xref: /freebsd/sys/dev/iwn/if_iwn.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (c) 2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <machine/clock.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 
71 #include <dev/iwn/if_iwnreg.h>
72 #include <dev/iwn/if_iwnvar.h>
73 
74 static int	iwn_probe(device_t);
75 static int	iwn_attach(device_t);
76 static int 	iwn_detach(device_t);
77 static int	iwn_cleanup(device_t);
78 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
79 		    const char name[IFNAMSIZ], int unit, int opmode,
80 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
81 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
82 static void	iwn_vap_delete(struct ieee80211vap *);
83 static int	iwn_shutdown(device_t);
84 static int	iwn_suspend(device_t);
85 static int	iwn_resume(device_t);
86 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	iwn_dma_contig_free(struct iwn_dma_info *);
89 int		iwn_alloc_shared(struct iwn_softc *);
90 void		iwn_free_shared(struct iwn_softc *);
91 int		iwn_alloc_kw(struct iwn_softc *);
92 void		iwn_free_kw(struct iwn_softc *);
93 int		iwn_alloc_fwmem(struct iwn_softc *);
94 void		iwn_free_fwmem(struct iwn_softc *);
95 struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
96 void		iwn_free_rbuf(void *, void *);
97 int		iwn_alloc_rpool(struct iwn_softc *);
98 void		iwn_free_rpool(struct iwn_softc *);
99 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
100 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
101 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
102 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
103 		    int);
104 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
105 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
106 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
107 		    const uint8_t [IEEE80211_ADDR_LEN]);
108 void		iwn_newassoc(struct ieee80211_node *, int);
109 int		iwn_media_change(struct ifnet *);
110 int		iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
111 void		iwn_mem_lock(struct iwn_softc *);
112 void		iwn_mem_unlock(struct iwn_softc *);
113 uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
114 void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
115 void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
116 		    const uint32_t *, int);
117 int		iwn_eeprom_lock(struct iwn_softc *);
118 void		iwn_eeprom_unlock(struct iwn_softc *);
119 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
120 int		iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int);
121 int		iwn_transfer_firmware(struct iwn_softc *);
122 int		iwn_load_firmware(struct iwn_softc *);
123 void		iwn_unload_firmware(struct iwn_softc *);
124 static void	iwn_timer_timeout(void *);
125 static void	iwn_calib_reset(struct iwn_softc *);
126 void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
127 void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
128 		    struct iwn_rx_data *);
129 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
130 void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
131 void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
132 static void	iwn_bmiss(void *, int);
133 void		iwn_notif_intr(struct iwn_softc *);
134 void		iwn_intr(void *);
135 void		iwn_read_eeprom(struct iwn_softc *,
136 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
137 static void	iwn_read_eeprom_channels(struct iwn_softc *);
138 void		iwn_print_power_group(struct iwn_softc *, int);
139 uint8_t		iwn_plcp_signal(int);
140 int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
141 		    struct ieee80211_node *, struct iwn_tx_ring *);
142 void		iwn_start(struct ifnet *);
143 void		iwn_start_locked(struct ifnet *);
144 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
145 		    const struct ieee80211_bpf_params *);
146 static void	iwn_watchdog(struct iwn_softc *);
147 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
148 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
149 int		iwn_set_link_quality(struct iwn_softc *, uint8_t,
150 		    const struct ieee80211_channel *, int);
151 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
152 		    const struct ieee80211_key *);
153 int		iwn_wme_update(struct ieee80211com *);
154 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
155 int		iwn_set_critical_temp(struct iwn_softc *);
156 void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
157 void		iwn_power_calibration(struct iwn_softc *, int);
158 int		iwn_set_txpower(struct iwn_softc *,
159 		    struct ieee80211_channel *, int);
160 int8_t		iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *);
161 int		iwn_get_noise(const struct iwn_rx_general_stats *);
162 int		iwn_get_temperature(struct iwn_softc *);
163 int		iwn_init_sensitivity(struct iwn_softc *);
164 void		iwn_compute_differential_gain(struct iwn_softc *,
165 		    const struct iwn_rx_general_stats *);
166 void		iwn_tune_sensitivity(struct iwn_softc *,
167 		    const struct iwn_rx_stats *);
168 int		iwn_send_sensitivity(struct iwn_softc *);
169 int		iwn_auth(struct iwn_softc *);
170 int		iwn_run(struct iwn_softc *);
171 int		iwn_scan(struct iwn_softc *);
172 int		iwn_config(struct iwn_softc *);
173 void		iwn_post_alive(struct iwn_softc *);
174 void		iwn_stop_master(struct iwn_softc *);
175 int		iwn_reset(struct iwn_softc *);
176 void		iwn_hw_config(struct iwn_softc *);
177 void		iwn_init_locked(struct iwn_softc *);
178 void		iwn_init(void *);
179 void		iwn_stop_locked(struct iwn_softc *);
180 void		iwn_stop(struct iwn_softc *);
181 static void 	iwn_scan_start(struct ieee80211com *);
182 static void 	iwn_scan_end(struct ieee80211com *);
183 static void 	iwn_set_channel(struct ieee80211com *);
184 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
185 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
186 static void 	iwn_ops(void *, int);
187 static int 	iwn_queue_cmd( struct iwn_softc *, int, int, int);
188 static void	iwn_bpfattach(struct iwn_softc *);
189 static void	iwn_sysctlattach(struct iwn_softc *);
190 
191 #define IWN_DEBUG
192 #ifdef IWN_DEBUG
193 enum {
194 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
195 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
196 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
197 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
198 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
199 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
200 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
201 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
202 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
203 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
204 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
205 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
206 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
207 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
208 	IWN_DEBUG_ANY		= 0xffffffff
209 };
210 
211 #define DPRINTF(sc, m, fmt, ...) do {			\
212 	if (sc->sc_debug & (m))				\
213 		printf(fmt, __VA_ARGS__);		\
214 } while (0)
215 
216 static const char *iwn_ops_str(int);
217 static const char *iwn_intr_str(uint8_t);
218 #else
219 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
220 #endif
221 
222 struct iwn_ident {
223 	uint16_t	vendor;
224 	uint16_t	device;
225 	const char	*name;
226 };
227 
228 static const struct iwn_ident iwn_ident_table [] = {
229         { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
230         { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
231         { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
232         { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
233         { 0, 0, NULL }
234 };
235 
236 static int
237 iwn_probe(device_t dev)
238 {
239         const struct iwn_ident *ident;
240 
241         for (ident = iwn_ident_table; ident->name != NULL; ident++) {
242                 if (pci_get_vendor(dev) == ident->vendor &&
243                     pci_get_device(dev) == ident->device) {
244                         device_set_desc(dev, ident->name);
245                         return 0;
246                 }
247         }
248         return ENXIO;
249 }
250 
251 static int
252 iwn_attach(device_t dev)
253 {
254 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
255 	struct ieee80211com *ic;
256 	struct ifnet *ifp;
257 	int i, error, result;
258 	uint8_t macaddr[IEEE80211_ADDR_LEN];
259 
260 	sc->sc_dev = dev;
261 
262 	/* XXX */
263 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
264 		device_printf(dev, "chip is in D%d power mode "
265 		    "-- setting to D0\n", pci_get_powerstate(dev));
266 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
267 	}
268 
269 	/* clear device specific PCI configuration register 0x41 */
270 	pci_write_config(dev, 0x41, 0, 1);
271 
272 	/* enable bus-mastering */
273 	pci_enable_busmaster(dev);
274 
275 	sc->mem_rid= PCIR_BAR(0);
276 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
277 					 RF_ACTIVE);
278 	if (sc->mem == NULL ) {
279 		device_printf(dev, "could not allocate memory resources\n");
280 		error = ENOMEM;
281 		return error;
282 	}
283 
284 	sc->sc_st = rman_get_bustag(sc->mem);
285 	sc->sc_sh = rman_get_bushandle(sc->mem);
286 	sc->irq_rid = 0;
287 	if ((result = pci_msi_count(dev)) == 1 &&
288 	    pci_alloc_msi(dev, &result) == 0)
289 		sc->irq_rid = 1;
290 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
291 					 RF_ACTIVE | RF_SHAREABLE);
292 	if (sc->irq == NULL) {
293 		device_printf(dev, "could not allocate interrupt resource\n");
294 		error = ENOMEM;
295 		return error;
296 	}
297 
298 	IWN_LOCK_INIT(sc);
299 	IWN_CMD_LOCK_INIT(sc);
300 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
301 
302         /*
303          * Create the taskqueues used by the driver. Primarily
304          * sc_tq handles most the task
305          */
306         sc->sc_tq = taskqueue_create("iwn_taskq", M_NOWAIT | M_ZERO,
307                 taskqueue_thread_enqueue, &sc->sc_tq);
308         taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
309                 device_get_nameunit(dev));
310 
311         TASK_INIT(&sc->sc_ops_task, 0, iwn_ops, sc );
312 	TASK_INIT(&sc->sc_bmiss_task, 0, iwn_bmiss, sc);
313 
314 	/*
315 	 * Put adapter into a known state.
316 	 */
317 	error = iwn_reset(sc);
318 	if (error != 0) {
319 		device_printf(dev,
320 		    "could not reset adapter, error %d\n", error);
321 		goto fail;
322 	}
323 
324 	/*
325 	 * Allocate DMA memory for firmware transfers.
326 	 */
327 	error = iwn_alloc_fwmem(sc);
328 	if (error != 0) {
329 		device_printf(dev,
330 		    "could not allocate firmware memory, error %d\n", error);
331 		goto fail;
332 	}
333 
334 	/*
335 	 * Allocate a "keep warm" page.
336 	 */
337 	error = iwn_alloc_kw(sc);
338 	if (error != 0) {
339 		device_printf(dev,
340 		    "could not allocate keep-warm page, error %d\n", error);
341 		goto fail;
342 	}
343 
344 	/*
345 	 * Allocate shared area (communication area).
346 	 */
347 	error = iwn_alloc_shared(sc);
348 	if (error != 0) {
349 		device_printf(dev,
350 		    "could not allocate shared area, error %d\n", error);
351 		goto fail;
352 	}
353 
354 	/*
355 	 * Allocate Tx rings.
356 	 */
357 	for (i = 0; i < IWN_NTXQUEUES; i++) {
358 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
359 		if (error != 0) {
360 			device_printf(dev,
361 			    "could not allocate Tx ring %d, error %d\n",
362 			    i, error);
363 			goto fail;
364 		}
365 	}
366 
367 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
368 	if (error != 0 ){
369 		device_printf(dev,
370 		    "could not allocate Rx ring, error %d\n", error);
371 		goto fail;
372 	}
373 
374 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
375 	if (ifp == NULL) {
376 		device_printf(dev, "can not allocate ifnet structure\n");
377 		goto fail;
378 	}
379 	ic = ifp->if_l2com;
380 
381 	ic->ic_ifp = ifp;
382 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
383 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
384 
385 	/* set device capabilities */
386 	ic->ic_caps =
387 		  IEEE80211_C_STA		/* station mode supported */
388 		| IEEE80211_C_MONITOR		/* monitor mode supported */
389 		| IEEE80211_C_TXPMGT		/* tx power management */
390 		| IEEE80211_C_SHSLOT		/* short slot time supported */
391 		| IEEE80211_C_WPA
392 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
393 #if 0
394 		| IEEE80211_C_BGSCAN		/* background scanning */
395 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
396 #endif
397 		| IEEE80211_C_WME		/* WME */
398 		;
399 #if 0
400 	/* XXX disable until HT channel setup works */
401 	ic->ic_htcaps =
402 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
403 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
404 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
405 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
406 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
407 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
408 		/* s/w capabilities */
409 		| IEEE80211_HTC_HT		/* HT operation */
410 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
411 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
412 		;
413 #endif
414 	/* read supported channels and MAC address from EEPROM */
415 	iwn_read_eeprom(sc, macaddr);
416 
417 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
418 	ifp->if_softc = sc;
419 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
420 	ifp->if_init = iwn_init;
421 	ifp->if_ioctl = iwn_ioctl;
422 	ifp->if_start = iwn_start;
423         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
424 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
425 	IFQ_SET_READY(&ifp->if_snd);
426 
427 	ieee80211_ifattach(ic, macaddr);
428 	ic->ic_vap_create = iwn_vap_create;
429 	ic->ic_vap_delete = iwn_vap_delete;
430 	ic->ic_raw_xmit = iwn_raw_xmit;
431 	ic->ic_node_alloc = iwn_node_alloc;
432 	ic->ic_newassoc = iwn_newassoc;
433         ic->ic_wme.wme_update = iwn_wme_update;
434         ic->ic_scan_start = iwn_scan_start;
435         ic->ic_scan_end = iwn_scan_end;
436         ic->ic_set_channel = iwn_set_channel;
437         ic->ic_scan_curchan = iwn_scan_curchan;
438         ic->ic_scan_mindwell = iwn_scan_mindwell;
439 
440 	iwn_bpfattach(sc);
441 	iwn_sysctlattach(sc);
442 
443         /*
444          * Hook our interrupt after all initialization is complete.
445          */
446         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
447 	    NULL, iwn_intr, sc, &sc->sc_ih);
448         if (error != 0) {
449                 device_printf(dev, "could not set up interrupt, error %d\n", error);
450                 goto fail;
451         }
452 
453         ieee80211_announce(ic);
454 	return 0;
455 fail:
456 	iwn_cleanup(dev);
457 	return error;
458 }
459 
460 static int
461 iwn_detach(device_t dev)
462 {
463 	iwn_cleanup(dev);
464         return 0;
465 }
466 
467 /*
468  * Cleanup any device resources that were allocated
469  */
470 int
471 iwn_cleanup(device_t dev)
472 {
473 	struct iwn_softc *sc = device_get_softc(dev);
474 	struct ifnet *ifp = sc->sc_ifp;
475 	struct ieee80211com *ic = ifp->if_l2com;
476 	int i;
477 
478 	if (ifp != NULL) {
479 		iwn_stop(sc);
480 		callout_drain(&sc->sc_timer_to);
481 		bpfdetach(ifp);
482 		ieee80211_ifdetach(ic);
483 	}
484 
485 	iwn_unload_firmware(sc);
486 
487 	iwn_free_rx_ring(sc, &sc->rxq);
488 	for (i = 0; i < IWN_NTXQUEUES; i++)
489 		iwn_free_tx_ring(sc, &sc->txq[i]);
490 	iwn_free_kw(sc);
491 	iwn_free_fwmem(sc);
492 	if (sc->irq != NULL) {
493 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
494 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
495 		if (sc->irq_rid == 1)
496 			pci_release_msi(dev);
497 	}
498 	if (sc->mem != NULL)
499 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
500 	if (ifp != NULL)
501 		if_free(ifp);
502 	taskqueue_free(sc->sc_tq);
503 	IWN_CMD_LOCK_DESTROY(sc);
504 	IWN_LOCK_DESTROY(sc);
505 	return 0;
506 }
507 
508 static struct ieee80211vap *
509 iwn_vap_create(struct ieee80211com *ic,
510 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
511 	const uint8_t bssid[IEEE80211_ADDR_LEN],
512 	const uint8_t mac[IEEE80211_ADDR_LEN])
513 {
514 	struct iwn_vap *ivp;
515 	struct ieee80211vap *vap;
516 
517 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
518 		return NULL;
519 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
520 	    M_80211_VAP, M_NOWAIT | M_ZERO);
521 	if (ivp == NULL)
522 		return NULL;
523 	vap = &ivp->iv_vap;
524 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
525 	vap->iv_bmissthreshold = 10;		/* override default */
526 	/* override with driver methods */
527 	ivp->iv_newstate = vap->iv_newstate;
528 	vap->iv_newstate = iwn_newstate;
529 
530 	ieee80211_amrr_init(&ivp->iv_amrr, vap,
531 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
532 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
533 	    500 /*ms*/);
534 
535 	/* complete setup */
536 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
537 	ic->ic_opmode = opmode;
538 	return vap;
539 }
540 
541 static void
542 iwn_vap_delete(struct ieee80211vap *vap)
543 {
544 	struct iwn_vap *ivp = IWN_VAP(vap);
545 
546 	ieee80211_amrr_cleanup(&ivp->iv_amrr);
547 	ieee80211_vap_detach(vap);
548 	free(ivp, M_80211_VAP);
549 }
550 
551 static int
552 iwn_shutdown(device_t dev)
553 {
554 	struct iwn_softc *sc = device_get_softc(dev);
555 
556 	iwn_stop(sc);
557 	return 0;
558 }
559 
560 static int
561 iwn_suspend(device_t dev)
562 {
563 	struct iwn_softc *sc = device_get_softc(dev);
564 
565 	iwn_stop(sc);
566 	return 0;
567 }
568 
569 static int
570 iwn_resume(device_t dev)
571 {
572 	struct iwn_softc *sc = device_get_softc(dev);
573 	struct ifnet *ifp = sc->sc_ifp;
574 
575 	pci_write_config(dev, 0x41, 0, 1);
576 
577 	if (ifp->if_flags & IFF_UP)
578 		iwn_init(sc);
579 	return 0;
580 }
581 
582 static void
583 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
584 {
585         if (error != 0)
586                 return;
587         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
588         *(bus_addr_t *)arg = segs[0].ds_addr;
589 }
590 
591 static int
592 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
593 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
594 {
595 	int error, lalignment, i;
596 
597 	/*
598 	 * FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so
599 	 * we allocate an extra 12k with 4k alignement and walk through
600 	 * it trying to find where the alignment is. It's a nasty fix for
601 	 * a bigger problem.
602 	*/
603 	DPRINTF(sc, IWN_DEBUG_RESET,
604 	    "Size: %zd - alignment %zd\n", size, alignment);
605 	if (alignment == 0x4000) {
606 		size += 12*1024;
607 		lalignment = 4096;
608 		DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
609 		    "Attempting to find a 16k boundary");
610 	} else
611 		lalignment = alignment;
612 	dma->size = size;
613 	dma->tag = NULL;
614 
615 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment,
616 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
617 	    1, size, flags, NULL, NULL, &dma->tag);
618 	if (error != 0) {
619 		device_printf(sc->sc_dev,
620 		    "%s: bus_dma_tag_create failed, error %d\n",
621 		    __func__, error);
622 		goto fail;
623 	}
624 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
625 	    flags | BUS_DMA_ZERO, &dma->map);
626 	if (error != 0) {
627 		device_printf(sc->sc_dev,
628 		   "%s: bus_dmamem_alloc failed, error %d\n",
629 		   __func__, error);
630 		goto fail;
631 	}
632 	if (alignment == 0x4000) {
633 		for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) {
634 			DPRINTF(sc, IWN_DEBUG_RESET,  "%s\n",
635 			    "Memory Unaligned, shifting pointer by 4k");
636 			dma->vaddr += 4096;
637 			size -= 4096;
638 		}
639 		if ((((uintptr_t)dma->vaddr ) & (alignment-1))) {
640 			DPRINTF(sc, IWN_DEBUG_ANY,
641 			    "%s: failed to align memory, vaddr %p, align %zd\n",
642 			    __func__, dma->vaddr, alignment);
643 			error = ENOMEM;
644 			goto fail;
645 		}
646 	}
647 
648 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
649 	    size, iwn_dma_map_addr, &dma->paddr, flags);
650 	if (error != 0) {
651 		device_printf(sc->sc_dev,
652 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
653 		goto fail;
654 	}
655 
656 	if (kvap != NULL)
657 		*kvap = dma->vaddr;
658 	return 0;
659 fail:
660 	iwn_dma_contig_free(dma);
661 	return error;
662 }
663 
664 static void
665 iwn_dma_contig_free(struct iwn_dma_info *dma)
666 {
667 	if (dma->tag != NULL) {
668 		if (dma->map != NULL) {
669 			if (dma->paddr == 0) {
670 				bus_dmamap_sync(dma->tag, dma->map,
671 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
672 				bus_dmamap_unload(dma->tag, dma->map);
673 			}
674 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
675 		}
676 		bus_dma_tag_destroy(dma->tag);
677 	}
678 }
679 
680 int
681 iwn_alloc_shared(struct iwn_softc *sc)
682 {
683 	/* must be aligned on a 1KB boundary */
684 	return iwn_dma_contig_alloc(sc, &sc->shared_dma,
685 	    (void **)&sc->shared, sizeof (struct iwn_shared), 1024,
686 	    BUS_DMA_NOWAIT);
687 }
688 
689 void
690 iwn_free_shared(struct iwn_softc *sc)
691 {
692 	iwn_dma_contig_free(&sc->shared_dma);
693 }
694 
695 int
696 iwn_alloc_kw(struct iwn_softc *sc)
697 {
698 	/* must be aligned on a 4k boundary */
699 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL,
700 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
701 }
702 
703 void
704 iwn_free_kw(struct iwn_softc *sc)
705 {
706 	iwn_dma_contig_free(&sc->kw_dma);
707 }
708 
709 int
710 iwn_alloc_fwmem(struct iwn_softc *sc)
711 {
712 	/* allocate enough contiguous space to store text and data */
713 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
714 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
715 	    BUS_DMA_NOWAIT);
716 }
717 
718 void
719 iwn_free_fwmem(struct iwn_softc *sc)
720 {
721 	iwn_dma_contig_free(&sc->fw_dma);
722 }
723 
724 int
725 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
726 {
727 	int i, error;
728 
729 	ring->cur = 0;
730 
731 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
732 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t),
733 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
734 	if (error != 0) {
735 		device_printf(sc->sc_dev,
736 		    "%s: could not allocate rx ring DMA memory, error %d\n",
737 		    __func__, error);
738 		goto fail;
739 	}
740 
741         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
742 	    BUS_SPACE_MAXADDR_32BIT,
743             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
744             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
745         if (error != 0) {
746                 device_printf(sc->sc_dev,
747 		    "%s: bus_dma_tag_create_failed, error %d\n",
748 		    __func__, error);
749                 goto fail;
750         }
751 
752 	/*
753 	 * Setup Rx buffers.
754 	 */
755 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
756 		struct iwn_rx_data *data = &ring->data[i];
757 		struct mbuf *m;
758 		bus_addr_t paddr;
759 
760 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
761 		if (error != 0) {
762 			device_printf(sc->sc_dev,
763 			    "%s: bus_dmamap_create failed, error %d\n",
764 			    __func__, error);
765 			goto fail;
766 		}
767 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
768 		if (m == NULL) {
769 			device_printf(sc->sc_dev,
770 			   "%s: could not allocate rx mbuf\n", __func__);
771 			error = ENOMEM;
772 			goto fail;
773 		}
774 		/* map page */
775 		error = bus_dmamap_load(ring->data_dmat, data->map,
776 		    mtod(m, caddr_t), MJUMPAGESIZE,
777 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
778 		if (error != 0 && error != EFBIG) {
779 			device_printf(sc->sc_dev,
780 			    "%s: bus_dmamap_load failed, error %d\n",
781 			    __func__, error);
782 			m_freem(m);
783 			error = ENOMEM;	/* XXX unique code */
784 			goto fail;
785 		}
786 		bus_dmamap_sync(ring->data_dmat, data->map,
787 		    BUS_DMASYNC_PREWRITE);
788 
789 		data->m = m;
790 		/* Rx buffers are aligned on a 256-byte boundary */
791 		ring->desc[i] = htole32(paddr >> 8);
792 	}
793 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
794 	    BUS_DMASYNC_PREWRITE);
795 	return 0;
796 fail:
797 	iwn_free_rx_ring(sc, ring);
798 	return error;
799 }
800 
801 void
802 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
803 {
804 	int ntries;
805 
806 	iwn_mem_lock(sc);
807 
808 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
809 	for (ntries = 0; ntries < 100; ntries++) {
810 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
811 			break;
812 		DELAY(10);
813 	}
814 #ifdef IWN_DEBUG
815 	if (ntries == 100)
816 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring");
817 #endif
818 	iwn_mem_unlock(sc);
819 
820 	ring->cur = 0;
821 }
822 
823 void
824 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
825 {
826 	int i;
827 
828 	iwn_dma_contig_free(&ring->desc_dma);
829 
830 	for (i = 0; i < IWN_RX_RING_COUNT; i++)
831 		if (ring->data[i].m != NULL)
832 			m_freem(ring->data[i].m);
833 }
834 
835 int
836 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
837 {
838 	bus_size_t size;
839 	int i, error;
840 
841 	ring->qid = qid;
842 	ring->queued = 0;
843 	ring->cur = 0;
844 
845 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
846 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
847 	    (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
848 	if (error != 0) {
849 		device_printf(sc->sc_dev,
850 		    "%s: could not allocate tx ring DMA memory, error %d\n",
851 		    __func__, error);
852 		goto fail;
853 	}
854 
855 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
856 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
857 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
858 	if (error != 0) {
859 		device_printf(sc->sc_dev,
860 		    "%s: could not allocate tx cmd DMA memory, error %d\n",
861 		    __func__, error);
862 		goto fail;
863 	}
864 
865         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
866 	    BUS_SPACE_MAXADDR_32BIT,
867             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
868             MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
869         if (error != 0) {
870                 device_printf(sc->sc_dev,
871 		    "%s: bus_dma_tag_create_failed, error %d\n",
872 		    __func__, error);
873                 goto fail;
874         }
875 
876 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
877 		struct iwn_tx_data *data = &ring->data[i];
878 
879 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
880 		if (error != 0) {
881 			device_printf(sc->sc_dev,
882 			    "%s: bus_dmamap_create failed, error %d\n",
883 			    __func__, error);
884 			goto fail;
885 		}
886 		bus_dmamap_sync(ring->data_dmat, data->map,
887 		    BUS_DMASYNC_PREWRITE);
888 	}
889 	return 0;
890 fail:
891 	iwn_free_tx_ring(sc, ring);
892 	return error;
893 }
894 
895 void
896 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
897 {
898 	uint32_t tmp;
899 	int i, ntries;
900 
901 	iwn_mem_lock(sc);
902 
903 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
904 	for (ntries = 0; ntries < 20; ntries++) {
905 		tmp = IWN_READ(sc, IWN_TX_STATUS);
906 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
907 			break;
908 		DELAY(10);
909 	}
910 #ifdef IWN_DEBUG
911 	if (ntries == 20)
912 		DPRINTF(sc, IWN_DEBUG_RESET,
913 		    "%s: timeout resetting Tx ring %d\n", __func__, ring->qid);
914 #endif
915 	iwn_mem_unlock(sc);
916 
917 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
918 		struct iwn_tx_data *data = &ring->data[i];
919 
920 		if (data->m != NULL) {
921 			bus_dmamap_unload(ring->data_dmat, data->map);
922 			m_freem(data->m);
923 			data->m = NULL;
924 		}
925 	}
926 
927 	ring->queued = 0;
928 	ring->cur = 0;
929 }
930 
931 void
932 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
933 {
934 	int i;
935 
936 	iwn_dma_contig_free(&ring->desc_dma);
937 	iwn_dma_contig_free(&ring->cmd_dma);
938 
939 	if (ring->data != NULL) {
940 		for (i = 0; i < IWN_TX_RING_COUNT; i++) {
941 			struct iwn_tx_data *data = &ring->data[i];
942 
943 			if (data->m != NULL) {
944 				bus_dmamap_unload(ring->data_dmat, data->map);
945 				m_freem(data->m);
946 			}
947 		}
948 	}
949 }
950 
951 struct ieee80211_node *
952 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
953 {
954 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
955 }
956 
957 void
958 iwn_newassoc(struct ieee80211_node *ni, int isnew)
959 {
960 	struct ieee80211vap *vap = ni->ni_vap;
961 
962 	ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
963 	   &IWN_NODE(ni)->amn, ni);
964 }
965 
966 int
967 iwn_media_change(struct ifnet *ifp)
968 {
969 	int error = ieee80211_media_change(ifp);
970 	/* NB: only the fixed rate can change and that doesn't need a reset */
971 	return (error == ENETRESET ? 0 : error);
972 }
973 
974 int
975 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
976 {
977 	struct iwn_vap *ivp = IWN_VAP(vap);
978 	struct ieee80211com *ic = vap->iv_ic;
979 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
980 	int error;
981 
982 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
983 		ieee80211_state_name[vap->iv_state],
984 		ieee80211_state_name[nstate]);
985 
986 	IWN_LOCK(sc);
987 	callout_stop(&sc->sc_timer_to);
988 	IWN_UNLOCK(sc);
989 
990 	/*
991 	 * Some state transitions require issuing a configure request
992 	 * to the adapter.  This must be done in a blocking context
993 	 * so we toss control to the task q thread where the state
994 	 * change will be finished after the command completes.
995 	 */
996 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
997 		/* !AUTH -> AUTH requires adapter config */
998 		error = iwn_queue_cmd(sc, IWN_AUTH, arg, IWN_QUEUE_NORMAL);
999 		return (error != 0 ? error : EINPROGRESS);
1000 	}
1001 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1002 		/*
1003 		 * !RUN -> RUN requires setting the association id
1004 		 * which is done with a firmware cmd.  We also defer
1005 		 * starting the timers until that work is done.
1006 		 */
1007 		error = iwn_queue_cmd(sc, IWN_RUN, arg, IWN_QUEUE_NORMAL);
1008 		return (error != 0 ? error : EINPROGRESS);
1009 	}
1010 	if (nstate == IEEE80211_S_RUN) {
1011 		/*
1012 		 * RUN -> RUN transition; just restart the timers.
1013 		 */
1014 		iwn_calib_reset(sc);
1015 	}
1016 	return ivp->iv_newstate(vap, nstate, arg);
1017 }
1018 
1019 /*
1020  * Grab exclusive access to NIC memory.
1021  */
1022 void
1023 iwn_mem_lock(struct iwn_softc *sc)
1024 {
1025 	uint32_t tmp;
1026 	int ntries;
1027 
1028 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1029 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1030 
1031 	/* spin until we actually get the lock */
1032 	for (ntries = 0; ntries < 1000; ntries++) {
1033 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1034 		    (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1035 			break;
1036 		DELAY(10);
1037 	}
1038 	if (ntries == 1000)
1039 		device_printf(sc->sc_dev,
1040 		    "%s: could not lock memory\n", __func__);
1041 }
1042 
1043 /*
1044  * Release lock on NIC memory.
1045  */
1046 void
1047 iwn_mem_unlock(struct iwn_softc *sc)
1048 {
1049 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1050 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1051 }
1052 
1053 uint32_t
1054 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1055 {
1056 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1057 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1058 }
1059 
1060 void
1061 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1062 {
1063 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1064 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1065 }
1066 
1067 void
1068 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1069     const uint32_t *data, int wlen)
1070 {
1071 	for (; wlen > 0; wlen--, data++, addr += 4)
1072 		iwn_mem_write(sc, addr, *data);
1073 }
1074 
1075 int
1076 iwn_eeprom_lock(struct iwn_softc *sc)
1077 {
1078 	uint32_t tmp;
1079 	int ntries;
1080 
1081 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1082 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1083 
1084 	/* spin until we actually get the lock */
1085 	for (ntries = 0; ntries < 100; ntries++) {
1086 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1087 			return 0;
1088 		DELAY(10);
1089 	}
1090 	return ETIMEDOUT;
1091 }
1092 
1093 void
1094 iwn_eeprom_unlock(struct iwn_softc *sc)
1095 {
1096 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1097 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1098 }
1099 
1100 /*
1101  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1102  * instead of using the traditional bit-bang method.
1103  */
1104 int
1105 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1106 {
1107 	uint8_t *out = data;
1108 	uint32_t val;
1109 	int ntries, tmp;
1110 
1111 	iwn_mem_lock(sc);
1112 	for (; len > 0; len -= 2, addr++) {
1113 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1114 		tmp = IWN_READ(sc, IWN_EEPROM_CTL);
1115 		IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK );
1116 
1117 		for (ntries = 0; ntries < 10; ntries++) {
1118 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1119 			    IWN_EEPROM_READY)
1120 				break;
1121 			DELAY(5);
1122 		}
1123 		if (ntries == 10) {
1124 			device_printf(sc->sc_dev,"could not read EEPROM\n");
1125 			return ETIMEDOUT;
1126 		}
1127 		*out++ = val >> 16;
1128 		if (len > 1)
1129 			*out++ = val >> 24;
1130 	}
1131 	iwn_mem_unlock(sc);
1132 
1133 	return 0;
1134 }
1135 
1136 /*
1137  * The firmware boot code is small and is intended to be copied directly into
1138  * the NIC internal memory.
1139  */
1140 int
1141 iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1142 {
1143 	int ntries;
1144 
1145 	size /= sizeof (uint32_t);
1146 
1147 	iwn_mem_lock(sc);
1148 
1149 	/* copy microcode image into NIC memory */
1150 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1151 	    (const uint32_t *)ucode, size);
1152 
1153 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1154 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1155 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1156 
1157 	/* run microcode */
1158 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1159 
1160 	/* wait for transfer to complete */
1161 	for (ntries = 0; ntries < 1000; ntries++) {
1162 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1163 			break;
1164 		DELAY(10);
1165 	}
1166 	if (ntries == 1000) {
1167 		iwn_mem_unlock(sc);
1168 		device_printf(sc->sc_dev,
1169 		    "%s: could not load boot firmware\n", __func__);
1170 		return ETIMEDOUT;
1171 	}
1172 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1173 
1174 	iwn_mem_unlock(sc);
1175 
1176 	return 0;
1177 }
1178 
1179 int
1180 iwn_load_firmware(struct iwn_softc *sc)
1181 {
1182 	int error;
1183 
1184 	KASSERT(sc->fw_fp == NULL, ("firmware already loaded"));
1185 
1186 	IWN_UNLOCK(sc);
1187 	/* load firmware image from disk */
1188 	sc->fw_fp = firmware_get("iwnfw");
1189 	if (sc->fw_fp == NULL) {
1190 		device_printf(sc->sc_dev,
1191 		    "%s: could not load firmare image \"iwnfw\"\n", __func__);
1192 		error = EINVAL;
1193 	} else
1194 		error = 0;
1195 	IWN_LOCK(sc);
1196 	return error;
1197 }
1198 
1199 int
1200 iwn_transfer_firmware(struct iwn_softc *sc)
1201 {
1202 	struct iwn_dma_info *dma = &sc->fw_dma;
1203 	const struct iwn_firmware_hdr *hdr;
1204 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1205 	const uint8_t *boot_text;
1206 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1207 	uint32_t boot_textsz;
1208 	int error = 0;
1209 	const struct firmware *fp = sc->fw_fp;
1210 
1211 	/* extract firmware header information */
1212 	if (fp->datasize < sizeof (struct iwn_firmware_hdr)) {
1213 		device_printf(sc->sc_dev,
1214 		    "%s: truncated firmware header: %zu bytes, expecting %zu\n",
1215 		    __func__, fp->datasize, sizeof (struct iwn_firmware_hdr));
1216 		error = EINVAL;
1217 		goto fail;
1218 	}
1219 	hdr = (const struct iwn_firmware_hdr *)fp->data;
1220 	main_textsz = le32toh(hdr->main_textsz);
1221 	main_datasz = le32toh(hdr->main_datasz);
1222 	init_textsz = le32toh(hdr->init_textsz);
1223 	init_datasz = le32toh(hdr->init_datasz);
1224 	boot_textsz = le32toh(hdr->boot_textsz);
1225 
1226 	/* sanity-check firmware segments sizes */
1227 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1228 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1229 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1230 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1231 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1232 	    (boot_textsz & 3) != 0) {
1233 		device_printf(sc->sc_dev,
1234 		    "%s: invalid firmware header, main [%d,%d], init [%d,%d] "
1235 		    "boot %d\n", __func__, main_textsz, main_datasz,
1236 		    init_textsz, init_datasz, boot_textsz);
1237 		error = EINVAL;
1238 		goto fail;
1239 	}
1240 
1241 	/* check that all firmware segments are present */
1242 	if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz +
1243 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1244 		device_printf(sc->sc_dev, "%s: firmware file too short: "
1245 		    "%zu bytes, main [%d, %d], init [%d,%d] boot %d\n",
1246 		    __func__, fp->datasize, main_textsz, main_datasz,
1247 		    init_textsz, init_datasz, boot_textsz);
1248 		error = EINVAL;
1249 		goto fail;
1250 	}
1251 
1252 	/* get pointers to firmware segments */
1253 	main_text = (const uint8_t *)(hdr + 1);
1254 	main_data = main_text + main_textsz;
1255 	init_text = main_data + main_datasz;
1256 	init_data = init_text + init_textsz;
1257 	boot_text = init_data + init_datasz;
1258 
1259 	/* copy initialization images into pre-allocated DMA-safe memory */
1260 	memcpy(dma->vaddr, init_data, init_datasz);
1261 	memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1262 
1263 	/* tell adapter where to find initialization images */
1264 	iwn_mem_lock(sc);
1265 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1266 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1267 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1268 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1269 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1270 	iwn_mem_unlock(sc);
1271 
1272 	/* load firmware boot code */
1273 	error = iwn_transfer_microcode(sc, boot_text, boot_textsz);
1274 	if (error != 0) {
1275 		device_printf(sc->sc_dev,
1276 		    "%s: could not load boot firmware, error %d\n",
1277 		    __func__, error);
1278 		goto fail;
1279 	}
1280 
1281 	/* now press "execute" ;-) */
1282 	IWN_WRITE(sc, IWN_RESET, 0);
1283 
1284 	/* wait at most one second for first alive notification */
1285 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1286 	if (error != 0) {
1287 		/* this isn't what was supposed to happen.. */
1288 		device_printf(sc->sc_dev,
1289 		    "%s: timeout waiting for first alive notice, error %d\n",
1290 		    __func__, error);
1291 		goto fail;
1292 	}
1293 
1294 	/* copy runtime images into pre-allocated DMA-safe memory */
1295 	memcpy(dma->vaddr, main_data, main_datasz);
1296 	memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1297 
1298 	/* tell adapter where to find runtime images */
1299 	iwn_mem_lock(sc);
1300 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1301 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1302 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1303 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1304 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1305 	iwn_mem_unlock(sc);
1306 
1307 	/* wait at most one second for second alive notification */
1308 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1309 	if (error != 0) {
1310 		/* this isn't what was supposed to happen.. */
1311 		device_printf(sc->sc_dev,
1312 		   "%s: timeout waiting for second alive notice, error %d\n",
1313 		   __func__, error);
1314 		goto fail;
1315 	}
1316 	return 0;
1317 fail:
1318 	return error;
1319 }
1320 
1321 void
1322 iwn_unload_firmware(struct iwn_softc *sc)
1323 {
1324         if (sc->fw_fp != NULL) {
1325                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
1326                 sc->fw_fp = NULL;
1327         }
1328 }
1329 
1330 static void
1331 iwn_timer_timeout(void *arg)
1332 {
1333 	struct iwn_softc *sc = arg;
1334 
1335 	IWN_LOCK_ASSERT(sc);
1336 
1337 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1338 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1339 		    "send statistics request");
1340 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1341 		sc->calib_cnt = 60;	/* do calibration every 60s */
1342 	}
1343 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1344 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1345 }
1346 
1347 static void
1348 iwn_calib_reset(struct iwn_softc *sc)
1349 {
1350 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1351 	sc->calib_cnt = 60;		/* do calibration every 60s */
1352 }
1353 
1354 void
1355 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1356 {
1357 	struct iwn_rx_stat *stat;
1358 
1359 	DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats");
1360 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1361 	stat = (struct iwn_rx_stat *)(desc + 1);
1362 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1363 	sc->last_rx_valid = 1;
1364 }
1365 
1366 static __inline int
1367 maprate(int iwnrate)
1368 {
1369 	switch (iwnrate) {
1370 	/* CCK rates */
1371 	case  10: return   2;
1372 	case  20: return   4;
1373 	case  55: return  11;
1374 	case 110: return  22;
1375 	/* OFDM rates */
1376 	case 0xd: return  12;
1377 	case 0xf: return  18;
1378 	case 0x5: return  24;
1379 	case 0x7: return  36;
1380 	case 0x9: return  48;
1381 	case 0xb: return  72;
1382 	case 0x1: return  96;
1383 	case 0x3: return 108;
1384 	/* XXX MCS */
1385 	}
1386 	/* unknown rate: should not happen */
1387 	return 0;
1388 }
1389 
1390 void
1391 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1392     struct iwn_rx_data *data)
1393 {
1394 	struct ifnet *ifp = sc->sc_ifp;
1395 	struct ieee80211com *ic = ifp->if_l2com;
1396 	struct iwn_rx_ring *ring = &sc->rxq;
1397 	struct ieee80211_frame *wh;
1398 	struct ieee80211_node *ni;
1399 	struct mbuf *m, *mnew;
1400 	struct iwn_rx_stat *stat;
1401 	caddr_t head;
1402 	uint32_t *tail;
1403 	int8_t rssi, nf;
1404 	int len, error;
1405 	bus_addr_t paddr;
1406 
1407 	if (desc->type == IWN_AMPDU_RX_DONE) {
1408 		/* check for prior AMPDU_RX_START */
1409 		if (!sc->last_rx_valid) {
1410 			DPRINTF(sc, IWN_DEBUG_ANY,
1411 			    "%s: missing AMPDU_RX_START\n", __func__);
1412 			ifp->if_ierrors++;
1413 			return;
1414 		}
1415 		sc->last_rx_valid = 0;
1416 		stat = &sc->last_rx_stat;
1417 	} else
1418 		stat = (struct iwn_rx_stat *)(desc + 1);
1419 
1420 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1421 		device_printf(sc->sc_dev,
1422 		    "%s: invalid rx statistic header, len %d\n",
1423 		    __func__, stat->cfg_phy_len);
1424 		ifp->if_ierrors++;
1425 		return;
1426 	}
1427 	if (desc->type == IWN_AMPDU_RX_DONE) {
1428 		struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1);
1429 		head = (caddr_t)(ampdu + 1);
1430 		len = le16toh(ampdu->len);
1431 	} else {
1432 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1433 		len = le16toh(stat->len);
1434 	}
1435 
1436 	/* discard Rx frames with bad CRC early */
1437 	tail = (uint32_t *)(head + len);
1438 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1439 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
1440 		    __func__, le32toh(*tail));
1441 		ifp->if_ierrors++;
1442 		return;
1443 	}
1444 	if (len < sizeof (struct ieee80211_frame)) {
1445 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
1446 		    __func__, len);
1447 		ifp->if_ierrors++;
1448 		return;
1449 	}
1450 
1451 	/* XXX don't need mbuf, just dma buffer */
1452 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1453 	if (mnew == NULL) {
1454 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1455 		    __func__);
1456 		ifp->if_ierrors++;
1457 		return;
1458 	}
1459 	error = bus_dmamap_load(ring->data_dmat, data->map,
1460 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1461 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1462 	if (error != 0 && error != EFBIG) {
1463 		device_printf(sc->sc_dev,
1464 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1465 		m_freem(mnew);
1466 		ifp->if_ierrors++;
1467 		return;
1468 	}
1469 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1470 
1471 	/* finalize mbuf and swap in new one */
1472 	m = data->m;
1473 	m->m_pkthdr.rcvif = ifp;
1474 	m->m_data = head;
1475 	m->m_pkthdr.len = m->m_len = len;
1476 
1477 	data->m = mnew;
1478 	/* update Rx descriptor */
1479 	ring->desc[ring->cur] = htole32(paddr >> 8);
1480 
1481 	rssi = iwn_get_rssi(sc, stat);
1482 
1483 	/* grab a reference to the source node */
1484 	wh = mtod(m, struct ieee80211_frame *);
1485 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1486 
1487 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
1488 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
1489 
1490 	if (bpf_peers_present(ifp->if_bpf)) {
1491 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1492 
1493 		tap->wr_flags = 0;
1494 		tap->wr_dbm_antsignal = rssi;
1495 		tap->wr_dbm_antnoise = nf;
1496 		tap->wr_rate = maprate(stat->rate);
1497 		tap->wr_tsft = htole64(stat->tstamp);
1498 
1499 		if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE))
1500 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1501 
1502 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1503 	}
1504 
1505 	IWN_UNLOCK(sc);
1506 
1507 	/* send the frame to the 802.11 layer */
1508 	if (ni != NULL) {
1509 		(void) ieee80211_input(ni, m, rssi - nf, nf, 0);
1510 		ieee80211_free_node(ni);
1511 	} else
1512 		(void) ieee80211_input_all(ic, m, rssi - nf, nf, 0);
1513 
1514 	IWN_LOCK(sc);
1515 }
1516 
1517 void
1518 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1519 {
1520 	struct ifnet *ifp = sc->sc_ifp;
1521 	struct ieee80211com *ic = ifp->if_l2com;
1522 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1523 	struct iwn_calib_state *calib = &sc->calib;
1524 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1525 
1526 	/* beacon stats are meaningful only when associated and not scanning */
1527 	if (vap->iv_state != IEEE80211_S_RUN ||
1528 	    (ic->ic_flags & IEEE80211_F_SCAN))
1529 		return;
1530 
1531 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
1532 	iwn_calib_reset(sc);
1533 
1534 	/* test if temperature has changed */
1535 	if (stats->general.temp != sc->rawtemp) {
1536 		int temp;
1537 
1538 		sc->rawtemp = stats->general.temp;
1539 		temp = iwn_get_temperature(sc);
1540 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
1541 		    __func__, temp);
1542 
1543 		/* update Tx power if need be */
1544 		iwn_power_calibration(sc, temp);
1545 	}
1546 
1547 	if (desc->type != IWN_BEACON_STATISTICS)
1548 		return;	/* reply to a statistics request */
1549 
1550 	sc->noise = iwn_get_noise(&stats->rx.general);
1551 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
1552 
1553 	/* test that RSSI and noise are present in stats report */
1554 	if (stats->rx.general.flags != htole32(1)) {
1555 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1556 		    "received statistics without RSSI");
1557 		return;
1558 	}
1559 
1560 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1561 		iwn_compute_differential_gain(sc, &stats->rx.general);
1562 	else if (calib->state == IWN_CALIB_STATE_RUN)
1563 		iwn_tune_sensitivity(sc, &stats->rx);
1564 }
1565 
1566 void
1567 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1568 {
1569 	struct ifnet *ifp = sc->sc_ifp;
1570 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1571 	struct iwn_tx_data *data = &ring->data[desc->idx];
1572 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1573 	struct iwn_node *wn = IWN_NODE(data->ni);
1574 	struct mbuf *m;
1575 	struct ieee80211_node *ni;
1576 	uint32_t status;
1577 
1578 	KASSERT(data->ni != NULL, ("no node"));
1579 
1580 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
1581 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
1582 	    __func__, desc->qid, desc->idx, stat->ntries,
1583 	    stat->nkill, stat->rate, le16toh(stat->duration),
1584 	    le32toh(stat->status));
1585 
1586 	/*
1587 	 * Update rate control statistics for the node.
1588 	 */
1589 	status = le32toh(stat->status) & 0xff;
1590 	if (status & 0x80) {
1591 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n",
1592 		    __func__, le32toh(stat->status));
1593 		ifp->if_oerrors++;
1594 		ieee80211_amrr_tx_complete(&wn->amn,
1595 		    IEEE80211_AMRR_FAILURE, stat->ntries);
1596 	} else {
1597 		ieee80211_amrr_tx_complete(&wn->amn,
1598 		    IEEE80211_AMRR_SUCCESS, stat->ntries);
1599 	}
1600 
1601 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1602 	bus_dmamap_unload(ring->data_dmat, data->map);
1603 
1604 	m = data->m, data->m = NULL;
1605 	ni = data->ni, data->ni = NULL;
1606 
1607 	if (m->m_flags & M_TXCB) {
1608 		/*
1609 		 * Channels marked for "radar" require traffic to be received
1610 		 * to unlock before we can transmit.  Until traffic is seen
1611 		 * any attempt to transmit is returned immediately with status
1612 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
1613 		 * happen on first authenticate after scanning.  To workaround
1614 		 * this we ignore a failure of this sort in AUTH state so the
1615 		 * 802.11 layer will fall back to using a timeout to wait for
1616 		 * the AUTH reply.  This allows the firmware time to see
1617 		 * traffic so a subsequent retry of AUTH succeeds.  It's
1618 		 * unclear why the firmware does not maintain state for
1619 		 * channels recently visited as this would allow immediate
1620 		 * use of the channel after a scan (where we see traffic).
1621 		 */
1622 		if (status == IWN_TX_FAIL_TX_LOCKED &&
1623 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
1624 			ieee80211_process_callback(ni, m, 0);
1625 		else
1626 			ieee80211_process_callback(ni, m,
1627 			    (status & IWN_TX_FAIL) != 0);
1628 	}
1629 	m_freem(m);
1630 	ieee80211_free_node(ni);
1631 
1632 	ring->queued--;
1633 
1634 	sc->sc_tx_timer = 0;
1635 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1636 	iwn_start_locked(ifp);
1637 }
1638 
1639 void
1640 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1641 {
1642 	struct iwn_tx_ring *ring = &sc->txq[4];
1643 	struct iwn_tx_data *data;
1644 
1645 	if ((desc->qid & 0xf) != 4)
1646 		return;	/* not a command ack */
1647 
1648 	data = &ring->data[desc->idx];
1649 
1650 	/* if the command was mapped in a mbuf, free it */
1651 	if (data->m != NULL) {
1652 		bus_dmamap_unload(ring->data_dmat, data->map);
1653 		m_freem(data->m);
1654 		data->m = NULL;
1655 	}
1656 
1657 	wakeup(&ring->cmd[desc->idx]);
1658 }
1659 
1660 static void
1661 iwn_bmiss(void *arg, int npending)
1662 {
1663 	struct iwn_softc *sc = arg;
1664 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1665 
1666 	ieee80211_beacon_miss(ic);
1667 }
1668 
1669 void
1670 iwn_notif_intr(struct iwn_softc *sc)
1671 {
1672 	struct ifnet *ifp = sc->sc_ifp;
1673 	struct ieee80211com *ic = ifp->if_l2com;
1674 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1675 	uint16_t hw;
1676 
1677 	hw = le16toh(sc->shared->closed_count) & 0xfff;
1678 	while (sc->rxq.cur != hw) {
1679 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1680 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1681 
1682 		DPRINTF(sc, IWN_DEBUG_RECV,
1683 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
1684 		    __func__, desc->qid, desc->idx, desc->flags,
1685 		    desc->type, iwn_intr_str(desc->type),
1686 		    le16toh(desc->len));
1687 
1688 		if (!(desc->qid & 0x80))	/* reply to a command */
1689 			iwn_cmd_intr(sc, desc);
1690 
1691 		switch (desc->type) {
1692 		case IWN_RX_DONE:
1693 		case IWN_AMPDU_RX_DONE:
1694 			iwn_rx_intr(sc, desc, data);
1695 			break;
1696 
1697 		case IWN_AMPDU_RX_START:
1698 			iwn_ampdu_rx_start(sc, desc);
1699 			break;
1700 
1701 		case IWN_TX_DONE:
1702 			/* a 802.11 frame has been transmitted */
1703 			iwn_tx_intr(sc, desc);
1704 			break;
1705 
1706 		case IWN_RX_STATISTICS:
1707 		case IWN_BEACON_STATISTICS:
1708 			iwn_rx_statistics(sc, desc);
1709 			break;
1710 
1711 		case IWN_BEACON_MISSED: {
1712 			struct iwn_beacon_missed *miss =
1713 			    (struct iwn_beacon_missed *)(desc + 1);
1714 			int misses = le32toh(miss->consecutive);
1715 
1716 			/* XXX not sure why we're notified w/ zero */
1717 			if (misses == 0)
1718 				break;
1719 			DPRINTF(sc, IWN_DEBUG_STATE,
1720 			    "%s: beacons missed %d/%d\n", __func__,
1721 			    misses, le32toh(miss->total));
1722 			/*
1723 			 * If more than 5 consecutive beacons are missed,
1724 			 * reinitialize the sensitivity state machine.
1725 			 */
1726 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
1727 				(void) iwn_init_sensitivity(sc);
1728 			if (misses >= vap->iv_bmissthreshold)
1729 				taskqueue_enqueue(taskqueue_swi,
1730 				    &sc->sc_bmiss_task);
1731 			break;
1732 		}
1733 		case IWN_UC_READY: {
1734 			struct iwn_ucode_info *uc =
1735 			    (struct iwn_ucode_info *)(desc + 1);
1736 
1737 			/* the microcontroller is ready */
1738 			DPRINTF(sc, IWN_DEBUG_RESET,
1739 			    "microcode alive notification version=%d.%d "
1740 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
1741 			    uc->subtype, le32toh(uc->valid));
1742 
1743 			if (le32toh(uc->valid) != 1) {
1744 				device_printf(sc->sc_dev,
1745 				"microcontroller initialization failed");
1746 				break;
1747 			}
1748 			if (uc->subtype == IWN_UCODE_INIT) {
1749 				/* save microcontroller's report */
1750 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1751 			}
1752 			break;
1753 		}
1754 		case IWN_STATE_CHANGED: {
1755 			uint32_t *status = (uint32_t *)(desc + 1);
1756 
1757 			/*
1758 			 * State change allows hardware switch change to be
1759 			 * noted. However, we handle this in iwn_intr as we
1760 			 * get both the enable/disble intr.
1761 			 */
1762 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
1763 			    le32toh(*status));
1764 			break;
1765 		}
1766 		case IWN_START_SCAN: {
1767 			struct iwn_start_scan *scan =
1768 			    (struct iwn_start_scan *)(desc + 1);
1769 
1770 			DPRINTF(sc, IWN_DEBUG_ANY,
1771 			    "%s: scanning channel %d status %x\n",
1772 			    __func__, scan->chan, le32toh(scan->status));
1773 			break;
1774 		}
1775 		case IWN_STOP_SCAN: {
1776 			struct iwn_stop_scan *scan =
1777 			    (struct iwn_stop_scan *)(desc + 1);
1778 
1779 			DPRINTF(sc, IWN_DEBUG_STATE,
1780 			    "scan finished nchan=%d status=%d chan=%d\n",
1781 			    scan->nchan, scan->status, scan->chan);
1782 
1783 			iwn_queue_cmd(sc, IWN_SCAN_NEXT, 0, IWN_QUEUE_NORMAL);
1784 			break;
1785 		}
1786 		}
1787 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1788 	}
1789 
1790 	/* tell the firmware what we have processed */
1791 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1792 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1793 }
1794 
1795 void
1796 iwn_intr(void *arg)
1797 {
1798 	struct iwn_softc *sc = arg;
1799 	uint32_t r1, r2;
1800 
1801 	IWN_LOCK(sc);
1802 
1803 	/* disable interrupts */
1804 	IWN_WRITE(sc, IWN_MASK, 0);
1805 
1806 	r1 = IWN_READ(sc, IWN_INTR);
1807 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1808 
1809 	if (r1 == 0 && r2 == 0) {
1810 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1811 		goto done;	/* not for us */
1812 	}
1813 
1814 	if (r1 == 0xffffffff)
1815 		goto done;	/* hardware gone */
1816 
1817 	/* ack interrupts */
1818 	IWN_WRITE(sc, IWN_INTR, r1);
1819 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1820 
1821 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
1822 
1823 	if (r1 & IWN_RF_TOGGLED) {
1824 		uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1825 		device_printf(sc->sc_dev, "RF switch: radio %s\n",
1826 		    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1827 		if (tmp & IWN_GPIO_RF_ENABLED)
1828 			iwn_queue_cmd(sc, IWN_RADIO_ENABLE, 0, IWN_QUEUE_CLEAR);
1829 		else
1830 			iwn_queue_cmd(sc, IWN_RADIO_DISABLE, 0, IWN_QUEUE_CLEAR);
1831 	}
1832 	if (r1 & IWN_CT_REACHED)
1833 		device_printf(sc->sc_dev, "critical temperature reached!\n");
1834 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1835 		device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n",
1836 		    r1, IWN_INTR_BITS, r2);
1837 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
1838 		goto done;
1839 	}
1840 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR))
1841 		iwn_notif_intr(sc);
1842 	if (r1 & IWN_ALIVE_INTR)
1843 		wakeup(sc);
1844 
1845 	/* re-enable interrupts */
1846 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1847 done:
1848 	IWN_UNLOCK(sc);
1849 }
1850 
1851 uint8_t
1852 iwn_plcp_signal(int rate)
1853 {
1854 	switch (rate) {
1855 	/* CCK rates (returned values are device-dependent) */
1856 	case 2:		return 10;
1857 	case 4:		return 20;
1858 	case 11:	return 55;
1859 	case 22:	return 110;
1860 
1861 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1862 	/* R1-R4, (u)ral is R4-R1 */
1863 	case 12:	return 0xd;
1864 	case 18:	return 0xf;
1865 	case 24:	return 0x5;
1866 	case 36:	return 0x7;
1867 	case 48:	return 0x9;
1868 	case 72:	return 0xb;
1869 	case 96:	return 0x1;
1870 	case 108:	return 0x3;
1871 	case 120:	return 0x3;
1872 	}
1873 	/* unknown rate (should not get there) */
1874 	return 0;
1875 }
1876 
1877 /* determine if a given rate is CCK or OFDM */
1878 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1879 
1880 int
1881 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1882     struct iwn_tx_ring *ring)
1883 {
1884 	struct ieee80211vap *vap = ni->ni_vap;
1885 	struct ieee80211com *ic = ni->ni_ic;
1886 	struct ifnet *ifp = sc->sc_ifp;
1887 	const struct ieee80211_txparam *tp;
1888 	struct iwn_tx_desc *desc;
1889 	struct iwn_tx_data *data;
1890 	struct iwn_tx_cmd *cmd;
1891 	struct iwn_cmd_data *tx;
1892 	struct ieee80211_frame *wh;
1893 	struct ieee80211_key *k;
1894 	bus_addr_t paddr;
1895 	uint32_t flags;
1896 	uint16_t timeout;
1897 	uint8_t type;
1898 	u_int hdrlen;
1899 	struct mbuf *mnew;
1900 	int rate, error, pad, nsegs, i, ismcast, id;
1901 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
1902 
1903 	IWN_LOCK_ASSERT(sc);
1904 
1905 	wh = mtod(m0, struct ieee80211_frame *);
1906 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1907 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1908 	hdrlen = ieee80211_anyhdrsize(wh);
1909 
1910 	/* pick a tx rate */
1911 	/* XXX ni_chan */
1912 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1913 	if (type == IEEE80211_FC0_TYPE_MGT)
1914 		rate = tp->mgmtrate;
1915 	else if (ismcast)
1916 		rate = tp->mcastrate;
1917 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1918 		rate = tp->ucastrate;
1919 	else {
1920 		(void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn);
1921 		rate = ni->ni_txrate;
1922 	}
1923 
1924 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1925 		k = ieee80211_crypto_encap(ni, m0);
1926 		if (k == NULL) {
1927 			m_freem(m0);
1928 			return ENOBUFS;
1929 		}
1930 		/* packet header may have moved, reset our local pointer */
1931 		wh = mtod(m0, struct ieee80211_frame *);
1932 	} else
1933 		k = NULL;
1934 
1935 	if (bpf_peers_present(ifp->if_bpf)) {
1936 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1937 
1938 		tap->wt_flags = 0;
1939 		tap->wt_rate = rate;
1940 		if (k != NULL)
1941 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1942 
1943 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1944 	}
1945 
1946 	flags = IWN_TX_AUTO_SEQ;
1947 	/* XXX honor ACM */
1948 	if (!ismcast)
1949 		flags |= IWN_TX_NEED_ACK;
1950 
1951 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
1952 		id = IWN_ID_BROADCAST;
1953 	else
1954 		id = IWN_ID_BSS;
1955 
1956 	/* check if RTS/CTS or CTS-to-self protection must be used */
1957 	if (!ismcast) {
1958 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1959 		if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1960 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1961 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1962 		    IWN_RATE_IS_OFDM(rate)) {
1963 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1964 				flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
1965 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1966 				flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1967 		}
1968 	}
1969 
1970 	if (type == IEEE80211_FC0_TYPE_MGT) {
1971 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1972 
1973 		/* tell h/w to set timestamp in probe responses */
1974 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1975 			flags |= IWN_TX_INSERT_TSTAMP;
1976 
1977 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1978 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1979 			timeout = htole16(3);
1980 		else
1981 			timeout = htole16(2);
1982 	} else
1983 		timeout = htole16(0);
1984 
1985 	if (hdrlen & 3) {
1986 		/* first segment's length must be a multiple of 4 */
1987 		flags |= IWN_TX_NEED_PADDING;
1988 		pad = 4 - (hdrlen & 3);
1989 	} else
1990 		pad = 0;
1991 
1992 	desc = &ring->desc[ring->cur];
1993 	data = &ring->data[ring->cur];
1994 
1995 	cmd = &ring->cmd[ring->cur];
1996 	cmd->code = IWN_CMD_TX_DATA;
1997 	cmd->flags = 0;
1998 	cmd->qid = ring->qid;
1999 	cmd->idx = ring->cur;
2000 
2001 	tx = (struct iwn_cmd_data *)cmd->data;
2002 	/* NB: no need to bzero tx, all fields are reinitialized here */
2003 	tx->id = id;
2004 	tx->flags = htole32(flags);
2005 	tx->len = htole16(m0->m_pkthdr.len);
2006 	tx->rate = iwn_plcp_signal(rate);
2007 	tx->rts_ntries = 60;		/* XXX? */
2008 	tx->data_ntries = 15;		/* XXX? */
2009 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2010 	tx->timeout = timeout;
2011 
2012 	if (k != NULL) {
2013 		/* XXX fill in */;
2014 	} else
2015 		tx->security = 0;
2016 
2017 	/* XXX alternate between Ant A and Ant B ? */
2018 	tx->rflags = IWN_RFLAG_ANT_B;
2019 	if (tx->id == IWN_ID_BROADCAST) {
2020 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2021 		if (!IWN_RATE_IS_OFDM(rate))
2022 			tx->rflags |= IWN_RFLAG_CCK;
2023 	} else {
2024 		tx->ridx = 0;
2025 		/* tell adapter to ignore rflags */
2026 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2027 	}
2028 
2029 	/* copy and trim IEEE802.11 header */
2030 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2031 	m_adj(m0, hdrlen);
2032 
2033 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2034 	    &nsegs, BUS_DMA_NOWAIT);
2035 	if (error != 0) {
2036 		if (error == EFBIG) {
2037 			/* too many fragments, linearize */
2038 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2039 			if (mnew == NULL) {
2040 				IWN_UNLOCK(sc);
2041 				device_printf(sc->sc_dev,
2042 				    "%s: could not defrag mbuf\n", __func__);
2043 				m_freem(m0);
2044 				return ENOBUFS;
2045 			}
2046 			m0 = mnew;
2047 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2048 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2049 		}
2050 		if (error != 0) {
2051 			IWN_UNLOCK(sc);
2052 			device_printf(sc->sc_dev,
2053 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2054 			     __func__, error);
2055 			m_freem(m0);
2056 			return error;
2057 		}
2058 	}
2059 
2060 	data->m = m0;
2061 	data->ni = ni;
2062 
2063 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2064 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2065 
2066 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2067 	tx->loaddr = htole32(paddr + 4 +
2068 	    offsetof(struct iwn_cmd_data, ntries));
2069 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2070 
2071 	/* first scatter/gather segment is used by the tx data command */
2072 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2073 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2074 	for (i = 1; i <= nsegs; i++) {
2075 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2076 		     segs[i - 1].ds_len);
2077 	}
2078 	sc->shared->len[ring->qid][ring->cur] =
2079 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2080 
2081 	if (ring->cur < IWN_TX_WINDOW)
2082 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2083 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2084 
2085 	ring->queued++;
2086 
2087 	/* kick Tx ring */
2088 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2089 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2090 
2091 	ifp->if_opackets++;
2092 	sc->sc_tx_timer = 5;
2093 
2094 	return 0;
2095 }
2096 
2097 void
2098 iwn_start(struct ifnet *ifp)
2099 {
2100 	struct iwn_softc *sc = ifp->if_softc;
2101 
2102 	IWN_LOCK(sc);
2103 	iwn_start_locked(ifp);
2104 	IWN_UNLOCK(sc);
2105 }
2106 
2107 void
2108 iwn_start_locked(struct ifnet *ifp)
2109 {
2110 	struct iwn_softc *sc = ifp->if_softc;
2111 	struct ieee80211_node *ni;
2112 	struct iwn_tx_ring *txq;
2113 	struct mbuf *m;
2114 	int pri;
2115 
2116 	IWN_LOCK_ASSERT(sc);
2117 
2118 	for (;;) {
2119 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2120 		if (m == NULL)
2121 			break;
2122 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2123 		pri = M_WME_GETAC(m);
2124 		txq = &sc->txq[pri];
2125 		if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2126 			/* XXX not right */
2127 			/* ring is nearly full, stop flow */
2128 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2129 		}
2130 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
2131 			ifp->if_oerrors++;
2132 			ieee80211_free_node(ni);
2133 			break;
2134 		}
2135 	}
2136 }
2137 
2138 static int
2139 iwn_tx_handoff(struct iwn_softc *sc,
2140 	struct iwn_tx_ring *ring,
2141 	struct iwn_tx_cmd *cmd,
2142 	struct iwn_cmd_data *tx,
2143 	struct ieee80211_node *ni,
2144 	struct mbuf *m0, u_int hdrlen, int pad)
2145 {
2146 	struct ifnet *ifp = sc->sc_ifp;
2147 	struct iwn_tx_desc *desc;
2148 	struct iwn_tx_data *data;
2149 	bus_addr_t paddr;
2150 	struct mbuf *mnew;
2151 	int error, nsegs, i;
2152 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2153 
2154 	/* copy and trim IEEE802.11 header */
2155 	memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen);
2156 	m_adj(m0, hdrlen);
2157 
2158 	desc = &ring->desc[ring->cur];
2159 	data = &ring->data[ring->cur];
2160 
2161 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2162 	    &nsegs, BUS_DMA_NOWAIT);
2163 	if (error != 0) {
2164 		if (error == EFBIG) {
2165 			/* too many fragments, linearize */
2166 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2167 			if (mnew == NULL) {
2168 				IWN_UNLOCK(sc);
2169 				device_printf(sc->sc_dev,
2170 				    "%s: could not defrag mbuf\n", __func__);
2171 				m_freem(m0);
2172 				return ENOBUFS;
2173 			}
2174 			m0 = mnew;
2175 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2176 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2177 		}
2178 		if (error != 0) {
2179 			IWN_UNLOCK(sc);
2180 			device_printf(sc->sc_dev,
2181 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2182 			     __func__, error);
2183 			m_freem(m0);
2184 			return error;
2185 		}
2186 	}
2187 
2188 	data->m = m0;
2189 	data->ni = ni;
2190 
2191 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2192 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2193 
2194 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2195 	tx->loaddr = htole32(paddr + 4 +
2196 	    offsetof(struct iwn_cmd_data, ntries));
2197 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2198 
2199 	/* first scatter/gather segment is used by the tx data command */
2200 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2201 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2202 	for (i = 1; i <= nsegs; i++) {
2203 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2204 		     segs[i - 1].ds_len);
2205 	}
2206 	sc->shared->len[ring->qid][ring->cur] =
2207 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2208 
2209 	if (ring->cur < IWN_TX_WINDOW)
2210 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2211 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2212 
2213 	ring->queued++;
2214 
2215 	/* kick Tx ring */
2216 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2217 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2218 
2219 	ifp->if_opackets++;
2220 	sc->sc_tx_timer = 5;
2221 
2222 	return 0;
2223 }
2224 
2225 static int
2226 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0,
2227     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
2228     const struct ieee80211_bpf_params *params)
2229 {
2230 	struct ifnet *ifp = sc->sc_ifp;
2231 	struct iwn_tx_cmd *cmd;
2232 	struct iwn_cmd_data *tx;
2233 	struct ieee80211_frame *wh;
2234 	uint32_t flags;
2235 	uint8_t type, subtype;
2236 	u_int hdrlen;
2237 	int rate, pad;
2238 
2239 	IWN_LOCK_ASSERT(sc);
2240 
2241 	wh = mtod(m0, struct ieee80211_frame *);
2242 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2243 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2244 	hdrlen = ieee80211_anyhdrsize(wh);
2245 
2246 	flags = IWN_TX_AUTO_SEQ;
2247 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2248 		flags |= IWN_TX_NEED_ACK;
2249 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2250 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2251 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2252 		flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
2253 	if (type == IEEE80211_FC0_TYPE_MGT &&
2254 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2255 		/* tell h/w to set timestamp in probe responses */
2256 		flags |= IWN_TX_INSERT_TSTAMP;
2257 	}
2258 	if (hdrlen & 3) {
2259 		/* first segment's length must be a multiple of 4 */
2260 		flags |= IWN_TX_NEED_PADDING;
2261 		pad = 4 - (hdrlen & 3);
2262 	} else
2263 		pad = 0;
2264 
2265 	/* pick a tx rate */
2266 	rate = params->ibp_rate0;
2267 
2268 	if (bpf_peers_present(ifp->if_bpf)) {
2269 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2270 
2271 		tap->wt_flags = 0;
2272 		tap->wt_rate = rate;
2273 
2274 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
2275 	}
2276 
2277 	cmd = &ring->cmd[ring->cur];
2278 	cmd->code = IWN_CMD_TX_DATA;
2279 	cmd->flags = 0;
2280 	cmd->qid = ring->qid;
2281 	cmd->idx = ring->cur;
2282 
2283 	tx = (struct iwn_cmd_data *)cmd->data;
2284 	/* NB: no need to bzero tx, all fields are reinitialized here */
2285 	tx->id = IWN_ID_BROADCAST;
2286 	tx->flags = htole32(flags);
2287 	tx->len = htole16(m0->m_pkthdr.len);
2288 	tx->rate = iwn_plcp_signal(rate);
2289 	tx->rts_ntries = params->ibp_try1;		/* XXX? */
2290 	tx->data_ntries = params->ibp_try0;
2291 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2292 	/* XXX use try count? */
2293 	if (type == IEEE80211_FC0_TYPE_MGT) {
2294 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2295 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2296 			tx->timeout = htole16(3);
2297 		else
2298 			tx->timeout = htole16(2);
2299 	} else
2300 		tx->timeout = htole16(0);
2301 	tx->security = 0;
2302 	/* XXX alternate between Ant A and Ant B ? */
2303 	tx->rflags = IWN_RFLAG_ANT_B;	/* XXX params->ibp_pri >> 2 */
2304 	tx->ridx = IWN_MAX_TX_RETRIES - 1;
2305 	if (!IWN_RATE_IS_OFDM(rate))
2306 		tx->rflags |= IWN_RFLAG_CCK;
2307 
2308 	return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad);
2309 }
2310 
2311 static int
2312 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2313 	const struct ieee80211_bpf_params *params)
2314 {
2315 	struct ieee80211com *ic = ni->ni_ic;
2316 	struct ifnet *ifp = ic->ic_ifp;
2317 	struct iwn_softc *sc = ifp->if_softc;
2318 	struct iwn_tx_ring *txq;
2319 	int error;
2320 
2321 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2322 		ieee80211_free_node(ni);
2323 		m_freem(m);
2324 		return ENETDOWN;
2325 	}
2326 
2327 	IWN_LOCK(sc);
2328 	if (params == NULL)
2329 		txq = &sc->txq[M_WME_GETAC(m)];
2330 	else
2331 		txq = &sc->txq[params->ibp_pri & 3];
2332 	if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2333 		/* XXX not right */
2334 		/* ring is nearly full, stop flow */
2335 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2336 	}
2337 	if (params == NULL) {
2338 		/*
2339 		 * Legacy path; interpret frame contents to decide
2340 		 * precisely how to send the frame.
2341 		 */
2342 		error = iwn_tx_data(sc, m, ni, txq);
2343 	} else {
2344 		/*
2345 		 * Caller supplied explicit parameters to use in
2346 		 * sending the frame.
2347 		 */
2348 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
2349 	}
2350 	if (error != 0) {
2351 		/* NB: m is reclaimed on tx failure */
2352 		ieee80211_free_node(ni);
2353 		ifp->if_oerrors++;
2354 	}
2355 	IWN_UNLOCK(sc);
2356 	return error;
2357 }
2358 
2359 static void
2360 iwn_watchdog(struct iwn_softc *sc)
2361 {
2362 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
2363 		struct ifnet *ifp = sc->sc_ifp;
2364 
2365 		if_printf(ifp, "device timeout\n");
2366 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
2367 	}
2368 }
2369 
2370 int
2371 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2372 {
2373 	struct iwn_softc *sc = ifp->if_softc;
2374 	struct ieee80211com *ic = ifp->if_l2com;
2375 	struct ifreq *ifr = (struct ifreq *) data;
2376 	int error = 0, startall = 0;
2377 
2378 	switch (cmd) {
2379 	case SIOCSIFFLAGS:
2380 		IWN_LOCK(sc);
2381 		if (ifp->if_flags & IFF_UP) {
2382 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2383 				iwn_init_locked(sc);
2384 				startall = 1;
2385 			}
2386 		} else {
2387 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2388 				iwn_stop_locked(sc);
2389 		}
2390 		IWN_UNLOCK(sc);
2391 		if (startall)
2392 			ieee80211_start_all(ic);
2393 		break;
2394 	case SIOCGIFMEDIA:
2395 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2396 		break;
2397 	case SIOCGIFADDR:
2398 		error = ether_ioctl(ifp, cmd, data);
2399 		break;
2400 	default:
2401 		error = EINVAL;
2402 		break;
2403 	}
2404 	return error;
2405 }
2406 
2407 void
2408 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2409 {
2410 	char domain[4];
2411 	uint16_t val;
2412 	int i, error;
2413 
2414 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2415 		device_printf(sc->sc_dev,
2416 		    "%s: could not lock EEPROM, error %d\n", __func__, error);
2417 		return;
2418 	}
2419 	/* read and print regulatory domain */
2420 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2421 	device_printf(sc->sc_dev,"Reg Domain: %.4s", domain);
2422 
2423 	/* read and print MAC address */
2424 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2425 	printf(", address %6D\n", macaddr, ":");
2426 
2427 	/* read the list of authorized channels */
2428 	iwn_read_eeprom_channels(sc);
2429 
2430 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2431 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2432 	sc->maxpwr2GHz = val & 0xff;
2433 	sc->maxpwr5GHz = val >> 8;
2434 	/* check that EEPROM values are correct */
2435 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2436 		sc->maxpwr5GHz = 38;
2437 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2438 		sc->maxpwr2GHz = 38;
2439 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2440 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2441 
2442 	/* read voltage at which samples were taken */
2443 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2444 	sc->eeprom_voltage = (int16_t)le16toh(val);
2445 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2446 	    sc->eeprom_voltage);
2447 
2448 	/* read power groups */
2449 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2450 #ifdef IWN_DEBUG
2451 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2452 		for (i = 0; i < IWN_NBANDS; i++)
2453 			iwn_print_power_group(sc, i);
2454 	}
2455 #endif
2456 	iwn_eeprom_unlock(sc);
2457 }
2458 
2459 struct iwn_chan_band {
2460 	uint32_t	addr;	/* offset in EEPROM */
2461 	uint32_t	flags;	/* net80211 flags */
2462 	uint8_t		nchan;
2463 #define IWN_MAX_CHAN_PER_BAND	14
2464 	uint8_t		chan[IWN_MAX_CHAN_PER_BAND];
2465 };
2466 
2467 static void
2468 iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band)
2469 {
2470 	struct ifnet *ifp = sc->sc_ifp;
2471 	struct ieee80211com *ic = ifp->if_l2com;
2472 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2473 	struct ieee80211_channel *c;
2474 	int i, chan, flags;
2475 
2476 	iwn_read_prom_data(sc, band->addr, channels,
2477 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2478 
2479 	for (i = 0; i < band->nchan; i++) {
2480 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2481 			DPRINTF(sc, IWN_DEBUG_RESET,
2482 			    "skip chan %d flags 0x%x maxpwr %d\n",
2483 			    band->chan[i], channels[i].flags,
2484 			    channels[i].maxpwr);
2485 			continue;
2486 		}
2487 		chan = band->chan[i];
2488 
2489 		/* translate EEPROM flags to net80211 */
2490 		flags = 0;
2491 		if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2492 			flags |= IEEE80211_CHAN_PASSIVE;
2493 		if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0)
2494 			flags |= IEEE80211_CHAN_NOADHOC;
2495 		if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) {
2496 			flags |= IEEE80211_CHAN_DFS;
2497 			/* XXX apparently IBSS may still be marked */
2498 			flags |= IEEE80211_CHAN_NOADHOC;
2499 		}
2500 
2501 		DPRINTF(sc, IWN_DEBUG_RESET,
2502 		    "add chan %d flags 0x%x maxpwr %d\n",
2503 		    chan, channels[i].flags, channels[i].maxpwr);
2504 
2505 		c = &ic->ic_channels[ic->ic_nchans++];
2506 		c->ic_ieee = chan;
2507 		c->ic_freq = ieee80211_ieee2mhz(chan, band->flags);
2508 		c->ic_maxregpower = channels[i].maxpwr;
2509 		c->ic_maxpower = 2*c->ic_maxregpower;
2510 		if (band->flags & IEEE80211_CHAN_2GHZ) {
2511 			/* G =>'s B is supported */
2512 			c->ic_flags = IEEE80211_CHAN_B | flags;
2513 
2514 			c = &ic->ic_channels[ic->ic_nchans++];
2515 			c[0] = c[-1];
2516 			c->ic_flags = IEEE80211_CHAN_G | flags;
2517 		} else {	/* 5GHz band */
2518 			c->ic_flags = IEEE80211_CHAN_A | flags;
2519 		}
2520 		/* XXX no constraints on using HT20 */
2521 		/* add HT20, HT40 added separately */
2522 		c = &ic->ic_channels[ic->ic_nchans++];
2523 		c[0] = c[-1];
2524 		c->ic_flags |= IEEE80211_CHAN_HT20;
2525 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
2526 	}
2527 }
2528 
2529 static void
2530 iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band)
2531 {
2532 	struct ifnet *ifp = sc->sc_ifp;
2533 	struct ieee80211com *ic = ifp->if_l2com;
2534 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2535 	struct ieee80211_channel *c, *cent, *extc;
2536 	int i;
2537 
2538 	iwn_read_prom_data(sc, band->addr, channels,
2539 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2540 
2541 	for (i = 0; i < band->nchan; i++) {
2542 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
2543 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
2544 			DPRINTF(sc, IWN_DEBUG_RESET,
2545 			    "skip chan %d flags 0x%x maxpwr %d\n",
2546 			    band->chan[i], channels[i].flags,
2547 			    channels[i].maxpwr);
2548 			continue;
2549 		}
2550 		/*
2551 		 * Each entry defines an HT40 channel pair; find the
2552 		 * center channel, then the extension channel above.
2553 		 */
2554 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
2555 		    band->flags & ~IEEE80211_CHAN_HT);
2556 		if (cent == NULL) {	/* XXX shouldn't happen */
2557 			device_printf(sc->sc_dev,
2558 			    "%s: no entry for channel %d\n",
2559 			    __func__, band->chan[i]);
2560 			continue;
2561 		}
2562 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2563 		    band->flags & ~IEEE80211_CHAN_HT);
2564 		if (extc == NULL) {
2565 			DPRINTF(sc, IWN_DEBUG_RESET,
2566 			    "skip chan %d, extension channel not found\n",
2567 			    band->chan[i]);
2568 			continue;
2569 		}
2570 
2571 		DPRINTF(sc, IWN_DEBUG_RESET,
2572 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2573 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
2574 
2575 		c = &ic->ic_channels[ic->ic_nchans++];
2576 		c[0] = cent[0];
2577 		c->ic_extieee = extc->ic_ieee;
2578 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2579 		c->ic_flags |= IEEE80211_CHAN_HT40U;
2580 		c = &ic->ic_channels[ic->ic_nchans++];
2581 		c[0] = extc[0];
2582 		c->ic_extieee = cent->ic_ieee;
2583 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2584 		c->ic_flags |= IEEE80211_CHAN_HT40D;
2585 	}
2586 }
2587 
2588 static void
2589 iwn_read_eeprom_channels(struct iwn_softc *sc)
2590 {
2591 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2592 	static const struct iwn_chan_band iwn_bands[] = {
2593 	    { IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14,
2594 		{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } },
2595 	    { IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13,
2596 		{ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } },
2597 	    { IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12,
2598 		{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } },
2599 	    { IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11,
2600 		{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } },
2601 	    { IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6,
2602 		{ 145, 149, 153, 157, 161, 165 } },
2603 	    { IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7,
2604 		{ 1, 2, 3, 4, 5, 6, 7 } },
2605 	    { IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11,
2606 		{ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } }
2607 	};
2608 	struct ifnet *ifp = sc->sc_ifp;
2609 	struct ieee80211com *ic = ifp->if_l2com;
2610 	int i;
2611 
2612 	/* read the list of authorized channels */
2613 	for (i = 0; i < N(iwn_bands)-2; i++)
2614 		iwn_read_eeprom_band(sc, &iwn_bands[i]);
2615 	for (; i < N(iwn_bands); i++)
2616 		iwn_read_eeprom_ht40(sc, &iwn_bands[i]);
2617 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2618 #undef N
2619 }
2620 
2621 #ifdef IWN_DEBUG
2622 void
2623 iwn_print_power_group(struct iwn_softc *sc, int i)
2624 {
2625 	struct iwn_eeprom_band *band = &sc->bands[i];
2626 	struct iwn_eeprom_chan_samples *chans = band->chans;
2627 	int j, c;
2628 
2629 	printf("===band %d===\n", i);
2630 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2631 	printf("chan1 num=%d\n", chans[0].num);
2632 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2633 		for (j = 0; j < IWN_NSAMPLES; j++) {
2634 			printf("chain %d, sample %d: temp=%d gain=%d "
2635 			    "power=%d pa_det=%d\n", c, j,
2636 			    chans[0].samples[c][j].temp,
2637 			    chans[0].samples[c][j].gain,
2638 			    chans[0].samples[c][j].power,
2639 			    chans[0].samples[c][j].pa_det);
2640 		}
2641 	}
2642 	printf("chan2 num=%d\n", chans[1].num);
2643 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2644 		for (j = 0; j < IWN_NSAMPLES; j++) {
2645 			printf("chain %d, sample %d: temp=%d gain=%d "
2646 			    "power=%d pa_det=%d\n", c, j,
2647 			    chans[1].samples[c][j].temp,
2648 			    chans[1].samples[c][j].gain,
2649 			    chans[1].samples[c][j].power,
2650 			    chans[1].samples[c][j].pa_det);
2651 		}
2652 	}
2653 }
2654 #endif
2655 
2656 /*
2657  * Send a command to the firmware.
2658  */
2659 int
2660 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2661 {
2662 	struct iwn_tx_ring *ring = &sc->txq[4];
2663 	struct iwn_tx_desc *desc;
2664 	struct iwn_tx_cmd *cmd;
2665 	bus_addr_t paddr;
2666 
2667 	IWN_LOCK_ASSERT(sc);
2668 
2669 	KASSERT(size <= sizeof cmd->data, ("Command too big"));
2670 
2671 	desc = &ring->desc[ring->cur];
2672 	cmd = &ring->cmd[ring->cur];
2673 
2674 	cmd->code = code;
2675 	cmd->flags = 0;
2676 	cmd->qid = ring->qid;
2677 	cmd->idx = ring->cur;
2678 	memcpy(cmd->data, buf, size);
2679 
2680 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2681 
2682 	IWN_SET_DESC_NSEGS(desc, 1);
2683 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2684 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2685 	if (ring->cur < IWN_TX_WINDOW) {
2686 	    sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2687 		htole16(8);
2688 	}
2689 
2690 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
2691 	    __func__, iwn_intr_str(cmd->code), cmd->code,
2692 	    cmd->flags, cmd->qid, cmd->idx);
2693 
2694 	/* kick cmd ring */
2695 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2696 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2697 
2698 	return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz);
2699 }
2700 
2701 static const uint8_t iwn_ridx_to_plcp[] = {
2702 	10, 20, 55, 110, /* CCK */
2703 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
2704 };
2705 static const uint8_t iwn_siso_mcs_to_plcp[] = {
2706 	0, 0, 0, 0, 			/* CCK */
2707 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
2708 };
2709 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
2710 	0, 0, 0, 0, 			/* CCK */
2711 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
2712 };
2713 static const uint8_t iwn_prev_ridx[] = {
2714 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
2715 	0, 0, 1, 5,			/* CCK */
2716 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
2717 };
2718 
2719 /*
2720  * Configure hardware link parameters for the specified
2721  * node operating on the specified channel.
2722  */
2723 int
2724 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id,
2725 	const struct ieee80211_channel *c, int async)
2726 {
2727 	struct iwn_cmd_link_quality lq;
2728 	int i, ridx;
2729 
2730 	memset(&lq, 0, sizeof(lq));
2731 	lq.id = id;
2732 	if (IEEE80211_IS_CHAN_HT(c)) {
2733 		lq.mimo = 1;
2734 		lq.ssmask = 0x1;
2735 	} else
2736 		lq.ssmask = 0x2;
2737 
2738 	if (id == IWN_ID_BSS)
2739 		ridx = IWN_RATE_OFDM54;
2740 	else if (IEEE80211_IS_CHAN_A(c))
2741 		ridx = IWN_RATE_OFDM6;
2742 	else
2743 		ridx = IWN_RATE_CCK1;
2744 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2745 		/* XXX toggle antenna for retry patterns */
2746 		if (IEEE80211_IS_CHAN_HT40(c)) {
2747 			lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx]
2748 					 | IWN_RATE_MCS;
2749 			lq.table[i].rflags = IWN_RFLAG_HT
2750 					 | IWN_RFLAG_HT40
2751 					 | IWN_RFLAG_ANT_A;
2752 			/* XXX shortGI */
2753 		} else if (IEEE80211_IS_CHAN_HT(c)) {
2754 			lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx]
2755 					 | IWN_RATE_MCS;
2756 			lq.table[i].rflags = IWN_RFLAG_HT
2757 					 | IWN_RFLAG_ANT_A;
2758 			/* XXX shortGI */
2759 		} else {
2760 			lq.table[i].rate = iwn_ridx_to_plcp[ridx];
2761 			if (ridx <= IWN_RATE_CCK11)
2762 				lq.table[i].rflags = IWN_RFLAG_CCK;
2763 			lq.table[i].rflags |= IWN_RFLAG_ANT_B;
2764 		}
2765 		ridx = iwn_prev_ridx[ridx];
2766 	}
2767 
2768 	lq.dsmask = 0x3;
2769 	lq.ampdu_disable = 3;
2770 	lq.ampdu_limit = htole16(4000);
2771 #ifdef IWN_DEBUG
2772 	if (sc->sc_debug & IWN_DEBUG_STATE) {
2773 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
2774 		    __func__, id, lq.mimo, lq.ssmask);
2775 		printf("%s:", __func__);
2776 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
2777 			printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags);
2778 		printf("\n");
2779 	}
2780 #endif
2781 	return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async);
2782 }
2783 
2784 #if 0
2785 
2786 /*
2787  * Install a pairwise key into the hardware.
2788  */
2789 int
2790 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2791     const struct ieee80211_key *k)
2792 {
2793 	struct iwn_softc *sc = ic->ic_softc;
2794 	struct iwn_node_info node;
2795 
2796 	if (k->k_flags & IEEE80211_KEY_GROUP)
2797 		return 0;
2798 
2799 	memset(&node, 0, sizeof node);
2800 
2801 	switch (k->k_cipher) {
2802 	case IEEE80211_CIPHER_CCMP:
2803 		node.security = htole16(IWN_CIPHER_CCMP);
2804 		memcpy(node.key, k->k_key, k->k_len);
2805 		break;
2806 	default:
2807 		return 0;
2808 	}
2809 
2810 	node.id = IWN_ID_BSS;
2811 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2812 	node.control = IWN_NODE_UPDATE;
2813 	node.flags = IWN_FLAG_SET_KEY;
2814 
2815 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
2816 }
2817 #endif
2818 
2819 int
2820 iwn_wme_update(struct ieee80211com *ic)
2821 {
2822 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2823 #define	IWN_TXOP_TO_US(v)		(v<<5)
2824 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2825 	struct iwn_edca_params cmd;
2826 	int i;
2827 
2828 	memset(&cmd, 0, sizeof cmd);
2829 	cmd.flags = htole32(IWN_EDCA_UPDATE);
2830 	for (i = 0; i < WME_NUM_AC; i++) {
2831 		const struct wmeParams *wmep =
2832 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
2833 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
2834 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
2835 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
2836 		cmd.ac[i].txoplimit =
2837 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
2838 	}
2839 	IWN_LOCK(sc);
2840 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
2841 	IWN_UNLOCK(sc);
2842 	return 0;
2843 #undef IWN_TXOP_TO_US
2844 #undef IWN_EXP2
2845 }
2846 
2847 void
2848 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2849 {
2850 	struct iwn_cmd_led led;
2851 
2852 	led.which = which;
2853 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2854 	led.off = off;
2855 	led.on = on;
2856 
2857 	(void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2858 }
2859 
2860 /*
2861  * Set the critical temperature at which the firmware will automatically stop
2862  * the radio transmitter.
2863  */
2864 int
2865 iwn_set_critical_temp(struct iwn_softc *sc)
2866 {
2867 	struct iwn_ucode_info *uc = &sc->ucode_info;
2868 	struct iwn_critical_temp crit;
2869 	uint32_t r1, r2, r3, temp;
2870 
2871 	r1 = le32toh(uc->temp[0].chan20MHz);
2872 	r2 = le32toh(uc->temp[1].chan20MHz);
2873 	r3 = le32toh(uc->temp[2].chan20MHz);
2874 	/* inverse function of iwn_get_temperature() */
2875 	temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259;
2876 
2877 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2878 
2879 	memset(&crit, 0, sizeof crit);
2880 	crit.tempR = htole32(temp);
2881 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp);
2882 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2883 }
2884 
2885 void
2886 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2887 {
2888 	struct iwn_cmd_tsf tsf;
2889 	uint64_t val, mod;
2890 
2891 	memset(&tsf, 0, sizeof tsf);
2892 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2893 	tsf.bintval = htole16(ni->ni_intval);
2894 	tsf.lintval = htole16(10);
2895 
2896 	/* XXX all wrong */
2897 	/* compute remaining time until next beacon */
2898 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2899 	DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__,
2900 	    val, val == 0 ? "correcting" : "");
2901 	if (val == 0)
2902 		val = 1;
2903 	mod = le64toh(tsf.tstamp) % val;
2904 	tsf.binitval = htole32((uint32_t)(val - mod));
2905 
2906 	DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n",
2907 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod));
2908 
2909 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2910 		device_printf(sc->sc_dev,
2911 		    "%s: could not enable TSF\n", __func__);
2912 }
2913 
2914 void
2915 iwn_power_calibration(struct iwn_softc *sc, int temp)
2916 {
2917 	struct ifnet *ifp = sc->sc_ifp;
2918 	struct ieee80211com *ic = ifp->if_l2com;
2919 #if 0
2920 	KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running"));
2921 #endif
2922 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
2923 	    __func__, sc->temp, temp);
2924 
2925 	/* adjust Tx power if need be (delta >= 3�C) */
2926 	if (abs(temp - sc->temp) < 3)
2927 		return;
2928 
2929 	sc->temp = temp;
2930 
2931 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n",
2932 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bsschan));
2933 	if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) {
2934 		/* just warn, too bad for the automatic calibration... */
2935 		device_printf(sc->sc_dev,
2936 		    "%s: could not adjust Tx power\n", __func__);
2937 	}
2938 }
2939 
2940 /*
2941  * Set Tx power for a given channel (each rate has its own power settings).
2942  * This function takes into account the regulatory information from EEPROM,
2943  * the current temperature and the current voltage.
2944  */
2945 int
2946 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2947 {
2948 /* fixed-point arithmetic division using a n-bit fractional part */
2949 #define fdivround(a, b, n)	\
2950 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2951 /* linear interpolation */
2952 #define interpolate(x, x1, y1, x2, y2, n)	\
2953 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2954 
2955 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2956 	struct ifnet *ifp = sc->sc_ifp;
2957 	struct ieee80211com *ic = ifp->if_l2com;
2958 	struct iwn_ucode_info *uc = &sc->ucode_info;
2959 	struct iwn_cmd_txpower cmd;
2960 	struct iwn_eeprom_chan_samples *chans;
2961 	const uint8_t *rf_gain, *dsp_gain;
2962 	int32_t vdiff, tdiff;
2963 	int i, c, grp, maxpwr;
2964 	u_int chan;
2965 
2966 	/* get channel number */
2967 	chan = ieee80211_chan2ieee(ic, ch);
2968 
2969 	memset(&cmd, 0, sizeof cmd);
2970 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2971 	cmd.chan = chan;
2972 
2973 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2974 		maxpwr   = sc->maxpwr5GHz;
2975 		rf_gain  = iwn_rf_gain_5ghz;
2976 		dsp_gain = iwn_dsp_gain_5ghz;
2977 	} else {
2978 		maxpwr   = sc->maxpwr2GHz;
2979 		rf_gain  = iwn_rf_gain_2ghz;
2980 		dsp_gain = iwn_dsp_gain_2ghz;
2981 	}
2982 
2983 	/* compute voltage compensation */
2984 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2985 	if (vdiff > 0)
2986 		vdiff *= 2;
2987 	if (abs(vdiff) > 2)
2988 		vdiff = 0;
2989 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2990 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2991 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
2992 
2993 	/* get channel's attenuation group */
2994 	if (chan <= 20)		/* 1-20 */
2995 		grp = 4;
2996 	else if (chan <= 43)	/* 34-43 */
2997 		grp = 0;
2998 	else if (chan <= 70)	/* 44-70 */
2999 		grp = 1;
3000 	else if (chan <= 124)	/* 71-124 */
3001 		grp = 2;
3002 	else			/* 125-200 */
3003 		grp = 3;
3004 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3005 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3006 
3007 	/* get channel's sub-band */
3008 	for (i = 0; i < IWN_NBANDS; i++)
3009 		if (sc->bands[i].lo != 0 &&
3010 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3011 			break;
3012 	chans = sc->bands[i].chans;
3013 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3014 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3015 
3016 	for (c = 0; c < IWN_NTXCHAINS; c++) {
3017 		uint8_t power, gain, temp;
3018 		int maxchpwr, pwr, ridx, idx;
3019 
3020 		power = interpolate(chan,
3021 		    chans[0].num, chans[0].samples[c][1].power,
3022 		    chans[1].num, chans[1].samples[c][1].power, 1);
3023 		gain  = interpolate(chan,
3024 		    chans[0].num, chans[0].samples[c][1].gain,
3025 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3026 		temp  = interpolate(chan,
3027 		    chans[0].num, chans[0].samples[c][1].temp,
3028 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3029 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3030 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3031 		    __func__, c, power, gain, temp);
3032 
3033 		/* compute temperature compensation */
3034 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3035 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3036 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3037 		    __func__, tdiff, sc->temp, temp);
3038 
3039 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3040 			maxchpwr = ch->ic_maxpower;
3041 			if ((ridx / 8) & 1) {
3042 				/* MIMO: decrease Tx power (-3dB) */
3043 				maxchpwr -= 6;
3044 			}
3045 
3046 			pwr = maxpwr - 10;
3047 
3048 			/* decrease power for highest OFDM rates */
3049 			if ((ridx % 8) == 5)		/* 48Mbit/s */
3050 				pwr -= 5;
3051 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
3052 				pwr -= 7;
3053 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
3054 				pwr -= 10;
3055 
3056 			if (pwr > maxchpwr)
3057 				pwr = maxchpwr;
3058 
3059 			idx = gain - (pwr - power) - tdiff - vdiff;
3060 			if ((ridx / 8) & 1)	/* MIMO */
3061 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3062 
3063 			if (cmd.band == 0)
3064 				idx += 9;	/* 5GHz */
3065 			if (ridx == IWN_RIDX_MAX)
3066 				idx += 5;	/* CCK */
3067 
3068 			/* make sure idx stays in a valid range */
3069 			if (idx < 0)
3070 				idx = 0;
3071 			else if (idx > IWN_MAX_PWR_INDEX)
3072 				idx = IWN_MAX_PWR_INDEX;
3073 
3074 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3075 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3076 			    __func__, c, ridx, idx);
3077 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3078 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3079 		}
3080 	}
3081 
3082 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3083 	    "%s: set tx power for chan %d\n", __func__, chan);
3084 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3085 
3086 #undef interpolate
3087 #undef fdivround
3088 }
3089 
3090 /*
3091  * Get the best (maximum) RSSI among the
3092  * connected antennas and convert to dBm.
3093  */
3094 int8_t
3095 iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat)
3096 {
3097 	int mask, agc, rssi;
3098 
3099 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
3100 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
3101 
3102 	rssi = 0;
3103 #if 0
3104 	if (mask & (1 << 0))	/* Ant A */
3105 		rssi = max(rssi, stat->rssi[0]);
3106 	if (mask & (1 << 1))	/* Ant B */
3107 		rssi = max(rssi, stat->rssi[2]);
3108 	if (mask & (1 << 2))	/* Ant C */
3109 		rssi = max(rssi, stat->rssi[4]);
3110 #else
3111 	rssi = max(rssi, stat->rssi[0]);
3112 	rssi = max(rssi, stat->rssi[2]);
3113 	rssi = max(rssi, stat->rssi[4]);
3114 #endif
3115 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3116 	    "result %d\n", __func__, agc, mask,
3117 	    stat->rssi[0], stat->rssi[2], stat->rssi[4],
3118 	    rssi - agc - IWN_RSSI_TO_DBM);
3119 	return rssi - agc - IWN_RSSI_TO_DBM;
3120 }
3121 
3122 /*
3123  * Get the average noise among Rx antennas (in dBm).
3124  */
3125 int
3126 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3127 {
3128 	int i, total, nbant, noise;
3129 
3130 	total = nbant = 0;
3131 	for (i = 0; i < 3; i++) {
3132 		noise = le32toh(stats->noise[i]) & 0xff;
3133 		if (noise != 0) {
3134 			total += noise;
3135 			nbant++;
3136 		}
3137 	}
3138 	/* there should be at least one antenna but check anyway */
3139 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3140 }
3141 
3142 /*
3143  * Read temperature (in degC) from the on-board thermal sensor.
3144  */
3145 int
3146 iwn_get_temperature(struct iwn_softc *sc)
3147 {
3148 	struct iwn_ucode_info *uc = &sc->ucode_info;
3149 	int32_t r1, r2, r3, r4, temp;
3150 
3151 	r1 = le32toh(uc->temp[0].chan20MHz);
3152 	r2 = le32toh(uc->temp[1].chan20MHz);
3153 	r3 = le32toh(uc->temp[2].chan20MHz);
3154 	r4 = le32toh(sc->rawtemp);
3155 
3156 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
3157 		return 0;
3158 
3159 	/* sign-extend 23-bit R4 value to 32-bit */
3160 	r4 = (r4 << 8) >> 8;
3161 	/* compute temperature */
3162 	temp = (259 * (r4 - r2)) / (r3 - r1);
3163 	temp = (temp * 97) / 100 + 8;
3164 
3165 	return IWN_KTOC(temp);
3166 }
3167 
3168 /*
3169  * Initialize sensitivity calibration state machine.
3170  */
3171 int
3172 iwn_init_sensitivity(struct iwn_softc *sc)
3173 {
3174 	struct iwn_calib_state *calib = &sc->calib;
3175 	struct iwn_phy_calib_cmd cmd;
3176 	int error;
3177 
3178 	/* reset calibration state */
3179 	memset(calib, 0, sizeof (*calib));
3180 	calib->state = IWN_CALIB_STATE_INIT;
3181 	calib->cck_state = IWN_CCK_STATE_HIFA;
3182 	/* initial values taken from the reference driver */
3183 	calib->corr_ofdm_x1     = 105;
3184 	calib->corr_ofdm_mrc_x1 = 220;
3185 	calib->corr_ofdm_x4     =  90;
3186 	calib->corr_ofdm_mrc_x4 = 170;
3187 	calib->corr_cck_x4      = 125;
3188 	calib->corr_cck_mrc_x4  = 200;
3189 	calib->energy_cck       = 100;
3190 
3191 	/* write initial sensitivity values */
3192 	error = iwn_send_sensitivity(sc);
3193 	if (error != 0)
3194 		return error;
3195 
3196 	memset(&cmd, 0, sizeof cmd);
3197 	cmd.code = IWN_SET_DIFF_GAIN;
3198 	/* differential gains initially set to 0 for all 3 antennas */
3199 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
3200 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
3201 }
3202 
3203 /*
3204  * Collect noise and RSSI statistics for the first 20 beacons received
3205  * after association and use them to determine connected antennas and
3206  * set differential gains.
3207  */
3208 void
3209 iwn_compute_differential_gain(struct iwn_softc *sc,
3210     const struct iwn_rx_general_stats *stats)
3211 {
3212 	struct iwn_calib_state *calib = &sc->calib;
3213 	struct iwn_phy_calib_cmd cmd;
3214 	int i, val;
3215 
3216 	/* accumulate RSSI and noise for all 3 antennas */
3217 	for (i = 0; i < 3; i++) {
3218 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3219 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3220 	}
3221 
3222 	/* we update differential gain only once after 20 beacons */
3223 	if (++calib->nbeacons < 20)
3224 		return;
3225 
3226 	/* determine antenna with highest average RSSI */
3227 	val = max(calib->rssi[0], calib->rssi[1]);
3228 	val = max(calib->rssi[2], val);
3229 
3230 	/* determine which antennas are connected */
3231 	sc->antmsk = 0;
3232 	for (i = 0; i < 3; i++)
3233 		if (val - calib->rssi[i] <= 15 * 20)
3234 			sc->antmsk |= 1 << i;
3235 	/* if neither Ant A and Ant B are connected.. */
3236 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
3237 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
3238 
3239 	/* get minimal noise among connected antennas */
3240 	val = INT_MAX;	/* ok, there's at least one */
3241 	for (i = 0; i < 3; i++)
3242 		if (sc->antmsk & (1 << i))
3243 			val = min(calib->noise[i], val);
3244 
3245 	memset(&cmd, 0, sizeof cmd);
3246 	cmd.code = IWN_SET_DIFF_GAIN;
3247 	/* set differential gains for connected antennas */
3248 	for (i = 0; i < 3; i++) {
3249 		if (sc->antmsk & (1 << i)) {
3250 			cmd.gain[i] = (calib->noise[i] - val) / 30;
3251 			/* limit differential gain to 3 */
3252 			cmd.gain[i] = min(cmd.gain[i], 3);
3253 			cmd.gain[i] |= IWN_GAIN_SET;
3254 		}
3255 	}
3256 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3257 	    "%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3258 	    __func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk);
3259 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
3260 		calib->state = IWN_CALIB_STATE_RUN;
3261 }
3262 
3263 /*
3264  * Tune RF Rx sensitivity based on the number of false alarms detected
3265  * during the last beacon period.
3266  */
3267 void
3268 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3269 {
3270 #define inc_clip(val, inc, max)			\
3271 	if ((val) < (max)) {			\
3272 		if ((val) < (max) - (inc))	\
3273 			(val) += (inc);		\
3274 		else				\
3275 			(val) = (max);		\
3276 		needs_update = 1;		\
3277 	}
3278 #define dec_clip(val, dec, min)			\
3279 	if ((val) > (min)) {			\
3280 		if ((val) > (min) + (dec))	\
3281 			(val) -= (dec);		\
3282 		else				\
3283 			(val) = (min);		\
3284 		needs_update = 1;		\
3285 	}
3286 
3287 	struct iwn_calib_state *calib = &sc->calib;
3288 	uint32_t val, rxena, fa;
3289 	uint32_t energy[3], energy_min;
3290 	uint8_t noise[3], noise_ref;
3291 	int i, needs_update = 0;
3292 
3293 	/* check that we've been enabled long enough */
3294 	if ((rxena = le32toh(stats->general.load)) == 0)
3295 		return;
3296 
3297 	/* compute number of false alarms since last call for OFDM */
3298 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3299 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3300 	fa *= 200 * 1024;	/* 200TU */
3301 
3302 	/* save counters values for next call */
3303 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3304 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3305 
3306 	if (fa > 50 * rxena) {
3307 		/* high false alarm count, decrease sensitivity */
3308 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3309 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
3310 		inc_clip(calib->corr_ofdm_x1,     1, 140);
3311 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
3312 		inc_clip(calib->corr_ofdm_x4,     1, 120);
3313 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
3314 
3315 	} else if (fa < 5 * rxena) {
3316 		/* low false alarm count, increase sensitivity */
3317 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3318 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
3319 		dec_clip(calib->corr_ofdm_x1,     1, 105);
3320 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
3321 		dec_clip(calib->corr_ofdm_x4,     1,  85);
3322 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
3323 	}
3324 
3325 	/* compute maximum noise among 3 antennas */
3326 	for (i = 0; i < 3; i++)
3327 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3328 	val = max(noise[0], noise[1]);
3329 	val = max(noise[2], val);
3330 	/* insert it into our samples table */
3331 	calib->noise_samples[calib->cur_noise_sample] = val;
3332 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3333 
3334 	/* compute maximum noise among last 20 samples */
3335 	noise_ref = calib->noise_samples[0];
3336 	for (i = 1; i < 20; i++)
3337 		noise_ref = max(noise_ref, calib->noise_samples[i]);
3338 
3339 	/* compute maximum energy among 3 antennas */
3340 	for (i = 0; i < 3; i++)
3341 		energy[i] = le32toh(stats->general.energy[i]);
3342 	val = min(energy[0], energy[1]);
3343 	val = min(energy[2], val);
3344 	/* insert it into our samples table */
3345 	calib->energy_samples[calib->cur_energy_sample] = val;
3346 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3347 
3348 	/* compute minimum energy among last 10 samples */
3349 	energy_min = calib->energy_samples[0];
3350 	for (i = 1; i < 10; i++)
3351 		energy_min = max(energy_min, calib->energy_samples[i]);
3352 	energy_min += 6;
3353 
3354 	/* compute number of false alarms since last call for CCK */
3355 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3356 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3357 	fa *= 200 * 1024;	/* 200TU */
3358 
3359 	/* save counters values for next call */
3360 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3361 	calib->fa_cck = le32toh(stats->cck.fa);
3362 
3363 	if (fa > 50 * rxena) {
3364 		/* high false alarm count, decrease sensitivity */
3365 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3366 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
3367 		calib->cck_state = IWN_CCK_STATE_HIFA;
3368 		calib->low_fa = 0;
3369 
3370 		if (calib->corr_cck_x4 > 160) {
3371 			calib->noise_ref = noise_ref;
3372 			if (calib->energy_cck > 2)
3373 				dec_clip(calib->energy_cck, 2, energy_min);
3374 		}
3375 		if (calib->corr_cck_x4 < 160) {
3376 			calib->corr_cck_x4 = 161;
3377 			needs_update = 1;
3378 		} else
3379 			inc_clip(calib->corr_cck_x4, 3, 200);
3380 
3381 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3382 
3383 	} else if (fa < 5 * rxena) {
3384 		/* low false alarm count, increase sensitivity */
3385 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3386 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
3387 		calib->cck_state = IWN_CCK_STATE_LOFA;
3388 		calib->low_fa++;
3389 
3390 		if (calib->cck_state != 0 &&
3391 		    ((calib->noise_ref - noise_ref) > 2 ||
3392 		     calib->low_fa > 100)) {
3393 			inc_clip(calib->energy_cck,      2,  97);
3394 			dec_clip(calib->corr_cck_x4,     3, 125);
3395 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3396 		}
3397 	} else {
3398 		/* not worth to increase or decrease sensitivity */
3399 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3400 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
3401 		calib->low_fa = 0;
3402 		calib->noise_ref = noise_ref;
3403 
3404 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3405 			/* previous interval had many false alarms */
3406 			dec_clip(calib->energy_cck, 8, energy_min);
3407 		}
3408 		calib->cck_state = IWN_CCK_STATE_INIT;
3409 	}
3410 
3411 	if (needs_update)
3412 		(void)iwn_send_sensitivity(sc);
3413 #undef dec_clip
3414 #undef inc_clip
3415 }
3416 
3417 int
3418 iwn_send_sensitivity(struct iwn_softc *sc)
3419 {
3420 	struct iwn_calib_state *calib = &sc->calib;
3421 	struct iwn_sensitivity_cmd cmd;
3422 
3423 	memset(&cmd, 0, sizeof cmd);
3424 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3425 	/* OFDM modulation */
3426 	cmd.corr_ofdm_x1     = htole16(calib->corr_ofdm_x1);
3427 	cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1);
3428 	cmd.corr_ofdm_x4     = htole16(calib->corr_ofdm_x4);
3429 	cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4);
3430 	cmd.energy_ofdm      = htole16(100);
3431 	cmd.energy_ofdm_th   = htole16(62);
3432 	/* CCK modulation */
3433 	cmd.corr_cck_x4      = htole16(calib->corr_cck_x4);
3434 	cmd.corr_cck_mrc_x4  = htole16(calib->corr_cck_mrc_x4);
3435 	cmd.energy_cck       = htole16(calib->energy_cck);
3436 	/* Barker modulation: use default values */
3437 	cmd.corr_barker      = htole16(190);
3438 	cmd.corr_barker_mrc  = htole16(390);
3439 
3440 	DPRINTF(sc, IWN_DEBUG_RESET,
3441 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
3442 	    calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4,
3443 	    calib->corr_ofdm_mrc_x4, calib->corr_cck_x4,
3444 	    calib->corr_cck_mrc_x4, calib->energy_cck);
3445 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3446 }
3447 
3448 int
3449 iwn_auth(struct iwn_softc *sc)
3450 {
3451 	struct ifnet *ifp = sc->sc_ifp;
3452 	struct ieee80211com *ic = ifp->if_l2com;
3453 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3454 	struct ieee80211_node *ni = vap->iv_bss;
3455 	struct iwn_node_info node;
3456 	int error;
3457 
3458 	sc->calib.state = IWN_CALIB_STATE_INIT;
3459 
3460 	/* update adapter's configuration */
3461 	sc->config.associd = 0;
3462 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3463 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
3464 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3465 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3466 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3467 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3468 		sc->config.cck_mask  = 0;
3469 		sc->config.ofdm_mask = 0x15;
3470 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3471 		sc->config.cck_mask  = 0x03;
3472 		sc->config.ofdm_mask = 0;
3473 	} else {
3474 		/* XXX assume 802.11b/g */
3475 		sc->config.cck_mask  = 0x0f;
3476 		sc->config.ofdm_mask = 0x15;
3477 	}
3478 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3479 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3480 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3481 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3482 	sc->config.filter &= ~htole32(IWN_FILTER_BSS);
3483 
3484 	DPRINTF(sc, IWN_DEBUG_STATE,
3485 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3486 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3487 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3488 	   __func__,
3489 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3490 	   sc->config.cck_mask, sc->config.ofdm_mask,
3491 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3492 	   le16toh(sc->config.rxchain),
3493 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3494 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3495 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3496 	    sizeof (struct iwn_config), 1);
3497 	if (error != 0) {
3498 		device_printf(sc->sc_dev,
3499 		    "%s: could not configure, error %d\n", __func__, error);
3500 		return error;
3501 	}
3502 	sc->sc_curchan = ic->ic_curchan;
3503 
3504 	/* configuration has changed, set Tx power accordingly */
3505 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3506 	if (error != 0) {
3507 		device_printf(sc->sc_dev,
3508 		    "%s: could not set Tx power, error %d\n", __func__, error);
3509 		return error;
3510 	}
3511 
3512 	/*
3513 	 * Reconfiguring clears the adapter's nodes table so we must
3514 	 * add the broadcast node again.
3515 	 */
3516 	memset(&node, 0, sizeof node);
3517 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3518 	node.id = IWN_ID_BROADCAST;
3519 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__);
3520 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3521 	if (error != 0) {
3522 		device_printf(sc->sc_dev,
3523 		    "%s: could not add broadcast node, error %d\n",
3524 		    __func__, error);
3525 		return error;
3526 	}
3527 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1);
3528 	if (error != 0) {
3529 		device_printf(sc->sc_dev,
3530 		    "%s: could not setup MRR for broadcast node, error %d\n",
3531 		    __func__, error);
3532 		return error;
3533 	}
3534 
3535 	return 0;
3536 }
3537 
3538 /*
3539  * Configure the adapter for associated state.
3540  */
3541 int
3542 iwn_run(struct iwn_softc *sc)
3543 {
3544 #define	MS(v,x)	(((v) & x) >> x##_S)
3545 	struct ifnet *ifp = sc->sc_ifp;
3546 	struct ieee80211com *ic = ifp->if_l2com;
3547 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3548 	struct ieee80211_node *ni = vap->iv_bss;
3549 	struct iwn_node_info node;
3550 	int error, maxrxampdu, ampdudensity;
3551 
3552 	sc->calib.state = IWN_CALIB_STATE_INIT;
3553 
3554 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3555 		/* link LED blinks while monitoring */
3556 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3557 		return 0;
3558 	}
3559 
3560 	iwn_enable_tsf(sc, ni);
3561 
3562 	/* update adapter's configuration */
3563 	sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd));
3564 	/* short preamble/slot time are negotiated when associating */
3565 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT);
3566 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3567 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3568 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3569 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3570 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3571 		sc->config.flags &= ~htole32(IWN_CONFIG_HT);
3572 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3573 			sc->config.flags |= htole32(IWN_CONFIG_HT40U);
3574 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3575 			sc->config.flags |= htole32(IWN_CONFIG_HT40D);
3576 		else
3577 			sc->config.flags |= htole32(IWN_CONFIG_HT20);
3578 		sc->config.rxchain = htole16(
3579 			  (3 << IWN_RXCHAIN_VALID_S)
3580 			| (3 << IWN_RXCHAIN_MIMO_CNT_S)
3581 			| (1 << IWN_RXCHAIN_CNT_S)
3582 			| IWN_RXCHAIN_MIMO_FORCE);
3583 
3584 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3585 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3586 	} else
3587 		maxrxampdu = ampdudensity = 0;
3588 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3589 
3590 	DPRINTF(sc, IWN_DEBUG_STATE,
3591 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3592 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3593 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3594 	   __func__,
3595 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3596 	   sc->config.cck_mask, sc->config.ofdm_mask,
3597 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3598 	   le16toh(sc->config.rxchain),
3599 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3600 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3601 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3602 	    sizeof (struct iwn_config), 1);
3603 	if (error != 0) {
3604 		device_printf(sc->sc_dev,
3605 		    "%s: could not update configuration, error %d\n",
3606 		    __func__, error);
3607 		return error;
3608 	}
3609 	sc->sc_curchan = ni->ni_chan;
3610 
3611 	/* configuration has changed, set Tx power accordingly */
3612 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3613 	if (error != 0) {
3614 		device_printf(sc->sc_dev,
3615 		    "%s: could not set Tx power, error %d\n", __func__, error);
3616 		return error;
3617 	}
3618 
3619 	/* add BSS node */
3620 	memset(&node, 0, sizeof node);
3621 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3622 	node.id = IWN_ID_BSS;
3623 	node.htflags = htole32(
3624 	    (maxrxampdu << IWN_MAXRXAMPDU_S) |
3625 	    (ampdudensity << IWN_MPDUDENSITY_S));
3626 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
3627 	    __func__, node.id, le32toh(node.htflags));
3628 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3629 	if (error != 0) {
3630 		device_printf(sc->sc_dev,"could not add BSS node\n");
3631 		return error;
3632 	}
3633 	error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1);
3634 	if (error != 0) {
3635 		device_printf(sc->sc_dev,
3636 		    "%s: could not setup MRR for node %d, error %d\n",
3637 		    __func__, node.id, error);
3638 		return error;
3639 	}
3640 
3641 	error = iwn_init_sensitivity(sc);
3642 	if (error != 0) {
3643 		device_printf(sc->sc_dev,
3644 		    "%s: could not set sensitivity, error %d\n",
3645 		    __func__, error);
3646 		return error;
3647 	}
3648 
3649 	/* start/restart periodic calibration timer */
3650 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3651 	iwn_calib_reset(sc);
3652 
3653 	/* link LED always on while associated */
3654 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3655 
3656 	return 0;
3657 #undef MS
3658 }
3659 
3660 /*
3661  * Send a scan request to the firmware.  Since this command is huge, we map it
3662  * into a mbuf instead of using the pre-allocated set of commands.
3663  */
3664 int
3665 iwn_scan(struct iwn_softc *sc)
3666 {
3667 	struct ifnet *ifp = sc->sc_ifp;
3668 	struct ieee80211com *ic = ifp->if_l2com;
3669 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
3670 	struct iwn_tx_ring *ring = &sc->txq[4];
3671 	struct iwn_tx_desc *desc;
3672 	struct iwn_tx_data *data;
3673 	struct iwn_tx_cmd *cmd;
3674 	struct iwn_cmd_data *tx;
3675 	struct iwn_scan_hdr *hdr;
3676 	struct iwn_scan_essid *essid;
3677 	struct iwn_scan_chan *chan;
3678 	struct ieee80211_frame *wh;
3679 	struct ieee80211_rateset *rs;
3680 	struct ieee80211_channel *c;
3681 	enum ieee80211_phymode mode;
3682 	uint8_t *frm;
3683 	int pktlen, error, nrates;
3684 	bus_addr_t physaddr;
3685 
3686 	desc = &ring->desc[ring->cur];
3687 	data = &ring->data[ring->cur];
3688 
3689 	/* XXX malloc */
3690 	data->m = m_getcl(M_DONTWAIT, MT_DATA, 0);
3691 	if (data->m == NULL) {
3692 		device_printf(sc->sc_dev,
3693 		    "%s: could not allocate mbuf for scan command\n", __func__);
3694 		return ENOMEM;
3695 	}
3696 
3697 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3698 	cmd->code = IWN_CMD_SCAN;
3699 	cmd->flags = 0;
3700 	cmd->qid = ring->qid;
3701 	cmd->idx = ring->cur;
3702 
3703 	hdr = (struct iwn_scan_hdr *)cmd->data;
3704 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3705 
3706 	/* XXX use scan state */
3707 	/*
3708 	 * Move to the next channel if no packets are received within 5 msecs
3709 	 * after sending the probe request (this helps to reduce the duration
3710 	 * of active scans).
3711 	 */
3712 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3713 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3714 
3715 	/* select Ant B and Ant C for scanning */
3716 	hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S));
3717 
3718 	tx = (struct iwn_cmd_data *)(hdr + 1);
3719 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3720 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200);	/* XXX */
3721 	tx->id = IWN_ID_BROADCAST;
3722 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3723 	tx->rflags = IWN_RFLAG_ANT_B;
3724 
3725 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
3726 		hdr->crc_threshold = htole16(1);
3727 		/* send probe requests at 6Mbps */
3728 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6];
3729 	} else {
3730 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3731 		/* send probe requests at 1Mbps */
3732 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1];
3733 		tx->rflags |= IWN_RFLAG_CCK;
3734 	}
3735 
3736 	essid = (struct iwn_scan_essid *)(tx + 1);
3737 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3738 	essid[0].id  = IEEE80211_ELEMID_SSID;
3739 	essid[0].len = ss->ss_ssid[0].len;
3740 	memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3741 
3742 	/*
3743 	 * Build a probe request frame.  Most of the following code is a
3744 	 * copy & paste of what is done in net80211.
3745 	 */
3746 	wh = (struct ieee80211_frame *)&essid[4];
3747 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3748 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3749 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3750 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3751 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
3752 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3753 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3754 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3755 
3756 	frm = (uint8_t *)(wh + 1);
3757 
3758 	/* add SSID IE */
3759         *frm++ = IEEE80211_ELEMID_SSID;
3760         *frm++ = ss->ss_ssid[0].len;
3761         memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3762 	frm += ss->ss_ssid[0].len;
3763 
3764 	mode = ieee80211_chan2mode(ic->ic_curchan);
3765 	rs = &ic->ic_sup_rates[mode];
3766 
3767 	/* add supported rates IE */
3768 	*frm++ = IEEE80211_ELEMID_RATES;
3769 	nrates = rs->rs_nrates;
3770 	if (nrates > IEEE80211_RATE_SIZE)
3771 		nrates = IEEE80211_RATE_SIZE;
3772 	*frm++ = nrates;
3773 	memcpy(frm, rs->rs_rates, nrates);
3774 	frm += nrates;
3775 
3776 	/* add supported xrates IE */
3777 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3778 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3779 		*frm++ = IEEE80211_ELEMID_XRATES;
3780 		*frm++ = (uint8_t)nrates;
3781 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3782 		frm += nrates;
3783 	}
3784 
3785 	/* setup length of probe request */
3786 	tx->len = htole16(frm - (uint8_t *)wh);
3787 
3788 	c = ic->ic_curchan;
3789 	chan = (struct iwn_scan_chan *)frm;
3790 	chan->chan = ieee80211_chan2ieee(ic, c);
3791 	chan->flags = 0;
3792 	if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) {
3793 		chan->flags |= IWN_CHAN_ACTIVE;
3794 		if (ss->ss_nssid > 0)
3795 			chan->flags |= IWN_CHAN_DIRECT;
3796 	}
3797 	chan->dsp_gain = 0x6e;
3798 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3799 		chan->rf_gain = 0x3b;
3800 		chan->active  = htole16(10);
3801 		chan->passive = htole16(110);
3802 	} else {
3803 		chan->rf_gain = 0x28;
3804 		chan->active  = htole16(20);
3805 		chan->passive = htole16(120);
3806 	}
3807 
3808 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x "
3809 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
3810 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
3811 	    chan->active, chan->passive);
3812 	hdr->nchan++;
3813 	chan++;
3814 
3815 	frm += sizeof (struct iwn_scan_chan);
3816 
3817 	hdr->len = htole16(frm - (uint8_t *)hdr);
3818 	pktlen = frm - (uint8_t *)cmd;
3819 
3820 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
3821 	    iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
3822 	if (error != 0) {
3823 		device_printf(sc->sc_dev,
3824 		    "%s: could not map scan command, error %d\n",
3825 		    __func__, error);
3826 		m_freem(data->m);
3827 		data->m = NULL;
3828 		return error;
3829 	}
3830 
3831 	IWN_SET_DESC_NSEGS(desc, 1);
3832 	IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen);
3833 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3834 	if (ring->cur < IWN_TX_WINDOW)
3835 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3836 		    htole16(8);
3837 
3838 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3839 	    BUS_DMASYNC_PREWRITE);
3840 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3841 
3842 	/* kick cmd ring */
3843 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3844 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3845 
3846 	return 0;	/* will be notified async. of failure/success */
3847 }
3848 
3849 int
3850 iwn_config(struct iwn_softc *sc)
3851 {
3852 	struct ifnet *ifp = sc->sc_ifp;
3853 	struct ieee80211com *ic = ifp->if_l2com;
3854 	struct iwn_power power;
3855 	struct iwn_bluetooth bluetooth;
3856 	struct iwn_node_info node;
3857 	int error;
3858 
3859 	/* set power mode */
3860 	memset(&power, 0, sizeof power);
3861 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3862 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__);
3863 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3864 	if (error != 0) {
3865 		device_printf(sc->sc_dev,
3866 		    "%s: could not set power mode, error %d\n",
3867 		    __func__, error);
3868 		return error;
3869 	}
3870 
3871 	/* configure bluetooth coexistence */
3872 	memset(&bluetooth, 0, sizeof bluetooth);
3873 	bluetooth.flags = 3;
3874 	bluetooth.lead = 0xaa;
3875 	bluetooth.kill = 1;
3876 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
3877 	    __func__);
3878 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3879 	    0);
3880 	if (error != 0) {
3881 		device_printf(sc->sc_dev,
3882 		    "%s: could not configure bluetooth coexistence, error %d\n",
3883 		    __func__, error);
3884 		return error;
3885 	}
3886 
3887 	/* configure adapter */
3888 	memset(&sc->config, 0, sizeof (struct iwn_config));
3889 	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
3890 	IEEE80211_ADDR_COPY(sc->config.wlap, IF_LLADDR(ifp));
3891 	/* set default channel */
3892 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
3893 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3894 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3895 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3896 	sc->config.filter = 0;
3897 	switch (ic->ic_opmode) {
3898 	case IEEE80211_M_STA:
3899 		sc->config.mode = IWN_MODE_STA;
3900 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3901 		break;
3902 	case IEEE80211_M_IBSS:
3903 	case IEEE80211_M_AHDEMO:
3904 		sc->config.mode = IWN_MODE_IBSS;
3905 		break;
3906 	case IEEE80211_M_HOSTAP:
3907 		sc->config.mode = IWN_MODE_HOSTAP;
3908 		break;
3909 	case IEEE80211_M_MONITOR:
3910 		sc->config.mode = IWN_MODE_MONITOR;
3911 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3912 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3913 		break;
3914 	default:
3915 		break;
3916 	}
3917 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3918 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3919 	sc->config.ht_single_mask = 0xff;
3920 	sc->config.ht_dual_mask = 0xff;
3921 	sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S));
3922 
3923 	DPRINTF(sc, IWN_DEBUG_STATE,
3924 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3925 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3926 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3927 	   __func__,
3928 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3929 	   sc->config.cck_mask, sc->config.ofdm_mask,
3930 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3931 	   le16toh(sc->config.rxchain),
3932 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3933 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3934 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3935 	    sizeof (struct iwn_config), 0);
3936 	if (error != 0) {
3937 		device_printf(sc->sc_dev,
3938 		    "%s: configure command failed, error %d\n",
3939 		    __func__, error);
3940 		return error;
3941 	}
3942 	sc->sc_curchan = ic->ic_curchan;
3943 
3944 	/* configuration has changed, set Tx power accordingly */
3945 	error = iwn_set_txpower(sc, ic->ic_curchan, 0);
3946 	if (error != 0) {
3947 		device_printf(sc->sc_dev,
3948 		    "%s: could not set Tx power, error %d\n", __func__, error);
3949 		return error;
3950 	}
3951 
3952 	/* add broadcast node */
3953 	memset(&node, 0, sizeof node);
3954 	IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr);
3955 	node.id = IWN_ID_BROADCAST;
3956 	node.rate = iwn_plcp_signal(2);
3957 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__);
3958 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3959 	if (error != 0) {
3960 		device_printf(sc->sc_dev,
3961 		    "%s: could not add broadcast node, error %d\n",
3962 		    __func__, error);
3963 		return error;
3964 	}
3965 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0);
3966 	if (error != 0) {
3967 		device_printf(sc->sc_dev,
3968 		    "%s: could not setup MRR for node %d, error %d\n",
3969 		    __func__, node.id, error);
3970 		return error;
3971 	}
3972 
3973 	error = iwn_set_critical_temp(sc);
3974 	if (error != 0) {
3975 		device_printf(sc->sc_dev,
3976 		    "%s: could not set critical temperature, error %d\n",
3977 		    __func__, error);
3978 		return error;
3979 	}
3980 	return 0;
3981 }
3982 
3983 /*
3984  * Do post-alive initialization of the NIC (after firmware upload).
3985  */
3986 void
3987 iwn_post_alive(struct iwn_softc *sc)
3988 {
3989 	uint32_t base;
3990 	uint16_t offset;
3991 	int qid;
3992 
3993 	iwn_mem_lock(sc);
3994 
3995 	/* clear SRAM */
3996 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
3997 	for (offset = 0x380; offset < 0x520; offset += 4) {
3998 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3999 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
4000 	}
4001 
4002 	/* shared area is aligned on a 1K boundary */
4003 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
4004 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
4005 
4006 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4007 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
4008 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
4009 
4010 		/* set sched. window size */
4011 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
4012 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
4013 		/* set sched. frame limit */
4014 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
4015 		IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16);
4016 	}
4017 
4018 	/* enable interrupts for all 16 queues */
4019 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
4020 
4021 	/* identify active Tx rings (0-7) */
4022 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
4023 
4024 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
4025 	for (qid = 0; qid < 7; qid++) {
4026 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
4027 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
4028 	}
4029 
4030 	iwn_mem_unlock(sc);
4031 }
4032 
4033 void
4034 iwn_stop_master(struct iwn_softc *sc)
4035 {
4036 	uint32_t tmp;
4037 	int ntries;
4038 
4039 	tmp = IWN_READ(sc, IWN_RESET);
4040 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
4041 
4042 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4043 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
4044 		return;	/* already asleep */
4045 
4046 	for (ntries = 0; ntries < 100; ntries++) {
4047 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
4048 			break;
4049 		DELAY(10);
4050 	}
4051 	if (ntries == 100)
4052 		device_printf(sc->sc_dev,
4053 		    "%s: timeout waiting for master\n", __func__);
4054 }
4055 
4056 int
4057 iwn_reset(struct iwn_softc *sc)
4058 {
4059 	uint32_t tmp;
4060 	int ntries;
4061 
4062 	/* clear any pending interrupts */
4063 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4064 
4065 	tmp = IWN_READ(sc, IWN_CHICKEN);
4066 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
4067 
4068 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4069 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
4070 
4071 	/* wait for clock stabilization */
4072 	for (ntries = 0; ntries < 1000; ntries++) {
4073 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
4074 			break;
4075 		DELAY(10);
4076 	}
4077 	if (ntries == 1000) {
4078 		device_printf(sc->sc_dev,
4079 		    "%s: timeout waiting for clock stabilization\n", __func__);
4080 		return ETIMEDOUT;
4081 	}
4082 	return 0;
4083 }
4084 
4085 void
4086 iwn_hw_config(struct iwn_softc *sc)
4087 {
4088 	uint32_t tmp, hw;
4089 
4090 	/* enable interrupts mitigation */
4091 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
4092 
4093 	/* voodoo from the reference driver */
4094 	tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1);
4095 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
4096 		/* enable "no snoop" field */
4097 		tmp = pci_read_config(sc->sc_dev, 0xe8, 1);
4098 		tmp &= ~IWN_DIS_NOSNOOP;
4099 		/* clear device specific PCI configuration register 0x41 */
4100 		pci_write_config(sc->sc_dev, 0xe8, tmp, 1);
4101 	}
4102 
4103 	/* disable L1 entry to work around a hardware bug */
4104 	tmp = pci_read_config(sc->sc_dev, 0xf0, 1);
4105 	tmp &= ~IWN_ENA_L1;
4106 	pci_write_config(sc->sc_dev, 0xf0, tmp, 1 );
4107 
4108 	hw = IWN_READ(sc, IWN_HWCONFIG);
4109 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
4110 
4111 	iwn_mem_lock(sc);
4112 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4113 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
4114 	DELAY(5);
4115 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4116 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
4117 	iwn_mem_unlock(sc);
4118 }
4119 
4120 void
4121 iwn_init_locked(struct iwn_softc *sc)
4122 {
4123 	struct ifnet *ifp = sc->sc_ifp;
4124 	uint32_t tmp;
4125 	int error, qid;
4126 
4127 	IWN_LOCK_ASSERT(sc);
4128 
4129 	/* load the firmware */
4130 	if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) {
4131 		device_printf(sc->sc_dev,
4132 		    "%s: could not load firmware, error %d\n", __func__, error);
4133 		return;
4134 	}
4135 
4136 	error = iwn_reset(sc);
4137 	if (error != 0) {
4138 		device_printf(sc->sc_dev,
4139 		    "%s: could not reset adapter, error %d\n", __func__, error);
4140 		return;
4141 	}
4142 
4143 	iwn_mem_lock(sc);
4144 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4145 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
4146 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4147 	iwn_mem_unlock(sc);
4148 
4149 	DELAY(20);
4150 
4151 	iwn_mem_lock(sc);
4152 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
4153 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
4154 	iwn_mem_unlock(sc);
4155 
4156 	iwn_mem_lock(sc);
4157 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4158 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
4159 	iwn_mem_unlock(sc);
4160 
4161 	iwn_hw_config(sc);
4162 
4163 	/* init Rx ring */
4164 	iwn_mem_lock(sc);
4165 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
4166 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
4167 	/* Rx ring is aligned on a 256-byte boundary */
4168 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
4169 	/* shared area is aligned on a 16-byte boundary */
4170 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
4171 	    offsetof(struct iwn_shared, closed_count)) >> 4);
4172 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
4173 	iwn_mem_unlock(sc);
4174 
4175 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
4176 
4177 	iwn_mem_lock(sc);
4178 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
4179 
4180 	/* set physical address of "keep warm" page */
4181 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
4182 
4183 	/* init Tx rings */
4184 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4185 		struct iwn_tx_ring *txq = &sc->txq[qid];
4186 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
4187 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
4188 	}
4189 	iwn_mem_unlock(sc);
4190 
4191 	/* clear "radio off" and "disable command" bits (reversed logic) */
4192 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4193 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
4194 
4195 	/* clear any pending interrupts */
4196 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4197 	/* enable interrupts */
4198 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
4199 
4200 	/* not sure why/if this is necessary... */
4201 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4202 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4203 
4204 	/* check that the radio is not disabled by RF switch */
4205 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
4206 		device_printf(sc->sc_dev,
4207 		    "radio is disabled by hardware switch\n");
4208 		return;
4209 	}
4210 
4211 	error = iwn_transfer_firmware(sc);
4212 	if (error != 0) {
4213 		device_printf(sc->sc_dev,
4214 		    "%s: could not load firmware, error %d\n", __func__, error);
4215 		return;
4216 	}
4217 
4218 	/* firmware has notified us that it is alive.. */
4219 	iwn_post_alive(sc);	/* ..do post alive initialization */
4220 
4221 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
4222 	sc->temp = iwn_get_temperature(sc);
4223 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n",
4224 	   __func__, sc->temp);
4225 
4226 	error = iwn_config(sc);
4227 	if (error != 0) {
4228 		device_printf(sc->sc_dev,
4229 		    "%s: could not configure device, error %d\n",
4230 		    __func__, error);
4231 		return;
4232 	}
4233 
4234 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4235 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4236 }
4237 
4238 void
4239 iwn_init(void *arg)
4240 {
4241 	struct iwn_softc *sc = arg;
4242 	struct ifnet *ifp = sc->sc_ifp;
4243 	struct ieee80211com *ic = ifp->if_l2com;
4244 
4245 	IWN_LOCK(sc);
4246 	iwn_init_locked(sc);
4247 	IWN_UNLOCK(sc);
4248 
4249 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4250 		ieee80211_start_all(ic);
4251 }
4252 
4253 void
4254 iwn_stop_locked(struct iwn_softc *sc)
4255 {
4256 	struct ifnet *ifp = sc->sc_ifp;
4257 	uint32_t tmp;
4258 	int i;
4259 
4260 	IWN_LOCK_ASSERT(sc);
4261 
4262 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
4263 
4264 	sc->sc_tx_timer = 0;
4265 	callout_stop(&sc->sc_timer_to);
4266 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4267 
4268 	/* disable interrupts */
4269 	IWN_WRITE(sc, IWN_MASK, 0);
4270 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4271 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
4272 
4273 	/* Clear any commands left in the taskq command buffer */
4274 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
4275 
4276 	/* reset all Tx rings */
4277 	for (i = 0; i < IWN_NTXQUEUES; i++)
4278 		iwn_reset_tx_ring(sc, &sc->txq[i]);
4279 
4280 	/* reset Rx ring */
4281 	iwn_reset_rx_ring(sc, &sc->rxq);
4282 
4283 	iwn_mem_lock(sc);
4284 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
4285 	iwn_mem_unlock(sc);
4286 
4287 	DELAY(5);
4288 	iwn_stop_master(sc);
4289 
4290 	tmp = IWN_READ(sc, IWN_RESET);
4291 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
4292 }
4293 
4294 void
4295 iwn_stop(struct iwn_softc *sc)
4296 {
4297 	IWN_LOCK(sc);
4298 	iwn_stop_locked(sc);
4299 	IWN_UNLOCK(sc);
4300 }
4301 
4302 /*
4303  * Callback from net80211 to start a scan.
4304  */
4305 static void
4306 iwn_scan_start(struct ieee80211com *ic)
4307 {
4308 	struct ifnet *ifp = ic->ic_ifp;
4309 	struct iwn_softc *sc = ifp->if_softc;
4310 
4311 	iwn_queue_cmd(sc, IWN_SCAN_START, 0, IWN_QUEUE_NORMAL);
4312 }
4313 
4314 /*
4315  * Callback from net80211 to terminate a scan.
4316  */
4317 static void
4318 iwn_scan_end(struct ieee80211com *ic)
4319 {
4320 	struct ifnet *ifp = ic->ic_ifp;
4321 	struct iwn_softc *sc = ifp->if_softc;
4322 
4323 	iwn_queue_cmd(sc, IWN_SCAN_STOP, 0, IWN_QUEUE_NORMAL);
4324 }
4325 
4326 /*
4327  * Callback from net80211 to force a channel change.
4328  */
4329 static void
4330 iwn_set_channel(struct ieee80211com *ic)
4331 {
4332 	struct ifnet *ifp = ic->ic_ifp;
4333 	struct iwn_softc *sc = ifp->if_softc;
4334 	const struct ieee80211_channel *c = ic->ic_curchan;
4335 
4336 	if (c != sc->sc_curchan) {
4337 		sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4338 		sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4339 		sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4340 		sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4341 		iwn_queue_cmd(sc, IWN_SET_CHAN, 0, IWN_QUEUE_NORMAL);
4342 	}
4343 }
4344 
4345 /*
4346  * Callback from net80211 to start scanning of the current channel.
4347  */
4348 static void
4349 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4350 {
4351 	struct ieee80211vap *vap = ss->ss_vap;
4352 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4353 
4354 	iwn_queue_cmd(sc, IWN_SCAN_CURCHAN, 0, IWN_QUEUE_NORMAL);
4355 }
4356 
4357 /*
4358  * Callback from net80211 to handle the minimum dwell time being met.
4359  * The intent is to terminate the scan but we just let the firmware
4360  * notify us when it's finished as we have no safe way to abort it.
4361  */
4362 static void
4363 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
4364 {
4365 	/* NB: don't try to abort scan; wait for firmware to finish */
4366 }
4367 
4368 /*
4369  * Carry out work in the taskq context.
4370  */
4371 static void
4372 iwn_ops(void *arg0, int pending)
4373 {
4374 	struct iwn_softc *sc = arg0;
4375 	struct ifnet *ifp = sc->sc_ifp;
4376 	struct ieee80211com *ic = ifp->if_l2com;
4377 	struct ieee80211vap *vap;
4378 	int cmd, arg, error;
4379 	enum ieee80211_state nstate;
4380 
4381 	for (;;) {
4382 		IWN_CMD_LOCK(sc);
4383 		cmd = sc->sc_cmd[sc->sc_cmd_cur];
4384 		if (cmd == 0) {
4385 			/* No more commands to process */
4386 			IWN_CMD_UNLOCK(sc);
4387 			return;
4388 		}
4389 		if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
4390 		    cmd != IWN_RADIO_ENABLE ) {
4391 			IWN_CMD_UNLOCK(sc);
4392 			return;
4393 		}
4394 		arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
4395 		sc->sc_cmd[sc->sc_cmd_cur] = 0;		/* free the slot */
4396 		sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWN_CMD_MAXOPS;
4397 		IWN_CMD_UNLOCK(sc);
4398 
4399 		IWN_LOCK(sc);		/* NB: sync debug printfs on smp */
4400 		DPRINTF(sc, IWN_DEBUG_OPS, "%s: %s (cmd 0x%x)\n",
4401 		    __func__, iwn_ops_str(cmd), cmd);
4402 
4403 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
4404 		switch (cmd) {
4405 		case IWN_SCAN_START:
4406 			/* make the link LED blink while we're scanning */
4407 			iwn_set_led(sc, IWN_LED_LINK, 20, 2);
4408 			break;
4409 		case IWN_SCAN_STOP:
4410 			break;
4411 		case IWN_SCAN_NEXT:
4412 			ieee80211_scan_next(vap);
4413 			break;
4414 		case IWN_SCAN_CURCHAN:
4415 			error = iwn_scan(sc);
4416 			if (error != 0) {
4417 				IWN_UNLOCK(sc);
4418 				ieee80211_cancel_scan(vap);
4419 				IWN_LOCK(sc);
4420 				return;
4421 			}
4422 			break;
4423 		case IWN_SET_CHAN:
4424 			error = iwn_config(sc);
4425 			if (error != 0) {
4426 				DPRINTF(sc, IWN_DEBUG_STATE,
4427 				    "%s: set chan failed, cancel scan\n",
4428 				    __func__);
4429 				IWN_UNLOCK(sc);
4430 				//XXX Handle failed scan correctly
4431 				ieee80211_cancel_scan(vap);
4432 				return;
4433 			}
4434 			break;
4435 		case IWN_AUTH:
4436 		case IWN_RUN:
4437 			if (cmd == IWN_AUTH) {
4438 				error = iwn_auth(sc);
4439 				nstate = IEEE80211_S_AUTH;
4440 			} else {
4441 				error = iwn_run(sc);
4442 				nstate = IEEE80211_S_RUN;
4443 			}
4444 			if (error == 0) {
4445 				IWN_UNLOCK(sc);
4446 				IEEE80211_LOCK(ic);
4447 				IWN_VAP(vap)->iv_newstate(vap, nstate, arg);
4448 				if (vap->iv_newstate_cb != NULL)
4449 					vap->iv_newstate_cb(vap, nstate, arg);
4450 				IEEE80211_UNLOCK(ic);
4451 				IWN_LOCK(sc);
4452 			} else {
4453 				device_printf(sc->sc_dev,
4454 				    "%s: %s state change failed, error %d\n",
4455 				    __func__, ieee80211_state_name[nstate],
4456 				    error);
4457 			}
4458 			break;
4459 		case IWN_REINIT:
4460 			IWN_UNLOCK(sc);
4461 			iwn_init(sc);
4462 			IWN_LOCK(sc);
4463 			ieee80211_notify_radio(ic, 1);
4464 			break;
4465 		case IWN_RADIO_ENABLE:
4466 			KASSERT(sc->fw_fp != NULL,
4467 			    ("Fware Not Loaded, can't load from tq"));
4468 			IWN_UNLOCK(sc);
4469 			iwn_init(sc);
4470 			IWN_LOCK(sc);
4471 			break;
4472 		case IWN_RADIO_DISABLE:
4473 			ieee80211_notify_radio(ic, 0);
4474 			iwn_stop_locked(sc);
4475 			break;
4476 		}
4477 		IWN_UNLOCK(sc);
4478 	}
4479 }
4480 
4481 /*
4482  * Queue a command for execution in the taskq thread.
4483  * This is needed as the net80211 callbacks do not allow
4484  * sleeping, since we need to sleep to confirm commands have
4485  * been processed by the firmware, we must defer execution to
4486  * a sleep enabled thread.
4487  */
4488 static int
4489 iwn_queue_cmd(struct iwn_softc *sc, int cmd, int arg, int clear)
4490 {
4491 	IWN_CMD_LOCK(sc);
4492 	if (clear) {
4493 		sc->sc_cmd[0] = cmd;
4494 		sc->sc_cmd_arg[0] = arg;
4495 		sc->sc_cmd_cur = 0;
4496 		sc->sc_cmd_next = 1;
4497 	} else {
4498 		if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
4499 			IWN_CMD_UNLOCK(sc);
4500 			DPRINTF(sc, IWN_DEBUG_ANY, "%s: command %d dropped\n",
4501 			    __func__, cmd);
4502 			return EBUSY;
4503 		}
4504 		sc->sc_cmd[sc->sc_cmd_next] = cmd;
4505 		sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
4506 		sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWN_CMD_MAXOPS;
4507 	}
4508 	taskqueue_enqueue(sc->sc_tq, &sc->sc_ops_task);
4509 	IWN_CMD_UNLOCK(sc);
4510 	return 0;
4511 }
4512 
4513 static void
4514 iwn_bpfattach(struct iwn_softc *sc)
4515 {
4516 	struct ifnet *ifp = sc->sc_ifp;
4517 
4518         bpfattach(ifp, DLT_IEEE802_11_RADIO,
4519             sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
4520 
4521         sc->sc_rxtap_len = sizeof sc->sc_rxtap;
4522         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
4523         sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
4524 
4525         sc->sc_txtap_len = sizeof sc->sc_txtap;
4526         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
4527         sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
4528 }
4529 
4530 static void
4531 iwn_sysctlattach(struct iwn_softc *sc)
4532 {
4533 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4534 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4535 
4536 #ifdef IWN_DEBUG
4537 	sc->sc_debug = 0;
4538 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4539 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
4540 #endif
4541 }
4542 
4543 #ifdef IWN_DEBUG
4544 static const char *
4545 iwn_ops_str(int cmd)
4546 {
4547 	switch (cmd) {
4548 	case IWN_SCAN_START:	return "SCAN_START";
4549 	case IWN_SCAN_CURCHAN:	return "SCAN_CURCHAN";
4550 	case IWN_SCAN_STOP:	return "SCAN_STOP";
4551 	case IWN_SET_CHAN:	return "SET_CHAN";
4552 	case IWN_AUTH:		return "AUTH";
4553 	case IWN_SCAN_NEXT:	return "SCAN_NEXT";
4554 	case IWN_RUN:		return "RUN";
4555 	case IWN_RADIO_ENABLE:	return "RADIO_ENABLE";
4556 	case IWN_RADIO_DISABLE:	return "RADIO_DISABLE";
4557 	case IWN_REINIT:	return "REINIT";
4558 	}
4559 	return "UNKNOWN COMMAND";
4560 }
4561 
4562 static const char *
4563 iwn_intr_str(uint8_t cmd)
4564 {
4565 	switch (cmd) {
4566 	/* Notifications */
4567 	case IWN_UC_READY:		return "UC_READY";
4568 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
4569 	case IWN_TX_DONE:		return "TX_DONE";
4570 	case IWN_START_SCAN:		return "START_SCAN";
4571 	case IWN_STOP_SCAN:		return "STOP_SCAN";
4572 	case IWN_RX_STATISTICS:		return "RX_STATS";
4573 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
4574 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
4575 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
4576 	case IWN_AMPDU_RX_START:	return "AMPDU_RX_START";
4577 	case IWN_AMPDU_RX_DONE:		return "AMPDU_RX_DONE";
4578 	case IWN_RX_DONE:		return "RX_DONE";
4579 
4580 	/* Command Notifications */
4581 	case IWN_CMD_CONFIGURE:		return "IWN_CMD_CONFIGURE";
4582 	case IWN_CMD_ASSOCIATE:		return "IWN_CMD_ASSOCIATE";
4583 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
4584 	case IWN_CMD_TSF:		return "IWN_CMD_TSF";
4585 	case IWN_CMD_TX_LINK_QUALITY:	return "IWN_CMD_TX_LINK_QUALITY";
4586 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
4587 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
4588 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
4589 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
4590 	case IWN_CMD_BLUETOOTH:		return "IWN_CMD_BLUETOOTH";
4591 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
4592 	case IWN_SENSITIVITY:		return "IWN_SENSITIVITY";
4593 	case IWN_PHY_CALIB:		return "IWN_PHY_CALIB";
4594 	}
4595 	return "UNKNOWN INTR NOTIF/CMD";
4596 }
4597 #endif /* IWN_DEBUG */
4598 
4599 static device_method_t iwn_methods[] = {
4600         /* Device interface */
4601         DEVMETHOD(device_probe,         iwn_probe),
4602         DEVMETHOD(device_attach,        iwn_attach),
4603         DEVMETHOD(device_detach,        iwn_detach),
4604         DEVMETHOD(device_shutdown,      iwn_shutdown),
4605         DEVMETHOD(device_suspend,       iwn_suspend),
4606         DEVMETHOD(device_resume,        iwn_resume),
4607 
4608         { 0, 0 }
4609 };
4610 
4611 static driver_t iwn_driver = {
4612         "iwn",
4613         iwn_methods,
4614         sizeof (struct iwn_softc)
4615 };
4616 static devclass_t iwn_devclass;
4617 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
4618 MODULE_DEPEND(iwn, pci, 1, 1, 1);
4619 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
4620 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
4621 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
4622