xref: /freebsd/sys/dev/iwn/if_iwn.c (revision b7c60aadbbd5c846a250c05791fe7406d6d78bf4)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 struct iwn_ident {
76 	uint16_t	vendor;
77 	uint16_t	device;
78 	const char	*name;
79 };
80 
81 static const struct iwn_ident iwn_ident_table[] = {
82 	{ 0x8086, 0x0082, "Intel(R) Centrino(R) Advanced-N 6205"	 },
83 	{ 0x8086, 0x0083, "Intel(R) Centrino(R) Wireless-N 1000"	 },
84 	{ 0x8086, 0x0084, "Intel(R) Centrino(R) Wireless-N 1000"	 },
85 	{ 0x8086, 0x0085, "Intel(R) Centrino(R) Advanced-N 6205"	 },
86 	{ 0x8086, 0x0087, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" },
87 	{ 0x8086, 0x0089, "Intel(R) Centrino(R) Advanced-N + WiMAX 6250" },
88 	{ 0x8086, 0x008a, "Intel(R) Centrino(R) Wireless-N 1030"	 },
89 	{ 0x8086, 0x008b, "Intel(R) Centrino(R) Wireless-N 1030"	 },
90 	{ 0x8086, 0x0090, "Intel(R) Centrino(R) Advanced-N 6230"	 },
91 	{ 0x8086, 0x0091, "Intel(R) Centrino(R) Advanced-N 6230"	 },
92 	{ 0x8086, 0x0896, "Intel(R) Centrino(R) Wireless-N 130"		 },
93 	{ 0x8086, 0x4229, "Intel(R) Wireless WiFi Link 4965"		 },
94 	{ 0x8086, 0x422b, "Intel(R) Centrino(R) Ultimate-N 6300"	 },
95 	{ 0x8086, 0x422c, "Intel(R) Centrino(R) Advanced-N 6200"	 },
96 	{ 0x8086, 0x422d, "Intel(R) Wireless WiFi Link 4965"		 },
97 	{ 0x8086, 0x4230, "Intel(R) Wireless WiFi Link 4965"		 },
98 	{ 0x8086, 0x4232, "Intel(R) WiFi Link 5100"			 },
99 	{ 0x8086, 0x4233, "Intel(R) Wireless WiFi Link 4965"		 },
100 	{ 0x8086, 0x4235, "Intel(R) Ultimate N WiFi Link 5300"		 },
101 	{ 0x8086, 0x4236, "Intel(R) Ultimate N WiFi Link 5300"		 },
102 	{ 0x8086, 0x4237, "Intel(R) WiFi Link 5100"			 },
103 	{ 0x8086, 0x4238, "Intel(R) Centrino(R) Ultimate-N 6300"	 },
104 	{ 0x8086, 0x4239, "Intel(R) Centrino(R) Advanced-N 6200"	 },
105 	{ 0x8086, 0x423a, "Intel(R) WiMAX/WiFi Link 5350"		 },
106 	{ 0x8086, 0x423b, "Intel(R) WiMAX/WiFi Link 5350"		 },
107 	{ 0x8086, 0x423c, "Intel(R) WiMAX/WiFi Link 5150"		 },
108 	{ 0x8086, 0x423d, "Intel(R) WiMAX/WiFi Link 5150"		 },
109 	{ 0, 0, NULL }
110 };
111 
112 static int	iwn_probe(device_t);
113 static int	iwn_attach(device_t);
114 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
115 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
116 static void	iwn_radiotap_attach(struct iwn_softc *);
117 static void	iwn_sysctlattach(struct iwn_softc *);
118 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
119 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
120 		    const uint8_t [IEEE80211_ADDR_LEN],
121 		    const uint8_t [IEEE80211_ADDR_LEN]);
122 static void	iwn_vap_delete(struct ieee80211vap *);
123 static int	iwn_detach(device_t);
124 static int	iwn_shutdown(device_t);
125 static int	iwn_suspend(device_t);
126 static int	iwn_resume(device_t);
127 static int	iwn_nic_lock(struct iwn_softc *);
128 static int	iwn_eeprom_lock(struct iwn_softc *);
129 static int	iwn_init_otprom(struct iwn_softc *);
130 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
131 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
132 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
133 		    void **, bus_size_t, bus_size_t);
134 static void	iwn_dma_contig_free(struct iwn_dma_info *);
135 static int	iwn_alloc_sched(struct iwn_softc *);
136 static void	iwn_free_sched(struct iwn_softc *);
137 static int	iwn_alloc_kw(struct iwn_softc *);
138 static void	iwn_free_kw(struct iwn_softc *);
139 static int	iwn_alloc_ict(struct iwn_softc *);
140 static void	iwn_free_ict(struct iwn_softc *);
141 static int	iwn_alloc_fwmem(struct iwn_softc *);
142 static void	iwn_free_fwmem(struct iwn_softc *);
143 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
144 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
145 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
146 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
147 		    int);
148 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
149 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
150 static void	iwn5000_ict_reset(struct iwn_softc *);
151 static int	iwn_read_eeprom(struct iwn_softc *,
152 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
153 static void	iwn4965_read_eeprom(struct iwn_softc *);
154 static void	iwn4965_print_power_group(struct iwn_softc *, int);
155 static void	iwn5000_read_eeprom(struct iwn_softc *);
156 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
157 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
158 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
159 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
160 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
161 		    struct ieee80211_channel *);
162 static int	iwn_setregdomain(struct ieee80211com *,
163 		    struct ieee80211_regdomain *, int,
164 		    struct ieee80211_channel[]);
165 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
166 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
167 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
168 static void	iwn_newassoc(struct ieee80211_node *, int);
169 static int	iwn_media_change(struct ifnet *);
170 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
171 static void	iwn_calib_timeout(void *);
172 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
173 		    struct iwn_rx_data *);
174 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 static void	iwn5000_rx_calib_results(struct iwn_softc *,
179 		    struct iwn_rx_desc *, struct iwn_rx_data *);
180 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
181 		    struct iwn_rx_data *);
182 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
183 		    struct iwn_rx_data *);
184 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
185 		    struct iwn_rx_data *);
186 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
187 		    uint8_t);
188 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
189 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
190 static void	iwn_notif_intr(struct iwn_softc *);
191 static void	iwn_wakeup_intr(struct iwn_softc *);
192 static void	iwn_rftoggle_intr(struct iwn_softc *);
193 static void	iwn_fatal_intr(struct iwn_softc *);
194 static void	iwn_intr(void *);
195 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
196 		    uint16_t);
197 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
198 		    uint16_t);
199 #ifdef notyet
200 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
201 #endif
202 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
203 		    struct ieee80211_node *);
204 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
205 		    struct ieee80211_node *,
206 		    const struct ieee80211_bpf_params *params);
207 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
208 		    const struct ieee80211_bpf_params *);
209 static void	iwn_start(struct ifnet *);
210 static void	iwn_start_locked(struct ifnet *);
211 static void	iwn_watchdog(void *);
212 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
213 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
214 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
215 		    int);
216 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
217 		    int);
218 static int	iwn_set_link_quality(struct iwn_softc *,
219 		    struct ieee80211_node *);
220 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
221 static int	iwn_updateedca(struct ieee80211com *);
222 static void	iwn_update_mcast(struct ifnet *);
223 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
224 static int	iwn_set_critical_temp(struct iwn_softc *);
225 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
226 static void	iwn4965_power_calibration(struct iwn_softc *, int);
227 static int	iwn4965_set_txpower(struct iwn_softc *,
228 		    struct ieee80211_channel *, int);
229 static int	iwn5000_set_txpower(struct iwn_softc *,
230 		    struct ieee80211_channel *, int);
231 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
232 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
233 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
234 static int	iwn4965_get_temperature(struct iwn_softc *);
235 static int	iwn5000_get_temperature(struct iwn_softc *);
236 static int	iwn_init_sensitivity(struct iwn_softc *);
237 static void	iwn_collect_noise(struct iwn_softc *,
238 		    const struct iwn_rx_general_stats *);
239 static int	iwn4965_init_gains(struct iwn_softc *);
240 static int	iwn5000_init_gains(struct iwn_softc *);
241 static int	iwn4965_set_gains(struct iwn_softc *);
242 static int	iwn5000_set_gains(struct iwn_softc *);
243 static void	iwn_tune_sensitivity(struct iwn_softc *,
244 		    const struct iwn_rx_stats *);
245 static int	iwn_send_sensitivity(struct iwn_softc *);
246 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
247 static int	iwn_send_btcoex(struct iwn_softc *);
248 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
249 static int	iwn5000_runtime_calib(struct iwn_softc *);
250 static int	iwn_config(struct iwn_softc *);
251 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
252 static int	iwn_scan(struct iwn_softc *);
253 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
254 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
255 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
256 		    struct ieee80211_rx_ampdu *, int, int, int);
257 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
258 		    struct ieee80211_rx_ampdu *);
259 static int	iwn_addba_request(struct ieee80211_node *,
260 		    struct ieee80211_tx_ampdu *, int, int, int);
261 static int	iwn_addba_response(struct ieee80211_node *,
262 		    struct ieee80211_tx_ampdu *, int, int, int);
263 static int	iwn_ampdu_tx_start(struct ieee80211com *,
264 		    struct ieee80211_node *, uint8_t);
265 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
266 		    struct ieee80211_tx_ampdu *);
267 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
268 		    struct ieee80211_node *, int, uint8_t, uint16_t);
269 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
270 		    uint8_t, uint16_t);
271 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
272 		    struct ieee80211_node *, int, uint8_t, uint16_t);
273 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
274 		    uint8_t, uint16_t);
275 static int	iwn5000_query_calibration(struct iwn_softc *);
276 static int	iwn5000_send_calibration(struct iwn_softc *);
277 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
278 static int	iwn5000_crystal_calib(struct iwn_softc *);
279 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
280 static int	iwn4965_post_alive(struct iwn_softc *);
281 static int	iwn5000_post_alive(struct iwn_softc *);
282 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
283 		    int);
284 static int	iwn4965_load_firmware(struct iwn_softc *);
285 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
286 		    const uint8_t *, int);
287 static int	iwn5000_load_firmware(struct iwn_softc *);
288 static int	iwn_read_firmware_leg(struct iwn_softc *,
289 		    struct iwn_fw_info *);
290 static int	iwn_read_firmware_tlv(struct iwn_softc *,
291 		    struct iwn_fw_info *, uint16_t);
292 static int	iwn_read_firmware(struct iwn_softc *);
293 static int	iwn_clock_wait(struct iwn_softc *);
294 static int	iwn_apm_init(struct iwn_softc *);
295 static void	iwn_apm_stop_master(struct iwn_softc *);
296 static void	iwn_apm_stop(struct iwn_softc *);
297 static int	iwn4965_nic_config(struct iwn_softc *);
298 static int	iwn5000_nic_config(struct iwn_softc *);
299 static int	iwn_hw_prepare(struct iwn_softc *);
300 static int	iwn_hw_init(struct iwn_softc *);
301 static void	iwn_hw_stop(struct iwn_softc *);
302 static void	iwn_radio_on(void *, int);
303 static void	iwn_radio_off(void *, int);
304 static void	iwn_init_locked(struct iwn_softc *);
305 static void	iwn_init(void *);
306 static void	iwn_stop_locked(struct iwn_softc *);
307 static void	iwn_stop(struct iwn_softc *);
308 static void	iwn_scan_start(struct ieee80211com *);
309 static void	iwn_scan_end(struct ieee80211com *);
310 static void	iwn_set_channel(struct ieee80211com *);
311 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
312 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
313 static void	iwn_hw_reset(void *, int);
314 
315 #define IWN_DEBUG
316 #ifdef IWN_DEBUG
317 enum {
318 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
319 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
320 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
321 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
322 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
323 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
324 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
325 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
326 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
327 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
328 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
329 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
330 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
331 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
332 	IWN_DEBUG_ANY		= 0xffffffff
333 };
334 
335 #define DPRINTF(sc, m, fmt, ...) do {			\
336 	if (sc->sc_debug & (m))				\
337 		printf(fmt, __VA_ARGS__);		\
338 } while (0)
339 
340 static const char *
341 iwn_intr_str(uint8_t cmd)
342 {
343 	switch (cmd) {
344 	/* Notifications */
345 	case IWN_UC_READY:		return "UC_READY";
346 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
347 	case IWN_TX_DONE:		return "TX_DONE";
348 	case IWN_START_SCAN:		return "START_SCAN";
349 	case IWN_STOP_SCAN:		return "STOP_SCAN";
350 	case IWN_RX_STATISTICS:		return "RX_STATS";
351 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
352 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
353 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
354 	case IWN_RX_PHY:		return "RX_PHY";
355 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
356 	case IWN_RX_DONE:		return "RX_DONE";
357 
358 	/* Command Notifications */
359 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
360 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
361 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
362 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
363 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
364 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
365 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
366 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
367 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
368 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
369 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
370 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
371 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
372 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
373 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
374 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
375 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
376 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
377 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
378 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
379 	}
380 	return "UNKNOWN INTR NOTIF/CMD";
381 }
382 #else
383 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
384 #endif
385 
386 static device_method_t iwn_methods[] = {
387 	/* Device interface */
388 	DEVMETHOD(device_probe,		iwn_probe),
389 	DEVMETHOD(device_attach,	iwn_attach),
390 	DEVMETHOD(device_detach,	iwn_detach),
391 	DEVMETHOD(device_shutdown,	iwn_shutdown),
392 	DEVMETHOD(device_suspend,	iwn_suspend),
393 	DEVMETHOD(device_resume,	iwn_resume),
394 	{ 0, 0 }
395 };
396 
397 static driver_t iwn_driver = {
398 	"iwn",
399 	iwn_methods,
400 	sizeof(struct iwn_softc)
401 };
402 static devclass_t iwn_devclass;
403 
404 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
405 
406 MODULE_VERSION(iwn, 1);
407 
408 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
409 MODULE_DEPEND(iwn, pci, 1, 1, 1);
410 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
411 
412 static int
413 iwn_probe(device_t dev)
414 {
415 	const struct iwn_ident *ident;
416 
417 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
418 		if (pci_get_vendor(dev) == ident->vendor &&
419 		    pci_get_device(dev) == ident->device) {
420 			device_set_desc(dev, ident->name);
421 			return 0;
422 		}
423 	}
424 	return ENXIO;
425 }
426 
427 static int
428 iwn_attach(device_t dev)
429 {
430 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
431 	struct ieee80211com *ic;
432 	struct ifnet *ifp;
433 	uint32_t reg;
434 	int i, error, result;
435 	uint8_t macaddr[IEEE80211_ADDR_LEN];
436 
437 	sc->sc_dev = dev;
438 
439 	/*
440 	 * Get the offset of the PCI Express Capability Structure in PCI
441 	 * Configuration Space.
442 	 */
443 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
444 	if (error != 0) {
445 		device_printf(dev, "PCIe capability structure not found!\n");
446 		return error;
447 	}
448 
449 	/* Clear device-specific "PCI retry timeout" register (41h). */
450 	pci_write_config(dev, 0x41, 0, 1);
451 
452 	/* Hardware bug workaround. */
453 	reg = pci_read_config(dev, PCIR_COMMAND, 1);
454 	if (reg & PCIM_CMD_INTxDIS) {
455 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
456 		    __func__);
457 		reg &= ~PCIM_CMD_INTxDIS;
458 		pci_write_config(dev, PCIR_COMMAND, reg, 1);
459 	}
460 
461 	/* Enable bus-mastering. */
462 	pci_enable_busmaster(dev);
463 
464 	sc->mem_rid = PCIR_BAR(0);
465 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
466 	    RF_ACTIVE);
467 	if (sc->mem == NULL) {
468 		device_printf(dev, "can't map mem space\n");
469 		error = ENOMEM;
470 		return error;
471 	}
472 	sc->sc_st = rman_get_bustag(sc->mem);
473 	sc->sc_sh = rman_get_bushandle(sc->mem);
474 
475 	sc->irq_rid = 0;
476 	if ((result = pci_msi_count(dev)) == 1 &&
477 	    pci_alloc_msi(dev, &result) == 0)
478 		sc->irq_rid = 1;
479 	/* Install interrupt handler. */
480 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
481 	    RF_ACTIVE | RF_SHAREABLE);
482 	if (sc->irq == NULL) {
483 		device_printf(dev, "can't map interrupt\n");
484 		error = ENOMEM;
485 		goto fail;
486 	}
487 
488 	IWN_LOCK_INIT(sc);
489 
490 	/* Read hardware revision and attach. */
491 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
492 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
493 		error = iwn4965_attach(sc, pci_get_device(dev));
494 	else
495 		error = iwn5000_attach(sc, pci_get_device(dev));
496 	if (error != 0) {
497 		device_printf(dev, "could not attach device, error %d\n",
498 		    error);
499 		goto fail;
500 	}
501 
502 	if ((error = iwn_hw_prepare(sc)) != 0) {
503 		device_printf(dev, "hardware not ready, error %d\n", error);
504 		goto fail;
505 	}
506 
507 	/* Allocate DMA memory for firmware transfers. */
508 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
509 		device_printf(dev,
510 		    "could not allocate memory for firmware, error %d\n",
511 		    error);
512 		goto fail;
513 	}
514 
515 	/* Allocate "Keep Warm" page. */
516 	if ((error = iwn_alloc_kw(sc)) != 0) {
517 		device_printf(dev,
518 		    "could not allocate keep warm page, error %d\n", error);
519 		goto fail;
520 	}
521 
522 	/* Allocate ICT table for 5000 Series. */
523 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
524 	    (error = iwn_alloc_ict(sc)) != 0) {
525 		device_printf(dev, "could not allocate ICT table, error %d\n",
526 		    error);
527 		goto fail;
528 	}
529 
530 	/* Allocate TX scheduler "rings". */
531 	if ((error = iwn_alloc_sched(sc)) != 0) {
532 		device_printf(dev,
533 		    "could not allocate TX scheduler rings, error %d\n", error);
534 		goto fail;
535 	}
536 
537 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
538 	for (i = 0; i < sc->ntxqs; i++) {
539 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
540 			device_printf(dev,
541 			    "could not allocate TX ring %d, error %d\n", i,
542 			    error);
543 			goto fail;
544 		}
545 	}
546 
547 	/* Allocate RX ring. */
548 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
549 		device_printf(dev, "could not allocate RX ring, error %d\n",
550 		    error);
551 		goto fail;
552 	}
553 
554 	/* Clear pending interrupts. */
555 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
556 
557 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
558 	if (ifp == NULL) {
559 		device_printf(dev, "can not allocate ifnet structure\n");
560 		goto fail;
561 	}
562 
563 	ic = ifp->if_l2com;
564 	ic->ic_ifp = ifp;
565 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
566 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
567 
568 	/* Set device capabilities. */
569 	ic->ic_caps =
570 		  IEEE80211_C_STA		/* station mode supported */
571 		| IEEE80211_C_MONITOR		/* monitor mode supported */
572 		| IEEE80211_C_BGSCAN		/* background scanning */
573 		| IEEE80211_C_TXPMGT		/* tx power management */
574 		| IEEE80211_C_SHSLOT		/* short slot time supported */
575 		| IEEE80211_C_WPA
576 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
577 #if 0
578 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
579 #endif
580 		| IEEE80211_C_WME		/* WME */
581 		;
582 
583 	/* Read MAC address, channels, etc from EEPROM. */
584 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
585 		device_printf(dev, "could not read EEPROM, error %d\n",
586 		    error);
587 		goto fail;
588 	}
589 
590 	/* Count the number of available chains. */
591 	sc->ntxchains =
592 	    ((sc->txchainmask >> 2) & 1) +
593 	    ((sc->txchainmask >> 1) & 1) +
594 	    ((sc->txchainmask >> 0) & 1);
595 	sc->nrxchains =
596 	    ((sc->rxchainmask >> 2) & 1) +
597 	    ((sc->rxchainmask >> 1) & 1) +
598 	    ((sc->rxchainmask >> 0) & 1);
599 	if (bootverbose) {
600 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
601 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
602 		    macaddr, ":");
603 	}
604 
605 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
606 		ic->ic_rxstream = sc->nrxchains;
607 		ic->ic_txstream = sc->ntxchains;
608 		ic->ic_htcaps =
609 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
610 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
611 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
612 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
613 #ifdef notyet
614 			| IEEE80211_HTCAP_GREENFIELD
615 #if IWN_RBUF_SIZE == 8192
616 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
617 #else
618 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
619 #endif
620 #endif
621 			/* s/w capabilities */
622 			| IEEE80211_HTC_HT		/* HT operation */
623 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
624 #ifdef notyet
625 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
626 #endif
627 			;
628 	}
629 
630 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
631 	ifp->if_softc = sc;
632 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
633 	ifp->if_init = iwn_init;
634 	ifp->if_ioctl = iwn_ioctl;
635 	ifp->if_start = iwn_start;
636 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
637 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
638 	IFQ_SET_READY(&ifp->if_snd);
639 
640 	ieee80211_ifattach(ic, macaddr);
641 	ic->ic_vap_create = iwn_vap_create;
642 	ic->ic_vap_delete = iwn_vap_delete;
643 	ic->ic_raw_xmit = iwn_raw_xmit;
644 	ic->ic_node_alloc = iwn_node_alloc;
645 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
646 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
647 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
648 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
649 	sc->sc_addba_request = ic->ic_addba_request;
650 	ic->ic_addba_request = iwn_addba_request;
651 	sc->sc_addba_response = ic->ic_addba_response;
652 	ic->ic_addba_response = iwn_addba_response;
653 	sc->sc_addba_stop = ic->ic_addba_stop;
654 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
655 	ic->ic_newassoc = iwn_newassoc;
656 	ic->ic_wme.wme_update = iwn_updateedca;
657 	ic->ic_update_mcast = iwn_update_mcast;
658 	ic->ic_scan_start = iwn_scan_start;
659 	ic->ic_scan_end = iwn_scan_end;
660 	ic->ic_set_channel = iwn_set_channel;
661 	ic->ic_scan_curchan = iwn_scan_curchan;
662 	ic->ic_scan_mindwell = iwn_scan_mindwell;
663 	ic->ic_setregdomain = iwn_setregdomain;
664 
665 	iwn_radiotap_attach(sc);
666 
667 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
668 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
669 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
670 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
671 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
672 
673 	iwn_sysctlattach(sc);
674 
675 	/*
676 	 * Hook our interrupt after all initialization is complete.
677 	 */
678 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
679 	    NULL, iwn_intr, sc, &sc->sc_ih);
680 	if (error != 0) {
681 		device_printf(dev, "can't establish interrupt, error %d\n",
682 		    error);
683 		goto fail;
684 	}
685 
686 	if (bootverbose)
687 		ieee80211_announce(ic);
688 	return 0;
689 fail:
690 	iwn_detach(dev);
691 	return error;
692 }
693 
694 static int
695 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
696 {
697 	struct iwn_ops *ops = &sc->ops;
698 
699 	ops->load_firmware = iwn4965_load_firmware;
700 	ops->read_eeprom = iwn4965_read_eeprom;
701 	ops->post_alive = iwn4965_post_alive;
702 	ops->nic_config = iwn4965_nic_config;
703 	ops->update_sched = iwn4965_update_sched;
704 	ops->get_temperature = iwn4965_get_temperature;
705 	ops->get_rssi = iwn4965_get_rssi;
706 	ops->set_txpower = iwn4965_set_txpower;
707 	ops->init_gains = iwn4965_init_gains;
708 	ops->set_gains = iwn4965_set_gains;
709 	ops->add_node = iwn4965_add_node;
710 	ops->tx_done = iwn4965_tx_done;
711 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
712 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
713 	sc->ntxqs = IWN4965_NTXQUEUES;
714 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
715 	sc->ndmachnls = IWN4965_NDMACHNLS;
716 	sc->broadcast_id = IWN4965_ID_BROADCAST;
717 	sc->rxonsz = IWN4965_RXONSZ;
718 	sc->schedsz = IWN4965_SCHEDSZ;
719 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
720 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
721 	sc->fwsz = IWN4965_FWSZ;
722 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
723 	sc->limits = &iwn4965_sensitivity_limits;
724 	sc->fwname = "iwn4965fw";
725 	/* Override chains masks, ROM is known to be broken. */
726 	sc->txchainmask = IWN_ANT_AB;
727 	sc->rxchainmask = IWN_ANT_ABC;
728 
729 	return 0;
730 }
731 
732 static int
733 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
734 {
735 	struct iwn_ops *ops = &sc->ops;
736 
737 	ops->load_firmware = iwn5000_load_firmware;
738 	ops->read_eeprom = iwn5000_read_eeprom;
739 	ops->post_alive = iwn5000_post_alive;
740 	ops->nic_config = iwn5000_nic_config;
741 	ops->update_sched = iwn5000_update_sched;
742 	ops->get_temperature = iwn5000_get_temperature;
743 	ops->get_rssi = iwn5000_get_rssi;
744 	ops->set_txpower = iwn5000_set_txpower;
745 	ops->init_gains = iwn5000_init_gains;
746 	ops->set_gains = iwn5000_set_gains;
747 	ops->add_node = iwn5000_add_node;
748 	ops->tx_done = iwn5000_tx_done;
749 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
750 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
751 	sc->ntxqs = IWN5000_NTXQUEUES;
752 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
753 	sc->ndmachnls = IWN5000_NDMACHNLS;
754 	sc->broadcast_id = IWN5000_ID_BROADCAST;
755 	sc->rxonsz = IWN5000_RXONSZ;
756 	sc->schedsz = IWN5000_SCHEDSZ;
757 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
758 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
759 	sc->fwsz = IWN5000_FWSZ;
760 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
761 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
762 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
763 
764 	switch (sc->hw_type) {
765 	case IWN_HW_REV_TYPE_5100:
766 		sc->limits = &iwn5000_sensitivity_limits;
767 		sc->fwname = "iwn5000fw";
768 		/* Override chains masks, ROM is known to be broken. */
769 		sc->txchainmask = IWN_ANT_B;
770 		sc->rxchainmask = IWN_ANT_AB;
771 		break;
772 	case IWN_HW_REV_TYPE_5150:
773 		sc->limits = &iwn5150_sensitivity_limits;
774 		sc->fwname = "iwn5150fw";
775 		break;
776 	case IWN_HW_REV_TYPE_5300:
777 	case IWN_HW_REV_TYPE_5350:
778 		sc->limits = &iwn5000_sensitivity_limits;
779 		sc->fwname = "iwn5000fw";
780 		break;
781 	case IWN_HW_REV_TYPE_1000:
782 		sc->limits = &iwn1000_sensitivity_limits;
783 		sc->fwname = "iwn1000fw";
784 		break;
785 	case IWN_HW_REV_TYPE_6000:
786 		sc->limits = &iwn6000_sensitivity_limits;
787 		sc->fwname = "iwn6000fw";
788 		if (pid == 0x422c || pid == 0x4239) {
789 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
790 			/* Override chains masks, ROM is known to be broken. */
791 			sc->txchainmask = IWN_ANT_BC;
792 			sc->rxchainmask = IWN_ANT_BC;
793 		}
794 		break;
795 	case IWN_HW_REV_TYPE_6050:
796 		sc->limits = &iwn6000_sensitivity_limits;
797 		sc->fwname = "iwn6050fw";
798 		/* Override chains masks, ROM is known to be broken. */
799 		sc->txchainmask = IWN_ANT_AB;
800 		sc->rxchainmask = IWN_ANT_AB;
801 		break;
802 	case IWN_HW_REV_TYPE_6005:
803 		sc->limits = &iwn6000_sensitivity_limits;
804 		if (pid != 0x0082 && pid != 0x0085) {
805 			sc->fwname = "iwn6000g2bfw";
806 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
807 		} else
808 			sc->fwname = "iwn6000g2afw";
809 		break;
810 	default:
811 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
812 		    sc->hw_type);
813 		return ENOTSUP;
814 	}
815 	return 0;
816 }
817 
818 /*
819  * Attach the interface to 802.11 radiotap.
820  */
821 static void
822 iwn_radiotap_attach(struct iwn_softc *sc)
823 {
824 	struct ifnet *ifp = sc->sc_ifp;
825 	struct ieee80211com *ic = ifp->if_l2com;
826 
827 	ieee80211_radiotap_attach(ic,
828 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
829 		IWN_TX_RADIOTAP_PRESENT,
830 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
831 		IWN_RX_RADIOTAP_PRESENT);
832 }
833 
834 static void
835 iwn_sysctlattach(struct iwn_softc *sc)
836 {
837 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
838 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
839 
840 #ifdef IWN_DEBUG
841 	sc->sc_debug = 0;
842 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
843 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
844 #endif
845 }
846 
847 static struct ieee80211vap *
848 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
849     enum ieee80211_opmode opmode, int flags,
850     const uint8_t bssid[IEEE80211_ADDR_LEN],
851     const uint8_t mac[IEEE80211_ADDR_LEN])
852 {
853 	struct iwn_vap *ivp;
854 	struct ieee80211vap *vap;
855 
856 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
857 		return NULL;
858 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
859 	    M_80211_VAP, M_NOWAIT | M_ZERO);
860 	if (ivp == NULL)
861 		return NULL;
862 	vap = &ivp->iv_vap;
863 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
864 	vap->iv_bmissthreshold = 10;		/* override default */
865 	/* Override with driver methods. */
866 	ivp->iv_newstate = vap->iv_newstate;
867 	vap->iv_newstate = iwn_newstate;
868 
869 	ieee80211_ratectl_init(vap);
870 	/* Complete setup. */
871 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
872 	ic->ic_opmode = opmode;
873 	return vap;
874 }
875 
876 static void
877 iwn_vap_delete(struct ieee80211vap *vap)
878 {
879 	struct iwn_vap *ivp = IWN_VAP(vap);
880 
881 	ieee80211_ratectl_deinit(vap);
882 	ieee80211_vap_detach(vap);
883 	free(ivp, M_80211_VAP);
884 }
885 
886 static int
887 iwn_detach(device_t dev)
888 {
889 	struct iwn_softc *sc = device_get_softc(dev);
890 	struct ifnet *ifp = sc->sc_ifp;
891 	struct ieee80211com *ic;
892 	int qid;
893 
894 	if (ifp != NULL) {
895 		ic = ifp->if_l2com;
896 
897 		ieee80211_draintask(ic, &sc->sc_reinit_task);
898 		ieee80211_draintask(ic, &sc->sc_radioon_task);
899 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
900 
901 		iwn_stop(sc);
902 		callout_drain(&sc->watchdog_to);
903 		callout_drain(&sc->calib_to);
904 		ieee80211_ifdetach(ic);
905 	}
906 
907 	/* Uninstall interrupt handler. */
908 	if (sc->irq != NULL) {
909 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
910 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
911 		if (sc->irq_rid == 1)
912 			pci_release_msi(dev);
913 	}
914 
915 	/* Free DMA resources. */
916 	iwn_free_rx_ring(sc, &sc->rxq);
917 	for (qid = 0; qid < sc->ntxqs; qid++)
918 		iwn_free_tx_ring(sc, &sc->txq[qid]);
919 	iwn_free_sched(sc);
920 	iwn_free_kw(sc);
921 	if (sc->ict != NULL)
922 		iwn_free_ict(sc);
923 	iwn_free_fwmem(sc);
924 
925 	if (sc->mem != NULL)
926 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
927 
928 	if (ifp != NULL)
929 		if_free(ifp);
930 
931 	IWN_LOCK_DESTROY(sc);
932 	return 0;
933 }
934 
935 static int
936 iwn_shutdown(device_t dev)
937 {
938 	struct iwn_softc *sc = device_get_softc(dev);
939 
940 	iwn_stop(sc);
941 	return 0;
942 }
943 
944 static int
945 iwn_suspend(device_t dev)
946 {
947 	struct iwn_softc *sc = device_get_softc(dev);
948 	struct ifnet *ifp = sc->sc_ifp;
949 	struct ieee80211com *ic = ifp->if_l2com;
950 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
951 
952 	iwn_stop(sc);
953 	if (vap != NULL)
954 		ieee80211_stop(vap);
955 	return 0;
956 }
957 
958 static int
959 iwn_resume(device_t dev)
960 {
961 	struct iwn_softc *sc = device_get_softc(dev);
962 	struct ifnet *ifp = sc->sc_ifp;
963 	struct ieee80211com *ic = ifp->if_l2com;
964 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
965 
966 	/* Clear device-specific "PCI retry timeout" register (41h). */
967 	pci_write_config(dev, 0x41, 0, 1);
968 
969 	if (ifp->if_flags & IFF_UP) {
970 		iwn_init(sc);
971 		if (vap != NULL)
972 			ieee80211_init(vap);
973 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
974 			iwn_start(ifp);
975 	}
976 	return 0;
977 }
978 
979 static int
980 iwn_nic_lock(struct iwn_softc *sc)
981 {
982 	int ntries;
983 
984 	/* Request exclusive access to NIC. */
985 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
986 
987 	/* Spin until we actually get the lock. */
988 	for (ntries = 0; ntries < 1000; ntries++) {
989 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
990 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
991 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
992 			return 0;
993 		DELAY(10);
994 	}
995 	return ETIMEDOUT;
996 }
997 
998 static __inline void
999 iwn_nic_unlock(struct iwn_softc *sc)
1000 {
1001 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1002 }
1003 
1004 static __inline uint32_t
1005 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1006 {
1007 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1008 	IWN_BARRIER_READ_WRITE(sc);
1009 	return IWN_READ(sc, IWN_PRPH_RDATA);
1010 }
1011 
1012 static __inline void
1013 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1014 {
1015 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1016 	IWN_BARRIER_WRITE(sc);
1017 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1018 }
1019 
1020 static __inline void
1021 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1022 {
1023 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1024 }
1025 
1026 static __inline void
1027 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1028 {
1029 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1030 }
1031 
1032 static __inline void
1033 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1034     const uint32_t *data, int count)
1035 {
1036 	for (; count > 0; count--, data++, addr += 4)
1037 		iwn_prph_write(sc, addr, *data);
1038 }
1039 
1040 static __inline uint32_t
1041 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1042 {
1043 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1044 	IWN_BARRIER_READ_WRITE(sc);
1045 	return IWN_READ(sc, IWN_MEM_RDATA);
1046 }
1047 
1048 static __inline void
1049 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1050 {
1051 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1052 	IWN_BARRIER_WRITE(sc);
1053 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1054 }
1055 
1056 static __inline void
1057 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1058 {
1059 	uint32_t tmp;
1060 
1061 	tmp = iwn_mem_read(sc, addr & ~3);
1062 	if (addr & 3)
1063 		tmp = (tmp & 0x0000ffff) | data << 16;
1064 	else
1065 		tmp = (tmp & 0xffff0000) | data;
1066 	iwn_mem_write(sc, addr & ~3, tmp);
1067 }
1068 
1069 static __inline void
1070 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1071     int count)
1072 {
1073 	for (; count > 0; count--, addr += 4)
1074 		*data++ = iwn_mem_read(sc, addr);
1075 }
1076 
1077 static __inline void
1078 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1079     int count)
1080 {
1081 	for (; count > 0; count--, addr += 4)
1082 		iwn_mem_write(sc, addr, val);
1083 }
1084 
1085 static int
1086 iwn_eeprom_lock(struct iwn_softc *sc)
1087 {
1088 	int i, ntries;
1089 
1090 	for (i = 0; i < 100; i++) {
1091 		/* Request exclusive access to EEPROM. */
1092 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1093 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1094 
1095 		/* Spin until we actually get the lock. */
1096 		for (ntries = 0; ntries < 100; ntries++) {
1097 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1098 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1099 				return 0;
1100 			DELAY(10);
1101 		}
1102 	}
1103 	return ETIMEDOUT;
1104 }
1105 
1106 static __inline void
1107 iwn_eeprom_unlock(struct iwn_softc *sc)
1108 {
1109 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1110 }
1111 
1112 /*
1113  * Initialize access by host to One Time Programmable ROM.
1114  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1115  */
1116 static int
1117 iwn_init_otprom(struct iwn_softc *sc)
1118 {
1119 	uint16_t prev, base, next;
1120 	int count, error;
1121 
1122 	/* Wait for clock stabilization before accessing prph. */
1123 	if ((error = iwn_clock_wait(sc)) != 0)
1124 		return error;
1125 
1126 	if ((error = iwn_nic_lock(sc)) != 0)
1127 		return error;
1128 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1129 	DELAY(5);
1130 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1131 	iwn_nic_unlock(sc);
1132 
1133 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1134 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1135 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1136 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1137 	}
1138 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1139 	/* Clear ECC status. */
1140 	IWN_SETBITS(sc, IWN_OTP_GP,
1141 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1142 
1143 	/*
1144 	 * Find the block before last block (contains the EEPROM image)
1145 	 * for HW without OTP shadow RAM.
1146 	 */
1147 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1148 		/* Switch to absolute addressing mode. */
1149 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1150 		base = prev = 0;
1151 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1152 			error = iwn_read_prom_data(sc, base, &next, 2);
1153 			if (error != 0)
1154 				return error;
1155 			if (next == 0)	/* End of linked-list. */
1156 				break;
1157 			prev = base;
1158 			base = le16toh(next);
1159 		}
1160 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1161 			return EIO;
1162 		/* Skip "next" word. */
1163 		sc->prom_base = prev + 1;
1164 	}
1165 	return 0;
1166 }
1167 
1168 static int
1169 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1170 {
1171 	uint8_t *out = data;
1172 	uint32_t val, tmp;
1173 	int ntries;
1174 
1175 	addr += sc->prom_base;
1176 	for (; count > 0; count -= 2, addr++) {
1177 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1178 		for (ntries = 0; ntries < 10; ntries++) {
1179 			val = IWN_READ(sc, IWN_EEPROM);
1180 			if (val & IWN_EEPROM_READ_VALID)
1181 				break;
1182 			DELAY(5);
1183 		}
1184 		if (ntries == 10) {
1185 			device_printf(sc->sc_dev,
1186 			    "timeout reading ROM at 0x%x\n", addr);
1187 			return ETIMEDOUT;
1188 		}
1189 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1190 			/* OTPROM, check for ECC errors. */
1191 			tmp = IWN_READ(sc, IWN_OTP_GP);
1192 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1193 				device_printf(sc->sc_dev,
1194 				    "OTPROM ECC error at 0x%x\n", addr);
1195 				return EIO;
1196 			}
1197 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1198 				/* Correctable ECC error, clear bit. */
1199 				IWN_SETBITS(sc, IWN_OTP_GP,
1200 				    IWN_OTP_GP_ECC_CORR_STTS);
1201 			}
1202 		}
1203 		*out++ = val >> 16;
1204 		if (count > 1)
1205 			*out++ = val >> 24;
1206 	}
1207 	return 0;
1208 }
1209 
1210 static void
1211 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1212 {
1213 	if (error != 0)
1214 		return;
1215 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1216 	*(bus_addr_t *)arg = segs[0].ds_addr;
1217 }
1218 
1219 static int
1220 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1221     void **kvap, bus_size_t size, bus_size_t alignment)
1222 {
1223 	int error;
1224 
1225 	dma->tag = NULL;
1226 	dma->size = size;
1227 
1228 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1229 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1230 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1231 	if (error != 0)
1232 		goto fail;
1233 
1234 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1235 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1236 	if (error != 0)
1237 		goto fail;
1238 
1239 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1240 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1241 	if (error != 0)
1242 		goto fail;
1243 
1244 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1245 
1246 	if (kvap != NULL)
1247 		*kvap = dma->vaddr;
1248 
1249 	return 0;
1250 
1251 fail:	iwn_dma_contig_free(dma);
1252 	return error;
1253 }
1254 
1255 static void
1256 iwn_dma_contig_free(struct iwn_dma_info *dma)
1257 {
1258 	if (dma->map != NULL) {
1259 		if (dma->vaddr != NULL) {
1260 			bus_dmamap_sync(dma->tag, dma->map,
1261 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1262 			bus_dmamap_unload(dma->tag, dma->map);
1263 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1264 			dma->vaddr = NULL;
1265 		}
1266 		bus_dmamap_destroy(dma->tag, dma->map);
1267 		dma->map = NULL;
1268 	}
1269 	if (dma->tag != NULL) {
1270 		bus_dma_tag_destroy(dma->tag);
1271 		dma->tag = NULL;
1272 	}
1273 }
1274 
1275 static int
1276 iwn_alloc_sched(struct iwn_softc *sc)
1277 {
1278 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1279 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1280 	    sc->schedsz, 1024);
1281 }
1282 
1283 static void
1284 iwn_free_sched(struct iwn_softc *sc)
1285 {
1286 	iwn_dma_contig_free(&sc->sched_dma);
1287 }
1288 
1289 static int
1290 iwn_alloc_kw(struct iwn_softc *sc)
1291 {
1292 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1293 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1294 }
1295 
1296 static void
1297 iwn_free_kw(struct iwn_softc *sc)
1298 {
1299 	iwn_dma_contig_free(&sc->kw_dma);
1300 }
1301 
1302 static int
1303 iwn_alloc_ict(struct iwn_softc *sc)
1304 {
1305 	/* ICT table must be aligned on a 4KB boundary. */
1306 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1307 	    IWN_ICT_SIZE, 4096);
1308 }
1309 
1310 static void
1311 iwn_free_ict(struct iwn_softc *sc)
1312 {
1313 	iwn_dma_contig_free(&sc->ict_dma);
1314 }
1315 
1316 static int
1317 iwn_alloc_fwmem(struct iwn_softc *sc)
1318 {
1319 	/* Must be aligned on a 16-byte boundary. */
1320 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1321 }
1322 
1323 static void
1324 iwn_free_fwmem(struct iwn_softc *sc)
1325 {
1326 	iwn_dma_contig_free(&sc->fw_dma);
1327 }
1328 
1329 static int
1330 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1331 {
1332 	bus_size_t size;
1333 	int i, error;
1334 
1335 	ring->cur = 0;
1336 
1337 	/* Allocate RX descriptors (256-byte aligned). */
1338 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1339 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1340 	    size, 256);
1341 	if (error != 0) {
1342 		device_printf(sc->sc_dev,
1343 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1344 		    __func__, error);
1345 		goto fail;
1346 	}
1347 
1348 	/* Allocate RX status area (16-byte aligned). */
1349 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1350 	    sizeof (struct iwn_rx_status), 16);
1351 	if (error != 0) {
1352 		device_printf(sc->sc_dev,
1353 		    "%s: could not allocate RX status DMA memory, error %d\n",
1354 		    __func__, error);
1355 		goto fail;
1356 	}
1357 
1358 	/* Create RX buffer DMA tag. */
1359 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1360 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1361 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1362 	    &ring->data_dmat);
1363 	if (error != 0) {
1364 		device_printf(sc->sc_dev,
1365 		    "%s: could not create RX buf DMA tag, error %d\n",
1366 		    __func__, error);
1367 		goto fail;
1368 	}
1369 
1370 	/*
1371 	 * Allocate and map RX buffers.
1372 	 */
1373 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1374 		struct iwn_rx_data *data = &ring->data[i];
1375 		bus_addr_t paddr;
1376 
1377 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1378 		if (error != 0) {
1379 			device_printf(sc->sc_dev,
1380 			    "%s: could not create RX buf DMA map, error %d\n",
1381 			    __func__, error);
1382 			goto fail;
1383 		}
1384 
1385 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
1386 		    IWN_RBUF_SIZE);
1387 		if (data->m == NULL) {
1388 			device_printf(sc->sc_dev,
1389 			    "%s: could not allocate RX mbuf\n", __func__);
1390 			error = ENOBUFS;
1391 			goto fail;
1392 		}
1393 
1394 		error = bus_dmamap_load(ring->data_dmat, data->map,
1395 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1396 		    &paddr, BUS_DMA_NOWAIT);
1397 		if (error != 0 && error != EFBIG) {
1398 			device_printf(sc->sc_dev,
1399 			    "%s: can't not map mbuf, error %d\n", __func__,
1400 			    error);
1401 			goto fail;
1402 		}
1403 
1404 		/* Set physical address of RX buffer (256-byte aligned). */
1405 		ring->desc[i] = htole32(paddr >> 8);
1406 	}
1407 
1408 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1409 	    BUS_DMASYNC_PREWRITE);
1410 
1411 	return 0;
1412 
1413 fail:	iwn_free_rx_ring(sc, ring);
1414 	return error;
1415 }
1416 
1417 static void
1418 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1419 {
1420 	int ntries;
1421 
1422 	if (iwn_nic_lock(sc) == 0) {
1423 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1424 		for (ntries = 0; ntries < 1000; ntries++) {
1425 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1426 			    IWN_FH_RX_STATUS_IDLE)
1427 				break;
1428 			DELAY(10);
1429 		}
1430 		iwn_nic_unlock(sc);
1431 	}
1432 	ring->cur = 0;
1433 	sc->last_rx_valid = 0;
1434 }
1435 
1436 static void
1437 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1438 {
1439 	int i;
1440 
1441 	iwn_dma_contig_free(&ring->desc_dma);
1442 	iwn_dma_contig_free(&ring->stat_dma);
1443 
1444 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1445 		struct iwn_rx_data *data = &ring->data[i];
1446 
1447 		if (data->m != NULL) {
1448 			bus_dmamap_sync(ring->data_dmat, data->map,
1449 			    BUS_DMASYNC_POSTREAD);
1450 			bus_dmamap_unload(ring->data_dmat, data->map);
1451 			m_freem(data->m);
1452 			data->m = NULL;
1453 		}
1454 		if (data->map != NULL)
1455 			bus_dmamap_destroy(ring->data_dmat, data->map);
1456 	}
1457 	if (ring->data_dmat != NULL) {
1458 		bus_dma_tag_destroy(ring->data_dmat);
1459 		ring->data_dmat = NULL;
1460 	}
1461 }
1462 
1463 static int
1464 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1465 {
1466 	bus_addr_t paddr;
1467 	bus_size_t size;
1468 	int i, error;
1469 
1470 	ring->qid = qid;
1471 	ring->queued = 0;
1472 	ring->cur = 0;
1473 
1474 	/* Allocate TX descriptors (256-byte aligned). */
1475 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1476 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1477 	    size, 256);
1478 	if (error != 0) {
1479 		device_printf(sc->sc_dev,
1480 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1481 		    __func__, error);
1482 		goto fail;
1483 	}
1484 
1485 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1486 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1487 	    size, 4);
1488 	if (error != 0) {
1489 		device_printf(sc->sc_dev,
1490 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1491 		    __func__, error);
1492 		goto fail;
1493 	}
1494 
1495 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1496 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1497 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1498 	    &ring->data_dmat);
1499 	if (error != 0) {
1500 		device_printf(sc->sc_dev,
1501 		    "%s: could not create TX buf DMA tag, error %d\n",
1502 		    __func__, error);
1503 		goto fail;
1504 	}
1505 
1506 	paddr = ring->cmd_dma.paddr;
1507 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1508 		struct iwn_tx_data *data = &ring->data[i];
1509 
1510 		data->cmd_paddr = paddr;
1511 		data->scratch_paddr = paddr + 12;
1512 		paddr += sizeof (struct iwn_tx_cmd);
1513 
1514 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1515 		if (error != 0) {
1516 			device_printf(sc->sc_dev,
1517 			    "%s: could not create TX buf DMA map, error %d\n",
1518 			    __func__, error);
1519 			goto fail;
1520 		}
1521 	}
1522 	return 0;
1523 
1524 fail:	iwn_free_tx_ring(sc, ring);
1525 	return error;
1526 }
1527 
1528 static void
1529 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1530 {
1531 	int i;
1532 
1533 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1534 		struct iwn_tx_data *data = &ring->data[i];
1535 
1536 		if (data->m != NULL) {
1537 			bus_dmamap_sync(ring->data_dmat, data->map,
1538 			    BUS_DMASYNC_POSTWRITE);
1539 			bus_dmamap_unload(ring->data_dmat, data->map);
1540 			m_freem(data->m);
1541 			data->m = NULL;
1542 		}
1543 	}
1544 	/* Clear TX descriptors. */
1545 	memset(ring->desc, 0, ring->desc_dma.size);
1546 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1547 	    BUS_DMASYNC_PREWRITE);
1548 	sc->qfullmsk &= ~(1 << ring->qid);
1549 	ring->queued = 0;
1550 	ring->cur = 0;
1551 }
1552 
1553 static void
1554 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1555 {
1556 	int i;
1557 
1558 	iwn_dma_contig_free(&ring->desc_dma);
1559 	iwn_dma_contig_free(&ring->cmd_dma);
1560 
1561 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1562 		struct iwn_tx_data *data = &ring->data[i];
1563 
1564 		if (data->m != NULL) {
1565 			bus_dmamap_sync(ring->data_dmat, data->map,
1566 			    BUS_DMASYNC_POSTWRITE);
1567 			bus_dmamap_unload(ring->data_dmat, data->map);
1568 			m_freem(data->m);
1569 		}
1570 		if (data->map != NULL)
1571 			bus_dmamap_destroy(ring->data_dmat, data->map);
1572 	}
1573 	if (ring->data_dmat != NULL) {
1574 		bus_dma_tag_destroy(ring->data_dmat);
1575 		ring->data_dmat = NULL;
1576 	}
1577 }
1578 
1579 static void
1580 iwn5000_ict_reset(struct iwn_softc *sc)
1581 {
1582 	/* Disable interrupts. */
1583 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1584 
1585 	/* Reset ICT table. */
1586 	memset(sc->ict, 0, IWN_ICT_SIZE);
1587 	sc->ict_cur = 0;
1588 
1589 	/* Set physical address of ICT table (4KB aligned). */
1590 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1591 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1592 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1593 
1594 	/* Enable periodic RX interrupt. */
1595 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1596 	/* Switch to ICT interrupt mode in driver. */
1597 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1598 
1599 	/* Re-enable interrupts. */
1600 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1601 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1602 }
1603 
1604 static int
1605 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1606 {
1607 	struct iwn_ops *ops = &sc->ops;
1608 	uint16_t val;
1609 	int error;
1610 
1611 	/* Check whether adapter has an EEPROM or an OTPROM. */
1612 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1613 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1614 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1615 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1616 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1617 
1618 	/* Adapter has to be powered on for EEPROM access to work. */
1619 	if ((error = iwn_apm_init(sc)) != 0) {
1620 		device_printf(sc->sc_dev,
1621 		    "%s: could not power ON adapter, error %d\n", __func__,
1622 		    error);
1623 		return error;
1624 	}
1625 
1626 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1627 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1628 		return EIO;
1629 	}
1630 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1631 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1632 		    __func__, error);
1633 		return error;
1634 	}
1635 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1636 		if ((error = iwn_init_otprom(sc)) != 0) {
1637 			device_printf(sc->sc_dev,
1638 			    "%s: could not initialize OTPROM, error %d\n",
1639 			    __func__, error);
1640 			return error;
1641 		}
1642 	}
1643 
1644 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1645 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1646 	/* Check if HT support is bonded out. */
1647 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1648 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1649 
1650 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1651 	sc->rfcfg = le16toh(val);
1652 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1653 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1654 	if (sc->txchainmask == 0)
1655 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1656 	if (sc->rxchainmask == 0)
1657 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1658 
1659 	/* Read MAC address. */
1660 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1661 
1662 	/* Read adapter-specific information from EEPROM. */
1663 	ops->read_eeprom(sc);
1664 
1665 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1666 
1667 	iwn_eeprom_unlock(sc);
1668 	return 0;
1669 }
1670 
1671 static void
1672 iwn4965_read_eeprom(struct iwn_softc *sc)
1673 {
1674 	uint32_t addr;
1675 	uint16_t val;
1676 	int i;
1677 
1678 	/* Read regulatory domain (4 ASCII characters). */
1679 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1680 
1681 	/* Read the list of authorized channels (20MHz ones only). */
1682 	for (i = 0; i < 7; i++) {
1683 		addr = iwn4965_regulatory_bands[i];
1684 		iwn_read_eeprom_channels(sc, i, addr);
1685 	}
1686 
1687 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1688 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1689 	sc->maxpwr2GHz = val & 0xff;
1690 	sc->maxpwr5GHz = val >> 8;
1691 	/* Check that EEPROM values are within valid range. */
1692 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1693 		sc->maxpwr5GHz = 38;
1694 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1695 		sc->maxpwr2GHz = 38;
1696 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1697 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1698 
1699 	/* Read samples for each TX power group. */
1700 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1701 	    sizeof sc->bands);
1702 
1703 	/* Read voltage at which samples were taken. */
1704 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1705 	sc->eeprom_voltage = (int16_t)le16toh(val);
1706 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1707 	    sc->eeprom_voltage);
1708 
1709 #ifdef IWN_DEBUG
1710 	/* Print samples. */
1711 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1712 		for (i = 0; i < IWN_NBANDS; i++)
1713 			iwn4965_print_power_group(sc, i);
1714 	}
1715 #endif
1716 }
1717 
1718 #ifdef IWN_DEBUG
1719 static void
1720 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1721 {
1722 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1723 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1724 	int j, c;
1725 
1726 	printf("===band %d===\n", i);
1727 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1728 	printf("chan1 num=%d\n", chans[0].num);
1729 	for (c = 0; c < 2; c++) {
1730 		for (j = 0; j < IWN_NSAMPLES; j++) {
1731 			printf("chain %d, sample %d: temp=%d gain=%d "
1732 			    "power=%d pa_det=%d\n", c, j,
1733 			    chans[0].samples[c][j].temp,
1734 			    chans[0].samples[c][j].gain,
1735 			    chans[0].samples[c][j].power,
1736 			    chans[0].samples[c][j].pa_det);
1737 		}
1738 	}
1739 	printf("chan2 num=%d\n", chans[1].num);
1740 	for (c = 0; c < 2; c++) {
1741 		for (j = 0; j < IWN_NSAMPLES; j++) {
1742 			printf("chain %d, sample %d: temp=%d gain=%d "
1743 			    "power=%d pa_det=%d\n", c, j,
1744 			    chans[1].samples[c][j].temp,
1745 			    chans[1].samples[c][j].gain,
1746 			    chans[1].samples[c][j].power,
1747 			    chans[1].samples[c][j].pa_det);
1748 		}
1749 	}
1750 }
1751 #endif
1752 
1753 static void
1754 iwn5000_read_eeprom(struct iwn_softc *sc)
1755 {
1756 	struct iwn5000_eeprom_calib_hdr hdr;
1757 	int32_t volt;
1758 	uint32_t base, addr;
1759 	uint16_t val;
1760 	int i;
1761 
1762 	/* Read regulatory domain (4 ASCII characters). */
1763 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1764 	base = le16toh(val);
1765 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1766 	    sc->eeprom_domain, 4);
1767 
1768 	/* Read the list of authorized channels (20MHz ones only). */
1769 	for (i = 0; i < 7; i++) {
1770 		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1771 			addr = base + iwn6000_regulatory_bands[i];
1772 		else
1773 			addr = base + iwn5000_regulatory_bands[i];
1774 		iwn_read_eeprom_channels(sc, i, addr);
1775 	}
1776 
1777 	/* Read enhanced TX power information for 6000 Series. */
1778 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1779 		iwn_read_eeprom_enhinfo(sc);
1780 
1781 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1782 	base = le16toh(val);
1783 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1784 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1785 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1786 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1787 	sc->calib_ver = hdr.version;
1788 
1789 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1790 		/* Compute temperature offset. */
1791 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1792 		sc->eeprom_temp = le16toh(val);
1793 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1794 		volt = le16toh(val);
1795 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1796 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1797 		    sc->eeprom_temp, volt, sc->temp_off);
1798 	} else {
1799 		/* Read crystal calibration. */
1800 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1801 		    &sc->eeprom_crystal, sizeof (uint32_t));
1802 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1803 		    le32toh(sc->eeprom_crystal));
1804 	}
1805 }
1806 
1807 /*
1808  * Translate EEPROM flags to net80211.
1809  */
1810 static uint32_t
1811 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1812 {
1813 	uint32_t nflags;
1814 
1815 	nflags = 0;
1816 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1817 		nflags |= IEEE80211_CHAN_PASSIVE;
1818 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1819 		nflags |= IEEE80211_CHAN_NOADHOC;
1820 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1821 		nflags |= IEEE80211_CHAN_DFS;
1822 		/* XXX apparently IBSS may still be marked */
1823 		nflags |= IEEE80211_CHAN_NOADHOC;
1824 	}
1825 
1826 	return nflags;
1827 }
1828 
1829 static void
1830 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1831 {
1832 	struct ifnet *ifp = sc->sc_ifp;
1833 	struct ieee80211com *ic = ifp->if_l2com;
1834 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1835 	const struct iwn_chan_band *band = &iwn_bands[n];
1836 	struct ieee80211_channel *c;
1837 	uint8_t chan;
1838 	int i, nflags;
1839 
1840 	for (i = 0; i < band->nchan; i++) {
1841 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1842 			DPRINTF(sc, IWN_DEBUG_RESET,
1843 			    "skip chan %d flags 0x%x maxpwr %d\n",
1844 			    band->chan[i], channels[i].flags,
1845 			    channels[i].maxpwr);
1846 			continue;
1847 		}
1848 		chan = band->chan[i];
1849 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1850 
1851 		c = &ic->ic_channels[ic->ic_nchans++];
1852 		c->ic_ieee = chan;
1853 		c->ic_maxregpower = channels[i].maxpwr;
1854 		c->ic_maxpower = 2*c->ic_maxregpower;
1855 
1856 		if (n == 0) {	/* 2GHz band */
1857 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1858 			/* G =>'s B is supported */
1859 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1860 			c = &ic->ic_channels[ic->ic_nchans++];
1861 			c[0] = c[-1];
1862 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1863 		} else {	/* 5GHz band */
1864 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1865 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1866 		}
1867 
1868 		/* Save maximum allowed TX power for this channel. */
1869 		sc->maxpwr[chan] = channels[i].maxpwr;
1870 
1871 		DPRINTF(sc, IWN_DEBUG_RESET,
1872 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1873 		    channels[i].flags, channels[i].maxpwr);
1874 
1875 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1876 			/* add HT20, HT40 added separately */
1877 			c = &ic->ic_channels[ic->ic_nchans++];
1878 			c[0] = c[-1];
1879 			c->ic_flags |= IEEE80211_CHAN_HT20;
1880 		}
1881 	}
1882 }
1883 
1884 static void
1885 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1886 {
1887 	struct ifnet *ifp = sc->sc_ifp;
1888 	struct ieee80211com *ic = ifp->if_l2com;
1889 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1890 	const struct iwn_chan_band *band = &iwn_bands[n];
1891 	struct ieee80211_channel *c, *cent, *extc;
1892 	uint8_t chan;
1893 	int i, nflags;
1894 
1895 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N))
1896 		return;
1897 
1898 	for (i = 0; i < band->nchan; i++) {
1899 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1900 			DPRINTF(sc, IWN_DEBUG_RESET,
1901 			    "skip chan %d flags 0x%x maxpwr %d\n",
1902 			    band->chan[i], channels[i].flags,
1903 			    channels[i].maxpwr);
1904 			continue;
1905 		}
1906 		chan = band->chan[i];
1907 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1908 
1909 		/*
1910 		 * Each entry defines an HT40 channel pair; find the
1911 		 * center channel, then the extension channel above.
1912 		 */
1913 		cent = ieee80211_find_channel_byieee(ic, chan,
1914 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1915 		if (cent == NULL) {	/* XXX shouldn't happen */
1916 			device_printf(sc->sc_dev,
1917 			    "%s: no entry for channel %d\n", __func__, chan);
1918 			continue;
1919 		}
1920 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1921 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1922 		if (extc == NULL) {
1923 			DPRINTF(sc, IWN_DEBUG_RESET,
1924 			    "%s: skip chan %d, extension channel not found\n",
1925 			    __func__, chan);
1926 			continue;
1927 		}
1928 
1929 		DPRINTF(sc, IWN_DEBUG_RESET,
1930 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1931 		    chan, channels[i].flags, channels[i].maxpwr);
1932 
1933 		c = &ic->ic_channels[ic->ic_nchans++];
1934 		c[0] = cent[0];
1935 		c->ic_extieee = extc->ic_ieee;
1936 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1937 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
1938 		c = &ic->ic_channels[ic->ic_nchans++];
1939 		c[0] = extc[0];
1940 		c->ic_extieee = cent->ic_ieee;
1941 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1942 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
1943 	}
1944 }
1945 
1946 static void
1947 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1948 {
1949 	struct ifnet *ifp = sc->sc_ifp;
1950 	struct ieee80211com *ic = ifp->if_l2com;
1951 
1952 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1953 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1954 
1955 	if (n < 5)
1956 		iwn_read_eeprom_band(sc, n);
1957 	else
1958 		iwn_read_eeprom_ht40(sc, n);
1959 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1960 }
1961 
1962 static struct iwn_eeprom_chan *
1963 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
1964 {
1965 	int band, chan, i, j;
1966 
1967 	if (IEEE80211_IS_CHAN_HT40(c)) {
1968 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
1969 		if (IEEE80211_IS_CHAN_HT40D(c))
1970 			chan = c->ic_extieee;
1971 		else
1972 			chan = c->ic_ieee;
1973 		for (i = 0; i < iwn_bands[band].nchan; i++) {
1974 			if (iwn_bands[band].chan[i] == chan)
1975 				return &sc->eeprom_channels[band][i];
1976 		}
1977 	} else {
1978 		for (j = 0; j < 5; j++) {
1979 			for (i = 0; i < iwn_bands[j].nchan; i++) {
1980 				if (iwn_bands[j].chan[i] == c->ic_ieee)
1981 					return &sc->eeprom_channels[j][i];
1982 			}
1983 		}
1984 	}
1985 	return NULL;
1986 }
1987 
1988 /*
1989  * Enforce flags read from EEPROM.
1990  */
1991 static int
1992 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1993     int nchan, struct ieee80211_channel chans[])
1994 {
1995 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1996 	int i;
1997 
1998 	for (i = 0; i < nchan; i++) {
1999 		struct ieee80211_channel *c = &chans[i];
2000 		struct iwn_eeprom_chan *channel;
2001 
2002 		channel = iwn_find_eeprom_channel(sc, c);
2003 		if (channel == NULL) {
2004 			if_printf(ic->ic_ifp,
2005 			    "%s: invalid channel %u freq %u/0x%x\n",
2006 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2007 			return EINVAL;
2008 		}
2009 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
2016 
2017 static void
2018 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2019 {
2020 	struct iwn_eeprom_enhinfo enhinfo[35];
2021 	struct ifnet *ifp = sc->sc_ifp;
2022 	struct ieee80211com *ic = ifp->if_l2com;
2023 	struct ieee80211_channel *c;
2024 	uint16_t val, base;
2025 	int8_t maxpwr;
2026 	uint8_t flags;
2027 	int i, j;
2028 
2029 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2030 	base = le16toh(val);
2031 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2032 	    enhinfo, sizeof enhinfo);
2033 
2034 	for (i = 0; i < nitems(enhinfo); i++) {
2035 		flags = enhinfo[i].flags;
2036 		if (!(flags & IWN_ENHINFO_VALID))
2037 			continue;	/* Skip invalid entries. */
2038 
2039 		maxpwr = 0;
2040 		if (sc->txchainmask & IWN_ANT_A)
2041 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2042 		if (sc->txchainmask & IWN_ANT_B)
2043 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2044 		if (sc->txchainmask & IWN_ANT_C)
2045 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2046 		if (sc->ntxchains == 2)
2047 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2048 		else if (sc->ntxchains == 3)
2049 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2050 
2051 		for (j = 0; j < ic->ic_nchans; j++) {
2052 			c = &ic->ic_channels[j];
2053 			if ((flags & IWN_ENHINFO_5GHZ)) {
2054 				if (!IEEE80211_IS_CHAN_A(c))
2055 					continue;
2056 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2057 				if (!IEEE80211_IS_CHAN_G(c))
2058 					continue;
2059 			} else if (!IEEE80211_IS_CHAN_B(c))
2060 				continue;
2061 			if ((flags & IWN_ENHINFO_HT40)) {
2062 				if (!IEEE80211_IS_CHAN_HT40(c))
2063 					continue;
2064 			} else {
2065 				if (IEEE80211_IS_CHAN_HT40(c))
2066 					continue;
2067 			}
2068 			if (enhinfo[i].chan != 0 &&
2069 			    enhinfo[i].chan != c->ic_ieee)
2070 				continue;
2071 
2072 			DPRINTF(sc, IWN_DEBUG_RESET,
2073 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2074 			    c->ic_flags, maxpwr / 2);
2075 			c->ic_maxregpower = maxpwr / 2;
2076 			c->ic_maxpower = maxpwr;
2077 		}
2078 	}
2079 }
2080 
2081 static struct ieee80211_node *
2082 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2083 {
2084 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2085 }
2086 
2087 static __inline int
2088 rate2plcp(int rate)
2089 {
2090 	switch (rate & 0xff) {
2091 	case 12:	return 0xd;
2092 	case 18:	return 0xf;
2093 	case 24:	return 0x5;
2094 	case 36:	return 0x7;
2095 	case 48:	return 0x9;
2096 	case 72:	return 0xb;
2097 	case 96:	return 0x1;
2098 	case 108:	return 0x3;
2099 	case 2:		return 10;
2100 	case 4:		return 20;
2101 	case 11:	return 55;
2102 	case 22:	return 110;
2103 	}
2104 	return 0;
2105 }
2106 
2107 static void
2108 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2109 {
2110 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2111 	struct ieee80211com *ic = ni->ni_ic;
2112 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2113 	struct iwn_node *wn = (void *)ni;
2114 	uint8_t txant1, txant2;
2115 	int i, plcp, rate, ridx;
2116 
2117 	/* Use the first valid TX antenna. */
2118 	txant1 = IWN_LSB(sc->txchainmask);
2119 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2120 
2121 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2122 		ridx = ni->ni_rates.rs_nrates - 1;
2123 		for (i = ni->ni_htrates.rs_nrates - 1; i >= 0; i--) {
2124 			plcp = RV(ni->ni_htrates.rs_rates[i]) | IWN_RFLAG_MCS;
2125 			if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2126 				plcp |= IWN_RFLAG_HT40;
2127 				if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2128 					plcp |= IWN_RFLAG_SGI;
2129 			} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20)
2130 				plcp |= IWN_RFLAG_SGI;
2131 			if (RV(ni->ni_htrates.rs_rates[i]) > 7)
2132 				plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2133 			else
2134 				plcp |= IWN_RFLAG_ANT(txant1);
2135 			if (ridx >= 0) {
2136 				rate = RV(ni->ni_rates.rs_rates[ridx]);
2137 				wn->ridx[rate] = plcp;
2138 			}
2139 			wn->ridx[IEEE80211_RATE_MCS | i] = plcp;
2140 			ridx--;
2141 		}
2142 	} else {
2143 		for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
2144 			rate = RV(ni->ni_rates.rs_rates[i]);
2145 			plcp = rate2plcp(rate);
2146 			ridx = ic->ic_rt->rateCodeToIndex[rate];
2147 			if (ridx < IWN_RIDX_OFDM6 &&
2148 			    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2149 				plcp |= IWN_RFLAG_CCK;
2150 			plcp |= IWN_RFLAG_ANT(txant1);
2151 			wn->ridx[rate] = htole32(plcp);
2152 		}
2153 	}
2154 #undef	RV
2155 }
2156 
2157 static int
2158 iwn_media_change(struct ifnet *ifp)
2159 {
2160 	int error;
2161 
2162 	error = ieee80211_media_change(ifp);
2163 	/* NB: only the fixed rate can change and that doesn't need a reset */
2164 	return (error == ENETRESET ? 0 : error);
2165 }
2166 
2167 static int
2168 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2169 {
2170 	struct iwn_vap *ivp = IWN_VAP(vap);
2171 	struct ieee80211com *ic = vap->iv_ic;
2172 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2173 	int error = 0;
2174 
2175 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2176 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2177 
2178 	IEEE80211_UNLOCK(ic);
2179 	IWN_LOCK(sc);
2180 	callout_stop(&sc->calib_to);
2181 
2182 	switch (nstate) {
2183 	case IEEE80211_S_ASSOC:
2184 		if (vap->iv_state != IEEE80211_S_RUN)
2185 			break;
2186 		/* FALLTHROUGH */
2187 	case IEEE80211_S_AUTH:
2188 		if (vap->iv_state == IEEE80211_S_AUTH)
2189 			break;
2190 
2191 		/*
2192 		 * !AUTH -> AUTH transition requires state reset to handle
2193 		 * reassociations correctly.
2194 		 */
2195 		sc->rxon.associd = 0;
2196 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2197 		sc->calib.state = IWN_CALIB_STATE_INIT;
2198 
2199 		if ((error = iwn_auth(sc, vap)) != 0) {
2200 			device_printf(sc->sc_dev,
2201 			    "%s: could not move to auth state\n", __func__);
2202 		}
2203 		break;
2204 
2205 	case IEEE80211_S_RUN:
2206 		/*
2207 		 * RUN -> RUN transition; Just restart the timers.
2208 		 */
2209 		if (vap->iv_state == IEEE80211_S_RUN) {
2210 			sc->calib_cnt = 0;
2211 			break;
2212 		}
2213 
2214 		/*
2215 		 * !RUN -> RUN requires setting the association id
2216 		 * which is done with a firmware cmd.  We also defer
2217 		 * starting the timers until that work is done.
2218 		 */
2219 		if ((error = iwn_run(sc, vap)) != 0) {
2220 			device_printf(sc->sc_dev,
2221 			    "%s: could not move to run state\n", __func__);
2222 		}
2223 		break;
2224 
2225 	case IEEE80211_S_INIT:
2226 		sc->calib.state = IWN_CALIB_STATE_INIT;
2227 		break;
2228 
2229 	default:
2230 		break;
2231 	}
2232 	IWN_UNLOCK(sc);
2233 	IEEE80211_LOCK(ic);
2234 	if (error != 0)
2235 		return error;
2236 	return ivp->iv_newstate(vap, nstate, arg);
2237 }
2238 
2239 static void
2240 iwn_calib_timeout(void *arg)
2241 {
2242 	struct iwn_softc *sc = arg;
2243 
2244 	IWN_LOCK_ASSERT(sc);
2245 
2246 	/* Force automatic TX power calibration every 60 secs. */
2247 	if (++sc->calib_cnt >= 120) {
2248 		uint32_t flags = 0;
2249 
2250 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2251 		    "sending request for statistics");
2252 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2253 		    sizeof flags, 1);
2254 		sc->calib_cnt = 0;
2255 	}
2256 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2257 	    sc);
2258 }
2259 
2260 /*
2261  * Process an RX_PHY firmware notification.  This is usually immediately
2262  * followed by an MPDU_RX_DONE notification.
2263  */
2264 static void
2265 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2266     struct iwn_rx_data *data)
2267 {
2268 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2269 
2270 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2271 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2272 
2273 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2274 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2275 	sc->last_rx_valid = 1;
2276 }
2277 
2278 /*
2279  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2280  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2281  */
2282 static void
2283 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2284     struct iwn_rx_data *data)
2285 {
2286 	struct iwn_ops *ops = &sc->ops;
2287 	struct ifnet *ifp = sc->sc_ifp;
2288 	struct ieee80211com *ic = ifp->if_l2com;
2289 	struct iwn_rx_ring *ring = &sc->rxq;
2290 	struct ieee80211_frame *wh;
2291 	struct ieee80211_node *ni;
2292 	struct mbuf *m, *m1;
2293 	struct iwn_rx_stat *stat;
2294 	caddr_t head;
2295 	bus_addr_t paddr;
2296 	uint32_t flags;
2297 	int error, len, rssi, nf;
2298 
2299 	if (desc->type == IWN_MPDU_RX_DONE) {
2300 		/* Check for prior RX_PHY notification. */
2301 		if (!sc->last_rx_valid) {
2302 			DPRINTF(sc, IWN_DEBUG_ANY,
2303 			    "%s: missing RX_PHY\n", __func__);
2304 			return;
2305 		}
2306 		stat = &sc->last_rx_stat;
2307 	} else
2308 		stat = (struct iwn_rx_stat *)(desc + 1);
2309 
2310 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2311 
2312 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2313 		device_printf(sc->sc_dev,
2314 		    "%s: invalid RX statistic header, len %d\n", __func__,
2315 		    stat->cfg_phy_len);
2316 		return;
2317 	}
2318 	if (desc->type == IWN_MPDU_RX_DONE) {
2319 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2320 		head = (caddr_t)(mpdu + 1);
2321 		len = le16toh(mpdu->len);
2322 	} else {
2323 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2324 		len = le16toh(stat->len);
2325 	}
2326 
2327 	flags = le32toh(*(uint32_t *)(head + len));
2328 
2329 	/* Discard frames with a bad FCS early. */
2330 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2331 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2332 		    __func__, flags);
2333 		ifp->if_ierrors++;
2334 		return;
2335 	}
2336 	/* Discard frames that are too short. */
2337 	if (len < sizeof (*wh)) {
2338 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2339 		    __func__, len);
2340 		ifp->if_ierrors++;
2341 		return;
2342 	}
2343 
2344 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2345 	if (m1 == NULL) {
2346 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2347 		    __func__);
2348 		ifp->if_ierrors++;
2349 		return;
2350 	}
2351 	bus_dmamap_unload(ring->data_dmat, data->map);
2352 
2353 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2354 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2355 	if (error != 0 && error != EFBIG) {
2356 		device_printf(sc->sc_dev,
2357 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2358 		m_freem(m1);
2359 
2360 		/* Try to reload the old mbuf. */
2361 		error = bus_dmamap_load(ring->data_dmat, data->map,
2362 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2363 		    &paddr, BUS_DMA_NOWAIT);
2364 		if (error != 0 && error != EFBIG) {
2365 			panic("%s: could not load old RX mbuf", __func__);
2366 		}
2367 		/* Physical address may have changed. */
2368 		ring->desc[ring->cur] = htole32(paddr >> 8);
2369 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2370 		    BUS_DMASYNC_PREWRITE);
2371 		ifp->if_ierrors++;
2372 		return;
2373 	}
2374 
2375 	m = data->m;
2376 	data->m = m1;
2377 	/* Update RX descriptor. */
2378 	ring->desc[ring->cur] = htole32(paddr >> 8);
2379 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2380 	    BUS_DMASYNC_PREWRITE);
2381 
2382 	/* Finalize mbuf. */
2383 	m->m_pkthdr.rcvif = ifp;
2384 	m->m_data = head;
2385 	m->m_pkthdr.len = m->m_len = len;
2386 
2387 	/* Grab a reference to the source node. */
2388 	wh = mtod(m, struct ieee80211_frame *);
2389 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2390 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2391 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2392 
2393 	rssi = ops->get_rssi(sc, stat);
2394 
2395 	if (ieee80211_radiotap_active(ic)) {
2396 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2397 
2398 		tap->wr_flags = 0;
2399 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2400 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2401 		tap->wr_dbm_antsignal = (int8_t)rssi;
2402 		tap->wr_dbm_antnoise = (int8_t)nf;
2403 		tap->wr_tsft = stat->tstamp;
2404 		switch (stat->rate) {
2405 		/* CCK rates. */
2406 		case  10: tap->wr_rate =   2; break;
2407 		case  20: tap->wr_rate =   4; break;
2408 		case  55: tap->wr_rate =  11; break;
2409 		case 110: tap->wr_rate =  22; break;
2410 		/* OFDM rates. */
2411 		case 0xd: tap->wr_rate =  12; break;
2412 		case 0xf: tap->wr_rate =  18; break;
2413 		case 0x5: tap->wr_rate =  24; break;
2414 		case 0x7: tap->wr_rate =  36; break;
2415 		case 0x9: tap->wr_rate =  48; break;
2416 		case 0xb: tap->wr_rate =  72; break;
2417 		case 0x1: tap->wr_rate =  96; break;
2418 		case 0x3: tap->wr_rate = 108; break;
2419 		/* Unknown rate: should not happen. */
2420 		default:  tap->wr_rate =   0;
2421 		}
2422 	}
2423 
2424 	IWN_UNLOCK(sc);
2425 
2426 	/* Send the frame to the 802.11 layer. */
2427 	if (ni != NULL) {
2428 		if (ni->ni_flags & IEEE80211_NODE_HT)
2429 			m->m_flags |= M_AMPDU;
2430 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2431 		/* Node is no longer needed. */
2432 		ieee80211_free_node(ni);
2433 	} else
2434 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2435 
2436 	IWN_LOCK(sc);
2437 }
2438 
2439 /* Process an incoming Compressed BlockAck. */
2440 static void
2441 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2442     struct iwn_rx_data *data)
2443 {
2444 	struct ifnet *ifp = sc->sc_ifp;
2445 	struct iwn_node *wn;
2446 	struct ieee80211_node *ni;
2447 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2448 	struct iwn_tx_ring *txq;
2449 	struct ieee80211_tx_ampdu *tap;
2450 	uint64_t bitmap;
2451 	uint8_t tid;
2452 	int ackfailcnt = 0, i, shift;
2453 
2454 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2455 
2456 	txq = &sc->txq[le16toh(ba->qid)];
2457 	tap = sc->qid2tap[le16toh(ba->qid)];
2458 	tid = WME_AC_TO_TID(tap->txa_ac);
2459 	ni = tap->txa_ni;
2460 	wn = (void *)ni;
2461 
2462 	if (wn->agg[tid].bitmap == 0)
2463 		return;
2464 
2465 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2466 	if (shift < 0)
2467 		shift += 0x100;
2468 
2469 	if (wn->agg[tid].nframes > (64 - shift))
2470 		return;
2471 
2472 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2473 	for (i = 0; bitmap; i++) {
2474 		if ((bitmap & 1) == 0) {
2475 			ifp->if_oerrors++;
2476 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2477 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2478 		} else {
2479 			ifp->if_opackets++;
2480 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2481 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2482 		}
2483 		bitmap >>= 1;
2484 	}
2485 }
2486 
2487 /*
2488  * Process a CALIBRATION_RESULT notification sent by the initialization
2489  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2490  */
2491 static void
2492 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2493     struct iwn_rx_data *data)
2494 {
2495 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2496 	int len, idx = -1;
2497 
2498 	/* Runtime firmware should not send such a notification. */
2499 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2500 		return;
2501 
2502 	len = (le32toh(desc->len) & 0x3fff) - 4;
2503 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2504 
2505 	switch (calib->code) {
2506 	case IWN5000_PHY_CALIB_DC:
2507 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2508 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2509 		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2510 		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2511 			idx = 0;
2512 		break;
2513 	case IWN5000_PHY_CALIB_LO:
2514 		idx = 1;
2515 		break;
2516 	case IWN5000_PHY_CALIB_TX_IQ:
2517 		idx = 2;
2518 		break;
2519 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2520 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2521 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2522 			idx = 3;
2523 		break;
2524 	case IWN5000_PHY_CALIB_BASE_BAND:
2525 		idx = 4;
2526 		break;
2527 	}
2528 	if (idx == -1)	/* Ignore other results. */
2529 		return;
2530 
2531 	/* Save calibration result. */
2532 	if (sc->calibcmd[idx].buf != NULL)
2533 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2534 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2535 	if (sc->calibcmd[idx].buf == NULL) {
2536 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2537 		    "not enough memory for calibration result %d\n",
2538 		    calib->code);
2539 		return;
2540 	}
2541 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2542 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2543 	sc->calibcmd[idx].len = len;
2544 	memcpy(sc->calibcmd[idx].buf, calib, len);
2545 }
2546 
2547 /*
2548  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2549  * The latter is sent by the firmware after each received beacon.
2550  */
2551 static void
2552 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2553     struct iwn_rx_data *data)
2554 {
2555 	struct iwn_ops *ops = &sc->ops;
2556 	struct ifnet *ifp = sc->sc_ifp;
2557 	struct ieee80211com *ic = ifp->if_l2com;
2558 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2559 	struct iwn_calib_state *calib = &sc->calib;
2560 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2561 	int temp;
2562 
2563 	/* Ignore statistics received during a scan. */
2564 	if (vap->iv_state != IEEE80211_S_RUN ||
2565 	    (ic->ic_flags & IEEE80211_F_SCAN))
2566 		return;
2567 
2568 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2569 
2570 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2571 	    __func__, desc->type);
2572 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2573 
2574 	/* Test if temperature has changed. */
2575 	if (stats->general.temp != sc->rawtemp) {
2576 		/* Convert "raw" temperature to degC. */
2577 		sc->rawtemp = stats->general.temp;
2578 		temp = ops->get_temperature(sc);
2579 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2580 		    __func__, temp);
2581 
2582 		/* Update TX power if need be (4965AGN only). */
2583 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2584 			iwn4965_power_calibration(sc, temp);
2585 	}
2586 
2587 	if (desc->type != IWN_BEACON_STATISTICS)
2588 		return;	/* Reply to a statistics request. */
2589 
2590 	sc->noise = iwn_get_noise(&stats->rx.general);
2591 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2592 
2593 	/* Test that RSSI and noise are present in stats report. */
2594 	if (le32toh(stats->rx.general.flags) != 1) {
2595 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2596 		    "received statistics without RSSI");
2597 		return;
2598 	}
2599 
2600 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2601 		iwn_collect_noise(sc, &stats->rx.general);
2602 	else if (calib->state == IWN_CALIB_STATE_RUN)
2603 		iwn_tune_sensitivity(sc, &stats->rx);
2604 }
2605 
2606 /*
2607  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2608  * and 5000 adapters have different incompatible TX status formats.
2609  */
2610 static void
2611 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2612     struct iwn_rx_data *data)
2613 {
2614 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2615 	struct iwn_tx_ring *ring;
2616 	int qid;
2617 
2618 	qid = desc->qid & 0xf;
2619 	ring = &sc->txq[qid];
2620 
2621 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2622 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2623 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2624 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2625 	    le32toh(stat->status));
2626 
2627 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2628 	if (qid >= sc->firstaggqueue) {
2629 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2630 		    &stat->status);
2631 	} else {
2632 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2633 		    le32toh(stat->status) & 0xff);
2634 	}
2635 }
2636 
2637 static void
2638 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2639     struct iwn_rx_data *data)
2640 {
2641 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2642 	struct iwn_tx_ring *ring;
2643 	int qid;
2644 
2645 	qid = desc->qid & 0xf;
2646 	ring = &sc->txq[qid];
2647 
2648 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2649 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2650 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2651 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2652 	    le32toh(stat->status));
2653 
2654 #ifdef notyet
2655 	/* Reset TX scheduler slot. */
2656 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2657 #endif
2658 
2659 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2660 	if (qid >= sc->firstaggqueue) {
2661 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2662 		    &stat->status);
2663 	} else {
2664 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2665 		    le16toh(stat->status) & 0xff);
2666 	}
2667 }
2668 
2669 /*
2670  * Adapter-independent backend for TX_DONE firmware notifications.
2671  */
2672 static void
2673 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2674     uint8_t status)
2675 {
2676 	struct ifnet *ifp = sc->sc_ifp;
2677 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2678 	struct iwn_tx_data *data = &ring->data[desc->idx];
2679 	struct mbuf *m;
2680 	struct ieee80211_node *ni;
2681 	struct ieee80211vap *vap;
2682 
2683 	KASSERT(data->ni != NULL, ("no node"));
2684 
2685 	/* Unmap and free mbuf. */
2686 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2687 	bus_dmamap_unload(ring->data_dmat, data->map);
2688 	m = data->m, data->m = NULL;
2689 	ni = data->ni, data->ni = NULL;
2690 	vap = ni->ni_vap;
2691 
2692 	if (m->m_flags & M_TXCB) {
2693 		/*
2694 		 * Channels marked for "radar" require traffic to be received
2695 		 * to unlock before we can transmit.  Until traffic is seen
2696 		 * any attempt to transmit is returned immediately with status
2697 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2698 		 * happen on first authenticate after scanning.  To workaround
2699 		 * this we ignore a failure of this sort in AUTH state so the
2700 		 * 802.11 layer will fall back to using a timeout to wait for
2701 		 * the AUTH reply.  This allows the firmware time to see
2702 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2703 		 * unclear why the firmware does not maintain state for
2704 		 * channels recently visited as this would allow immediate
2705 		 * use of the channel after a scan (where we see traffic).
2706 		 */
2707 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2708 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2709 			ieee80211_process_callback(ni, m, 0);
2710 		else
2711 			ieee80211_process_callback(ni, m,
2712 			    (status & IWN_TX_FAIL) != 0);
2713 	}
2714 
2715 	/*
2716 	 * Update rate control statistics for the node.
2717 	 */
2718 	if (status & IWN_TX_FAIL) {
2719 		ifp->if_oerrors++;
2720 		ieee80211_ratectl_tx_complete(vap, ni,
2721 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2722 	} else {
2723 		ifp->if_opackets++;
2724 		ieee80211_ratectl_tx_complete(vap, ni,
2725 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2726 	}
2727 	m_freem(m);
2728 	ieee80211_free_node(ni);
2729 
2730 	sc->sc_tx_timer = 0;
2731 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2732 		sc->qfullmsk &= ~(1 << ring->qid);
2733 		if (sc->qfullmsk == 0 &&
2734 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2735 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2736 			iwn_start_locked(ifp);
2737 		}
2738 	}
2739 }
2740 
2741 /*
2742  * Process a "command done" firmware notification.  This is where we wakeup
2743  * processes waiting for a synchronous command completion.
2744  */
2745 static void
2746 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2747 {
2748 	struct iwn_tx_ring *ring = &sc->txq[4];
2749 	struct iwn_tx_data *data;
2750 
2751 	if ((desc->qid & 0xf) != 4)
2752 		return;	/* Not a command ack. */
2753 
2754 	data = &ring->data[desc->idx];
2755 
2756 	/* If the command was mapped in an mbuf, free it. */
2757 	if (data->m != NULL) {
2758 		bus_dmamap_sync(ring->data_dmat, data->map,
2759 		    BUS_DMASYNC_POSTWRITE);
2760 		bus_dmamap_unload(ring->data_dmat, data->map);
2761 		m_freem(data->m);
2762 		data->m = NULL;
2763 	}
2764 	wakeup(&ring->desc[desc->idx]);
2765 }
2766 
2767 static void
2768 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
2769     void *stat)
2770 {
2771 	struct ifnet *ifp = sc->sc_ifp;
2772 	struct iwn_tx_ring *ring = &sc->txq[qid];
2773 	struct iwn_tx_data *data;
2774 	struct mbuf *m;
2775 	struct iwn_node *wn;
2776 	struct ieee80211_node *ni;
2777 	struct ieee80211vap *vap;
2778 	struct ieee80211_tx_ampdu *tap;
2779 	uint64_t bitmap;
2780 	uint32_t *status = stat;
2781 	uint16_t *aggstatus = stat;
2782 	uint8_t tid;
2783 	int bit, i, lastidx, seqno, shift, start;
2784 
2785 #ifdef NOT_YET
2786 	if (nframes == 1) {
2787 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
2788 			printf("ieee80211_send_bar()\n");
2789 	}
2790 #endif
2791 
2792 	bitmap = 0;
2793 	start = idx;
2794 	for (i = 0; i < nframes; i++) {
2795 		if (le16toh(aggstatus[i * 2]) & 0xc)
2796 			continue;
2797 
2798 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
2799 		bit = idx - start;
2800 		shift = 0;
2801 		if (bit >= 64) {
2802 			shift = 0x100 - idx + start;
2803 			bit = 0;
2804 			start = idx;
2805 		} else if (bit <= -64)
2806 			bit = 0x100 - start + idx;
2807 		else if (bit < 0) {
2808 			shift = start - idx;
2809 			start = idx;
2810 			bit = 0;
2811 		}
2812 		bitmap = bitmap << shift;
2813 		bitmap |= 1ULL << bit;
2814 	}
2815 	tap = sc->qid2tap[qid];
2816 	if (tap != NULL) {
2817 		tid = WME_AC_TO_TID(tap->txa_ac);
2818 		wn = (void *)tap->txa_ni;
2819 		wn->agg[tid].bitmap = bitmap;
2820 		wn->agg[tid].startidx = start;
2821 		wn->agg[tid].nframes = nframes;
2822 	}
2823 
2824 	seqno = le32toh(*(status + nframes)) & 0xfff;
2825 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
2826 		data = &ring->data[ring->read];
2827 
2828 		KASSERT(data->ni != NULL, ("no node"));
2829 
2830 		/* Unmap and free mbuf. */
2831 		bus_dmamap_sync(ring->data_dmat, data->map,
2832 		    BUS_DMASYNC_POSTWRITE);
2833 		bus_dmamap_unload(ring->data_dmat, data->map);
2834 		m = data->m, data->m = NULL;
2835 		ni = data->ni, data->ni = NULL;
2836 		vap = ni->ni_vap;
2837 
2838 		if (m->m_flags & M_TXCB)
2839 			ieee80211_process_callback(ni, m, 1);
2840 
2841 		m_freem(m);
2842 		ieee80211_free_node(ni);
2843 
2844 		ring->queued--;
2845 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
2846 	}
2847 
2848 	sc->sc_tx_timer = 0;
2849 	if (ring->queued < IWN_TX_RING_LOMARK) {
2850 		sc->qfullmsk &= ~(1 << ring->qid);
2851 		if (sc->qfullmsk == 0 &&
2852 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2853 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2854 			iwn_start_locked(ifp);
2855 		}
2856 	}
2857 }
2858 
2859 /*
2860  * Process an INT_FH_RX or INT_SW_RX interrupt.
2861  */
2862 static void
2863 iwn_notif_intr(struct iwn_softc *sc)
2864 {
2865 	struct iwn_ops *ops = &sc->ops;
2866 	struct ifnet *ifp = sc->sc_ifp;
2867 	struct ieee80211com *ic = ifp->if_l2com;
2868 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2869 	uint16_t hw;
2870 
2871 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2872 	    BUS_DMASYNC_POSTREAD);
2873 
2874 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2875 	while (sc->rxq.cur != hw) {
2876 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2877 		struct iwn_rx_desc *desc;
2878 
2879 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2880 		    BUS_DMASYNC_POSTREAD);
2881 		desc = mtod(data->m, struct iwn_rx_desc *);
2882 
2883 		DPRINTF(sc, IWN_DEBUG_RECV,
2884 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2885 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2886 		    desc->type, iwn_intr_str(desc->type),
2887 		    le16toh(desc->len));
2888 
2889 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2890 			iwn_cmd_done(sc, desc);
2891 
2892 		switch (desc->type) {
2893 		case IWN_RX_PHY:
2894 			iwn_rx_phy(sc, desc, data);
2895 			break;
2896 
2897 		case IWN_RX_DONE:		/* 4965AGN only. */
2898 		case IWN_MPDU_RX_DONE:
2899 			/* An 802.11 frame has been received. */
2900 			iwn_rx_done(sc, desc, data);
2901 			break;
2902 
2903 		case IWN_RX_COMPRESSED_BA:
2904 			/* A Compressed BlockAck has been received. */
2905 			iwn_rx_compressed_ba(sc, desc, data);
2906 			break;
2907 
2908 		case IWN_TX_DONE:
2909 			/* An 802.11 frame has been transmitted. */
2910 			ops->tx_done(sc, desc, data);
2911 			break;
2912 
2913 		case IWN_RX_STATISTICS:
2914 		case IWN_BEACON_STATISTICS:
2915 			iwn_rx_statistics(sc, desc, data);
2916 			break;
2917 
2918 		case IWN_BEACON_MISSED:
2919 		{
2920 			struct iwn_beacon_missed *miss =
2921 			    (struct iwn_beacon_missed *)(desc + 1);
2922 			int misses;
2923 
2924 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2925 			    BUS_DMASYNC_POSTREAD);
2926 			misses = le32toh(miss->consecutive);
2927 
2928 			DPRINTF(sc, IWN_DEBUG_STATE,
2929 			    "%s: beacons missed %d/%d\n", __func__,
2930 			    misses, le32toh(miss->total));
2931 			/*
2932 			 * If more than 5 consecutive beacons are missed,
2933 			 * reinitialize the sensitivity state machine.
2934 			 */
2935 			if (vap->iv_state == IEEE80211_S_RUN &&
2936 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2937 				if (misses > 5)
2938 					(void)iwn_init_sensitivity(sc);
2939 				if (misses >= vap->iv_bmissthreshold) {
2940 					IWN_UNLOCK(sc);
2941 					ieee80211_beacon_miss(ic);
2942 					IWN_LOCK(sc);
2943 				}
2944 			}
2945 			break;
2946 		}
2947 		case IWN_UC_READY:
2948 		{
2949 			struct iwn_ucode_info *uc =
2950 			    (struct iwn_ucode_info *)(desc + 1);
2951 
2952 			/* The microcontroller is ready. */
2953 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2954 			    BUS_DMASYNC_POSTREAD);
2955 			DPRINTF(sc, IWN_DEBUG_RESET,
2956 			    "microcode alive notification version=%d.%d "
2957 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2958 			    uc->subtype, le32toh(uc->valid));
2959 
2960 			if (le32toh(uc->valid) != 1) {
2961 				device_printf(sc->sc_dev,
2962 				    "microcontroller initialization failed");
2963 				break;
2964 			}
2965 			if (uc->subtype == IWN_UCODE_INIT) {
2966 				/* Save microcontroller report. */
2967 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2968 			}
2969 			/* Save the address of the error log in SRAM. */
2970 			sc->errptr = le32toh(uc->errptr);
2971 			break;
2972 		}
2973 		case IWN_STATE_CHANGED:
2974 		{
2975 			uint32_t *status = (uint32_t *)(desc + 1);
2976 
2977 			/*
2978 			 * State change allows hardware switch change to be
2979 			 * noted. However, we handle this in iwn_intr as we
2980 			 * get both the enable/disble intr.
2981 			 */
2982 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2983 			    BUS_DMASYNC_POSTREAD);
2984 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2985 			    le32toh(*status));
2986 			break;
2987 		}
2988 		case IWN_START_SCAN:
2989 		{
2990 			struct iwn_start_scan *scan =
2991 			    (struct iwn_start_scan *)(desc + 1);
2992 
2993 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2994 			    BUS_DMASYNC_POSTREAD);
2995 			DPRINTF(sc, IWN_DEBUG_ANY,
2996 			    "%s: scanning channel %d status %x\n",
2997 			    __func__, scan->chan, le32toh(scan->status));
2998 			break;
2999 		}
3000 		case IWN_STOP_SCAN:
3001 		{
3002 			struct iwn_stop_scan *scan =
3003 			    (struct iwn_stop_scan *)(desc + 1);
3004 
3005 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3006 			    BUS_DMASYNC_POSTREAD);
3007 			DPRINTF(sc, IWN_DEBUG_STATE,
3008 			    "scan finished nchan=%d status=%d chan=%d\n",
3009 			    scan->nchan, scan->status, scan->chan);
3010 
3011 			IWN_UNLOCK(sc);
3012 			ieee80211_scan_next(vap);
3013 			IWN_LOCK(sc);
3014 			break;
3015 		}
3016 		case IWN5000_CALIBRATION_RESULT:
3017 			iwn5000_rx_calib_results(sc, desc, data);
3018 			break;
3019 
3020 		case IWN5000_CALIBRATION_DONE:
3021 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3022 			wakeup(sc);
3023 			break;
3024 		}
3025 
3026 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3027 	}
3028 
3029 	/* Tell the firmware what we have processed. */
3030 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3031 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3032 }
3033 
3034 /*
3035  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3036  * from power-down sleep mode.
3037  */
3038 static void
3039 iwn_wakeup_intr(struct iwn_softc *sc)
3040 {
3041 	int qid;
3042 
3043 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3044 	    __func__);
3045 
3046 	/* Wakeup RX and TX rings. */
3047 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3048 	for (qid = 0; qid < sc->ntxqs; qid++) {
3049 		struct iwn_tx_ring *ring = &sc->txq[qid];
3050 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3051 	}
3052 }
3053 
3054 static void
3055 iwn_rftoggle_intr(struct iwn_softc *sc)
3056 {
3057 	struct ifnet *ifp = sc->sc_ifp;
3058 	struct ieee80211com *ic = ifp->if_l2com;
3059 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3060 
3061 	IWN_LOCK_ASSERT(sc);
3062 
3063 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3064 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3065 	if (tmp & IWN_GP_CNTRL_RFKILL)
3066 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3067 	else
3068 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3069 }
3070 
3071 /*
3072  * Dump the error log of the firmware when a firmware panic occurs.  Although
3073  * we can't debug the firmware because it is neither open source nor free, it
3074  * can help us to identify certain classes of problems.
3075  */
3076 static void
3077 iwn_fatal_intr(struct iwn_softc *sc)
3078 {
3079 	struct iwn_fw_dump dump;
3080 	int i;
3081 
3082 	IWN_LOCK_ASSERT(sc);
3083 
3084 	/* Force a complete recalibration on next init. */
3085 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3086 
3087 	/* Check that the error log address is valid. */
3088 	if (sc->errptr < IWN_FW_DATA_BASE ||
3089 	    sc->errptr + sizeof (dump) >
3090 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3091 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3092 		    sc->errptr);
3093 		return;
3094 	}
3095 	if (iwn_nic_lock(sc) != 0) {
3096 		printf("%s: could not read firmware error log\n", __func__);
3097 		return;
3098 	}
3099 	/* Read firmware error log from SRAM. */
3100 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3101 	    sizeof (dump) / sizeof (uint32_t));
3102 	iwn_nic_unlock(sc);
3103 
3104 	if (dump.valid == 0) {
3105 		printf("%s: firmware error log is empty\n", __func__);
3106 		return;
3107 	}
3108 	printf("firmware error log:\n");
3109 	printf("  error type      = \"%s\" (0x%08X)\n",
3110 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3111 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3112 	    dump.id);
3113 	printf("  program counter = 0x%08X\n", dump.pc);
3114 	printf("  source line     = 0x%08X\n", dump.src_line);
3115 	printf("  error data      = 0x%08X%08X\n",
3116 	    dump.error_data[0], dump.error_data[1]);
3117 	printf("  branch link     = 0x%08X%08X\n",
3118 	    dump.branch_link[0], dump.branch_link[1]);
3119 	printf("  interrupt link  = 0x%08X%08X\n",
3120 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3121 	printf("  time            = %u\n", dump.time[0]);
3122 
3123 	/* Dump driver status (TX and RX rings) while we're here. */
3124 	printf("driver status:\n");
3125 	for (i = 0; i < sc->ntxqs; i++) {
3126 		struct iwn_tx_ring *ring = &sc->txq[i];
3127 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3128 		    i, ring->qid, ring->cur, ring->queued);
3129 	}
3130 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3131 }
3132 
3133 static void
3134 iwn_intr(void *arg)
3135 {
3136 	struct iwn_softc *sc = arg;
3137 	struct ifnet *ifp = sc->sc_ifp;
3138 	uint32_t r1, r2, tmp;
3139 
3140 	IWN_LOCK(sc);
3141 
3142 	/* Disable interrupts. */
3143 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3144 
3145 	/* Read interrupts from ICT (fast) or from registers (slow). */
3146 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3147 		tmp = 0;
3148 		while (sc->ict[sc->ict_cur] != 0) {
3149 			tmp |= sc->ict[sc->ict_cur];
3150 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3151 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3152 		}
3153 		tmp = le32toh(tmp);
3154 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3155 			tmp = 0;
3156 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3157 			tmp |= 0x8000;
3158 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3159 		r2 = 0;	/* Unused. */
3160 	} else {
3161 		r1 = IWN_READ(sc, IWN_INT);
3162 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3163 			return;	/* Hardware gone! */
3164 		r2 = IWN_READ(sc, IWN_FH_INT);
3165 	}
3166 
3167 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
3168 
3169 	if (r1 == 0 && r2 == 0)
3170 		goto done;	/* Interrupt not for us. */
3171 
3172 	/* Acknowledge interrupts. */
3173 	IWN_WRITE(sc, IWN_INT, r1);
3174 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3175 		IWN_WRITE(sc, IWN_FH_INT, r2);
3176 
3177 	if (r1 & IWN_INT_RF_TOGGLED) {
3178 		iwn_rftoggle_intr(sc);
3179 		goto done;
3180 	}
3181 	if (r1 & IWN_INT_CT_REACHED) {
3182 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3183 		    __func__);
3184 	}
3185 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3186 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3187 		    __func__);
3188 		/* Dump firmware error log and stop. */
3189 		iwn_fatal_intr(sc);
3190 		ifp->if_flags &= ~IFF_UP;
3191 		iwn_stop_locked(sc);
3192 		goto done;
3193 	}
3194 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3195 	    (r2 & IWN_FH_INT_RX)) {
3196 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3197 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3198 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3199 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3200 			    IWN_INT_PERIODIC_DIS);
3201 			iwn_notif_intr(sc);
3202 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3203 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3204 				    IWN_INT_PERIODIC_ENA);
3205 			}
3206 		} else
3207 			iwn_notif_intr(sc);
3208 	}
3209 
3210 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3211 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3212 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3213 		wakeup(sc);	/* FH DMA transfer completed. */
3214 	}
3215 
3216 	if (r1 & IWN_INT_ALIVE)
3217 		wakeup(sc);	/* Firmware is alive. */
3218 
3219 	if (r1 & IWN_INT_WAKEUP)
3220 		iwn_wakeup_intr(sc);
3221 
3222 done:
3223 	/* Re-enable interrupts. */
3224 	if (ifp->if_flags & IFF_UP)
3225 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3226 
3227 	IWN_UNLOCK(sc);
3228 }
3229 
3230 /*
3231  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3232  * 5000 adapters use a slightly different format).
3233  */
3234 static void
3235 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3236     uint16_t len)
3237 {
3238 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3239 
3240 	*w = htole16(len + 8);
3241 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3242 	    BUS_DMASYNC_PREWRITE);
3243 	if (idx < IWN_SCHED_WINSZ) {
3244 		*(w + IWN_TX_RING_COUNT) = *w;
3245 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3246 		    BUS_DMASYNC_PREWRITE);
3247 	}
3248 }
3249 
3250 static void
3251 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3252     uint16_t len)
3253 {
3254 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3255 
3256 	*w = htole16(id << 12 | (len + 8));
3257 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3258 	    BUS_DMASYNC_PREWRITE);
3259 	if (idx < IWN_SCHED_WINSZ) {
3260 		*(w + IWN_TX_RING_COUNT) = *w;
3261 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3262 		    BUS_DMASYNC_PREWRITE);
3263 	}
3264 }
3265 
3266 #ifdef notyet
3267 static void
3268 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3269 {
3270 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3271 
3272 	*w = (*w & htole16(0xf000)) | htole16(1);
3273 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3274 	    BUS_DMASYNC_PREWRITE);
3275 	if (idx < IWN_SCHED_WINSZ) {
3276 		*(w + IWN_TX_RING_COUNT) = *w;
3277 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3278 		    BUS_DMASYNC_PREWRITE);
3279 	}
3280 }
3281 #endif
3282 
3283 static int
3284 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3285 {
3286 	struct iwn_ops *ops = &sc->ops;
3287 	const struct ieee80211_txparam *tp;
3288 	struct ieee80211vap *vap = ni->ni_vap;
3289 	struct ieee80211com *ic = ni->ni_ic;
3290 	struct iwn_node *wn = (void *)ni;
3291 	struct iwn_tx_ring *ring;
3292 	struct iwn_tx_desc *desc;
3293 	struct iwn_tx_data *data;
3294 	struct iwn_tx_cmd *cmd;
3295 	struct iwn_cmd_data *tx;
3296 	struct ieee80211_frame *wh;
3297 	struct ieee80211_key *k = NULL;
3298 	struct mbuf *m1;
3299 	uint32_t flags;
3300 	uint16_t qos;
3301 	u_int hdrlen;
3302 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3303 	uint8_t tid, ridx, txant, type;
3304 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3305 
3306 	IWN_LOCK_ASSERT(sc);
3307 
3308 	wh = mtod(m, struct ieee80211_frame *);
3309 	hdrlen = ieee80211_anyhdrsize(wh);
3310 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3311 
3312 	/* Select EDCA Access Category and TX ring for this frame. */
3313 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3314 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3315 		tid = qos & IEEE80211_QOS_TID;
3316 	} else {
3317 		qos = 0;
3318 		tid = 0;
3319 	}
3320 	ac = M_WME_GETAC(m);
3321 
3322 	if (IEEE80211_QOS_HAS_SEQ(wh) &&
3323 	    IEEE80211_AMPDU_RUNNING(&ni->ni_tx_ampdu[ac])) {
3324 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3325 
3326 		ring = &sc->txq[*(int *)tap->txa_private];
3327 		*(uint16_t *)wh->i_seq =
3328 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3329 		ni->ni_txseqs[tid]++;
3330 	} else {
3331 		ring = &sc->txq[ac];
3332 	}
3333 	desc = &ring->desc[ring->cur];
3334 	data = &ring->data[ring->cur];
3335 
3336 	/* Choose a TX rate index. */
3337 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3338 	if (type == IEEE80211_FC0_TYPE_MGT)
3339 		rate = tp->mgmtrate;
3340 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3341 		rate = tp->mcastrate;
3342 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3343 		rate = tp->ucastrate;
3344 	else {
3345 		/* XXX pass pktlen */
3346 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3347 		rate = ni->ni_txrate;
3348 	}
3349 	ridx = ic->ic_rt->rateCodeToIndex[rate];
3350 
3351 	/* Encrypt the frame if need be. */
3352 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3353 		/* Retrieve key for TX. */
3354 		k = ieee80211_crypto_encap(ni, m);
3355 		if (k == NULL) {
3356 			m_freem(m);
3357 			return ENOBUFS;
3358 		}
3359 		/* 802.11 header may have moved. */
3360 		wh = mtod(m, struct ieee80211_frame *);
3361 	}
3362 	totlen = m->m_pkthdr.len;
3363 
3364 	if (ieee80211_radiotap_active_vap(vap)) {
3365 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3366 
3367 		tap->wt_flags = 0;
3368 		tap->wt_rate = rate;
3369 		if (k != NULL)
3370 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3371 
3372 		ieee80211_radiotap_tx(vap, m);
3373 	}
3374 
3375 	/* Prepare TX firmware command. */
3376 	cmd = &ring->cmd[ring->cur];
3377 	cmd->code = IWN_CMD_TX_DATA;
3378 	cmd->flags = 0;
3379 	cmd->qid = ring->qid;
3380 	cmd->idx = ring->cur;
3381 
3382 	tx = (struct iwn_cmd_data *)cmd->data;
3383 	/* NB: No need to clear tx, all fields are reinitialized here. */
3384 	tx->scratch = 0;	/* clear "scratch" area */
3385 
3386 	flags = 0;
3387 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3388 		/* Unicast frame, check if an ACK is expected. */
3389 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3390 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3391 			flags |= IWN_TX_NEED_ACK;
3392 	}
3393 	if ((wh->i_fc[0] &
3394 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3395 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3396 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3397 
3398 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3399 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3400 
3401 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3402 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3403 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3404 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3405 			flags |= IWN_TX_NEED_RTS;
3406 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3407 		    ridx >= IWN_RIDX_OFDM6) {
3408 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3409 				flags |= IWN_TX_NEED_CTS;
3410 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3411 				flags |= IWN_TX_NEED_RTS;
3412 		}
3413 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3414 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3415 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3416 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3417 				flags |= IWN_TX_NEED_PROTECTION;
3418 			} else
3419 				flags |= IWN_TX_FULL_TXOP;
3420 		}
3421 	}
3422 
3423 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3424 	    type != IEEE80211_FC0_TYPE_DATA)
3425 		tx->id = sc->broadcast_id;
3426 	else
3427 		tx->id = wn->id;
3428 
3429 	if (type == IEEE80211_FC0_TYPE_MGT) {
3430 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3431 
3432 		/* Tell HW to set timestamp in probe responses. */
3433 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3434 			flags |= IWN_TX_INSERT_TSTAMP;
3435 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3436 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3437 			tx->timeout = htole16(3);
3438 		else
3439 			tx->timeout = htole16(2);
3440 	} else
3441 		tx->timeout = htole16(0);
3442 
3443 	if (hdrlen & 3) {
3444 		/* First segment length must be a multiple of 4. */
3445 		flags |= IWN_TX_NEED_PADDING;
3446 		pad = 4 - (hdrlen & 3);
3447 	} else
3448 		pad = 0;
3449 
3450 	tx->len = htole16(totlen);
3451 	tx->tid = tid;
3452 	tx->rts_ntries = 60;
3453 	tx->data_ntries = 15;
3454 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3455 	tx->rate = wn->ridx[rate];
3456 	if (tx->id == sc->broadcast_id) {
3457 		/* Group or management frame. */
3458 		tx->linkq = 0;
3459 		/* XXX Alternate between antenna A and B? */
3460 		txant = IWN_LSB(sc->txchainmask);
3461 		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3462 	} else {
3463 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3464 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3465 	}
3466 	/* Set physical address of "scratch area". */
3467 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3468 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3469 
3470 	/* Copy 802.11 header in TX command. */
3471 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3472 
3473 	/* Trim 802.11 header. */
3474 	m_adj(m, hdrlen);
3475 	tx->security = 0;
3476 	tx->flags = htole32(flags);
3477 
3478 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3479 	    &nsegs, BUS_DMA_NOWAIT);
3480 	if (error != 0) {
3481 		if (error != EFBIG) {
3482 			device_printf(sc->sc_dev,
3483 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3484 			m_freem(m);
3485 			return error;
3486 		}
3487 		/* Too many DMA segments, linearize mbuf. */
3488 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3489 		if (m1 == NULL) {
3490 			device_printf(sc->sc_dev,
3491 			    "%s: could not defrag mbuf\n", __func__);
3492 			m_freem(m);
3493 			return ENOBUFS;
3494 		}
3495 		m = m1;
3496 
3497 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3498 		    segs, &nsegs, BUS_DMA_NOWAIT);
3499 		if (error != 0) {
3500 			device_printf(sc->sc_dev,
3501 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3502 			m_freem(m);
3503 			return error;
3504 		}
3505 	}
3506 
3507 	data->m = m;
3508 	data->ni = ni;
3509 
3510 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3511 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3512 
3513 	/* Fill TX descriptor. */
3514 	desc->nsegs = 1;
3515 	if (m->m_len != 0)
3516 		desc->nsegs += nsegs;
3517 	/* First DMA segment is used by the TX command. */
3518 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3519 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3520 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3521 	/* Other DMA segments are for data payload. */
3522 	seg = &segs[0];
3523 	for (i = 1; i <= nsegs; i++) {
3524 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3525 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3526 		    seg->ds_len << 4);
3527 		seg++;
3528 	}
3529 
3530 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3531 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3532 	    BUS_DMASYNC_PREWRITE);
3533 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3534 	    BUS_DMASYNC_PREWRITE);
3535 
3536 	/* Update TX scheduler. */
3537 	if (ring->qid >= sc->firstaggqueue)
3538 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3539 
3540 	/* Kick TX ring. */
3541 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3542 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3543 
3544 	/* Mark TX ring as full if we reach a certain threshold. */
3545 	if (++ring->queued > IWN_TX_RING_HIMARK)
3546 		sc->qfullmsk |= 1 << ring->qid;
3547 
3548 	return 0;
3549 }
3550 
3551 static int
3552 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3553     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3554 {
3555 	struct iwn_ops *ops = &sc->ops;
3556 	struct ifnet *ifp = sc->sc_ifp;
3557 	struct ieee80211vap *vap = ni->ni_vap;
3558 	struct ieee80211com *ic = ifp->if_l2com;
3559 	struct iwn_tx_cmd *cmd;
3560 	struct iwn_cmd_data *tx;
3561 	struct ieee80211_frame *wh;
3562 	struct iwn_tx_ring *ring;
3563 	struct iwn_tx_desc *desc;
3564 	struct iwn_tx_data *data;
3565 	struct mbuf *m1;
3566 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3567 	uint32_t flags;
3568 	u_int hdrlen;
3569 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3570 	uint8_t ridx, type, txant;
3571 
3572 	IWN_LOCK_ASSERT(sc);
3573 
3574 	wh = mtod(m, struct ieee80211_frame *);
3575 	hdrlen = ieee80211_anyhdrsize(wh);
3576 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3577 
3578 	ac = params->ibp_pri & 3;
3579 
3580 	ring = &sc->txq[ac];
3581 	desc = &ring->desc[ring->cur];
3582 	data = &ring->data[ring->cur];
3583 
3584 	/* Choose a TX rate index. */
3585 	rate = params->ibp_rate0;
3586 	ridx = ic->ic_rt->rateCodeToIndex[rate];
3587 	if (ridx == (uint8_t)-1) {
3588 		/* XXX fall back to mcast/mgmt rate? */
3589 		m_freem(m);
3590 		return EINVAL;
3591 	}
3592 
3593 	totlen = m->m_pkthdr.len;
3594 
3595 	/* Prepare TX firmware command. */
3596 	cmd = &ring->cmd[ring->cur];
3597 	cmd->code = IWN_CMD_TX_DATA;
3598 	cmd->flags = 0;
3599 	cmd->qid = ring->qid;
3600 	cmd->idx = ring->cur;
3601 
3602 	tx = (struct iwn_cmd_data *)cmd->data;
3603 	/* NB: No need to clear tx, all fields are reinitialized here. */
3604 	tx->scratch = 0;	/* clear "scratch" area */
3605 
3606 	flags = 0;
3607 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3608 		flags |= IWN_TX_NEED_ACK;
3609 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3610 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3611 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3612 			flags &= ~IWN_TX_NEED_RTS;
3613 			flags |= IWN_TX_NEED_PROTECTION;
3614 		} else
3615 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3616 	}
3617 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3618 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3619 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3620 			flags &= ~IWN_TX_NEED_CTS;
3621 			flags |= IWN_TX_NEED_PROTECTION;
3622 		} else
3623 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3624 	}
3625 	if (type == IEEE80211_FC0_TYPE_MGT) {
3626 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3627 
3628 		/* Tell HW to set timestamp in probe responses. */
3629 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3630 			flags |= IWN_TX_INSERT_TSTAMP;
3631 
3632 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3633 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3634 			tx->timeout = htole16(3);
3635 		else
3636 			tx->timeout = htole16(2);
3637 	} else
3638 		tx->timeout = htole16(0);
3639 
3640 	if (hdrlen & 3) {
3641 		/* First segment length must be a multiple of 4. */
3642 		flags |= IWN_TX_NEED_PADDING;
3643 		pad = 4 - (hdrlen & 3);
3644 	} else
3645 		pad = 0;
3646 
3647 	if (ieee80211_radiotap_active_vap(vap)) {
3648 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3649 
3650 		tap->wt_flags = 0;
3651 		tap->wt_rate = rate;
3652 
3653 		ieee80211_radiotap_tx(vap, m);
3654 	}
3655 
3656 	tx->len = htole16(totlen);
3657 	tx->tid = 0;
3658 	tx->id = sc->broadcast_id;
3659 	tx->rts_ntries = params->ibp_try1;
3660 	tx->data_ntries = params->ibp_try0;
3661 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3662 	tx->rate = htole32(rate2plcp(rate));
3663 	if (ridx < IWN_RIDX_OFDM6 &&
3664 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3665 		tx->rate |= htole32(IWN_RFLAG_CCK);
3666 	/* Group or management frame. */
3667 	tx->linkq = 0;
3668 	txant = IWN_LSB(sc->txchainmask);
3669 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3670 	/* Set physical address of "scratch area". */
3671 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3672 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3673 
3674 	/* Copy 802.11 header in TX command. */
3675 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3676 
3677 	/* Trim 802.11 header. */
3678 	m_adj(m, hdrlen);
3679 	tx->security = 0;
3680 	tx->flags = htole32(flags);
3681 
3682 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3683 	    &nsegs, BUS_DMA_NOWAIT);
3684 	if (error != 0) {
3685 		if (error != EFBIG) {
3686 			device_printf(sc->sc_dev,
3687 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3688 			m_freem(m);
3689 			return error;
3690 		}
3691 		/* Too many DMA segments, linearize mbuf. */
3692 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3693 		if (m1 == NULL) {
3694 			device_printf(sc->sc_dev,
3695 			    "%s: could not defrag mbuf\n", __func__);
3696 			m_freem(m);
3697 			return ENOBUFS;
3698 		}
3699 		m = m1;
3700 
3701 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3702 		    segs, &nsegs, BUS_DMA_NOWAIT);
3703 		if (error != 0) {
3704 			device_printf(sc->sc_dev,
3705 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3706 			m_freem(m);
3707 			return error;
3708 		}
3709 	}
3710 
3711 	data->m = m;
3712 	data->ni = ni;
3713 
3714 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3715 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3716 
3717 	/* Fill TX descriptor. */
3718 	desc->nsegs = 1;
3719 	if (m->m_len != 0)
3720 		desc->nsegs += nsegs;
3721 	/* First DMA segment is used by the TX command. */
3722 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3723 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3724 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3725 	/* Other DMA segments are for data payload. */
3726 	seg = &segs[0];
3727 	for (i = 1; i <= nsegs; i++) {
3728 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3729 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3730 		    seg->ds_len << 4);
3731 		seg++;
3732 	}
3733 
3734 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3735 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3736 	    BUS_DMASYNC_PREWRITE);
3737 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3738 	    BUS_DMASYNC_PREWRITE);
3739 
3740 	/* Update TX scheduler. */
3741 	if (ring->qid >= sc->firstaggqueue)
3742 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3743 
3744 	/* Kick TX ring. */
3745 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3746 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3747 
3748 	/* Mark TX ring as full if we reach a certain threshold. */
3749 	if (++ring->queued > IWN_TX_RING_HIMARK)
3750 		sc->qfullmsk |= 1 << ring->qid;
3751 
3752 	return 0;
3753 }
3754 
3755 static int
3756 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3757     const struct ieee80211_bpf_params *params)
3758 {
3759 	struct ieee80211com *ic = ni->ni_ic;
3760 	struct ifnet *ifp = ic->ic_ifp;
3761 	struct iwn_softc *sc = ifp->if_softc;
3762 	int error = 0;
3763 
3764 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3765 		ieee80211_free_node(ni);
3766 		m_freem(m);
3767 		return ENETDOWN;
3768 	}
3769 
3770 	IWN_LOCK(sc);
3771 	if (params == NULL) {
3772 		/*
3773 		 * Legacy path; interpret frame contents to decide
3774 		 * precisely how to send the frame.
3775 		 */
3776 		error = iwn_tx_data(sc, m, ni);
3777 	} else {
3778 		/*
3779 		 * Caller supplied explicit parameters to use in
3780 		 * sending the frame.
3781 		 */
3782 		error = iwn_tx_data_raw(sc, m, ni, params);
3783 	}
3784 	if (error != 0) {
3785 		/* NB: m is reclaimed on tx failure */
3786 		ieee80211_free_node(ni);
3787 		ifp->if_oerrors++;
3788 	}
3789 	sc->sc_tx_timer = 5;
3790 
3791 	IWN_UNLOCK(sc);
3792 	return error;
3793 }
3794 
3795 static void
3796 iwn_start(struct ifnet *ifp)
3797 {
3798 	struct iwn_softc *sc = ifp->if_softc;
3799 
3800 	IWN_LOCK(sc);
3801 	iwn_start_locked(ifp);
3802 	IWN_UNLOCK(sc);
3803 }
3804 
3805 static void
3806 iwn_start_locked(struct ifnet *ifp)
3807 {
3808 	struct iwn_softc *sc = ifp->if_softc;
3809 	struct ieee80211_node *ni;
3810 	struct mbuf *m;
3811 
3812 	IWN_LOCK_ASSERT(sc);
3813 
3814 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3815 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
3816 		return;
3817 
3818 	for (;;) {
3819 		if (sc->qfullmsk != 0) {
3820 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3821 			break;
3822 		}
3823 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3824 		if (m == NULL)
3825 			break;
3826 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3827 		if (iwn_tx_data(sc, m, ni) != 0) {
3828 			ieee80211_free_node(ni);
3829 			ifp->if_oerrors++;
3830 			continue;
3831 		}
3832 		sc->sc_tx_timer = 5;
3833 	}
3834 }
3835 
3836 static void
3837 iwn_watchdog(void *arg)
3838 {
3839 	struct iwn_softc *sc = arg;
3840 	struct ifnet *ifp = sc->sc_ifp;
3841 	struct ieee80211com *ic = ifp->if_l2com;
3842 
3843 	IWN_LOCK_ASSERT(sc);
3844 
3845 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3846 
3847 	if (sc->sc_tx_timer > 0) {
3848 		if (--sc->sc_tx_timer == 0) {
3849 			if_printf(ifp, "device timeout\n");
3850 			ieee80211_runtask(ic, &sc->sc_reinit_task);
3851 			return;
3852 		}
3853 	}
3854 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
3855 }
3856 
3857 static int
3858 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3859 {
3860 	struct iwn_softc *sc = ifp->if_softc;
3861 	struct ieee80211com *ic = ifp->if_l2com;
3862 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3863 	struct ifreq *ifr = (struct ifreq *) data;
3864 	int error = 0, startall = 0, stop = 0;
3865 
3866 	switch (cmd) {
3867 	case SIOCGIFADDR:
3868 		error = ether_ioctl(ifp, cmd, data);
3869 		break;
3870 	case SIOCSIFFLAGS:
3871 		IWN_LOCK(sc);
3872 		if (ifp->if_flags & IFF_UP) {
3873 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3874 				iwn_init_locked(sc);
3875 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3876 					startall = 1;
3877 				else
3878 					stop = 1;
3879 			}
3880 		} else {
3881 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3882 				iwn_stop_locked(sc);
3883 		}
3884 		IWN_UNLOCK(sc);
3885 		if (startall)
3886 			ieee80211_start_all(ic);
3887 		else if (vap != NULL && stop)
3888 			ieee80211_stop(vap);
3889 		break;
3890 	case SIOCGIFMEDIA:
3891 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3892 		break;
3893 	default:
3894 		error = EINVAL;
3895 		break;
3896 	}
3897 	return error;
3898 }
3899 
3900 /*
3901  * Send a command to the firmware.
3902  */
3903 static int
3904 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3905 {
3906 	struct iwn_tx_ring *ring = &sc->txq[4];
3907 	struct iwn_tx_desc *desc;
3908 	struct iwn_tx_data *data;
3909 	struct iwn_tx_cmd *cmd;
3910 	struct mbuf *m;
3911 	bus_addr_t paddr;
3912 	int totlen, error;
3913 
3914 	if (async == 0)
3915 		IWN_LOCK_ASSERT(sc);
3916 
3917 	desc = &ring->desc[ring->cur];
3918 	data = &ring->data[ring->cur];
3919 	totlen = 4 + size;
3920 
3921 	if (size > sizeof cmd->data) {
3922 		/* Command is too large to fit in a descriptor. */
3923 		if (totlen > MCLBYTES)
3924 			return EINVAL;
3925 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3926 		if (m == NULL)
3927 			return ENOMEM;
3928 		cmd = mtod(m, struct iwn_tx_cmd *);
3929 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3930 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3931 		if (error != 0) {
3932 			m_freem(m);
3933 			return error;
3934 		}
3935 		data->m = m;
3936 	} else {
3937 		cmd = &ring->cmd[ring->cur];
3938 		paddr = data->cmd_paddr;
3939 	}
3940 
3941 	cmd->code = code;
3942 	cmd->flags = 0;
3943 	cmd->qid = ring->qid;
3944 	cmd->idx = ring->cur;
3945 	memcpy(cmd->data, buf, size);
3946 
3947 	desc->nsegs = 1;
3948 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3949 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3950 
3951 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3952 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3953 	    cmd->flags, cmd->qid, cmd->idx);
3954 
3955 	if (size > sizeof cmd->data) {
3956 		bus_dmamap_sync(ring->data_dmat, data->map,
3957 		    BUS_DMASYNC_PREWRITE);
3958 	} else {
3959 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3960 		    BUS_DMASYNC_PREWRITE);
3961 	}
3962 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3963 	    BUS_DMASYNC_PREWRITE);
3964 
3965 	/* Kick command ring. */
3966 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3967 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3968 
3969 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3970 }
3971 
3972 static int
3973 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3974 {
3975 	struct iwn4965_node_info hnode;
3976 	caddr_t src, dst;
3977 
3978 	/*
3979 	 * We use the node structure for 5000 Series internally (it is
3980 	 * a superset of the one for 4965AGN). We thus copy the common
3981 	 * fields before sending the command.
3982 	 */
3983 	src = (caddr_t)node;
3984 	dst = (caddr_t)&hnode;
3985 	memcpy(dst, src, 48);
3986 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3987 	memcpy(dst + 48, src + 72, 20);
3988 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3989 }
3990 
3991 static int
3992 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3993 {
3994 	/* Direct mapping. */
3995 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3996 }
3997 
3998 static int
3999 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4000 {
4001 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4002 	struct iwn_node *wn = (void *)ni;
4003 	struct ieee80211_rateset *rs = &ni->ni_rates;
4004 	struct iwn_cmd_link_quality linkq;
4005 	uint8_t txant;
4006 	int i, rate, txrate;
4007 
4008 	/* Use the first valid TX antenna. */
4009 	txant = IWN_LSB(sc->txchainmask);
4010 
4011 	memset(&linkq, 0, sizeof linkq);
4012 	linkq.id = wn->id;
4013 	linkq.antmsk_1stream = txant;
4014 	linkq.antmsk_2stream = IWN_ANT_AB;
4015 	linkq.ampdu_max = 64;
4016 	linkq.ampdu_threshold = 3;
4017 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4018 
4019 	/* Start at highest available bit-rate. */
4020 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4021 		txrate = ni->ni_htrates.rs_nrates - 1;
4022 	else
4023 		txrate = rs->rs_nrates - 1;
4024 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4025 		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4026 			rate = IEEE80211_RATE_MCS | txrate;
4027 		else
4028 			rate = RV(rs->rs_rates[txrate]);
4029 		linkq.retry[i] = wn->ridx[rate];
4030 
4031 		if ((le32toh(wn->ridx[rate]) & IWN_RFLAG_MCS) &&
4032 		    RV(le32toh(wn->ridx[rate])) > 7)
4033 			linkq.mimo = i + 1;
4034 
4035 		/* Next retry at immediate lower bit-rate. */
4036 		if (txrate > 0)
4037 			txrate--;
4038 	}
4039 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4040 #undef	RV
4041 }
4042 
4043 /*
4044  * Broadcast node is used to send group-addressed and management frames.
4045  */
4046 static int
4047 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4048 {
4049 	struct iwn_ops *ops = &sc->ops;
4050 	struct ifnet *ifp = sc->sc_ifp;
4051 	struct ieee80211com *ic = ifp->if_l2com;
4052 	struct iwn_node_info node;
4053 	struct iwn_cmd_link_quality linkq;
4054 	uint8_t txant;
4055 	int i, error;
4056 
4057 	memset(&node, 0, sizeof node);
4058 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4059 	node.id = sc->broadcast_id;
4060 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4061 	if ((error = ops->add_node(sc, &node, async)) != 0)
4062 		return error;
4063 
4064 	/* Use the first valid TX antenna. */
4065 	txant = IWN_LSB(sc->txchainmask);
4066 
4067 	memset(&linkq, 0, sizeof linkq);
4068 	linkq.id = sc->broadcast_id;
4069 	linkq.antmsk_1stream = txant;
4070 	linkq.antmsk_2stream = IWN_ANT_AB;
4071 	linkq.ampdu_max = 64;
4072 	linkq.ampdu_threshold = 3;
4073 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4074 
4075 	/* Use lowest mandatory bit-rate. */
4076 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4077 		linkq.retry[0] = htole32(0xd);
4078 	else
4079 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4080 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4081 	/* Use same bit-rate for all TX retries. */
4082 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4083 		linkq.retry[i] = linkq.retry[0];
4084 	}
4085 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4086 }
4087 
4088 static int
4089 iwn_updateedca(struct ieee80211com *ic)
4090 {
4091 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4092 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4093 	struct iwn_edca_params cmd;
4094 	int aci;
4095 
4096 	memset(&cmd, 0, sizeof cmd);
4097 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4098 	for (aci = 0; aci < WME_NUM_AC; aci++) {
4099 		const struct wmeParams *ac =
4100 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4101 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4102 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4103 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4104 		cmd.ac[aci].txoplimit =
4105 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4106 	}
4107 	IEEE80211_UNLOCK(ic);
4108 	IWN_LOCK(sc);
4109 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4110 	IWN_UNLOCK(sc);
4111 	IEEE80211_LOCK(ic);
4112 	return 0;
4113 #undef IWN_EXP2
4114 }
4115 
4116 static void
4117 iwn_update_mcast(struct ifnet *ifp)
4118 {
4119 	/* Ignore */
4120 }
4121 
4122 static void
4123 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4124 {
4125 	struct iwn_cmd_led led;
4126 
4127 	/* Clear microcode LED ownership. */
4128 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4129 
4130 	led.which = which;
4131 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4132 	led.off = off;
4133 	led.on = on;
4134 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4135 }
4136 
4137 /*
4138  * Set the critical temperature at which the firmware will stop the radio
4139  * and notify us.
4140  */
4141 static int
4142 iwn_set_critical_temp(struct iwn_softc *sc)
4143 {
4144 	struct iwn_critical_temp crit;
4145 	int32_t temp;
4146 
4147 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4148 
4149 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4150 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4151 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4152 		temp = IWN_CTOK(110);
4153 	else
4154 		temp = 110;
4155 	memset(&crit, 0, sizeof crit);
4156 	crit.tempR = htole32(temp);
4157 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4158 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4159 }
4160 
4161 static int
4162 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4163 {
4164 	struct iwn_cmd_timing cmd;
4165 	uint64_t val, mod;
4166 
4167 	memset(&cmd, 0, sizeof cmd);
4168 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4169 	cmd.bintval = htole16(ni->ni_intval);
4170 	cmd.lintval = htole16(10);
4171 
4172 	/* Compute remaining time until next beacon. */
4173 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4174 	mod = le64toh(cmd.tstamp) % val;
4175 	cmd.binitval = htole32((uint32_t)(val - mod));
4176 
4177 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4178 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4179 
4180 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4181 }
4182 
4183 static void
4184 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4185 {
4186 	struct ifnet *ifp = sc->sc_ifp;
4187 	struct ieee80211com *ic = ifp->if_l2com;
4188 
4189 	/* Adjust TX power if need be (delta >= 3 degC). */
4190 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4191 	    __func__, sc->temp, temp);
4192 	if (abs(temp - sc->temp) >= 3) {
4193 		/* Record temperature of last calibration. */
4194 		sc->temp = temp;
4195 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4196 	}
4197 }
4198 
4199 /*
4200  * Set TX power for current channel (each rate has its own power settings).
4201  * This function takes into account the regulatory information from EEPROM,
4202  * the current temperature and the current voltage.
4203  */
4204 static int
4205 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4206     int async)
4207 {
4208 /* Fixed-point arithmetic division using a n-bit fractional part. */
4209 #define fdivround(a, b, n)	\
4210 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4211 /* Linear interpolation. */
4212 #define interpolate(x, x1, y1, x2, y2, n)	\
4213 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4214 
4215 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4216 	struct iwn_ucode_info *uc = &sc->ucode_info;
4217 	struct iwn4965_cmd_txpower cmd;
4218 	struct iwn4965_eeprom_chan_samples *chans;
4219 	const uint8_t *rf_gain, *dsp_gain;
4220 	int32_t vdiff, tdiff;
4221 	int i, c, grp, maxpwr;
4222 	uint8_t chan;
4223 
4224 	/* Retrieve current channel from last RXON. */
4225 	chan = sc->rxon.chan;
4226 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4227 	    chan);
4228 
4229 	memset(&cmd, 0, sizeof cmd);
4230 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4231 	cmd.chan = chan;
4232 
4233 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4234 		maxpwr   = sc->maxpwr5GHz;
4235 		rf_gain  = iwn4965_rf_gain_5ghz;
4236 		dsp_gain = iwn4965_dsp_gain_5ghz;
4237 	} else {
4238 		maxpwr   = sc->maxpwr2GHz;
4239 		rf_gain  = iwn4965_rf_gain_2ghz;
4240 		dsp_gain = iwn4965_dsp_gain_2ghz;
4241 	}
4242 
4243 	/* Compute voltage compensation. */
4244 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4245 	if (vdiff > 0)
4246 		vdiff *= 2;
4247 	if (abs(vdiff) > 2)
4248 		vdiff = 0;
4249 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4250 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4251 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4252 
4253 	/* Get channel attenuation group. */
4254 	if (chan <= 20)		/* 1-20 */
4255 		grp = 4;
4256 	else if (chan <= 43)	/* 34-43 */
4257 		grp = 0;
4258 	else if (chan <= 70)	/* 44-70 */
4259 		grp = 1;
4260 	else if (chan <= 124)	/* 71-124 */
4261 		grp = 2;
4262 	else			/* 125-200 */
4263 		grp = 3;
4264 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4265 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4266 
4267 	/* Get channel sub-band. */
4268 	for (i = 0; i < IWN_NBANDS; i++)
4269 		if (sc->bands[i].lo != 0 &&
4270 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4271 			break;
4272 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4273 		return EINVAL;
4274 	chans = sc->bands[i].chans;
4275 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4276 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4277 
4278 	for (c = 0; c < 2; c++) {
4279 		uint8_t power, gain, temp;
4280 		int maxchpwr, pwr, ridx, idx;
4281 
4282 		power = interpolate(chan,
4283 		    chans[0].num, chans[0].samples[c][1].power,
4284 		    chans[1].num, chans[1].samples[c][1].power, 1);
4285 		gain  = interpolate(chan,
4286 		    chans[0].num, chans[0].samples[c][1].gain,
4287 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4288 		temp  = interpolate(chan,
4289 		    chans[0].num, chans[0].samples[c][1].temp,
4290 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4291 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4292 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4293 		    __func__, c, power, gain, temp);
4294 
4295 		/* Compute temperature compensation. */
4296 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4297 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4298 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4299 		    __func__, tdiff, sc->temp, temp);
4300 
4301 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4302 			/* Convert dBm to half-dBm. */
4303 			maxchpwr = sc->maxpwr[chan] * 2;
4304 			if ((ridx / 8) & 1)
4305 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4306 
4307 			pwr = maxpwr;
4308 
4309 			/* Adjust TX power based on rate. */
4310 			if ((ridx % 8) == 5)
4311 				pwr -= 15;	/* OFDM48: -7.5dB */
4312 			else if ((ridx % 8) == 6)
4313 				pwr -= 17;	/* OFDM54: -8.5dB */
4314 			else if ((ridx % 8) == 7)
4315 				pwr -= 20;	/* OFDM60: -10dB */
4316 			else
4317 				pwr -= 10;	/* Others: -5dB */
4318 
4319 			/* Do not exceed channel max TX power. */
4320 			if (pwr > maxchpwr)
4321 				pwr = maxchpwr;
4322 
4323 			idx = gain - (pwr - power) - tdiff - vdiff;
4324 			if ((ridx / 8) & 1)	/* MIMO */
4325 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4326 
4327 			if (cmd.band == 0)
4328 				idx += 9;	/* 5GHz */
4329 			if (ridx == IWN_RIDX_MAX)
4330 				idx += 5;	/* CCK */
4331 
4332 			/* Make sure idx stays in a valid range. */
4333 			if (idx < 0)
4334 				idx = 0;
4335 			else if (idx > IWN4965_MAX_PWR_INDEX)
4336 				idx = IWN4965_MAX_PWR_INDEX;
4337 
4338 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4339 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4340 			    __func__, c, ridx, idx);
4341 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4342 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4343 		}
4344 	}
4345 
4346 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4347 	    "%s: set tx power for chan %d\n", __func__, chan);
4348 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4349 
4350 #undef interpolate
4351 #undef fdivround
4352 }
4353 
4354 static int
4355 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4356     int async)
4357 {
4358 	struct iwn5000_cmd_txpower cmd;
4359 
4360 	/*
4361 	 * TX power calibration is handled automatically by the firmware
4362 	 * for 5000 Series.
4363 	 */
4364 	memset(&cmd, 0, sizeof cmd);
4365 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4366 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4367 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4368 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4369 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4370 }
4371 
4372 /*
4373  * Retrieve the maximum RSSI (in dBm) among receivers.
4374  */
4375 static int
4376 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4377 {
4378 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4379 	uint8_t mask, agc;
4380 	int rssi;
4381 
4382 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4383 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4384 
4385 	rssi = 0;
4386 	if (mask & IWN_ANT_A)
4387 		rssi = MAX(rssi, phy->rssi[0]);
4388 	if (mask & IWN_ANT_B)
4389 		rssi = MAX(rssi, phy->rssi[2]);
4390 	if (mask & IWN_ANT_C)
4391 		rssi = MAX(rssi, phy->rssi[4]);
4392 
4393 	DPRINTF(sc, IWN_DEBUG_RECV,
4394 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4395 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4396 	    rssi - agc - IWN_RSSI_TO_DBM);
4397 	return rssi - agc - IWN_RSSI_TO_DBM;
4398 }
4399 
4400 static int
4401 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4402 {
4403 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4404 	uint8_t agc;
4405 	int rssi;
4406 
4407 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4408 
4409 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4410 		   le16toh(phy->rssi[1]) & 0xff);
4411 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4412 
4413 	DPRINTF(sc, IWN_DEBUG_RECV,
4414 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4415 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4416 	    rssi - agc - IWN_RSSI_TO_DBM);
4417 	return rssi - agc - IWN_RSSI_TO_DBM;
4418 }
4419 
4420 /*
4421  * Retrieve the average noise (in dBm) among receivers.
4422  */
4423 static int
4424 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4425 {
4426 	int i, total, nbant, noise;
4427 
4428 	total = nbant = 0;
4429 	for (i = 0; i < 3; i++) {
4430 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4431 			continue;
4432 		total += noise;
4433 		nbant++;
4434 	}
4435 	/* There should be at least one antenna but check anyway. */
4436 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4437 }
4438 
4439 /*
4440  * Compute temperature (in degC) from last received statistics.
4441  */
4442 static int
4443 iwn4965_get_temperature(struct iwn_softc *sc)
4444 {
4445 	struct iwn_ucode_info *uc = &sc->ucode_info;
4446 	int32_t r1, r2, r3, r4, temp;
4447 
4448 	r1 = le32toh(uc->temp[0].chan20MHz);
4449 	r2 = le32toh(uc->temp[1].chan20MHz);
4450 	r3 = le32toh(uc->temp[2].chan20MHz);
4451 	r4 = le32toh(sc->rawtemp);
4452 
4453 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4454 		return 0;
4455 
4456 	/* Sign-extend 23-bit R4 value to 32-bit. */
4457 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4458 	/* Compute temperature in Kelvin. */
4459 	temp = (259 * (r4 - r2)) / (r3 - r1);
4460 	temp = (temp * 97) / 100 + 8;
4461 
4462 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4463 	    IWN_KTOC(temp));
4464 	return IWN_KTOC(temp);
4465 }
4466 
4467 static int
4468 iwn5000_get_temperature(struct iwn_softc *sc)
4469 {
4470 	int32_t temp;
4471 
4472 	/*
4473 	 * Temperature is not used by the driver for 5000 Series because
4474 	 * TX power calibration is handled by firmware.
4475 	 */
4476 	temp = le32toh(sc->rawtemp);
4477 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4478 		temp = (temp / -5) + sc->temp_off;
4479 		temp = IWN_KTOC(temp);
4480 	}
4481 	return temp;
4482 }
4483 
4484 /*
4485  * Initialize sensitivity calibration state machine.
4486  */
4487 static int
4488 iwn_init_sensitivity(struct iwn_softc *sc)
4489 {
4490 	struct iwn_ops *ops = &sc->ops;
4491 	struct iwn_calib_state *calib = &sc->calib;
4492 	uint32_t flags;
4493 	int error;
4494 
4495 	/* Reset calibration state machine. */
4496 	memset(calib, 0, sizeof (*calib));
4497 	calib->state = IWN_CALIB_STATE_INIT;
4498 	calib->cck_state = IWN_CCK_STATE_HIFA;
4499 	/* Set initial correlation values. */
4500 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4501 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4502 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4503 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4504 	calib->cck_x4      = 125;
4505 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4506 	calib->energy_cck  = sc->limits->energy_cck;
4507 
4508 	/* Write initial sensitivity. */
4509 	if ((error = iwn_send_sensitivity(sc)) != 0)
4510 		return error;
4511 
4512 	/* Write initial gains. */
4513 	if ((error = ops->init_gains(sc)) != 0)
4514 		return error;
4515 
4516 	/* Request statistics at each beacon interval. */
4517 	flags = 0;
4518 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4519 	    __func__);
4520 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4521 }
4522 
4523 /*
4524  * Collect noise and RSSI statistics for the first 20 beacons received
4525  * after association and use them to determine connected antennas and
4526  * to set differential gains.
4527  */
4528 static void
4529 iwn_collect_noise(struct iwn_softc *sc,
4530     const struct iwn_rx_general_stats *stats)
4531 {
4532 	struct iwn_ops *ops = &sc->ops;
4533 	struct iwn_calib_state *calib = &sc->calib;
4534 	uint32_t val;
4535 	int i;
4536 
4537 	/* Accumulate RSSI and noise for all 3 antennas. */
4538 	for (i = 0; i < 3; i++) {
4539 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4540 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4541 	}
4542 	/* NB: We update differential gains only once after 20 beacons. */
4543 	if (++calib->nbeacons < 20)
4544 		return;
4545 
4546 	/* Determine highest average RSSI. */
4547 	val = MAX(calib->rssi[0], calib->rssi[1]);
4548 	val = MAX(calib->rssi[2], val);
4549 
4550 	/* Determine which antennas are connected. */
4551 	sc->chainmask = sc->rxchainmask;
4552 	for (i = 0; i < 3; i++)
4553 		if (val - calib->rssi[i] > 15 * 20)
4554 			sc->chainmask &= ~(1 << i);
4555 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4556 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4557 	    __func__, sc->rxchainmask, sc->chainmask);
4558 
4559 	/* If none of the TX antennas are connected, keep at least one. */
4560 	if ((sc->chainmask & sc->txchainmask) == 0)
4561 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4562 
4563 	(void)ops->set_gains(sc);
4564 	calib->state = IWN_CALIB_STATE_RUN;
4565 
4566 #ifdef notyet
4567 	/* XXX Disable RX chains with no antennas connected. */
4568 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4569 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4570 #endif
4571 
4572 #if 0
4573 	/* XXX: not yet */
4574 	/* Enable power-saving mode if requested by user. */
4575 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4576 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4577 #endif
4578 }
4579 
4580 static int
4581 iwn4965_init_gains(struct iwn_softc *sc)
4582 {
4583 	struct iwn_phy_calib_gain cmd;
4584 
4585 	memset(&cmd, 0, sizeof cmd);
4586 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4587 	/* Differential gains initially set to 0 for all 3 antennas. */
4588 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4589 	    "%s: setting initial differential gains\n", __func__);
4590 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4591 }
4592 
4593 static int
4594 iwn5000_init_gains(struct iwn_softc *sc)
4595 {
4596 	struct iwn_phy_calib cmd;
4597 
4598 	memset(&cmd, 0, sizeof cmd);
4599 	cmd.code = sc->reset_noise_gain;
4600 	cmd.ngroups = 1;
4601 	cmd.isvalid = 1;
4602 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4603 	    "%s: setting initial differential gains\n", __func__);
4604 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4605 }
4606 
4607 static int
4608 iwn4965_set_gains(struct iwn_softc *sc)
4609 {
4610 	struct iwn_calib_state *calib = &sc->calib;
4611 	struct iwn_phy_calib_gain cmd;
4612 	int i, delta, noise;
4613 
4614 	/* Get minimal noise among connected antennas. */
4615 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4616 	for (i = 0; i < 3; i++)
4617 		if (sc->chainmask & (1 << i))
4618 			noise = MIN(calib->noise[i], noise);
4619 
4620 	memset(&cmd, 0, sizeof cmd);
4621 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4622 	/* Set differential gains for connected antennas. */
4623 	for (i = 0; i < 3; i++) {
4624 		if (sc->chainmask & (1 << i)) {
4625 			/* Compute attenuation (in unit of 1.5dB). */
4626 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4627 			/* NB: delta <= 0 */
4628 			/* Limit to [-4.5dB,0]. */
4629 			cmd.gain[i] = MIN(abs(delta), 3);
4630 			if (delta < 0)
4631 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4632 		}
4633 	}
4634 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4635 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4636 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4637 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4638 }
4639 
4640 static int
4641 iwn5000_set_gains(struct iwn_softc *sc)
4642 {
4643 	struct iwn_calib_state *calib = &sc->calib;
4644 	struct iwn_phy_calib_gain cmd;
4645 	int i, ant, div, delta;
4646 
4647 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4648 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4649 
4650 	memset(&cmd, 0, sizeof cmd);
4651 	cmd.code = sc->noise_gain;
4652 	cmd.ngroups = 1;
4653 	cmd.isvalid = 1;
4654 	/* Get first available RX antenna as referential. */
4655 	ant = IWN_LSB(sc->rxchainmask);
4656 	/* Set differential gains for other antennas. */
4657 	for (i = ant + 1; i < 3; i++) {
4658 		if (sc->chainmask & (1 << i)) {
4659 			/* The delta is relative to antenna "ant". */
4660 			delta = ((int32_t)calib->noise[ant] -
4661 			    (int32_t)calib->noise[i]) / div;
4662 			/* Limit to [-4.5dB,+4.5dB]. */
4663 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4664 			if (delta < 0)
4665 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4666 		}
4667 	}
4668 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4669 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4670 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4671 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4672 }
4673 
4674 /*
4675  * Tune RF RX sensitivity based on the number of false alarms detected
4676  * during the last beacon period.
4677  */
4678 static void
4679 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4680 {
4681 #define inc(val, inc, max)			\
4682 	if ((val) < (max)) {			\
4683 		if ((val) < (max) - (inc))	\
4684 			(val) += (inc);		\
4685 		else				\
4686 			(val) = (max);		\
4687 		needs_update = 1;		\
4688 	}
4689 #define dec(val, dec, min)			\
4690 	if ((val) > (min)) {			\
4691 		if ((val) > (min) + (dec))	\
4692 			(val) -= (dec);		\
4693 		else				\
4694 			(val) = (min);		\
4695 		needs_update = 1;		\
4696 	}
4697 
4698 	const struct iwn_sensitivity_limits *limits = sc->limits;
4699 	struct iwn_calib_state *calib = &sc->calib;
4700 	uint32_t val, rxena, fa;
4701 	uint32_t energy[3], energy_min;
4702 	uint8_t noise[3], noise_ref;
4703 	int i, needs_update = 0;
4704 
4705 	/* Check that we've been enabled long enough. */
4706 	if ((rxena = le32toh(stats->general.load)) == 0)
4707 		return;
4708 
4709 	/* Compute number of false alarms since last call for OFDM. */
4710 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4711 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4712 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4713 
4714 	/* Save counters values for next call. */
4715 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4716 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4717 
4718 	if (fa > 50 * rxena) {
4719 		/* High false alarm count, decrease sensitivity. */
4720 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4721 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4722 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4723 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4724 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4725 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4726 
4727 	} else if (fa < 5 * rxena) {
4728 		/* Low false alarm count, increase sensitivity. */
4729 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4730 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4731 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4732 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4733 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4734 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4735 	}
4736 
4737 	/* Compute maximum noise among 3 receivers. */
4738 	for (i = 0; i < 3; i++)
4739 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4740 	val = MAX(noise[0], noise[1]);
4741 	val = MAX(noise[2], val);
4742 	/* Insert it into our samples table. */
4743 	calib->noise_samples[calib->cur_noise_sample] = val;
4744 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4745 
4746 	/* Compute maximum noise among last 20 samples. */
4747 	noise_ref = calib->noise_samples[0];
4748 	for (i = 1; i < 20; i++)
4749 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4750 
4751 	/* Compute maximum energy among 3 receivers. */
4752 	for (i = 0; i < 3; i++)
4753 		energy[i] = le32toh(stats->general.energy[i]);
4754 	val = MIN(energy[0], energy[1]);
4755 	val = MIN(energy[2], val);
4756 	/* Insert it into our samples table. */
4757 	calib->energy_samples[calib->cur_energy_sample] = val;
4758 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4759 
4760 	/* Compute minimum energy among last 10 samples. */
4761 	energy_min = calib->energy_samples[0];
4762 	for (i = 1; i < 10; i++)
4763 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4764 	energy_min += 6;
4765 
4766 	/* Compute number of false alarms since last call for CCK. */
4767 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4768 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4769 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4770 
4771 	/* Save counters values for next call. */
4772 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4773 	calib->fa_cck = le32toh(stats->cck.fa);
4774 
4775 	if (fa > 50 * rxena) {
4776 		/* High false alarm count, decrease sensitivity. */
4777 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4778 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4779 		calib->cck_state = IWN_CCK_STATE_HIFA;
4780 		calib->low_fa = 0;
4781 
4782 		if (calib->cck_x4 > 160) {
4783 			calib->noise_ref = noise_ref;
4784 			if (calib->energy_cck > 2)
4785 				dec(calib->energy_cck, 2, energy_min);
4786 		}
4787 		if (calib->cck_x4 < 160) {
4788 			calib->cck_x4 = 161;
4789 			needs_update = 1;
4790 		} else
4791 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4792 
4793 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4794 
4795 	} else if (fa < 5 * rxena) {
4796 		/* Low false alarm count, increase sensitivity. */
4797 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4798 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4799 		calib->cck_state = IWN_CCK_STATE_LOFA;
4800 		calib->low_fa++;
4801 
4802 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4803 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4804 		     calib->low_fa > 100)) {
4805 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4806 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4807 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4808 		}
4809 	} else {
4810 		/* Not worth to increase or decrease sensitivity. */
4811 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4812 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4813 		calib->low_fa = 0;
4814 		calib->noise_ref = noise_ref;
4815 
4816 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4817 			/* Previous interval had many false alarms. */
4818 			dec(calib->energy_cck, 8, energy_min);
4819 		}
4820 		calib->cck_state = IWN_CCK_STATE_INIT;
4821 	}
4822 
4823 	if (needs_update)
4824 		(void)iwn_send_sensitivity(sc);
4825 #undef dec
4826 #undef inc
4827 }
4828 
4829 static int
4830 iwn_send_sensitivity(struct iwn_softc *sc)
4831 {
4832 	struct iwn_calib_state *calib = &sc->calib;
4833 	struct iwn_enhanced_sensitivity_cmd cmd;
4834 	int len;
4835 
4836 	memset(&cmd, 0, sizeof cmd);
4837 	len = sizeof (struct iwn_sensitivity_cmd);
4838 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4839 	/* OFDM modulation. */
4840 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4841 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4842 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4843 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4844 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4845 	cmd.energy_ofdm_th     = htole16(62);
4846 	/* CCK modulation. */
4847 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4848 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4849 	cmd.energy_cck         = htole16(calib->energy_cck);
4850 	/* Barker modulation: use default values. */
4851 	cmd.corr_barker        = htole16(190);
4852 	cmd.corr_barker_mrc    = htole16(390);
4853 
4854 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4855 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4856 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4857 	    calib->ofdm_mrc_x4, calib->cck_x4,
4858 	    calib->cck_mrc_x4, calib->energy_cck);
4859 
4860 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4861 		goto send;
4862 	/* Enhanced sensitivity settings. */
4863 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4864 	cmd.ofdm_det_slope_mrc = htole16(668);
4865 	cmd.ofdm_det_icept_mrc = htole16(4);
4866 	cmd.ofdm_det_slope     = htole16(486);
4867 	cmd.ofdm_det_icept     = htole16(37);
4868 	cmd.cck_det_slope_mrc  = htole16(853);
4869 	cmd.cck_det_icept_mrc  = htole16(4);
4870 	cmd.cck_det_slope      = htole16(476);
4871 	cmd.cck_det_icept      = htole16(99);
4872 send:
4873 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4874 }
4875 
4876 /*
4877  * Set STA mode power saving level (between 0 and 5).
4878  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4879  */
4880 static int
4881 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4882 {
4883 	struct iwn_pmgt_cmd cmd;
4884 	const struct iwn_pmgt *pmgt;
4885 	uint32_t max, skip_dtim;
4886 	uint32_t reg;
4887 	int i;
4888 
4889 	/* Select which PS parameters to use. */
4890 	if (dtim <= 2)
4891 		pmgt = &iwn_pmgt[0][level];
4892 	else if (dtim <= 10)
4893 		pmgt = &iwn_pmgt[1][level];
4894 	else
4895 		pmgt = &iwn_pmgt[2][level];
4896 
4897 	memset(&cmd, 0, sizeof cmd);
4898 	if (level != 0)	/* not CAM */
4899 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4900 	if (level == 5)
4901 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4902 	/* Retrieve PCIe Active State Power Management (ASPM). */
4903 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4904 	if (!(reg & 0x1))	/* L0s Entry disabled. */
4905 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4906 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4907 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4908 
4909 	if (dtim == 0) {
4910 		dtim = 1;
4911 		skip_dtim = 0;
4912 	} else
4913 		skip_dtim = pmgt->skip_dtim;
4914 	if (skip_dtim != 0) {
4915 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4916 		max = pmgt->intval[4];
4917 		if (max == (uint32_t)-1)
4918 			max = dtim * (skip_dtim + 1);
4919 		else if (max > dtim)
4920 			max = (max / dtim) * dtim;
4921 	} else
4922 		max = dtim;
4923 	for (i = 0; i < 5; i++)
4924 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4925 
4926 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4927 	    level);
4928 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4929 }
4930 
4931 static int
4932 iwn_send_btcoex(struct iwn_softc *sc)
4933 {
4934 	struct iwn_bluetooth cmd;
4935 
4936 	memset(&cmd, 0, sizeof cmd);
4937 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4938 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4939 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4940 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
4941 	    __func__);
4942 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4943 }
4944 
4945 static int
4946 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4947 {
4948 	static const uint32_t btcoex_3wire[12] = {
4949 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4950 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4951 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4952 	};
4953 	struct iwn6000_btcoex_config btconfig;
4954 	struct iwn_btcoex_priotable btprio;
4955 	struct iwn_btcoex_prot btprot;
4956 	int error, i;
4957 
4958 	memset(&btconfig, 0, sizeof btconfig);
4959 	btconfig.flags = 145;
4960 	btconfig.max_kill = 5;
4961 	btconfig.bt3_t7_timer = 1;
4962 	btconfig.kill_ack = htole32(0xffff0000);
4963 	btconfig.kill_cts = htole32(0xffff0000);
4964 	btconfig.sample_time = 2;
4965 	btconfig.bt3_t2_timer = 0xc;
4966 	for (i = 0; i < 12; i++)
4967 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4968 	btconfig.valid = htole16(0xff);
4969 	btconfig.prio_boost = 0xf0;
4970 	DPRINTF(sc, IWN_DEBUG_RESET,
4971 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
4972 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
4973 	if (error != 0)
4974 		return error;
4975 
4976 	memset(&btprio, 0, sizeof btprio);
4977 	btprio.calib_init1 = 0x6;
4978 	btprio.calib_init2 = 0x7;
4979 	btprio.calib_periodic_low1 = 0x2;
4980 	btprio.calib_periodic_low2 = 0x3;
4981 	btprio.calib_periodic_high1 = 0x4;
4982 	btprio.calib_periodic_high2 = 0x5;
4983 	btprio.dtim = 0x6;
4984 	btprio.scan52 = 0x8;
4985 	btprio.scan24 = 0xa;
4986 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4987 	    1);
4988 	if (error != 0)
4989 		return error;
4990 
4991 	/* Force BT state machine change. */
4992 	memset(&btprot, 0, sizeof btprio);
4993 	btprot.open = 1;
4994 	btprot.type = 1;
4995 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4996 	if (error != 0)
4997 		return error;
4998 	btprot.open = 0;
4999 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5000 }
5001 
5002 static int
5003 iwn5000_runtime_calib(struct iwn_softc *sc)
5004 {
5005 	struct iwn5000_calib_config cmd;
5006 
5007 	memset(&cmd, 0, sizeof cmd);
5008 	cmd.ucode.once.enable = 0xffffffff;
5009 	cmd.ucode.once.start = IWN5000_CALIB_DC;
5010 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5011 	    "%s: configuring runtime calibration\n", __func__);
5012 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5013 }
5014 
5015 static int
5016 iwn_config(struct iwn_softc *sc)
5017 {
5018 	struct iwn_ops *ops = &sc->ops;
5019 	struct ifnet *ifp = sc->sc_ifp;
5020 	struct ieee80211com *ic = ifp->if_l2com;
5021 	uint32_t txmask;
5022 	uint16_t rxchain;
5023 	int error;
5024 
5025 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5026 		/* Set radio temperature sensor offset. */
5027 		error = iwn5000_temp_offset_calib(sc);
5028 		if (error != 0) {
5029 			device_printf(sc->sc_dev,
5030 			    "%s: could not set temperature offset\n", __func__);
5031 			return error;
5032 		}
5033 	}
5034 
5035 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5036 		/* Configure runtime DC calibration. */
5037 		error = iwn5000_runtime_calib(sc);
5038 		if (error != 0) {
5039 			device_printf(sc->sc_dev,
5040 			    "%s: could not configure runtime calibration\n",
5041 			    __func__);
5042 			return error;
5043 		}
5044 	}
5045 
5046 	/* Configure valid TX chains for >=5000 Series. */
5047 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5048 		txmask = htole32(sc->txchainmask);
5049 		DPRINTF(sc, IWN_DEBUG_RESET,
5050 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5051 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5052 		    sizeof txmask, 0);
5053 		if (error != 0) {
5054 			device_printf(sc->sc_dev,
5055 			    "%s: could not configure valid TX chains, "
5056 			    "error %d\n", __func__, error);
5057 			return error;
5058 		}
5059 	}
5060 
5061 	/* Configure bluetooth coexistence. */
5062 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5063 		error = iwn_send_advanced_btcoex(sc);
5064 	else
5065 		error = iwn_send_btcoex(sc);
5066 	if (error != 0) {
5067 		device_printf(sc->sc_dev,
5068 		    "%s: could not configure bluetooth coexistence, error %d\n",
5069 		    __func__, error);
5070 		return error;
5071 	}
5072 
5073 	/* Set mode, channel, RX filter and enable RX. */
5074 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5075 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
5076 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
5077 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5078 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5079 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5080 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5081 	switch (ic->ic_opmode) {
5082 	case IEEE80211_M_STA:
5083 		sc->rxon.mode = IWN_MODE_STA;
5084 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5085 		break;
5086 	case IEEE80211_M_MONITOR:
5087 		sc->rxon.mode = IWN_MODE_MONITOR;
5088 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5089 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5090 		break;
5091 	default:
5092 		/* Should not get there. */
5093 		break;
5094 	}
5095 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5096 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5097 	sc->rxon.ht_single_mask = 0xff;
5098 	sc->rxon.ht_dual_mask = 0xff;
5099 	sc->rxon.ht_triple_mask = 0xff;
5100 	rxchain =
5101 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5102 	    IWN_RXCHAIN_MIMO_COUNT(2) |
5103 	    IWN_RXCHAIN_IDLE_COUNT(2);
5104 	sc->rxon.rxchain = htole16(rxchain);
5105 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5106 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5107 	if (error != 0) {
5108 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5109 		    __func__);
5110 		return error;
5111 	}
5112 
5113 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5114 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5115 		    __func__);
5116 		return error;
5117 	}
5118 
5119 	/* Configuration has changed, set TX power accordingly. */
5120 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5121 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5122 		    __func__);
5123 		return error;
5124 	}
5125 
5126 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5127 		device_printf(sc->sc_dev,
5128 		    "%s: could not set critical temperature\n", __func__);
5129 		return error;
5130 	}
5131 
5132 	/* Set power saving level to CAM during initialization. */
5133 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5134 		device_printf(sc->sc_dev,
5135 		    "%s: could not set power saving level\n", __func__);
5136 		return error;
5137 	}
5138 	return 0;
5139 }
5140 
5141 /*
5142  * Add an ssid element to a frame.
5143  */
5144 static uint8_t *
5145 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5146 {
5147 	*frm++ = IEEE80211_ELEMID_SSID;
5148 	*frm++ = len;
5149 	memcpy(frm, ssid, len);
5150 	return frm + len;
5151 }
5152 
5153 static int
5154 iwn_scan(struct iwn_softc *sc)
5155 {
5156 	struct ifnet *ifp = sc->sc_ifp;
5157 	struct ieee80211com *ic = ifp->if_l2com;
5158 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5159 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5160 	struct iwn_scan_hdr *hdr;
5161 	struct iwn_cmd_data *tx;
5162 	struct iwn_scan_essid *essid;
5163 	struct iwn_scan_chan *chan;
5164 	struct ieee80211_frame *wh;
5165 	struct ieee80211_rateset *rs;
5166 	struct ieee80211_channel *c;
5167 	uint8_t *buf, *frm;
5168 	uint16_t rxchain;
5169 	uint8_t txant;
5170 	int buflen, error;
5171 
5172 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5173 	if (buf == NULL) {
5174 		device_printf(sc->sc_dev,
5175 		    "%s: could not allocate buffer for scan command\n",
5176 		    __func__);
5177 		return ENOMEM;
5178 	}
5179 	hdr = (struct iwn_scan_hdr *)buf;
5180 	/*
5181 	 * Move to the next channel if no frames are received within 10ms
5182 	 * after sending the probe request.
5183 	 */
5184 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5185 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5186 
5187 	/* Select antennas for scanning. */
5188 	rxchain =
5189 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5190 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5191 	    IWN_RXCHAIN_DRIVER_FORCE;
5192 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5193 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5194 		/* Ant A must be avoided in 5GHz because of an HW bug. */
5195 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5196 	} else	/* Use all available RX antennas. */
5197 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5198 	hdr->rxchain = htole16(rxchain);
5199 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5200 
5201 	tx = (struct iwn_cmd_data *)(hdr + 1);
5202 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5203 	tx->id = sc->broadcast_id;
5204 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5205 
5206 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5207 		/* Send probe requests at 6Mbps. */
5208 		tx->rate = htole32(0xd);
5209 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5210 	} else {
5211 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5212 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5213 		    sc->rxon.associd && sc->rxon.chan > 14)
5214 			tx->rate = htole32(0xd);
5215 		else {
5216 			/* Send probe requests at 1Mbps. */
5217 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5218 		}
5219 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5220 	}
5221 	/* Use the first valid TX antenna. */
5222 	txant = IWN_LSB(sc->txchainmask);
5223 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5224 
5225 	essid = (struct iwn_scan_essid *)(tx + 1);
5226 	if (ss->ss_ssid[0].len != 0) {
5227 		essid[0].id = IEEE80211_ELEMID_SSID;
5228 		essid[0].len = ss->ss_ssid[0].len;
5229 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5230 	}
5231 	/*
5232 	 * Build a probe request frame.  Most of the following code is a
5233 	 * copy & paste of what is done in net80211.
5234 	 */
5235 	wh = (struct ieee80211_frame *)(essid + 20);
5236 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5237 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5238 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5239 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5240 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5241 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5242 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5243 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5244 
5245 	frm = (uint8_t *)(wh + 1);
5246 	frm = ieee80211_add_ssid(frm, NULL, 0);
5247 	frm = ieee80211_add_rates(frm, rs);
5248 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5249 		frm = ieee80211_add_xrates(frm, rs);
5250 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5251 		frm = ieee80211_add_htcap(frm, ni);
5252 
5253 	/* Set length of probe request. */
5254 	tx->len = htole16(frm - (uint8_t *)wh);
5255 
5256 	c = ic->ic_curchan;
5257 	chan = (struct iwn_scan_chan *)frm;
5258 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5259 	chan->flags = 0;
5260 	if (ss->ss_nssid > 0)
5261 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5262 	chan->dsp_gain = 0x6e;
5263 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5264 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5265 		chan->rf_gain = 0x3b;
5266 		chan->active  = htole16(24);
5267 		chan->passive = htole16(110);
5268 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5269 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5270 		chan->rf_gain = 0x3b;
5271 		chan->active  = htole16(24);
5272 		if (sc->rxon.associd)
5273 			chan->passive = htole16(78);
5274 		else
5275 			chan->passive = htole16(110);
5276 		hdr->crc_threshold = 0xffff;
5277 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5278 		chan->rf_gain = 0x28;
5279 		chan->active  = htole16(36);
5280 		chan->passive = htole16(120);
5281 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5282 	} else {
5283 		chan->rf_gain = 0x28;
5284 		chan->active  = htole16(36);
5285 		if (sc->rxon.associd)
5286 			chan->passive = htole16(88);
5287 		else
5288 			chan->passive = htole16(120);
5289 		hdr->crc_threshold = 0xffff;
5290 	}
5291 
5292 	DPRINTF(sc, IWN_DEBUG_STATE,
5293 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5294 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5295 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5296 	    chan->active, chan->passive);
5297 
5298 	hdr->nchan++;
5299 	chan++;
5300 	buflen = (uint8_t *)chan - buf;
5301 	hdr->len = htole16(buflen);
5302 
5303 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5304 	    hdr->nchan);
5305 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5306 	free(buf, M_DEVBUF);
5307 	return error;
5308 }
5309 
5310 static int
5311 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5312 {
5313 	struct iwn_ops *ops = &sc->ops;
5314 	struct ifnet *ifp = sc->sc_ifp;
5315 	struct ieee80211com *ic = ifp->if_l2com;
5316 	struct ieee80211_node *ni = vap->iv_bss;
5317 	int error;
5318 
5319 	/* Update adapter configuration. */
5320 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5321 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5322 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5323 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5324 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5325 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5326 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5327 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5328 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5329 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5330 		sc->rxon.cck_mask  = 0;
5331 		sc->rxon.ofdm_mask = 0x15;
5332 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5333 		sc->rxon.cck_mask  = 0x03;
5334 		sc->rxon.ofdm_mask = 0;
5335 	} else {
5336 		/* Assume 802.11b/g. */
5337 		sc->rxon.cck_mask  = 0x0f;
5338 		sc->rxon.ofdm_mask = 0x15;
5339 	}
5340 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5341 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5342 	    sc->rxon.ofdm_mask);
5343 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5344 	if (error != 0) {
5345 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5346 		    __func__, error);
5347 		return error;
5348 	}
5349 
5350 	/* Configuration has changed, set TX power accordingly. */
5351 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5352 		device_printf(sc->sc_dev,
5353 		    "%s: could not set TX power, error %d\n", __func__, error);
5354 		return error;
5355 	}
5356 	/*
5357 	 * Reconfiguring RXON clears the firmware nodes table so we must
5358 	 * add the broadcast node again.
5359 	 */
5360 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5361 		device_printf(sc->sc_dev,
5362 		    "%s: could not add broadcast node, error %d\n", __func__,
5363 		    error);
5364 		return error;
5365 	}
5366 	return 0;
5367 }
5368 
5369 static int
5370 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5371 {
5372 	struct iwn_ops *ops = &sc->ops;
5373 	struct ifnet *ifp = sc->sc_ifp;
5374 	struct ieee80211com *ic = ifp->if_l2com;
5375 	struct ieee80211_node *ni = vap->iv_bss;
5376 	struct iwn_node_info node;
5377 	uint32_t htflags = 0;
5378 	int error;
5379 
5380 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5381 		/* Link LED blinks while monitoring. */
5382 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5383 		return 0;
5384 	}
5385 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5386 		device_printf(sc->sc_dev,
5387 		    "%s: could not set timing, error %d\n", __func__, error);
5388 		return error;
5389 	}
5390 
5391 	/* Update adapter configuration. */
5392 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5393 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5394 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5395 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5396 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5397 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5398 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5399 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5400 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5401 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5402 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5403 		sc->rxon.cck_mask  = 0;
5404 		sc->rxon.ofdm_mask = 0x15;
5405 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5406 		sc->rxon.cck_mask  = 0x03;
5407 		sc->rxon.ofdm_mask = 0;
5408 	} else {
5409 		/* Assume 802.11b/g. */
5410 		sc->rxon.cck_mask  = 0x0f;
5411 		sc->rxon.ofdm_mask = 0x15;
5412 	}
5413 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5414 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5415 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5416 			switch (ic->ic_curhtprotmode) {
5417 			case IEEE80211_HTINFO_OPMODE_HT20PR:
5418 				htflags |= IWN_RXON_HT_MODEPURE40;
5419 				break;
5420 			default:
5421 				htflags |= IWN_RXON_HT_MODEMIXED;
5422 				break;
5423 			}
5424 		}
5425 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5426 			htflags |= IWN_RXON_HT_HT40MINUS;
5427 	}
5428 	sc->rxon.flags |= htole32(htflags);
5429 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5430 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5431 	    sc->rxon.chan, sc->rxon.flags);
5432 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5433 	if (error != 0) {
5434 		device_printf(sc->sc_dev,
5435 		    "%s: could not update configuration, error %d\n", __func__,
5436 		    error);
5437 		return error;
5438 	}
5439 
5440 	/* Configuration has changed, set TX power accordingly. */
5441 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5442 		device_printf(sc->sc_dev,
5443 		    "%s: could not set TX power, error %d\n", __func__, error);
5444 		return error;
5445 	}
5446 
5447 	/* Fake a join to initialize the TX rate. */
5448 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5449 	iwn_newassoc(ni, 1);
5450 
5451 	/* Add BSS node. */
5452 	memset(&node, 0, sizeof node);
5453 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5454 	node.id = IWN_ID_BSS;
5455 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5456 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5457 		case IEEE80211_HTCAP_SMPS_ENA:
5458 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5459 			break;
5460 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5461 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5462 			break;
5463 		}
5464 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5465 		    IWN_AMDPU_DENSITY(5));	/* 4us */
5466 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5467 			node.htflags |= htole32(IWN_NODE_HT40);
5468 	}
5469 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5470 	error = ops->add_node(sc, &node, 1);
5471 	if (error != 0) {
5472 		device_printf(sc->sc_dev,
5473 		    "%s: could not add BSS node, error %d\n", __func__, error);
5474 		return error;
5475 	}
5476 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5477 	    __func__, node.id);
5478 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5479 		device_printf(sc->sc_dev,
5480 		    "%s: could not setup link quality for node %d, error %d\n",
5481 		    __func__, node.id, error);
5482 		return error;
5483 	}
5484 
5485 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5486 		device_printf(sc->sc_dev,
5487 		    "%s: could not set sensitivity, error %d\n", __func__,
5488 		    error);
5489 		return error;
5490 	}
5491 	/* Start periodic calibration timer. */
5492 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5493 	sc->calib_cnt = 0;
5494 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5495 	    sc);
5496 
5497 	/* Link LED always on while associated. */
5498 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5499 	return 0;
5500 }
5501 
5502 /*
5503  * This function is called by upper layer when an ADDBA request is received
5504  * from another STA and before the ADDBA response is sent.
5505  */
5506 static int
5507 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5508     int baparamset, int batimeout, int baseqctl)
5509 {
5510 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5511 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5512 	struct iwn_ops *ops = &sc->ops;
5513 	struct iwn_node *wn = (void *)ni;
5514 	struct iwn_node_info node;
5515 	uint16_t ssn;
5516 	uint8_t tid;
5517 	int error;
5518 
5519 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5520 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5521 
5522 	memset(&node, 0, sizeof node);
5523 	node.id = wn->id;
5524 	node.control = IWN_NODE_UPDATE;
5525 	node.flags = IWN_FLAG_SET_ADDBA;
5526 	node.addba_tid = tid;
5527 	node.addba_ssn = htole16(ssn);
5528 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5529 	    wn->id, tid, ssn);
5530 	error = ops->add_node(sc, &node, 1);
5531 	if (error != 0)
5532 		return error;
5533 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5534 #undef MS
5535 }
5536 
5537 /*
5538  * This function is called by upper layer on teardown of an HT-immediate
5539  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5540  */
5541 static void
5542 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5543 {
5544 	struct ieee80211com *ic = ni->ni_ic;
5545 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5546 	struct iwn_ops *ops = &sc->ops;
5547 	struct iwn_node *wn = (void *)ni;
5548 	struct iwn_node_info node;
5549 	uint8_t tid;
5550 
5551 	/* XXX: tid as an argument */
5552 	for (tid = 0; tid < WME_NUM_TID; tid++) {
5553 		if (&ni->ni_rx_ampdu[tid] == rap)
5554 			break;
5555 	}
5556 
5557 	memset(&node, 0, sizeof node);
5558 	node.id = wn->id;
5559 	node.control = IWN_NODE_UPDATE;
5560 	node.flags = IWN_FLAG_SET_DELBA;
5561 	node.delba_tid = tid;
5562 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5563 	(void)ops->add_node(sc, &node, 1);
5564 	sc->sc_ampdu_rx_stop(ni, rap);
5565 }
5566 
5567 static int
5568 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5569     int dialogtoken, int baparamset, int batimeout)
5570 {
5571 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5572 	int qid;
5573 
5574 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5575 		if (sc->qid2tap[qid] == NULL)
5576 			break;
5577 	}
5578 	if (qid == sc->ntxqs) {
5579 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5580 		    __func__);
5581 		return 0;
5582 	}
5583 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5584 	if (tap->txa_private == NULL) {
5585 		device_printf(sc->sc_dev,
5586 		    "%s: failed to alloc TX aggregation structure\n", __func__);
5587 		return 0;
5588 	}
5589 	sc->qid2tap[qid] = tap;
5590 	*(int *)tap->txa_private = qid;
5591 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5592 	    batimeout);
5593 }
5594 
5595 static int
5596 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5597     int code, int baparamset, int batimeout)
5598 {
5599 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5600 	int qid = *(int *)tap->txa_private;
5601 	uint8_t tid = WME_AC_TO_TID(tap->txa_ac);
5602 	int ret;
5603 
5604 	if (code == IEEE80211_STATUS_SUCCESS) {
5605 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
5606 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
5607 		if (ret != 1)
5608 			return ret;
5609 	} else {
5610 		sc->qid2tap[qid] = NULL;
5611 		free(tap->txa_private, M_DEVBUF);
5612 		tap->txa_private = NULL;
5613 	}
5614 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
5615 }
5616 
5617 /*
5618  * This function is called by upper layer when an ADDBA response is received
5619  * from another STA.
5620  */
5621 static int
5622 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5623     uint8_t tid)
5624 {
5625 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[TID_TO_WME_AC(tid)];
5626 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5627 	struct iwn_ops *ops = &sc->ops;
5628 	struct iwn_node *wn = (void *)ni;
5629 	struct iwn_node_info node;
5630 	int error, qid;
5631 
5632 	/* Enable TX for the specified RA/TID. */
5633 	wn->disable_tid &= ~(1 << tid);
5634 	memset(&node, 0, sizeof node);
5635 	node.id = wn->id;
5636 	node.control = IWN_NODE_UPDATE;
5637 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5638 	node.disable_tid = htole16(wn->disable_tid);
5639 	error = ops->add_node(sc, &node, 1);
5640 	if (error != 0)
5641 		return 0;
5642 
5643 	if ((error = iwn_nic_lock(sc)) != 0)
5644 		return 0;
5645 	qid = *(int *)tap->txa_private;
5646 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
5647 	iwn_nic_unlock(sc);
5648 
5649 	iwn_set_link_quality(sc, ni);
5650 	return 1;
5651 }
5652 
5653 static void
5654 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5655 {
5656 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5657 	struct iwn_ops *ops = &sc->ops;
5658 	uint8_t tid = WME_AC_TO_TID(tap->txa_ac);
5659 	int qid;
5660 
5661 	if (tap->txa_private == NULL)
5662 		return;
5663 
5664 	qid = *(int *)tap->txa_private;
5665 	if (iwn_nic_lock(sc) != 0)
5666 		return;
5667 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
5668 	iwn_nic_unlock(sc);
5669 	sc->qid2tap[qid] = NULL;
5670 	free(tap->txa_private, M_DEVBUF);
5671 	tap->txa_private = NULL;
5672 	sc->sc_addba_stop(ni, tap);
5673 }
5674 
5675 static void
5676 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5677     int qid, uint8_t tid, uint16_t ssn)
5678 {
5679 	struct iwn_node *wn = (void *)ni;
5680 
5681 	/* Stop TX scheduler while we're changing its configuration. */
5682 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5683 	    IWN4965_TXQ_STATUS_CHGACT);
5684 
5685 	/* Assign RA/TID translation to the queue. */
5686 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5687 	    wn->id << 4 | tid);
5688 
5689 	/* Enable chain-building mode for the queue. */
5690 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5691 
5692 	/* Set starting sequence number from the ADDBA request. */
5693 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5694 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5695 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5696 
5697 	/* Set scheduler window size. */
5698 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5699 	    IWN_SCHED_WINSZ);
5700 	/* Set scheduler frame limit. */
5701 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5702 	    IWN_SCHED_LIMIT << 16);
5703 
5704 	/* Enable interrupts for the queue. */
5705 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5706 
5707 	/* Mark the queue as active. */
5708 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5709 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5710 	    iwn_tid2fifo[tid] << 1);
5711 }
5712 
5713 static void
5714 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5715 {
5716 	/* Stop TX scheduler while we're changing its configuration. */
5717 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5718 	    IWN4965_TXQ_STATUS_CHGACT);
5719 
5720 	/* Set starting sequence number from the ADDBA request. */
5721 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5722 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5723 
5724 	/* Disable interrupts for the queue. */
5725 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5726 
5727 	/* Mark the queue as inactive. */
5728 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5729 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5730 }
5731 
5732 static void
5733 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5734     int qid, uint8_t tid, uint16_t ssn)
5735 {
5736 	struct iwn_node *wn = (void *)ni;
5737 
5738 	/* Stop TX scheduler while we're changing its configuration. */
5739 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5740 	    IWN5000_TXQ_STATUS_CHGACT);
5741 
5742 	/* Assign RA/TID translation to the queue. */
5743 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5744 	    wn->id << 4 | tid);
5745 
5746 	/* Enable chain-building mode for the queue. */
5747 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5748 
5749 	/* Enable aggregation for the queue. */
5750 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5751 
5752 	/* Set starting sequence number from the ADDBA request. */
5753 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5754 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5755 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5756 
5757 	/* Set scheduler window size and frame limit. */
5758 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5759 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5760 
5761 	/* Enable interrupts for the queue. */
5762 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5763 
5764 	/* Mark the queue as active. */
5765 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5766 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5767 }
5768 
5769 static void
5770 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5771 {
5772 	/* Stop TX scheduler while we're changing its configuration. */
5773 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5774 	    IWN5000_TXQ_STATUS_CHGACT);
5775 
5776 	/* Disable aggregation for the queue. */
5777 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5778 
5779 	/* Set starting sequence number from the ADDBA request. */
5780 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5781 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5782 
5783 	/* Disable interrupts for the queue. */
5784 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5785 
5786 	/* Mark the queue as inactive. */
5787 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5788 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5789 }
5790 
5791 /*
5792  * Query calibration tables from the initialization firmware.  We do this
5793  * only once at first boot.  Called from a process context.
5794  */
5795 static int
5796 iwn5000_query_calibration(struct iwn_softc *sc)
5797 {
5798 	struct iwn5000_calib_config cmd;
5799 	int error;
5800 
5801 	memset(&cmd, 0, sizeof cmd);
5802 	cmd.ucode.once.enable = 0xffffffff;
5803 	cmd.ucode.once.start  = 0xffffffff;
5804 	cmd.ucode.once.send   = 0xffffffff;
5805 	cmd.ucode.flags       = 0xffffffff;
5806 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5807 	    __func__);
5808 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5809 	if (error != 0)
5810 		return error;
5811 
5812 	/* Wait at most two seconds for calibration to complete. */
5813 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5814 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
5815 	return error;
5816 }
5817 
5818 /*
5819  * Send calibration results to the runtime firmware.  These results were
5820  * obtained on first boot from the initialization firmware.
5821  */
5822 static int
5823 iwn5000_send_calibration(struct iwn_softc *sc)
5824 {
5825 	int idx, error;
5826 
5827 	for (idx = 0; idx < 5; idx++) {
5828 		if (sc->calibcmd[idx].buf == NULL)
5829 			continue;	/* No results available. */
5830 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5831 		    "send calibration result idx=%d len=%d\n", idx,
5832 		    sc->calibcmd[idx].len);
5833 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5834 		    sc->calibcmd[idx].len, 0);
5835 		if (error != 0) {
5836 			device_printf(sc->sc_dev,
5837 			    "%s: could not send calibration result, error %d\n",
5838 			    __func__, error);
5839 			return error;
5840 		}
5841 	}
5842 	return 0;
5843 }
5844 
5845 static int
5846 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5847 {
5848 	struct iwn5000_wimax_coex wimax;
5849 
5850 #ifdef notyet
5851 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5852 		/* Enable WiMAX coexistence for combo adapters. */
5853 		wimax.flags =
5854 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5855 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5856 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5857 		    IWN_WIMAX_COEX_ENABLE;
5858 		memcpy(wimax.events, iwn6050_wimax_events,
5859 		    sizeof iwn6050_wimax_events);
5860 	} else
5861 #endif
5862 	{
5863 		/* Disable WiMAX coexistence. */
5864 		wimax.flags = 0;
5865 		memset(wimax.events, 0, sizeof wimax.events);
5866 	}
5867 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5868 	    __func__);
5869 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5870 }
5871 
5872 static int
5873 iwn5000_crystal_calib(struct iwn_softc *sc)
5874 {
5875 	struct iwn5000_phy_calib_crystal cmd;
5876 
5877 	memset(&cmd, 0, sizeof cmd);
5878 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5879 	cmd.ngroups = 1;
5880 	cmd.isvalid = 1;
5881 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5882 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5883 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
5884 	    cmd.cap_pin[0], cmd.cap_pin[1]);
5885 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5886 }
5887 
5888 static int
5889 iwn5000_temp_offset_calib(struct iwn_softc *sc)
5890 {
5891 	struct iwn5000_phy_calib_temp_offset cmd;
5892 
5893 	memset(&cmd, 0, sizeof cmd);
5894 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
5895 	cmd.ngroups = 1;
5896 	cmd.isvalid = 1;
5897 	if (sc->eeprom_temp != 0)
5898 		cmd.offset = htole16(sc->eeprom_temp);
5899 	else
5900 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5901 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
5902 	    le16toh(cmd.offset));
5903 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5904 }
5905 
5906 /*
5907  * This function is called after the runtime firmware notifies us of its
5908  * readiness (called in a process context).
5909  */
5910 static int
5911 iwn4965_post_alive(struct iwn_softc *sc)
5912 {
5913 	int error, qid;
5914 
5915 	if ((error = iwn_nic_lock(sc)) != 0)
5916 		return error;
5917 
5918 	/* Clear TX scheduler state in SRAM. */
5919 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5920 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5921 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5922 
5923 	/* Set physical address of TX scheduler rings (1KB aligned). */
5924 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5925 
5926 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5927 
5928 	/* Disable chain mode for all our 16 queues. */
5929 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5930 
5931 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5932 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5933 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5934 
5935 		/* Set scheduler window size. */
5936 		iwn_mem_write(sc, sc->sched_base +
5937 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5938 		/* Set scheduler frame limit. */
5939 		iwn_mem_write(sc, sc->sched_base +
5940 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5941 		    IWN_SCHED_LIMIT << 16);
5942 	}
5943 
5944 	/* Enable interrupts for all our 16 queues. */
5945 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5946 	/* Identify TX FIFO rings (0-7). */
5947 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5948 
5949 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5950 	for (qid = 0; qid < 7; qid++) {
5951 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5952 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5953 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5954 	}
5955 	iwn_nic_unlock(sc);
5956 	return 0;
5957 }
5958 
5959 /*
5960  * This function is called after the initialization or runtime firmware
5961  * notifies us of its readiness (called in a process context).
5962  */
5963 static int
5964 iwn5000_post_alive(struct iwn_softc *sc)
5965 {
5966 	int error, qid;
5967 
5968 	/* Switch to using ICT interrupt mode. */
5969 	iwn5000_ict_reset(sc);
5970 
5971 	if ((error = iwn_nic_lock(sc)) != 0)
5972 		return error;
5973 
5974 	/* Clear TX scheduler state in SRAM. */
5975 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5976 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5977 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5978 
5979 	/* Set physical address of TX scheduler rings (1KB aligned). */
5980 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5981 
5982 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5983 
5984 	/* Enable chain mode for all queues, except command queue. */
5985 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5986 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5987 
5988 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5989 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5990 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5991 
5992 		iwn_mem_write(sc, sc->sched_base +
5993 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5994 		/* Set scheduler window size and frame limit. */
5995 		iwn_mem_write(sc, sc->sched_base +
5996 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5997 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5998 	}
5999 
6000 	/* Enable interrupts for all our 20 queues. */
6001 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6002 	/* Identify TX FIFO rings (0-7). */
6003 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6004 
6005 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6006 	for (qid = 0; qid < 7; qid++) {
6007 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6008 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6009 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6010 	}
6011 	iwn_nic_unlock(sc);
6012 
6013 	/* Configure WiMAX coexistence for combo adapters. */
6014 	error = iwn5000_send_wimax_coex(sc);
6015 	if (error != 0) {
6016 		device_printf(sc->sc_dev,
6017 		    "%s: could not configure WiMAX coexistence, error %d\n",
6018 		    __func__, error);
6019 		return error;
6020 	}
6021 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6022 		/* Perform crystal calibration. */
6023 		error = iwn5000_crystal_calib(sc);
6024 		if (error != 0) {
6025 			device_printf(sc->sc_dev,
6026 			    "%s: crystal calibration failed, error %d\n",
6027 			    __func__, error);
6028 			return error;
6029 		}
6030 	}
6031 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6032 		/* Query calibration from the initialization firmware. */
6033 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6034 			device_printf(sc->sc_dev,
6035 			    "%s: could not query calibration, error %d\n",
6036 			    __func__, error);
6037 			return error;
6038 		}
6039 		/*
6040 		 * We have the calibration results now, reboot with the
6041 		 * runtime firmware (call ourselves recursively!)
6042 		 */
6043 		iwn_hw_stop(sc);
6044 		error = iwn_hw_init(sc);
6045 	} else {
6046 		/* Send calibration results to runtime firmware. */
6047 		error = iwn5000_send_calibration(sc);
6048 	}
6049 	return error;
6050 }
6051 
6052 /*
6053  * The firmware boot code is small and is intended to be copied directly into
6054  * the NIC internal memory (no DMA transfer).
6055  */
6056 static int
6057 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6058 {
6059 	int error, ntries;
6060 
6061 	size /= sizeof (uint32_t);
6062 
6063 	if ((error = iwn_nic_lock(sc)) != 0)
6064 		return error;
6065 
6066 	/* Copy microcode image into NIC memory. */
6067 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6068 	    (const uint32_t *)ucode, size);
6069 
6070 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6071 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6072 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6073 
6074 	/* Start boot load now. */
6075 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6076 
6077 	/* Wait for transfer to complete. */
6078 	for (ntries = 0; ntries < 1000; ntries++) {
6079 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6080 		    IWN_BSM_WR_CTRL_START))
6081 			break;
6082 		DELAY(10);
6083 	}
6084 	if (ntries == 1000) {
6085 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6086 		    __func__);
6087 		iwn_nic_unlock(sc);
6088 		return ETIMEDOUT;
6089 	}
6090 
6091 	/* Enable boot after power up. */
6092 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6093 
6094 	iwn_nic_unlock(sc);
6095 	return 0;
6096 }
6097 
6098 static int
6099 iwn4965_load_firmware(struct iwn_softc *sc)
6100 {
6101 	struct iwn_fw_info *fw = &sc->fw;
6102 	struct iwn_dma_info *dma = &sc->fw_dma;
6103 	int error;
6104 
6105 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6106 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6107 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6108 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6109 	    fw->init.text, fw->init.textsz);
6110 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6111 
6112 	/* Tell adapter where to find initialization sections. */
6113 	if ((error = iwn_nic_lock(sc)) != 0)
6114 		return error;
6115 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6116 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6117 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6118 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6119 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6120 	iwn_nic_unlock(sc);
6121 
6122 	/* Load firmware boot code. */
6123 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6124 	if (error != 0) {
6125 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6126 		    __func__);
6127 		return error;
6128 	}
6129 	/* Now press "execute". */
6130 	IWN_WRITE(sc, IWN_RESET, 0);
6131 
6132 	/* Wait at most one second for first alive notification. */
6133 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6134 		device_printf(sc->sc_dev,
6135 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6136 		    __func__, error);
6137 		return error;
6138 	}
6139 
6140 	/* Retrieve current temperature for initial TX power calibration. */
6141 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6142 	sc->temp = iwn4965_get_temperature(sc);
6143 
6144 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6145 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6146 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6147 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6148 	    fw->main.text, fw->main.textsz);
6149 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6150 
6151 	/* Tell adapter where to find runtime sections. */
6152 	if ((error = iwn_nic_lock(sc)) != 0)
6153 		return error;
6154 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6155 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6156 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6157 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6158 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6159 	    IWN_FW_UPDATED | fw->main.textsz);
6160 	iwn_nic_unlock(sc);
6161 
6162 	return 0;
6163 }
6164 
6165 static int
6166 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6167     const uint8_t *section, int size)
6168 {
6169 	struct iwn_dma_info *dma = &sc->fw_dma;
6170 	int error;
6171 
6172 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6173 	memcpy(dma->vaddr, section, size);
6174 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6175 
6176 	if ((error = iwn_nic_lock(sc)) != 0)
6177 		return error;
6178 
6179 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6180 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6181 
6182 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6183 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6184 	    IWN_LOADDR(dma->paddr));
6185 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6186 	    IWN_HIADDR(dma->paddr) << 28 | size);
6187 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6188 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6189 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6190 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6191 
6192 	/* Kick Flow Handler to start DMA transfer. */
6193 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6194 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6195 
6196 	iwn_nic_unlock(sc);
6197 
6198 	/* Wait at most five seconds for FH DMA transfer to complete. */
6199 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6200 }
6201 
6202 static int
6203 iwn5000_load_firmware(struct iwn_softc *sc)
6204 {
6205 	struct iwn_fw_part *fw;
6206 	int error;
6207 
6208 	/* Load the initialization firmware on first boot only. */
6209 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6210 	    &sc->fw.main : &sc->fw.init;
6211 
6212 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6213 	    fw->text, fw->textsz);
6214 	if (error != 0) {
6215 		device_printf(sc->sc_dev,
6216 		    "%s: could not load firmware %s section, error %d\n",
6217 		    __func__, ".text", error);
6218 		return error;
6219 	}
6220 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6221 	    fw->data, fw->datasz);
6222 	if (error != 0) {
6223 		device_printf(sc->sc_dev,
6224 		    "%s: could not load firmware %s section, error %d\n",
6225 		    __func__, ".data", error);
6226 		return error;
6227 	}
6228 
6229 	/* Now press "execute". */
6230 	IWN_WRITE(sc, IWN_RESET, 0);
6231 	return 0;
6232 }
6233 
6234 /*
6235  * Extract text and data sections from a legacy firmware image.
6236  */
6237 static int
6238 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6239 {
6240 	const uint32_t *ptr;
6241 	size_t hdrlen = 24;
6242 	uint32_t rev;
6243 
6244 	ptr = (const uint32_t *)fw->data;
6245 	rev = le32toh(*ptr++);
6246 
6247 	/* Check firmware API version. */
6248 	if (IWN_FW_API(rev) <= 1) {
6249 		device_printf(sc->sc_dev,
6250 		    "%s: bad firmware, need API version >=2\n", __func__);
6251 		return EINVAL;
6252 	}
6253 	if (IWN_FW_API(rev) >= 3) {
6254 		/* Skip build number (version 2 header). */
6255 		hdrlen += 4;
6256 		ptr++;
6257 	}
6258 	if (fw->size < hdrlen) {
6259 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6260 		    __func__, fw->size);
6261 		return EINVAL;
6262 	}
6263 	fw->main.textsz = le32toh(*ptr++);
6264 	fw->main.datasz = le32toh(*ptr++);
6265 	fw->init.textsz = le32toh(*ptr++);
6266 	fw->init.datasz = le32toh(*ptr++);
6267 	fw->boot.textsz = le32toh(*ptr++);
6268 
6269 	/* Check that all firmware sections fit. */
6270 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6271 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6272 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6273 		    __func__, fw->size);
6274 		return EINVAL;
6275 	}
6276 
6277 	/* Get pointers to firmware sections. */
6278 	fw->main.text = (const uint8_t *)ptr;
6279 	fw->main.data = fw->main.text + fw->main.textsz;
6280 	fw->init.text = fw->main.data + fw->main.datasz;
6281 	fw->init.data = fw->init.text + fw->init.textsz;
6282 	fw->boot.text = fw->init.data + fw->init.datasz;
6283 	return 0;
6284 }
6285 
6286 /*
6287  * Extract text and data sections from a TLV firmware image.
6288  */
6289 static int
6290 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6291     uint16_t alt)
6292 {
6293 	const struct iwn_fw_tlv_hdr *hdr;
6294 	const struct iwn_fw_tlv *tlv;
6295 	const uint8_t *ptr, *end;
6296 	uint64_t altmask;
6297 	uint32_t len, tmp;
6298 
6299 	if (fw->size < sizeof (*hdr)) {
6300 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6301 		    __func__, fw->size);
6302 		return EINVAL;
6303 	}
6304 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6305 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6306 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6307 		    __func__, le32toh(hdr->signature));
6308 		return EINVAL;
6309 	}
6310 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6311 	    le32toh(hdr->build));
6312 
6313 	/*
6314 	 * Select the closest supported alternative that is less than
6315 	 * or equal to the specified one.
6316 	 */
6317 	altmask = le64toh(hdr->altmask);
6318 	while (alt > 0 && !(altmask & (1ULL << alt)))
6319 		alt--;	/* Downgrade. */
6320 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6321 
6322 	ptr = (const uint8_t *)(hdr + 1);
6323 	end = (const uint8_t *)(fw->data + fw->size);
6324 
6325 	/* Parse type-length-value fields. */
6326 	while (ptr + sizeof (*tlv) <= end) {
6327 		tlv = (const struct iwn_fw_tlv *)ptr;
6328 		len = le32toh(tlv->len);
6329 
6330 		ptr += sizeof (*tlv);
6331 		if (ptr + len > end) {
6332 			device_printf(sc->sc_dev,
6333 			    "%s: firmware too short: %zu bytes\n", __func__,
6334 			    fw->size);
6335 			return EINVAL;
6336 		}
6337 		/* Skip other alternatives. */
6338 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6339 			goto next;
6340 
6341 		switch (le16toh(tlv->type)) {
6342 		case IWN_FW_TLV_MAIN_TEXT:
6343 			fw->main.text = ptr;
6344 			fw->main.textsz = len;
6345 			break;
6346 		case IWN_FW_TLV_MAIN_DATA:
6347 			fw->main.data = ptr;
6348 			fw->main.datasz = len;
6349 			break;
6350 		case IWN_FW_TLV_INIT_TEXT:
6351 			fw->init.text = ptr;
6352 			fw->init.textsz = len;
6353 			break;
6354 		case IWN_FW_TLV_INIT_DATA:
6355 			fw->init.data = ptr;
6356 			fw->init.datasz = len;
6357 			break;
6358 		case IWN_FW_TLV_BOOT_TEXT:
6359 			fw->boot.text = ptr;
6360 			fw->boot.textsz = len;
6361 			break;
6362 		case IWN_FW_TLV_ENH_SENS:
6363 			if (!len)
6364 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6365 			break;
6366 		case IWN_FW_TLV_PHY_CALIB:
6367 			tmp = htole32(*ptr);
6368 			if (tmp < 253) {
6369 				sc->reset_noise_gain = tmp;
6370 				sc->noise_gain = tmp + 1;
6371 			}
6372 			break;
6373 		default:
6374 			DPRINTF(sc, IWN_DEBUG_RESET,
6375 			    "TLV type %d not handled\n", le16toh(tlv->type));
6376 			break;
6377 		}
6378  next:		/* TLV fields are 32-bit aligned. */
6379 		ptr += (len + 3) & ~3;
6380 	}
6381 	return 0;
6382 }
6383 
6384 static int
6385 iwn_read_firmware(struct iwn_softc *sc)
6386 {
6387 	struct iwn_fw_info *fw = &sc->fw;
6388 	int error;
6389 
6390 	IWN_UNLOCK(sc);
6391 
6392 	memset(fw, 0, sizeof (*fw));
6393 
6394 	/* Read firmware image from filesystem. */
6395 	sc->fw_fp = firmware_get(sc->fwname);
6396 	if (sc->fw_fp == NULL) {
6397 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6398 		    __func__, sc->fwname);
6399 		IWN_LOCK(sc);
6400 		return EINVAL;
6401 	}
6402 	IWN_LOCK(sc);
6403 
6404 	fw->size = sc->fw_fp->datasize;
6405 	fw->data = (const uint8_t *)sc->fw_fp->data;
6406 	if (fw->size < sizeof (uint32_t)) {
6407 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6408 		    __func__, fw->size);
6409 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6410 		sc->fw_fp = NULL;
6411 		return EINVAL;
6412 	}
6413 
6414 	/* Retrieve text and data sections. */
6415 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6416 		error = iwn_read_firmware_leg(sc, fw);
6417 	else
6418 		error = iwn_read_firmware_tlv(sc, fw, 1);
6419 	if (error != 0) {
6420 		device_printf(sc->sc_dev,
6421 		    "%s: could not read firmware sections, error %d\n",
6422 		    __func__, error);
6423 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6424 		sc->fw_fp = NULL;
6425 		return error;
6426 	}
6427 
6428 	/* Make sure text and data sections fit in hardware memory. */
6429 	if (fw->main.textsz > sc->fw_text_maxsz ||
6430 	    fw->main.datasz > sc->fw_data_maxsz ||
6431 	    fw->init.textsz > sc->fw_text_maxsz ||
6432 	    fw->init.datasz > sc->fw_data_maxsz ||
6433 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6434 	    (fw->boot.textsz & 3) != 0) {
6435 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6436 		    __func__);
6437 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6438 		sc->fw_fp = NULL;
6439 		return EINVAL;
6440 	}
6441 
6442 	/* We can proceed with loading the firmware. */
6443 	return 0;
6444 }
6445 
6446 static int
6447 iwn_clock_wait(struct iwn_softc *sc)
6448 {
6449 	int ntries;
6450 
6451 	/* Set "initialization complete" bit. */
6452 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6453 
6454 	/* Wait for clock stabilization. */
6455 	for (ntries = 0; ntries < 2500; ntries++) {
6456 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6457 			return 0;
6458 		DELAY(10);
6459 	}
6460 	device_printf(sc->sc_dev,
6461 	    "%s: timeout waiting for clock stabilization\n", __func__);
6462 	return ETIMEDOUT;
6463 }
6464 
6465 static int
6466 iwn_apm_init(struct iwn_softc *sc)
6467 {
6468 	uint32_t reg;
6469 	int error;
6470 
6471 	/* Disable L0s exit timer (NMI bug workaround). */
6472 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6473 	/* Don't wait for ICH L0s (ICH bug workaround). */
6474 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6475 
6476 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6477 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6478 
6479 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6480 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6481 
6482 	/* Retrieve PCIe Active State Power Management (ASPM). */
6483 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6484 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6485 	if (reg & 0x02)	/* L1 Entry enabled. */
6486 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6487 	else
6488 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6489 
6490 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6491 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6492 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6493 
6494 	/* Wait for clock stabilization before accessing prph. */
6495 	if ((error = iwn_clock_wait(sc)) != 0)
6496 		return error;
6497 
6498 	if ((error = iwn_nic_lock(sc)) != 0)
6499 		return error;
6500 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6501 		/* Enable DMA and BSM (Bootstrap State Machine). */
6502 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6503 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6504 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6505 	} else {
6506 		/* Enable DMA. */
6507 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6508 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6509 	}
6510 	DELAY(20);
6511 	/* Disable L1-Active. */
6512 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6513 	iwn_nic_unlock(sc);
6514 
6515 	return 0;
6516 }
6517 
6518 static void
6519 iwn_apm_stop_master(struct iwn_softc *sc)
6520 {
6521 	int ntries;
6522 
6523 	/* Stop busmaster DMA activity. */
6524 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6525 	for (ntries = 0; ntries < 100; ntries++) {
6526 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6527 			return;
6528 		DELAY(10);
6529 	}
6530 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6531 }
6532 
6533 static void
6534 iwn_apm_stop(struct iwn_softc *sc)
6535 {
6536 	iwn_apm_stop_master(sc);
6537 
6538 	/* Reset the entire device. */
6539 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6540 	DELAY(10);
6541 	/* Clear "initialization complete" bit. */
6542 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6543 }
6544 
6545 static int
6546 iwn4965_nic_config(struct iwn_softc *sc)
6547 {
6548 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6549 		/*
6550 		 * I don't believe this to be correct but this is what the
6551 		 * vendor driver is doing. Probably the bits should not be
6552 		 * shifted in IWN_RFCFG_*.
6553 		 */
6554 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6555 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6556 		    IWN_RFCFG_STEP(sc->rfcfg) |
6557 		    IWN_RFCFG_DASH(sc->rfcfg));
6558 	}
6559 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6560 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6561 	return 0;
6562 }
6563 
6564 static int
6565 iwn5000_nic_config(struct iwn_softc *sc)
6566 {
6567 	uint32_t tmp;
6568 	int error;
6569 
6570 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6571 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6572 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6573 		    IWN_RFCFG_STEP(sc->rfcfg) |
6574 		    IWN_RFCFG_DASH(sc->rfcfg));
6575 	}
6576 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6577 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6578 
6579 	if ((error = iwn_nic_lock(sc)) != 0)
6580 		return error;
6581 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6582 
6583 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6584 		/*
6585 		 * Select first Switching Voltage Regulator (1.32V) to
6586 		 * solve a stability issue related to noisy DC2DC line
6587 		 * in the silicon of 1000 Series.
6588 		 */
6589 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6590 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6591 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6592 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6593 	}
6594 	iwn_nic_unlock(sc);
6595 
6596 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6597 		/* Use internal power amplifier only. */
6598 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6599 	}
6600 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6601 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6602 		/* Indicate that ROM calibration version is >=6. */
6603 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6604 	}
6605 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6606 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6607 	return 0;
6608 }
6609 
6610 /*
6611  * Take NIC ownership over Intel Active Management Technology (AMT).
6612  */
6613 static int
6614 iwn_hw_prepare(struct iwn_softc *sc)
6615 {
6616 	int ntries;
6617 
6618 	/* Check if hardware is ready. */
6619 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6620 	for (ntries = 0; ntries < 5; ntries++) {
6621 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6622 		    IWN_HW_IF_CONFIG_NIC_READY)
6623 			return 0;
6624 		DELAY(10);
6625 	}
6626 
6627 	/* Hardware not ready, force into ready state. */
6628 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6629 	for (ntries = 0; ntries < 15000; ntries++) {
6630 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6631 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6632 			break;
6633 		DELAY(10);
6634 	}
6635 	if (ntries == 15000)
6636 		return ETIMEDOUT;
6637 
6638 	/* Hardware should be ready now. */
6639 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6640 	for (ntries = 0; ntries < 5; ntries++) {
6641 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6642 		    IWN_HW_IF_CONFIG_NIC_READY)
6643 			return 0;
6644 		DELAY(10);
6645 	}
6646 	return ETIMEDOUT;
6647 }
6648 
6649 static int
6650 iwn_hw_init(struct iwn_softc *sc)
6651 {
6652 	struct iwn_ops *ops = &sc->ops;
6653 	int error, chnl, qid;
6654 
6655 	/* Clear pending interrupts. */
6656 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6657 
6658 	if ((error = iwn_apm_init(sc)) != 0) {
6659 		device_printf(sc->sc_dev,
6660 		    "%s: could not power ON adapter, error %d\n", __func__,
6661 		    error);
6662 		return error;
6663 	}
6664 
6665 	/* Select VMAIN power source. */
6666 	if ((error = iwn_nic_lock(sc)) != 0)
6667 		return error;
6668 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6669 	iwn_nic_unlock(sc);
6670 
6671 	/* Perform adapter-specific initialization. */
6672 	if ((error = ops->nic_config(sc)) != 0)
6673 		return error;
6674 
6675 	/* Initialize RX ring. */
6676 	if ((error = iwn_nic_lock(sc)) != 0)
6677 		return error;
6678 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6679 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6680 	/* Set physical address of RX ring (256-byte aligned). */
6681 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6682 	/* Set physical address of RX status (16-byte aligned). */
6683 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6684 	/* Enable RX. */
6685 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6686 	    IWN_FH_RX_CONFIG_ENA           |
6687 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6688 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6689 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6690 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6691 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6692 	iwn_nic_unlock(sc);
6693 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6694 
6695 	if ((error = iwn_nic_lock(sc)) != 0)
6696 		return error;
6697 
6698 	/* Initialize TX scheduler. */
6699 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6700 
6701 	/* Set physical address of "keep warm" page (16-byte aligned). */
6702 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6703 
6704 	/* Initialize TX rings. */
6705 	for (qid = 0; qid < sc->ntxqs; qid++) {
6706 		struct iwn_tx_ring *txq = &sc->txq[qid];
6707 
6708 		/* Set physical address of TX ring (256-byte aligned). */
6709 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6710 		    txq->desc_dma.paddr >> 8);
6711 	}
6712 	iwn_nic_unlock(sc);
6713 
6714 	/* Enable DMA channels. */
6715 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6716 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6717 		    IWN_FH_TX_CONFIG_DMA_ENA |
6718 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6719 	}
6720 
6721 	/* Clear "radio off" and "commands blocked" bits. */
6722 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6723 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6724 
6725 	/* Clear pending interrupts. */
6726 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6727 	/* Enable interrupt coalescing. */
6728 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6729 	/* Enable interrupts. */
6730 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6731 
6732 	/* _Really_ make sure "radio off" bit is cleared! */
6733 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6734 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6735 
6736 	/* Enable shadow registers. */
6737 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6738 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6739 
6740 	if ((error = ops->load_firmware(sc)) != 0) {
6741 		device_printf(sc->sc_dev,
6742 		    "%s: could not load firmware, error %d\n", __func__,
6743 		    error);
6744 		return error;
6745 	}
6746 	/* Wait at most one second for firmware alive notification. */
6747 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6748 		device_printf(sc->sc_dev,
6749 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6750 		    __func__, error);
6751 		return error;
6752 	}
6753 	/* Do post-firmware initialization. */
6754 	return ops->post_alive(sc);
6755 }
6756 
6757 static void
6758 iwn_hw_stop(struct iwn_softc *sc)
6759 {
6760 	int chnl, qid, ntries;
6761 
6762 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6763 
6764 	/* Disable interrupts. */
6765 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6766 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6767 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6768 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6769 
6770 	/* Make sure we no longer hold the NIC lock. */
6771 	iwn_nic_unlock(sc);
6772 
6773 	/* Stop TX scheduler. */
6774 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6775 
6776 	/* Stop all DMA channels. */
6777 	if (iwn_nic_lock(sc) == 0) {
6778 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6779 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6780 			for (ntries = 0; ntries < 200; ntries++) {
6781 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6782 				    IWN_FH_TX_STATUS_IDLE(chnl))
6783 					break;
6784 				DELAY(10);
6785 			}
6786 		}
6787 		iwn_nic_unlock(sc);
6788 	}
6789 
6790 	/* Stop RX ring. */
6791 	iwn_reset_rx_ring(sc, &sc->rxq);
6792 
6793 	/* Reset all TX rings. */
6794 	for (qid = 0; qid < sc->ntxqs; qid++)
6795 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6796 
6797 	if (iwn_nic_lock(sc) == 0) {
6798 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6799 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6800 		iwn_nic_unlock(sc);
6801 	}
6802 	DELAY(5);
6803 	/* Power OFF adapter. */
6804 	iwn_apm_stop(sc);
6805 }
6806 
6807 static void
6808 iwn_radio_on(void *arg0, int pending)
6809 {
6810 	struct iwn_softc *sc = arg0;
6811 	struct ifnet *ifp = sc->sc_ifp;
6812 	struct ieee80211com *ic = ifp->if_l2com;
6813 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6814 
6815 	if (vap != NULL) {
6816 		iwn_init(sc);
6817 		ieee80211_init(vap);
6818 	}
6819 }
6820 
6821 static void
6822 iwn_radio_off(void *arg0, int pending)
6823 {
6824 	struct iwn_softc *sc = arg0;
6825 	struct ifnet *ifp = sc->sc_ifp;
6826 	struct ieee80211com *ic = ifp->if_l2com;
6827 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6828 
6829 	iwn_stop(sc);
6830 	if (vap != NULL)
6831 		ieee80211_stop(vap);
6832 
6833 	/* Enable interrupts to get RF toggle notification. */
6834 	IWN_LOCK(sc);
6835 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6836 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6837 	IWN_UNLOCK(sc);
6838 }
6839 
6840 static void
6841 iwn_init_locked(struct iwn_softc *sc)
6842 {
6843 	struct ifnet *ifp = sc->sc_ifp;
6844 	int error;
6845 
6846 	IWN_LOCK_ASSERT(sc);
6847 
6848 	if ((error = iwn_hw_prepare(sc)) != 0) {
6849 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
6850 		    __func__, error);
6851 		goto fail;
6852 	}
6853 
6854 	/* Initialize interrupt mask to default value. */
6855 	sc->int_mask = IWN_INT_MASK_DEF;
6856 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6857 
6858 	/* Check that the radio is not disabled by hardware switch. */
6859 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6860 		device_printf(sc->sc_dev,
6861 		    "radio is disabled by hardware switch\n");
6862 		/* Enable interrupts to get RF toggle notifications. */
6863 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6864 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6865 		return;
6866 	}
6867 
6868 	/* Read firmware images from the filesystem. */
6869 	if ((error = iwn_read_firmware(sc)) != 0) {
6870 		device_printf(sc->sc_dev,
6871 		    "%s: could not read firmware, error %d\n", __func__,
6872 		    error);
6873 		goto fail;
6874 	}
6875 
6876 	/* Initialize hardware and upload firmware. */
6877 	error = iwn_hw_init(sc);
6878 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6879 	sc->fw_fp = NULL;
6880 	if (error != 0) {
6881 		device_printf(sc->sc_dev,
6882 		    "%s: could not initialize hardware, error %d\n", __func__,
6883 		    error);
6884 		goto fail;
6885 	}
6886 
6887 	/* Configure adapter now that it is ready. */
6888 	if ((error = iwn_config(sc)) != 0) {
6889 		device_printf(sc->sc_dev,
6890 		    "%s: could not configure device, error %d\n", __func__,
6891 		    error);
6892 		goto fail;
6893 	}
6894 
6895 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6896 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6897 
6898 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
6899 	return;
6900 
6901 fail:	iwn_stop_locked(sc);
6902 }
6903 
6904 static void
6905 iwn_init(void *arg)
6906 {
6907 	struct iwn_softc *sc = arg;
6908 	struct ifnet *ifp = sc->sc_ifp;
6909 	struct ieee80211com *ic = ifp->if_l2com;
6910 
6911 	IWN_LOCK(sc);
6912 	iwn_init_locked(sc);
6913 	IWN_UNLOCK(sc);
6914 
6915 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6916 		ieee80211_start_all(ic);
6917 }
6918 
6919 static void
6920 iwn_stop_locked(struct iwn_softc *sc)
6921 {
6922 	struct ifnet *ifp = sc->sc_ifp;
6923 
6924 	IWN_LOCK_ASSERT(sc);
6925 
6926 	sc->sc_tx_timer = 0;
6927 	callout_stop(&sc->watchdog_to);
6928 	callout_stop(&sc->calib_to);
6929 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6930 
6931 	/* Power OFF hardware. */
6932 	iwn_hw_stop(sc);
6933 }
6934 
6935 static void
6936 iwn_stop(struct iwn_softc *sc)
6937 {
6938 	IWN_LOCK(sc);
6939 	iwn_stop_locked(sc);
6940 	IWN_UNLOCK(sc);
6941 }
6942 
6943 /*
6944  * Callback from net80211 to start a scan.
6945  */
6946 static void
6947 iwn_scan_start(struct ieee80211com *ic)
6948 {
6949 	struct ifnet *ifp = ic->ic_ifp;
6950 	struct iwn_softc *sc = ifp->if_softc;
6951 
6952 	IWN_LOCK(sc);
6953 	/* make the link LED blink while we're scanning */
6954 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6955 	IWN_UNLOCK(sc);
6956 }
6957 
6958 /*
6959  * Callback from net80211 to terminate a scan.
6960  */
6961 static void
6962 iwn_scan_end(struct ieee80211com *ic)
6963 {
6964 	struct ifnet *ifp = ic->ic_ifp;
6965 	struct iwn_softc *sc = ifp->if_softc;
6966 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6967 
6968 	IWN_LOCK(sc);
6969 	if (vap->iv_state == IEEE80211_S_RUN) {
6970 		/* Set link LED to ON status if we are associated */
6971 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6972 	}
6973 	IWN_UNLOCK(sc);
6974 }
6975 
6976 /*
6977  * Callback from net80211 to force a channel change.
6978  */
6979 static void
6980 iwn_set_channel(struct ieee80211com *ic)
6981 {
6982 	const struct ieee80211_channel *c = ic->ic_curchan;
6983 	struct ifnet *ifp = ic->ic_ifp;
6984 	struct iwn_softc *sc = ifp->if_softc;
6985 	int error;
6986 
6987 	IWN_LOCK(sc);
6988 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6989 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6990 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6991 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6992 
6993 	/*
6994 	 * Only need to set the channel in Monitor mode. AP scanning and auth
6995 	 * are already taken care of by their respective firmware commands.
6996 	 */
6997 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6998 		error = iwn_config(sc);
6999 		if (error != 0)
7000 		device_printf(sc->sc_dev,
7001 		    "%s: error %d settting channel\n", __func__, error);
7002 	}
7003 	IWN_UNLOCK(sc);
7004 }
7005 
7006 /*
7007  * Callback from net80211 to start scanning of the current channel.
7008  */
7009 static void
7010 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
7011 {
7012 	struct ieee80211vap *vap = ss->ss_vap;
7013 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7014 	int error;
7015 
7016 	IWN_LOCK(sc);
7017 	error = iwn_scan(sc);
7018 	IWN_UNLOCK(sc);
7019 	if (error != 0)
7020 		ieee80211_cancel_scan(vap);
7021 }
7022 
7023 /*
7024  * Callback from net80211 to handle the minimum dwell time being met.
7025  * The intent is to terminate the scan but we just let the firmware
7026  * notify us when it's finished as we have no safe way to abort it.
7027  */
7028 static void
7029 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7030 {
7031 	/* NB: don't try to abort scan; wait for firmware to finish */
7032 }
7033 
7034 static void
7035 iwn_hw_reset(void *arg0, int pending)
7036 {
7037 	struct iwn_softc *sc = arg0;
7038 	struct ifnet *ifp = sc->sc_ifp;
7039 	struct ieee80211com *ic = ifp->if_l2com;
7040 
7041 	iwn_stop(sc);
7042 	iwn_init(sc);
7043 	ieee80211_notify_radio(ic, 1);
7044 }
7045