xref: /freebsd/sys/dev/iwn/if_iwn.c (revision b53e9221214d6406927b73c8e3d15ab8043a3bb2)
1 /*-
2  * Copyright (c) 2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <machine/clock.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 
71 #include <dev/iwn/if_iwnreg.h>
72 #include <dev/iwn/if_iwnvar.h>
73 
74 static int	iwn_probe(device_t);
75 static int	iwn_attach(device_t);
76 static int 	iwn_detach(device_t);
77 static int	iwn_cleanup(device_t);
78 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
79 		    const char name[IFNAMSIZ], int unit, int opmode,
80 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
81 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
82 static void	iwn_vap_delete(struct ieee80211vap *);
83 static int	iwn_shutdown(device_t);
84 static int	iwn_suspend(device_t);
85 static int	iwn_resume(device_t);
86 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	iwn_dma_contig_free(struct iwn_dma_info *);
89 int		iwn_alloc_shared(struct iwn_softc *);
90 void		iwn_free_shared(struct iwn_softc *);
91 int		iwn_alloc_kw(struct iwn_softc *);
92 void		iwn_free_kw(struct iwn_softc *);
93 int		iwn_alloc_fwmem(struct iwn_softc *);
94 void		iwn_free_fwmem(struct iwn_softc *);
95 struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
96 void		iwn_free_rbuf(void *, void *);
97 int		iwn_alloc_rpool(struct iwn_softc *);
98 void		iwn_free_rpool(struct iwn_softc *);
99 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
100 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
101 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
102 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
103 		    int);
104 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
105 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
106 struct		ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
107 void		iwn_newassoc(struct ieee80211_node *, int);
108 int		iwn_media_change(struct ifnet *);
109 int		iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
110 void		iwn_mem_lock(struct iwn_softc *);
111 void		iwn_mem_unlock(struct iwn_softc *);
112 uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
113 void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
114 void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
115 		    const uint32_t *, int);
116 int		iwn_eeprom_lock(struct iwn_softc *);
117 void		iwn_eeprom_unlock(struct iwn_softc *);
118 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
119 int		iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int);
120 int		iwn_transfer_firmware(struct iwn_softc *);
121 int		iwn_load_firmware(struct iwn_softc *);
122 void		iwn_unload_firmware(struct iwn_softc *);
123 static void	iwn_timer_timeout(void *);
124 static void	iwn_calib_reset(struct iwn_softc *);
125 void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
126 void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
127 		    struct iwn_rx_data *);
128 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
129 void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
130 void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
131 static void	iwn_bmiss(void *, int);
132 void		iwn_notif_intr(struct iwn_softc *);
133 void		iwn_intr(void *);
134 void		iwn_read_eeprom(struct iwn_softc *);
135 static void	iwn_read_eeprom_channels(struct iwn_softc *);
136 void		iwn_print_power_group(struct iwn_softc *, int);
137 uint8_t		iwn_plcp_signal(int);
138 int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
139 		    struct ieee80211_node *, struct iwn_tx_ring *);
140 void		iwn_start(struct ifnet *);
141 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
142 		    const struct ieee80211_bpf_params *);
143 static void	iwn_watchdog(struct iwn_softc *);
144 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
145 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
146 int		iwn_set_link_quality(struct iwn_softc *, uint8_t,
147 		    const struct ieee80211_channel *, int);
148 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
149 		    const struct ieee80211_key *);
150 int		iwn_wme_update(struct ieee80211com *);
151 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
152 int		iwn_set_critical_temp(struct iwn_softc *);
153 void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
154 void		iwn_power_calibration(struct iwn_softc *, int);
155 int		iwn_set_txpower(struct iwn_softc *,
156 		    struct ieee80211_channel *, int);
157 int8_t		iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *);
158 int		iwn_get_noise(const struct iwn_rx_general_stats *);
159 int		iwn_get_temperature(struct iwn_softc *);
160 int		iwn_init_sensitivity(struct iwn_softc *);
161 void		iwn_compute_differential_gain(struct iwn_softc *,
162 		    const struct iwn_rx_general_stats *);
163 void		iwn_tune_sensitivity(struct iwn_softc *,
164 		    const struct iwn_rx_stats *);
165 int		iwn_send_sensitivity(struct iwn_softc *);
166 int		iwn_auth(struct iwn_softc *);
167 int		iwn_run(struct iwn_softc *);
168 int		iwn_scan(struct iwn_softc *);
169 int		iwn_config(struct iwn_softc *);
170 void		iwn_post_alive(struct iwn_softc *);
171 void		iwn_stop_master(struct iwn_softc *);
172 int		iwn_reset(struct iwn_softc *);
173 void		iwn_hw_config(struct iwn_softc *);
174 void		iwn_init_locked(struct iwn_softc *);
175 void		iwn_init(void *);
176 void		iwn_stop_locked(struct iwn_softc *);
177 void		iwn_stop(struct iwn_softc *);
178 static void 	iwn_scan_start(struct ieee80211com *);
179 static void 	iwn_scan_end(struct ieee80211com *);
180 static void 	iwn_set_channel(struct ieee80211com *);
181 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
182 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
183 static void 	iwn_ops(void *, int);
184 static int 	iwn_queue_cmd( struct iwn_softc *, int, int, int);
185 static void	iwn_bpfattach(struct iwn_softc *);
186 static void	iwn_sysctlattach(struct iwn_softc *);
187 
188 #define IWN_DEBUG
189 #ifdef IWN_DEBUG
190 enum {
191 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
192 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
193 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
194 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
195 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
196 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
197 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
198 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
199 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
200 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
201 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
202 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
203 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
204 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
205 	IWN_DEBUG_ANY		= 0xffffffff
206 };
207 
208 #define DPRINTF(sc, m, fmt, ...) do {			\
209 	if (sc->sc_debug & (m))				\
210 		printf(fmt, __VA_ARGS__);		\
211 } while (0)
212 
213 static const char *iwn_ops_str(int);
214 static const char *iwn_intr_str(uint8_t);
215 #else
216 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
217 #endif
218 
219 struct iwn_ident {
220 	uint16_t	vendor;
221 	uint16_t	device;
222 	const char	*name;
223 };
224 
225 static const struct iwn_ident iwn_ident_table [] = {
226         { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
227         { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
228         { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
229         { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
230         { 0, 0, NULL }
231 };
232 
233 static int
234 iwn_probe(device_t dev)
235 {
236         const struct iwn_ident *ident;
237 
238         for (ident = iwn_ident_table; ident->name != NULL; ident++) {
239                 if (pci_get_vendor(dev) == ident->vendor &&
240                     pci_get_device(dev) == ident->device) {
241                         device_set_desc(dev, ident->name);
242                         return 0;
243                 }
244         }
245         return ENXIO;
246 }
247 
248 static int
249 iwn_attach(device_t dev)
250 {
251 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
252 	struct ieee80211com *ic;
253 	struct ifnet *ifp;
254 	int i, error;
255 
256 	sc->sc_dev = dev;
257 
258 	/* XXX */
259 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
260 		device_printf(dev, "chip is in D%d power mode "
261 		    "-- setting to D0\n", pci_get_powerstate(dev));
262 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
263 	}
264 
265 	/* clear device specific PCI configuration register 0x41 */
266 	pci_write_config(dev, 0x41, 0, 1);
267 
268 	/* enable bus-mastering */
269 	pci_enable_busmaster(dev);
270 
271 	sc->mem_rid= PCIR_BAR(0);
272 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
273 					 RF_ACTIVE);
274 	if (sc->mem == NULL ) {
275 		device_printf(dev, "could not allocate memory resources\n");
276 		error = ENOMEM;
277 		return error;
278 	}
279 
280 	sc->sc_st = rman_get_bustag(sc->mem);
281 	sc->sc_sh = rman_get_bushandle(sc->mem);
282 	sc->irq_rid = 0;
283 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
284 					 RF_ACTIVE | RF_SHAREABLE);
285 	if (sc->irq == NULL) {
286 		device_printf(dev, "could not allocate interrupt resource\n");
287 		error = ENOMEM;
288 		return error;
289 	}
290 
291 	IWN_LOCK_INIT(sc);
292 	IWN_CMD_LOCK_INIT(sc);
293 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
294 
295         /*
296          * Create the taskqueues used by the driver. Primarily
297          * sc_tq handles most the task
298          */
299         sc->sc_tq = taskqueue_create("iwn_taskq", M_NOWAIT | M_ZERO,
300                 taskqueue_thread_enqueue, &sc->sc_tq);
301         taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
302                 device_get_nameunit(dev));
303 
304         TASK_INIT(&sc->sc_ops_task, 0, iwn_ops, sc );
305 	TASK_INIT(&sc->sc_bmiss_task, 0, iwn_bmiss, sc);
306 
307 	/*
308 	 * Put adapter into a known state.
309 	 */
310 	error = iwn_reset(sc);
311 	if (error != 0) {
312 		device_printf(dev,
313 		    "could not reset adapter, error %d\n", error);
314 		goto fail;
315 	}
316 
317 	/*
318 	 * Allocate DMA memory for firmware transfers.
319 	 */
320 	error = iwn_alloc_fwmem(sc);
321 	if (error != 0) {
322 		device_printf(dev,
323 		    "could not allocate firmware memory, error %d\n", error);
324 		goto fail;
325 	}
326 
327 	/*
328 	 * Allocate a "keep warm" page.
329 	 */
330 	error = iwn_alloc_kw(sc);
331 	if (error != 0) {
332 		device_printf(dev,
333 		    "could not allocate keep-warm page, error %d\n", error);
334 		goto fail;
335 	}
336 
337 	/*
338 	 * Allocate shared area (communication area).
339 	 */
340 	error = iwn_alloc_shared(sc);
341 	if (error != 0) {
342 		device_printf(dev,
343 		    "could not allocate shared area, error %d\n", error);
344 		goto fail;
345 	}
346 
347 	/*
348 	 * Allocate Tx rings.
349 	 */
350 	for (i = 0; i < IWN_NTXQUEUES; i++) {
351 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
352 		if (error != 0) {
353 			device_printf(dev,
354 			    "could not allocate Tx ring %d, error %d\n",
355 			    i, error);
356 			goto fail;
357 		}
358 	}
359 
360 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
361 	if (error != 0 ){
362 		device_printf(dev,
363 		    "could not allocate Rx ring, error %d\n", error);
364 		goto fail;
365 	}
366 
367 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
368 	if (ifp == NULL) {
369 		device_printf(dev, "can not allocate ifnet structure\n");
370 		goto fail;
371 	}
372 	ic = ifp->if_l2com;
373 
374 	ic->ic_ifp = ifp;
375 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
376 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
377 
378 	/* set device capabilities */
379 	ic->ic_caps =
380 		  IEEE80211_C_MONITOR		/* monitor mode supported */
381 		| IEEE80211_C_TXPMGT		/* tx power management */
382 		| IEEE80211_C_SHSLOT		/* short slot time supported */
383 		| IEEE80211_C_WPA
384 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
385 #if 0
386 		| IEEE80211_C_BGSCAN		/* background scanning */
387 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
388 #endif
389 		| IEEE80211_C_WME		/* WME */
390 		;
391 #if 0
392 	/* XXX disable until HT channel setup works */
393 	ic->ic_htcaps =
394 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
395 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
396 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
397 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
398 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
399 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
400 		/* s/w capabilities */
401 		| IEEE80211_HTC_HT		/* HT operation */
402 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
403 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
404 		;
405 #endif
406 	/* read supported channels and MAC address from EEPROM */
407 	iwn_read_eeprom(sc);
408 
409 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
410 	ifp->if_softc = sc;
411 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
412 	ifp->if_init = iwn_init;
413 	ifp->if_ioctl = iwn_ioctl;
414 	ifp->if_start = iwn_start;
415         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
416 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
417 	IFQ_SET_READY(&ifp->if_snd);
418 
419 	ieee80211_ifattach(ic);
420 	ic->ic_vap_create = iwn_vap_create;
421 	ic->ic_vap_delete = iwn_vap_delete;
422 	ic->ic_raw_xmit = iwn_raw_xmit;
423 	ic->ic_node_alloc = iwn_node_alloc;
424 	ic->ic_newassoc = iwn_newassoc;
425         ic->ic_wme.wme_update = iwn_wme_update;
426         ic->ic_scan_start = iwn_scan_start;
427         ic->ic_scan_end = iwn_scan_end;
428         ic->ic_set_channel = iwn_set_channel;
429         ic->ic_scan_curchan = iwn_scan_curchan;
430         ic->ic_scan_mindwell = iwn_scan_mindwell;
431 
432 	iwn_bpfattach(sc);
433 	iwn_sysctlattach(sc);
434 
435         /*
436          * Hook our interrupt after all initialization is complete.
437          */
438         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
439 	    NULL, iwn_intr, sc, &sc->sc_ih);
440         if (error != 0) {
441                 device_printf(dev, "could not set up interrupt, error %d\n", error);
442                 goto fail;
443         }
444 
445         ieee80211_announce(ic);
446 	return 0;
447 fail:
448 	iwn_cleanup(dev);
449 	return error;
450 }
451 
452 static int
453 iwn_detach(device_t dev)
454 {
455 	iwn_cleanup(dev);
456         return 0;
457 }
458 
459 /*
460  * Cleanup any device resources that were allocated
461  */
462 int
463 iwn_cleanup(device_t dev)
464 {
465 	struct iwn_softc *sc = device_get_softc(dev);
466 	struct ifnet *ifp = sc->sc_ifp;
467 	struct ieee80211com *ic = ifp->if_l2com;
468 	int i;
469 
470 	if (ifp != NULL) {
471 		iwn_stop(sc);
472 		callout_drain(&sc->sc_timer_to);
473 		bpfdetach(ifp);
474 		ieee80211_ifdetach(ic);
475 	}
476 
477 	iwn_unload_firmware(sc);
478 
479 	iwn_free_rx_ring(sc, &sc->rxq);
480 	for (i = 0; i < IWN_NTXQUEUES; i++)
481 		iwn_free_tx_ring(sc, &sc->txq[i]);
482 	iwn_free_kw(sc);
483 	iwn_free_fwmem(sc);
484 	if (sc->irq != NULL) {
485 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
486 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
487 	}
488 	if (sc->mem != NULL)
489 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
490 	if (ifp != NULL)
491 		if_free(ifp);
492 	taskqueue_free(sc->sc_tq);
493 	IWN_CMD_LOCK_DESTROY(sc);
494 	IWN_LOCK_DESTROY(sc);
495 	return 0;
496 }
497 
498 static struct ieee80211vap *
499 iwn_vap_create(struct ieee80211com *ic,
500 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
501 	const uint8_t bssid[IEEE80211_ADDR_LEN],
502 	const uint8_t mac[IEEE80211_ADDR_LEN])
503 {
504 	struct iwn_vap *ivp;
505 	struct ieee80211vap *vap;
506 
507 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
508 		return NULL;
509 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
510 	    M_80211_VAP, M_NOWAIT | M_ZERO);
511 	if (ivp == NULL)
512 		return NULL;
513 	vap = &ivp->iv_vap;
514 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
515 	vap->iv_bmissthreshold = 10;		/* override default */
516 	/* override with driver methods */
517 	ivp->iv_newstate = vap->iv_newstate;
518 	vap->iv_newstate = iwn_newstate;
519 
520 	ieee80211_amrr_init(&ivp->iv_amrr, vap,
521 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
522 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
523 	    500 /*ms*/);
524 
525 	/* complete setup */
526 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
527 	ic->ic_opmode = opmode;
528 	return vap;
529 }
530 
531 static void
532 iwn_vap_delete(struct ieee80211vap *vap)
533 {
534 	struct iwn_vap *ivp = IWN_VAP(vap);
535 
536 	ieee80211_amrr_cleanup(&ivp->iv_amrr);
537 	ieee80211_vap_detach(vap);
538 	free(ivp, M_80211_VAP);
539 }
540 
541 static int
542 iwn_shutdown(device_t dev)
543 {
544 	struct iwn_softc *sc = device_get_softc(dev);
545 
546 	iwn_stop(sc);
547 	return 0;
548 }
549 
550 static int
551 iwn_suspend(device_t dev)
552 {
553 	struct iwn_softc *sc = device_get_softc(dev);
554 
555 	iwn_stop(sc);
556 	return 0;
557 }
558 
559 static int
560 iwn_resume(device_t dev)
561 {
562 	struct iwn_softc *sc = device_get_softc(dev);
563 	struct ifnet *ifp = sc->sc_ifp;
564 
565 	pci_write_config(dev, 0x41, 0, 1);
566 
567 	if (ifp->if_flags & IFF_UP)
568 		iwn_init(sc);
569 	return 0;
570 }
571 
572 static void
573 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
574 {
575         if (error != 0)
576                 return;
577         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
578         *(bus_addr_t *)arg = segs[0].ds_addr;
579 }
580 
581 static int
582 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
583 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
584 {
585 	int error, lalignment, i;
586 
587 	/*
588 	 * FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so
589 	 * we allocate an extra 12k with 4k alignement and walk through
590 	 * it trying to find where the alignment is. It's a nasty fix for
591 	 * a bigger problem.
592 	*/
593 	DPRINTF(sc, IWN_DEBUG_RESET,
594 	    "Size: %zd - alignment %zd\n", size, alignment);
595 	if (alignment == 0x4000) {
596 		size += 12*1024;
597 		lalignment = 4096;
598 		DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
599 		    "Attempting to find a 16k boundary");
600 	} else
601 		lalignment = alignment;
602 	dma->size = size;
603 	dma->tag = NULL;
604 
605 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment,
606 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
607 	    1, size, flags, NULL, NULL, &dma->tag);
608 	if (error != 0) {
609 		device_printf(sc->sc_dev,
610 		    "%s: bus_dma_tag_create failed, error %d\n",
611 		    __func__, error);
612 		goto fail;
613 	}
614 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
615 	    flags | BUS_DMA_ZERO, &dma->map);
616 	if (error != 0) {
617 		device_printf(sc->sc_dev,
618 		   "%s: bus_dmamem_alloc failed, error %d\n",
619 		   __func__, error);
620 		goto fail;
621 	}
622 	if (alignment == 0x4000) {
623 		for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) {
624 			DPRINTF(sc, IWN_DEBUG_RESET,  "%s\n",
625 			    "Memory Unaligned, shifting pointer by 4k");
626 			dma->vaddr += 4096;
627 			size -= 4096;
628 		}
629 		if ((((uintptr_t)dma->vaddr ) & (alignment-1))) {
630 			DPRINTF(sc, IWN_DEBUG_ANY,
631 			    "%s: failed to align memory, vaddr %p, align %zd\n",
632 			    __func__, dma->vaddr, alignment);
633 			error = ENOMEM;
634 			goto fail;
635 		}
636 	}
637 
638 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
639 	    size, iwn_dma_map_addr, &dma->paddr, flags);
640 	if (error != 0) {
641 		device_printf(sc->sc_dev,
642 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
643 		goto fail;
644 	}
645 
646 	if (kvap != NULL)
647 		*kvap = dma->vaddr;
648 	return 0;
649 fail:
650 	iwn_dma_contig_free(dma);
651 	return error;
652 }
653 
654 static void
655 iwn_dma_contig_free(struct iwn_dma_info *dma)
656 {
657 	if (dma->tag != NULL) {
658 		if (dma->map != NULL) {
659 			if (dma->paddr == 0) {
660 				bus_dmamap_sync(dma->tag, dma->map,
661 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
662 				bus_dmamap_unload(dma->tag, dma->map);
663 			}
664 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
665 		}
666 		bus_dma_tag_destroy(dma->tag);
667 	}
668 }
669 
670 int
671 iwn_alloc_shared(struct iwn_softc *sc)
672 {
673 	/* must be aligned on a 1KB boundary */
674 	return iwn_dma_contig_alloc(sc, &sc->shared_dma,
675 	    (void **)&sc->shared, sizeof (struct iwn_shared), 1024,
676 	    BUS_DMA_NOWAIT);
677 }
678 
679 void
680 iwn_free_shared(struct iwn_softc *sc)
681 {
682 	iwn_dma_contig_free(&sc->shared_dma);
683 }
684 
685 int
686 iwn_alloc_kw(struct iwn_softc *sc)
687 {
688 	/* must be aligned on a 4k boundary */
689 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL,
690 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
691 }
692 
693 void
694 iwn_free_kw(struct iwn_softc *sc)
695 {
696 	iwn_dma_contig_free(&sc->kw_dma);
697 }
698 
699 int
700 iwn_alloc_fwmem(struct iwn_softc *sc)
701 {
702 	/* allocate enough contiguous space to store text and data */
703 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
704 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
705 	    BUS_DMA_NOWAIT);
706 }
707 
708 void
709 iwn_free_fwmem(struct iwn_softc *sc)
710 {
711 	iwn_dma_contig_free(&sc->fw_dma);
712 }
713 
714 int
715 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
716 {
717 	int i, error;
718 
719 	ring->cur = 0;
720 
721 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
722 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t),
723 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
724 	if (error != 0) {
725 		device_printf(sc->sc_dev,
726 		    "%s: could not allocate rx ring DMA memory, error %d\n",
727 		    __func__, error);
728 		goto fail;
729 	}
730 
731         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
732 	    BUS_SPACE_MAXADDR_32BIT,
733             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
734             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
735         if (error != 0) {
736                 device_printf(sc->sc_dev,
737 		    "%s: bus_dma_tag_create_failed, error %d\n",
738 		    __func__, error);
739                 goto fail;
740         }
741 
742 	/*
743 	 * Setup Rx buffers.
744 	 */
745 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
746 		struct iwn_rx_data *data = &ring->data[i];
747 		struct mbuf *m;
748 		bus_addr_t paddr;
749 
750 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
751 		if (error != 0) {
752 			device_printf(sc->sc_dev,
753 			    "%s: bus_dmamap_create failed, error %d\n",
754 			    __func__, error);
755 			goto fail;
756 		}
757 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
758 		if (m == NULL) {
759 			device_printf(sc->sc_dev,
760 			   "%s: could not allocate rx mbuf\n", __func__);
761 			error = ENOMEM;
762 			goto fail;
763 		}
764 		/* map page */
765 		error = bus_dmamap_load(ring->data_dmat, data->map,
766 		    mtod(m, caddr_t), MJUMPAGESIZE,
767 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
768 		if (error != 0 && error != EFBIG) {
769 			device_printf(sc->sc_dev,
770 			    "%s: bus_dmamap_load failed, error %d\n",
771 			    __func__, error);
772 			m_freem(m);
773 			error = ENOMEM;	/* XXX unique code */
774 			goto fail;
775 		}
776 		bus_dmamap_sync(ring->data_dmat, data->map,
777 		    BUS_DMASYNC_PREWRITE);
778 
779 		data->m = m;
780 		/* Rx buffers are aligned on a 256-byte boundary */
781 		ring->desc[i] = htole32(paddr >> 8);
782 	}
783 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
784 	    BUS_DMASYNC_PREWRITE);
785 	return 0;
786 fail:
787 	iwn_free_rx_ring(sc, ring);
788 	return error;
789 }
790 
791 void
792 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
793 {
794 	int ntries;
795 
796 	iwn_mem_lock(sc);
797 
798 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
799 	for (ntries = 0; ntries < 100; ntries++) {
800 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
801 			break;
802 		DELAY(10);
803 	}
804 #ifdef IWN_DEBUG
805 	if (ntries == 100)
806 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring");
807 #endif
808 	iwn_mem_unlock(sc);
809 
810 	ring->cur = 0;
811 }
812 
813 void
814 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
815 {
816 	int i;
817 
818 	iwn_dma_contig_free(&ring->desc_dma);
819 
820 	for (i = 0; i < IWN_RX_RING_COUNT; i++)
821 		if (ring->data[i].m != NULL)
822 			m_freem(ring->data[i].m);
823 }
824 
825 int
826 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
827 {
828 	bus_size_t size;
829 	int i, error;
830 
831 	ring->qid = qid;
832 	ring->queued = 0;
833 	ring->cur = 0;
834 
835 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
836 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
837 	    (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
838 	if (error != 0) {
839 		device_printf(sc->sc_dev,
840 		    "%s: could not allocate tx ring DMA memory, error %d\n",
841 		    __func__, error);
842 		goto fail;
843 	}
844 
845 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
846 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
847 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
848 	if (error != 0) {
849 		device_printf(sc->sc_dev,
850 		    "%s: could not allocate tx cmd DMA memory, error %d\n",
851 		    __func__, error);
852 		goto fail;
853 	}
854 
855         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
856 	    BUS_SPACE_MAXADDR_32BIT,
857             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
858             MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
859         if (error != 0) {
860                 device_printf(sc->sc_dev,
861 		    "%s: bus_dma_tag_create_failed, error %d\n",
862 		    __func__, error);
863                 goto fail;
864         }
865 
866 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
867 		struct iwn_tx_data *data = &ring->data[i];
868 
869 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
870 		if (error != 0) {
871 			device_printf(sc->sc_dev,
872 			    "%s: bus_dmamap_create failed, error %d\n",
873 			    __func__, error);
874 			goto fail;
875 		}
876 		bus_dmamap_sync(ring->data_dmat, data->map,
877 		    BUS_DMASYNC_PREWRITE);
878 	}
879 	return 0;
880 fail:
881 	iwn_free_tx_ring(sc, ring);
882 	return error;
883 }
884 
885 void
886 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
887 {
888 	uint32_t tmp;
889 	int i, ntries;
890 
891 	iwn_mem_lock(sc);
892 
893 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
894 	for (ntries = 0; ntries < 20; ntries++) {
895 		tmp = IWN_READ(sc, IWN_TX_STATUS);
896 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
897 			break;
898 		DELAY(10);
899 	}
900 #ifdef IWN_DEBUG
901 	if (ntries == 20)
902 		DPRINTF(sc, IWN_DEBUG_RESET,
903 		    "%s: timeout resetting Tx ring %d\n", __func__, ring->qid);
904 #endif
905 	iwn_mem_unlock(sc);
906 
907 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
908 		struct iwn_tx_data *data = &ring->data[i];
909 
910 		if (data->m != NULL) {
911 			bus_dmamap_unload(ring->data_dmat, data->map);
912 			m_freem(data->m);
913 			data->m = NULL;
914 		}
915 	}
916 
917 	ring->queued = 0;
918 	ring->cur = 0;
919 }
920 
921 void
922 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
923 {
924 	int i;
925 
926 	iwn_dma_contig_free(&ring->desc_dma);
927 	iwn_dma_contig_free(&ring->cmd_dma);
928 
929 	if (ring->data != NULL) {
930 		for (i = 0; i < IWN_TX_RING_COUNT; i++) {
931 			struct iwn_tx_data *data = &ring->data[i];
932 
933 			if (data->m != NULL) {
934 				bus_dmamap_unload(ring->data_dmat, data->map);
935 				m_freem(data->m);
936 			}
937 		}
938 	}
939 }
940 
941 struct ieee80211_node *
942 iwn_node_alloc(struct ieee80211_node_table *ic)
943 {
944 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
945 }
946 
947 void
948 iwn_newassoc(struct ieee80211_node *ni, int isnew)
949 {
950 	struct ieee80211vap *vap = ni->ni_vap;
951 
952 	ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
953 	   &IWN_NODE(ni)->amn, ni);
954 }
955 
956 int
957 iwn_media_change(struct ifnet *ifp)
958 {
959 	int error = ieee80211_media_change(ifp);
960 	/* NB: only the fixed rate can change and that doesn't need a reset */
961 	return (error == ENETRESET ? 0 : error);
962 }
963 
964 int
965 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
966 {
967 	struct iwn_vap *ivp = IWN_VAP(vap);
968 	struct ieee80211com *ic = vap->iv_ic;
969 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
970 	int error;
971 
972 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
973 		ieee80211_state_name[vap->iv_state],
974 		ieee80211_state_name[nstate]);
975 
976 	IWN_LOCK(sc);
977 	callout_stop(&sc->sc_timer_to);
978 	IWN_UNLOCK(sc);
979 
980 	/*
981 	 * Some state transitions require issuing a configure request
982 	 * to the adapter.  This must be done in a blocking context
983 	 * so we toss control to the task q thread where the state
984 	 * change will be finished after the command completes.
985 	 */
986 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
987 		/* !AUTH -> AUTH requires adapter config */
988 		error = iwn_queue_cmd(sc, IWN_AUTH, arg, IWN_QUEUE_NORMAL);
989 		return (error != 0 ? error : EINPROGRESS);
990 	}
991 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
992 		/*
993 		 * !RUN -> RUN requires setting the association id
994 		 * which is done with a firmware cmd.  We also defer
995 		 * starting the timers until that work is done.
996 		 */
997 		error = iwn_queue_cmd(sc, IWN_RUN, arg, IWN_QUEUE_NORMAL);
998 		return (error != 0 ? error : EINPROGRESS);
999 	}
1000 	if (nstate == IEEE80211_S_RUN) {
1001 		/*
1002 		 * RUN -> RUN transition; just restart the timers.
1003 		 */
1004 		iwn_calib_reset(sc);
1005 	}
1006 	return ivp->iv_newstate(vap, nstate, arg);
1007 }
1008 
1009 /*
1010  * Grab exclusive access to NIC memory.
1011  */
1012 void
1013 iwn_mem_lock(struct iwn_softc *sc)
1014 {
1015 	uint32_t tmp;
1016 	int ntries;
1017 
1018 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1019 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1020 
1021 	/* spin until we actually get the lock */
1022 	for (ntries = 0; ntries < 1000; ntries++) {
1023 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1024 		    (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1025 			break;
1026 		DELAY(10);
1027 	}
1028 	if (ntries == 1000)
1029 		device_printf(sc->sc_dev,
1030 		    "%s: could not lock memory\n", __func__);
1031 }
1032 
1033 /*
1034  * Release lock on NIC memory.
1035  */
1036 void
1037 iwn_mem_unlock(struct iwn_softc *sc)
1038 {
1039 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1040 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1041 }
1042 
1043 uint32_t
1044 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1045 {
1046 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1047 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1048 }
1049 
1050 void
1051 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1052 {
1053 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1054 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1055 }
1056 
1057 void
1058 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1059     const uint32_t *data, int wlen)
1060 {
1061 	for (; wlen > 0; wlen--, data++, addr += 4)
1062 		iwn_mem_write(sc, addr, *data);
1063 }
1064 
1065 int
1066 iwn_eeprom_lock(struct iwn_softc *sc)
1067 {
1068 	uint32_t tmp;
1069 	int ntries;
1070 
1071 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1072 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1073 
1074 	/* spin until we actually get the lock */
1075 	for (ntries = 0; ntries < 100; ntries++) {
1076 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1077 			return 0;
1078 		DELAY(10);
1079 	}
1080 	return ETIMEDOUT;
1081 }
1082 
1083 void
1084 iwn_eeprom_unlock(struct iwn_softc *sc)
1085 {
1086 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1087 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1088 }
1089 
1090 /*
1091  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1092  * instead of using the traditional bit-bang method.
1093  */
1094 int
1095 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1096 {
1097 	uint8_t *out = data;
1098 	uint32_t val;
1099 	int ntries, tmp;
1100 
1101 	iwn_mem_lock(sc);
1102 	for (; len > 0; len -= 2, addr++) {
1103 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1104 		tmp = IWN_READ(sc, IWN_EEPROM_CTL);
1105 		IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK );
1106 
1107 		for (ntries = 0; ntries < 10; ntries++) {
1108 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1109 			    IWN_EEPROM_READY)
1110 				break;
1111 			DELAY(5);
1112 		}
1113 		if (ntries == 10) {
1114 			device_printf(sc->sc_dev,"could not read EEPROM\n");
1115 			return ETIMEDOUT;
1116 		}
1117 		*out++ = val >> 16;
1118 		if (len > 1)
1119 			*out++ = val >> 24;
1120 	}
1121 	iwn_mem_unlock(sc);
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * The firmware boot code is small and is intended to be copied directly into
1128  * the NIC internal memory.
1129  */
1130 int
1131 iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1132 {
1133 	int ntries;
1134 
1135 	size /= sizeof (uint32_t);
1136 
1137 	iwn_mem_lock(sc);
1138 
1139 	/* copy microcode image into NIC memory */
1140 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1141 	    (const uint32_t *)ucode, size);
1142 
1143 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1144 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1145 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1146 
1147 	/* run microcode */
1148 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1149 
1150 	/* wait for transfer to complete */
1151 	for (ntries = 0; ntries < 1000; ntries++) {
1152 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1153 			break;
1154 		DELAY(10);
1155 	}
1156 	if (ntries == 1000) {
1157 		iwn_mem_unlock(sc);
1158 		device_printf(sc->sc_dev,
1159 		    "%s: could not load boot firmware\n", __func__);
1160 		return ETIMEDOUT;
1161 	}
1162 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1163 
1164 	iwn_mem_unlock(sc);
1165 
1166 	return 0;
1167 }
1168 
1169 int
1170 iwn_load_firmware(struct iwn_softc *sc)
1171 {
1172 	int error;
1173 
1174 	KASSERT(sc->fw_fp == NULL, ("firmware already loaded"));
1175 
1176 	IWN_UNLOCK(sc);
1177 	/* load firmware image from disk */
1178 	sc->fw_fp = firmware_get("iwnfw");
1179 	if (sc->fw_fp == NULL) {
1180 		device_printf(sc->sc_dev,
1181 		    "%s: could not load firmare image \"iwnfw\"\n", __func__);
1182 		error = EINVAL;
1183 	} else
1184 		error = 0;
1185 	IWN_LOCK(sc);
1186 	return error;
1187 }
1188 
1189 int
1190 iwn_transfer_firmware(struct iwn_softc *sc)
1191 {
1192 	struct iwn_dma_info *dma = &sc->fw_dma;
1193 	const struct iwn_firmware_hdr *hdr;
1194 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1195 	const uint8_t *boot_text;
1196 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1197 	uint32_t boot_textsz;
1198 	int error = 0;
1199 	const struct firmware *fp = sc->fw_fp;
1200 
1201 	/* extract firmware header information */
1202 	if (fp->datasize < sizeof (struct iwn_firmware_hdr)) {
1203 		device_printf(sc->sc_dev,
1204 		    "%s: truncated firmware header: %zu bytes, expecting %zu\n",
1205 		    __func__, fp->datasize, sizeof (struct iwn_firmware_hdr));
1206 		error = EINVAL;
1207 		goto fail;
1208 	}
1209 	hdr = (const struct iwn_firmware_hdr *)fp->data;
1210 	main_textsz = le32toh(hdr->main_textsz);
1211 	main_datasz = le32toh(hdr->main_datasz);
1212 	init_textsz = le32toh(hdr->init_textsz);
1213 	init_datasz = le32toh(hdr->init_datasz);
1214 	boot_textsz = le32toh(hdr->boot_textsz);
1215 
1216 	/* sanity-check firmware segments sizes */
1217 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1218 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1219 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1220 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1221 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1222 	    (boot_textsz & 3) != 0) {
1223 		device_printf(sc->sc_dev,
1224 		    "%s: invalid firmware header, main [%d,%d], init [%d,%d] "
1225 		    "boot %d\n", __func__, main_textsz, main_datasz,
1226 		    init_textsz, init_datasz, boot_textsz);
1227 		error = EINVAL;
1228 		goto fail;
1229 	}
1230 
1231 	/* check that all firmware segments are present */
1232 	if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz +
1233 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1234 		device_printf(sc->sc_dev, "%s: firmware file too short: "
1235 		    "%zu bytes, main [%d, %d], init [%d,%d] boot %d\n",
1236 		    __func__, fp->datasize, main_textsz, main_datasz,
1237 		    init_textsz, init_datasz, boot_textsz);
1238 		error = EINVAL;
1239 		goto fail;
1240 	}
1241 
1242 	/* get pointers to firmware segments */
1243 	main_text = (const uint8_t *)(hdr + 1);
1244 	main_data = main_text + main_textsz;
1245 	init_text = main_data + main_datasz;
1246 	init_data = init_text + init_textsz;
1247 	boot_text = init_data + init_datasz;
1248 
1249 	/* copy initialization images into pre-allocated DMA-safe memory */
1250 	memcpy(dma->vaddr, init_data, init_datasz);
1251 	memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1252 
1253 	/* tell adapter where to find initialization images */
1254 	iwn_mem_lock(sc);
1255 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1256 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1257 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1258 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1259 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1260 	iwn_mem_unlock(sc);
1261 
1262 	/* load firmware boot code */
1263 	error = iwn_transfer_microcode(sc, boot_text, boot_textsz);
1264 	if (error != 0) {
1265 		device_printf(sc->sc_dev,
1266 		    "%s: could not load boot firmware, error %d\n",
1267 		    __func__, error);
1268 		goto fail;
1269 	}
1270 
1271 	/* now press "execute" ;-) */
1272 	IWN_WRITE(sc, IWN_RESET, 0);
1273 
1274 	/* wait at most one second for first alive notification */
1275 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1276 	if (error != 0) {
1277 		/* this isn't what was supposed to happen.. */
1278 		device_printf(sc->sc_dev,
1279 		    "%s: timeout waiting for first alive notice, error %d\n",
1280 		    __func__, error);
1281 		goto fail;
1282 	}
1283 
1284 	/* copy runtime images into pre-allocated DMA-safe memory */
1285 	memcpy(dma->vaddr, main_data, main_datasz);
1286 	memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1287 
1288 	/* tell adapter where to find runtime images */
1289 	iwn_mem_lock(sc);
1290 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1291 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1292 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1293 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1294 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1295 	iwn_mem_unlock(sc);
1296 
1297 	/* wait at most one second for second alive notification */
1298 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1299 	if (error != 0) {
1300 		/* this isn't what was supposed to happen.. */
1301 		device_printf(sc->sc_dev,
1302 		   "%s: timeout waiting for second alive notice, error %d\n",
1303 		   __func__, error);
1304 		goto fail;
1305 	}
1306 	return 0;
1307 fail:
1308 	return error;
1309 }
1310 
1311 void
1312 iwn_unload_firmware(struct iwn_softc *sc)
1313 {
1314         if (sc->fw_fp != NULL) {
1315                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
1316                 sc->fw_fp = NULL;
1317         }
1318 }
1319 
1320 static void
1321 iwn_timer_timeout(void *arg)
1322 {
1323 	struct iwn_softc *sc = arg;
1324 
1325 	IWN_LOCK_ASSERT(sc);
1326 
1327 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1328 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1329 		    "send statistics request");
1330 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1331 		sc->calib_cnt = 60;	/* do calibration every 60s */
1332 	}
1333 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1334 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1335 }
1336 
1337 static void
1338 iwn_calib_reset(struct iwn_softc *sc)
1339 {
1340 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1341 	sc->calib_cnt = 60;		/* do calibration every 60s */
1342 }
1343 
1344 void
1345 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1346 {
1347 	struct iwn_rx_stat *stat;
1348 
1349 	DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats");
1350 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1351 	stat = (struct iwn_rx_stat *)(desc + 1);
1352 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1353 	sc->last_rx_valid = 1;
1354 }
1355 
1356 static __inline int
1357 maprate(int iwnrate)
1358 {
1359 	switch (iwnrate) {
1360 	/* CCK rates */
1361 	case  10: return   2;
1362 	case  20: return   4;
1363 	case  55: return  11;
1364 	case 110: return  22;
1365 	/* OFDM rates */
1366 	case 0xd: return  12;
1367 	case 0xf: return  18;
1368 	case 0x5: return  24;
1369 	case 0x7: return  36;
1370 	case 0x9: return  48;
1371 	case 0xb: return  72;
1372 	case 0x1: return  96;
1373 	case 0x3: return 108;
1374 	/* XXX MCS */
1375 	}
1376 	/* unknown rate: should not happen */
1377 	return 0;
1378 }
1379 
1380 void
1381 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1382     struct iwn_rx_data *data)
1383 {
1384 	struct ifnet *ifp = sc->sc_ifp;
1385 	struct ieee80211com *ic = ifp->if_l2com;
1386 	struct iwn_rx_ring *ring = &sc->rxq;
1387 	struct ieee80211_frame *wh;
1388 	struct ieee80211_node *ni;
1389 	struct mbuf *m, *mnew;
1390 	struct iwn_rx_stat *stat;
1391 	caddr_t head;
1392 	uint32_t *tail;
1393 	int8_t rssi, nf;
1394 	int len, error;
1395 	bus_addr_t paddr;
1396 
1397 	if (desc->type == IWN_AMPDU_RX_DONE) {
1398 		/* check for prior AMPDU_RX_START */
1399 		if (!sc->last_rx_valid) {
1400 			DPRINTF(sc, IWN_DEBUG_ANY,
1401 			    "%s: missing AMPDU_RX_START\n", __func__);
1402 			ifp->if_ierrors++;
1403 			return;
1404 		}
1405 		sc->last_rx_valid = 0;
1406 		stat = &sc->last_rx_stat;
1407 	} else
1408 		stat = (struct iwn_rx_stat *)(desc + 1);
1409 
1410 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1411 		device_printf(sc->sc_dev,
1412 		    "%s: invalid rx statistic header, len %d\n",
1413 		    __func__, stat->cfg_phy_len);
1414 		ifp->if_ierrors++;
1415 		return;
1416 	}
1417 	if (desc->type == IWN_AMPDU_RX_DONE) {
1418 		struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1);
1419 		head = (caddr_t)(ampdu + 1);
1420 		len = le16toh(ampdu->len);
1421 	} else {
1422 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1423 		len = le16toh(stat->len);
1424 	}
1425 
1426 	/* discard Rx frames with bad CRC early */
1427 	tail = (uint32_t *)(head + len);
1428 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1429 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
1430 		    __func__, le32toh(*tail));
1431 		ifp->if_ierrors++;
1432 		return;
1433 	}
1434 	if (len < sizeof (struct ieee80211_frame)) {
1435 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
1436 		    __func__, len);
1437 		ic->ic_stats.is_rx_tooshort++;
1438 		ifp->if_ierrors++;
1439 		return;
1440 	}
1441 
1442 	/* XXX don't need mbuf, just dma buffer */
1443 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1444 	if (mnew == NULL) {
1445 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1446 		    __func__);
1447 		ic->ic_stats.is_rx_nobuf++;
1448 		ifp->if_ierrors++;
1449 		return;
1450 	}
1451 	error = bus_dmamap_load(ring->data_dmat, data->map,
1452 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1453 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1454 	if (error != 0 && error != EFBIG) {
1455 		device_printf(sc->sc_dev,
1456 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1457 		m_freem(mnew);
1458 		ic->ic_stats.is_rx_nobuf++;	/* XXX need stat */
1459 		ifp->if_ierrors++;
1460 		return;
1461 	}
1462 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1463 
1464 	/* finalize mbuf and swap in new one */
1465 	m = data->m;
1466 	m->m_pkthdr.rcvif = ifp;
1467 	m->m_data = head;
1468 	m->m_pkthdr.len = m->m_len = len;
1469 
1470 	data->m = mnew;
1471 	/* update Rx descriptor */
1472 	ring->desc[ring->cur] = htole32(paddr >> 8);
1473 
1474 	rssi = iwn_get_rssi(sc, stat);
1475 
1476 	/* grab a reference to the source node */
1477 	wh = mtod(m, struct ieee80211_frame *);
1478 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1479 
1480 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
1481 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
1482 
1483 	if (bpf_peers_present(ifp->if_bpf)) {
1484 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1485 
1486 		tap->wr_flags = 0;
1487 		tap->wr_dbm_antsignal = rssi;
1488 		tap->wr_dbm_antnoise = nf;
1489 		tap->wr_rate = maprate(stat->rate);
1490 		tap->wr_tsft = htole64(stat->tstamp);
1491 
1492 		if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE))
1493 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1494 
1495 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1496 	}
1497 
1498 	IWN_UNLOCK(sc);
1499 
1500 	/* send the frame to the 802.11 layer */
1501 	if (ni != NULL) {
1502 		(void) ieee80211_input(ni, m, rssi - nf, nf, 0);
1503 		ieee80211_free_node(ni);
1504 	} else
1505 		(void) ieee80211_input_all(ic, m, rssi - nf, nf, 0);
1506 
1507 	IWN_LOCK(sc);
1508 }
1509 
1510 void
1511 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1512 {
1513 	struct ifnet *ifp = sc->sc_ifp;
1514 	struct ieee80211com *ic = ifp->if_l2com;
1515 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1516 	struct iwn_calib_state *calib = &sc->calib;
1517 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1518 
1519 	/* beacon stats are meaningful only when associated and not scanning */
1520 	if (vap->iv_state != IEEE80211_S_RUN ||
1521 	    (ic->ic_flags & IEEE80211_F_SCAN))
1522 		return;
1523 
1524 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
1525 	iwn_calib_reset(sc);
1526 
1527 	/* test if temperature has changed */
1528 	if (stats->general.temp != sc->rawtemp) {
1529 		int temp;
1530 
1531 		sc->rawtemp = stats->general.temp;
1532 		temp = iwn_get_temperature(sc);
1533 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
1534 		    __func__, temp);
1535 
1536 		/* update Tx power if need be */
1537 		iwn_power_calibration(sc, temp);
1538 	}
1539 
1540 	if (desc->type != IWN_BEACON_STATISTICS)
1541 		return;	/* reply to a statistics request */
1542 
1543 	sc->noise = iwn_get_noise(&stats->rx.general);
1544 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
1545 
1546 	/* test that RSSI and noise are present in stats report */
1547 	if (stats->rx.general.flags != htole32(1)) {
1548 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1549 		    "received statistics without RSSI");
1550 		return;
1551 	}
1552 
1553 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1554 		iwn_compute_differential_gain(sc, &stats->rx.general);
1555 	else if (calib->state == IWN_CALIB_STATE_RUN)
1556 		iwn_tune_sensitivity(sc, &stats->rx);
1557 }
1558 
1559 void
1560 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1561 {
1562 	struct ifnet *ifp = sc->sc_ifp;
1563 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1564 	struct iwn_tx_data *data = &ring->data[desc->idx];
1565 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1566 	struct iwn_node *wn = IWN_NODE(data->ni);
1567 	struct mbuf *m;
1568 	struct ieee80211_node *ni;
1569 	uint32_t status;
1570 
1571 	KASSERT(data->ni != NULL, ("no node"));
1572 
1573 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
1574 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
1575 	    __func__, desc->qid, desc->idx, stat->ntries,
1576 	    stat->nkill, stat->rate, le16toh(stat->duration),
1577 	    le32toh(stat->status));
1578 
1579 	/*
1580 	 * Update rate control statistics for the node.
1581 	 */
1582 	status = le32toh(stat->status) & 0xff;
1583 	if (status & 0x80) {
1584 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n",
1585 		    __func__, le32toh(stat->status));
1586 		ifp->if_oerrors++;
1587 		ieee80211_amrr_tx_complete(&wn->amn,
1588 		    IEEE80211_AMRR_FAILURE, stat->ntries);
1589 	} else {
1590 		ieee80211_amrr_tx_complete(&wn->amn,
1591 		    IEEE80211_AMRR_SUCCESS, stat->ntries);
1592 	}
1593 
1594 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1595 	bus_dmamap_unload(ring->data_dmat, data->map);
1596 
1597 	m = data->m, data->m = NULL;
1598 	ni = data->ni, data->ni = NULL;
1599 
1600 	if (m->m_flags & M_TXCB) {
1601 		/*
1602 		 * Channels marked for "radar" require traffic to be received
1603 		 * to unlock before we can transmit.  Until traffic is seen
1604 		 * any attempt to transmit is returned immediately with status
1605 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
1606 		 * happen on first authenticate after scanning.  To workaround
1607 		 * this we ignore a failure of this sort in AUTH state so the
1608 		 * 802.11 layer will fall back to using a timeout to wait for
1609 		 * the AUTH reply.  This allows the firmware time to see
1610 		 * traffic so a subsequent retry of AUTH succeeds.  It's
1611 		 * unclear why the firmware does not maintain state for
1612 		 * channels recently visited as this would allow immediate
1613 		 * use of the channel after a scan (where we see traffic).
1614 		 */
1615 		if (status == IWN_TX_FAIL_TX_LOCKED &&
1616 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
1617 			ieee80211_process_callback(ni, m, 0);
1618 		else
1619 			ieee80211_process_callback(ni, m,
1620 			    (status & IWN_TX_FAIL) != 0);
1621 	}
1622 	m_freem(m);
1623 	ieee80211_free_node(ni);
1624 
1625 	ring->queued--;
1626 
1627 	sc->sc_tx_timer = 0;
1628 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1629 	iwn_start(ifp);
1630 }
1631 
1632 void
1633 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1634 {
1635 	struct iwn_tx_ring *ring = &sc->txq[4];
1636 	struct iwn_tx_data *data;
1637 
1638 	if ((desc->qid & 0xf) != 4)
1639 		return;	/* not a command ack */
1640 
1641 	data = &ring->data[desc->idx];
1642 
1643 	/* if the command was mapped in a mbuf, free it */
1644 	if (data->m != NULL) {
1645 		bus_dmamap_unload(ring->data_dmat, data->map);
1646 		m_freem(data->m);
1647 		data->m = NULL;
1648 	}
1649 
1650 	wakeup(&ring->cmd[desc->idx]);
1651 }
1652 
1653 static void
1654 iwn_bmiss(void *arg, int npending)
1655 {
1656 	struct iwn_softc *sc = arg;
1657 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1658 
1659 	ieee80211_beacon_miss(ic);
1660 }
1661 
1662 void
1663 iwn_notif_intr(struct iwn_softc *sc)
1664 {
1665 	struct ifnet *ifp = sc->sc_ifp;
1666 	struct ieee80211com *ic = ifp->if_l2com;
1667 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1668 	uint16_t hw;
1669 
1670 	hw = le16toh(sc->shared->closed_count) & 0xfff;
1671 	while (sc->rxq.cur != hw) {
1672 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1673 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1674 
1675 		DPRINTF(sc, IWN_DEBUG_RECV,
1676 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
1677 		    __func__, desc->qid, desc->idx, desc->flags,
1678 		    desc->type, iwn_intr_str(desc->type),
1679 		    le16toh(desc->len));
1680 
1681 		if (!(desc->qid & 0x80))	/* reply to a command */
1682 			iwn_cmd_intr(sc, desc);
1683 
1684 		switch (desc->type) {
1685 		case IWN_RX_DONE:
1686 		case IWN_AMPDU_RX_DONE:
1687 			iwn_rx_intr(sc, desc, data);
1688 			break;
1689 
1690 		case IWN_AMPDU_RX_START:
1691 			iwn_ampdu_rx_start(sc, desc);
1692 			break;
1693 
1694 		case IWN_TX_DONE:
1695 			/* a 802.11 frame has been transmitted */
1696 			iwn_tx_intr(sc, desc);
1697 			break;
1698 
1699 		case IWN_RX_STATISTICS:
1700 		case IWN_BEACON_STATISTICS:
1701 			iwn_rx_statistics(sc, desc);
1702 			break;
1703 
1704 		case IWN_BEACON_MISSED: {
1705 			struct iwn_beacon_missed *miss =
1706 			    (struct iwn_beacon_missed *)(desc + 1);
1707 			int misses = le32toh(miss->consecutive);
1708 
1709 			/* XXX not sure why we're notified w/ zero */
1710 			if (misses == 0)
1711 				break;
1712 			DPRINTF(sc, IWN_DEBUG_STATE,
1713 			    "%s: beacons missed %d/%d\n", __func__,
1714 			    misses, le32toh(miss->total));
1715 			/*
1716 			 * If more than 5 consecutive beacons are missed,
1717 			 * reinitialize the sensitivity state machine.
1718 			 */
1719 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
1720 				(void) iwn_init_sensitivity(sc);
1721 			if (misses >= vap->iv_bmissthreshold)
1722 				taskqueue_enqueue(taskqueue_swi,
1723 				    &sc->sc_bmiss_task);
1724 			break;
1725 		}
1726 		case IWN_UC_READY: {
1727 			struct iwn_ucode_info *uc =
1728 			    (struct iwn_ucode_info *)(desc + 1);
1729 
1730 			/* the microcontroller is ready */
1731 			DPRINTF(sc, IWN_DEBUG_RESET,
1732 			    "microcode alive notification version=%d.%d "
1733 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
1734 			    uc->subtype, le32toh(uc->valid));
1735 
1736 			if (le32toh(uc->valid) != 1) {
1737 				device_printf(sc->sc_dev,
1738 				"microcontroller initialization failed");
1739 				break;
1740 			}
1741 			if (uc->subtype == IWN_UCODE_INIT) {
1742 				/* save microcontroller's report */
1743 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1744 			}
1745 			break;
1746 		}
1747 		case IWN_STATE_CHANGED: {
1748 			uint32_t *status = (uint32_t *)(desc + 1);
1749 
1750 			/*
1751 			 * State change allows hardware switch change to be
1752 			 * noted. However, we handle this in iwn_intr as we
1753 			 * get both the enable/disble intr.
1754 			 */
1755 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
1756 			    le32toh(*status));
1757 			break;
1758 		}
1759 		case IWN_START_SCAN: {
1760 			struct iwn_start_scan *scan =
1761 			    (struct iwn_start_scan *)(desc + 1);
1762 
1763 			DPRINTF(sc, IWN_DEBUG_ANY,
1764 			    "%s: scanning channel %d status %x\n",
1765 			    __func__, scan->chan, le32toh(scan->status));
1766 			break;
1767 		}
1768 		case IWN_STOP_SCAN: {
1769 			struct iwn_stop_scan *scan =
1770 			    (struct iwn_stop_scan *)(desc + 1);
1771 
1772 			DPRINTF(sc, IWN_DEBUG_STATE,
1773 			    "scan finished nchan=%d status=%d chan=%d\n",
1774 			    scan->nchan, scan->status, scan->chan);
1775 
1776 			iwn_queue_cmd(sc, IWN_SCAN_NEXT, 0, IWN_QUEUE_NORMAL);
1777 			break;
1778 		}
1779 		}
1780 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1781 	}
1782 
1783 	/* tell the firmware what we have processed */
1784 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1785 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1786 }
1787 
1788 void
1789 iwn_intr(void *arg)
1790 {
1791 	struct iwn_softc *sc = arg;
1792 	uint32_t r1, r2;
1793 
1794 	IWN_LOCK(sc);
1795 
1796 	/* disable interrupts */
1797 	IWN_WRITE(sc, IWN_MASK, 0);
1798 
1799 	r1 = IWN_READ(sc, IWN_INTR);
1800 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1801 
1802 	if (r1 == 0 && r2 == 0) {
1803 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1804 		goto done;	/* not for us */
1805 	}
1806 
1807 	if (r1 == 0xffffffff)
1808 		goto done;	/* hardware gone */
1809 
1810 	/* ack interrupts */
1811 	IWN_WRITE(sc, IWN_INTR, r1);
1812 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1813 
1814 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
1815 
1816 	if (r1 & IWN_RF_TOGGLED) {
1817 		uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1818 		device_printf(sc->sc_dev, "RF switch: radio %s\n",
1819 		    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1820 		if (tmp & IWN_GPIO_RF_ENABLED)
1821 			iwn_queue_cmd(sc, IWN_RADIO_ENABLE, 0, IWN_QUEUE_CLEAR);
1822 		else
1823 			iwn_queue_cmd(sc, IWN_RADIO_DISABLE, 0, IWN_QUEUE_CLEAR);
1824 	}
1825 	if (r1 & IWN_CT_REACHED)
1826 		device_printf(sc->sc_dev, "critical temperature reached!\n");
1827 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1828 		device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n",
1829 		    r1, IWN_INTR_BITS, r2);
1830 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
1831 		goto done;
1832 	}
1833 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR))
1834 		iwn_notif_intr(sc);
1835 	if (r1 & IWN_ALIVE_INTR)
1836 		wakeup(sc);
1837 
1838 	/* re-enable interrupts */
1839 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1840 done:
1841 	IWN_UNLOCK(sc);
1842 }
1843 
1844 uint8_t
1845 iwn_plcp_signal(int rate)
1846 {
1847 	switch (rate) {
1848 	/* CCK rates (returned values are device-dependent) */
1849 	case 2:		return 10;
1850 	case 4:		return 20;
1851 	case 11:	return 55;
1852 	case 22:	return 110;
1853 
1854 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1855 	/* R1-R4, (u)ral is R4-R1 */
1856 	case 12:	return 0xd;
1857 	case 18:	return 0xf;
1858 	case 24:	return 0x5;
1859 	case 36:	return 0x7;
1860 	case 48:	return 0x9;
1861 	case 72:	return 0xb;
1862 	case 96:	return 0x1;
1863 	case 108:	return 0x3;
1864 	case 120:	return 0x3;
1865 	}
1866 	/* unknown rate (should not get there) */
1867 	return 0;
1868 }
1869 
1870 /* determine if a given rate is CCK or OFDM */
1871 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1872 
1873 int
1874 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1875     struct iwn_tx_ring *ring)
1876 {
1877 	struct ieee80211vap *vap = ni->ni_vap;
1878 	struct ieee80211com *ic = ni->ni_ic;
1879 	struct ifnet *ifp = sc->sc_ifp;
1880 	const struct ieee80211_txparam *tp;
1881 	struct iwn_tx_desc *desc;
1882 	struct iwn_tx_data *data;
1883 	struct iwn_tx_cmd *cmd;
1884 	struct iwn_cmd_data *tx;
1885 	struct ieee80211_frame *wh;
1886 	struct ieee80211_key *k;
1887 	bus_addr_t paddr;
1888 	uint32_t flags;
1889 	uint16_t timeout;
1890 	uint8_t type;
1891 	u_int hdrlen;
1892 	struct mbuf *mnew;
1893 	int rate, error, pad, nsegs, i, ismcast, id;
1894 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
1895 
1896 	IWN_LOCK_ASSERT(sc);
1897 
1898 	wh = mtod(m0, struct ieee80211_frame *);
1899 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1900 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1901 	hdrlen = ieee80211_anyhdrsize(wh);
1902 
1903 	/* pick a tx rate */
1904 	/* XXX ni_chan */
1905 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1906 	if (type == IEEE80211_FC0_TYPE_MGT)
1907 		rate = tp->mgmtrate;
1908 	else if (ismcast)
1909 		rate = tp->mcastrate;
1910 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1911 		rate = tp->ucastrate;
1912 	else {
1913 		(void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn);
1914 		rate = ni->ni_txrate;
1915 	}
1916 
1917 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1918 		k = ieee80211_crypto_encap(ni, m0);
1919 		if (k == NULL) {
1920 			m_freem(m0);
1921 			return ENOBUFS;
1922 		}
1923 		/* packet header may have moved, reset our local pointer */
1924 		wh = mtod(m0, struct ieee80211_frame *);
1925 	} else
1926 		k = NULL;
1927 
1928 	if (bpf_peers_present(ifp->if_bpf)) {
1929 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1930 
1931 		tap->wt_flags = 0;
1932 		tap->wt_rate = rate;
1933 		if (k != NULL)
1934 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1935 
1936 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1937 	}
1938 
1939 	flags = IWN_TX_AUTO_SEQ;
1940 	/* XXX honor ACM */
1941 	if (!ismcast)
1942 		flags |= IWN_TX_NEED_ACK;
1943 
1944 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
1945 		id = IWN_ID_BROADCAST;
1946 	else
1947 		id = IWN_ID_BSS;
1948 
1949 	/* check if RTS/CTS or CTS-to-self protection must be used */
1950 	if (!ismcast) {
1951 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1952 		if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1953 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1954 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1955 		    IWN_RATE_IS_OFDM(rate)) {
1956 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1957 				flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
1958 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1959 				flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1960 		}
1961 	}
1962 
1963 	if (type == IEEE80211_FC0_TYPE_MGT) {
1964 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1965 
1966 		/* tell h/w to set timestamp in probe responses */
1967 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1968 			flags |= IWN_TX_INSERT_TSTAMP;
1969 
1970 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1971 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1972 			timeout = htole16(3);
1973 		else
1974 			timeout = htole16(2);
1975 	} else
1976 		timeout = htole16(0);
1977 
1978 	if (hdrlen & 3) {
1979 		/* first segment's length must be a multiple of 4 */
1980 		flags |= IWN_TX_NEED_PADDING;
1981 		pad = 4 - (hdrlen & 3);
1982 	} else
1983 		pad = 0;
1984 
1985 	desc = &ring->desc[ring->cur];
1986 	data = &ring->data[ring->cur];
1987 
1988 	cmd = &ring->cmd[ring->cur];
1989 	cmd->code = IWN_CMD_TX_DATA;
1990 	cmd->flags = 0;
1991 	cmd->qid = ring->qid;
1992 	cmd->idx = ring->cur;
1993 
1994 	tx = (struct iwn_cmd_data *)cmd->data;
1995 	/* NB: no need to bzero tx, all fields are reinitialized here */
1996 	tx->id = id;
1997 	tx->flags = htole32(flags);
1998 	tx->len = htole16(m0->m_pkthdr.len);
1999 	tx->rate = iwn_plcp_signal(rate);
2000 	tx->rts_ntries = 60;		/* XXX? */
2001 	tx->data_ntries = 15;		/* XXX? */
2002 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2003 	tx->timeout = timeout;
2004 
2005 	if (k != NULL) {
2006 		/* XXX fill in */;
2007 	} else
2008 		tx->security = 0;
2009 
2010 	/* XXX alternate between Ant A and Ant B ? */
2011 	tx->rflags = IWN_RFLAG_ANT_B;
2012 	if (tx->id == IWN_ID_BROADCAST) {
2013 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2014 		if (!IWN_RATE_IS_OFDM(rate))
2015 			tx->rflags |= IWN_RFLAG_CCK;
2016 	} else {
2017 		tx->ridx = 0;
2018 		/* tell adapter to ignore rflags */
2019 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2020 	}
2021 
2022 	/* copy and trim IEEE802.11 header */
2023 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2024 	m_adj(m0, hdrlen);
2025 
2026 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2027 	    &nsegs, BUS_DMA_NOWAIT);
2028 	if (error != 0) {
2029 		if (error == EFBIG) {
2030 			/* too many fragments, linearize */
2031 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2032 			if (mnew == NULL) {
2033 				IWN_UNLOCK(sc);
2034 				device_printf(sc->sc_dev,
2035 				    "%s: could not defrag mbuf\n", __func__);
2036 				m_freem(m0);
2037 				return ENOBUFS;
2038 			}
2039 			m0 = mnew;
2040 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2041 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2042 		}
2043 		if (error != 0) {
2044 			IWN_UNLOCK(sc);
2045 			device_printf(sc->sc_dev,
2046 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2047 			     __func__, error);
2048 			m_freem(m0);
2049 			return error;
2050 		}
2051 	}
2052 
2053 	data->m = m0;
2054 	data->ni = ni;
2055 
2056 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2057 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2058 
2059 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2060 	tx->loaddr = htole32(paddr + 4 +
2061 	    offsetof(struct iwn_cmd_data, ntries));
2062 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2063 
2064 	/* first scatter/gather segment is used by the tx data command */
2065 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2066 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2067 	for (i = 1; i <= nsegs; i++) {
2068 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2069 		     segs[i - 1].ds_len);
2070 	}
2071 	sc->shared->len[ring->qid][ring->cur] =
2072 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2073 
2074 	if (ring->cur < IWN_TX_WINDOW)
2075 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2076 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2077 
2078 	ring->queued++;
2079 
2080 	/* kick Tx ring */
2081 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2082 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2083 
2084 	ifp->if_opackets++;
2085 	sc->sc_tx_timer = 5;
2086 
2087 	return 0;
2088 }
2089 
2090 void
2091 iwn_start(struct ifnet *ifp)
2092 {
2093 	struct iwn_softc *sc = ifp->if_softc;
2094 	struct ieee80211_node *ni;
2095 	struct iwn_tx_ring *txq;
2096 	struct mbuf *m;
2097 	int pri;
2098 
2099 	for (;;) {
2100 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2101 		if (m == NULL)
2102 			break;
2103 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2104 		pri = M_WME_GETAC(m);
2105 		txq = &sc->txq[pri];
2106 		m = ieee80211_encap(ni, m);
2107 		if (m == NULL) {
2108 			ifp->if_oerrors++;
2109 			ieee80211_free_node(ni);
2110 			continue;
2111 		}
2112 		IWN_LOCK(sc);
2113 		if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2114 			/* XXX not right */
2115 			/* ring is nearly full, stop flow */
2116 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2117 		}
2118 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
2119 			ifp->if_oerrors++;
2120 			ieee80211_free_node(ni);
2121 			IWN_UNLOCK(sc);
2122 			break;
2123 		}
2124 		IWN_UNLOCK(sc);
2125 	}
2126 }
2127 
2128 static int
2129 iwn_tx_handoff(struct iwn_softc *sc,
2130 	struct iwn_tx_ring *ring,
2131 	struct iwn_tx_cmd *cmd,
2132 	struct iwn_cmd_data *tx,
2133 	struct ieee80211_node *ni,
2134 	struct mbuf *m0, u_int hdrlen, int pad)
2135 {
2136 	struct ifnet *ifp = sc->sc_ifp;
2137 	struct iwn_tx_desc *desc;
2138 	struct iwn_tx_data *data;
2139 	bus_addr_t paddr;
2140 	struct mbuf *mnew;
2141 	int error, nsegs, i;
2142 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2143 
2144 	/* copy and trim IEEE802.11 header */
2145 	memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen);
2146 	m_adj(m0, hdrlen);
2147 
2148 	desc = &ring->desc[ring->cur];
2149 	data = &ring->data[ring->cur];
2150 
2151 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2152 	    &nsegs, BUS_DMA_NOWAIT);
2153 	if (error != 0) {
2154 		if (error == EFBIG) {
2155 			/* too many fragments, linearize */
2156 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2157 			if (mnew == NULL) {
2158 				IWN_UNLOCK(sc);
2159 				device_printf(sc->sc_dev,
2160 				    "%s: could not defrag mbuf\n", __func__);
2161 				m_freem(m0);
2162 				return ENOBUFS;
2163 			}
2164 			m0 = mnew;
2165 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2166 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2167 		}
2168 		if (error != 0) {
2169 			IWN_UNLOCK(sc);
2170 			device_printf(sc->sc_dev,
2171 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2172 			     __func__, error);
2173 			m_freem(m0);
2174 			return error;
2175 		}
2176 	}
2177 
2178 	data->m = m0;
2179 	data->ni = ni;
2180 
2181 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2182 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2183 
2184 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2185 	tx->loaddr = htole32(paddr + 4 +
2186 	    offsetof(struct iwn_cmd_data, ntries));
2187 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2188 
2189 	/* first scatter/gather segment is used by the tx data command */
2190 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2191 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2192 	for (i = 1; i <= nsegs; i++) {
2193 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2194 		     segs[i - 1].ds_len);
2195 	}
2196 	sc->shared->len[ring->qid][ring->cur] =
2197 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2198 
2199 	if (ring->cur < IWN_TX_WINDOW)
2200 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2201 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2202 
2203 	ring->queued++;
2204 
2205 	/* kick Tx ring */
2206 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2207 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2208 
2209 	ifp->if_opackets++;
2210 	sc->sc_tx_timer = 5;
2211 
2212 	return 0;
2213 }
2214 
2215 static int
2216 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0,
2217     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
2218     const struct ieee80211_bpf_params *params)
2219 {
2220 	struct ifnet *ifp = sc->sc_ifp;
2221 	struct iwn_tx_cmd *cmd;
2222 	struct iwn_cmd_data *tx;
2223 	struct ieee80211_frame *wh;
2224 	uint32_t flags;
2225 	uint8_t type, subtype;
2226 	u_int hdrlen;
2227 	int rate, pad;
2228 
2229 	IWN_LOCK_ASSERT(sc);
2230 
2231 	wh = mtod(m0, struct ieee80211_frame *);
2232 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2233 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2234 	hdrlen = ieee80211_anyhdrsize(wh);
2235 
2236 	flags = IWN_TX_AUTO_SEQ;
2237 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2238 		flags |= IWN_TX_NEED_ACK;
2239 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2240 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2241 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2242 		flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
2243 	if (type == IEEE80211_FC0_TYPE_MGT &&
2244 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2245 		/* tell h/w to set timestamp in probe responses */
2246 		flags |= IWN_TX_INSERT_TSTAMP;
2247 	}
2248 	if (hdrlen & 3) {
2249 		/* first segment's length must be a multiple of 4 */
2250 		flags |= IWN_TX_NEED_PADDING;
2251 		pad = 4 - (hdrlen & 3);
2252 	} else
2253 		pad = 0;
2254 
2255 	/* pick a tx rate */
2256 	rate = params->ibp_rate0;
2257 
2258 	if (bpf_peers_present(ifp->if_bpf)) {
2259 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2260 
2261 		tap->wt_flags = 0;
2262 		tap->wt_rate = rate;
2263 
2264 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
2265 	}
2266 
2267 	cmd = &ring->cmd[ring->cur];
2268 	cmd->code = IWN_CMD_TX_DATA;
2269 	cmd->flags = 0;
2270 	cmd->qid = ring->qid;
2271 	cmd->idx = ring->cur;
2272 
2273 	tx = (struct iwn_cmd_data *)cmd->data;
2274 	/* NB: no need to bzero tx, all fields are reinitialized here */
2275 	tx->id = IWN_ID_BROADCAST;
2276 	tx->flags = htole32(flags);
2277 	tx->len = htole16(m0->m_pkthdr.len);
2278 	tx->rate = iwn_plcp_signal(rate);
2279 	tx->rts_ntries = params->ibp_try1;		/* XXX? */
2280 	tx->data_ntries = params->ibp_try0;
2281 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2282 	/* XXX use try count? */
2283 	if (type == IEEE80211_FC0_TYPE_MGT) {
2284 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2285 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2286 			tx->timeout = htole16(3);
2287 		else
2288 			tx->timeout = htole16(2);
2289 	} else
2290 		tx->timeout = htole16(0);
2291 	tx->security = 0;
2292 	/* XXX alternate between Ant A and Ant B ? */
2293 	tx->rflags = IWN_RFLAG_ANT_B;	/* XXX params->ibp_pri >> 2 */
2294 	tx->ridx = IWN_MAX_TX_RETRIES - 1;
2295 	if (!IWN_RATE_IS_OFDM(rate))
2296 		tx->rflags |= IWN_RFLAG_CCK;
2297 
2298 	return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad);
2299 }
2300 
2301 static int
2302 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2303 	const struct ieee80211_bpf_params *params)
2304 {
2305 	struct ieee80211com *ic = ni->ni_ic;
2306 	struct ifnet *ifp = ic->ic_ifp;
2307 	struct iwn_softc *sc = ifp->if_softc;
2308 	struct iwn_tx_ring *txq;
2309 	int error;
2310 
2311 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2312 		ieee80211_free_node(ni);
2313 		m_freem(m);
2314 		return ENETDOWN;
2315 	}
2316 
2317 	IWN_LOCK(sc);
2318 	if (params == NULL)
2319 		txq = &sc->txq[M_WME_GETAC(m)];
2320 	else
2321 		txq = &sc->txq[params->ibp_pri & 3];
2322 	if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2323 		/* XXX not right */
2324 		/* ring is nearly full, stop flow */
2325 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2326 	}
2327 	if (params == NULL) {
2328 		/*
2329 		 * Legacy path; interpret frame contents to decide
2330 		 * precisely how to send the frame.
2331 		 */
2332 		error = iwn_tx_data(sc, m, ni, txq);
2333 	} else {
2334 		/*
2335 		 * Caller supplied explicit parameters to use in
2336 		 * sending the frame.
2337 		 */
2338 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
2339 	}
2340 	if (error != 0) {
2341 		/* NB: m is reclaimed on tx failure */
2342 		ieee80211_free_node(ni);
2343 		ifp->if_oerrors++;
2344 	}
2345 	IWN_UNLOCK(sc);
2346 	return error;
2347 }
2348 
2349 static void
2350 iwn_watchdog(struct iwn_softc *sc)
2351 {
2352 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
2353 		struct ifnet *ifp = sc->sc_ifp;
2354 
2355 		if_printf(ifp, "device timeout\n");
2356 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
2357 	}
2358 }
2359 
2360 int
2361 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2362 {
2363 	struct iwn_softc *sc = ifp->if_softc;
2364 	struct ieee80211com *ic = ifp->if_l2com;
2365 	struct ifreq *ifr = (struct ifreq *) data;
2366 	int error = 0, startall = 0;
2367 
2368 	switch (cmd) {
2369 	case SIOCSIFFLAGS:
2370 		IWN_LOCK(sc);
2371 		if (ifp->if_flags & IFF_UP) {
2372 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2373 				iwn_init_locked(sc);
2374 				startall = 1;
2375 			}
2376 		} else {
2377 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2378 				iwn_stop_locked(sc);
2379 		}
2380 		IWN_UNLOCK(sc);
2381 		if (startall)
2382 			ieee80211_start_all(ic);
2383 		break;
2384 	case SIOCGIFMEDIA:
2385 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2386 		break;
2387 	case SIOCGIFADDR:
2388 		error = ether_ioctl(ifp, cmd, data);
2389 		break;
2390 	default:
2391 		error = EINVAL;
2392 		break;
2393 	}
2394 	return error;
2395 }
2396 
2397 void
2398 iwn_read_eeprom(struct iwn_softc *sc)
2399 {
2400 	struct ifnet *ifp = sc->sc_ifp;
2401 	struct ieee80211com *ic = ifp->if_l2com;
2402 	char domain[4];
2403 	uint16_t val;
2404 	int i, error;
2405 
2406 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2407 		device_printf(sc->sc_dev,
2408 		    "%s: could not lock EEPROM, error %d\n", __func__, error);
2409 		return;
2410 	}
2411 	/* read and print regulatory domain */
2412 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2413 	device_printf(sc->sc_dev,"Reg Domain: %.4s", domain);
2414 
2415 	/* read and print MAC address */
2416 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
2417 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
2418 
2419 	/* read the list of authorized channels */
2420 	iwn_read_eeprom_channels(sc);
2421 
2422 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2423 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2424 	sc->maxpwr2GHz = val & 0xff;
2425 	sc->maxpwr5GHz = val >> 8;
2426 	/* check that EEPROM values are correct */
2427 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2428 		sc->maxpwr5GHz = 38;
2429 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2430 		sc->maxpwr2GHz = 38;
2431 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2432 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2433 
2434 	/* read voltage at which samples were taken */
2435 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2436 	sc->eeprom_voltage = (int16_t)le16toh(val);
2437 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2438 	    sc->eeprom_voltage);
2439 
2440 	/* read power groups */
2441 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2442 #ifdef IWN_DEBUG
2443 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2444 		for (i = 0; i < IWN_NBANDS; i++)
2445 			iwn_print_power_group(sc, i);
2446 	}
2447 #endif
2448 	iwn_eeprom_unlock(sc);
2449 }
2450 
2451 struct iwn_chan_band {
2452 	uint32_t	addr;	/* offset in EEPROM */
2453 	uint32_t	flags;	/* net80211 flags */
2454 	uint8_t		nchan;
2455 #define IWN_MAX_CHAN_PER_BAND	14
2456 	uint8_t		chan[IWN_MAX_CHAN_PER_BAND];
2457 };
2458 
2459 static void
2460 iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band)
2461 {
2462 	struct ifnet *ifp = sc->sc_ifp;
2463 	struct ieee80211com *ic = ifp->if_l2com;
2464 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2465 	struct ieee80211_channel *c;
2466 	int i, chan, flags;
2467 
2468 	iwn_read_prom_data(sc, band->addr, channels,
2469 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2470 
2471 	for (i = 0; i < band->nchan; i++) {
2472 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2473 			DPRINTF(sc, IWN_DEBUG_RESET,
2474 			    "skip chan %d flags 0x%x maxpwr %d\n",
2475 			    band->chan[i], channels[i].flags,
2476 			    channels[i].maxpwr);
2477 			continue;
2478 		}
2479 		chan = band->chan[i];
2480 
2481 		/* translate EEPROM flags to net80211 */
2482 		flags = 0;
2483 		if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2484 			flags |= IEEE80211_CHAN_PASSIVE;
2485 		if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0)
2486 			flags |= IEEE80211_CHAN_NOADHOC;
2487 		if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) {
2488 			flags |= IEEE80211_CHAN_DFS;
2489 			/* XXX apparently IBSS may still be marked */
2490 			flags |= IEEE80211_CHAN_NOADHOC;
2491 		}
2492 
2493 		DPRINTF(sc, IWN_DEBUG_RESET,
2494 		    "add chan %d flags 0x%x maxpwr %d\n",
2495 		    chan, channels[i].flags, channels[i].maxpwr);
2496 
2497 		c = &ic->ic_channels[ic->ic_nchans++];
2498 		c->ic_ieee = chan;
2499 		c->ic_freq = ieee80211_ieee2mhz(chan, band->flags);
2500 		c->ic_maxregpower = channels[i].maxpwr;
2501 		c->ic_maxpower = 2*c->ic_maxregpower;
2502 		if (band->flags & IEEE80211_CHAN_2GHZ) {
2503 			/* G =>'s B is supported */
2504 			c->ic_flags = IEEE80211_CHAN_B | flags;
2505 
2506 			c = &ic->ic_channels[ic->ic_nchans++];
2507 			c[0] = c[-1];
2508 			c->ic_flags = IEEE80211_CHAN_G | flags;
2509 		} else {	/* 5GHz band */
2510 			c->ic_flags = IEEE80211_CHAN_A | flags;
2511 		}
2512 		/* XXX no constraints on using HT20 */
2513 		/* add HT20, HT40 added separately */
2514 		c = &ic->ic_channels[ic->ic_nchans++];
2515 		c[0] = c[-1];
2516 		c->ic_flags |= IEEE80211_CHAN_HT20;
2517 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
2518 	}
2519 }
2520 
2521 static void
2522 iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band)
2523 {
2524 	struct ifnet *ifp = sc->sc_ifp;
2525 	struct ieee80211com *ic = ifp->if_l2com;
2526 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2527 	struct ieee80211_channel *c, *cent, *extc;
2528 	int i;
2529 
2530 	iwn_read_prom_data(sc, band->addr, channels,
2531 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2532 
2533 	for (i = 0; i < band->nchan; i++) {
2534 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
2535 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
2536 			DPRINTF(sc, IWN_DEBUG_RESET,
2537 			    "skip chan %d flags 0x%x maxpwr %d\n",
2538 			    band->chan[i], channels[i].flags,
2539 			    channels[i].maxpwr);
2540 			continue;
2541 		}
2542 		/*
2543 		 * Each entry defines an HT40 channel pair; find the
2544 		 * center channel, then the extension channel above.
2545 		 */
2546 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
2547 		    band->flags & ~IEEE80211_CHAN_HT);
2548 		if (cent == NULL) {	/* XXX shouldn't happen */
2549 			device_printf(sc->sc_dev,
2550 			    "%s: no entry for channel %d\n",
2551 			    __func__, band->chan[i]);
2552 			continue;
2553 		}
2554 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2555 		    band->flags & ~IEEE80211_CHAN_HT);
2556 		if (extc == NULL) {
2557 			DPRINTF(sc, IWN_DEBUG_RESET,
2558 			    "skip chan %d, extension channel not found\n",
2559 			    band->chan[i]);
2560 			continue;
2561 		}
2562 
2563 		DPRINTF(sc, IWN_DEBUG_RESET,
2564 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2565 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
2566 
2567 		c = &ic->ic_channels[ic->ic_nchans++];
2568 		c[0] = cent[0];
2569 		c->ic_extieee = extc->ic_ieee;
2570 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2571 		c->ic_flags |= IEEE80211_CHAN_HT40U;
2572 		c = &ic->ic_channels[ic->ic_nchans++];
2573 		c[0] = extc[0];
2574 		c->ic_extieee = cent->ic_ieee;
2575 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2576 		c->ic_flags |= IEEE80211_CHAN_HT40D;
2577 	}
2578 }
2579 
2580 static void
2581 iwn_read_eeprom_channels(struct iwn_softc *sc)
2582 {
2583 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2584 	static const struct iwn_chan_band iwn_bands[] = {
2585 	    { IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14,
2586 		{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } },
2587 	    { IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13,
2588 		{ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } },
2589 	    { IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12,
2590 		{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } },
2591 	    { IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11,
2592 		{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } },
2593 	    { IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6,
2594 		{ 145, 149, 153, 157, 161, 165 } },
2595 	    { IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7,
2596 		{ 1, 2, 3, 4, 5, 6, 7 } },
2597 	    { IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11,
2598 		{ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } }
2599 	};
2600 	struct ifnet *ifp = sc->sc_ifp;
2601 	struct ieee80211com *ic = ifp->if_l2com;
2602 	int i;
2603 
2604 	/* read the list of authorized channels */
2605 	for (i = 0; i < N(iwn_bands)-2; i++)
2606 		iwn_read_eeprom_band(sc, &iwn_bands[i]);
2607 	for (; i < N(iwn_bands); i++)
2608 		iwn_read_eeprom_ht40(sc, &iwn_bands[i]);
2609 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2610 #undef N
2611 }
2612 
2613 #ifdef IWN_DEBUG
2614 void
2615 iwn_print_power_group(struct iwn_softc *sc, int i)
2616 {
2617 	struct iwn_eeprom_band *band = &sc->bands[i];
2618 	struct iwn_eeprom_chan_samples *chans = band->chans;
2619 	int j, c;
2620 
2621 	printf("===band %d===\n", i);
2622 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2623 	printf("chan1 num=%d\n", chans[0].num);
2624 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2625 		for (j = 0; j < IWN_NSAMPLES; j++) {
2626 			printf("chain %d, sample %d: temp=%d gain=%d "
2627 			    "power=%d pa_det=%d\n", c, j,
2628 			    chans[0].samples[c][j].temp,
2629 			    chans[0].samples[c][j].gain,
2630 			    chans[0].samples[c][j].power,
2631 			    chans[0].samples[c][j].pa_det);
2632 		}
2633 	}
2634 	printf("chan2 num=%d\n", chans[1].num);
2635 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2636 		for (j = 0; j < IWN_NSAMPLES; j++) {
2637 			printf("chain %d, sample %d: temp=%d gain=%d "
2638 			    "power=%d pa_det=%d\n", c, j,
2639 			    chans[1].samples[c][j].temp,
2640 			    chans[1].samples[c][j].gain,
2641 			    chans[1].samples[c][j].power,
2642 			    chans[1].samples[c][j].pa_det);
2643 		}
2644 	}
2645 }
2646 #endif
2647 
2648 /*
2649  * Send a command to the firmware.
2650  */
2651 int
2652 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2653 {
2654 	struct iwn_tx_ring *ring = &sc->txq[4];
2655 	struct iwn_tx_desc *desc;
2656 	struct iwn_tx_cmd *cmd;
2657 	bus_addr_t paddr;
2658 
2659 	IWN_LOCK_ASSERT(sc);
2660 
2661 	KASSERT(size <= sizeof cmd->data, ("Command too big"));
2662 
2663 	desc = &ring->desc[ring->cur];
2664 	cmd = &ring->cmd[ring->cur];
2665 
2666 	cmd->code = code;
2667 	cmd->flags = 0;
2668 	cmd->qid = ring->qid;
2669 	cmd->idx = ring->cur;
2670 	memcpy(cmd->data, buf, size);
2671 
2672 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2673 
2674 	IWN_SET_DESC_NSEGS(desc, 1);
2675 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2676 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2677 	if (ring->cur < IWN_TX_WINDOW) {
2678 	    sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2679 		htole16(8);
2680 	}
2681 
2682 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
2683 	    __func__, iwn_intr_str(cmd->code), cmd->code,
2684 	    cmd->flags, cmd->qid, cmd->idx);
2685 
2686 	/* kick cmd ring */
2687 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2688 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2689 
2690 	return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz);
2691 }
2692 
2693 static const uint8_t iwn_ridx_to_plcp[] = {
2694 	10, 20, 55, 110, /* CCK */
2695 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
2696 };
2697 static const uint8_t iwn_siso_mcs_to_plcp[] = {
2698 	0, 0, 0, 0, 			/* CCK */
2699 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
2700 };
2701 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
2702 	0, 0, 0, 0, 			/* CCK */
2703 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
2704 };
2705 static const uint8_t iwn_prev_ridx[] = {
2706 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
2707 	0, 0, 1, 5,			/* CCK */
2708 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
2709 };
2710 
2711 /*
2712  * Configure hardware link parameters for the specified
2713  * node operating on the specified channel.
2714  */
2715 int
2716 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id,
2717 	const struct ieee80211_channel *c, int async)
2718 {
2719 	struct iwn_cmd_link_quality lq;
2720 	int i, ridx;
2721 
2722 	memset(&lq, 0, sizeof(lq));
2723 	lq.id = id;
2724 	if (IEEE80211_IS_CHAN_HT(c)) {
2725 		lq.mimo = 1;
2726 		lq.ssmask = 0x1;
2727 	} else
2728 		lq.ssmask = 0x2;
2729 
2730 	if (id == IWN_ID_BSS)
2731 		ridx = IWN_RATE_OFDM54;
2732 	else if (IEEE80211_IS_CHAN_A(c))
2733 		ridx = IWN_RATE_OFDM6;
2734 	else
2735 		ridx = IWN_RATE_CCK1;
2736 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2737 		/* XXX toggle antenna for retry patterns */
2738 		if (IEEE80211_IS_CHAN_HT40(c)) {
2739 			lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx]
2740 					 | IWN_RATE_MCS;
2741 			lq.table[i].rflags = IWN_RFLAG_HT
2742 					 | IWN_RFLAG_HT40
2743 					 | IWN_RFLAG_ANT_A;
2744 			/* XXX shortGI */
2745 		} else if (IEEE80211_IS_CHAN_HT(c)) {
2746 			lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx]
2747 					 | IWN_RATE_MCS;
2748 			lq.table[i].rflags = IWN_RFLAG_HT
2749 					 | IWN_RFLAG_ANT_A;
2750 			/* XXX shortGI */
2751 		} else {
2752 			lq.table[i].rate = iwn_ridx_to_plcp[ridx];
2753 			if (ridx <= IWN_RATE_CCK11)
2754 				lq.table[i].rflags = IWN_RFLAG_CCK;
2755 			lq.table[i].rflags |= IWN_RFLAG_ANT_B;
2756 		}
2757 		ridx = iwn_prev_ridx[ridx];
2758 	}
2759 
2760 	lq.dsmask = 0x3;
2761 	lq.ampdu_disable = 3;
2762 	lq.ampdu_limit = htole16(4000);
2763 #ifdef IWN_DEBUG
2764 	if (sc->sc_debug & IWN_DEBUG_STATE) {
2765 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
2766 		    __func__, id, lq.mimo, lq.ssmask);
2767 		printf("%s:", __func__);
2768 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
2769 			printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags);
2770 		printf("\n");
2771 	}
2772 #endif
2773 	return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async);
2774 }
2775 
2776 #if 0
2777 
2778 /*
2779  * Install a pairwise key into the hardware.
2780  */
2781 int
2782 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2783     const struct ieee80211_key *k)
2784 {
2785 	struct iwn_softc *sc = ic->ic_softc;
2786 	struct iwn_node_info node;
2787 
2788 	if (k->k_flags & IEEE80211_KEY_GROUP)
2789 		return 0;
2790 
2791 	memset(&node, 0, sizeof node);
2792 
2793 	switch (k->k_cipher) {
2794 	case IEEE80211_CIPHER_CCMP:
2795 		node.security = htole16(IWN_CIPHER_CCMP);
2796 		memcpy(node.key, k->k_key, k->k_len);
2797 		break;
2798 	default:
2799 		return 0;
2800 	}
2801 
2802 	node.id = IWN_ID_BSS;
2803 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2804 	node.control = IWN_NODE_UPDATE;
2805 	node.flags = IWN_FLAG_SET_KEY;
2806 
2807 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
2808 }
2809 #endif
2810 
2811 int
2812 iwn_wme_update(struct ieee80211com *ic)
2813 {
2814 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2815 #define	IWN_TXOP_TO_US(v)		(v<<5)
2816 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2817 	struct iwn_edca_params cmd;
2818 	int i;
2819 
2820 	memset(&cmd, 0, sizeof cmd);
2821 	cmd.flags = htole32(IWN_EDCA_UPDATE);
2822 	for (i = 0; i < WME_NUM_AC; i++) {
2823 		const struct wmeParams *wmep =
2824 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
2825 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
2826 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
2827 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
2828 		cmd.ac[i].txoplimit =
2829 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
2830 	}
2831 	IWN_LOCK(sc);
2832 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
2833 	IWN_UNLOCK(sc);
2834 	return 0;
2835 #undef IWN_TXOP_TO_US
2836 #undef IWN_EXP2
2837 }
2838 
2839 void
2840 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2841 {
2842 	struct iwn_cmd_led led;
2843 
2844 	led.which = which;
2845 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2846 	led.off = off;
2847 	led.on = on;
2848 
2849 	(void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2850 }
2851 
2852 /*
2853  * Set the critical temperature at which the firmware will automatically stop
2854  * the radio transmitter.
2855  */
2856 int
2857 iwn_set_critical_temp(struct iwn_softc *sc)
2858 {
2859 	struct iwn_ucode_info *uc = &sc->ucode_info;
2860 	struct iwn_critical_temp crit;
2861 	uint32_t r1, r2, r3, temp;
2862 
2863 	r1 = le32toh(uc->temp[0].chan20MHz);
2864 	r2 = le32toh(uc->temp[1].chan20MHz);
2865 	r3 = le32toh(uc->temp[2].chan20MHz);
2866 	/* inverse function of iwn_get_temperature() */
2867 	temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259;
2868 
2869 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2870 
2871 	memset(&crit, 0, sizeof crit);
2872 	crit.tempR = htole32(temp);
2873 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp);
2874 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2875 }
2876 
2877 void
2878 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2879 {
2880 	struct iwn_cmd_tsf tsf;
2881 	uint64_t val, mod;
2882 
2883 	memset(&tsf, 0, sizeof tsf);
2884 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2885 	tsf.bintval = htole16(ni->ni_intval);
2886 	tsf.lintval = htole16(10);
2887 
2888 	/* XXX all wrong */
2889 	/* compute remaining time until next beacon */
2890 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2891 	DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__,
2892 	    val, val == 0 ? "correcting" : "");
2893 	if (val == 0)
2894 		val = 1;
2895 	mod = le64toh(tsf.tstamp) % val;
2896 	tsf.binitval = htole32((uint32_t)(val - mod));
2897 
2898 	DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n",
2899 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod));
2900 
2901 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2902 		device_printf(sc->sc_dev,
2903 		    "%s: could not enable TSF\n", __func__);
2904 }
2905 
2906 void
2907 iwn_power_calibration(struct iwn_softc *sc, int temp)
2908 {
2909 	struct ifnet *ifp = sc->sc_ifp;
2910 	struct ieee80211com *ic = ifp->if_l2com;
2911 #if 0
2912 	KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running"));
2913 #endif
2914 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
2915 	    __func__, sc->temp, temp);
2916 
2917 	/* adjust Tx power if need be (delta >= 3�C) */
2918 	if (abs(temp - sc->temp) < 3)
2919 		return;
2920 
2921 	sc->temp = temp;
2922 
2923 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n",
2924 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bsschan));
2925 	if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) {
2926 		/* just warn, too bad for the automatic calibration... */
2927 		device_printf(sc->sc_dev,
2928 		    "%s: could not adjust Tx power\n", __func__);
2929 	}
2930 }
2931 
2932 /*
2933  * Set Tx power for a given channel (each rate has its own power settings).
2934  * This function takes into account the regulatory information from EEPROM,
2935  * the current temperature and the current voltage.
2936  */
2937 int
2938 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2939 {
2940 /* fixed-point arithmetic division using a n-bit fractional part */
2941 #define fdivround(a, b, n)	\
2942 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2943 /* linear interpolation */
2944 #define interpolate(x, x1, y1, x2, y2, n)	\
2945 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2946 
2947 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2948 	struct ifnet *ifp = sc->sc_ifp;
2949 	struct ieee80211com *ic = ifp->if_l2com;
2950 	struct iwn_ucode_info *uc = &sc->ucode_info;
2951 	struct iwn_cmd_txpower cmd;
2952 	struct iwn_eeprom_chan_samples *chans;
2953 	const uint8_t *rf_gain, *dsp_gain;
2954 	int32_t vdiff, tdiff;
2955 	int i, c, grp, maxpwr;
2956 	u_int chan;
2957 
2958 	/* get channel number */
2959 	chan = ieee80211_chan2ieee(ic, ch);
2960 
2961 	memset(&cmd, 0, sizeof cmd);
2962 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2963 	cmd.chan = chan;
2964 
2965 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2966 		maxpwr   = sc->maxpwr5GHz;
2967 		rf_gain  = iwn_rf_gain_5ghz;
2968 		dsp_gain = iwn_dsp_gain_5ghz;
2969 	} else {
2970 		maxpwr   = sc->maxpwr2GHz;
2971 		rf_gain  = iwn_rf_gain_2ghz;
2972 		dsp_gain = iwn_dsp_gain_2ghz;
2973 	}
2974 
2975 	/* compute voltage compensation */
2976 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2977 	if (vdiff > 0)
2978 		vdiff *= 2;
2979 	if (abs(vdiff) > 2)
2980 		vdiff = 0;
2981 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2982 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2983 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
2984 
2985 	/* get channel's attenuation group */
2986 	if (chan <= 20)		/* 1-20 */
2987 		grp = 4;
2988 	else if (chan <= 43)	/* 34-43 */
2989 		grp = 0;
2990 	else if (chan <= 70)	/* 44-70 */
2991 		grp = 1;
2992 	else if (chan <= 124)	/* 71-124 */
2993 		grp = 2;
2994 	else			/* 125-200 */
2995 		grp = 3;
2996 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2997 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
2998 
2999 	/* get channel's sub-band */
3000 	for (i = 0; i < IWN_NBANDS; i++)
3001 		if (sc->bands[i].lo != 0 &&
3002 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3003 			break;
3004 	chans = sc->bands[i].chans;
3005 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3006 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3007 
3008 	for (c = 0; c < IWN_NTXCHAINS; c++) {
3009 		uint8_t power, gain, temp;
3010 		int maxchpwr, pwr, ridx, idx;
3011 
3012 		power = interpolate(chan,
3013 		    chans[0].num, chans[0].samples[c][1].power,
3014 		    chans[1].num, chans[1].samples[c][1].power, 1);
3015 		gain  = interpolate(chan,
3016 		    chans[0].num, chans[0].samples[c][1].gain,
3017 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3018 		temp  = interpolate(chan,
3019 		    chans[0].num, chans[0].samples[c][1].temp,
3020 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3021 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3022 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3023 		    __func__, c, power, gain, temp);
3024 
3025 		/* compute temperature compensation */
3026 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3027 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3028 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3029 		    __func__, tdiff, sc->temp, temp);
3030 
3031 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3032 			maxchpwr = ch->ic_maxpower;
3033 			if ((ridx / 8) & 1) {
3034 				/* MIMO: decrease Tx power (-3dB) */
3035 				maxchpwr -= 6;
3036 			}
3037 
3038 			pwr = maxpwr - 10;
3039 
3040 			/* decrease power for highest OFDM rates */
3041 			if ((ridx % 8) == 5)		/* 48Mbit/s */
3042 				pwr -= 5;
3043 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
3044 				pwr -= 7;
3045 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
3046 				pwr -= 10;
3047 
3048 			if (pwr > maxchpwr)
3049 				pwr = maxchpwr;
3050 
3051 			idx = gain - (pwr - power) - tdiff - vdiff;
3052 			if ((ridx / 8) & 1)	/* MIMO */
3053 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3054 
3055 			if (cmd.band == 0)
3056 				idx += 9;	/* 5GHz */
3057 			if (ridx == IWN_RIDX_MAX)
3058 				idx += 5;	/* CCK */
3059 
3060 			/* make sure idx stays in a valid range */
3061 			if (idx < 0)
3062 				idx = 0;
3063 			else if (idx > IWN_MAX_PWR_INDEX)
3064 				idx = IWN_MAX_PWR_INDEX;
3065 
3066 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3067 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3068 			    __func__, c, ridx, idx);
3069 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3070 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3071 		}
3072 	}
3073 
3074 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3075 	    "%s: set tx power for chan %d\n", __func__, chan);
3076 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3077 
3078 #undef interpolate
3079 #undef fdivround
3080 }
3081 
3082 /*
3083  * Get the best (maximum) RSSI among the
3084  * connected antennas and convert to dBm.
3085  */
3086 int8_t
3087 iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat)
3088 {
3089 	int mask, agc, rssi;
3090 
3091 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
3092 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
3093 
3094 	rssi = 0;
3095 #if 0
3096 	if (mask & (1 << 0))	/* Ant A */
3097 		rssi = max(rssi, stat->rssi[0]);
3098 	if (mask & (1 << 1))	/* Ant B */
3099 		rssi = max(rssi, stat->rssi[2]);
3100 	if (mask & (1 << 2))	/* Ant C */
3101 		rssi = max(rssi, stat->rssi[4]);
3102 #else
3103 	rssi = max(rssi, stat->rssi[0]);
3104 	rssi = max(rssi, stat->rssi[2]);
3105 	rssi = max(rssi, stat->rssi[4]);
3106 #endif
3107 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3108 	    "result %d\n", __func__, agc, mask,
3109 	    stat->rssi[0], stat->rssi[2], stat->rssi[4],
3110 	    rssi - agc - IWN_RSSI_TO_DBM);
3111 	return rssi - agc - IWN_RSSI_TO_DBM;
3112 }
3113 
3114 /*
3115  * Get the average noise among Rx antennas (in dBm).
3116  */
3117 int
3118 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3119 {
3120 	int i, total, nbant, noise;
3121 
3122 	total = nbant = 0;
3123 	for (i = 0; i < 3; i++) {
3124 		noise = le32toh(stats->noise[i]) & 0xff;
3125 		if (noise != 0) {
3126 			total += noise;
3127 			nbant++;
3128 		}
3129 	}
3130 	/* there should be at least one antenna but check anyway */
3131 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3132 }
3133 
3134 /*
3135  * Read temperature (in degC) from the on-board thermal sensor.
3136  */
3137 int
3138 iwn_get_temperature(struct iwn_softc *sc)
3139 {
3140 	struct iwn_ucode_info *uc = &sc->ucode_info;
3141 	int32_t r1, r2, r3, r4, temp;
3142 
3143 	r1 = le32toh(uc->temp[0].chan20MHz);
3144 	r2 = le32toh(uc->temp[1].chan20MHz);
3145 	r3 = le32toh(uc->temp[2].chan20MHz);
3146 	r4 = le32toh(sc->rawtemp);
3147 
3148 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
3149 		return 0;
3150 
3151 	/* sign-extend 23-bit R4 value to 32-bit */
3152 	r4 = (r4 << 8) >> 8;
3153 	/* compute temperature */
3154 	temp = (259 * (r4 - r2)) / (r3 - r1);
3155 	temp = (temp * 97) / 100 + 8;
3156 
3157 	return IWN_KTOC(temp);
3158 }
3159 
3160 /*
3161  * Initialize sensitivity calibration state machine.
3162  */
3163 int
3164 iwn_init_sensitivity(struct iwn_softc *sc)
3165 {
3166 	struct iwn_calib_state *calib = &sc->calib;
3167 	struct iwn_phy_calib_cmd cmd;
3168 	int error;
3169 
3170 	/* reset calibration state */
3171 	memset(calib, 0, sizeof (*calib));
3172 	calib->state = IWN_CALIB_STATE_INIT;
3173 	calib->cck_state = IWN_CCK_STATE_HIFA;
3174 	/* initial values taken from the reference driver */
3175 	calib->corr_ofdm_x1     = 105;
3176 	calib->corr_ofdm_mrc_x1 = 220;
3177 	calib->corr_ofdm_x4     =  90;
3178 	calib->corr_ofdm_mrc_x4 = 170;
3179 	calib->corr_cck_x4      = 125;
3180 	calib->corr_cck_mrc_x4  = 200;
3181 	calib->energy_cck       = 100;
3182 
3183 	/* write initial sensitivity values */
3184 	error = iwn_send_sensitivity(sc);
3185 	if (error != 0)
3186 		return error;
3187 
3188 	memset(&cmd, 0, sizeof cmd);
3189 	cmd.code = IWN_SET_DIFF_GAIN;
3190 	/* differential gains initially set to 0 for all 3 antennas */
3191 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
3192 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
3193 }
3194 
3195 /*
3196  * Collect noise and RSSI statistics for the first 20 beacons received
3197  * after association and use them to determine connected antennas and
3198  * set differential gains.
3199  */
3200 void
3201 iwn_compute_differential_gain(struct iwn_softc *sc,
3202     const struct iwn_rx_general_stats *stats)
3203 {
3204 	struct iwn_calib_state *calib = &sc->calib;
3205 	struct iwn_phy_calib_cmd cmd;
3206 	int i, val;
3207 
3208 	/* accumulate RSSI and noise for all 3 antennas */
3209 	for (i = 0; i < 3; i++) {
3210 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3211 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3212 	}
3213 
3214 	/* we update differential gain only once after 20 beacons */
3215 	if (++calib->nbeacons < 20)
3216 		return;
3217 
3218 	/* determine antenna with highest average RSSI */
3219 	val = max(calib->rssi[0], calib->rssi[1]);
3220 	val = max(calib->rssi[2], val);
3221 
3222 	/* determine which antennas are connected */
3223 	sc->antmsk = 0;
3224 	for (i = 0; i < 3; i++)
3225 		if (val - calib->rssi[i] <= 15 * 20)
3226 			sc->antmsk |= 1 << i;
3227 	/* if neither Ant A and Ant B are connected.. */
3228 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
3229 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
3230 
3231 	/* get minimal noise among connected antennas */
3232 	val = INT_MAX;	/* ok, there's at least one */
3233 	for (i = 0; i < 3; i++)
3234 		if (sc->antmsk & (1 << i))
3235 			val = min(calib->noise[i], val);
3236 
3237 	memset(&cmd, 0, sizeof cmd);
3238 	cmd.code = IWN_SET_DIFF_GAIN;
3239 	/* set differential gains for connected antennas */
3240 	for (i = 0; i < 3; i++) {
3241 		if (sc->antmsk & (1 << i)) {
3242 			cmd.gain[i] = (calib->noise[i] - val) / 30;
3243 			/* limit differential gain to 3 */
3244 			cmd.gain[i] = min(cmd.gain[i], 3);
3245 			cmd.gain[i] |= IWN_GAIN_SET;
3246 		}
3247 	}
3248 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3249 	    "%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3250 	    __func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk);
3251 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
3252 		calib->state = IWN_CALIB_STATE_RUN;
3253 }
3254 
3255 /*
3256  * Tune RF Rx sensitivity based on the number of false alarms detected
3257  * during the last beacon period.
3258  */
3259 void
3260 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3261 {
3262 #define inc_clip(val, inc, max)			\
3263 	if ((val) < (max)) {			\
3264 		if ((val) < (max) - (inc))	\
3265 			(val) += (inc);		\
3266 		else				\
3267 			(val) = (max);		\
3268 		needs_update = 1;		\
3269 	}
3270 #define dec_clip(val, dec, min)			\
3271 	if ((val) > (min)) {			\
3272 		if ((val) > (min) + (dec))	\
3273 			(val) -= (dec);		\
3274 		else				\
3275 			(val) = (min);		\
3276 		needs_update = 1;		\
3277 	}
3278 
3279 	struct iwn_calib_state *calib = &sc->calib;
3280 	uint32_t val, rxena, fa;
3281 	uint32_t energy[3], energy_min;
3282 	uint8_t noise[3], noise_ref;
3283 	int i, needs_update = 0;
3284 
3285 	/* check that we've been enabled long enough */
3286 	if ((rxena = le32toh(stats->general.load)) == 0)
3287 		return;
3288 
3289 	/* compute number of false alarms since last call for OFDM */
3290 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3291 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3292 	fa *= 200 * 1024;	/* 200TU */
3293 
3294 	/* save counters values for next call */
3295 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3296 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3297 
3298 	if (fa > 50 * rxena) {
3299 		/* high false alarm count, decrease sensitivity */
3300 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3301 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
3302 		inc_clip(calib->corr_ofdm_x1,     1, 140);
3303 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
3304 		inc_clip(calib->corr_ofdm_x4,     1, 120);
3305 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
3306 
3307 	} else if (fa < 5 * rxena) {
3308 		/* low false alarm count, increase sensitivity */
3309 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3310 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
3311 		dec_clip(calib->corr_ofdm_x1,     1, 105);
3312 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
3313 		dec_clip(calib->corr_ofdm_x4,     1,  85);
3314 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
3315 	}
3316 
3317 	/* compute maximum noise among 3 antennas */
3318 	for (i = 0; i < 3; i++)
3319 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3320 	val = max(noise[0], noise[1]);
3321 	val = max(noise[2], val);
3322 	/* insert it into our samples table */
3323 	calib->noise_samples[calib->cur_noise_sample] = val;
3324 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3325 
3326 	/* compute maximum noise among last 20 samples */
3327 	noise_ref = calib->noise_samples[0];
3328 	for (i = 1; i < 20; i++)
3329 		noise_ref = max(noise_ref, calib->noise_samples[i]);
3330 
3331 	/* compute maximum energy among 3 antennas */
3332 	for (i = 0; i < 3; i++)
3333 		energy[i] = le32toh(stats->general.energy[i]);
3334 	val = min(energy[0], energy[1]);
3335 	val = min(energy[2], val);
3336 	/* insert it into our samples table */
3337 	calib->energy_samples[calib->cur_energy_sample] = val;
3338 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3339 
3340 	/* compute minimum energy among last 10 samples */
3341 	energy_min = calib->energy_samples[0];
3342 	for (i = 1; i < 10; i++)
3343 		energy_min = max(energy_min, calib->energy_samples[i]);
3344 	energy_min += 6;
3345 
3346 	/* compute number of false alarms since last call for CCK */
3347 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3348 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3349 	fa *= 200 * 1024;	/* 200TU */
3350 
3351 	/* save counters values for next call */
3352 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3353 	calib->fa_cck = le32toh(stats->cck.fa);
3354 
3355 	if (fa > 50 * rxena) {
3356 		/* high false alarm count, decrease sensitivity */
3357 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3358 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
3359 		calib->cck_state = IWN_CCK_STATE_HIFA;
3360 		calib->low_fa = 0;
3361 
3362 		if (calib->corr_cck_x4 > 160) {
3363 			calib->noise_ref = noise_ref;
3364 			if (calib->energy_cck > 2)
3365 				dec_clip(calib->energy_cck, 2, energy_min);
3366 		}
3367 		if (calib->corr_cck_x4 < 160) {
3368 			calib->corr_cck_x4 = 161;
3369 			needs_update = 1;
3370 		} else
3371 			inc_clip(calib->corr_cck_x4, 3, 200);
3372 
3373 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3374 
3375 	} else if (fa < 5 * rxena) {
3376 		/* low false alarm count, increase sensitivity */
3377 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3378 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
3379 		calib->cck_state = IWN_CCK_STATE_LOFA;
3380 		calib->low_fa++;
3381 
3382 		if (calib->cck_state != 0 &&
3383 		    ((calib->noise_ref - noise_ref) > 2 ||
3384 		     calib->low_fa > 100)) {
3385 			inc_clip(calib->energy_cck,      2,  97);
3386 			dec_clip(calib->corr_cck_x4,     3, 125);
3387 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3388 		}
3389 	} else {
3390 		/* not worth to increase or decrease sensitivity */
3391 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3392 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
3393 		calib->low_fa = 0;
3394 		calib->noise_ref = noise_ref;
3395 
3396 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3397 			/* previous interval had many false alarms */
3398 			dec_clip(calib->energy_cck, 8, energy_min);
3399 		}
3400 		calib->cck_state = IWN_CCK_STATE_INIT;
3401 	}
3402 
3403 	if (needs_update)
3404 		(void)iwn_send_sensitivity(sc);
3405 #undef dec_clip
3406 #undef inc_clip
3407 }
3408 
3409 int
3410 iwn_send_sensitivity(struct iwn_softc *sc)
3411 {
3412 	struct iwn_calib_state *calib = &sc->calib;
3413 	struct iwn_sensitivity_cmd cmd;
3414 
3415 	memset(&cmd, 0, sizeof cmd);
3416 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3417 	/* OFDM modulation */
3418 	cmd.corr_ofdm_x1     = htole16(calib->corr_ofdm_x1);
3419 	cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1);
3420 	cmd.corr_ofdm_x4     = htole16(calib->corr_ofdm_x4);
3421 	cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4);
3422 	cmd.energy_ofdm      = htole16(100);
3423 	cmd.energy_ofdm_th   = htole16(62);
3424 	/* CCK modulation */
3425 	cmd.corr_cck_x4      = htole16(calib->corr_cck_x4);
3426 	cmd.corr_cck_mrc_x4  = htole16(calib->corr_cck_mrc_x4);
3427 	cmd.energy_cck       = htole16(calib->energy_cck);
3428 	/* Barker modulation: use default values */
3429 	cmd.corr_barker      = htole16(190);
3430 	cmd.corr_barker_mrc  = htole16(390);
3431 
3432 	DPRINTF(sc, IWN_DEBUG_RESET,
3433 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
3434 	    calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4,
3435 	    calib->corr_ofdm_mrc_x4, calib->corr_cck_x4,
3436 	    calib->corr_cck_mrc_x4, calib->energy_cck);
3437 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3438 }
3439 
3440 int
3441 iwn_auth(struct iwn_softc *sc)
3442 {
3443 	struct ifnet *ifp = sc->sc_ifp;
3444 	struct ieee80211com *ic = ifp->if_l2com;
3445 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3446 	struct ieee80211_node *ni = vap->iv_bss;
3447 	struct iwn_node_info node;
3448 	int error;
3449 
3450 	sc->calib.state = IWN_CALIB_STATE_INIT;
3451 
3452 	/* update adapter's configuration */
3453 	sc->config.associd = 0;
3454 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3455 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
3456 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3457 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3458 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3459 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3460 		sc->config.cck_mask  = 0;
3461 		sc->config.ofdm_mask = 0x15;
3462 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3463 		sc->config.cck_mask  = 0x03;
3464 		sc->config.ofdm_mask = 0;
3465 	} else {
3466 		/* XXX assume 802.11b/g */
3467 		sc->config.cck_mask  = 0x0f;
3468 		sc->config.ofdm_mask = 0x15;
3469 	}
3470 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3471 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3472 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3473 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3474 	sc->config.filter &= ~htole32(IWN_FILTER_BSS);
3475 
3476 	DPRINTF(sc, IWN_DEBUG_STATE,
3477 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3478 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3479 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3480 	   __func__,
3481 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3482 	   sc->config.cck_mask, sc->config.ofdm_mask,
3483 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3484 	   le16toh(sc->config.rxchain),
3485 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3486 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3487 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3488 	    sizeof (struct iwn_config), 1);
3489 	if (error != 0) {
3490 		device_printf(sc->sc_dev,
3491 		    "%s: could not configure, error %d\n", __func__, error);
3492 		return error;
3493 	}
3494 	sc->sc_curchan = ic->ic_curchan;
3495 
3496 	/* configuration has changed, set Tx power accordingly */
3497 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3498 	if (error != 0) {
3499 		device_printf(sc->sc_dev,
3500 		    "%s: could not set Tx power, error %d\n", __func__, error);
3501 		return error;
3502 	}
3503 
3504 	/*
3505 	 * Reconfiguring clears the adapter's nodes table so we must
3506 	 * add the broadcast node again.
3507 	 */
3508 	memset(&node, 0, sizeof node);
3509 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3510 	node.id = IWN_ID_BROADCAST;
3511 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__);
3512 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3513 	if (error != 0) {
3514 		device_printf(sc->sc_dev,
3515 		    "%s: could not add broadcast node, error %d\n",
3516 		    __func__, error);
3517 		return error;
3518 	}
3519 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1);
3520 	if (error != 0) {
3521 		device_printf(sc->sc_dev,
3522 		    "%s: could not setup MRR for broadcast node, error %d\n",
3523 		    __func__, error);
3524 		return error;
3525 	}
3526 
3527 	return 0;
3528 }
3529 
3530 /*
3531  * Configure the adapter for associated state.
3532  */
3533 int
3534 iwn_run(struct iwn_softc *sc)
3535 {
3536 #define	MS(v,x)	(((v) & x) >> x##_S)
3537 	struct ifnet *ifp = sc->sc_ifp;
3538 	struct ieee80211com *ic = ifp->if_l2com;
3539 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3540 	struct ieee80211_node *ni = vap->iv_bss;
3541 	struct iwn_node_info node;
3542 	int error, maxrxampdu, ampdudensity;
3543 
3544 	sc->calib.state = IWN_CALIB_STATE_INIT;
3545 
3546 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3547 		/* link LED blinks while monitoring */
3548 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3549 		return 0;
3550 	}
3551 
3552 	iwn_enable_tsf(sc, ni);
3553 
3554 	/* update adapter's configuration */
3555 	sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd));
3556 	/* short preamble/slot time are negotiated when associating */
3557 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT);
3558 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3559 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3560 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3561 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3562 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3563 		sc->config.flags &= ~htole32(IWN_CONFIG_HT);
3564 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3565 			sc->config.flags |= htole32(IWN_CONFIG_HT40U);
3566 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3567 			sc->config.flags |= htole32(IWN_CONFIG_HT40D);
3568 		else
3569 			sc->config.flags |= htole32(IWN_CONFIG_HT20);
3570 		sc->config.rxchain = htole16(
3571 			  (3 << IWN_RXCHAIN_VALID_S)
3572 			| (3 << IWN_RXCHAIN_MIMO_CNT_S)
3573 			| (1 << IWN_RXCHAIN_CNT_S)
3574 			| IWN_RXCHAIN_MIMO_FORCE);
3575 
3576 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3577 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3578 	} else
3579 		maxrxampdu = ampdudensity = 0;
3580 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3581 
3582 	DPRINTF(sc, IWN_DEBUG_STATE,
3583 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3584 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3585 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3586 	   __func__,
3587 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3588 	   sc->config.cck_mask, sc->config.ofdm_mask,
3589 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3590 	   le16toh(sc->config.rxchain),
3591 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3592 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3593 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3594 	    sizeof (struct iwn_config), 1);
3595 	if (error != 0) {
3596 		device_printf(sc->sc_dev,
3597 		    "%s: could not update configuration, error %d\n",
3598 		    __func__, error);
3599 		return error;
3600 	}
3601 	sc->sc_curchan = ni->ni_chan;
3602 
3603 	/* configuration has changed, set Tx power accordingly */
3604 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3605 	if (error != 0) {
3606 		device_printf(sc->sc_dev,
3607 		    "%s: could not set Tx power, error %d\n", __func__, error);
3608 		return error;
3609 	}
3610 
3611 	/* add BSS node */
3612 	memset(&node, 0, sizeof node);
3613 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3614 	node.id = IWN_ID_BSS;
3615 	node.htflags = htole32(
3616 	    (maxrxampdu << IWN_MAXRXAMPDU_S) |
3617 	    (ampdudensity << IWN_MPDUDENSITY_S));
3618 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
3619 	    __func__, node.id, le32toh(node.htflags));
3620 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3621 	if (error != 0) {
3622 		device_printf(sc->sc_dev,"could not add BSS node\n");
3623 		return error;
3624 	}
3625 	error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1);
3626 	if (error != 0) {
3627 		device_printf(sc->sc_dev,
3628 		    "%s: could not setup MRR for node %d, error %d\n",
3629 		    __func__, node.id, error);
3630 		return error;
3631 	}
3632 
3633 	if (ic->ic_opmode == IEEE80211_M_STA) {
3634 		/* fake a join to init the tx rate */
3635 		iwn_newassoc(ni, 1);
3636 	}
3637 
3638 	error = iwn_init_sensitivity(sc);
3639 	if (error != 0) {
3640 		device_printf(sc->sc_dev,
3641 		    "%s: could not set sensitivity, error %d\n",
3642 		    __func__, error);
3643 		return error;
3644 	}
3645 
3646 	/* start/restart periodic calibration timer */
3647 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3648 	iwn_calib_reset(sc);
3649 
3650 	/* link LED always on while associated */
3651 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3652 
3653 	return 0;
3654 #undef MS
3655 }
3656 
3657 /*
3658  * Send a scan request to the firmware.  Since this command is huge, we map it
3659  * into a mbuf instead of using the pre-allocated set of commands.
3660  */
3661 int
3662 iwn_scan(struct iwn_softc *sc)
3663 {
3664 	struct ifnet *ifp = sc->sc_ifp;
3665 	struct ieee80211com *ic = ifp->if_l2com;
3666 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
3667 	struct iwn_tx_ring *ring = &sc->txq[4];
3668 	struct iwn_tx_desc *desc;
3669 	struct iwn_tx_data *data;
3670 	struct iwn_tx_cmd *cmd;
3671 	struct iwn_cmd_data *tx;
3672 	struct iwn_scan_hdr *hdr;
3673 	struct iwn_scan_essid *essid;
3674 	struct iwn_scan_chan *chan;
3675 	struct ieee80211_frame *wh;
3676 	struct ieee80211_rateset *rs;
3677 	struct ieee80211_channel *c;
3678 	enum ieee80211_phymode mode;
3679 	uint8_t *frm;
3680 	int pktlen, error, nrates;
3681 	bus_addr_t physaddr;
3682 
3683 	desc = &ring->desc[ring->cur];
3684 	data = &ring->data[ring->cur];
3685 
3686 	/* XXX malloc */
3687 	data->m = m_getcl(M_DONTWAIT, MT_DATA, 0);
3688 	if (data->m == NULL) {
3689 		device_printf(sc->sc_dev,
3690 		    "%s: could not allocate mbuf for scan command\n", __func__);
3691 		return ENOMEM;
3692 	}
3693 
3694 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3695 	cmd->code = IWN_CMD_SCAN;
3696 	cmd->flags = 0;
3697 	cmd->qid = ring->qid;
3698 	cmd->idx = ring->cur;
3699 
3700 	hdr = (struct iwn_scan_hdr *)cmd->data;
3701 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3702 
3703 	/* XXX use scan state */
3704 	/*
3705 	 * Move to the next channel if no packets are received within 5 msecs
3706 	 * after sending the probe request (this helps to reduce the duration
3707 	 * of active scans).
3708 	 */
3709 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3710 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3711 
3712 	/* select Ant B and Ant C for scanning */
3713 	hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S));
3714 
3715 	tx = (struct iwn_cmd_data *)(hdr + 1);
3716 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3717 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200);	/* XXX */
3718 	tx->id = IWN_ID_BROADCAST;
3719 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3720 	tx->rflags = IWN_RFLAG_ANT_B;
3721 
3722 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
3723 		hdr->crc_threshold = htole16(1);
3724 		/* send probe requests at 6Mbps */
3725 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6];
3726 	} else {
3727 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3728 		/* send probe requests at 1Mbps */
3729 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1];
3730 		tx->rflags |= IWN_RFLAG_CCK;
3731 	}
3732 
3733 	essid = (struct iwn_scan_essid *)(tx + 1);
3734 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3735 	essid[0].id  = IEEE80211_ELEMID_SSID;
3736 	essid[0].len = ss->ss_ssid[0].len;
3737 	memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3738 
3739 	/*
3740 	 * Build a probe request frame.  Most of the following code is a
3741 	 * copy & paste of what is done in net80211.
3742 	 */
3743 	wh = (struct ieee80211_frame *)&essid[4];
3744 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3745 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3746 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3747 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3748 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
3749 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3750 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3751 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3752 
3753 	frm = (uint8_t *)(wh + 1);
3754 
3755 	/* add SSID IE */
3756         *frm++ = IEEE80211_ELEMID_SSID;
3757         *frm++ = ss->ss_ssid[0].len;
3758         memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3759 	frm += ss->ss_ssid[0].len;
3760 
3761 	mode = ieee80211_chan2mode(ic->ic_curchan);
3762 	rs = &ic->ic_sup_rates[mode];
3763 
3764 	/* add supported rates IE */
3765 	*frm++ = IEEE80211_ELEMID_RATES;
3766 	nrates = rs->rs_nrates;
3767 	if (nrates > IEEE80211_RATE_SIZE)
3768 		nrates = IEEE80211_RATE_SIZE;
3769 	*frm++ = nrates;
3770 	memcpy(frm, rs->rs_rates, nrates);
3771 	frm += nrates;
3772 
3773 	/* add supported xrates IE */
3774 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3775 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3776 		*frm++ = IEEE80211_ELEMID_XRATES;
3777 		*frm++ = (uint8_t)nrates;
3778 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3779 		frm += nrates;
3780 	}
3781 
3782 	/* setup length of probe request */
3783 	tx->len = htole16(frm - (uint8_t *)wh);
3784 
3785 	c = ic->ic_curchan;
3786 	chan = (struct iwn_scan_chan *)frm;
3787 	chan->chan = ieee80211_chan2ieee(ic, c);
3788 	chan->flags = 0;
3789 	if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) {
3790 		chan->flags |= IWN_CHAN_ACTIVE;
3791 		if (ss->ss_nssid > 0)
3792 			chan->flags |= IWN_CHAN_DIRECT;
3793 	}
3794 	chan->dsp_gain = 0x6e;
3795 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3796 		chan->rf_gain = 0x3b;
3797 		chan->active  = htole16(10);
3798 		chan->passive = htole16(110);
3799 	} else {
3800 		chan->rf_gain = 0x28;
3801 		chan->active  = htole16(20);
3802 		chan->passive = htole16(120);
3803 	}
3804 
3805 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x "
3806 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
3807 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
3808 	    chan->active, chan->passive);
3809 	hdr->nchan++;
3810 	chan++;
3811 
3812 	frm += sizeof (struct iwn_scan_chan);
3813 
3814 	hdr->len = htole16(frm - (uint8_t *)hdr);
3815 	pktlen = frm - (uint8_t *)cmd;
3816 
3817 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
3818 	    iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
3819 	if (error != 0) {
3820 		device_printf(sc->sc_dev,
3821 		    "%s: could not map scan command, error %d\n",
3822 		    __func__, error);
3823 		m_freem(data->m);
3824 		data->m = NULL;
3825 		return error;
3826 	}
3827 
3828 	IWN_SET_DESC_NSEGS(desc, 1);
3829 	IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen);
3830 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3831 	if (ring->cur < IWN_TX_WINDOW)
3832 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3833 		    htole16(8);
3834 
3835 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3836 	    BUS_DMASYNC_PREWRITE);
3837 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3838 
3839 	/* kick cmd ring */
3840 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3841 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3842 
3843 	return 0;	/* will be notified async. of failure/success */
3844 }
3845 
3846 int
3847 iwn_config(struct iwn_softc *sc)
3848 {
3849 	struct ifnet *ifp = sc->sc_ifp;
3850 	struct ieee80211com *ic = ifp->if_l2com;
3851 	struct iwn_power power;
3852 	struct iwn_bluetooth bluetooth;
3853 	struct iwn_node_info node;
3854 	int error;
3855 
3856 	/* set power mode */
3857 	memset(&power, 0, sizeof power);
3858 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3859 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__);
3860 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3861 	if (error != 0) {
3862 		device_printf(sc->sc_dev,
3863 		    "%s: could not set power mode, error %d\n",
3864 		    __func__, error);
3865 		return error;
3866 	}
3867 
3868 	/* configure bluetooth coexistence */
3869 	memset(&bluetooth, 0, sizeof bluetooth);
3870 	bluetooth.flags = 3;
3871 	bluetooth.lead = 0xaa;
3872 	bluetooth.kill = 1;
3873 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
3874 	    __func__);
3875 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3876 	    0);
3877 	if (error != 0) {
3878 		device_printf(sc->sc_dev,
3879 		    "%s: could not configure bluetooth coexistence, error %d\n",
3880 		    __func__, error);
3881 		return error;
3882 	}
3883 
3884 	/* configure adapter */
3885 	memset(&sc->config, 0, sizeof (struct iwn_config));
3886 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3887 	IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
3888 	/* set default channel */
3889 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
3890 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3891 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3892 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3893 	sc->config.filter = 0;
3894 	switch (ic->ic_opmode) {
3895 	case IEEE80211_M_STA:
3896 		sc->config.mode = IWN_MODE_STA;
3897 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3898 		break;
3899 	case IEEE80211_M_IBSS:
3900 	case IEEE80211_M_AHDEMO:
3901 		sc->config.mode = IWN_MODE_IBSS;
3902 		break;
3903 	case IEEE80211_M_HOSTAP:
3904 		sc->config.mode = IWN_MODE_HOSTAP;
3905 		break;
3906 	case IEEE80211_M_MONITOR:
3907 		sc->config.mode = IWN_MODE_MONITOR;
3908 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3909 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3910 		break;
3911 	default:
3912 		break;
3913 	}
3914 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3915 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3916 	sc->config.ht_single_mask = 0xff;
3917 	sc->config.ht_dual_mask = 0xff;
3918 	sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S));
3919 
3920 	DPRINTF(sc, IWN_DEBUG_STATE,
3921 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3922 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3923 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3924 	   __func__,
3925 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3926 	   sc->config.cck_mask, sc->config.ofdm_mask,
3927 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3928 	   le16toh(sc->config.rxchain),
3929 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3930 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3931 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3932 	    sizeof (struct iwn_config), 0);
3933 	if (error != 0) {
3934 		device_printf(sc->sc_dev,
3935 		    "%s: configure command failed, error %d\n",
3936 		    __func__, error);
3937 		return error;
3938 	}
3939 	sc->sc_curchan = ic->ic_curchan;
3940 
3941 	/* configuration has changed, set Tx power accordingly */
3942 	error = iwn_set_txpower(sc, ic->ic_curchan, 0);
3943 	if (error != 0) {
3944 		device_printf(sc->sc_dev,
3945 		    "%s: could not set Tx power, error %d\n", __func__, error);
3946 		return error;
3947 	}
3948 
3949 	/* add broadcast node */
3950 	memset(&node, 0, sizeof node);
3951 	IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr);
3952 	node.id = IWN_ID_BROADCAST;
3953 	node.rate = iwn_plcp_signal(2);
3954 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__);
3955 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3956 	if (error != 0) {
3957 		device_printf(sc->sc_dev,
3958 		    "%s: could not add broadcast node, error %d\n",
3959 		    __func__, error);
3960 		return error;
3961 	}
3962 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0);
3963 	if (error != 0) {
3964 		device_printf(sc->sc_dev,
3965 		    "%s: could not setup MRR for node %d, error %d\n",
3966 		    __func__, node.id, error);
3967 		return error;
3968 	}
3969 
3970 	error = iwn_set_critical_temp(sc);
3971 	if (error != 0) {
3972 		device_printf(sc->sc_dev,
3973 		    "%s: could not set critical temperature, error %d\n",
3974 		    __func__, error);
3975 		return error;
3976 	}
3977 	return 0;
3978 }
3979 
3980 /*
3981  * Do post-alive initialization of the NIC (after firmware upload).
3982  */
3983 void
3984 iwn_post_alive(struct iwn_softc *sc)
3985 {
3986 	uint32_t base;
3987 	uint16_t offset;
3988 	int qid;
3989 
3990 	iwn_mem_lock(sc);
3991 
3992 	/* clear SRAM */
3993 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
3994 	for (offset = 0x380; offset < 0x520; offset += 4) {
3995 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
3996 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
3997 	}
3998 
3999 	/* shared area is aligned on a 1K boundary */
4000 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
4001 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
4002 
4003 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4004 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
4005 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
4006 
4007 		/* set sched. window size */
4008 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
4009 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
4010 		/* set sched. frame limit */
4011 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
4012 		IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16);
4013 	}
4014 
4015 	/* enable interrupts for all 16 queues */
4016 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
4017 
4018 	/* identify active Tx rings (0-7) */
4019 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
4020 
4021 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
4022 	for (qid = 0; qid < 7; qid++) {
4023 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
4024 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
4025 	}
4026 
4027 	iwn_mem_unlock(sc);
4028 }
4029 
4030 void
4031 iwn_stop_master(struct iwn_softc *sc)
4032 {
4033 	uint32_t tmp;
4034 	int ntries;
4035 
4036 	tmp = IWN_READ(sc, IWN_RESET);
4037 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
4038 
4039 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4040 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
4041 		return;	/* already asleep */
4042 
4043 	for (ntries = 0; ntries < 100; ntries++) {
4044 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
4045 			break;
4046 		DELAY(10);
4047 	}
4048 	if (ntries == 100)
4049 		device_printf(sc->sc_dev,
4050 		    "%s: timeout waiting for master\n", __func__);
4051 }
4052 
4053 int
4054 iwn_reset(struct iwn_softc *sc)
4055 {
4056 	uint32_t tmp;
4057 	int ntries;
4058 
4059 	/* clear any pending interrupts */
4060 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4061 
4062 	tmp = IWN_READ(sc, IWN_CHICKEN);
4063 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
4064 
4065 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4066 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
4067 
4068 	/* wait for clock stabilization */
4069 	for (ntries = 0; ntries < 1000; ntries++) {
4070 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
4071 			break;
4072 		DELAY(10);
4073 	}
4074 	if (ntries == 1000) {
4075 		device_printf(sc->sc_dev,
4076 		    "%s: timeout waiting for clock stabilization\n", __func__);
4077 		return ETIMEDOUT;
4078 	}
4079 	return 0;
4080 }
4081 
4082 void
4083 iwn_hw_config(struct iwn_softc *sc)
4084 {
4085 	uint32_t tmp, hw;
4086 
4087 	/* enable interrupts mitigation */
4088 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
4089 
4090 	/* voodoo from the reference driver */
4091 	tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1);
4092 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
4093 		/* enable "no snoop" field */
4094 		tmp = pci_read_config(sc->sc_dev, 0xe8, 1);
4095 		tmp &= ~IWN_DIS_NOSNOOP;
4096 		/* clear device specific PCI configuration register 0x41 */
4097 		pci_write_config(sc->sc_dev, 0xe8, tmp, 1);
4098 	}
4099 
4100 	/* disable L1 entry to work around a hardware bug */
4101 	tmp = pci_read_config(sc->sc_dev, 0xf0, 1);
4102 	tmp &= ~IWN_ENA_L1;
4103 	pci_write_config(sc->sc_dev, 0xf0, tmp, 1 );
4104 
4105 	hw = IWN_READ(sc, IWN_HWCONFIG);
4106 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
4107 
4108 	iwn_mem_lock(sc);
4109 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4110 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
4111 	DELAY(5);
4112 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4113 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
4114 	iwn_mem_unlock(sc);
4115 }
4116 
4117 void
4118 iwn_init_locked(struct iwn_softc *sc)
4119 {
4120 	struct ifnet *ifp = sc->sc_ifp;
4121 	uint32_t tmp;
4122 	int error, qid;
4123 
4124 	IWN_LOCK_ASSERT(sc);
4125 
4126 	/* load the firmware */
4127 	if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) {
4128 		device_printf(sc->sc_dev,
4129 		    "%s: could not load firmware, error %d\n", __func__, error);
4130 		return;
4131 	}
4132 
4133 	error = iwn_reset(sc);
4134 	if (error != 0) {
4135 		device_printf(sc->sc_dev,
4136 		    "%s: could not reset adapter, error %d\n", __func__, error);
4137 		return;
4138 	}
4139 
4140 	iwn_mem_lock(sc);
4141 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4142 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
4143 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4144 	iwn_mem_unlock(sc);
4145 
4146 	DELAY(20);
4147 
4148 	iwn_mem_lock(sc);
4149 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
4150 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
4151 	iwn_mem_unlock(sc);
4152 
4153 	iwn_mem_lock(sc);
4154 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4155 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
4156 	iwn_mem_unlock(sc);
4157 
4158 	iwn_hw_config(sc);
4159 
4160 	/* init Rx ring */
4161 	iwn_mem_lock(sc);
4162 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
4163 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
4164 	/* Rx ring is aligned on a 256-byte boundary */
4165 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
4166 	/* shared area is aligned on a 16-byte boundary */
4167 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
4168 	    offsetof(struct iwn_shared, closed_count)) >> 4);
4169 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
4170 	iwn_mem_unlock(sc);
4171 
4172 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
4173 
4174 	iwn_mem_lock(sc);
4175 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
4176 
4177 	/* set physical address of "keep warm" page */
4178 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
4179 
4180 	/* init Tx rings */
4181 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4182 		struct iwn_tx_ring *txq = &sc->txq[qid];
4183 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
4184 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
4185 	}
4186 	iwn_mem_unlock(sc);
4187 
4188 	/* clear "radio off" and "disable command" bits (reversed logic) */
4189 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4190 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
4191 
4192 	/* clear any pending interrupts */
4193 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4194 	/* enable interrupts */
4195 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
4196 
4197 	/* not sure why/if this is necessary... */
4198 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4199 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4200 
4201 	/* check that the radio is not disabled by RF switch */
4202 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
4203 		device_printf(sc->sc_dev,
4204 		    "radio is disabled by hardware switch\n");
4205 		return;
4206 	}
4207 
4208 	error = iwn_transfer_firmware(sc);
4209 	if (error != 0) {
4210 		device_printf(sc->sc_dev,
4211 		    "%s: could not load firmware, error %d\n", __func__, error);
4212 		return;
4213 	}
4214 
4215 	/* firmware has notified us that it is alive.. */
4216 	iwn_post_alive(sc);	/* ..do post alive initialization */
4217 
4218 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
4219 	sc->temp = iwn_get_temperature(sc);
4220 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n",
4221 	   __func__, sc->temp);
4222 
4223 	error = iwn_config(sc);
4224 	if (error != 0) {
4225 		device_printf(sc->sc_dev,
4226 		    "%s: could not configure device, error %d\n",
4227 		    __func__, error);
4228 		return;
4229 	}
4230 
4231 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4232 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4233 }
4234 
4235 void
4236 iwn_init(void *arg)
4237 {
4238 	struct iwn_softc *sc = arg;
4239 	struct ifnet *ifp = sc->sc_ifp;
4240 	struct ieee80211com *ic = ifp->if_l2com;
4241 
4242 	IWN_LOCK(sc);
4243 	iwn_init_locked(sc);
4244 	IWN_UNLOCK(sc);
4245 
4246 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4247 		ieee80211_start_all(ic);
4248 }
4249 
4250 void
4251 iwn_stop_locked(struct iwn_softc *sc)
4252 {
4253 	struct ifnet *ifp = sc->sc_ifp;
4254 	uint32_t tmp;
4255 	int i;
4256 
4257 	IWN_LOCK_ASSERT(sc);
4258 
4259 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
4260 
4261 	sc->sc_tx_timer = 0;
4262 	callout_stop(&sc->sc_timer_to);
4263 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4264 
4265 	/* disable interrupts */
4266 	IWN_WRITE(sc, IWN_MASK, 0);
4267 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4268 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
4269 
4270 	/* Clear any commands left in the taskq command buffer */
4271 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
4272 
4273 	/* reset all Tx rings */
4274 	for (i = 0; i < IWN_NTXQUEUES; i++)
4275 		iwn_reset_tx_ring(sc, &sc->txq[i]);
4276 
4277 	/* reset Rx ring */
4278 	iwn_reset_rx_ring(sc, &sc->rxq);
4279 
4280 	iwn_mem_lock(sc);
4281 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
4282 	iwn_mem_unlock(sc);
4283 
4284 	DELAY(5);
4285 	iwn_stop_master(sc);
4286 
4287 	tmp = IWN_READ(sc, IWN_RESET);
4288 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
4289 }
4290 
4291 void
4292 iwn_stop(struct iwn_softc *sc)
4293 {
4294 	IWN_LOCK(sc);
4295 	iwn_stop_locked(sc);
4296 	IWN_UNLOCK(sc);
4297 }
4298 
4299 /*
4300  * Callback from net80211 to start a scan.
4301  */
4302 static void
4303 iwn_scan_start(struct ieee80211com *ic)
4304 {
4305 	struct ifnet *ifp = ic->ic_ifp;
4306 	struct iwn_softc *sc = ifp->if_softc;
4307 
4308 	iwn_queue_cmd(sc, IWN_SCAN_START, 0, IWN_QUEUE_NORMAL);
4309 }
4310 
4311 /*
4312  * Callback from net80211 to terminate a scan.
4313  */
4314 static void
4315 iwn_scan_end(struct ieee80211com *ic)
4316 {
4317 	struct ifnet *ifp = ic->ic_ifp;
4318 	struct iwn_softc *sc = ifp->if_softc;
4319 
4320 	iwn_queue_cmd(sc, IWN_SCAN_STOP, 0, IWN_QUEUE_NORMAL);
4321 }
4322 
4323 /*
4324  * Callback from net80211 to force a channel change.
4325  */
4326 static void
4327 iwn_set_channel(struct ieee80211com *ic)
4328 {
4329 	struct ifnet *ifp = ic->ic_ifp;
4330 	struct iwn_softc *sc = ifp->if_softc;
4331 	const struct ieee80211_channel *c = ic->ic_curchan;
4332 
4333 	if (c != sc->sc_curchan) {
4334 		sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4335 		sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4336 		sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4337 		sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4338 		iwn_queue_cmd(sc, IWN_SET_CHAN, 0, IWN_QUEUE_NORMAL);
4339 	}
4340 }
4341 
4342 /*
4343  * Callback from net80211 to start scanning of the current channel.
4344  */
4345 static void
4346 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4347 {
4348 	struct ieee80211vap *vap = ss->ss_vap;
4349 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4350 
4351 	iwn_queue_cmd(sc, IWN_SCAN_CURCHAN, 0, IWN_QUEUE_NORMAL);
4352 }
4353 
4354 /*
4355  * Callback from net80211 to handle the minimum dwell time being met.
4356  * The intent is to terminate the scan but we just let the firmware
4357  * notify us when it's finished as we have no safe way to abort it.
4358  */
4359 static void
4360 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
4361 {
4362 	/* NB: don't try to abort scan; wait for firmware to finish */
4363 }
4364 
4365 /*
4366  * Carry out work in the taskq context.
4367  */
4368 static void
4369 iwn_ops(void *arg0, int pending)
4370 {
4371 	struct iwn_softc *sc = arg0;
4372 	struct ifnet *ifp = sc->sc_ifp;
4373 	struct ieee80211com *ic = ifp->if_l2com;
4374 	struct ieee80211vap *vap;
4375 	int cmd, arg, error;
4376 	enum ieee80211_state nstate;
4377 
4378 	for (;;) {
4379 		IWN_CMD_LOCK(sc);
4380 		cmd = sc->sc_cmd[sc->sc_cmd_cur];
4381 		if (cmd == 0) {
4382 			/* No more commands to process */
4383 			IWN_CMD_UNLOCK(sc);
4384 			return;
4385 		}
4386 		if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
4387 		    cmd != IWN_RADIO_ENABLE ) {
4388 			IWN_CMD_UNLOCK(sc);
4389 			return;
4390 		}
4391 		arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
4392 		sc->sc_cmd[sc->sc_cmd_cur] = 0;		/* free the slot */
4393 		sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWN_CMD_MAXOPS;
4394 		IWN_CMD_UNLOCK(sc);
4395 
4396 		IWN_LOCK(sc);		/* NB: sync debug printfs on smp */
4397 		DPRINTF(sc, IWN_DEBUG_OPS, "%s: %s (cmd 0x%x)\n",
4398 		    __func__, iwn_ops_str(cmd), cmd);
4399 
4400 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
4401 		switch (cmd) {
4402 		case IWN_SCAN_START:
4403 			/* make the link LED blink while we're scanning */
4404 			iwn_set_led(sc, IWN_LED_LINK, 20, 2);
4405 			break;
4406 		case IWN_SCAN_STOP:
4407 			break;
4408 		case IWN_SCAN_NEXT:
4409 			ieee80211_scan_next(vap);
4410 			break;
4411 		case IWN_SCAN_CURCHAN:
4412 			error = iwn_scan(sc);
4413 			if (error != 0) {
4414 				IWN_UNLOCK(sc);
4415 				ieee80211_cancel_scan(vap);
4416 				IWN_LOCK(sc);
4417 				return;
4418 			}
4419 			break;
4420 		case IWN_SET_CHAN:
4421 			error = iwn_config(sc);
4422 			if (error != 0) {
4423 				DPRINTF(sc, IWN_DEBUG_STATE,
4424 				    "%s: set chan failed, cancel scan\n",
4425 				    __func__);
4426 				IWN_UNLOCK(sc);
4427 				//XXX Handle failed scan correctly
4428 				ieee80211_cancel_scan(vap);
4429 				return;
4430 			}
4431 			break;
4432 		case IWN_AUTH:
4433 		case IWN_RUN:
4434 			if (cmd == IWN_AUTH) {
4435 				error = iwn_auth(sc);
4436 				nstate = IEEE80211_S_AUTH;
4437 			} else {
4438 				error = iwn_run(sc);
4439 				nstate = IEEE80211_S_RUN;
4440 			}
4441 			if (error == 0) {
4442 				IWN_UNLOCK(sc);
4443 				IEEE80211_LOCK(ic);
4444 				IWN_VAP(vap)->iv_newstate(vap, nstate, arg);
4445 				if (vap->iv_newstate_cb != NULL)
4446 					vap->iv_newstate_cb(vap, nstate, arg);
4447 				IEEE80211_UNLOCK(ic);
4448 				IWN_LOCK(sc);
4449 			} else {
4450 				device_printf(sc->sc_dev,
4451 				    "%s: %s state change failed, error %d\n",
4452 				    __func__, ieee80211_state_name[nstate],
4453 				    error);
4454 			}
4455 			break;
4456 		case IWN_REINIT:
4457 			IWN_UNLOCK(sc);
4458 			iwn_init(sc);
4459 			IWN_LOCK(sc);
4460 			ieee80211_notify_radio(ic, 1);
4461 			break;
4462 		case IWN_RADIO_ENABLE:
4463 			KASSERT(sc->fw_fp != NULL,
4464 			    ("Fware Not Loaded, can't load from tq"));
4465 			IWN_UNLOCK(sc);
4466 			iwn_init(sc);
4467 			IWN_LOCK(sc);
4468 			break;
4469 		case IWN_RADIO_DISABLE:
4470 			ieee80211_notify_radio(ic, 0);
4471 			iwn_stop_locked(sc);
4472 			break;
4473 		}
4474 		IWN_UNLOCK(sc);
4475 	}
4476 }
4477 
4478 /*
4479  * Queue a command for execution in the taskq thread.
4480  * This is needed as the net80211 callbacks do not allow
4481  * sleeping, since we need to sleep to confirm commands have
4482  * been processed by the firmware, we must defer execution to
4483  * a sleep enabled thread.
4484  */
4485 static int
4486 iwn_queue_cmd(struct iwn_softc *sc, int cmd, int arg, int clear)
4487 {
4488 	IWN_CMD_LOCK(sc);
4489 	if (clear) {
4490 		sc->sc_cmd[0] = cmd;
4491 		sc->sc_cmd_arg[0] = arg;
4492 		sc->sc_cmd_cur = 0;
4493 		sc->sc_cmd_next = 1;
4494 	} else {
4495 		if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
4496 			IWN_CMD_UNLOCK(sc);
4497 			DPRINTF(sc, IWN_DEBUG_ANY, "%s: command %d dropped\n",
4498 			    __func__, cmd);
4499 			return EBUSY;
4500 		}
4501 		sc->sc_cmd[sc->sc_cmd_next] = cmd;
4502 		sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
4503 		sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWN_CMD_MAXOPS;
4504 	}
4505 	taskqueue_enqueue(sc->sc_tq, &sc->sc_ops_task);
4506 	IWN_CMD_UNLOCK(sc);
4507 	return 0;
4508 }
4509 
4510 static void
4511 iwn_bpfattach(struct iwn_softc *sc)
4512 {
4513 	struct ifnet *ifp = sc->sc_ifp;
4514 
4515         bpfattach(ifp, DLT_IEEE802_11_RADIO,
4516             sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
4517 
4518         sc->sc_rxtap_len = sizeof sc->sc_rxtap;
4519         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
4520         sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
4521 
4522         sc->sc_txtap_len = sizeof sc->sc_txtap;
4523         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
4524         sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
4525 }
4526 
4527 static void
4528 iwn_sysctlattach(struct iwn_softc *sc)
4529 {
4530 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4531 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4532 
4533 #ifdef IWN_DEBUG
4534 	sc->sc_debug = 0;
4535 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4536 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
4537 #endif
4538 }
4539 
4540 #ifdef IWN_DEBUG
4541 static const char *
4542 iwn_ops_str(int cmd)
4543 {
4544 	switch (cmd) {
4545 	case IWN_SCAN_START:	return "SCAN_START";
4546 	case IWN_SCAN_CURCHAN:	return "SCAN_CURCHAN";
4547 	case IWN_SCAN_STOP:	return "SCAN_STOP";
4548 	case IWN_SET_CHAN:	return "SET_CHAN";
4549 	case IWN_AUTH:		return "AUTH";
4550 	case IWN_SCAN_NEXT:	return "SCAN_NEXT";
4551 	case IWN_RUN:		return "RUN";
4552 	case IWN_RADIO_ENABLE:	return "RADIO_ENABLE";
4553 	case IWN_RADIO_DISABLE:	return "RADIO_DISABLE";
4554 	case IWN_REINIT:	return "REINIT";
4555 	}
4556 	return "UNKNOWN COMMAND";
4557 }
4558 
4559 static const char *
4560 iwn_intr_str(uint8_t cmd)
4561 {
4562 	switch (cmd) {
4563 	/* Notifications */
4564 	case IWN_UC_READY:		return "UC_READY";
4565 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
4566 	case IWN_TX_DONE:		return "TX_DONE";
4567 	case IWN_START_SCAN:		return "START_SCAN";
4568 	case IWN_STOP_SCAN:		return "STOP_SCAN";
4569 	case IWN_RX_STATISTICS:		return "RX_STATS";
4570 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
4571 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
4572 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
4573 	case IWN_AMPDU_RX_START:	return "AMPDU_RX_START";
4574 	case IWN_AMPDU_RX_DONE:		return "AMPDU_RX_DONE";
4575 	case IWN_RX_DONE:		return "RX_DONE";
4576 
4577 	/* Command Notifications */
4578 	case IWN_CMD_CONFIGURE:		return "IWN_CMD_CONFIGURE";
4579 	case IWN_CMD_ASSOCIATE:		return "IWN_CMD_ASSOCIATE";
4580 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
4581 	case IWN_CMD_TSF:		return "IWN_CMD_TSF";
4582 	case IWN_CMD_TX_LINK_QUALITY:	return "IWN_CMD_TX_LINK_QUALITY";
4583 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
4584 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
4585 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
4586 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
4587 	case IWN_CMD_BLUETOOTH:		return "IWN_CMD_BLUETOOTH";
4588 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
4589 	case IWN_SENSITIVITY:		return "IWN_SENSITIVITY";
4590 	case IWN_PHY_CALIB:		return "IWN_PHY_CALIB";
4591 	}
4592 	return "UNKNOWN INTR NOTIF/CMD";
4593 }
4594 #endif /* IWN_DEBUG */
4595 
4596 static device_method_t iwn_methods[] = {
4597         /* Device interface */
4598         DEVMETHOD(device_probe,         iwn_probe),
4599         DEVMETHOD(device_attach,        iwn_attach),
4600         DEVMETHOD(device_detach,        iwn_detach),
4601         DEVMETHOD(device_shutdown,      iwn_shutdown),
4602         DEVMETHOD(device_suspend,       iwn_suspend),
4603         DEVMETHOD(device_resume,        iwn_resume),
4604 
4605         { 0, 0 }
4606 };
4607 
4608 static driver_t iwn_driver = {
4609         "iwn",
4610         iwn_methods,
4611         sizeof (struct iwn_softc)
4612 };
4613 static devclass_t iwn_devclass;
4614 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
4615 MODULE_DEPEND(iwn, pci, 1, 1, 1);
4616 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
4617 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
4618 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
4619