5501 
5502 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5503 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5504 
5505 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5506 }
5507 
5508 static void
5509 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5510 {
5511 
5512 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5513 
5514 	/* Adjust TX power if need be (delta >= 3 degC). */
5515 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5516 	    __func__, sc->temp, temp);
5517 	if (abs(temp - sc->temp) >= 3) {
5518 		/* Record temperature of last calibration. */
5519 		sc->temp = temp;
5520 		(void)iwn4965_set_txpower(sc, 1);
5521 	}
5522 }
5523 
5524 /*
5525  * Set TX power for current channel (each rate has its own power settings).
5526  * This function takes into account the regulatory information from EEPROM,
5527  * the current temperature and the current voltage.
5528  */
5529 static int
5530 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5531 {
5532 /* Fixed-point arithmetic division using a n-bit fractional part. */
5533 #define fdivround(a, b, n)	\
5534 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5535 /* Linear interpolation. */
5536 #define interpolate(x, x1, y1, x2, y2, n)	\
5537 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5538 
5539 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5540 	struct iwn_ucode_info *uc = &sc->ucode_info;
5541 	struct iwn4965_cmd_txpower cmd;
5542 	struct iwn4965_eeprom_chan_samples *chans;
5543 	const uint8_t *rf_gain, *dsp_gain;
5544 	int32_t vdiff, tdiff;
5545 	int i, is_chan_5ghz, c, grp, maxpwr;
5546 	uint8_t chan;
5547 
5548 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5549 	/* Retrieve current channel from last RXON. */
5550 	chan = sc->rxon->chan;
5551 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5552 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5553 	    chan);
5554 
5555 	memset(&cmd, 0, sizeof cmd);
5556 	cmd.band = is_chan_5ghz ? 0 : 1;
5557 	cmd.chan = chan;
5558 
5559 	if (is_chan_5ghz) {
5560 		maxpwr   = sc->maxpwr5GHz;
5561 		rf_gain  = iwn4965_rf_gain_5ghz;
5562 		dsp_gain = iwn4965_dsp_gain_5ghz;
5563 	} else {
5564 		maxpwr   = sc->maxpwr2GHz;
5565 		rf_gain  = iwn4965_rf_gain_2ghz;
5566 		dsp_gain = iwn4965_dsp_gain_2ghz;
5567 	}
5568 
5569 	/* Compute voltage compensation. */
5570 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5571 	if (vdiff > 0)
5572 		vdiff *= 2;
5573 	if (abs(vdiff) > 2)
5574 		vdiff = 0;
5575 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5576 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5577 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5578 
5579 	/* Get channel attenuation group. */
5580 	if (chan <= 20)		/* 1-20 */
5581 		grp = 4;
5582 	else if (chan <= 43)	/* 34-43 */
5583 		grp = 0;
5584 	else if (chan <= 70)	/* 44-70 */
5585 		grp = 1;
5586 	else if (chan <= 124)	/* 71-124 */
5587 		grp = 2;
5588 	else			/* 125-200 */
5589 		grp = 3;
5590 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5591 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5592 
5593 	/* Get channel sub-band. */
5594 	for (i = 0; i < IWN_NBANDS; i++)
5595 		if (sc->bands[i].lo != 0 &&
5596 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5597 			break;
5598 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5599 		return EINVAL;
5600 	chans = sc->bands[i].chans;
5601 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5602 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5603 
5604 	for (c = 0; c < 2; c++) {
5605 		uint8_t power, gain, temp;
5606 		int maxchpwr, pwr, ridx, idx;
5607 
5608 		power = interpolate(chan,
5609 		    chans[0].num, chans[0].samples[c][1].power,
5610 		    chans[1].num, chans[1].samples[c][1].power, 1);
5611 		gain  = interpolate(chan,
5612 		    chans[0].num, chans[0].samples[c][1].gain,
5613 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5614 		temp  = interpolate(chan,
5615 		    chans[0].num, chans[0].samples[c][1].temp,
5616 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5617 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5618 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5619 		    __func__, c, power, gain, temp);
5620 
5621 		/* Compute temperature compensation. */
5622 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5623 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5624 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5625 		    __func__, tdiff, sc->temp, temp);
5626 
5627 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5628 			/* Convert dBm to half-dBm. */
5629 			maxchpwr = sc->maxpwr[chan] * 2;
5630 			if ((ridx / 8) & 1)
5631 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5632 
5633 			pwr = maxpwr;
5634 
5635 			/* Adjust TX power based on rate. */
5636 			if ((ridx % 8) == 5)
5637 				pwr -= 15;	/* OFDM48: -7.5dB */
5638 			else if ((ridx % 8) == 6)
5639 				pwr -= 17;	/* OFDM54: -8.5dB */
5640 			else if ((ridx % 8) == 7)
5641 				pwr -= 20;	/* OFDM60: -10dB */
5642 			else
5643 				pwr -= 10;	/* Others: -5dB */
5644 
5645 			/* Do not exceed channel max TX power. */
5646 			if (pwr > maxchpwr)
5647 				pwr = maxchpwr;
5648 
5649 			idx = gain - (pwr - power) - tdiff - vdiff;
5650 			if ((ridx / 8) & 1)	/* MIMO */
5651 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5652 
5653 			if (cmd.band == 0)
5654 				idx += 9;	/* 5GHz */
5655 			if (ridx == IWN_RIDX_MAX)
5656 				idx += 5;	/* CCK */
5657 
5658 			/* Make sure idx stays in a valid range. */
5659 			if (idx < 0)
5660 				idx = 0;
5661 			else if (idx > IWN4965_MAX_PWR_INDEX)
5662 				idx = IWN4965_MAX_PWR_INDEX;
5663 
5664 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5665 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5666 			    __func__, c, ridx, idx);
5667 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5668 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5669 		}
5670 	}
5671 
5672 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5673 	    "%s: set tx power for chan %d\n", __func__, chan);
5674 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5675 
5676 #undef interpolate
5677 #undef fdivround
5678 }
5679 
5680 static int
5681 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5682 {
5683 	struct iwn5000_cmd_txpower cmd;
5684 	int cmdid;
5685 
5686 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5687 
5688 	/*
5689 	 * TX power calibration is handled automatically by the firmware
5690 	 * for 5000 Series.
5691 	 */
5692 	memset(&cmd, 0, sizeof cmd);
5693 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5694 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5695 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5696 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5697 	    "%s: setting TX power; rev=%d\n",
5698 	    __func__,
5699 	    IWN_UCODE_API(sc->ucode_rev));
5700 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5701 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5702 	else
5703 		cmdid = IWN_CMD_TXPOWER_DBM;
5704 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5705 }
5706 
5707 /*
5708  * Retrieve the maximum RSSI (in dBm) among receivers.
5709  */
5710 static int
5711 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5712 {
5713 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5714 	uint8_t mask, agc;
5715 	int rssi;
5716 
5717 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5718 
5719 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5720 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5721 
5722 	rssi = 0;
5723 	if (mask & IWN_ANT_A)
5724 		rssi = MAX(rssi, phy->rssi[0]);
5725 	if (mask & IWN_ANT_B)
5726 		rssi = MAX(rssi, phy->rssi[2]);
5727 	if (mask & IWN_ANT_C)
5728 		rssi = MAX(rssi, phy->rssi[4]);
5729 
5730 	DPRINTF(sc, IWN_DEBUG_RECV,
5731 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5732 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5733 	    rssi - agc - IWN_RSSI_TO_DBM);
5734 	return rssi - agc - IWN_RSSI_TO_DBM;
5735 }
5736 
5737 static int
5738 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5739 {
5740 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5741 	uint8_t agc;
5742 	int rssi;
5743 
5744 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5745 
5746 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5747 
5748 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5749 		   le16toh(phy->rssi[1]) & 0xff);
5750 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5751 
5752 	DPRINTF(sc, IWN_DEBUG_RECV,
5753 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5754 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5755 	    rssi - agc - IWN_RSSI_TO_DBM);
5756 	return rssi - agc - IWN_RSSI_TO_DBM;
5757 }
5758 
5759 /*
5760  * Retrieve the average noise (in dBm) among receivers.
5761  */
5762 static int
5763 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5764 {
5765 	int i, total, nbant, noise;
5766 
5767 	total = nbant = 0;
5768 	for (i = 0; i < 3; i++) {
5769 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5770 			continue;
5771 		total += noise;
5772 		nbant++;
5773 	}
5774 	/* There should be at least one antenna but check anyway. */
5775 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5776 }
5777 
5778 /*
5779  * Compute temperature (in degC) from last received statistics.
5780  */
5781 static int
5782 iwn4965_get_temperature(struct iwn_softc *sc)
5783 {
5784 	struct iwn_ucode_info *uc = &sc->ucode_info;
5785 	int32_t r1, r2, r3, r4, temp;
5786 
5787 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5788 
5789 	r1 = le32toh(uc->temp[0].chan20MHz);
5790 	r2 = le32toh(uc->temp[1].chan20MHz);
5791 	r3 = le32toh(uc->temp[2].chan20MHz);
5792 	r4 = le32toh(sc->rawtemp);
5793 
5794 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5795 		return 0;
5796 
5797 	/* Sign-extend 23-bit R4 value to 32-bit. */
5798 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5799 	/* Compute temperature in Kelvin. */
5800 	temp = (259 * (r4 - r2)) / (r3 - r1);
5801 	temp = (temp * 97) / 100 + 8;
5802 
5803 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5804 	    IWN_KTOC(temp));
5805 	return IWN_KTOC(temp);
5806 }
5807 
5808 static int
5809 iwn5000_get_temperature(struct iwn_softc *sc)
5810 {
5811 	int32_t temp;
5812 
5813 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5814 
5815 	/*
5816 	 * Temperature is not used by the driver for 5000 Series because
5817 	 * TX power calibration is handled by firmware.
5818 	 */
5819 	temp = le32toh(sc->rawtemp);
5820 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5821 		temp = (temp / -5) + sc->temp_off;
5822 		temp = IWN_KTOC(temp);
5823 	}
5824 	return temp;
5825 }
5826 
5827 /*
5828  * Initialize sensitivity calibration state machine.
5829  */
5830 static int
5831 iwn_init_sensitivity(struct iwn_softc *sc)
5832 {
5833 	struct iwn_ops *ops = &sc->ops;
5834 	struct iwn_calib_state *calib = &sc->calib;
5835 	uint32_t flags;
5836 	int error;
5837 
5838 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5839 
5840 	/* Reset calibration state machine. */
5841 	memset(calib, 0, sizeof (*calib));
5842 	calib->state = IWN_CALIB_STATE_INIT;
5843 	calib->cck_state = IWN_CCK_STATE_HIFA;
5844 	/* Set initial correlation values. */
5845 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5846 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5847 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5848 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5849 	calib->cck_x4      = 125;
5850 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5851 	calib->energy_cck  = sc->limits->energy_cck;
5852 
5853 	/* Write initial sensitivity. */
5854 	if ((error = iwn_send_sensitivity(sc)) != 0)
5855 		return error;
5856 
5857 	/* Write initial gains. */
5858 	if ((error = ops->init_gains(sc)) != 0)
5859 		return error;
5860 
5861 	/* Request statistics at each beacon interval. */
5862 	flags = 0;
5863 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5864 	    __func__);
5865 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5866 }
5867 
5868 /*
5869  * Collect noise and RSSI statistics for the first 20 beacons received
5870  * after association and use them to determine connected antennas and
5871  * to set differential gains.
5872  */
5873 static void
5874 iwn_collect_noise(struct iwn_softc *sc,
5875     const struct iwn_rx_general_stats *stats)
5876 {
5877 	struct iwn_ops *ops = &sc->ops;
5878 	struct iwn_calib_state *calib = &sc->calib;
5879 	struct ieee80211com *ic = &sc->sc_ic;
5880 	uint32_t val;
5881 	int i;
5882 
5883 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5884 
5885 	/* Accumulate RSSI and noise for all 3 antennas. */
5886 	for (i = 0; i < 3; i++) {
5887 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5888 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5889 	}
5890 	/* NB: We update differential gains only once after 20 beacons. */
5891 	if (++calib->nbeacons < 20)
5892 		return;
5893 
5894 	/* Determine highest average RSSI. */
5895 	val = MAX(calib->rssi[0], calib->rssi[1]);
5896 	val = MAX(calib->rssi[2], val);
5897 
5898 	/* Determine which antennas are connected. */
5899 	sc->chainmask = sc->rxchainmask;
5900 	for (i = 0; i < 3; i++)
5901 		if (val - calib->rssi[i] > 15 * 20)
5902 			sc->chainmask &= ~(1 << i);
5903 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5904 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5905 	    __func__, sc->rxchainmask, sc->chainmask);
5906 
5907 	/* If none of the TX antennas are connected, keep at least one. */
5908 	if ((sc->chainmask & sc->txchainmask) == 0)
5909 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5910 
5911 	(void)ops->set_gains(sc);
5912 	calib->state = IWN_CALIB_STATE_RUN;
5913 
5914 #ifdef notyet
5915 	/* XXX Disable RX chains with no antennas connected. */
5916 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5917 	if (sc->sc_is_scanning)
5918 		device_printf(sc->sc_dev,
5919 		    "%s: is_scanning set, before RXON\n",
5920 		    __func__);
5921 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5922 #endif
5923 
5924 	/* Enable power-saving mode if requested by user. */
5925 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5926 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5927 
5928 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5929 
5930 }
5931 
5932 static int
5933 iwn4965_init_gains(struct iwn_softc *sc)
5934 {
5935 	struct iwn_phy_calib_gain cmd;
5936 
5937 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5938 
5939 	memset(&cmd, 0, sizeof cmd);
5940 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5941 	/* Differential gains initially set to 0 for all 3 antennas. */
5942 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5943 	    "%s: setting initial differential gains\n", __func__);
5944 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5945 }
5946 
5947 static int
5948 iwn5000_init_gains(struct iwn_softc *sc)
5949 {
5950 	struct iwn_phy_calib cmd;
5951 
5952 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5953 
5954 	memset(&cmd, 0, sizeof cmd);
5955 	cmd.code = sc->reset_noise_gain;
5956 	cmd.ngroups = 1;
5957 	cmd.isvalid = 1;
5958 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5959 	    "%s: setting initial differential gains\n", __func__);
5960 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5961 }
5962 
5963 static int
5964 iwn4965_set_gains(struct iwn_softc *sc)
5965 {
5966 	struct iwn_calib_state *calib = &sc->calib;
5967 	struct iwn_phy_calib_gain cmd;
5968 	int i, delta, noise;
5969 
5970 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5971 
5972 	/* Get minimal noise among connected antennas. */
5973 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5974 	for (i = 0; i < 3; i++)
5975 		if (sc->chainmask & (1 << i))
5976 			noise = MIN(calib->noise[i], noise);
5977 
5978 	memset(&cmd, 0, sizeof cmd);
5979 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5980 	/* Set differential gains for connected antennas. */
5981 	for (i = 0; i < 3; i++) {
5982 		if (sc->chainmask & (1 << i)) {
5983 			/* Compute attenuation (in unit of 1.5dB). */
5984 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5985 			/* NB: delta <= 0 */
5986 			/* Limit to [-4.5dB,0]. */
5987 			cmd.gain[i] = MIN(abs(delta), 3);
5988 			if (delta < 0)
5989 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5990 		}
5991 	}
5992 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5993 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5994 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5995 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5996 }
5997 
5998 static int
5999 iwn5000_set_gains(struct iwn_softc *sc)
6000 {
6001 	struct iwn_calib_state *calib = &sc->calib;
6002 	struct iwn_phy_calib_gain cmd;
6003 	int i, ant, div, delta;
6004 
6005 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6006 
6007 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
6008 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
6009 
6010 	memset(&cmd, 0, sizeof cmd);
6011 	cmd.code = sc->noise_gain;
6012 	cmd.ngroups = 1;
6013 	cmd.isvalid = 1;
6014 	/* Get first available RX antenna as referential. */
6015 	ant = IWN_LSB(sc->rxchainmask);
6016 	/* Set differential gains for other antennas. */
6017 	for (i = ant + 1; i < 3; i++) {
6018 		if (sc->chainmask & (1 << i)) {
6019 			/* The delta is relative to antenna "ant". */
6020 			delta = ((int32_t)calib->noise[ant] -
6021 			    (int32_t)calib->noise[i]) / div;
6022 			/* Limit to [-4.5dB,+4.5dB]. */
6023 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6024 			if (delta < 0)
6025 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6026 		}
6027 	}
6028 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6029 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6030 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6031 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6032 }
6033 
6034 /*
6035  * Tune RF RX sensitivity based on the number of false alarms detected
6036  * during the last beacon period.
6037  */
6038 static void
6039 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6040 {
6041 #define inc(val, inc, max)			\
6042 	if ((val) < (max)) {			\
6043 		if ((val) < (max) - (inc))	\
6044 			(val) += (inc);		\
6045 		else				\
6046 			(val) = (max);		\
6047 		needs_update = 1;		\
6048 	}
6049 #define dec(val, dec, min)			\
6050 	if ((val) > (min)) {			\
6051 		if ((val) > (min) + (dec))	\
6052 			(val) -= (dec);		\
6053 		else				\
6054 			(val) = (min);		\
6055 		needs_update = 1;		\
6056 	}
6057 
6058 	const struct iwn_sensitivity_limits *limits = sc->limits;
6059 	struct iwn_calib_state *calib = &sc->calib;
6060 	uint32_t val, rxena, fa;
6061 	uint32_t energy[3], energy_min;
6062 	uint8_t noise[3], noise_ref;
6063 	int i, needs_update = 0;
6064 
6065 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6066 
6067 	/* Check that we've been enabled long enough. */
6068 	if ((rxena = le32toh(stats->general.load)) == 0){
6069 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6070 		return;
6071 	}
6072 
6073 	/* Compute number of false alarms since last call for OFDM. */
6074 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6075 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6076 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6077 
6078 	if (fa > 50 * rxena) {
6079 		/* High false alarm count, decrease sensitivity. */
6080 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6081 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6082 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6083 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6084 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6085 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6086 
6087 	} else if (fa < 5 * rxena) {
6088 		/* Low false alarm count, increase sensitivity. */
6089 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6090 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6091 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6092 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6093 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6094 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6095 	}
6096 
6097 	/* Compute maximum noise among 3 receivers. */
6098 	for (i = 0; i < 3; i++)
6099 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6100 	val = MAX(noise[0], noise[1]);
6101 	val = MAX(noise[2], val);
6102 	/* Insert it into our samples table. */
6103 	calib->noise_samples[calib->cur_noise_sample] = val;
6104 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6105 
6106 	/* Compute maximum noise among last 20 samples. */
6107 	noise_ref = calib->noise_samples[0];
6108 	for (i = 1; i < 20; i++)
6109 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6110 
6111 	/* Compute maximum energy among 3 receivers. */
6112 	for (i = 0; i < 3; i++)
6113 		energy[i] = le32toh(stats->general.energy[i]);
6114 	val = MIN(energy[0], energy[1]);
6115 	val = MIN(energy[2], val);
6116 	/* Insert it into our samples table. */
6117 	calib->energy_samples[calib->cur_energy_sample] = val;
6118 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6119 
6120 	/* Compute minimum energy among last 10 samples. */
6121 	energy_min = calib->energy_samples[0];
6122 	for (i = 1; i < 10; i++)
6123 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6124 	energy_min += 6;
6125 
6126 	/* Compute number of false alarms since last call for CCK. */
6127 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6128 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6129 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6130 
6131 	if (fa > 50 * rxena) {
6132 		/* High false alarm count, decrease sensitivity. */
6133 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6134 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6135 		calib->cck_state = IWN_CCK_STATE_HIFA;
6136 		calib->low_fa = 0;
6137 
6138 		if (calib->cck_x4 > 160) {
6139 			calib->noise_ref = noise_ref;
6140 			if (calib->energy_cck > 2)
6141 				dec(calib->energy_cck, 2, energy_min);
6142 		}
6143 		if (calib->cck_x4 < 160) {
6144 			calib->cck_x4 = 161;
6145 			needs_update = 1;
6146 		} else
6147 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6148 
6149 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6150 
6151 	} else if (fa < 5 * rxena) {
6152 		/* Low false alarm count, increase sensitivity. */
6153 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6154 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6155 		calib->cck_state = IWN_CCK_STATE_LOFA;
6156 		calib->low_fa++;
6157 
6158 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6159 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6160 		     calib->low_fa > 100)) {
6161 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6162 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6163 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6164 		}
6165 	} else {
6166 		/* Not worth to increase or decrease sensitivity. */
6167 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6168 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6169 		calib->low_fa = 0;
6170 		calib->noise_ref = noise_ref;
6171 
6172 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6173 			/* Previous interval had many false alarms. */
6174 			dec(calib->energy_cck, 8, energy_min);
6175 		}
6176 		calib->cck_state = IWN_CCK_STATE_INIT;
6177 	}
6178 
6179 	if (needs_update)
6180 		(void)iwn_send_sensitivity(sc);
6181 
6182 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6183 
6184 #undef dec
6185 #undef inc
6186 }
6187 
6188 static int
6189 iwn_send_sensitivity(struct iwn_softc *sc)
6190 {
6191 	struct iwn_calib_state *calib = &sc->calib;
6192 	struct iwn_enhanced_sensitivity_cmd cmd;
6193 	int len;
6194 
6195 	memset(&cmd, 0, sizeof cmd);
6196 	len = sizeof (struct iwn_sensitivity_cmd);
6197 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6198 	/* OFDM modulation. */
6199 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6200 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6201 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6202 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6203 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6204 	cmd.energy_ofdm_th     = htole16(62);
6205 	/* CCK modulation. */
6206 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6207 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6208 	cmd.energy_cck         = htole16(calib->energy_cck);
6209 	/* Barker modulation: use default values. */
6210 	cmd.corr_barker        = htole16(190);
6211 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6212 
6213 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6214 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6215 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6216 	    calib->ofdm_mrc_x4, calib->cck_x4,
6217 	    calib->cck_mrc_x4, calib->energy_cck);
6218 
6219 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6220 		goto send;
6221 	/* Enhanced sensitivity settings. */
6222 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6223 	cmd.ofdm_det_slope_mrc = htole16(668);
6224 	cmd.ofdm_det_icept_mrc = htole16(4);
6225 	cmd.ofdm_det_slope     = htole16(486);
6226 	cmd.ofdm_det_icept     = htole16(37);
6227 	cmd.cck_det_slope_mrc  = htole16(853);
6228 	cmd.cck_det_icept_mrc  = htole16(4);
6229 	cmd.cck_det_slope      = htole16(476);
6230 	cmd.cck_det_icept      = htole16(99);
6231 send:
6232 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6233 }
6234 
6235 /*
6236  * Look at the increase of PLCP errors over time; if it exceeds
6237  * a programmed threshold then trigger an RF retune.
6238  */
6239 static void
6240 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6241 {
6242 	int32_t delta_ofdm, delta_ht, delta_cck;
6243 	struct iwn_calib_state *calib = &sc->calib;
6244 	int delta_ticks, cur_ticks;
6245 	int delta_msec;
6246 	int thresh;
6247 
6248 	/*
6249 	 * Calculate the difference between the current and
6250 	 * previous statistics.
6251 	 */
6252 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6253 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6254 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6255 
6256 	/*
6257 	 * Calculate the delta in time between successive statistics
6258 	 * messages.  Yes, it can roll over; so we make sure that
6259 	 * this doesn't happen.
6260 	 *
6261 	 * XXX go figure out what to do about rollover
6262 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6263 	 * XXX go stab signed integer overflow undefined-ness in the face.
6264 	 */
6265 	cur_ticks = ticks;
6266 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6267 
6268 	/*
6269 	 * If any are negative, then the firmware likely reset; so just
6270 	 * bail.  We'll pick this up next time.
6271 	 */
6272 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6273 		return;
6274 
6275 	/*
6276 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6277 	 * so we can do some useful math with it.
6278 	 */
6279 	delta_msec = ticks_to_msecs(delta_ticks);
6280 
6281 	/*
6282 	 * Calculate what our threshold is given the current delta_msec.
6283 	 */
6284 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6285 
6286 	DPRINTF(sc, IWN_DEBUG_STATE,
6287 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6288 	    __func__,
6289 	    delta_msec,
6290 	    delta_cck,
6291 	    delta_ofdm,
6292 	    delta_ht,
6293 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6294 	    thresh);
6295 
6296 	/*
6297 	 * If we need a retune, then schedule a single channel scan
6298 	 * to a channel that isn't the currently active one!
6299 	 *
6300 	 * The math from linux iwlwifi:
6301 	 *
6302 	 * if ((delta * 100 / msecs) > threshold)
6303 	 */
6304 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6305 		DPRINTF(sc, IWN_DEBUG_ANY,
6306 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6307 		    "over limit (%d); retune!\n",
6308 		    __func__,
6309 		    (delta_cck + delta_ofdm + delta_ht),
6310 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6311 		    thresh);
6312 	}
6313 }
6314 
6315 /*
6316  * Set STA mode power saving level (between 0 and 5).
6317  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6318  */
6319 static int
6320 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6321 {
6322 	struct iwn_pmgt_cmd cmd;
6323 	const struct iwn_pmgt *pmgt;
6324 	uint32_t max, skip_dtim;
6325 	uint32_t reg;
6326 	int i;
6327 
6328 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6329 	    "%s: dtim=%d, level=%d, async=%d\n",
6330 	    __func__,
6331 	    dtim,
6332 	    level,
6333 	    async);
6334 
6335 	/* Select which PS parameters to use. */
6336 	if (dtim <= 2)
6337 		pmgt = &iwn_pmgt[0][level];
6338 	else if (dtim <= 10)
6339 		pmgt = &iwn_pmgt[1][level];
6340 	else
6341 		pmgt = &iwn_pmgt[2][level];
6342 
6343 	memset(&cmd, 0, sizeof cmd);
6344 	if (level != 0)	/* not CAM */
6345 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6346 	if (level == 5)
6347 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6348 	/* Retrieve PCIe Active State Power Management (ASPM). */
6349 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6350 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6351 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6352 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6353 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6354 
6355 	if (dtim == 0) {
6356 		dtim = 1;
6357 		skip_dtim = 0;
6358 	} else
6359 		skip_dtim = pmgt->skip_dtim;
6360 	if (skip_dtim != 0) {
6361 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6362 		max = pmgt->intval[4];
6363 		if (max == (uint32_t)-1)
6364 			max = dtim * (skip_dtim + 1);
6365 		else if (max > dtim)
6366 			max = rounddown(max, dtim);
6367 	} else
6368 		max = dtim;
6369 	for (i = 0; i < 5; i++)
6370 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6371 
6372 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6373 	    level);
6374 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6375 }
6376 
6377 static int
6378 iwn_send_btcoex(struct iwn_softc *sc)
6379 {
6380 	struct iwn_bluetooth cmd;
6381 
6382 	memset(&cmd, 0, sizeof cmd);
6383 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6384 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6385 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6386 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6387 	    __func__);
6388 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6389 }
6390 
6391 static int
6392 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6393 {
6394 	static const uint32_t btcoex_3wire[12] = {
6395 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6396 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6397 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6398 	};
6399 	struct iwn6000_btcoex_config btconfig;
6400 	struct iwn2000_btcoex_config btconfig2k;
6401 	struct iwn_btcoex_priotable btprio;
6402 	struct iwn_btcoex_prot btprot;
6403 	int error, i;
6404 	uint8_t flags;
6405 
6406 	memset(&btconfig, 0, sizeof btconfig);
6407 	memset(&btconfig2k, 0, sizeof btconfig2k);
6408 
6409 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6410 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6411 
6412 	if (sc->base_params->bt_sco_disable)
6413 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6414 	else
6415 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6416 
6417 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6418 
6419 	/* Default flags result is 145 as old value */
6420 
6421 	/*
6422 	 * Flags value has to be review. Values must change if we
6423 	 * which to disable it
6424 	 */
6425 	if (sc->base_params->bt_session_2) {
6426 		btconfig2k.flags = flags;
6427 		btconfig2k.max_kill = 5;
6428 		btconfig2k.bt3_t7_timer = 1;
6429 		btconfig2k.kill_ack = htole32(0xffff0000);
6430 		btconfig2k.kill_cts = htole32(0xffff0000);
6431 		btconfig2k.sample_time = 2;
6432 		btconfig2k.bt3_t2_timer = 0xc;
6433 
6434 		for (i = 0; i < 12; i++)
6435 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6436 		btconfig2k.valid = htole16(0xff);
6437 		btconfig2k.prio_boost = htole32(0xf0);
6438 		DPRINTF(sc, IWN_DEBUG_RESET,
6439 		    "%s: configuring advanced bluetooth coexistence"
6440 		    " session 2, flags : 0x%x\n",
6441 		    __func__,
6442 		    flags);
6443 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6444 		    sizeof(btconfig2k), 1);
6445 	} else {
6446 		btconfig.flags = flags;
6447 		btconfig.max_kill = 5;
6448 		btconfig.bt3_t7_timer = 1;
6449 		btconfig.kill_ack = htole32(0xffff0000);
6450 		btconfig.kill_cts = htole32(0xffff0000);
6451 		btconfig.sample_time = 2;
6452 		btconfig.bt3_t2_timer = 0xc;
6453 
6454 		for (i = 0; i < 12; i++)
6455 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6456 		btconfig.valid = htole16(0xff);
6457 		btconfig.prio_boost = 0xf0;
6458 		DPRINTF(sc, IWN_DEBUG_RESET,
6459 		    "%s: configuring advanced bluetooth coexistence,"
6460 		    " flags : 0x%x\n",
6461 		    __func__,
6462 		    flags);
6463 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6464 		    sizeof(btconfig), 1);
6465 	}
6466 
6467 	if (error != 0)
6468 		return error;
6469 
6470 	memset(&btprio, 0, sizeof btprio);
6471 	btprio.calib_init1 = 0x6;
6472 	btprio.calib_init2 = 0x7;
6473 	btprio.calib_periodic_low1 = 0x2;
6474 	btprio.calib_periodic_low2 = 0x3;
6475 	btprio.calib_periodic_high1 = 0x4;
6476 	btprio.calib_periodic_high2 = 0x5;
6477 	btprio.dtim = 0x6;
6478 	btprio.scan52 = 0x8;
6479 	btprio.scan24 = 0xa;
6480 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6481 	    1);
6482 	if (error != 0)
6483 		return error;
6484 
6485 	/* Force BT state machine change. */
6486 	memset(&btprot, 0, sizeof btprot);
6487 	btprot.open = 1;
6488 	btprot.type = 1;
6489 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6490 	if (error != 0)
6491 		return error;
6492 	btprot.open = 0;
6493 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6494 }
6495 
6496 static int
6497 iwn5000_runtime_calib(struct iwn_softc *sc)
6498 {
6499 	struct iwn5000_calib_config cmd;
6500 
6501 	memset(&cmd, 0, sizeof cmd);
6502 	cmd.ucode.once.enable = 0xffffffff;
6503 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6504 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6505 	    "%s: configuring runtime calibration\n", __func__);
6506 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6507 }
6508 
6509 static uint32_t
6510 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6511 {
6512 	struct ieee80211com *ic = &sc->sc_ic;
6513 	uint32_t htflags = 0;
6514 
6515 	if (! IEEE80211_IS_CHAN_HT(c))
6516 		return (0);
6517 
6518 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6519 
6520 	if (IEEE80211_IS_CHAN_HT40(c)) {
6521 		switch (ic->ic_curhtprotmode) {
6522 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6523 			htflags |= IWN_RXON_HT_MODEPURE40;
6524 			break;
6525 		default:
6526 			htflags |= IWN_RXON_HT_MODEMIXED;
6527 			break;
6528 		}
6529 	}
6530 	if (IEEE80211_IS_CHAN_HT40D(c))
6531 		htflags |= IWN_RXON_HT_HT40MINUS;
6532 
6533 	return (htflags);
6534 }
6535 
6536 static int
6537 iwn_config(struct iwn_softc *sc)
6538 {
6539 	struct iwn_ops *ops = &sc->ops;
6540 	struct ieee80211com *ic = &sc->sc_ic;
6541 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6542 	const uint8_t *macaddr;
6543 	uint32_t txmask;
6544 	uint16_t rxchain;
6545 	int error;
6546 
6547 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6548 
6549 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6550 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6551 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6552 		    " exclusive each together. Review NIC config file. Conf"
6553 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6554 		    sc->base_params->calib_need,
6555 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6556 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6557 		return (EINVAL);
6558 	}
6559 
6560 	/* Compute temperature calib if needed. Will be send by send calib */
6561 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6562 		error = iwn5000_temp_offset_calib(sc);
6563 		if (error != 0) {
6564 			device_printf(sc->sc_dev,
6565 			    "%s: could not set temperature offset\n", __func__);
6566 			return (error);
6567 		}
6568 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6569 		error = iwn5000_temp_offset_calibv2(sc);
6570 		if (error != 0) {
6571 			device_printf(sc->sc_dev,
6572 			    "%s: could not compute temperature offset v2\n",
6573 			    __func__);
6574 			return (error);
6575 		}
6576 	}
6577 
6578 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6579 		/* Configure runtime DC calibration. */
6580 		error = iwn5000_runtime_calib(sc);
6581 		if (error != 0) {
6582 			device_printf(sc->sc_dev,
6583 			    "%s: could not configure runtime calibration\n",
6584 			    __func__);
6585 			return error;
6586 		}
6587 	}
6588 
6589 	/* Configure valid TX chains for >=5000 Series. */
6590 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6591 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6592 		txmask = htole32(sc->txchainmask);
6593 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6594 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6595 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6596 		    sizeof txmask, 0);
6597 		if (error != 0) {
6598 			device_printf(sc->sc_dev,
6599 			    "%s: could not configure valid TX chains, "
6600 			    "error %d\n", __func__, error);
6601 			return error;
6602 		}
6603 	}
6604 
6605 	/* Configure bluetooth coexistence. */
6606 	error = 0;
6607 
6608 	/* Configure bluetooth coexistence if needed. */
6609 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6610 		error = iwn_send_advanced_btcoex(sc);
6611 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6612 		error = iwn_send_btcoex(sc);
6613 
6614 	if (error != 0) {
6615 		device_printf(sc->sc_dev,
6616 		    "%s: could not configure bluetooth coexistence, error %d\n",
6617 		    __func__, error);
6618 		return error;
6619 	}
6620 
6621 	/* Set mode, channel, RX filter and enable RX. */
6622 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6623 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6624 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6625 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6626 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6627 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6628 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6629 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6630 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6631 	switch (ic->ic_opmode) {
6632 	case IEEE80211_M_STA:
6633 		sc->rxon->mode = IWN_MODE_STA;
6634 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6635 		break;
6636 	case IEEE80211_M_MONITOR:
6637 		sc->rxon->mode = IWN_MODE_MONITOR;
6638 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6639 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6640 		break;
6641 	default:
6642 		/* Should not get there. */
6643 		break;
6644 	}
6645 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6646 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6647 	sc->rxon->ht_single_mask = 0xff;
6648 	sc->rxon->ht_dual_mask = 0xff;
6649 	sc->rxon->ht_triple_mask = 0xff;
6650 	/*
6651 	 * In active association mode, ensure that
6652 	 * all the receive chains are enabled.
6653 	 *
6654 	 * Since we're not yet doing SMPS, don't allow the
6655 	 * number of idle RX chains to be less than the active
6656 	 * number.
6657 	 */
6658 	rxchain =
6659 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6660 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6661 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6662 	sc->rxon->rxchain = htole16(rxchain);
6663 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6664 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6665 	    __func__,
6666 	    sc->rxchainmask,
6667 	    sc->nrxchains);
6668 
6669 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6670 
6671 	DPRINTF(sc, IWN_DEBUG_RESET,
6672 	    "%s: setting configuration; flags=0x%08x\n",
6673 	    __func__, le32toh(sc->rxon->flags));
6674 	if (sc->sc_is_scanning)
6675 		device_printf(sc->sc_dev,
6676 		    "%s: is_scanning set, before RXON\n",
6677 		    __func__);
6678 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6679 	if (error != 0) {
6680 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6681 		    __func__);
6682 		return error;
6683 	}
6684 
6685 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6686 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6687 		    __func__);
6688 		return error;
6689 	}
6690 
6691 	/* Configuration has changed, set TX power accordingly. */
6692 	if ((error = ops->set_txpower(sc, 0)) != 0) {
6693 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6694 		    __func__);
6695 		return error;
6696 	}
6697 
6698 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6699 		device_printf(sc->sc_dev,
6700 		    "%s: could not set critical temperature\n", __func__);
6701 		return error;
6702 	}
6703 
6704 	/* Set power saving level to CAM during initialization. */
6705 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6706 		device_printf(sc->sc_dev,
6707 		    "%s: could not set power saving level\n", __func__);
6708 		return error;
6709 	}
6710 
6711 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6712 
6713 	return 0;
6714 }
6715 
6716 static uint16_t
6717 iwn_get_active_dwell_time(struct iwn_softc *sc,
6718     struct ieee80211_channel *c, uint8_t n_probes)
6719 {
6720 	/* No channel? Default to 2GHz settings */
6721 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6722 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6723 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6724 	}
6725 
6726 	/* 5GHz dwell time */
6727 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6728 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6729 }
6730 
6731 /*
6732  * Limit the total dwell time to 85% of the beacon interval.
6733  *
6734  * Returns the dwell time in milliseconds.
6735  */
6736 static uint16_t
6737 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6738 {
6739 	struct ieee80211com *ic = &sc->sc_ic;
6740 	struct ieee80211vap *vap = NULL;
6741 	int bintval = 0;
6742 
6743 	/* bintval is in TU (1.024mS) */
6744 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6745 		vap = TAILQ_FIRST(&ic->ic_vaps);
6746 		bintval = vap->iv_bss->ni_intval;
6747 	}
6748 
6749 	/*
6750 	 * If it's non-zero, we should calculate the minimum of
6751 	 * it and the DWELL_BASE.
6752 	 *
6753 	 * XXX Yes, the math should take into account that bintval
6754 	 * is 1.024mS, not 1mS..
6755 	 */
6756 	if (bintval > 0) {
6757 		DPRINTF(sc, IWN_DEBUG_SCAN,
6758 		    "%s: bintval=%d\n",
6759 		    __func__,
6760 		    bintval);
6761 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6762 	}
6763 
6764 	/* No association context? Default */
6765 	return (IWN_PASSIVE_DWELL_BASE);
6766 }
6767 
6768 static uint16_t
6769 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6770 {
6771 	uint16_t passive;
6772 
6773 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6774 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6775 	} else {
6776 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6777 	}
6778 
6779 	/* Clamp to the beacon interval if we're associated */
6780 	return (iwn_limit_dwell(sc, passive));
6781 }
6782 
6783 static int
6784 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6785     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6786 {
6787 	struct ieee80211com *ic = &sc->sc_ic;
6788 	struct ieee80211_node *ni = vap->iv_bss;
6789 	struct iwn_scan_hdr *hdr;
6790 	struct iwn_cmd_data *tx;
6791 	struct iwn_scan_essid *essid;
6792 	struct iwn_scan_chan *chan;
6793 	struct ieee80211_frame *wh;
6794 	struct ieee80211_rateset *rs;
6795 	uint8_t *buf, *frm;
6796 	uint16_t rxchain;
6797 	uint8_t txant;
6798 	int buflen, error;
6799 	int is_active;
6800 	uint16_t dwell_active, dwell_passive;
6801 	uint32_t extra, scan_service_time;
6802 
6803 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6804 
6805 	/*
6806 	 * We are absolutely not allowed to send a scan command when another
6807 	 * scan command is pending.
6808 	 */
6809 	if (sc->sc_is_scanning) {
6810 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6811 		    __func__);
6812 		return (EAGAIN);
6813 	}
6814 
6815 	/* Assign the scan channel */
6816 	c = ic->ic_curchan;
6817 
6818 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6819 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6820 	if (buf == NULL) {
6821 		device_printf(sc->sc_dev,
6822 		    "%s: could not allocate buffer for scan command\n",
6823 		    __func__);
6824 		return ENOMEM;
6825 	}
6826 	hdr = (struct iwn_scan_hdr *)buf;
6827 	/*
6828 	 * Move to the next channel if no frames are received within 10ms
6829 	 * after sending the probe request.
6830 	 */
6831 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6832 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6833 	/*
6834 	 * Max needs to be greater than active and passive and quiet!
6835 	 * It's also in microseconds!
6836 	 */
6837 	hdr->max_svc = htole32(250 * 1024);
6838 
6839 	/*
6840 	 * Reset scan: interval=100
6841 	 * Normal scan: interval=becaon interval
6842 	 * suspend_time: 100 (TU)
6843 	 *
6844 	 */
6845 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6846 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6847 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6848 	hdr->pause_svc = htole32(scan_service_time);
6849 
6850 	/* Select antennas for scanning. */
6851 	rxchain =
6852 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6853 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6854 	    IWN_RXCHAIN_DRIVER_FORCE;
6855 	if (IEEE80211_IS_CHAN_A(c) &&
6856 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6857 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6858 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6859 	} else	/* Use all available RX antennas. */
6860 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6861 	hdr->rxchain = htole16(rxchain);
6862 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6863 
6864 	tx = (struct iwn_cmd_data *)(hdr + 1);
6865 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6866 	tx->id = sc->broadcast_id;
6867 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6868 
6869 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6870 		/* Send probe requests at 6Mbps. */
6871 		tx->rate = htole32(0xd);
6872 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6873 	} else {
6874 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6875 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6876 		    sc->rxon->associd && sc->rxon->chan > 14)
6877 			tx->rate = htole32(0xd);
6878 		else {
6879 			/* Send probe requests at 1Mbps. */
6880 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6881 		}
6882 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6883 	}
6884 	/* Use the first valid TX antenna. */
6885 	txant = IWN_LSB(sc->txchainmask);
6886 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6887 
6888 	/*
6889 	 * Only do active scanning if we're announcing a probe request
6890 	 * for a given SSID (or more, if we ever add it to the driver.)
6891 	 */
6892 	is_active = 0;
6893 
6894 	/*
6895 	 * If we're scanning for a specific SSID, add it to the command.
6896 	 *
6897 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6898 	 */
6899 	essid = (struct iwn_scan_essid *)(tx + 1);
6900 	if (ss != NULL) {
6901 		if (ss->ss_ssid[0].len != 0) {
6902 			essid[0].id = IEEE80211_ELEMID_SSID;
6903 			essid[0].len = ss->ss_ssid[0].len;
6904 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6905 		}
6906 
6907 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6908 		    __func__,
6909 		    ss->ss_ssid[0].len,
6910 		    ss->ss_ssid[0].len,
6911 		    ss->ss_ssid[0].ssid);
6912 
6913 		if (ss->ss_nssid > 0)
6914 			is_active = 1;
6915 	}
6916 
6917 	/*
6918 	 * Build a probe request frame.  Most of the following code is a
6919 	 * copy & paste of what is done in net80211.
6920 	 */
6921 	wh = (struct ieee80211_frame *)(essid + 20);
6922 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6923 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6924 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6925 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6926 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6927 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6928 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6929 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6930 
6931 	frm = (uint8_t *)(wh + 1);
6932 	frm = ieee80211_add_ssid(frm, NULL, 0);
6933 	frm = ieee80211_add_rates(frm, rs);
6934 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6935 		frm = ieee80211_add_xrates(frm, rs);
6936 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6937 		frm = ieee80211_add_htcap(frm, ni);
6938 
6939 	/* Set length of probe request. */
6940 	tx->len = htole16(frm - (uint8_t *)wh);
6941 
6942 	/*
6943 	 * If active scanning is requested but a certain channel is
6944 	 * marked passive, we can do active scanning if we detect
6945 	 * transmissions.
6946 	 *
6947 	 * There is an issue with some firmware versions that triggers
6948 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6949 	 * on a radar channel even though this means that we should NOT
6950 	 * send probes.
6951 	 *
6952 	 * The "good CRC threshold" is the number of frames that we
6953 	 * need to receive during our dwell time on a channel before
6954 	 * sending out probes -- setting this to a huge value will
6955 	 * mean we never reach it, but at the same time work around
6956 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6957 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6958 	 *
6959 	 * This was fixed in later versions along with some other
6960 	 * scan changes, and the threshold behaves as a flag in those
6961 	 * versions.
6962 	 */
6963 
6964 	/*
6965 	 * If we're doing active scanning, set the crc_threshold
6966 	 * to a suitable value.  This is different to active veruss
6967 	 * passive scanning depending upon the channel flags; the
6968 	 * firmware will obey that particular check for us.
6969 	 */
6970 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6971 		hdr->crc_threshold = is_active ?
6972 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6973 	else
6974 		hdr->crc_threshold = is_active ?
6975 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6976 
6977 	chan = (struct iwn_scan_chan *)frm;
6978 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6979 	chan->flags = 0;
6980 	if (ss->ss_nssid > 0)
6981 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6982 	chan->dsp_gain = 0x6e;
6983 
6984 	/*
6985 	 * Set the passive/active flag depending upon the channel mode.
6986 	 * XXX TODO: take the is_active flag into account as well?
6987 	 */
6988 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6989 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6990 	else
6991 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6992 
6993 	/*
6994 	 * Calculate the active/passive dwell times.
6995 	 */
6996 
6997 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6998 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6999 
7000 	/* Make sure they're valid */
7001 	if (dwell_passive <= dwell_active)
7002 		dwell_passive = dwell_active + 1;
7003 
7004 	chan->active = htole16(dwell_active);
7005 	chan->passive = htole16(dwell_passive);
7006 
7007 	if (IEEE80211_IS_CHAN_5GHZ(c))
7008 		chan->rf_gain = 0x3b;
7009 	else
7010 		chan->rf_gain = 0x28;
7011 
7012 	DPRINTF(sc, IWN_DEBUG_STATE,
7013 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7014 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7015 	    "isactive=%d numssid=%d\n", __func__,
7016 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7017 	    dwell_active, dwell_passive, scan_service_time,
7018 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7019 
7020 	hdr->nchan++;
7021 	chan++;
7022 	buflen = (uint8_t *)chan - buf;
7023 	hdr->len = htole16(buflen);
7024 
7025 	if (sc->sc_is_scanning) {
7026 		device_printf(sc->sc_dev,
7027 		    "%s: called with is_scanning set!\n",
7028 		    __func__);
7029 	}
7030 	sc->sc_is_scanning = 1;
7031 
7032 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7033 	    hdr->nchan);
7034 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7035 	free(buf, M_DEVBUF);
7036 	if (error == 0)
7037 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7038 
7039 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7040 
7041 	return error;
7042 }
7043 
7044 static int
7045 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7046 {
7047 	struct iwn_ops *ops = &sc->ops;
7048 	struct ieee80211com *ic = &sc->sc_ic;
7049 	struct ieee80211_node *ni = vap->iv_bss;
7050 	int error;
7051 
7052 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7053 
7054 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7055 	/* Update adapter configuration. */
7056 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7057 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7058 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7059 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7060 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7061 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7062 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7063 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7064 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7065 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7066 		sc->rxon->cck_mask  = 0;
7067 		sc->rxon->ofdm_mask = 0x15;
7068 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7069 		sc->rxon->cck_mask  = 0x03;
7070 		sc->rxon->ofdm_mask = 0;
7071 	} else {
7072 		/* Assume 802.11b/g. */
7073 		sc->rxon->cck_mask  = 0x03;
7074 		sc->rxon->ofdm_mask = 0x15;
7075 	}
7076 
7077 	/* try HT */
7078 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7079 
7080 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7081 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7082 	    sc->rxon->ofdm_mask);
7083 	if (sc->sc_is_scanning)
7084 		device_printf(sc->sc_dev,
7085 		    "%s: is_scanning set, before RXON\n",
7086 		    __func__);
7087 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7088 	if (error != 0) {
7089 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7090 		    __func__, error);
7091 		return error;
7092 	}
7093 
7094 	/* Configuration has changed, set TX power accordingly. */
7095 	if ((error = ops->set_txpower(sc, 1)) != 0) {
7096 		device_printf(sc->sc_dev,
7097 		    "%s: could not set TX power, error %d\n", __func__, error);
7098 		return error;
7099 	}
7100 	/*
7101 	 * Reconfiguring RXON clears the firmware nodes table so we must
7102 	 * add the broadcast node again.
7103 	 */
7104 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7105 		device_printf(sc->sc_dev,
7106 		    "%s: could not add broadcast node, error %d\n", __func__,
7107 		    error);
7108 		return error;
7109 	}
7110 
7111 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7112 
7113 	return 0;
7114 }
7115 
7116 static int
7117 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7118 {
7119 	struct iwn_ops *ops = &sc->ops;
7120 	struct ieee80211com *ic = &sc->sc_ic;
7121 	struct ieee80211_node *ni = vap->iv_bss;
7122 	struct iwn_node_info node;
7123 	int error;
7124 
7125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7126 
7127 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7128 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7129 		/* Link LED blinks while monitoring. */
7130 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7131 		return 0;
7132 	}
7133 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7134 		device_printf(sc->sc_dev,
7135 		    "%s: could not set timing, error %d\n", __func__, error);
7136 		return error;
7137 	}
7138 
7139 	/* Update adapter configuration. */
7140 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7141 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7142 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7143 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7144 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7145 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7146 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7147 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7148 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7149 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7150 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7151 		sc->rxon->cck_mask  = 0;
7152 		sc->rxon->ofdm_mask = 0x15;
7153 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7154 		sc->rxon->cck_mask  = 0x03;
7155 		sc->rxon->ofdm_mask = 0;
7156 	} else {
7157 		/* Assume 802.11b/g. */
7158 		sc->rxon->cck_mask  = 0x0f;
7159 		sc->rxon->ofdm_mask = 0x15;
7160 	}
7161 	/* try HT */
7162 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7163 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7164 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7165 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7166 	if (sc->sc_is_scanning)
7167 		device_printf(sc->sc_dev,
7168 		    "%s: is_scanning set, before RXON\n",
7169 		    __func__);
7170 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7171 	if (error != 0) {
7172 		device_printf(sc->sc_dev,
7173 		    "%s: could not update configuration, error %d\n", __func__,
7174 		    error);
7175 		return error;
7176 	}
7177 
7178 	/* Configuration has changed, set TX power accordingly. */
7179 	if ((error = ops->set_txpower(sc, 1)) != 0) {
7180 		device_printf(sc->sc_dev,
7181 		    "%s: could not set TX power, error %d\n", __func__, error);
7182 		return error;
7183 	}
7184 
7185 	/* Fake a join to initialize the TX rate. */
7186 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7187 	iwn_newassoc(ni, 1);
7188 
7189 	/* Add BSS node. */
7190 	memset(&node, 0, sizeof node);
7191 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7192 	node.id = IWN_ID_BSS;
7193 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7194 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7195 		case IEEE80211_HTCAP_SMPS_ENA:
7196 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7197 			break;
7198 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7199 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7200 			break;
7201 		}
7202 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7203 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7204 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7205 			node.htflags |= htole32(IWN_NODE_HT40);
7206 	}
7207 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7208 	error = ops->add_node(sc, &node, 1);
7209 	if (error != 0) {
7210 		device_printf(sc->sc_dev,
7211 		    "%s: could not add BSS node, error %d\n", __func__, error);
7212 		return error;
7213 	}
7214 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7215 	    __func__, node.id);
7216 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7217 		device_printf(sc->sc_dev,
7218 		    "%s: could not setup link quality for node %d, error %d\n",
7219 		    __func__, node.id, error);
7220 		return error;
7221 	}
7222 
7223 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7224 		device_printf(sc->sc_dev,
7225 		    "%s: could not set sensitivity, error %d\n", __func__,
7226 		    error);
7227 		return error;
7228 	}
7229 	/* Start periodic calibration timer. */
7230 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7231 	sc->calib_cnt = 0;
7232 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7233 	    sc);
7234 
7235 	/* Link LED always on while associated. */
7236 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7237 
7238 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7239 
7240 	return 0;
7241 }
7242 
7243 /*
7244  * This function is called by upper layer when an ADDBA request is received
7245  * from another STA and before the ADDBA response is sent.
7246  */
7247 static int
7248 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7249     int baparamset, int batimeout, int baseqctl)
7250 {
7251 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7252 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7253 	struct iwn_ops *ops = &sc->ops;
7254 	struct iwn_node *wn = (void *)ni;
7255 	struct iwn_node_info node;
7256 	uint16_t ssn;
7257 	uint8_t tid;
7258 	int error;
7259 
7260 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7261 
7262 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7263 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7264 
7265 	memset(&node, 0, sizeof node);
7266 	node.id = wn->id;
7267 	node.control = IWN_NODE_UPDATE;
7268 	node.flags = IWN_FLAG_SET_ADDBA;
7269 	node.addba_tid = tid;
7270 	node.addba_ssn = htole16(ssn);
7271 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7272 	    wn->id, tid, ssn);
7273 	error = ops->add_node(sc, &node, 1);
7274 	if (error != 0)
7275 		return error;
7276 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7277 #undef MS
7278 }
7279 
7280 /*
7281  * This function is called by upper layer on teardown of an HT-immediate
7282  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7283  */
7284 static void
7285 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7286 {
7287 	struct ieee80211com *ic = ni->ni_ic;
7288 	struct iwn_softc *sc = ic->ic_softc;
7289 	struct iwn_ops *ops = &sc->ops;
7290 	struct iwn_node *wn = (void *)ni;
7291 	struct iwn_node_info node;
7292 	uint8_t tid;
7293 
7294 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7295 
7296 	/* XXX: tid as an argument */
7297 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7298 		if (&ni->ni_rx_ampdu[tid] == rap)
7299 			break;
7300 	}
7301 
7302 	memset(&node, 0, sizeof node);
7303 	node.id = wn->id;
7304 	node.control = IWN_NODE_UPDATE;
7305 	node.flags = IWN_FLAG_SET_DELBA;
7306 	node.delba_tid = tid;
7307 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7308 	(void)ops->add_node(sc, &node, 1);
7309 	sc->sc_ampdu_rx_stop(ni, rap);
7310 }
7311 
7312 static int
7313 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7314     int dialogtoken, int baparamset, int batimeout)
7315 {
7316 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7317 	int qid;
7318 
7319 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7320 
7321 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7322 		if (sc->qid2tap[qid] == NULL)
7323 			break;
7324 	}
7325 	if (qid == sc->ntxqs) {
7326 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7327 		    __func__);
7328 		return 0;
7329 	}
7330 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7331 	if (tap->txa_private == NULL) {
7332 		device_printf(sc->sc_dev,
7333 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7334 		return 0;
7335 	}
7336 	sc->qid2tap[qid] = tap;
7337 	*(int *)tap->txa_private = qid;
7338 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7339 	    batimeout);
7340 }
7341 
7342 static int
7343 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7344     int code, int baparamset, int batimeout)
7345 {
7346 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7347 	int qid = *(int *)tap->txa_private;
7348 	uint8_t tid = tap->txa_tid;
7349 	int ret;
7350 
7351 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7352 
7353 	if (code == IEEE80211_STATUS_SUCCESS) {
7354 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7355 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7356 		if (ret != 1)
7357 			return ret;
7358 	} else {
7359 		sc->qid2tap[qid] = NULL;
7360 		free(tap->txa_private, M_DEVBUF);
7361 		tap->txa_private = NULL;
7362 	}
7363 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7364 }
7365 
7366 /*
7367  * This function is called by upper layer when an ADDBA response is received
7368  * from another STA.
7369  */
7370 static int
7371 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7372     uint8_t tid)
7373 {
7374 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7375 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7376 	struct iwn_ops *ops = &sc->ops;
7377 	struct iwn_node *wn = (void *)ni;
7378 	struct iwn_node_info node;
7379 	int error, qid;
7380 
7381 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7382 
7383 	/* Enable TX for the specified RA/TID. */
7384 	wn->disable_tid &= ~(1 << tid);
7385 	memset(&node, 0, sizeof node);
7386 	node.id = wn->id;
7387 	node.control = IWN_NODE_UPDATE;
7388 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7389 	node.disable_tid = htole16(wn->disable_tid);
7390 	error = ops->add_node(sc, &node, 1);
7391 	if (error != 0)
7392 		return 0;
7393 
7394 	if ((error = iwn_nic_lock(sc)) != 0)
7395 		return 0;
7396 	qid = *(int *)tap->txa_private;
7397 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7398 	    __func__, wn->id, tid, tap->txa_start, qid);
7399 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7400 	iwn_nic_unlock(sc);
7401 
7402 	iwn_set_link_quality(sc, ni);
7403 	return 1;
7404 }
7405 
7406 static void
7407 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7408 {
7409 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7410 	struct iwn_ops *ops = &sc->ops;
7411 	uint8_t tid = tap->txa_tid;
7412 	int qid;
7413 
7414 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7415 
7416 	sc->sc_addba_stop(ni, tap);
7417 
7418 	if (tap->txa_private == NULL)
7419 		return;
7420 
7421 	qid = *(int *)tap->txa_private;
7422 	if (sc->txq[qid].queued != 0)
7423 		return;
7424 	if (iwn_nic_lock(sc) != 0)
7425 		return;
7426 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7427 	iwn_nic_unlock(sc);
7428 	sc->qid2tap[qid] = NULL;
7429 	free(tap->txa_private, M_DEVBUF);
7430 	tap->txa_private = NULL;
7431 }
7432 
7433 static void
7434 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7435     int qid, uint8_t tid, uint16_t ssn)
7436 {
7437 	struct iwn_node *wn = (void *)ni;
7438 
7439 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7440 
7441 	/* Stop TX scheduler while we're changing its configuration. */
7442 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7443 	    IWN4965_TXQ_STATUS_CHGACT);
7444 
7445 	/* Assign RA/TID translation to the queue. */
7446 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7447 	    wn->id << 4 | tid);
7448 
7449 	/* Enable chain-building mode for the queue. */
7450 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7451 
7452 	/* Set starting sequence number from the ADDBA request. */
7453 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7454 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7455 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7456 
7457 	/* Set scheduler window size. */
7458 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7459 	    IWN_SCHED_WINSZ);
7460 	/* Set scheduler frame limit. */
7461 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7462 	    IWN_SCHED_LIMIT << 16);
7463 
7464 	/* Enable interrupts for the queue. */
7465 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7466 
7467 	/* Mark the queue as active. */
7468 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7469 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7470 	    iwn_tid2fifo[tid] << 1);
7471 }
7472 
7473 static void
7474 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7475 {
7476 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7477 
7478 	/* Stop TX scheduler while we're changing its configuration. */
7479 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7480 	    IWN4965_TXQ_STATUS_CHGACT);
7481 
7482 	/* Set starting sequence number from the ADDBA request. */
7483 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7484 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7485 
7486 	/* Disable interrupts for the queue. */
7487 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7488 
7489 	/* Mark the queue as inactive. */
7490 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7491 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7492 }
7493 
7494 static void
7495 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7496     int qid, uint8_t tid, uint16_t ssn)
7497 {
7498 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7499 
7500 	struct iwn_node *wn = (void *)ni;
7501 
7502 	/* Stop TX scheduler while we're changing its configuration. */
7503 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7504 	    IWN5000_TXQ_STATUS_CHGACT);
7505 
7506 	/* Assign RA/TID translation to the queue. */
7507 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7508 	    wn->id << 4 | tid);
7509 
7510 	/* Enable chain-building mode for the queue. */
7511 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7512 
7513 	/* Enable aggregation for the queue. */
7514 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7515 
7516 	/* Set starting sequence number from the ADDBA request. */
7517 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7518 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7519 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7520 
7521 	/* Set scheduler window size and frame limit. */
7522 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7523 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7524 
7525 	/* Enable interrupts for the queue. */
7526 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7527 
7528 	/* Mark the queue as active. */
7529 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7530 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7531 }
7532 
7533 static void
7534 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7535 {
7536 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7537 
7538 	/* Stop TX scheduler while we're changing its configuration. */
7539 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7540 	    IWN5000_TXQ_STATUS_CHGACT);
7541 
7542 	/* Disable aggregation for the queue. */
7543 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7544 
7545 	/* Set starting sequence number from the ADDBA request. */
7546 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7547 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7548 
7549 	/* Disable interrupts for the queue. */
7550 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7551 
7552 	/* Mark the queue as inactive. */
7553 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7554 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7555 }
7556 
7557 /*
7558  * Query calibration tables from the initialization firmware.  We do this
7559  * only once at first boot.  Called from a process context.
7560  */
7561 static int
7562 iwn5000_query_calibration(struct iwn_softc *sc)
7563 {
7564 	struct iwn5000_calib_config cmd;
7565 	int error;
7566 
7567 	memset(&cmd, 0, sizeof cmd);
7568 	cmd.ucode.once.enable = htole32(0xffffffff);
7569 	cmd.ucode.once.start  = htole32(0xffffffff);
7570 	cmd.ucode.once.send   = htole32(0xffffffff);
7571 	cmd.ucode.flags       = htole32(0xffffffff);
7572 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7573 	    __func__);
7574 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7575 	if (error != 0)
7576 		return error;
7577 
7578 	/* Wait at most two seconds for calibration to complete. */
7579 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7580 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7581 	return error;
7582 }
7583 
7584 /*
7585  * Send calibration results to the runtime firmware.  These results were
7586  * obtained on first boot from the initialization firmware.
7587  */
7588 static int
7589 iwn5000_send_calibration(struct iwn_softc *sc)
7590 {
7591 	int idx, error;
7592 
7593 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7594 		if (!(sc->base_params->calib_need & (1<<idx))) {
7595 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7596 			    "No need of calib %d\n",
7597 			    idx);
7598 			continue; /* no need for this calib */
7599 		}
7600 		if (sc->calibcmd[idx].buf == NULL) {
7601 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7602 			    "Need calib idx : %d but no available data\n",
7603 			    idx);
7604 			continue;
7605 		}
7606 
7607 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7608 		    "send calibration result idx=%d len=%d\n", idx,
7609 		    sc->calibcmd[idx].len);
7610 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7611 		    sc->calibcmd[idx].len, 0);
7612 		if (error != 0) {
7613 			device_printf(sc->sc_dev,
7614 			    "%s: could not send calibration result, error %d\n",
7615 			    __func__, error);
7616 			return error;
7617 		}
7618 	}
7619 	return 0;
7620 }
7621 
7622 static int
7623 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7624 {
7625 	struct iwn5000_wimax_coex wimax;
7626 
7627 #if 0
7628 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7629 		/* Enable WiMAX coexistence for combo adapters. */
7630 		wimax.flags =
7631 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7632 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7633 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7634 		    IWN_WIMAX_COEX_ENABLE;
7635 		memcpy(wimax.events, iwn6050_wimax_events,
7636 		    sizeof iwn6050_wimax_events);
7637 	} else
7638 #endif
7639 	{
7640 		/* Disable WiMAX coexistence. */
7641 		wimax.flags = 0;
7642 		memset(wimax.events, 0, sizeof wimax.events);
7643 	}
7644 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7645 	    __func__);
7646 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7647 }
7648 
7649 static int
7650 iwn5000_crystal_calib(struct iwn_softc *sc)
7651 {
7652 	struct iwn5000_phy_calib_crystal cmd;
7653 
7654 	memset(&cmd, 0, sizeof cmd);
7655 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7656 	cmd.ngroups = 1;
7657 	cmd.isvalid = 1;
7658 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7659 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7660 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7661 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7662 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7663 }
7664 
7665 static int
7666 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7667 {
7668 	struct iwn5000_phy_calib_temp_offset cmd;
7669 
7670 	memset(&cmd, 0, sizeof cmd);
7671 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7672 	cmd.ngroups = 1;
7673 	cmd.isvalid = 1;
7674 	if (sc->eeprom_temp != 0)
7675 		cmd.offset = htole16(sc->eeprom_temp);
7676 	else
7677 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7678 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7679 	    le16toh(cmd.offset));
7680 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7681 }
7682 
7683 static int
7684 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7685 {
7686 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7687 
7688 	memset(&cmd, 0, sizeof cmd);
7689 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7690 	cmd.ngroups = 1;
7691 	cmd.isvalid = 1;
7692 	if (sc->eeprom_temp != 0) {
7693 		cmd.offset_low = htole16(sc->eeprom_temp);
7694 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7695 	} else {
7696 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7697 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7698 	}
7699 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7700 
7701 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7702 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7703 	    le16toh(cmd.offset_low),
7704 	    le16toh(cmd.offset_high),
7705 	    le16toh(cmd.burnt_voltage_ref));
7706 
7707 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7708 }
7709 
7710 /*
7711  * This function is called after the runtime firmware notifies us of its
7712  * readiness (called in a process context).
7713  */
7714 static int
7715 iwn4965_post_alive(struct iwn_softc *sc)
7716 {
7717 	int error, qid;
7718 
7719 	if ((error = iwn_nic_lock(sc)) != 0)
7720 		return error;
7721 
7722 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7723 
7724 	/* Clear TX scheduler state in SRAM. */
7725 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7726 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7727 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7728 
7729 	/* Set physical address of TX scheduler rings (1KB aligned). */
7730 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7731 
7732 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7733 
7734 	/* Disable chain mode for all our 16 queues. */
7735 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7736 
7737 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7738 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7739 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7740 
7741 		/* Set scheduler window size. */
7742 		iwn_mem_write(sc, sc->sched_base +
7743 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7744 		/* Set scheduler frame limit. */
7745 		iwn_mem_write(sc, sc->sched_base +
7746 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7747 		    IWN_SCHED_LIMIT << 16);
7748 	}
7749 
7750 	/* Enable interrupts for all our 16 queues. */
7751 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7752 	/* Identify TX FIFO rings (0-7). */
7753 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7754 
7755 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7756 	for (qid = 0; qid < 7; qid++) {
7757 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7758 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7759 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7760 	}
7761 	iwn_nic_unlock(sc);
7762 	return 0;
7763 }
7764 
7765 /*
7766  * This function is called after the initialization or runtime firmware
7767  * notifies us of its readiness (called in a process context).
7768  */
7769 static int
7770 iwn5000_post_alive(struct iwn_softc *sc)
7771 {
7772 	int error, qid;
7773 
7774 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7775 
7776 	/* Switch to using ICT interrupt mode. */
7777 	iwn5000_ict_reset(sc);
7778 
7779 	if ((error = iwn_nic_lock(sc)) != 0){
7780 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7781 		return error;
7782 	}
7783 
7784 	/* Clear TX scheduler state in SRAM. */
7785 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7786 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7787 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7788 
7789 	/* Set physical address of TX scheduler rings (1KB aligned). */
7790 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7791 
7792 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7793 
7794 	/* Enable chain mode for all queues, except command queue. */
7795 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7796 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7797 	else
7798 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7799 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7800 
7801 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7802 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7803 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7804 
7805 		iwn_mem_write(sc, sc->sched_base +
7806 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7807 		/* Set scheduler window size and frame limit. */
7808 		iwn_mem_write(sc, sc->sched_base +
7809 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7810 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7811 	}
7812 
7813 	/* Enable interrupts for all our 20 queues. */
7814 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7815 	/* Identify TX FIFO rings (0-7). */
7816 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7817 
7818 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7819 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7820 		/* Mark TX rings as active. */
7821 		for (qid = 0; qid < 11; qid++) {
7822 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7823 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7824 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7825 		}
7826 	} else {
7827 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7828 		for (qid = 0; qid < 7; qid++) {
7829 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7830 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7831 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7832 		}
7833 	}
7834 	iwn_nic_unlock(sc);
7835 
7836 	/* Configure WiMAX coexistence for combo adapters. */
7837 	error = iwn5000_send_wimax_coex(sc);
7838 	if (error != 0) {
7839 		device_printf(sc->sc_dev,
7840 		    "%s: could not configure WiMAX coexistence, error %d\n",
7841 		    __func__, error);
7842 		return error;
7843 	}
7844 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7845 		/* Perform crystal calibration. */
7846 		error = iwn5000_crystal_calib(sc);
7847 		if (error != 0) {
7848 			device_printf(sc->sc_dev,
7849 			    "%s: crystal calibration failed, error %d\n",
7850 			    __func__, error);
7851 			return error;
7852 		}
7853 	}
7854 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7855 		/* Query calibration from the initialization firmware. */
7856 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7857 			device_printf(sc->sc_dev,
7858 			    "%s: could not query calibration, error %d\n",
7859 			    __func__, error);
7860 			return error;
7861 		}
7862 		/*
7863 		 * We have the calibration results now, reboot with the
7864 		 * runtime firmware (call ourselves recursively!)
7865 		 */
7866 		iwn_hw_stop(sc);
7867 		error = iwn_hw_init(sc);
7868 	} else {
7869 		/* Send calibration results to runtime firmware. */
7870 		error = iwn5000_send_calibration(sc);
7871 	}
7872 
7873 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7874 
7875 	return error;
7876 }
7877 
7878 /*
7879  * The firmware boot code is small and is intended to be copied directly into
7880  * the NIC internal memory (no DMA transfer).
7881  */
7882 static int
7883 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7884 {
7885 	int error, ntries;
7886 
7887 	size /= sizeof (uint32_t);
7888 
7889 	if ((error = iwn_nic_lock(sc)) != 0)
7890 		return error;
7891 
7892 	/* Copy microcode image into NIC memory. */
7893 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7894 	    (const uint32_t *)ucode, size);
7895 
7896 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7897 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7898 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7899 
7900 	/* Start boot load now. */
7901 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7902 
7903 	/* Wait for transfer to complete. */
7904 	for (ntries = 0; ntries < 1000; ntries++) {
7905 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7906 		    IWN_BSM_WR_CTRL_START))
7907 			break;
7908 		DELAY(10);
7909 	}
7910 	if (ntries == 1000) {
7911 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7912 		    __func__);
7913 		iwn_nic_unlock(sc);
7914 		return ETIMEDOUT;
7915 	}
7916 
7917 	/* Enable boot after power up. */
7918 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7919 
7920 	iwn_nic_unlock(sc);
7921 	return 0;
7922 }
7923 
7924 static int
7925 iwn4965_load_firmware(struct iwn_softc *sc)
7926 {
7927 	struct iwn_fw_info *fw = &sc->fw;
7928 	struct iwn_dma_info *dma = &sc->fw_dma;
7929 	int error;
7930 
7931 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7932 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7933 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7934 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7935 	    fw->init.text, fw->init.textsz);
7936 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7937 
7938 	/* Tell adapter where to find initialization sections. */
7939 	if ((error = iwn_nic_lock(sc)) != 0)
7940 		return error;
7941 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7942 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7943 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7944 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7945 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7946 	iwn_nic_unlock(sc);
7947 
7948 	/* Load firmware boot code. */
7949 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7950 	if (error != 0) {
7951 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7952 		    __func__);
7953 		return error;
7954 	}
7955 	/* Now press "execute". */
7956 	IWN_WRITE(sc, IWN_RESET, 0);
7957 
7958 	/* Wait at most one second for first alive notification. */
7959 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7960 		device_printf(sc->sc_dev,
7961 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7962 		    __func__, error);
7963 		return error;
7964 	}
7965 
7966 	/* Retrieve current temperature for initial TX power calibration. */
7967 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7968 	sc->temp = iwn4965_get_temperature(sc);
7969 
7970 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7971 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7972 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7973 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7974 	    fw->main.text, fw->main.textsz);
7975 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7976 
7977 	/* Tell adapter where to find runtime sections. */
7978 	if ((error = iwn_nic_lock(sc)) != 0)
7979 		return error;
7980 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7981 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7982 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7983 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7984 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7985 	    IWN_FW_UPDATED | fw->main.textsz);
7986 	iwn_nic_unlock(sc);
7987 
7988 	return 0;
7989 }
7990 
7991 static int
7992 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7993     const uint8_t *section, int size)
7994 {
7995 	struct iwn_dma_info *dma = &sc->fw_dma;
7996 	int error;
7997 
7998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7999 
8000 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8001 	memcpy(dma->vaddr, section, size);
8002 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8003 
8004 	if ((error = iwn_nic_lock(sc)) != 0)
8005 		return error;
8006 
8007 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8008 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8009 
8010 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8011 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8012 	    IWN_LOADDR(dma->paddr));
8013 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8014 	    IWN_HIADDR(dma->paddr) << 28 | size);
8015 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8016 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8017 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8018 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8019 
8020 	/* Kick Flow Handler to start DMA transfer. */
8021 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8022 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8023 
8024 	iwn_nic_unlock(sc);
8025 
8026 	/* Wait at most five seconds for FH DMA transfer to complete. */
8027 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8028 }
8029 
8030 static int
8031 iwn5000_load_firmware(struct iwn_softc *sc)
8032 {
8033 	struct iwn_fw_part *fw;
8034 	int error;
8035 
8036 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8037 
8038 	/* Load the initialization firmware on first boot only. */
8039 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8040 	    &sc->fw.main : &sc->fw.init;
8041 
8042 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8043 	    fw->text, fw->textsz);
8044 	if (error != 0) {
8045 		device_printf(sc->sc_dev,
8046 		    "%s: could not load firmware %s section, error %d\n",
8047 		    __func__, ".text", error);
8048 		return error;
8049 	}
8050 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8051 	    fw->data, fw->datasz);
8052 	if (error != 0) {
8053 		device_printf(sc->sc_dev,
8054 		    "%s: could not load firmware %s section, error %d\n",
8055 		    __func__, ".data", error);
8056 		return error;
8057 	}
8058 
8059 	/* Now press "execute". */
8060 	IWN_WRITE(sc, IWN_RESET, 0);
8061 	return 0;
8062 }
8063 
8064 /*
8065  * Extract text and data sections from a legacy firmware image.
8066  */
8067 static int
8068 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8069 {
8070 	const uint32_t *ptr;
8071 	size_t hdrlen = 24;
8072 	uint32_t rev;
8073 
8074 	ptr = (const uint32_t *)fw->data;
8075 	rev = le32toh(*ptr++);
8076 
8077 	sc->ucode_rev = rev;
8078 
8079 	/* Check firmware API version. */
8080 	if (IWN_FW_API(rev) <= 1) {
8081 		device_printf(sc->sc_dev,
8082 		    "%s: bad firmware, need API version >=2\n", __func__);
8083 		return EINVAL;
8084 	}
8085 	if (IWN_FW_API(rev) >= 3) {
8086 		/* Skip build number (version 2 header). */
8087 		hdrlen += 4;
8088 		ptr++;
8089 	}
8090 	if (fw->size < hdrlen) {
8091 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8092 		    __func__, fw->size);
8093 		return EINVAL;
8094 	}
8095 	fw->main.textsz = le32toh(*ptr++);
8096 	fw->main.datasz = le32toh(*ptr++);
8097 	fw->init.textsz = le32toh(*ptr++);
8098 	fw->init.datasz = le32toh(*ptr++);
8099 	fw->boot.textsz = le32toh(*ptr++);
8100 
8101 	/* Check that all firmware sections fit. */
8102 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8103 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8104 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8105 		    __func__, fw->size);
8106 		return EINVAL;
8107 	}
8108 
8109 	/* Get pointers to firmware sections. */
8110 	fw->main.text = (const uint8_t *)ptr;
8111 	fw->main.data = fw->main.text + fw->main.textsz;
8112 	fw->init.text = fw->main.data + fw->main.datasz;
8113 	fw->init.data = fw->init.text + fw->init.textsz;
8114 	fw->boot.text = fw->init.data + fw->init.datasz;
8115 	return 0;
8116 }
8117 
8118 /*
8119  * Extract text and data sections from a TLV firmware image.
8120  */
8121 static int
8122 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8123     uint16_t alt)
8124 {
8125 	const struct iwn_fw_tlv_hdr *hdr;
8126 	const struct iwn_fw_tlv *tlv;
8127 	const uint8_t *ptr, *end;
8128 	uint64_t altmask;
8129 	uint32_t len, tmp;
8130 
8131 	if (fw->size < sizeof (*hdr)) {
8132 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8133 		    __func__, fw->size);
8134 		return EINVAL;
8135 	}
8136 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8137 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8138 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8139 		    __func__, le32toh(hdr->signature));
8140 		return EINVAL;
8141 	}
8142 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8143 	    le32toh(hdr->build));
8144 	sc->ucode_rev = le32toh(hdr->rev);
8145 
8146 	/*
8147 	 * Select the closest supported alternative that is less than
8148 	 * or equal to the specified one.
8149 	 */
8150 	altmask = le64toh(hdr->altmask);
8151 	while (alt > 0 && !(altmask & (1ULL << alt)))
8152 		alt--;	/* Downgrade. */
8153 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8154 
8155 	ptr = (const uint8_t *)(hdr + 1);
8156 	end = (const uint8_t *)(fw->data + fw->size);
8157 
8158 	/* Parse type-length-value fields. */
8159 	while (ptr + sizeof (*tlv) <= end) {
8160 		tlv = (const struct iwn_fw_tlv *)ptr;
8161 		len = le32toh(tlv->len);
8162 
8163 		ptr += sizeof (*tlv);
8164 		if (ptr + len > end) {
8165 			device_printf(sc->sc_dev,
8166 			    "%s: firmware too short: %zu bytes\n", __func__,
8167 			    fw->size);
8168 			return EINVAL;
8169 		}
8170 		/* Skip other alternatives. */
8171 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8172 			goto next;
8173 
8174 		switch (le16toh(tlv->type)) {
8175 		case IWN_FW_TLV_MAIN_TEXT:
8176 			fw->main.text = ptr;
8177 			fw->main.textsz = len;
8178 			break;
8179 		case IWN_FW_TLV_MAIN_DATA:
8180 			fw->main.data = ptr;
8181 			fw->main.datasz = len;
8182 			break;
8183 		case IWN_FW_TLV_INIT_TEXT:
8184 			fw->init.text = ptr;
8185 			fw->init.textsz = len;
8186 			break;
8187 		case IWN_FW_TLV_INIT_DATA:
8188 			fw->init.data = ptr;
8189 			fw->init.datasz = len;
8190 			break;
8191 		case IWN_FW_TLV_BOOT_TEXT:
8192 			fw->boot.text = ptr;
8193 			fw->boot.textsz = len;
8194 			break;
8195 		case IWN_FW_TLV_ENH_SENS:
8196 			if (!len)
8197 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8198 			break;
8199 		case IWN_FW_TLV_PHY_CALIB:
8200 			tmp = le32toh(*ptr);
8201 			if (tmp < 253) {
8202 				sc->reset_noise_gain = tmp;
8203 				sc->noise_gain = tmp + 1;
8204 			}
8205 			break;
8206 		case IWN_FW_TLV_PAN:
8207 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8208 			DPRINTF(sc, IWN_DEBUG_RESET,
8209 			    "PAN Support found: %d\n", 1);
8210 			break;
8211 		case IWN_FW_TLV_FLAGS:
8212 			if (len < sizeof(uint32_t))
8213 				break;
8214 			if (len % sizeof(uint32_t))
8215 				break;
8216 			sc->tlv_feature_flags = le32toh(*ptr);
8217 			DPRINTF(sc, IWN_DEBUG_RESET,
8218 			    "%s: feature: 0x%08x\n",
8219 			    __func__,
8220 			    sc->tlv_feature_flags);
8221 			break;
8222 		case IWN_FW_TLV_PBREQ_MAXLEN:
8223 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8224 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8225 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8226 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8227 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8228 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8229 		case IWN_FW_TLV_WOWLAN_INST:
8230 		case IWN_FW_TLV_WOWLAN_DATA:
8231 			DPRINTF(sc, IWN_DEBUG_RESET,
8232 			    "TLV type %d recognized but not handled\n",
8233 			    le16toh(tlv->type));
8234 			break;
8235 		default:
8236 			DPRINTF(sc, IWN_DEBUG_RESET,
8237 			    "TLV type %d not handled\n", le16toh(tlv->type));
8238 			break;
8239 		}
8240  next:		/* TLV fields are 32-bit aligned. */
8241 		ptr += (len + 3) & ~3;
8242 	}
8243 	return 0;
8244 }
8245 
8246 static int
8247 iwn_read_firmware(struct iwn_softc *sc)
8248 {
8249 	struct iwn_fw_info *fw = &sc->fw;
8250 	int error;
8251 
8252 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8253 
8254 	IWN_UNLOCK(sc);
8255 
8256 	memset(fw, 0, sizeof (*fw));
8257 
8258 	/* Read firmware image from filesystem. */
8259 	sc->fw_fp = firmware_get(sc->fwname);
8260 	if (sc->fw_fp == NULL) {
8261 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8262 		    __func__, sc->fwname);
8263 		IWN_LOCK(sc);
8264 		return EINVAL;
8265 	}
8266 	IWN_LOCK(sc);
8267 
8268 	fw->size = sc->fw_fp->datasize;
8269 	fw->data = (const uint8_t *)sc->fw_fp->data;
8270 	if (fw->size < sizeof (uint32_t)) {
8271 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8272 		    __func__, fw->size);
8273 		error = EINVAL;
8274 		goto fail;
8275 	}
8276 
8277 	/* Retrieve text and data sections. */
8278 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8279 		error = iwn_read_firmware_leg(sc, fw);
8280 	else
8281 		error = iwn_read_firmware_tlv(sc, fw, 1);
8282 	if (error != 0) {
8283 		device_printf(sc->sc_dev,
8284 		    "%s: could not read firmware sections, error %d\n",
8285 		    __func__, error);
8286 		goto fail;
8287 	}
8288 
8289 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8290 
8291 	/* Make sure text and data sections fit in hardware memory. */
8292 	if (fw->main.textsz > sc->fw_text_maxsz ||
8293 	    fw->main.datasz > sc->fw_data_maxsz ||
8294 	    fw->init.textsz > sc->fw_text_maxsz ||
8295 	    fw->init.datasz > sc->fw_data_maxsz ||
8296 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8297 	    (fw->boot.textsz & 3) != 0) {
8298 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8299 		    __func__);
8300 		error = EINVAL;
8301 		goto fail;
8302 	}
8303 
8304 	/* We can proceed with loading the firmware. */
8305 	return 0;
8306 
8307 fail:	iwn_unload_firmware(sc);
8308 	return error;
8309 }
8310 
8311 static void
8312 iwn_unload_firmware(struct iwn_softc *sc)
8313 {
8314 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8315 	sc->fw_fp = NULL;
8316 }
8317 
8318 static int
8319 iwn_clock_wait(struct iwn_softc *sc)
8320 {
8321 	int ntries;
8322 
8323 	/* Set "initialization complete" bit. */
8324 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8325 
8326 	/* Wait for clock stabilization. */
8327 	for (ntries = 0; ntries < 2500; ntries++) {
8328 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8329 			return 0;
8330 		DELAY(10);
8331 	}
8332 	device_printf(sc->sc_dev,
8333 	    "%s: timeout waiting for clock stabilization\n", __func__);
8334 	return ETIMEDOUT;
8335 }
8336 
8337 static int
8338 iwn_apm_init(struct iwn_softc *sc)
8339 {
8340 	uint32_t reg;
8341 	int error;
8342 
8343 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8344 
8345 	/* Disable L0s exit timer (NMI bug workaround). */
8346 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8347 	/* Don't wait for ICH L0s (ICH bug workaround). */
8348 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8349 
8350 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8351 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8352 
8353 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8354 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8355 
8356 	/* Retrieve PCIe Active State Power Management (ASPM). */
8357 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8358 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8359 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8360 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8361 	else
8362 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8363 
8364 	if (sc->base_params->pll_cfg_val)
8365 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8366 
8367 	/* Wait for clock stabilization before accessing prph. */
8368 	if ((error = iwn_clock_wait(sc)) != 0)
8369 		return error;
8370 
8371 	if ((error = iwn_nic_lock(sc)) != 0)
8372 		return error;
8373 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8374 		/* Enable DMA and BSM (Bootstrap State Machine). */
8375 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8376 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8377 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8378 	} else {
8379 		/* Enable DMA. */
8380 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8381 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8382 	}
8383 	DELAY(20);
8384 	/* Disable L1-Active. */
8385 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8386 	iwn_nic_unlock(sc);
8387 
8388 	return 0;
8389 }
8390 
8391 static void
8392 iwn_apm_stop_master(struct iwn_softc *sc)
8393 {
8394 	int ntries;
8395 
8396 	/* Stop busmaster DMA activity. */
8397 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8398 	for (ntries = 0; ntries < 100; ntries++) {
8399 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8400 			return;
8401 		DELAY(10);
8402 	}
8403 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8404 }
8405 
8406 static void
8407 iwn_apm_stop(struct iwn_softc *sc)
8408 {
8409 	iwn_apm_stop_master(sc);
8410 
8411 	/* Reset the entire device. */
8412 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8413 	DELAY(10);
8414 	/* Clear "initialization complete" bit. */
8415 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8416 }
8417 
8418 static int
8419 iwn4965_nic_config(struct iwn_softc *sc)
8420 {
8421 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8422 
8423 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8424 		/*
8425 		 * I don't believe this to be correct but this is what the
8426 		 * vendor driver is doing. Probably the bits should not be
8427 		 * shifted in IWN_RFCFG_*.
8428 		 */
8429 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8430 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8431 		    IWN_RFCFG_STEP(sc->rfcfg) |
8432 		    IWN_RFCFG_DASH(sc->rfcfg));
8433 	}
8434 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8435 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8436 	return 0;
8437 }
8438 
8439 static int
8440 iwn5000_nic_config(struct iwn_softc *sc)
8441 {
8442 	uint32_t tmp;
8443 	int error;
8444 
8445 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8446 
8447 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8448 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8449 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8450 		    IWN_RFCFG_STEP(sc->rfcfg) |
8451 		    IWN_RFCFG_DASH(sc->rfcfg));
8452 	}
8453 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8454 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8455 
8456 	if ((error = iwn_nic_lock(sc)) != 0)
8457 		return error;
8458 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8459 
8460 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8461 		/*
8462 		 * Select first Switching Voltage Regulator (1.32V) to
8463 		 * solve a stability issue related to noisy DC2DC line
8464 		 * in the silicon of 1000 Series.
8465 		 */
8466 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8467 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8468 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8469 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8470 	}
8471 	iwn_nic_unlock(sc);
8472 
8473 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8474 		/* Use internal power amplifier only. */
8475 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8476 	}
8477 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8478 		/* Indicate that ROM calibration version is >=6. */
8479 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8480 	}
8481 	if (sc->base_params->additional_gp_drv_bit)
8482 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8483 		    sc->base_params->additional_gp_drv_bit);
8484 	return 0;
8485 }
8486 
8487 /*
8488  * Take NIC ownership over Intel Active Management Technology (AMT).
8489  */
8490 static int
8491 iwn_hw_prepare(struct iwn_softc *sc)
8492 {
8493 	int ntries;
8494 
8495 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8496 
8497 	/* Check if hardware is ready. */
8498 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8499 	for (ntries = 0; ntries < 5; ntries++) {
8500 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8501 		    IWN_HW_IF_CONFIG_NIC_READY)
8502 			return 0;
8503 		DELAY(10);
8504 	}
8505 
8506 	/* Hardware not ready, force into ready state. */
8507 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8508 	for (ntries = 0; ntries < 15000; ntries++) {
8509 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8510 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8511 			break;
8512 		DELAY(10);
8513 	}
8514 	if (ntries == 15000)
8515 		return ETIMEDOUT;
8516 
8517 	/* Hardware should be ready now. */
8518 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8519 	for (ntries = 0; ntries < 5; ntries++) {
8520 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8521 		    IWN_HW_IF_CONFIG_NIC_READY)
8522 			return 0;
8523 		DELAY(10);
8524 	}
8525 	return ETIMEDOUT;
8526 }
8527 
8528 static int
8529 iwn_hw_init(struct iwn_softc *sc)
8530 {
8531 	struct iwn_ops *ops = &sc->ops;
8532 	int error, chnl, qid;
8533 
8534 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8535 
8536 	/* Clear pending interrupts. */
8537 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8538 
8539 	if ((error = iwn_apm_init(sc)) != 0) {
8540 		device_printf(sc->sc_dev,
8541 		    "%s: could not power ON adapter, error %d\n", __func__,
8542 		    error);
8543 		return error;
8544 	}
8545 
8546 	/* Select VMAIN power source. */
8547 	if ((error = iwn_nic_lock(sc)) != 0)
8548 		return error;
8549 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8550 	iwn_nic_unlock(sc);
8551 
8552 	/* Perform adapter-specific initialization. */
8553 	if ((error = ops->nic_config(sc)) != 0)
8554 		return error;
8555 
8556 	/* Initialize RX ring. */
8557 	if ((error = iwn_nic_lock(sc)) != 0)
8558 		return error;
8559 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8560 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8561 	/* Set physical address of RX ring (256-byte aligned). */
8562 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8563 	/* Set physical address of RX status (16-byte aligned). */
8564 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8565 	/* Enable RX. */
8566 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8567 	    IWN_FH_RX_CONFIG_ENA           |
8568 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8569 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8570 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8571 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8572 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8573 	iwn_nic_unlock(sc);
8574 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8575 
8576 	if ((error = iwn_nic_lock(sc)) != 0)
8577 		return error;
8578 
8579 	/* Initialize TX scheduler. */
8580 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8581 
8582 	/* Set physical address of "keep warm" page (16-byte aligned). */
8583 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8584 
8585 	/* Initialize TX rings. */
8586 	for (qid = 0; qid < sc->ntxqs; qid++) {
8587 		struct iwn_tx_ring *txq = &sc->txq[qid];
8588 
8589 		/* Set physical address of TX ring (256-byte aligned). */
8590 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8591 		    txq->desc_dma.paddr >> 8);
8592 	}
8593 	iwn_nic_unlock(sc);
8594 
8595 	/* Enable DMA channels. */
8596 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8597 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8598 		    IWN_FH_TX_CONFIG_DMA_ENA |
8599 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8600 	}
8601 
8602 	/* Clear "radio off" and "commands blocked" bits. */
8603 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8604 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8605 
8606 	/* Clear pending interrupts. */
8607 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8608 	/* Enable interrupt coalescing. */
8609 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8610 	/* Enable interrupts. */
8611 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8612 
8613 	/* _Really_ make sure "radio off" bit is cleared! */
8614 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8615 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8616 
8617 	/* Enable shadow registers. */
8618 	if (sc->base_params->shadow_reg_enable)
8619 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8620 
8621 	if ((error = ops->load_firmware(sc)) != 0) {
8622 		device_printf(sc->sc_dev,
8623 		    "%s: could not load firmware, error %d\n", __func__,
8624 		    error);
8625 		return error;
8626 	}
8627 	/* Wait at most one second for firmware alive notification. */
8628 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8629 		device_printf(sc->sc_dev,
8630 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8631 		    __func__, error);
8632 		return error;
8633 	}
8634 	/* Do post-firmware initialization. */
8635 
8636 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8637 
8638 	return ops->post_alive(sc);
8639 }
8640 
8641 static void
8642 iwn_hw_stop(struct iwn_softc *sc)
8643 {
8644 	int chnl, qid, ntries;
8645 
8646 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8647 
8648 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8649 
8650 	/* Disable interrupts. */
8651 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8652 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8653 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8654 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8655 
8656 	/* Make sure we no longer hold the NIC lock. */
8657 	iwn_nic_unlock(sc);
8658 
8659 	/* Stop TX scheduler. */
8660 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8661 
8662 	/* Stop all DMA channels. */
8663 	if (iwn_nic_lock(sc) == 0) {
8664 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8665 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8666 			for (ntries = 0; ntries < 200; ntries++) {
8667 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8668 				    IWN_FH_TX_STATUS_IDLE(chnl))
8669 					break;
8670 				DELAY(10);
8671 			}
8672 		}
8673 		iwn_nic_unlock(sc);
8674 	}
8675 
8676 	/* Stop RX ring. */
8677 	iwn_reset_rx_ring(sc, &sc->rxq);
8678 
8679 	/* Reset all TX rings. */
8680 	for (qid = 0; qid < sc->ntxqs; qid++)
8681 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8682 
8683 	if (iwn_nic_lock(sc) == 0) {
8684 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8685 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8686 		iwn_nic_unlock(sc);
8687 	}
8688 	DELAY(5);
8689 	/* Power OFF adapter. */
8690 	iwn_apm_stop(sc);
8691 }
8692 
8693 static void
8694 iwn_panicked(void *arg0, int pending)
8695 {
8696 	struct iwn_softc *sc = arg0;
8697 	struct ieee80211com *ic = &sc->sc_ic;
8698 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8699 #if 0
8700 	int error;
8701 #endif
8702 
8703 	if (vap == NULL) {
8704 		printf("%s: null vap\n", __func__);
8705 		return;
8706 	}
8707 
8708 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8709 	    "restarting\n", __func__, vap->iv_state);
8710 
8711 	/*
8712 	 * This is not enough work. We need to also reinitialise
8713 	 * the correct transmit state for aggregation enabled queues,
8714 	 * which has a very specific requirement of
8715 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8716 	 * we definitely don't!) then the firmware will just panic again.
8717 	 */
8718 #if 1
8719 	ieee80211_restart_all(ic);
8720 #else
8721 	IWN_LOCK(sc);
8722 
8723 	iwn_stop_locked(sc);
8724 	if ((error = iwn_init_locked(sc)) != 0) {
8725 		device_printf(sc->sc_dev,
8726 		    "%s: could not init hardware\n", __func__);
8727 		goto unlock;
8728 	}
8729 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8730 	    (error = iwn_auth(sc, vap)) != 0) {
8731 		device_printf(sc->sc_dev,
8732 		    "%s: could not move to auth state\n", __func__);
8733 	}
8734 	if (vap->iv_state >= IEEE80211_S_RUN &&
8735 	    (error = iwn_run(sc, vap)) != 0) {
8736 		device_printf(sc->sc_dev,
8737 		    "%s: could not move to run state\n", __func__);
8738 	}
8739 
8740 unlock:
8741 	IWN_UNLOCK(sc);
8742 #endif
8743 }
8744 
8745 static int
8746 iwn_init_locked(struct iwn_softc *sc)
8747 {
8748 	int error;
8749 
8750 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8751 
8752 	IWN_LOCK_ASSERT(sc);
8753 
8754 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8755 		goto end;
8756 
8757 	sc->sc_flags |= IWN_FLAG_RUNNING;
8758 
8759 	if ((error = iwn_hw_prepare(sc)) != 0) {
8760 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8761 		    __func__, error);
8762 		goto fail;
8763 	}
8764 
8765 	/* Initialize interrupt mask to default value. */
8766 	sc->int_mask = IWN_INT_MASK_DEF;
8767 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8768 
8769 	/* Check that the radio is not disabled by hardware switch. */
8770 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8771 		error = EAGAIN;
8772 		goto fail;
8773 	}
8774 
8775 	/* Read firmware images from the filesystem. */
8776 	if ((error = iwn_read_firmware(sc)) != 0) {
8777 		device_printf(sc->sc_dev,
8778 		    "%s: could not read firmware, error %d\n", __func__,
8779 		    error);
8780 		goto fail;
8781 	}
8782 
8783 	/* Initialize hardware and upload firmware. */
8784 	error = iwn_hw_init(sc);
8785 	iwn_unload_firmware(sc);
8786 	if (error != 0) {
8787 		device_printf(sc->sc_dev,
8788 		    "%s: could not initialize hardware, error %d\n", __func__,
8789 		    error);
8790 		goto fail;
8791 	}
8792 
8793 	/* Configure adapter now that it is ready. */
8794 	if ((error = iwn_config(sc)) != 0) {
8795 		device_printf(sc->sc_dev,
8796 		    "%s: could not configure device, error %d\n", __func__,
8797 		    error);
8798 		goto fail;
8799 	}
8800 
8801 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8802 
8803 end:
8804 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8805 
8806 	return (0);
8807 
8808 fail:
8809 	iwn_stop_locked(sc);
8810 
8811 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8812 
8813 	return (error);
8814 }
8815 
8816 static int
8817 iwn_init(struct iwn_softc *sc)
8818 {
8819 	int error;
8820 
8821 	IWN_LOCK(sc);
8822 	error = iwn_init_locked(sc);
8823 	IWN_UNLOCK(sc);
8824 
8825 	return (error);
8826 }
8827 
8828 static void
8829 iwn_stop_locked(struct iwn_softc *sc)
8830 {
8831 
8832 	IWN_LOCK_ASSERT(sc);
8833 
8834 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
8835 		return;
8836 
8837 	sc->sc_is_scanning = 0;
8838 	sc->sc_tx_timer = 0;
8839 	callout_stop(&sc->watchdog_to);
8840 	callout_stop(&sc->scan_timeout);
8841 	callout_stop(&sc->calib_to);
8842 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8843 
8844 	/* Power OFF hardware. */
8845 	iwn_hw_stop(sc);
8846 }
8847 
8848 static void
8849 iwn_stop(struct iwn_softc *sc)
8850 {
8851 	IWN_LOCK(sc);
8852 	iwn_stop_locked(sc);
8853 	IWN_UNLOCK(sc);
8854 }
8855 
8856 /*
8857  * Callback from net80211 to start a scan.
8858  */
8859 static void
8860 iwn_scan_start(struct ieee80211com *ic)
8861 {
8862 	struct iwn_softc *sc = ic->ic_softc;
8863 
8864 	IWN_LOCK(sc);
8865 	/* make the link LED blink while we're scanning */
8866 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8867 	IWN_UNLOCK(sc);
8868 }
8869 
8870 /*
8871  * Callback from net80211 to terminate a scan.
8872  */
8873 static void
8874 iwn_scan_end(struct ieee80211com *ic)
8875 {
8876 	struct iwn_softc *sc = ic->ic_softc;
8877 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8878 
8879 	IWN_LOCK(sc);
8880 	if (vap->iv_state == IEEE80211_S_RUN) {
8881 		/* Set link LED to ON status if we are associated */
8882 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8883 	}
8884 	IWN_UNLOCK(sc);
8885 }
8886 
8887 /*
8888  * Callback from net80211 to force a channel change.
8889  */
8890 static void
8891 iwn_set_channel(struct ieee80211com *ic)
8892 {
8893 	const struct ieee80211_channel *c = ic->ic_curchan;
8894 	struct iwn_softc *sc = ic->ic_softc;
8895 	int error;
8896 
8897 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8898 
8899 	IWN_LOCK(sc);
8900 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8901 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8902 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8903 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8904 
8905 	/*
8906 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8907 	 * are already taken care of by their respective firmware commands.
8908 	 */
8909 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8910 		error = iwn_config(sc);
8911 		if (error != 0)
8912 		device_printf(sc->sc_dev,
8913 		    "%s: error %d settting channel\n", __func__, error);
8914 	}
8915 	IWN_UNLOCK(sc);
8916 }
8917 
8918 /*
8919  * Callback from net80211 to start scanning of the current channel.
8920  */
8921 static void
8922 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8923 {
8924 	struct ieee80211vap *vap = ss->ss_vap;
8925 	struct ieee80211com *ic = vap->iv_ic;
8926 	struct iwn_softc *sc = ic->ic_softc;
8927 	int error;
8928 
8929 	IWN_LOCK(sc);
8930 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8931 	IWN_UNLOCK(sc);
8932 	if (error != 0)
8933 		ieee80211_cancel_scan(vap);
8934 }
8935 
8936 /*
8937  * Callback from net80211 to handle the minimum dwell time being met.
8938  * The intent is to terminate the scan but we just let the firmware
8939  * notify us when it's finished as we have no safe way to abort it.
8940  */
8941 static void
8942 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8943 {
8944 	/* NB: don't try to abort scan; wait for firmware to finish */
8945 }
8946 #ifdef	IWN_DEBUG
8947 #define	IWN_DESC(x) case x:	return #x
8948 
8949 /*
8950  * Translate CSR code to string
8951  */
8952 static char *iwn_get_csr_string(int csr)
8953 {
8954 	switch (csr) {
8955 		IWN_DESC(IWN_HW_IF_CONFIG);
8956 		IWN_DESC(IWN_INT_COALESCING);
8957 		IWN_DESC(IWN_INT);
8958 		IWN_DESC(IWN_INT_MASK);
8959 		IWN_DESC(IWN_FH_INT);
8960 		IWN_DESC(IWN_GPIO_IN);
8961 		IWN_DESC(IWN_RESET);
8962 		IWN_DESC(IWN_GP_CNTRL);
8963 		IWN_DESC(IWN_HW_REV);
8964 		IWN_DESC(IWN_EEPROM);
8965 		IWN_DESC(IWN_EEPROM_GP);
8966 		IWN_DESC(IWN_OTP_GP);
8967 		IWN_DESC(IWN_GIO);
8968 		IWN_DESC(IWN_GP_UCODE);
8969 		IWN_DESC(IWN_GP_DRIVER);
8970 		IWN_DESC(IWN_UCODE_GP1);
8971 		IWN_DESC(IWN_UCODE_GP2);
8972 		IWN_DESC(IWN_LED);
8973 		IWN_DESC(IWN_DRAM_INT_TBL);
8974 		IWN_DESC(IWN_GIO_CHICKEN);
8975 		IWN_DESC(IWN_ANA_PLL);
8976 		IWN_DESC(IWN_HW_REV_WA);
8977 		IWN_DESC(IWN_DBG_HPET_MEM);
8978 	default:
8979 		return "UNKNOWN CSR";
8980 	}
8981 }
8982 
8983 /*
8984  * This function print firmware register
8985  */
8986 static void
8987 iwn_debug_register(struct iwn_softc *sc)
8988 {
8989 	int i;
8990 	static const uint32_t csr_tbl[] = {
8991 		IWN_HW_IF_CONFIG,
8992 		IWN_INT_COALESCING,
8993 		IWN_INT,
8994 		IWN_INT_MASK,
8995 		IWN_FH_INT,
8996 		IWN_GPIO_IN,
8997 		IWN_RESET,
8998 		IWN_GP_CNTRL,
8999 		IWN_HW_REV,
9000 		IWN_EEPROM,
9001 		IWN_EEPROM_GP,
9002 		IWN_OTP_GP,
9003 		IWN_GIO,
9004 		IWN_GP_UCODE,
9005 		IWN_GP_DRIVER,
9006 		IWN_UCODE_GP1,
9007 		IWN_UCODE_GP2,
9008 		IWN_LED,
9009 		IWN_DRAM_INT_TBL,
9010 		IWN_GIO_CHICKEN,
9011 		IWN_ANA_PLL,
9012 		IWN_HW_REV_WA,
9013 		IWN_DBG_HPET_MEM,
9014 	};
9015 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9016 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9017 	    "\n");
9018 	for (i = 0; i <  nitems(csr_tbl); i++){
9019 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9020 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9021 		if ((i+1) % 3 == 0)
9022 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9023 	}
9024 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9025 }
9026 #endif
9027 
9028 
9029