xref: /freebsd/sys/dev/iwn/if_iwn.c (revision aa64588d28258aef88cc33b8043112e8856948d0)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 static int	iwn_probe(device_t);
76 static int	iwn_attach(device_t);
77 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
78 static void	iwn_radiotap_attach(struct iwn_softc *);
79 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
80 		    const char name[IFNAMSIZ], int unit, int opmode,
81 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
82 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
83 static void	iwn_vap_delete(struct ieee80211vap *);
84 static int	iwn_cleanup(device_t);
85 static int	iwn_detach(device_t);
86 static int	iwn_nic_lock(struct iwn_softc *);
87 static int	iwn_eeprom_lock(struct iwn_softc *);
88 static int	iwn_init_otprom(struct iwn_softc *);
89 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
90 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
91 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
92 		    void **, bus_size_t, bus_size_t, int);
93 static void	iwn_dma_contig_free(struct iwn_dma_info *);
94 static int	iwn_alloc_sched(struct iwn_softc *);
95 static void	iwn_free_sched(struct iwn_softc *);
96 static int	iwn_alloc_kw(struct iwn_softc *);
97 static void	iwn_free_kw(struct iwn_softc *);
98 static int	iwn_alloc_ict(struct iwn_softc *);
99 static void	iwn_free_ict(struct iwn_softc *);
100 static int	iwn_alloc_fwmem(struct iwn_softc *);
101 static void	iwn_free_fwmem(struct iwn_softc *);
102 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
103 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
106 		    int);
107 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
108 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn5000_ict_reset(struct iwn_softc *);
110 static int	iwn_read_eeprom(struct iwn_softc *,
111 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
112 static void	iwn4965_read_eeprom(struct iwn_softc *);
113 static void	iwn4965_print_power_group(struct iwn_softc *, int);
114 static void	iwn5000_read_eeprom(struct iwn_softc *);
115 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
116 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
117 #if 0	/* HT */
118 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
119 #endif
120 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
121 		    uint32_t);
122 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
123 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
124 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125 static void	iwn_newassoc(struct ieee80211_node *, int);
126 static int	iwn_media_change(struct ifnet *);
127 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
128 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
129 		    struct iwn_rx_data *);
130 static void	iwn_timer_timeout(void *);
131 static void	iwn_calib_reset(struct iwn_softc *);
132 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
133 		    struct iwn_rx_data *);
134 #if 0	/* HT */
135 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
136 		    struct iwn_rx_data *);
137 #endif
138 static void	iwn5000_rx_calib_results(struct iwn_softc *,
139 		    struct iwn_rx_desc *, struct iwn_rx_data *);
140 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
141 		    struct iwn_rx_data *);
142 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
143 		    struct iwn_rx_data *);
144 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
145 		    struct iwn_rx_data *);
146 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
147 		    uint8_t);
148 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
149 static void	iwn_notif_intr(struct iwn_softc *);
150 static void	iwn_wakeup_intr(struct iwn_softc *);
151 static void	iwn_rftoggle_intr(struct iwn_softc *);
152 static void	iwn_fatal_intr(struct iwn_softc *);
153 static void	iwn_intr(void *);
154 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
155 		    uint16_t);
156 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
157 		    uint16_t);
158 #ifdef notyet
159 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
160 #endif
161 static uint8_t	iwn_plcp_signal(int);
162 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
163 		    struct ieee80211_node *, struct iwn_tx_ring *);
164 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
165 		    const struct ieee80211_bpf_params *);
166 static void	iwn_start(struct ifnet *);
167 static void	iwn_start_locked(struct ifnet *);
168 static void	iwn_watchdog(struct iwn_softc *sc);
169 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
170 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
171 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
172 		    int);
173 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
174 		    int);
175 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
176 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
177 static int	iwn_wme_update(struct ieee80211com *);
178 static void	iwn_update_mcast(struct ifnet *);
179 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
180 static int	iwn_set_critical_temp(struct iwn_softc *);
181 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
182 static void	iwn4965_power_calibration(struct iwn_softc *, int);
183 static int	iwn4965_set_txpower(struct iwn_softc *,
184 		    struct ieee80211_channel *, int);
185 static int	iwn5000_set_txpower(struct iwn_softc *,
186 		    struct ieee80211_channel *, int);
187 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
188 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
189 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
190 static int	iwn4965_get_temperature(struct iwn_softc *);
191 static int	iwn5000_get_temperature(struct iwn_softc *);
192 static int	iwn_init_sensitivity(struct iwn_softc *);
193 static void	iwn_collect_noise(struct iwn_softc *,
194 		    const struct iwn_rx_general_stats *);
195 static int	iwn4965_init_gains(struct iwn_softc *);
196 static int	iwn5000_init_gains(struct iwn_softc *);
197 static int	iwn4965_set_gains(struct iwn_softc *);
198 static int	iwn5000_set_gains(struct iwn_softc *);
199 static void	iwn_tune_sensitivity(struct iwn_softc *,
200 		    const struct iwn_rx_stats *);
201 static int	iwn_send_sensitivity(struct iwn_softc *);
202 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
203 static int	iwn_config(struct iwn_softc *);
204 static int	iwn_scan(struct iwn_softc *);
205 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
206 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
207 #if 0	/* HT */
208 static int	iwn_ampdu_rx_start(struct ieee80211com *,
209 		    struct ieee80211_node *, uint8_t);
210 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
211 		    struct ieee80211_node *, uint8_t);
212 static int	iwn_ampdu_tx_start(struct ieee80211com *,
213 		    struct ieee80211_node *, uint8_t);
214 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
215 		    struct ieee80211_node *, uint8_t);
216 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
217 		    struct ieee80211_node *, uint8_t, uint16_t);
218 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
219 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
220 		    struct ieee80211_node *, uint8_t, uint16_t);
221 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
222 #endif
223 static int	iwn5000_query_calibration(struct iwn_softc *);
224 static int	iwn5000_send_calibration(struct iwn_softc *);
225 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
226 static int	iwn4965_post_alive(struct iwn_softc *);
227 static int	iwn5000_post_alive(struct iwn_softc *);
228 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
229 		    int);
230 static int	iwn4965_load_firmware(struct iwn_softc *);
231 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
232 		    const uint8_t *, int);
233 static int	iwn5000_load_firmware(struct iwn_softc *);
234 static int	iwn_read_firmware(struct iwn_softc *);
235 static int	iwn_clock_wait(struct iwn_softc *);
236 static int	iwn_apm_init(struct iwn_softc *);
237 static void	iwn_apm_stop_master(struct iwn_softc *);
238 static void	iwn_apm_stop(struct iwn_softc *);
239 static int	iwn4965_nic_config(struct iwn_softc *);
240 static int	iwn5000_nic_config(struct iwn_softc *);
241 static int	iwn_hw_prepare(struct iwn_softc *);
242 static int	iwn_hw_init(struct iwn_softc *);
243 static void	iwn_hw_stop(struct iwn_softc *);
244 static void	iwn_init_locked(struct iwn_softc *);
245 static void	iwn_init(void *);
246 static void	iwn_stop_locked(struct iwn_softc *);
247 static void	iwn_stop(struct iwn_softc *);
248 static void 	iwn_scan_start(struct ieee80211com *);
249 static void 	iwn_scan_end(struct ieee80211com *);
250 static void 	iwn_set_channel(struct ieee80211com *);
251 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
252 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
253 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
254 		    struct ieee80211_channel *);
255 static int	iwn_setregdomain(struct ieee80211com *,
256 		    struct ieee80211_regdomain *, int,
257 		    struct ieee80211_channel []);
258 static void	iwn_hw_reset(void *, int);
259 static void	iwn_radio_on(void *, int);
260 static void	iwn_radio_off(void *, int);
261 static void	iwn_sysctlattach(struct iwn_softc *);
262 static int	iwn_shutdown(device_t);
263 static int	iwn_suspend(device_t);
264 static int	iwn_resume(device_t);
265 
266 #define IWN_DEBUG
267 #ifdef IWN_DEBUG
268 enum {
269 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
270 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
271 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
272 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
273 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
274 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
275 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
276 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
277 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
278 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
279 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
280 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
281 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
282 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
283 	IWN_DEBUG_ANY		= 0xffffffff
284 };
285 
286 #define DPRINTF(sc, m, fmt, ...) do {			\
287 	if (sc->sc_debug & (m))				\
288 		printf(fmt, __VA_ARGS__);		\
289 } while (0)
290 
291 static const char *iwn_intr_str(uint8_t);
292 #else
293 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
294 #endif
295 
296 struct iwn_ident {
297 	uint16_t	vendor;
298 	uint16_t	device;
299 	const char	*name;
300 };
301 
302 static const struct iwn_ident iwn_ident_table [] = {
303 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
304 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
305 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
306 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
307 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
308 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
309 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
310 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
311 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
312 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
313 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5350" },
314 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
315 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
316 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
317 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
318 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
319 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
320 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
321 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
322 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
323 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
324 	{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
325 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
326 	{ 0, 0, NULL }
327 };
328 
329 static const struct iwn_hal iwn4965_hal = {
330 	iwn4965_load_firmware,
331 	iwn4965_read_eeprom,
332 	iwn4965_post_alive,
333 	iwn4965_nic_config,
334 	iwn4965_update_sched,
335 	iwn4965_get_temperature,
336 	iwn4965_get_rssi,
337 	iwn4965_set_txpower,
338 	iwn4965_init_gains,
339 	iwn4965_set_gains,
340 	iwn4965_add_node,
341 	iwn4965_tx_done,
342 #if 0	/* HT */
343 	iwn4965_ampdu_tx_start,
344 	iwn4965_ampdu_tx_stop,
345 #endif
346 	IWN4965_NTXQUEUES,
347 	IWN4965_NDMACHNLS,
348 	IWN4965_ID_BROADCAST,
349 	IWN4965_RXONSZ,
350 	IWN4965_SCHEDSZ,
351 	IWN4965_FW_TEXT_MAXSZ,
352 	IWN4965_FW_DATA_MAXSZ,
353 	IWN4965_FWSZ,
354 	IWN4965_SCHED_TXFACT
355 };
356 
357 static const struct iwn_hal iwn5000_hal = {
358 	iwn5000_load_firmware,
359 	iwn5000_read_eeprom,
360 	iwn5000_post_alive,
361 	iwn5000_nic_config,
362 	iwn5000_update_sched,
363 	iwn5000_get_temperature,
364 	iwn5000_get_rssi,
365 	iwn5000_set_txpower,
366 	iwn5000_init_gains,
367 	iwn5000_set_gains,
368 	iwn5000_add_node,
369 	iwn5000_tx_done,
370 #if 0	/* HT */
371 	iwn5000_ampdu_tx_start,
372 	iwn5000_ampdu_tx_stop,
373 #endif
374 	IWN5000_NTXQUEUES,
375 	IWN5000_NDMACHNLS,
376 	IWN5000_ID_BROADCAST,
377 	IWN5000_RXONSZ,
378 	IWN5000_SCHEDSZ,
379 	IWN5000_FW_TEXT_MAXSZ,
380 	IWN5000_FW_DATA_MAXSZ,
381 	IWN5000_FWSZ,
382 	IWN5000_SCHED_TXFACT
383 };
384 
385 static int
386 iwn_probe(device_t dev)
387 {
388 	const struct iwn_ident *ident;
389 
390 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
391 		if (pci_get_vendor(dev) == ident->vendor &&
392 		    pci_get_device(dev) == ident->device) {
393 			device_set_desc(dev, ident->name);
394 			return 0;
395 		}
396 	}
397 	return ENXIO;
398 }
399 
400 static int
401 iwn_attach(device_t dev)
402 {
403 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
404 	struct ieee80211com *ic;
405 	struct ifnet *ifp;
406 	const struct iwn_hal *hal;
407 	uint32_t tmp;
408 	int i, error, result;
409 	uint8_t macaddr[IEEE80211_ADDR_LEN];
410 
411 	sc->sc_dev = dev;
412 
413 	/*
414 	 * Get the offset of the PCI Express Capability Structure in PCI
415 	 * Configuration Space.
416 	 */
417 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
418 	if (error != 0) {
419 		device_printf(dev, "PCIe capability structure not found!\n");
420 		return error;
421 	}
422 
423 	/* Clear device-specific "PCI retry timeout" register (41h). */
424 	pci_write_config(dev, 0x41, 0, 1);
425 
426 	/* Hardware bug workaround. */
427 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
428 	if (tmp & PCIM_CMD_INTxDIS) {
429 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
430 		    __func__);
431 		tmp &= ~PCIM_CMD_INTxDIS;
432 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
433 	}
434 
435 	/* Enable bus-mastering. */
436 	pci_enable_busmaster(dev);
437 
438 	sc->mem_rid = PCIR_BAR(0);
439 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
440 	    RF_ACTIVE);
441 	if (sc->mem == NULL ) {
442 		device_printf(dev, "could not allocate memory resources\n");
443 		error = ENOMEM;
444 		return error;
445 	}
446 
447 	sc->sc_st = rman_get_bustag(sc->mem);
448 	sc->sc_sh = rman_get_bushandle(sc->mem);
449 	sc->irq_rid = 0;
450 	if ((result = pci_msi_count(dev)) == 1 &&
451 	    pci_alloc_msi(dev, &result) == 0)
452 		sc->irq_rid = 1;
453 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
454 	    RF_ACTIVE | RF_SHAREABLE);
455 	if (sc->irq == NULL) {
456 		device_printf(dev, "could not allocate interrupt resource\n");
457 		error = ENOMEM;
458 		goto fail;
459 	}
460 
461 	IWN_LOCK_INIT(sc);
462 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
463 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc );
464 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc );
465 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc );
466 
467 	/* Attach Hardware Abstraction Layer. */
468 	hal = iwn_hal_attach(sc);
469 	if (hal == NULL) {
470 		error = ENXIO;	/* XXX: Wrong error code? */
471 		goto fail;
472 	}
473 
474 	error = iwn_hw_prepare(sc);
475 	if (error != 0) {
476 		device_printf(dev, "hardware not ready, error %d\n", error);
477 		goto fail;
478 	}
479 
480 	/* Allocate DMA memory for firmware transfers. */
481 	error = iwn_alloc_fwmem(sc);
482 	if (error != 0) {
483 		device_printf(dev,
484 		    "could not allocate memory for firmware, error %d\n",
485 		    error);
486 		goto fail;
487 	}
488 
489 	/* Allocate "Keep Warm" page. */
490 	error = iwn_alloc_kw(sc);
491 	if (error != 0) {
492 		device_printf(dev,
493 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
494 		goto fail;
495 	}
496 
497 	/* Allocate ICT table for 5000 Series. */
498 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
499 	    (error = iwn_alloc_ict(sc)) != 0) {
500 		device_printf(dev,
501 		    "%s: could not allocate ICT table, error %d\n",
502 		    __func__, error);
503 		goto fail;
504 	}
505 
506 	/* Allocate TX scheduler "rings". */
507 	error = iwn_alloc_sched(sc);
508 	if (error != 0) {
509 		device_printf(dev,
510 		    "could not allocate TX scheduler rings, error %d\n",
511 		    error);
512 		goto fail;
513 	}
514 
515 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
516 	for (i = 0; i < hal->ntxqs; i++) {
517 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
518 		if (error != 0) {
519 			device_printf(dev,
520 			    "could not allocate Tx ring %d, error %d\n",
521 			    i, error);
522 			goto fail;
523 		}
524 	}
525 
526 	/* Allocate RX ring. */
527 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
528 	if (error != 0 ){
529 		device_printf(dev,
530 		    "could not allocate Rx ring, error %d\n", error);
531 		goto fail;
532 	}
533 
534 	/* Clear pending interrupts. */
535 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
536 
537 	/* Count the number of available chains. */
538 	sc->ntxchains =
539 	    ((sc->txchainmask >> 2) & 1) +
540 	    ((sc->txchainmask >> 1) & 1) +
541 	    ((sc->txchainmask >> 0) & 1);
542 	sc->nrxchains =
543 	    ((sc->rxchainmask >> 2) & 1) +
544 	    ((sc->rxchainmask >> 1) & 1) +
545 	    ((sc->rxchainmask >> 0) & 1);
546 
547 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
548 	if (ifp == NULL) {
549 		device_printf(dev, "can not allocate ifnet structure\n");
550 		goto fail;
551 	}
552 	ic = ifp->if_l2com;
553 
554 	ic->ic_ifp = ifp;
555 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
556 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
557 
558 	/* Set device capabilities. */
559 	ic->ic_caps =
560 		  IEEE80211_C_STA		/* station mode supported */
561 		| IEEE80211_C_MONITOR		/* monitor mode supported */
562 		| IEEE80211_C_TXPMGT		/* tx power management */
563 		| IEEE80211_C_SHSLOT		/* short slot time supported */
564 		| IEEE80211_C_WPA
565 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
566 		| IEEE80211_C_BGSCAN		/* background scanning */
567 #if 0
568 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
569 #endif
570 		| IEEE80211_C_WME		/* WME */
571 		;
572 #if 0	/* HT */
573 	/* XXX disable until HT channel setup works */
574 	ic->ic_htcaps =
575 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
576 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
577 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
578 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
579 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
580 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
581 		/* s/w capabilities */
582 		| IEEE80211_HTC_HT		/* HT operation */
583 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
584 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
585 		;
586 
587 	/* Set HT capabilities. */
588 	ic->ic_htcaps =
589 #if IWN_RBUF_SIZE == 8192
590 	    IEEE80211_HTCAP_AMSDU7935 |
591 #endif
592 	    IEEE80211_HTCAP_CBW20_40 |
593 	    IEEE80211_HTCAP_SGI20 |
594 	    IEEE80211_HTCAP_SGI40;
595 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
596 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
597 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
598 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
599 	else
600 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
601 #endif
602 
603 	/* Read MAC address, channels, etc from EEPROM. */
604 	error = iwn_read_eeprom(sc, macaddr);
605 	if (error != 0) {
606 		device_printf(dev, "could not read EEPROM, error %d\n",
607 		    error);
608 		goto fail;
609 	}
610 
611 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
612 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
613 	    macaddr, ":");
614 
615 #if 0	/* HT */
616 	/* Set supported HT rates. */
617 	ic->ic_sup_mcs[0] = 0xff;
618 	if (sc->nrxchains > 1)
619 		ic->ic_sup_mcs[1] = 0xff;
620 	if (sc->nrxchains > 2)
621 		ic->ic_sup_mcs[2] = 0xff;
622 #endif
623 
624 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
625 	ifp->if_softc = sc;
626 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
627 	ifp->if_init = iwn_init;
628 	ifp->if_ioctl = iwn_ioctl;
629 	ifp->if_start = iwn_start;
630 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
631 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
632 	IFQ_SET_READY(&ifp->if_snd);
633 
634 	ieee80211_ifattach(ic, macaddr);
635 	ic->ic_vap_create = iwn_vap_create;
636 	ic->ic_vap_delete = iwn_vap_delete;
637 	ic->ic_raw_xmit = iwn_raw_xmit;
638 	ic->ic_node_alloc = iwn_node_alloc;
639 	ic->ic_newassoc = iwn_newassoc;
640 	ic->ic_wme.wme_update = iwn_wme_update;
641 	ic->ic_update_mcast = iwn_update_mcast;
642 	ic->ic_scan_start = iwn_scan_start;
643 	ic->ic_scan_end = iwn_scan_end;
644 	ic->ic_set_channel = iwn_set_channel;
645 	ic->ic_scan_curchan = iwn_scan_curchan;
646 	ic->ic_scan_mindwell = iwn_scan_mindwell;
647 	ic->ic_setregdomain = iwn_setregdomain;
648 #if 0	/* HT */
649 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
650 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
651 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
652 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
653 #endif
654 
655 	iwn_radiotap_attach(sc);
656 	iwn_sysctlattach(sc);
657 
658 	/*
659 	 * Hook our interrupt after all initialization is complete.
660 	 */
661 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
662 	    NULL, iwn_intr, sc, &sc->sc_ih);
663 	if (error != 0) {
664 		device_printf(dev, "could not set up interrupt, error %d\n",
665 		    error);
666 		goto fail;
667 	}
668 
669 	ieee80211_announce(ic);
670 	return 0;
671 fail:
672 	iwn_cleanup(dev);
673 	return error;
674 }
675 
676 static const struct iwn_hal *
677 iwn_hal_attach(struct iwn_softc *sc)
678 {
679 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
680 
681 	switch (sc->hw_type) {
682 	case IWN_HW_REV_TYPE_4965:
683 		sc->sc_hal = &iwn4965_hal;
684 		sc->limits = &iwn4965_sensitivity_limits;
685 		sc->fwname = "iwn4965fw";
686 		sc->txchainmask = IWN_ANT_AB;
687 		sc->rxchainmask = IWN_ANT_ABC;
688 		break;
689 	case IWN_HW_REV_TYPE_5100:
690 		sc->sc_hal = &iwn5000_hal;
691 		sc->limits = &iwn5000_sensitivity_limits;
692 		sc->fwname = "iwn5000fw";
693 		sc->txchainmask = IWN_ANT_B;
694 		sc->rxchainmask = IWN_ANT_AB;
695 		break;
696 	case IWN_HW_REV_TYPE_5150:
697 		sc->sc_hal = &iwn5000_hal;
698 		sc->limits = &iwn5150_sensitivity_limits;
699 		sc->fwname = "iwn5150fw";
700 		sc->txchainmask = IWN_ANT_A;
701 		sc->rxchainmask = IWN_ANT_AB;
702 		break;
703 	case IWN_HW_REV_TYPE_5300:
704 	case IWN_HW_REV_TYPE_5350:
705 		sc->sc_hal = &iwn5000_hal;
706 		sc->limits = &iwn5000_sensitivity_limits;
707 		sc->fwname = "iwn5000fw";
708 		sc->txchainmask = IWN_ANT_ABC;
709 		sc->rxchainmask = IWN_ANT_ABC;
710 		break;
711 	case IWN_HW_REV_TYPE_1000:
712 		sc->sc_hal = &iwn5000_hal;
713 		sc->limits = &iwn1000_sensitivity_limits;
714 		sc->fwname = "iwn1000fw";
715 		sc->txchainmask = IWN_ANT_A;
716 		sc->rxchainmask = IWN_ANT_AB;
717 		break;
718 	case IWN_HW_REV_TYPE_6000:
719 		sc->sc_hal = &iwn5000_hal;
720 		sc->limits = &iwn6000_sensitivity_limits;
721 		sc->fwname = "iwn6000fw";
722 		switch (pci_get_device(sc->sc_dev)) {
723 		case 0x422C:
724 		case 0x4239:
725 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
726 			sc->txchainmask = IWN_ANT_BC;
727 			sc->rxchainmask = IWN_ANT_BC;
728 			break;
729 		default:
730 			sc->txchainmask = IWN_ANT_ABC;
731 			sc->rxchainmask = IWN_ANT_ABC;
732 			break;
733 		}
734 		break;
735 	case IWN_HW_REV_TYPE_6050:
736 		sc->sc_hal = &iwn5000_hal;
737 		sc->limits = &iwn6000_sensitivity_limits;
738 		sc->fwname = "iwn6000fw";
739 		sc->txchainmask = IWN_ANT_AB;
740 		sc->rxchainmask = IWN_ANT_AB;
741 		break;
742 	default:
743 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
744 		    sc->hw_type);
745 		return NULL;
746 	}
747 	return sc->sc_hal;
748 }
749 
750 /*
751  * Attach the interface to 802.11 radiotap.
752  */
753 static void
754 iwn_radiotap_attach(struct iwn_softc *sc)
755 {
756 	struct ifnet *ifp = sc->sc_ifp;
757 	struct ieee80211com *ic = ifp->if_l2com;
758 
759 	ieee80211_radiotap_attach(ic,
760 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
761 		IWN_TX_RADIOTAP_PRESENT,
762 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
763 		IWN_RX_RADIOTAP_PRESENT);
764 }
765 
766 static struct ieee80211vap *
767 iwn_vap_create(struct ieee80211com *ic,
768 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
769 	const uint8_t bssid[IEEE80211_ADDR_LEN],
770 	const uint8_t mac[IEEE80211_ADDR_LEN])
771 {
772 	struct iwn_vap *ivp;
773 	struct ieee80211vap *vap;
774 
775 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
776 		return NULL;
777 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
778 	    M_80211_VAP, M_NOWAIT | M_ZERO);
779 	if (ivp == NULL)
780 		return NULL;
781 	vap = &ivp->iv_vap;
782 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
783 	vap->iv_bmissthreshold = 10;		/* override default */
784 	/* Override with driver methods. */
785 	ivp->iv_newstate = vap->iv_newstate;
786 	vap->iv_newstate = iwn_newstate;
787 
788 	ieee80211_ratectl_init(vap);
789 	/* Complete setup. */
790 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
791 	ic->ic_opmode = opmode;
792 	return vap;
793 }
794 
795 static void
796 iwn_vap_delete(struct ieee80211vap *vap)
797 {
798 	struct iwn_vap *ivp = IWN_VAP(vap);
799 
800 	ieee80211_ratectl_deinit(vap);
801 	ieee80211_vap_detach(vap);
802 	free(ivp, M_80211_VAP);
803 }
804 
805 static int
806 iwn_cleanup(device_t dev)
807 {
808 	struct iwn_softc *sc = device_get_softc(dev);
809 	struct ifnet *ifp = sc->sc_ifp;
810 	struct ieee80211com *ic;
811 	int i;
812 
813 	if (ifp != NULL) {
814 		ic = ifp->if_l2com;
815 
816 		ieee80211_draintask(ic, &sc->sc_reinit_task);
817 		ieee80211_draintask(ic, &sc->sc_radioon_task);
818 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
819 
820 		iwn_stop(sc);
821 		callout_drain(&sc->sc_timer_to);
822 		ieee80211_ifdetach(ic);
823 	}
824 
825 	/* Free DMA resources. */
826 	iwn_free_rx_ring(sc, &sc->rxq);
827 	if (sc->sc_hal != NULL)
828 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
829 			iwn_free_tx_ring(sc, &sc->txq[i]);
830 	iwn_free_sched(sc);
831 	iwn_free_kw(sc);
832 	if (sc->ict != NULL)
833 		iwn_free_ict(sc);
834 	iwn_free_fwmem(sc);
835 
836 	if (sc->irq != NULL) {
837 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
838 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
839 		if (sc->irq_rid == 1)
840 			pci_release_msi(dev);
841 	}
842 
843 	if (sc->mem != NULL)
844 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
845 
846 	if (ifp != NULL)
847 		if_free(ifp);
848 
849 	IWN_LOCK_DESTROY(sc);
850 	return 0;
851 }
852 
853 static int
854 iwn_detach(device_t dev)
855 {
856 	iwn_cleanup(dev);
857 	return 0;
858 }
859 
860 static int
861 iwn_nic_lock(struct iwn_softc *sc)
862 {
863 	int ntries;
864 
865 	/* Request exclusive access to NIC. */
866 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
867 
868 	/* Spin until we actually get the lock. */
869 	for (ntries = 0; ntries < 1000; ntries++) {
870 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
871 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
872 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
873 			return 0;
874 		DELAY(10);
875 	}
876 	return ETIMEDOUT;
877 }
878 
879 static __inline void
880 iwn_nic_unlock(struct iwn_softc *sc)
881 {
882 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
883 }
884 
885 static __inline uint32_t
886 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
887 {
888 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
889 	IWN_BARRIER_READ_WRITE(sc);
890 	return IWN_READ(sc, IWN_PRPH_RDATA);
891 }
892 
893 static __inline void
894 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
895 {
896 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
897 	IWN_BARRIER_WRITE(sc);
898 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
899 }
900 
901 static __inline void
902 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
903 {
904 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
905 }
906 
907 static __inline void
908 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
909 {
910 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
911 }
912 
913 static __inline void
914 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
915     const uint32_t *data, int count)
916 {
917 	for (; count > 0; count--, data++, addr += 4)
918 		iwn_prph_write(sc, addr, *data);
919 }
920 
921 static __inline uint32_t
922 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
923 {
924 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
925 	IWN_BARRIER_READ_WRITE(sc);
926 	return IWN_READ(sc, IWN_MEM_RDATA);
927 }
928 
929 static __inline void
930 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
931 {
932 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
933 	IWN_BARRIER_WRITE(sc);
934 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
935 }
936 
937 static __inline void
938 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
939 {
940 	uint32_t tmp;
941 
942 	tmp = iwn_mem_read(sc, addr & ~3);
943 	if (addr & 3)
944 		tmp = (tmp & 0x0000ffff) | data << 16;
945 	else
946 		tmp = (tmp & 0xffff0000) | data;
947 	iwn_mem_write(sc, addr & ~3, tmp);
948 }
949 
950 static __inline void
951 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
952     int count)
953 {
954 	for (; count > 0; count--, addr += 4)
955 		*data++ = iwn_mem_read(sc, addr);
956 }
957 
958 static __inline void
959 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
960     int count)
961 {
962 	for (; count > 0; count--, addr += 4)
963 		iwn_mem_write(sc, addr, val);
964 }
965 
966 static int
967 iwn_eeprom_lock(struct iwn_softc *sc)
968 {
969 	int i, ntries;
970 
971 	for (i = 0; i < 100; i++) {
972 		/* Request exclusive access to EEPROM. */
973 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
974 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
975 
976 		/* Spin until we actually get the lock. */
977 		for (ntries = 0; ntries < 100; ntries++) {
978 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
979 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
980 				return 0;
981 			DELAY(10);
982 		}
983 	}
984 	return ETIMEDOUT;
985 }
986 
987 static __inline void
988 iwn_eeprom_unlock(struct iwn_softc *sc)
989 {
990 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
991 }
992 
993 /*
994  * Initialize access by host to One Time Programmable ROM.
995  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
996  */
997 static int
998 iwn_init_otprom(struct iwn_softc *sc)
999 {
1000 	uint16_t prev, base, next;
1001 	int count, error;
1002 
1003 	/* Wait for clock stabilization before accessing prph. */
1004 	error = iwn_clock_wait(sc);
1005 	if (error != 0)
1006 		return error;
1007 
1008 	error = iwn_nic_lock(sc);
1009 	if (error != 0)
1010 		return error;
1011 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1012 	DELAY(5);
1013 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1014 	iwn_nic_unlock(sc);
1015 
1016 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1017 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1018 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1019 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1020 	}
1021 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1022 	/* Clear ECC status. */
1023 	IWN_SETBITS(sc, IWN_OTP_GP,
1024 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1025 
1026 	/*
1027 	 * Find the block before last block (contains the EEPROM image)
1028 	 * for HW without OTP shadow RAM.
1029 	 */
1030 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1031 		/* Switch to absolute addressing mode. */
1032 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1033 		base = prev = 0;
1034 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1035 			error = iwn_read_prom_data(sc, base, &next, 2);
1036 			if (error != 0)
1037 				return error;
1038 			if (next == 0)	/* End of linked-list. */
1039 				break;
1040 			prev = base;
1041 			base = le16toh(next);
1042 		}
1043 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1044 			return EIO;
1045 		/* Skip "next" word. */
1046 		sc->prom_base = prev + 1;
1047 	}
1048 	return 0;
1049 }
1050 
1051 static int
1052 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1053 {
1054 	uint32_t val, tmp;
1055 	int ntries;
1056 	uint8_t *out = data;
1057 
1058 	addr += sc->prom_base;
1059 	for (; count > 0; count -= 2, addr++) {
1060 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1061 		for (ntries = 0; ntries < 10; ntries++) {
1062 			val = IWN_READ(sc, IWN_EEPROM);
1063 			if (val & IWN_EEPROM_READ_VALID)
1064 				break;
1065 			DELAY(5);
1066 		}
1067 		if (ntries == 10) {
1068 			device_printf(sc->sc_dev,
1069 			    "timeout reading ROM at 0x%x\n", addr);
1070 			return ETIMEDOUT;
1071 		}
1072 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1073 			/* OTPROM, check for ECC errors. */
1074 			tmp = IWN_READ(sc, IWN_OTP_GP);
1075 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1076 				device_printf(sc->sc_dev,
1077 				    "OTPROM ECC error at 0x%x\n", addr);
1078 				return EIO;
1079 			}
1080 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1081 				/* Correctable ECC error, clear bit. */
1082 				IWN_SETBITS(sc, IWN_OTP_GP,
1083 				    IWN_OTP_GP_ECC_CORR_STTS);
1084 			}
1085 		}
1086 		*out++ = val >> 16;
1087 		if (count > 1)
1088 			*out++ = val >> 24;
1089 	}
1090 	return 0;
1091 }
1092 
1093 static void
1094 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1095 {
1096 	if (error != 0)
1097 		return;
1098 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1099 	*(bus_addr_t *)arg = segs[0].ds_addr;
1100 }
1101 
1102 static int
1103 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1104 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1105 {
1106 	int error;
1107 
1108 	dma->size = size;
1109 	dma->tag = NULL;
1110 
1111 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1112 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1113 	    1, size, flags, NULL, NULL, &dma->tag);
1114 	if (error != 0) {
1115 		device_printf(sc->sc_dev,
1116 		    "%s: bus_dma_tag_create failed, error %d\n",
1117 		    __func__, error);
1118 		goto fail;
1119 	}
1120 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1121 	    flags | BUS_DMA_ZERO, &dma->map);
1122 	if (error != 0) {
1123 		device_printf(sc->sc_dev,
1124 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1125 		goto fail;
1126 	}
1127 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1128 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1129 	if (error != 0) {
1130 		device_printf(sc->sc_dev,
1131 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1132 		goto fail;
1133 	}
1134 
1135 	if (kvap != NULL)
1136 		*kvap = dma->vaddr;
1137 	return 0;
1138 fail:
1139 	iwn_dma_contig_free(dma);
1140 	return error;
1141 }
1142 
1143 static void
1144 iwn_dma_contig_free(struct iwn_dma_info *dma)
1145 {
1146 	if (dma->tag != NULL) {
1147 		if (dma->map != NULL) {
1148 			if (dma->paddr == 0) {
1149 				bus_dmamap_sync(dma->tag, dma->map,
1150 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1151 				bus_dmamap_unload(dma->tag, dma->map);
1152 			}
1153 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1154 		}
1155 		bus_dma_tag_destroy(dma->tag);
1156 	}
1157 }
1158 
1159 static int
1160 iwn_alloc_sched(struct iwn_softc *sc)
1161 {
1162 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1163 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1164 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1165 }
1166 
1167 static void
1168 iwn_free_sched(struct iwn_softc *sc)
1169 {
1170 	iwn_dma_contig_free(&sc->sched_dma);
1171 }
1172 
1173 static int
1174 iwn_alloc_kw(struct iwn_softc *sc)
1175 {
1176 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1177 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1178 	    BUS_DMA_NOWAIT);
1179 }
1180 
1181 static void
1182 iwn_free_kw(struct iwn_softc *sc)
1183 {
1184 	iwn_dma_contig_free(&sc->kw_dma);
1185 }
1186 
1187 static int
1188 iwn_alloc_ict(struct iwn_softc *sc)
1189 {
1190 	/* ICT table must be aligned on a 4KB boundary. */
1191 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1192 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1193 }
1194 
1195 static void
1196 iwn_free_ict(struct iwn_softc *sc)
1197 {
1198 	iwn_dma_contig_free(&sc->ict_dma);
1199 }
1200 
1201 static int
1202 iwn_alloc_fwmem(struct iwn_softc *sc)
1203 {
1204 	/* Must be aligned on a 16-byte boundary. */
1205 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1206 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1207 }
1208 
1209 static void
1210 iwn_free_fwmem(struct iwn_softc *sc)
1211 {
1212 	iwn_dma_contig_free(&sc->fw_dma);
1213 }
1214 
1215 static int
1216 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1217 {
1218 	bus_size_t size;
1219 	int i, error;
1220 
1221 	ring->cur = 0;
1222 
1223 	/* Allocate RX descriptors (256-byte aligned). */
1224 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1225 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1226 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1227 	if (error != 0) {
1228 		device_printf(sc->sc_dev,
1229 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1230 		    __func__, error);
1231 		goto fail;
1232 	}
1233 
1234 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1235 	    BUS_SPACE_MAXADDR_32BIT,
1236 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1237 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1238 	if (error != 0) {
1239 		device_printf(sc->sc_dev,
1240 		    "%s: bus_dma_tag_create_failed, error %d\n",
1241 		    __func__, error);
1242 		goto fail;
1243 	}
1244 
1245 	/* Allocate RX status area (16-byte aligned). */
1246 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1247 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1248 	    16, BUS_DMA_NOWAIT);
1249 	if (error != 0) {
1250 		device_printf(sc->sc_dev,
1251 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1252 		    __func__, error);
1253 		goto fail;
1254 	}
1255 
1256 	/*
1257 	 * Allocate and map RX buffers.
1258 	 */
1259 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1260 		struct iwn_rx_data *data = &ring->data[i];
1261 		bus_addr_t paddr;
1262 
1263 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1264 		if (error != 0) {
1265 			device_printf(sc->sc_dev,
1266 			    "%s: bus_dmamap_create failed, error %d\n",
1267 			    __func__, error);
1268 			goto fail;
1269 		}
1270 
1271 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1272 		if (data->m == NULL) {
1273 			device_printf(sc->sc_dev,
1274 			    "%s: could not allocate rx mbuf\n", __func__);
1275 			error = ENOMEM;
1276 			goto fail;
1277 		}
1278 
1279 		/* Map page. */
1280 		error = bus_dmamap_load(ring->data_dmat, data->map,
1281 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1282 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1283 		if (error != 0 && error != EFBIG) {
1284 			device_printf(sc->sc_dev,
1285 			    "%s: bus_dmamap_load failed, error %d\n",
1286 			    __func__, error);
1287 			m_freem(data->m);
1288 			error = ENOMEM;	/* XXX unique code */
1289 			goto fail;
1290 		}
1291 		bus_dmamap_sync(ring->data_dmat, data->map,
1292 		    BUS_DMASYNC_PREWRITE);
1293 
1294 		/* Set physical address of RX buffer (256-byte aligned). */
1295 		ring->desc[i] = htole32(paddr >> 8);
1296 	}
1297 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1298 	    BUS_DMASYNC_PREWRITE);
1299 	return 0;
1300 fail:
1301 	iwn_free_rx_ring(sc, ring);
1302 	return error;
1303 }
1304 
1305 static void
1306 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1307 {
1308 	int ntries;
1309 
1310 	if (iwn_nic_lock(sc) == 0) {
1311 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1312 		for (ntries = 0; ntries < 1000; ntries++) {
1313 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1314 			    IWN_FH_RX_STATUS_IDLE)
1315 				break;
1316 			DELAY(10);
1317 		}
1318 		iwn_nic_unlock(sc);
1319 #ifdef IWN_DEBUG
1320 		if (ntries == 1000)
1321 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1322 			    "timeout resetting Rx ring");
1323 #endif
1324 	}
1325 	ring->cur = 0;
1326 	sc->last_rx_valid = 0;
1327 }
1328 
1329 static void
1330 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1331 {
1332 	int i;
1333 
1334 	iwn_dma_contig_free(&ring->desc_dma);
1335 	iwn_dma_contig_free(&ring->stat_dma);
1336 
1337 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1338 		struct iwn_rx_data *data = &ring->data[i];
1339 
1340 		if (data->m != NULL) {
1341 			bus_dmamap_sync(ring->data_dmat, data->map,
1342 			    BUS_DMASYNC_POSTREAD);
1343 			bus_dmamap_unload(ring->data_dmat, data->map);
1344 			m_freem(data->m);
1345 		}
1346 		if (data->map != NULL)
1347 			bus_dmamap_destroy(ring->data_dmat, data->map);
1348 	}
1349 }
1350 
1351 static int
1352 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1353 {
1354 	bus_size_t size;
1355 	bus_addr_t paddr;
1356 	int i, error;
1357 
1358 	ring->qid = qid;
1359 	ring->queued = 0;
1360 	ring->cur = 0;
1361 
1362 	/* Allocate TX descriptors (256-byte aligned.) */
1363 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1364 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1365 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1366 	if (error != 0) {
1367 		device_printf(sc->sc_dev,
1368 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1369 		    __func__, error);
1370 		goto fail;
1371 	}
1372 
1373 	/*
1374 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1375 	 * to allocate commands space for other rings.
1376 	 */
1377 	if (qid > 4)
1378 		return 0;
1379 
1380 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1381 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1382 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1383 	if (error != 0) {
1384 		device_printf(sc->sc_dev,
1385 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1386 		    __func__, error);
1387 		goto fail;
1388 	}
1389 
1390 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1391 	    BUS_SPACE_MAXADDR_32BIT,
1392 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
1393 	    MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1394 	if (error != 0) {
1395 		device_printf(sc->sc_dev,
1396 		    "%s: bus_dma_tag_create_failed, error %d\n",
1397 		    __func__, error);
1398 		goto fail;
1399 	}
1400 
1401 	paddr = ring->cmd_dma.paddr;
1402 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1403 		struct iwn_tx_data *data = &ring->data[i];
1404 
1405 		data->cmd_paddr = paddr;
1406 		data->scratch_paddr = paddr + 12;
1407 		paddr += sizeof (struct iwn_tx_cmd);
1408 
1409 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1410 		if (error != 0) {
1411 			device_printf(sc->sc_dev,
1412 			    "%s: bus_dmamap_create failed, error %d\n",
1413 			    __func__, error);
1414 			goto fail;
1415 		}
1416 		bus_dmamap_sync(ring->data_dmat, data->map,
1417 		    BUS_DMASYNC_PREWRITE);
1418 	}
1419 	return 0;
1420 fail:
1421 	iwn_free_tx_ring(sc, ring);
1422 	return error;
1423 }
1424 
1425 static void
1426 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1427 {
1428 	int i;
1429 
1430 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1431 		struct iwn_tx_data *data = &ring->data[i];
1432 
1433 		if (data->m != NULL) {
1434 			bus_dmamap_unload(ring->data_dmat, data->map);
1435 			m_freem(data->m);
1436 			data->m = NULL;
1437 		}
1438 	}
1439 	/* Clear TX descriptors. */
1440 	memset(ring->desc, 0, ring->desc_dma.size);
1441 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1442 	    BUS_DMASYNC_PREWRITE);
1443 	sc->qfullmsk &= ~(1 << ring->qid);
1444 	ring->queued = 0;
1445 	ring->cur = 0;
1446 }
1447 
1448 static void
1449 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1450 {
1451 	int i;
1452 
1453 	iwn_dma_contig_free(&ring->desc_dma);
1454 	iwn_dma_contig_free(&ring->cmd_dma);
1455 
1456 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1457 		struct iwn_tx_data *data = &ring->data[i];
1458 
1459 		if (data->m != NULL) {
1460 			bus_dmamap_sync(ring->data_dmat, data->map,
1461 			    BUS_DMASYNC_POSTWRITE);
1462 			bus_dmamap_unload(ring->data_dmat, data->map);
1463 			m_freem(data->m);
1464 		}
1465 		if (data->map != NULL)
1466 			bus_dmamap_destroy(ring->data_dmat, data->map);
1467 	}
1468 }
1469 
1470 static void
1471 iwn5000_ict_reset(struct iwn_softc *sc)
1472 {
1473 	/* Disable interrupts. */
1474 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1475 
1476 	/* Reset ICT table. */
1477 	memset(sc->ict, 0, IWN_ICT_SIZE);
1478 	sc->ict_cur = 0;
1479 
1480 	/* Set physical address of ICT table (4KB aligned.) */
1481 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1482 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1483 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1484 
1485 	/* Enable periodic RX interrupt. */
1486 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1487 	/* Switch to ICT interrupt mode in driver. */
1488 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1489 
1490 	/* Re-enable interrupts. */
1491 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1492 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1493 }
1494 
1495 static int
1496 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1497 {
1498 	const struct iwn_hal *hal = sc->sc_hal;
1499 	int error;
1500 	uint16_t val;
1501 
1502 	/* Check whether adapter has an EEPROM or an OTPROM. */
1503 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1504 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1505 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1506 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1507 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1508 
1509 	/* Adapter has to be powered on for EEPROM access to work. */
1510 	error = iwn_apm_init(sc);
1511 	if (error != 0) {
1512 		device_printf(sc->sc_dev,
1513 		    "%s: could not power ON adapter, error %d\n",
1514 		    __func__, error);
1515 		return error;
1516 	}
1517 
1518 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1519 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1520 		return EIO;
1521 	}
1522 	error = iwn_eeprom_lock(sc);
1523 	if (error != 0) {
1524 		device_printf(sc->sc_dev,
1525 		    "%s: could not lock ROM, error %d\n",
1526 		    __func__, error);
1527 		return error;
1528 	}
1529 
1530 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1531 		error = iwn_init_otprom(sc);
1532 		if (error != 0) {
1533 			device_printf(sc->sc_dev,
1534 			    "%s: could not initialize OTPROM, error %d\n",
1535 			    __func__, error);
1536 			return error;
1537 		}
1538 	}
1539 
1540 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1541 	sc->rfcfg = le16toh(val);
1542 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1543 
1544 	/* Read MAC address. */
1545 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1546 
1547 	/* Read adapter-specific information from EEPROM. */
1548 	hal->read_eeprom(sc);
1549 
1550 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1551 
1552 	iwn_eeprom_unlock(sc);
1553 	return 0;
1554 }
1555 
1556 static void
1557 iwn4965_read_eeprom(struct iwn_softc *sc)
1558 {
1559 	uint32_t addr;
1560 	int i;
1561 	uint16_t val;
1562 
1563 	/* Read regulatory domain (4 ASCII characters.) */
1564 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1565 
1566 	/* Read the list of authorized channels (20MHz ones only.) */
1567 	for (i = 0; i < 5; i++) {
1568 		addr = iwn4965_regulatory_bands[i];
1569 		iwn_read_eeprom_channels(sc, i, addr);
1570 	}
1571 
1572 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1573 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1574 	sc->maxpwr2GHz = val & 0xff;
1575 	sc->maxpwr5GHz = val >> 8;
1576 	/* Check that EEPROM values are within valid range. */
1577 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1578 		sc->maxpwr5GHz = 38;
1579 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1580 		sc->maxpwr2GHz = 38;
1581 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1582 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1583 
1584 	/* Read samples for each TX power group. */
1585 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1586 	    sizeof sc->bands);
1587 
1588 	/* Read voltage at which samples were taken. */
1589 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1590 	sc->eeprom_voltage = (int16_t)le16toh(val);
1591 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1592 	    sc->eeprom_voltage);
1593 
1594 #ifdef IWN_DEBUG
1595 	/* Print samples. */
1596 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1597 		for (i = 0; i < IWN_NBANDS; i++)
1598 			iwn4965_print_power_group(sc, i);
1599 	}
1600 #endif
1601 }
1602 
1603 #ifdef IWN_DEBUG
1604 static void
1605 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1606 {
1607 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1608 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1609 	int j, c;
1610 
1611 	printf("===band %d===\n", i);
1612 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1613 	printf("chan1 num=%d\n", chans[0].num);
1614 	for (c = 0; c < 2; c++) {
1615 		for (j = 0; j < IWN_NSAMPLES; j++) {
1616 			printf("chain %d, sample %d: temp=%d gain=%d "
1617 			    "power=%d pa_det=%d\n", c, j,
1618 			    chans[0].samples[c][j].temp,
1619 			    chans[0].samples[c][j].gain,
1620 			    chans[0].samples[c][j].power,
1621 			    chans[0].samples[c][j].pa_det);
1622 		}
1623 	}
1624 	printf("chan2 num=%d\n", chans[1].num);
1625 	for (c = 0; c < 2; c++) {
1626 		for (j = 0; j < IWN_NSAMPLES; j++) {
1627 			printf("chain %d, sample %d: temp=%d gain=%d "
1628 			    "power=%d pa_det=%d\n", c, j,
1629 			    chans[1].samples[c][j].temp,
1630 			    chans[1].samples[c][j].gain,
1631 			    chans[1].samples[c][j].power,
1632 			    chans[1].samples[c][j].pa_det);
1633 		}
1634 	}
1635 }
1636 #endif
1637 
1638 static void
1639 iwn5000_read_eeprom(struct iwn_softc *sc)
1640 {
1641 	struct iwn5000_eeprom_calib_hdr hdr;
1642 	int32_t temp, volt;
1643 	uint32_t addr, base;
1644 	int i;
1645 	uint16_t val;
1646 
1647 	/* Read regulatory domain (4 ASCII characters.) */
1648 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1649 	base = le16toh(val);
1650 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1651 	    sc->eeprom_domain, 4);
1652 
1653 	/* Read the list of authorized channels (20MHz ones only.) */
1654 	for (i = 0; i < 5; i++) {
1655 		addr = base + iwn5000_regulatory_bands[i];
1656 		iwn_read_eeprom_channels(sc, i, addr);
1657 	}
1658 
1659 	/* Read enhanced TX power information for 6000 Series. */
1660 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1661 		iwn_read_eeprom_enhinfo(sc);
1662 
1663 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1664 	base = le16toh(val);
1665 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1666 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1667 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1668 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1669 	    sc->calib_ver = hdr.version;
1670 
1671 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1672 		/* Compute temperature offset. */
1673 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1674 		temp = le16toh(val);
1675 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1676 		volt = le16toh(val);
1677 		sc->temp_off = temp - (volt / -5);
1678 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1679 		    temp, volt, sc->temp_off);
1680 	} else {
1681 		/* Read crystal calibration. */
1682 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1683 		    &sc->eeprom_crystal, sizeof (uint32_t));
1684 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1685 		le32toh(sc->eeprom_crystal));
1686 	}
1687 }
1688 
1689 /*
1690  * Translate EEPROM flags to net80211.
1691  */
1692 static uint32_t
1693 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1694 {
1695 	uint32_t nflags;
1696 
1697 	nflags = 0;
1698 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1699 		nflags |= IEEE80211_CHAN_PASSIVE;
1700 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1701 		nflags |= IEEE80211_CHAN_NOADHOC;
1702 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1703 		nflags |= IEEE80211_CHAN_DFS;
1704 		/* XXX apparently IBSS may still be marked */
1705 		nflags |= IEEE80211_CHAN_NOADHOC;
1706 	}
1707 
1708 	return nflags;
1709 }
1710 
1711 static void
1712 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1713 {
1714 	struct ifnet *ifp = sc->sc_ifp;
1715 	struct ieee80211com *ic = ifp->if_l2com;
1716 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1717 	const struct iwn_chan_band *band = &iwn_bands[n];
1718 	struct ieee80211_channel *c;
1719 	int i, chan, nflags;
1720 
1721 	for (i = 0; i < band->nchan; i++) {
1722 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1723 			DPRINTF(sc, IWN_DEBUG_RESET,
1724 			    "skip chan %d flags 0x%x maxpwr %d\n",
1725 			    band->chan[i], channels[i].flags,
1726 			    channels[i].maxpwr);
1727 			continue;
1728 		}
1729 		chan = band->chan[i];
1730 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1731 
1732 		DPRINTF(sc, IWN_DEBUG_RESET,
1733 		    "add chan %d flags 0x%x maxpwr %d\n",
1734 		    chan, channels[i].flags, channels[i].maxpwr);
1735 
1736 		c = &ic->ic_channels[ic->ic_nchans++];
1737 		c->ic_ieee = chan;
1738 		c->ic_maxregpower = channels[i].maxpwr;
1739 		c->ic_maxpower = 2*c->ic_maxregpower;
1740 
1741 		/* Save maximum allowed TX power for this channel. */
1742 		sc->maxpwr[chan] = channels[i].maxpwr;
1743 
1744 		if (n == 0) {	/* 2GHz band */
1745 			c->ic_freq = ieee80211_ieee2mhz(chan,
1746 			    IEEE80211_CHAN_G);
1747 
1748 			/* G =>'s B is supported */
1749 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1750 
1751 			c = &ic->ic_channels[ic->ic_nchans++];
1752 			c[0] = c[-1];
1753 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1754 		} else {	/* 5GHz band */
1755 			c->ic_freq = ieee80211_ieee2mhz(chan,
1756 			    IEEE80211_CHAN_A);
1757 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1758 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1759 		}
1760 #if 0	/* HT */
1761 		/* XXX no constraints on using HT20 */
1762 		/* add HT20, HT40 added separately */
1763 		c = &ic->ic_channels[ic->ic_nchans++];
1764 		c[0] = c[-1];
1765 		c->ic_flags |= IEEE80211_CHAN_HT20;
1766 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1767 #endif
1768 	}
1769 }
1770 
1771 #if 0	/* HT */
1772 static void
1773 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1774 {
1775 	struct ifnet *ifp = sc->sc_ifp;
1776 	struct ieee80211com *ic = ifp->if_l2com;
1777 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1778 	const struct iwn_chan_band *band = &iwn_bands[n];
1779 	struct ieee80211_channel *c, *cent, *extc;
1780 	int i;
1781 
1782 	for (i = 0; i < band->nchan; i++) {
1783 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1784 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1785 			DPRINTF(sc, IWN_DEBUG_RESET,
1786 			    "skip chan %d flags 0x%x maxpwr %d\n",
1787 			    band->chan[i], channels[i].flags,
1788 			    channels[i].maxpwr);
1789 			continue;
1790 		}
1791 		/*
1792 		 * Each entry defines an HT40 channel pair; find the
1793 		 * center channel, then the extension channel above.
1794 		 */
1795 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1796 		    band->flags & ~IEEE80211_CHAN_HT);
1797 		if (cent == NULL) {	/* XXX shouldn't happen */
1798 			device_printf(sc->sc_dev,
1799 			    "%s: no entry for channel %d\n",
1800 			    __func__, band->chan[i]);
1801 			continue;
1802 		}
1803 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1804 		    band->flags & ~IEEE80211_CHAN_HT);
1805 		if (extc == NULL) {
1806 			DPRINTF(sc, IWN_DEBUG_RESET,
1807 			    "skip chan %d, extension channel not found\n",
1808 			    band->chan[i]);
1809 			continue;
1810 		}
1811 
1812 		DPRINTF(sc, IWN_DEBUG_RESET,
1813 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1814 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1815 
1816 		c = &ic->ic_channels[ic->ic_nchans++];
1817 		c[0] = cent[0];
1818 		c->ic_extieee = extc->ic_ieee;
1819 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1820 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1821 		c = &ic->ic_channels[ic->ic_nchans++];
1822 		c[0] = extc[0];
1823 		c->ic_extieee = cent->ic_ieee;
1824 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1825 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1826 	}
1827 }
1828 #endif
1829 
1830 static void
1831 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1832 {
1833 	struct ifnet *ifp = sc->sc_ifp;
1834 	struct ieee80211com *ic = ifp->if_l2com;
1835 
1836 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1837 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1838 
1839 	if (n < 5)
1840 		iwn_read_eeprom_band(sc, n);
1841 #if 0	/* HT */
1842 	else
1843 		iwn_read_eeprom_ht40(sc, n);
1844 #endif
1845 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1846 }
1847 
1848 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
1849 
1850 static void
1851 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1852 {
1853 	struct iwn_eeprom_enhinfo enhinfo[35];
1854 	uint16_t val, base;
1855 	int8_t maxpwr;
1856 	int i;
1857 
1858 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1859 	base = le16toh(val);
1860 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1861 	    enhinfo, sizeof enhinfo);
1862 
1863 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1864 	for (i = 0; i < nitems(enhinfo); i++) {
1865 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1866 			continue;	/* Skip invalid entries. */
1867 
1868 		maxpwr = 0;
1869 		if (sc->txchainmask & IWN_ANT_A)
1870 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1871 		if (sc->txchainmask & IWN_ANT_B)
1872 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1873 		if (sc->txchainmask & IWN_ANT_C)
1874 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1875 		if (sc->ntxchains == 2)
1876 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1877 		else if (sc->ntxchains == 3)
1878 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1879 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1880 
1881 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1882 		    maxpwr);
1883 		sc->enh_maxpwr[i] = maxpwr;
1884 	}
1885 }
1886 
1887 static struct ieee80211_node *
1888 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1889 {
1890 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
1891 }
1892 
1893 static void
1894 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1895 {
1896 	/* XXX move */
1897 	ieee80211_ratectl_node_init(ni);
1898 }
1899 
1900 static int
1901 iwn_media_change(struct ifnet *ifp)
1902 {
1903 	int error = ieee80211_media_change(ifp);
1904 	/* NB: only the fixed rate can change and that doesn't need a reset */
1905 	return (error == ENETRESET ? 0 : error);
1906 }
1907 
1908 static int
1909 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1910 {
1911 	struct iwn_vap *ivp = IWN_VAP(vap);
1912 	struct ieee80211com *ic = vap->iv_ic;
1913 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1914 	int error;
1915 
1916 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1917 		ieee80211_state_name[vap->iv_state],
1918 		ieee80211_state_name[nstate]);
1919 
1920 	IEEE80211_UNLOCK(ic);
1921 	IWN_LOCK(sc);
1922 	callout_stop(&sc->sc_timer_to);
1923 
1924 	if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
1925 		/* !AUTH -> AUTH requires adapter config */
1926 		/* Reset state to handle reassociations correctly. */
1927 		sc->rxon.associd = 0;
1928 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1929 		iwn_calib_reset(sc);
1930 		error = iwn_auth(sc, vap);
1931 	}
1932 	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1933 		/*
1934 		 * !RUN -> RUN requires setting the association id
1935 		 * which is done with a firmware cmd.  We also defer
1936 		 * starting the timers until that work is done.
1937 		 */
1938 		error = iwn_run(sc, vap);
1939 	}
1940 	if (nstate == IEEE80211_S_RUN) {
1941 		/*
1942 		 * RUN -> RUN transition; just restart the timers.
1943 		 */
1944 		iwn_calib_reset(sc);
1945 	}
1946 	IWN_UNLOCK(sc);
1947 	IEEE80211_LOCK(ic);
1948 	return ivp->iv_newstate(vap, nstate, arg);
1949 }
1950 
1951 /*
1952  * Process an RX_PHY firmware notification.  This is usually immediately
1953  * followed by an MPDU_RX_DONE notification.
1954  */
1955 static void
1956 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1957     struct iwn_rx_data *data)
1958 {
1959 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1960 
1961 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
1962 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1963 
1964 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1965 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1966 	sc->last_rx_valid = 1;
1967 }
1968 
1969 static void
1970 iwn_timer_timeout(void *arg)
1971 {
1972 	struct iwn_softc *sc = arg;
1973 	uint32_t flags = 0;
1974 
1975 	IWN_LOCK_ASSERT(sc);
1976 
1977 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
1978 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
1979 		    "send statistics request");
1980 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1981 		    sizeof flags, 1);
1982 		sc->calib_cnt = 60;	/* do calibration every 60s */
1983 	}
1984 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
1985 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1986 }
1987 
1988 static void
1989 iwn_calib_reset(struct iwn_softc *sc)
1990 {
1991 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
1992 	sc->calib_cnt = 60;		/* do calibration every 60s */
1993 }
1994 
1995 /*
1996  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1997  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1998  */
1999 static void
2000 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2001     struct iwn_rx_data *data)
2002 {
2003 	const struct iwn_hal *hal = sc->sc_hal;
2004 	struct ifnet *ifp = sc->sc_ifp;
2005 	struct ieee80211com *ic = ifp->if_l2com;
2006 	struct iwn_rx_ring *ring = &sc->rxq;
2007 	struct ieee80211_frame *wh;
2008 	struct ieee80211_node *ni;
2009 	struct mbuf *m, *m1;
2010 	struct iwn_rx_stat *stat;
2011 	caddr_t head;
2012 	bus_addr_t paddr;
2013 	uint32_t flags;
2014 	int error, len, rssi, nf;
2015 
2016 	if (desc->type == IWN_MPDU_RX_DONE) {
2017 		/* Check for prior RX_PHY notification. */
2018 		if (!sc->last_rx_valid) {
2019 			DPRINTF(sc, IWN_DEBUG_ANY,
2020 			    "%s: missing RX_PHY\n", __func__);
2021 			ifp->if_ierrors++;
2022 			return;
2023 		}
2024 		sc->last_rx_valid = 0;
2025 		stat = &sc->last_rx_stat;
2026 	} else
2027 		stat = (struct iwn_rx_stat *)(desc + 1);
2028 
2029 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2030 
2031 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2032 		device_printf(sc->sc_dev,
2033 		    "%s: invalid rx statistic header, len %d\n",
2034 		    __func__, stat->cfg_phy_len);
2035 		ifp->if_ierrors++;
2036 		return;
2037 	}
2038 	if (desc->type == IWN_MPDU_RX_DONE) {
2039 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2040 		head = (caddr_t)(mpdu + 1);
2041 		len = le16toh(mpdu->len);
2042 	} else {
2043 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2044 		len = le16toh(stat->len);
2045 	}
2046 
2047 	flags = le32toh(*(uint32_t *)(head + len));
2048 
2049 	/* Discard frames with a bad FCS early. */
2050 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2051 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2052 		    __func__, flags);
2053 		ifp->if_ierrors++;
2054 		return;
2055 	}
2056 	/* Discard frames that are too short. */
2057 	if (len < sizeof (*wh)) {
2058 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2059 		    __func__, len);
2060 		ifp->if_ierrors++;
2061 		return;
2062 	}
2063 
2064 	/* XXX don't need mbuf, just dma buffer */
2065 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2066 	if (m1 == NULL) {
2067 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2068 		    __func__);
2069 		ifp->if_ierrors++;
2070 		return;
2071 	}
2072 	bus_dmamap_unload(ring->data_dmat, data->map);
2073 
2074 	error = bus_dmamap_load(ring->data_dmat, data->map,
2075 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2076 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2077 	if (error != 0 && error != EFBIG) {
2078 		device_printf(sc->sc_dev,
2079 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2080 		m_freem(m1);
2081 		ifp->if_ierrors++;
2082 		return;
2083 	}
2084 
2085 	m = data->m;
2086 	data->m = m1;
2087 	/* Update RX descriptor. */
2088 	ring->desc[ring->cur] = htole32(paddr >> 8);
2089 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2090 	    BUS_DMASYNC_PREWRITE);
2091 
2092 	/* Finalize mbuf. */
2093 	m->m_pkthdr.rcvif = ifp;
2094 	m->m_data = head;
2095 	m->m_pkthdr.len = m->m_len = len;
2096 
2097 	rssi = hal->get_rssi(sc, stat);
2098 
2099 	/* Grab a reference to the source node. */
2100 	wh = mtod(m, struct ieee80211_frame *);
2101 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2102 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2103 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2104 
2105 	if (ieee80211_radiotap_active(ic)) {
2106 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2107 
2108 		tap->wr_tsft = htole64(stat->tstamp);
2109 		tap->wr_flags = 0;
2110 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2111 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2112 		switch (stat->rate) {
2113 		/* CCK rates. */
2114 		case  10: tap->wr_rate =   2; break;
2115 		case  20: tap->wr_rate =   4; break;
2116 		case  55: tap->wr_rate =  11; break;
2117 		case 110: tap->wr_rate =  22; break;
2118 		/* OFDM rates. */
2119 		case 0xd: tap->wr_rate =  12; break;
2120 		case 0xf: tap->wr_rate =  18; break;
2121 		case 0x5: tap->wr_rate =  24; break;
2122 		case 0x7: tap->wr_rate =  36; break;
2123 		case 0x9: tap->wr_rate =  48; break;
2124 		case 0xb: tap->wr_rate =  72; break;
2125 		case 0x1: tap->wr_rate =  96; break;
2126 		case 0x3: tap->wr_rate = 108; break;
2127 		/* Unknown rate: should not happen. */
2128 		default:  tap->wr_rate =   0;
2129 		}
2130 		tap->wr_dbm_antsignal = rssi;
2131 		tap->wr_dbm_antnoise = nf;
2132 	}
2133 
2134 	IWN_UNLOCK(sc);
2135 
2136 	/* Send the frame to the 802.11 layer. */
2137 	if (ni != NULL) {
2138 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2139 		/* Node is no longer needed. */
2140 		ieee80211_free_node(ni);
2141 	} else
2142 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2143 
2144 	IWN_LOCK(sc);
2145 }
2146 
2147 #if 0	/* HT */
2148 /* Process an incoming Compressed BlockAck. */
2149 static void
2150 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2151     struct iwn_rx_data *data)
2152 {
2153 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2154 	struct iwn_tx_ring *txq;
2155 
2156 	txq = &sc->txq[letoh16(ba->qid)];
2157 	/* XXX TBD */
2158 }
2159 #endif
2160 
2161 /*
2162  * Process a CALIBRATION_RESULT notification sent by the initialization
2163  * firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
2164  */
2165 static void
2166 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2167     struct iwn_rx_data *data)
2168 {
2169 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2170 	int len, idx = -1;
2171 
2172 	/* Runtime firmware should not send such a notification. */
2173 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2174 		return;
2175 
2176 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2177 	len = (le32toh(desc->len) & 0x3fff) - 4;
2178 
2179 	switch (calib->code) {
2180 	case IWN5000_PHY_CALIB_DC:
2181 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2182 		    sc->hw_type == IWN_HW_REV_TYPE_6050)
2183 			idx = 0;
2184 		break;
2185 	case IWN5000_PHY_CALIB_LO:
2186 		idx = 1;
2187 		break;
2188 	case IWN5000_PHY_CALIB_TX_IQ:
2189 		idx = 2;
2190 		break;
2191 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2192 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2193 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2194 			idx = 3;
2195 		break;
2196 	case IWN5000_PHY_CALIB_BASE_BAND:
2197 		idx = 4;
2198 		break;
2199 	}
2200 	if (idx == -1)	/* Ignore other results. */
2201 		return;
2202 
2203 	/* Save calibration result. */
2204 	if (sc->calibcmd[idx].buf != NULL)
2205 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2206 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2207 	if (sc->calibcmd[idx].buf == NULL) {
2208 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2209 		    "not enough memory for calibration result %d\n",
2210 		    calib->code);
2211 		return;
2212 	}
2213 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2214 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2215 	sc->calibcmd[idx].len = len;
2216 	memcpy(sc->calibcmd[idx].buf, calib, len);
2217 }
2218 
2219 /*
2220  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2221  * The latter is sent by the firmware after each received beacon.
2222  */
2223 static void
2224 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2225     struct iwn_rx_data *data)
2226 {
2227 	const struct iwn_hal *hal = sc->sc_hal;
2228 	struct ifnet *ifp = sc->sc_ifp;
2229 	struct ieee80211com *ic = ifp->if_l2com;
2230 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2231 	struct iwn_calib_state *calib = &sc->calib;
2232 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2233 	int temp;
2234 
2235 	/* Beacon stats are meaningful only when associated and not scanning. */
2236 	if (vap->iv_state != IEEE80211_S_RUN ||
2237 	    (ic->ic_flags & IEEE80211_F_SCAN))
2238 		return;
2239 
2240 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2241 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2242 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2243 
2244 	/* Test if temperature has changed. */
2245 	if (stats->general.temp != sc->rawtemp) {
2246 		/* Convert "raw" temperature to degC. */
2247 		sc->rawtemp = stats->general.temp;
2248 		temp = hal->get_temperature(sc);
2249 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2250 		    __func__, temp);
2251 
2252 		/* Update TX power if need be (4965AGN only.) */
2253 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2254 			iwn4965_power_calibration(sc, temp);
2255 	}
2256 
2257 	if (desc->type != IWN_BEACON_STATISTICS)
2258 		return;	/* Reply to a statistics request. */
2259 
2260 	sc->noise = iwn_get_noise(&stats->rx.general);
2261 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2262 
2263 	/* Test that RSSI and noise are present in stats report. */
2264 	if (le32toh(stats->rx.general.flags) != 1) {
2265 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2266 		    "received statistics without RSSI");
2267 		return;
2268 	}
2269 
2270 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2271 		iwn_collect_noise(sc, &stats->rx.general);
2272 	else if (calib->state == IWN_CALIB_STATE_RUN)
2273 		iwn_tune_sensitivity(sc, &stats->rx);
2274 }
2275 
2276 /*
2277  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2278  * and 5000 adapters have different incompatible TX status formats.
2279  */
2280 static void
2281 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2282     struct iwn_rx_data *data)
2283 {
2284 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2285 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2286 
2287 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2288 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2289 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2290 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2291 	    le32toh(stat->status));
2292 
2293 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2294 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2295 }
2296 
2297 static void
2298 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2299     struct iwn_rx_data *data)
2300 {
2301 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2302 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2303 
2304 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2305 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2306 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2307 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2308 	    le32toh(stat->status));
2309 
2310 #ifdef notyet
2311 	/* Reset TX scheduler slot. */
2312 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2313 #endif
2314 
2315 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2316 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2317 }
2318 
2319 /*
2320  * Adapter-independent backend for TX_DONE firmware notifications.
2321  */
2322 static void
2323 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2324     uint8_t status)
2325 {
2326 	struct ifnet *ifp = sc->sc_ifp;
2327 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2328 	struct iwn_tx_data *data = &ring->data[desc->idx];
2329 	struct mbuf *m;
2330 	struct ieee80211_node *ni;
2331 	struct ieee80211vap *vap;
2332 
2333 	KASSERT(data->ni != NULL, ("no node"));
2334 
2335 	/* Unmap and free mbuf. */
2336 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2337 	bus_dmamap_unload(ring->data_dmat, data->map);
2338 	m = data->m, data->m = NULL;
2339 	ni = data->ni, data->ni = NULL;
2340 	vap = ni->ni_vap;
2341 
2342 	if (m->m_flags & M_TXCB) {
2343 		/*
2344 		 * Channels marked for "radar" require traffic to be received
2345 		 * to unlock before we can transmit.  Until traffic is seen
2346 		 * any attempt to transmit is returned immediately with status
2347 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2348 		 * happen on first authenticate after scanning.  To workaround
2349 		 * this we ignore a failure of this sort in AUTH state so the
2350 		 * 802.11 layer will fall back to using a timeout to wait for
2351 		 * the AUTH reply.  This allows the firmware time to see
2352 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2353 		 * unclear why the firmware does not maintain state for
2354 		 * channels recently visited as this would allow immediate
2355 		 * use of the channel after a scan (where we see traffic).
2356 		 */
2357 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2358 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2359 			ieee80211_process_callback(ni, m, 0);
2360 		else
2361 			ieee80211_process_callback(ni, m,
2362 			    (status & IWN_TX_FAIL) != 0);
2363 	}
2364 
2365 	/*
2366 	 * Update rate control statistics for the node.
2367 	 */
2368 	if (status & 0x80) {
2369 		ifp->if_oerrors++;
2370 		ieee80211_ratectl_tx_complete(vap, ni,
2371 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2372 	} else {
2373 		ieee80211_ratectl_tx_complete(vap, ni,
2374 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2375 	}
2376 	m_freem(m);
2377 	ieee80211_free_node(ni);
2378 
2379 	sc->sc_tx_timer = 0;
2380 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2381 		sc->qfullmsk &= ~(1 << ring->qid);
2382 		if (sc->qfullmsk == 0 &&
2383 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2384 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2385 			iwn_start_locked(ifp);
2386 		}
2387 	}
2388 }
2389 
2390 /*
2391  * Process a "command done" firmware notification.  This is where we wakeup
2392  * processes waiting for a synchronous command completion.
2393  */
2394 static void
2395 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2396 {
2397 	struct iwn_tx_ring *ring = &sc->txq[4];
2398 	struct iwn_tx_data *data;
2399 
2400 	if ((desc->qid & 0xf) != 4)
2401 		return;	/* Not a command ack. */
2402 
2403 	data = &ring->data[desc->idx];
2404 
2405 	/* If the command was mapped in an mbuf, free it. */
2406 	if (data->m != NULL) {
2407 		bus_dmamap_unload(ring->data_dmat, data->map);
2408 		m_freem(data->m);
2409 		data->m = NULL;
2410 	}
2411 	wakeup(&ring->desc[desc->idx]);
2412 }
2413 
2414 /*
2415  * Process an INT_FH_RX or INT_SW_RX interrupt.
2416  */
2417 static void
2418 iwn_notif_intr(struct iwn_softc *sc)
2419 {
2420 	struct ifnet *ifp = sc->sc_ifp;
2421 	struct ieee80211com *ic = ifp->if_l2com;
2422 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2423 	uint16_t hw;
2424 
2425 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2426 	    BUS_DMASYNC_POSTREAD);
2427 
2428 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2429 	while (sc->rxq.cur != hw) {
2430 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2431 		struct iwn_rx_desc *desc;
2432 
2433 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2434 		    BUS_DMASYNC_POSTREAD);
2435 		desc = mtod(data->m, struct iwn_rx_desc *);
2436 
2437 		DPRINTF(sc, IWN_DEBUG_RECV,
2438 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2439 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2440 		    desc->type, iwn_intr_str(desc->type),
2441 		    le16toh(desc->len));
2442 
2443 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2444 			iwn_cmd_done(sc, desc);
2445 
2446 		switch (desc->type) {
2447 		case IWN_RX_PHY:
2448 			iwn_rx_phy(sc, desc, data);
2449 			break;
2450 
2451 		case IWN_RX_DONE:		/* 4965AGN only. */
2452 		case IWN_MPDU_RX_DONE:
2453 			/* An 802.11 frame has been received. */
2454 			iwn_rx_done(sc, desc, data);
2455 			break;
2456 
2457 #if 0	/* HT */
2458 		case IWN_RX_COMPRESSED_BA:
2459 			/* A Compressed BlockAck has been received. */
2460 			iwn_rx_compressed_ba(sc, desc, data);
2461 			break;
2462 #endif
2463 
2464 		case IWN_TX_DONE:
2465 			/* An 802.11 frame has been transmitted. */
2466 			sc->sc_hal->tx_done(sc, desc, data);
2467 			break;
2468 
2469 		case IWN_RX_STATISTICS:
2470 		case IWN_BEACON_STATISTICS:
2471 			iwn_rx_statistics(sc, desc, data);
2472 			break;
2473 
2474 		case IWN_BEACON_MISSED:
2475 		{
2476 			struct iwn_beacon_missed *miss =
2477 			    (struct iwn_beacon_missed *)(desc + 1);
2478 			int misses;
2479 
2480 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2481 			    BUS_DMASYNC_POSTREAD);
2482 			misses = le32toh(miss->consecutive);
2483 
2484 			/* XXX not sure why we're notified w/ zero */
2485 			if (misses == 0)
2486 				break;
2487 			DPRINTF(sc, IWN_DEBUG_STATE,
2488 			    "%s: beacons missed %d/%d\n", __func__,
2489 			    misses, le32toh(miss->total));
2490 
2491 			/*
2492 			 * If more than 5 consecutive beacons are missed,
2493 			 * reinitialize the sensitivity state machine.
2494 			 */
2495 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2496 				(void) iwn_init_sensitivity(sc);
2497 			if (misses >= vap->iv_bmissthreshold) {
2498 				IWN_UNLOCK(sc);
2499 				ieee80211_beacon_miss(ic);
2500 				IWN_LOCK(sc);
2501 			}
2502 			break;
2503 		}
2504 		case IWN_UC_READY:
2505 		{
2506 			struct iwn_ucode_info *uc =
2507 			    (struct iwn_ucode_info *)(desc + 1);
2508 
2509 			/* The microcontroller is ready. */
2510 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2511 			    BUS_DMASYNC_POSTREAD);
2512 			DPRINTF(sc, IWN_DEBUG_RESET,
2513 			    "microcode alive notification version=%d.%d "
2514 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2515 			    uc->subtype, le32toh(uc->valid));
2516 
2517 			if (le32toh(uc->valid) != 1) {
2518 				device_printf(sc->sc_dev,
2519 				    "microcontroller initialization failed");
2520 				break;
2521 			}
2522 			if (uc->subtype == IWN_UCODE_INIT) {
2523 				/* Save microcontroller report. */
2524 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2525 			}
2526 			/* Save the address of the error log in SRAM. */
2527 			sc->errptr = le32toh(uc->errptr);
2528 			break;
2529 		}
2530 		case IWN_STATE_CHANGED:
2531 		{
2532 			uint32_t *status = (uint32_t *)(desc + 1);
2533 
2534 			/*
2535 			 * State change allows hardware switch change to be
2536 			 * noted. However, we handle this in iwn_intr as we
2537 			 * get both the enable/disble intr.
2538 			 */
2539 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2540 			    BUS_DMASYNC_POSTREAD);
2541 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2542 			    le32toh(*status));
2543 			break;
2544 		}
2545 		case IWN_START_SCAN:
2546 		{
2547 			struct iwn_start_scan *scan =
2548 			    (struct iwn_start_scan *)(desc + 1);
2549 
2550 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2551 			    BUS_DMASYNC_POSTREAD);
2552 			DPRINTF(sc, IWN_DEBUG_ANY,
2553 			    "%s: scanning channel %d status %x\n",
2554 			    __func__, scan->chan, le32toh(scan->status));
2555 			break;
2556 		}
2557 		case IWN_STOP_SCAN:
2558 		{
2559 			struct iwn_stop_scan *scan =
2560 			    (struct iwn_stop_scan *)(desc + 1);
2561 
2562 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2563 			    BUS_DMASYNC_POSTREAD);
2564 			DPRINTF(sc, IWN_DEBUG_STATE,
2565 			    "scan finished nchan=%d status=%d chan=%d\n",
2566 			    scan->nchan, scan->status, scan->chan);
2567 
2568 			IWN_UNLOCK(sc);
2569 			ieee80211_scan_next(vap);
2570 			IWN_LOCK(sc);
2571 			break;
2572 		}
2573 		case IWN5000_CALIBRATION_RESULT:
2574 			iwn5000_rx_calib_results(sc, desc, data);
2575 			break;
2576 
2577 		case IWN5000_CALIBRATION_DONE:
2578 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2579 			wakeup(sc);
2580 			break;
2581 		}
2582 
2583 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2584 	}
2585 
2586 	/* Tell the firmware what we have processed. */
2587 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2588 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2589 }
2590 
2591 /*
2592  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2593  * from power-down sleep mode.
2594  */
2595 static void
2596 iwn_wakeup_intr(struct iwn_softc *sc)
2597 {
2598 	int qid;
2599 
2600 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2601 	    __func__);
2602 
2603 	/* Wakeup RX and TX rings. */
2604 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2605 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2606 		struct iwn_tx_ring *ring = &sc->txq[qid];
2607 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2608 	}
2609 }
2610 
2611 static void
2612 iwn_rftoggle_intr(struct iwn_softc *sc)
2613 {
2614 	struct ifnet *ifp = sc->sc_ifp;
2615 	struct ieee80211com *ic = ifp->if_l2com;
2616 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2617 
2618 	IWN_LOCK_ASSERT(sc);
2619 
2620 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2621 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2622 	if (tmp & IWN_GP_CNTRL_RFKILL)
2623 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2624 	else
2625 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2626 }
2627 
2628 /*
2629  * Dump the error log of the firmware when a firmware panic occurs.  Although
2630  * we can't debug the firmware because it is neither open source nor free, it
2631  * can help us to identify certain classes of problems.
2632  */
2633 static void
2634 iwn_fatal_intr(struct iwn_softc *sc)
2635 {
2636 	const struct iwn_hal *hal = sc->sc_hal;
2637 	struct iwn_fw_dump dump;
2638 	int i;
2639 
2640 	IWN_LOCK_ASSERT(sc);
2641 
2642 	/* Force a complete recalibration on next init. */
2643 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2644 
2645 	/* Check that the error log address is valid. */
2646 	if (sc->errptr < IWN_FW_DATA_BASE ||
2647 	    sc->errptr + sizeof (dump) >
2648 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2649 		printf("%s: bad firmware error log address 0x%08x\n",
2650 		    __func__, sc->errptr);
2651 		return;
2652 	}
2653 	if (iwn_nic_lock(sc) != 0) {
2654 		printf("%s: could not read firmware error log\n",
2655 		    __func__);
2656 		return;
2657 	}
2658 	/* Read firmware error log from SRAM. */
2659 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2660 	    sizeof (dump) / sizeof (uint32_t));
2661 	iwn_nic_unlock(sc);
2662 
2663 	if (dump.valid == 0) {
2664 		printf("%s: firmware error log is empty\n",
2665 		    __func__);
2666 		return;
2667 	}
2668 	printf("firmware error log:\n");
2669 	printf("  error type      = \"%s\" (0x%08X)\n",
2670 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2671 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2672 	    dump.id);
2673 	printf("  program counter = 0x%08X\n", dump.pc);
2674 	printf("  source line     = 0x%08X\n", dump.src_line);
2675 	printf("  error data      = 0x%08X%08X\n",
2676 	    dump.error_data[0], dump.error_data[1]);
2677 	printf("  branch link     = 0x%08X%08X\n",
2678 	    dump.branch_link[0], dump.branch_link[1]);
2679 	printf("  interrupt link  = 0x%08X%08X\n",
2680 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2681 	printf("  time            = %u\n", dump.time[0]);
2682 
2683 	/* Dump driver status (TX and RX rings) while we're here. */
2684 	printf("driver status:\n");
2685 	for (i = 0; i < hal->ntxqs; i++) {
2686 		struct iwn_tx_ring *ring = &sc->txq[i];
2687 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2688 		    i, ring->qid, ring->cur, ring->queued);
2689 	}
2690 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2691 }
2692 
2693 static void
2694 iwn_intr(void *arg)
2695 {
2696 	struct iwn_softc *sc = arg;
2697 	struct ifnet *ifp = sc->sc_ifp;
2698 	uint32_t r1, r2, tmp;
2699 
2700 	IWN_LOCK(sc);
2701 
2702 	/* Disable interrupts. */
2703 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2704 
2705 	/* Read interrupts from ICT (fast) or from registers (slow). */
2706 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2707 		tmp = 0;
2708 		while (sc->ict[sc->ict_cur] != 0) {
2709 			tmp |= sc->ict[sc->ict_cur];
2710 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2711 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2712 		}
2713 		tmp = le32toh(tmp);
2714 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2715 			tmp = 0;
2716 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2717 			tmp |= 0x8000;
2718 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2719 		r2 = 0;	/* Unused. */
2720 	} else {
2721 		r1 = IWN_READ(sc, IWN_INT);
2722 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2723 			return;	/* Hardware gone! */
2724 		r2 = IWN_READ(sc, IWN_FH_INT);
2725 	}
2726 
2727 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2728 
2729 	if (r1 == 0 && r2 == 0)
2730 		goto done;	/* Interrupt not for us. */
2731 
2732 	/* Acknowledge interrupts. */
2733 	IWN_WRITE(sc, IWN_INT, r1);
2734 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2735 		IWN_WRITE(sc, IWN_FH_INT, r2);
2736 
2737 	if (r1 & IWN_INT_RF_TOGGLED) {
2738 		iwn_rftoggle_intr(sc);
2739 		goto done;
2740 	}
2741 	if (r1 & IWN_INT_CT_REACHED) {
2742 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2743 		    __func__);
2744 	}
2745 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2746 		iwn_fatal_intr(sc);
2747 		ifp->if_flags &= ~IFF_UP;
2748 		iwn_stop_locked(sc);
2749 		goto done;
2750 	}
2751 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2752 	    (r2 & IWN_FH_INT_RX)) {
2753 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2754 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2755 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2756 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2757 			    IWN_INT_PERIODIC_DIS);
2758 			iwn_notif_intr(sc);
2759 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2760 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2761 				    IWN_INT_PERIODIC_ENA);
2762 			}
2763 		} else
2764 			iwn_notif_intr(sc);
2765 	}
2766 
2767 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2768 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2769 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2770 		wakeup(sc);	/* FH DMA transfer completed. */
2771 	}
2772 
2773 	if (r1 & IWN_INT_ALIVE)
2774 		wakeup(sc);	/* Firmware is alive. */
2775 
2776 	if (r1 & IWN_INT_WAKEUP)
2777 		iwn_wakeup_intr(sc);
2778 
2779 done:
2780 	/* Re-enable interrupts. */
2781 	if (ifp->if_flags & IFF_UP)
2782 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2783 
2784 	IWN_UNLOCK(sc);
2785 }
2786 
2787 /*
2788  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2789  * 5000 adapters use a slightly different format.)
2790  */
2791 static void
2792 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2793     uint16_t len)
2794 {
2795 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2796 
2797 	*w = htole16(len + 8);
2798 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2799 	    BUS_DMASYNC_PREWRITE);
2800 	if (idx < IWN_SCHED_WINSZ) {
2801 		*(w + IWN_TX_RING_COUNT) = *w;
2802 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2803 		    BUS_DMASYNC_PREWRITE);
2804 	}
2805 }
2806 
2807 static void
2808 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2809     uint16_t len)
2810 {
2811 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2812 
2813 	*w = htole16(id << 12 | (len + 8));
2814 
2815 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2816 	    BUS_DMASYNC_PREWRITE);
2817 	if (idx < IWN_SCHED_WINSZ) {
2818 		*(w + IWN_TX_RING_COUNT) = *w;
2819 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2820 		    BUS_DMASYNC_PREWRITE);
2821 	}
2822 }
2823 
2824 #ifdef notyet
2825 static void
2826 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2827 {
2828 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2829 
2830 	*w = (*w & htole16(0xf000)) | htole16(1);
2831 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2832 	    BUS_DMASYNC_PREWRITE);
2833 	if (idx < IWN_SCHED_WINSZ) {
2834 		*(w + IWN_TX_RING_COUNT) = *w;
2835 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2836 		    BUS_DMASYNC_PREWRITE);
2837 	}
2838 }
2839 #endif
2840 
2841 static uint8_t
2842 iwn_plcp_signal(int rate) {
2843 	int i;
2844 
2845 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2846 		if (rate == iwn_rates[i].rate)
2847 			return i;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static int
2854 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2855     struct iwn_tx_ring *ring)
2856 {
2857 	const struct iwn_hal *hal = sc->sc_hal;
2858 	const struct ieee80211_txparam *tp;
2859 	const struct iwn_rate *rinfo;
2860 	struct ieee80211vap *vap = ni->ni_vap;
2861 	struct ieee80211com *ic = ni->ni_ic;
2862 	struct iwn_node *wn = (void *)ni;
2863 	struct iwn_tx_desc *desc;
2864 	struct iwn_tx_data *data;
2865 	struct iwn_tx_cmd *cmd;
2866 	struct iwn_cmd_data *tx;
2867 	struct ieee80211_frame *wh;
2868 	struct ieee80211_key *k = NULL;
2869 	struct mbuf *mnew;
2870 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2871 	uint32_t flags;
2872 	u_int hdrlen;
2873 	int totlen, error, pad, nsegs = 0, i, rate;
2874 	uint8_t ridx, type, txant;
2875 
2876 	IWN_LOCK_ASSERT(sc);
2877 
2878 	wh = mtod(m, struct ieee80211_frame *);
2879 	hdrlen = ieee80211_anyhdrsize(wh);
2880 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2881 
2882 	desc = &ring->desc[ring->cur];
2883 	data = &ring->data[ring->cur];
2884 
2885 	/* Choose a TX rate index. */
2886 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2887 	if (type == IEEE80211_FC0_TYPE_MGT)
2888 		rate = tp->mgmtrate;
2889 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2890 		rate = tp->mcastrate;
2891 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2892 		rate = tp->ucastrate;
2893 	else {
2894 		/* XXX pass pktlen */
2895 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2896 		rate = ni->ni_txrate;
2897 	}
2898 	ridx = iwn_plcp_signal(rate);
2899 	rinfo = &iwn_rates[ridx];
2900 
2901 	/* Encrypt the frame if need be. */
2902 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2903 		k = ieee80211_crypto_encap(ni, m);
2904 		if (k == NULL) {
2905 			m_freem(m);
2906 			return ENOBUFS;
2907 		}
2908 		/* Packet header may have moved, reset our local pointer. */
2909 		wh = mtod(m, struct ieee80211_frame *);
2910 	}
2911 	totlen = m->m_pkthdr.len;
2912 
2913 	if (ieee80211_radiotap_active_vap(vap)) {
2914 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2915 
2916 		tap->wt_flags = 0;
2917 		tap->wt_rate = rinfo->rate;
2918 		if (k != NULL)
2919 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2920 
2921 		ieee80211_radiotap_tx(vap, m);
2922 	}
2923 
2924 	/* Prepare TX firmware command. */
2925 	cmd = &ring->cmd[ring->cur];
2926 	cmd->code = IWN_CMD_TX_DATA;
2927 	cmd->flags = 0;
2928 	cmd->qid = ring->qid;
2929 	cmd->idx = ring->cur;
2930 
2931 	tx = (struct iwn_cmd_data *)cmd->data;
2932 	/* NB: No need to clear tx, all fields are reinitialized here. */
2933 	tx->scratch = 0;	/* clear "scratch" area */
2934 
2935 	flags = 0;
2936 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2937 		flags |= IWN_TX_NEED_ACK;
2938 	if ((wh->i_fc[0] &
2939 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2940 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2941 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2942 
2943 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2944 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2945 
2946 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2947 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2948 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2949 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2950 			flags |= IWN_TX_NEED_RTS;
2951 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2952 		    ridx >= IWN_RIDX_OFDM6) {
2953 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2954 				flags |= IWN_TX_NEED_CTS;
2955 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2956 				flags |= IWN_TX_NEED_RTS;
2957 		}
2958 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2959 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2960 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2961 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2962 				flags |= IWN_TX_NEED_PROTECTION;
2963 			} else
2964 				flags |= IWN_TX_FULL_TXOP;
2965 		}
2966 	}
2967 
2968 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2969 	    type != IEEE80211_FC0_TYPE_DATA)
2970 		tx->id = hal->broadcast_id;
2971 	else
2972 		tx->id = wn->id;
2973 
2974 	if (type == IEEE80211_FC0_TYPE_MGT) {
2975 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2976 
2977 		/* Tell HW to set timestamp in probe responses. */
2978 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2979 			flags |= IWN_TX_INSERT_TSTAMP;
2980 
2981 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2982 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2983 			tx->timeout = htole16(3);
2984 		else
2985 			tx->timeout = htole16(2);
2986 	} else
2987 		tx->timeout = htole16(0);
2988 
2989 	if (hdrlen & 3) {
2990 		/* First segment length must be a multiple of 4. */
2991 		flags |= IWN_TX_NEED_PADDING;
2992 		pad = 4 - (hdrlen & 3);
2993 	} else
2994 		pad = 0;
2995 
2996 	tx->len = htole16(totlen);
2997 	tx->tid = 0;
2998 	tx->rts_ntries = 60;
2999 	tx->data_ntries = 15;
3000 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3001 	tx->plcp = rinfo->plcp;
3002 	tx->rflags = rinfo->flags;
3003 	if (tx->id == hal->broadcast_id) {
3004 		/* Group or management frame. */
3005 		tx->linkq = 0;
3006 		/* XXX Alternate between antenna A and B? */
3007 		txant = IWN_LSB(sc->txchainmask);
3008 		tx->rflags |= IWN_RFLAG_ANT(txant);
3009 	} else {
3010 		tx->linkq = 0;
3011 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3012 	}
3013 
3014 	/* Set physical address of "scratch area". */
3015 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3016 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3017 
3018 	/* Copy 802.11 header in TX command. */
3019 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3020 
3021 	/* Trim 802.11 header. */
3022 	m_adj(m, hdrlen);
3023 	tx->security = 0;
3024 	tx->flags = htole32(flags);
3025 
3026 	if (m->m_len > 0) {
3027 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3028 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3029 		if (error == EFBIG) {
3030 			/* too many fragments, linearize */
3031 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3032 			if (mnew == NULL) {
3033 				device_printf(sc->sc_dev,
3034 				    "%s: could not defrag mbuf\n", __func__);
3035 				m_freem(m);
3036 				return ENOBUFS;
3037 			}
3038 			m = mnew;
3039 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3040 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3041 		}
3042 		if (error != 0) {
3043 			device_printf(sc->sc_dev,
3044 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3045 			    __func__, error);
3046 			m_freem(m);
3047 			return error;
3048 		}
3049 	}
3050 
3051 	data->m = m;
3052 	data->ni = ni;
3053 
3054 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3055 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3056 
3057 	/* Fill TX descriptor. */
3058 	desc->nsegs = 1 + nsegs;
3059 	/* First DMA segment is used by the TX command. */
3060 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3061 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3062 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3063 	/* Other DMA segments are for data payload. */
3064 	for (i = 1; i <= nsegs; i++) {
3065 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3066 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3067 		    segs[i - 1].ds_len << 4);
3068 	}
3069 
3070 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3071 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3072 	    BUS_DMASYNC_PREWRITE);
3073 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3074 	    BUS_DMASYNC_PREWRITE);
3075 
3076 #ifdef notyet
3077 	/* Update TX scheduler. */
3078 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3079 #endif
3080 
3081 	/* Kick TX ring. */
3082 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3083 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3084 
3085 	/* Mark TX ring as full if we reach a certain threshold. */
3086 	if (++ring->queued > IWN_TX_RING_HIMARK)
3087 		sc->qfullmsk |= 1 << ring->qid;
3088 
3089 	return 0;
3090 }
3091 
3092 static int
3093 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3094     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3095     const struct ieee80211_bpf_params *params)
3096 {
3097 	const struct iwn_hal *hal = sc->sc_hal;
3098 	const struct iwn_rate *rinfo;
3099 	struct ifnet *ifp = sc->sc_ifp;
3100 	struct ieee80211vap *vap = ni->ni_vap;
3101 	struct ieee80211com *ic = ifp->if_l2com;
3102 	struct iwn_tx_cmd *cmd;
3103 	struct iwn_cmd_data *tx;
3104 	struct ieee80211_frame *wh;
3105 	struct iwn_tx_desc *desc;
3106 	struct iwn_tx_data *data;
3107 	struct mbuf *mnew;
3108 	bus_addr_t paddr;
3109 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3110 	uint32_t flags;
3111 	u_int hdrlen;
3112 	int totlen, error, pad, nsegs = 0, i, rate;
3113 	uint8_t ridx, type, txant;
3114 
3115 	IWN_LOCK_ASSERT(sc);
3116 
3117 	wh = mtod(m, struct ieee80211_frame *);
3118 	hdrlen = ieee80211_anyhdrsize(wh);
3119 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3120 
3121 	desc = &ring->desc[ring->cur];
3122 	data = &ring->data[ring->cur];
3123 
3124 	/* Choose a TX rate index. */
3125 	rate = params->ibp_rate0;
3126 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3127 		/* XXX fall back to mcast/mgmt rate? */
3128 		m_freem(m);
3129 		return EINVAL;
3130 	}
3131 	ridx = iwn_plcp_signal(rate);
3132 	rinfo = &iwn_rates[ridx];
3133 
3134 	totlen = m->m_pkthdr.len;
3135 
3136 	/* Prepare TX firmware command. */
3137 	cmd = &ring->cmd[ring->cur];
3138 	cmd->code = IWN_CMD_TX_DATA;
3139 	cmd->flags = 0;
3140 	cmd->qid = ring->qid;
3141 	cmd->idx = ring->cur;
3142 
3143 	tx = (struct iwn_cmd_data *)cmd->data;
3144 	/* NB: No need to clear tx, all fields are reinitialized here. */
3145 	tx->scratch = 0;	/* clear "scratch" area */
3146 
3147 	flags = 0;
3148 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3149 		flags |= IWN_TX_NEED_ACK;
3150 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3151 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3152 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3153 			flags &= ~IWN_TX_NEED_RTS;
3154 			flags |= IWN_TX_NEED_PROTECTION;
3155 		} else
3156 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3157 	}
3158 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3159 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3160 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3161 			flags &= ~IWN_TX_NEED_CTS;
3162 			flags |= IWN_TX_NEED_PROTECTION;
3163 		} else
3164 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3165 	}
3166 	if (type == IEEE80211_FC0_TYPE_MGT) {
3167 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3168 
3169 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3170 			flags |= IWN_TX_INSERT_TSTAMP;
3171 
3172 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3173 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3174 			tx->timeout = htole16(3);
3175 		else
3176 			tx->timeout = htole16(2);
3177 	} else
3178 		tx->timeout = htole16(0);
3179 
3180 	if (hdrlen & 3) {
3181 		/* First segment length must be a multiple of 4. */
3182 		flags |= IWN_TX_NEED_PADDING;
3183 		pad = 4 - (hdrlen & 3);
3184 	} else
3185 		pad = 0;
3186 
3187 	if (ieee80211_radiotap_active_vap(vap)) {
3188 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3189 
3190 		tap->wt_flags = 0;
3191 		tap->wt_rate = rate;
3192 
3193 		ieee80211_radiotap_tx(vap, m);
3194 	}
3195 
3196 	tx->len = htole16(totlen);
3197 	tx->tid = 0;
3198 	tx->id = hal->broadcast_id;
3199 	tx->rts_ntries = params->ibp_try1;
3200 	tx->data_ntries = params->ibp_try0;
3201 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3202 	tx->plcp = rinfo->plcp;
3203 	tx->rflags = rinfo->flags;
3204 	/* Group or management frame. */
3205 	tx->linkq = 0;
3206 	txant = IWN_LSB(sc->txchainmask);
3207 	tx->rflags |= IWN_RFLAG_ANT(txant);
3208 	/* Set physical address of "scratch area". */
3209 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3210 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3211 	tx->hiaddr = IWN_HIADDR(paddr);
3212 
3213 	/* Copy 802.11 header in TX command. */
3214 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3215 
3216 	/* Trim 802.11 header. */
3217 	m_adj(m, hdrlen);
3218 	tx->security = 0;
3219 	tx->flags = htole32(flags);
3220 
3221 	if (m->m_len > 0) {
3222 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3223 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3224 		if (error == EFBIG) {
3225 			/* Too many fragments, linearize. */
3226 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3227 			if (mnew == NULL) {
3228 				device_printf(sc->sc_dev,
3229 				    "%s: could not defrag mbuf\n", __func__);
3230 				m_freem(m);
3231 				return ENOBUFS;
3232 			}
3233 			m = mnew;
3234 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3235 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3236 		}
3237 		if (error != 0) {
3238 			device_printf(sc->sc_dev,
3239 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3240 			    __func__, error);
3241 			m_freem(m);
3242 			return error;
3243 		}
3244 	}
3245 
3246 	data->m = m;
3247 	data->ni = ni;
3248 
3249 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3250 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3251 
3252 	/* Fill TX descriptor. */
3253 	desc->nsegs = 1 + nsegs;
3254 	/* First DMA segment is used by the TX command. */
3255 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3256 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3257 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3258 	/* Other DMA segments are for data payload. */
3259 	for (i = 1; i <= nsegs; i++) {
3260 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3261 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3262 		    segs[i - 1].ds_len << 4);
3263 	}
3264 
3265 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3266 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3267 	    BUS_DMASYNC_PREWRITE);
3268 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3269 	    BUS_DMASYNC_PREWRITE);
3270 
3271 #ifdef notyet
3272 	/* Update TX scheduler. */
3273 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3274 #endif
3275 
3276 	/* Kick TX ring. */
3277 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3278 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3279 
3280 	/* Mark TX ring as full if we reach a certain threshold. */
3281 	if (++ring->queued > IWN_TX_RING_HIMARK)
3282 		sc->qfullmsk |= 1 << ring->qid;
3283 
3284 	return 0;
3285 }
3286 
3287 static int
3288 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3289 	const struct ieee80211_bpf_params *params)
3290 {
3291 	struct ieee80211com *ic = ni->ni_ic;
3292 	struct ifnet *ifp = ic->ic_ifp;
3293 	struct iwn_softc *sc = ifp->if_softc;
3294 	struct iwn_tx_ring *txq;
3295 	int error = 0;
3296 
3297 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3298 		ieee80211_free_node(ni);
3299 		m_freem(m);
3300 		return ENETDOWN;
3301 	}
3302 
3303 	IWN_LOCK(sc);
3304 	if (params == NULL)
3305 		txq = &sc->txq[M_WME_GETAC(m)];
3306 	else
3307 		txq = &sc->txq[params->ibp_pri & 3];
3308 
3309 	if (params == NULL) {
3310 		/*
3311 		 * Legacy path; interpret frame contents to decide
3312 		 * precisely how to send the frame.
3313 		 */
3314 		error = iwn_tx_data(sc, m, ni, txq);
3315 	} else {
3316 		/*
3317 		 * Caller supplied explicit parameters to use in
3318 		 * sending the frame.
3319 		 */
3320 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3321 	}
3322 	if (error != 0) {
3323 		/* NB: m is reclaimed on tx failure */
3324 		ieee80211_free_node(ni);
3325 		ifp->if_oerrors++;
3326 	}
3327 	IWN_UNLOCK(sc);
3328 	return error;
3329 }
3330 
3331 static void
3332 iwn_start(struct ifnet *ifp)
3333 {
3334 	struct iwn_softc *sc = ifp->if_softc;
3335 
3336 	IWN_LOCK(sc);
3337 	iwn_start_locked(ifp);
3338 	IWN_UNLOCK(sc);
3339 }
3340 
3341 static void
3342 iwn_start_locked(struct ifnet *ifp)
3343 {
3344 	struct iwn_softc *sc = ifp->if_softc;
3345 	struct ieee80211_node *ni;
3346 	struct iwn_tx_ring *txq;
3347 	struct mbuf *m;
3348 	int pri;
3349 
3350 	IWN_LOCK_ASSERT(sc);
3351 
3352 	for (;;) {
3353 		if (sc->qfullmsk != 0) {
3354 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3355 			break;
3356 		}
3357 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3358 		if (m == NULL)
3359 			break;
3360 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3361 		pri = M_WME_GETAC(m);
3362 		txq = &sc->txq[pri];
3363 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3364 			ifp->if_oerrors++;
3365 			ieee80211_free_node(ni);
3366 			break;
3367 		}
3368 		sc->sc_tx_timer = 5;
3369 	}
3370 }
3371 
3372 static void
3373 iwn_watchdog(struct iwn_softc *sc)
3374 {
3375 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3376 		struct ifnet *ifp = sc->sc_ifp;
3377 		struct ieee80211com *ic = ifp->if_l2com;
3378 
3379 		if_printf(ifp, "device timeout\n");
3380 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3381 	}
3382 }
3383 
3384 static int
3385 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3386 {
3387 	struct iwn_softc *sc = ifp->if_softc;
3388 	struct ieee80211com *ic = ifp->if_l2com;
3389 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3390 	struct ifreq *ifr = (struct ifreq *) data;
3391 	int error = 0, startall = 0, stop = 0;
3392 
3393 	switch (cmd) {
3394 	case SIOCSIFFLAGS:
3395 		IWN_LOCK(sc);
3396 		if (ifp->if_flags & IFF_UP) {
3397 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3398 				iwn_init_locked(sc);
3399 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3400 					startall = 1;
3401 				else
3402 					stop = 1;
3403 			}
3404 		} else {
3405 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3406 				iwn_stop_locked(sc);
3407 		}
3408 		IWN_UNLOCK(sc);
3409 		if (startall)
3410 			ieee80211_start_all(ic);
3411 		else if (vap != NULL && stop)
3412 			ieee80211_stop(vap);
3413 		break;
3414 	case SIOCGIFMEDIA:
3415 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3416 		break;
3417 	case SIOCGIFADDR:
3418 		error = ether_ioctl(ifp, cmd, data);
3419 		break;
3420 	default:
3421 		error = EINVAL;
3422 		break;
3423 	}
3424 	return error;
3425 }
3426 
3427 /*
3428  * Send a command to the firmware.
3429  */
3430 static int
3431 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3432 {
3433 	struct iwn_tx_ring *ring = &sc->txq[4];
3434 	struct iwn_tx_desc *desc;
3435 	struct iwn_tx_data *data;
3436 	struct iwn_tx_cmd *cmd;
3437 	struct mbuf *m;
3438 	bus_addr_t paddr;
3439 	int totlen, error;
3440 
3441 	IWN_LOCK_ASSERT(sc);
3442 
3443 	desc = &ring->desc[ring->cur];
3444 	data = &ring->data[ring->cur];
3445 	totlen = 4 + size;
3446 
3447 	if (size > sizeof cmd->data) {
3448 		/* Command is too large to fit in a descriptor. */
3449 		if (totlen > MCLBYTES)
3450 			return EINVAL;
3451 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3452 		if (m == NULL)
3453 			return ENOMEM;
3454 		cmd = mtod(m, struct iwn_tx_cmd *);
3455 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3456 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3457 		if (error != 0) {
3458 			m_freem(m);
3459 			return error;
3460 		}
3461 		data->m = m;
3462 	} else {
3463 		cmd = &ring->cmd[ring->cur];
3464 		paddr = data->cmd_paddr;
3465 	}
3466 
3467 	cmd->code = code;
3468 	cmd->flags = 0;
3469 	cmd->qid = ring->qid;
3470 	cmd->idx = ring->cur;
3471 	memcpy(cmd->data, buf, size);
3472 
3473 	desc->nsegs = 1;
3474 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3475 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3476 
3477 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3478 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3479 	    cmd->flags, cmd->qid, cmd->idx);
3480 
3481 	if (size > sizeof cmd->data) {
3482 		bus_dmamap_sync(ring->data_dmat, data->map,
3483 		    BUS_DMASYNC_PREWRITE);
3484 	} else {
3485 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3486 		    BUS_DMASYNC_PREWRITE);
3487 	}
3488 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3489 	    BUS_DMASYNC_PREWRITE);
3490 
3491 #ifdef notyet
3492 	/* Update TX scheduler. */
3493 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3494 #endif
3495 
3496 	/* Kick command ring. */
3497 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3498 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3499 
3500 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3501 }
3502 
3503 static int
3504 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3505 {
3506 	struct iwn4965_node_info hnode;
3507 	caddr_t src, dst;
3508 
3509 	/*
3510 	 * We use the node structure for 5000 Series internally (it is
3511 	 * a superset of the one for 4965AGN). We thus copy the common
3512 	 * fields before sending the command.
3513 	 */
3514 	src = (caddr_t)node;
3515 	dst = (caddr_t)&hnode;
3516 	memcpy(dst, src, 48);
3517 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3518 	memcpy(dst + 48, src + 72, 20);
3519 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3520 }
3521 
3522 static int
3523 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3524 {
3525 	/* Direct mapping. */
3526 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3527 }
3528 
3529 #if 0	/* HT */
3530 static const uint8_t iwn_ridx_to_plcp[] = {
3531 	10, 20, 55, 110, /* CCK */
3532 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3533 };
3534 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3535 	0, 0, 0, 0, 			/* CCK */
3536 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3537 };
3538 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3539 	0, 0, 0, 0, 			/* CCK */
3540 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3541 };
3542 #endif
3543 static const uint8_t iwn_prev_ridx[] = {
3544 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3545 	0, 0, 1, 5,			/* CCK */
3546 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3547 };
3548 
3549 /*
3550  * Configure hardware link parameters for the specified
3551  * node operating on the specified channel.
3552  */
3553 static int
3554 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3555 {
3556 	struct ifnet *ifp = sc->sc_ifp;
3557 	struct ieee80211com *ic = ifp->if_l2com;
3558 	struct iwn_cmd_link_quality linkq;
3559 	const struct iwn_rate *rinfo;
3560 	int i;
3561 	uint8_t txant, ridx;
3562 
3563 	/* Use the first valid TX antenna. */
3564 	txant = IWN_LSB(sc->txchainmask);
3565 
3566 	memset(&linkq, 0, sizeof linkq);
3567 	linkq.id = id;
3568 	linkq.antmsk_1stream = txant;
3569 	linkq.antmsk_2stream = IWN_ANT_AB;
3570 	linkq.ampdu_max = 31;
3571 	linkq.ampdu_threshold = 3;
3572 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3573 
3574 #if 0	/* HT */
3575 	if (IEEE80211_IS_CHAN_HT(c))
3576 		linkq.mimo = 1;
3577 #endif
3578 
3579 	if (id == IWN_ID_BSS)
3580 		ridx = IWN_RIDX_OFDM54;
3581 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3582 		ridx = IWN_RIDX_OFDM6;
3583 	else
3584 		ridx = IWN_RIDX_CCK1;
3585 
3586 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3587 		rinfo = &iwn_rates[ridx];
3588 #if 0	/* HT */
3589 		if (IEEE80211_IS_CHAN_HT40(c)) {
3590 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3591 					 | IWN_RIDX_MCS;
3592 			linkq.retry[i].rflags = IWN_RFLAG_HT
3593 					 | IWN_RFLAG_HT40;
3594 			/* XXX shortGI */
3595 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3596 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3597 					 | IWN_RIDX_MCS;
3598 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3599 			/* XXX shortGI */
3600 		} else
3601 #endif
3602 		{
3603 			linkq.retry[i].plcp = rinfo->plcp;
3604 			linkq.retry[i].rflags = rinfo->flags;
3605 		}
3606 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3607 		ridx = iwn_prev_ridx[ridx];
3608 	}
3609 #ifdef IWN_DEBUG
3610 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3611 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3612 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3613 		printf("%s:", __func__);
3614 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3615 			printf(" %d:%x", linkq.retry[i].plcp,
3616 			    linkq.retry[i].rflags);
3617 		printf("\n");
3618 	}
3619 #endif
3620 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3621 }
3622 
3623 /*
3624  * Broadcast node is used to send group-addressed and management frames.
3625  */
3626 static int
3627 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3628 {
3629 	const struct iwn_hal *hal = sc->sc_hal;
3630 	struct ifnet *ifp = sc->sc_ifp;
3631 	struct iwn_node_info node;
3632 	int error;
3633 
3634 	memset(&node, 0, sizeof node);
3635 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3636 	node.id = hal->broadcast_id;
3637 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3638 	error = hal->add_node(sc, &node, async);
3639 	if (error != 0)
3640 		return error;
3641 
3642 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3643 	return error;
3644 }
3645 
3646 static int
3647 iwn_wme_update(struct ieee80211com *ic)
3648 {
3649 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3650 #define	IWN_TXOP_TO_US(v)		(v<<5)
3651 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3652 	struct iwn_edca_params cmd;
3653 	int i;
3654 
3655 	memset(&cmd, 0, sizeof cmd);
3656 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3657 	for (i = 0; i < WME_NUM_AC; i++) {
3658 		const struct wmeParams *wmep =
3659 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3660 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3661 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3662 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3663 		cmd.ac[i].txoplimit =
3664 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3665 	}
3666 	IEEE80211_UNLOCK(ic);
3667 	IWN_LOCK(sc);
3668 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3669 	IWN_UNLOCK(sc);
3670 	IEEE80211_LOCK(ic);
3671 	return 0;
3672 #undef IWN_TXOP_TO_US
3673 #undef IWN_EXP2
3674 }
3675 
3676 static void
3677 iwn_update_mcast(struct ifnet *ifp)
3678 {
3679 	/* Ignore */
3680 }
3681 
3682 static void
3683 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3684 {
3685 	struct iwn_cmd_led led;
3686 
3687 	/* Clear microcode LED ownership. */
3688 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3689 
3690 	led.which = which;
3691 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3692 	led.off = off;
3693 	led.on = on;
3694 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3695 }
3696 
3697 /*
3698  * Set the critical temperature at which the firmware will stop the radio
3699  * and notify us.
3700  */
3701 static int
3702 iwn_set_critical_temp(struct iwn_softc *sc)
3703 {
3704 	struct iwn_critical_temp crit;
3705 	int32_t temp;
3706 
3707 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3708 
3709 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3710 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3711 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3712 		temp = IWN_CTOK(110);
3713 	else
3714 		temp = 110;
3715 	memset(&crit, 0, sizeof crit);
3716 	crit.tempR = htole32(temp);
3717 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3718 	    temp);
3719 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3720 }
3721 
3722 static int
3723 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3724 {
3725 	struct iwn_cmd_timing cmd;
3726 	uint64_t val, mod;
3727 
3728 	memset(&cmd, 0, sizeof cmd);
3729 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3730 	cmd.bintval = htole16(ni->ni_intval);
3731 	cmd.lintval = htole16(10);
3732 
3733 	/* Compute remaining time until next beacon. */
3734 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3735 	mod = le64toh(cmd.tstamp) % val;
3736 	cmd.binitval = htole32((uint32_t)(val - mod));
3737 
3738 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3739 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3740 
3741 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3742 }
3743 
3744 static void
3745 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3746 {
3747 	struct ifnet *ifp = sc->sc_ifp;
3748 	struct ieee80211com *ic = ifp->if_l2com;
3749 
3750 	/* Adjust TX power if need be (delta >= 3 degC.) */
3751 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3752 	    __func__, sc->temp, temp);
3753 	if (abs(temp - sc->temp) >= 3) {
3754 		/* Record temperature of last calibration. */
3755 		sc->temp = temp;
3756 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3757 	}
3758 }
3759 
3760 /*
3761  * Set TX power for current channel (each rate has its own power settings).
3762  * This function takes into account the regulatory information from EEPROM,
3763  * the current temperature and the current voltage.
3764  */
3765 static int
3766 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3767     int async)
3768 {
3769 /* Fixed-point arithmetic division using a n-bit fractional part. */
3770 #define fdivround(a, b, n)	\
3771 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3772 /* Linear interpolation. */
3773 #define interpolate(x, x1, y1, x2, y2, n)	\
3774 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3775 
3776 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3777 	struct ifnet *ifp = sc->sc_ifp;
3778 	struct ieee80211com *ic = ifp->if_l2com;
3779 	struct iwn_ucode_info *uc = &sc->ucode_info;
3780 	struct iwn4965_cmd_txpower cmd;
3781 	struct iwn4965_eeprom_chan_samples *chans;
3782 	int32_t vdiff, tdiff;
3783 	int i, c, grp, maxpwr;
3784 	const uint8_t *rf_gain, *dsp_gain;
3785 	uint8_t chan;
3786 
3787 	/* Retrieve channel number. */
3788 	chan = ieee80211_chan2ieee(ic, ch);
3789 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3790 	    chan);
3791 
3792 	memset(&cmd, 0, sizeof cmd);
3793 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3794 	cmd.chan = chan;
3795 
3796 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3797 		maxpwr   = sc->maxpwr5GHz;
3798 		rf_gain  = iwn4965_rf_gain_5ghz;
3799 		dsp_gain = iwn4965_dsp_gain_5ghz;
3800 	} else {
3801 		maxpwr   = sc->maxpwr2GHz;
3802 		rf_gain  = iwn4965_rf_gain_2ghz;
3803 		dsp_gain = iwn4965_dsp_gain_2ghz;
3804 	}
3805 
3806 	/* Compute voltage compensation. */
3807 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3808 	if (vdiff > 0)
3809 		vdiff *= 2;
3810 	if (abs(vdiff) > 2)
3811 		vdiff = 0;
3812 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3813 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3814 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3815 
3816 	/* Get channel attenuation group. */
3817 	if (chan <= 20)		/* 1-20 */
3818 		grp = 4;
3819 	else if (chan <= 43)	/* 34-43 */
3820 		grp = 0;
3821 	else if (chan <= 70)	/* 44-70 */
3822 		grp = 1;
3823 	else if (chan <= 124)	/* 71-124 */
3824 		grp = 2;
3825 	else			/* 125-200 */
3826 		grp = 3;
3827 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3828 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3829 
3830 	/* Get channel sub-band. */
3831 	for (i = 0; i < IWN_NBANDS; i++)
3832 		if (sc->bands[i].lo != 0 &&
3833 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3834 			break;
3835 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3836 		return EINVAL;
3837 	chans = sc->bands[i].chans;
3838 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3839 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3840 
3841 	for (c = 0; c < 2; c++) {
3842 		uint8_t power, gain, temp;
3843 		int maxchpwr, pwr, ridx, idx;
3844 
3845 		power = interpolate(chan,
3846 		    chans[0].num, chans[0].samples[c][1].power,
3847 		    chans[1].num, chans[1].samples[c][1].power, 1);
3848 		gain  = interpolate(chan,
3849 		    chans[0].num, chans[0].samples[c][1].gain,
3850 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3851 		temp  = interpolate(chan,
3852 		    chans[0].num, chans[0].samples[c][1].temp,
3853 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3854 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3855 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3856 		    __func__, c, power, gain, temp);
3857 
3858 		/* Compute temperature compensation. */
3859 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3860 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3861 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3862 		    __func__, tdiff, sc->temp, temp);
3863 
3864 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3865 			/* Convert dBm to half-dBm. */
3866 			maxchpwr = sc->maxpwr[chan] * 2;
3867 			if ((ridx / 8) & 1)
3868 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3869 
3870 			pwr = maxpwr;
3871 
3872 			/* Adjust TX power based on rate. */
3873 			if ((ridx % 8) == 5)
3874 				pwr -= 15;	/* OFDM48: -7.5dB */
3875 			else if ((ridx % 8) == 6)
3876 				pwr -= 17;	/* OFDM54: -8.5dB */
3877 			else if ((ridx % 8) == 7)
3878 				pwr -= 20;	/* OFDM60: -10dB */
3879 			else
3880 				pwr -= 10;	/* Others: -5dB */
3881 
3882 			/* Do not exceed channel max TX power. */
3883 			if (pwr > maxchpwr)
3884 				pwr = maxchpwr;
3885 
3886 			idx = gain - (pwr - power) - tdiff - vdiff;
3887 			if ((ridx / 8) & 1)	/* MIMO */
3888 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3889 
3890 			if (cmd.band == 0)
3891 				idx += 9;	/* 5GHz */
3892 			if (ridx == IWN_RIDX_MAX)
3893 				idx += 5;	/* CCK */
3894 
3895 			/* Make sure idx stays in a valid range. */
3896 			if (idx < 0)
3897 				idx = 0;
3898 			else if (idx > IWN4965_MAX_PWR_INDEX)
3899 				idx = IWN4965_MAX_PWR_INDEX;
3900 
3901 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3902 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3903 			    __func__, c, ridx, idx);
3904 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3905 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3906 		}
3907 	}
3908 
3909 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3910 	    "%s: set tx power for chan %d\n", __func__, chan);
3911 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3912 
3913 #undef interpolate
3914 #undef fdivround
3915 }
3916 
3917 static int
3918 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3919     int async)
3920 {
3921 	struct iwn5000_cmd_txpower cmd;
3922 
3923 	/*
3924 	 * TX power calibration is handled automatically by the firmware
3925 	 * for 5000 Series.
3926 	 */
3927 	memset(&cmd, 0, sizeof cmd);
3928 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3929 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3930 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3931 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3932 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3933 }
3934 
3935 /*
3936  * Retrieve the maximum RSSI (in dBm) among receivers.
3937  */
3938 static int
3939 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3940 {
3941 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3942 	uint8_t mask, agc;
3943 	int rssi;
3944 
3945 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3946 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3947 
3948 	rssi = 0;
3949 #if 0
3950 	if (mask & IWN_ANT_A)	/* Ant A */
3951 		rssi = max(rssi, phy->rssi[0]);
3952 	if (mask & IWN_ATH_B)	/* Ant B */
3953 		rssi = max(rssi, phy->rssi[2]);
3954 	if (mask & IWN_ANT_C)	/* Ant C */
3955 		rssi = max(rssi, phy->rssi[4]);
3956 #else
3957 	rssi = max(rssi, phy->rssi[0]);
3958 	rssi = max(rssi, phy->rssi[2]);
3959 	rssi = max(rssi, phy->rssi[4]);
3960 #endif
3961 
3962 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3963 	    "result %d\n", __func__, agc, mask,
3964 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3965 	    rssi - agc - IWN_RSSI_TO_DBM);
3966 	return rssi - agc - IWN_RSSI_TO_DBM;
3967 }
3968 
3969 static int
3970 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3971 {
3972 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3973 	int rssi;
3974 	uint8_t agc;
3975 
3976 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3977 
3978 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3979 		   le16toh(phy->rssi[1]) & 0xff);
3980 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3981 
3982 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
3983 	    "result %d\n", __func__, agc,
3984 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
3985 	    rssi - agc - IWN_RSSI_TO_DBM);
3986 	return rssi - agc - IWN_RSSI_TO_DBM;
3987 }
3988 
3989 /*
3990  * Retrieve the average noise (in dBm) among receivers.
3991  */
3992 static int
3993 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3994 {
3995 	int i, total, nbant, noise;
3996 
3997 	total = nbant = 0;
3998 	for (i = 0; i < 3; i++) {
3999 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4000 			continue;
4001 		total += noise;
4002 		nbant++;
4003 	}
4004 	/* There should be at least one antenna but check anyway. */
4005 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4006 }
4007 
4008 /*
4009  * Compute temperature (in degC) from last received statistics.
4010  */
4011 static int
4012 iwn4965_get_temperature(struct iwn_softc *sc)
4013 {
4014 	struct iwn_ucode_info *uc = &sc->ucode_info;
4015 	int32_t r1, r2, r3, r4, temp;
4016 
4017 	r1 = le32toh(uc->temp[0].chan20MHz);
4018 	r2 = le32toh(uc->temp[1].chan20MHz);
4019 	r3 = le32toh(uc->temp[2].chan20MHz);
4020 	r4 = le32toh(sc->rawtemp);
4021 
4022 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4023 		return 0;
4024 
4025 	/* Sign-extend 23-bit R4 value to 32-bit. */
4026 	r4 = (r4 << 8) >> 8;
4027 	/* Compute temperature in Kelvin. */
4028 	temp = (259 * (r4 - r2)) / (r3 - r1);
4029 	temp = (temp * 97) / 100 + 8;
4030 
4031 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4032 	    IWN_KTOC(temp));
4033 	return IWN_KTOC(temp);
4034 }
4035 
4036 static int
4037 iwn5000_get_temperature(struct iwn_softc *sc)
4038 {
4039 	int32_t temp;
4040 
4041 	/*
4042 	 * Temperature is not used by the driver for 5000 Series because
4043 	 * TX power calibration is handled by firmware.  We export it to
4044 	 * users through the sensor framework though.
4045 	 */
4046 	temp = le32toh(sc->rawtemp);
4047 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4048 		temp = (temp / -5) + sc->temp_off;
4049 		temp = IWN_KTOC(temp);
4050 	}
4051 	return temp;
4052 }
4053 
4054 /*
4055  * Initialize sensitivity calibration state machine.
4056  */
4057 static int
4058 iwn_init_sensitivity(struct iwn_softc *sc)
4059 {
4060 	const struct iwn_hal *hal = sc->sc_hal;
4061 	struct iwn_calib_state *calib = &sc->calib;
4062 	uint32_t flags;
4063 	int error;
4064 
4065 	/* Reset calibration state machine. */
4066 	memset(calib, 0, sizeof (*calib));
4067 	calib->state = IWN_CALIB_STATE_INIT;
4068 	calib->cck_state = IWN_CCK_STATE_HIFA;
4069 	/* Set initial correlation values. */
4070 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4071 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4072 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4073 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4074 	calib->cck_x4      = 125;
4075 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4076 	calib->energy_cck  = sc->limits->energy_cck;
4077 
4078 	/* Write initial sensitivity. */
4079 	error = iwn_send_sensitivity(sc);
4080 	if (error != 0)
4081 		return error;
4082 
4083 	/* Write initial gains. */
4084 	error = hal->init_gains(sc);
4085 	if (error != 0)
4086 		return error;
4087 
4088 	/* Request statistics at each beacon interval. */
4089 	flags = 0;
4090 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4091 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4092 }
4093 
4094 /*
4095  * Collect noise and RSSI statistics for the first 20 beacons received
4096  * after association and use them to determine connected antennas and
4097  * to set differential gains.
4098  */
4099 static void
4100 iwn_collect_noise(struct iwn_softc *sc,
4101     const struct iwn_rx_general_stats *stats)
4102 {
4103 	const struct iwn_hal *hal = sc->sc_hal;
4104 	struct iwn_calib_state *calib = &sc->calib;
4105 	uint32_t val;
4106 	int i;
4107 
4108 	/* Accumulate RSSI and noise for all 3 antennas. */
4109 	for (i = 0; i < 3; i++) {
4110 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4111 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4112 	}
4113 	/* NB: We update differential gains only once after 20 beacons. */
4114 	if (++calib->nbeacons < 20)
4115 		return;
4116 
4117 	/* Determine highest average RSSI. */
4118 	val = MAX(calib->rssi[0], calib->rssi[1]);
4119 	val = MAX(calib->rssi[2], val);
4120 
4121 	/* Determine which antennas are connected. */
4122 	sc->chainmask = 0;
4123 	for (i = 0; i < 3; i++)
4124 		if (val - calib->rssi[i] <= 15 * 20)
4125 			sc->chainmask |= 1 << i;
4126 	/* If none of the TX antennas are connected, keep at least one. */
4127 	if ((sc->chainmask & sc->txchainmask) == 0)
4128 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4129 
4130 	(void)hal->set_gains(sc);
4131 	calib->state = IWN_CALIB_STATE_RUN;
4132 
4133 #ifdef notyet
4134 	/* XXX Disable RX chains with no antennas connected. */
4135 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4136 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4137 #endif
4138 
4139 #if 0
4140 	/* XXX: not yet */
4141 	/* Enable power-saving mode if requested by user. */
4142 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4143 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4144 #endif
4145 }
4146 
4147 static int
4148 iwn4965_init_gains(struct iwn_softc *sc)
4149 {
4150 	struct iwn_phy_calib_gain cmd;
4151 
4152 	memset(&cmd, 0, sizeof cmd);
4153 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4154 	/* Differential gains initially set to 0 for all 3 antennas. */
4155 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4156 	    "%s: setting initial differential gains\n", __func__);
4157 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4158 }
4159 
4160 static int
4161 iwn5000_init_gains(struct iwn_softc *sc)
4162 {
4163 	struct iwn_phy_calib cmd;
4164 
4165 	memset(&cmd, 0, sizeof cmd);
4166 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4167 	cmd.ngroups = 1;
4168 	cmd.isvalid = 1;
4169 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4170 	    "%s: setting initial differential gains\n", __func__);
4171 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4172 }
4173 
4174 static int
4175 iwn4965_set_gains(struct iwn_softc *sc)
4176 {
4177 	struct iwn_calib_state *calib = &sc->calib;
4178 	struct iwn_phy_calib_gain cmd;
4179 	int i, delta, noise;
4180 
4181 	/* Get minimal noise among connected antennas. */
4182 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4183 	for (i = 0; i < 3; i++)
4184 		if (sc->chainmask & (1 << i))
4185 			noise = MIN(calib->noise[i], noise);
4186 
4187 	memset(&cmd, 0, sizeof cmd);
4188 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4189 	/* Set differential gains for connected antennas. */
4190 	for (i = 0; i < 3; i++) {
4191 		if (sc->chainmask & (1 << i)) {
4192 			/* Compute attenuation (in unit of 1.5dB). */
4193 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4194 			/* NB: delta <= 0 */
4195 			/* Limit to [-4.5dB,0]. */
4196 			cmd.gain[i] = MIN(abs(delta), 3);
4197 			if (delta < 0)
4198 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4199 		}
4200 	}
4201 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4202 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4203 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4204 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4205 }
4206 
4207 static int
4208 iwn5000_set_gains(struct iwn_softc *sc)
4209 {
4210 	struct iwn_calib_state *calib = &sc->calib;
4211 	struct iwn_phy_calib_gain cmd;
4212 	int i, ant, delta, div;
4213 
4214 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4215 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4216 
4217 	memset(&cmd, 0, sizeof cmd);
4218 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4219 	cmd.ngroups = 1;
4220 	cmd.isvalid = 1;
4221 	/* Get first available RX antenna as referential. */
4222 	ant = IWN_LSB(sc->rxchainmask);
4223 	/* Set differential gains for other antennas. */
4224 	for (i = ant + 1; i < 3; i++) {
4225 		if (sc->chainmask & (1 << i)) {
4226 			/* The delta is relative to antenna "ant". */
4227 			delta = ((int32_t)calib->noise[ant] -
4228 			    (int32_t)calib->noise[i]) / div;
4229 			/* Limit to [-4.5dB,+4.5dB]. */
4230 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4231 			if (delta < 0)
4232 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4233 		}
4234 	}
4235 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4236 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4237 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4238 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4239 }
4240 
4241 /*
4242  * Tune RF RX sensitivity based on the number of false alarms detected
4243  * during the last beacon period.
4244  */
4245 static void
4246 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4247 {
4248 #define inc(val, inc, max)			\
4249 	if ((val) < (max)) {			\
4250 		if ((val) < (max) - (inc))	\
4251 			(val) += (inc);		\
4252 		else				\
4253 			(val) = (max);		\
4254 		needs_update = 1;		\
4255 	}
4256 #define dec(val, dec, min)			\
4257 	if ((val) > (min)) {			\
4258 		if ((val) > (min) + (dec))	\
4259 			(val) -= (dec);		\
4260 		else				\
4261 			(val) = (min);		\
4262 		needs_update = 1;		\
4263 	}
4264 
4265 	const struct iwn_sensitivity_limits *limits = sc->limits;
4266 	struct iwn_calib_state *calib = &sc->calib;
4267 	uint32_t val, rxena, fa;
4268 	uint32_t energy[3], energy_min;
4269 	uint8_t noise[3], noise_ref;
4270 	int i, needs_update = 0;
4271 
4272 	/* Check that we've been enabled long enough. */
4273 	rxena = le32toh(stats->general.load);
4274 	if (rxena == 0)
4275 		return;
4276 
4277 	/* Compute number of false alarms since last call for OFDM. */
4278 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4279 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4280 	fa *= 200 * 1024;	/* 200TU */
4281 
4282 	/* Save counters values for next call. */
4283 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4284 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4285 
4286 	if (fa > 50 * rxena) {
4287 		/* High false alarm count, decrease sensitivity. */
4288 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4289 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4290 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4291 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4292 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4293 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4294 
4295 	} else if (fa < 5 * rxena) {
4296 		/* Low false alarm count, increase sensitivity. */
4297 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4298 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4299 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4300 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4301 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4302 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4303 	}
4304 
4305 	/* Compute maximum noise among 3 receivers. */
4306 	for (i = 0; i < 3; i++)
4307 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4308 	val = MAX(noise[0], noise[1]);
4309 	val = MAX(noise[2], val);
4310 	/* Insert it into our samples table. */
4311 	calib->noise_samples[calib->cur_noise_sample] = val;
4312 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4313 
4314 	/* Compute maximum noise among last 20 samples. */
4315 	noise_ref = calib->noise_samples[0];
4316 	for (i = 1; i < 20; i++)
4317 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4318 
4319 	/* Compute maximum energy among 3 receivers. */
4320 	for (i = 0; i < 3; i++)
4321 		energy[i] = le32toh(stats->general.energy[i]);
4322 	val = MIN(energy[0], energy[1]);
4323 	val = MIN(energy[2], val);
4324 	/* Insert it into our samples table. */
4325 	calib->energy_samples[calib->cur_energy_sample] = val;
4326 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4327 
4328 	/* Compute minimum energy among last 10 samples. */
4329 	energy_min = calib->energy_samples[0];
4330 	for (i = 1; i < 10; i++)
4331 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4332 	energy_min += 6;
4333 
4334 	/* Compute number of false alarms since last call for CCK. */
4335 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4336 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4337 	fa *= 200 * 1024;	/* 200TU */
4338 
4339 	/* Save counters values for next call. */
4340 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4341 	calib->fa_cck = le32toh(stats->cck.fa);
4342 
4343 	if (fa > 50 * rxena) {
4344 		/* High false alarm count, decrease sensitivity. */
4345 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4346 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4347 		calib->cck_state = IWN_CCK_STATE_HIFA;
4348 		calib->low_fa = 0;
4349 
4350 		if (calib->cck_x4 > 160) {
4351 			calib->noise_ref = noise_ref;
4352 			if (calib->energy_cck > 2)
4353 				dec(calib->energy_cck, 2, energy_min);
4354 		}
4355 		if (calib->cck_x4 < 160) {
4356 			calib->cck_x4 = 161;
4357 			needs_update = 1;
4358 		} else
4359 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4360 
4361 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4362 
4363 	} else if (fa < 5 * rxena) {
4364 		/* Low false alarm count, increase sensitivity. */
4365 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4366 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4367 		calib->cck_state = IWN_CCK_STATE_LOFA;
4368 		calib->low_fa++;
4369 
4370 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4371 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4372 		    calib->low_fa > 100)) {
4373 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4374 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4375 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4376 		}
4377 	} else {
4378 		/* Not worth to increase or decrease sensitivity. */
4379 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4380 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4381 		calib->low_fa = 0;
4382 		calib->noise_ref = noise_ref;
4383 
4384 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4385 			/* Previous interval had many false alarms. */
4386 			dec(calib->energy_cck, 8, energy_min);
4387 		}
4388 		calib->cck_state = IWN_CCK_STATE_INIT;
4389 	}
4390 
4391 	if (needs_update)
4392 		(void)iwn_send_sensitivity(sc);
4393 #undef dec
4394 #undef inc
4395 }
4396 
4397 static int
4398 iwn_send_sensitivity(struct iwn_softc *sc)
4399 {
4400 	struct iwn_calib_state *calib = &sc->calib;
4401 	struct iwn_sensitivity_cmd cmd;
4402 
4403 	memset(&cmd, 0, sizeof cmd);
4404 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4405 	/* OFDM modulation. */
4406 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4407 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4408 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4409 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4410 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4411 	cmd.energy_ofdm_th   = htole16(62);
4412 	/* CCK modulation. */
4413 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4414 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4415 	cmd.energy_cck       = htole16(calib->energy_cck);
4416 	/* Barker modulation: use default values. */
4417 	cmd.corr_barker      = htole16(190);
4418 	cmd.corr_barker_mrc  = htole16(390);
4419 
4420 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4421 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4422 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4423 	    calib->ofdm_mrc_x4, calib->cck_x4,
4424 	    calib->cck_mrc_x4, calib->energy_cck);
4425 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4426 }
4427 
4428 /*
4429  * Set STA mode power saving level (between 0 and 5).
4430  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4431  */
4432 static int
4433 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4434 {
4435 	const struct iwn_pmgt *pmgt;
4436 	struct iwn_pmgt_cmd cmd;
4437 	uint32_t max, skip_dtim;
4438 	uint32_t tmp;
4439 	int i;
4440 
4441 	/* Select which PS parameters to use. */
4442 	if (dtim <= 2)
4443 		pmgt = &iwn_pmgt[0][level];
4444 	else if (dtim <= 10)
4445 		pmgt = &iwn_pmgt[1][level];
4446 	else
4447 		pmgt = &iwn_pmgt[2][level];
4448 
4449 	memset(&cmd, 0, sizeof cmd);
4450 	if (level != 0)	/* not CAM */
4451 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4452 	if (level == 5)
4453 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4454 	/* Retrieve PCIe Active State Power Management (ASPM). */
4455 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4456 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4457 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4458 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4459 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4460 
4461 	if (dtim == 0) {
4462 		dtim = 1;
4463 		skip_dtim = 0;
4464 	} else
4465 		skip_dtim = pmgt->skip_dtim;
4466 	if (skip_dtim != 0) {
4467 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4468 		max = pmgt->intval[4];
4469 		if (max == (uint32_t)-1)
4470 			max = dtim * (skip_dtim + 1);
4471 		else if (max > dtim)
4472 			max = (max / dtim) * dtim;
4473 	} else
4474 		max = dtim;
4475 	for (i = 0; i < 5; i++)
4476 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4477 
4478 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4479 	    level);
4480 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4481 }
4482 
4483 static int
4484 iwn_config(struct iwn_softc *sc)
4485 {
4486 	const struct iwn_hal *hal = sc->sc_hal;
4487 	struct ifnet *ifp = sc->sc_ifp;
4488 	struct ieee80211com *ic = ifp->if_l2com;
4489 	struct iwn_bluetooth bluetooth;
4490 	uint32_t txmask;
4491 	int error;
4492 	uint16_t rxchain;
4493 
4494 	/* Configure valid TX chains for 5000 Series. */
4495 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4496 		txmask = htole32(sc->txchainmask);
4497 		DPRINTF(sc, IWN_DEBUG_RESET,
4498 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4499 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4500 		    sizeof txmask, 0);
4501 		if (error != 0) {
4502 			device_printf(sc->sc_dev,
4503 			    "%s: could not configure valid TX chains, "
4504 			    "error %d\n", __func__, error);
4505 			return error;
4506 		}
4507 	}
4508 
4509 	/* Configure bluetooth coexistence. */
4510 	memset(&bluetooth, 0, sizeof bluetooth);
4511 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4512 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4513 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4514 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4515 	    __func__);
4516 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4517 	if (error != 0) {
4518 		device_printf(sc->sc_dev,
4519 		    "%s: could not configure bluetooth coexistence, error %d\n",
4520 		    __func__, error);
4521 		return error;
4522 	}
4523 
4524 	/* Set mode, channel, RX filter and enable RX. */
4525 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4526 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4527 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4528 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4529 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4530 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4531 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4532 	switch (ic->ic_opmode) {
4533 	case IEEE80211_M_STA:
4534 		sc->rxon.mode = IWN_MODE_STA;
4535 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4536 		break;
4537 	case IEEE80211_M_MONITOR:
4538 		sc->rxon.mode = IWN_MODE_MONITOR;
4539 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4540 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4541 		break;
4542 	default:
4543 		/* Should not get there. */
4544 		break;
4545 	}
4546 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4547 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4548 	sc->rxon.ht_single_mask = 0xff;
4549 	sc->rxon.ht_dual_mask = 0xff;
4550 	sc->rxon.ht_triple_mask = 0xff;
4551 	rxchain =
4552 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4553 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4554 	    IWN_RXCHAIN_IDLE_COUNT(2);
4555 	sc->rxon.rxchain = htole16(rxchain);
4556 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4557 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4558 	if (error != 0) {
4559 		device_printf(sc->sc_dev,
4560 		    "%s: RXON command failed\n", __func__);
4561 		return error;
4562 	}
4563 
4564 	error = iwn_add_broadcast_node(sc, 0);
4565 	if (error != 0) {
4566 		device_printf(sc->sc_dev,
4567 		    "%s: could not add broadcast node\n", __func__);
4568 		return error;
4569 	}
4570 
4571 	/* Configuration has changed, set TX power accordingly. */
4572 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4573 	if (error != 0) {
4574 		device_printf(sc->sc_dev,
4575 		    "%s: could not set TX power\n", __func__);
4576 		return error;
4577 	}
4578 
4579 	error = iwn_set_critical_temp(sc);
4580 	if (error != 0) {
4581 		device_printf(sc->sc_dev,
4582 		    "%s: ccould not set critical temperature\n", __func__);
4583 		return error;
4584 	}
4585 
4586 	/* Set power saving level to CAM during initialization. */
4587 	error = iwn_set_pslevel(sc, 0, 0, 0);
4588 	if (error != 0) {
4589 		device_printf(sc->sc_dev,
4590 		    "%s: could not set power saving level\n", __func__);
4591 		return error;
4592 	}
4593 	return 0;
4594 }
4595 
4596 static int
4597 iwn_scan(struct iwn_softc *sc)
4598 {
4599 	struct ifnet *ifp = sc->sc_ifp;
4600 	struct ieee80211com *ic = ifp->if_l2com;
4601 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4602 	struct iwn_scan_hdr *hdr;
4603 	struct iwn_cmd_data *tx;
4604 	struct iwn_scan_essid *essid;
4605 	struct iwn_scan_chan *chan;
4606 	struct ieee80211_frame *wh;
4607 	struct ieee80211_rateset *rs;
4608 	struct ieee80211_channel *c;
4609 	int buflen, error, nrates;
4610 	uint16_t rxchain;
4611 	uint8_t *buf, *frm, txant;
4612 
4613 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4614 	if (buf == NULL) {
4615 		device_printf(sc->sc_dev,
4616 		    "%s: could not allocate buffer for scan command\n",
4617 		    __func__);
4618 		return ENOMEM;
4619 	}
4620 	hdr = (struct iwn_scan_hdr *)buf;
4621 
4622 	/*
4623 	 * Move to the next channel if no frames are received within 10ms
4624 	 * after sending the probe request.
4625 	 */
4626 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4627 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4628 
4629 	/* Select antennas for scanning. */
4630 	rxchain =
4631 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4632 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4633 	    IWN_RXCHAIN_DRIVER_FORCE;
4634 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4635 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4636 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4637 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4638 	} else	/* Use all available RX antennas. */
4639 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4640 	hdr->rxchain = htole16(rxchain);
4641 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4642 
4643 	tx = (struct iwn_cmd_data *)(hdr + 1);
4644 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4645 	tx->id = sc->sc_hal->broadcast_id;
4646 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4647 
4648 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4649 		/* Send probe requests at 6Mbps. */
4650 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4651 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4652 	} else {
4653 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4654 		/* Send probe requests at 1Mbps. */
4655 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4656 		tx->rflags = IWN_RFLAG_CCK;
4657 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4658 	}
4659 	/* Use the first valid TX antenna. */
4660 	txant = IWN_LSB(sc->txchainmask);
4661 	tx->rflags |= IWN_RFLAG_ANT(txant);
4662 
4663 	essid = (struct iwn_scan_essid *)(tx + 1);
4664 	if (ss->ss_ssid[0].len != 0) {
4665 		essid[0].id = IEEE80211_ELEMID_SSID;
4666 		essid[0].len = ss->ss_ssid[0].len;
4667 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4668 	}
4669 
4670 	/*
4671 	 * Build a probe request frame.  Most of the following code is a
4672 	 * copy & paste of what is done in net80211.
4673 	 */
4674 	wh = (struct ieee80211_frame *)(essid + 20);
4675 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4676 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4677 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4678 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4679 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4680 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4681 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4682 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4683 
4684 	frm = (uint8_t *)(wh + 1);
4685 
4686 	/* Add SSID IE. */
4687 	*frm++ = IEEE80211_ELEMID_SSID;
4688 	*frm++ = ss->ss_ssid[0].len;
4689 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4690 	frm += ss->ss_ssid[0].len;
4691 
4692 	/* Add supported rates IE. */
4693 	*frm++ = IEEE80211_ELEMID_RATES;
4694 	nrates = rs->rs_nrates;
4695 	if (nrates > IEEE80211_RATE_SIZE)
4696 		nrates = IEEE80211_RATE_SIZE;
4697 	*frm++ = nrates;
4698 	memcpy(frm, rs->rs_rates, nrates);
4699 	frm += nrates;
4700 
4701 	/* Add supported xrates IE. */
4702 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4703 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4704 		*frm++ = IEEE80211_ELEMID_XRATES;
4705 		*frm++ = (uint8_t)nrates;
4706 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4707 		frm += nrates;
4708 	}
4709 
4710 	/* Set length of probe request. */
4711 	tx->len = htole16(frm - (uint8_t *)wh);
4712 
4713 	c = ic->ic_curchan;
4714 	chan = (struct iwn_scan_chan *)frm;
4715 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4716 	chan->flags = 0;
4717 	if (ss->ss_nssid > 0)
4718 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4719 	chan->dsp_gain = 0x6e;
4720 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4721 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4722 		chan->rf_gain = 0x3b;
4723 		chan->active  = htole16(24);
4724 		chan->passive = htole16(110);
4725 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4726 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4727 		chan->rf_gain = 0x3b;
4728 		chan->active  = htole16(24);
4729 		if (sc->rxon.associd)
4730 			chan->passive = htole16(78);
4731 		else
4732 			chan->passive = htole16(110);
4733 		hdr->crc_threshold = 0xffff;
4734 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4735 		chan->rf_gain = 0x28;
4736 		chan->active  = htole16(36);
4737 		chan->passive = htole16(120);
4738 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4739 	} else {
4740 		chan->rf_gain = 0x28;
4741 		chan->active  = htole16(36);
4742 		if (sc->rxon.associd)
4743 			chan->passive = htole16(88);
4744 		else
4745 			chan->passive = htole16(120);
4746 		hdr->crc_threshold = 0xffff;
4747 	}
4748 
4749 	DPRINTF(sc, IWN_DEBUG_STATE,
4750 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4751 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4752 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4753 	    chan->active, chan->passive);
4754 
4755 	hdr->nchan++;
4756 	chan++;
4757 	buflen = (uint8_t *)chan - buf;
4758 	hdr->len = htole16(buflen);
4759 
4760 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4761 	    hdr->nchan);
4762 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4763 	free(buf, M_DEVBUF);
4764 	return error;
4765 }
4766 
4767 static int
4768 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4769 {
4770 	const struct iwn_hal *hal = sc->sc_hal;
4771 	struct ifnet *ifp = sc->sc_ifp;
4772 	struct ieee80211com *ic = ifp->if_l2com;
4773 	struct ieee80211_node *ni = vap->iv_bss;
4774 	int error;
4775 
4776 	sc->calib.state = IWN_CALIB_STATE_INIT;
4777 
4778 	/* Update adapter configuration. */
4779 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4780 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4781 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4782 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4783 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4784 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4785 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4786 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4787 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4788 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4789 		sc->rxon.cck_mask  = 0;
4790 		sc->rxon.ofdm_mask = 0x15;
4791 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4792 		sc->rxon.cck_mask  = 0x03;
4793 		sc->rxon.ofdm_mask = 0;
4794 	} else {
4795 		/* XXX assume 802.11b/g */
4796 		sc->rxon.cck_mask  = 0x0f;
4797 		sc->rxon.ofdm_mask = 0x15;
4798 	}
4799 	DPRINTF(sc, IWN_DEBUG_STATE,
4800 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4801 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4802 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4803 	    __func__,
4804 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4805 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4806 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4807 	    le16toh(sc->rxon.rxchain),
4808 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4809 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4810 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4811 	if (error != 0) {
4812 		device_printf(sc->sc_dev,
4813 		    "%s: RXON command failed, error %d\n", __func__, error);
4814 		return error;
4815 	}
4816 
4817 	/* Configuration has changed, set TX power accordingly. */
4818 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4819 	if (error != 0) {
4820 		device_printf(sc->sc_dev,
4821 		    "%s: could not set Tx power, error %d\n", __func__, error);
4822 		return error;
4823 	}
4824 	/*
4825 	 * Reconfiguring RXON clears the firmware nodes table so we must
4826 	 * add the broadcast node again.
4827 	 */
4828 	error = iwn_add_broadcast_node(sc, 1);
4829 	if (error != 0) {
4830 		device_printf(sc->sc_dev,
4831 		    "%s: could not add broadcast node, error %d\n",
4832 		    __func__, error);
4833 		return error;
4834 	}
4835 	return 0;
4836 }
4837 
4838 /*
4839  * Configure the adapter for associated state.
4840  */
4841 static int
4842 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4843 {
4844 #define	MS(v,x)	(((v) & x) >> x##_S)
4845 	const struct iwn_hal *hal = sc->sc_hal;
4846 	struct ifnet *ifp = sc->sc_ifp;
4847 	struct ieee80211com *ic = ifp->if_l2com;
4848 	struct ieee80211_node *ni = vap->iv_bss;
4849 	struct iwn_node_info node;
4850 	int error;
4851 
4852 	sc->calib.state = IWN_CALIB_STATE_INIT;
4853 
4854 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4855 		/* Link LED blinks while monitoring. */
4856 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4857 		return 0;
4858 	}
4859 	error = iwn_set_timing(sc, ni);
4860 	if (error != 0) {
4861 		device_printf(sc->sc_dev,
4862 		    "%s: could not set timing, error %d\n", __func__, error);
4863 		return error;
4864 	}
4865 
4866 	/* Update adapter configuration. */
4867 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4868 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4869 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4870 	/* Short preamble and slot time are negotiated when associating. */
4871 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4872 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4873 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4874 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4875 	else
4876 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4877 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4878 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4879 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4880 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4881 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4882 		sc->rxon.cck_mask  = 0;
4883 		sc->rxon.ofdm_mask = 0x15;
4884 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4885 		sc->rxon.cck_mask  = 0x03;
4886 		sc->rxon.ofdm_mask = 0;
4887 	} else {
4888 		/* XXX assume 802.11b/g */
4889 		sc->rxon.cck_mask  = 0x0f;
4890 		sc->rxon.ofdm_mask = 0x15;
4891 	}
4892 #if 0	/* HT */
4893 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4894 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4895 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4896 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4897 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4898 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4899 		else
4900 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4901 		sc->rxon.rxchain = htole16(
4902 			  IWN_RXCHAIN_VALID(3)
4903 			| IWN_RXCHAIN_MIMO_COUNT(3)
4904 			| IWN_RXCHAIN_IDLE_COUNT(1)
4905 			| IWN_RXCHAIN_MIMO_FORCE);
4906 
4907 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4908 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4909 	} else
4910 		maxrxampdu = ampdudensity = 0;
4911 #endif
4912 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4913 
4914 	DPRINTF(sc, IWN_DEBUG_STATE,
4915 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4916 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4917 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4918 	    __func__,
4919 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4920 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4921 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4922 	    le16toh(sc->rxon.rxchain),
4923 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4924 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4925 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4926 	if (error != 0) {
4927 		device_printf(sc->sc_dev,
4928 		    "%s: could not update configuration, error %d\n",
4929 		    __func__, error);
4930 		return error;
4931 	}
4932 
4933 	/* Configuration has changed, set TX power accordingly. */
4934 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4935 	if (error != 0) {
4936 		device_printf(sc->sc_dev,
4937 		    "%s: could not set Tx power, error %d\n", __func__, error);
4938 		return error;
4939 	}
4940 
4941 	/* Add BSS node. */
4942 	memset(&node, 0, sizeof node);
4943 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4944 	node.id = IWN_ID_BSS;
4945 #ifdef notyet
4946 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4947 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4948 #endif
4949 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4950 	    __func__, node.id, le32toh(node.htflags));
4951 	error = hal->add_node(sc, &node, 1);
4952 	if (error != 0) {
4953 		device_printf(sc->sc_dev, "could not add BSS node\n");
4954 		return error;
4955 	}
4956 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4957 	    node.id);
4958 	error = iwn_set_link_quality(sc, node.id, 1);
4959 	if (error != 0) {
4960 		device_printf(sc->sc_dev,
4961 		    "%s: could not setup MRR for node %d, error %d\n",
4962 		    __func__, node.id, error);
4963 		return error;
4964 	}
4965 
4966 	error = iwn_init_sensitivity(sc);
4967 	if (error != 0) {
4968 		device_printf(sc->sc_dev,
4969 		    "%s: could not set sensitivity, error %d\n",
4970 		    __func__, error);
4971 		return error;
4972 	}
4973 
4974 	/* Start periodic calibration timer. */
4975 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4976 	iwn_calib_reset(sc);
4977 
4978 	/* Link LED always on while associated. */
4979 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4980 
4981 	return 0;
4982 #undef MS
4983 }
4984 
4985 #if 0	/* HT */
4986 /*
4987  * This function is called by upper layer when an ADDBA request is received
4988  * from another STA and before the ADDBA response is sent.
4989  */
4990 static int
4991 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4992     uint8_t tid)
4993 {
4994 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4995 	struct iwn_softc *sc = ic->ic_softc;
4996 	struct iwn_node *wn = (void *)ni;
4997 	struct iwn_node_info node;
4998 
4999 	memset(&node, 0, sizeof node);
5000 	node.id = wn->id;
5001 	node.control = IWN_NODE_UPDATE;
5002 	node.flags = IWN_FLAG_SET_ADDBA;
5003 	node.addba_tid = tid;
5004 	node.addba_ssn = htole16(ba->ba_winstart);
5005 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5006 	    wn->id, tid, ba->ba_winstart));
5007 	return sc->sc_hal->add_node(sc, &node, 1);
5008 }
5009 
5010 /*
5011  * This function is called by upper layer on teardown of an HT-immediate
5012  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5013  */
5014 static void
5015 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5016     uint8_t tid)
5017 {
5018 	struct iwn_softc *sc = ic->ic_softc;
5019 	struct iwn_node *wn = (void *)ni;
5020 	struct iwn_node_info node;
5021 
5022 	memset(&node, 0, sizeof node);
5023 	node.id = wn->id;
5024 	node.control = IWN_NODE_UPDATE;
5025 	node.flags = IWN_FLAG_SET_DELBA;
5026 	node.delba_tid = tid;
5027 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5028 	(void)sc->sc_hal->add_node(sc, &node, 1);
5029 }
5030 
5031 /*
5032  * This function is called by upper layer when an ADDBA response is received
5033  * from another STA.
5034  */
5035 static int
5036 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5037     uint8_t tid)
5038 {
5039 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5040 	struct iwn_softc *sc = ic->ic_softc;
5041 	const struct iwn_hal *hal = sc->sc_hal;
5042 	struct iwn_node *wn = (void *)ni;
5043 	struct iwn_node_info node;
5044 	int error;
5045 
5046 	/* Enable TX for the specified RA/TID. */
5047 	wn->disable_tid &= ~(1 << tid);
5048 	memset(&node, 0, sizeof node);
5049 	node.id = wn->id;
5050 	node.control = IWN_NODE_UPDATE;
5051 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5052 	node.disable_tid = htole16(wn->disable_tid);
5053 	error = hal->add_node(sc, &node, 1);
5054 	if (error != 0)
5055 		return error;
5056 
5057 	if ((error = iwn_nic_lock(sc)) != 0)
5058 		return error;
5059 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5060 	iwn_nic_unlock(sc);
5061 	return 0;
5062 }
5063 
5064 static void
5065 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5066     uint8_t tid)
5067 {
5068 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5069 	struct iwn_softc *sc = ic->ic_softc;
5070 	int error;
5071 
5072 	error = iwn_nic_lock(sc);
5073 	if (error != 0)
5074 		return;
5075 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5076 	iwn_nic_unlock(sc);
5077 }
5078 
5079 static void
5080 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5081     uint8_t tid, uint16_t ssn)
5082 {
5083 	struct iwn_node *wn = (void *)ni;
5084 	int qid = 7 + tid;
5085 
5086 	/* Stop TX scheduler while we're changing its configuration. */
5087 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5088 	    IWN4965_TXQ_STATUS_CHGACT);
5089 
5090 	/* Assign RA/TID translation to the queue. */
5091 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5092 	    wn->id << 4 | tid);
5093 
5094 	/* Enable chain-building mode for the queue. */
5095 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5096 
5097 	/* Set starting sequence number from the ADDBA request. */
5098 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5099 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5100 
5101 	/* Set scheduler window size. */
5102 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5103 	    IWN_SCHED_WINSZ);
5104 	/* Set scheduler frame limit. */
5105 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5106 	    IWN_SCHED_LIMIT << 16);
5107 
5108 	/* Enable interrupts for the queue. */
5109 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5110 
5111 	/* Mark the queue as active. */
5112 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5113 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5114 	    iwn_tid2fifo[tid] << 1);
5115 }
5116 
5117 static void
5118 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5119 {
5120 	int qid = 7 + tid;
5121 
5122 	/* Stop TX scheduler while we're changing its configuration. */
5123 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5124 	    IWN4965_TXQ_STATUS_CHGACT);
5125 
5126 	/* Set starting sequence number from the ADDBA request. */
5127 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5128 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5129 
5130 	/* Disable interrupts for the queue. */
5131 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5132 
5133 	/* Mark the queue as inactive. */
5134 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5135 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5136 }
5137 
5138 static void
5139 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5140     uint8_t tid, uint16_t ssn)
5141 {
5142 	struct iwn_node *wn = (void *)ni;
5143 	int qid = 10 + tid;
5144 
5145 	/* Stop TX scheduler while we're changing its configuration. */
5146 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5147 	    IWN5000_TXQ_STATUS_CHGACT);
5148 
5149 	/* Assign RA/TID translation to the queue. */
5150 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5151 	    wn->id << 4 | tid);
5152 
5153 	/* Enable chain-building mode for the queue. */
5154 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5155 
5156 	/* Enable aggregation for the queue. */
5157 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5158 
5159 	/* Set starting sequence number from the ADDBA request. */
5160 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5161 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5162 
5163 	/* Set scheduler window size and frame limit. */
5164 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5165 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5166 
5167 	/* Enable interrupts for the queue. */
5168 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5169 
5170 	/* Mark the queue as active. */
5171 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5172 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5173 }
5174 
5175 static void
5176 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5177 {
5178 	int qid = 10 + tid;
5179 
5180 	/* Stop TX scheduler while we're changing its configuration. */
5181 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5182 	    IWN5000_TXQ_STATUS_CHGACT);
5183 
5184 	/* Disable aggregation for the queue. */
5185 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5186 
5187 	/* Set starting sequence number from the ADDBA request. */
5188 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5189 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5190 
5191 	/* Disable interrupts for the queue. */
5192 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5193 
5194 	/* Mark the queue as inactive. */
5195 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5196 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5197 }
5198 #endif
5199 
5200 /*
5201  * Query calibration tables from the initialization firmware.  We do this
5202  * only once at first boot.  Called from a process context.
5203  */
5204 static int
5205 iwn5000_query_calibration(struct iwn_softc *sc)
5206 {
5207 	struct iwn5000_calib_config cmd;
5208 	int error;
5209 
5210 	memset(&cmd, 0, sizeof cmd);
5211 	cmd.ucode.once.enable = 0xffffffff;
5212 	cmd.ucode.once.start  = 0xffffffff;
5213 	cmd.ucode.once.send   = 0xffffffff;
5214 	cmd.ucode.flags       = 0xffffffff;
5215 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5216 	    __func__);
5217 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5218 	if (error != 0)
5219 		return error;
5220 
5221 	/* Wait at most two seconds for calibration to complete. */
5222 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5223 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 2 * hz);
5224 	return error;
5225 }
5226 
5227 /*
5228  * Send calibration results to the runtime firmware.  These results were
5229  * obtained on first boot from the initialization firmware.
5230  */
5231 static int
5232 iwn5000_send_calibration(struct iwn_softc *sc)
5233 {
5234 	int idx, error;
5235 
5236 	for (idx = 0; idx < 5; idx++) {
5237 		if (sc->calibcmd[idx].buf == NULL)
5238 			continue;	/* No results available. */
5239 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5240 		    "send calibration result idx=%d len=%d\n",
5241 		    idx, sc->calibcmd[idx].len);
5242 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5243 		    sc->calibcmd[idx].len, 0);
5244 		if (error != 0) {
5245 			device_printf(sc->sc_dev,
5246 			    "%s: could not send calibration result, error %d\n",
5247 			    __func__, error);
5248 			return error;
5249 		}
5250 	}
5251 	return 0;
5252 }
5253 
5254 static int
5255 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5256 {
5257 	struct iwn5000_wimax_coex wimax;
5258 
5259 #ifdef notyet
5260 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5261 		/* Enable WiMAX coexistence for combo adapters. */
5262 		wimax.flags =
5263 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5264 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5265 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5266 		    IWN_WIMAX_COEX_ENABLE;
5267 		memcpy(wimax.events, iwn6050_wimax_events,
5268 		    sizeof iwn6050_wimax_events);
5269 	} else
5270 #endif
5271 	{
5272 		/* Disable WiMAX coexistence. */
5273 		wimax.flags = 0;
5274 		memset(wimax.events, 0, sizeof wimax.events);
5275 	}
5276 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5277 	    __func__);
5278 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5279 }
5280 
5281 /*
5282  * This function is called after the runtime firmware notifies us of its
5283  * readiness (called in a process context.)
5284  */
5285 static int
5286 iwn4965_post_alive(struct iwn_softc *sc)
5287 {
5288 	int error, qid;
5289 
5290 	if ((error = iwn_nic_lock(sc)) != 0)
5291 		return error;
5292 
5293 	/* Clear TX scheduler state in SRAM. */
5294 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5295 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5296 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5297 
5298 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5299 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5300 
5301 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5302 
5303 	/* Disable chain mode for all our 16 queues. */
5304 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5305 
5306 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5307 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5308 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5309 
5310 		/* Set scheduler window size. */
5311 		iwn_mem_write(sc, sc->sched_base +
5312 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5313 		/* Set scheduler frame limit. */
5314 		iwn_mem_write(sc, sc->sched_base +
5315 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5316 		    IWN_SCHED_LIMIT << 16);
5317 	}
5318 
5319 	/* Enable interrupts for all our 16 queues. */
5320 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5321 	/* Identify TX FIFO rings (0-7). */
5322 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5323 
5324 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5325 	for (qid = 0; qid < 7; qid++) {
5326 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5327 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5328 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5329 	}
5330 	iwn_nic_unlock(sc);
5331 	return 0;
5332 }
5333 
5334 /*
5335  * This function is called after the initialization or runtime firmware
5336  * notifies us of its readiness (called in a process context.)
5337  */
5338 static int
5339 iwn5000_post_alive(struct iwn_softc *sc)
5340 {
5341 	int error, qid;
5342 
5343 	/* Switch to using ICT interrupt mode. */
5344 	iwn5000_ict_reset(sc);
5345 
5346 	error = iwn_nic_lock(sc);
5347 	if (error != 0)
5348 		return error;
5349 
5350 	/* Clear TX scheduler state in SRAM. */
5351 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5352 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5353 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5354 
5355 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5356 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5357 
5358 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5359 
5360 	/* Enable chain mode for all queues, except command queue. */
5361 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5362 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5363 
5364 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5365 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5366 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5367 
5368 		iwn_mem_write(sc, sc->sched_base +
5369 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5370 		/* Set scheduler window size and frame limit. */
5371 		iwn_mem_write(sc, sc->sched_base +
5372 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5373 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5374 	}
5375 
5376 	/* Enable interrupts for all our 20 queues. */
5377 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5378 	/* Identify TX FIFO rings (0-7). */
5379 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5380 
5381 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5382 	for (qid = 0; qid < 7; qid++) {
5383 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5384 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5385 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5386 	}
5387 	iwn_nic_unlock(sc);
5388 
5389 	/* Configure WiMAX coexistence for combo adapters. */
5390 	error = iwn5000_send_wimax_coex(sc);
5391 	if (error != 0) {
5392 		device_printf(sc->sc_dev,
5393 		    "%s: could not configure WiMAX coexistence, error %d\n",
5394 		    __func__, error);
5395 		return error;
5396 	}
5397 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5398 		struct iwn5000_phy_calib_crystal cmd;
5399 
5400 		/* Perform crystal calibration. */
5401 		memset(&cmd, 0, sizeof cmd);
5402 		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5403 		cmd.ngroups = 1;
5404 		cmd.isvalid = 1;
5405 		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5406 		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5407 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5408 		    "sending crystal calibration %d, %d\n",
5409 		    cmd.cap_pin[0], cmd.cap_pin[1]);
5410 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5411 		if (error != 0) {
5412 			device_printf(sc->sc_dev,
5413 			    "%s: crystal calibration failed, error %d\n",
5414 			    __func__, error);
5415 			return error;
5416 		}
5417 	}
5418 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5419 		/* Query calibration from the initialization firmware. */
5420 		error = iwn5000_query_calibration(sc);
5421 		if (error != 0) {
5422 			device_printf(sc->sc_dev,
5423 			    "%s: could not query calibration, error %d\n",
5424 			    __func__, error);
5425 			return error;
5426 		}
5427 		/*
5428 		 * We have the calibration results now, reboot with the
5429 		 * runtime firmware (call ourselves recursively!)
5430 		 */
5431 		iwn_hw_stop(sc);
5432 		error = iwn_hw_init(sc);
5433 	} else {
5434 		/* Send calibration results to runtime firmware. */
5435 		error = iwn5000_send_calibration(sc);
5436 	}
5437 	return error;
5438 }
5439 
5440 /*
5441  * The firmware boot code is small and is intended to be copied directly into
5442  * the NIC internal memory (no DMA transfer.)
5443  */
5444 static int
5445 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5446 {
5447 	int error, ntries;
5448 
5449 	size /= sizeof (uint32_t);
5450 
5451 	error = iwn_nic_lock(sc);
5452 	if (error != 0)
5453 		return error;
5454 
5455 	/* Copy microcode image into NIC memory. */
5456 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5457 	    (const uint32_t *)ucode, size);
5458 
5459 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5460 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5461 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5462 
5463 	/* Start boot load now. */
5464 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5465 
5466 	/* Wait for transfer to complete. */
5467 	for (ntries = 0; ntries < 1000; ntries++) {
5468 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5469 		    IWN_BSM_WR_CTRL_START))
5470 			break;
5471 		DELAY(10);
5472 	}
5473 	if (ntries == 1000) {
5474 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5475 		    __func__);
5476 		iwn_nic_unlock(sc);
5477 		return ETIMEDOUT;
5478 	}
5479 
5480 	/* Enable boot after power up. */
5481 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5482 
5483 	iwn_nic_unlock(sc);
5484 	return 0;
5485 }
5486 
5487 static int
5488 iwn4965_load_firmware(struct iwn_softc *sc)
5489 {
5490 	struct iwn_fw_info *fw = &sc->fw;
5491 	struct iwn_dma_info *dma = &sc->fw_dma;
5492 	int error;
5493 
5494 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5495 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5496 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5497 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5498 	    fw->init.text, fw->init.textsz);
5499 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5500 
5501 	/* Tell adapter where to find initialization sections. */
5502 	error = iwn_nic_lock(sc);
5503 	if (error != 0)
5504 		return error;
5505 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5506 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5507 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5508 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5509 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5510 	iwn_nic_unlock(sc);
5511 
5512 	/* Load firmware boot code. */
5513 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5514 	if (error != 0) {
5515 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5516 		    __func__);
5517 		return error;
5518 	}
5519 	/* Now press "execute". */
5520 	IWN_WRITE(sc, IWN_RESET, 0);
5521 
5522 	/* Wait at most one second for first alive notification. */
5523 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5524 	if (error) {
5525 		device_printf(sc->sc_dev,
5526 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5527 		    __func__, error);
5528 		return error;
5529 	}
5530 
5531 	/* Retrieve current temperature for initial TX power calibration. */
5532 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5533 	sc->temp = iwn4965_get_temperature(sc);
5534 
5535 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5536 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5537 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5538 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5539 	    fw->main.text, fw->main.textsz);
5540 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5541 
5542 	/* Tell adapter where to find runtime sections. */
5543 	error = iwn_nic_lock(sc);
5544 	if (error != 0)
5545 		return error;
5546 
5547 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5548 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5549 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5550 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5551 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5552 	    IWN_FW_UPDATED | fw->main.textsz);
5553 	iwn_nic_unlock(sc);
5554 
5555 	return 0;
5556 }
5557 
5558 static int
5559 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5560     const uint8_t *section, int size)
5561 {
5562 	struct iwn_dma_info *dma = &sc->fw_dma;
5563 	int error;
5564 
5565 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5566 	memcpy(dma->vaddr, section, size);
5567 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5568 
5569 	error = iwn_nic_lock(sc);
5570 	if (error != 0)
5571 		return error;
5572 
5573 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5574 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5575 
5576 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5577 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5578 	    IWN_LOADDR(dma->paddr));
5579 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5580 	    IWN_HIADDR(dma->paddr) << 28 | size);
5581 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5582 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5583 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5584 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5585 
5586 	/* Kick Flow Handler to start DMA transfer. */
5587 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5588 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5589 
5590 	iwn_nic_unlock(sc);
5591 
5592 	/* Wait at most five seconds for FH DMA transfer to complete. */
5593 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5594 }
5595 
5596 static int
5597 iwn5000_load_firmware(struct iwn_softc *sc)
5598 {
5599 	struct iwn_fw_part *fw;
5600 	int error;
5601 
5602 	/* Load the initialization firmware on first boot only. */
5603 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5604 	    &sc->fw.main : &sc->fw.init;
5605 
5606 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5607 	    fw->text, fw->textsz);
5608 	if (error != 0) {
5609 		device_printf(sc->sc_dev,
5610 		    "%s: could not load firmware %s section, error %d\n",
5611 		    __func__, ".text", error);
5612 		return error;
5613 	}
5614 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5615 	    fw->data, fw->datasz);
5616 	if (error != 0) {
5617 		device_printf(sc->sc_dev,
5618 		    "%s: could not load firmware %s section, error %d\n",
5619 		    __func__, ".data", error);
5620 		return error;
5621 	}
5622 
5623 	/* Now press "execute". */
5624 	IWN_WRITE(sc, IWN_RESET, 0);
5625 	return 0;
5626 }
5627 
5628 static int
5629 iwn_read_firmware(struct iwn_softc *sc)
5630 {
5631 	const struct iwn_hal *hal = sc->sc_hal;
5632 	struct iwn_fw_info *fw = &sc->fw;
5633 	const uint32_t *ptr;
5634 	uint32_t rev;
5635 	size_t size;
5636 
5637 	IWN_UNLOCK(sc);
5638 
5639 	/* Read firmware image from filesystem. */
5640 	sc->fw_fp = firmware_get(sc->fwname);
5641 	if (sc->fw_fp == NULL) {
5642 		device_printf(sc->sc_dev,
5643 		    "%s: could not load firmare image \"%s\"\n", __func__,
5644 		    sc->fwname);
5645 		IWN_LOCK(sc);
5646 		return EINVAL;
5647 	}
5648 	IWN_LOCK(sc);
5649 
5650 	size = sc->fw_fp->datasize;
5651 	if (size < 28) {
5652 		device_printf(sc->sc_dev,
5653 		    "%s: truncated firmware header: %zu bytes\n",
5654 		    __func__, size);
5655 		return EINVAL;
5656 	}
5657 
5658 	/* Process firmware header. */
5659 	ptr = (const uint32_t *)sc->fw_fp->data;
5660 	rev = le32toh(*ptr++);
5661 	/* Check firmware API version. */
5662 	if (IWN_FW_API(rev) <= 1) {
5663 		device_printf(sc->sc_dev,
5664 		    "%s: bad firmware, need API version >=2\n", __func__);
5665 		return EINVAL;
5666 	}
5667 	if (IWN_FW_API(rev) >= 3) {
5668 		/* Skip build number (version 2 header). */
5669 		size -= 4;
5670 		ptr++;
5671 	}
5672 	fw->main.textsz = le32toh(*ptr++);
5673 	fw->main.datasz = le32toh(*ptr++);
5674 	fw->init.textsz = le32toh(*ptr++);
5675 	fw->init.datasz = le32toh(*ptr++);
5676 	fw->boot.textsz = le32toh(*ptr++);
5677 	size -= 24;
5678 
5679 	/* Sanity-check firmware header. */
5680 	if (fw->main.textsz > hal->fw_text_maxsz ||
5681 	    fw->main.datasz > hal->fw_data_maxsz ||
5682 	    fw->init.textsz > hal->fw_text_maxsz ||
5683 	    fw->init.datasz > hal->fw_data_maxsz ||
5684 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5685 	    (fw->boot.textsz & 3) != 0) {
5686 		device_printf(sc->sc_dev, "%s: invalid firmware header\n",
5687 		    __func__);
5688 		return EINVAL;
5689 	}
5690 
5691 	/* Check that all firmware sections fit. */
5692 	if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
5693 	    fw->init.datasz + fw->boot.textsz > size) {
5694 		device_printf(sc->sc_dev,
5695 		    "%s: firmware file too short: %zu bytes\n",
5696 		    __func__, size);
5697 		return EINVAL;
5698 	}
5699 
5700 	/* Get pointers to firmware sections. */
5701 	fw->main.text = (const uint8_t *)ptr;
5702 	fw->main.data = fw->main.text + fw->main.textsz;
5703 	fw->init.text = fw->main.data + fw->main.datasz;
5704 	fw->init.data = fw->init.text + fw->init.textsz;
5705 	fw->boot.text = fw->init.data + fw->init.datasz;
5706 
5707 	return 0;
5708 }
5709 
5710 static int
5711 iwn_clock_wait(struct iwn_softc *sc)
5712 {
5713 	int ntries;
5714 
5715 	/* Set "initialization complete" bit. */
5716 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5717 
5718 	/* Wait for clock stabilization. */
5719 	for (ntries = 0; ntries < 2500; ntries++) {
5720 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5721 			return 0;
5722 		DELAY(10);
5723 	}
5724 	device_printf(sc->sc_dev,
5725 	    "%s: timeout waiting for clock stabilization\n", __func__);
5726 	return ETIMEDOUT;
5727 }
5728 
5729 static int
5730 iwn_apm_init(struct iwn_softc *sc)
5731 {
5732 	uint32_t tmp;
5733 	int error;
5734 
5735 	/* Disable L0s exit timer (NMI bug workaround.) */
5736 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
5737 	/* Don't wait for ICH L0s (ICH bug workaround.) */
5738 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
5739 
5740 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
5741 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
5742 
5743 	/* Enable HAP INTA to move adapter from L1a to L0s. */
5744 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
5745 
5746 	/* Retrieve PCIe Active State Power Management (ASPM). */
5747 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
5748 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
5749 	if (tmp & 0x02)	/* L1 Entry enabled. */
5750 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5751 	else
5752 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
5753 
5754 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
5755 	    sc->hw_type != IWN_HW_REV_TYPE_6000 &&
5756 	    sc->hw_type != IWN_HW_REV_TYPE_6050)
5757 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
5758 
5759 	/* Wait for clock stabilization before accessing prph. */
5760 	error = iwn_clock_wait(sc);
5761 	if (error != 0)
5762 		return error;
5763 
5764 	error = iwn_nic_lock(sc);
5765 	if (error != 0)
5766 		return error;
5767 
5768 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
5769 		/* Enable DMA and BSM (Bootstrap State Machine.) */
5770 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5771 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
5772 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
5773 	} else {
5774 		/* Enable DMA. */
5775 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
5776 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
5777 	}
5778 	DELAY(20);
5779 
5780 	/* Disable L1-Active. */
5781 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
5782 	iwn_nic_unlock(sc);
5783 
5784 	return 0;
5785 }
5786 
5787 static void
5788 iwn_apm_stop_master(struct iwn_softc *sc)
5789 {
5790 	int ntries;
5791 
5792 	/* Stop busmaster DMA activity. */
5793 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
5794 	for (ntries = 0; ntries < 100; ntries++) {
5795 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
5796 			return;
5797 		DELAY(10);
5798 	}
5799 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
5800 	    __func__);
5801 }
5802 
5803 static void
5804 iwn_apm_stop(struct iwn_softc *sc)
5805 {
5806 	iwn_apm_stop_master(sc);
5807 
5808 	/* Reset the entire device. */
5809 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
5810 	DELAY(10);
5811 	/* Clear "initialization complete" bit. */
5812 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5813 }
5814 
5815 static int
5816 iwn4965_nic_config(struct iwn_softc *sc)
5817 {
5818 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
5819 		/*
5820 		 * I don't believe this to be correct but this is what the
5821 		 * vendor driver is doing. Probably the bits should not be
5822 		 * shifted in IWN_RFCFG_*.
5823 		 */
5824 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5825 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5826 		    IWN_RFCFG_STEP(sc->rfcfg) |
5827 		    IWN_RFCFG_DASH(sc->rfcfg));
5828 	}
5829 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5830 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5831 	return 0;
5832 }
5833 
5834 static int
5835 iwn5000_nic_config(struct iwn_softc *sc)
5836 {
5837 	uint32_t tmp;
5838 	int error;
5839 
5840 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
5841 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5842 		    IWN_RFCFG_TYPE(sc->rfcfg) |
5843 		    IWN_RFCFG_STEP(sc->rfcfg) |
5844 		    IWN_RFCFG_DASH(sc->rfcfg));
5845 	}
5846 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
5847 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
5848 
5849 	error = iwn_nic_lock(sc);
5850 	if (error != 0)
5851 		return error;
5852 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
5853 
5854 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
5855 		/*
5856 		 * Select first Switching Voltage Regulator (1.32V) to
5857 		 * solve a stability issue related to noisy DC2DC line
5858 		 * in the silicon of 1000 Series.
5859 		 */
5860 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
5861 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
5862 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
5863 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
5864 	}
5865 	iwn_nic_unlock(sc);
5866 
5867 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
5868 		/* Use internal power amplifier only. */
5869 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
5870 	}
5871 	 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
5872 		 /* Indicate that ROM calibration version is >=6. */
5873 		 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
5874 	}
5875 	return 0;
5876 }
5877 
5878 /*
5879  * Take NIC ownership over Intel Active Management Technology (AMT).
5880  */
5881 static int
5882 iwn_hw_prepare(struct iwn_softc *sc)
5883 {
5884 	int ntries;
5885 
5886 	/* Check if hardware is ready. */
5887 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5888 	for (ntries = 0; ntries < 5; ntries++) {
5889 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5890 		    IWN_HW_IF_CONFIG_NIC_READY)
5891 			return 0;
5892 		DELAY(10);
5893 	}
5894 
5895 	/* Hardware not ready, force into ready state. */
5896 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
5897 	for (ntries = 0; ntries < 15000; ntries++) {
5898 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
5899 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
5900 			break;
5901 		DELAY(10);
5902 	}
5903 	if (ntries == 15000)
5904 		return ETIMEDOUT;
5905 
5906 	/* Hardware should be ready now. */
5907 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
5908 	for (ntries = 0; ntries < 5; ntries++) {
5909 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
5910 		    IWN_HW_IF_CONFIG_NIC_READY)
5911 			return 0;
5912 		DELAY(10);
5913 	}
5914 	return ETIMEDOUT;
5915 }
5916 
5917 static int
5918 iwn_hw_init(struct iwn_softc *sc)
5919 {
5920 	const struct iwn_hal *hal = sc->sc_hal;
5921 	int error, chnl, qid;
5922 
5923 	/* Clear pending interrupts. */
5924 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
5925 
5926 	error = iwn_apm_init(sc);
5927 	if (error != 0) {
5928 		device_printf(sc->sc_dev,
5929 		    "%s: could not power ON adapter, error %d\n",
5930 		    __func__, error);
5931 		return error;
5932 	}
5933 
5934 	/* Select VMAIN power source. */
5935 	error = iwn_nic_lock(sc);
5936 	if (error != 0)
5937 		return error;
5938 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
5939 	iwn_nic_unlock(sc);
5940 
5941 	/* Perform adapter-specific initialization. */
5942 	error = hal->nic_config(sc);
5943 	if (error != 0)
5944 		return error;
5945 
5946 	/* Initialize RX ring. */
5947 	error = iwn_nic_lock(sc);
5948 	if (error != 0)
5949 		return error;
5950 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
5951 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
5952 	/* Set physical address of RX ring (256-byte aligned.) */
5953 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
5954 	/* Set physical address of RX status (16-byte aligned.) */
5955 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
5956 	/* Enable RX. */
5957 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
5958 	    IWN_FH_RX_CONFIG_ENA           |
5959 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
5960 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
5961 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
5962 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
5963 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
5964 	iwn_nic_unlock(sc);
5965 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
5966 
5967 	error = iwn_nic_lock(sc);
5968 	if (error != 0)
5969 		return error;
5970 
5971 	/* Initialize TX scheduler. */
5972 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
5973 
5974 	/* Set physical address of "keep warm" page (16-byte aligned.) */
5975 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
5976 
5977 	/* Initialize TX rings. */
5978 	for (qid = 0; qid < hal->ntxqs; qid++) {
5979 		struct iwn_tx_ring *txq = &sc->txq[qid];
5980 
5981 		/* Set physical address of TX ring (256-byte aligned.) */
5982 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
5983 		    txq->desc_dma.paddr >> 8);
5984 	}
5985 	iwn_nic_unlock(sc);
5986 
5987 	/* Enable DMA channels. */
5988 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
5989 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
5990 		    IWN_FH_TX_CONFIG_DMA_ENA |
5991 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
5992 	}
5993 
5994 	/* Clear "radio off" and "commands blocked" bits. */
5995 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
5996 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
5997 
5998 	/* Clear pending interrupts. */
5999 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6000 	/* Enable interrupt coalescing. */
6001 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6002 	/* Enable interrupts. */
6003 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6004 
6005 	/* _Really_ make sure "radio off" bit is cleared! */
6006 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6007 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6008 
6009 	error = hal->load_firmware(sc);
6010 	if (error != 0) {
6011 		device_printf(sc->sc_dev,
6012 		    "%s: could not load firmware, error %d\n",
6013 		    __func__, error);
6014 		return error;
6015 	}
6016 	/* Wait at most one second for firmware alive notification. */
6017 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
6018 	if (error != 0) {
6019 		device_printf(sc->sc_dev,
6020 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6021 		    __func__, error);
6022 		return error;
6023 	}
6024 	/* Do post-firmware initialization. */
6025 	return hal->post_alive(sc);
6026 }
6027 
6028 static void
6029 iwn_hw_stop(struct iwn_softc *sc)
6030 {
6031 	const struct iwn_hal *hal = sc->sc_hal;
6032 	uint32_t tmp;
6033 	int chnl, qid, ntries;
6034 
6035 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6036 
6037 	/* Disable interrupts. */
6038 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6039 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6040 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6041 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6042 
6043 	/* Make sure we no longer hold the NIC lock. */
6044 	iwn_nic_unlock(sc);
6045 
6046 	/* Stop TX scheduler. */
6047 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6048 
6049 	/* Stop all DMA channels. */
6050 	if (iwn_nic_lock(sc) == 0) {
6051 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6052 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6053 			for (ntries = 0; ntries < 200; ntries++) {
6054 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6055 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6056 				    IWN_FH_TX_STATUS_IDLE(chnl))
6057 					break;
6058 				DELAY(10);
6059 			}
6060 		}
6061 		iwn_nic_unlock(sc);
6062 	}
6063 
6064 	/* Stop RX ring. */
6065 	iwn_reset_rx_ring(sc, &sc->rxq);
6066 
6067 	/* Reset all TX rings. */
6068 	for (qid = 0; qid < hal->ntxqs; qid++)
6069 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6070 
6071 	if (iwn_nic_lock(sc) == 0) {
6072 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6073 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6074 		iwn_nic_unlock(sc);
6075 	}
6076 	DELAY(5);
6077 
6078 	/* Power OFF adapter. */
6079 	iwn_apm_stop(sc);
6080 }
6081 
6082 static void
6083 iwn_init_locked(struct iwn_softc *sc)
6084 {
6085 	struct ifnet *ifp = sc->sc_ifp;
6086 	int error;
6087 
6088 	IWN_LOCK_ASSERT(sc);
6089 
6090 	error = iwn_hw_prepare(sc);
6091 	if (error != 0) {
6092 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6093 		    __func__, error);
6094 		goto fail;
6095 	}
6096 
6097 	/* Initialize interrupt mask to default value. */
6098 	sc->int_mask = IWN_INT_MASK_DEF;
6099 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6100 
6101 	/* Check that the radio is not disabled by hardware switch. */
6102 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6103 		device_printf(sc->sc_dev,
6104 		    "radio is disabled by hardware switch\n");
6105 
6106 		/* Enable interrupts to get RF toggle notifications. */
6107 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6108 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6109 		return;
6110 	}
6111 
6112 	/* Read firmware images from the filesystem. */
6113 	error = iwn_read_firmware(sc);
6114 	if (error != 0) {
6115 		device_printf(sc->sc_dev,
6116 		    "%s: could not read firmware, error %d\n",
6117 		    __func__, error);
6118 		goto fail;
6119 	}
6120 
6121 	/* Initialize hardware and upload firmware. */
6122 	error = iwn_hw_init(sc);
6123 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6124 	sc->fw_fp = NULL;
6125 	if (error != 0) {
6126 		device_printf(sc->sc_dev,
6127 		    "%s: could not initialize hardware, error %d\n",
6128 		    __func__, error);
6129 		goto fail;
6130 	}
6131 
6132 	/* Configure adapter now that it is ready. */
6133 	error = iwn_config(sc);
6134 	if (error != 0) {
6135 		device_printf(sc->sc_dev,
6136 		    "%s: could not configure device, error %d\n",
6137 		    __func__, error);
6138 		goto fail;
6139 	}
6140 
6141 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6142 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6143 
6144 	return;
6145 
6146 fail:
6147 	iwn_stop_locked(sc);
6148 }
6149 
6150 static void
6151 iwn_init(void *arg)
6152 {
6153 	struct iwn_softc *sc = arg;
6154 	struct ifnet *ifp = sc->sc_ifp;
6155 	struct ieee80211com *ic = ifp->if_l2com;
6156 
6157 	IWN_LOCK(sc);
6158 	iwn_init_locked(sc);
6159 	IWN_UNLOCK(sc);
6160 
6161 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6162 		ieee80211_start_all(ic);
6163 }
6164 
6165 static void
6166 iwn_stop_locked(struct iwn_softc *sc)
6167 {
6168 	struct ifnet *ifp = sc->sc_ifp;
6169 
6170 	IWN_LOCK_ASSERT(sc);
6171 
6172 	sc->sc_tx_timer = 0;
6173 	callout_stop(&sc->sc_timer_to);
6174 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6175 
6176 	/* Power OFF hardware. */
6177 	iwn_hw_stop(sc);
6178 }
6179 
6180 static void
6181 iwn_stop(struct iwn_softc *sc)
6182 {
6183 	IWN_LOCK(sc);
6184 	iwn_stop_locked(sc);
6185 	IWN_UNLOCK(sc);
6186 }
6187 
6188 /*
6189  * Callback from net80211 to start a scan.
6190  */
6191 static void
6192 iwn_scan_start(struct ieee80211com *ic)
6193 {
6194 	struct ifnet *ifp = ic->ic_ifp;
6195 	struct iwn_softc *sc = ifp->if_softc;
6196 
6197 	IWN_LOCK(sc);
6198 	/* make the link LED blink while we're scanning */
6199 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6200 	IWN_UNLOCK(sc);
6201 }
6202 
6203 /*
6204  * Callback from net80211 to terminate a scan.
6205  */
6206 static void
6207 iwn_scan_end(struct ieee80211com *ic)
6208 {
6209 	struct ifnet *ifp = ic->ic_ifp;
6210 	struct iwn_softc *sc = ifp->if_softc;
6211 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6212 
6213 	IWN_LOCK(sc);
6214 	if (vap->iv_state == IEEE80211_S_RUN) {
6215 		/* Set link LED to ON status if we are associated */
6216 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6217 	}
6218 	IWN_UNLOCK(sc);
6219 }
6220 
6221 /*
6222  * Callback from net80211 to force a channel change.
6223  */
6224 static void
6225 iwn_set_channel(struct ieee80211com *ic)
6226 {
6227 	const struct ieee80211_channel *c = ic->ic_curchan;
6228 	struct ifnet *ifp = ic->ic_ifp;
6229 	struct iwn_softc *sc = ifp->if_softc;
6230 
6231 	IWN_LOCK(sc);
6232 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6233 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6234 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6235 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6236 	IWN_UNLOCK(sc);
6237 }
6238 
6239 /*
6240  * Callback from net80211 to start scanning of the current channel.
6241  */
6242 static void
6243 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6244 {
6245 	struct ieee80211vap *vap = ss->ss_vap;
6246 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6247 	int error;
6248 
6249 	IWN_LOCK(sc);
6250 	error = iwn_scan(sc);
6251 	IWN_UNLOCK(sc);
6252 	if (error != 0)
6253 		ieee80211_cancel_scan(vap);
6254 }
6255 
6256 /*
6257  * Callback from net80211 to handle the minimum dwell time being met.
6258  * The intent is to terminate the scan but we just let the firmware
6259  * notify us when it's finished as we have no safe way to abort it.
6260  */
6261 static void
6262 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6263 {
6264 	/* NB: don't try to abort scan; wait for firmware to finish */
6265 }
6266 
6267 static struct iwn_eeprom_chan *
6268 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6269 {
6270 	int i, j;
6271 
6272 	for (j = 0; j < 7; j++) {
6273 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6274 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6275 				return &sc->eeprom_channels[j][i];
6276 		}
6277 	}
6278 
6279 	return NULL;
6280 }
6281 
6282 /*
6283  * Enforce flags read from EEPROM.
6284  */
6285 static int
6286 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6287     int nchan, struct ieee80211_channel chans[])
6288 {
6289 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6290 	int i;
6291 
6292 	for (i = 0; i < nchan; i++) {
6293 		struct ieee80211_channel *c = &chans[i];
6294 		struct iwn_eeprom_chan *channel;
6295 
6296 		channel = iwn_find_eeprom_channel(sc, c);
6297 		if (channel == NULL) {
6298 			if_printf(ic->ic_ifp,
6299 			    "%s: invalid channel %u freq %u/0x%x\n",
6300 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6301 			return EINVAL;
6302 		}
6303 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6304 	}
6305 
6306 	return 0;
6307 }
6308 
6309 static void
6310 iwn_hw_reset(void *arg0, int pending)
6311 {
6312 	struct iwn_softc *sc = arg0;
6313 	struct ifnet *ifp = sc->sc_ifp;
6314 	struct ieee80211com *ic = ifp->if_l2com;
6315 
6316 	iwn_stop(sc);
6317 	iwn_init(sc);
6318 	ieee80211_notify_radio(ic, 1);
6319 }
6320 
6321 static void
6322 iwn_radio_on(void *arg0, int pending)
6323 {
6324 	struct iwn_softc *sc = arg0;
6325 	struct ifnet *ifp = sc->sc_ifp;
6326 	struct ieee80211com *ic = ifp->if_l2com;
6327 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6328 
6329 	if (vap != NULL) {
6330 		iwn_init(sc);
6331 		ieee80211_init(vap);
6332 	}
6333 }
6334 
6335 static void
6336 iwn_radio_off(void *arg0, int pending)
6337 {
6338 	struct iwn_softc *sc = arg0;
6339 	struct ifnet *ifp = sc->sc_ifp;
6340 	struct ieee80211com *ic = ifp->if_l2com;
6341 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6342 
6343 	iwn_stop(sc);
6344 	if (vap != NULL)
6345 		ieee80211_stop(vap);
6346 
6347 	/* Enable interrupts to get RF toggle notification. */
6348 	IWN_LOCK(sc);
6349 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6350 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6351 	IWN_UNLOCK(sc);
6352 }
6353 
6354 static void
6355 iwn_sysctlattach(struct iwn_softc *sc)
6356 {
6357 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6358 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6359 
6360 #ifdef IWN_DEBUG
6361 	sc->sc_debug = 0;
6362 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6363 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6364 #endif
6365 }
6366 
6367 static int
6368 iwn_shutdown(device_t dev)
6369 {
6370 	struct iwn_softc *sc = device_get_softc(dev);
6371 
6372 	iwn_stop(sc);
6373 	return 0;
6374 }
6375 
6376 static int
6377 iwn_suspend(device_t dev)
6378 {
6379 	struct iwn_softc *sc = device_get_softc(dev);
6380 	struct ifnet *ifp = sc->sc_ifp;
6381 	struct ieee80211com *ic = ifp->if_l2com;
6382 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6383 
6384 	iwn_stop(sc);
6385 	if (vap != NULL)
6386 		ieee80211_stop(vap);
6387 	return 0;
6388 }
6389 
6390 static int
6391 iwn_resume(device_t dev)
6392 {
6393 	struct iwn_softc *sc = device_get_softc(dev);
6394 	struct ifnet *ifp = sc->sc_ifp;
6395 	struct ieee80211com *ic = ifp->if_l2com;
6396 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6397 
6398 	/* Clear device-specific "PCI retry timeout" register (41h). */
6399 	pci_write_config(dev, 0x41, 0, 1);
6400 
6401 	if (ifp->if_flags & IFF_UP) {
6402 		iwn_init(sc);
6403 		if (vap != NULL)
6404 			ieee80211_init(vap);
6405 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6406 			iwn_start(ifp);
6407 	}
6408 	return 0;
6409 }
6410 
6411 #ifdef IWN_DEBUG
6412 static const char *
6413 iwn_intr_str(uint8_t cmd)
6414 {
6415 	switch (cmd) {
6416 	/* Notifications */
6417 	case IWN_UC_READY:		return "UC_READY";
6418 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6419 	case IWN_TX_DONE:		return "TX_DONE";
6420 	case IWN_START_SCAN:		return "START_SCAN";
6421 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6422 	case IWN_RX_STATISTICS:		return "RX_STATS";
6423 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6424 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6425 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6426 	case IWN_RX_PHY:		return "RX_PHY";
6427 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6428 	case IWN_RX_DONE:		return "RX_DONE";
6429 
6430 	/* Command Notifications */
6431 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6432 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6433 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6434 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6435 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6436 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6437 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6438 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6439 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6440 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6441 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6442 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6443 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6444 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6445 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6446 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6447 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6448 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6449 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6450 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6451 	}
6452 	return "UNKNOWN INTR NOTIF/CMD";
6453 }
6454 #endif /* IWN_DEBUG */
6455 
6456 static device_method_t iwn_methods[] = {
6457 	/* Device interface */
6458 	DEVMETHOD(device_probe,		iwn_probe),
6459 	DEVMETHOD(device_attach,	iwn_attach),
6460 	DEVMETHOD(device_detach,	iwn_detach),
6461 	DEVMETHOD(device_shutdown,	iwn_shutdown),
6462 	DEVMETHOD(device_suspend,	iwn_suspend),
6463 	DEVMETHOD(device_resume,	iwn_resume),
6464 	{ 0, 0 }
6465 };
6466 
6467 static driver_t iwn_driver = {
6468 	"iwn",
6469 	iwn_methods,
6470 	sizeof (struct iwn_softc)
6471 };
6472 static devclass_t iwn_devclass;
6473 
6474 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
6475 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6476 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6477 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6478