xref: /freebsd/sys/dev/iwn/if_iwn.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 2007
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 #include <sys/param.h>
29 #include <sys/sockio.h>
30 #include <sys/sysctl.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/bus.h>
37 #include <sys/rman.h>
38 #include <sys/endian.h>
39 #include <sys/firmware.h>
40 #include <sys/limits.h>
41 #include <sys/module.h>
42 #include <sys/queue.h>
43 #include <sys/taskqueue.h>
44 
45 #include <machine/bus.h>
46 #include <machine/resource.h>
47 #include <machine/clock.h>
48 
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/ethernet.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_types.h>
59 
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/ip.h>
65 
66 #include <net80211/ieee80211_var.h>
67 #include <net80211/ieee80211_amrr.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 
71 #include <dev/iwn/if_iwnreg.h>
72 #include <dev/iwn/if_iwnvar.h>
73 
74 static int	iwn_probe(device_t);
75 static int	iwn_attach(device_t);
76 static int 	iwn_detach(device_t);
77 static int	iwn_cleanup(device_t);
78 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
79 		    const char name[IFNAMSIZ], int unit, int opmode,
80 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
81 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
82 static void	iwn_vap_delete(struct ieee80211vap *);
83 static int	iwn_shutdown(device_t);
84 static int	iwn_suspend(device_t);
85 static int	iwn_resume(device_t);
86 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
87 		    void **, bus_size_t, bus_size_t, int);
88 static void	iwn_dma_contig_free(struct iwn_dma_info *);
89 int		iwn_alloc_shared(struct iwn_softc *);
90 void		iwn_free_shared(struct iwn_softc *);
91 int		iwn_alloc_kw(struct iwn_softc *);
92 void		iwn_free_kw(struct iwn_softc *);
93 int		iwn_alloc_fwmem(struct iwn_softc *);
94 void		iwn_free_fwmem(struct iwn_softc *);
95 struct		iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
96 void		iwn_free_rbuf(void *, void *);
97 int		iwn_alloc_rpool(struct iwn_softc *);
98 void		iwn_free_rpool(struct iwn_softc *);
99 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
100 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
101 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
102 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
103 		    int);
104 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
105 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
106 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
107 		    const uint8_t [IEEE80211_ADDR_LEN]);
108 void		iwn_newassoc(struct ieee80211_node *, int);
109 int		iwn_media_change(struct ifnet *);
110 int		iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
111 void		iwn_mem_lock(struct iwn_softc *);
112 void		iwn_mem_unlock(struct iwn_softc *);
113 uint32_t	iwn_mem_read(struct iwn_softc *, uint32_t);
114 void		iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t);
115 void		iwn_mem_write_region_4(struct iwn_softc *, uint32_t,
116 		    const uint32_t *, int);
117 int		iwn_eeprom_lock(struct iwn_softc *);
118 void		iwn_eeprom_unlock(struct iwn_softc *);
119 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
120 int		iwn_transfer_microcode(struct iwn_softc *, const uint8_t *, int);
121 int		iwn_transfer_firmware(struct iwn_softc *);
122 int		iwn_load_firmware(struct iwn_softc *);
123 void		iwn_unload_firmware(struct iwn_softc *);
124 static void	iwn_timer_timeout(void *);
125 static void	iwn_calib_reset(struct iwn_softc *);
126 void		iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *);
127 void		iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *,
128 		    struct iwn_rx_data *);
129 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
130 void		iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *);
131 void		iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *);
132 static void	iwn_bmiss(void *, int);
133 void		iwn_notif_intr(struct iwn_softc *);
134 void		iwn_intr(void *);
135 void		iwn_read_eeprom(struct iwn_softc *);
136 static void	iwn_read_eeprom_channels(struct iwn_softc *);
137 void		iwn_print_power_group(struct iwn_softc *, int);
138 uint8_t		iwn_plcp_signal(int);
139 int		iwn_tx_data(struct iwn_softc *, struct mbuf *,
140 		    struct ieee80211_node *, struct iwn_tx_ring *);
141 void		iwn_start(struct ifnet *);
142 void		iwn_start_locked(struct ifnet *);
143 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
144 		    const struct ieee80211_bpf_params *);
145 static void	iwn_watchdog(struct iwn_softc *);
146 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
147 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
148 int		iwn_set_link_quality(struct iwn_softc *, uint8_t,
149 		    const struct ieee80211_channel *, int);
150 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
151 		    const struct ieee80211_key *);
152 int		iwn_wme_update(struct ieee80211com *);
153 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
154 int		iwn_set_critical_temp(struct iwn_softc *);
155 void		iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *);
156 void		iwn_power_calibration(struct iwn_softc *, int);
157 int		iwn_set_txpower(struct iwn_softc *,
158 		    struct ieee80211_channel *, int);
159 int8_t		iwn_get_rssi(struct iwn_softc *, const struct iwn_rx_stat *);
160 int		iwn_get_noise(const struct iwn_rx_general_stats *);
161 int		iwn_get_temperature(struct iwn_softc *);
162 int		iwn_init_sensitivity(struct iwn_softc *);
163 void		iwn_compute_differential_gain(struct iwn_softc *,
164 		    const struct iwn_rx_general_stats *);
165 void		iwn_tune_sensitivity(struct iwn_softc *,
166 		    const struct iwn_rx_stats *);
167 int		iwn_send_sensitivity(struct iwn_softc *);
168 int		iwn_auth(struct iwn_softc *);
169 int		iwn_run(struct iwn_softc *);
170 int		iwn_scan(struct iwn_softc *);
171 int		iwn_config(struct iwn_softc *);
172 void		iwn_post_alive(struct iwn_softc *);
173 void		iwn_stop_master(struct iwn_softc *);
174 int		iwn_reset(struct iwn_softc *);
175 void		iwn_hw_config(struct iwn_softc *);
176 void		iwn_init_locked(struct iwn_softc *);
177 void		iwn_init(void *);
178 void		iwn_stop_locked(struct iwn_softc *);
179 void		iwn_stop(struct iwn_softc *);
180 static void 	iwn_scan_start(struct ieee80211com *);
181 static void 	iwn_scan_end(struct ieee80211com *);
182 static void 	iwn_set_channel(struct ieee80211com *);
183 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
184 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
185 static void 	iwn_ops(void *, int);
186 static int 	iwn_queue_cmd( struct iwn_softc *, int, int, int);
187 static void	iwn_bpfattach(struct iwn_softc *);
188 static void	iwn_sysctlattach(struct iwn_softc *);
189 
190 #define IWN_DEBUG
191 #ifdef IWN_DEBUG
192 enum {
193 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
194 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
195 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
196 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
197 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
198 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
199 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
200 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
201 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
202 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
203 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
204 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
205 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
206 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
207 	IWN_DEBUG_ANY		= 0xffffffff
208 };
209 
210 #define DPRINTF(sc, m, fmt, ...) do {			\
211 	if (sc->sc_debug & (m))				\
212 		printf(fmt, __VA_ARGS__);		\
213 } while (0)
214 
215 static const char *iwn_ops_str(int);
216 static const char *iwn_intr_str(uint8_t);
217 #else
218 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
219 #endif
220 
221 struct iwn_ident {
222 	uint16_t	vendor;
223 	uint16_t	device;
224 	const char	*name;
225 };
226 
227 static const struct iwn_ident iwn_ident_table [] = {
228         { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
229         { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
230         { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
231         { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
232         { 0, 0, NULL }
233 };
234 
235 static int
236 iwn_probe(device_t dev)
237 {
238         const struct iwn_ident *ident;
239 
240         for (ident = iwn_ident_table; ident->name != NULL; ident++) {
241                 if (pci_get_vendor(dev) == ident->vendor &&
242                     pci_get_device(dev) == ident->device) {
243                         device_set_desc(dev, ident->name);
244                         return 0;
245                 }
246         }
247         return ENXIO;
248 }
249 
250 static int
251 iwn_attach(device_t dev)
252 {
253 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
254 	struct ieee80211com *ic;
255 	struct ifnet *ifp;
256 	int i, error, result;
257 
258 	sc->sc_dev = dev;
259 
260 	/* XXX */
261 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
262 		device_printf(dev, "chip is in D%d power mode "
263 		    "-- setting to D0\n", pci_get_powerstate(dev));
264 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
265 	}
266 
267 	/* clear device specific PCI configuration register 0x41 */
268 	pci_write_config(dev, 0x41, 0, 1);
269 
270 	/* enable bus-mastering */
271 	pci_enable_busmaster(dev);
272 
273 	sc->mem_rid= PCIR_BAR(0);
274 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
275 					 RF_ACTIVE);
276 	if (sc->mem == NULL ) {
277 		device_printf(dev, "could not allocate memory resources\n");
278 		error = ENOMEM;
279 		return error;
280 	}
281 
282 	sc->sc_st = rman_get_bustag(sc->mem);
283 	sc->sc_sh = rman_get_bushandle(sc->mem);
284 	sc->irq_rid = 0;
285 	if ((result = pci_msi_count(dev)) == 1 &&
286 	    pci_alloc_msi(dev, &result) == 0)
287 		sc->irq_rid = 1;
288 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
289 					 RF_ACTIVE | RF_SHAREABLE);
290 	if (sc->irq == NULL) {
291 		device_printf(dev, "could not allocate interrupt resource\n");
292 		error = ENOMEM;
293 		return error;
294 	}
295 
296 	IWN_LOCK_INIT(sc);
297 	IWN_CMD_LOCK_INIT(sc);
298 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
299 
300         /*
301          * Create the taskqueues used by the driver. Primarily
302          * sc_tq handles most the task
303          */
304         sc->sc_tq = taskqueue_create("iwn_taskq", M_NOWAIT | M_ZERO,
305                 taskqueue_thread_enqueue, &sc->sc_tq);
306         taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
307                 device_get_nameunit(dev));
308 
309         TASK_INIT(&sc->sc_ops_task, 0, iwn_ops, sc );
310 	TASK_INIT(&sc->sc_bmiss_task, 0, iwn_bmiss, sc);
311 
312 	/*
313 	 * Put adapter into a known state.
314 	 */
315 	error = iwn_reset(sc);
316 	if (error != 0) {
317 		device_printf(dev,
318 		    "could not reset adapter, error %d\n", error);
319 		goto fail;
320 	}
321 
322 	/*
323 	 * Allocate DMA memory for firmware transfers.
324 	 */
325 	error = iwn_alloc_fwmem(sc);
326 	if (error != 0) {
327 		device_printf(dev,
328 		    "could not allocate firmware memory, error %d\n", error);
329 		goto fail;
330 	}
331 
332 	/*
333 	 * Allocate a "keep warm" page.
334 	 */
335 	error = iwn_alloc_kw(sc);
336 	if (error != 0) {
337 		device_printf(dev,
338 		    "could not allocate keep-warm page, error %d\n", error);
339 		goto fail;
340 	}
341 
342 	/*
343 	 * Allocate shared area (communication area).
344 	 */
345 	error = iwn_alloc_shared(sc);
346 	if (error != 0) {
347 		device_printf(dev,
348 		    "could not allocate shared area, error %d\n", error);
349 		goto fail;
350 	}
351 
352 	/*
353 	 * Allocate Tx rings.
354 	 */
355 	for (i = 0; i < IWN_NTXQUEUES; i++) {
356 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
357 		if (error != 0) {
358 			device_printf(dev,
359 			    "could not allocate Tx ring %d, error %d\n",
360 			    i, error);
361 			goto fail;
362 		}
363 	}
364 
365 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
366 	if (error != 0 ){
367 		device_printf(dev,
368 		    "could not allocate Rx ring, error %d\n", error);
369 		goto fail;
370 	}
371 
372 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
373 	if (ifp == NULL) {
374 		device_printf(dev, "can not allocate ifnet structure\n");
375 		goto fail;
376 	}
377 	ic = ifp->if_l2com;
378 
379 	ic->ic_ifp = ifp;
380 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
381 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
382 
383 	/* set device capabilities */
384 	ic->ic_caps =
385 		  IEEE80211_C_STA		/* station mode supported */
386 		| IEEE80211_C_MONITOR		/* monitor mode supported */
387 		| IEEE80211_C_TXPMGT		/* tx power management */
388 		| IEEE80211_C_SHSLOT		/* short slot time supported */
389 		| IEEE80211_C_WPA
390 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
391 #if 0
392 		| IEEE80211_C_BGSCAN		/* background scanning */
393 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
394 #endif
395 		| IEEE80211_C_WME		/* WME */
396 		;
397 #if 0
398 	/* XXX disable until HT channel setup works */
399 	ic->ic_htcaps =
400 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
401 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
402 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
403 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
404 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
405 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
406 		/* s/w capabilities */
407 		| IEEE80211_HTC_HT		/* HT operation */
408 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
409 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
410 		;
411 #endif
412 	/* read supported channels and MAC address from EEPROM */
413 	iwn_read_eeprom(sc);
414 
415 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
416 	ifp->if_softc = sc;
417 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
418 	ifp->if_init = iwn_init;
419 	ifp->if_ioctl = iwn_ioctl;
420 	ifp->if_start = iwn_start;
421         IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
422 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
423 	IFQ_SET_READY(&ifp->if_snd);
424 
425 	ieee80211_ifattach(ic);
426 	ic->ic_vap_create = iwn_vap_create;
427 	ic->ic_vap_delete = iwn_vap_delete;
428 	ic->ic_raw_xmit = iwn_raw_xmit;
429 	ic->ic_node_alloc = iwn_node_alloc;
430 	ic->ic_newassoc = iwn_newassoc;
431         ic->ic_wme.wme_update = iwn_wme_update;
432         ic->ic_scan_start = iwn_scan_start;
433         ic->ic_scan_end = iwn_scan_end;
434         ic->ic_set_channel = iwn_set_channel;
435         ic->ic_scan_curchan = iwn_scan_curchan;
436         ic->ic_scan_mindwell = iwn_scan_mindwell;
437 
438 	iwn_bpfattach(sc);
439 	iwn_sysctlattach(sc);
440 
441         /*
442          * Hook our interrupt after all initialization is complete.
443          */
444         error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
445 	    NULL, iwn_intr, sc, &sc->sc_ih);
446         if (error != 0) {
447                 device_printf(dev, "could not set up interrupt, error %d\n", error);
448                 goto fail;
449         }
450 
451         ieee80211_announce(ic);
452 	return 0;
453 fail:
454 	iwn_cleanup(dev);
455 	return error;
456 }
457 
458 static int
459 iwn_detach(device_t dev)
460 {
461 	iwn_cleanup(dev);
462         return 0;
463 }
464 
465 /*
466  * Cleanup any device resources that were allocated
467  */
468 int
469 iwn_cleanup(device_t dev)
470 {
471 	struct iwn_softc *sc = device_get_softc(dev);
472 	struct ifnet *ifp = sc->sc_ifp;
473 	struct ieee80211com *ic = ifp->if_l2com;
474 	int i;
475 
476 	if (ifp != NULL) {
477 		iwn_stop(sc);
478 		callout_drain(&sc->sc_timer_to);
479 		bpfdetach(ifp);
480 		ieee80211_ifdetach(ic);
481 	}
482 
483 	iwn_unload_firmware(sc);
484 
485 	iwn_free_rx_ring(sc, &sc->rxq);
486 	for (i = 0; i < IWN_NTXQUEUES; i++)
487 		iwn_free_tx_ring(sc, &sc->txq[i]);
488 	iwn_free_kw(sc);
489 	iwn_free_fwmem(sc);
490 	if (sc->irq != NULL) {
491 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
492 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
493 		if (sc->irq_rid == 1)
494 			pci_release_msi(dev);
495 	}
496 	if (sc->mem != NULL)
497 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
498 	if (ifp != NULL)
499 		if_free(ifp);
500 	taskqueue_free(sc->sc_tq);
501 	IWN_CMD_LOCK_DESTROY(sc);
502 	IWN_LOCK_DESTROY(sc);
503 	return 0;
504 }
505 
506 static struct ieee80211vap *
507 iwn_vap_create(struct ieee80211com *ic,
508 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
509 	const uint8_t bssid[IEEE80211_ADDR_LEN],
510 	const uint8_t mac[IEEE80211_ADDR_LEN])
511 {
512 	struct iwn_vap *ivp;
513 	struct ieee80211vap *vap;
514 
515 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
516 		return NULL;
517 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
518 	    M_80211_VAP, M_NOWAIT | M_ZERO);
519 	if (ivp == NULL)
520 		return NULL;
521 	vap = &ivp->iv_vap;
522 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
523 	vap->iv_bmissthreshold = 10;		/* override default */
524 	/* override with driver methods */
525 	ivp->iv_newstate = vap->iv_newstate;
526 	vap->iv_newstate = iwn_newstate;
527 
528 	ieee80211_amrr_init(&ivp->iv_amrr, vap,
529 	    IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
530 	    IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
531 	    500 /*ms*/);
532 
533 	/* complete setup */
534 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
535 	ic->ic_opmode = opmode;
536 	return vap;
537 }
538 
539 static void
540 iwn_vap_delete(struct ieee80211vap *vap)
541 {
542 	struct iwn_vap *ivp = IWN_VAP(vap);
543 
544 	ieee80211_amrr_cleanup(&ivp->iv_amrr);
545 	ieee80211_vap_detach(vap);
546 	free(ivp, M_80211_VAP);
547 }
548 
549 static int
550 iwn_shutdown(device_t dev)
551 {
552 	struct iwn_softc *sc = device_get_softc(dev);
553 
554 	iwn_stop(sc);
555 	return 0;
556 }
557 
558 static int
559 iwn_suspend(device_t dev)
560 {
561 	struct iwn_softc *sc = device_get_softc(dev);
562 
563 	iwn_stop(sc);
564 	return 0;
565 }
566 
567 static int
568 iwn_resume(device_t dev)
569 {
570 	struct iwn_softc *sc = device_get_softc(dev);
571 	struct ifnet *ifp = sc->sc_ifp;
572 
573 	pci_write_config(dev, 0x41, 0, 1);
574 
575 	if (ifp->if_flags & IFF_UP)
576 		iwn_init(sc);
577 	return 0;
578 }
579 
580 static void
581 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
582 {
583         if (error != 0)
584                 return;
585         KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
586         *(bus_addr_t *)arg = segs[0].ds_addr;
587 }
588 
589 static int
590 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
591 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
592 {
593 	int error, lalignment, i;
594 
595 	/*
596 	 * FreeBSD can't guarrenty 16k alignment at the moment (11/2007) so
597 	 * we allocate an extra 12k with 4k alignement and walk through
598 	 * it trying to find where the alignment is. It's a nasty fix for
599 	 * a bigger problem.
600 	*/
601 	DPRINTF(sc, IWN_DEBUG_RESET,
602 	    "Size: %zd - alignment %zd\n", size, alignment);
603 	if (alignment == 0x4000) {
604 		size += 12*1024;
605 		lalignment = 4096;
606 		DPRINTF(sc, IWN_DEBUG_RESET, "%s\n",
607 		    "Attempting to find a 16k boundary");
608 	} else
609 		lalignment = alignment;
610 	dma->size = size;
611 	dma->tag = NULL;
612 
613 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), lalignment,
614 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
615 	    1, size, flags, NULL, NULL, &dma->tag);
616 	if (error != 0) {
617 		device_printf(sc->sc_dev,
618 		    "%s: bus_dma_tag_create failed, error %d\n",
619 		    __func__, error);
620 		goto fail;
621 	}
622 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
623 	    flags | BUS_DMA_ZERO, &dma->map);
624 	if (error != 0) {
625 		device_printf(sc->sc_dev,
626 		   "%s: bus_dmamem_alloc failed, error %d\n",
627 		   __func__, error);
628 		goto fail;
629 	}
630 	if (alignment == 0x4000) {
631 		for (i = 0; i < 3 && (((uintptr_t)dma->vaddr) & 0x3fff); i++) {
632 			DPRINTF(sc, IWN_DEBUG_RESET,  "%s\n",
633 			    "Memory Unaligned, shifting pointer by 4k");
634 			dma->vaddr += 4096;
635 			size -= 4096;
636 		}
637 		if ((((uintptr_t)dma->vaddr ) & (alignment-1))) {
638 			DPRINTF(sc, IWN_DEBUG_ANY,
639 			    "%s: failed to align memory, vaddr %p, align %zd\n",
640 			    __func__, dma->vaddr, alignment);
641 			error = ENOMEM;
642 			goto fail;
643 		}
644 	}
645 
646 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
647 	    size, iwn_dma_map_addr, &dma->paddr, flags);
648 	if (error != 0) {
649 		device_printf(sc->sc_dev,
650 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
651 		goto fail;
652 	}
653 
654 	if (kvap != NULL)
655 		*kvap = dma->vaddr;
656 	return 0;
657 fail:
658 	iwn_dma_contig_free(dma);
659 	return error;
660 }
661 
662 static void
663 iwn_dma_contig_free(struct iwn_dma_info *dma)
664 {
665 	if (dma->tag != NULL) {
666 		if (dma->map != NULL) {
667 			if (dma->paddr == 0) {
668 				bus_dmamap_sync(dma->tag, dma->map,
669 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
670 				bus_dmamap_unload(dma->tag, dma->map);
671 			}
672 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
673 		}
674 		bus_dma_tag_destroy(dma->tag);
675 	}
676 }
677 
678 int
679 iwn_alloc_shared(struct iwn_softc *sc)
680 {
681 	/* must be aligned on a 1KB boundary */
682 	return iwn_dma_contig_alloc(sc, &sc->shared_dma,
683 	    (void **)&sc->shared, sizeof (struct iwn_shared), 1024,
684 	    BUS_DMA_NOWAIT);
685 }
686 
687 void
688 iwn_free_shared(struct iwn_softc *sc)
689 {
690 	iwn_dma_contig_free(&sc->shared_dma);
691 }
692 
693 int
694 iwn_alloc_kw(struct iwn_softc *sc)
695 {
696 	/* must be aligned on a 4k boundary */
697 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL,
698 	    PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT);
699 }
700 
701 void
702 iwn_free_kw(struct iwn_softc *sc)
703 {
704 	iwn_dma_contig_free(&sc->kw_dma);
705 }
706 
707 int
708 iwn_alloc_fwmem(struct iwn_softc *sc)
709 {
710 	/* allocate enough contiguous space to store text and data */
711 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
712 	    IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16,
713 	    BUS_DMA_NOWAIT);
714 }
715 
716 void
717 iwn_free_fwmem(struct iwn_softc *sc)
718 {
719 	iwn_dma_contig_free(&sc->fw_dma);
720 }
721 
722 int
723 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
724 {
725 	int i, error;
726 
727 	ring->cur = 0;
728 
729 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
730 	    (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t),
731 	    IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
732 	if (error != 0) {
733 		device_printf(sc->sc_dev,
734 		    "%s: could not allocate rx ring DMA memory, error %d\n",
735 		    __func__, error);
736 		goto fail;
737 	}
738 
739         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
740 	    BUS_SPACE_MAXADDR_32BIT,
741             BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
742             MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
743         if (error != 0) {
744                 device_printf(sc->sc_dev,
745 		    "%s: bus_dma_tag_create_failed, error %d\n",
746 		    __func__, error);
747                 goto fail;
748         }
749 
750 	/*
751 	 * Setup Rx buffers.
752 	 */
753 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
754 		struct iwn_rx_data *data = &ring->data[i];
755 		struct mbuf *m;
756 		bus_addr_t paddr;
757 
758 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
759 		if (error != 0) {
760 			device_printf(sc->sc_dev,
761 			    "%s: bus_dmamap_create failed, error %d\n",
762 			    __func__, error);
763 			goto fail;
764 		}
765 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
766 		if (m == NULL) {
767 			device_printf(sc->sc_dev,
768 			   "%s: could not allocate rx mbuf\n", __func__);
769 			error = ENOMEM;
770 			goto fail;
771 		}
772 		/* map page */
773 		error = bus_dmamap_load(ring->data_dmat, data->map,
774 		    mtod(m, caddr_t), MJUMPAGESIZE,
775 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
776 		if (error != 0 && error != EFBIG) {
777 			device_printf(sc->sc_dev,
778 			    "%s: bus_dmamap_load failed, error %d\n",
779 			    __func__, error);
780 			m_freem(m);
781 			error = ENOMEM;	/* XXX unique code */
782 			goto fail;
783 		}
784 		bus_dmamap_sync(ring->data_dmat, data->map,
785 		    BUS_DMASYNC_PREWRITE);
786 
787 		data->m = m;
788 		/* Rx buffers are aligned on a 256-byte boundary */
789 		ring->desc[i] = htole32(paddr >> 8);
790 	}
791 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
792 	    BUS_DMASYNC_PREWRITE);
793 	return 0;
794 fail:
795 	iwn_free_rx_ring(sc, ring);
796 	return error;
797 }
798 
799 void
800 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
801 {
802 	int ntries;
803 
804 	iwn_mem_lock(sc);
805 
806 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
807 	for (ntries = 0; ntries < 100; ntries++) {
808 		if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE)
809 			break;
810 		DELAY(10);
811 	}
812 #ifdef IWN_DEBUG
813 	if (ntries == 100)
814 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", "timeout resetting Rx ring");
815 #endif
816 	iwn_mem_unlock(sc);
817 
818 	ring->cur = 0;
819 }
820 
821 void
822 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
823 {
824 	int i;
825 
826 	iwn_dma_contig_free(&ring->desc_dma);
827 
828 	for (i = 0; i < IWN_RX_RING_COUNT; i++)
829 		if (ring->data[i].m != NULL)
830 			m_freem(ring->data[i].m);
831 }
832 
833 int
834 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
835 {
836 	bus_size_t size;
837 	int i, error;
838 
839 	ring->qid = qid;
840 	ring->queued = 0;
841 	ring->cur = 0;
842 
843 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
844 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
845 	    (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
846 	if (error != 0) {
847 		device_printf(sc->sc_dev,
848 		    "%s: could not allocate tx ring DMA memory, error %d\n",
849 		    __func__, error);
850 		goto fail;
851 	}
852 
853 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
854 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
855 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
856 	if (error != 0) {
857 		device_printf(sc->sc_dev,
858 		    "%s: could not allocate tx cmd DMA memory, error %d\n",
859 		    __func__, error);
860 		goto fail;
861 	}
862 
863         error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
864 	    BUS_SPACE_MAXADDR_32BIT,
865             BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
866             MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
867         if (error != 0) {
868                 device_printf(sc->sc_dev,
869 		    "%s: bus_dma_tag_create_failed, error %d\n",
870 		    __func__, error);
871                 goto fail;
872         }
873 
874 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
875 		struct iwn_tx_data *data = &ring->data[i];
876 
877 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
878 		if (error != 0) {
879 			device_printf(sc->sc_dev,
880 			    "%s: bus_dmamap_create failed, error %d\n",
881 			    __func__, error);
882 			goto fail;
883 		}
884 		bus_dmamap_sync(ring->data_dmat, data->map,
885 		    BUS_DMASYNC_PREWRITE);
886 	}
887 	return 0;
888 fail:
889 	iwn_free_tx_ring(sc, ring);
890 	return error;
891 }
892 
893 void
894 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
895 {
896 	uint32_t tmp;
897 	int i, ntries;
898 
899 	iwn_mem_lock(sc);
900 
901 	IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0);
902 	for (ntries = 0; ntries < 20; ntries++) {
903 		tmp = IWN_READ(sc, IWN_TX_STATUS);
904 		if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid))
905 			break;
906 		DELAY(10);
907 	}
908 #ifdef IWN_DEBUG
909 	if (ntries == 20)
910 		DPRINTF(sc, IWN_DEBUG_RESET,
911 		    "%s: timeout resetting Tx ring %d\n", __func__, ring->qid);
912 #endif
913 	iwn_mem_unlock(sc);
914 
915 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
916 		struct iwn_tx_data *data = &ring->data[i];
917 
918 		if (data->m != NULL) {
919 			bus_dmamap_unload(ring->data_dmat, data->map);
920 			m_freem(data->m);
921 			data->m = NULL;
922 		}
923 	}
924 
925 	ring->queued = 0;
926 	ring->cur = 0;
927 }
928 
929 void
930 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
931 {
932 	int i;
933 
934 	iwn_dma_contig_free(&ring->desc_dma);
935 	iwn_dma_contig_free(&ring->cmd_dma);
936 
937 	if (ring->data != NULL) {
938 		for (i = 0; i < IWN_TX_RING_COUNT; i++) {
939 			struct iwn_tx_data *data = &ring->data[i];
940 
941 			if (data->m != NULL) {
942 				bus_dmamap_unload(ring->data_dmat, data->map);
943 				m_freem(data->m);
944 			}
945 		}
946 	}
947 }
948 
949 struct ieee80211_node *
950 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
951 {
952 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
953 }
954 
955 void
956 iwn_newassoc(struct ieee80211_node *ni, int isnew)
957 {
958 	struct ieee80211vap *vap = ni->ni_vap;
959 
960 	ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
961 	   &IWN_NODE(ni)->amn, ni);
962 }
963 
964 int
965 iwn_media_change(struct ifnet *ifp)
966 {
967 	int error = ieee80211_media_change(ifp);
968 	/* NB: only the fixed rate can change and that doesn't need a reset */
969 	return (error == ENETRESET ? 0 : error);
970 }
971 
972 int
973 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
974 {
975 	struct iwn_vap *ivp = IWN_VAP(vap);
976 	struct ieee80211com *ic = vap->iv_ic;
977 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
978 	int error;
979 
980 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
981 		ieee80211_state_name[vap->iv_state],
982 		ieee80211_state_name[nstate]);
983 
984 	IWN_LOCK(sc);
985 	callout_stop(&sc->sc_timer_to);
986 	IWN_UNLOCK(sc);
987 
988 	/*
989 	 * Some state transitions require issuing a configure request
990 	 * to the adapter.  This must be done in a blocking context
991 	 * so we toss control to the task q thread where the state
992 	 * change will be finished after the command completes.
993 	 */
994 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
995 		/* !AUTH -> AUTH requires adapter config */
996 		error = iwn_queue_cmd(sc, IWN_AUTH, arg, IWN_QUEUE_NORMAL);
997 		return (error != 0 ? error : EINPROGRESS);
998 	}
999 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1000 		/*
1001 		 * !RUN -> RUN requires setting the association id
1002 		 * which is done with a firmware cmd.  We also defer
1003 		 * starting the timers until that work is done.
1004 		 */
1005 		error = iwn_queue_cmd(sc, IWN_RUN, arg, IWN_QUEUE_NORMAL);
1006 		return (error != 0 ? error : EINPROGRESS);
1007 	}
1008 	if (nstate == IEEE80211_S_RUN) {
1009 		/*
1010 		 * RUN -> RUN transition; just restart the timers.
1011 		 */
1012 		iwn_calib_reset(sc);
1013 	}
1014 	return ivp->iv_newstate(vap, nstate, arg);
1015 }
1016 
1017 /*
1018  * Grab exclusive access to NIC memory.
1019  */
1020 void
1021 iwn_mem_lock(struct iwn_softc *sc)
1022 {
1023 	uint32_t tmp;
1024 	int ntries;
1025 
1026 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
1027 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC);
1028 
1029 	/* spin until we actually get the lock */
1030 	for (ntries = 0; ntries < 1000; ntries++) {
1031 		if ((IWN_READ(sc, IWN_GPIO_CTL) &
1032 		    (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK)
1033 			break;
1034 		DELAY(10);
1035 	}
1036 	if (ntries == 1000)
1037 		device_printf(sc->sc_dev,
1038 		    "%s: could not lock memory\n", __func__);
1039 }
1040 
1041 /*
1042  * Release lock on NIC memory.
1043  */
1044 void
1045 iwn_mem_unlock(struct iwn_softc *sc)
1046 {
1047 	uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1048 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC);
1049 }
1050 
1051 uint32_t
1052 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1053 {
1054 	IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr);
1055 	return IWN_READ(sc, IWN_READ_MEM_DATA);
1056 }
1057 
1058 void
1059 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1060 {
1061 	IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr);
1062 	IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data);
1063 }
1064 
1065 void
1066 iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr,
1067     const uint32_t *data, int wlen)
1068 {
1069 	for (; wlen > 0; wlen--, data++, addr += 4)
1070 		iwn_mem_write(sc, addr, *data);
1071 }
1072 
1073 int
1074 iwn_eeprom_lock(struct iwn_softc *sc)
1075 {
1076 	uint32_t tmp;
1077 	int ntries;
1078 
1079 	tmp = IWN_READ(sc, IWN_HWCONFIG);
1080 	IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED);
1081 
1082 	/* spin until we actually get the lock */
1083 	for (ntries = 0; ntries < 100; ntries++) {
1084 		if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED)
1085 			return 0;
1086 		DELAY(10);
1087 	}
1088 	return ETIMEDOUT;
1089 }
1090 
1091 void
1092 iwn_eeprom_unlock(struct iwn_softc *sc)
1093 {
1094 	uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG);
1095 	IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED);
1096 }
1097 
1098 /*
1099  * Read `len' bytes from the EEPROM.  We access the EEPROM through the MAC
1100  * instead of using the traditional bit-bang method.
1101  */
1102 int
1103 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len)
1104 {
1105 	uint8_t *out = data;
1106 	uint32_t val;
1107 	int ntries, tmp;
1108 
1109 	iwn_mem_lock(sc);
1110 	for (; len > 0; len -= 2, addr++) {
1111 		IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2);
1112 		tmp = IWN_READ(sc, IWN_EEPROM_CTL);
1113 		IWN_WRITE(sc, IWN_EEPROM_CTL, tmp & ~IWN_EEPROM_MSK );
1114 
1115 		for (ntries = 0; ntries < 10; ntries++) {
1116 			if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) &
1117 			    IWN_EEPROM_READY)
1118 				break;
1119 			DELAY(5);
1120 		}
1121 		if (ntries == 10) {
1122 			device_printf(sc->sc_dev,"could not read EEPROM\n");
1123 			return ETIMEDOUT;
1124 		}
1125 		*out++ = val >> 16;
1126 		if (len > 1)
1127 			*out++ = val >> 24;
1128 	}
1129 	iwn_mem_unlock(sc);
1130 
1131 	return 0;
1132 }
1133 
1134 /*
1135  * The firmware boot code is small and is intended to be copied directly into
1136  * the NIC internal memory.
1137  */
1138 int
1139 iwn_transfer_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
1140 {
1141 	int ntries;
1142 
1143 	size /= sizeof (uint32_t);
1144 
1145 	iwn_mem_lock(sc);
1146 
1147 	/* copy microcode image into NIC memory */
1148 	iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE,
1149 	    (const uint32_t *)ucode, size);
1150 
1151 	iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0);
1152 	iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT);
1153 	iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size);
1154 
1155 	/* run microcode */
1156 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN);
1157 
1158 	/* wait for transfer to complete */
1159 	for (ntries = 0; ntries < 1000; ntries++) {
1160 		if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN))
1161 			break;
1162 		DELAY(10);
1163 	}
1164 	if (ntries == 1000) {
1165 		iwn_mem_unlock(sc);
1166 		device_printf(sc->sc_dev,
1167 		    "%s: could not load boot firmware\n", __func__);
1168 		return ETIMEDOUT;
1169 	}
1170 	iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE);
1171 
1172 	iwn_mem_unlock(sc);
1173 
1174 	return 0;
1175 }
1176 
1177 int
1178 iwn_load_firmware(struct iwn_softc *sc)
1179 {
1180 	int error;
1181 
1182 	KASSERT(sc->fw_fp == NULL, ("firmware already loaded"));
1183 
1184 	IWN_UNLOCK(sc);
1185 	/* load firmware image from disk */
1186 	sc->fw_fp = firmware_get("iwnfw");
1187 	if (sc->fw_fp == NULL) {
1188 		device_printf(sc->sc_dev,
1189 		    "%s: could not load firmare image \"iwnfw\"\n", __func__);
1190 		error = EINVAL;
1191 	} else
1192 		error = 0;
1193 	IWN_LOCK(sc);
1194 	return error;
1195 }
1196 
1197 int
1198 iwn_transfer_firmware(struct iwn_softc *sc)
1199 {
1200 	struct iwn_dma_info *dma = &sc->fw_dma;
1201 	const struct iwn_firmware_hdr *hdr;
1202 	const uint8_t *init_text, *init_data, *main_text, *main_data;
1203 	const uint8_t *boot_text;
1204 	uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
1205 	uint32_t boot_textsz;
1206 	int error = 0;
1207 	const struct firmware *fp = sc->fw_fp;
1208 
1209 	/* extract firmware header information */
1210 	if (fp->datasize < sizeof (struct iwn_firmware_hdr)) {
1211 		device_printf(sc->sc_dev,
1212 		    "%s: truncated firmware header: %zu bytes, expecting %zu\n",
1213 		    __func__, fp->datasize, sizeof (struct iwn_firmware_hdr));
1214 		error = EINVAL;
1215 		goto fail;
1216 	}
1217 	hdr = (const struct iwn_firmware_hdr *)fp->data;
1218 	main_textsz = le32toh(hdr->main_textsz);
1219 	main_datasz = le32toh(hdr->main_datasz);
1220 	init_textsz = le32toh(hdr->init_textsz);
1221 	init_datasz = le32toh(hdr->init_datasz);
1222 	boot_textsz = le32toh(hdr->boot_textsz);
1223 
1224 	/* sanity-check firmware segments sizes */
1225 	if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ ||
1226 	    main_datasz > IWN_FW_MAIN_DATA_MAXSZ ||
1227 	    init_textsz > IWN_FW_INIT_TEXT_MAXSZ ||
1228 	    init_datasz > IWN_FW_INIT_DATA_MAXSZ ||
1229 	    boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
1230 	    (boot_textsz & 3) != 0) {
1231 		device_printf(sc->sc_dev,
1232 		    "%s: invalid firmware header, main [%d,%d], init [%d,%d] "
1233 		    "boot %d\n", __func__, main_textsz, main_datasz,
1234 		    init_textsz, init_datasz, boot_textsz);
1235 		error = EINVAL;
1236 		goto fail;
1237 	}
1238 
1239 	/* check that all firmware segments are present */
1240 	if (fp->datasize < sizeof (struct iwn_firmware_hdr) + main_textsz +
1241 	    main_datasz + init_textsz + init_datasz + boot_textsz) {
1242 		device_printf(sc->sc_dev, "%s: firmware file too short: "
1243 		    "%zu bytes, main [%d, %d], init [%d,%d] boot %d\n",
1244 		    __func__, fp->datasize, main_textsz, main_datasz,
1245 		    init_textsz, init_datasz, boot_textsz);
1246 		error = EINVAL;
1247 		goto fail;
1248 	}
1249 
1250 	/* get pointers to firmware segments */
1251 	main_text = (const uint8_t *)(hdr + 1);
1252 	main_data = main_text + main_textsz;
1253 	init_text = main_data + main_datasz;
1254 	init_data = init_text + init_textsz;
1255 	boot_text = init_data + init_datasz;
1256 
1257 	/* copy initialization images into pre-allocated DMA-safe memory */
1258 	memcpy(dma->vaddr, init_data, init_datasz);
1259 	memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
1260 
1261 	/* tell adapter where to find initialization images */
1262 	iwn_mem_lock(sc);
1263 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1264 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz);
1265 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1266 	    (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4);
1267 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz);
1268 	iwn_mem_unlock(sc);
1269 
1270 	/* load firmware boot code */
1271 	error = iwn_transfer_microcode(sc, boot_text, boot_textsz);
1272 	if (error != 0) {
1273 		device_printf(sc->sc_dev,
1274 		    "%s: could not load boot firmware, error %d\n",
1275 		    __func__, error);
1276 		goto fail;
1277 	}
1278 
1279 	/* now press "execute" ;-) */
1280 	IWN_WRITE(sc, IWN_RESET, 0);
1281 
1282 	/* wait at most one second for first alive notification */
1283 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1284 	if (error != 0) {
1285 		/* this isn't what was supposed to happen.. */
1286 		device_printf(sc->sc_dev,
1287 		    "%s: timeout waiting for first alive notice, error %d\n",
1288 		    __func__, error);
1289 		goto fail;
1290 	}
1291 
1292 	/* copy runtime images into pre-allocated DMA-safe memory */
1293 	memcpy(dma->vaddr, main_data, main_datasz);
1294 	memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
1295 
1296 	/* tell adapter where to find runtime images */
1297 	iwn_mem_lock(sc);
1298 	iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4);
1299 	iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz);
1300 	iwn_mem_write(sc, IWN_MEM_TEXT_BASE,
1301 	    (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4);
1302 	iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz);
1303 	iwn_mem_unlock(sc);
1304 
1305 	/* wait at most one second for second alive notification */
1306 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
1307 	if (error != 0) {
1308 		/* this isn't what was supposed to happen.. */
1309 		device_printf(sc->sc_dev,
1310 		   "%s: timeout waiting for second alive notice, error %d\n",
1311 		   __func__, error);
1312 		goto fail;
1313 	}
1314 	return 0;
1315 fail:
1316 	return error;
1317 }
1318 
1319 void
1320 iwn_unload_firmware(struct iwn_softc *sc)
1321 {
1322         if (sc->fw_fp != NULL) {
1323                 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
1324                 sc->fw_fp = NULL;
1325         }
1326 }
1327 
1328 static void
1329 iwn_timer_timeout(void *arg)
1330 {
1331 	struct iwn_softc *sc = arg;
1332 
1333 	IWN_LOCK_ASSERT(sc);
1334 
1335 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1336 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1337 		    "send statistics request");
1338 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1);
1339 		sc->calib_cnt = 60;	/* do calibration every 60s */
1340 	}
1341 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1342 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1343 }
1344 
1345 static void
1346 iwn_calib_reset(struct iwn_softc *sc)
1347 {
1348 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1349 	sc->calib_cnt = 60;		/* do calibration every 60s */
1350 }
1351 
1352 void
1353 iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1354 {
1355 	struct iwn_rx_stat *stat;
1356 
1357 	DPRINTF(sc, IWN_DEBUG_RECV, "%s\n", "received AMPDU stats");
1358 	/* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */
1359 	stat = (struct iwn_rx_stat *)(desc + 1);
1360 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1361 	sc->last_rx_valid = 1;
1362 }
1363 
1364 static __inline int
1365 maprate(int iwnrate)
1366 {
1367 	switch (iwnrate) {
1368 	/* CCK rates */
1369 	case  10: return   2;
1370 	case  20: return   4;
1371 	case  55: return  11;
1372 	case 110: return  22;
1373 	/* OFDM rates */
1374 	case 0xd: return  12;
1375 	case 0xf: return  18;
1376 	case 0x5: return  24;
1377 	case 0x7: return  36;
1378 	case 0x9: return  48;
1379 	case 0xb: return  72;
1380 	case 0x1: return  96;
1381 	case 0x3: return 108;
1382 	/* XXX MCS */
1383 	}
1384 	/* unknown rate: should not happen */
1385 	return 0;
1386 }
1387 
1388 void
1389 iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1390     struct iwn_rx_data *data)
1391 {
1392 	struct ifnet *ifp = sc->sc_ifp;
1393 	struct ieee80211com *ic = ifp->if_l2com;
1394 	struct iwn_rx_ring *ring = &sc->rxq;
1395 	struct ieee80211_frame *wh;
1396 	struct ieee80211_node *ni;
1397 	struct mbuf *m, *mnew;
1398 	struct iwn_rx_stat *stat;
1399 	caddr_t head;
1400 	uint32_t *tail;
1401 	int8_t rssi, nf;
1402 	int len, error;
1403 	bus_addr_t paddr;
1404 
1405 	if (desc->type == IWN_AMPDU_RX_DONE) {
1406 		/* check for prior AMPDU_RX_START */
1407 		if (!sc->last_rx_valid) {
1408 			DPRINTF(sc, IWN_DEBUG_ANY,
1409 			    "%s: missing AMPDU_RX_START\n", __func__);
1410 			ifp->if_ierrors++;
1411 			return;
1412 		}
1413 		sc->last_rx_valid = 0;
1414 		stat = &sc->last_rx_stat;
1415 	} else
1416 		stat = (struct iwn_rx_stat *)(desc + 1);
1417 
1418 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
1419 		device_printf(sc->sc_dev,
1420 		    "%s: invalid rx statistic header, len %d\n",
1421 		    __func__, stat->cfg_phy_len);
1422 		ifp->if_ierrors++;
1423 		return;
1424 	}
1425 	if (desc->type == IWN_AMPDU_RX_DONE) {
1426 		struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1);
1427 		head = (caddr_t)(ampdu + 1);
1428 		len = le16toh(ampdu->len);
1429 	} else {
1430 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
1431 		len = le16toh(stat->len);
1432 	}
1433 
1434 	/* discard Rx frames with bad CRC early */
1435 	tail = (uint32_t *)(head + len);
1436 	if ((le32toh(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
1437 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
1438 		    __func__, le32toh(*tail));
1439 		ifp->if_ierrors++;
1440 		return;
1441 	}
1442 	if (len < sizeof (struct ieee80211_frame)) {
1443 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
1444 		    __func__, len);
1445 		ifp->if_ierrors++;
1446 		return;
1447 	}
1448 
1449 	/* XXX don't need mbuf, just dma buffer */
1450 	mnew = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1451 	if (mnew == NULL) {
1452 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
1453 		    __func__);
1454 		ifp->if_ierrors++;
1455 		return;
1456 	}
1457 	error = bus_dmamap_load(ring->data_dmat, data->map,
1458 	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1459 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1460 	if (error != 0 && error != EFBIG) {
1461 		device_printf(sc->sc_dev,
1462 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1463 		m_freem(mnew);
1464 		ifp->if_ierrors++;
1465 		return;
1466 	}
1467 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1468 
1469 	/* finalize mbuf and swap in new one */
1470 	m = data->m;
1471 	m->m_pkthdr.rcvif = ifp;
1472 	m->m_data = head;
1473 	m->m_pkthdr.len = m->m_len = len;
1474 
1475 	data->m = mnew;
1476 	/* update Rx descriptor */
1477 	ring->desc[ring->cur] = htole32(paddr >> 8);
1478 
1479 	rssi = iwn_get_rssi(sc, stat);
1480 
1481 	/* grab a reference to the source node */
1482 	wh = mtod(m, struct ieee80211_frame *);
1483 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1484 
1485 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
1486 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
1487 
1488 	if (bpf_peers_present(ifp->if_bpf)) {
1489 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
1490 
1491 		tap->wr_flags = 0;
1492 		tap->wr_dbm_antsignal = rssi;
1493 		tap->wr_dbm_antnoise = nf;
1494 		tap->wr_rate = maprate(stat->rate);
1495 		tap->wr_tsft = htole64(stat->tstamp);
1496 
1497 		if (stat->flags & htole16(IWN_CONFIG_SHPREAMBLE))
1498 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1499 
1500 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
1501 	}
1502 
1503 	IWN_UNLOCK(sc);
1504 
1505 	/* send the frame to the 802.11 layer */
1506 	if (ni != NULL) {
1507 		(void) ieee80211_input(ni, m, rssi - nf, nf, 0);
1508 		ieee80211_free_node(ni);
1509 	} else
1510 		(void) ieee80211_input_all(ic, m, rssi - nf, nf, 0);
1511 
1512 	IWN_LOCK(sc);
1513 }
1514 
1515 void
1516 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1517 {
1518 	struct ifnet *ifp = sc->sc_ifp;
1519 	struct ieee80211com *ic = ifp->if_l2com;
1520 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1521 	struct iwn_calib_state *calib = &sc->calib;
1522 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
1523 
1524 	/* beacon stats are meaningful only when associated and not scanning */
1525 	if (vap->iv_state != IEEE80211_S_RUN ||
1526 	    (ic->ic_flags & IEEE80211_F_SCAN))
1527 		return;
1528 
1529 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
1530 	iwn_calib_reset(sc);
1531 
1532 	/* test if temperature has changed */
1533 	if (stats->general.temp != sc->rawtemp) {
1534 		int temp;
1535 
1536 		sc->rawtemp = stats->general.temp;
1537 		temp = iwn_get_temperature(sc);
1538 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
1539 		    __func__, temp);
1540 
1541 		/* update Tx power if need be */
1542 		iwn_power_calibration(sc, temp);
1543 	}
1544 
1545 	if (desc->type != IWN_BEACON_STATISTICS)
1546 		return;	/* reply to a statistics request */
1547 
1548 	sc->noise = iwn_get_noise(&stats->rx.general);
1549 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
1550 
1551 	/* test that RSSI and noise are present in stats report */
1552 	if (stats->rx.general.flags != htole32(1)) {
1553 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1554 		    "received statistics without RSSI");
1555 		return;
1556 	}
1557 
1558 	if (calib->state == IWN_CALIB_STATE_ASSOC)
1559 		iwn_compute_differential_gain(sc, &stats->rx.general);
1560 	else if (calib->state == IWN_CALIB_STATE_RUN)
1561 		iwn_tune_sensitivity(sc, &stats->rx);
1562 }
1563 
1564 void
1565 iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1566 {
1567 	struct ifnet *ifp = sc->sc_ifp;
1568 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
1569 	struct iwn_tx_data *data = &ring->data[desc->idx];
1570 	struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1);
1571 	struct iwn_node *wn = IWN_NODE(data->ni);
1572 	struct mbuf *m;
1573 	struct ieee80211_node *ni;
1574 	uint32_t status;
1575 
1576 	KASSERT(data->ni != NULL, ("no node"));
1577 
1578 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
1579 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
1580 	    __func__, desc->qid, desc->idx, stat->ntries,
1581 	    stat->nkill, stat->rate, le16toh(stat->duration),
1582 	    le32toh(stat->status));
1583 
1584 	/*
1585 	 * Update rate control statistics for the node.
1586 	 */
1587 	status = le32toh(stat->status) & 0xff;
1588 	if (status & 0x80) {
1589 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: status 0x%x\n",
1590 		    __func__, le32toh(stat->status));
1591 		ifp->if_oerrors++;
1592 		ieee80211_amrr_tx_complete(&wn->amn,
1593 		    IEEE80211_AMRR_FAILURE, stat->ntries);
1594 	} else {
1595 		ieee80211_amrr_tx_complete(&wn->amn,
1596 		    IEEE80211_AMRR_SUCCESS, stat->ntries);
1597 	}
1598 
1599 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1600 	bus_dmamap_unload(ring->data_dmat, data->map);
1601 
1602 	m = data->m, data->m = NULL;
1603 	ni = data->ni, data->ni = NULL;
1604 
1605 	if (m->m_flags & M_TXCB) {
1606 		/*
1607 		 * Channels marked for "radar" require traffic to be received
1608 		 * to unlock before we can transmit.  Until traffic is seen
1609 		 * any attempt to transmit is returned immediately with status
1610 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
1611 		 * happen on first authenticate after scanning.  To workaround
1612 		 * this we ignore a failure of this sort in AUTH state so the
1613 		 * 802.11 layer will fall back to using a timeout to wait for
1614 		 * the AUTH reply.  This allows the firmware time to see
1615 		 * traffic so a subsequent retry of AUTH succeeds.  It's
1616 		 * unclear why the firmware does not maintain state for
1617 		 * channels recently visited as this would allow immediate
1618 		 * use of the channel after a scan (where we see traffic).
1619 		 */
1620 		if (status == IWN_TX_FAIL_TX_LOCKED &&
1621 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
1622 			ieee80211_process_callback(ni, m, 0);
1623 		else
1624 			ieee80211_process_callback(ni, m,
1625 			    (status & IWN_TX_FAIL) != 0);
1626 	}
1627 	m_freem(m);
1628 	ieee80211_free_node(ni);
1629 
1630 	ring->queued--;
1631 
1632 	sc->sc_tx_timer = 0;
1633 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1634 	iwn_start_locked(ifp);
1635 }
1636 
1637 void
1638 iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc)
1639 {
1640 	struct iwn_tx_ring *ring = &sc->txq[4];
1641 	struct iwn_tx_data *data;
1642 
1643 	if ((desc->qid & 0xf) != 4)
1644 		return;	/* not a command ack */
1645 
1646 	data = &ring->data[desc->idx];
1647 
1648 	/* if the command was mapped in a mbuf, free it */
1649 	if (data->m != NULL) {
1650 		bus_dmamap_unload(ring->data_dmat, data->map);
1651 		m_freem(data->m);
1652 		data->m = NULL;
1653 	}
1654 
1655 	wakeup(&ring->cmd[desc->idx]);
1656 }
1657 
1658 static void
1659 iwn_bmiss(void *arg, int npending)
1660 {
1661 	struct iwn_softc *sc = arg;
1662 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1663 
1664 	ieee80211_beacon_miss(ic);
1665 }
1666 
1667 void
1668 iwn_notif_intr(struct iwn_softc *sc)
1669 {
1670 	struct ifnet *ifp = sc->sc_ifp;
1671 	struct ieee80211com *ic = ifp->if_l2com;
1672 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1673 	uint16_t hw;
1674 
1675 	hw = le16toh(sc->shared->closed_count) & 0xfff;
1676 	while (sc->rxq.cur != hw) {
1677 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
1678 		struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf;
1679 
1680 		DPRINTF(sc, IWN_DEBUG_RECV,
1681 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
1682 		    __func__, desc->qid, desc->idx, desc->flags,
1683 		    desc->type, iwn_intr_str(desc->type),
1684 		    le16toh(desc->len));
1685 
1686 		if (!(desc->qid & 0x80))	/* reply to a command */
1687 			iwn_cmd_intr(sc, desc);
1688 
1689 		switch (desc->type) {
1690 		case IWN_RX_DONE:
1691 		case IWN_AMPDU_RX_DONE:
1692 			iwn_rx_intr(sc, desc, data);
1693 			break;
1694 
1695 		case IWN_AMPDU_RX_START:
1696 			iwn_ampdu_rx_start(sc, desc);
1697 			break;
1698 
1699 		case IWN_TX_DONE:
1700 			/* a 802.11 frame has been transmitted */
1701 			iwn_tx_intr(sc, desc);
1702 			break;
1703 
1704 		case IWN_RX_STATISTICS:
1705 		case IWN_BEACON_STATISTICS:
1706 			iwn_rx_statistics(sc, desc);
1707 			break;
1708 
1709 		case IWN_BEACON_MISSED: {
1710 			struct iwn_beacon_missed *miss =
1711 			    (struct iwn_beacon_missed *)(desc + 1);
1712 			int misses = le32toh(miss->consecutive);
1713 
1714 			/* XXX not sure why we're notified w/ zero */
1715 			if (misses == 0)
1716 				break;
1717 			DPRINTF(sc, IWN_DEBUG_STATE,
1718 			    "%s: beacons missed %d/%d\n", __func__,
1719 			    misses, le32toh(miss->total));
1720 			/*
1721 			 * If more than 5 consecutive beacons are missed,
1722 			 * reinitialize the sensitivity state machine.
1723 			 */
1724 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
1725 				(void) iwn_init_sensitivity(sc);
1726 			if (misses >= vap->iv_bmissthreshold)
1727 				taskqueue_enqueue(taskqueue_swi,
1728 				    &sc->sc_bmiss_task);
1729 			break;
1730 		}
1731 		case IWN_UC_READY: {
1732 			struct iwn_ucode_info *uc =
1733 			    (struct iwn_ucode_info *)(desc + 1);
1734 
1735 			/* the microcontroller is ready */
1736 			DPRINTF(sc, IWN_DEBUG_RESET,
1737 			    "microcode alive notification version=%d.%d "
1738 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
1739 			    uc->subtype, le32toh(uc->valid));
1740 
1741 			if (le32toh(uc->valid) != 1) {
1742 				device_printf(sc->sc_dev,
1743 				"microcontroller initialization failed");
1744 				break;
1745 			}
1746 			if (uc->subtype == IWN_UCODE_INIT) {
1747 				/* save microcontroller's report */
1748 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
1749 			}
1750 			break;
1751 		}
1752 		case IWN_STATE_CHANGED: {
1753 			uint32_t *status = (uint32_t *)(desc + 1);
1754 
1755 			/*
1756 			 * State change allows hardware switch change to be
1757 			 * noted. However, we handle this in iwn_intr as we
1758 			 * get both the enable/disble intr.
1759 			 */
1760 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
1761 			    le32toh(*status));
1762 			break;
1763 		}
1764 		case IWN_START_SCAN: {
1765 			struct iwn_start_scan *scan =
1766 			    (struct iwn_start_scan *)(desc + 1);
1767 
1768 			DPRINTF(sc, IWN_DEBUG_ANY,
1769 			    "%s: scanning channel %d status %x\n",
1770 			    __func__, scan->chan, le32toh(scan->status));
1771 			break;
1772 		}
1773 		case IWN_STOP_SCAN: {
1774 			struct iwn_stop_scan *scan =
1775 			    (struct iwn_stop_scan *)(desc + 1);
1776 
1777 			DPRINTF(sc, IWN_DEBUG_STATE,
1778 			    "scan finished nchan=%d status=%d chan=%d\n",
1779 			    scan->nchan, scan->status, scan->chan);
1780 
1781 			iwn_queue_cmd(sc, IWN_SCAN_NEXT, 0, IWN_QUEUE_NORMAL);
1782 			break;
1783 		}
1784 		}
1785 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
1786 	}
1787 
1788 	/* tell the firmware what we have processed */
1789 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
1790 	IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7);
1791 }
1792 
1793 void
1794 iwn_intr(void *arg)
1795 {
1796 	struct iwn_softc *sc = arg;
1797 	uint32_t r1, r2;
1798 
1799 	IWN_LOCK(sc);
1800 
1801 	/* disable interrupts */
1802 	IWN_WRITE(sc, IWN_MASK, 0);
1803 
1804 	r1 = IWN_READ(sc, IWN_INTR);
1805 	r2 = IWN_READ(sc, IWN_INTR_STATUS);
1806 
1807 	if (r1 == 0 && r2 == 0) {
1808 		IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1809 		goto done;	/* not for us */
1810 	}
1811 
1812 	if (r1 == 0xffffffff)
1813 		goto done;	/* hardware gone */
1814 
1815 	/* ack interrupts */
1816 	IWN_WRITE(sc, IWN_INTR, r1);
1817 	IWN_WRITE(sc, IWN_INTR_STATUS, r2);
1818 
1819 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
1820 
1821 	if (r1 & IWN_RF_TOGGLED) {
1822 		uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL);
1823 		device_printf(sc->sc_dev, "RF switch: radio %s\n",
1824 		    (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled");
1825 		if (tmp & IWN_GPIO_RF_ENABLED)
1826 			iwn_queue_cmd(sc, IWN_RADIO_ENABLE, 0, IWN_QUEUE_CLEAR);
1827 		else
1828 			iwn_queue_cmd(sc, IWN_RADIO_DISABLE, 0, IWN_QUEUE_CLEAR);
1829 	}
1830 	if (r1 & IWN_CT_REACHED)
1831 		device_printf(sc->sc_dev, "critical temperature reached!\n");
1832 	if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) {
1833 		device_printf(sc->sc_dev, "error, INTR=%b STATUS=0x%x\n",
1834 		    r1, IWN_INTR_BITS, r2);
1835 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
1836 		goto done;
1837 	}
1838 	if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR))
1839 		iwn_notif_intr(sc);
1840 	if (r1 & IWN_ALIVE_INTR)
1841 		wakeup(sc);
1842 
1843 	/* re-enable interrupts */
1844 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
1845 done:
1846 	IWN_UNLOCK(sc);
1847 }
1848 
1849 uint8_t
1850 iwn_plcp_signal(int rate)
1851 {
1852 	switch (rate) {
1853 	/* CCK rates (returned values are device-dependent) */
1854 	case 2:		return 10;
1855 	case 4:		return 20;
1856 	case 11:	return 55;
1857 	case 22:	return 110;
1858 
1859 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1860 	/* R1-R4, (u)ral is R4-R1 */
1861 	case 12:	return 0xd;
1862 	case 18:	return 0xf;
1863 	case 24:	return 0x5;
1864 	case 36:	return 0x7;
1865 	case 48:	return 0x9;
1866 	case 72:	return 0xb;
1867 	case 96:	return 0x1;
1868 	case 108:	return 0x3;
1869 	case 120:	return 0x3;
1870 	}
1871 	/* unknown rate (should not get there) */
1872 	return 0;
1873 }
1874 
1875 /* determine if a given rate is CCK or OFDM */
1876 #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1877 
1878 int
1879 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1880     struct iwn_tx_ring *ring)
1881 {
1882 	struct ieee80211vap *vap = ni->ni_vap;
1883 	struct ieee80211com *ic = ni->ni_ic;
1884 	struct ifnet *ifp = sc->sc_ifp;
1885 	const struct ieee80211_txparam *tp;
1886 	struct iwn_tx_desc *desc;
1887 	struct iwn_tx_data *data;
1888 	struct iwn_tx_cmd *cmd;
1889 	struct iwn_cmd_data *tx;
1890 	struct ieee80211_frame *wh;
1891 	struct ieee80211_key *k;
1892 	bus_addr_t paddr;
1893 	uint32_t flags;
1894 	uint16_t timeout;
1895 	uint8_t type;
1896 	u_int hdrlen;
1897 	struct mbuf *mnew;
1898 	int rate, error, pad, nsegs, i, ismcast, id;
1899 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
1900 
1901 	IWN_LOCK_ASSERT(sc);
1902 
1903 	wh = mtod(m0, struct ieee80211_frame *);
1904 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1905 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1906 	hdrlen = ieee80211_anyhdrsize(wh);
1907 
1908 	/* pick a tx rate */
1909 	/* XXX ni_chan */
1910 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1911 	if (type == IEEE80211_FC0_TYPE_MGT)
1912 		rate = tp->mgmtrate;
1913 	else if (ismcast)
1914 		rate = tp->mcastrate;
1915 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1916 		rate = tp->ucastrate;
1917 	else {
1918 		(void) ieee80211_amrr_choose(ni, &IWN_NODE(ni)->amn);
1919 		rate = ni->ni_txrate;
1920 	}
1921 
1922 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1923 		k = ieee80211_crypto_encap(ni, m0);
1924 		if (k == NULL) {
1925 			m_freem(m0);
1926 			return ENOBUFS;
1927 		}
1928 		/* packet header may have moved, reset our local pointer */
1929 		wh = mtod(m0, struct ieee80211_frame *);
1930 	} else
1931 		k = NULL;
1932 
1933 	if (bpf_peers_present(ifp->if_bpf)) {
1934 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
1935 
1936 		tap->wt_flags = 0;
1937 		tap->wt_rate = rate;
1938 		if (k != NULL)
1939 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1940 
1941 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
1942 	}
1943 
1944 	flags = IWN_TX_AUTO_SEQ;
1945 	/* XXX honor ACM */
1946 	if (!ismcast)
1947 		flags |= IWN_TX_NEED_ACK;
1948 
1949 	if (ismcast || type != IEEE80211_FC0_TYPE_DATA)
1950 		id = IWN_ID_BROADCAST;
1951 	else
1952 		id = IWN_ID_BSS;
1953 
1954 	/* check if RTS/CTS or CTS-to-self protection must be used */
1955 	if (!ismcast) {
1956 		/* multicast frames are not sent at OFDM rates in 802.11b/g */
1957 		if (m0->m_pkthdr.len+IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1958 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1959 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1960 		    IWN_RATE_IS_OFDM(rate)) {
1961 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1962 				flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
1963 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1964 				flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
1965 		}
1966 	}
1967 
1968 	if (type == IEEE80211_FC0_TYPE_MGT) {
1969 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1970 
1971 		/* tell h/w to set timestamp in probe responses */
1972 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1973 			flags |= IWN_TX_INSERT_TSTAMP;
1974 
1975 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1976 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1977 			timeout = htole16(3);
1978 		else
1979 			timeout = htole16(2);
1980 	} else
1981 		timeout = htole16(0);
1982 
1983 	if (hdrlen & 3) {
1984 		/* first segment's length must be a multiple of 4 */
1985 		flags |= IWN_TX_NEED_PADDING;
1986 		pad = 4 - (hdrlen & 3);
1987 	} else
1988 		pad = 0;
1989 
1990 	desc = &ring->desc[ring->cur];
1991 	data = &ring->data[ring->cur];
1992 
1993 	cmd = &ring->cmd[ring->cur];
1994 	cmd->code = IWN_CMD_TX_DATA;
1995 	cmd->flags = 0;
1996 	cmd->qid = ring->qid;
1997 	cmd->idx = ring->cur;
1998 
1999 	tx = (struct iwn_cmd_data *)cmd->data;
2000 	/* NB: no need to bzero tx, all fields are reinitialized here */
2001 	tx->id = id;
2002 	tx->flags = htole32(flags);
2003 	tx->len = htole16(m0->m_pkthdr.len);
2004 	tx->rate = iwn_plcp_signal(rate);
2005 	tx->rts_ntries = 60;		/* XXX? */
2006 	tx->data_ntries = 15;		/* XXX? */
2007 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2008 	tx->timeout = timeout;
2009 
2010 	if (k != NULL) {
2011 		/* XXX fill in */;
2012 	} else
2013 		tx->security = 0;
2014 
2015 	/* XXX alternate between Ant A and Ant B ? */
2016 	tx->rflags = IWN_RFLAG_ANT_B;
2017 	if (tx->id == IWN_ID_BROADCAST) {
2018 		tx->ridx = IWN_MAX_TX_RETRIES - 1;
2019 		if (!IWN_RATE_IS_OFDM(rate))
2020 			tx->rflags |= IWN_RFLAG_CCK;
2021 	} else {
2022 		tx->ridx = 0;
2023 		/* tell adapter to ignore rflags */
2024 		tx->flags |= htole32(IWN_TX_USE_NODE_RATE);
2025 	}
2026 
2027 	/* copy and trim IEEE802.11 header */
2028 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
2029 	m_adj(m0, hdrlen);
2030 
2031 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2032 	    &nsegs, BUS_DMA_NOWAIT);
2033 	if (error != 0) {
2034 		if (error == EFBIG) {
2035 			/* too many fragments, linearize */
2036 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2037 			if (mnew == NULL) {
2038 				IWN_UNLOCK(sc);
2039 				device_printf(sc->sc_dev,
2040 				    "%s: could not defrag mbuf\n", __func__);
2041 				m_freem(m0);
2042 				return ENOBUFS;
2043 			}
2044 			m0 = mnew;
2045 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2046 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2047 		}
2048 		if (error != 0) {
2049 			IWN_UNLOCK(sc);
2050 			device_printf(sc->sc_dev,
2051 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2052 			     __func__, error);
2053 			m_freem(m0);
2054 			return error;
2055 		}
2056 	}
2057 
2058 	data->m = m0;
2059 	data->ni = ni;
2060 
2061 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2062 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2063 
2064 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2065 	tx->loaddr = htole32(paddr + 4 +
2066 	    offsetof(struct iwn_cmd_data, ntries));
2067 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2068 
2069 	/* first scatter/gather segment is used by the tx data command */
2070 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2071 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2072 	for (i = 1; i <= nsegs; i++) {
2073 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2074 		     segs[i - 1].ds_len);
2075 	}
2076 	sc->shared->len[ring->qid][ring->cur] =
2077 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2078 
2079 	if (ring->cur < IWN_TX_WINDOW)
2080 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2081 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2082 
2083 	ring->queued++;
2084 
2085 	/* kick Tx ring */
2086 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2087 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2088 
2089 	ifp->if_opackets++;
2090 	sc->sc_tx_timer = 5;
2091 
2092 	return 0;
2093 }
2094 
2095 void
2096 iwn_start(struct ifnet *ifp)
2097 {
2098 	struct iwn_softc *sc = ifp->if_softc;
2099 
2100 	IWN_LOCK(sc);
2101 	iwn_start_locked(ifp);
2102 	IWN_UNLOCK(sc);
2103 }
2104 
2105 void
2106 iwn_start_locked(struct ifnet *ifp)
2107 {
2108 	struct iwn_softc *sc = ifp->if_softc;
2109 	struct ieee80211_node *ni;
2110 	struct iwn_tx_ring *txq;
2111 	struct mbuf *m;
2112 	int pri;
2113 
2114 	IWN_LOCK_ASSERT(sc);
2115 
2116 	for (;;) {
2117 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2118 		if (m == NULL)
2119 			break;
2120 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
2121 		pri = M_WME_GETAC(m);
2122 		txq = &sc->txq[pri];
2123 		m = ieee80211_encap(ni, m);
2124 		if (m == NULL) {
2125 			ifp->if_oerrors++;
2126 			ieee80211_free_node(ni);
2127 			continue;
2128 		}
2129 		if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2130 			/* XXX not right */
2131 			/* ring is nearly full, stop flow */
2132 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2133 		}
2134 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
2135 			ifp->if_oerrors++;
2136 			ieee80211_free_node(ni);
2137 			IWN_UNLOCK(sc);
2138 			break;
2139 		}
2140 	}
2141 }
2142 
2143 static int
2144 iwn_tx_handoff(struct iwn_softc *sc,
2145 	struct iwn_tx_ring *ring,
2146 	struct iwn_tx_cmd *cmd,
2147 	struct iwn_cmd_data *tx,
2148 	struct ieee80211_node *ni,
2149 	struct mbuf *m0, u_int hdrlen, int pad)
2150 {
2151 	struct ifnet *ifp = sc->sc_ifp;
2152 	struct iwn_tx_desc *desc;
2153 	struct iwn_tx_data *data;
2154 	bus_addr_t paddr;
2155 	struct mbuf *mnew;
2156 	int error, nsegs, i;
2157 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2158 
2159 	/* copy and trim IEEE802.11 header */
2160 	memcpy((uint8_t *)(tx + 1), mtod(m0, uint8_t *), hdrlen);
2161 	m_adj(m0, hdrlen);
2162 
2163 	desc = &ring->desc[ring->cur];
2164 	data = &ring->data[ring->cur];
2165 
2166 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
2167 	    &nsegs, BUS_DMA_NOWAIT);
2168 	if (error != 0) {
2169 		if (error == EFBIG) {
2170 			/* too many fragments, linearize */
2171 			mnew = m_collapse(m0, M_DONTWAIT, IWN_MAX_SCATTER);
2172 			if (mnew == NULL) {
2173 				IWN_UNLOCK(sc);
2174 				device_printf(sc->sc_dev,
2175 				    "%s: could not defrag mbuf\n", __func__);
2176 				m_freem(m0);
2177 				return ENOBUFS;
2178 			}
2179 			m0 = mnew;
2180 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
2181 			    data->map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
2182 		}
2183 		if (error != 0) {
2184 			IWN_UNLOCK(sc);
2185 			device_printf(sc->sc_dev,
2186 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
2187 			     __func__, error);
2188 			m_freem(m0);
2189 			return error;
2190 		}
2191 	}
2192 
2193 	data->m = m0;
2194 	data->ni = ni;
2195 
2196 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
2197 	    __func__, ring->qid, ring->cur, m0->m_pkthdr.len, nsegs);
2198 
2199 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2200 	tx->loaddr = htole32(paddr + 4 +
2201 	    offsetof(struct iwn_cmd_data, ntries));
2202 	tx->hiaddr = 0;	/* limit to 32-bit physical addresses */
2203 
2204 	/* first scatter/gather segment is used by the tx data command */
2205 	IWN_SET_DESC_NSEGS(desc, 1 + nsegs);
2206 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad);
2207 	for (i = 1; i <= nsegs; i++) {
2208 		IWN_SET_DESC_SEG(desc, i, segs[i - 1].ds_addr,
2209 		     segs[i - 1].ds_len);
2210 	}
2211 	sc->shared->len[ring->qid][ring->cur] =
2212 	    htole16(hdrlen + m0->m_pkthdr.len + 8);
2213 
2214 	if (ring->cur < IWN_TX_WINDOW)
2215 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2216 			htole16(hdrlen + m0->m_pkthdr.len + 8);
2217 
2218 	ring->queued++;
2219 
2220 	/* kick Tx ring */
2221 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2222 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2223 
2224 	ifp->if_opackets++;
2225 	sc->sc_tx_timer = 5;
2226 
2227 	return 0;
2228 }
2229 
2230 static int
2231 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m0,
2232     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
2233     const struct ieee80211_bpf_params *params)
2234 {
2235 	struct ifnet *ifp = sc->sc_ifp;
2236 	struct iwn_tx_cmd *cmd;
2237 	struct iwn_cmd_data *tx;
2238 	struct ieee80211_frame *wh;
2239 	uint32_t flags;
2240 	uint8_t type, subtype;
2241 	u_int hdrlen;
2242 	int rate, pad;
2243 
2244 	IWN_LOCK_ASSERT(sc);
2245 
2246 	wh = mtod(m0, struct ieee80211_frame *);
2247 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2248 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2249 	hdrlen = ieee80211_anyhdrsize(wh);
2250 
2251 	flags = IWN_TX_AUTO_SEQ;
2252 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
2253 		flags |= IWN_TX_NEED_ACK;
2254 	if (params->ibp_flags & IEEE80211_BPF_RTS)
2255 		flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
2256 	if (params->ibp_flags & IEEE80211_BPF_CTS)
2257 		flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
2258 	if (type == IEEE80211_FC0_TYPE_MGT &&
2259 	    subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
2260 		/* tell h/w to set timestamp in probe responses */
2261 		flags |= IWN_TX_INSERT_TSTAMP;
2262 	}
2263 	if (hdrlen & 3) {
2264 		/* first segment's length must be a multiple of 4 */
2265 		flags |= IWN_TX_NEED_PADDING;
2266 		pad = 4 - (hdrlen & 3);
2267 	} else
2268 		pad = 0;
2269 
2270 	/* pick a tx rate */
2271 	rate = params->ibp_rate0;
2272 
2273 	if (bpf_peers_present(ifp->if_bpf)) {
2274 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2275 
2276 		tap->wt_flags = 0;
2277 		tap->wt_rate = rate;
2278 
2279 		bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
2280 	}
2281 
2282 	cmd = &ring->cmd[ring->cur];
2283 	cmd->code = IWN_CMD_TX_DATA;
2284 	cmd->flags = 0;
2285 	cmd->qid = ring->qid;
2286 	cmd->idx = ring->cur;
2287 
2288 	tx = (struct iwn_cmd_data *)cmd->data;
2289 	/* NB: no need to bzero tx, all fields are reinitialized here */
2290 	tx->id = IWN_ID_BROADCAST;
2291 	tx->flags = htole32(flags);
2292 	tx->len = htole16(m0->m_pkthdr.len);
2293 	tx->rate = iwn_plcp_signal(rate);
2294 	tx->rts_ntries = params->ibp_try1;		/* XXX? */
2295 	tx->data_ntries = params->ibp_try0;
2296 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2297 	/* XXX use try count? */
2298 	if (type == IEEE80211_FC0_TYPE_MGT) {
2299 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2300 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2301 			tx->timeout = htole16(3);
2302 		else
2303 			tx->timeout = htole16(2);
2304 	} else
2305 		tx->timeout = htole16(0);
2306 	tx->security = 0;
2307 	/* XXX alternate between Ant A and Ant B ? */
2308 	tx->rflags = IWN_RFLAG_ANT_B;	/* XXX params->ibp_pri >> 2 */
2309 	tx->ridx = IWN_MAX_TX_RETRIES - 1;
2310 	if (!IWN_RATE_IS_OFDM(rate))
2311 		tx->rflags |= IWN_RFLAG_CCK;
2312 
2313 	return iwn_tx_handoff(sc, ring, cmd, tx, ni, m0, hdrlen, pad);
2314 }
2315 
2316 static int
2317 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2318 	const struct ieee80211_bpf_params *params)
2319 {
2320 	struct ieee80211com *ic = ni->ni_ic;
2321 	struct ifnet *ifp = ic->ic_ifp;
2322 	struct iwn_softc *sc = ifp->if_softc;
2323 	struct iwn_tx_ring *txq;
2324 	int error;
2325 
2326 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2327 		ieee80211_free_node(ni);
2328 		m_freem(m);
2329 		return ENETDOWN;
2330 	}
2331 
2332 	IWN_LOCK(sc);
2333 	if (params == NULL)
2334 		txq = &sc->txq[M_WME_GETAC(m)];
2335 	else
2336 		txq = &sc->txq[params->ibp_pri & 3];
2337 	if (txq->queued >= IWN_TX_RING_COUNT - 8) {
2338 		/* XXX not right */
2339 		/* ring is nearly full, stop flow */
2340 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2341 	}
2342 	if (params == NULL) {
2343 		/*
2344 		 * Legacy path; interpret frame contents to decide
2345 		 * precisely how to send the frame.
2346 		 */
2347 		error = iwn_tx_data(sc, m, ni, txq);
2348 	} else {
2349 		/*
2350 		 * Caller supplied explicit parameters to use in
2351 		 * sending the frame.
2352 		 */
2353 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
2354 	}
2355 	if (error != 0) {
2356 		/* NB: m is reclaimed on tx failure */
2357 		ieee80211_free_node(ni);
2358 		ifp->if_oerrors++;
2359 	}
2360 	IWN_UNLOCK(sc);
2361 	return error;
2362 }
2363 
2364 static void
2365 iwn_watchdog(struct iwn_softc *sc)
2366 {
2367 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
2368 		struct ifnet *ifp = sc->sc_ifp;
2369 
2370 		if_printf(ifp, "device timeout\n");
2371 		iwn_queue_cmd(sc, IWN_REINIT, 0, IWN_QUEUE_CLEAR);
2372 	}
2373 }
2374 
2375 int
2376 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2377 {
2378 	struct iwn_softc *sc = ifp->if_softc;
2379 	struct ieee80211com *ic = ifp->if_l2com;
2380 	struct ifreq *ifr = (struct ifreq *) data;
2381 	int error = 0, startall = 0;
2382 
2383 	switch (cmd) {
2384 	case SIOCSIFFLAGS:
2385 		IWN_LOCK(sc);
2386 		if (ifp->if_flags & IFF_UP) {
2387 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2388 				iwn_init_locked(sc);
2389 				startall = 1;
2390 			}
2391 		} else {
2392 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2393 				iwn_stop_locked(sc);
2394 		}
2395 		IWN_UNLOCK(sc);
2396 		if (startall)
2397 			ieee80211_start_all(ic);
2398 		break;
2399 	case SIOCGIFMEDIA:
2400 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2401 		break;
2402 	case SIOCGIFADDR:
2403 		error = ether_ioctl(ifp, cmd, data);
2404 		break;
2405 	default:
2406 		error = EINVAL;
2407 		break;
2408 	}
2409 	return error;
2410 }
2411 
2412 void
2413 iwn_read_eeprom(struct iwn_softc *sc)
2414 {
2415 	struct ifnet *ifp = sc->sc_ifp;
2416 	struct ieee80211com *ic = ifp->if_l2com;
2417 	char domain[4];
2418 	uint16_t val;
2419 	int i, error;
2420 
2421 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2422 		device_printf(sc->sc_dev,
2423 		    "%s: could not lock EEPROM, error %d\n", __func__, error);
2424 		return;
2425 	}
2426 	/* read and print regulatory domain */
2427 	iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4);
2428 	device_printf(sc->sc_dev,"Reg Domain: %.4s", domain);
2429 
2430 	/* read and print MAC address */
2431 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
2432 	printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
2433 
2434 	/* read the list of authorized channels */
2435 	iwn_read_eeprom_channels(sc);
2436 
2437 	/* read maximum allowed Tx power for 2GHz and 5GHz bands */
2438 	iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2);
2439 	sc->maxpwr2GHz = val & 0xff;
2440 	sc->maxpwr5GHz = val >> 8;
2441 	/* check that EEPROM values are correct */
2442 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2443 		sc->maxpwr5GHz = 38;
2444 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2445 		sc->maxpwr2GHz = 38;
2446 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2447 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2448 
2449 	/* read voltage at which samples were taken */
2450 	iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2);
2451 	sc->eeprom_voltage = (int16_t)le16toh(val);
2452 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2453 	    sc->eeprom_voltage);
2454 
2455 	/* read power groups */
2456 	iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands);
2457 #ifdef IWN_DEBUG
2458 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2459 		for (i = 0; i < IWN_NBANDS; i++)
2460 			iwn_print_power_group(sc, i);
2461 	}
2462 #endif
2463 	iwn_eeprom_unlock(sc);
2464 }
2465 
2466 struct iwn_chan_band {
2467 	uint32_t	addr;	/* offset in EEPROM */
2468 	uint32_t	flags;	/* net80211 flags */
2469 	uint8_t		nchan;
2470 #define IWN_MAX_CHAN_PER_BAND	14
2471 	uint8_t		chan[IWN_MAX_CHAN_PER_BAND];
2472 };
2473 
2474 static void
2475 iwn_read_eeprom_band(struct iwn_softc *sc, const struct iwn_chan_band *band)
2476 {
2477 	struct ifnet *ifp = sc->sc_ifp;
2478 	struct ieee80211com *ic = ifp->if_l2com;
2479 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2480 	struct ieee80211_channel *c;
2481 	int i, chan, flags;
2482 
2483 	iwn_read_prom_data(sc, band->addr, channels,
2484 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2485 
2486 	for (i = 0; i < band->nchan; i++) {
2487 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2488 			DPRINTF(sc, IWN_DEBUG_RESET,
2489 			    "skip chan %d flags 0x%x maxpwr %d\n",
2490 			    band->chan[i], channels[i].flags,
2491 			    channels[i].maxpwr);
2492 			continue;
2493 		}
2494 		chan = band->chan[i];
2495 
2496 		/* translate EEPROM flags to net80211 */
2497 		flags = 0;
2498 		if ((channels[i].flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2499 			flags |= IEEE80211_CHAN_PASSIVE;
2500 		if ((channels[i].flags & IWN_EEPROM_CHAN_IBSS) == 0)
2501 			flags |= IEEE80211_CHAN_NOADHOC;
2502 		if (channels[i].flags & IWN_EEPROM_CHAN_RADAR) {
2503 			flags |= IEEE80211_CHAN_DFS;
2504 			/* XXX apparently IBSS may still be marked */
2505 			flags |= IEEE80211_CHAN_NOADHOC;
2506 		}
2507 
2508 		DPRINTF(sc, IWN_DEBUG_RESET,
2509 		    "add chan %d flags 0x%x maxpwr %d\n",
2510 		    chan, channels[i].flags, channels[i].maxpwr);
2511 
2512 		c = &ic->ic_channels[ic->ic_nchans++];
2513 		c->ic_ieee = chan;
2514 		c->ic_freq = ieee80211_ieee2mhz(chan, band->flags);
2515 		c->ic_maxregpower = channels[i].maxpwr;
2516 		c->ic_maxpower = 2*c->ic_maxregpower;
2517 		if (band->flags & IEEE80211_CHAN_2GHZ) {
2518 			/* G =>'s B is supported */
2519 			c->ic_flags = IEEE80211_CHAN_B | flags;
2520 
2521 			c = &ic->ic_channels[ic->ic_nchans++];
2522 			c[0] = c[-1];
2523 			c->ic_flags = IEEE80211_CHAN_G | flags;
2524 		} else {	/* 5GHz band */
2525 			c->ic_flags = IEEE80211_CHAN_A | flags;
2526 		}
2527 		/* XXX no constraints on using HT20 */
2528 		/* add HT20, HT40 added separately */
2529 		c = &ic->ic_channels[ic->ic_nchans++];
2530 		c[0] = c[-1];
2531 		c->ic_flags |= IEEE80211_CHAN_HT20;
2532 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
2533 	}
2534 }
2535 
2536 static void
2537 iwn_read_eeprom_ht40(struct iwn_softc *sc, const struct iwn_chan_band *band)
2538 {
2539 	struct ifnet *ifp = sc->sc_ifp;
2540 	struct ieee80211com *ic = ifp->if_l2com;
2541 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
2542 	struct ieee80211_channel *c, *cent, *extc;
2543 	int i;
2544 
2545 	iwn_read_prom_data(sc, band->addr, channels,
2546 	    band->nchan * sizeof (struct iwn_eeprom_chan));
2547 
2548 	for (i = 0; i < band->nchan; i++) {
2549 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
2550 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
2551 			DPRINTF(sc, IWN_DEBUG_RESET,
2552 			    "skip chan %d flags 0x%x maxpwr %d\n",
2553 			    band->chan[i], channels[i].flags,
2554 			    channels[i].maxpwr);
2555 			continue;
2556 		}
2557 		/*
2558 		 * Each entry defines an HT40 channel pair; find the
2559 		 * center channel, then the extension channel above.
2560 		 */
2561 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
2562 		    band->flags & ~IEEE80211_CHAN_HT);
2563 		if (cent == NULL) {	/* XXX shouldn't happen */
2564 			device_printf(sc->sc_dev,
2565 			    "%s: no entry for channel %d\n",
2566 			    __func__, band->chan[i]);
2567 			continue;
2568 		}
2569 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2570 		    band->flags & ~IEEE80211_CHAN_HT);
2571 		if (extc == NULL) {
2572 			DPRINTF(sc, IWN_DEBUG_RESET,
2573 			    "skip chan %d, extension channel not found\n",
2574 			    band->chan[i]);
2575 			continue;
2576 		}
2577 
2578 		DPRINTF(sc, IWN_DEBUG_RESET,
2579 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2580 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
2581 
2582 		c = &ic->ic_channels[ic->ic_nchans++];
2583 		c[0] = cent[0];
2584 		c->ic_extieee = extc->ic_ieee;
2585 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2586 		c->ic_flags |= IEEE80211_CHAN_HT40U;
2587 		c = &ic->ic_channels[ic->ic_nchans++];
2588 		c[0] = extc[0];
2589 		c->ic_extieee = cent->ic_ieee;
2590 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2591 		c->ic_flags |= IEEE80211_CHAN_HT40D;
2592 	}
2593 }
2594 
2595 static void
2596 iwn_read_eeprom_channels(struct iwn_softc *sc)
2597 {
2598 #define	N(a)	(sizeof(a)/sizeof(a[0]))
2599 	static const struct iwn_chan_band iwn_bands[] = {
2600 	    { IWN_EEPROM_BAND1, IEEE80211_CHAN_G, 14,
2601 		{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 } },
2602 	    { IWN_EEPROM_BAND2, IEEE80211_CHAN_A, 13,
2603 		{ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 } },
2604 	    { IWN_EEPROM_BAND3, IEEE80211_CHAN_A, 12,
2605 		{ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 } },
2606 	    { IWN_EEPROM_BAND4, IEEE80211_CHAN_A, 11,
2607 		{ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 } },
2608 	    { IWN_EEPROM_BAND5, IEEE80211_CHAN_A, 6,
2609 		{ 145, 149, 153, 157, 161, 165 } },
2610 	    { IWN_EEPROM_BAND6, IEEE80211_CHAN_G | IEEE80211_CHAN_HT40, 7,
2611 		{ 1, 2, 3, 4, 5, 6, 7 } },
2612 	    { IWN_EEPROM_BAND7, IEEE80211_CHAN_A | IEEE80211_CHAN_HT40, 11,
2613 		{ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 } }
2614 	};
2615 	struct ifnet *ifp = sc->sc_ifp;
2616 	struct ieee80211com *ic = ifp->if_l2com;
2617 	int i;
2618 
2619 	/* read the list of authorized channels */
2620 	for (i = 0; i < N(iwn_bands)-2; i++)
2621 		iwn_read_eeprom_band(sc, &iwn_bands[i]);
2622 	for (; i < N(iwn_bands); i++)
2623 		iwn_read_eeprom_ht40(sc, &iwn_bands[i]);
2624 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2625 #undef N
2626 }
2627 
2628 #ifdef IWN_DEBUG
2629 void
2630 iwn_print_power_group(struct iwn_softc *sc, int i)
2631 {
2632 	struct iwn_eeprom_band *band = &sc->bands[i];
2633 	struct iwn_eeprom_chan_samples *chans = band->chans;
2634 	int j, c;
2635 
2636 	printf("===band %d===\n", i);
2637 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2638 	printf("chan1 num=%d\n", chans[0].num);
2639 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2640 		for (j = 0; j < IWN_NSAMPLES; j++) {
2641 			printf("chain %d, sample %d: temp=%d gain=%d "
2642 			    "power=%d pa_det=%d\n", c, j,
2643 			    chans[0].samples[c][j].temp,
2644 			    chans[0].samples[c][j].gain,
2645 			    chans[0].samples[c][j].power,
2646 			    chans[0].samples[c][j].pa_det);
2647 		}
2648 	}
2649 	printf("chan2 num=%d\n", chans[1].num);
2650 	for (c = 0; c < IWN_NTXCHAINS; c++) {
2651 		for (j = 0; j < IWN_NSAMPLES; j++) {
2652 			printf("chain %d, sample %d: temp=%d gain=%d "
2653 			    "power=%d pa_det=%d\n", c, j,
2654 			    chans[1].samples[c][j].temp,
2655 			    chans[1].samples[c][j].gain,
2656 			    chans[1].samples[c][j].power,
2657 			    chans[1].samples[c][j].pa_det);
2658 		}
2659 	}
2660 }
2661 #endif
2662 
2663 /*
2664  * Send a command to the firmware.
2665  */
2666 int
2667 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
2668 {
2669 	struct iwn_tx_ring *ring = &sc->txq[4];
2670 	struct iwn_tx_desc *desc;
2671 	struct iwn_tx_cmd *cmd;
2672 	bus_addr_t paddr;
2673 
2674 	IWN_LOCK_ASSERT(sc);
2675 
2676 	KASSERT(size <= sizeof cmd->data, ("Command too big"));
2677 
2678 	desc = &ring->desc[ring->cur];
2679 	cmd = &ring->cmd[ring->cur];
2680 
2681 	cmd->code = code;
2682 	cmd->flags = 0;
2683 	cmd->qid = ring->qid;
2684 	cmd->idx = ring->cur;
2685 	memcpy(cmd->data, buf, size);
2686 
2687 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
2688 
2689 	IWN_SET_DESC_NSEGS(desc, 1);
2690 	IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size);
2691 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
2692 	if (ring->cur < IWN_TX_WINDOW) {
2693 	    sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
2694 		htole16(8);
2695 	}
2696 
2697 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
2698 	    __func__, iwn_intr_str(cmd->code), cmd->code,
2699 	    cmd->flags, cmd->qid, cmd->idx);
2700 
2701 	/* kick cmd ring */
2702 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
2703 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
2704 
2705 	return async ? 0 : msleep(cmd, &sc->sc_mtx, PCATCH, "iwncmd", hz);
2706 }
2707 
2708 static const uint8_t iwn_ridx_to_plcp[] = {
2709 	10, 20, 55, 110, /* CCK */
2710 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
2711 };
2712 static const uint8_t iwn_siso_mcs_to_plcp[] = {
2713 	0, 0, 0, 0, 			/* CCK */
2714 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
2715 };
2716 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
2717 	0, 0, 0, 0, 			/* CCK */
2718 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
2719 };
2720 static const uint8_t iwn_prev_ridx[] = {
2721 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
2722 	0, 0, 1, 5,			/* CCK */
2723 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
2724 };
2725 
2726 /*
2727  * Configure hardware link parameters for the specified
2728  * node operating on the specified channel.
2729  */
2730 int
2731 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id,
2732 	const struct ieee80211_channel *c, int async)
2733 {
2734 	struct iwn_cmd_link_quality lq;
2735 	int i, ridx;
2736 
2737 	memset(&lq, 0, sizeof(lq));
2738 	lq.id = id;
2739 	if (IEEE80211_IS_CHAN_HT(c)) {
2740 		lq.mimo = 1;
2741 		lq.ssmask = 0x1;
2742 	} else
2743 		lq.ssmask = 0x2;
2744 
2745 	if (id == IWN_ID_BSS)
2746 		ridx = IWN_RATE_OFDM54;
2747 	else if (IEEE80211_IS_CHAN_A(c))
2748 		ridx = IWN_RATE_OFDM6;
2749 	else
2750 		ridx = IWN_RATE_CCK1;
2751 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
2752 		/* XXX toggle antenna for retry patterns */
2753 		if (IEEE80211_IS_CHAN_HT40(c)) {
2754 			lq.table[i].rate = iwn_mimo_mcs_to_plcp[ridx]
2755 					 | IWN_RATE_MCS;
2756 			lq.table[i].rflags = IWN_RFLAG_HT
2757 					 | IWN_RFLAG_HT40
2758 					 | IWN_RFLAG_ANT_A;
2759 			/* XXX shortGI */
2760 		} else if (IEEE80211_IS_CHAN_HT(c)) {
2761 			lq.table[i].rate = iwn_siso_mcs_to_plcp[ridx]
2762 					 | IWN_RATE_MCS;
2763 			lq.table[i].rflags = IWN_RFLAG_HT
2764 					 | IWN_RFLAG_ANT_A;
2765 			/* XXX shortGI */
2766 		} else {
2767 			lq.table[i].rate = iwn_ridx_to_plcp[ridx];
2768 			if (ridx <= IWN_RATE_CCK11)
2769 				lq.table[i].rflags = IWN_RFLAG_CCK;
2770 			lq.table[i].rflags |= IWN_RFLAG_ANT_B;
2771 		}
2772 		ridx = iwn_prev_ridx[ridx];
2773 	}
2774 
2775 	lq.dsmask = 0x3;
2776 	lq.ampdu_disable = 3;
2777 	lq.ampdu_limit = htole16(4000);
2778 #ifdef IWN_DEBUG
2779 	if (sc->sc_debug & IWN_DEBUG_STATE) {
2780 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
2781 		    __func__, id, lq.mimo, lq.ssmask);
2782 		printf("%s:", __func__);
2783 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
2784 			printf(" %d:%x", lq.table[i].rate, lq.table[i].rflags);
2785 		printf("\n");
2786 	}
2787 #endif
2788 	return iwn_cmd(sc, IWN_CMD_TX_LINK_QUALITY, &lq, sizeof(lq), async);
2789 }
2790 
2791 #if 0
2792 
2793 /*
2794  * Install a pairwise key into the hardware.
2795  */
2796 int
2797 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
2798     const struct ieee80211_key *k)
2799 {
2800 	struct iwn_softc *sc = ic->ic_softc;
2801 	struct iwn_node_info node;
2802 
2803 	if (k->k_flags & IEEE80211_KEY_GROUP)
2804 		return 0;
2805 
2806 	memset(&node, 0, sizeof node);
2807 
2808 	switch (k->k_cipher) {
2809 	case IEEE80211_CIPHER_CCMP:
2810 		node.security = htole16(IWN_CIPHER_CCMP);
2811 		memcpy(node.key, k->k_key, k->k_len);
2812 		break;
2813 	default:
2814 		return 0;
2815 	}
2816 
2817 	node.id = IWN_ID_BSS;
2818 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
2819 	node.control = IWN_NODE_UPDATE;
2820 	node.flags = IWN_FLAG_SET_KEY;
2821 
2822 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
2823 }
2824 #endif
2825 
2826 int
2827 iwn_wme_update(struct ieee80211com *ic)
2828 {
2829 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2830 #define	IWN_TXOP_TO_US(v)		(v<<5)
2831 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2832 	struct iwn_edca_params cmd;
2833 	int i;
2834 
2835 	memset(&cmd, 0, sizeof cmd);
2836 	cmd.flags = htole32(IWN_EDCA_UPDATE);
2837 	for (i = 0; i < WME_NUM_AC; i++) {
2838 		const struct wmeParams *wmep =
2839 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
2840 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
2841 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
2842 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
2843 		cmd.ac[i].txoplimit =
2844 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
2845 	}
2846 	IWN_LOCK(sc);
2847 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
2848 	IWN_UNLOCK(sc);
2849 	return 0;
2850 #undef IWN_TXOP_TO_US
2851 #undef IWN_EXP2
2852 }
2853 
2854 void
2855 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2856 {
2857 	struct iwn_cmd_led led;
2858 
2859 	led.which = which;
2860 	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2861 	led.off = off;
2862 	led.on = on;
2863 
2864 	(void) iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
2865 }
2866 
2867 /*
2868  * Set the critical temperature at which the firmware will automatically stop
2869  * the radio transmitter.
2870  */
2871 int
2872 iwn_set_critical_temp(struct iwn_softc *sc)
2873 {
2874 	struct iwn_ucode_info *uc = &sc->ucode_info;
2875 	struct iwn_critical_temp crit;
2876 	uint32_t r1, r2, r3, temp;
2877 
2878 	r1 = le32toh(uc->temp[0].chan20MHz);
2879 	r2 = le32toh(uc->temp[1].chan20MHz);
2880 	r3 = le32toh(uc->temp[2].chan20MHz);
2881 	/* inverse function of iwn_get_temperature() */
2882 	temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259;
2883 
2884 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF);
2885 
2886 	memset(&crit, 0, sizeof crit);
2887 	crit.tempR = htole32(temp);
2888 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %u\n", temp);
2889 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
2890 }
2891 
2892 void
2893 iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni)
2894 {
2895 	struct iwn_cmd_tsf tsf;
2896 	uint64_t val, mod;
2897 
2898 	memset(&tsf, 0, sizeof tsf);
2899 	memcpy(&tsf.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
2900 	tsf.bintval = htole16(ni->ni_intval);
2901 	tsf.lintval = htole16(10);
2902 
2903 	/* XXX all wrong */
2904 	/* compute remaining time until next beacon */
2905 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
2906 	DPRINTF(sc, IWN_DEBUG_ANY, "%s: val = %ju %s\n", __func__,
2907 	    val, val == 0 ? "correcting" : "");
2908 	if (val == 0)
2909 		val = 1;
2910 	mod = le64toh(tsf.tstamp) % val;
2911 	tsf.binitval = htole32((uint32_t)(val - mod));
2912 
2913 	DPRINTF(sc, IWN_DEBUG_RESET, "TSF bintval=%u tstamp=%ju, init=%u\n",
2914 	    ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod));
2915 
2916 	if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2917 		device_printf(sc->sc_dev,
2918 		    "%s: could not enable TSF\n", __func__);
2919 }
2920 
2921 void
2922 iwn_power_calibration(struct iwn_softc *sc, int temp)
2923 {
2924 	struct ifnet *ifp = sc->sc_ifp;
2925 	struct ieee80211com *ic = ifp->if_l2com;
2926 #if 0
2927 	KASSERT(ic->ic_state == IEEE80211_S_RUN, ("not running"));
2928 #endif
2929 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
2930 	    __func__, sc->temp, temp);
2931 
2932 	/* adjust Tx power if need be (delta >= 3�C) */
2933 	if (abs(temp - sc->temp) < 3)
2934 		return;
2935 
2936 	sc->temp = temp;
2937 
2938 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: set Tx power for channel %d\n",
2939 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bsschan));
2940 	if (iwn_set_txpower(sc, ic->ic_bsschan, 1) != 0) {
2941 		/* just warn, too bad for the automatic calibration... */
2942 		device_printf(sc->sc_dev,
2943 		    "%s: could not adjust Tx power\n", __func__);
2944 	}
2945 }
2946 
2947 /*
2948  * Set Tx power for a given channel (each rate has its own power settings).
2949  * This function takes into account the regulatory information from EEPROM,
2950  * the current temperature and the current voltage.
2951  */
2952 int
2953 iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async)
2954 {
2955 /* fixed-point arithmetic division using a n-bit fractional part */
2956 #define fdivround(a, b, n)	\
2957 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
2958 /* linear interpolation */
2959 #define interpolate(x, x1, y1, x2, y2, n)	\
2960 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
2961 
2962 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
2963 	struct ifnet *ifp = sc->sc_ifp;
2964 	struct ieee80211com *ic = ifp->if_l2com;
2965 	struct iwn_ucode_info *uc = &sc->ucode_info;
2966 	struct iwn_cmd_txpower cmd;
2967 	struct iwn_eeprom_chan_samples *chans;
2968 	const uint8_t *rf_gain, *dsp_gain;
2969 	int32_t vdiff, tdiff;
2970 	int i, c, grp, maxpwr;
2971 	u_int chan;
2972 
2973 	/* get channel number */
2974 	chan = ieee80211_chan2ieee(ic, ch);
2975 
2976 	memset(&cmd, 0, sizeof cmd);
2977 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
2978 	cmd.chan = chan;
2979 
2980 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
2981 		maxpwr   = sc->maxpwr5GHz;
2982 		rf_gain  = iwn_rf_gain_5ghz;
2983 		dsp_gain = iwn_dsp_gain_5ghz;
2984 	} else {
2985 		maxpwr   = sc->maxpwr2GHz;
2986 		rf_gain  = iwn_rf_gain_2ghz;
2987 		dsp_gain = iwn_dsp_gain_2ghz;
2988 	}
2989 
2990 	/* compute voltage compensation */
2991 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
2992 	if (vdiff > 0)
2993 		vdiff *= 2;
2994 	if (abs(vdiff) > 2)
2995 		vdiff = 0;
2996 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
2997 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
2998 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
2999 
3000 	/* get channel's attenuation group */
3001 	if (chan <= 20)		/* 1-20 */
3002 		grp = 4;
3003 	else if (chan <= 43)	/* 34-43 */
3004 		grp = 0;
3005 	else if (chan <= 70)	/* 44-70 */
3006 		grp = 1;
3007 	else if (chan <= 124)	/* 71-124 */
3008 		grp = 2;
3009 	else			/* 125-200 */
3010 		grp = 3;
3011 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3012 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3013 
3014 	/* get channel's sub-band */
3015 	for (i = 0; i < IWN_NBANDS; i++)
3016 		if (sc->bands[i].lo != 0 &&
3017 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3018 			break;
3019 	chans = sc->bands[i].chans;
3020 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3021 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3022 
3023 	for (c = 0; c < IWN_NTXCHAINS; c++) {
3024 		uint8_t power, gain, temp;
3025 		int maxchpwr, pwr, ridx, idx;
3026 
3027 		power = interpolate(chan,
3028 		    chans[0].num, chans[0].samples[c][1].power,
3029 		    chans[1].num, chans[1].samples[c][1].power, 1);
3030 		gain  = interpolate(chan,
3031 		    chans[0].num, chans[0].samples[c][1].gain,
3032 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3033 		temp  = interpolate(chan,
3034 		    chans[0].num, chans[0].samples[c][1].temp,
3035 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3036 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3037 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3038 		    __func__, c, power, gain, temp);
3039 
3040 		/* compute temperature compensation */
3041 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3042 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3043 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3044 		    __func__, tdiff, sc->temp, temp);
3045 
3046 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3047 			maxchpwr = ch->ic_maxpower;
3048 			if ((ridx / 8) & 1) {
3049 				/* MIMO: decrease Tx power (-3dB) */
3050 				maxchpwr -= 6;
3051 			}
3052 
3053 			pwr = maxpwr - 10;
3054 
3055 			/* decrease power for highest OFDM rates */
3056 			if ((ridx % 8) == 5)		/* 48Mbit/s */
3057 				pwr -= 5;
3058 			else if ((ridx % 8) == 6)	/* 54Mbit/s */
3059 				pwr -= 7;
3060 			else if ((ridx % 8) == 7)	/* 60Mbit/s */
3061 				pwr -= 10;
3062 
3063 			if (pwr > maxchpwr)
3064 				pwr = maxchpwr;
3065 
3066 			idx = gain - (pwr - power) - tdiff - vdiff;
3067 			if ((ridx / 8) & 1)	/* MIMO */
3068 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3069 
3070 			if (cmd.band == 0)
3071 				idx += 9;	/* 5GHz */
3072 			if (ridx == IWN_RIDX_MAX)
3073 				idx += 5;	/* CCK */
3074 
3075 			/* make sure idx stays in a valid range */
3076 			if (idx < 0)
3077 				idx = 0;
3078 			else if (idx > IWN_MAX_PWR_INDEX)
3079 				idx = IWN_MAX_PWR_INDEX;
3080 
3081 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3082 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3083 			    __func__, c, ridx, idx);
3084 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3085 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3086 		}
3087 	}
3088 
3089 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3090 	    "%s: set tx power for chan %d\n", __func__, chan);
3091 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3092 
3093 #undef interpolate
3094 #undef fdivround
3095 }
3096 
3097 /*
3098  * Get the best (maximum) RSSI among the
3099  * connected antennas and convert to dBm.
3100  */
3101 int8_t
3102 iwn_get_rssi(struct iwn_softc *sc, const struct iwn_rx_stat *stat)
3103 {
3104 	int mask, agc, rssi;
3105 
3106 	mask = (le16toh(stat->antenna) >> 4) & 0x7;
3107 	agc  = (le16toh(stat->agc) >> 7) & 0x7f;
3108 
3109 	rssi = 0;
3110 #if 0
3111 	if (mask & (1 << 0))	/* Ant A */
3112 		rssi = max(rssi, stat->rssi[0]);
3113 	if (mask & (1 << 1))	/* Ant B */
3114 		rssi = max(rssi, stat->rssi[2]);
3115 	if (mask & (1 << 2))	/* Ant C */
3116 		rssi = max(rssi, stat->rssi[4]);
3117 #else
3118 	rssi = max(rssi, stat->rssi[0]);
3119 	rssi = max(rssi, stat->rssi[2]);
3120 	rssi = max(rssi, stat->rssi[4]);
3121 #endif
3122 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3123 	    "result %d\n", __func__, agc, mask,
3124 	    stat->rssi[0], stat->rssi[2], stat->rssi[4],
3125 	    rssi - agc - IWN_RSSI_TO_DBM);
3126 	return rssi - agc - IWN_RSSI_TO_DBM;
3127 }
3128 
3129 /*
3130  * Get the average noise among Rx antennas (in dBm).
3131  */
3132 int
3133 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3134 {
3135 	int i, total, nbant, noise;
3136 
3137 	total = nbant = 0;
3138 	for (i = 0; i < 3; i++) {
3139 		noise = le32toh(stats->noise[i]) & 0xff;
3140 		if (noise != 0) {
3141 			total += noise;
3142 			nbant++;
3143 		}
3144 	}
3145 	/* there should be at least one antenna but check anyway */
3146 	return (nbant == 0) ? -127 : (total / nbant) - 107;
3147 }
3148 
3149 /*
3150  * Read temperature (in degC) from the on-board thermal sensor.
3151  */
3152 int
3153 iwn_get_temperature(struct iwn_softc *sc)
3154 {
3155 	struct iwn_ucode_info *uc = &sc->ucode_info;
3156 	int32_t r1, r2, r3, r4, temp;
3157 
3158 	r1 = le32toh(uc->temp[0].chan20MHz);
3159 	r2 = le32toh(uc->temp[1].chan20MHz);
3160 	r3 = le32toh(uc->temp[2].chan20MHz);
3161 	r4 = le32toh(sc->rawtemp);
3162 
3163 	if (r1 == r3)	/* prevents division by 0 (should not happen) */
3164 		return 0;
3165 
3166 	/* sign-extend 23-bit R4 value to 32-bit */
3167 	r4 = (r4 << 8) >> 8;
3168 	/* compute temperature */
3169 	temp = (259 * (r4 - r2)) / (r3 - r1);
3170 	temp = (temp * 97) / 100 + 8;
3171 
3172 	return IWN_KTOC(temp);
3173 }
3174 
3175 /*
3176  * Initialize sensitivity calibration state machine.
3177  */
3178 int
3179 iwn_init_sensitivity(struct iwn_softc *sc)
3180 {
3181 	struct iwn_calib_state *calib = &sc->calib;
3182 	struct iwn_phy_calib_cmd cmd;
3183 	int error;
3184 
3185 	/* reset calibration state */
3186 	memset(calib, 0, sizeof (*calib));
3187 	calib->state = IWN_CALIB_STATE_INIT;
3188 	calib->cck_state = IWN_CCK_STATE_HIFA;
3189 	/* initial values taken from the reference driver */
3190 	calib->corr_ofdm_x1     = 105;
3191 	calib->corr_ofdm_mrc_x1 = 220;
3192 	calib->corr_ofdm_x4     =  90;
3193 	calib->corr_ofdm_mrc_x4 = 170;
3194 	calib->corr_cck_x4      = 125;
3195 	calib->corr_cck_mrc_x4  = 200;
3196 	calib->energy_cck       = 100;
3197 
3198 	/* write initial sensitivity values */
3199 	error = iwn_send_sensitivity(sc);
3200 	if (error != 0)
3201 		return error;
3202 
3203 	memset(&cmd, 0, sizeof cmd);
3204 	cmd.code = IWN_SET_DIFF_GAIN;
3205 	/* differential gains initially set to 0 for all 3 antennas */
3206 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
3207 	return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1);
3208 }
3209 
3210 /*
3211  * Collect noise and RSSI statistics for the first 20 beacons received
3212  * after association and use them to determine connected antennas and
3213  * set differential gains.
3214  */
3215 void
3216 iwn_compute_differential_gain(struct iwn_softc *sc,
3217     const struct iwn_rx_general_stats *stats)
3218 {
3219 	struct iwn_calib_state *calib = &sc->calib;
3220 	struct iwn_phy_calib_cmd cmd;
3221 	int i, val;
3222 
3223 	/* accumulate RSSI and noise for all 3 antennas */
3224 	for (i = 0; i < 3; i++) {
3225 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
3226 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
3227 	}
3228 
3229 	/* we update differential gain only once after 20 beacons */
3230 	if (++calib->nbeacons < 20)
3231 		return;
3232 
3233 	/* determine antenna with highest average RSSI */
3234 	val = max(calib->rssi[0], calib->rssi[1]);
3235 	val = max(calib->rssi[2], val);
3236 
3237 	/* determine which antennas are connected */
3238 	sc->antmsk = 0;
3239 	for (i = 0; i < 3; i++)
3240 		if (val - calib->rssi[i] <= 15 * 20)
3241 			sc->antmsk |= 1 << i;
3242 	/* if neither Ant A and Ant B are connected.. */
3243 	if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0)
3244 		sc->antmsk |= 1 << 1;	/* ..mark Ant B as connected! */
3245 
3246 	/* get minimal noise among connected antennas */
3247 	val = INT_MAX;	/* ok, there's at least one */
3248 	for (i = 0; i < 3; i++)
3249 		if (sc->antmsk & (1 << i))
3250 			val = min(calib->noise[i], val);
3251 
3252 	memset(&cmd, 0, sizeof cmd);
3253 	cmd.code = IWN_SET_DIFF_GAIN;
3254 	/* set differential gains for connected antennas */
3255 	for (i = 0; i < 3; i++) {
3256 		if (sc->antmsk & (1 << i)) {
3257 			cmd.gain[i] = (calib->noise[i] - val) / 30;
3258 			/* limit differential gain to 3 */
3259 			cmd.gain[i] = min(cmd.gain[i], 3);
3260 			cmd.gain[i] |= IWN_GAIN_SET;
3261 		}
3262 	}
3263 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3264 	    "%s: set differential gains Ant A/B/C: %x/%x/%x (%x)\n",
3265 	    __func__,cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk);
3266 	if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0)
3267 		calib->state = IWN_CALIB_STATE_RUN;
3268 }
3269 
3270 /*
3271  * Tune RF Rx sensitivity based on the number of false alarms detected
3272  * during the last beacon period.
3273  */
3274 void
3275 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
3276 {
3277 #define inc_clip(val, inc, max)			\
3278 	if ((val) < (max)) {			\
3279 		if ((val) < (max) - (inc))	\
3280 			(val) += (inc);		\
3281 		else				\
3282 			(val) = (max);		\
3283 		needs_update = 1;		\
3284 	}
3285 #define dec_clip(val, dec, min)			\
3286 	if ((val) > (min)) {			\
3287 		if ((val) > (min) + (dec))	\
3288 			(val) -= (dec);		\
3289 		else				\
3290 			(val) = (min);		\
3291 		needs_update = 1;		\
3292 	}
3293 
3294 	struct iwn_calib_state *calib = &sc->calib;
3295 	uint32_t val, rxena, fa;
3296 	uint32_t energy[3], energy_min;
3297 	uint8_t noise[3], noise_ref;
3298 	int i, needs_update = 0;
3299 
3300 	/* check that we've been enabled long enough */
3301 	if ((rxena = le32toh(stats->general.load)) == 0)
3302 		return;
3303 
3304 	/* compute number of false alarms since last call for OFDM */
3305 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
3306 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
3307 	fa *= 200 * 1024;	/* 200TU */
3308 
3309 	/* save counters values for next call */
3310 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
3311 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
3312 
3313 	if (fa > 50 * rxena) {
3314 		/* high false alarm count, decrease sensitivity */
3315 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3316 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
3317 		inc_clip(calib->corr_ofdm_x1,     1, 140);
3318 		inc_clip(calib->corr_ofdm_mrc_x1, 1, 270);
3319 		inc_clip(calib->corr_ofdm_x4,     1, 120);
3320 		inc_clip(calib->corr_ofdm_mrc_x4, 1, 210);
3321 
3322 	} else if (fa < 5 * rxena) {
3323 		/* low false alarm count, increase sensitivity */
3324 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3325 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
3326 		dec_clip(calib->corr_ofdm_x1,     1, 105);
3327 		dec_clip(calib->corr_ofdm_mrc_x1, 1, 220);
3328 		dec_clip(calib->corr_ofdm_x4,     1,  85);
3329 		dec_clip(calib->corr_ofdm_mrc_x4, 1, 170);
3330 	}
3331 
3332 	/* compute maximum noise among 3 antennas */
3333 	for (i = 0; i < 3; i++)
3334 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
3335 	val = max(noise[0], noise[1]);
3336 	val = max(noise[2], val);
3337 	/* insert it into our samples table */
3338 	calib->noise_samples[calib->cur_noise_sample] = val;
3339 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
3340 
3341 	/* compute maximum noise among last 20 samples */
3342 	noise_ref = calib->noise_samples[0];
3343 	for (i = 1; i < 20; i++)
3344 		noise_ref = max(noise_ref, calib->noise_samples[i]);
3345 
3346 	/* compute maximum energy among 3 antennas */
3347 	for (i = 0; i < 3; i++)
3348 		energy[i] = le32toh(stats->general.energy[i]);
3349 	val = min(energy[0], energy[1]);
3350 	val = min(energy[2], val);
3351 	/* insert it into our samples table */
3352 	calib->energy_samples[calib->cur_energy_sample] = val;
3353 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
3354 
3355 	/* compute minimum energy among last 10 samples */
3356 	energy_min = calib->energy_samples[0];
3357 	for (i = 1; i < 10; i++)
3358 		energy_min = max(energy_min, calib->energy_samples[i]);
3359 	energy_min += 6;
3360 
3361 	/* compute number of false alarms since last call for CCK */
3362 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
3363 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
3364 	fa *= 200 * 1024;	/* 200TU */
3365 
3366 	/* save counters values for next call */
3367 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
3368 	calib->fa_cck = le32toh(stats->cck.fa);
3369 
3370 	if (fa > 50 * rxena) {
3371 		/* high false alarm count, decrease sensitivity */
3372 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3373 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
3374 		calib->cck_state = IWN_CCK_STATE_HIFA;
3375 		calib->low_fa = 0;
3376 
3377 		if (calib->corr_cck_x4 > 160) {
3378 			calib->noise_ref = noise_ref;
3379 			if (calib->energy_cck > 2)
3380 				dec_clip(calib->energy_cck, 2, energy_min);
3381 		}
3382 		if (calib->corr_cck_x4 < 160) {
3383 			calib->corr_cck_x4 = 161;
3384 			needs_update = 1;
3385 		} else
3386 			inc_clip(calib->corr_cck_x4, 3, 200);
3387 
3388 		inc_clip(calib->corr_cck_mrc_x4, 3, 400);
3389 
3390 	} else if (fa < 5 * rxena) {
3391 		/* low false alarm count, increase sensitivity */
3392 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3393 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
3394 		calib->cck_state = IWN_CCK_STATE_LOFA;
3395 		calib->low_fa++;
3396 
3397 		if (calib->cck_state != 0 &&
3398 		    ((calib->noise_ref - noise_ref) > 2 ||
3399 		     calib->low_fa > 100)) {
3400 			inc_clip(calib->energy_cck,      2,  97);
3401 			dec_clip(calib->corr_cck_x4,     3, 125);
3402 			dec_clip(calib->corr_cck_mrc_x4, 3, 200);
3403 		}
3404 	} else {
3405 		/* not worth to increase or decrease sensitivity */
3406 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3407 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
3408 		calib->low_fa = 0;
3409 		calib->noise_ref = noise_ref;
3410 
3411 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
3412 			/* previous interval had many false alarms */
3413 			dec_clip(calib->energy_cck, 8, energy_min);
3414 		}
3415 		calib->cck_state = IWN_CCK_STATE_INIT;
3416 	}
3417 
3418 	if (needs_update)
3419 		(void)iwn_send_sensitivity(sc);
3420 #undef dec_clip
3421 #undef inc_clip
3422 }
3423 
3424 int
3425 iwn_send_sensitivity(struct iwn_softc *sc)
3426 {
3427 	struct iwn_calib_state *calib = &sc->calib;
3428 	struct iwn_sensitivity_cmd cmd;
3429 
3430 	memset(&cmd, 0, sizeof cmd);
3431 	cmd.which = IWN_SENSITIVITY_WORKTBL;
3432 	/* OFDM modulation */
3433 	cmd.corr_ofdm_x1     = htole16(calib->corr_ofdm_x1);
3434 	cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1);
3435 	cmd.corr_ofdm_x4     = htole16(calib->corr_ofdm_x4);
3436 	cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4);
3437 	cmd.energy_ofdm      = htole16(100);
3438 	cmd.energy_ofdm_th   = htole16(62);
3439 	/* CCK modulation */
3440 	cmd.corr_cck_x4      = htole16(calib->corr_cck_x4);
3441 	cmd.corr_cck_mrc_x4  = htole16(calib->corr_cck_mrc_x4);
3442 	cmd.energy_cck       = htole16(calib->energy_cck);
3443 	/* Barker modulation: use default values */
3444 	cmd.corr_barker      = htole16(190);
3445 	cmd.corr_barker_mrc  = htole16(390);
3446 
3447 	DPRINTF(sc, IWN_DEBUG_RESET,
3448 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
3449 	    calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4,
3450 	    calib->corr_ofdm_mrc_x4, calib->corr_cck_x4,
3451 	    calib->corr_cck_mrc_x4, calib->energy_cck);
3452 	return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1);
3453 }
3454 
3455 int
3456 iwn_auth(struct iwn_softc *sc)
3457 {
3458 	struct ifnet *ifp = sc->sc_ifp;
3459 	struct ieee80211com *ic = ifp->if_l2com;
3460 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3461 	struct ieee80211_node *ni = vap->iv_bss;
3462 	struct iwn_node_info node;
3463 	int error;
3464 
3465 	sc->calib.state = IWN_CALIB_STATE_INIT;
3466 
3467 	/* update adapter's configuration */
3468 	sc->config.associd = 0;
3469 	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
3470 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
3471 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3472 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3473 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3474 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
3475 		sc->config.cck_mask  = 0;
3476 		sc->config.ofdm_mask = 0x15;
3477 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
3478 		sc->config.cck_mask  = 0x03;
3479 		sc->config.ofdm_mask = 0;
3480 	} else {
3481 		/* XXX assume 802.11b/g */
3482 		sc->config.cck_mask  = 0x0f;
3483 		sc->config.ofdm_mask = 0x15;
3484 	}
3485 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3486 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3487 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3488 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3489 	sc->config.filter &= ~htole32(IWN_FILTER_BSS);
3490 
3491 	DPRINTF(sc, IWN_DEBUG_STATE,
3492 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3493 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3494 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3495 	   __func__,
3496 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3497 	   sc->config.cck_mask, sc->config.ofdm_mask,
3498 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3499 	   le16toh(sc->config.rxchain),
3500 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3501 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3502 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3503 	    sizeof (struct iwn_config), 1);
3504 	if (error != 0) {
3505 		device_printf(sc->sc_dev,
3506 		    "%s: could not configure, error %d\n", __func__, error);
3507 		return error;
3508 	}
3509 	sc->sc_curchan = ic->ic_curchan;
3510 
3511 	/* configuration has changed, set Tx power accordingly */
3512 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3513 	if (error != 0) {
3514 		device_printf(sc->sc_dev,
3515 		    "%s: could not set Tx power, error %d\n", __func__, error);
3516 		return error;
3517 	}
3518 
3519 	/*
3520 	 * Reconfiguring clears the adapter's nodes table so we must
3521 	 * add the broadcast node again.
3522 	 */
3523 	memset(&node, 0, sizeof node);
3524 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3525 	node.id = IWN_ID_BROADCAST;
3526 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add broadcast node\n", __func__);
3527 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3528 	if (error != 0) {
3529 		device_printf(sc->sc_dev,
3530 		    "%s: could not add broadcast node, error %d\n",
3531 		    __func__, error);
3532 		return error;
3533 	}
3534 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 1);
3535 	if (error != 0) {
3536 		device_printf(sc->sc_dev,
3537 		    "%s: could not setup MRR for broadcast node, error %d\n",
3538 		    __func__, error);
3539 		return error;
3540 	}
3541 
3542 	return 0;
3543 }
3544 
3545 /*
3546  * Configure the adapter for associated state.
3547  */
3548 int
3549 iwn_run(struct iwn_softc *sc)
3550 {
3551 #define	MS(v,x)	(((v) & x) >> x##_S)
3552 	struct ifnet *ifp = sc->sc_ifp;
3553 	struct ieee80211com *ic = ifp->if_l2com;
3554 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);	/*XXX*/
3555 	struct ieee80211_node *ni = vap->iv_bss;
3556 	struct iwn_node_info node;
3557 	int error, maxrxampdu, ampdudensity;
3558 
3559 	sc->calib.state = IWN_CALIB_STATE_INIT;
3560 
3561 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3562 		/* link LED blinks while monitoring */
3563 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
3564 		return 0;
3565 	}
3566 
3567 	iwn_enable_tsf(sc, ni);
3568 
3569 	/* update adapter's configuration */
3570 	sc->config.associd = htole16(IEEE80211_AID(ni->ni_associd));
3571 	/* short preamble/slot time are negotiated when associating */
3572 	sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT);
3573 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
3574 		sc->config.flags |= htole32(IWN_CONFIG_SHSLOT);
3575 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
3576 		sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE);
3577 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3578 		sc->config.flags &= ~htole32(IWN_CONFIG_HT);
3579 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
3580 			sc->config.flags |= htole32(IWN_CONFIG_HT40U);
3581 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
3582 			sc->config.flags |= htole32(IWN_CONFIG_HT40D);
3583 		else
3584 			sc->config.flags |= htole32(IWN_CONFIG_HT20);
3585 		sc->config.rxchain = htole16(
3586 			  (3 << IWN_RXCHAIN_VALID_S)
3587 			| (3 << IWN_RXCHAIN_MIMO_CNT_S)
3588 			| (1 << IWN_RXCHAIN_CNT_S)
3589 			| IWN_RXCHAIN_MIMO_FORCE);
3590 
3591 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
3592 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
3593 	} else
3594 		maxrxampdu = ampdudensity = 0;
3595 	sc->config.filter |= htole32(IWN_FILTER_BSS);
3596 
3597 	DPRINTF(sc, IWN_DEBUG_STATE,
3598 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3599 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3600 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3601 	   __func__,
3602 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3603 	   sc->config.cck_mask, sc->config.ofdm_mask,
3604 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3605 	   le16toh(sc->config.rxchain),
3606 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3607 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3608 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3609 	    sizeof (struct iwn_config), 1);
3610 	if (error != 0) {
3611 		device_printf(sc->sc_dev,
3612 		    "%s: could not update configuration, error %d\n",
3613 		    __func__, error);
3614 		return error;
3615 	}
3616 	sc->sc_curchan = ni->ni_chan;
3617 
3618 	/* configuration has changed, set Tx power accordingly */
3619 	error = iwn_set_txpower(sc, ni->ni_chan, 1);
3620 	if (error != 0) {
3621 		device_printf(sc->sc_dev,
3622 		    "%s: could not set Tx power, error %d\n", __func__, error);
3623 		return error;
3624 	}
3625 
3626 	/* add BSS node */
3627 	memset(&node, 0, sizeof node);
3628 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
3629 	node.id = IWN_ID_BSS;
3630 	node.htflags = htole32(
3631 	    (maxrxampdu << IWN_MAXRXAMPDU_S) |
3632 	    (ampdudensity << IWN_MPDUDENSITY_S));
3633 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
3634 	    __func__, node.id, le32toh(node.htflags));
3635 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1);
3636 	if (error != 0) {
3637 		device_printf(sc->sc_dev,"could not add BSS node\n");
3638 		return error;
3639 	}
3640 	error = iwn_set_link_quality(sc, node.id, ni->ni_chan, 1);
3641 	if (error != 0) {
3642 		device_printf(sc->sc_dev,
3643 		    "%s: could not setup MRR for node %d, error %d\n",
3644 		    __func__, node.id, error);
3645 		return error;
3646 	}
3647 
3648 	error = iwn_init_sensitivity(sc);
3649 	if (error != 0) {
3650 		device_printf(sc->sc_dev,
3651 		    "%s: could not set sensitivity, error %d\n",
3652 		    __func__, error);
3653 		return error;
3654 	}
3655 
3656 	/* start/restart periodic calibration timer */
3657 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
3658 	iwn_calib_reset(sc);
3659 
3660 	/* link LED always on while associated */
3661 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
3662 
3663 	return 0;
3664 #undef MS
3665 }
3666 
3667 /*
3668  * Send a scan request to the firmware.  Since this command is huge, we map it
3669  * into a mbuf instead of using the pre-allocated set of commands.
3670  */
3671 int
3672 iwn_scan(struct iwn_softc *sc)
3673 {
3674 	struct ifnet *ifp = sc->sc_ifp;
3675 	struct ieee80211com *ic = ifp->if_l2com;
3676 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
3677 	struct iwn_tx_ring *ring = &sc->txq[4];
3678 	struct iwn_tx_desc *desc;
3679 	struct iwn_tx_data *data;
3680 	struct iwn_tx_cmd *cmd;
3681 	struct iwn_cmd_data *tx;
3682 	struct iwn_scan_hdr *hdr;
3683 	struct iwn_scan_essid *essid;
3684 	struct iwn_scan_chan *chan;
3685 	struct ieee80211_frame *wh;
3686 	struct ieee80211_rateset *rs;
3687 	struct ieee80211_channel *c;
3688 	enum ieee80211_phymode mode;
3689 	uint8_t *frm;
3690 	int pktlen, error, nrates;
3691 	bus_addr_t physaddr;
3692 
3693 	desc = &ring->desc[ring->cur];
3694 	data = &ring->data[ring->cur];
3695 
3696 	/* XXX malloc */
3697 	data->m = m_getcl(M_DONTWAIT, MT_DATA, 0);
3698 	if (data->m == NULL) {
3699 		device_printf(sc->sc_dev,
3700 		    "%s: could not allocate mbuf for scan command\n", __func__);
3701 		return ENOMEM;
3702 	}
3703 
3704 	cmd = mtod(data->m, struct iwn_tx_cmd *);
3705 	cmd->code = IWN_CMD_SCAN;
3706 	cmd->flags = 0;
3707 	cmd->qid = ring->qid;
3708 	cmd->idx = ring->cur;
3709 
3710 	hdr = (struct iwn_scan_hdr *)cmd->data;
3711 	memset(hdr, 0, sizeof (struct iwn_scan_hdr));
3712 
3713 	/* XXX use scan state */
3714 	/*
3715 	 * Move to the next channel if no packets are received within 5 msecs
3716 	 * after sending the probe request (this helps to reduce the duration
3717 	 * of active scans).
3718 	 */
3719 	hdr->quiet = htole16(5);	/* timeout in milliseconds */
3720 	hdr->plcp_threshold = htole16(1);	/* min # of packets */
3721 
3722 	/* select Ant B and Ant C for scanning */
3723 	hdr->rxchain = htole16(0x3e1 | (7 << IWN_RXCHAIN_VALID_S));
3724 
3725 	tx = (struct iwn_cmd_data *)(hdr + 1);
3726 	memset(tx, 0, sizeof (struct iwn_cmd_data));
3727 	tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200);	/* XXX */
3728 	tx->id = IWN_ID_BROADCAST;
3729 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3730 	tx->rflags = IWN_RFLAG_ANT_B;
3731 
3732 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
3733 		hdr->crc_threshold = htole16(1);
3734 		/* send probe requests at 6Mbps */
3735 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_OFDM6];
3736 	} else {
3737 		hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO);
3738 		/* send probe requests at 1Mbps */
3739 		tx->rate = iwn_ridx_to_plcp[IWN_RATE_CCK1];
3740 		tx->rflags |= IWN_RFLAG_CCK;
3741 	}
3742 
3743 	essid = (struct iwn_scan_essid *)(tx + 1);
3744 	memset(essid, 0, 4 * sizeof (struct iwn_scan_essid));
3745 	essid[0].id  = IEEE80211_ELEMID_SSID;
3746 	essid[0].len = ss->ss_ssid[0].len;
3747 	memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3748 
3749 	/*
3750 	 * Build a probe request frame.  Most of the following code is a
3751 	 * copy & paste of what is done in net80211.
3752 	 */
3753 	wh = (struct ieee80211_frame *)&essid[4];
3754 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3755 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
3756 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3757 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3758 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
3759 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
3760 	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
3761 	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
3762 
3763 	frm = (uint8_t *)(wh + 1);
3764 
3765 	/* add SSID IE */
3766         *frm++ = IEEE80211_ELEMID_SSID;
3767         *frm++ = ss->ss_ssid[0].len;
3768         memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
3769 	frm += ss->ss_ssid[0].len;
3770 
3771 	mode = ieee80211_chan2mode(ic->ic_curchan);
3772 	rs = &ic->ic_sup_rates[mode];
3773 
3774 	/* add supported rates IE */
3775 	*frm++ = IEEE80211_ELEMID_RATES;
3776 	nrates = rs->rs_nrates;
3777 	if (nrates > IEEE80211_RATE_SIZE)
3778 		nrates = IEEE80211_RATE_SIZE;
3779 	*frm++ = nrates;
3780 	memcpy(frm, rs->rs_rates, nrates);
3781 	frm += nrates;
3782 
3783 	/* add supported xrates IE */
3784 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
3785 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
3786 		*frm++ = IEEE80211_ELEMID_XRATES;
3787 		*frm++ = (uint8_t)nrates;
3788 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
3789 		frm += nrates;
3790 	}
3791 
3792 	/* setup length of probe request */
3793 	tx->len = htole16(frm - (uint8_t *)wh);
3794 
3795 	c = ic->ic_curchan;
3796 	chan = (struct iwn_scan_chan *)frm;
3797 	chan->chan = ieee80211_chan2ieee(ic, c);
3798 	chan->flags = 0;
3799 	if ((c->ic_flags & IEEE80211_CHAN_PASSIVE) == 0) {
3800 		chan->flags |= IWN_CHAN_ACTIVE;
3801 		if (ss->ss_nssid > 0)
3802 			chan->flags |= IWN_CHAN_DIRECT;
3803 	}
3804 	chan->dsp_gain = 0x6e;
3805 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3806 		chan->rf_gain = 0x3b;
3807 		chan->active  = htole16(10);
3808 		chan->passive = htole16(110);
3809 	} else {
3810 		chan->rf_gain = 0x28;
3811 		chan->active  = htole16(20);
3812 		chan->passive = htole16(120);
3813 	}
3814 
3815 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: chan %u flags 0x%x rf_gain 0x%x "
3816 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
3817 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
3818 	    chan->active, chan->passive);
3819 	hdr->nchan++;
3820 	chan++;
3821 
3822 	frm += sizeof (struct iwn_scan_chan);
3823 
3824 	hdr->len = htole16(frm - (uint8_t *)hdr);
3825 	pktlen = frm - (uint8_t *)cmd;
3826 
3827 	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
3828 	    iwn_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
3829 	if (error != 0) {
3830 		device_printf(sc->sc_dev,
3831 		    "%s: could not map scan command, error %d\n",
3832 		    __func__, error);
3833 		m_freem(data->m);
3834 		data->m = NULL;
3835 		return error;
3836 	}
3837 
3838 	IWN_SET_DESC_NSEGS(desc, 1);
3839 	IWN_SET_DESC_SEG(desc, 0, physaddr, pktlen);
3840 	sc->shared->len[ring->qid][ring->cur] = htole16(8);
3841 	if (ring->cur < IWN_TX_WINDOW)
3842 		sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] =
3843 		    htole16(8);
3844 
3845 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3846 	    BUS_DMASYNC_PREWRITE);
3847 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3848 
3849 	/* kick cmd ring */
3850 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3851 	IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur);
3852 
3853 	return 0;	/* will be notified async. of failure/success */
3854 }
3855 
3856 int
3857 iwn_config(struct iwn_softc *sc)
3858 {
3859 	struct ifnet *ifp = sc->sc_ifp;
3860 	struct ieee80211com *ic = ifp->if_l2com;
3861 	struct iwn_power power;
3862 	struct iwn_bluetooth bluetooth;
3863 	struct iwn_node_info node;
3864 	int error;
3865 
3866 	/* set power mode */
3867 	memset(&power, 0, sizeof power);
3868 	power.flags = htole16(IWN_POWER_CAM | 0x8);
3869 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: set power mode\n", __func__);
3870 	error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0);
3871 	if (error != 0) {
3872 		device_printf(sc->sc_dev,
3873 		    "%s: could not set power mode, error %d\n",
3874 		    __func__, error);
3875 		return error;
3876 	}
3877 
3878 	/* configure bluetooth coexistence */
3879 	memset(&bluetooth, 0, sizeof bluetooth);
3880 	bluetooth.flags = 3;
3881 	bluetooth.lead = 0xaa;
3882 	bluetooth.kill = 1;
3883 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
3884 	    __func__);
3885 	error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
3886 	    0);
3887 	if (error != 0) {
3888 		device_printf(sc->sc_dev,
3889 		    "%s: could not configure bluetooth coexistence, error %d\n",
3890 		    __func__, error);
3891 		return error;
3892 	}
3893 
3894 	/* configure adapter */
3895 	memset(&sc->config, 0, sizeof (struct iwn_config));
3896 	IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
3897 	IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr);
3898 	/* set default channel */
3899 	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
3900 	sc->config.flags = htole32(IWN_CONFIG_TSF);
3901 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
3902 		sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ);
3903 	sc->config.filter = 0;
3904 	switch (ic->ic_opmode) {
3905 	case IEEE80211_M_STA:
3906 		sc->config.mode = IWN_MODE_STA;
3907 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST);
3908 		break;
3909 	case IEEE80211_M_IBSS:
3910 	case IEEE80211_M_AHDEMO:
3911 		sc->config.mode = IWN_MODE_IBSS;
3912 		break;
3913 	case IEEE80211_M_HOSTAP:
3914 		sc->config.mode = IWN_MODE_HOSTAP;
3915 		break;
3916 	case IEEE80211_M_MONITOR:
3917 		sc->config.mode = IWN_MODE_MONITOR;
3918 		sc->config.filter |= htole32(IWN_FILTER_MULTICAST |
3919 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
3920 		break;
3921 	default:
3922 		break;
3923 	}
3924 	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
3925 	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
3926 	sc->config.ht_single_mask = 0xff;
3927 	sc->config.ht_dual_mask = 0xff;
3928 	sc->config.rxchain = htole16(0x2800 | (7 << IWN_RXCHAIN_VALID_S));
3929 
3930 	DPRINTF(sc, IWN_DEBUG_STATE,
3931 	   "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
3932 	   "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
3933 	   "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
3934 	   __func__,
3935 	   le16toh(sc->config.chan), sc->config.mode, le32toh(sc->config.flags),
3936 	   sc->config.cck_mask, sc->config.ofdm_mask,
3937 	   sc->config.ht_single_mask, sc->config.ht_dual_mask,
3938 	   le16toh(sc->config.rxchain),
3939 	   sc->config.myaddr, ":", sc->config.wlap, ":", sc->config.bssid, ":",
3940 	   le16toh(sc->config.associd), le32toh(sc->config.filter));
3941 	error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config,
3942 	    sizeof (struct iwn_config), 0);
3943 	if (error != 0) {
3944 		device_printf(sc->sc_dev,
3945 		    "%s: configure command failed, error %d\n",
3946 		    __func__, error);
3947 		return error;
3948 	}
3949 	sc->sc_curchan = ic->ic_curchan;
3950 
3951 	/* configuration has changed, set Tx power accordingly */
3952 	error = iwn_set_txpower(sc, ic->ic_curchan, 0);
3953 	if (error != 0) {
3954 		device_printf(sc->sc_dev,
3955 		    "%s: could not set Tx power, error %d\n", __func__, error);
3956 		return error;
3957 	}
3958 
3959 	/* add broadcast node */
3960 	memset(&node, 0, sizeof node);
3961 	IEEE80211_ADDR_COPY(node.macaddr, ic->ic_ifp->if_broadcastaddr);
3962 	node.id = IWN_ID_BROADCAST;
3963 	node.rate = iwn_plcp_signal(2);
3964 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: add broadcast node\n", __func__);
3965 	error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0);
3966 	if (error != 0) {
3967 		device_printf(sc->sc_dev,
3968 		    "%s: could not add broadcast node, error %d\n",
3969 		    __func__, error);
3970 		return error;
3971 	}
3972 	error = iwn_set_link_quality(sc, node.id, ic->ic_curchan, 0);
3973 	if (error != 0) {
3974 		device_printf(sc->sc_dev,
3975 		    "%s: could not setup MRR for node %d, error %d\n",
3976 		    __func__, node.id, error);
3977 		return error;
3978 	}
3979 
3980 	error = iwn_set_critical_temp(sc);
3981 	if (error != 0) {
3982 		device_printf(sc->sc_dev,
3983 		    "%s: could not set critical temperature, error %d\n",
3984 		    __func__, error);
3985 		return error;
3986 	}
3987 	return 0;
3988 }
3989 
3990 /*
3991  * Do post-alive initialization of the NIC (after firmware upload).
3992  */
3993 void
3994 iwn_post_alive(struct iwn_softc *sc)
3995 {
3996 	uint32_t base;
3997 	uint16_t offset;
3998 	int qid;
3999 
4000 	iwn_mem_lock(sc);
4001 
4002 	/* clear SRAM */
4003 	base = iwn_mem_read(sc, IWN_SRAM_BASE);
4004 	for (offset = 0x380; offset < 0x520; offset += 4) {
4005 		IWN_WRITE(sc, IWN_MEM_WADDR, base + offset);
4006 		IWN_WRITE(sc, IWN_MEM_WDATA, 0);
4007 	}
4008 
4009 	/* shared area is aligned on a 1K boundary */
4010 	iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10);
4011 	iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0);
4012 
4013 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4014 		iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0);
4015 		IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0);
4016 
4017 		/* set sched. window size */
4018 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid));
4019 		IWN_WRITE(sc, IWN_MEM_WDATA, 64);
4020 		/* set sched. frame limit */
4021 		IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4);
4022 		IWN_WRITE(sc, IWN_MEM_WDATA, 10 << 16);
4023 	}
4024 
4025 	/* enable interrupts for all 16 queues */
4026 	iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff);
4027 
4028 	/* identify active Tx rings (0-7) */
4029 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff);
4030 
4031 	/* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */
4032 	for (qid = 0; qid < 7; qid++) {
4033 		iwn_mem_write(sc, IWN_TXQ_STATUS(qid),
4034 		    IWN_TXQ_STATUS_ACTIVE | qid << 1);
4035 	}
4036 
4037 	iwn_mem_unlock(sc);
4038 }
4039 
4040 void
4041 iwn_stop_master(struct iwn_softc *sc)
4042 {
4043 	uint32_t tmp;
4044 	int ntries;
4045 
4046 	tmp = IWN_READ(sc, IWN_RESET);
4047 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER);
4048 
4049 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4050 	if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP)
4051 		return;	/* already asleep */
4052 
4053 	for (ntries = 0; ntries < 100; ntries++) {
4054 		if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED)
4055 			break;
4056 		DELAY(10);
4057 	}
4058 	if (ntries == 100)
4059 		device_printf(sc->sc_dev,
4060 		    "%s: timeout waiting for master\n", __func__);
4061 }
4062 
4063 int
4064 iwn_reset(struct iwn_softc *sc)
4065 {
4066 	uint32_t tmp;
4067 	int ntries;
4068 
4069 	/* clear any pending interrupts */
4070 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4071 
4072 	tmp = IWN_READ(sc, IWN_CHICKEN);
4073 	IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS);
4074 
4075 	tmp = IWN_READ(sc, IWN_GPIO_CTL);
4076 	IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT);
4077 
4078 	/* wait for clock stabilization */
4079 	for (ntries = 0; ntries < 1000; ntries++) {
4080 		if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK)
4081 			break;
4082 		DELAY(10);
4083 	}
4084 	if (ntries == 1000) {
4085 		device_printf(sc->sc_dev,
4086 		    "%s: timeout waiting for clock stabilization\n", __func__);
4087 		return ETIMEDOUT;
4088 	}
4089 	return 0;
4090 }
4091 
4092 void
4093 iwn_hw_config(struct iwn_softc *sc)
4094 {
4095 	uint32_t tmp, hw;
4096 
4097 	/* enable interrupts mitigation */
4098 	IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32);
4099 
4100 	/* voodoo from the reference driver */
4101 	tmp = pci_read_config(sc->sc_dev, PCIR_REVID,1);
4102 	if ((tmp & 0x80) && (tmp & 0x7f) < 8) {
4103 		/* enable "no snoop" field */
4104 		tmp = pci_read_config(sc->sc_dev, 0xe8, 1);
4105 		tmp &= ~IWN_DIS_NOSNOOP;
4106 		/* clear device specific PCI configuration register 0x41 */
4107 		pci_write_config(sc->sc_dev, 0xe8, tmp, 1);
4108 	}
4109 
4110 	/* disable L1 entry to work around a hardware bug */
4111 	tmp = pci_read_config(sc->sc_dev, 0xf0, 1);
4112 	tmp &= ~IWN_ENA_L1;
4113 	pci_write_config(sc->sc_dev, 0xf0, tmp, 1 );
4114 
4115 	hw = IWN_READ(sc, IWN_HWCONFIG);
4116 	IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310);
4117 
4118 	iwn_mem_lock(sc);
4119 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4120 	iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET);
4121 	DELAY(5);
4122 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4123 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET);
4124 	iwn_mem_unlock(sc);
4125 }
4126 
4127 void
4128 iwn_init_locked(struct iwn_softc *sc)
4129 {
4130 	struct ifnet *ifp = sc->sc_ifp;
4131 	uint32_t tmp;
4132 	int error, qid;
4133 
4134 	IWN_LOCK_ASSERT(sc);
4135 
4136 	/* load the firmware */
4137 	if (sc->fw_fp == NULL && (error = iwn_load_firmware(sc)) != 0) {
4138 		device_printf(sc->sc_dev,
4139 		    "%s: could not load firmware, error %d\n", __func__, error);
4140 		return;
4141 	}
4142 
4143 	error = iwn_reset(sc);
4144 	if (error != 0) {
4145 		device_printf(sc->sc_dev,
4146 		    "%s: could not reset adapter, error %d\n", __func__, error);
4147 		return;
4148 	}
4149 
4150 	iwn_mem_lock(sc);
4151 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4152 	iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00);
4153 	iwn_mem_read(sc, IWN_CLOCK_CTL);
4154 	iwn_mem_unlock(sc);
4155 
4156 	DELAY(20);
4157 
4158 	iwn_mem_lock(sc);
4159 	tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV);
4160 	iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800);
4161 	iwn_mem_unlock(sc);
4162 
4163 	iwn_mem_lock(sc);
4164 	tmp = iwn_mem_read(sc, IWN_MEM_POWER);
4165 	iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000);
4166 	iwn_mem_unlock(sc);
4167 
4168 	iwn_hw_config(sc);
4169 
4170 	/* init Rx ring */
4171 	iwn_mem_lock(sc);
4172 	IWN_WRITE(sc, IWN_RX_CONFIG, 0);
4173 	IWN_WRITE(sc, IWN_RX_WIDX, 0);
4174 	/* Rx ring is aligned on a 256-byte boundary */
4175 	IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
4176 	/* shared area is aligned on a 16-byte boundary */
4177 	IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr +
4178 	    offsetof(struct iwn_shared, closed_count)) >> 4);
4179 	IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000);
4180 	iwn_mem_unlock(sc);
4181 
4182 	IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7);
4183 
4184 	iwn_mem_lock(sc);
4185 	iwn_mem_write(sc, IWN_TX_ACTIVE, 0);
4186 
4187 	/* set physical address of "keep warm" page */
4188 	IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4);
4189 
4190 	/* init Tx rings */
4191 	for (qid = 0; qid < IWN_NTXQUEUES; qid++) {
4192 		struct iwn_tx_ring *txq = &sc->txq[qid];
4193 		IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8);
4194 		IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008);
4195 	}
4196 	iwn_mem_unlock(sc);
4197 
4198 	/* clear "radio off" and "disable command" bits (reversed logic) */
4199 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4200 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD);
4201 
4202 	/* clear any pending interrupts */
4203 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4204 	/* enable interrupts */
4205 	IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK);
4206 
4207 	/* not sure why/if this is necessary... */
4208 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4209 	IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF);
4210 
4211 	/* check that the radio is not disabled by RF switch */
4212 	if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) {
4213 		device_printf(sc->sc_dev,
4214 		    "radio is disabled by hardware switch\n");
4215 		return;
4216 	}
4217 
4218 	error = iwn_transfer_firmware(sc);
4219 	if (error != 0) {
4220 		device_printf(sc->sc_dev,
4221 		    "%s: could not load firmware, error %d\n", __func__, error);
4222 		return;
4223 	}
4224 
4225 	/* firmware has notified us that it is alive.. */
4226 	iwn_post_alive(sc);	/* ..do post alive initialization */
4227 
4228 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
4229 	sc->temp = iwn_get_temperature(sc);
4230 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: temperature=%d\n",
4231 	   __func__, sc->temp);
4232 
4233 	error = iwn_config(sc);
4234 	if (error != 0) {
4235 		device_printf(sc->sc_dev,
4236 		    "%s: could not configure device, error %d\n",
4237 		    __func__, error);
4238 		return;
4239 	}
4240 
4241 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4242 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
4243 }
4244 
4245 void
4246 iwn_init(void *arg)
4247 {
4248 	struct iwn_softc *sc = arg;
4249 	struct ifnet *ifp = sc->sc_ifp;
4250 	struct ieee80211com *ic = ifp->if_l2com;
4251 
4252 	IWN_LOCK(sc);
4253 	iwn_init_locked(sc);
4254 	IWN_UNLOCK(sc);
4255 
4256 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4257 		ieee80211_start_all(ic);
4258 }
4259 
4260 void
4261 iwn_stop_locked(struct iwn_softc *sc)
4262 {
4263 	struct ifnet *ifp = sc->sc_ifp;
4264 	uint32_t tmp;
4265 	int i;
4266 
4267 	IWN_LOCK_ASSERT(sc);
4268 
4269 	IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET);
4270 
4271 	sc->sc_tx_timer = 0;
4272 	callout_stop(&sc->sc_timer_to);
4273 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4274 
4275 	/* disable interrupts */
4276 	IWN_WRITE(sc, IWN_MASK, 0);
4277 	IWN_WRITE(sc, IWN_INTR, 0xffffffff);
4278 	IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff);
4279 
4280 	/* Clear any commands left in the taskq command buffer */
4281 	memset(sc->sc_cmd, 0, sizeof(sc->sc_cmd));
4282 
4283 	/* reset all Tx rings */
4284 	for (i = 0; i < IWN_NTXQUEUES; i++)
4285 		iwn_reset_tx_ring(sc, &sc->txq[i]);
4286 
4287 	/* reset Rx ring */
4288 	iwn_reset_rx_ring(sc, &sc->rxq);
4289 
4290 	iwn_mem_lock(sc);
4291 	iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200);
4292 	iwn_mem_unlock(sc);
4293 
4294 	DELAY(5);
4295 	iwn_stop_master(sc);
4296 
4297 	tmp = IWN_READ(sc, IWN_RESET);
4298 	IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET);
4299 }
4300 
4301 void
4302 iwn_stop(struct iwn_softc *sc)
4303 {
4304 	IWN_LOCK(sc);
4305 	iwn_stop_locked(sc);
4306 	IWN_UNLOCK(sc);
4307 }
4308 
4309 /*
4310  * Callback from net80211 to start a scan.
4311  */
4312 static void
4313 iwn_scan_start(struct ieee80211com *ic)
4314 {
4315 	struct ifnet *ifp = ic->ic_ifp;
4316 	struct iwn_softc *sc = ifp->if_softc;
4317 
4318 	iwn_queue_cmd(sc, IWN_SCAN_START, 0, IWN_QUEUE_NORMAL);
4319 }
4320 
4321 /*
4322  * Callback from net80211 to terminate a scan.
4323  */
4324 static void
4325 iwn_scan_end(struct ieee80211com *ic)
4326 {
4327 	struct ifnet *ifp = ic->ic_ifp;
4328 	struct iwn_softc *sc = ifp->if_softc;
4329 
4330 	iwn_queue_cmd(sc, IWN_SCAN_STOP, 0, IWN_QUEUE_NORMAL);
4331 }
4332 
4333 /*
4334  * Callback from net80211 to force a channel change.
4335  */
4336 static void
4337 iwn_set_channel(struct ieee80211com *ic)
4338 {
4339 	struct ifnet *ifp = ic->ic_ifp;
4340 	struct iwn_softc *sc = ifp->if_softc;
4341 	const struct ieee80211_channel *c = ic->ic_curchan;
4342 
4343 	if (c != sc->sc_curchan) {
4344 		sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
4345 		sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
4346 		sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
4347 		sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
4348 		iwn_queue_cmd(sc, IWN_SET_CHAN, 0, IWN_QUEUE_NORMAL);
4349 	}
4350 }
4351 
4352 /*
4353  * Callback from net80211 to start scanning of the current channel.
4354  */
4355 static void
4356 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
4357 {
4358 	struct ieee80211vap *vap = ss->ss_vap;
4359 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4360 
4361 	iwn_queue_cmd(sc, IWN_SCAN_CURCHAN, 0, IWN_QUEUE_NORMAL);
4362 }
4363 
4364 /*
4365  * Callback from net80211 to handle the minimum dwell time being met.
4366  * The intent is to terminate the scan but we just let the firmware
4367  * notify us when it's finished as we have no safe way to abort it.
4368  */
4369 static void
4370 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
4371 {
4372 	/* NB: don't try to abort scan; wait for firmware to finish */
4373 }
4374 
4375 /*
4376  * Carry out work in the taskq context.
4377  */
4378 static void
4379 iwn_ops(void *arg0, int pending)
4380 {
4381 	struct iwn_softc *sc = arg0;
4382 	struct ifnet *ifp = sc->sc_ifp;
4383 	struct ieee80211com *ic = ifp->if_l2com;
4384 	struct ieee80211vap *vap;
4385 	int cmd, arg, error;
4386 	enum ieee80211_state nstate;
4387 
4388 	for (;;) {
4389 		IWN_CMD_LOCK(sc);
4390 		cmd = sc->sc_cmd[sc->sc_cmd_cur];
4391 		if (cmd == 0) {
4392 			/* No more commands to process */
4393 			IWN_CMD_UNLOCK(sc);
4394 			return;
4395 		}
4396 		if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 &&
4397 		    cmd != IWN_RADIO_ENABLE ) {
4398 			IWN_CMD_UNLOCK(sc);
4399 			return;
4400 		}
4401 		arg = sc->sc_cmd_arg[sc->sc_cmd_cur];
4402 		sc->sc_cmd[sc->sc_cmd_cur] = 0;		/* free the slot */
4403 		sc->sc_cmd_cur = (sc->sc_cmd_cur + 1) % IWN_CMD_MAXOPS;
4404 		IWN_CMD_UNLOCK(sc);
4405 
4406 		IWN_LOCK(sc);		/* NB: sync debug printfs on smp */
4407 		DPRINTF(sc, IWN_DEBUG_OPS, "%s: %s (cmd 0x%x)\n",
4408 		    __func__, iwn_ops_str(cmd), cmd);
4409 
4410 		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
4411 		switch (cmd) {
4412 		case IWN_SCAN_START:
4413 			/* make the link LED blink while we're scanning */
4414 			iwn_set_led(sc, IWN_LED_LINK, 20, 2);
4415 			break;
4416 		case IWN_SCAN_STOP:
4417 			break;
4418 		case IWN_SCAN_NEXT:
4419 			ieee80211_scan_next(vap);
4420 			break;
4421 		case IWN_SCAN_CURCHAN:
4422 			error = iwn_scan(sc);
4423 			if (error != 0) {
4424 				IWN_UNLOCK(sc);
4425 				ieee80211_cancel_scan(vap);
4426 				IWN_LOCK(sc);
4427 				return;
4428 			}
4429 			break;
4430 		case IWN_SET_CHAN:
4431 			error = iwn_config(sc);
4432 			if (error != 0) {
4433 				DPRINTF(sc, IWN_DEBUG_STATE,
4434 				    "%s: set chan failed, cancel scan\n",
4435 				    __func__);
4436 				IWN_UNLOCK(sc);
4437 				//XXX Handle failed scan correctly
4438 				ieee80211_cancel_scan(vap);
4439 				return;
4440 			}
4441 			break;
4442 		case IWN_AUTH:
4443 		case IWN_RUN:
4444 			if (cmd == IWN_AUTH) {
4445 				error = iwn_auth(sc);
4446 				nstate = IEEE80211_S_AUTH;
4447 			} else {
4448 				error = iwn_run(sc);
4449 				nstate = IEEE80211_S_RUN;
4450 			}
4451 			if (error == 0) {
4452 				IWN_UNLOCK(sc);
4453 				IEEE80211_LOCK(ic);
4454 				IWN_VAP(vap)->iv_newstate(vap, nstate, arg);
4455 				if (vap->iv_newstate_cb != NULL)
4456 					vap->iv_newstate_cb(vap, nstate, arg);
4457 				IEEE80211_UNLOCK(ic);
4458 				IWN_LOCK(sc);
4459 			} else {
4460 				device_printf(sc->sc_dev,
4461 				    "%s: %s state change failed, error %d\n",
4462 				    __func__, ieee80211_state_name[nstate],
4463 				    error);
4464 			}
4465 			break;
4466 		case IWN_REINIT:
4467 			IWN_UNLOCK(sc);
4468 			iwn_init(sc);
4469 			IWN_LOCK(sc);
4470 			ieee80211_notify_radio(ic, 1);
4471 			break;
4472 		case IWN_RADIO_ENABLE:
4473 			KASSERT(sc->fw_fp != NULL,
4474 			    ("Fware Not Loaded, can't load from tq"));
4475 			IWN_UNLOCK(sc);
4476 			iwn_init(sc);
4477 			IWN_LOCK(sc);
4478 			break;
4479 		case IWN_RADIO_DISABLE:
4480 			ieee80211_notify_radio(ic, 0);
4481 			iwn_stop_locked(sc);
4482 			break;
4483 		}
4484 		IWN_UNLOCK(sc);
4485 	}
4486 }
4487 
4488 /*
4489  * Queue a command for execution in the taskq thread.
4490  * This is needed as the net80211 callbacks do not allow
4491  * sleeping, since we need to sleep to confirm commands have
4492  * been processed by the firmware, we must defer execution to
4493  * a sleep enabled thread.
4494  */
4495 static int
4496 iwn_queue_cmd(struct iwn_softc *sc, int cmd, int arg, int clear)
4497 {
4498 	IWN_CMD_LOCK(sc);
4499 	if (clear) {
4500 		sc->sc_cmd[0] = cmd;
4501 		sc->sc_cmd_arg[0] = arg;
4502 		sc->sc_cmd_cur = 0;
4503 		sc->sc_cmd_next = 1;
4504 	} else {
4505 		if (sc->sc_cmd[sc->sc_cmd_next] != 0) {
4506 			IWN_CMD_UNLOCK(sc);
4507 			DPRINTF(sc, IWN_DEBUG_ANY, "%s: command %d dropped\n",
4508 			    __func__, cmd);
4509 			return EBUSY;
4510 		}
4511 		sc->sc_cmd[sc->sc_cmd_next] = cmd;
4512 		sc->sc_cmd_arg[sc->sc_cmd_next] = arg;
4513 		sc->sc_cmd_next = (sc->sc_cmd_next + 1) % IWN_CMD_MAXOPS;
4514 	}
4515 	taskqueue_enqueue(sc->sc_tq, &sc->sc_ops_task);
4516 	IWN_CMD_UNLOCK(sc);
4517 	return 0;
4518 }
4519 
4520 static void
4521 iwn_bpfattach(struct iwn_softc *sc)
4522 {
4523 	struct ifnet *ifp = sc->sc_ifp;
4524 
4525         bpfattach(ifp, DLT_IEEE802_11_RADIO,
4526             sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap));
4527 
4528         sc->sc_rxtap_len = sizeof sc->sc_rxtap;
4529         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
4530         sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
4531 
4532         sc->sc_txtap_len = sizeof sc->sc_txtap;
4533         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
4534         sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
4535 }
4536 
4537 static void
4538 iwn_sysctlattach(struct iwn_softc *sc)
4539 {
4540 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4541 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4542 
4543 #ifdef IWN_DEBUG
4544 	sc->sc_debug = 0;
4545 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4546 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
4547 #endif
4548 }
4549 
4550 #ifdef IWN_DEBUG
4551 static const char *
4552 iwn_ops_str(int cmd)
4553 {
4554 	switch (cmd) {
4555 	case IWN_SCAN_START:	return "SCAN_START";
4556 	case IWN_SCAN_CURCHAN:	return "SCAN_CURCHAN";
4557 	case IWN_SCAN_STOP:	return "SCAN_STOP";
4558 	case IWN_SET_CHAN:	return "SET_CHAN";
4559 	case IWN_AUTH:		return "AUTH";
4560 	case IWN_SCAN_NEXT:	return "SCAN_NEXT";
4561 	case IWN_RUN:		return "RUN";
4562 	case IWN_RADIO_ENABLE:	return "RADIO_ENABLE";
4563 	case IWN_RADIO_DISABLE:	return "RADIO_DISABLE";
4564 	case IWN_REINIT:	return "REINIT";
4565 	}
4566 	return "UNKNOWN COMMAND";
4567 }
4568 
4569 static const char *
4570 iwn_intr_str(uint8_t cmd)
4571 {
4572 	switch (cmd) {
4573 	/* Notifications */
4574 	case IWN_UC_READY:		return "UC_READY";
4575 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
4576 	case IWN_TX_DONE:		return "TX_DONE";
4577 	case IWN_START_SCAN:		return "START_SCAN";
4578 	case IWN_STOP_SCAN:		return "STOP_SCAN";
4579 	case IWN_RX_STATISTICS:		return "RX_STATS";
4580 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
4581 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
4582 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
4583 	case IWN_AMPDU_RX_START:	return "AMPDU_RX_START";
4584 	case IWN_AMPDU_RX_DONE:		return "AMPDU_RX_DONE";
4585 	case IWN_RX_DONE:		return "RX_DONE";
4586 
4587 	/* Command Notifications */
4588 	case IWN_CMD_CONFIGURE:		return "IWN_CMD_CONFIGURE";
4589 	case IWN_CMD_ASSOCIATE:		return "IWN_CMD_ASSOCIATE";
4590 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
4591 	case IWN_CMD_TSF:		return "IWN_CMD_TSF";
4592 	case IWN_CMD_TX_LINK_QUALITY:	return "IWN_CMD_TX_LINK_QUALITY";
4593 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
4594 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
4595 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
4596 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
4597 	case IWN_CMD_BLUETOOTH:		return "IWN_CMD_BLUETOOTH";
4598 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
4599 	case IWN_SENSITIVITY:		return "IWN_SENSITIVITY";
4600 	case IWN_PHY_CALIB:		return "IWN_PHY_CALIB";
4601 	}
4602 	return "UNKNOWN INTR NOTIF/CMD";
4603 }
4604 #endif /* IWN_DEBUG */
4605 
4606 static device_method_t iwn_methods[] = {
4607         /* Device interface */
4608         DEVMETHOD(device_probe,         iwn_probe),
4609         DEVMETHOD(device_attach,        iwn_attach),
4610         DEVMETHOD(device_detach,        iwn_detach),
4611         DEVMETHOD(device_shutdown,      iwn_shutdown),
4612         DEVMETHOD(device_suspend,       iwn_suspend),
4613         DEVMETHOD(device_resume,        iwn_resume),
4614 
4615         { 0, 0 }
4616 };
4617 
4618 static driver_t iwn_driver = {
4619         "iwn",
4620         iwn_methods,
4621         sizeof (struct iwn_softc)
4622 };
4623 static devclass_t iwn_devclass;
4624 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
4625 MODULE_DEPEND(iwn, pci, 1, 1, 1);
4626 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
4627 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
4628 MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
4629