1 /*- 2 * Copyright (c) 2007-2009 3 * Damien Bergamini <damien.bergamini@free.fr> 4 * Copyright (c) 2008 5 * Benjamin Close <benjsc@FreeBSD.org> 6 * Copyright (c) 2008 Sam Leffler, Errno Consulting 7 * 8 * Permission to use, copy, modify, and distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 23 * adapters. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include <sys/param.h> 30 #include <sys/sockio.h> 31 #include <sys/sysctl.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/bus.h> 38 #include <sys/rman.h> 39 #include <sys/endian.h> 40 #include <sys/firmware.h> 41 #include <sys/limits.h> 42 #include <sys/module.h> 43 #include <sys/queue.h> 44 #include <sys/taskqueue.h> 45 46 #include <machine/bus.h> 47 #include <machine/resource.h> 48 #include <machine/clock.h> 49 50 #include <dev/pci/pcireg.h> 51 #include <dev/pci/pcivar.h> 52 53 #include <net/bpf.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/ethernet.h> 57 #include <net/if_dl.h> 58 #include <net/if_media.h> 59 #include <net/if_types.h> 60 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/if_ether.h> 65 #include <netinet/ip.h> 66 67 #include <net80211/ieee80211_var.h> 68 #include <net80211/ieee80211_radiotap.h> 69 #include <net80211/ieee80211_regdomain.h> 70 #include <net80211/ieee80211_ratectl.h> 71 72 #include <dev/iwn/if_iwnreg.h> 73 #include <dev/iwn/if_iwnvar.h> 74 75 static int iwn_probe(device_t); 76 static int iwn_attach(device_t); 77 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *); 78 static void iwn_radiotap_attach(struct iwn_softc *); 79 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 80 const char name[IFNAMSIZ], int unit, int opmode, 81 int flags, const uint8_t bssid[IEEE80211_ADDR_LEN], 82 const uint8_t mac[IEEE80211_ADDR_LEN]); 83 static void iwn_vap_delete(struct ieee80211vap *); 84 static int iwn_cleanup(device_t); 85 static int iwn_detach(device_t); 86 static int iwn_nic_lock(struct iwn_softc *); 87 static int iwn_eeprom_lock(struct iwn_softc *); 88 static int iwn_init_otprom(struct iwn_softc *); 89 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 90 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 91 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 92 void **, bus_size_t, bus_size_t, int); 93 static void iwn_dma_contig_free(struct iwn_dma_info *); 94 static int iwn_alloc_sched(struct iwn_softc *); 95 static void iwn_free_sched(struct iwn_softc *); 96 static int iwn_alloc_kw(struct iwn_softc *); 97 static void iwn_free_kw(struct iwn_softc *); 98 static int iwn_alloc_ict(struct iwn_softc *); 99 static void iwn_free_ict(struct iwn_softc *); 100 static int iwn_alloc_fwmem(struct iwn_softc *); 101 static void iwn_free_fwmem(struct iwn_softc *); 102 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 103 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 104 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 105 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 106 int); 107 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 108 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 109 static void iwn5000_ict_reset(struct iwn_softc *); 110 static int iwn_read_eeprom(struct iwn_softc *, 111 uint8_t macaddr[IEEE80211_ADDR_LEN]); 112 static void iwn4965_read_eeprom(struct iwn_softc *); 113 static void iwn4965_print_power_group(struct iwn_softc *, int); 114 static void iwn5000_read_eeprom(struct iwn_softc *); 115 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 116 static void iwn_read_eeprom_band(struct iwn_softc *, int); 117 #if 0 /* HT */ 118 static void iwn_read_eeprom_ht40(struct iwn_softc *, int); 119 #endif 120 static void iwn_read_eeprom_channels(struct iwn_softc *, int, 121 uint32_t); 122 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 123 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 124 const uint8_t mac[IEEE80211_ADDR_LEN]); 125 static void iwn_newassoc(struct ieee80211_node *, int); 126 static int iwn_media_change(struct ifnet *); 127 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 128 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, 129 struct iwn_rx_data *); 130 static void iwn_timer_timeout(void *); 131 static void iwn_calib_reset(struct iwn_softc *); 132 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 133 struct iwn_rx_data *); 134 #if 0 /* HT */ 135 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *, 136 struct iwn_rx_data *); 137 #endif 138 static void iwn5000_rx_calib_results(struct iwn_softc *, 139 struct iwn_rx_desc *, struct iwn_rx_data *); 140 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, 141 struct iwn_rx_data *); 142 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 143 struct iwn_rx_data *); 144 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 145 struct iwn_rx_data *); 146 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, 147 uint8_t); 148 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 149 static void iwn_notif_intr(struct iwn_softc *); 150 static void iwn_wakeup_intr(struct iwn_softc *); 151 static void iwn_rftoggle_intr(struct iwn_softc *); 152 static void iwn_fatal_intr(struct iwn_softc *); 153 static void iwn_intr(void *); 154 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 155 uint16_t); 156 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 157 uint16_t); 158 #ifdef notyet 159 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 160 #endif 161 static uint8_t iwn_plcp_signal(int); 162 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 163 struct ieee80211_node *, struct iwn_tx_ring *); 164 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 165 const struct ieee80211_bpf_params *); 166 static void iwn_start(struct ifnet *); 167 static void iwn_start_locked(struct ifnet *); 168 static void iwn_watchdog(struct iwn_softc *sc); 169 static int iwn_ioctl(struct ifnet *, u_long, caddr_t); 170 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 171 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 172 int); 173 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 174 int); 175 static int iwn_set_link_quality(struct iwn_softc *, uint8_t, int); 176 static int iwn_add_broadcast_node(struct iwn_softc *, int); 177 static int iwn_wme_update(struct ieee80211com *); 178 static void iwn_update_mcast(struct ifnet *); 179 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 180 static int iwn_set_critical_temp(struct iwn_softc *); 181 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 182 static void iwn4965_power_calibration(struct iwn_softc *, int); 183 static int iwn4965_set_txpower(struct iwn_softc *, 184 struct ieee80211_channel *, int); 185 static int iwn5000_set_txpower(struct iwn_softc *, 186 struct ieee80211_channel *, int); 187 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 188 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 189 static int iwn_get_noise(const struct iwn_rx_general_stats *); 190 static int iwn4965_get_temperature(struct iwn_softc *); 191 static int iwn5000_get_temperature(struct iwn_softc *); 192 static int iwn_init_sensitivity(struct iwn_softc *); 193 static void iwn_collect_noise(struct iwn_softc *, 194 const struct iwn_rx_general_stats *); 195 static int iwn4965_init_gains(struct iwn_softc *); 196 static int iwn5000_init_gains(struct iwn_softc *); 197 static int iwn4965_set_gains(struct iwn_softc *); 198 static int iwn5000_set_gains(struct iwn_softc *); 199 static void iwn_tune_sensitivity(struct iwn_softc *, 200 const struct iwn_rx_stats *); 201 static int iwn_send_sensitivity(struct iwn_softc *); 202 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 203 static int iwn_config(struct iwn_softc *); 204 static int iwn_scan(struct iwn_softc *); 205 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 206 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 207 #if 0 /* HT */ 208 static int iwn_ampdu_rx_start(struct ieee80211com *, 209 struct ieee80211_node *, uint8_t); 210 static void iwn_ampdu_rx_stop(struct ieee80211com *, 211 struct ieee80211_node *, uint8_t); 212 static int iwn_ampdu_tx_start(struct ieee80211com *, 213 struct ieee80211_node *, uint8_t); 214 static void iwn_ampdu_tx_stop(struct ieee80211com *, 215 struct ieee80211_node *, uint8_t); 216 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 217 struct ieee80211_node *, uint8_t, uint16_t); 218 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t); 219 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 220 struct ieee80211_node *, uint8_t, uint16_t); 221 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t); 222 #endif 223 static int iwn5000_query_calibration(struct iwn_softc *); 224 static int iwn5000_send_calibration(struct iwn_softc *); 225 static int iwn5000_send_wimax_coex(struct iwn_softc *); 226 static int iwn4965_post_alive(struct iwn_softc *); 227 static int iwn5000_post_alive(struct iwn_softc *); 228 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 229 int); 230 static int iwn4965_load_firmware(struct iwn_softc *); 231 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 232 const uint8_t *, int); 233 static int iwn5000_load_firmware(struct iwn_softc *); 234 static int iwn_read_firmware(struct iwn_softc *); 235 static int iwn_clock_wait(struct iwn_softc *); 236 static int iwn_apm_init(struct iwn_softc *); 237 static void iwn_apm_stop_master(struct iwn_softc *); 238 static void iwn_apm_stop(struct iwn_softc *); 239 static int iwn4965_nic_config(struct iwn_softc *); 240 static int iwn5000_nic_config(struct iwn_softc *); 241 static int iwn_hw_prepare(struct iwn_softc *); 242 static int iwn_hw_init(struct iwn_softc *); 243 static void iwn_hw_stop(struct iwn_softc *); 244 static void iwn_init_locked(struct iwn_softc *); 245 static void iwn_init(void *); 246 static void iwn_stop_locked(struct iwn_softc *); 247 static void iwn_stop(struct iwn_softc *); 248 static void iwn_scan_start(struct ieee80211com *); 249 static void iwn_scan_end(struct ieee80211com *); 250 static void iwn_set_channel(struct ieee80211com *); 251 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 252 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 253 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 254 struct ieee80211_channel *); 255 static int iwn_setregdomain(struct ieee80211com *, 256 struct ieee80211_regdomain *, int, 257 struct ieee80211_channel []); 258 static void iwn_hw_reset(void *, int); 259 static void iwn_radio_on(void *, int); 260 static void iwn_radio_off(void *, int); 261 static void iwn_sysctlattach(struct iwn_softc *); 262 static int iwn_shutdown(device_t); 263 static int iwn_suspend(device_t); 264 static int iwn_resume(device_t); 265 266 #define IWN_DEBUG 267 #ifdef IWN_DEBUG 268 enum { 269 IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 270 IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */ 271 IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */ 272 IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */ 273 IWN_DEBUG_RESET = 0x00000010, /* reset processing */ 274 IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */ 275 IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */ 276 IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */ 277 IWN_DEBUG_INTR = 0x00000100, /* ISR */ 278 IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */ 279 IWN_DEBUG_NODE = 0x00000400, /* node management */ 280 IWN_DEBUG_LED = 0x00000800, /* led management */ 281 IWN_DEBUG_CMD = 0x00001000, /* cmd submission */ 282 IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */ 283 IWN_DEBUG_ANY = 0xffffffff 284 }; 285 286 #define DPRINTF(sc, m, fmt, ...) do { \ 287 if (sc->sc_debug & (m)) \ 288 printf(fmt, __VA_ARGS__); \ 289 } while (0) 290 291 static const char *iwn_intr_str(uint8_t); 292 #else 293 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0) 294 #endif 295 296 struct iwn_ident { 297 uint16_t vendor; 298 uint16_t device; 299 const char *name; 300 }; 301 302 static const struct iwn_ident iwn_ident_table [] = { 303 { 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" }, 304 { 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" }, 305 { 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" }, 306 { 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" }, 307 { 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" }, 308 { 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" }, 309 { 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" }, 310 { 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" }, 311 { 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" }, 312 { 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" }, 313 { 0x8086, 0x4236, "Intel(R) PRO/Wireless 5350" }, 314 { 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" }, 315 { 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" }, 316 { 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" }, 317 { 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" }, 318 { 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" }, 319 { 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" }, 320 { 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" }, 321 { 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" }, 322 { 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" }, 323 { 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" }, 324 { 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" }, 325 { 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" }, 326 { 0, 0, NULL } 327 }; 328 329 static const struct iwn_hal iwn4965_hal = { 330 iwn4965_load_firmware, 331 iwn4965_read_eeprom, 332 iwn4965_post_alive, 333 iwn4965_nic_config, 334 iwn4965_update_sched, 335 iwn4965_get_temperature, 336 iwn4965_get_rssi, 337 iwn4965_set_txpower, 338 iwn4965_init_gains, 339 iwn4965_set_gains, 340 iwn4965_add_node, 341 iwn4965_tx_done, 342 #if 0 /* HT */ 343 iwn4965_ampdu_tx_start, 344 iwn4965_ampdu_tx_stop, 345 #endif 346 IWN4965_NTXQUEUES, 347 IWN4965_NDMACHNLS, 348 IWN4965_ID_BROADCAST, 349 IWN4965_RXONSZ, 350 IWN4965_SCHEDSZ, 351 IWN4965_FW_TEXT_MAXSZ, 352 IWN4965_FW_DATA_MAXSZ, 353 IWN4965_FWSZ, 354 IWN4965_SCHED_TXFACT 355 }; 356 357 static const struct iwn_hal iwn5000_hal = { 358 iwn5000_load_firmware, 359 iwn5000_read_eeprom, 360 iwn5000_post_alive, 361 iwn5000_nic_config, 362 iwn5000_update_sched, 363 iwn5000_get_temperature, 364 iwn5000_get_rssi, 365 iwn5000_set_txpower, 366 iwn5000_init_gains, 367 iwn5000_set_gains, 368 iwn5000_add_node, 369 iwn5000_tx_done, 370 #if 0 /* HT */ 371 iwn5000_ampdu_tx_start, 372 iwn5000_ampdu_tx_stop, 373 #endif 374 IWN5000_NTXQUEUES, 375 IWN5000_NDMACHNLS, 376 IWN5000_ID_BROADCAST, 377 IWN5000_RXONSZ, 378 IWN5000_SCHEDSZ, 379 IWN5000_FW_TEXT_MAXSZ, 380 IWN5000_FW_DATA_MAXSZ, 381 IWN5000_FWSZ, 382 IWN5000_SCHED_TXFACT 383 }; 384 385 static int 386 iwn_probe(device_t dev) 387 { 388 const struct iwn_ident *ident; 389 390 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 391 if (pci_get_vendor(dev) == ident->vendor && 392 pci_get_device(dev) == ident->device) { 393 device_set_desc(dev, ident->name); 394 return 0; 395 } 396 } 397 return ENXIO; 398 } 399 400 static int 401 iwn_attach(device_t dev) 402 { 403 struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev); 404 struct ieee80211com *ic; 405 struct ifnet *ifp; 406 const struct iwn_hal *hal; 407 uint32_t tmp; 408 int i, error, result; 409 uint8_t macaddr[IEEE80211_ADDR_LEN]; 410 411 sc->sc_dev = dev; 412 413 /* 414 * Get the offset of the PCI Express Capability Structure in PCI 415 * Configuration Space. 416 */ 417 error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 418 if (error != 0) { 419 device_printf(dev, "PCIe capability structure not found!\n"); 420 return error; 421 } 422 423 /* Clear device-specific "PCI retry timeout" register (41h). */ 424 pci_write_config(dev, 0x41, 0, 1); 425 426 /* Hardware bug workaround. */ 427 tmp = pci_read_config(dev, PCIR_COMMAND, 1); 428 if (tmp & PCIM_CMD_INTxDIS) { 429 DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n", 430 __func__); 431 tmp &= ~PCIM_CMD_INTxDIS; 432 pci_write_config(dev, PCIR_COMMAND, tmp, 1); 433 } 434 435 /* Enable bus-mastering. */ 436 pci_enable_busmaster(dev); 437 438 sc->mem_rid = PCIR_BAR(0); 439 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid, 440 RF_ACTIVE); 441 if (sc->mem == NULL ) { 442 device_printf(dev, "could not allocate memory resources\n"); 443 error = ENOMEM; 444 return error; 445 } 446 447 sc->sc_st = rman_get_bustag(sc->mem); 448 sc->sc_sh = rman_get_bushandle(sc->mem); 449 sc->irq_rid = 0; 450 if ((result = pci_msi_count(dev)) == 1 && 451 pci_alloc_msi(dev, &result) == 0) 452 sc->irq_rid = 1; 453 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid, 454 RF_ACTIVE | RF_SHAREABLE); 455 if (sc->irq == NULL) { 456 device_printf(dev, "could not allocate interrupt resource\n"); 457 error = ENOMEM; 458 goto fail; 459 } 460 461 IWN_LOCK_INIT(sc); 462 callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0); 463 TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc ); 464 TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc ); 465 TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc ); 466 467 /* Attach Hardware Abstraction Layer. */ 468 hal = iwn_hal_attach(sc); 469 if (hal == NULL) { 470 error = ENXIO; /* XXX: Wrong error code? */ 471 goto fail; 472 } 473 474 error = iwn_hw_prepare(sc); 475 if (error != 0) { 476 device_printf(dev, "hardware not ready, error %d\n", error); 477 goto fail; 478 } 479 480 /* Allocate DMA memory for firmware transfers. */ 481 error = iwn_alloc_fwmem(sc); 482 if (error != 0) { 483 device_printf(dev, 484 "could not allocate memory for firmware, error %d\n", 485 error); 486 goto fail; 487 } 488 489 /* Allocate "Keep Warm" page. */ 490 error = iwn_alloc_kw(sc); 491 if (error != 0) { 492 device_printf(dev, 493 "could not allocate \"Keep Warm\" page, error %d\n", error); 494 goto fail; 495 } 496 497 /* Allocate ICT table for 5000 Series. */ 498 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 499 (error = iwn_alloc_ict(sc)) != 0) { 500 device_printf(dev, 501 "%s: could not allocate ICT table, error %d\n", 502 __func__, error); 503 goto fail; 504 } 505 506 /* Allocate TX scheduler "rings". */ 507 error = iwn_alloc_sched(sc); 508 if (error != 0) { 509 device_printf(dev, 510 "could not allocate TX scheduler rings, error %d\n", 511 error); 512 goto fail; 513 } 514 515 /* Allocate TX rings (16 on 4965AGN, 20 on 5000). */ 516 for (i = 0; i < hal->ntxqs; i++) { 517 error = iwn_alloc_tx_ring(sc, &sc->txq[i], i); 518 if (error != 0) { 519 device_printf(dev, 520 "could not allocate Tx ring %d, error %d\n", 521 i, error); 522 goto fail; 523 } 524 } 525 526 /* Allocate RX ring. */ 527 error = iwn_alloc_rx_ring(sc, &sc->rxq); 528 if (error != 0 ){ 529 device_printf(dev, 530 "could not allocate Rx ring, error %d\n", error); 531 goto fail; 532 } 533 534 /* Clear pending interrupts. */ 535 IWN_WRITE(sc, IWN_INT, 0xffffffff); 536 537 /* Count the number of available chains. */ 538 sc->ntxchains = 539 ((sc->txchainmask >> 2) & 1) + 540 ((sc->txchainmask >> 1) & 1) + 541 ((sc->txchainmask >> 0) & 1); 542 sc->nrxchains = 543 ((sc->rxchainmask >> 2) & 1) + 544 ((sc->rxchainmask >> 1) & 1) + 545 ((sc->rxchainmask >> 0) & 1); 546 547 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 548 if (ifp == NULL) { 549 device_printf(dev, "can not allocate ifnet structure\n"); 550 goto fail; 551 } 552 ic = ifp->if_l2com; 553 554 ic->ic_ifp = ifp; 555 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 556 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 557 558 /* Set device capabilities. */ 559 ic->ic_caps = 560 IEEE80211_C_STA /* station mode supported */ 561 | IEEE80211_C_MONITOR /* monitor mode supported */ 562 | IEEE80211_C_TXPMGT /* tx power management */ 563 | IEEE80211_C_SHSLOT /* short slot time supported */ 564 | IEEE80211_C_WPA 565 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 566 | IEEE80211_C_BGSCAN /* background scanning */ 567 #if 0 568 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 569 #endif 570 | IEEE80211_C_WME /* WME */ 571 ; 572 #if 0 /* HT */ 573 /* XXX disable until HT channel setup works */ 574 ic->ic_htcaps = 575 IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */ 576 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */ 577 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 578 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 579 | IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */ 580 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 581 /* s/w capabilities */ 582 | IEEE80211_HTC_HT /* HT operation */ 583 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 584 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 585 ; 586 587 /* Set HT capabilities. */ 588 ic->ic_htcaps = 589 #if IWN_RBUF_SIZE == 8192 590 IEEE80211_HTCAP_AMSDU7935 | 591 #endif 592 IEEE80211_HTCAP_CBW20_40 | 593 IEEE80211_HTCAP_SGI20 | 594 IEEE80211_HTCAP_SGI40; 595 if (sc->hw_type != IWN_HW_REV_TYPE_4965) 596 ic->ic_htcaps |= IEEE80211_HTCAP_GF; 597 if (sc->hw_type == IWN_HW_REV_TYPE_6050) 598 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN; 599 else 600 ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS; 601 #endif 602 603 /* Read MAC address, channels, etc from EEPROM. */ 604 error = iwn_read_eeprom(sc, macaddr); 605 if (error != 0) { 606 device_printf(dev, "could not read EEPROM, error %d\n", 607 error); 608 goto fail; 609 } 610 611 device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n", 612 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 613 macaddr, ":"); 614 615 #if 0 /* HT */ 616 /* Set supported HT rates. */ 617 ic->ic_sup_mcs[0] = 0xff; 618 if (sc->nrxchains > 1) 619 ic->ic_sup_mcs[1] = 0xff; 620 if (sc->nrxchains > 2) 621 ic->ic_sup_mcs[2] = 0xff; 622 #endif 623 624 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 625 ifp->if_softc = sc; 626 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 627 ifp->if_init = iwn_init; 628 ifp->if_ioctl = iwn_ioctl; 629 ifp->if_start = iwn_start; 630 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 631 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 632 IFQ_SET_READY(&ifp->if_snd); 633 634 ieee80211_ifattach(ic, macaddr); 635 ic->ic_vap_create = iwn_vap_create; 636 ic->ic_vap_delete = iwn_vap_delete; 637 ic->ic_raw_xmit = iwn_raw_xmit; 638 ic->ic_node_alloc = iwn_node_alloc; 639 ic->ic_newassoc = iwn_newassoc; 640 ic->ic_wme.wme_update = iwn_wme_update; 641 ic->ic_update_mcast = iwn_update_mcast; 642 ic->ic_scan_start = iwn_scan_start; 643 ic->ic_scan_end = iwn_scan_end; 644 ic->ic_set_channel = iwn_set_channel; 645 ic->ic_scan_curchan = iwn_scan_curchan; 646 ic->ic_scan_mindwell = iwn_scan_mindwell; 647 ic->ic_setregdomain = iwn_setregdomain; 648 #if 0 /* HT */ 649 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 650 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 651 ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; 652 ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; 653 #endif 654 655 iwn_radiotap_attach(sc); 656 iwn_sysctlattach(sc); 657 658 /* 659 * Hook our interrupt after all initialization is complete. 660 */ 661 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 662 NULL, iwn_intr, sc, &sc->sc_ih); 663 if (error != 0) { 664 device_printf(dev, "could not set up interrupt, error %d\n", 665 error); 666 goto fail; 667 } 668 669 ieee80211_announce(ic); 670 return 0; 671 fail: 672 iwn_cleanup(dev); 673 return error; 674 } 675 676 static const struct iwn_hal * 677 iwn_hal_attach(struct iwn_softc *sc) 678 { 679 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; 680 681 switch (sc->hw_type) { 682 case IWN_HW_REV_TYPE_4965: 683 sc->sc_hal = &iwn4965_hal; 684 sc->limits = &iwn4965_sensitivity_limits; 685 sc->fwname = "iwn4965fw"; 686 sc->txchainmask = IWN_ANT_AB; 687 sc->rxchainmask = IWN_ANT_ABC; 688 break; 689 case IWN_HW_REV_TYPE_5100: 690 sc->sc_hal = &iwn5000_hal; 691 sc->limits = &iwn5000_sensitivity_limits; 692 sc->fwname = "iwn5000fw"; 693 sc->txchainmask = IWN_ANT_B; 694 sc->rxchainmask = IWN_ANT_AB; 695 break; 696 case IWN_HW_REV_TYPE_5150: 697 sc->sc_hal = &iwn5000_hal; 698 sc->limits = &iwn5150_sensitivity_limits; 699 sc->fwname = "iwn5150fw"; 700 sc->txchainmask = IWN_ANT_A; 701 sc->rxchainmask = IWN_ANT_AB; 702 break; 703 case IWN_HW_REV_TYPE_5300: 704 case IWN_HW_REV_TYPE_5350: 705 sc->sc_hal = &iwn5000_hal; 706 sc->limits = &iwn5000_sensitivity_limits; 707 sc->fwname = "iwn5000fw"; 708 sc->txchainmask = IWN_ANT_ABC; 709 sc->rxchainmask = IWN_ANT_ABC; 710 break; 711 case IWN_HW_REV_TYPE_1000: 712 sc->sc_hal = &iwn5000_hal; 713 sc->limits = &iwn1000_sensitivity_limits; 714 sc->fwname = "iwn1000fw"; 715 sc->txchainmask = IWN_ANT_A; 716 sc->rxchainmask = IWN_ANT_AB; 717 break; 718 case IWN_HW_REV_TYPE_6000: 719 sc->sc_hal = &iwn5000_hal; 720 sc->limits = &iwn6000_sensitivity_limits; 721 sc->fwname = "iwn6000fw"; 722 switch (pci_get_device(sc->sc_dev)) { 723 case 0x422C: 724 case 0x4239: 725 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 726 sc->txchainmask = IWN_ANT_BC; 727 sc->rxchainmask = IWN_ANT_BC; 728 break; 729 default: 730 sc->txchainmask = IWN_ANT_ABC; 731 sc->rxchainmask = IWN_ANT_ABC; 732 break; 733 } 734 break; 735 case IWN_HW_REV_TYPE_6050: 736 sc->sc_hal = &iwn5000_hal; 737 sc->limits = &iwn6000_sensitivity_limits; 738 sc->fwname = "iwn6000fw"; 739 sc->txchainmask = IWN_ANT_AB; 740 sc->rxchainmask = IWN_ANT_AB; 741 break; 742 default: 743 device_printf(sc->sc_dev, "adapter type %d not supported\n", 744 sc->hw_type); 745 return NULL; 746 } 747 return sc->sc_hal; 748 } 749 750 /* 751 * Attach the interface to 802.11 radiotap. 752 */ 753 static void 754 iwn_radiotap_attach(struct iwn_softc *sc) 755 { 756 struct ifnet *ifp = sc->sc_ifp; 757 struct ieee80211com *ic = ifp->if_l2com; 758 759 ieee80211_radiotap_attach(ic, 760 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 761 IWN_TX_RADIOTAP_PRESENT, 762 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 763 IWN_RX_RADIOTAP_PRESENT); 764 } 765 766 static struct ieee80211vap * 767 iwn_vap_create(struct ieee80211com *ic, 768 const char name[IFNAMSIZ], int unit, int opmode, int flags, 769 const uint8_t bssid[IEEE80211_ADDR_LEN], 770 const uint8_t mac[IEEE80211_ADDR_LEN]) 771 { 772 struct iwn_vap *ivp; 773 struct ieee80211vap *vap; 774 775 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 776 return NULL; 777 ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap), 778 M_80211_VAP, M_NOWAIT | M_ZERO); 779 if (ivp == NULL) 780 return NULL; 781 vap = &ivp->iv_vap; 782 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 783 vap->iv_bmissthreshold = 10; /* override default */ 784 /* Override with driver methods. */ 785 ivp->iv_newstate = vap->iv_newstate; 786 vap->iv_newstate = iwn_newstate; 787 788 ieee80211_ratectl_init(vap); 789 /* Complete setup. */ 790 ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status); 791 ic->ic_opmode = opmode; 792 return vap; 793 } 794 795 static void 796 iwn_vap_delete(struct ieee80211vap *vap) 797 { 798 struct iwn_vap *ivp = IWN_VAP(vap); 799 800 ieee80211_ratectl_deinit(vap); 801 ieee80211_vap_detach(vap); 802 free(ivp, M_80211_VAP); 803 } 804 805 static int 806 iwn_cleanup(device_t dev) 807 { 808 struct iwn_softc *sc = device_get_softc(dev); 809 struct ifnet *ifp = sc->sc_ifp; 810 struct ieee80211com *ic; 811 int i; 812 813 if (ifp != NULL) { 814 ic = ifp->if_l2com; 815 816 ieee80211_draintask(ic, &sc->sc_reinit_task); 817 ieee80211_draintask(ic, &sc->sc_radioon_task); 818 ieee80211_draintask(ic, &sc->sc_radiooff_task); 819 820 iwn_stop(sc); 821 callout_drain(&sc->sc_timer_to); 822 ieee80211_ifdetach(ic); 823 } 824 825 /* Free DMA resources. */ 826 iwn_free_rx_ring(sc, &sc->rxq); 827 if (sc->sc_hal != NULL) 828 for (i = 0; i < sc->sc_hal->ntxqs; i++) 829 iwn_free_tx_ring(sc, &sc->txq[i]); 830 iwn_free_sched(sc); 831 iwn_free_kw(sc); 832 if (sc->ict != NULL) 833 iwn_free_ict(sc); 834 iwn_free_fwmem(sc); 835 836 if (sc->irq != NULL) { 837 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 838 bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq); 839 if (sc->irq_rid == 1) 840 pci_release_msi(dev); 841 } 842 843 if (sc->mem != NULL) 844 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem); 845 846 if (ifp != NULL) 847 if_free(ifp); 848 849 IWN_LOCK_DESTROY(sc); 850 return 0; 851 } 852 853 static int 854 iwn_detach(device_t dev) 855 { 856 iwn_cleanup(dev); 857 return 0; 858 } 859 860 static int 861 iwn_nic_lock(struct iwn_softc *sc) 862 { 863 int ntries; 864 865 /* Request exclusive access to NIC. */ 866 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 867 868 /* Spin until we actually get the lock. */ 869 for (ntries = 0; ntries < 1000; ntries++) { 870 if ((IWN_READ(sc, IWN_GP_CNTRL) & 871 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 872 IWN_GP_CNTRL_MAC_ACCESS_ENA) 873 return 0; 874 DELAY(10); 875 } 876 return ETIMEDOUT; 877 } 878 879 static __inline void 880 iwn_nic_unlock(struct iwn_softc *sc) 881 { 882 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 883 } 884 885 static __inline uint32_t 886 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 887 { 888 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 889 IWN_BARRIER_READ_WRITE(sc); 890 return IWN_READ(sc, IWN_PRPH_RDATA); 891 } 892 893 static __inline void 894 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 895 { 896 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 897 IWN_BARRIER_WRITE(sc); 898 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 899 } 900 901 static __inline void 902 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 903 { 904 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 905 } 906 907 static __inline void 908 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 909 { 910 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 911 } 912 913 static __inline void 914 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 915 const uint32_t *data, int count) 916 { 917 for (; count > 0; count--, data++, addr += 4) 918 iwn_prph_write(sc, addr, *data); 919 } 920 921 static __inline uint32_t 922 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 923 { 924 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 925 IWN_BARRIER_READ_WRITE(sc); 926 return IWN_READ(sc, IWN_MEM_RDATA); 927 } 928 929 static __inline void 930 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 931 { 932 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 933 IWN_BARRIER_WRITE(sc); 934 IWN_WRITE(sc, IWN_MEM_WDATA, data); 935 } 936 937 static __inline void 938 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 939 { 940 uint32_t tmp; 941 942 tmp = iwn_mem_read(sc, addr & ~3); 943 if (addr & 3) 944 tmp = (tmp & 0x0000ffff) | data << 16; 945 else 946 tmp = (tmp & 0xffff0000) | data; 947 iwn_mem_write(sc, addr & ~3, tmp); 948 } 949 950 static __inline void 951 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 952 int count) 953 { 954 for (; count > 0; count--, addr += 4) 955 *data++ = iwn_mem_read(sc, addr); 956 } 957 958 static __inline void 959 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 960 int count) 961 { 962 for (; count > 0; count--, addr += 4) 963 iwn_mem_write(sc, addr, val); 964 } 965 966 static int 967 iwn_eeprom_lock(struct iwn_softc *sc) 968 { 969 int i, ntries; 970 971 for (i = 0; i < 100; i++) { 972 /* Request exclusive access to EEPROM. */ 973 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 974 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 975 976 /* Spin until we actually get the lock. */ 977 for (ntries = 0; ntries < 100; ntries++) { 978 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 979 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 980 return 0; 981 DELAY(10); 982 } 983 } 984 return ETIMEDOUT; 985 } 986 987 static __inline void 988 iwn_eeprom_unlock(struct iwn_softc *sc) 989 { 990 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 991 } 992 993 /* 994 * Initialize access by host to One Time Programmable ROM. 995 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 996 */ 997 static int 998 iwn_init_otprom(struct iwn_softc *sc) 999 { 1000 uint16_t prev, base, next; 1001 int count, error; 1002 1003 /* Wait for clock stabilization before accessing prph. */ 1004 error = iwn_clock_wait(sc); 1005 if (error != 0) 1006 return error; 1007 1008 error = iwn_nic_lock(sc); 1009 if (error != 0) 1010 return error; 1011 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1012 DELAY(5); 1013 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1014 iwn_nic_unlock(sc); 1015 1016 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1017 if (sc->hw_type != IWN_HW_REV_TYPE_1000) { 1018 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1019 IWN_RESET_LINK_PWR_MGMT_DIS); 1020 } 1021 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1022 /* Clear ECC status. */ 1023 IWN_SETBITS(sc, IWN_OTP_GP, 1024 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1025 1026 /* 1027 * Find the block before last block (contains the EEPROM image) 1028 * for HW without OTP shadow RAM. 1029 */ 1030 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 1031 /* Switch to absolute addressing mode. */ 1032 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1033 base = prev = 0; 1034 for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) { 1035 error = iwn_read_prom_data(sc, base, &next, 2); 1036 if (error != 0) 1037 return error; 1038 if (next == 0) /* End of linked-list. */ 1039 break; 1040 prev = base; 1041 base = le16toh(next); 1042 } 1043 if (count == 0 || count == IWN1000_OTP_NBLOCKS) 1044 return EIO; 1045 /* Skip "next" word. */ 1046 sc->prom_base = prev + 1; 1047 } 1048 return 0; 1049 } 1050 1051 static int 1052 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1053 { 1054 uint32_t val, tmp; 1055 int ntries; 1056 uint8_t *out = data; 1057 1058 addr += sc->prom_base; 1059 for (; count > 0; count -= 2, addr++) { 1060 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1061 for (ntries = 0; ntries < 10; ntries++) { 1062 val = IWN_READ(sc, IWN_EEPROM); 1063 if (val & IWN_EEPROM_READ_VALID) 1064 break; 1065 DELAY(5); 1066 } 1067 if (ntries == 10) { 1068 device_printf(sc->sc_dev, 1069 "timeout reading ROM at 0x%x\n", addr); 1070 return ETIMEDOUT; 1071 } 1072 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1073 /* OTPROM, check for ECC errors. */ 1074 tmp = IWN_READ(sc, IWN_OTP_GP); 1075 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1076 device_printf(sc->sc_dev, 1077 "OTPROM ECC error at 0x%x\n", addr); 1078 return EIO; 1079 } 1080 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1081 /* Correctable ECC error, clear bit. */ 1082 IWN_SETBITS(sc, IWN_OTP_GP, 1083 IWN_OTP_GP_ECC_CORR_STTS); 1084 } 1085 } 1086 *out++ = val >> 16; 1087 if (count > 1) 1088 *out++ = val >> 24; 1089 } 1090 return 0; 1091 } 1092 1093 static void 1094 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1095 { 1096 if (error != 0) 1097 return; 1098 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1099 *(bus_addr_t *)arg = segs[0].ds_addr; 1100 } 1101 1102 static int 1103 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1104 void **kvap, bus_size_t size, bus_size_t alignment, int flags) 1105 { 1106 int error; 1107 1108 dma->size = size; 1109 dma->tag = NULL; 1110 1111 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1112 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1113 1, size, flags, NULL, NULL, &dma->tag); 1114 if (error != 0) { 1115 device_printf(sc->sc_dev, 1116 "%s: bus_dma_tag_create failed, error %d\n", 1117 __func__, error); 1118 goto fail; 1119 } 1120 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1121 flags | BUS_DMA_ZERO, &dma->map); 1122 if (error != 0) { 1123 device_printf(sc->sc_dev, 1124 "%s: bus_dmamem_alloc failed, error %d\n", __func__, error); 1125 goto fail; 1126 } 1127 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, 1128 size, iwn_dma_map_addr, &dma->paddr, flags); 1129 if (error != 0) { 1130 device_printf(sc->sc_dev, 1131 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 1132 goto fail; 1133 } 1134 1135 if (kvap != NULL) 1136 *kvap = dma->vaddr; 1137 return 0; 1138 fail: 1139 iwn_dma_contig_free(dma); 1140 return error; 1141 } 1142 1143 static void 1144 iwn_dma_contig_free(struct iwn_dma_info *dma) 1145 { 1146 if (dma->tag != NULL) { 1147 if (dma->map != NULL) { 1148 if (dma->paddr == 0) { 1149 bus_dmamap_sync(dma->tag, dma->map, 1150 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1151 bus_dmamap_unload(dma->tag, dma->map); 1152 } 1153 bus_dmamem_free(dma->tag, &dma->vaddr, dma->map); 1154 } 1155 bus_dma_tag_destroy(dma->tag); 1156 } 1157 } 1158 1159 static int 1160 iwn_alloc_sched(struct iwn_softc *sc) 1161 { 1162 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1163 return iwn_dma_contig_alloc(sc, &sc->sched_dma, 1164 (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT); 1165 } 1166 1167 static void 1168 iwn_free_sched(struct iwn_softc *sc) 1169 { 1170 iwn_dma_contig_free(&sc->sched_dma); 1171 } 1172 1173 static int 1174 iwn_alloc_kw(struct iwn_softc *sc) 1175 { 1176 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1177 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096, 1178 BUS_DMA_NOWAIT); 1179 } 1180 1181 static void 1182 iwn_free_kw(struct iwn_softc *sc) 1183 { 1184 iwn_dma_contig_free(&sc->kw_dma); 1185 } 1186 1187 static int 1188 iwn_alloc_ict(struct iwn_softc *sc) 1189 { 1190 /* ICT table must be aligned on a 4KB boundary. */ 1191 return iwn_dma_contig_alloc(sc, &sc->ict_dma, 1192 (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT); 1193 } 1194 1195 static void 1196 iwn_free_ict(struct iwn_softc *sc) 1197 { 1198 iwn_dma_contig_free(&sc->ict_dma); 1199 } 1200 1201 static int 1202 iwn_alloc_fwmem(struct iwn_softc *sc) 1203 { 1204 /* Must be aligned on a 16-byte boundary. */ 1205 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, 1206 sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT); 1207 } 1208 1209 static void 1210 iwn_free_fwmem(struct iwn_softc *sc) 1211 { 1212 iwn_dma_contig_free(&sc->fw_dma); 1213 } 1214 1215 static int 1216 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1217 { 1218 bus_size_t size; 1219 int i, error; 1220 1221 ring->cur = 0; 1222 1223 /* Allocate RX descriptors (256-byte aligned). */ 1224 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1225 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, 1226 (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT); 1227 if (error != 0) { 1228 device_printf(sc->sc_dev, 1229 "%s: could not allocate Rx ring DMA memory, error %d\n", 1230 __func__, error); 1231 goto fail; 1232 } 1233 1234 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1235 BUS_SPACE_MAXADDR_32BIT, 1236 BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1, 1237 MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 1238 if (error != 0) { 1239 device_printf(sc->sc_dev, 1240 "%s: bus_dma_tag_create_failed, error %d\n", 1241 __func__, error); 1242 goto fail; 1243 } 1244 1245 /* Allocate RX status area (16-byte aligned). */ 1246 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, 1247 (void **)&ring->stat, sizeof (struct iwn_rx_status), 1248 16, BUS_DMA_NOWAIT); 1249 if (error != 0) { 1250 device_printf(sc->sc_dev, 1251 "%s: could not allocate Rx status DMA memory, error %d\n", 1252 __func__, error); 1253 goto fail; 1254 } 1255 1256 /* 1257 * Allocate and map RX buffers. 1258 */ 1259 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1260 struct iwn_rx_data *data = &ring->data[i]; 1261 bus_addr_t paddr; 1262 1263 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1264 if (error != 0) { 1265 device_printf(sc->sc_dev, 1266 "%s: bus_dmamap_create failed, error %d\n", 1267 __func__, error); 1268 goto fail; 1269 } 1270 1271 data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 1272 if (data->m == NULL) { 1273 device_printf(sc->sc_dev, 1274 "%s: could not allocate rx mbuf\n", __func__); 1275 error = ENOMEM; 1276 goto fail; 1277 } 1278 1279 /* Map page. */ 1280 error = bus_dmamap_load(ring->data_dmat, data->map, 1281 mtod(data->m, caddr_t), MJUMPAGESIZE, 1282 iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 1283 if (error != 0 && error != EFBIG) { 1284 device_printf(sc->sc_dev, 1285 "%s: bus_dmamap_load failed, error %d\n", 1286 __func__, error); 1287 m_freem(data->m); 1288 error = ENOMEM; /* XXX unique code */ 1289 goto fail; 1290 } 1291 bus_dmamap_sync(ring->data_dmat, data->map, 1292 BUS_DMASYNC_PREWRITE); 1293 1294 /* Set physical address of RX buffer (256-byte aligned). */ 1295 ring->desc[i] = htole32(paddr >> 8); 1296 } 1297 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1298 BUS_DMASYNC_PREWRITE); 1299 return 0; 1300 fail: 1301 iwn_free_rx_ring(sc, ring); 1302 return error; 1303 } 1304 1305 static void 1306 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1307 { 1308 int ntries; 1309 1310 if (iwn_nic_lock(sc) == 0) { 1311 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1312 for (ntries = 0; ntries < 1000; ntries++) { 1313 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1314 IWN_FH_RX_STATUS_IDLE) 1315 break; 1316 DELAY(10); 1317 } 1318 iwn_nic_unlock(sc); 1319 #ifdef IWN_DEBUG 1320 if (ntries == 1000) 1321 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 1322 "timeout resetting Rx ring"); 1323 #endif 1324 } 1325 ring->cur = 0; 1326 sc->last_rx_valid = 0; 1327 } 1328 1329 static void 1330 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1331 { 1332 int i; 1333 1334 iwn_dma_contig_free(&ring->desc_dma); 1335 iwn_dma_contig_free(&ring->stat_dma); 1336 1337 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1338 struct iwn_rx_data *data = &ring->data[i]; 1339 1340 if (data->m != NULL) { 1341 bus_dmamap_sync(ring->data_dmat, data->map, 1342 BUS_DMASYNC_POSTREAD); 1343 bus_dmamap_unload(ring->data_dmat, data->map); 1344 m_freem(data->m); 1345 } 1346 if (data->map != NULL) 1347 bus_dmamap_destroy(ring->data_dmat, data->map); 1348 } 1349 } 1350 1351 static int 1352 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1353 { 1354 bus_size_t size; 1355 bus_addr_t paddr; 1356 int i, error; 1357 1358 ring->qid = qid; 1359 ring->queued = 0; 1360 ring->cur = 0; 1361 1362 /* Allocate TX descriptors (256-byte aligned.) */ 1363 size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc); 1364 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, 1365 (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT); 1366 if (error != 0) { 1367 device_printf(sc->sc_dev, 1368 "%s: could not allocate TX ring DMA memory, error %d\n", 1369 __func__, error); 1370 goto fail; 1371 } 1372 1373 /* 1374 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need 1375 * to allocate commands space for other rings. 1376 */ 1377 if (qid > 4) 1378 return 0; 1379 1380 size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd); 1381 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, 1382 (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT); 1383 if (error != 0) { 1384 device_printf(sc->sc_dev, 1385 "%s: could not allocate TX cmd DMA memory, error %d\n", 1386 __func__, error); 1387 goto fail; 1388 } 1389 1390 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1391 BUS_SPACE_MAXADDR_32BIT, 1392 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1, 1393 MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat); 1394 if (error != 0) { 1395 device_printf(sc->sc_dev, 1396 "%s: bus_dma_tag_create_failed, error %d\n", 1397 __func__, error); 1398 goto fail; 1399 } 1400 1401 paddr = ring->cmd_dma.paddr; 1402 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1403 struct iwn_tx_data *data = &ring->data[i]; 1404 1405 data->cmd_paddr = paddr; 1406 data->scratch_paddr = paddr + 12; 1407 paddr += sizeof (struct iwn_tx_cmd); 1408 1409 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1410 if (error != 0) { 1411 device_printf(sc->sc_dev, 1412 "%s: bus_dmamap_create failed, error %d\n", 1413 __func__, error); 1414 goto fail; 1415 } 1416 bus_dmamap_sync(ring->data_dmat, data->map, 1417 BUS_DMASYNC_PREWRITE); 1418 } 1419 return 0; 1420 fail: 1421 iwn_free_tx_ring(sc, ring); 1422 return error; 1423 } 1424 1425 static void 1426 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1427 { 1428 int i; 1429 1430 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1431 struct iwn_tx_data *data = &ring->data[i]; 1432 1433 if (data->m != NULL) { 1434 bus_dmamap_unload(ring->data_dmat, data->map); 1435 m_freem(data->m); 1436 data->m = NULL; 1437 } 1438 } 1439 /* Clear TX descriptors. */ 1440 memset(ring->desc, 0, ring->desc_dma.size); 1441 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1442 BUS_DMASYNC_PREWRITE); 1443 sc->qfullmsk &= ~(1 << ring->qid); 1444 ring->queued = 0; 1445 ring->cur = 0; 1446 } 1447 1448 static void 1449 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 1450 { 1451 int i; 1452 1453 iwn_dma_contig_free(&ring->desc_dma); 1454 iwn_dma_contig_free(&ring->cmd_dma); 1455 1456 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 1457 struct iwn_tx_data *data = &ring->data[i]; 1458 1459 if (data->m != NULL) { 1460 bus_dmamap_sync(ring->data_dmat, data->map, 1461 BUS_DMASYNC_POSTWRITE); 1462 bus_dmamap_unload(ring->data_dmat, data->map); 1463 m_freem(data->m); 1464 } 1465 if (data->map != NULL) 1466 bus_dmamap_destroy(ring->data_dmat, data->map); 1467 } 1468 } 1469 1470 static void 1471 iwn5000_ict_reset(struct iwn_softc *sc) 1472 { 1473 /* Disable interrupts. */ 1474 IWN_WRITE(sc, IWN_INT_MASK, 0); 1475 1476 /* Reset ICT table. */ 1477 memset(sc->ict, 0, IWN_ICT_SIZE); 1478 sc->ict_cur = 0; 1479 1480 /* Set physical address of ICT table (4KB aligned.) */ 1481 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 1482 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 1483 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 1484 1485 /* Enable periodic RX interrupt. */ 1486 sc->int_mask |= IWN_INT_RX_PERIODIC; 1487 /* Switch to ICT interrupt mode in driver. */ 1488 sc->sc_flags |= IWN_FLAG_USE_ICT; 1489 1490 /* Re-enable interrupts. */ 1491 IWN_WRITE(sc, IWN_INT, 0xffffffff); 1492 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 1493 } 1494 1495 static int 1496 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 1497 { 1498 const struct iwn_hal *hal = sc->sc_hal; 1499 int error; 1500 uint16_t val; 1501 1502 /* Check whether adapter has an EEPROM or an OTPROM. */ 1503 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 1504 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 1505 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 1506 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 1507 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 1508 1509 /* Adapter has to be powered on for EEPROM access to work. */ 1510 error = iwn_apm_init(sc); 1511 if (error != 0) { 1512 device_printf(sc->sc_dev, 1513 "%s: could not power ON adapter, error %d\n", 1514 __func__, error); 1515 return error; 1516 } 1517 1518 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 1519 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 1520 return EIO; 1521 } 1522 error = iwn_eeprom_lock(sc); 1523 if (error != 0) { 1524 device_printf(sc->sc_dev, 1525 "%s: could not lock ROM, error %d\n", 1526 __func__, error); 1527 return error; 1528 } 1529 1530 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1531 error = iwn_init_otprom(sc); 1532 if (error != 0) { 1533 device_printf(sc->sc_dev, 1534 "%s: could not initialize OTPROM, error %d\n", 1535 __func__, error); 1536 return error; 1537 } 1538 } 1539 1540 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 1541 sc->rfcfg = le16toh(val); 1542 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 1543 1544 /* Read MAC address. */ 1545 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 1546 1547 /* Read adapter-specific information from EEPROM. */ 1548 hal->read_eeprom(sc); 1549 1550 iwn_apm_stop(sc); /* Power OFF adapter. */ 1551 1552 iwn_eeprom_unlock(sc); 1553 return 0; 1554 } 1555 1556 static void 1557 iwn4965_read_eeprom(struct iwn_softc *sc) 1558 { 1559 uint32_t addr; 1560 int i; 1561 uint16_t val; 1562 1563 /* Read regulatory domain (4 ASCII characters.) */ 1564 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 1565 1566 /* Read the list of authorized channels (20MHz ones only.) */ 1567 for (i = 0; i < 5; i++) { 1568 addr = iwn4965_regulatory_bands[i]; 1569 iwn_read_eeprom_channels(sc, i, addr); 1570 } 1571 1572 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 1573 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 1574 sc->maxpwr2GHz = val & 0xff; 1575 sc->maxpwr5GHz = val >> 8; 1576 /* Check that EEPROM values are within valid range. */ 1577 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 1578 sc->maxpwr5GHz = 38; 1579 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 1580 sc->maxpwr2GHz = 38; 1581 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 1582 sc->maxpwr2GHz, sc->maxpwr5GHz); 1583 1584 /* Read samples for each TX power group. */ 1585 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 1586 sizeof sc->bands); 1587 1588 /* Read voltage at which samples were taken. */ 1589 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 1590 sc->eeprom_voltage = (int16_t)le16toh(val); 1591 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 1592 sc->eeprom_voltage); 1593 1594 #ifdef IWN_DEBUG 1595 /* Print samples. */ 1596 if (sc->sc_debug & IWN_DEBUG_ANY) { 1597 for (i = 0; i < IWN_NBANDS; i++) 1598 iwn4965_print_power_group(sc, i); 1599 } 1600 #endif 1601 } 1602 1603 #ifdef IWN_DEBUG 1604 static void 1605 iwn4965_print_power_group(struct iwn_softc *sc, int i) 1606 { 1607 struct iwn4965_eeprom_band *band = &sc->bands[i]; 1608 struct iwn4965_eeprom_chan_samples *chans = band->chans; 1609 int j, c; 1610 1611 printf("===band %d===\n", i); 1612 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 1613 printf("chan1 num=%d\n", chans[0].num); 1614 for (c = 0; c < 2; c++) { 1615 for (j = 0; j < IWN_NSAMPLES; j++) { 1616 printf("chain %d, sample %d: temp=%d gain=%d " 1617 "power=%d pa_det=%d\n", c, j, 1618 chans[0].samples[c][j].temp, 1619 chans[0].samples[c][j].gain, 1620 chans[0].samples[c][j].power, 1621 chans[0].samples[c][j].pa_det); 1622 } 1623 } 1624 printf("chan2 num=%d\n", chans[1].num); 1625 for (c = 0; c < 2; c++) { 1626 for (j = 0; j < IWN_NSAMPLES; j++) { 1627 printf("chain %d, sample %d: temp=%d gain=%d " 1628 "power=%d pa_det=%d\n", c, j, 1629 chans[1].samples[c][j].temp, 1630 chans[1].samples[c][j].gain, 1631 chans[1].samples[c][j].power, 1632 chans[1].samples[c][j].pa_det); 1633 } 1634 } 1635 } 1636 #endif 1637 1638 static void 1639 iwn5000_read_eeprom(struct iwn_softc *sc) 1640 { 1641 struct iwn5000_eeprom_calib_hdr hdr; 1642 int32_t temp, volt; 1643 uint32_t addr, base; 1644 int i; 1645 uint16_t val; 1646 1647 /* Read regulatory domain (4 ASCII characters.) */ 1648 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1649 base = le16toh(val); 1650 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 1651 sc->eeprom_domain, 4); 1652 1653 /* Read the list of authorized channels (20MHz ones only.) */ 1654 for (i = 0; i < 5; i++) { 1655 addr = base + iwn5000_regulatory_bands[i]; 1656 iwn_read_eeprom_channels(sc, i, addr); 1657 } 1658 1659 /* Read enhanced TX power information for 6000 Series. */ 1660 if (sc->hw_type >= IWN_HW_REV_TYPE_6000) 1661 iwn_read_eeprom_enhinfo(sc); 1662 1663 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 1664 base = le16toh(val); 1665 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 1666 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 1667 "%s: calib version=%u pa type=%u voltage=%u\n", 1668 __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt)); 1669 sc->calib_ver = hdr.version; 1670 1671 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 1672 /* Compute temperature offset. */ 1673 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 1674 temp = le16toh(val); 1675 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 1676 volt = le16toh(val); 1677 sc->temp_off = temp - (volt / -5); 1678 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 1679 temp, volt, sc->temp_off); 1680 } else { 1681 /* Read crystal calibration. */ 1682 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 1683 &sc->eeprom_crystal, sizeof (uint32_t)); 1684 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 1685 le32toh(sc->eeprom_crystal)); 1686 } 1687 } 1688 1689 /* 1690 * Translate EEPROM flags to net80211. 1691 */ 1692 static uint32_t 1693 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 1694 { 1695 uint32_t nflags; 1696 1697 nflags = 0; 1698 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 1699 nflags |= IEEE80211_CHAN_PASSIVE; 1700 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 1701 nflags |= IEEE80211_CHAN_NOADHOC; 1702 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 1703 nflags |= IEEE80211_CHAN_DFS; 1704 /* XXX apparently IBSS may still be marked */ 1705 nflags |= IEEE80211_CHAN_NOADHOC; 1706 } 1707 1708 return nflags; 1709 } 1710 1711 static void 1712 iwn_read_eeprom_band(struct iwn_softc *sc, int n) 1713 { 1714 struct ifnet *ifp = sc->sc_ifp; 1715 struct ieee80211com *ic = ifp->if_l2com; 1716 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 1717 const struct iwn_chan_band *band = &iwn_bands[n]; 1718 struct ieee80211_channel *c; 1719 int i, chan, nflags; 1720 1721 for (i = 0; i < band->nchan; i++) { 1722 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 1723 DPRINTF(sc, IWN_DEBUG_RESET, 1724 "skip chan %d flags 0x%x maxpwr %d\n", 1725 band->chan[i], channels[i].flags, 1726 channels[i].maxpwr); 1727 continue; 1728 } 1729 chan = band->chan[i]; 1730 nflags = iwn_eeprom_channel_flags(&channels[i]); 1731 1732 DPRINTF(sc, IWN_DEBUG_RESET, 1733 "add chan %d flags 0x%x maxpwr %d\n", 1734 chan, channels[i].flags, channels[i].maxpwr); 1735 1736 c = &ic->ic_channels[ic->ic_nchans++]; 1737 c->ic_ieee = chan; 1738 c->ic_maxregpower = channels[i].maxpwr; 1739 c->ic_maxpower = 2*c->ic_maxregpower; 1740 1741 /* Save maximum allowed TX power for this channel. */ 1742 sc->maxpwr[chan] = channels[i].maxpwr; 1743 1744 if (n == 0) { /* 2GHz band */ 1745 c->ic_freq = ieee80211_ieee2mhz(chan, 1746 IEEE80211_CHAN_G); 1747 1748 /* G =>'s B is supported */ 1749 c->ic_flags = IEEE80211_CHAN_B | nflags; 1750 1751 c = &ic->ic_channels[ic->ic_nchans++]; 1752 c[0] = c[-1]; 1753 c->ic_flags = IEEE80211_CHAN_G | nflags; 1754 } else { /* 5GHz band */ 1755 c->ic_freq = ieee80211_ieee2mhz(chan, 1756 IEEE80211_CHAN_A); 1757 c->ic_flags = IEEE80211_CHAN_A | nflags; 1758 sc->sc_flags |= IWN_FLAG_HAS_5GHZ; 1759 } 1760 #if 0 /* HT */ 1761 /* XXX no constraints on using HT20 */ 1762 /* add HT20, HT40 added separately */ 1763 c = &ic->ic_channels[ic->ic_nchans++]; 1764 c[0] = c[-1]; 1765 c->ic_flags |= IEEE80211_CHAN_HT20; 1766 /* XXX NARROW =>'s 1/2 and 1/4 width? */ 1767 #endif 1768 } 1769 } 1770 1771 #if 0 /* HT */ 1772 static void 1773 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n) 1774 { 1775 struct ifnet *ifp = sc->sc_ifp; 1776 struct ieee80211com *ic = ifp->if_l2com; 1777 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 1778 const struct iwn_chan_band *band = &iwn_bands[n]; 1779 struct ieee80211_channel *c, *cent, *extc; 1780 int i; 1781 1782 for (i = 0; i < band->nchan; i++) { 1783 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) || 1784 !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) { 1785 DPRINTF(sc, IWN_DEBUG_RESET, 1786 "skip chan %d flags 0x%x maxpwr %d\n", 1787 band->chan[i], channels[i].flags, 1788 channels[i].maxpwr); 1789 continue; 1790 } 1791 /* 1792 * Each entry defines an HT40 channel pair; find the 1793 * center channel, then the extension channel above. 1794 */ 1795 cent = ieee80211_find_channel_byieee(ic, band->chan[i], 1796 band->flags & ~IEEE80211_CHAN_HT); 1797 if (cent == NULL) { /* XXX shouldn't happen */ 1798 device_printf(sc->sc_dev, 1799 "%s: no entry for channel %d\n", 1800 __func__, band->chan[i]); 1801 continue; 1802 } 1803 extc = ieee80211_find_channel(ic, cent->ic_freq+20, 1804 band->flags & ~IEEE80211_CHAN_HT); 1805 if (extc == NULL) { 1806 DPRINTF(sc, IWN_DEBUG_RESET, 1807 "skip chan %d, extension channel not found\n", 1808 band->chan[i]); 1809 continue; 1810 } 1811 1812 DPRINTF(sc, IWN_DEBUG_RESET, 1813 "add ht40 chan %d flags 0x%x maxpwr %d\n", 1814 band->chan[i], channels[i].flags, channels[i].maxpwr); 1815 1816 c = &ic->ic_channels[ic->ic_nchans++]; 1817 c[0] = cent[0]; 1818 c->ic_extieee = extc->ic_ieee; 1819 c->ic_flags &= ~IEEE80211_CHAN_HT; 1820 c->ic_flags |= IEEE80211_CHAN_HT40U; 1821 c = &ic->ic_channels[ic->ic_nchans++]; 1822 c[0] = extc[0]; 1823 c->ic_extieee = cent->ic_ieee; 1824 c->ic_flags &= ~IEEE80211_CHAN_HT; 1825 c->ic_flags |= IEEE80211_CHAN_HT40D; 1826 } 1827 } 1828 #endif 1829 1830 static void 1831 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 1832 { 1833 struct ifnet *ifp = sc->sc_ifp; 1834 struct ieee80211com *ic = ifp->if_l2com; 1835 1836 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 1837 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 1838 1839 if (n < 5) 1840 iwn_read_eeprom_band(sc, n); 1841 #if 0 /* HT */ 1842 else 1843 iwn_read_eeprom_ht40(sc, n); 1844 #endif 1845 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 1846 } 1847 1848 #define nitems(_a) (sizeof((_a)) / sizeof((_a)[0])) 1849 1850 static void 1851 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 1852 { 1853 struct iwn_eeprom_enhinfo enhinfo[35]; 1854 uint16_t val, base; 1855 int8_t maxpwr; 1856 int i; 1857 1858 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 1859 base = le16toh(val); 1860 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 1861 enhinfo, sizeof enhinfo); 1862 1863 memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr); 1864 for (i = 0; i < nitems(enhinfo); i++) { 1865 if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0) 1866 continue; /* Skip invalid entries. */ 1867 1868 maxpwr = 0; 1869 if (sc->txchainmask & IWN_ANT_A) 1870 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 1871 if (sc->txchainmask & IWN_ANT_B) 1872 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 1873 if (sc->txchainmask & IWN_ANT_C) 1874 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 1875 if (sc->ntxchains == 2) 1876 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 1877 else if (sc->ntxchains == 3) 1878 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 1879 maxpwr /= 2; /* Convert half-dBm to dBm. */ 1880 1881 DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i, 1882 maxpwr); 1883 sc->enh_maxpwr[i] = maxpwr; 1884 } 1885 } 1886 1887 static struct ieee80211_node * 1888 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1889 { 1890 return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO); 1891 } 1892 1893 static void 1894 iwn_newassoc(struct ieee80211_node *ni, int isnew) 1895 { 1896 /* XXX move */ 1897 ieee80211_ratectl_node_init(ni); 1898 } 1899 1900 static int 1901 iwn_media_change(struct ifnet *ifp) 1902 { 1903 int error = ieee80211_media_change(ifp); 1904 /* NB: only the fixed rate can change and that doesn't need a reset */ 1905 return (error == ENETRESET ? 0 : error); 1906 } 1907 1908 static int 1909 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1910 { 1911 struct iwn_vap *ivp = IWN_VAP(vap); 1912 struct ieee80211com *ic = vap->iv_ic; 1913 struct iwn_softc *sc = ic->ic_ifp->if_softc; 1914 int error; 1915 1916 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 1917 ieee80211_state_name[vap->iv_state], 1918 ieee80211_state_name[nstate]); 1919 1920 IEEE80211_UNLOCK(ic); 1921 IWN_LOCK(sc); 1922 callout_stop(&sc->sc_timer_to); 1923 1924 if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) { 1925 /* !AUTH -> AUTH requires adapter config */ 1926 /* Reset state to handle reassociations correctly. */ 1927 sc->rxon.associd = 0; 1928 sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); 1929 iwn_calib_reset(sc); 1930 error = iwn_auth(sc, vap); 1931 } 1932 if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) { 1933 /* 1934 * !RUN -> RUN requires setting the association id 1935 * which is done with a firmware cmd. We also defer 1936 * starting the timers until that work is done. 1937 */ 1938 error = iwn_run(sc, vap); 1939 } 1940 if (nstate == IEEE80211_S_RUN) { 1941 /* 1942 * RUN -> RUN transition; just restart the timers. 1943 */ 1944 iwn_calib_reset(sc); 1945 } 1946 IWN_UNLOCK(sc); 1947 IEEE80211_LOCK(ic); 1948 return ivp->iv_newstate(vap, nstate, arg); 1949 } 1950 1951 /* 1952 * Process an RX_PHY firmware notification. This is usually immediately 1953 * followed by an MPDU_RX_DONE notification. 1954 */ 1955 static void 1956 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, 1957 struct iwn_rx_data *data) 1958 { 1959 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 1960 1961 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 1962 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 1963 1964 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 1965 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 1966 sc->last_rx_valid = 1; 1967 } 1968 1969 static void 1970 iwn_timer_timeout(void *arg) 1971 { 1972 struct iwn_softc *sc = arg; 1973 uint32_t flags = 0; 1974 1975 IWN_LOCK_ASSERT(sc); 1976 1977 if (sc->calib_cnt && --sc->calib_cnt == 0) { 1978 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 1979 "send statistics request"); 1980 (void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 1981 sizeof flags, 1); 1982 sc->calib_cnt = 60; /* do calibration every 60s */ 1983 } 1984 iwn_watchdog(sc); /* NB: piggyback tx watchdog */ 1985 callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc); 1986 } 1987 1988 static void 1989 iwn_calib_reset(struct iwn_softc *sc) 1990 { 1991 callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc); 1992 sc->calib_cnt = 60; /* do calibration every 60s */ 1993 } 1994 1995 /* 1996 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 1997 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 1998 */ 1999 static void 2000 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2001 struct iwn_rx_data *data) 2002 { 2003 const struct iwn_hal *hal = sc->sc_hal; 2004 struct ifnet *ifp = sc->sc_ifp; 2005 struct ieee80211com *ic = ifp->if_l2com; 2006 struct iwn_rx_ring *ring = &sc->rxq; 2007 struct ieee80211_frame *wh; 2008 struct ieee80211_node *ni; 2009 struct mbuf *m, *m1; 2010 struct iwn_rx_stat *stat; 2011 caddr_t head; 2012 bus_addr_t paddr; 2013 uint32_t flags; 2014 int error, len, rssi, nf; 2015 2016 if (desc->type == IWN_MPDU_RX_DONE) { 2017 /* Check for prior RX_PHY notification. */ 2018 if (!sc->last_rx_valid) { 2019 DPRINTF(sc, IWN_DEBUG_ANY, 2020 "%s: missing RX_PHY\n", __func__); 2021 ifp->if_ierrors++; 2022 return; 2023 } 2024 sc->last_rx_valid = 0; 2025 stat = &sc->last_rx_stat; 2026 } else 2027 stat = (struct iwn_rx_stat *)(desc + 1); 2028 2029 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2030 2031 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 2032 device_printf(sc->sc_dev, 2033 "%s: invalid rx statistic header, len %d\n", 2034 __func__, stat->cfg_phy_len); 2035 ifp->if_ierrors++; 2036 return; 2037 } 2038 if (desc->type == IWN_MPDU_RX_DONE) { 2039 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 2040 head = (caddr_t)(mpdu + 1); 2041 len = le16toh(mpdu->len); 2042 } else { 2043 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 2044 len = le16toh(stat->len); 2045 } 2046 2047 flags = le32toh(*(uint32_t *)(head + len)); 2048 2049 /* Discard frames with a bad FCS early. */ 2050 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 2051 DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n", 2052 __func__, flags); 2053 ifp->if_ierrors++; 2054 return; 2055 } 2056 /* Discard frames that are too short. */ 2057 if (len < sizeof (*wh)) { 2058 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 2059 __func__, len); 2060 ifp->if_ierrors++; 2061 return; 2062 } 2063 2064 /* XXX don't need mbuf, just dma buffer */ 2065 m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 2066 if (m1 == NULL) { 2067 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 2068 __func__); 2069 ifp->if_ierrors++; 2070 return; 2071 } 2072 bus_dmamap_unload(ring->data_dmat, data->map); 2073 2074 error = bus_dmamap_load(ring->data_dmat, data->map, 2075 mtod(m1, caddr_t), MJUMPAGESIZE, 2076 iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 2077 if (error != 0 && error != EFBIG) { 2078 device_printf(sc->sc_dev, 2079 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 2080 m_freem(m1); 2081 ifp->if_ierrors++; 2082 return; 2083 } 2084 2085 m = data->m; 2086 data->m = m1; 2087 /* Update RX descriptor. */ 2088 ring->desc[ring->cur] = htole32(paddr >> 8); 2089 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2090 BUS_DMASYNC_PREWRITE); 2091 2092 /* Finalize mbuf. */ 2093 m->m_pkthdr.rcvif = ifp; 2094 m->m_data = head; 2095 m->m_pkthdr.len = m->m_len = len; 2096 2097 rssi = hal->get_rssi(sc, stat); 2098 2099 /* Grab a reference to the source node. */ 2100 wh = mtod(m, struct ieee80211_frame *); 2101 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); 2102 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 2103 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 2104 2105 if (ieee80211_radiotap_active(ic)) { 2106 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 2107 2108 tap->wr_tsft = htole64(stat->tstamp); 2109 tap->wr_flags = 0; 2110 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 2111 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2112 switch (stat->rate) { 2113 /* CCK rates. */ 2114 case 10: tap->wr_rate = 2; break; 2115 case 20: tap->wr_rate = 4; break; 2116 case 55: tap->wr_rate = 11; break; 2117 case 110: tap->wr_rate = 22; break; 2118 /* OFDM rates. */ 2119 case 0xd: tap->wr_rate = 12; break; 2120 case 0xf: tap->wr_rate = 18; break; 2121 case 0x5: tap->wr_rate = 24; break; 2122 case 0x7: tap->wr_rate = 36; break; 2123 case 0x9: tap->wr_rate = 48; break; 2124 case 0xb: tap->wr_rate = 72; break; 2125 case 0x1: tap->wr_rate = 96; break; 2126 case 0x3: tap->wr_rate = 108; break; 2127 /* Unknown rate: should not happen. */ 2128 default: tap->wr_rate = 0; 2129 } 2130 tap->wr_dbm_antsignal = rssi; 2131 tap->wr_dbm_antnoise = nf; 2132 } 2133 2134 IWN_UNLOCK(sc); 2135 2136 /* Send the frame to the 802.11 layer. */ 2137 if (ni != NULL) { 2138 (void) ieee80211_input(ni, m, rssi - nf, nf); 2139 /* Node is no longer needed. */ 2140 ieee80211_free_node(ni); 2141 } else 2142 (void) ieee80211_input_all(ic, m, rssi - nf, nf); 2143 2144 IWN_LOCK(sc); 2145 } 2146 2147 #if 0 /* HT */ 2148 /* Process an incoming Compressed BlockAck. */ 2149 static void 2150 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2151 struct iwn_rx_data *data) 2152 { 2153 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 2154 struct iwn_tx_ring *txq; 2155 2156 txq = &sc->txq[letoh16(ba->qid)]; 2157 /* XXX TBD */ 2158 } 2159 #endif 2160 2161 /* 2162 * Process a CALIBRATION_RESULT notification sent by the initialization 2163 * firmware on response to a CMD_CALIB_CONFIG command (5000 only.) 2164 */ 2165 static void 2166 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2167 struct iwn_rx_data *data) 2168 { 2169 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 2170 int len, idx = -1; 2171 2172 /* Runtime firmware should not send such a notification. */ 2173 if (sc->sc_flags & IWN_FLAG_CALIB_DONE) 2174 return; 2175 2176 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2177 len = (le32toh(desc->len) & 0x3fff) - 4; 2178 2179 switch (calib->code) { 2180 case IWN5000_PHY_CALIB_DC: 2181 if (sc->hw_type == IWN_HW_REV_TYPE_5150 || 2182 sc->hw_type == IWN_HW_REV_TYPE_6050) 2183 idx = 0; 2184 break; 2185 case IWN5000_PHY_CALIB_LO: 2186 idx = 1; 2187 break; 2188 case IWN5000_PHY_CALIB_TX_IQ: 2189 idx = 2; 2190 break; 2191 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 2192 if (sc->hw_type < IWN_HW_REV_TYPE_6000 && 2193 sc->hw_type != IWN_HW_REV_TYPE_5150) 2194 idx = 3; 2195 break; 2196 case IWN5000_PHY_CALIB_BASE_BAND: 2197 idx = 4; 2198 break; 2199 } 2200 if (idx == -1) /* Ignore other results. */ 2201 return; 2202 2203 /* Save calibration result. */ 2204 if (sc->calibcmd[idx].buf != NULL) 2205 free(sc->calibcmd[idx].buf, M_DEVBUF); 2206 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 2207 if (sc->calibcmd[idx].buf == NULL) { 2208 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2209 "not enough memory for calibration result %d\n", 2210 calib->code); 2211 return; 2212 } 2213 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2214 "saving calibration result code=%d len=%d\n", calib->code, len); 2215 sc->calibcmd[idx].len = len; 2216 memcpy(sc->calibcmd[idx].buf, calib, len); 2217 } 2218 2219 /* 2220 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 2221 * The latter is sent by the firmware after each received beacon. 2222 */ 2223 static void 2224 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2225 struct iwn_rx_data *data) 2226 { 2227 const struct iwn_hal *hal = sc->sc_hal; 2228 struct ifnet *ifp = sc->sc_ifp; 2229 struct ieee80211com *ic = ifp->if_l2com; 2230 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2231 struct iwn_calib_state *calib = &sc->calib; 2232 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 2233 int temp; 2234 2235 /* Beacon stats are meaningful only when associated and not scanning. */ 2236 if (vap->iv_state != IEEE80211_S_RUN || 2237 (ic->ic_flags & IEEE80211_F_SCAN)) 2238 return; 2239 2240 bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2241 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type); 2242 iwn_calib_reset(sc); /* Reset TX power calibration timeout. */ 2243 2244 /* Test if temperature has changed. */ 2245 if (stats->general.temp != sc->rawtemp) { 2246 /* Convert "raw" temperature to degC. */ 2247 sc->rawtemp = stats->general.temp; 2248 temp = hal->get_temperature(sc); 2249 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 2250 __func__, temp); 2251 2252 /* Update TX power if need be (4965AGN only.) */ 2253 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 2254 iwn4965_power_calibration(sc, temp); 2255 } 2256 2257 if (desc->type != IWN_BEACON_STATISTICS) 2258 return; /* Reply to a statistics request. */ 2259 2260 sc->noise = iwn_get_noise(&stats->rx.general); 2261 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 2262 2263 /* Test that RSSI and noise are present in stats report. */ 2264 if (le32toh(stats->rx.general.flags) != 1) { 2265 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 2266 "received statistics without RSSI"); 2267 return; 2268 } 2269 2270 if (calib->state == IWN_CALIB_STATE_ASSOC) 2271 iwn_collect_noise(sc, &stats->rx.general); 2272 else if (calib->state == IWN_CALIB_STATE_RUN) 2273 iwn_tune_sensitivity(sc, &stats->rx); 2274 } 2275 2276 /* 2277 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 2278 * and 5000 adapters have different incompatible TX status formats. 2279 */ 2280 static void 2281 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2282 struct iwn_rx_data *data) 2283 { 2284 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 2285 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2286 2287 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 2288 "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", 2289 __func__, desc->qid, desc->idx, stat->ackfailcnt, 2290 stat->btkillcnt, stat->rate, le16toh(stat->duration), 2291 le32toh(stat->status)); 2292 2293 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2294 iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff); 2295 } 2296 2297 static void 2298 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 2299 struct iwn_rx_data *data) 2300 { 2301 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 2302 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2303 2304 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 2305 "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n", 2306 __func__, desc->qid, desc->idx, stat->ackfailcnt, 2307 stat->btkillcnt, stat->rate, le16toh(stat->duration), 2308 le32toh(stat->status)); 2309 2310 #ifdef notyet 2311 /* Reset TX scheduler slot. */ 2312 iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); 2313 #endif 2314 2315 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD); 2316 iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff); 2317 } 2318 2319 /* 2320 * Adapter-independent backend for TX_DONE firmware notifications. 2321 */ 2322 static void 2323 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt, 2324 uint8_t status) 2325 { 2326 struct ifnet *ifp = sc->sc_ifp; 2327 struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; 2328 struct iwn_tx_data *data = &ring->data[desc->idx]; 2329 struct mbuf *m; 2330 struct ieee80211_node *ni; 2331 struct ieee80211vap *vap; 2332 2333 KASSERT(data->ni != NULL, ("no node")); 2334 2335 /* Unmap and free mbuf. */ 2336 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 2337 bus_dmamap_unload(ring->data_dmat, data->map); 2338 m = data->m, data->m = NULL; 2339 ni = data->ni, data->ni = NULL; 2340 vap = ni->ni_vap; 2341 2342 if (m->m_flags & M_TXCB) { 2343 /* 2344 * Channels marked for "radar" require traffic to be received 2345 * to unlock before we can transmit. Until traffic is seen 2346 * any attempt to transmit is returned immediately with status 2347 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 2348 * happen on first authenticate after scanning. To workaround 2349 * this we ignore a failure of this sort in AUTH state so the 2350 * 802.11 layer will fall back to using a timeout to wait for 2351 * the AUTH reply. This allows the firmware time to see 2352 * traffic so a subsequent retry of AUTH succeeds. It's 2353 * unclear why the firmware does not maintain state for 2354 * channels recently visited as this would allow immediate 2355 * use of the channel after a scan (where we see traffic). 2356 */ 2357 if (status == IWN_TX_FAIL_TX_LOCKED && 2358 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 2359 ieee80211_process_callback(ni, m, 0); 2360 else 2361 ieee80211_process_callback(ni, m, 2362 (status & IWN_TX_FAIL) != 0); 2363 } 2364 2365 /* 2366 * Update rate control statistics for the node. 2367 */ 2368 if (status & 0x80) { 2369 ifp->if_oerrors++; 2370 ieee80211_ratectl_tx_complete(vap, ni, 2371 IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL); 2372 } else { 2373 ieee80211_ratectl_tx_complete(vap, ni, 2374 IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL); 2375 } 2376 m_freem(m); 2377 ieee80211_free_node(ni); 2378 2379 sc->sc_tx_timer = 0; 2380 if (--ring->queued < IWN_TX_RING_LOMARK) { 2381 sc->qfullmsk &= ~(1 << ring->qid); 2382 if (sc->qfullmsk == 0 && 2383 (ifp->if_drv_flags & IFF_DRV_OACTIVE)) { 2384 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2385 iwn_start_locked(ifp); 2386 } 2387 } 2388 } 2389 2390 /* 2391 * Process a "command done" firmware notification. This is where we wakeup 2392 * processes waiting for a synchronous command completion. 2393 */ 2394 static void 2395 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 2396 { 2397 struct iwn_tx_ring *ring = &sc->txq[4]; 2398 struct iwn_tx_data *data; 2399 2400 if ((desc->qid & 0xf) != 4) 2401 return; /* Not a command ack. */ 2402 2403 data = &ring->data[desc->idx]; 2404 2405 /* If the command was mapped in an mbuf, free it. */ 2406 if (data->m != NULL) { 2407 bus_dmamap_unload(ring->data_dmat, data->map); 2408 m_freem(data->m); 2409 data->m = NULL; 2410 } 2411 wakeup(&ring->desc[desc->idx]); 2412 } 2413 2414 /* 2415 * Process an INT_FH_RX or INT_SW_RX interrupt. 2416 */ 2417 static void 2418 iwn_notif_intr(struct iwn_softc *sc) 2419 { 2420 struct ifnet *ifp = sc->sc_ifp; 2421 struct ieee80211com *ic = ifp->if_l2com; 2422 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2423 uint16_t hw; 2424 2425 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 2426 BUS_DMASYNC_POSTREAD); 2427 2428 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 2429 while (sc->rxq.cur != hw) { 2430 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 2431 struct iwn_rx_desc *desc; 2432 2433 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2434 BUS_DMASYNC_POSTREAD); 2435 desc = mtod(data->m, struct iwn_rx_desc *); 2436 2437 DPRINTF(sc, IWN_DEBUG_RECV, 2438 "%s: qid %x idx %d flags %x type %d(%s) len %d\n", 2439 __func__, desc->qid & 0xf, desc->idx, desc->flags, 2440 desc->type, iwn_intr_str(desc->type), 2441 le16toh(desc->len)); 2442 2443 if (!(desc->qid & 0x80)) /* Reply to a command. */ 2444 iwn_cmd_done(sc, desc); 2445 2446 switch (desc->type) { 2447 case IWN_RX_PHY: 2448 iwn_rx_phy(sc, desc, data); 2449 break; 2450 2451 case IWN_RX_DONE: /* 4965AGN only. */ 2452 case IWN_MPDU_RX_DONE: 2453 /* An 802.11 frame has been received. */ 2454 iwn_rx_done(sc, desc, data); 2455 break; 2456 2457 #if 0 /* HT */ 2458 case IWN_RX_COMPRESSED_BA: 2459 /* A Compressed BlockAck has been received. */ 2460 iwn_rx_compressed_ba(sc, desc, data); 2461 break; 2462 #endif 2463 2464 case IWN_TX_DONE: 2465 /* An 802.11 frame has been transmitted. */ 2466 sc->sc_hal->tx_done(sc, desc, data); 2467 break; 2468 2469 case IWN_RX_STATISTICS: 2470 case IWN_BEACON_STATISTICS: 2471 iwn_rx_statistics(sc, desc, data); 2472 break; 2473 2474 case IWN_BEACON_MISSED: 2475 { 2476 struct iwn_beacon_missed *miss = 2477 (struct iwn_beacon_missed *)(desc + 1); 2478 int misses; 2479 2480 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2481 BUS_DMASYNC_POSTREAD); 2482 misses = le32toh(miss->consecutive); 2483 2484 /* XXX not sure why we're notified w/ zero */ 2485 if (misses == 0) 2486 break; 2487 DPRINTF(sc, IWN_DEBUG_STATE, 2488 "%s: beacons missed %d/%d\n", __func__, 2489 misses, le32toh(miss->total)); 2490 2491 /* 2492 * If more than 5 consecutive beacons are missed, 2493 * reinitialize the sensitivity state machine. 2494 */ 2495 if (vap->iv_state == IEEE80211_S_RUN && misses > 5) 2496 (void) iwn_init_sensitivity(sc); 2497 if (misses >= vap->iv_bmissthreshold) { 2498 IWN_UNLOCK(sc); 2499 ieee80211_beacon_miss(ic); 2500 IWN_LOCK(sc); 2501 } 2502 break; 2503 } 2504 case IWN_UC_READY: 2505 { 2506 struct iwn_ucode_info *uc = 2507 (struct iwn_ucode_info *)(desc + 1); 2508 2509 /* The microcontroller is ready. */ 2510 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2511 BUS_DMASYNC_POSTREAD); 2512 DPRINTF(sc, IWN_DEBUG_RESET, 2513 "microcode alive notification version=%d.%d " 2514 "subtype=%x alive=%x\n", uc->major, uc->minor, 2515 uc->subtype, le32toh(uc->valid)); 2516 2517 if (le32toh(uc->valid) != 1) { 2518 device_printf(sc->sc_dev, 2519 "microcontroller initialization failed"); 2520 break; 2521 } 2522 if (uc->subtype == IWN_UCODE_INIT) { 2523 /* Save microcontroller report. */ 2524 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 2525 } 2526 /* Save the address of the error log in SRAM. */ 2527 sc->errptr = le32toh(uc->errptr); 2528 break; 2529 } 2530 case IWN_STATE_CHANGED: 2531 { 2532 uint32_t *status = (uint32_t *)(desc + 1); 2533 2534 /* 2535 * State change allows hardware switch change to be 2536 * noted. However, we handle this in iwn_intr as we 2537 * get both the enable/disble intr. 2538 */ 2539 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2540 BUS_DMASYNC_POSTREAD); 2541 DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n", 2542 le32toh(*status)); 2543 break; 2544 } 2545 case IWN_START_SCAN: 2546 { 2547 struct iwn_start_scan *scan = 2548 (struct iwn_start_scan *)(desc + 1); 2549 2550 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2551 BUS_DMASYNC_POSTREAD); 2552 DPRINTF(sc, IWN_DEBUG_ANY, 2553 "%s: scanning channel %d status %x\n", 2554 __func__, scan->chan, le32toh(scan->status)); 2555 break; 2556 } 2557 case IWN_STOP_SCAN: 2558 { 2559 struct iwn_stop_scan *scan = 2560 (struct iwn_stop_scan *)(desc + 1); 2561 2562 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 2563 BUS_DMASYNC_POSTREAD); 2564 DPRINTF(sc, IWN_DEBUG_STATE, 2565 "scan finished nchan=%d status=%d chan=%d\n", 2566 scan->nchan, scan->status, scan->chan); 2567 2568 IWN_UNLOCK(sc); 2569 ieee80211_scan_next(vap); 2570 IWN_LOCK(sc); 2571 break; 2572 } 2573 case IWN5000_CALIBRATION_RESULT: 2574 iwn5000_rx_calib_results(sc, desc, data); 2575 break; 2576 2577 case IWN5000_CALIBRATION_DONE: 2578 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 2579 wakeup(sc); 2580 break; 2581 } 2582 2583 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 2584 } 2585 2586 /* Tell the firmware what we have processed. */ 2587 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 2588 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 2589 } 2590 2591 /* 2592 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 2593 * from power-down sleep mode. 2594 */ 2595 static void 2596 iwn_wakeup_intr(struct iwn_softc *sc) 2597 { 2598 int qid; 2599 2600 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 2601 __func__); 2602 2603 /* Wakeup RX and TX rings. */ 2604 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 2605 for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) { 2606 struct iwn_tx_ring *ring = &sc->txq[qid]; 2607 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 2608 } 2609 } 2610 2611 static void 2612 iwn_rftoggle_intr(struct iwn_softc *sc) 2613 { 2614 struct ifnet *ifp = sc->sc_ifp; 2615 struct ieee80211com *ic = ifp->if_l2com; 2616 uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); 2617 2618 IWN_LOCK_ASSERT(sc); 2619 2620 device_printf(sc->sc_dev, "RF switch: radio %s\n", 2621 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 2622 if (tmp & IWN_GP_CNTRL_RFKILL) 2623 ieee80211_runtask(ic, &sc->sc_radioon_task); 2624 else 2625 ieee80211_runtask(ic, &sc->sc_radiooff_task); 2626 } 2627 2628 /* 2629 * Dump the error log of the firmware when a firmware panic occurs. Although 2630 * we can't debug the firmware because it is neither open source nor free, it 2631 * can help us to identify certain classes of problems. 2632 */ 2633 static void 2634 iwn_fatal_intr(struct iwn_softc *sc) 2635 { 2636 const struct iwn_hal *hal = sc->sc_hal; 2637 struct iwn_fw_dump dump; 2638 int i; 2639 2640 IWN_LOCK_ASSERT(sc); 2641 2642 /* Force a complete recalibration on next init. */ 2643 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 2644 2645 /* Check that the error log address is valid. */ 2646 if (sc->errptr < IWN_FW_DATA_BASE || 2647 sc->errptr + sizeof (dump) > 2648 IWN_FW_DATA_BASE + hal->fw_data_maxsz) { 2649 printf("%s: bad firmware error log address 0x%08x\n", 2650 __func__, sc->errptr); 2651 return; 2652 } 2653 if (iwn_nic_lock(sc) != 0) { 2654 printf("%s: could not read firmware error log\n", 2655 __func__); 2656 return; 2657 } 2658 /* Read firmware error log from SRAM. */ 2659 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 2660 sizeof (dump) / sizeof (uint32_t)); 2661 iwn_nic_unlock(sc); 2662 2663 if (dump.valid == 0) { 2664 printf("%s: firmware error log is empty\n", 2665 __func__); 2666 return; 2667 } 2668 printf("firmware error log:\n"); 2669 printf(" error type = \"%s\" (0x%08X)\n", 2670 (dump.id < nitems(iwn_fw_errmsg)) ? 2671 iwn_fw_errmsg[dump.id] : "UNKNOWN", 2672 dump.id); 2673 printf(" program counter = 0x%08X\n", dump.pc); 2674 printf(" source line = 0x%08X\n", dump.src_line); 2675 printf(" error data = 0x%08X%08X\n", 2676 dump.error_data[0], dump.error_data[1]); 2677 printf(" branch link = 0x%08X%08X\n", 2678 dump.branch_link[0], dump.branch_link[1]); 2679 printf(" interrupt link = 0x%08X%08X\n", 2680 dump.interrupt_link[0], dump.interrupt_link[1]); 2681 printf(" time = %u\n", dump.time[0]); 2682 2683 /* Dump driver status (TX and RX rings) while we're here. */ 2684 printf("driver status:\n"); 2685 for (i = 0; i < hal->ntxqs; i++) { 2686 struct iwn_tx_ring *ring = &sc->txq[i]; 2687 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 2688 i, ring->qid, ring->cur, ring->queued); 2689 } 2690 printf(" rx ring: cur=%d\n", sc->rxq.cur); 2691 } 2692 2693 static void 2694 iwn_intr(void *arg) 2695 { 2696 struct iwn_softc *sc = arg; 2697 struct ifnet *ifp = sc->sc_ifp; 2698 uint32_t r1, r2, tmp; 2699 2700 IWN_LOCK(sc); 2701 2702 /* Disable interrupts. */ 2703 IWN_WRITE(sc, IWN_INT_MASK, 0); 2704 2705 /* Read interrupts from ICT (fast) or from registers (slow). */ 2706 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2707 tmp = 0; 2708 while (sc->ict[sc->ict_cur] != 0) { 2709 tmp |= sc->ict[sc->ict_cur]; 2710 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 2711 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 2712 } 2713 tmp = le32toh(tmp); 2714 if (tmp == 0xffffffff) /* Shouldn't happen. */ 2715 tmp = 0; 2716 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 2717 tmp |= 0x8000; 2718 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 2719 r2 = 0; /* Unused. */ 2720 } else { 2721 r1 = IWN_READ(sc, IWN_INT); 2722 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) 2723 return; /* Hardware gone! */ 2724 r2 = IWN_READ(sc, IWN_FH_INT); 2725 } 2726 2727 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2); 2728 2729 if (r1 == 0 && r2 == 0) 2730 goto done; /* Interrupt not for us. */ 2731 2732 /* Acknowledge interrupts. */ 2733 IWN_WRITE(sc, IWN_INT, r1); 2734 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 2735 IWN_WRITE(sc, IWN_FH_INT, r2); 2736 2737 if (r1 & IWN_INT_RF_TOGGLED) { 2738 iwn_rftoggle_intr(sc); 2739 goto done; 2740 } 2741 if (r1 & IWN_INT_CT_REACHED) { 2742 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 2743 __func__); 2744 } 2745 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 2746 iwn_fatal_intr(sc); 2747 ifp->if_flags &= ~IFF_UP; 2748 iwn_stop_locked(sc); 2749 goto done; 2750 } 2751 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 2752 (r2 & IWN_FH_INT_RX)) { 2753 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 2754 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 2755 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 2756 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2757 IWN_INT_PERIODIC_DIS); 2758 iwn_notif_intr(sc); 2759 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 2760 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 2761 IWN_INT_PERIODIC_ENA); 2762 } 2763 } else 2764 iwn_notif_intr(sc); 2765 } 2766 2767 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 2768 if (sc->sc_flags & IWN_FLAG_USE_ICT) 2769 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 2770 wakeup(sc); /* FH DMA transfer completed. */ 2771 } 2772 2773 if (r1 & IWN_INT_ALIVE) 2774 wakeup(sc); /* Firmware is alive. */ 2775 2776 if (r1 & IWN_INT_WAKEUP) 2777 iwn_wakeup_intr(sc); 2778 2779 done: 2780 /* Re-enable interrupts. */ 2781 if (ifp->if_flags & IFF_UP) 2782 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2783 2784 IWN_UNLOCK(sc); 2785 } 2786 2787 /* 2788 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 2789 * 5000 adapters use a slightly different format.) 2790 */ 2791 static void 2792 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2793 uint16_t len) 2794 { 2795 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 2796 2797 *w = htole16(len + 8); 2798 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2799 BUS_DMASYNC_PREWRITE); 2800 if (idx < IWN_SCHED_WINSZ) { 2801 *(w + IWN_TX_RING_COUNT) = *w; 2802 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2803 BUS_DMASYNC_PREWRITE); 2804 } 2805 } 2806 2807 static void 2808 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 2809 uint16_t len) 2810 { 2811 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2812 2813 *w = htole16(id << 12 | (len + 8)); 2814 2815 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2816 BUS_DMASYNC_PREWRITE); 2817 if (idx < IWN_SCHED_WINSZ) { 2818 *(w + IWN_TX_RING_COUNT) = *w; 2819 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2820 BUS_DMASYNC_PREWRITE); 2821 } 2822 } 2823 2824 #ifdef notyet 2825 static void 2826 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 2827 { 2828 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 2829 2830 *w = (*w & htole16(0xf000)) | htole16(1); 2831 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2832 BUS_DMASYNC_PREWRITE); 2833 if (idx < IWN_SCHED_WINSZ) { 2834 *(w + IWN_TX_RING_COUNT) = *w; 2835 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 2836 BUS_DMASYNC_PREWRITE); 2837 } 2838 } 2839 #endif 2840 2841 static uint8_t 2842 iwn_plcp_signal(int rate) { 2843 int i; 2844 2845 for (i = 0; i < IWN_RIDX_MAX + 1; i++) { 2846 if (rate == iwn_rates[i].rate) 2847 return i; 2848 } 2849 2850 return 0; 2851 } 2852 2853 static int 2854 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 2855 struct iwn_tx_ring *ring) 2856 { 2857 const struct iwn_hal *hal = sc->sc_hal; 2858 const struct ieee80211_txparam *tp; 2859 const struct iwn_rate *rinfo; 2860 struct ieee80211vap *vap = ni->ni_vap; 2861 struct ieee80211com *ic = ni->ni_ic; 2862 struct iwn_node *wn = (void *)ni; 2863 struct iwn_tx_desc *desc; 2864 struct iwn_tx_data *data; 2865 struct iwn_tx_cmd *cmd; 2866 struct iwn_cmd_data *tx; 2867 struct ieee80211_frame *wh; 2868 struct ieee80211_key *k = NULL; 2869 struct mbuf *mnew; 2870 bus_dma_segment_t segs[IWN_MAX_SCATTER]; 2871 uint32_t flags; 2872 u_int hdrlen; 2873 int totlen, error, pad, nsegs = 0, i, rate; 2874 uint8_t ridx, type, txant; 2875 2876 IWN_LOCK_ASSERT(sc); 2877 2878 wh = mtod(m, struct ieee80211_frame *); 2879 hdrlen = ieee80211_anyhdrsize(wh); 2880 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2881 2882 desc = &ring->desc[ring->cur]; 2883 data = &ring->data[ring->cur]; 2884 2885 /* Choose a TX rate index. */ 2886 tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)]; 2887 if (type == IEEE80211_FC0_TYPE_MGT) 2888 rate = tp->mgmtrate; 2889 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 2890 rate = tp->mcastrate; 2891 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2892 rate = tp->ucastrate; 2893 else { 2894 /* XXX pass pktlen */ 2895 (void) ieee80211_ratectl_rate(ni, NULL, 0); 2896 rate = ni->ni_txrate; 2897 } 2898 ridx = iwn_plcp_signal(rate); 2899 rinfo = &iwn_rates[ridx]; 2900 2901 /* Encrypt the frame if need be. */ 2902 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2903 k = ieee80211_crypto_encap(ni, m); 2904 if (k == NULL) { 2905 m_freem(m); 2906 return ENOBUFS; 2907 } 2908 /* Packet header may have moved, reset our local pointer. */ 2909 wh = mtod(m, struct ieee80211_frame *); 2910 } 2911 totlen = m->m_pkthdr.len; 2912 2913 if (ieee80211_radiotap_active_vap(vap)) { 2914 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 2915 2916 tap->wt_flags = 0; 2917 tap->wt_rate = rinfo->rate; 2918 if (k != NULL) 2919 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2920 2921 ieee80211_radiotap_tx(vap, m); 2922 } 2923 2924 /* Prepare TX firmware command. */ 2925 cmd = &ring->cmd[ring->cur]; 2926 cmd->code = IWN_CMD_TX_DATA; 2927 cmd->flags = 0; 2928 cmd->qid = ring->qid; 2929 cmd->idx = ring->cur; 2930 2931 tx = (struct iwn_cmd_data *)cmd->data; 2932 /* NB: No need to clear tx, all fields are reinitialized here. */ 2933 tx->scratch = 0; /* clear "scratch" area */ 2934 2935 flags = 0; 2936 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) 2937 flags |= IWN_TX_NEED_ACK; 2938 if ((wh->i_fc[0] & 2939 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2940 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 2941 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 2942 2943 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 2944 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 2945 2946 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 2947 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2948 /* NB: Group frames are sent using CCK in 802.11b/g. */ 2949 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 2950 flags |= IWN_TX_NEED_RTS; 2951 } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && 2952 ridx >= IWN_RIDX_OFDM6) { 2953 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2954 flags |= IWN_TX_NEED_CTS; 2955 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2956 flags |= IWN_TX_NEED_RTS; 2957 } 2958 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 2959 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 2960 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 2961 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 2962 flags |= IWN_TX_NEED_PROTECTION; 2963 } else 2964 flags |= IWN_TX_FULL_TXOP; 2965 } 2966 } 2967 2968 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2969 type != IEEE80211_FC0_TYPE_DATA) 2970 tx->id = hal->broadcast_id; 2971 else 2972 tx->id = wn->id; 2973 2974 if (type == IEEE80211_FC0_TYPE_MGT) { 2975 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2976 2977 /* Tell HW to set timestamp in probe responses. */ 2978 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2979 flags |= IWN_TX_INSERT_TSTAMP; 2980 2981 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 2982 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 2983 tx->timeout = htole16(3); 2984 else 2985 tx->timeout = htole16(2); 2986 } else 2987 tx->timeout = htole16(0); 2988 2989 if (hdrlen & 3) { 2990 /* First segment length must be a multiple of 4. */ 2991 flags |= IWN_TX_NEED_PADDING; 2992 pad = 4 - (hdrlen & 3); 2993 } else 2994 pad = 0; 2995 2996 tx->len = htole16(totlen); 2997 tx->tid = 0; 2998 tx->rts_ntries = 60; 2999 tx->data_ntries = 15; 3000 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3001 tx->plcp = rinfo->plcp; 3002 tx->rflags = rinfo->flags; 3003 if (tx->id == hal->broadcast_id) { 3004 /* Group or management frame. */ 3005 tx->linkq = 0; 3006 /* XXX Alternate between antenna A and B? */ 3007 txant = IWN_LSB(sc->txchainmask); 3008 tx->rflags |= IWN_RFLAG_ANT(txant); 3009 } else { 3010 tx->linkq = 0; 3011 flags |= IWN_TX_LINKQ; /* enable MRR */ 3012 } 3013 3014 /* Set physical address of "scratch area". */ 3015 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 3016 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 3017 3018 /* Copy 802.11 header in TX command. */ 3019 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3020 3021 /* Trim 802.11 header. */ 3022 m_adj(m, hdrlen); 3023 tx->security = 0; 3024 tx->flags = htole32(flags); 3025 3026 if (m->m_len > 0) { 3027 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 3028 m, segs, &nsegs, BUS_DMA_NOWAIT); 3029 if (error == EFBIG) { 3030 /* too many fragments, linearize */ 3031 mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER); 3032 if (mnew == NULL) { 3033 device_printf(sc->sc_dev, 3034 "%s: could not defrag mbuf\n", __func__); 3035 m_freem(m); 3036 return ENOBUFS; 3037 } 3038 m = mnew; 3039 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, 3040 data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); 3041 } 3042 if (error != 0) { 3043 device_printf(sc->sc_dev, 3044 "%s: bus_dmamap_load_mbuf_sg failed, error %d\n", 3045 __func__, error); 3046 m_freem(m); 3047 return error; 3048 } 3049 } 3050 3051 data->m = m; 3052 data->ni = ni; 3053 3054 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 3055 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 3056 3057 /* Fill TX descriptor. */ 3058 desc->nsegs = 1 + nsegs; 3059 /* First DMA segment is used by the TX command. */ 3060 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3061 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3062 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3063 /* Other DMA segments are for data payload. */ 3064 for (i = 1; i <= nsegs; i++) { 3065 desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr)); 3066 desc->segs[i].len = htole16(IWN_HIADDR(segs[i - 1].ds_addr) | 3067 segs[i - 1].ds_len << 4); 3068 } 3069 3070 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 3071 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3072 BUS_DMASYNC_PREWRITE); 3073 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3074 BUS_DMASYNC_PREWRITE); 3075 3076 #ifdef notyet 3077 /* Update TX scheduler. */ 3078 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3079 #endif 3080 3081 /* Kick TX ring. */ 3082 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3083 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3084 3085 /* Mark TX ring as full if we reach a certain threshold. */ 3086 if (++ring->queued > IWN_TX_RING_HIMARK) 3087 sc->qfullmsk |= 1 << ring->qid; 3088 3089 return 0; 3090 } 3091 3092 static int 3093 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 3094 struct ieee80211_node *ni, struct iwn_tx_ring *ring, 3095 const struct ieee80211_bpf_params *params) 3096 { 3097 const struct iwn_hal *hal = sc->sc_hal; 3098 const struct iwn_rate *rinfo; 3099 struct ifnet *ifp = sc->sc_ifp; 3100 struct ieee80211vap *vap = ni->ni_vap; 3101 struct ieee80211com *ic = ifp->if_l2com; 3102 struct iwn_tx_cmd *cmd; 3103 struct iwn_cmd_data *tx; 3104 struct ieee80211_frame *wh; 3105 struct iwn_tx_desc *desc; 3106 struct iwn_tx_data *data; 3107 struct mbuf *mnew; 3108 bus_addr_t paddr; 3109 bus_dma_segment_t segs[IWN_MAX_SCATTER]; 3110 uint32_t flags; 3111 u_int hdrlen; 3112 int totlen, error, pad, nsegs = 0, i, rate; 3113 uint8_t ridx, type, txant; 3114 3115 IWN_LOCK_ASSERT(sc); 3116 3117 wh = mtod(m, struct ieee80211_frame *); 3118 hdrlen = ieee80211_anyhdrsize(wh); 3119 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3120 3121 desc = &ring->desc[ring->cur]; 3122 data = &ring->data[ring->cur]; 3123 3124 /* Choose a TX rate index. */ 3125 rate = params->ibp_rate0; 3126 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 3127 /* XXX fall back to mcast/mgmt rate? */ 3128 m_freem(m); 3129 return EINVAL; 3130 } 3131 ridx = iwn_plcp_signal(rate); 3132 rinfo = &iwn_rates[ridx]; 3133 3134 totlen = m->m_pkthdr.len; 3135 3136 /* Prepare TX firmware command. */ 3137 cmd = &ring->cmd[ring->cur]; 3138 cmd->code = IWN_CMD_TX_DATA; 3139 cmd->flags = 0; 3140 cmd->qid = ring->qid; 3141 cmd->idx = ring->cur; 3142 3143 tx = (struct iwn_cmd_data *)cmd->data; 3144 /* NB: No need to clear tx, all fields are reinitialized here. */ 3145 tx->scratch = 0; /* clear "scratch" area */ 3146 3147 flags = 0; 3148 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 3149 flags |= IWN_TX_NEED_ACK; 3150 if (params->ibp_flags & IEEE80211_BPF_RTS) { 3151 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3152 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3153 flags &= ~IWN_TX_NEED_RTS; 3154 flags |= IWN_TX_NEED_PROTECTION; 3155 } else 3156 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 3157 } 3158 if (params->ibp_flags & IEEE80211_BPF_CTS) { 3159 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 3160 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 3161 flags &= ~IWN_TX_NEED_CTS; 3162 flags |= IWN_TX_NEED_PROTECTION; 3163 } else 3164 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 3165 } 3166 if (type == IEEE80211_FC0_TYPE_MGT) { 3167 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3168 3169 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3170 flags |= IWN_TX_INSERT_TSTAMP; 3171 3172 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 3173 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 3174 tx->timeout = htole16(3); 3175 else 3176 tx->timeout = htole16(2); 3177 } else 3178 tx->timeout = htole16(0); 3179 3180 if (hdrlen & 3) { 3181 /* First segment length must be a multiple of 4. */ 3182 flags |= IWN_TX_NEED_PADDING; 3183 pad = 4 - (hdrlen & 3); 3184 } else 3185 pad = 0; 3186 3187 if (ieee80211_radiotap_active_vap(vap)) { 3188 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 3189 3190 tap->wt_flags = 0; 3191 tap->wt_rate = rate; 3192 3193 ieee80211_radiotap_tx(vap, m); 3194 } 3195 3196 tx->len = htole16(totlen); 3197 tx->tid = 0; 3198 tx->id = hal->broadcast_id; 3199 tx->rts_ntries = params->ibp_try1; 3200 tx->data_ntries = params->ibp_try0; 3201 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 3202 tx->plcp = rinfo->plcp; 3203 tx->rflags = rinfo->flags; 3204 /* Group or management frame. */ 3205 tx->linkq = 0; 3206 txant = IWN_LSB(sc->txchainmask); 3207 tx->rflags |= IWN_RFLAG_ANT(txant); 3208 /* Set physical address of "scratch area". */ 3209 paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd); 3210 tx->loaddr = htole32(IWN_LOADDR(paddr)); 3211 tx->hiaddr = IWN_HIADDR(paddr); 3212 3213 /* Copy 802.11 header in TX command. */ 3214 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 3215 3216 /* Trim 802.11 header. */ 3217 m_adj(m, hdrlen); 3218 tx->security = 0; 3219 tx->flags = htole32(flags); 3220 3221 if (m->m_len > 0) { 3222 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, 3223 m, segs, &nsegs, BUS_DMA_NOWAIT); 3224 if (error == EFBIG) { 3225 /* Too many fragments, linearize. */ 3226 mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER); 3227 if (mnew == NULL) { 3228 device_printf(sc->sc_dev, 3229 "%s: could not defrag mbuf\n", __func__); 3230 m_freem(m); 3231 return ENOBUFS; 3232 } 3233 m = mnew; 3234 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, 3235 data->map, m, segs, &nsegs, BUS_DMA_NOWAIT); 3236 } 3237 if (error != 0) { 3238 device_printf(sc->sc_dev, 3239 "%s: bus_dmamap_load_mbuf_sg failed, error %d\n", 3240 __func__, error); 3241 m_freem(m); 3242 return error; 3243 } 3244 } 3245 3246 data->m = m; 3247 data->ni = ni; 3248 3249 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n", 3250 __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs); 3251 3252 /* Fill TX descriptor. */ 3253 desc->nsegs = 1 + nsegs; 3254 /* First DMA segment is used by the TX command. */ 3255 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 3256 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 3257 (4 + sizeof (*tx) + hdrlen + pad) << 4); 3258 /* Other DMA segments are for data payload. */ 3259 for (i = 1; i <= nsegs; i++) { 3260 desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr)); 3261 desc->segs[i].len = htole16(IWN_HIADDR(segs[i - 1].ds_addr) | 3262 segs[i - 1].ds_len << 4); 3263 } 3264 3265 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 3266 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3267 BUS_DMASYNC_PREWRITE); 3268 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3269 BUS_DMASYNC_PREWRITE); 3270 3271 #ifdef notyet 3272 /* Update TX scheduler. */ 3273 hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 3274 #endif 3275 3276 /* Kick TX ring. */ 3277 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3278 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3279 3280 /* Mark TX ring as full if we reach a certain threshold. */ 3281 if (++ring->queued > IWN_TX_RING_HIMARK) 3282 sc->qfullmsk |= 1 << ring->qid; 3283 3284 return 0; 3285 } 3286 3287 static int 3288 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3289 const struct ieee80211_bpf_params *params) 3290 { 3291 struct ieee80211com *ic = ni->ni_ic; 3292 struct ifnet *ifp = ic->ic_ifp; 3293 struct iwn_softc *sc = ifp->if_softc; 3294 struct iwn_tx_ring *txq; 3295 int error = 0; 3296 3297 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3298 ieee80211_free_node(ni); 3299 m_freem(m); 3300 return ENETDOWN; 3301 } 3302 3303 IWN_LOCK(sc); 3304 if (params == NULL) 3305 txq = &sc->txq[M_WME_GETAC(m)]; 3306 else 3307 txq = &sc->txq[params->ibp_pri & 3]; 3308 3309 if (params == NULL) { 3310 /* 3311 * Legacy path; interpret frame contents to decide 3312 * precisely how to send the frame. 3313 */ 3314 error = iwn_tx_data(sc, m, ni, txq); 3315 } else { 3316 /* 3317 * Caller supplied explicit parameters to use in 3318 * sending the frame. 3319 */ 3320 error = iwn_tx_data_raw(sc, m, ni, txq, params); 3321 } 3322 if (error != 0) { 3323 /* NB: m is reclaimed on tx failure */ 3324 ieee80211_free_node(ni); 3325 ifp->if_oerrors++; 3326 } 3327 IWN_UNLOCK(sc); 3328 return error; 3329 } 3330 3331 static void 3332 iwn_start(struct ifnet *ifp) 3333 { 3334 struct iwn_softc *sc = ifp->if_softc; 3335 3336 IWN_LOCK(sc); 3337 iwn_start_locked(ifp); 3338 IWN_UNLOCK(sc); 3339 } 3340 3341 static void 3342 iwn_start_locked(struct ifnet *ifp) 3343 { 3344 struct iwn_softc *sc = ifp->if_softc; 3345 struct ieee80211_node *ni; 3346 struct iwn_tx_ring *txq; 3347 struct mbuf *m; 3348 int pri; 3349 3350 IWN_LOCK_ASSERT(sc); 3351 3352 for (;;) { 3353 if (sc->qfullmsk != 0) { 3354 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3355 break; 3356 } 3357 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 3358 if (m == NULL) 3359 break; 3360 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3361 pri = M_WME_GETAC(m); 3362 txq = &sc->txq[pri]; 3363 if (iwn_tx_data(sc, m, ni, txq) != 0) { 3364 ifp->if_oerrors++; 3365 ieee80211_free_node(ni); 3366 break; 3367 } 3368 sc->sc_tx_timer = 5; 3369 } 3370 } 3371 3372 static void 3373 iwn_watchdog(struct iwn_softc *sc) 3374 { 3375 if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) { 3376 struct ifnet *ifp = sc->sc_ifp; 3377 struct ieee80211com *ic = ifp->if_l2com; 3378 3379 if_printf(ifp, "device timeout\n"); 3380 ieee80211_runtask(ic, &sc->sc_reinit_task); 3381 } 3382 } 3383 3384 static int 3385 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 3386 { 3387 struct iwn_softc *sc = ifp->if_softc; 3388 struct ieee80211com *ic = ifp->if_l2com; 3389 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3390 struct ifreq *ifr = (struct ifreq *) data; 3391 int error = 0, startall = 0, stop = 0; 3392 3393 switch (cmd) { 3394 case SIOCSIFFLAGS: 3395 IWN_LOCK(sc); 3396 if (ifp->if_flags & IFF_UP) { 3397 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3398 iwn_init_locked(sc); 3399 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL) 3400 startall = 1; 3401 else 3402 stop = 1; 3403 } 3404 } else { 3405 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 3406 iwn_stop_locked(sc); 3407 } 3408 IWN_UNLOCK(sc); 3409 if (startall) 3410 ieee80211_start_all(ic); 3411 else if (vap != NULL && stop) 3412 ieee80211_stop(vap); 3413 break; 3414 case SIOCGIFMEDIA: 3415 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 3416 break; 3417 case SIOCGIFADDR: 3418 error = ether_ioctl(ifp, cmd, data); 3419 break; 3420 default: 3421 error = EINVAL; 3422 break; 3423 } 3424 return error; 3425 } 3426 3427 /* 3428 * Send a command to the firmware. 3429 */ 3430 static int 3431 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 3432 { 3433 struct iwn_tx_ring *ring = &sc->txq[4]; 3434 struct iwn_tx_desc *desc; 3435 struct iwn_tx_data *data; 3436 struct iwn_tx_cmd *cmd; 3437 struct mbuf *m; 3438 bus_addr_t paddr; 3439 int totlen, error; 3440 3441 IWN_LOCK_ASSERT(sc); 3442 3443 desc = &ring->desc[ring->cur]; 3444 data = &ring->data[ring->cur]; 3445 totlen = 4 + size; 3446 3447 if (size > sizeof cmd->data) { 3448 /* Command is too large to fit in a descriptor. */ 3449 if (totlen > MCLBYTES) 3450 return EINVAL; 3451 m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 3452 if (m == NULL) 3453 return ENOMEM; 3454 cmd = mtod(m, struct iwn_tx_cmd *); 3455 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 3456 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3457 if (error != 0) { 3458 m_freem(m); 3459 return error; 3460 } 3461 data->m = m; 3462 } else { 3463 cmd = &ring->cmd[ring->cur]; 3464 paddr = data->cmd_paddr; 3465 } 3466 3467 cmd->code = code; 3468 cmd->flags = 0; 3469 cmd->qid = ring->qid; 3470 cmd->idx = ring->cur; 3471 memcpy(cmd->data, buf, size); 3472 3473 desc->nsegs = 1; 3474 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 3475 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 3476 3477 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 3478 __func__, iwn_intr_str(cmd->code), cmd->code, 3479 cmd->flags, cmd->qid, cmd->idx); 3480 3481 if (size > sizeof cmd->data) { 3482 bus_dmamap_sync(ring->data_dmat, data->map, 3483 BUS_DMASYNC_PREWRITE); 3484 } else { 3485 bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map, 3486 BUS_DMASYNC_PREWRITE); 3487 } 3488 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3489 BUS_DMASYNC_PREWRITE); 3490 3491 #ifdef notyet 3492 /* Update TX scheduler. */ 3493 sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0); 3494 #endif 3495 3496 /* Kick command ring. */ 3497 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 3498 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 3499 3500 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 3501 } 3502 3503 static int 3504 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3505 { 3506 struct iwn4965_node_info hnode; 3507 caddr_t src, dst; 3508 3509 /* 3510 * We use the node structure for 5000 Series internally (it is 3511 * a superset of the one for 4965AGN). We thus copy the common 3512 * fields before sending the command. 3513 */ 3514 src = (caddr_t)node; 3515 dst = (caddr_t)&hnode; 3516 memcpy(dst, src, 48); 3517 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 3518 memcpy(dst + 48, src + 72, 20); 3519 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 3520 } 3521 3522 static int 3523 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 3524 { 3525 /* Direct mapping. */ 3526 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 3527 } 3528 3529 #if 0 /* HT */ 3530 static const uint8_t iwn_ridx_to_plcp[] = { 3531 10, 20, 55, 110, /* CCK */ 3532 0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */ 3533 }; 3534 static const uint8_t iwn_siso_mcs_to_plcp[] = { 3535 0, 0, 0, 0, /* CCK */ 3536 0, 0, 1, 2, 3, 4, 5, 6, 7 /* HT */ 3537 }; 3538 static const uint8_t iwn_mimo_mcs_to_plcp[] = { 3539 0, 0, 0, 0, /* CCK */ 3540 8, 8, 9, 10, 11, 12, 13, 14, 15 /* HT */ 3541 }; 3542 #endif 3543 static const uint8_t iwn_prev_ridx[] = { 3544 /* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */ 3545 0, 0, 1, 5, /* CCK */ 3546 2, 4, 3, 6, 7, 8, 9, 10, 10 /* OFDM */ 3547 }; 3548 3549 /* 3550 * Configure hardware link parameters for the specified 3551 * node operating on the specified channel. 3552 */ 3553 static int 3554 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async) 3555 { 3556 struct ifnet *ifp = sc->sc_ifp; 3557 struct ieee80211com *ic = ifp->if_l2com; 3558 struct iwn_cmd_link_quality linkq; 3559 const struct iwn_rate *rinfo; 3560 int i; 3561 uint8_t txant, ridx; 3562 3563 /* Use the first valid TX antenna. */ 3564 txant = IWN_LSB(sc->txchainmask); 3565 3566 memset(&linkq, 0, sizeof linkq); 3567 linkq.id = id; 3568 linkq.antmsk_1stream = txant; 3569 linkq.antmsk_2stream = IWN_ANT_AB; 3570 linkq.ampdu_max = 31; 3571 linkq.ampdu_threshold = 3; 3572 linkq.ampdu_limit = htole16(4000); /* 4ms */ 3573 3574 #if 0 /* HT */ 3575 if (IEEE80211_IS_CHAN_HT(c)) 3576 linkq.mimo = 1; 3577 #endif 3578 3579 if (id == IWN_ID_BSS) 3580 ridx = IWN_RIDX_OFDM54; 3581 else if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) 3582 ridx = IWN_RIDX_OFDM6; 3583 else 3584 ridx = IWN_RIDX_CCK1; 3585 3586 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 3587 rinfo = &iwn_rates[ridx]; 3588 #if 0 /* HT */ 3589 if (IEEE80211_IS_CHAN_HT40(c)) { 3590 linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx] 3591 | IWN_RIDX_MCS; 3592 linkq.retry[i].rflags = IWN_RFLAG_HT 3593 | IWN_RFLAG_HT40; 3594 /* XXX shortGI */ 3595 } else if (IEEE80211_IS_CHAN_HT(c)) { 3596 linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx] 3597 | IWN_RIDX_MCS; 3598 linkq.retry[i].rflags = IWN_RFLAG_HT; 3599 /* XXX shortGI */ 3600 } else 3601 #endif 3602 { 3603 linkq.retry[i].plcp = rinfo->plcp; 3604 linkq.retry[i].rflags = rinfo->flags; 3605 } 3606 linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); 3607 ridx = iwn_prev_ridx[ridx]; 3608 } 3609 #ifdef IWN_DEBUG 3610 if (sc->sc_debug & IWN_DEBUG_STATE) { 3611 printf("%s: set link quality for node %d, mimo %d ssmask %d\n", 3612 __func__, id, linkq.mimo, linkq.antmsk_1stream); 3613 printf("%s:", __func__); 3614 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) 3615 printf(" %d:%x", linkq.retry[i].plcp, 3616 linkq.retry[i].rflags); 3617 printf("\n"); 3618 } 3619 #endif 3620 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 3621 } 3622 3623 /* 3624 * Broadcast node is used to send group-addressed and management frames. 3625 */ 3626 static int 3627 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 3628 { 3629 const struct iwn_hal *hal = sc->sc_hal; 3630 struct ifnet *ifp = sc->sc_ifp; 3631 struct iwn_node_info node; 3632 int error; 3633 3634 memset(&node, 0, sizeof node); 3635 IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr); 3636 node.id = hal->broadcast_id; 3637 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 3638 error = hal->add_node(sc, &node, async); 3639 if (error != 0) 3640 return error; 3641 3642 error = iwn_set_link_quality(sc, hal->broadcast_id, async); 3643 return error; 3644 } 3645 3646 static int 3647 iwn_wme_update(struct ieee80211com *ic) 3648 { 3649 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 3650 #define IWN_TXOP_TO_US(v) (v<<5) 3651 struct iwn_softc *sc = ic->ic_ifp->if_softc; 3652 struct iwn_edca_params cmd; 3653 int i; 3654 3655 memset(&cmd, 0, sizeof cmd); 3656 cmd.flags = htole32(IWN_EDCA_UPDATE); 3657 for (i = 0; i < WME_NUM_AC; i++) { 3658 const struct wmeParams *wmep = 3659 &ic->ic_wme.wme_chanParams.cap_wmeParams[i]; 3660 cmd.ac[i].aifsn = wmep->wmep_aifsn; 3661 cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin)); 3662 cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax)); 3663 cmd.ac[i].txoplimit = 3664 htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit)); 3665 } 3666 IEEE80211_UNLOCK(ic); 3667 IWN_LOCK(sc); 3668 (void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/); 3669 IWN_UNLOCK(sc); 3670 IEEE80211_LOCK(ic); 3671 return 0; 3672 #undef IWN_TXOP_TO_US 3673 #undef IWN_EXP2 3674 } 3675 3676 static void 3677 iwn_update_mcast(struct ifnet *ifp) 3678 { 3679 /* Ignore */ 3680 } 3681 3682 static void 3683 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 3684 { 3685 struct iwn_cmd_led led; 3686 3687 /* Clear microcode LED ownership. */ 3688 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 3689 3690 led.which = which; 3691 led.unit = htole32(10000); /* on/off in unit of 100ms */ 3692 led.off = off; 3693 led.on = on; 3694 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 3695 } 3696 3697 /* 3698 * Set the critical temperature at which the firmware will stop the radio 3699 * and notify us. 3700 */ 3701 static int 3702 iwn_set_critical_temp(struct iwn_softc *sc) 3703 { 3704 struct iwn_critical_temp crit; 3705 int32_t temp; 3706 3707 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 3708 3709 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 3710 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 3711 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3712 temp = IWN_CTOK(110); 3713 else 3714 temp = 110; 3715 memset(&crit, 0, sizeof crit); 3716 crit.tempR = htole32(temp); 3717 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", 3718 temp); 3719 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 3720 } 3721 3722 static int 3723 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 3724 { 3725 struct iwn_cmd_timing cmd; 3726 uint64_t val, mod; 3727 3728 memset(&cmd, 0, sizeof cmd); 3729 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 3730 cmd.bintval = htole16(ni->ni_intval); 3731 cmd.lintval = htole16(10); 3732 3733 /* Compute remaining time until next beacon. */ 3734 val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ 3735 mod = le64toh(cmd.tstamp) % val; 3736 cmd.binitval = htole32((uint32_t)(val - mod)); 3737 3738 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 3739 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 3740 3741 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 3742 } 3743 3744 static void 3745 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 3746 { 3747 struct ifnet *ifp = sc->sc_ifp; 3748 struct ieee80211com *ic = ifp->if_l2com; 3749 3750 /* Adjust TX power if need be (delta >= 3 degC.) */ 3751 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 3752 __func__, sc->temp, temp); 3753 if (abs(temp - sc->temp) >= 3) { 3754 /* Record temperature of last calibration. */ 3755 sc->temp = temp; 3756 (void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1); 3757 } 3758 } 3759 3760 /* 3761 * Set TX power for current channel (each rate has its own power settings). 3762 * This function takes into account the regulatory information from EEPROM, 3763 * the current temperature and the current voltage. 3764 */ 3765 static int 3766 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 3767 int async) 3768 { 3769 /* Fixed-point arithmetic division using a n-bit fractional part. */ 3770 #define fdivround(a, b, n) \ 3771 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 3772 /* Linear interpolation. */ 3773 #define interpolate(x, x1, y1, x2, y2, n) \ 3774 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 3775 3776 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 3777 struct ifnet *ifp = sc->sc_ifp; 3778 struct ieee80211com *ic = ifp->if_l2com; 3779 struct iwn_ucode_info *uc = &sc->ucode_info; 3780 struct iwn4965_cmd_txpower cmd; 3781 struct iwn4965_eeprom_chan_samples *chans; 3782 int32_t vdiff, tdiff; 3783 int i, c, grp, maxpwr; 3784 const uint8_t *rf_gain, *dsp_gain; 3785 uint8_t chan; 3786 3787 /* Retrieve channel number. */ 3788 chan = ieee80211_chan2ieee(ic, ch); 3789 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 3790 chan); 3791 3792 memset(&cmd, 0, sizeof cmd); 3793 cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; 3794 cmd.chan = chan; 3795 3796 if (IEEE80211_IS_CHAN_5GHZ(ch)) { 3797 maxpwr = sc->maxpwr5GHz; 3798 rf_gain = iwn4965_rf_gain_5ghz; 3799 dsp_gain = iwn4965_dsp_gain_5ghz; 3800 } else { 3801 maxpwr = sc->maxpwr2GHz; 3802 rf_gain = iwn4965_rf_gain_2ghz; 3803 dsp_gain = iwn4965_dsp_gain_2ghz; 3804 } 3805 3806 /* Compute voltage compensation. */ 3807 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 3808 if (vdiff > 0) 3809 vdiff *= 2; 3810 if (abs(vdiff) > 2) 3811 vdiff = 0; 3812 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3813 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 3814 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 3815 3816 /* Get channel attenuation group. */ 3817 if (chan <= 20) /* 1-20 */ 3818 grp = 4; 3819 else if (chan <= 43) /* 34-43 */ 3820 grp = 0; 3821 else if (chan <= 70) /* 44-70 */ 3822 grp = 1; 3823 else if (chan <= 124) /* 71-124 */ 3824 grp = 2; 3825 else /* 125-200 */ 3826 grp = 3; 3827 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3828 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 3829 3830 /* Get channel sub-band. */ 3831 for (i = 0; i < IWN_NBANDS; i++) 3832 if (sc->bands[i].lo != 0 && 3833 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 3834 break; 3835 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 3836 return EINVAL; 3837 chans = sc->bands[i].chans; 3838 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3839 "%s: chan %d sub-band=%d\n", __func__, chan, i); 3840 3841 for (c = 0; c < 2; c++) { 3842 uint8_t power, gain, temp; 3843 int maxchpwr, pwr, ridx, idx; 3844 3845 power = interpolate(chan, 3846 chans[0].num, chans[0].samples[c][1].power, 3847 chans[1].num, chans[1].samples[c][1].power, 1); 3848 gain = interpolate(chan, 3849 chans[0].num, chans[0].samples[c][1].gain, 3850 chans[1].num, chans[1].samples[c][1].gain, 1); 3851 temp = interpolate(chan, 3852 chans[0].num, chans[0].samples[c][1].temp, 3853 chans[1].num, chans[1].samples[c][1].temp, 1); 3854 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3855 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 3856 __func__, c, power, gain, temp); 3857 3858 /* Compute temperature compensation. */ 3859 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 3860 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3861 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 3862 __func__, tdiff, sc->temp, temp); 3863 3864 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 3865 /* Convert dBm to half-dBm. */ 3866 maxchpwr = sc->maxpwr[chan] * 2; 3867 if ((ridx / 8) & 1) 3868 maxchpwr -= 6; /* MIMO 2T: -3dB */ 3869 3870 pwr = maxpwr; 3871 3872 /* Adjust TX power based on rate. */ 3873 if ((ridx % 8) == 5) 3874 pwr -= 15; /* OFDM48: -7.5dB */ 3875 else if ((ridx % 8) == 6) 3876 pwr -= 17; /* OFDM54: -8.5dB */ 3877 else if ((ridx % 8) == 7) 3878 pwr -= 20; /* OFDM60: -10dB */ 3879 else 3880 pwr -= 10; /* Others: -5dB */ 3881 3882 /* Do not exceed channel max TX power. */ 3883 if (pwr > maxchpwr) 3884 pwr = maxchpwr; 3885 3886 idx = gain - (pwr - power) - tdiff - vdiff; 3887 if ((ridx / 8) & 1) /* MIMO */ 3888 idx += (int32_t)le32toh(uc->atten[grp][c]); 3889 3890 if (cmd.band == 0) 3891 idx += 9; /* 5GHz */ 3892 if (ridx == IWN_RIDX_MAX) 3893 idx += 5; /* CCK */ 3894 3895 /* Make sure idx stays in a valid range. */ 3896 if (idx < 0) 3897 idx = 0; 3898 else if (idx > IWN4965_MAX_PWR_INDEX) 3899 idx = IWN4965_MAX_PWR_INDEX; 3900 3901 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3902 "%s: Tx chain %d, rate idx %d: power=%d\n", 3903 __func__, c, ridx, idx); 3904 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 3905 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 3906 } 3907 } 3908 3909 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 3910 "%s: set tx power for chan %d\n", __func__, chan); 3911 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 3912 3913 #undef interpolate 3914 #undef fdivround 3915 } 3916 3917 static int 3918 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, 3919 int async) 3920 { 3921 struct iwn5000_cmd_txpower cmd; 3922 3923 /* 3924 * TX power calibration is handled automatically by the firmware 3925 * for 5000 Series. 3926 */ 3927 memset(&cmd, 0, sizeof cmd); 3928 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 3929 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 3930 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 3931 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__); 3932 return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); 3933 } 3934 3935 /* 3936 * Retrieve the maximum RSSI (in dBm) among receivers. 3937 */ 3938 static int 3939 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 3940 { 3941 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 3942 uint8_t mask, agc; 3943 int rssi; 3944 3945 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 3946 agc = (le16toh(phy->agc) >> 7) & 0x7f; 3947 3948 rssi = 0; 3949 #if 0 3950 if (mask & IWN_ANT_A) /* Ant A */ 3951 rssi = max(rssi, phy->rssi[0]); 3952 if (mask & IWN_ATH_B) /* Ant B */ 3953 rssi = max(rssi, phy->rssi[2]); 3954 if (mask & IWN_ANT_C) /* Ant C */ 3955 rssi = max(rssi, phy->rssi[4]); 3956 #else 3957 rssi = max(rssi, phy->rssi[0]); 3958 rssi = max(rssi, phy->rssi[2]); 3959 rssi = max(rssi, phy->rssi[4]); 3960 #endif 3961 3962 DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d " 3963 "result %d\n", __func__, agc, mask, 3964 phy->rssi[0], phy->rssi[2], phy->rssi[4], 3965 rssi - agc - IWN_RSSI_TO_DBM); 3966 return rssi - agc - IWN_RSSI_TO_DBM; 3967 } 3968 3969 static int 3970 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 3971 { 3972 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 3973 int rssi; 3974 uint8_t agc; 3975 3976 agc = (le32toh(phy->agc) >> 9) & 0x7f; 3977 3978 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 3979 le16toh(phy->rssi[1]) & 0xff); 3980 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 3981 3982 DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d " 3983 "result %d\n", __func__, agc, 3984 phy->rssi[0], phy->rssi[1], phy->rssi[2], 3985 rssi - agc - IWN_RSSI_TO_DBM); 3986 return rssi - agc - IWN_RSSI_TO_DBM; 3987 } 3988 3989 /* 3990 * Retrieve the average noise (in dBm) among receivers. 3991 */ 3992 static int 3993 iwn_get_noise(const struct iwn_rx_general_stats *stats) 3994 { 3995 int i, total, nbant, noise; 3996 3997 total = nbant = 0; 3998 for (i = 0; i < 3; i++) { 3999 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 4000 continue; 4001 total += noise; 4002 nbant++; 4003 } 4004 /* There should be at least one antenna but check anyway. */ 4005 return (nbant == 0) ? -127 : (total / nbant) - 107; 4006 } 4007 4008 /* 4009 * Compute temperature (in degC) from last received statistics. 4010 */ 4011 static int 4012 iwn4965_get_temperature(struct iwn_softc *sc) 4013 { 4014 struct iwn_ucode_info *uc = &sc->ucode_info; 4015 int32_t r1, r2, r3, r4, temp; 4016 4017 r1 = le32toh(uc->temp[0].chan20MHz); 4018 r2 = le32toh(uc->temp[1].chan20MHz); 4019 r3 = le32toh(uc->temp[2].chan20MHz); 4020 r4 = le32toh(sc->rawtemp); 4021 4022 if (r1 == r3) /* Prevents division by 0 (should not happen.) */ 4023 return 0; 4024 4025 /* Sign-extend 23-bit R4 value to 32-bit. */ 4026 r4 = (r4 << 8) >> 8; 4027 /* Compute temperature in Kelvin. */ 4028 temp = (259 * (r4 - r2)) / (r3 - r1); 4029 temp = (temp * 97) / 100 + 8; 4030 4031 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 4032 IWN_KTOC(temp)); 4033 return IWN_KTOC(temp); 4034 } 4035 4036 static int 4037 iwn5000_get_temperature(struct iwn_softc *sc) 4038 { 4039 int32_t temp; 4040 4041 /* 4042 * Temperature is not used by the driver for 5000 Series because 4043 * TX power calibration is handled by firmware. We export it to 4044 * users through the sensor framework though. 4045 */ 4046 temp = le32toh(sc->rawtemp); 4047 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 4048 temp = (temp / -5) + sc->temp_off; 4049 temp = IWN_KTOC(temp); 4050 } 4051 return temp; 4052 } 4053 4054 /* 4055 * Initialize sensitivity calibration state machine. 4056 */ 4057 static int 4058 iwn_init_sensitivity(struct iwn_softc *sc) 4059 { 4060 const struct iwn_hal *hal = sc->sc_hal; 4061 struct iwn_calib_state *calib = &sc->calib; 4062 uint32_t flags; 4063 int error; 4064 4065 /* Reset calibration state machine. */ 4066 memset(calib, 0, sizeof (*calib)); 4067 calib->state = IWN_CALIB_STATE_INIT; 4068 calib->cck_state = IWN_CCK_STATE_HIFA; 4069 /* Set initial correlation values. */ 4070 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 4071 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 4072 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 4073 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 4074 calib->cck_x4 = 125; 4075 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 4076 calib->energy_cck = sc->limits->energy_cck; 4077 4078 /* Write initial sensitivity. */ 4079 error = iwn_send_sensitivity(sc); 4080 if (error != 0) 4081 return error; 4082 4083 /* Write initial gains. */ 4084 error = hal->init_gains(sc); 4085 if (error != 0) 4086 return error; 4087 4088 /* Request statistics at each beacon interval. */ 4089 flags = 0; 4090 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__); 4091 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 4092 } 4093 4094 /* 4095 * Collect noise and RSSI statistics for the first 20 beacons received 4096 * after association and use them to determine connected antennas and 4097 * to set differential gains. 4098 */ 4099 static void 4100 iwn_collect_noise(struct iwn_softc *sc, 4101 const struct iwn_rx_general_stats *stats) 4102 { 4103 const struct iwn_hal *hal = sc->sc_hal; 4104 struct iwn_calib_state *calib = &sc->calib; 4105 uint32_t val; 4106 int i; 4107 4108 /* Accumulate RSSI and noise for all 3 antennas. */ 4109 for (i = 0; i < 3; i++) { 4110 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 4111 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 4112 } 4113 /* NB: We update differential gains only once after 20 beacons. */ 4114 if (++calib->nbeacons < 20) 4115 return; 4116 4117 /* Determine highest average RSSI. */ 4118 val = MAX(calib->rssi[0], calib->rssi[1]); 4119 val = MAX(calib->rssi[2], val); 4120 4121 /* Determine which antennas are connected. */ 4122 sc->chainmask = 0; 4123 for (i = 0; i < 3; i++) 4124 if (val - calib->rssi[i] <= 15 * 20) 4125 sc->chainmask |= 1 << i; 4126 /* If none of the TX antennas are connected, keep at least one. */ 4127 if ((sc->chainmask & sc->txchainmask) == 0) 4128 sc->chainmask |= IWN_LSB(sc->txchainmask); 4129 4130 (void)hal->set_gains(sc); 4131 calib->state = IWN_CALIB_STATE_RUN; 4132 4133 #ifdef notyet 4134 /* XXX Disable RX chains with no antennas connected. */ 4135 sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 4136 (void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4137 #endif 4138 4139 #if 0 4140 /* XXX: not yet */ 4141 /* Enable power-saving mode if requested by user. */ 4142 if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) 4143 (void)iwn_set_pslevel(sc, 0, 3, 1); 4144 #endif 4145 } 4146 4147 static int 4148 iwn4965_init_gains(struct iwn_softc *sc) 4149 { 4150 struct iwn_phy_calib_gain cmd; 4151 4152 memset(&cmd, 0, sizeof cmd); 4153 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4154 /* Differential gains initially set to 0 for all 3 antennas. */ 4155 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4156 "%s: setting initial differential gains\n", __func__); 4157 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4158 } 4159 4160 static int 4161 iwn5000_init_gains(struct iwn_softc *sc) 4162 { 4163 struct iwn_phy_calib cmd; 4164 4165 memset(&cmd, 0, sizeof cmd); 4166 cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 4167 cmd.ngroups = 1; 4168 cmd.isvalid = 1; 4169 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4170 "%s: setting initial differential gains\n", __func__); 4171 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4172 } 4173 4174 static int 4175 iwn4965_set_gains(struct iwn_softc *sc) 4176 { 4177 struct iwn_calib_state *calib = &sc->calib; 4178 struct iwn_phy_calib_gain cmd; 4179 int i, delta, noise; 4180 4181 /* Get minimal noise among connected antennas. */ 4182 noise = INT_MAX; /* NB: There's at least one antenna. */ 4183 for (i = 0; i < 3; i++) 4184 if (sc->chainmask & (1 << i)) 4185 noise = MIN(calib->noise[i], noise); 4186 4187 memset(&cmd, 0, sizeof cmd); 4188 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 4189 /* Set differential gains for connected antennas. */ 4190 for (i = 0; i < 3; i++) { 4191 if (sc->chainmask & (1 << i)) { 4192 /* Compute attenuation (in unit of 1.5dB). */ 4193 delta = (noise - (int32_t)calib->noise[i]) / 30; 4194 /* NB: delta <= 0 */ 4195 /* Limit to [-4.5dB,0]. */ 4196 cmd.gain[i] = MIN(abs(delta), 3); 4197 if (delta < 0) 4198 cmd.gain[i] |= 1 << 2; /* sign bit */ 4199 } 4200 } 4201 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4202 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 4203 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 4204 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4205 } 4206 4207 static int 4208 iwn5000_set_gains(struct iwn_softc *sc) 4209 { 4210 struct iwn_calib_state *calib = &sc->calib; 4211 struct iwn_phy_calib_gain cmd; 4212 int i, ant, delta, div; 4213 4214 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 4215 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 4216 4217 memset(&cmd, 0, sizeof cmd); 4218 cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; 4219 cmd.ngroups = 1; 4220 cmd.isvalid = 1; 4221 /* Get first available RX antenna as referential. */ 4222 ant = IWN_LSB(sc->rxchainmask); 4223 /* Set differential gains for other antennas. */ 4224 for (i = ant + 1; i < 3; i++) { 4225 if (sc->chainmask & (1 << i)) { 4226 /* The delta is relative to antenna "ant". */ 4227 delta = ((int32_t)calib->noise[ant] - 4228 (int32_t)calib->noise[i]) / div; 4229 /* Limit to [-4.5dB,+4.5dB]. */ 4230 cmd.gain[i - 1] = MIN(abs(delta), 3); 4231 if (delta < 0) 4232 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 4233 } 4234 } 4235 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4236 "setting differential gains Ant B/C: %x/%x (%x)\n", 4237 cmd.gain[0], cmd.gain[1], sc->chainmask); 4238 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 4239 } 4240 4241 /* 4242 * Tune RF RX sensitivity based on the number of false alarms detected 4243 * during the last beacon period. 4244 */ 4245 static void 4246 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 4247 { 4248 #define inc(val, inc, max) \ 4249 if ((val) < (max)) { \ 4250 if ((val) < (max) - (inc)) \ 4251 (val) += (inc); \ 4252 else \ 4253 (val) = (max); \ 4254 needs_update = 1; \ 4255 } 4256 #define dec(val, dec, min) \ 4257 if ((val) > (min)) { \ 4258 if ((val) > (min) + (dec)) \ 4259 (val) -= (dec); \ 4260 else \ 4261 (val) = (min); \ 4262 needs_update = 1; \ 4263 } 4264 4265 const struct iwn_sensitivity_limits *limits = sc->limits; 4266 struct iwn_calib_state *calib = &sc->calib; 4267 uint32_t val, rxena, fa; 4268 uint32_t energy[3], energy_min; 4269 uint8_t noise[3], noise_ref; 4270 int i, needs_update = 0; 4271 4272 /* Check that we've been enabled long enough. */ 4273 rxena = le32toh(stats->general.load); 4274 if (rxena == 0) 4275 return; 4276 4277 /* Compute number of false alarms since last call for OFDM. */ 4278 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 4279 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 4280 fa *= 200 * 1024; /* 200TU */ 4281 4282 /* Save counters values for next call. */ 4283 calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp); 4284 calib->fa_ofdm = le32toh(stats->ofdm.fa); 4285 4286 if (fa > 50 * rxena) { 4287 /* High false alarm count, decrease sensitivity. */ 4288 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4289 "%s: OFDM high false alarm count: %u\n", __func__, fa); 4290 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 4291 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 4292 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 4293 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 4294 4295 } else if (fa < 5 * rxena) { 4296 /* Low false alarm count, increase sensitivity. */ 4297 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4298 "%s: OFDM low false alarm count: %u\n", __func__, fa); 4299 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 4300 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 4301 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 4302 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 4303 } 4304 4305 /* Compute maximum noise among 3 receivers. */ 4306 for (i = 0; i < 3; i++) 4307 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 4308 val = MAX(noise[0], noise[1]); 4309 val = MAX(noise[2], val); 4310 /* Insert it into our samples table. */ 4311 calib->noise_samples[calib->cur_noise_sample] = val; 4312 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 4313 4314 /* Compute maximum noise among last 20 samples. */ 4315 noise_ref = calib->noise_samples[0]; 4316 for (i = 1; i < 20; i++) 4317 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 4318 4319 /* Compute maximum energy among 3 receivers. */ 4320 for (i = 0; i < 3; i++) 4321 energy[i] = le32toh(stats->general.energy[i]); 4322 val = MIN(energy[0], energy[1]); 4323 val = MIN(energy[2], val); 4324 /* Insert it into our samples table. */ 4325 calib->energy_samples[calib->cur_energy_sample] = val; 4326 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 4327 4328 /* Compute minimum energy among last 10 samples. */ 4329 energy_min = calib->energy_samples[0]; 4330 for (i = 1; i < 10; i++) 4331 energy_min = MAX(energy_min, calib->energy_samples[i]); 4332 energy_min += 6; 4333 4334 /* Compute number of false alarms since last call for CCK. */ 4335 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 4336 fa += le32toh(stats->cck.fa) - calib->fa_cck; 4337 fa *= 200 * 1024; /* 200TU */ 4338 4339 /* Save counters values for next call. */ 4340 calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp); 4341 calib->fa_cck = le32toh(stats->cck.fa); 4342 4343 if (fa > 50 * rxena) { 4344 /* High false alarm count, decrease sensitivity. */ 4345 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4346 "%s: CCK high false alarm count: %u\n", __func__, fa); 4347 calib->cck_state = IWN_CCK_STATE_HIFA; 4348 calib->low_fa = 0; 4349 4350 if (calib->cck_x4 > 160) { 4351 calib->noise_ref = noise_ref; 4352 if (calib->energy_cck > 2) 4353 dec(calib->energy_cck, 2, energy_min); 4354 } 4355 if (calib->cck_x4 < 160) { 4356 calib->cck_x4 = 161; 4357 needs_update = 1; 4358 } else 4359 inc(calib->cck_x4, 3, limits->max_cck_x4); 4360 4361 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 4362 4363 } else if (fa < 5 * rxena) { 4364 /* Low false alarm count, increase sensitivity. */ 4365 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4366 "%s: CCK low false alarm count: %u\n", __func__, fa); 4367 calib->cck_state = IWN_CCK_STATE_LOFA; 4368 calib->low_fa++; 4369 4370 if (calib->cck_state != IWN_CCK_STATE_INIT && 4371 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 4372 calib->low_fa > 100)) { 4373 inc(calib->energy_cck, 2, limits->min_energy_cck); 4374 dec(calib->cck_x4, 3, limits->min_cck_x4); 4375 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 4376 } 4377 } else { 4378 /* Not worth to increase or decrease sensitivity. */ 4379 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4380 "%s: CCK normal false alarm count: %u\n", __func__, fa); 4381 calib->low_fa = 0; 4382 calib->noise_ref = noise_ref; 4383 4384 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 4385 /* Previous interval had many false alarms. */ 4386 dec(calib->energy_cck, 8, energy_min); 4387 } 4388 calib->cck_state = IWN_CCK_STATE_INIT; 4389 } 4390 4391 if (needs_update) 4392 (void)iwn_send_sensitivity(sc); 4393 #undef dec 4394 #undef inc 4395 } 4396 4397 static int 4398 iwn_send_sensitivity(struct iwn_softc *sc) 4399 { 4400 struct iwn_calib_state *calib = &sc->calib; 4401 struct iwn_sensitivity_cmd cmd; 4402 4403 memset(&cmd, 0, sizeof cmd); 4404 cmd.which = IWN_SENSITIVITY_WORKTBL; 4405 /* OFDM modulation. */ 4406 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 4407 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 4408 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 4409 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 4410 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 4411 cmd.energy_ofdm_th = htole16(62); 4412 /* CCK modulation. */ 4413 cmd.corr_cck_x4 = htole16(calib->cck_x4); 4414 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 4415 cmd.energy_cck = htole16(calib->energy_cck); 4416 /* Barker modulation: use default values. */ 4417 cmd.corr_barker = htole16(190); 4418 cmd.corr_barker_mrc = htole16(390); 4419 4420 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 4421 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 4422 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 4423 calib->ofdm_mrc_x4, calib->cck_x4, 4424 calib->cck_mrc_x4, calib->energy_cck); 4425 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); 4426 } 4427 4428 /* 4429 * Set STA mode power saving level (between 0 and 5). 4430 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 4431 */ 4432 static int 4433 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 4434 { 4435 const struct iwn_pmgt *pmgt; 4436 struct iwn_pmgt_cmd cmd; 4437 uint32_t max, skip_dtim; 4438 uint32_t tmp; 4439 int i; 4440 4441 /* Select which PS parameters to use. */ 4442 if (dtim <= 2) 4443 pmgt = &iwn_pmgt[0][level]; 4444 else if (dtim <= 10) 4445 pmgt = &iwn_pmgt[1][level]; 4446 else 4447 pmgt = &iwn_pmgt[2][level]; 4448 4449 memset(&cmd, 0, sizeof cmd); 4450 if (level != 0) /* not CAM */ 4451 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 4452 if (level == 5) 4453 cmd.flags |= htole16(IWN_PS_FAST_PD); 4454 /* Retrieve PCIe Active State Power Management (ASPM). */ 4455 tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); 4456 if (!(tmp & 0x1)) /* L0s Entry disabled. */ 4457 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 4458 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 4459 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 4460 4461 if (dtim == 0) { 4462 dtim = 1; 4463 skip_dtim = 0; 4464 } else 4465 skip_dtim = pmgt->skip_dtim; 4466 if (skip_dtim != 0) { 4467 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 4468 max = pmgt->intval[4]; 4469 if (max == (uint32_t)-1) 4470 max = dtim * (skip_dtim + 1); 4471 else if (max > dtim) 4472 max = (max / dtim) * dtim; 4473 } else 4474 max = dtim; 4475 for (i = 0; i < 5; i++) 4476 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 4477 4478 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 4479 level); 4480 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 4481 } 4482 4483 static int 4484 iwn_config(struct iwn_softc *sc) 4485 { 4486 const struct iwn_hal *hal = sc->sc_hal; 4487 struct ifnet *ifp = sc->sc_ifp; 4488 struct ieee80211com *ic = ifp->if_l2com; 4489 struct iwn_bluetooth bluetooth; 4490 uint32_t txmask; 4491 int error; 4492 uint16_t rxchain; 4493 4494 /* Configure valid TX chains for 5000 Series. */ 4495 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4496 txmask = htole32(sc->txchainmask); 4497 DPRINTF(sc, IWN_DEBUG_RESET, 4498 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 4499 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 4500 sizeof txmask, 0); 4501 if (error != 0) { 4502 device_printf(sc->sc_dev, 4503 "%s: could not configure valid TX chains, " 4504 "error %d\n", __func__, error); 4505 return error; 4506 } 4507 } 4508 4509 /* Configure bluetooth coexistence. */ 4510 memset(&bluetooth, 0, sizeof bluetooth); 4511 bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 4512 bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF; 4513 bluetooth.max_kill = IWN_BT_MAX_KILL_DEF; 4514 DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n", 4515 __func__); 4516 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); 4517 if (error != 0) { 4518 device_printf(sc->sc_dev, 4519 "%s: could not configure bluetooth coexistence, error %d\n", 4520 __func__, error); 4521 return error; 4522 } 4523 4524 /* Set mode, channel, RX filter and enable RX. */ 4525 memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); 4526 IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp)); 4527 IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp)); 4528 sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 4529 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4530 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 4531 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4532 switch (ic->ic_opmode) { 4533 case IEEE80211_M_STA: 4534 sc->rxon.mode = IWN_MODE_STA; 4535 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); 4536 break; 4537 case IEEE80211_M_MONITOR: 4538 sc->rxon.mode = IWN_MODE_MONITOR; 4539 sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | 4540 IWN_FILTER_CTL | IWN_FILTER_PROMISC); 4541 break; 4542 default: 4543 /* Should not get there. */ 4544 break; 4545 } 4546 sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ 4547 sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ 4548 sc->rxon.ht_single_mask = 0xff; 4549 sc->rxon.ht_dual_mask = 0xff; 4550 sc->rxon.ht_triple_mask = 0xff; 4551 rxchain = 4552 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4553 IWN_RXCHAIN_MIMO_COUNT(2) | 4554 IWN_RXCHAIN_IDLE_COUNT(2); 4555 sc->rxon.rxchain = htole16(rxchain); 4556 DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__); 4557 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0); 4558 if (error != 0) { 4559 device_printf(sc->sc_dev, 4560 "%s: RXON command failed\n", __func__); 4561 return error; 4562 } 4563 4564 error = iwn_add_broadcast_node(sc, 0); 4565 if (error != 0) { 4566 device_printf(sc->sc_dev, 4567 "%s: could not add broadcast node\n", __func__); 4568 return error; 4569 } 4570 4571 /* Configuration has changed, set TX power accordingly. */ 4572 error = hal->set_txpower(sc, ic->ic_curchan, 0); 4573 if (error != 0) { 4574 device_printf(sc->sc_dev, 4575 "%s: could not set TX power\n", __func__); 4576 return error; 4577 } 4578 4579 error = iwn_set_critical_temp(sc); 4580 if (error != 0) { 4581 device_printf(sc->sc_dev, 4582 "%s: ccould not set critical temperature\n", __func__); 4583 return error; 4584 } 4585 4586 /* Set power saving level to CAM during initialization. */ 4587 error = iwn_set_pslevel(sc, 0, 0, 0); 4588 if (error != 0) { 4589 device_printf(sc->sc_dev, 4590 "%s: could not set power saving level\n", __func__); 4591 return error; 4592 } 4593 return 0; 4594 } 4595 4596 static int 4597 iwn_scan(struct iwn_softc *sc) 4598 { 4599 struct ifnet *ifp = sc->sc_ifp; 4600 struct ieee80211com *ic = ifp->if_l2com; 4601 struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/ 4602 struct iwn_scan_hdr *hdr; 4603 struct iwn_cmd_data *tx; 4604 struct iwn_scan_essid *essid; 4605 struct iwn_scan_chan *chan; 4606 struct ieee80211_frame *wh; 4607 struct ieee80211_rateset *rs; 4608 struct ieee80211_channel *c; 4609 int buflen, error, nrates; 4610 uint16_t rxchain; 4611 uint8_t *buf, *frm, txant; 4612 4613 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 4614 if (buf == NULL) { 4615 device_printf(sc->sc_dev, 4616 "%s: could not allocate buffer for scan command\n", 4617 __func__); 4618 return ENOMEM; 4619 } 4620 hdr = (struct iwn_scan_hdr *)buf; 4621 4622 /* 4623 * Move to the next channel if no frames are received within 10ms 4624 * after sending the probe request. 4625 */ 4626 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 4627 hdr->quiet_threshold = htole16(1); /* min # of packets */ 4628 4629 /* Select antennas for scanning. */ 4630 rxchain = 4631 IWN_RXCHAIN_VALID(sc->rxchainmask) | 4632 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 4633 IWN_RXCHAIN_DRIVER_FORCE; 4634 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) && 4635 sc->hw_type == IWN_HW_REV_TYPE_4965) { 4636 /* Ant A must be avoided in 5GHz because of an HW bug. */ 4637 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC); 4638 } else /* Use all available RX antennas. */ 4639 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 4640 hdr->rxchain = htole16(rxchain); 4641 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 4642 4643 tx = (struct iwn_cmd_data *)(hdr + 1); 4644 tx->flags = htole32(IWN_TX_AUTO_SEQ); 4645 tx->id = sc->sc_hal->broadcast_id; 4646 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4647 4648 if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) { 4649 /* Send probe requests at 6Mbps. */ 4650 tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; 4651 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 4652 } else { 4653 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 4654 /* Send probe requests at 1Mbps. */ 4655 tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; 4656 tx->rflags = IWN_RFLAG_CCK; 4657 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 4658 } 4659 /* Use the first valid TX antenna. */ 4660 txant = IWN_LSB(sc->txchainmask); 4661 tx->rflags |= IWN_RFLAG_ANT(txant); 4662 4663 essid = (struct iwn_scan_essid *)(tx + 1); 4664 if (ss->ss_ssid[0].len != 0) { 4665 essid[0].id = IEEE80211_ELEMID_SSID; 4666 essid[0].len = ss->ss_ssid[0].len; 4667 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 4668 } 4669 4670 /* 4671 * Build a probe request frame. Most of the following code is a 4672 * copy & paste of what is done in net80211. 4673 */ 4674 wh = (struct ieee80211_frame *)(essid + 20); 4675 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 4676 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 4677 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 4678 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 4679 IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp)); 4680 IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr); 4681 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 4682 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 4683 4684 frm = (uint8_t *)(wh + 1); 4685 4686 /* Add SSID IE. */ 4687 *frm++ = IEEE80211_ELEMID_SSID; 4688 *frm++ = ss->ss_ssid[0].len; 4689 memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 4690 frm += ss->ss_ssid[0].len; 4691 4692 /* Add supported rates IE. */ 4693 *frm++ = IEEE80211_ELEMID_RATES; 4694 nrates = rs->rs_nrates; 4695 if (nrates > IEEE80211_RATE_SIZE) 4696 nrates = IEEE80211_RATE_SIZE; 4697 *frm++ = nrates; 4698 memcpy(frm, rs->rs_rates, nrates); 4699 frm += nrates; 4700 4701 /* Add supported xrates IE. */ 4702 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 4703 nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 4704 *frm++ = IEEE80211_ELEMID_XRATES; 4705 *frm++ = (uint8_t)nrates; 4706 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 4707 frm += nrates; 4708 } 4709 4710 /* Set length of probe request. */ 4711 tx->len = htole16(frm - (uint8_t *)wh); 4712 4713 c = ic->ic_curchan; 4714 chan = (struct iwn_scan_chan *)frm; 4715 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 4716 chan->flags = 0; 4717 if (ss->ss_nssid > 0) 4718 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 4719 chan->dsp_gain = 0x6e; 4720 if (IEEE80211_IS_CHAN_5GHZ(c) && 4721 !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 4722 chan->rf_gain = 0x3b; 4723 chan->active = htole16(24); 4724 chan->passive = htole16(110); 4725 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4726 } else if (IEEE80211_IS_CHAN_5GHZ(c)) { 4727 chan->rf_gain = 0x3b; 4728 chan->active = htole16(24); 4729 if (sc->rxon.associd) 4730 chan->passive = htole16(78); 4731 else 4732 chan->passive = htole16(110); 4733 hdr->crc_threshold = 0xffff; 4734 } else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { 4735 chan->rf_gain = 0x28; 4736 chan->active = htole16(36); 4737 chan->passive = htole16(120); 4738 chan->flags |= htole32(IWN_CHAN_ACTIVE); 4739 } else { 4740 chan->rf_gain = 0x28; 4741 chan->active = htole16(36); 4742 if (sc->rxon.associd) 4743 chan->passive = htole16(88); 4744 else 4745 chan->passive = htole16(120); 4746 hdr->crc_threshold = 0xffff; 4747 } 4748 4749 DPRINTF(sc, IWN_DEBUG_STATE, 4750 "%s: chan %u flags 0x%x rf_gain 0x%x " 4751 "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__, 4752 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 4753 chan->active, chan->passive); 4754 4755 hdr->nchan++; 4756 chan++; 4757 buflen = (uint8_t *)chan - buf; 4758 hdr->len = htole16(buflen); 4759 4760 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 4761 hdr->nchan); 4762 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 4763 free(buf, M_DEVBUF); 4764 return error; 4765 } 4766 4767 static int 4768 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 4769 { 4770 const struct iwn_hal *hal = sc->sc_hal; 4771 struct ifnet *ifp = sc->sc_ifp; 4772 struct ieee80211com *ic = ifp->if_l2com; 4773 struct ieee80211_node *ni = vap->iv_bss; 4774 int error; 4775 4776 sc->calib.state = IWN_CALIB_STATE_INIT; 4777 4778 /* Update adapter configuration. */ 4779 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4780 sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan)); 4781 sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4782 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4783 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4784 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4785 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4786 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4787 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4788 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 4789 sc->rxon.cck_mask = 0; 4790 sc->rxon.ofdm_mask = 0x15; 4791 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 4792 sc->rxon.cck_mask = 0x03; 4793 sc->rxon.ofdm_mask = 0; 4794 } else { 4795 /* XXX assume 802.11b/g */ 4796 sc->rxon.cck_mask = 0x0f; 4797 sc->rxon.ofdm_mask = 0x15; 4798 } 4799 DPRINTF(sc, IWN_DEBUG_STATE, 4800 "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x " 4801 "ht_single 0x%x ht_dual 0x%x rxchain 0x%x " 4802 "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n", 4803 __func__, 4804 le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags), 4805 sc->rxon.cck_mask, sc->rxon.ofdm_mask, 4806 sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask, 4807 le16toh(sc->rxon.rxchain), 4808 sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":", 4809 le16toh(sc->rxon.associd), le32toh(sc->rxon.filter)); 4810 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4811 if (error != 0) { 4812 device_printf(sc->sc_dev, 4813 "%s: RXON command failed, error %d\n", __func__, error); 4814 return error; 4815 } 4816 4817 /* Configuration has changed, set TX power accordingly. */ 4818 error = hal->set_txpower(sc, ni->ni_chan, 1); 4819 if (error != 0) { 4820 device_printf(sc->sc_dev, 4821 "%s: could not set Tx power, error %d\n", __func__, error); 4822 return error; 4823 } 4824 /* 4825 * Reconfiguring RXON clears the firmware nodes table so we must 4826 * add the broadcast node again. 4827 */ 4828 error = iwn_add_broadcast_node(sc, 1); 4829 if (error != 0) { 4830 device_printf(sc->sc_dev, 4831 "%s: could not add broadcast node, error %d\n", 4832 __func__, error); 4833 return error; 4834 } 4835 return 0; 4836 } 4837 4838 /* 4839 * Configure the adapter for associated state. 4840 */ 4841 static int 4842 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 4843 { 4844 #define MS(v,x) (((v) & x) >> x##_S) 4845 const struct iwn_hal *hal = sc->sc_hal; 4846 struct ifnet *ifp = sc->sc_ifp; 4847 struct ieee80211com *ic = ifp->if_l2com; 4848 struct ieee80211_node *ni = vap->iv_bss; 4849 struct iwn_node_info node; 4850 int error; 4851 4852 sc->calib.state = IWN_CALIB_STATE_INIT; 4853 4854 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4855 /* Link LED blinks while monitoring. */ 4856 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 4857 return 0; 4858 } 4859 error = iwn_set_timing(sc, ni); 4860 if (error != 0) { 4861 device_printf(sc->sc_dev, 4862 "%s: could not set timing, error %d\n", __func__, error); 4863 return error; 4864 } 4865 4866 /* Update adapter configuration. */ 4867 IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); 4868 sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan)); 4869 sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); 4870 /* Short preamble and slot time are negotiated when associating. */ 4871 sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); 4872 sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 4873 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 4874 sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4875 else 4876 sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 4877 if (ic->ic_flags & IEEE80211_F_SHSLOT) 4878 sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); 4879 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4880 sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); 4881 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 4882 sc->rxon.cck_mask = 0; 4883 sc->rxon.ofdm_mask = 0x15; 4884 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 4885 sc->rxon.cck_mask = 0x03; 4886 sc->rxon.ofdm_mask = 0; 4887 } else { 4888 /* XXX assume 802.11b/g */ 4889 sc->rxon.cck_mask = 0x0f; 4890 sc->rxon.ofdm_mask = 0x15; 4891 } 4892 #if 0 /* HT */ 4893 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 4894 sc->rxon.flags &= ~htole32(IWN_RXON_HT); 4895 if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan)) 4896 sc->rxon.flags |= htole32(IWN_RXON_HT40U); 4897 else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan)) 4898 sc->rxon.flags |= htole32(IWN_RXON_HT40D); 4899 else 4900 sc->rxon.flags |= htole32(IWN_RXON_HT20); 4901 sc->rxon.rxchain = htole16( 4902 IWN_RXCHAIN_VALID(3) 4903 | IWN_RXCHAIN_MIMO_COUNT(3) 4904 | IWN_RXCHAIN_IDLE_COUNT(1) 4905 | IWN_RXCHAIN_MIMO_FORCE); 4906 4907 maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); 4908 ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); 4909 } else 4910 maxrxampdu = ampdudensity = 0; 4911 #endif 4912 sc->rxon.filter |= htole32(IWN_FILTER_BSS); 4913 4914 DPRINTF(sc, IWN_DEBUG_STATE, 4915 "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x " 4916 "ht_single 0x%x ht_dual 0x%x rxchain 0x%x " 4917 "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n", 4918 __func__, 4919 le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags), 4920 sc->rxon.cck_mask, sc->rxon.ofdm_mask, 4921 sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask, 4922 le16toh(sc->rxon.rxchain), 4923 sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":", 4924 le16toh(sc->rxon.associd), le32toh(sc->rxon.filter)); 4925 error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1); 4926 if (error != 0) { 4927 device_printf(sc->sc_dev, 4928 "%s: could not update configuration, error %d\n", 4929 __func__, error); 4930 return error; 4931 } 4932 4933 /* Configuration has changed, set TX power accordingly. */ 4934 error = hal->set_txpower(sc, ni->ni_chan, 1); 4935 if (error != 0) { 4936 device_printf(sc->sc_dev, 4937 "%s: could not set Tx power, error %d\n", __func__, error); 4938 return error; 4939 } 4940 4941 /* Add BSS node. */ 4942 memset(&node, 0, sizeof node); 4943 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 4944 node.id = IWN_ID_BSS; 4945 #ifdef notyet 4946 node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | 4947 IWN_AMDPU_DENSITY(5)); /* 2us */ 4948 #endif 4949 DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n", 4950 __func__, node.id, le32toh(node.htflags)); 4951 error = hal->add_node(sc, &node, 1); 4952 if (error != 0) { 4953 device_printf(sc->sc_dev, "could not add BSS node\n"); 4954 return error; 4955 } 4956 DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n", 4957 node.id); 4958 error = iwn_set_link_quality(sc, node.id, 1); 4959 if (error != 0) { 4960 device_printf(sc->sc_dev, 4961 "%s: could not setup MRR for node %d, error %d\n", 4962 __func__, node.id, error); 4963 return error; 4964 } 4965 4966 error = iwn_init_sensitivity(sc); 4967 if (error != 0) { 4968 device_printf(sc->sc_dev, 4969 "%s: could not set sensitivity, error %d\n", 4970 __func__, error); 4971 return error; 4972 } 4973 4974 /* Start periodic calibration timer. */ 4975 sc->calib.state = IWN_CALIB_STATE_ASSOC; 4976 iwn_calib_reset(sc); 4977 4978 /* Link LED always on while associated. */ 4979 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 4980 4981 return 0; 4982 #undef MS 4983 } 4984 4985 #if 0 /* HT */ 4986 /* 4987 * This function is called by upper layer when an ADDBA request is received 4988 * from another STA and before the ADDBA response is sent. 4989 */ 4990 static int 4991 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 4992 uint8_t tid) 4993 { 4994 struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; 4995 struct iwn_softc *sc = ic->ic_softc; 4996 struct iwn_node *wn = (void *)ni; 4997 struct iwn_node_info node; 4998 4999 memset(&node, 0, sizeof node); 5000 node.id = wn->id; 5001 node.control = IWN_NODE_UPDATE; 5002 node.flags = IWN_FLAG_SET_ADDBA; 5003 node.addba_tid = tid; 5004 node.addba_ssn = htole16(ba->ba_winstart); 5005 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 5006 wn->id, tid, ba->ba_winstart)); 5007 return sc->sc_hal->add_node(sc, &node, 1); 5008 } 5009 5010 /* 5011 * This function is called by upper layer on teardown of an HT-immediate 5012 * Block Ack agreement (eg. uppon receipt of a DELBA frame.) 5013 */ 5014 static void 5015 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5016 uint8_t tid) 5017 { 5018 struct iwn_softc *sc = ic->ic_softc; 5019 struct iwn_node *wn = (void *)ni; 5020 struct iwn_node_info node; 5021 5022 memset(&node, 0, sizeof node); 5023 node.id = wn->id; 5024 node.control = IWN_NODE_UPDATE; 5025 node.flags = IWN_FLAG_SET_DELBA; 5026 node.delba_tid = tid; 5027 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 5028 (void)sc->sc_hal->add_node(sc, &node, 1); 5029 } 5030 5031 /* 5032 * This function is called by upper layer when an ADDBA response is received 5033 * from another STA. 5034 */ 5035 static int 5036 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 5037 uint8_t tid) 5038 { 5039 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5040 struct iwn_softc *sc = ic->ic_softc; 5041 const struct iwn_hal *hal = sc->sc_hal; 5042 struct iwn_node *wn = (void *)ni; 5043 struct iwn_node_info node; 5044 int error; 5045 5046 /* Enable TX for the specified RA/TID. */ 5047 wn->disable_tid &= ~(1 << tid); 5048 memset(&node, 0, sizeof node); 5049 node.id = wn->id; 5050 node.control = IWN_NODE_UPDATE; 5051 node.flags = IWN_FLAG_SET_DISABLE_TID; 5052 node.disable_tid = htole16(wn->disable_tid); 5053 error = hal->add_node(sc, &node, 1); 5054 if (error != 0) 5055 return error; 5056 5057 if ((error = iwn_nic_lock(sc)) != 0) 5058 return error; 5059 hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); 5060 iwn_nic_unlock(sc); 5061 return 0; 5062 } 5063 5064 static void 5065 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, 5066 uint8_t tid) 5067 { 5068 struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; 5069 struct iwn_softc *sc = ic->ic_softc; 5070 int error; 5071 5072 error = iwn_nic_lock(sc); 5073 if (error != 0) 5074 return; 5075 sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart); 5076 iwn_nic_unlock(sc); 5077 } 5078 5079 static void 5080 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5081 uint8_t tid, uint16_t ssn) 5082 { 5083 struct iwn_node *wn = (void *)ni; 5084 int qid = 7 + tid; 5085 5086 /* Stop TX scheduler while we're changing its configuration. */ 5087 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5088 IWN4965_TXQ_STATUS_CHGACT); 5089 5090 /* Assign RA/TID translation to the queue. */ 5091 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 5092 wn->id << 4 | tid); 5093 5094 /* Enable chain-building mode for the queue. */ 5095 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 5096 5097 /* Set starting sequence number from the ADDBA request. */ 5098 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5099 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5100 5101 /* Set scheduler window size. */ 5102 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 5103 IWN_SCHED_WINSZ); 5104 /* Set scheduler frame limit. */ 5105 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5106 IWN_SCHED_LIMIT << 16); 5107 5108 /* Enable interrupts for the queue. */ 5109 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5110 5111 /* Mark the queue as active. */ 5112 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5113 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 5114 iwn_tid2fifo[tid] << 1); 5115 } 5116 5117 static void 5118 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5119 { 5120 int qid = 7 + tid; 5121 5122 /* Stop TX scheduler while we're changing its configuration. */ 5123 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5124 IWN4965_TXQ_STATUS_CHGACT); 5125 5126 /* Set starting sequence number from the ADDBA request. */ 5127 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5128 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 5129 5130 /* Disable interrupts for the queue. */ 5131 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 5132 5133 /* Mark the queue as inactive. */ 5134 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5135 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 5136 } 5137 5138 static void 5139 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 5140 uint8_t tid, uint16_t ssn) 5141 { 5142 struct iwn_node *wn = (void *)ni; 5143 int qid = 10 + tid; 5144 5145 /* Stop TX scheduler while we're changing its configuration. */ 5146 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5147 IWN5000_TXQ_STATUS_CHGACT); 5148 5149 /* Assign RA/TID translation to the queue. */ 5150 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 5151 wn->id << 4 | tid); 5152 5153 /* Enable chain-building mode for the queue. */ 5154 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 5155 5156 /* Enable aggregation for the queue. */ 5157 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5158 5159 /* Set starting sequence number from the ADDBA request. */ 5160 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5161 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5162 5163 /* Set scheduler window size and frame limit. */ 5164 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5165 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5166 5167 /* Enable interrupts for the queue. */ 5168 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5169 5170 /* Mark the queue as active. */ 5171 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5172 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 5173 } 5174 5175 static void 5176 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) 5177 { 5178 int qid = 10 + tid; 5179 5180 /* Stop TX scheduler while we're changing its configuration. */ 5181 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5182 IWN5000_TXQ_STATUS_CHGACT); 5183 5184 /* Disable aggregation for the queue. */ 5185 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 5186 5187 /* Set starting sequence number from the ADDBA request. */ 5188 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 5189 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 5190 5191 /* Disable interrupts for the queue. */ 5192 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 5193 5194 /* Mark the queue as inactive. */ 5195 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5196 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 5197 } 5198 #endif 5199 5200 /* 5201 * Query calibration tables from the initialization firmware. We do this 5202 * only once at first boot. Called from a process context. 5203 */ 5204 static int 5205 iwn5000_query_calibration(struct iwn_softc *sc) 5206 { 5207 struct iwn5000_calib_config cmd; 5208 int error; 5209 5210 memset(&cmd, 0, sizeof cmd); 5211 cmd.ucode.once.enable = 0xffffffff; 5212 cmd.ucode.once.start = 0xffffffff; 5213 cmd.ucode.once.send = 0xffffffff; 5214 cmd.ucode.flags = 0xffffffff; 5215 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 5216 __func__); 5217 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 5218 if (error != 0) 5219 return error; 5220 5221 /* Wait at most two seconds for calibration to complete. */ 5222 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 5223 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 2 * hz); 5224 return error; 5225 } 5226 5227 /* 5228 * Send calibration results to the runtime firmware. These results were 5229 * obtained on first boot from the initialization firmware. 5230 */ 5231 static int 5232 iwn5000_send_calibration(struct iwn_softc *sc) 5233 { 5234 int idx, error; 5235 5236 for (idx = 0; idx < 5; idx++) { 5237 if (sc->calibcmd[idx].buf == NULL) 5238 continue; /* No results available. */ 5239 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5240 "send calibration result idx=%d len=%d\n", 5241 idx, sc->calibcmd[idx].len); 5242 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 5243 sc->calibcmd[idx].len, 0); 5244 if (error != 0) { 5245 device_printf(sc->sc_dev, 5246 "%s: could not send calibration result, error %d\n", 5247 __func__, error); 5248 return error; 5249 } 5250 } 5251 return 0; 5252 } 5253 5254 static int 5255 iwn5000_send_wimax_coex(struct iwn_softc *sc) 5256 { 5257 struct iwn5000_wimax_coex wimax; 5258 5259 #ifdef notyet 5260 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 5261 /* Enable WiMAX coexistence for combo adapters. */ 5262 wimax.flags = 5263 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 5264 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 5265 IWN_WIMAX_COEX_STA_TABLE_VALID | 5266 IWN_WIMAX_COEX_ENABLE; 5267 memcpy(wimax.events, iwn6050_wimax_events, 5268 sizeof iwn6050_wimax_events); 5269 } else 5270 #endif 5271 { 5272 /* Disable WiMAX coexistence. */ 5273 wimax.flags = 0; 5274 memset(wimax.events, 0, sizeof wimax.events); 5275 } 5276 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 5277 __func__); 5278 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 5279 } 5280 5281 /* 5282 * This function is called after the runtime firmware notifies us of its 5283 * readiness (called in a process context.) 5284 */ 5285 static int 5286 iwn4965_post_alive(struct iwn_softc *sc) 5287 { 5288 int error, qid; 5289 5290 if ((error = iwn_nic_lock(sc)) != 0) 5291 return error; 5292 5293 /* Clear TX scheduler state in SRAM. */ 5294 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5295 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 5296 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 5297 5298 /* Set physical address of TX scheduler rings (1KB aligned.) */ 5299 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5300 5301 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5302 5303 /* Disable chain mode for all our 16 queues. */ 5304 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 5305 5306 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 5307 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 5308 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5309 5310 /* Set scheduler window size. */ 5311 iwn_mem_write(sc, sc->sched_base + 5312 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 5313 /* Set scheduler frame limit. */ 5314 iwn_mem_write(sc, sc->sched_base + 5315 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 5316 IWN_SCHED_LIMIT << 16); 5317 } 5318 5319 /* Enable interrupts for all our 16 queues. */ 5320 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 5321 /* Identify TX FIFO rings (0-7). */ 5322 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 5323 5324 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5325 for (qid = 0; qid < 7; qid++) { 5326 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 5327 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 5328 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 5329 } 5330 iwn_nic_unlock(sc); 5331 return 0; 5332 } 5333 5334 /* 5335 * This function is called after the initialization or runtime firmware 5336 * notifies us of its readiness (called in a process context.) 5337 */ 5338 static int 5339 iwn5000_post_alive(struct iwn_softc *sc) 5340 { 5341 int error, qid; 5342 5343 /* Switch to using ICT interrupt mode. */ 5344 iwn5000_ict_reset(sc); 5345 5346 error = iwn_nic_lock(sc); 5347 if (error != 0) 5348 return error; 5349 5350 /* Clear TX scheduler state in SRAM. */ 5351 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 5352 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 5353 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 5354 5355 /* Set physical address of TX scheduler rings (1KB aligned.) */ 5356 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 5357 5358 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 5359 5360 /* Enable chain mode for all queues, except command queue. */ 5361 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 5362 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 5363 5364 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 5365 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 5366 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 5367 5368 iwn_mem_write(sc, sc->sched_base + 5369 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 5370 /* Set scheduler window size and frame limit. */ 5371 iwn_mem_write(sc, sc->sched_base + 5372 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 5373 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 5374 } 5375 5376 /* Enable interrupts for all our 20 queues. */ 5377 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 5378 /* Identify TX FIFO rings (0-7). */ 5379 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 5380 5381 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 5382 for (qid = 0; qid < 7; qid++) { 5383 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 5384 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 5385 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 5386 } 5387 iwn_nic_unlock(sc); 5388 5389 /* Configure WiMAX coexistence for combo adapters. */ 5390 error = iwn5000_send_wimax_coex(sc); 5391 if (error != 0) { 5392 device_printf(sc->sc_dev, 5393 "%s: could not configure WiMAX coexistence, error %d\n", 5394 __func__, error); 5395 return error; 5396 } 5397 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 5398 struct iwn5000_phy_calib_crystal cmd; 5399 5400 /* Perform crystal calibration. */ 5401 memset(&cmd, 0, sizeof cmd); 5402 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 5403 cmd.ngroups = 1; 5404 cmd.isvalid = 1; 5405 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 5406 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 5407 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 5408 "sending crystal calibration %d, %d\n", 5409 cmd.cap_pin[0], cmd.cap_pin[1]); 5410 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 5411 if (error != 0) { 5412 device_printf(sc->sc_dev, 5413 "%s: crystal calibration failed, error %d\n", 5414 __func__, error); 5415 return error; 5416 } 5417 } 5418 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 5419 /* Query calibration from the initialization firmware. */ 5420 error = iwn5000_query_calibration(sc); 5421 if (error != 0) { 5422 device_printf(sc->sc_dev, 5423 "%s: could not query calibration, error %d\n", 5424 __func__, error); 5425 return error; 5426 } 5427 /* 5428 * We have the calibration results now, reboot with the 5429 * runtime firmware (call ourselves recursively!) 5430 */ 5431 iwn_hw_stop(sc); 5432 error = iwn_hw_init(sc); 5433 } else { 5434 /* Send calibration results to runtime firmware. */ 5435 error = iwn5000_send_calibration(sc); 5436 } 5437 return error; 5438 } 5439 5440 /* 5441 * The firmware boot code is small and is intended to be copied directly into 5442 * the NIC internal memory (no DMA transfer.) 5443 */ 5444 static int 5445 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 5446 { 5447 int error, ntries; 5448 5449 size /= sizeof (uint32_t); 5450 5451 error = iwn_nic_lock(sc); 5452 if (error != 0) 5453 return error; 5454 5455 /* Copy microcode image into NIC memory. */ 5456 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 5457 (const uint32_t *)ucode, size); 5458 5459 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 5460 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 5461 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 5462 5463 /* Start boot load now. */ 5464 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 5465 5466 /* Wait for transfer to complete. */ 5467 for (ntries = 0; ntries < 1000; ntries++) { 5468 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 5469 IWN_BSM_WR_CTRL_START)) 5470 break; 5471 DELAY(10); 5472 } 5473 if (ntries == 1000) { 5474 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 5475 __func__); 5476 iwn_nic_unlock(sc); 5477 return ETIMEDOUT; 5478 } 5479 5480 /* Enable boot after power up. */ 5481 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 5482 5483 iwn_nic_unlock(sc); 5484 return 0; 5485 } 5486 5487 static int 5488 iwn4965_load_firmware(struct iwn_softc *sc) 5489 { 5490 struct iwn_fw_info *fw = &sc->fw; 5491 struct iwn_dma_info *dma = &sc->fw_dma; 5492 int error; 5493 5494 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 5495 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 5496 bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE); 5497 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5498 fw->init.text, fw->init.textsz); 5499 bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE); 5500 5501 /* Tell adapter where to find initialization sections. */ 5502 error = iwn_nic_lock(sc); 5503 if (error != 0) 5504 return error; 5505 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5506 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 5507 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5508 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5509 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 5510 iwn_nic_unlock(sc); 5511 5512 /* Load firmware boot code. */ 5513 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 5514 if (error != 0) { 5515 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 5516 __func__); 5517 return error; 5518 } 5519 /* Now press "execute". */ 5520 IWN_WRITE(sc, IWN_RESET, 0); 5521 5522 /* Wait at most one second for first alive notification. */ 5523 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz); 5524 if (error) { 5525 device_printf(sc->sc_dev, 5526 "%s: timeout waiting for adapter to initialize, error %d\n", 5527 __func__, error); 5528 return error; 5529 } 5530 5531 /* Retrieve current temperature for initial TX power calibration. */ 5532 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 5533 sc->temp = iwn4965_get_temperature(sc); 5534 5535 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 5536 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 5537 bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE); 5538 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 5539 fw->main.text, fw->main.textsz); 5540 bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE); 5541 5542 /* Tell adapter where to find runtime sections. */ 5543 error = iwn_nic_lock(sc); 5544 if (error != 0) 5545 return error; 5546 5547 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 5548 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 5549 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 5550 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 5551 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 5552 IWN_FW_UPDATED | fw->main.textsz); 5553 iwn_nic_unlock(sc); 5554 5555 return 0; 5556 } 5557 5558 static int 5559 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 5560 const uint8_t *section, int size) 5561 { 5562 struct iwn_dma_info *dma = &sc->fw_dma; 5563 int error; 5564 5565 /* Copy firmware section into pre-allocated DMA-safe memory. */ 5566 memcpy(dma->vaddr, section, size); 5567 bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE); 5568 5569 error = iwn_nic_lock(sc); 5570 if (error != 0) 5571 return error; 5572 5573 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5574 IWN_FH_TX_CONFIG_DMA_PAUSE); 5575 5576 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 5577 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 5578 IWN_LOADDR(dma->paddr)); 5579 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 5580 IWN_HIADDR(dma->paddr) << 28 | size); 5581 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 5582 IWN_FH_TXBUF_STATUS_TBNUM(1) | 5583 IWN_FH_TXBUF_STATUS_TBIDX(1) | 5584 IWN_FH_TXBUF_STATUS_TFBD_VALID); 5585 5586 /* Kick Flow Handler to start DMA transfer. */ 5587 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 5588 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 5589 5590 iwn_nic_unlock(sc); 5591 5592 /* Wait at most five seconds for FH DMA transfer to complete. */ 5593 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz); 5594 } 5595 5596 static int 5597 iwn5000_load_firmware(struct iwn_softc *sc) 5598 { 5599 struct iwn_fw_part *fw; 5600 int error; 5601 5602 /* Load the initialization firmware on first boot only. */ 5603 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 5604 &sc->fw.main : &sc->fw.init; 5605 5606 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 5607 fw->text, fw->textsz); 5608 if (error != 0) { 5609 device_printf(sc->sc_dev, 5610 "%s: could not load firmware %s section, error %d\n", 5611 __func__, ".text", error); 5612 return error; 5613 } 5614 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 5615 fw->data, fw->datasz); 5616 if (error != 0) { 5617 device_printf(sc->sc_dev, 5618 "%s: could not load firmware %s section, error %d\n", 5619 __func__, ".data", error); 5620 return error; 5621 } 5622 5623 /* Now press "execute". */ 5624 IWN_WRITE(sc, IWN_RESET, 0); 5625 return 0; 5626 } 5627 5628 static int 5629 iwn_read_firmware(struct iwn_softc *sc) 5630 { 5631 const struct iwn_hal *hal = sc->sc_hal; 5632 struct iwn_fw_info *fw = &sc->fw; 5633 const uint32_t *ptr; 5634 uint32_t rev; 5635 size_t size; 5636 5637 IWN_UNLOCK(sc); 5638 5639 /* Read firmware image from filesystem. */ 5640 sc->fw_fp = firmware_get(sc->fwname); 5641 if (sc->fw_fp == NULL) { 5642 device_printf(sc->sc_dev, 5643 "%s: could not load firmare image \"%s\"\n", __func__, 5644 sc->fwname); 5645 IWN_LOCK(sc); 5646 return EINVAL; 5647 } 5648 IWN_LOCK(sc); 5649 5650 size = sc->fw_fp->datasize; 5651 if (size < 28) { 5652 device_printf(sc->sc_dev, 5653 "%s: truncated firmware header: %zu bytes\n", 5654 __func__, size); 5655 return EINVAL; 5656 } 5657 5658 /* Process firmware header. */ 5659 ptr = (const uint32_t *)sc->fw_fp->data; 5660 rev = le32toh(*ptr++); 5661 /* Check firmware API version. */ 5662 if (IWN_FW_API(rev) <= 1) { 5663 device_printf(sc->sc_dev, 5664 "%s: bad firmware, need API version >=2\n", __func__); 5665 return EINVAL; 5666 } 5667 if (IWN_FW_API(rev) >= 3) { 5668 /* Skip build number (version 2 header). */ 5669 size -= 4; 5670 ptr++; 5671 } 5672 fw->main.textsz = le32toh(*ptr++); 5673 fw->main.datasz = le32toh(*ptr++); 5674 fw->init.textsz = le32toh(*ptr++); 5675 fw->init.datasz = le32toh(*ptr++); 5676 fw->boot.textsz = le32toh(*ptr++); 5677 size -= 24; 5678 5679 /* Sanity-check firmware header. */ 5680 if (fw->main.textsz > hal->fw_text_maxsz || 5681 fw->main.datasz > hal->fw_data_maxsz || 5682 fw->init.textsz > hal->fw_text_maxsz || 5683 fw->init.datasz > hal->fw_data_maxsz || 5684 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 5685 (fw->boot.textsz & 3) != 0) { 5686 device_printf(sc->sc_dev, "%s: invalid firmware header\n", 5687 __func__); 5688 return EINVAL; 5689 } 5690 5691 /* Check that all firmware sections fit. */ 5692 if (fw->main.textsz + fw->main.datasz + fw->init.textsz + 5693 fw->init.datasz + fw->boot.textsz > size) { 5694 device_printf(sc->sc_dev, 5695 "%s: firmware file too short: %zu bytes\n", 5696 __func__, size); 5697 return EINVAL; 5698 } 5699 5700 /* Get pointers to firmware sections. */ 5701 fw->main.text = (const uint8_t *)ptr; 5702 fw->main.data = fw->main.text + fw->main.textsz; 5703 fw->init.text = fw->main.data + fw->main.datasz; 5704 fw->init.data = fw->init.text + fw->init.textsz; 5705 fw->boot.text = fw->init.data + fw->init.datasz; 5706 5707 return 0; 5708 } 5709 5710 static int 5711 iwn_clock_wait(struct iwn_softc *sc) 5712 { 5713 int ntries; 5714 5715 /* Set "initialization complete" bit. */ 5716 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5717 5718 /* Wait for clock stabilization. */ 5719 for (ntries = 0; ntries < 2500; ntries++) { 5720 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 5721 return 0; 5722 DELAY(10); 5723 } 5724 device_printf(sc->sc_dev, 5725 "%s: timeout waiting for clock stabilization\n", __func__); 5726 return ETIMEDOUT; 5727 } 5728 5729 static int 5730 iwn_apm_init(struct iwn_softc *sc) 5731 { 5732 uint32_t tmp; 5733 int error; 5734 5735 /* Disable L0s exit timer (NMI bug workaround.) */ 5736 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 5737 /* Don't wait for ICH L0s (ICH bug workaround.) */ 5738 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 5739 5740 /* Set FH wait threshold to max (HW bug under stress workaround.) */ 5741 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 5742 5743 /* Enable HAP INTA to move adapter from L1a to L0s. */ 5744 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 5745 5746 /* Retrieve PCIe Active State Power Management (ASPM). */ 5747 tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1); 5748 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 5749 if (tmp & 0x02) /* L1 Entry enabled. */ 5750 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5751 else 5752 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 5753 5754 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 5755 sc->hw_type != IWN_HW_REV_TYPE_6000 && 5756 sc->hw_type != IWN_HW_REV_TYPE_6050) 5757 IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); 5758 5759 /* Wait for clock stabilization before accessing prph. */ 5760 error = iwn_clock_wait(sc); 5761 if (error != 0) 5762 return error; 5763 5764 error = iwn_nic_lock(sc); 5765 if (error != 0) 5766 return error; 5767 5768 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 5769 /* Enable DMA and BSM (Bootstrap State Machine.) */ 5770 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5771 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 5772 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 5773 } else { 5774 /* Enable DMA. */ 5775 iwn_prph_write(sc, IWN_APMG_CLK_EN, 5776 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 5777 } 5778 DELAY(20); 5779 5780 /* Disable L1-Active. */ 5781 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 5782 iwn_nic_unlock(sc); 5783 5784 return 0; 5785 } 5786 5787 static void 5788 iwn_apm_stop_master(struct iwn_softc *sc) 5789 { 5790 int ntries; 5791 5792 /* Stop busmaster DMA activity. */ 5793 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 5794 for (ntries = 0; ntries < 100; ntries++) { 5795 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 5796 return; 5797 DELAY(10); 5798 } 5799 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", 5800 __func__); 5801 } 5802 5803 static void 5804 iwn_apm_stop(struct iwn_softc *sc) 5805 { 5806 iwn_apm_stop_master(sc); 5807 5808 /* Reset the entire device. */ 5809 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 5810 DELAY(10); 5811 /* Clear "initialization complete" bit. */ 5812 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 5813 } 5814 5815 static int 5816 iwn4965_nic_config(struct iwn_softc *sc) 5817 { 5818 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 5819 /* 5820 * I don't believe this to be correct but this is what the 5821 * vendor driver is doing. Probably the bits should not be 5822 * shifted in IWN_RFCFG_*. 5823 */ 5824 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5825 IWN_RFCFG_TYPE(sc->rfcfg) | 5826 IWN_RFCFG_STEP(sc->rfcfg) | 5827 IWN_RFCFG_DASH(sc->rfcfg)); 5828 } 5829 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5830 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5831 return 0; 5832 } 5833 5834 static int 5835 iwn5000_nic_config(struct iwn_softc *sc) 5836 { 5837 uint32_t tmp; 5838 int error; 5839 5840 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 5841 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5842 IWN_RFCFG_TYPE(sc->rfcfg) | 5843 IWN_RFCFG_STEP(sc->rfcfg) | 5844 IWN_RFCFG_DASH(sc->rfcfg)); 5845 } 5846 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 5847 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 5848 5849 error = iwn_nic_lock(sc); 5850 if (error != 0) 5851 return error; 5852 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 5853 5854 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 5855 /* 5856 * Select first Switching Voltage Regulator (1.32V) to 5857 * solve a stability issue related to noisy DC2DC line 5858 * in the silicon of 1000 Series. 5859 */ 5860 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 5861 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 5862 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 5863 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 5864 } 5865 iwn_nic_unlock(sc); 5866 5867 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 5868 /* Use internal power amplifier only. */ 5869 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 5870 } 5871 if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) { 5872 /* Indicate that ROM calibration version is >=6. */ 5873 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 5874 } 5875 return 0; 5876 } 5877 5878 /* 5879 * Take NIC ownership over Intel Active Management Technology (AMT). 5880 */ 5881 static int 5882 iwn_hw_prepare(struct iwn_softc *sc) 5883 { 5884 int ntries; 5885 5886 /* Check if hardware is ready. */ 5887 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5888 for (ntries = 0; ntries < 5; ntries++) { 5889 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5890 IWN_HW_IF_CONFIG_NIC_READY) 5891 return 0; 5892 DELAY(10); 5893 } 5894 5895 /* Hardware not ready, force into ready state. */ 5896 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 5897 for (ntries = 0; ntries < 15000; ntries++) { 5898 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 5899 IWN_HW_IF_CONFIG_PREPARE_DONE)) 5900 break; 5901 DELAY(10); 5902 } 5903 if (ntries == 15000) 5904 return ETIMEDOUT; 5905 5906 /* Hardware should be ready now. */ 5907 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 5908 for (ntries = 0; ntries < 5; ntries++) { 5909 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 5910 IWN_HW_IF_CONFIG_NIC_READY) 5911 return 0; 5912 DELAY(10); 5913 } 5914 return ETIMEDOUT; 5915 } 5916 5917 static int 5918 iwn_hw_init(struct iwn_softc *sc) 5919 { 5920 const struct iwn_hal *hal = sc->sc_hal; 5921 int error, chnl, qid; 5922 5923 /* Clear pending interrupts. */ 5924 IWN_WRITE(sc, IWN_INT, 0xffffffff); 5925 5926 error = iwn_apm_init(sc); 5927 if (error != 0) { 5928 device_printf(sc->sc_dev, 5929 "%s: could not power ON adapter, error %d\n", 5930 __func__, error); 5931 return error; 5932 } 5933 5934 /* Select VMAIN power source. */ 5935 error = iwn_nic_lock(sc); 5936 if (error != 0) 5937 return error; 5938 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 5939 iwn_nic_unlock(sc); 5940 5941 /* Perform adapter-specific initialization. */ 5942 error = hal->nic_config(sc); 5943 if (error != 0) 5944 return error; 5945 5946 /* Initialize RX ring. */ 5947 error = iwn_nic_lock(sc); 5948 if (error != 0) 5949 return error; 5950 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 5951 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 5952 /* Set physical address of RX ring (256-byte aligned.) */ 5953 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 5954 /* Set physical address of RX status (16-byte aligned.) */ 5955 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 5956 /* Enable RX. */ 5957 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 5958 IWN_FH_RX_CONFIG_ENA | 5959 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 5960 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 5961 IWN_FH_RX_CONFIG_SINGLE_FRAME | 5962 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 5963 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 5964 iwn_nic_unlock(sc); 5965 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 5966 5967 error = iwn_nic_lock(sc); 5968 if (error != 0) 5969 return error; 5970 5971 /* Initialize TX scheduler. */ 5972 iwn_prph_write(sc, hal->sched_txfact_addr, 0); 5973 5974 /* Set physical address of "keep warm" page (16-byte aligned.) */ 5975 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 5976 5977 /* Initialize TX rings. */ 5978 for (qid = 0; qid < hal->ntxqs; qid++) { 5979 struct iwn_tx_ring *txq = &sc->txq[qid]; 5980 5981 /* Set physical address of TX ring (256-byte aligned.) */ 5982 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 5983 txq->desc_dma.paddr >> 8); 5984 } 5985 iwn_nic_unlock(sc); 5986 5987 /* Enable DMA channels. */ 5988 for (chnl = 0; chnl < hal->ndmachnls; chnl++) { 5989 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 5990 IWN_FH_TX_CONFIG_DMA_ENA | 5991 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 5992 } 5993 5994 /* Clear "radio off" and "commands blocked" bits. */ 5995 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 5996 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 5997 5998 /* Clear pending interrupts. */ 5999 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6000 /* Enable interrupt coalescing. */ 6001 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 6002 /* Enable interrupts. */ 6003 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6004 6005 /* _Really_ make sure "radio off" bit is cleared! */ 6006 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6007 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 6008 6009 error = hal->load_firmware(sc); 6010 if (error != 0) { 6011 device_printf(sc->sc_dev, 6012 "%s: could not load firmware, error %d\n", 6013 __func__, error); 6014 return error; 6015 } 6016 /* Wait at most one second for firmware alive notification. */ 6017 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz); 6018 if (error != 0) { 6019 device_printf(sc->sc_dev, 6020 "%s: timeout waiting for adapter to initialize, error %d\n", 6021 __func__, error); 6022 return error; 6023 } 6024 /* Do post-firmware initialization. */ 6025 return hal->post_alive(sc); 6026 } 6027 6028 static void 6029 iwn_hw_stop(struct iwn_softc *sc) 6030 { 6031 const struct iwn_hal *hal = sc->sc_hal; 6032 uint32_t tmp; 6033 int chnl, qid, ntries; 6034 6035 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 6036 6037 /* Disable interrupts. */ 6038 IWN_WRITE(sc, IWN_INT_MASK, 0); 6039 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6040 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 6041 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6042 6043 /* Make sure we no longer hold the NIC lock. */ 6044 iwn_nic_unlock(sc); 6045 6046 /* Stop TX scheduler. */ 6047 iwn_prph_write(sc, hal->sched_txfact_addr, 0); 6048 6049 /* Stop all DMA channels. */ 6050 if (iwn_nic_lock(sc) == 0) { 6051 for (chnl = 0; chnl < hal->ndmachnls; chnl++) { 6052 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 6053 for (ntries = 0; ntries < 200; ntries++) { 6054 tmp = IWN_READ(sc, IWN_FH_TX_STATUS); 6055 if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) == 6056 IWN_FH_TX_STATUS_IDLE(chnl)) 6057 break; 6058 DELAY(10); 6059 } 6060 } 6061 iwn_nic_unlock(sc); 6062 } 6063 6064 /* Stop RX ring. */ 6065 iwn_reset_rx_ring(sc, &sc->rxq); 6066 6067 /* Reset all TX rings. */ 6068 for (qid = 0; qid < hal->ntxqs; qid++) 6069 iwn_reset_tx_ring(sc, &sc->txq[qid]); 6070 6071 if (iwn_nic_lock(sc) == 0) { 6072 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 6073 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 6074 iwn_nic_unlock(sc); 6075 } 6076 DELAY(5); 6077 6078 /* Power OFF adapter. */ 6079 iwn_apm_stop(sc); 6080 } 6081 6082 static void 6083 iwn_init_locked(struct iwn_softc *sc) 6084 { 6085 struct ifnet *ifp = sc->sc_ifp; 6086 int error; 6087 6088 IWN_LOCK_ASSERT(sc); 6089 6090 error = iwn_hw_prepare(sc); 6091 if (error != 0) { 6092 device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n", 6093 __func__, error); 6094 goto fail; 6095 } 6096 6097 /* Initialize interrupt mask to default value. */ 6098 sc->int_mask = IWN_INT_MASK_DEF; 6099 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 6100 6101 /* Check that the radio is not disabled by hardware switch. */ 6102 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 6103 device_printf(sc->sc_dev, 6104 "radio is disabled by hardware switch\n"); 6105 6106 /* Enable interrupts to get RF toggle notifications. */ 6107 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6108 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6109 return; 6110 } 6111 6112 /* Read firmware images from the filesystem. */ 6113 error = iwn_read_firmware(sc); 6114 if (error != 0) { 6115 device_printf(sc->sc_dev, 6116 "%s: could not read firmware, error %d\n", 6117 __func__, error); 6118 goto fail; 6119 } 6120 6121 /* Initialize hardware and upload firmware. */ 6122 error = iwn_hw_init(sc); 6123 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 6124 sc->fw_fp = NULL; 6125 if (error != 0) { 6126 device_printf(sc->sc_dev, 6127 "%s: could not initialize hardware, error %d\n", 6128 __func__, error); 6129 goto fail; 6130 } 6131 6132 /* Configure adapter now that it is ready. */ 6133 error = iwn_config(sc); 6134 if (error != 0) { 6135 device_printf(sc->sc_dev, 6136 "%s: could not configure device, error %d\n", 6137 __func__, error); 6138 goto fail; 6139 } 6140 6141 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 6142 ifp->if_drv_flags |= IFF_DRV_RUNNING; 6143 6144 return; 6145 6146 fail: 6147 iwn_stop_locked(sc); 6148 } 6149 6150 static void 6151 iwn_init(void *arg) 6152 { 6153 struct iwn_softc *sc = arg; 6154 struct ifnet *ifp = sc->sc_ifp; 6155 struct ieee80211com *ic = ifp->if_l2com; 6156 6157 IWN_LOCK(sc); 6158 iwn_init_locked(sc); 6159 IWN_UNLOCK(sc); 6160 6161 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6162 ieee80211_start_all(ic); 6163 } 6164 6165 static void 6166 iwn_stop_locked(struct iwn_softc *sc) 6167 { 6168 struct ifnet *ifp = sc->sc_ifp; 6169 6170 IWN_LOCK_ASSERT(sc); 6171 6172 sc->sc_tx_timer = 0; 6173 callout_stop(&sc->sc_timer_to); 6174 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 6175 6176 /* Power OFF hardware. */ 6177 iwn_hw_stop(sc); 6178 } 6179 6180 static void 6181 iwn_stop(struct iwn_softc *sc) 6182 { 6183 IWN_LOCK(sc); 6184 iwn_stop_locked(sc); 6185 IWN_UNLOCK(sc); 6186 } 6187 6188 /* 6189 * Callback from net80211 to start a scan. 6190 */ 6191 static void 6192 iwn_scan_start(struct ieee80211com *ic) 6193 { 6194 struct ifnet *ifp = ic->ic_ifp; 6195 struct iwn_softc *sc = ifp->if_softc; 6196 6197 IWN_LOCK(sc); 6198 /* make the link LED blink while we're scanning */ 6199 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 6200 IWN_UNLOCK(sc); 6201 } 6202 6203 /* 6204 * Callback from net80211 to terminate a scan. 6205 */ 6206 static void 6207 iwn_scan_end(struct ieee80211com *ic) 6208 { 6209 struct ifnet *ifp = ic->ic_ifp; 6210 struct iwn_softc *sc = ifp->if_softc; 6211 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6212 6213 IWN_LOCK(sc); 6214 if (vap->iv_state == IEEE80211_S_RUN) { 6215 /* Set link LED to ON status if we are associated */ 6216 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 6217 } 6218 IWN_UNLOCK(sc); 6219 } 6220 6221 /* 6222 * Callback from net80211 to force a channel change. 6223 */ 6224 static void 6225 iwn_set_channel(struct ieee80211com *ic) 6226 { 6227 const struct ieee80211_channel *c = ic->ic_curchan; 6228 struct ifnet *ifp = ic->ic_ifp; 6229 struct iwn_softc *sc = ifp->if_softc; 6230 6231 IWN_LOCK(sc); 6232 sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq); 6233 sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags); 6234 sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq); 6235 sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags); 6236 IWN_UNLOCK(sc); 6237 } 6238 6239 /* 6240 * Callback from net80211 to start scanning of the current channel. 6241 */ 6242 static void 6243 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 6244 { 6245 struct ieee80211vap *vap = ss->ss_vap; 6246 struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc; 6247 int error; 6248 6249 IWN_LOCK(sc); 6250 error = iwn_scan(sc); 6251 IWN_UNLOCK(sc); 6252 if (error != 0) 6253 ieee80211_cancel_scan(vap); 6254 } 6255 6256 /* 6257 * Callback from net80211 to handle the minimum dwell time being met. 6258 * The intent is to terminate the scan but we just let the firmware 6259 * notify us when it's finished as we have no safe way to abort it. 6260 */ 6261 static void 6262 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 6263 { 6264 /* NB: don't try to abort scan; wait for firmware to finish */ 6265 } 6266 6267 static struct iwn_eeprom_chan * 6268 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 6269 { 6270 int i, j; 6271 6272 for (j = 0; j < 7; j++) { 6273 for (i = 0; i < iwn_bands[j].nchan; i++) { 6274 if (iwn_bands[j].chan[i] == c->ic_ieee) 6275 return &sc->eeprom_channels[j][i]; 6276 } 6277 } 6278 6279 return NULL; 6280 } 6281 6282 /* 6283 * Enforce flags read from EEPROM. 6284 */ 6285 static int 6286 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 6287 int nchan, struct ieee80211_channel chans[]) 6288 { 6289 struct iwn_softc *sc = ic->ic_ifp->if_softc; 6290 int i; 6291 6292 for (i = 0; i < nchan; i++) { 6293 struct ieee80211_channel *c = &chans[i]; 6294 struct iwn_eeprom_chan *channel; 6295 6296 channel = iwn_find_eeprom_channel(sc, c); 6297 if (channel == NULL) { 6298 if_printf(ic->ic_ifp, 6299 "%s: invalid channel %u freq %u/0x%x\n", 6300 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 6301 return EINVAL; 6302 } 6303 c->ic_flags |= iwn_eeprom_channel_flags(channel); 6304 } 6305 6306 return 0; 6307 } 6308 6309 static void 6310 iwn_hw_reset(void *arg0, int pending) 6311 { 6312 struct iwn_softc *sc = arg0; 6313 struct ifnet *ifp = sc->sc_ifp; 6314 struct ieee80211com *ic = ifp->if_l2com; 6315 6316 iwn_stop(sc); 6317 iwn_init(sc); 6318 ieee80211_notify_radio(ic, 1); 6319 } 6320 6321 static void 6322 iwn_radio_on(void *arg0, int pending) 6323 { 6324 struct iwn_softc *sc = arg0; 6325 struct ifnet *ifp = sc->sc_ifp; 6326 struct ieee80211com *ic = ifp->if_l2com; 6327 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6328 6329 if (vap != NULL) { 6330 iwn_init(sc); 6331 ieee80211_init(vap); 6332 } 6333 } 6334 6335 static void 6336 iwn_radio_off(void *arg0, int pending) 6337 { 6338 struct iwn_softc *sc = arg0; 6339 struct ifnet *ifp = sc->sc_ifp; 6340 struct ieee80211com *ic = ifp->if_l2com; 6341 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6342 6343 iwn_stop(sc); 6344 if (vap != NULL) 6345 ieee80211_stop(vap); 6346 6347 /* Enable interrupts to get RF toggle notification. */ 6348 IWN_LOCK(sc); 6349 IWN_WRITE(sc, IWN_INT, 0xffffffff); 6350 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 6351 IWN_UNLOCK(sc); 6352 } 6353 6354 static void 6355 iwn_sysctlattach(struct iwn_softc *sc) 6356 { 6357 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 6358 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 6359 6360 #ifdef IWN_DEBUG 6361 sc->sc_debug = 0; 6362 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 6363 "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs"); 6364 #endif 6365 } 6366 6367 static int 6368 iwn_shutdown(device_t dev) 6369 { 6370 struct iwn_softc *sc = device_get_softc(dev); 6371 6372 iwn_stop(sc); 6373 return 0; 6374 } 6375 6376 static int 6377 iwn_suspend(device_t dev) 6378 { 6379 struct iwn_softc *sc = device_get_softc(dev); 6380 struct ifnet *ifp = sc->sc_ifp; 6381 struct ieee80211com *ic = ifp->if_l2com; 6382 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6383 6384 iwn_stop(sc); 6385 if (vap != NULL) 6386 ieee80211_stop(vap); 6387 return 0; 6388 } 6389 6390 static int 6391 iwn_resume(device_t dev) 6392 { 6393 struct iwn_softc *sc = device_get_softc(dev); 6394 struct ifnet *ifp = sc->sc_ifp; 6395 struct ieee80211com *ic = ifp->if_l2com; 6396 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6397 6398 /* Clear device-specific "PCI retry timeout" register (41h). */ 6399 pci_write_config(dev, 0x41, 0, 1); 6400 6401 if (ifp->if_flags & IFF_UP) { 6402 iwn_init(sc); 6403 if (vap != NULL) 6404 ieee80211_init(vap); 6405 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 6406 iwn_start(ifp); 6407 } 6408 return 0; 6409 } 6410 6411 #ifdef IWN_DEBUG 6412 static const char * 6413 iwn_intr_str(uint8_t cmd) 6414 { 6415 switch (cmd) { 6416 /* Notifications */ 6417 case IWN_UC_READY: return "UC_READY"; 6418 case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE"; 6419 case IWN_TX_DONE: return "TX_DONE"; 6420 case IWN_START_SCAN: return "START_SCAN"; 6421 case IWN_STOP_SCAN: return "STOP_SCAN"; 6422 case IWN_RX_STATISTICS: return "RX_STATS"; 6423 case IWN_BEACON_STATISTICS: return "BEACON_STATS"; 6424 case IWN_STATE_CHANGED: return "STATE_CHANGED"; 6425 case IWN_BEACON_MISSED: return "BEACON_MISSED"; 6426 case IWN_RX_PHY: return "RX_PHY"; 6427 case IWN_MPDU_RX_DONE: return "MPDU_RX_DONE"; 6428 case IWN_RX_DONE: return "RX_DONE"; 6429 6430 /* Command Notifications */ 6431 case IWN_CMD_RXON: return "IWN_CMD_RXON"; 6432 case IWN_CMD_RXON_ASSOC: return "IWN_CMD_RXON_ASSOC"; 6433 case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS"; 6434 case IWN_CMD_TIMING: return "IWN_CMD_TIMING"; 6435 case IWN_CMD_LINK_QUALITY: return "IWN_CMD_LINK_QUALITY"; 6436 case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED"; 6437 case IWN5000_CMD_WIMAX_COEX: return "IWN5000_CMD_WIMAX_COEX"; 6438 case IWN5000_CMD_CALIB_CONFIG: return "IWN5000_CMD_CALIB_CONFIG"; 6439 case IWN5000_CMD_CALIB_RESULT: return "IWN5000_CMD_CALIB_RESULT"; 6440 case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE"; 6441 case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE"; 6442 case IWN_CMD_SCAN: return "IWN_CMD_SCAN"; 6443 case IWN_CMD_SCAN_RESULTS: return "IWN_CMD_SCAN_RESULTS"; 6444 case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER"; 6445 case IWN_CMD_TXPOWER_DBM: return "IWN_CMD_TXPOWER_DBM"; 6446 case IWN5000_CMD_TX_ANT_CONFIG: return "IWN5000_CMD_TX_ANT_CONFIG"; 6447 case IWN_CMD_BT_COEX: return "IWN_CMD_BT_COEX"; 6448 case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP"; 6449 case IWN_CMD_SET_SENSITIVITY: return "IWN_CMD_SET_SENSITIVITY"; 6450 case IWN_CMD_PHY_CALIB: return "IWN_CMD_PHY_CALIB"; 6451 } 6452 return "UNKNOWN INTR NOTIF/CMD"; 6453 } 6454 #endif /* IWN_DEBUG */ 6455 6456 static device_method_t iwn_methods[] = { 6457 /* Device interface */ 6458 DEVMETHOD(device_probe, iwn_probe), 6459 DEVMETHOD(device_attach, iwn_attach), 6460 DEVMETHOD(device_detach, iwn_detach), 6461 DEVMETHOD(device_shutdown, iwn_shutdown), 6462 DEVMETHOD(device_suspend, iwn_suspend), 6463 DEVMETHOD(device_resume, iwn_resume), 6464 { 0, 0 } 6465 }; 6466 6467 static driver_t iwn_driver = { 6468 "iwn", 6469 iwn_methods, 6470 sizeof (struct iwn_softc) 6471 }; 6472 static devclass_t iwn_devclass; 6473 6474 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0); 6475 MODULE_DEPEND(iwn, pci, 1, 1, 1); 6476 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 6477 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 6478