xref: /freebsd/sys/dev/iwn/if_iwn.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 static int	iwn_probe(device_t);
76 static int	iwn_attach(device_t);
77 static const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
78 static void	iwn_radiotap_attach(struct iwn_softc *);
79 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
80 		    const char name[IFNAMSIZ], int unit, int opmode,
81 		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
82 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
83 static void	iwn_vap_delete(struct ieee80211vap *);
84 static int	iwn_cleanup(device_t);
85 static int	iwn_detach(device_t);
86 static int	iwn_nic_lock(struct iwn_softc *);
87 static int	iwn_eeprom_lock(struct iwn_softc *);
88 static int	iwn_init_otprom(struct iwn_softc *);
89 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
90 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
91 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
92 		    void **, bus_size_t, bus_size_t, int);
93 static void	iwn_dma_contig_free(struct iwn_dma_info *);
94 static int	iwn_alloc_sched(struct iwn_softc *);
95 static void	iwn_free_sched(struct iwn_softc *);
96 static int	iwn_alloc_kw(struct iwn_softc *);
97 static void	iwn_free_kw(struct iwn_softc *);
98 static int	iwn_alloc_ict(struct iwn_softc *);
99 static void	iwn_free_ict(struct iwn_softc *);
100 static int	iwn_alloc_fwmem(struct iwn_softc *);
101 static void	iwn_free_fwmem(struct iwn_softc *);
102 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
103 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
104 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
105 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
106 		    int);
107 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
108 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
109 static void	iwn5000_ict_reset(struct iwn_softc *);
110 static int	iwn_read_eeprom(struct iwn_softc *,
111 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
112 static void	iwn4965_read_eeprom(struct iwn_softc *);
113 static void	iwn4965_print_power_group(struct iwn_softc *, int);
114 static void	iwn5000_read_eeprom(struct iwn_softc *);
115 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
116 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
117 #if 0	/* HT */
118 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
119 #endif
120 static void	iwn_read_eeprom_channels(struct iwn_softc *, int,
121 		    uint32_t);
122 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
123 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
124 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125 static void	iwn_newassoc(struct ieee80211_node *, int);
126 static int	iwn_media_change(struct ifnet *);
127 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
128 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
129 		    struct iwn_rx_data *);
130 static void	iwn_timer_timeout(void *);
131 static void	iwn_calib_reset(struct iwn_softc *);
132 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
133 		    struct iwn_rx_data *);
134 #if 0	/* HT */
135 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
136 		    struct iwn_rx_data *);
137 #endif
138 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
139 		    struct iwn_rx_data *);
140 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
141 		    struct iwn_rx_data *);
142 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
143 		    struct iwn_rx_data *);
144 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
145 		    uint8_t);
146 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
147 static void	iwn_notif_intr(struct iwn_softc *);
148 static void	iwn_wakeup_intr(struct iwn_softc *);
149 static void	iwn_rftoggle_intr(struct iwn_softc *);
150 static void	iwn_fatal_intr(struct iwn_softc *);
151 static void	iwn_intr(void *);
152 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
153 		    uint16_t);
154 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
155 		    uint16_t);
156 #ifdef notyet
157 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
158 #endif
159 static uint8_t	iwn_plcp_signal(int);
160 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
161 		    struct ieee80211_node *, struct iwn_tx_ring *);
162 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
163 		    const struct ieee80211_bpf_params *);
164 static void	iwn_start(struct ifnet *);
165 static void	iwn_start_locked(struct ifnet *);
166 static void	iwn_watchdog(struct iwn_softc *sc);
167 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
168 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
169 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
170 		    int);
171 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
172 		    int);
173 static int	iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
174 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
175 static int	iwn_wme_update(struct ieee80211com *);
176 static void	iwn_update_mcast(struct ifnet *);
177 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
178 static int	iwn_set_critical_temp(struct iwn_softc *);
179 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
180 static void	iwn4965_power_calibration(struct iwn_softc *, int);
181 static int	iwn4965_set_txpower(struct iwn_softc *,
182 		    struct ieee80211_channel *, int);
183 static int	iwn5000_set_txpower(struct iwn_softc *,
184 		    struct ieee80211_channel *, int);
185 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
186 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
187 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
188 static int	iwn4965_get_temperature(struct iwn_softc *);
189 static int	iwn5000_get_temperature(struct iwn_softc *);
190 static int	iwn_init_sensitivity(struct iwn_softc *);
191 static void	iwn_collect_noise(struct iwn_softc *,
192 		    const struct iwn_rx_general_stats *);
193 static int	iwn4965_init_gains(struct iwn_softc *);
194 static int	iwn5000_init_gains(struct iwn_softc *);
195 static int	iwn4965_set_gains(struct iwn_softc *);
196 static int	iwn5000_set_gains(struct iwn_softc *);
197 static void	iwn_tune_sensitivity(struct iwn_softc *,
198 		    const struct iwn_rx_stats *);
199 static int	iwn_send_sensitivity(struct iwn_softc *);
200 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
201 static int	iwn_config(struct iwn_softc *);
202 static int	iwn_scan(struct iwn_softc *);
203 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
204 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
205 #if 0	/* HT */
206 static int	iwn_ampdu_rx_start(struct ieee80211com *,
207 		    struct ieee80211_node *, uint8_t);
208 static void	iwn_ampdu_rx_stop(struct ieee80211com *,
209 		    struct ieee80211_node *, uint8_t);
210 static int	iwn_ampdu_tx_start(struct ieee80211com *,
211 		    struct ieee80211_node *, uint8_t);
212 static void	iwn_ampdu_tx_stop(struct ieee80211com *,
213 		    struct ieee80211_node *, uint8_t);
214 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
215 		    struct ieee80211_node *, uint8_t, uint16_t);
216 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
217 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
218 		    struct ieee80211_node *, uint8_t, uint16_t);
219 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t);
220 #endif
221 static int	iwn5000_send_calib_results(struct iwn_softc *);
222 static int	iwn5000_save_calib_result(struct iwn_softc *,
223 		    struct iwn_phy_calib *, int, int);
224 static void	iwn5000_free_calib_results(struct iwn_softc *);
225 static int	iwn5000_chrystal_calib(struct iwn_softc *);
226 static int	iwn5000_send_calib_query(struct iwn_softc *);
227 static int	iwn5000_rx_calib_result(struct iwn_softc *,
228 		    struct iwn_rx_desc *, struct iwn_rx_data *);
229 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
230 static int	iwn4965_post_alive(struct iwn_softc *);
231 static int	iwn5000_post_alive(struct iwn_softc *);
232 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
233 		    int);
234 static int	iwn4965_load_firmware(struct iwn_softc *);
235 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
236 		    const uint8_t *, int);
237 static int	iwn5000_load_firmware(struct iwn_softc *);
238 static int	iwn_read_firmware_leg(struct iwn_softc *,
239 		    struct iwn_fw_info *);
240 static int	iwn_read_firmware_tlv(struct iwn_softc *,
241 		    struct iwn_fw_info *, uint16_t);
242 static int	iwn_read_firmware(struct iwn_softc *);
243 static int	iwn_clock_wait(struct iwn_softc *);
244 static int	iwn_apm_init(struct iwn_softc *);
245 static void	iwn_apm_stop_master(struct iwn_softc *);
246 static void	iwn_apm_stop(struct iwn_softc *);
247 static int	iwn4965_nic_config(struct iwn_softc *);
248 static int	iwn5000_nic_config(struct iwn_softc *);
249 static int	iwn_hw_prepare(struct iwn_softc *);
250 static int	iwn_hw_init(struct iwn_softc *);
251 static void	iwn_hw_stop(struct iwn_softc *);
252 static void	iwn_init_locked(struct iwn_softc *);
253 static void	iwn_init(void *);
254 static void	iwn_stop_locked(struct iwn_softc *);
255 static void	iwn_stop(struct iwn_softc *);
256 static void 	iwn_scan_start(struct ieee80211com *);
257 static void 	iwn_scan_end(struct ieee80211com *);
258 static void 	iwn_set_channel(struct ieee80211com *);
259 static void 	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
260 static void 	iwn_scan_mindwell(struct ieee80211_scan_state *);
261 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
262 		    struct ieee80211_channel *);
263 static int	iwn_setregdomain(struct ieee80211com *,
264 		    struct ieee80211_regdomain *, int,
265 		    struct ieee80211_channel []);
266 static void	iwn_hw_reset(void *, int);
267 static void	iwn_radio_on(void *, int);
268 static void	iwn_radio_off(void *, int);
269 static void	iwn_sysctlattach(struct iwn_softc *);
270 static int	iwn_shutdown(device_t);
271 static int	iwn_suspend(device_t);
272 static int	iwn_resume(device_t);
273 
274 #define IWN_DEBUG
275 #ifdef IWN_DEBUG
276 enum {
277 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
278 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
279 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
280 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
281 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
282 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
283 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
284 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
285 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
286 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
287 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
288 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
289 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
290 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
291 	IWN_DEBUG_ANY		= 0xffffffff
292 };
293 
294 #define DPRINTF(sc, m, fmt, ...) do {			\
295 	if (sc->sc_debug & (m))				\
296 		printf(fmt, __VA_ARGS__);		\
297 } while (0)
298 
299 static const char *iwn_intr_str(uint8_t);
300 #else
301 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
302 #endif
303 
304 struct iwn_ident {
305 	uint16_t	vendor;
306 	uint16_t	device;
307 	const char	*name;
308 };
309 
310 static const struct iwn_ident iwn_ident_table [] = {
311 	{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
312 	{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
313 	{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
314 	{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
315 	{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
316 	{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
317 	{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
318 	{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
319 	{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
320 	{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
321 	{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
322 	{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
323 	{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
324 	{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
325 	{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
326 	{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
327 	{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
328 	{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
329 	{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
330 	{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
331 	{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6250" },
332 	{ 0x8086, 0x0089, "Intel(R) PRO/Wireless 6250" },
333 	{ 0x8086, 0x0082, "Intel(R) PRO/Wireless 6205a" },
334 	{ 0x8086, 0x0085, "Intel(R) PRO/Wireless 6205a" },
335 #ifdef notyet
336 	{ 0x8086, 0x008a, "Intel(R) PRO/Wireless 6205b" },
337 	{ 0x8086, 0x008b, "Intel(R) PRO/Wireless 6205b" },
338 	{ 0x8086, 0x008f, "Intel(R) PRO/Wireless 6205b" },
339 	{ 0x8086, 0x0090, "Intel(R) PRO/Wireless 6205b" },
340 	{ 0x8086, 0x0091, "Intel(R) PRO/Wireless 6205b" },
341 #endif
342 	{ 0, 0, NULL }
343 };
344 
345 static const struct iwn_hal iwn4965_hal = {
346 	iwn4965_load_firmware,
347 	iwn4965_read_eeprom,
348 	iwn4965_post_alive,
349 	iwn4965_nic_config,
350 	iwn4965_update_sched,
351 	iwn4965_get_temperature,
352 	iwn4965_get_rssi,
353 	iwn4965_set_txpower,
354 	iwn4965_init_gains,
355 	iwn4965_set_gains,
356 	iwn4965_add_node,
357 	iwn4965_tx_done,
358 #if 0	/* HT */
359 	iwn4965_ampdu_tx_start,
360 	iwn4965_ampdu_tx_stop,
361 #endif
362 	IWN4965_NTXQUEUES,
363 	IWN4965_NDMACHNLS,
364 	IWN4965_ID_BROADCAST,
365 	IWN4965_RXONSZ,
366 	IWN4965_SCHEDSZ,
367 	IWN4965_FW_TEXT_MAXSZ,
368 	IWN4965_FW_DATA_MAXSZ,
369 	IWN4965_FWSZ,
370 	IWN4965_SCHED_TXFACT
371 };
372 
373 static const struct iwn_hal iwn5000_hal = {
374 	iwn5000_load_firmware,
375 	iwn5000_read_eeprom,
376 	iwn5000_post_alive,
377 	iwn5000_nic_config,
378 	iwn5000_update_sched,
379 	iwn5000_get_temperature,
380 	iwn5000_get_rssi,
381 	iwn5000_set_txpower,
382 	iwn5000_init_gains,
383 	iwn5000_set_gains,
384 	iwn5000_add_node,
385 	iwn5000_tx_done,
386 #if 0	/* HT */
387 	iwn5000_ampdu_tx_start,
388 	iwn5000_ampdu_tx_stop,
389 #endif
390 	IWN5000_NTXQUEUES,
391 	IWN5000_NDMACHNLS,
392 	IWN5000_ID_BROADCAST,
393 	IWN5000_RXONSZ,
394 	IWN5000_SCHEDSZ,
395 	IWN5000_FW_TEXT_MAXSZ,
396 	IWN5000_FW_DATA_MAXSZ,
397 	IWN5000_FWSZ,
398 	IWN5000_SCHED_TXFACT
399 };
400 
401 static int
402 iwn_probe(device_t dev)
403 {
404 	const struct iwn_ident *ident;
405 
406 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
407 		if (pci_get_vendor(dev) == ident->vendor &&
408 		    pci_get_device(dev) == ident->device) {
409 			device_set_desc(dev, ident->name);
410 			return 0;
411 		}
412 	}
413 	return ENXIO;
414 }
415 
416 static int
417 iwn_attach(device_t dev)
418 {
419 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
420 	struct ieee80211com *ic;
421 	struct ifnet *ifp;
422 	const struct iwn_hal *hal;
423 	uint32_t tmp;
424 	int i, error, result;
425 	uint8_t macaddr[IEEE80211_ADDR_LEN];
426 
427 	sc->sc_dev = dev;
428 
429 	/*
430 	 * Get the offset of the PCI Express Capability Structure in PCI
431 	 * Configuration Space.
432 	 */
433 	error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
434 	if (error != 0) {
435 		device_printf(dev, "PCIe capability structure not found!\n");
436 		return error;
437 	}
438 
439 	/* Clear device-specific "PCI retry timeout" register (41h). */
440 	pci_write_config(dev, 0x41, 0, 1);
441 
442 	/* Hardware bug workaround. */
443 	tmp = pci_read_config(dev, PCIR_COMMAND, 1);
444 	if (tmp & PCIM_CMD_INTxDIS) {
445 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
446 		    __func__);
447 		tmp &= ~PCIM_CMD_INTxDIS;
448 		pci_write_config(dev, PCIR_COMMAND, tmp, 1);
449 	}
450 
451 	/* Enable bus-mastering. */
452 	pci_enable_busmaster(dev);
453 
454 	sc->mem_rid = PCIR_BAR(0);
455 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
456 	    RF_ACTIVE);
457 	if (sc->mem == NULL ) {
458 		device_printf(dev, "could not allocate memory resources\n");
459 		error = ENOMEM;
460 		return error;
461 	}
462 
463 	sc->sc_st = rman_get_bustag(sc->mem);
464 	sc->sc_sh = rman_get_bushandle(sc->mem);
465 	sc->irq_rid = 0;
466 	if ((result = pci_msi_count(dev)) == 1 &&
467 	    pci_alloc_msi(dev, &result) == 0)
468 		sc->irq_rid = 1;
469 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
470 	    RF_ACTIVE | RF_SHAREABLE);
471 	if (sc->irq == NULL) {
472 		device_printf(dev, "could not allocate interrupt resource\n");
473 		error = ENOMEM;
474 		goto fail;
475 	}
476 
477 	IWN_LOCK_INIT(sc);
478 	callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
479 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc );
480 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc );
481 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc );
482 
483 	/* Attach Hardware Abstraction Layer. */
484 	hal = iwn_hal_attach(sc);
485 	if (hal == NULL) {
486 		error = ENXIO;	/* XXX: Wrong error code? */
487 		goto fail;
488 	}
489 
490 	error = iwn_hw_prepare(sc);
491 	if (error != 0) {
492 		device_printf(dev, "hardware not ready, error %d\n", error);
493 		goto fail;
494 	}
495 
496 	/* Allocate DMA memory for firmware transfers. */
497 	error = iwn_alloc_fwmem(sc);
498 	if (error != 0) {
499 		device_printf(dev,
500 		    "could not allocate memory for firmware, error %d\n",
501 		    error);
502 		goto fail;
503 	}
504 
505 	/* Allocate "Keep Warm" page. */
506 	error = iwn_alloc_kw(sc);
507 	if (error != 0) {
508 		device_printf(dev,
509 		    "could not allocate \"Keep Warm\" page, error %d\n", error);
510 		goto fail;
511 	}
512 
513 	/* Allocate ICT table for 5000 Series. */
514 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
515 	    (error = iwn_alloc_ict(sc)) != 0) {
516 		device_printf(dev,
517 		    "%s: could not allocate ICT table, error %d\n",
518 		    __func__, error);
519 		goto fail;
520 	}
521 
522 	/* Allocate TX scheduler "rings". */
523 	error = iwn_alloc_sched(sc);
524 	if (error != 0) {
525 		device_printf(dev,
526 		    "could not allocate TX scheduler rings, error %d\n",
527 		    error);
528 		goto fail;
529 	}
530 
531 	/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
532 	for (i = 0; i < hal->ntxqs; i++) {
533 		error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
534 		if (error != 0) {
535 			device_printf(dev,
536 			    "could not allocate Tx ring %d, error %d\n",
537 			    i, error);
538 			goto fail;
539 		}
540 	}
541 
542 	/* Allocate RX ring. */
543 	error = iwn_alloc_rx_ring(sc, &sc->rxq);
544 	if (error != 0 ){
545 		device_printf(dev,
546 		    "could not allocate Rx ring, error %d\n", error);
547 		goto fail;
548 	}
549 
550 	/* Clear pending interrupts. */
551 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
552 
553 	/* Count the number of available chains. */
554 	sc->ntxchains =
555 	    ((sc->txchainmask >> 2) & 1) +
556 	    ((sc->txchainmask >> 1) & 1) +
557 	    ((sc->txchainmask >> 0) & 1);
558 	sc->nrxchains =
559 	    ((sc->rxchainmask >> 2) & 1) +
560 	    ((sc->rxchainmask >> 1) & 1) +
561 	    ((sc->rxchainmask >> 0) & 1);
562 
563 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
564 	if (ifp == NULL) {
565 		device_printf(dev, "can not allocate ifnet structure\n");
566 		goto fail;
567 	}
568 	ic = ifp->if_l2com;
569 
570 	ic->ic_ifp = ifp;
571 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
572 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
573 
574 	/* Set device capabilities. */
575 	ic->ic_caps =
576 		  IEEE80211_C_STA		/* station mode supported */
577 		| IEEE80211_C_MONITOR		/* monitor mode supported */
578 		| IEEE80211_C_TXPMGT		/* tx power management */
579 		| IEEE80211_C_SHSLOT		/* short slot time supported */
580 		| IEEE80211_C_WPA
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 		| IEEE80211_C_BGSCAN		/* background scanning */
583 #if 0
584 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
585 #endif
586 		| IEEE80211_C_WME		/* WME */
587 		;
588 #if 0	/* HT */
589 	/* XXX disable until HT channel setup works */
590 	ic->ic_htcaps =
591 		  IEEE80211_HTCAP_SMPS_ENA	/* SM PS mode enabled */
592 		| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width */
593 		| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
594 		| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
595 		| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
596 		| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
597 		/* s/w capabilities */
598 		| IEEE80211_HTC_HT		/* HT operation */
599 		| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
600 		| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
601 		;
602 
603 	/* Set HT capabilities. */
604 	ic->ic_htcaps =
605 #if IWN_RBUF_SIZE == 8192
606 	    IEEE80211_HTCAP_AMSDU7935 |
607 #endif
608 	    IEEE80211_HTCAP_CBW20_40 |
609 	    IEEE80211_HTCAP_SGI20 |
610 	    IEEE80211_HTCAP_SGI40;
611 	if (sc->hw_type != IWN_HW_REV_TYPE_4965)
612 		ic->ic_htcaps |= IEEE80211_HTCAP_GF;
613 	if (sc->hw_type == IWN_HW_REV_TYPE_6050)
614 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
615 	else
616 		ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
617 #endif
618 
619 	/* Read MAC address, channels, etc from EEPROM. */
620 	error = iwn_read_eeprom(sc, macaddr);
621 	if (error != 0) {
622 		device_printf(dev, "could not read EEPROM, error %d\n",
623 		    error);
624 		goto fail;
625 	}
626 
627 	device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
628 	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
629 	    macaddr, ":");
630 
631 #if 0	/* HT */
632 	/* Set supported HT rates. */
633 	ic->ic_sup_mcs[0] = 0xff;
634 	if (sc->nrxchains > 1)
635 		ic->ic_sup_mcs[1] = 0xff;
636 	if (sc->nrxchains > 2)
637 		ic->ic_sup_mcs[2] = 0xff;
638 #endif
639 
640 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
641 	ifp->if_softc = sc;
642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
643 	ifp->if_init = iwn_init;
644 	ifp->if_ioctl = iwn_ioctl;
645 	ifp->if_start = iwn_start;
646 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
647 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
648 	IFQ_SET_READY(&ifp->if_snd);
649 
650 	ieee80211_ifattach(ic, macaddr);
651 	ic->ic_vap_create = iwn_vap_create;
652 	ic->ic_vap_delete = iwn_vap_delete;
653 	ic->ic_raw_xmit = iwn_raw_xmit;
654 	ic->ic_node_alloc = iwn_node_alloc;
655 	ic->ic_newassoc = iwn_newassoc;
656 	ic->ic_wme.wme_update = iwn_wme_update;
657 	ic->ic_update_mcast = iwn_update_mcast;
658 	ic->ic_scan_start = iwn_scan_start;
659 	ic->ic_scan_end = iwn_scan_end;
660 	ic->ic_set_channel = iwn_set_channel;
661 	ic->ic_scan_curchan = iwn_scan_curchan;
662 	ic->ic_scan_mindwell = iwn_scan_mindwell;
663 	ic->ic_setregdomain = iwn_setregdomain;
664 #if 0	/* HT */
665 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
666 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
667 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
668 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
669 #endif
670 
671 	iwn_radiotap_attach(sc);
672 	iwn_sysctlattach(sc);
673 
674 	/*
675 	 * Hook our interrupt after all initialization is complete.
676 	 */
677 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
678 	    NULL, iwn_intr, sc, &sc->sc_ih);
679 	if (error != 0) {
680 		device_printf(dev, "could not set up interrupt, error %d\n",
681 		    error);
682 		goto fail;
683 	}
684 
685 	ieee80211_announce(ic);
686 	return 0;
687 fail:
688 	iwn_cleanup(dev);
689 	return error;
690 }
691 
692 static const struct iwn_hal *
693 iwn_hal_attach(struct iwn_softc *sc)
694 {
695 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
696 
697 	switch (sc->hw_type) {
698 	case IWN_HW_REV_TYPE_4965:
699 		sc->sc_hal = &iwn4965_hal;
700 		sc->limits = &iwn4965_sensitivity_limits;
701 		sc->fwname = "iwn4965fw";
702 		sc->txchainmask = IWN_ANT_AB;
703 		sc->rxchainmask = IWN_ANT_ABC;
704 		break;
705 	case IWN_HW_REV_TYPE_5100:
706 		sc->sc_hal = &iwn5000_hal;
707 		sc->limits = &iwn5000_sensitivity_limits;
708 		sc->fwname = "iwn5000fw";
709 		sc->txchainmask = IWN_ANT_B;
710 		sc->rxchainmask = IWN_ANT_AB;
711 		sc->calib_init = IWN_CALIB_XTAL | IWN_CALIB_LO |
712 		    IWN_CALIB_TX_IQ | IWN_CALIB_TX_IQ_PERIODIC |
713 		    IWN_CALIB_BASE_BAND;
714 		break;
715 	case IWN_HW_REV_TYPE_5150:
716 		sc->sc_hal = &iwn5000_hal;
717 		sc->limits = &iwn5150_sensitivity_limits;
718 		sc->fwname = "iwn5150fw";
719 		sc->txchainmask = IWN_ANT_A;
720 		sc->rxchainmask = IWN_ANT_AB;
721 		sc->calib_init = IWN_CALIB_DC | IWN_CALIB_LO |
722 		    IWN_CALIB_TX_IQ | IWN_CALIB_BASE_BAND;
723 		break;
724 	case IWN_HW_REV_TYPE_5300:
725 	case IWN_HW_REV_TYPE_5350:
726 		sc->sc_hal = &iwn5000_hal;
727 		sc->limits = &iwn5000_sensitivity_limits;
728 		sc->fwname = "iwn5000fw";
729 		sc->txchainmask = IWN_ANT_ABC;
730 		sc->rxchainmask = IWN_ANT_ABC;
731 		sc->calib_init = IWN_CALIB_XTAL | IWN_CALIB_LO |
732 		    IWN_CALIB_TX_IQ | IWN_CALIB_TX_IQ_PERIODIC |
733 		    IWN_CALIB_BASE_BAND;
734 		break;
735 	case IWN_HW_REV_TYPE_1000:
736 		sc->sc_hal = &iwn5000_hal;
737 		sc->limits = &iwn1000_sensitivity_limits;
738 		sc->fwname = "iwn1000fw";
739 		sc->txchainmask = IWN_ANT_A;
740 		sc->rxchainmask = IWN_ANT_AB;
741 		sc->calib_init = IWN_CALIB_XTAL | IWN_CALIB_LO |
742 		    IWN_CALIB_TX_IQ | IWN_CALIB_TX_IQ_PERIODIC |
743 		    IWN_CALIB_BASE_BAND;
744 		break;
745 	case IWN_HW_REV_TYPE_6000:
746 		sc->sc_hal = &iwn5000_hal;
747 		sc->limits = &iwn6000_sensitivity_limits;
748 		sc->fwname = "iwn6000fw";
749 		switch (pci_get_device(sc->sc_dev)) {
750 		case 0x422C:
751 		case 0x4239:
752 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
753 			sc->txchainmask = IWN_ANT_BC;
754 			sc->rxchainmask = IWN_ANT_BC;
755 			break;
756 		default:
757 			sc->txchainmask = IWN_ANT_ABC;
758 			sc->rxchainmask = IWN_ANT_ABC;
759 			break;
760 		}
761 		sc->calib_init = IWN_CALIB_XTAL | IWN_CALIB_LO |
762 		    IWN_CALIB_TX_IQ | IWN_CALIB_BASE_BAND;
763 		break;
764 	case IWN_HW_REV_TYPE_6050:
765 		sc->sc_hal = &iwn5000_hal;
766 		sc->limits = &iwn6000_sensitivity_limits;
767 		sc->fwname = "iwn6050fw";
768 		sc->txchainmask = IWN_ANT_AB;
769 		sc->rxchainmask = IWN_ANT_AB;
770 		sc->calib_init = IWN_CALIB_XTAL | IWN_CALIB_DC | IWN_CALIB_LO |
771 		    IWN_CALIB_TX_IQ | IWN_CALIB_BASE_BAND;
772 		break;
773 	case IWN_HW_REV_TYPE_6005:
774 		sc->sc_hal = &iwn5000_hal;
775 		sc->limits = &iwn6000_sensitivity_limits;
776 		sc->fwname = "iwn6005fw";
777 		sc->txchainmask = IWN_ANT_AB;
778 		sc->rxchainmask = IWN_ANT_AB;
779 		sc->calib_init = IWN_CALIB_XTAL | IWN_CALIB_LO |
780 		    IWN_CALIB_TX_IQ | IWN_CALIB_BASE_BAND;
781 		break;
782 	default:
783 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
784 		    sc->hw_type);
785 		return NULL;
786 	}
787 	return sc->sc_hal;
788 }
789 
790 /*
791  * Attach the interface to 802.11 radiotap.
792  */
793 static void
794 iwn_radiotap_attach(struct iwn_softc *sc)
795 {
796 	struct ifnet *ifp = sc->sc_ifp;
797 	struct ieee80211com *ic = ifp->if_l2com;
798 
799 	ieee80211_radiotap_attach(ic,
800 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
801 		IWN_TX_RADIOTAP_PRESENT,
802 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
803 		IWN_RX_RADIOTAP_PRESENT);
804 }
805 
806 static struct ieee80211vap *
807 iwn_vap_create(struct ieee80211com *ic,
808 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
809 	const uint8_t bssid[IEEE80211_ADDR_LEN],
810 	const uint8_t mac[IEEE80211_ADDR_LEN])
811 {
812 	struct iwn_vap *ivp;
813 	struct ieee80211vap *vap;
814 
815 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
816 		return NULL;
817 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
818 	    M_80211_VAP, M_NOWAIT | M_ZERO);
819 	if (ivp == NULL)
820 		return NULL;
821 	vap = &ivp->iv_vap;
822 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
823 	vap->iv_bmissthreshold = 10;		/* override default */
824 	/* Override with driver methods. */
825 	ivp->iv_newstate = vap->iv_newstate;
826 	vap->iv_newstate = iwn_newstate;
827 
828 	ieee80211_ratectl_init(vap);
829 	/* Complete setup. */
830 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
831 	ic->ic_opmode = opmode;
832 	return vap;
833 }
834 
835 static void
836 iwn_vap_delete(struct ieee80211vap *vap)
837 {
838 	struct iwn_vap *ivp = IWN_VAP(vap);
839 
840 	ieee80211_ratectl_deinit(vap);
841 	ieee80211_vap_detach(vap);
842 	free(ivp, M_80211_VAP);
843 }
844 
845 static int
846 iwn_cleanup(device_t dev)
847 {
848 	struct iwn_softc *sc = device_get_softc(dev);
849 	struct ifnet *ifp = sc->sc_ifp;
850 	struct ieee80211com *ic;
851 	int i;
852 
853 	if (ifp != NULL) {
854 		ic = ifp->if_l2com;
855 
856 		ieee80211_draintask(ic, &sc->sc_reinit_task);
857 		ieee80211_draintask(ic, &sc->sc_radioon_task);
858 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
859 
860 		iwn_stop(sc);
861 		callout_drain(&sc->sc_timer_to);
862 		ieee80211_ifdetach(ic);
863 	}
864 
865 	iwn5000_free_calib_results(sc);
866 
867 	/* Free DMA resources. */
868 	iwn_free_rx_ring(sc, &sc->rxq);
869 	if (sc->sc_hal != NULL)
870 		for (i = 0; i < sc->sc_hal->ntxqs; i++)
871 			iwn_free_tx_ring(sc, &sc->txq[i]);
872 	iwn_free_sched(sc);
873 	iwn_free_kw(sc);
874 	if (sc->ict != NULL)
875 		iwn_free_ict(sc);
876 	iwn_free_fwmem(sc);
877 
878 	if (sc->irq != NULL) {
879 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
880 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
881 		if (sc->irq_rid == 1)
882 			pci_release_msi(dev);
883 	}
884 
885 	if (sc->mem != NULL)
886 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
887 
888 	if (ifp != NULL)
889 		if_free(ifp);
890 
891 	IWN_LOCK_DESTROY(sc);
892 	return 0;
893 }
894 
895 static int
896 iwn_detach(device_t dev)
897 {
898 	iwn_cleanup(dev);
899 	return 0;
900 }
901 
902 static int
903 iwn_nic_lock(struct iwn_softc *sc)
904 {
905 	int ntries;
906 
907 	/* Request exclusive access to NIC. */
908 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
909 
910 	/* Spin until we actually get the lock. */
911 	for (ntries = 0; ntries < 1000; ntries++) {
912 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
913 		    (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
914 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
915 			return 0;
916 		DELAY(10);
917 	}
918 	return ETIMEDOUT;
919 }
920 
921 static __inline void
922 iwn_nic_unlock(struct iwn_softc *sc)
923 {
924 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
925 }
926 
927 static __inline uint32_t
928 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
929 {
930 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
931 	IWN_BARRIER_READ_WRITE(sc);
932 	return IWN_READ(sc, IWN_PRPH_RDATA);
933 }
934 
935 static __inline void
936 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
937 {
938 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
939 	IWN_BARRIER_WRITE(sc);
940 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
941 }
942 
943 static __inline void
944 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
945 {
946 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
947 }
948 
949 static __inline void
950 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
951 {
952 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
953 }
954 
955 static __inline void
956 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
957     const uint32_t *data, int count)
958 {
959 	for (; count > 0; count--, data++, addr += 4)
960 		iwn_prph_write(sc, addr, *data);
961 }
962 
963 static __inline uint32_t
964 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
965 {
966 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
967 	IWN_BARRIER_READ_WRITE(sc);
968 	return IWN_READ(sc, IWN_MEM_RDATA);
969 }
970 
971 static __inline void
972 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
973 {
974 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
975 	IWN_BARRIER_WRITE(sc);
976 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
977 }
978 
979 static __inline void
980 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
981 {
982 	uint32_t tmp;
983 
984 	tmp = iwn_mem_read(sc, addr & ~3);
985 	if (addr & 3)
986 		tmp = (tmp & 0x0000ffff) | data << 16;
987 	else
988 		tmp = (tmp & 0xffff0000) | data;
989 	iwn_mem_write(sc, addr & ~3, tmp);
990 }
991 
992 static __inline void
993 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
994     int count)
995 {
996 	for (; count > 0; count--, addr += 4)
997 		*data++ = iwn_mem_read(sc, addr);
998 }
999 
1000 static __inline void
1001 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1002     int count)
1003 {
1004 	for (; count > 0; count--, addr += 4)
1005 		iwn_mem_write(sc, addr, val);
1006 }
1007 
1008 static int
1009 iwn_eeprom_lock(struct iwn_softc *sc)
1010 {
1011 	int i, ntries;
1012 
1013 	for (i = 0; i < 100; i++) {
1014 		/* Request exclusive access to EEPROM. */
1015 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1016 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1017 
1018 		/* Spin until we actually get the lock. */
1019 		for (ntries = 0; ntries < 100; ntries++) {
1020 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1021 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1022 				return 0;
1023 			DELAY(10);
1024 		}
1025 	}
1026 	return ETIMEDOUT;
1027 }
1028 
1029 static __inline void
1030 iwn_eeprom_unlock(struct iwn_softc *sc)
1031 {
1032 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1033 }
1034 
1035 /*
1036  * Initialize access by host to One Time Programmable ROM.
1037  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1038  */
1039 static int
1040 iwn_init_otprom(struct iwn_softc *sc)
1041 {
1042 	uint16_t prev, base, next;
1043 	int count, error;
1044 
1045 	/* Wait for clock stabilization before accessing prph. */
1046 	error = iwn_clock_wait(sc);
1047 	if (error != 0)
1048 		return error;
1049 
1050 	error = iwn_nic_lock(sc);
1051 	if (error != 0)
1052 		return error;
1053 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1054 	DELAY(5);
1055 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1056 	iwn_nic_unlock(sc);
1057 
1058 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1059 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1060 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1061 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1062 	}
1063 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1064 	/* Clear ECC status. */
1065 	IWN_SETBITS(sc, IWN_OTP_GP,
1066 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1067 
1068 	/*
1069 	 * Find the block before last block (contains the EEPROM image)
1070 	 * for HW without OTP shadow RAM.
1071 	 */
1072 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1073 		/* Switch to absolute addressing mode. */
1074 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1075 		base = prev = 0;
1076 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1077 			error = iwn_read_prom_data(sc, base, &next, 2);
1078 			if (error != 0)
1079 				return error;
1080 			if (next == 0)	/* End of linked-list. */
1081 				break;
1082 			prev = base;
1083 			base = le16toh(next);
1084 		}
1085 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1086 			return EIO;
1087 		/* Skip "next" word. */
1088 		sc->prom_base = prev + 1;
1089 	}
1090 	return 0;
1091 }
1092 
1093 static int
1094 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1095 {
1096 	uint32_t val, tmp;
1097 	int ntries;
1098 	uint8_t *out = data;
1099 
1100 	addr += sc->prom_base;
1101 	for (; count > 0; count -= 2, addr++) {
1102 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1103 		for (ntries = 0; ntries < 10; ntries++) {
1104 			val = IWN_READ(sc, IWN_EEPROM);
1105 			if (val & IWN_EEPROM_READ_VALID)
1106 				break;
1107 			DELAY(5);
1108 		}
1109 		if (ntries == 10) {
1110 			device_printf(sc->sc_dev,
1111 			    "timeout reading ROM at 0x%x\n", addr);
1112 			return ETIMEDOUT;
1113 		}
1114 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1115 			/* OTPROM, check for ECC errors. */
1116 			tmp = IWN_READ(sc, IWN_OTP_GP);
1117 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1118 				device_printf(sc->sc_dev,
1119 				    "OTPROM ECC error at 0x%x\n", addr);
1120 				return EIO;
1121 			}
1122 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1123 				/* Correctable ECC error, clear bit. */
1124 				IWN_SETBITS(sc, IWN_OTP_GP,
1125 				    IWN_OTP_GP_ECC_CORR_STTS);
1126 			}
1127 		}
1128 		*out++ = val >> 16;
1129 		if (count > 1)
1130 			*out++ = val >> 24;
1131 	}
1132 	return 0;
1133 }
1134 
1135 static void
1136 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1137 {
1138 	if (error != 0)
1139 		return;
1140 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1141 	*(bus_addr_t *)arg = segs[0].ds_addr;
1142 }
1143 
1144 static int
1145 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1146 	void **kvap, bus_size_t size, bus_size_t alignment, int flags)
1147 {
1148 	int error;
1149 
1150 	dma->size = size;
1151 	dma->tag = NULL;
1152 
1153 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1154 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1155 	    1, size, flags, NULL, NULL, &dma->tag);
1156 	if (error != 0) {
1157 		device_printf(sc->sc_dev,
1158 		    "%s: bus_dma_tag_create failed, error %d\n",
1159 		    __func__, error);
1160 		goto fail;
1161 	}
1162 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1163 	    flags | BUS_DMA_ZERO, &dma->map);
1164 	if (error != 0) {
1165 		device_printf(sc->sc_dev,
1166 		    "%s: bus_dmamem_alloc failed, error %d\n", __func__, error);
1167 		goto fail;
1168 	}
1169 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
1170 	    size, iwn_dma_map_addr, &dma->paddr, flags);
1171 	if (error != 0) {
1172 		device_printf(sc->sc_dev,
1173 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1174 		goto fail;
1175 	}
1176 
1177 	if (kvap != NULL)
1178 		*kvap = dma->vaddr;
1179 	return 0;
1180 fail:
1181 	iwn_dma_contig_free(dma);
1182 	return error;
1183 }
1184 
1185 static void
1186 iwn_dma_contig_free(struct iwn_dma_info *dma)
1187 {
1188 	if (dma->tag != NULL) {
1189 		if (dma->map != NULL) {
1190 			if (dma->paddr == 0) {
1191 				bus_dmamap_sync(dma->tag, dma->map,
1192 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1193 				bus_dmamap_unload(dma->tag, dma->map);
1194 			}
1195 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1196 		}
1197 		bus_dma_tag_destroy(dma->tag);
1198 	}
1199 }
1200 
1201 static int
1202 iwn_alloc_sched(struct iwn_softc *sc)
1203 {
1204 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1205 	return iwn_dma_contig_alloc(sc, &sc->sched_dma,
1206 	    (void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
1207 }
1208 
1209 static void
1210 iwn_free_sched(struct iwn_softc *sc)
1211 {
1212 	iwn_dma_contig_free(&sc->sched_dma);
1213 }
1214 
1215 static int
1216 iwn_alloc_kw(struct iwn_softc *sc)
1217 {
1218 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1219 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
1220 	    BUS_DMA_NOWAIT);
1221 }
1222 
1223 static void
1224 iwn_free_kw(struct iwn_softc *sc)
1225 {
1226 	iwn_dma_contig_free(&sc->kw_dma);
1227 }
1228 
1229 static int
1230 iwn_alloc_ict(struct iwn_softc *sc)
1231 {
1232 	/* ICT table must be aligned on a 4KB boundary. */
1233 	return iwn_dma_contig_alloc(sc, &sc->ict_dma,
1234 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
1235 }
1236 
1237 static void
1238 iwn_free_ict(struct iwn_softc *sc)
1239 {
1240 	iwn_dma_contig_free(&sc->ict_dma);
1241 }
1242 
1243 static int
1244 iwn_alloc_fwmem(struct iwn_softc *sc)
1245 {
1246 	/* Must be aligned on a 16-byte boundary. */
1247 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
1248 	    sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
1249 }
1250 
1251 static void
1252 iwn_free_fwmem(struct iwn_softc *sc)
1253 {
1254 	iwn_dma_contig_free(&sc->fw_dma);
1255 }
1256 
1257 static int
1258 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1259 {
1260 	bus_size_t size;
1261 	int i, error;
1262 
1263 	ring->cur = 0;
1264 
1265 	/* Allocate RX descriptors (256-byte aligned). */
1266 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1267 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1268 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1269 	if (error != 0) {
1270 		device_printf(sc->sc_dev,
1271 		    "%s: could not allocate Rx ring DMA memory, error %d\n",
1272 		    __func__, error);
1273 		goto fail;
1274 	}
1275 
1276 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1277 	    BUS_SPACE_MAXADDR_32BIT,
1278 	    BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
1279 	    MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1280 	if (error != 0) {
1281 		device_printf(sc->sc_dev,
1282 		    "%s: bus_dma_tag_create_failed, error %d\n",
1283 		    __func__, error);
1284 		goto fail;
1285 	}
1286 
1287 	/* Allocate RX status area (16-byte aligned). */
1288 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
1289 	    (void **)&ring->stat, sizeof (struct iwn_rx_status),
1290 	    16, BUS_DMA_NOWAIT);
1291 	if (error != 0) {
1292 		device_printf(sc->sc_dev,
1293 		    "%s: could not allocate Rx status DMA memory, error %d\n",
1294 		    __func__, error);
1295 		goto fail;
1296 	}
1297 
1298 	/*
1299 	 * Allocate and map RX buffers.
1300 	 */
1301 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1302 		struct iwn_rx_data *data = &ring->data[i];
1303 		bus_addr_t paddr;
1304 
1305 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1306 		if (error != 0) {
1307 			device_printf(sc->sc_dev,
1308 			    "%s: bus_dmamap_create failed, error %d\n",
1309 			    __func__, error);
1310 			goto fail;
1311 		}
1312 
1313 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1314 		if (data->m == NULL) {
1315 			device_printf(sc->sc_dev,
1316 			    "%s: could not allocate rx mbuf\n", __func__);
1317 			error = ENOMEM;
1318 			goto fail;
1319 		}
1320 
1321 		/* Map page. */
1322 		error = bus_dmamap_load(ring->data_dmat, data->map,
1323 		    mtod(data->m, caddr_t), MJUMPAGESIZE,
1324 		    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1325 		if (error != 0 && error != EFBIG) {
1326 			device_printf(sc->sc_dev,
1327 			    "%s: bus_dmamap_load failed, error %d\n",
1328 			    __func__, error);
1329 			m_freem(data->m);
1330 			error = ENOMEM;	/* XXX unique code */
1331 			goto fail;
1332 		}
1333 		bus_dmamap_sync(ring->data_dmat, data->map,
1334 		    BUS_DMASYNC_PREWRITE);
1335 
1336 		/* Set physical address of RX buffer (256-byte aligned). */
1337 		ring->desc[i] = htole32(paddr >> 8);
1338 	}
1339 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1340 	    BUS_DMASYNC_PREWRITE);
1341 	return 0;
1342 fail:
1343 	iwn_free_rx_ring(sc, ring);
1344 	return error;
1345 }
1346 
1347 static void
1348 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1349 {
1350 	int ntries;
1351 
1352 	if (iwn_nic_lock(sc) == 0) {
1353 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1354 		for (ntries = 0; ntries < 1000; ntries++) {
1355 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1356 			    IWN_FH_RX_STATUS_IDLE)
1357 				break;
1358 			DELAY(10);
1359 		}
1360 		iwn_nic_unlock(sc);
1361 #ifdef IWN_DEBUG
1362 		if (ntries == 1000)
1363 			DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
1364 			    "timeout resetting Rx ring");
1365 #endif
1366 	}
1367 	ring->cur = 0;
1368 	sc->last_rx_valid = 0;
1369 }
1370 
1371 static void
1372 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1373 {
1374 	int i;
1375 
1376 	iwn_dma_contig_free(&ring->desc_dma);
1377 	iwn_dma_contig_free(&ring->stat_dma);
1378 
1379 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1380 		struct iwn_rx_data *data = &ring->data[i];
1381 
1382 		if (data->m != NULL) {
1383 			bus_dmamap_sync(ring->data_dmat, data->map,
1384 			    BUS_DMASYNC_POSTREAD);
1385 			bus_dmamap_unload(ring->data_dmat, data->map);
1386 			m_freem(data->m);
1387 		}
1388 		if (data->map != NULL)
1389 			bus_dmamap_destroy(ring->data_dmat, data->map);
1390 	}
1391 }
1392 
1393 static int
1394 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1395 {
1396 	bus_size_t size;
1397 	bus_addr_t paddr;
1398 	int i, error;
1399 
1400 	ring->qid = qid;
1401 	ring->queued = 0;
1402 	ring->cur = 0;
1403 
1404 	/* Allocate TX descriptors (256-byte aligned.) */
1405 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
1406 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
1407 	    (void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
1408 	if (error != 0) {
1409 		device_printf(sc->sc_dev,
1410 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1411 		    __func__, error);
1412 		goto fail;
1413 	}
1414 
1415 	/*
1416 	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1417 	 * to allocate commands space for other rings.
1418 	 */
1419 	if (qid > 4)
1420 		return 0;
1421 
1422 	size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
1423 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
1424 	    (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
1425 	if (error != 0) {
1426 		device_printf(sc->sc_dev,
1427 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1428 		    __func__, error);
1429 		goto fail;
1430 	}
1431 
1432 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1433 	    BUS_SPACE_MAXADDR_32BIT,
1434 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
1435 	    MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
1436 	if (error != 0) {
1437 		device_printf(sc->sc_dev,
1438 		    "%s: bus_dma_tag_create_failed, error %d\n",
1439 		    __func__, error);
1440 		goto fail;
1441 	}
1442 
1443 	paddr = ring->cmd_dma.paddr;
1444 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1445 		struct iwn_tx_data *data = &ring->data[i];
1446 
1447 		data->cmd_paddr = paddr;
1448 		data->scratch_paddr = paddr + 12;
1449 		paddr += sizeof (struct iwn_tx_cmd);
1450 
1451 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1452 		if (error != 0) {
1453 			device_printf(sc->sc_dev,
1454 			    "%s: bus_dmamap_create failed, error %d\n",
1455 			    __func__, error);
1456 			goto fail;
1457 		}
1458 		bus_dmamap_sync(ring->data_dmat, data->map,
1459 		    BUS_DMASYNC_PREWRITE);
1460 	}
1461 	return 0;
1462 fail:
1463 	iwn_free_tx_ring(sc, ring);
1464 	return error;
1465 }
1466 
1467 static void
1468 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1469 {
1470 	int i;
1471 
1472 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1473 		struct iwn_tx_data *data = &ring->data[i];
1474 
1475 		if (data->m != NULL) {
1476 			bus_dmamap_unload(ring->data_dmat, data->map);
1477 			m_freem(data->m);
1478 			data->m = NULL;
1479 		}
1480 	}
1481 	/* Clear TX descriptors. */
1482 	memset(ring->desc, 0, ring->desc_dma.size);
1483 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1484 	    BUS_DMASYNC_PREWRITE);
1485 	sc->qfullmsk &= ~(1 << ring->qid);
1486 	ring->queued = 0;
1487 	ring->cur = 0;
1488 }
1489 
1490 static void
1491 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1492 {
1493 	int i;
1494 
1495 	iwn_dma_contig_free(&ring->desc_dma);
1496 	iwn_dma_contig_free(&ring->cmd_dma);
1497 
1498 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1499 		struct iwn_tx_data *data = &ring->data[i];
1500 
1501 		if (data->m != NULL) {
1502 			bus_dmamap_sync(ring->data_dmat, data->map,
1503 			    BUS_DMASYNC_POSTWRITE);
1504 			bus_dmamap_unload(ring->data_dmat, data->map);
1505 			m_freem(data->m);
1506 		}
1507 		if (data->map != NULL)
1508 			bus_dmamap_destroy(ring->data_dmat, data->map);
1509 	}
1510 }
1511 
1512 static void
1513 iwn5000_ict_reset(struct iwn_softc *sc)
1514 {
1515 	/* Disable interrupts. */
1516 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1517 
1518 	/* Reset ICT table. */
1519 	memset(sc->ict, 0, IWN_ICT_SIZE);
1520 	sc->ict_cur = 0;
1521 
1522 	/* Set physical address of ICT table (4KB aligned.) */
1523 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1524 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1525 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1526 
1527 	/* Enable periodic RX interrupt. */
1528 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1529 	/* Switch to ICT interrupt mode in driver. */
1530 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1531 
1532 	/* Re-enable interrupts. */
1533 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1534 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1535 }
1536 
1537 static int
1538 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1539 {
1540 	const struct iwn_hal *hal = sc->sc_hal;
1541 	int error;
1542 	uint16_t val;
1543 
1544 	/* Check whether adapter has an EEPROM or an OTPROM. */
1545 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1546 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1547 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1548 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1549 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1550 
1551 	/* Adapter has to be powered on for EEPROM access to work. */
1552 	error = iwn_apm_init(sc);
1553 	if (error != 0) {
1554 		device_printf(sc->sc_dev,
1555 		    "%s: could not power ON adapter, error %d\n",
1556 		    __func__, error);
1557 		return error;
1558 	}
1559 
1560 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1561 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1562 		return EIO;
1563 	}
1564 	error = iwn_eeprom_lock(sc);
1565 	if (error != 0) {
1566 		device_printf(sc->sc_dev,
1567 		    "%s: could not lock ROM, error %d\n",
1568 		    __func__, error);
1569 		return error;
1570 	}
1571 
1572 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1573 		error = iwn_init_otprom(sc);
1574 		if (error != 0) {
1575 			device_printf(sc->sc_dev,
1576 			    "%s: could not initialize OTPROM, error %d\n",
1577 			    __func__, error);
1578 			return error;
1579 		}
1580 	}
1581 
1582 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1583 	sc->rfcfg = le16toh(val);
1584 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1585 
1586 	/* Read MAC address. */
1587 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1588 
1589 	/* Read adapter-specific information from EEPROM. */
1590 	hal->read_eeprom(sc);
1591 
1592 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1593 
1594 	iwn_eeprom_unlock(sc);
1595 	return 0;
1596 }
1597 
1598 static void
1599 iwn4965_read_eeprom(struct iwn_softc *sc)
1600 {
1601 	uint32_t addr;
1602 	int i;
1603 	uint16_t val;
1604 
1605 	/* Read regulatory domain (4 ASCII characters.) */
1606 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1607 
1608 	/* Read the list of authorized channels (20MHz ones only.) */
1609 	for (i = 0; i < 5; i++) {
1610 		addr = iwn4965_regulatory_bands[i];
1611 		iwn_read_eeprom_channels(sc, i, addr);
1612 	}
1613 
1614 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1615 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1616 	sc->maxpwr2GHz = val & 0xff;
1617 	sc->maxpwr5GHz = val >> 8;
1618 	/* Check that EEPROM values are within valid range. */
1619 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1620 		sc->maxpwr5GHz = 38;
1621 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1622 		sc->maxpwr2GHz = 38;
1623 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1624 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1625 
1626 	/* Read samples for each TX power group. */
1627 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1628 	    sizeof sc->bands);
1629 
1630 	/* Read voltage at which samples were taken. */
1631 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1632 	sc->eeprom_voltage = (int16_t)le16toh(val);
1633 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1634 	    sc->eeprom_voltage);
1635 
1636 #ifdef IWN_DEBUG
1637 	/* Print samples. */
1638 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1639 		for (i = 0; i < IWN_NBANDS; i++)
1640 			iwn4965_print_power_group(sc, i);
1641 	}
1642 #endif
1643 }
1644 
1645 #ifdef IWN_DEBUG
1646 static void
1647 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1648 {
1649 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1650 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1651 	int j, c;
1652 
1653 	printf("===band %d===\n", i);
1654 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1655 	printf("chan1 num=%d\n", chans[0].num);
1656 	for (c = 0; c < 2; c++) {
1657 		for (j = 0; j < IWN_NSAMPLES; j++) {
1658 			printf("chain %d, sample %d: temp=%d gain=%d "
1659 			    "power=%d pa_det=%d\n", c, j,
1660 			    chans[0].samples[c][j].temp,
1661 			    chans[0].samples[c][j].gain,
1662 			    chans[0].samples[c][j].power,
1663 			    chans[0].samples[c][j].pa_det);
1664 		}
1665 	}
1666 	printf("chan2 num=%d\n", chans[1].num);
1667 	for (c = 0; c < 2; c++) {
1668 		for (j = 0; j < IWN_NSAMPLES; j++) {
1669 			printf("chain %d, sample %d: temp=%d gain=%d "
1670 			    "power=%d pa_det=%d\n", c, j,
1671 			    chans[1].samples[c][j].temp,
1672 			    chans[1].samples[c][j].gain,
1673 			    chans[1].samples[c][j].power,
1674 			    chans[1].samples[c][j].pa_det);
1675 		}
1676 	}
1677 }
1678 #endif
1679 
1680 static void
1681 iwn5000_read_eeprom(struct iwn_softc *sc)
1682 {
1683 	struct iwn5000_eeprom_calib_hdr hdr;
1684 	int32_t temp, volt;
1685 	uint32_t addr, base;
1686 	int i;
1687 	uint16_t val;
1688 
1689 	/* Read regulatory domain (4 ASCII characters.) */
1690 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1691 	base = le16toh(val);
1692 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1693 	    sc->eeprom_domain, 4);
1694 
1695 	/* Read the list of authorized channels (20MHz ones only.) */
1696 	for (i = 0; i < 5; i++) {
1697 		addr = base + iwn5000_regulatory_bands[i];
1698 		iwn_read_eeprom_channels(sc, i, addr);
1699 	}
1700 
1701 	/* Read enhanced TX power information for 6000 Series. */
1702 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1703 		iwn_read_eeprom_enhinfo(sc);
1704 
1705 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1706 	base = le16toh(val);
1707 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1708 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1709 	    "%s: calib version=%u pa type=%u voltage=%u\n",
1710 	    __func__, hdr.version, hdr.pa_type, le16toh(hdr.volt));
1711 	sc->calib_ver = hdr.version;
1712 
1713 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1714 		/* Compute temperature offset. */
1715 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1716 		temp = le16toh(val);
1717 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1718 		volt = le16toh(val);
1719 		sc->temp_off = temp - (volt / -5);
1720 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1721 		    temp, volt, sc->temp_off);
1722 	}
1723 }
1724 
1725 /*
1726  * Translate EEPROM flags to net80211.
1727  */
1728 static uint32_t
1729 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1730 {
1731 	uint32_t nflags;
1732 
1733 	nflags = 0;
1734 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1735 		nflags |= IEEE80211_CHAN_PASSIVE;
1736 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1737 		nflags |= IEEE80211_CHAN_NOADHOC;
1738 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1739 		nflags |= IEEE80211_CHAN_DFS;
1740 		/* XXX apparently IBSS may still be marked */
1741 		nflags |= IEEE80211_CHAN_NOADHOC;
1742 	}
1743 
1744 	return nflags;
1745 }
1746 
1747 static void
1748 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1749 {
1750 	struct ifnet *ifp = sc->sc_ifp;
1751 	struct ieee80211com *ic = ifp->if_l2com;
1752 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1753 	const struct iwn_chan_band *band = &iwn_bands[n];
1754 	struct ieee80211_channel *c;
1755 	int i, chan, nflags;
1756 
1757 	for (i = 0; i < band->nchan; i++) {
1758 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1759 			DPRINTF(sc, IWN_DEBUG_RESET,
1760 			    "skip chan %d flags 0x%x maxpwr %d\n",
1761 			    band->chan[i], channels[i].flags,
1762 			    channels[i].maxpwr);
1763 			continue;
1764 		}
1765 		chan = band->chan[i];
1766 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1767 
1768 		DPRINTF(sc, IWN_DEBUG_RESET,
1769 		    "add chan %d flags 0x%x maxpwr %d\n",
1770 		    chan, channels[i].flags, channels[i].maxpwr);
1771 
1772 		c = &ic->ic_channels[ic->ic_nchans++];
1773 		c->ic_ieee = chan;
1774 		c->ic_maxregpower = channels[i].maxpwr;
1775 		c->ic_maxpower = 2*c->ic_maxregpower;
1776 
1777 		/* Save maximum allowed TX power for this channel. */
1778 		sc->maxpwr[chan] = channels[i].maxpwr;
1779 
1780 		if (n == 0) {	/* 2GHz band */
1781 			c->ic_freq = ieee80211_ieee2mhz(chan,
1782 			    IEEE80211_CHAN_G);
1783 
1784 			/* G =>'s B is supported */
1785 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1786 
1787 			c = &ic->ic_channels[ic->ic_nchans++];
1788 			c[0] = c[-1];
1789 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1790 		} else {	/* 5GHz band */
1791 			c->ic_freq = ieee80211_ieee2mhz(chan,
1792 			    IEEE80211_CHAN_A);
1793 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1794 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1795 		}
1796 #if 0	/* HT */
1797 		/* XXX no constraints on using HT20 */
1798 		/* add HT20, HT40 added separately */
1799 		c = &ic->ic_channels[ic->ic_nchans++];
1800 		c[0] = c[-1];
1801 		c->ic_flags |= IEEE80211_CHAN_HT20;
1802 		/* XXX NARROW =>'s 1/2 and 1/4 width? */
1803 #endif
1804 	}
1805 }
1806 
1807 #if 0	/* HT */
1808 static void
1809 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1810 {
1811 	struct ifnet *ifp = sc->sc_ifp;
1812 	struct ieee80211com *ic = ifp->if_l2com;
1813 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1814 	const struct iwn_chan_band *band = &iwn_bands[n];
1815 	struct ieee80211_channel *c, *cent, *extc;
1816 	int i;
1817 
1818 	for (i = 0; i < band->nchan; i++) {
1819 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
1820 		    !(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
1821 			DPRINTF(sc, IWN_DEBUG_RESET,
1822 			    "skip chan %d flags 0x%x maxpwr %d\n",
1823 			    band->chan[i], channels[i].flags,
1824 			    channels[i].maxpwr);
1825 			continue;
1826 		}
1827 		/*
1828 		 * Each entry defines an HT40 channel pair; find the
1829 		 * center channel, then the extension channel above.
1830 		 */
1831 		cent = ieee80211_find_channel_byieee(ic, band->chan[i],
1832 		    band->flags & ~IEEE80211_CHAN_HT);
1833 		if (cent == NULL) {	/* XXX shouldn't happen */
1834 			device_printf(sc->sc_dev,
1835 			    "%s: no entry for channel %d\n",
1836 			    __func__, band->chan[i]);
1837 			continue;
1838 		}
1839 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1840 		    band->flags & ~IEEE80211_CHAN_HT);
1841 		if (extc == NULL) {
1842 			DPRINTF(sc, IWN_DEBUG_RESET,
1843 			    "skip chan %d, extension channel not found\n",
1844 			    band->chan[i]);
1845 			continue;
1846 		}
1847 
1848 		DPRINTF(sc, IWN_DEBUG_RESET,
1849 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1850 		    band->chan[i], channels[i].flags, channels[i].maxpwr);
1851 
1852 		c = &ic->ic_channels[ic->ic_nchans++];
1853 		c[0] = cent[0];
1854 		c->ic_extieee = extc->ic_ieee;
1855 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1856 		c->ic_flags |= IEEE80211_CHAN_HT40U;
1857 		c = &ic->ic_channels[ic->ic_nchans++];
1858 		c[0] = extc[0];
1859 		c->ic_extieee = cent->ic_ieee;
1860 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1861 		c->ic_flags |= IEEE80211_CHAN_HT40D;
1862 	}
1863 }
1864 #endif
1865 
1866 static void
1867 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1868 {
1869 	struct ifnet *ifp = sc->sc_ifp;
1870 	struct ieee80211com *ic = ifp->if_l2com;
1871 
1872 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1873 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1874 
1875 	if (n < 5)
1876 		iwn_read_eeprom_band(sc, n);
1877 #if 0	/* HT */
1878 	else
1879 		iwn_read_eeprom_ht40(sc, n);
1880 #endif
1881 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1882 }
1883 
1884 #define nitems(_a)	(sizeof((_a)) / sizeof((_a)[0]))
1885 
1886 static void
1887 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1888 {
1889 	struct iwn_eeprom_enhinfo enhinfo[35];
1890 	uint16_t val, base;
1891 	int8_t maxpwr;
1892 	int i;
1893 
1894 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1895 	base = le16toh(val);
1896 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1897 	    enhinfo, sizeof enhinfo);
1898 
1899 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1900 	for (i = 0; i < nitems(enhinfo); i++) {
1901 		if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
1902 			continue;	/* Skip invalid entries. */
1903 
1904 		maxpwr = 0;
1905 		if (sc->txchainmask & IWN_ANT_A)
1906 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1907 		if (sc->txchainmask & IWN_ANT_B)
1908 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1909 		if (sc->txchainmask & IWN_ANT_C)
1910 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1911 		if (sc->ntxchains == 2)
1912 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1913 		else if (sc->ntxchains == 3)
1914 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1915 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1916 
1917 		DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
1918 		    maxpwr);
1919 		sc->enh_maxpwr[i] = maxpwr;
1920 	}
1921 }
1922 
1923 static struct ieee80211_node *
1924 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
1925 {
1926 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
1927 }
1928 
1929 static void
1930 iwn_newassoc(struct ieee80211_node *ni, int isnew)
1931 {
1932 	/* XXX move */
1933 	ieee80211_ratectl_node_init(ni);
1934 }
1935 
1936 static int
1937 iwn_media_change(struct ifnet *ifp)
1938 {
1939 	int error = ieee80211_media_change(ifp);
1940 	/* NB: only the fixed rate can change and that doesn't need a reset */
1941 	return (error == ENETRESET ? 0 : error);
1942 }
1943 
1944 static int
1945 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1946 {
1947 	struct iwn_vap *ivp = IWN_VAP(vap);
1948 	struct ieee80211com *ic = vap->iv_ic;
1949 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1950 	int error;
1951 
1952 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
1953 		ieee80211_state_name[vap->iv_state],
1954 		ieee80211_state_name[nstate]);
1955 
1956 	IEEE80211_UNLOCK(ic);
1957 	IWN_LOCK(sc);
1958 	callout_stop(&sc->sc_timer_to);
1959 
1960 	switch (nstate) {
1961 	case IEEE80211_S_ASSOC:
1962 		if (vap->iv_state != IEEE80211_S_RUN)
1963 			break;
1964 		/* FALLTHROUGH */
1965 	case IEEE80211_S_AUTH:
1966 		if (vap->iv_state == IEEE80211_S_AUTH)
1967 			break;
1968 
1969 		/*
1970 		 * !AUTH -> AUTH transition requires state reset to handle
1971 		 * reassociations correctly.
1972 		 */
1973 		sc->rxon.associd = 0;
1974 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1975 		iwn_calib_reset(sc);
1976 		error = iwn_auth(sc, vap);
1977 		break;
1978 
1979 	case IEEE80211_S_RUN:
1980 		/*
1981 		 * RUN -> RUN transition; Just restart the timers.
1982 		 */
1983 		if (vap->iv_state == IEEE80211_S_RUN) {
1984 			iwn_calib_reset(sc);
1985 			break;
1986 		}
1987 
1988 		/*
1989 		 * !RUN -> RUN requires setting the association id
1990 		 * which is done with a firmware cmd.  We also defer
1991 		 * starting the timers until that work is done.
1992 		 */
1993 		error = iwn_run(sc, vap);
1994 		break;
1995 
1996 	default:
1997 		break;
1998 	}
1999 	IWN_UNLOCK(sc);
2000 	IEEE80211_LOCK(ic);
2001 	return ivp->iv_newstate(vap, nstate, arg);
2002 }
2003 
2004 /*
2005  * Process an RX_PHY firmware notification.  This is usually immediately
2006  * followed by an MPDU_RX_DONE notification.
2007  */
2008 static void
2009 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2010     struct iwn_rx_data *data)
2011 {
2012 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2013 
2014 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2015 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2016 
2017 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2018 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2019 	sc->last_rx_valid = 1;
2020 }
2021 
2022 static void
2023 iwn_timer_timeout(void *arg)
2024 {
2025 	struct iwn_softc *sc = arg;
2026 	uint32_t flags = 0;
2027 
2028 	IWN_LOCK_ASSERT(sc);
2029 
2030 	if (sc->calib_cnt && --sc->calib_cnt == 0) {
2031 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2032 		    "send statistics request");
2033 		(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2034 		    sizeof flags, 1);
2035 		sc->calib_cnt = 60;	/* do calibration every 60s */
2036 	}
2037 	iwn_watchdog(sc);		/* NB: piggyback tx watchdog */
2038 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
2039 }
2040 
2041 static void
2042 iwn_calib_reset(struct iwn_softc *sc)
2043 {
2044 	callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
2045 	sc->calib_cnt = 60;		/* do calibration every 60s */
2046 }
2047 
2048 /*
2049  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2050  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2051  */
2052 static void
2053 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2054     struct iwn_rx_data *data)
2055 {
2056 	const struct iwn_hal *hal = sc->sc_hal;
2057 	struct ifnet *ifp = sc->sc_ifp;
2058 	struct ieee80211com *ic = ifp->if_l2com;
2059 	struct iwn_rx_ring *ring = &sc->rxq;
2060 	struct ieee80211_frame *wh;
2061 	struct ieee80211_node *ni;
2062 	struct mbuf *m, *m1;
2063 	struct iwn_rx_stat *stat;
2064 	caddr_t head;
2065 	bus_addr_t paddr;
2066 	uint32_t flags;
2067 	int error, len, rssi, nf;
2068 
2069 	if (desc->type == IWN_MPDU_RX_DONE) {
2070 		/* Check for prior RX_PHY notification. */
2071 		if (!sc->last_rx_valid) {
2072 			DPRINTF(sc, IWN_DEBUG_ANY,
2073 			    "%s: missing RX_PHY\n", __func__);
2074 			ifp->if_ierrors++;
2075 			return;
2076 		}
2077 		sc->last_rx_valid = 0;
2078 		stat = &sc->last_rx_stat;
2079 	} else
2080 		stat = (struct iwn_rx_stat *)(desc + 1);
2081 
2082 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2083 
2084 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2085 		device_printf(sc->sc_dev,
2086 		    "%s: invalid rx statistic header, len %d\n",
2087 		    __func__, stat->cfg_phy_len);
2088 		ifp->if_ierrors++;
2089 		return;
2090 	}
2091 	if (desc->type == IWN_MPDU_RX_DONE) {
2092 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2093 		head = (caddr_t)(mpdu + 1);
2094 		len = le16toh(mpdu->len);
2095 	} else {
2096 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2097 		len = le16toh(stat->len);
2098 	}
2099 
2100 	flags = le32toh(*(uint32_t *)(head + len));
2101 
2102 	/* Discard frames with a bad FCS early. */
2103 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2104 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
2105 		    __func__, flags);
2106 		ifp->if_ierrors++;
2107 		return;
2108 	}
2109 	/* Discard frames that are too short. */
2110 	if (len < sizeof (*wh)) {
2111 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2112 		    __func__, len);
2113 		ifp->if_ierrors++;
2114 		return;
2115 	}
2116 
2117 	/* XXX don't need mbuf, just dma buffer */
2118 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
2119 	if (m1 == NULL) {
2120 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2121 		    __func__);
2122 		ifp->if_ierrors++;
2123 		return;
2124 	}
2125 	bus_dmamap_unload(ring->data_dmat, data->map);
2126 
2127 	error = bus_dmamap_load(ring->data_dmat, data->map,
2128 	    mtod(m1, caddr_t), MJUMPAGESIZE,
2129 	    iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2130 	if (error != 0 && error != EFBIG) {
2131 		device_printf(sc->sc_dev,
2132 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2133 		m_freem(m1);
2134 		ifp->if_ierrors++;
2135 		return;
2136 	}
2137 
2138 	m = data->m;
2139 	data->m = m1;
2140 	/* Update RX descriptor. */
2141 	ring->desc[ring->cur] = htole32(paddr >> 8);
2142 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2143 	    BUS_DMASYNC_PREWRITE);
2144 
2145 	/* Finalize mbuf. */
2146 	m->m_pkthdr.rcvif = ifp;
2147 	m->m_data = head;
2148 	m->m_pkthdr.len = m->m_len = len;
2149 
2150 	rssi = hal->get_rssi(sc, stat);
2151 
2152 	/* Grab a reference to the source node. */
2153 	wh = mtod(m, struct ieee80211_frame *);
2154 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2155 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2156 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2157 
2158 	if (ieee80211_radiotap_active(ic)) {
2159 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2160 
2161 		tap->wr_tsft = htole64(stat->tstamp);
2162 		tap->wr_flags = 0;
2163 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2164 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2165 		switch (stat->rate) {
2166 		/* CCK rates. */
2167 		case  10: tap->wr_rate =   2; break;
2168 		case  20: tap->wr_rate =   4; break;
2169 		case  55: tap->wr_rate =  11; break;
2170 		case 110: tap->wr_rate =  22; break;
2171 		/* OFDM rates. */
2172 		case 0xd: tap->wr_rate =  12; break;
2173 		case 0xf: tap->wr_rate =  18; break;
2174 		case 0x5: tap->wr_rate =  24; break;
2175 		case 0x7: tap->wr_rate =  36; break;
2176 		case 0x9: tap->wr_rate =  48; break;
2177 		case 0xb: tap->wr_rate =  72; break;
2178 		case 0x1: tap->wr_rate =  96; break;
2179 		case 0x3: tap->wr_rate = 108; break;
2180 		/* Unknown rate: should not happen. */
2181 		default:  tap->wr_rate =   0;
2182 		}
2183 		tap->wr_dbm_antsignal = rssi;
2184 		tap->wr_dbm_antnoise = nf;
2185 	}
2186 
2187 	IWN_UNLOCK(sc);
2188 
2189 	/* Send the frame to the 802.11 layer. */
2190 	if (ni != NULL) {
2191 		(void) ieee80211_input(ni, m, rssi - nf, nf);
2192 		/* Node is no longer needed. */
2193 		ieee80211_free_node(ni);
2194 	} else
2195 		(void) ieee80211_input_all(ic, m, rssi - nf, nf);
2196 
2197 	IWN_LOCK(sc);
2198 }
2199 
2200 #if 0	/* HT */
2201 /* Process an incoming Compressed BlockAck. */
2202 static void
2203 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2204     struct iwn_rx_data *data)
2205 {
2206 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2207 	struct iwn_tx_ring *txq;
2208 
2209 	txq = &sc->txq[letoh16(ba->qid)];
2210 	/* XXX TBD */
2211 }
2212 #endif
2213 
2214 /*
2215  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2216  * The latter is sent by the firmware after each received beacon.
2217  */
2218 static void
2219 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2220     struct iwn_rx_data *data)
2221 {
2222 	const struct iwn_hal *hal = sc->sc_hal;
2223 	struct ifnet *ifp = sc->sc_ifp;
2224 	struct ieee80211com *ic = ifp->if_l2com;
2225 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2226 	struct iwn_calib_state *calib = &sc->calib;
2227 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2228 	int temp;
2229 
2230 	/* Beacon stats are meaningful only when associated and not scanning. */
2231 	if (vap->iv_state != IEEE80211_S_RUN ||
2232 	    (ic->ic_flags & IEEE80211_F_SCAN))
2233 		return;
2234 
2235 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2236 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
2237 	iwn_calib_reset(sc);	/* Reset TX power calibration timeout. */
2238 
2239 	/* Test if temperature has changed. */
2240 	if (stats->general.temp != sc->rawtemp) {
2241 		/* Convert "raw" temperature to degC. */
2242 		sc->rawtemp = stats->general.temp;
2243 		temp = hal->get_temperature(sc);
2244 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2245 		    __func__, temp);
2246 
2247 		/* Update TX power if need be (4965AGN only.) */
2248 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2249 			iwn4965_power_calibration(sc, temp);
2250 	}
2251 
2252 	if (desc->type != IWN_BEACON_STATISTICS)
2253 		return;	/* Reply to a statistics request. */
2254 
2255 	sc->noise = iwn_get_noise(&stats->rx.general);
2256 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2257 
2258 	/* Test that RSSI and noise are present in stats report. */
2259 	if (le32toh(stats->rx.general.flags) != 1) {
2260 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2261 		    "received statistics without RSSI");
2262 		return;
2263 	}
2264 
2265 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2266 		iwn_collect_noise(sc, &stats->rx.general);
2267 	else if (calib->state == IWN_CALIB_STATE_RUN)
2268 		iwn_tune_sensitivity(sc, &stats->rx);
2269 }
2270 
2271 /*
2272  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2273  * and 5000 adapters have different incompatible TX status formats.
2274  */
2275 static void
2276 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2277     struct iwn_rx_data *data)
2278 {
2279 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2280 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2281 
2282 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2283 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2284 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2285 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2286 	    le32toh(stat->status));
2287 
2288 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2289 	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2290 }
2291 
2292 static void
2293 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2294     struct iwn_rx_data *data)
2295 {
2296 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2297 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2298 
2299 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2300 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2301 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2302 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2303 	    le32toh(stat->status));
2304 
2305 #ifdef notyet
2306 	/* Reset TX scheduler slot. */
2307 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2308 #endif
2309 
2310 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2311 	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2312 }
2313 
2314 /*
2315  * Adapter-independent backend for TX_DONE firmware notifications.
2316  */
2317 static void
2318 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2319     uint8_t status)
2320 {
2321 	struct ifnet *ifp = sc->sc_ifp;
2322 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2323 	struct iwn_tx_data *data = &ring->data[desc->idx];
2324 	struct mbuf *m;
2325 	struct ieee80211_node *ni;
2326 	struct ieee80211vap *vap;
2327 
2328 	KASSERT(data->ni != NULL, ("no node"));
2329 
2330 	/* Unmap and free mbuf. */
2331 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2332 	bus_dmamap_unload(ring->data_dmat, data->map);
2333 	m = data->m, data->m = NULL;
2334 	ni = data->ni, data->ni = NULL;
2335 	vap = ni->ni_vap;
2336 
2337 	if (m->m_flags & M_TXCB) {
2338 		/*
2339 		 * Channels marked for "radar" require traffic to be received
2340 		 * to unlock before we can transmit.  Until traffic is seen
2341 		 * any attempt to transmit is returned immediately with status
2342 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2343 		 * happen on first authenticate after scanning.  To workaround
2344 		 * this we ignore a failure of this sort in AUTH state so the
2345 		 * 802.11 layer will fall back to using a timeout to wait for
2346 		 * the AUTH reply.  This allows the firmware time to see
2347 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2348 		 * unclear why the firmware does not maintain state for
2349 		 * channels recently visited as this would allow immediate
2350 		 * use of the channel after a scan (where we see traffic).
2351 		 */
2352 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2353 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2354 			ieee80211_process_callback(ni, m, 0);
2355 		else
2356 			ieee80211_process_callback(ni, m,
2357 			    (status & IWN_TX_FAIL) != 0);
2358 	}
2359 
2360 	/*
2361 	 * Update rate control statistics for the node.
2362 	 */
2363 	if (status & 0x80) {
2364 		ifp->if_oerrors++;
2365 		ieee80211_ratectl_tx_complete(vap, ni,
2366 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2367 	} else {
2368 		ieee80211_ratectl_tx_complete(vap, ni,
2369 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2370 	}
2371 	m_freem(m);
2372 	ieee80211_free_node(ni);
2373 
2374 	sc->sc_tx_timer = 0;
2375 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2376 		sc->qfullmsk &= ~(1 << ring->qid);
2377 		if (sc->qfullmsk == 0 &&
2378 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2379 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2380 			iwn_start_locked(ifp);
2381 		}
2382 	}
2383 }
2384 
2385 /*
2386  * Process a "command done" firmware notification.  This is where we wakeup
2387  * processes waiting for a synchronous command completion.
2388  */
2389 static void
2390 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2391 {
2392 	struct iwn_tx_ring *ring = &sc->txq[4];
2393 	struct iwn_tx_data *data;
2394 
2395 	if ((desc->qid & 0xf) != 4)
2396 		return;	/* Not a command ack. */
2397 
2398 	data = &ring->data[desc->idx];
2399 
2400 	/* If the command was mapped in an mbuf, free it. */
2401 	if (data->m != NULL) {
2402 		bus_dmamap_unload(ring->data_dmat, data->map);
2403 		m_freem(data->m);
2404 		data->m = NULL;
2405 	}
2406 	wakeup(&ring->desc[desc->idx]);
2407 }
2408 
2409 /*
2410  * Process an INT_FH_RX or INT_SW_RX interrupt.
2411  */
2412 static void
2413 iwn_notif_intr(struct iwn_softc *sc)
2414 {
2415 	struct ifnet *ifp = sc->sc_ifp;
2416 	struct ieee80211com *ic = ifp->if_l2com;
2417 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2418 	uint16_t hw;
2419 
2420 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2421 	    BUS_DMASYNC_POSTREAD);
2422 
2423 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2424 	while (sc->rxq.cur != hw) {
2425 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2426 		struct iwn_rx_desc *desc;
2427 
2428 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2429 		    BUS_DMASYNC_POSTREAD);
2430 		desc = mtod(data->m, struct iwn_rx_desc *);
2431 
2432 		DPRINTF(sc, IWN_DEBUG_RECV,
2433 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2434 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2435 		    desc->type, iwn_intr_str(desc->type),
2436 		    le16toh(desc->len));
2437 
2438 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2439 			iwn_cmd_done(sc, desc);
2440 
2441 		switch (desc->type) {
2442 		case IWN_RX_PHY:
2443 			iwn_rx_phy(sc, desc, data);
2444 			break;
2445 
2446 		case IWN_RX_DONE:		/* 4965AGN only. */
2447 		case IWN_MPDU_RX_DONE:
2448 			/* An 802.11 frame has been received. */
2449 			iwn_rx_done(sc, desc, data);
2450 			break;
2451 
2452 #if 0	/* HT */
2453 		case IWN_RX_COMPRESSED_BA:
2454 			/* A Compressed BlockAck has been received. */
2455 			iwn_rx_compressed_ba(sc, desc, data);
2456 			break;
2457 #endif
2458 
2459 		case IWN_TX_DONE:
2460 			/* An 802.11 frame has been transmitted. */
2461 			sc->sc_hal->tx_done(sc, desc, data);
2462 			break;
2463 
2464 		case IWN_RX_STATISTICS:
2465 		case IWN_BEACON_STATISTICS:
2466 			iwn_rx_statistics(sc, desc, data);
2467 			break;
2468 
2469 		case IWN_BEACON_MISSED:
2470 		{
2471 			struct iwn_beacon_missed *miss =
2472 			    (struct iwn_beacon_missed *)(desc + 1);
2473 			int misses;
2474 
2475 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2476 			    BUS_DMASYNC_POSTREAD);
2477 			misses = le32toh(miss->consecutive);
2478 
2479 			/* XXX not sure why we're notified w/ zero */
2480 			if (misses == 0)
2481 				break;
2482 			DPRINTF(sc, IWN_DEBUG_STATE,
2483 			    "%s: beacons missed %d/%d\n", __func__,
2484 			    misses, le32toh(miss->total));
2485 
2486 			/*
2487 			 * If more than 5 consecutive beacons are missed,
2488 			 * reinitialize the sensitivity state machine.
2489 			 */
2490 			if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
2491 				(void) iwn_init_sensitivity(sc);
2492 			if (misses >= vap->iv_bmissthreshold) {
2493 				IWN_UNLOCK(sc);
2494 				ieee80211_beacon_miss(ic);
2495 				IWN_LOCK(sc);
2496 			}
2497 			break;
2498 		}
2499 		case IWN_UC_READY:
2500 		{
2501 			struct iwn_ucode_info *uc =
2502 			    (struct iwn_ucode_info *)(desc + 1);
2503 
2504 			/* The microcontroller is ready. */
2505 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2506 			    BUS_DMASYNC_POSTREAD);
2507 			DPRINTF(sc, IWN_DEBUG_RESET,
2508 			    "microcode alive notification version=%d.%d "
2509 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2510 			    uc->subtype, le32toh(uc->valid));
2511 
2512 			if (le32toh(uc->valid) != 1) {
2513 				device_printf(sc->sc_dev,
2514 				    "microcontroller initialization failed");
2515 				break;
2516 			}
2517 			if (uc->subtype == IWN_UCODE_INIT) {
2518 				/* Save microcontroller report. */
2519 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2520 			}
2521 			/* Save the address of the error log in SRAM. */
2522 			sc->errptr = le32toh(uc->errptr);
2523 			break;
2524 		}
2525 		case IWN_STATE_CHANGED:
2526 		{
2527 			uint32_t *status = (uint32_t *)(desc + 1);
2528 
2529 			/*
2530 			 * State change allows hardware switch change to be
2531 			 * noted. However, we handle this in iwn_intr as we
2532 			 * get both the enable/disble intr.
2533 			 */
2534 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2535 			    BUS_DMASYNC_POSTREAD);
2536 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
2537 			    le32toh(*status));
2538 			break;
2539 		}
2540 		case IWN_START_SCAN:
2541 		{
2542 			struct iwn_start_scan *scan =
2543 			    (struct iwn_start_scan *)(desc + 1);
2544 
2545 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2546 			    BUS_DMASYNC_POSTREAD);
2547 			DPRINTF(sc, IWN_DEBUG_ANY,
2548 			    "%s: scanning channel %d status %x\n",
2549 			    __func__, scan->chan, le32toh(scan->status));
2550 			break;
2551 		}
2552 		case IWN_STOP_SCAN:
2553 		{
2554 			struct iwn_stop_scan *scan =
2555 			    (struct iwn_stop_scan *)(desc + 1);
2556 
2557 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2558 			    BUS_DMASYNC_POSTREAD);
2559 			DPRINTF(sc, IWN_DEBUG_STATE,
2560 			    "scan finished nchan=%d status=%d chan=%d\n",
2561 			    scan->nchan, scan->status, scan->chan);
2562 
2563 			IWN_UNLOCK(sc);
2564 			ieee80211_scan_next(vap);
2565 			IWN_LOCK(sc);
2566 			break;
2567 		}
2568 		case IWN5000_CALIBRATION_RESULT:
2569 			iwn5000_rx_calib_result(sc, desc, data);
2570 			break;
2571 
2572 		case IWN5000_CALIBRATION_DONE:
2573 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2574 			wakeup(sc);
2575 			break;
2576 		}
2577 
2578 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2579 	}
2580 
2581 	/* Tell the firmware what we have processed. */
2582 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2583 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2584 }
2585 
2586 /*
2587  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2588  * from power-down sleep mode.
2589  */
2590 static void
2591 iwn_wakeup_intr(struct iwn_softc *sc)
2592 {
2593 	int qid;
2594 
2595 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
2596 	    __func__);
2597 
2598 	/* Wakeup RX and TX rings. */
2599 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2600 	for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
2601 		struct iwn_tx_ring *ring = &sc->txq[qid];
2602 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2603 	}
2604 }
2605 
2606 static void
2607 iwn_rftoggle_intr(struct iwn_softc *sc)
2608 {
2609 	struct ifnet *ifp = sc->sc_ifp;
2610 	struct ieee80211com *ic = ifp->if_l2com;
2611 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
2612 
2613 	IWN_LOCK_ASSERT(sc);
2614 
2615 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
2616 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2617 	if (tmp & IWN_GP_CNTRL_RFKILL)
2618 		ieee80211_runtask(ic, &sc->sc_radioon_task);
2619 	else
2620 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
2621 }
2622 
2623 /*
2624  * Dump the error log of the firmware when a firmware panic occurs.  Although
2625  * we can't debug the firmware because it is neither open source nor free, it
2626  * can help us to identify certain classes of problems.
2627  */
2628 static void
2629 iwn_fatal_intr(struct iwn_softc *sc)
2630 {
2631 	const struct iwn_hal *hal = sc->sc_hal;
2632 	struct iwn_fw_dump dump;
2633 	int i;
2634 
2635 	IWN_LOCK_ASSERT(sc);
2636 
2637 	/* Force a complete recalibration on next init. */
2638 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2639 
2640 	/* Check that the error log address is valid. */
2641 	if (sc->errptr < IWN_FW_DATA_BASE ||
2642 	    sc->errptr + sizeof (dump) >
2643 	    IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
2644 		printf("%s: bad firmware error log address 0x%08x\n",
2645 		    __func__, sc->errptr);
2646 		return;
2647 	}
2648 	if (iwn_nic_lock(sc) != 0) {
2649 		printf("%s: could not read firmware error log\n",
2650 		    __func__);
2651 		return;
2652 	}
2653 	/* Read firmware error log from SRAM. */
2654 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2655 	    sizeof (dump) / sizeof (uint32_t));
2656 	iwn_nic_unlock(sc);
2657 
2658 	if (dump.valid == 0) {
2659 		printf("%s: firmware error log is empty\n",
2660 		    __func__);
2661 		return;
2662 	}
2663 	printf("firmware error log:\n");
2664 	printf("  error type      = \"%s\" (0x%08X)\n",
2665 	    (dump.id < nitems(iwn_fw_errmsg)) ?
2666 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2667 	    dump.id);
2668 	printf("  program counter = 0x%08X\n", dump.pc);
2669 	printf("  source line     = 0x%08X\n", dump.src_line);
2670 	printf("  error data      = 0x%08X%08X\n",
2671 	    dump.error_data[0], dump.error_data[1]);
2672 	printf("  branch link     = 0x%08X%08X\n",
2673 	    dump.branch_link[0], dump.branch_link[1]);
2674 	printf("  interrupt link  = 0x%08X%08X\n",
2675 	    dump.interrupt_link[0], dump.interrupt_link[1]);
2676 	printf("  time            = %u\n", dump.time[0]);
2677 
2678 	/* Dump driver status (TX and RX rings) while we're here. */
2679 	printf("driver status:\n");
2680 	for (i = 0; i < hal->ntxqs; i++) {
2681 		struct iwn_tx_ring *ring = &sc->txq[i];
2682 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2683 		    i, ring->qid, ring->cur, ring->queued);
2684 	}
2685 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
2686 }
2687 
2688 static void
2689 iwn_intr(void *arg)
2690 {
2691 	struct iwn_softc *sc = arg;
2692 	struct ifnet *ifp = sc->sc_ifp;
2693 	uint32_t r1, r2, tmp;
2694 
2695 	IWN_LOCK(sc);
2696 
2697 	/* Disable interrupts. */
2698 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2699 
2700 	/* Read interrupts from ICT (fast) or from registers (slow). */
2701 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2702 		tmp = 0;
2703 		while (sc->ict[sc->ict_cur] != 0) {
2704 			tmp |= sc->ict[sc->ict_cur];
2705 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2706 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2707 		}
2708 		tmp = le32toh(tmp);
2709 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2710 			tmp = 0;
2711 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2712 			tmp |= 0x8000;
2713 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2714 		r2 = 0;	/* Unused. */
2715 	} else {
2716 		r1 = IWN_READ(sc, IWN_INT);
2717 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2718 			return;	/* Hardware gone! */
2719 		r2 = IWN_READ(sc, IWN_FH_INT);
2720 	}
2721 
2722 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
2723 
2724 	if (r1 == 0 && r2 == 0)
2725 		goto done;	/* Interrupt not for us. */
2726 
2727 	/* Acknowledge interrupts. */
2728 	IWN_WRITE(sc, IWN_INT, r1);
2729 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2730 		IWN_WRITE(sc, IWN_FH_INT, r2);
2731 
2732 	if (r1 & IWN_INT_RF_TOGGLED) {
2733 		iwn_rftoggle_intr(sc);
2734 		goto done;
2735 	}
2736 	if (r1 & IWN_INT_CT_REACHED) {
2737 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
2738 		    __func__);
2739 	}
2740 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2741 		iwn_fatal_intr(sc);
2742 		ifp->if_flags &= ~IFF_UP;
2743 		iwn_stop_locked(sc);
2744 		goto done;
2745 	}
2746 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2747 	    (r2 & IWN_FH_INT_RX)) {
2748 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2749 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2750 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2751 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2752 			    IWN_INT_PERIODIC_DIS);
2753 			iwn_notif_intr(sc);
2754 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2755 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2756 				    IWN_INT_PERIODIC_ENA);
2757 			}
2758 		} else
2759 			iwn_notif_intr(sc);
2760 	}
2761 
2762 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2763 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2764 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2765 		wakeup(sc);	/* FH DMA transfer completed. */
2766 	}
2767 
2768 	if (r1 & IWN_INT_ALIVE)
2769 		wakeup(sc);	/* Firmware is alive. */
2770 
2771 	if (r1 & IWN_INT_WAKEUP)
2772 		iwn_wakeup_intr(sc);
2773 
2774 done:
2775 	/* Re-enable interrupts. */
2776 	if (ifp->if_flags & IFF_UP)
2777 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2778 
2779 	IWN_UNLOCK(sc);
2780 }
2781 
2782 /*
2783  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2784  * 5000 adapters use a slightly different format.)
2785  */
2786 static void
2787 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2788     uint16_t len)
2789 {
2790 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2791 
2792 	*w = htole16(len + 8);
2793 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2794 	    BUS_DMASYNC_PREWRITE);
2795 	if (idx < IWN_SCHED_WINSZ) {
2796 		*(w + IWN_TX_RING_COUNT) = *w;
2797 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2798 		    BUS_DMASYNC_PREWRITE);
2799 	}
2800 }
2801 
2802 static void
2803 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2804     uint16_t len)
2805 {
2806 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2807 
2808 	*w = htole16(id << 12 | (len + 8));
2809 
2810 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2811 	    BUS_DMASYNC_PREWRITE);
2812 	if (idx < IWN_SCHED_WINSZ) {
2813 		*(w + IWN_TX_RING_COUNT) = *w;
2814 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2815 		    BUS_DMASYNC_PREWRITE);
2816 	}
2817 }
2818 
2819 #ifdef notyet
2820 static void
2821 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2822 {
2823 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2824 
2825 	*w = (*w & htole16(0xf000)) | htole16(1);
2826 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2827 	    BUS_DMASYNC_PREWRITE);
2828 	if (idx < IWN_SCHED_WINSZ) {
2829 		*(w + IWN_TX_RING_COUNT) = *w;
2830 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
2831 		    BUS_DMASYNC_PREWRITE);
2832 	}
2833 }
2834 #endif
2835 
2836 static uint8_t
2837 iwn_plcp_signal(int rate) {
2838 	int i;
2839 
2840 	for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
2841 		if (rate == iwn_rates[i].rate)
2842 			return i;
2843 	}
2844 
2845 	return 0;
2846 }
2847 
2848 static int
2849 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
2850     struct iwn_tx_ring *ring)
2851 {
2852 	const struct iwn_hal *hal = sc->sc_hal;
2853 	const struct ieee80211_txparam *tp;
2854 	const struct iwn_rate *rinfo;
2855 	struct ieee80211vap *vap = ni->ni_vap;
2856 	struct ieee80211com *ic = ni->ni_ic;
2857 	struct iwn_node *wn = (void *)ni;
2858 	struct iwn_tx_desc *desc;
2859 	struct iwn_tx_data *data;
2860 	struct iwn_tx_cmd *cmd;
2861 	struct iwn_cmd_data *tx;
2862 	struct ieee80211_frame *wh;
2863 	struct ieee80211_key *k = NULL;
2864 	struct mbuf *mnew;
2865 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
2866 	uint32_t flags;
2867 	u_int hdrlen;
2868 	int totlen, error, pad, nsegs = 0, i, rate;
2869 	uint8_t ridx, type, txant;
2870 
2871 	IWN_LOCK_ASSERT(sc);
2872 
2873 	wh = mtod(m, struct ieee80211_frame *);
2874 	hdrlen = ieee80211_anyhdrsize(wh);
2875 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2876 
2877 	desc = &ring->desc[ring->cur];
2878 	data = &ring->data[ring->cur];
2879 
2880 	/* Choose a TX rate index. */
2881 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2882 	if (type == IEEE80211_FC0_TYPE_MGT)
2883 		rate = tp->mgmtrate;
2884 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
2885 		rate = tp->mcastrate;
2886 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
2887 		rate = tp->ucastrate;
2888 	else {
2889 		/* XXX pass pktlen */
2890 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
2891 		rate = ni->ni_txrate;
2892 	}
2893 	ridx = iwn_plcp_signal(rate);
2894 	rinfo = &iwn_rates[ridx];
2895 
2896 	/* Encrypt the frame if need be. */
2897 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2898 		k = ieee80211_crypto_encap(ni, m);
2899 		if (k == NULL) {
2900 			m_freem(m);
2901 			return ENOBUFS;
2902 		}
2903 		/* Packet header may have moved, reset our local pointer. */
2904 		wh = mtod(m, struct ieee80211_frame *);
2905 	}
2906 	totlen = m->m_pkthdr.len;
2907 
2908 	if (ieee80211_radiotap_active_vap(vap)) {
2909 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
2910 
2911 		tap->wt_flags = 0;
2912 		tap->wt_rate = rinfo->rate;
2913 		if (k != NULL)
2914 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2915 
2916 		ieee80211_radiotap_tx(vap, m);
2917 	}
2918 
2919 	/* Prepare TX firmware command. */
2920 	cmd = &ring->cmd[ring->cur];
2921 	cmd->code = IWN_CMD_TX_DATA;
2922 	cmd->flags = 0;
2923 	cmd->qid = ring->qid;
2924 	cmd->idx = ring->cur;
2925 
2926 	tx = (struct iwn_cmd_data *)cmd->data;
2927 	/* NB: No need to clear tx, all fields are reinitialized here. */
2928 	tx->scratch = 0;	/* clear "scratch" area */
2929 
2930 	flags = 0;
2931 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
2932 		flags |= IWN_TX_NEED_ACK;
2933 	if ((wh->i_fc[0] &
2934 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
2935 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
2936 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
2937 
2938 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
2939 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
2940 
2941 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
2942 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2943 		/* NB: Group frames are sent using CCK in 802.11b/g. */
2944 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
2945 			flags |= IWN_TX_NEED_RTS;
2946 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
2947 		    ridx >= IWN_RIDX_OFDM6) {
2948 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
2949 				flags |= IWN_TX_NEED_CTS;
2950 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
2951 				flags |= IWN_TX_NEED_RTS;
2952 		}
2953 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
2954 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
2955 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
2956 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
2957 				flags |= IWN_TX_NEED_PROTECTION;
2958 			} else
2959 				flags |= IWN_TX_FULL_TXOP;
2960 		}
2961 	}
2962 
2963 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
2964 	    type != IEEE80211_FC0_TYPE_DATA)
2965 		tx->id = hal->broadcast_id;
2966 	else
2967 		tx->id = wn->id;
2968 
2969 	if (type == IEEE80211_FC0_TYPE_MGT) {
2970 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2971 
2972 		/* Tell HW to set timestamp in probe responses. */
2973 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2974 			flags |= IWN_TX_INSERT_TSTAMP;
2975 
2976 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
2977 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
2978 			tx->timeout = htole16(3);
2979 		else
2980 			tx->timeout = htole16(2);
2981 	} else
2982 		tx->timeout = htole16(0);
2983 
2984 	if (hdrlen & 3) {
2985 		/* First segment length must be a multiple of 4. */
2986 		flags |= IWN_TX_NEED_PADDING;
2987 		pad = 4 - (hdrlen & 3);
2988 	} else
2989 		pad = 0;
2990 
2991 	tx->len = htole16(totlen);
2992 	tx->tid = 0;
2993 	tx->rts_ntries = 60;
2994 	tx->data_ntries = 15;
2995 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
2996 	tx->plcp = rinfo->plcp;
2997 	tx->rflags = rinfo->flags;
2998 	if (tx->id == hal->broadcast_id) {
2999 		/* Group or management frame. */
3000 		tx->linkq = 0;
3001 		/* XXX Alternate between antenna A and B? */
3002 		txant = IWN_LSB(sc->txchainmask);
3003 		tx->rflags |= IWN_RFLAG_ANT(txant);
3004 	} else {
3005 		tx->linkq = IWN_RIDX_OFDM54 - ridx;
3006 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3007 	}
3008 
3009 	/* Set physical address of "scratch area". */
3010 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3011 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3012 
3013 	/* Copy 802.11 header in TX command. */
3014 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3015 
3016 	/* Trim 802.11 header. */
3017 	m_adj(m, hdrlen);
3018 	tx->security = 0;
3019 	tx->flags = htole32(flags);
3020 
3021 	if (m->m_len > 0) {
3022 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3023 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3024 		if (error == EFBIG) {
3025 			/* too many fragments, linearize */
3026 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3027 			if (mnew == NULL) {
3028 				device_printf(sc->sc_dev,
3029 				    "%s: could not defrag mbuf\n", __func__);
3030 				m_freem(m);
3031 				return ENOBUFS;
3032 			}
3033 			m = mnew;
3034 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3035 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3036 		}
3037 		if (error != 0) {
3038 			device_printf(sc->sc_dev,
3039 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3040 			    __func__, error);
3041 			m_freem(m);
3042 			return error;
3043 		}
3044 	}
3045 
3046 	data->m = m;
3047 	data->ni = ni;
3048 
3049 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3050 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3051 
3052 	/* Fill TX descriptor. */
3053 	desc->nsegs = 1 + nsegs;
3054 	/* First DMA segment is used by the TX command. */
3055 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3056 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3057 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3058 	/* Other DMA segments are for data payload. */
3059 	for (i = 1; i <= nsegs; i++) {
3060 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3061 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3062 		    segs[i - 1].ds_len << 4);
3063 	}
3064 
3065 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3066 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3067 	    BUS_DMASYNC_PREWRITE);
3068 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3069 	    BUS_DMASYNC_PREWRITE);
3070 
3071 #ifdef notyet
3072 	/* Update TX scheduler. */
3073 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3074 #endif
3075 
3076 	/* Kick TX ring. */
3077 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3078 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3079 
3080 	/* Mark TX ring as full if we reach a certain threshold. */
3081 	if (++ring->queued > IWN_TX_RING_HIMARK)
3082 		sc->qfullmsk |= 1 << ring->qid;
3083 
3084 	return 0;
3085 }
3086 
3087 static int
3088 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3089     struct ieee80211_node *ni, struct iwn_tx_ring *ring,
3090     const struct ieee80211_bpf_params *params)
3091 {
3092 	const struct iwn_hal *hal = sc->sc_hal;
3093 	const struct iwn_rate *rinfo;
3094 	struct ifnet *ifp = sc->sc_ifp;
3095 	struct ieee80211vap *vap = ni->ni_vap;
3096 	struct ieee80211com *ic = ifp->if_l2com;
3097 	struct iwn_tx_cmd *cmd;
3098 	struct iwn_cmd_data *tx;
3099 	struct ieee80211_frame *wh;
3100 	struct iwn_tx_desc *desc;
3101 	struct iwn_tx_data *data;
3102 	struct mbuf *mnew;
3103 	bus_addr_t paddr;
3104 	bus_dma_segment_t segs[IWN_MAX_SCATTER];
3105 	uint32_t flags;
3106 	u_int hdrlen;
3107 	int totlen, error, pad, nsegs = 0, i, rate;
3108 	uint8_t ridx, type, txant;
3109 
3110 	IWN_LOCK_ASSERT(sc);
3111 
3112 	wh = mtod(m, struct ieee80211_frame *);
3113 	hdrlen = ieee80211_anyhdrsize(wh);
3114 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3115 
3116 	desc = &ring->desc[ring->cur];
3117 	data = &ring->data[ring->cur];
3118 
3119 	/* Choose a TX rate index. */
3120 	rate = params->ibp_rate0;
3121 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
3122 		/* XXX fall back to mcast/mgmt rate? */
3123 		m_freem(m);
3124 		return EINVAL;
3125 	}
3126 	ridx = iwn_plcp_signal(rate);
3127 	rinfo = &iwn_rates[ridx];
3128 
3129 	totlen = m->m_pkthdr.len;
3130 
3131 	/* Prepare TX firmware command. */
3132 	cmd = &ring->cmd[ring->cur];
3133 	cmd->code = IWN_CMD_TX_DATA;
3134 	cmd->flags = 0;
3135 	cmd->qid = ring->qid;
3136 	cmd->idx = ring->cur;
3137 
3138 	tx = (struct iwn_cmd_data *)cmd->data;
3139 	/* NB: No need to clear tx, all fields are reinitialized here. */
3140 	tx->scratch = 0;	/* clear "scratch" area */
3141 
3142 	flags = 0;
3143 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3144 		flags |= IWN_TX_NEED_ACK;
3145 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3146 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3147 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3148 			flags &= ~IWN_TX_NEED_RTS;
3149 			flags |= IWN_TX_NEED_PROTECTION;
3150 		} else
3151 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3152 	}
3153 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3154 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3155 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3156 			flags &= ~IWN_TX_NEED_CTS;
3157 			flags |= IWN_TX_NEED_PROTECTION;
3158 		} else
3159 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3160 	}
3161 	if (type == IEEE80211_FC0_TYPE_MGT) {
3162 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3163 
3164 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3165 			flags |= IWN_TX_INSERT_TSTAMP;
3166 
3167 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3168 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3169 			tx->timeout = htole16(3);
3170 		else
3171 			tx->timeout = htole16(2);
3172 	} else
3173 		tx->timeout = htole16(0);
3174 
3175 	if (hdrlen & 3) {
3176 		/* First segment length must be a multiple of 4. */
3177 		flags |= IWN_TX_NEED_PADDING;
3178 		pad = 4 - (hdrlen & 3);
3179 	} else
3180 		pad = 0;
3181 
3182 	if (ieee80211_radiotap_active_vap(vap)) {
3183 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3184 
3185 		tap->wt_flags = 0;
3186 		tap->wt_rate = rate;
3187 
3188 		ieee80211_radiotap_tx(vap, m);
3189 	}
3190 
3191 	tx->len = htole16(totlen);
3192 	tx->tid = 0;
3193 	tx->id = hal->broadcast_id;
3194 	tx->rts_ntries = params->ibp_try1;
3195 	tx->data_ntries = params->ibp_try0;
3196 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3197 	tx->plcp = rinfo->plcp;
3198 	tx->rflags = rinfo->flags;
3199 	/* Group or management frame. */
3200 	tx->linkq = 0;
3201 	txant = IWN_LSB(sc->txchainmask);
3202 	tx->rflags |= IWN_RFLAG_ANT(txant);
3203 	/* Set physical address of "scratch area". */
3204 	paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
3205 	tx->loaddr = htole32(IWN_LOADDR(paddr));
3206 	tx->hiaddr = IWN_HIADDR(paddr);
3207 
3208 	/* Copy 802.11 header in TX command. */
3209 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3210 
3211 	/* Trim 802.11 header. */
3212 	m_adj(m, hdrlen);
3213 	tx->security = 0;
3214 	tx->flags = htole32(flags);
3215 
3216 	if (m->m_len > 0) {
3217 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
3218 		    m, segs, &nsegs, BUS_DMA_NOWAIT);
3219 		if (error == EFBIG) {
3220 			/* Too many fragments, linearize. */
3221 			mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3222 			if (mnew == NULL) {
3223 				device_printf(sc->sc_dev,
3224 				    "%s: could not defrag mbuf\n", __func__);
3225 				m_freem(m);
3226 				return ENOBUFS;
3227 			}
3228 			m = mnew;
3229 			error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
3230 			    data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
3231 		}
3232 		if (error != 0) {
3233 			device_printf(sc->sc_dev,
3234 			    "%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
3235 			    __func__, error);
3236 			m_freem(m);
3237 			return error;
3238 		}
3239 	}
3240 
3241 	data->m = m;
3242 	data->ni = ni;
3243 
3244 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3245 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3246 
3247 	/* Fill TX descriptor. */
3248 	desc->nsegs = 1 + nsegs;
3249 	/* First DMA segment is used by the TX command. */
3250 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3251 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3252 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3253 	/* Other DMA segments are for data payload. */
3254 	for (i = 1; i <= nsegs; i++) {
3255 		desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
3256 		desc->segs[i].len  = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
3257 		    segs[i - 1].ds_len << 4);
3258 	}
3259 
3260 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3261 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3262 	    BUS_DMASYNC_PREWRITE);
3263 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3264 	    BUS_DMASYNC_PREWRITE);
3265 
3266 #ifdef notyet
3267 	/* Update TX scheduler. */
3268 	hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3269 #endif
3270 
3271 	/* Kick TX ring. */
3272 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3273 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3274 
3275 	/* Mark TX ring as full if we reach a certain threshold. */
3276 	if (++ring->queued > IWN_TX_RING_HIMARK)
3277 		sc->qfullmsk |= 1 << ring->qid;
3278 
3279 	return 0;
3280 }
3281 
3282 static int
3283 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3284 	const struct ieee80211_bpf_params *params)
3285 {
3286 	struct ieee80211com *ic = ni->ni_ic;
3287 	struct ifnet *ifp = ic->ic_ifp;
3288 	struct iwn_softc *sc = ifp->if_softc;
3289 	struct iwn_tx_ring *txq;
3290 	int error = 0;
3291 
3292 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3293 		ieee80211_free_node(ni);
3294 		m_freem(m);
3295 		return ENETDOWN;
3296 	}
3297 
3298 	IWN_LOCK(sc);
3299 	if (params == NULL)
3300 		txq = &sc->txq[M_WME_GETAC(m)];
3301 	else
3302 		txq = &sc->txq[params->ibp_pri & 3];
3303 
3304 	if (params == NULL) {
3305 		/*
3306 		 * Legacy path; interpret frame contents to decide
3307 		 * precisely how to send the frame.
3308 		 */
3309 		error = iwn_tx_data(sc, m, ni, txq);
3310 	} else {
3311 		/*
3312 		 * Caller supplied explicit parameters to use in
3313 		 * sending the frame.
3314 		 */
3315 		error = iwn_tx_data_raw(sc, m, ni, txq, params);
3316 	}
3317 	if (error != 0) {
3318 		/* NB: m is reclaimed on tx failure */
3319 		ieee80211_free_node(ni);
3320 		ifp->if_oerrors++;
3321 	}
3322 	IWN_UNLOCK(sc);
3323 	return error;
3324 }
3325 
3326 static void
3327 iwn_start(struct ifnet *ifp)
3328 {
3329 	struct iwn_softc *sc = ifp->if_softc;
3330 
3331 	IWN_LOCK(sc);
3332 	iwn_start_locked(ifp);
3333 	IWN_UNLOCK(sc);
3334 }
3335 
3336 static void
3337 iwn_start_locked(struct ifnet *ifp)
3338 {
3339 	struct iwn_softc *sc = ifp->if_softc;
3340 	struct ieee80211_node *ni;
3341 	struct iwn_tx_ring *txq;
3342 	struct mbuf *m;
3343 	int pri;
3344 
3345 	IWN_LOCK_ASSERT(sc);
3346 
3347 	for (;;) {
3348 		if (sc->qfullmsk != 0) {
3349 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3350 			break;
3351 		}
3352 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3353 		if (m == NULL)
3354 			break;
3355 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3356 		pri = M_WME_GETAC(m);
3357 		txq = &sc->txq[pri];
3358 		if (iwn_tx_data(sc, m, ni, txq) != 0) {
3359 			ifp->if_oerrors++;
3360 			ieee80211_free_node(ni);
3361 			break;
3362 		}
3363 		sc->sc_tx_timer = 5;
3364 	}
3365 }
3366 
3367 static void
3368 iwn_watchdog(struct iwn_softc *sc)
3369 {
3370 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
3371 		struct ifnet *ifp = sc->sc_ifp;
3372 		struct ieee80211com *ic = ifp->if_l2com;
3373 
3374 		if_printf(ifp, "device timeout\n");
3375 		ieee80211_runtask(ic, &sc->sc_reinit_task);
3376 	}
3377 }
3378 
3379 static int
3380 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3381 {
3382 	struct iwn_softc *sc = ifp->if_softc;
3383 	struct ieee80211com *ic = ifp->if_l2com;
3384 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3385 	struct ifreq *ifr = (struct ifreq *) data;
3386 	int error = 0, startall = 0, stop = 0;
3387 
3388 	switch (cmd) {
3389 	case SIOCSIFFLAGS:
3390 		IWN_LOCK(sc);
3391 		if (ifp->if_flags & IFF_UP) {
3392 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3393 				iwn_init_locked(sc);
3394 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3395 					startall = 1;
3396 				else
3397 					stop = 1;
3398 			}
3399 		} else {
3400 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3401 				iwn_stop_locked(sc);
3402 		}
3403 		IWN_UNLOCK(sc);
3404 		if (startall)
3405 			ieee80211_start_all(ic);
3406 		else if (vap != NULL && stop)
3407 			ieee80211_stop(vap);
3408 		break;
3409 	case SIOCGIFMEDIA:
3410 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3411 		break;
3412 	case SIOCGIFADDR:
3413 		error = ether_ioctl(ifp, cmd, data);
3414 		break;
3415 	default:
3416 		error = EINVAL;
3417 		break;
3418 	}
3419 	return error;
3420 }
3421 
3422 /*
3423  * Send a command to the firmware.
3424  */
3425 static int
3426 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3427 {
3428 	struct iwn_tx_ring *ring = &sc->txq[4];
3429 	struct iwn_tx_desc *desc;
3430 	struct iwn_tx_data *data;
3431 	struct iwn_tx_cmd *cmd;
3432 	struct mbuf *m;
3433 	bus_addr_t paddr;
3434 	int totlen, error;
3435 
3436 	IWN_LOCK_ASSERT(sc);
3437 
3438 	desc = &ring->desc[ring->cur];
3439 	data = &ring->data[ring->cur];
3440 	totlen = 4 + size;
3441 
3442 	if (size > sizeof cmd->data) {
3443 		/* Command is too large to fit in a descriptor. */
3444 		if (totlen > MCLBYTES)
3445 			return EINVAL;
3446 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3447 		if (m == NULL)
3448 			return ENOMEM;
3449 		cmd = mtod(m, struct iwn_tx_cmd *);
3450 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3451 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3452 		if (error != 0) {
3453 			m_freem(m);
3454 			return error;
3455 		}
3456 		data->m = m;
3457 	} else {
3458 		cmd = &ring->cmd[ring->cur];
3459 		paddr = data->cmd_paddr;
3460 	}
3461 
3462 	cmd->code = code;
3463 	cmd->flags = 0;
3464 	cmd->qid = ring->qid;
3465 	cmd->idx = ring->cur;
3466 	memcpy(cmd->data, buf, size);
3467 
3468 	desc->nsegs = 1;
3469 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3470 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3471 
3472 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
3473 	    __func__, iwn_intr_str(cmd->code), cmd->code,
3474 	    cmd->flags, cmd->qid, cmd->idx);
3475 
3476 	if (size > sizeof cmd->data) {
3477 		bus_dmamap_sync(ring->data_dmat, data->map,
3478 		    BUS_DMASYNC_PREWRITE);
3479 	} else {
3480 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3481 		    BUS_DMASYNC_PREWRITE);
3482 	}
3483 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3484 	    BUS_DMASYNC_PREWRITE);
3485 
3486 #ifdef notyet
3487 	/* Update TX scheduler. */
3488 	sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
3489 #endif
3490 
3491 	/* Kick command ring. */
3492 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3493 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3494 
3495 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
3496 }
3497 
3498 static int
3499 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3500 {
3501 	struct iwn4965_node_info hnode;
3502 	caddr_t src, dst;
3503 
3504 	/*
3505 	 * We use the node structure for 5000 Series internally (it is
3506 	 * a superset of the one for 4965AGN). We thus copy the common
3507 	 * fields before sending the command.
3508 	 */
3509 	src = (caddr_t)node;
3510 	dst = (caddr_t)&hnode;
3511 	memcpy(dst, src, 48);
3512 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3513 	memcpy(dst + 48, src + 72, 20);
3514 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3515 }
3516 
3517 static int
3518 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3519 {
3520 	/* Direct mapping. */
3521 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3522 }
3523 
3524 #if 0	/* HT */
3525 static const uint8_t iwn_ridx_to_plcp[] = {
3526 	10, 20, 55, 110, /* CCK */
3527 	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
3528 };
3529 static const uint8_t iwn_siso_mcs_to_plcp[] = {
3530 	0, 0, 0, 0, 			/* CCK */
3531 	0, 0, 1, 2, 3, 4, 5, 6, 7	/* HT */
3532 };
3533 static const uint8_t iwn_mimo_mcs_to_plcp[] = {
3534 	0, 0, 0, 0, 			/* CCK */
3535 	8, 8, 9, 10, 11, 12, 13, 14, 15	/* HT */
3536 };
3537 #endif
3538 static const uint8_t iwn_prev_ridx[] = {
3539 	/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
3540 	0, 0, 1, 5,			/* CCK */
3541 	2, 4, 3, 6, 7, 8, 9, 10, 10	/* OFDM */
3542 };
3543 
3544 /*
3545  * Configure hardware link parameters for the specified
3546  * node operating on the specified channel.
3547  */
3548 static int
3549 iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
3550 {
3551 	struct ifnet *ifp = sc->sc_ifp;
3552 	struct ieee80211com *ic = ifp->if_l2com;
3553 	struct iwn_cmd_link_quality linkq;
3554 	const struct iwn_rate *rinfo;
3555 	int i;
3556 	uint8_t txant, ridx;
3557 
3558 	/* Use the first valid TX antenna. */
3559 	txant = IWN_LSB(sc->txchainmask);
3560 
3561 	memset(&linkq, 0, sizeof linkq);
3562 	linkq.id = id;
3563 	linkq.antmsk_1stream = txant;
3564 	linkq.antmsk_2stream = IWN_ANT_AB;
3565 	linkq.ampdu_max = 31;
3566 	linkq.ampdu_threshold = 3;
3567 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3568 
3569 #if 0	/* HT */
3570 	if (IEEE80211_IS_CHAN_HT(c))
3571 		linkq.mimo = 1;
3572 #endif
3573 
3574 	if (id == IWN_ID_BSS)
3575 		ridx = IWN_RIDX_OFDM54;
3576 	else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
3577 		ridx = IWN_RIDX_OFDM6;
3578 	else
3579 		ridx = IWN_RIDX_CCK1;
3580 
3581 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3582 		rinfo = &iwn_rates[ridx];
3583 #if 0	/* HT */
3584 		if (IEEE80211_IS_CHAN_HT40(c)) {
3585 			linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
3586 					 | IWN_RIDX_MCS;
3587 			linkq.retry[i].rflags = IWN_RFLAG_HT
3588 					 | IWN_RFLAG_HT40;
3589 			/* XXX shortGI */
3590 		} else if (IEEE80211_IS_CHAN_HT(c)) {
3591 			linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
3592 					 | IWN_RIDX_MCS;
3593 			linkq.retry[i].rflags = IWN_RFLAG_HT;
3594 			/* XXX shortGI */
3595 		} else
3596 #endif
3597 		{
3598 			linkq.retry[i].plcp = rinfo->plcp;
3599 			linkq.retry[i].rflags = rinfo->flags;
3600 		}
3601 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3602 		ridx = iwn_prev_ridx[ridx];
3603 	}
3604 #ifdef IWN_DEBUG
3605 	if (sc->sc_debug & IWN_DEBUG_STATE) {
3606 		printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
3607 		    __func__, id, linkq.mimo, linkq.antmsk_1stream);
3608 		printf("%s:", __func__);
3609 		for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
3610 			printf(" %d:%x", linkq.retry[i].plcp,
3611 			    linkq.retry[i].rflags);
3612 		printf("\n");
3613 	}
3614 #endif
3615 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3616 }
3617 
3618 /*
3619  * Broadcast node is used to send group-addressed and management frames.
3620  */
3621 static int
3622 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3623 {
3624 	const struct iwn_hal *hal = sc->sc_hal;
3625 	struct ifnet *ifp = sc->sc_ifp;
3626 	struct iwn_node_info node;
3627 	int error;
3628 
3629 	memset(&node, 0, sizeof node);
3630 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
3631 	node.id = hal->broadcast_id;
3632 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
3633 	error = hal->add_node(sc, &node, async);
3634 	if (error != 0)
3635 		return error;
3636 
3637 	error = iwn_set_link_quality(sc, hal->broadcast_id, async);
3638 	return error;
3639 }
3640 
3641 static int
3642 iwn_wme_update(struct ieee80211com *ic)
3643 {
3644 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
3645 #define	IWN_TXOP_TO_US(v)		(v<<5)
3646 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
3647 	struct iwn_edca_params cmd;
3648 	int i;
3649 
3650 	memset(&cmd, 0, sizeof cmd);
3651 	cmd.flags = htole32(IWN_EDCA_UPDATE);
3652 	for (i = 0; i < WME_NUM_AC; i++) {
3653 		const struct wmeParams *wmep =
3654 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[i];
3655 		cmd.ac[i].aifsn = wmep->wmep_aifsn;
3656 		cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
3657 		cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
3658 		cmd.ac[i].txoplimit =
3659 		    htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
3660 	}
3661 	IEEE80211_UNLOCK(ic);
3662 	IWN_LOCK(sc);
3663 	(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
3664 	IWN_UNLOCK(sc);
3665 	IEEE80211_LOCK(ic);
3666 	return 0;
3667 #undef IWN_TXOP_TO_US
3668 #undef IWN_EXP2
3669 }
3670 
3671 static void
3672 iwn_update_mcast(struct ifnet *ifp)
3673 {
3674 	/* Ignore */
3675 }
3676 
3677 static void
3678 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3679 {
3680 	struct iwn_cmd_led led;
3681 
3682 	/* Clear microcode LED ownership. */
3683 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3684 
3685 	led.which = which;
3686 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3687 	led.off = off;
3688 	led.on = on;
3689 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3690 }
3691 
3692 /*
3693  * Set the critical temperature at which the firmware will stop the radio
3694  * and notify us.
3695  */
3696 static int
3697 iwn_set_critical_temp(struct iwn_softc *sc)
3698 {
3699 	struct iwn_critical_temp crit;
3700 	int32_t temp;
3701 
3702 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3703 
3704 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3705 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3706 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3707 		temp = IWN_CTOK(110);
3708 	else
3709 		temp = 110;
3710 	memset(&crit, 0, sizeof crit);
3711 	crit.tempR = htole32(temp);
3712 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
3713 	    temp);
3714 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3715 }
3716 
3717 static int
3718 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3719 {
3720 	struct iwn_cmd_timing cmd;
3721 	uint64_t val, mod;
3722 
3723 	memset(&cmd, 0, sizeof cmd);
3724 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3725 	cmd.bintval = htole16(ni->ni_intval);
3726 	cmd.lintval = htole16(10);
3727 
3728 	/* Compute remaining time until next beacon. */
3729 	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3730 	mod = le64toh(cmd.tstamp) % val;
3731 	cmd.binitval = htole32((uint32_t)(val - mod));
3732 
3733 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
3734 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
3735 
3736 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3737 }
3738 
3739 static void
3740 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3741 {
3742 	struct ifnet *ifp = sc->sc_ifp;
3743 	struct ieee80211com *ic = ifp->if_l2com;
3744 
3745 	/* Adjust TX power if need be (delta >= 3 degC.) */
3746 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
3747 	    __func__, sc->temp, temp);
3748 	if (abs(temp - sc->temp) >= 3) {
3749 		/* Record temperature of last calibration. */
3750 		sc->temp = temp;
3751 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
3752 	}
3753 }
3754 
3755 /*
3756  * Set TX power for current channel (each rate has its own power settings).
3757  * This function takes into account the regulatory information from EEPROM,
3758  * the current temperature and the current voltage.
3759  */
3760 static int
3761 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3762     int async)
3763 {
3764 /* Fixed-point arithmetic division using a n-bit fractional part. */
3765 #define fdivround(a, b, n)	\
3766 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3767 /* Linear interpolation. */
3768 #define interpolate(x, x1, y1, x2, y2, n)	\
3769 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3770 
3771 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3772 	struct ifnet *ifp = sc->sc_ifp;
3773 	struct ieee80211com *ic = ifp->if_l2com;
3774 	struct iwn_ucode_info *uc = &sc->ucode_info;
3775 	struct iwn4965_cmd_txpower cmd;
3776 	struct iwn4965_eeprom_chan_samples *chans;
3777 	int32_t vdiff, tdiff;
3778 	int i, c, grp, maxpwr;
3779 	const uint8_t *rf_gain, *dsp_gain;
3780 	uint8_t chan;
3781 
3782 	/* Retrieve channel number. */
3783 	chan = ieee80211_chan2ieee(ic, ch);
3784 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
3785 	    chan);
3786 
3787 	memset(&cmd, 0, sizeof cmd);
3788 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3789 	cmd.chan = chan;
3790 
3791 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3792 		maxpwr   = sc->maxpwr5GHz;
3793 		rf_gain  = iwn4965_rf_gain_5ghz;
3794 		dsp_gain = iwn4965_dsp_gain_5ghz;
3795 	} else {
3796 		maxpwr   = sc->maxpwr2GHz;
3797 		rf_gain  = iwn4965_rf_gain_2ghz;
3798 		dsp_gain = iwn4965_dsp_gain_2ghz;
3799 	}
3800 
3801 	/* Compute voltage compensation. */
3802 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3803 	if (vdiff > 0)
3804 		vdiff *= 2;
3805 	if (abs(vdiff) > 2)
3806 		vdiff = 0;
3807 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3808 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3809 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
3810 
3811 	/* Get channel attenuation group. */
3812 	if (chan <= 20)		/* 1-20 */
3813 		grp = 4;
3814 	else if (chan <= 43)	/* 34-43 */
3815 		grp = 0;
3816 	else if (chan <= 70)	/* 44-70 */
3817 		grp = 1;
3818 	else if (chan <= 124)	/* 71-124 */
3819 		grp = 2;
3820 	else			/* 125-200 */
3821 		grp = 3;
3822 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3823 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
3824 
3825 	/* Get channel sub-band. */
3826 	for (i = 0; i < IWN_NBANDS; i++)
3827 		if (sc->bands[i].lo != 0 &&
3828 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3829 			break;
3830 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3831 		return EINVAL;
3832 	chans = sc->bands[i].chans;
3833 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3834 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
3835 
3836 	for (c = 0; c < 2; c++) {
3837 		uint8_t power, gain, temp;
3838 		int maxchpwr, pwr, ridx, idx;
3839 
3840 		power = interpolate(chan,
3841 		    chans[0].num, chans[0].samples[c][1].power,
3842 		    chans[1].num, chans[1].samples[c][1].power, 1);
3843 		gain  = interpolate(chan,
3844 		    chans[0].num, chans[0].samples[c][1].gain,
3845 		    chans[1].num, chans[1].samples[c][1].gain, 1);
3846 		temp  = interpolate(chan,
3847 		    chans[0].num, chans[0].samples[c][1].temp,
3848 		    chans[1].num, chans[1].samples[c][1].temp, 1);
3849 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3850 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
3851 		    __func__, c, power, gain, temp);
3852 
3853 		/* Compute temperature compensation. */
3854 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3855 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3856 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
3857 		    __func__, tdiff, sc->temp, temp);
3858 
3859 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3860 			/* Convert dBm to half-dBm. */
3861 			maxchpwr = sc->maxpwr[chan] * 2;
3862 			if ((ridx / 8) & 1)
3863 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3864 
3865 			pwr = maxpwr;
3866 
3867 			/* Adjust TX power based on rate. */
3868 			if ((ridx % 8) == 5)
3869 				pwr -= 15;	/* OFDM48: -7.5dB */
3870 			else if ((ridx % 8) == 6)
3871 				pwr -= 17;	/* OFDM54: -8.5dB */
3872 			else if ((ridx % 8) == 7)
3873 				pwr -= 20;	/* OFDM60: -10dB */
3874 			else
3875 				pwr -= 10;	/* Others: -5dB */
3876 
3877 			/* Do not exceed channel max TX power. */
3878 			if (pwr > maxchpwr)
3879 				pwr = maxchpwr;
3880 
3881 			idx = gain - (pwr - power) - tdiff - vdiff;
3882 			if ((ridx / 8) & 1)	/* MIMO */
3883 				idx += (int32_t)le32toh(uc->atten[grp][c]);
3884 
3885 			if (cmd.band == 0)
3886 				idx += 9;	/* 5GHz */
3887 			if (ridx == IWN_RIDX_MAX)
3888 				idx += 5;	/* CCK */
3889 
3890 			/* Make sure idx stays in a valid range. */
3891 			if (idx < 0)
3892 				idx = 0;
3893 			else if (idx > IWN4965_MAX_PWR_INDEX)
3894 				idx = IWN4965_MAX_PWR_INDEX;
3895 
3896 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3897 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
3898 			    __func__, c, ridx, idx);
3899 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3900 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3901 		}
3902 	}
3903 
3904 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
3905 	    "%s: set tx power for chan %d\n", __func__, chan);
3906 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3907 
3908 #undef interpolate
3909 #undef fdivround
3910 }
3911 
3912 static int
3913 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
3914     int async)
3915 {
3916 	struct iwn5000_cmd_txpower cmd;
3917 
3918 	/*
3919 	 * TX power calibration is handled automatically by the firmware
3920 	 * for 5000 Series.
3921 	 */
3922 	memset(&cmd, 0, sizeof cmd);
3923 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3924 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3925 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3926 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
3927 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
3928 }
3929 
3930 /*
3931  * Retrieve the maximum RSSI (in dBm) among receivers.
3932  */
3933 static int
3934 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3935 {
3936 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
3937 	uint8_t mask, agc;
3938 	int rssi;
3939 
3940 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3941 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3942 
3943 	rssi = 0;
3944 #if 0
3945 	if (mask & IWN_ANT_A)	/* Ant A */
3946 		rssi = max(rssi, phy->rssi[0]);
3947 	if (mask & IWN_ATH_B)	/* Ant B */
3948 		rssi = max(rssi, phy->rssi[2]);
3949 	if (mask & IWN_ANT_C)	/* Ant C */
3950 		rssi = max(rssi, phy->rssi[4]);
3951 #else
3952 	rssi = max(rssi, phy->rssi[0]);
3953 	rssi = max(rssi, phy->rssi[2]);
3954 	rssi = max(rssi, phy->rssi[4]);
3955 #endif
3956 
3957 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
3958 	    "result %d\n", __func__, agc, mask,
3959 	    phy->rssi[0], phy->rssi[2], phy->rssi[4],
3960 	    rssi - agc - IWN_RSSI_TO_DBM);
3961 	return rssi - agc - IWN_RSSI_TO_DBM;
3962 }
3963 
3964 static int
3965 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
3966 {
3967 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
3968 	int rssi;
3969 	uint8_t agc;
3970 
3971 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3972 
3973 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3974 		   le16toh(phy->rssi[1]) & 0xff);
3975 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3976 
3977 	DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
3978 	    "result %d\n", __func__, agc,
3979 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
3980 	    rssi - agc - IWN_RSSI_TO_DBM);
3981 	return rssi - agc - IWN_RSSI_TO_DBM;
3982 }
3983 
3984 /*
3985  * Retrieve the average noise (in dBm) among receivers.
3986  */
3987 static int
3988 iwn_get_noise(const struct iwn_rx_general_stats *stats)
3989 {
3990 	int i, total, nbant, noise;
3991 
3992 	total = nbant = 0;
3993 	for (i = 0; i < 3; i++) {
3994 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3995 			continue;
3996 		total += noise;
3997 		nbant++;
3998 	}
3999 	/* There should be at least one antenna but check anyway. */
4000 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4001 }
4002 
4003 /*
4004  * Compute temperature (in degC) from last received statistics.
4005  */
4006 static int
4007 iwn4965_get_temperature(struct iwn_softc *sc)
4008 {
4009 	struct iwn_ucode_info *uc = &sc->ucode_info;
4010 	int32_t r1, r2, r3, r4, temp;
4011 
4012 	r1 = le32toh(uc->temp[0].chan20MHz);
4013 	r2 = le32toh(uc->temp[1].chan20MHz);
4014 	r3 = le32toh(uc->temp[2].chan20MHz);
4015 	r4 = le32toh(sc->rawtemp);
4016 
4017 	if (r1 == r3)	/* Prevents division by 0 (should not happen.) */
4018 		return 0;
4019 
4020 	/* Sign-extend 23-bit R4 value to 32-bit. */
4021 	r4 = (r4 << 8) >> 8;
4022 	/* Compute temperature in Kelvin. */
4023 	temp = (259 * (r4 - r2)) / (r3 - r1);
4024 	temp = (temp * 97) / 100 + 8;
4025 
4026 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4027 	    IWN_KTOC(temp));
4028 	return IWN_KTOC(temp);
4029 }
4030 
4031 static int
4032 iwn5000_get_temperature(struct iwn_softc *sc)
4033 {
4034 	int32_t temp;
4035 
4036 	/*
4037 	 * Temperature is not used by the driver for 5000 Series because
4038 	 * TX power calibration is handled by firmware.  We export it to
4039 	 * users through the sensor framework though.
4040 	 */
4041 	temp = le32toh(sc->rawtemp);
4042 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4043 		temp = (temp / -5) + sc->temp_off;
4044 		temp = IWN_KTOC(temp);
4045 	}
4046 	return temp;
4047 }
4048 
4049 /*
4050  * Initialize sensitivity calibration state machine.
4051  */
4052 static int
4053 iwn_init_sensitivity(struct iwn_softc *sc)
4054 {
4055 	const struct iwn_hal *hal = sc->sc_hal;
4056 	struct iwn_calib_state *calib = &sc->calib;
4057 	uint32_t flags;
4058 	int error;
4059 
4060 	/* Reset calibration state machine. */
4061 	memset(calib, 0, sizeof (*calib));
4062 	calib->state = IWN_CALIB_STATE_INIT;
4063 	calib->cck_state = IWN_CCK_STATE_HIFA;
4064 	/* Set initial correlation values. */
4065 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4066 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4067 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4068 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4069 	calib->cck_x4      = 125;
4070 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4071 	calib->energy_cck  = sc->limits->energy_cck;
4072 
4073 	/* Write initial sensitivity. */
4074 	error = iwn_send_sensitivity(sc);
4075 	if (error != 0)
4076 		return error;
4077 
4078 	/* Write initial gains. */
4079 	error = hal->init_gains(sc);
4080 	if (error != 0)
4081 		return error;
4082 
4083 	/* Request statistics at each beacon interval. */
4084 	flags = 0;
4085 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
4086 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4087 }
4088 
4089 /*
4090  * Collect noise and RSSI statistics for the first 20 beacons received
4091  * after association and use them to determine connected antennas and
4092  * to set differential gains.
4093  */
4094 static void
4095 iwn_collect_noise(struct iwn_softc *sc,
4096     const struct iwn_rx_general_stats *stats)
4097 {
4098 	const struct iwn_hal *hal = sc->sc_hal;
4099 	struct iwn_calib_state *calib = &sc->calib;
4100 	uint32_t val;
4101 	int i;
4102 
4103 	/* Accumulate RSSI and noise for all 3 antennas. */
4104 	for (i = 0; i < 3; i++) {
4105 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4106 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4107 	}
4108 	/* NB: We update differential gains only once after 20 beacons. */
4109 	if (++calib->nbeacons < 20)
4110 		return;
4111 
4112 	/* Determine highest average RSSI. */
4113 	val = MAX(calib->rssi[0], calib->rssi[1]);
4114 	val = MAX(calib->rssi[2], val);
4115 
4116 	/* Determine which antennas are connected. */
4117 	sc->chainmask = sc->rxchainmask;
4118 	for (i = 0; i < 3; i++)
4119 		if (val - calib->rssi[i] > 15 * 20)
4120 			sc->chainmask &= ~(1 << i);
4121 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4122 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4123 	    __func__, sc->rxchainmask, sc->chainmask);
4124 
4125 	/* If none of the TX antennas are connected, keep at least one. */
4126 	if ((sc->chainmask & sc->txchainmask) == 0)
4127 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4128 
4129 	(void)hal->set_gains(sc);
4130 	calib->state = IWN_CALIB_STATE_RUN;
4131 
4132 #ifdef notyet
4133 	/* XXX Disable RX chains with no antennas connected. */
4134 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4135 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4136 #endif
4137 
4138 #if 0
4139 	/* XXX: not yet */
4140 	/* Enable power-saving mode if requested by user. */
4141 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4142 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4143 #endif
4144 }
4145 
4146 static int
4147 iwn4965_init_gains(struct iwn_softc *sc)
4148 {
4149 	struct iwn_phy_calib_gain cmd;
4150 
4151 	memset(&cmd, 0, sizeof cmd);
4152 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4153 	/* Differential gains initially set to 0 for all 3 antennas. */
4154 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4155 	    "%s: setting initial differential gains\n", __func__);
4156 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4157 }
4158 
4159 static int
4160 iwn5000_init_gains(struct iwn_softc *sc)
4161 {
4162 	struct iwn_phy_calib cmd;
4163 
4164 	memset(&cmd, 0, sizeof cmd);
4165 	cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
4166 	cmd.ngroups = 1;
4167 	cmd.isvalid = 1;
4168 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4169 	    "%s: setting initial differential gains\n", __func__);
4170 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4171 }
4172 
4173 static int
4174 iwn4965_set_gains(struct iwn_softc *sc)
4175 {
4176 	struct iwn_calib_state *calib = &sc->calib;
4177 	struct iwn_phy_calib_gain cmd;
4178 	int i, delta, noise;
4179 
4180 	/* Get minimal noise among connected antennas. */
4181 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4182 	for (i = 0; i < 3; i++)
4183 		if (sc->chainmask & (1 << i))
4184 			noise = MIN(calib->noise[i], noise);
4185 
4186 	memset(&cmd, 0, sizeof cmd);
4187 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4188 	/* Set differential gains for connected antennas. */
4189 	for (i = 0; i < 3; i++) {
4190 		if (sc->chainmask & (1 << i)) {
4191 			/* Compute attenuation (in unit of 1.5dB). */
4192 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4193 			/* NB: delta <= 0 */
4194 			/* Limit to [-4.5dB,0]. */
4195 			cmd.gain[i] = MIN(abs(delta), 3);
4196 			if (delta < 0)
4197 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4198 		}
4199 	}
4200 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4201 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4202 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4203 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4204 }
4205 
4206 static int
4207 iwn5000_set_gains(struct iwn_softc *sc)
4208 {
4209 	struct iwn_calib_state *calib = &sc->calib;
4210 	struct iwn_phy_calib_gain cmd;
4211 	int i, ant, delta, div;
4212 
4213 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4214 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4215 
4216 	memset(&cmd, 0, sizeof cmd);
4217 	cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
4218 	cmd.ngroups = 1;
4219 	cmd.isvalid = 1;
4220 	/* Get first available RX antenna as referential. */
4221 	ant = IWN_LSB(sc->rxchainmask);
4222 	/* Set differential gains for other antennas. */
4223 	for (i = ant + 1; i < 3; i++) {
4224 		if (sc->chainmask & (1 << i)) {
4225 			/* The delta is relative to antenna "ant". */
4226 			delta = ((int32_t)calib->noise[ant] -
4227 			    (int32_t)calib->noise[i]) / div;
4228 			/* Limit to [-4.5dB,+4.5dB]. */
4229 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4230 			if (delta < 0)
4231 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4232 		}
4233 	}
4234 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4235 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4236 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4237 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4238 }
4239 
4240 /*
4241  * Tune RF RX sensitivity based on the number of false alarms detected
4242  * during the last beacon period.
4243  */
4244 static void
4245 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4246 {
4247 #define inc(val, inc, max)			\
4248 	if ((val) < (max)) {			\
4249 		if ((val) < (max) - (inc))	\
4250 			(val) += (inc);		\
4251 		else				\
4252 			(val) = (max);		\
4253 		needs_update = 1;		\
4254 	}
4255 #define dec(val, dec, min)			\
4256 	if ((val) > (min)) {			\
4257 		if ((val) > (min) + (dec))	\
4258 			(val) -= (dec);		\
4259 		else				\
4260 			(val) = (min);		\
4261 		needs_update = 1;		\
4262 	}
4263 
4264 	const struct iwn_sensitivity_limits *limits = sc->limits;
4265 	struct iwn_calib_state *calib = &sc->calib;
4266 	uint32_t val, rxena, fa;
4267 	uint32_t energy[3], energy_min;
4268 	uint8_t noise[3], noise_ref;
4269 	int i, needs_update = 0;
4270 
4271 	/* Check that we've been enabled long enough. */
4272 	rxena = le32toh(stats->general.load);
4273 	if (rxena == 0)
4274 		return;
4275 
4276 	/* Compute number of false alarms since last call for OFDM. */
4277 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4278 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4279 	fa *= 200 * 1024;	/* 200TU */
4280 
4281 	/* Save counters values for next call. */
4282 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4283 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4284 
4285 	if (fa > 50 * rxena) {
4286 		/* High false alarm count, decrease sensitivity. */
4287 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4288 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4289 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4290 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4291 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4292 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4293 
4294 	} else if (fa < 5 * rxena) {
4295 		/* Low false alarm count, increase sensitivity. */
4296 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4297 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4298 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4299 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4300 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4301 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4302 	}
4303 
4304 	/* Compute maximum noise among 3 receivers. */
4305 	for (i = 0; i < 3; i++)
4306 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4307 	val = MAX(noise[0], noise[1]);
4308 	val = MAX(noise[2], val);
4309 	/* Insert it into our samples table. */
4310 	calib->noise_samples[calib->cur_noise_sample] = val;
4311 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4312 
4313 	/* Compute maximum noise among last 20 samples. */
4314 	noise_ref = calib->noise_samples[0];
4315 	for (i = 1; i < 20; i++)
4316 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4317 
4318 	/* Compute maximum energy among 3 receivers. */
4319 	for (i = 0; i < 3; i++)
4320 		energy[i] = le32toh(stats->general.energy[i]);
4321 	val = MIN(energy[0], energy[1]);
4322 	val = MIN(energy[2], val);
4323 	/* Insert it into our samples table. */
4324 	calib->energy_samples[calib->cur_energy_sample] = val;
4325 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4326 
4327 	/* Compute minimum energy among last 10 samples. */
4328 	energy_min = calib->energy_samples[0];
4329 	for (i = 1; i < 10; i++)
4330 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4331 	energy_min += 6;
4332 
4333 	/* Compute number of false alarms since last call for CCK. */
4334 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4335 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4336 	fa *= 200 * 1024;	/* 200TU */
4337 
4338 	/* Save counters values for next call. */
4339 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4340 	calib->fa_cck = le32toh(stats->cck.fa);
4341 
4342 	if (fa > 50 * rxena) {
4343 		/* High false alarm count, decrease sensitivity. */
4344 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4345 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4346 		calib->cck_state = IWN_CCK_STATE_HIFA;
4347 		calib->low_fa = 0;
4348 
4349 		if (calib->cck_x4 > 160) {
4350 			calib->noise_ref = noise_ref;
4351 			if (calib->energy_cck > 2)
4352 				dec(calib->energy_cck, 2, energy_min);
4353 		}
4354 		if (calib->cck_x4 < 160) {
4355 			calib->cck_x4 = 161;
4356 			needs_update = 1;
4357 		} else
4358 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4359 
4360 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4361 
4362 	} else if (fa < 5 * rxena) {
4363 		/* Low false alarm count, increase sensitivity. */
4364 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4365 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4366 		calib->cck_state = IWN_CCK_STATE_LOFA;
4367 		calib->low_fa++;
4368 
4369 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4370 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4371 		    calib->low_fa > 100)) {
4372 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4373 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4374 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4375 		}
4376 	} else {
4377 		/* Not worth to increase or decrease sensitivity. */
4378 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4379 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4380 		calib->low_fa = 0;
4381 		calib->noise_ref = noise_ref;
4382 
4383 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4384 			/* Previous interval had many false alarms. */
4385 			dec(calib->energy_cck, 8, energy_min);
4386 		}
4387 		calib->cck_state = IWN_CCK_STATE_INIT;
4388 	}
4389 
4390 	if (needs_update)
4391 		(void)iwn_send_sensitivity(sc);
4392 #undef dec
4393 #undef inc
4394 }
4395 
4396 static int
4397 iwn_send_sensitivity(struct iwn_softc *sc)
4398 {
4399 	struct iwn_calib_state *calib = &sc->calib;
4400 	struct iwn_sensitivity_cmd cmd;
4401 
4402 	memset(&cmd, 0, sizeof cmd);
4403 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4404 	/* OFDM modulation. */
4405 	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4406 	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4407 	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4408 	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4409 	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4410 	cmd.energy_ofdm_th   = htole16(62);
4411 	/* CCK modulation. */
4412 	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4413 	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4414 	cmd.energy_cck       = htole16(calib->energy_cck);
4415 	/* Barker modulation: use default values. */
4416 	cmd.corr_barker      = htole16(190);
4417 	cmd.corr_barker_mrc  = htole16(390);
4418 
4419 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4420 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4421 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4422 	    calib->ofdm_mrc_x4, calib->cck_x4,
4423 	    calib->cck_mrc_x4, calib->energy_cck);
4424 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
4425 }
4426 
4427 /*
4428  * Set STA mode power saving level (between 0 and 5).
4429  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4430  */
4431 static int
4432 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4433 {
4434 	const struct iwn_pmgt *pmgt;
4435 	struct iwn_pmgt_cmd cmd;
4436 	uint32_t max, skip_dtim;
4437 	uint32_t tmp;
4438 	int i;
4439 
4440 	/* Select which PS parameters to use. */
4441 	if (dtim <= 2)
4442 		pmgt = &iwn_pmgt[0][level];
4443 	else if (dtim <= 10)
4444 		pmgt = &iwn_pmgt[1][level];
4445 	else
4446 		pmgt = &iwn_pmgt[2][level];
4447 
4448 	memset(&cmd, 0, sizeof cmd);
4449 	if (level != 0)	/* not CAM */
4450 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4451 	if (level == 5)
4452 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4453 	/* Retrieve PCIe Active State Power Management (ASPM). */
4454 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4455 	if (!(tmp & 0x1))	/* L0s Entry disabled. */
4456 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4457 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4458 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4459 
4460 	if (dtim == 0) {
4461 		dtim = 1;
4462 		skip_dtim = 0;
4463 	} else
4464 		skip_dtim = pmgt->skip_dtim;
4465 	if (skip_dtim != 0) {
4466 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4467 		max = pmgt->intval[4];
4468 		if (max == (uint32_t)-1)
4469 			max = dtim * (skip_dtim + 1);
4470 		else if (max > dtim)
4471 			max = (max / dtim) * dtim;
4472 	} else
4473 		max = dtim;
4474 	for (i = 0; i < 5; i++)
4475 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4476 
4477 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4478 	    level);
4479 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4480 }
4481 
4482 static int
4483 iwn_config(struct iwn_softc *sc)
4484 {
4485 	const struct iwn_hal *hal = sc->sc_hal;
4486 	struct ifnet *ifp = sc->sc_ifp;
4487 	struct ieee80211com *ic = ifp->if_l2com;
4488 	struct iwn_bluetooth bluetooth;
4489 	uint32_t txmask;
4490 	int error;
4491 	uint16_t rxchain;
4492 
4493 	/* Configure valid TX chains for 5000 Series. */
4494 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4495 		txmask = htole32(sc->txchainmask);
4496 		DPRINTF(sc, IWN_DEBUG_RESET,
4497 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
4498 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4499 		    sizeof txmask, 0);
4500 		if (error != 0) {
4501 			device_printf(sc->sc_dev,
4502 			    "%s: could not configure valid TX chains, "
4503 			    "error %d\n", __func__, error);
4504 			return error;
4505 		}
4506 	}
4507 
4508 	/* Configure bluetooth coexistence. */
4509 	memset(&bluetooth, 0, sizeof bluetooth);
4510 	bluetooth.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4511 	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4512 	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4513 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
4514 	    __func__);
4515 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4516 	if (error != 0) {
4517 		device_printf(sc->sc_dev,
4518 		    "%s: could not configure bluetooth coexistence, error %d\n",
4519 		    __func__, error);
4520 		return error;
4521 	}
4522 
4523 	/* Set mode, channel, RX filter and enable RX. */
4524 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4525 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
4526 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
4527 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
4528 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4529 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
4530 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4531 	switch (ic->ic_opmode) {
4532 	case IEEE80211_M_STA:
4533 		sc->rxon.mode = IWN_MODE_STA;
4534 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4535 		break;
4536 	case IEEE80211_M_MONITOR:
4537 		sc->rxon.mode = IWN_MODE_MONITOR;
4538 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4539 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4540 		break;
4541 	default:
4542 		/* Should not get there. */
4543 		break;
4544 	}
4545 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4546 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4547 	sc->rxon.ht_single_mask = 0xff;
4548 	sc->rxon.ht_dual_mask = 0xff;
4549 	sc->rxon.ht_triple_mask = 0xff;
4550 	rxchain =
4551 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4552 	    IWN_RXCHAIN_MIMO_COUNT(2) |
4553 	    IWN_RXCHAIN_IDLE_COUNT(2);
4554 	sc->rxon.rxchain = htole16(rxchain);
4555 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
4556 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
4557 	if (error != 0) {
4558 		device_printf(sc->sc_dev,
4559 		    "%s: RXON command failed\n", __func__);
4560 		return error;
4561 	}
4562 
4563 	error = iwn_add_broadcast_node(sc, 0);
4564 	if (error != 0) {
4565 		device_printf(sc->sc_dev,
4566 		    "%s: could not add broadcast node\n", __func__);
4567 		return error;
4568 	}
4569 
4570 	/* Configuration has changed, set TX power accordingly. */
4571 	error = hal->set_txpower(sc, ic->ic_curchan, 0);
4572 	if (error != 0) {
4573 		device_printf(sc->sc_dev,
4574 		    "%s: could not set TX power\n", __func__);
4575 		return error;
4576 	}
4577 
4578 	error = iwn_set_critical_temp(sc);
4579 	if (error != 0) {
4580 		device_printf(sc->sc_dev,
4581 		    "%s: ccould not set critical temperature\n", __func__);
4582 		return error;
4583 	}
4584 
4585 	/* Set power saving level to CAM during initialization. */
4586 	error = iwn_set_pslevel(sc, 0, 0, 0);
4587 	if (error != 0) {
4588 		device_printf(sc->sc_dev,
4589 		    "%s: could not set power saving level\n", __func__);
4590 		return error;
4591 	}
4592 	return 0;
4593 }
4594 
4595 static int
4596 iwn_scan(struct iwn_softc *sc)
4597 {
4598 	struct ifnet *ifp = sc->sc_ifp;
4599 	struct ieee80211com *ic = ifp->if_l2com;
4600 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
4601 	struct iwn_scan_hdr *hdr;
4602 	struct iwn_cmd_data *tx;
4603 	struct iwn_scan_essid *essid;
4604 	struct iwn_scan_chan *chan;
4605 	struct ieee80211_frame *wh;
4606 	struct ieee80211_rateset *rs;
4607 	struct ieee80211_channel *c;
4608 	int buflen, error, nrates;
4609 	uint16_t rxchain;
4610 	uint8_t *buf, *frm, txant;
4611 
4612 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4613 	if (buf == NULL) {
4614 		device_printf(sc->sc_dev,
4615 		    "%s: could not allocate buffer for scan command\n",
4616 		    __func__);
4617 		return ENOMEM;
4618 	}
4619 	hdr = (struct iwn_scan_hdr *)buf;
4620 
4621 	/*
4622 	 * Move to the next channel if no frames are received within 10ms
4623 	 * after sending the probe request.
4624 	 */
4625 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4626 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4627 
4628 	/* Select antennas for scanning. */
4629 	rxchain =
4630 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4631 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4632 	    IWN_RXCHAIN_DRIVER_FORCE;
4633 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
4634 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4635 		/* Ant A must be avoided in 5GHz because of an HW bug. */
4636 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4637 	} else	/* Use all available RX antennas. */
4638 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4639 	hdr->rxchain = htole16(rxchain);
4640 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4641 
4642 	tx = (struct iwn_cmd_data *)(hdr + 1);
4643 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4644 	tx->id = sc->sc_hal->broadcast_id;
4645 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4646 
4647 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
4648 		/* Send probe requests at 6Mbps. */
4649 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4650 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4651 	} else {
4652 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4653 		/* Send probe requests at 1Mbps. */
4654 		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4655 		tx->rflags = IWN_RFLAG_CCK;
4656 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4657 	}
4658 	/* Use the first valid TX antenna. */
4659 	txant = IWN_LSB(sc->txchainmask);
4660 	tx->rflags |= IWN_RFLAG_ANT(txant);
4661 
4662 	essid = (struct iwn_scan_essid *)(tx + 1);
4663 	if (ss->ss_ssid[0].len != 0) {
4664 		essid[0].id = IEEE80211_ELEMID_SSID;
4665 		essid[0].len = ss->ss_ssid[0].len;
4666 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4667 	}
4668 
4669 	/*
4670 	 * Build a probe request frame.  Most of the following code is a
4671 	 * copy & paste of what is done in net80211.
4672 	 */
4673 	wh = (struct ieee80211_frame *)(essid + 20);
4674 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4675 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4676 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4677 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
4678 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
4679 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
4680 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4681 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4682 
4683 	frm = (uint8_t *)(wh + 1);
4684 
4685 	/* Add SSID IE. */
4686 	*frm++ = IEEE80211_ELEMID_SSID;
4687 	*frm++ = ss->ss_ssid[0].len;
4688 	memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
4689 	frm += ss->ss_ssid[0].len;
4690 
4691 	/* Add supported rates IE. */
4692 	*frm++ = IEEE80211_ELEMID_RATES;
4693 	nrates = rs->rs_nrates;
4694 	if (nrates > IEEE80211_RATE_SIZE)
4695 		nrates = IEEE80211_RATE_SIZE;
4696 	*frm++ = nrates;
4697 	memcpy(frm, rs->rs_rates, nrates);
4698 	frm += nrates;
4699 
4700 	/* Add supported xrates IE. */
4701 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
4702 		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
4703 		*frm++ = IEEE80211_ELEMID_XRATES;
4704 		*frm++ = (uint8_t)nrates;
4705 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
4706 		frm += nrates;
4707 	}
4708 
4709 	/* Set length of probe request. */
4710 	tx->len = htole16(frm - (uint8_t *)wh);
4711 
4712 	c = ic->ic_curchan;
4713 	chan = (struct iwn_scan_chan *)frm;
4714 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4715 	chan->flags = 0;
4716 	if (ss->ss_nssid > 0)
4717 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4718 	chan->dsp_gain = 0x6e;
4719 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
4720 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4721 		chan->rf_gain = 0x3b;
4722 		chan->active  = htole16(24);
4723 		chan->passive = htole16(110);
4724 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4725 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
4726 		chan->rf_gain = 0x3b;
4727 		chan->active  = htole16(24);
4728 		if (sc->rxon.associd)
4729 			chan->passive = htole16(78);
4730 		else
4731 			chan->passive = htole16(110);
4732 		hdr->crc_threshold = 0xffff;
4733 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
4734 		chan->rf_gain = 0x28;
4735 		chan->active  = htole16(36);
4736 		chan->passive = htole16(120);
4737 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
4738 	} else {
4739 		chan->rf_gain = 0x28;
4740 		chan->active  = htole16(36);
4741 		if (sc->rxon.associd)
4742 			chan->passive = htole16(88);
4743 		else
4744 			chan->passive = htole16(120);
4745 		hdr->crc_threshold = 0xffff;
4746 	}
4747 
4748 	DPRINTF(sc, IWN_DEBUG_STATE,
4749 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
4750 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
4751 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
4752 	    chan->active, chan->passive);
4753 
4754 	hdr->nchan++;
4755 	chan++;
4756 	buflen = (uint8_t *)chan - buf;
4757 	hdr->len = htole16(buflen);
4758 
4759 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
4760 	    hdr->nchan);
4761 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4762 	free(buf, M_DEVBUF);
4763 	return error;
4764 }
4765 
4766 static int
4767 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
4768 {
4769 	const struct iwn_hal *hal = sc->sc_hal;
4770 	struct ifnet *ifp = sc->sc_ifp;
4771 	struct ieee80211com *ic = ifp->if_l2com;
4772 	struct ieee80211_node *ni = vap->iv_bss;
4773 	int error;
4774 
4775 	sc->calib.state = IWN_CALIB_STATE_INIT;
4776 
4777 	/* Update adapter configuration. */
4778 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4779 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4780 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4781 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4782 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4783 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4784 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4785 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4786 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4787 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4788 		sc->rxon.cck_mask  = 0;
4789 		sc->rxon.ofdm_mask = 0x15;
4790 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4791 		sc->rxon.cck_mask  = 0x03;
4792 		sc->rxon.ofdm_mask = 0;
4793 	} else {
4794 		/* XXX assume 802.11b/g */
4795 		sc->rxon.cck_mask  = 0x0f;
4796 		sc->rxon.ofdm_mask = 0x15;
4797 	}
4798 	DPRINTF(sc, IWN_DEBUG_STATE,
4799 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4800 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4801 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4802 	    __func__,
4803 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4804 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4805 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4806 	    le16toh(sc->rxon.rxchain),
4807 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4808 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4809 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4810 	if (error != 0) {
4811 		device_printf(sc->sc_dev,
4812 		    "%s: RXON command failed, error %d\n", __func__, error);
4813 		return error;
4814 	}
4815 
4816 	/* Configuration has changed, set TX power accordingly. */
4817 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4818 	if (error != 0) {
4819 		device_printf(sc->sc_dev,
4820 		    "%s: could not set Tx power, error %d\n", __func__, error);
4821 		return error;
4822 	}
4823 	/*
4824 	 * Reconfiguring RXON clears the firmware nodes table so we must
4825 	 * add the broadcast node again.
4826 	 */
4827 	error = iwn_add_broadcast_node(sc, 1);
4828 	if (error != 0) {
4829 		device_printf(sc->sc_dev,
4830 		    "%s: could not add broadcast node, error %d\n",
4831 		    __func__, error);
4832 		return error;
4833 	}
4834 	return 0;
4835 }
4836 
4837 /*
4838  * Configure the adapter for associated state.
4839  */
4840 static int
4841 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
4842 {
4843 #define	MS(v,x)	(((v) & x) >> x##_S)
4844 	const struct iwn_hal *hal = sc->sc_hal;
4845 	struct ifnet *ifp = sc->sc_ifp;
4846 	struct ieee80211com *ic = ifp->if_l2com;
4847 	struct ieee80211_node *ni = vap->iv_bss;
4848 	struct iwn_node_info node;
4849 	int error;
4850 
4851 	sc->calib.state = IWN_CALIB_STATE_INIT;
4852 
4853 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4854 		/* Link LED blinks while monitoring. */
4855 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4856 		return 0;
4857 	}
4858 	error = iwn_set_timing(sc, ni);
4859 	if (error != 0) {
4860 		device_printf(sc->sc_dev,
4861 		    "%s: could not set timing, error %d\n", __func__, error);
4862 		return error;
4863 	}
4864 
4865 	/* Update adapter configuration. */
4866 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4867 	sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
4868 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4869 	/* Short preamble and slot time are negotiated when associating. */
4870 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4871 	sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4872 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4873 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4874 	else
4875 		sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4876 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4877 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4878 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4879 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4880 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
4881 		sc->rxon.cck_mask  = 0;
4882 		sc->rxon.ofdm_mask = 0x15;
4883 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
4884 		sc->rxon.cck_mask  = 0x03;
4885 		sc->rxon.ofdm_mask = 0;
4886 	} else {
4887 		/* XXX assume 802.11b/g */
4888 		sc->rxon.cck_mask  = 0x0f;
4889 		sc->rxon.ofdm_mask = 0x15;
4890 	}
4891 #if 0	/* HT */
4892 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
4893 		sc->rxon.flags &= ~htole32(IWN_RXON_HT);
4894 		if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
4895 			sc->rxon.flags |= htole32(IWN_RXON_HT40U);
4896 		else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
4897 			sc->rxon.flags |= htole32(IWN_RXON_HT40D);
4898 		else
4899 			sc->rxon.flags |= htole32(IWN_RXON_HT20);
4900 		sc->rxon.rxchain = htole16(
4901 			  IWN_RXCHAIN_VALID(3)
4902 			| IWN_RXCHAIN_MIMO_COUNT(3)
4903 			| IWN_RXCHAIN_IDLE_COUNT(1)
4904 			| IWN_RXCHAIN_MIMO_FORCE);
4905 
4906 		maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
4907 		ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
4908 	} else
4909 		maxrxampdu = ampdudensity = 0;
4910 #endif
4911 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4912 
4913 	DPRINTF(sc, IWN_DEBUG_STATE,
4914 	    "%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
4915 	    "ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
4916 	    "myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
4917 	    __func__,
4918 	    le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
4919 	    sc->rxon.cck_mask, sc->rxon.ofdm_mask,
4920 	    sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
4921 	    le16toh(sc->rxon.rxchain),
4922 	    sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
4923 	    le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
4924 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
4925 	if (error != 0) {
4926 		device_printf(sc->sc_dev,
4927 		    "%s: could not update configuration, error %d\n",
4928 		    __func__, error);
4929 		return error;
4930 	}
4931 
4932 	/* Configuration has changed, set TX power accordingly. */
4933 	error = hal->set_txpower(sc, ni->ni_chan, 1);
4934 	if (error != 0) {
4935 		device_printf(sc->sc_dev,
4936 		    "%s: could not set Tx power, error %d\n", __func__, error);
4937 		return error;
4938 	}
4939 
4940 	/* Add BSS node. */
4941 	memset(&node, 0, sizeof node);
4942 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
4943 	node.id = IWN_ID_BSS;
4944 #ifdef notyet
4945 	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
4946 	    IWN_AMDPU_DENSITY(5));	/* 2us */
4947 #endif
4948 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
4949 	    __func__, node.id, le32toh(node.htflags));
4950 	error = hal->add_node(sc, &node, 1);
4951 	if (error != 0) {
4952 		device_printf(sc->sc_dev, "could not add BSS node\n");
4953 		return error;
4954 	}
4955 	DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
4956 	    node.id);
4957 	error = iwn_set_link_quality(sc, node.id, 1);
4958 	if (error != 0) {
4959 		device_printf(sc->sc_dev,
4960 		    "%s: could not setup MRR for node %d, error %d\n",
4961 		    __func__, node.id, error);
4962 		return error;
4963 	}
4964 
4965 	error = iwn_init_sensitivity(sc);
4966 	if (error != 0) {
4967 		device_printf(sc->sc_dev,
4968 		    "%s: could not set sensitivity, error %d\n",
4969 		    __func__, error);
4970 		return error;
4971 	}
4972 
4973 	/* Start periodic calibration timer. */
4974 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
4975 	iwn_calib_reset(sc);
4976 
4977 	/* Link LED always on while associated. */
4978 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
4979 
4980 	return 0;
4981 #undef MS
4982 }
4983 
4984 #if 0	/* HT */
4985 /*
4986  * This function is called by upper layer when an ADDBA request is received
4987  * from another STA and before the ADDBA response is sent.
4988  */
4989 static int
4990 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
4991     uint8_t tid)
4992 {
4993 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
4994 	struct iwn_softc *sc = ic->ic_softc;
4995 	struct iwn_node *wn = (void *)ni;
4996 	struct iwn_node_info node;
4997 
4998 	memset(&node, 0, sizeof node);
4999 	node.id = wn->id;
5000 	node.control = IWN_NODE_UPDATE;
5001 	node.flags = IWN_FLAG_SET_ADDBA;
5002 	node.addba_tid = tid;
5003 	node.addba_ssn = htole16(ba->ba_winstart);
5004 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5005 	    wn->id, tid, ba->ba_winstart));
5006 	return sc->sc_hal->add_node(sc, &node, 1);
5007 }
5008 
5009 /*
5010  * This function is called by upper layer on teardown of an HT-immediate
5011  * Block Ack agreement (eg. uppon receipt of a DELBA frame.)
5012  */
5013 static void
5014 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5015     uint8_t tid)
5016 {
5017 	struct iwn_softc *sc = ic->ic_softc;
5018 	struct iwn_node *wn = (void *)ni;
5019 	struct iwn_node_info node;
5020 
5021 	memset(&node, 0, sizeof node);
5022 	node.id = wn->id;
5023 	node.control = IWN_NODE_UPDATE;
5024 	node.flags = IWN_FLAG_SET_DELBA;
5025 	node.delba_tid = tid;
5026 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5027 	(void)sc->sc_hal->add_node(sc, &node, 1);
5028 }
5029 
5030 /*
5031  * This function is called by upper layer when an ADDBA response is received
5032  * from another STA.
5033  */
5034 static int
5035 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5036     uint8_t tid)
5037 {
5038 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5039 	struct iwn_softc *sc = ic->ic_softc;
5040 	const struct iwn_hal *hal = sc->sc_hal;
5041 	struct iwn_node *wn = (void *)ni;
5042 	struct iwn_node_info node;
5043 	int error;
5044 
5045 	/* Enable TX for the specified RA/TID. */
5046 	wn->disable_tid &= ~(1 << tid);
5047 	memset(&node, 0, sizeof node);
5048 	node.id = wn->id;
5049 	node.control = IWN_NODE_UPDATE;
5050 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5051 	node.disable_tid = htole16(wn->disable_tid);
5052 	error = hal->add_node(sc, &node, 1);
5053 	if (error != 0)
5054 		return error;
5055 
5056 	if ((error = iwn_nic_lock(sc)) != 0)
5057 		return error;
5058 	hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5059 	iwn_nic_unlock(sc);
5060 	return 0;
5061 }
5062 
5063 static void
5064 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5065     uint8_t tid)
5066 {
5067 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5068 	struct iwn_softc *sc = ic->ic_softc;
5069 	int error;
5070 
5071 	error = iwn_nic_lock(sc);
5072 	if (error != 0)
5073 		return;
5074 	sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5075 	iwn_nic_unlock(sc);
5076 }
5077 
5078 static void
5079 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5080     uint8_t tid, uint16_t ssn)
5081 {
5082 	struct iwn_node *wn = (void *)ni;
5083 	int qid = 7 + tid;
5084 
5085 	/* Stop TX scheduler while we're changing its configuration. */
5086 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5087 	    IWN4965_TXQ_STATUS_CHGACT);
5088 
5089 	/* Assign RA/TID translation to the queue. */
5090 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5091 	    wn->id << 4 | tid);
5092 
5093 	/* Enable chain-building mode for the queue. */
5094 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5095 
5096 	/* Set starting sequence number from the ADDBA request. */
5097 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5098 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5099 
5100 	/* Set scheduler window size. */
5101 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5102 	    IWN_SCHED_WINSZ);
5103 	/* Set scheduler frame limit. */
5104 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5105 	    IWN_SCHED_LIMIT << 16);
5106 
5107 	/* Enable interrupts for the queue. */
5108 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5109 
5110 	/* Mark the queue as active. */
5111 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5112 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5113 	    iwn_tid2fifo[tid] << 1);
5114 }
5115 
5116 static void
5117 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5118 {
5119 	int qid = 7 + tid;
5120 
5121 	/* Stop TX scheduler while we're changing its configuration. */
5122 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5123 	    IWN4965_TXQ_STATUS_CHGACT);
5124 
5125 	/* Set starting sequence number from the ADDBA request. */
5126 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5127 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5128 
5129 	/* Disable interrupts for the queue. */
5130 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5131 
5132 	/* Mark the queue as inactive. */
5133 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5134 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5135 }
5136 
5137 static void
5138 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5139     uint8_t tid, uint16_t ssn)
5140 {
5141 	struct iwn_node *wn = (void *)ni;
5142 	int qid = 10 + tid;
5143 
5144 	/* Stop TX scheduler while we're changing its configuration. */
5145 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5146 	    IWN5000_TXQ_STATUS_CHGACT);
5147 
5148 	/* Assign RA/TID translation to the queue. */
5149 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5150 	    wn->id << 4 | tid);
5151 
5152 	/* Enable chain-building mode for the queue. */
5153 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5154 
5155 	/* Enable aggregation for the queue. */
5156 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5157 
5158 	/* Set starting sequence number from the ADDBA request. */
5159 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5160 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5161 
5162 	/* Set scheduler window size and frame limit. */
5163 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5164 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5165 
5166 	/* Enable interrupts for the queue. */
5167 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5168 
5169 	/* Mark the queue as active. */
5170 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5171 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5172 }
5173 
5174 static void
5175 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5176 {
5177 	int qid = 10 + tid;
5178 
5179 	/* Stop TX scheduler while we're changing its configuration. */
5180 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5181 	    IWN5000_TXQ_STATUS_CHGACT);
5182 
5183 	/* Disable aggregation for the queue. */
5184 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5185 
5186 	/* Set starting sequence number from the ADDBA request. */
5187 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5188 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5189 
5190 	/* Disable interrupts for the queue. */
5191 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5192 
5193 	/* Mark the queue as inactive. */
5194 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5195 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5196 }
5197 #endif
5198 
5199 /*
5200  * Send calibration results to the runtime firmware.  These results were
5201  * obtained on first boot from the initialization firmware, or by reading
5202  * the EEPROM for crystal calibration.
5203  */
5204 static int
5205 iwn5000_send_calib_results(struct iwn_softc *sc)
5206 {
5207 	struct iwn_calib_info *calib_result;
5208 	int idx, error;
5209 
5210 	for (idx = 0; idx < IWN_CALIB_NUM; idx++) {
5211 		calib_result = &sc->calib_results[idx];
5212 
5213 		/* No support for this type of calibration. */
5214 		if ((sc->calib_init & (1 << idx)) == 0)
5215 			continue;
5216 
5217 		/* No calibration result available. */
5218 		if (calib_result->buf == NULL)
5219 			continue;
5220 
5221 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5222 		    "%s: send calibration result idx=%d, len=%d\n",
5223 		    __func__, idx, calib_result->len);
5224 
5225 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, calib_result->buf,
5226 		    calib_result->len, 0);
5227 		if (error != 0) {
5228 			device_printf(sc->sc_dev,
5229 			    "%s: could not send calibration result "
5230 			    "idx=%d, error=%d\n",
5231 			    __func__, idx, error);
5232 			return error;
5233 		}
5234 	}
5235 	return 0;
5236 }
5237 
5238 /*
5239  * Save calibration result at the given index.  The index determines
5240  * in which order the results are sent to the runtime firmware.
5241  */
5242 static int
5243 iwn5000_save_calib_result(struct iwn_softc *sc, struct iwn_phy_calib *calib,
5244     int len, int idx)
5245 {
5246 	struct iwn_calib_info *calib_result = &sc->calib_results[idx];
5247 
5248 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5249 	    "%s: saving calibration result code=%d, idx=%d, len=%d\n",
5250 	    __func__, calib->code, idx, len);
5251 
5252 	if (calib_result->buf != NULL)
5253 		free(calib_result->buf, M_DEVBUF);
5254 
5255 	calib_result->buf = malloc(len, M_DEVBUF, M_NOWAIT);
5256 	if (calib_result->buf == NULL) {
5257 		device_printf(sc->sc_dev,
5258 		    "%s: not enough memory for calibration result "
5259 		    "code=%d, len=%d\n", __func__, calib->code, len);
5260 		return ENOMEM;
5261 	}
5262 
5263 	calib_result->len = len;
5264 	memcpy(calib_result->buf, calib, len);
5265 	return 0;
5266 }
5267 
5268 static void
5269 iwn5000_free_calib_results(struct iwn_softc *sc)
5270 {
5271 	struct iwn_calib_info *calib_result;
5272 	int idx;
5273 
5274 	for (idx = 0; idx < IWN_CALIB_NUM; idx++) {
5275 		calib_result = &sc->calib_results[idx];
5276 
5277 		if (calib_result->buf != NULL)
5278 			free(calib_result->buf, M_DEVBUF);
5279 
5280 		calib_result->buf = NULL;
5281 		calib_result->len = 0;
5282 	}
5283 }
5284 
5285 /*
5286  * Obtain the crystal calibration result from the EEPROM.
5287  */
5288 static int
5289 iwn5000_chrystal_calib(struct iwn_softc *sc)
5290 {
5291 	struct iwn5000_phy_calib_crystal cmd;
5292 	uint32_t base, crystal;
5293 	uint16_t val;
5294 
5295 	/* Read crystal calibration. */
5296 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
5297 	base = le16toh(val);
5298 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, &crystal,
5299 	    sizeof(uint32_t));
5300 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: crystal calibration=0x%08x\n",
5301 	    __func__, le32toh(crystal));
5302 
5303 	memset(&cmd, 0, sizeof cmd);
5304 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5305 	cmd.ngroups = 1;
5306 	cmd.isvalid = 1;
5307 	cmd.cap_pin[0] = le32toh(crystal) & 0xff;
5308 	cmd.cap_pin[1] = (le32toh(crystal) >> 16) & 0xff;
5309 
5310 	return iwn5000_save_calib_result(sc, (struct iwn_phy_calib *)&cmd,
5311 	    sizeof cmd, IWN_CALIB_IDX_XTAL);
5312 }
5313 
5314 /*
5315  * Query calibration results from the initialization firmware.  We do this
5316  * only once at first boot.
5317  */
5318 static int
5319 iwn5000_send_calib_query(struct iwn_softc *sc)
5320 {
5321 #define	CALIB_INIT_CFG	0xffffffff;
5322 	struct iwn5000_calib_config cmd;
5323 	int error;
5324 
5325 	memset(&cmd, 0, sizeof cmd);
5326 	cmd.ucode.once.enable = CALIB_INIT_CFG;
5327 	cmd.ucode.once.start  = CALIB_INIT_CFG;
5328 	cmd.ucode.once.send   = CALIB_INIT_CFG;
5329 	cmd.ucode.flags       = CALIB_INIT_CFG;
5330 
5331 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: query calibration results\n",
5332 	    __func__);
5333 
5334 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5335 	if (error != 0)
5336 		return error;
5337 
5338 	/* Wait at most two seconds for calibration to complete. */
5339 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5340 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 2 * hz);
5341 
5342 	return error;
5343 #undef	CALIB_INIT_CFG
5344 }
5345 
5346 /*
5347  * Process a CALIBRATION_RESULT notification sent by the initialization
5348  * firmware on response to a CMD_CALIB_CONFIG command.
5349  */
5350 static int
5351 iwn5000_rx_calib_result(struct iwn_softc *sc, struct iwn_rx_desc *desc,
5352     struct iwn_rx_data *data)
5353 {
5354 #define	FRAME_SIZE_MASK		0x3fff
5355 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
5356 	int len, idx;
5357 
5358 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
5359 	len = (le32toh(desc->len) & FRAME_SIZE_MASK);
5360 
5361 	/* Remove length field itself. */
5362 	len -= 4;
5363 
5364 	/*
5365 	 * Determine the order in which the results will be send to the
5366 	 * runtime firmware.
5367 	 */
5368 	switch (calib->code) {
5369 	case IWN5000_PHY_CALIB_DC:
5370 		idx = IWN_CALIB_IDX_DC;
5371 		break;
5372 	case IWN5000_PHY_CALIB_LO:
5373 		idx = IWN_CALIB_IDX_LO;
5374 		break;
5375 	case IWN5000_PHY_CALIB_TX_IQ:
5376 		idx = IWN_CALIB_IDX_TX_IQ;
5377 		break;
5378 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
5379 		idx = IWN_CALIB_IDX_TX_IQ_PERIODIC;
5380 		break;
5381 	case IWN5000_PHY_CALIB_BASE_BAND:
5382 		idx = IWN_CALIB_IDX_BASE_BAND;
5383 		break;
5384 	default:
5385 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5386 		   "%s: unknown calibration code=%d\n", __func__, calib->code);
5387 		return EINVAL;
5388 	}
5389 	return iwn5000_save_calib_result(sc, calib, len, idx);
5390 #undef	FRAME_SIZE_MASK
5391 }
5392 
5393 static int
5394 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5395 {
5396 	struct iwn5000_wimax_coex wimax;
5397 
5398 #ifdef notyet
5399 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5400 		/* Enable WiMAX coexistence for combo adapters. */
5401 		wimax.flags =
5402 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5403 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5404 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5405 		    IWN_WIMAX_COEX_ENABLE;
5406 		memcpy(wimax.events, iwn6050_wimax_events,
5407 		    sizeof iwn6050_wimax_events);
5408 	} else
5409 #endif
5410 	{
5411 		/* Disable WiMAX coexistence. */
5412 		wimax.flags = 0;
5413 		memset(wimax.events, 0, sizeof wimax.events);
5414 	}
5415 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5416 	    __func__);
5417 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5418 }
5419 
5420 /*
5421  * This function is called after the runtime firmware notifies us of its
5422  * readiness (called in a process context.)
5423  */
5424 static int
5425 iwn4965_post_alive(struct iwn_softc *sc)
5426 {
5427 	int error, qid;
5428 
5429 	if ((error = iwn_nic_lock(sc)) != 0)
5430 		return error;
5431 
5432 	/* Clear TX scheduler state in SRAM. */
5433 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5434 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5435 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5436 
5437 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5438 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5439 
5440 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5441 
5442 	/* Disable chain mode for all our 16 queues. */
5443 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5444 
5445 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5446 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5447 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5448 
5449 		/* Set scheduler window size. */
5450 		iwn_mem_write(sc, sc->sched_base +
5451 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5452 		/* Set scheduler frame limit. */
5453 		iwn_mem_write(sc, sc->sched_base +
5454 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5455 		    IWN_SCHED_LIMIT << 16);
5456 	}
5457 
5458 	/* Enable interrupts for all our 16 queues. */
5459 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5460 	/* Identify TX FIFO rings (0-7). */
5461 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5462 
5463 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5464 	for (qid = 0; qid < 7; qid++) {
5465 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5466 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5467 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5468 	}
5469 	iwn_nic_unlock(sc);
5470 	return 0;
5471 }
5472 
5473 /*
5474  * This function is called after the initialization or runtime firmware
5475  * notifies us of its readiness (called in a process context.)
5476  */
5477 static int
5478 iwn5000_post_alive(struct iwn_softc *sc)
5479 {
5480 	int error, qid;
5481 
5482 	/* Switch to using ICT interrupt mode. */
5483 	iwn5000_ict_reset(sc);
5484 
5485 	error = iwn_nic_lock(sc);
5486 	if (error != 0)
5487 		return error;
5488 
5489 	/* Clear TX scheduler state in SRAM. */
5490 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5491 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5492 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5493 
5494 	/* Set physical address of TX scheduler rings (1KB aligned.) */
5495 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5496 
5497 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5498 
5499 	/* Enable chain mode for all queues, except command queue. */
5500 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5501 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5502 
5503 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5504 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5505 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5506 
5507 		iwn_mem_write(sc, sc->sched_base +
5508 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5509 		/* Set scheduler window size and frame limit. */
5510 		iwn_mem_write(sc, sc->sched_base +
5511 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5512 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5513 	}
5514 
5515 	/* Enable interrupts for all our 20 queues. */
5516 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5517 	/* Identify TX FIFO rings (0-7). */
5518 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5519 
5520 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5521 	for (qid = 0; qid < 7; qid++) {
5522 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5523 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5524 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5525 	}
5526 	iwn_nic_unlock(sc);
5527 
5528 	/* Configure WiMAX coexistence for combo adapters. */
5529 	error = iwn5000_send_wimax_coex(sc);
5530 	if (error != 0) {
5531 		device_printf(sc->sc_dev,
5532 		    "%s: could not configure WiMAX coexistence, error %d\n",
5533 		    __func__, error);
5534 		return error;
5535 	}
5536 
5537 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5538 		/*
5539 		 * Start calibration by setting and sending the chrystal
5540 		 * calibration first, this must be done before we are able
5541 		 * to query the other calibration results.
5542 		 */
5543 		error = iwn5000_chrystal_calib(sc);
5544 		if (error != 0) {
5545 			device_printf(sc->sc_dev,
5546 			    "%s: could not set chrystal calibration, "
5547 			    "error=%d\n", __func__, error);
5548 			return error;
5549 		}
5550 		error = iwn5000_send_calib_results(sc);
5551 		if (error != 0) {
5552 			device_printf(sc->sc_dev,
5553 			    "%s: could not send chrystal calibration, "
5554 			    "error=%d\n", __func__, error);
5555 			return error;
5556 		}
5557 
5558 		/*
5559 		 * Query other calibration results from the initialization
5560 		 * firmware.
5561 		 */
5562 		error = iwn5000_send_calib_query(sc);
5563 		if (error != 0) {
5564 			device_printf(sc->sc_dev,
5565 			    "%s: could not query calibration, error=%d\n",
5566 			    __func__, error);
5567 			return error;
5568 		}
5569 
5570 		/*
5571 		 * We have the calibration results now, reboot with the
5572 		 * runtime firmware (call ourselves recursively!)
5573 		 */
5574 		iwn_hw_stop(sc);
5575 		error = iwn_hw_init(sc);
5576 	} else {
5577 		/*
5578 		 * Send calibration results obtained from the initialization
5579 		 * firmware to the runtime firmware.
5580 		 */
5581 		error = iwn5000_send_calib_results(sc);
5582 	}
5583 	return error;
5584 }
5585 
5586 /*
5587  * The firmware boot code is small and is intended to be copied directly into
5588  * the NIC internal memory (no DMA transfer.)
5589  */
5590 static int
5591 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5592 {
5593 	int error, ntries;
5594 
5595 	size /= sizeof (uint32_t);
5596 
5597 	error = iwn_nic_lock(sc);
5598 	if (error != 0)
5599 		return error;
5600 
5601 	/* Copy microcode image into NIC memory. */
5602 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5603 	    (const uint32_t *)ucode, size);
5604 
5605 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5606 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5607 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5608 
5609 	/* Start boot load now. */
5610 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5611 
5612 	/* Wait for transfer to complete. */
5613 	for (ntries = 0; ntries < 1000; ntries++) {
5614 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5615 		    IWN_BSM_WR_CTRL_START))
5616 			break;
5617 		DELAY(10);
5618 	}
5619 	if (ntries == 1000) {
5620 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5621 		    __func__);
5622 		iwn_nic_unlock(sc);
5623 		return ETIMEDOUT;
5624 	}
5625 
5626 	/* Enable boot after power up. */
5627 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5628 
5629 	iwn_nic_unlock(sc);
5630 	return 0;
5631 }
5632 
5633 static int
5634 iwn4965_load_firmware(struct iwn_softc *sc)
5635 {
5636 	struct iwn_fw_info *fw = &sc->fw;
5637 	struct iwn_dma_info *dma = &sc->fw_dma;
5638 	int error;
5639 
5640 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5641 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5642 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5643 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5644 	    fw->init.text, fw->init.textsz);
5645 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5646 
5647 	/* Tell adapter where to find initialization sections. */
5648 	error = iwn_nic_lock(sc);
5649 	if (error != 0)
5650 		return error;
5651 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5652 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5653 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5654 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5655 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5656 	iwn_nic_unlock(sc);
5657 
5658 	/* Load firmware boot code. */
5659 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5660 	if (error != 0) {
5661 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
5662 		    __func__);
5663 		return error;
5664 	}
5665 	/* Now press "execute". */
5666 	IWN_WRITE(sc, IWN_RESET, 0);
5667 
5668 	/* Wait at most one second for first alive notification. */
5669 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5670 	if (error) {
5671 		device_printf(sc->sc_dev,
5672 		    "%s: timeout waiting for adapter to initialize, error %d\n",
5673 		    __func__, error);
5674 		return error;
5675 	}
5676 
5677 	/* Retrieve current temperature for initial TX power calibration. */
5678 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5679 	sc->temp = iwn4965_get_temperature(sc);
5680 
5681 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5682 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5683 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5684 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5685 	    fw->main.text, fw->main.textsz);
5686 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5687 
5688 	/* Tell adapter where to find runtime sections. */
5689 	error = iwn_nic_lock(sc);
5690 	if (error != 0)
5691 		return error;
5692 
5693 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5694 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5695 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5696 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5697 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5698 	    IWN_FW_UPDATED | fw->main.textsz);
5699 	iwn_nic_unlock(sc);
5700 
5701 	return 0;
5702 }
5703 
5704 static int
5705 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5706     const uint8_t *section, int size)
5707 {
5708 	struct iwn_dma_info *dma = &sc->fw_dma;
5709 	int error;
5710 
5711 	/* Copy firmware section into pre-allocated DMA-safe memory. */
5712 	memcpy(dma->vaddr, section, size);
5713 	bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
5714 
5715 	error = iwn_nic_lock(sc);
5716 	if (error != 0)
5717 		return error;
5718 
5719 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5720 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5721 
5722 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5723 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5724 	    IWN_LOADDR(dma->paddr));
5725 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5726 	    IWN_HIADDR(dma->paddr) << 28 | size);
5727 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5728 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5729 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5730 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5731 
5732 	/* Kick Flow Handler to start DMA transfer. */
5733 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5734 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5735 
5736 	iwn_nic_unlock(sc);
5737 
5738 	/* Wait at most five seconds for FH DMA transfer to complete. */
5739 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
5740 }
5741 
5742 static int
5743 iwn5000_load_firmware(struct iwn_softc *sc)
5744 {
5745 	struct iwn_fw_part *fw;
5746 	int error;
5747 
5748 	/* Load the initialization firmware on first boot only. */
5749 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5750 	    &sc->fw.main : &sc->fw.init;
5751 
5752 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5753 	    fw->text, fw->textsz);
5754 	if (error != 0) {
5755 		device_printf(sc->sc_dev,
5756 		    "%s: could not load firmware %s section, error %d\n",
5757 		    __func__, ".text", error);
5758 		return error;
5759 	}
5760 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5761 	    fw->data, fw->datasz);
5762 	if (error != 0) {
5763 		device_printf(sc->sc_dev,
5764 		    "%s: could not load firmware %s section, error %d\n",
5765 		    __func__, ".data", error);
5766 		return error;
5767 	}
5768 
5769 	/* Now press "execute". */
5770 	IWN_WRITE(sc, IWN_RESET, 0);
5771 	return 0;
5772 }
5773 
5774 /*
5775  * Extract text and data sections from a legacy firmware image.
5776  */
5777 static int
5778 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5779 {
5780 	const uint32_t *ptr;
5781 	size_t hdrlen = 24;
5782 	uint32_t rev;
5783 
5784 	ptr = (const uint32_t *)sc->fw_fp->data;
5785 	rev = le32toh(*ptr++);
5786 
5787 	/* Check firmware API version. */
5788 	if (IWN_FW_API(rev) <= 1) {
5789 		device_printf(sc->sc_dev,
5790 		    "%s: bad firmware, need API version >=2\n", __func__);
5791 		return EINVAL;
5792 	}
5793 	if (IWN_FW_API(rev) >= 3) {
5794 		/* Skip build number (version 2 header). */
5795 		hdrlen += 4;
5796 		ptr++;
5797 	}
5798 	if (fw->size < hdrlen) {
5799 		device_printf(sc->sc_dev,
5800 		    "%s: firmware file too short: %zu bytes\n",
5801 		    __func__, fw->size);
5802 		return EINVAL;
5803 	}
5804 	fw->main.textsz = le32toh(*ptr++);
5805 	fw->main.datasz = le32toh(*ptr++);
5806 	fw->init.textsz = le32toh(*ptr++);
5807 	fw->init.datasz = le32toh(*ptr++);
5808 	fw->boot.textsz = le32toh(*ptr++);
5809 
5810 	/* Check that all firmware sections fit. */
5811 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5812 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5813 		device_printf(sc->sc_dev,
5814 		    "%s: firmware file too short: %zu bytes\n",
5815 		    __func__, fw->size);
5816 		return EINVAL;
5817 	}
5818 
5819 	/* Get pointers to firmware sections. */
5820 	fw->main.text = (const uint8_t *)ptr;
5821 	fw->main.data = fw->main.text + fw->main.textsz;
5822 	fw->init.text = fw->main.data + fw->main.datasz;
5823 	fw->init.data = fw->init.text + fw->init.textsz;
5824 	fw->boot.text = fw->init.data + fw->init.datasz;
5825 
5826 	return 0;
5827 }
5828 
5829 /*
5830  * Extract text and data sections from a TLV firmware image.
5831  */
5832 int
5833 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5834     uint16_t alt)
5835 {
5836 	const struct iwn_fw_tlv_hdr *hdr;
5837 	const struct iwn_fw_tlv *tlv;
5838 	const uint8_t *ptr, *end;
5839 	uint64_t altmask;
5840 	uint32_t len;
5841 
5842 	if (fw->size < sizeof (*hdr)) {
5843 		device_printf(sc->sc_dev,
5844 		    "%s: firmware file too short: %zu bytes\n",
5845 		    __func__, fw->size);
5846 		return EINVAL;
5847 	}
5848 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5849 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5850 		device_printf(sc->sc_dev,
5851 		    "%s: bad firmware file signature 0x%08x\n",
5852 		    __func__, le32toh(hdr->signature));
5853 		return EINVAL;
5854 	}
5855 
5856 	/*
5857 	 * Select the closest supported alternative that is less than
5858 	 * or equal to the specified one.
5859 	 */
5860 	altmask = le64toh(hdr->altmask);
5861 	while (alt > 0 && !(altmask & (1ULL << alt)))
5862 		alt--;	/* Downgrade. */
5863 
5864 	ptr = (const uint8_t *)(hdr + 1);
5865 	end = (const uint8_t *)(fw->data + fw->size);
5866 
5867 	/* Parse type-length-value fields. */
5868 	while (ptr + sizeof (*tlv) <= end) {
5869 		tlv = (const struct iwn_fw_tlv *)ptr;
5870 		len = le32toh(tlv->len);
5871 
5872 		ptr += sizeof (*tlv);
5873 		if (ptr + len > end) {
5874 			device_printf(sc->sc_dev,
5875 			    "%s: firmware file too short: %zu bytes\n",
5876 			    __func__, fw->size);
5877 			return EINVAL;
5878 		}
5879 		/* Skip other alternatives. */
5880 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5881 			goto next;
5882 
5883 		switch (le16toh(tlv->type)) {
5884 		case IWN_FW_TLV_MAIN_TEXT:
5885 			fw->main.text = ptr;
5886 			fw->main.textsz = len;
5887 			break;
5888 		case IWN_FW_TLV_MAIN_DATA:
5889 			fw->main.data = ptr;
5890 			fw->main.datasz = len;
5891 			break;
5892 		case IWN_FW_TLV_INIT_TEXT:
5893 			fw->init.text = ptr;
5894 			fw->init.textsz = len;
5895 			break;
5896 		case IWN_FW_TLV_INIT_DATA:
5897 			fw->init.data = ptr;
5898 			fw->init.datasz = len;
5899 			break;
5900 		case IWN_FW_TLV_BOOT_TEXT:
5901 			fw->boot.text = ptr;
5902 			fw->boot.textsz = len;
5903 			break;
5904 		default:
5905 			DPRINTF(sc, IWN_DEBUG_RESET,
5906 			    "%s: TLV type %d not handled\n",
5907 			    __func__, le16toh(tlv->type));
5908 			break;
5909 		}
5910 next:		/* TLV fields are 32-bit aligned. */
5911 		ptr += (len + 3) & ~3;
5912 	}
5913 	return 0;
5914 }
5915 
5916 static int
5917 iwn_read_firmware(struct iwn_softc *sc)
5918 {
5919 	const struct iwn_hal *hal = sc->sc_hal;
5920 	struct iwn_fw_info *fw = &sc->fw;
5921 	int error;
5922 
5923 	IWN_UNLOCK(sc);
5924 
5925 	memset(fw, 0, sizeof (*fw));
5926 
5927 	/* Read firmware image from filesystem. */
5928 	sc->fw_fp = firmware_get(sc->fwname);
5929 	if (sc->fw_fp == NULL) {
5930 		device_printf(sc->sc_dev,
5931 		    "%s: could not load firmare image \"%s\"\n", __func__,
5932 		    sc->fwname);
5933 		IWN_LOCK(sc);
5934 		return EINVAL;
5935 	}
5936 	IWN_LOCK(sc);
5937 
5938 	fw->size = sc->fw_fp->datasize;
5939 	fw->data = (const uint8_t *)sc->fw_fp->data;
5940 	if (fw->size < sizeof (uint32_t)) {
5941 		device_printf(sc->sc_dev,
5942 		    "%s: firmware file too short: %zu bytes\n",
5943 		    __func__, fw->size);
5944 		return EINVAL;
5945 	}
5946 
5947 	/* Retrieve text and data sections. */
5948 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
5949 		error = iwn_read_firmware_leg(sc, fw);
5950 	else
5951 		error = iwn_read_firmware_tlv(sc, fw, 1);
5952 	if (error != 0) {
5953 		device_printf(sc->sc_dev,
5954 		    "%s: could not read firmware sections\n", __func__);
5955 		return error;
5956 	}
5957 
5958 	/* Make sure text and data sections fit in hardware memory. */
5959 	if (fw->main.textsz > hal->fw_text_maxsz ||
5960 	    fw->main.datasz > hal->fw_data_maxsz ||
5961 	    fw->init.textsz > hal->fw_text_maxsz ||
5962 	    fw->init.datasz > hal->fw_data_maxsz ||
5963 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
5964 	    (fw->boot.textsz & 3) != 0) {
5965 		device_printf(sc->sc_dev,
5966 		    "%s: firmware sections too large\n", __func__);
5967 		return EINVAL;
5968 	}
5969 
5970 	/* We can proceed with loading the firmware. */
5971 	return 0;
5972 }
5973 
5974 static int
5975 iwn_clock_wait(struct iwn_softc *sc)
5976 {
5977 	int ntries;
5978 
5979 	/* Set "initialization complete" bit. */
5980 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
5981 
5982 	/* Wait for clock stabilization. */
5983 	for (ntries = 0; ntries < 2500; ntries++) {
5984 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
5985 			return 0;
5986 		DELAY(10);
5987 	}
5988 	device_printf(sc->sc_dev,
5989 	    "%s: timeout waiting for clock stabilization\n", __func__);
5990 	return ETIMEDOUT;
5991 }
5992 
5993 static int
5994 iwn_apm_init(struct iwn_softc *sc)
5995 {
5996 	uint32_t tmp;
5997 	int error;
5998 
5999 	/* Disable L0s exit timer (NMI bug workaround.) */
6000 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6001 	/* Don't wait for ICH L0s (ICH bug workaround.) */
6002 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6003 
6004 	/* Set FH wait threshold to max (HW bug under stress workaround.) */
6005 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6006 
6007 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6008 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6009 
6010 	/* Retrieve PCIe Active State Power Management (ASPM). */
6011 	tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6012 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6013 	if (tmp & 0x02)	/* L1 Entry enabled. */
6014 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6015 	else
6016 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6017 
6018 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6019 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6020 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6021 
6022 	/* Wait for clock stabilization before accessing prph. */
6023 	error = iwn_clock_wait(sc);
6024 	if (error != 0)
6025 		return error;
6026 
6027 	error = iwn_nic_lock(sc);
6028 	if (error != 0)
6029 		return error;
6030 
6031 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6032 		/* Enable DMA and BSM (Bootstrap State Machine.) */
6033 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6034 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6035 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6036 	} else {
6037 		/* Enable DMA. */
6038 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6039 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6040 	}
6041 	DELAY(20);
6042 
6043 	/* Disable L1-Active. */
6044 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6045 	iwn_nic_unlock(sc);
6046 
6047 	return 0;
6048 }
6049 
6050 static void
6051 iwn_apm_stop_master(struct iwn_softc *sc)
6052 {
6053 	int ntries;
6054 
6055 	/* Stop busmaster DMA activity. */
6056 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6057 	for (ntries = 0; ntries < 100; ntries++) {
6058 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6059 			return;
6060 		DELAY(10);
6061 	}
6062 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
6063 	    __func__);
6064 }
6065 
6066 static void
6067 iwn_apm_stop(struct iwn_softc *sc)
6068 {
6069 	iwn_apm_stop_master(sc);
6070 
6071 	/* Reset the entire device. */
6072 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6073 	DELAY(10);
6074 	/* Clear "initialization complete" bit. */
6075 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6076 }
6077 
6078 static int
6079 iwn4965_nic_config(struct iwn_softc *sc)
6080 {
6081 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6082 		/*
6083 		 * I don't believe this to be correct but this is what the
6084 		 * vendor driver is doing. Probably the bits should not be
6085 		 * shifted in IWN_RFCFG_*.
6086 		 */
6087 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6088 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6089 		    IWN_RFCFG_STEP(sc->rfcfg) |
6090 		    IWN_RFCFG_DASH(sc->rfcfg));
6091 	}
6092 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6093 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6094 	return 0;
6095 }
6096 
6097 static int
6098 iwn5000_nic_config(struct iwn_softc *sc)
6099 {
6100 	uint32_t tmp;
6101 	int error;
6102 
6103 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6104 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6105 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6106 		    IWN_RFCFG_STEP(sc->rfcfg) |
6107 		    IWN_RFCFG_DASH(sc->rfcfg));
6108 	}
6109 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6110 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6111 
6112 	error = iwn_nic_lock(sc);
6113 	if (error != 0)
6114 		return error;
6115 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6116 
6117 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6118 		/*
6119 		 * Select first Switching Voltage Regulator (1.32V) to
6120 		 * solve a stability issue related to noisy DC2DC line
6121 		 * in the silicon of 1000 Series.
6122 		 */
6123 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6124 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6125 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6126 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6127 	}
6128 	iwn_nic_unlock(sc);
6129 
6130 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6131 		/* Use internal power amplifier only. */
6132 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6133 	}
6134 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 && sc->calib_ver >= 6) {
6135 		/* Indicate that ROM calibration version is >=6. */
6136 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6137 	}
6138 	return 0;
6139 }
6140 
6141 /*
6142  * Take NIC ownership over Intel Active Management Technology (AMT).
6143  */
6144 static int
6145 iwn_hw_prepare(struct iwn_softc *sc)
6146 {
6147 	int ntries;
6148 
6149 	/* Check if hardware is ready. */
6150 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6151 	for (ntries = 0; ntries < 5; ntries++) {
6152 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6153 		    IWN_HW_IF_CONFIG_NIC_READY)
6154 			return 0;
6155 		DELAY(10);
6156 	}
6157 
6158 	/* Hardware not ready, force into ready state. */
6159 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6160 	for (ntries = 0; ntries < 15000; ntries++) {
6161 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6162 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6163 			break;
6164 		DELAY(10);
6165 	}
6166 	if (ntries == 15000)
6167 		return ETIMEDOUT;
6168 
6169 	/* Hardware should be ready now. */
6170 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6171 	for (ntries = 0; ntries < 5; ntries++) {
6172 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6173 		    IWN_HW_IF_CONFIG_NIC_READY)
6174 			return 0;
6175 		DELAY(10);
6176 	}
6177 	return ETIMEDOUT;
6178 }
6179 
6180 static int
6181 iwn_hw_init(struct iwn_softc *sc)
6182 {
6183 	const struct iwn_hal *hal = sc->sc_hal;
6184 	int error, chnl, qid;
6185 
6186 	/* Clear pending interrupts. */
6187 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6188 
6189 	error = iwn_apm_init(sc);
6190 	if (error != 0) {
6191 		device_printf(sc->sc_dev,
6192 		    "%s: could not power ON adapter, error %d\n",
6193 		    __func__, error);
6194 		return error;
6195 	}
6196 
6197 	/* Select VMAIN power source. */
6198 	error = iwn_nic_lock(sc);
6199 	if (error != 0)
6200 		return error;
6201 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6202 	iwn_nic_unlock(sc);
6203 
6204 	/* Perform adapter-specific initialization. */
6205 	error = hal->nic_config(sc);
6206 	if (error != 0)
6207 		return error;
6208 
6209 	/* Initialize RX ring. */
6210 	error = iwn_nic_lock(sc);
6211 	if (error != 0)
6212 		return error;
6213 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6214 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6215 	/* Set physical address of RX ring (256-byte aligned.) */
6216 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6217 	/* Set physical address of RX status (16-byte aligned.) */
6218 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6219 	/* Enable RX. */
6220 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6221 	    IWN_FH_RX_CONFIG_ENA           |
6222 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6223 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6224 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6225 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6226 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6227 	iwn_nic_unlock(sc);
6228 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6229 
6230 	error = iwn_nic_lock(sc);
6231 	if (error != 0)
6232 		return error;
6233 
6234 	/* Initialize TX scheduler. */
6235 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6236 
6237 	/* Set physical address of "keep warm" page (16-byte aligned.) */
6238 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6239 
6240 	/* Initialize TX rings. */
6241 	for (qid = 0; qid < hal->ntxqs; qid++) {
6242 		struct iwn_tx_ring *txq = &sc->txq[qid];
6243 
6244 		/* Set physical address of TX ring (256-byte aligned.) */
6245 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6246 		    txq->desc_dma.paddr >> 8);
6247 	}
6248 	iwn_nic_unlock(sc);
6249 
6250 	/* Enable DMA channels. */
6251 	for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6252 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6253 		    IWN_FH_TX_CONFIG_DMA_ENA |
6254 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6255 	}
6256 
6257 	/* Clear "radio off" and "commands blocked" bits. */
6258 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6259 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6260 
6261 	/* Clear pending interrupts. */
6262 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6263 	/* Enable interrupt coalescing. */
6264 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6265 	/* Enable interrupts. */
6266 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6267 
6268 	/* _Really_ make sure "radio off" bit is cleared! */
6269 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6270 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6271 
6272 	error = hal->load_firmware(sc);
6273 	if (error != 0) {
6274 		device_printf(sc->sc_dev,
6275 		    "%s: could not load firmware, error %d\n",
6276 		    __func__, error);
6277 		return error;
6278 	}
6279 	/* Wait at most one second for firmware alive notification. */
6280 	error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
6281 	if (error != 0) {
6282 		device_printf(sc->sc_dev,
6283 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6284 		    __func__, error);
6285 		return error;
6286 	}
6287 	/* Do post-firmware initialization. */
6288 	return hal->post_alive(sc);
6289 }
6290 
6291 static void
6292 iwn_hw_stop(struct iwn_softc *sc)
6293 {
6294 	const struct iwn_hal *hal = sc->sc_hal;
6295 	uint32_t tmp;
6296 	int chnl, qid, ntries;
6297 
6298 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6299 
6300 	/* Disable interrupts. */
6301 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6302 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6303 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6304 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6305 
6306 	/* Make sure we no longer hold the NIC lock. */
6307 	iwn_nic_unlock(sc);
6308 
6309 	/* Stop TX scheduler. */
6310 	iwn_prph_write(sc, hal->sched_txfact_addr, 0);
6311 
6312 	/* Stop all DMA channels. */
6313 	if (iwn_nic_lock(sc) == 0) {
6314 		for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
6315 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6316 			for (ntries = 0; ntries < 200; ntries++) {
6317 				tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
6318 				if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
6319 				    IWN_FH_TX_STATUS_IDLE(chnl))
6320 					break;
6321 				DELAY(10);
6322 			}
6323 		}
6324 		iwn_nic_unlock(sc);
6325 	}
6326 
6327 	/* Stop RX ring. */
6328 	iwn_reset_rx_ring(sc, &sc->rxq);
6329 
6330 	/* Reset all TX rings. */
6331 	for (qid = 0; qid < hal->ntxqs; qid++)
6332 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6333 
6334 	if (iwn_nic_lock(sc) == 0) {
6335 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6336 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6337 		iwn_nic_unlock(sc);
6338 	}
6339 	DELAY(5);
6340 
6341 	/* Power OFF adapter. */
6342 	iwn_apm_stop(sc);
6343 }
6344 
6345 static void
6346 iwn_init_locked(struct iwn_softc *sc)
6347 {
6348 	struct ifnet *ifp = sc->sc_ifp;
6349 	int error;
6350 
6351 	IWN_LOCK_ASSERT(sc);
6352 
6353 	error = iwn_hw_prepare(sc);
6354 	if (error != 0) {
6355 		device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
6356 		    __func__, error);
6357 		goto fail;
6358 	}
6359 
6360 	/* Initialize interrupt mask to default value. */
6361 	sc->int_mask = IWN_INT_MASK_DEF;
6362 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6363 
6364 	/* Check that the radio is not disabled by hardware switch. */
6365 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6366 		device_printf(sc->sc_dev,
6367 		    "radio is disabled by hardware switch\n");
6368 
6369 		/* Enable interrupts to get RF toggle notifications. */
6370 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6371 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6372 		return;
6373 	}
6374 
6375 	/* Read firmware images from the filesystem. */
6376 	error = iwn_read_firmware(sc);
6377 	if (error != 0) {
6378 		device_printf(sc->sc_dev,
6379 		    "%s: could not read firmware, error %d\n",
6380 		    __func__, error);
6381 		goto fail;
6382 	}
6383 
6384 	/* Initialize hardware and upload firmware. */
6385 	error = iwn_hw_init(sc);
6386 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6387 	sc->fw_fp = NULL;
6388 	if (error != 0) {
6389 		device_printf(sc->sc_dev,
6390 		    "%s: could not initialize hardware, error %d\n",
6391 		    __func__, error);
6392 		goto fail;
6393 	}
6394 
6395 	/* Configure adapter now that it is ready. */
6396 	error = iwn_config(sc);
6397 	if (error != 0) {
6398 		device_printf(sc->sc_dev,
6399 		    "%s: could not configure device, error %d\n",
6400 		    __func__, error);
6401 		goto fail;
6402 	}
6403 
6404 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6405 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6406 
6407 	return;
6408 
6409 fail:
6410 	iwn_stop_locked(sc);
6411 }
6412 
6413 static void
6414 iwn_init(void *arg)
6415 {
6416 	struct iwn_softc *sc = arg;
6417 	struct ifnet *ifp = sc->sc_ifp;
6418 	struct ieee80211com *ic = ifp->if_l2com;
6419 
6420 	IWN_LOCK(sc);
6421 	iwn_init_locked(sc);
6422 	IWN_UNLOCK(sc);
6423 
6424 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6425 		ieee80211_start_all(ic);
6426 }
6427 
6428 static void
6429 iwn_stop_locked(struct iwn_softc *sc)
6430 {
6431 	struct ifnet *ifp = sc->sc_ifp;
6432 
6433 	IWN_LOCK_ASSERT(sc);
6434 
6435 	sc->sc_tx_timer = 0;
6436 	callout_stop(&sc->sc_timer_to);
6437 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6438 
6439 	/* Power OFF hardware. */
6440 	iwn_hw_stop(sc);
6441 }
6442 
6443 static void
6444 iwn_stop(struct iwn_softc *sc)
6445 {
6446 	IWN_LOCK(sc);
6447 	iwn_stop_locked(sc);
6448 	IWN_UNLOCK(sc);
6449 }
6450 
6451 /*
6452  * Callback from net80211 to start a scan.
6453  */
6454 static void
6455 iwn_scan_start(struct ieee80211com *ic)
6456 {
6457 	struct ifnet *ifp = ic->ic_ifp;
6458 	struct iwn_softc *sc = ifp->if_softc;
6459 
6460 	IWN_LOCK(sc);
6461 	/* make the link LED blink while we're scanning */
6462 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
6463 	IWN_UNLOCK(sc);
6464 }
6465 
6466 /*
6467  * Callback from net80211 to terminate a scan.
6468  */
6469 static void
6470 iwn_scan_end(struct ieee80211com *ic)
6471 {
6472 	struct ifnet *ifp = ic->ic_ifp;
6473 	struct iwn_softc *sc = ifp->if_softc;
6474 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6475 
6476 	IWN_LOCK(sc);
6477 	if (vap->iv_state == IEEE80211_S_RUN) {
6478 		/* Set link LED to ON status if we are associated */
6479 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6480 	}
6481 	IWN_UNLOCK(sc);
6482 }
6483 
6484 /*
6485  * Callback from net80211 to force a channel change.
6486  */
6487 static void
6488 iwn_set_channel(struct ieee80211com *ic)
6489 {
6490 	const struct ieee80211_channel *c = ic->ic_curchan;
6491 	struct ifnet *ifp = ic->ic_ifp;
6492 	struct iwn_softc *sc = ifp->if_softc;
6493 
6494 	IWN_LOCK(sc);
6495 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
6496 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
6497 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
6498 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
6499 	IWN_UNLOCK(sc);
6500 }
6501 
6502 /*
6503  * Callback from net80211 to start scanning of the current channel.
6504  */
6505 static void
6506 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
6507 {
6508 	struct ieee80211vap *vap = ss->ss_vap;
6509 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6510 	int error;
6511 
6512 	IWN_LOCK(sc);
6513 	error = iwn_scan(sc);
6514 	IWN_UNLOCK(sc);
6515 	if (error != 0)
6516 		ieee80211_cancel_scan(vap);
6517 }
6518 
6519 /*
6520  * Callback from net80211 to handle the minimum dwell time being met.
6521  * The intent is to terminate the scan but we just let the firmware
6522  * notify us when it's finished as we have no safe way to abort it.
6523  */
6524 static void
6525 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
6526 {
6527 	/* NB: don't try to abort scan; wait for firmware to finish */
6528 }
6529 
6530 static struct iwn_eeprom_chan *
6531 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
6532 {
6533 	int i, j;
6534 
6535 	for (j = 0; j < 7; j++) {
6536 		for (i = 0; i < iwn_bands[j].nchan; i++) {
6537 			if (iwn_bands[j].chan[i] == c->ic_ieee)
6538 				return &sc->eeprom_channels[j][i];
6539 		}
6540 	}
6541 
6542 	return NULL;
6543 }
6544 
6545 /*
6546  * Enforce flags read from EEPROM.
6547  */
6548 static int
6549 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
6550     int nchan, struct ieee80211_channel chans[])
6551 {
6552 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6553 	int i;
6554 
6555 	for (i = 0; i < nchan; i++) {
6556 		struct ieee80211_channel *c = &chans[i];
6557 		struct iwn_eeprom_chan *channel;
6558 
6559 		channel = iwn_find_eeprom_channel(sc, c);
6560 		if (channel == NULL) {
6561 			if_printf(ic->ic_ifp,
6562 			    "%s: invalid channel %u freq %u/0x%x\n",
6563 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
6564 			return EINVAL;
6565 		}
6566 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
6567 	}
6568 
6569 	return 0;
6570 }
6571 
6572 static void
6573 iwn_hw_reset(void *arg0, int pending)
6574 {
6575 	struct iwn_softc *sc = arg0;
6576 	struct ifnet *ifp = sc->sc_ifp;
6577 	struct ieee80211com *ic = ifp->if_l2com;
6578 
6579 	iwn_stop(sc);
6580 	iwn_init(sc);
6581 	ieee80211_notify_radio(ic, 1);
6582 }
6583 
6584 static void
6585 iwn_radio_on(void *arg0, int pending)
6586 {
6587 	struct iwn_softc *sc = arg0;
6588 	struct ifnet *ifp = sc->sc_ifp;
6589 	struct ieee80211com *ic = ifp->if_l2com;
6590 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6591 
6592 	if (vap != NULL) {
6593 		iwn_init(sc);
6594 		ieee80211_init(vap);
6595 	}
6596 }
6597 
6598 static void
6599 iwn_radio_off(void *arg0, int pending)
6600 {
6601 	struct iwn_softc *sc = arg0;
6602 	struct ifnet *ifp = sc->sc_ifp;
6603 	struct ieee80211com *ic = ifp->if_l2com;
6604 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6605 
6606 	iwn_stop(sc);
6607 	if (vap != NULL)
6608 		ieee80211_stop(vap);
6609 
6610 	/* Enable interrupts to get RF toggle notification. */
6611 	IWN_LOCK(sc);
6612 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6613 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6614 	IWN_UNLOCK(sc);
6615 }
6616 
6617 static void
6618 iwn_sysctlattach(struct iwn_softc *sc)
6619 {
6620 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6621 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6622 
6623 #ifdef IWN_DEBUG
6624 	sc->sc_debug = 0;
6625 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6626 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
6627 #endif
6628 }
6629 
6630 static int
6631 iwn_shutdown(device_t dev)
6632 {
6633 	struct iwn_softc *sc = device_get_softc(dev);
6634 
6635 	iwn_stop(sc);
6636 	return 0;
6637 }
6638 
6639 static int
6640 iwn_suspend(device_t dev)
6641 {
6642 	struct iwn_softc *sc = device_get_softc(dev);
6643 	struct ifnet *ifp = sc->sc_ifp;
6644 	struct ieee80211com *ic = ifp->if_l2com;
6645 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6646 
6647 	iwn_stop(sc);
6648 	if (vap != NULL)
6649 		ieee80211_stop(vap);
6650 	return 0;
6651 }
6652 
6653 static int
6654 iwn_resume(device_t dev)
6655 {
6656 	struct iwn_softc *sc = device_get_softc(dev);
6657 	struct ifnet *ifp = sc->sc_ifp;
6658 	struct ieee80211com *ic = ifp->if_l2com;
6659 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6660 
6661 	/* Clear device-specific "PCI retry timeout" register (41h). */
6662 	pci_write_config(dev, 0x41, 0, 1);
6663 
6664 	if (ifp->if_flags & IFF_UP) {
6665 		iwn_init(sc);
6666 		if (vap != NULL)
6667 			ieee80211_init(vap);
6668 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6669 			iwn_start(ifp);
6670 	}
6671 	return 0;
6672 }
6673 
6674 #ifdef IWN_DEBUG
6675 static const char *
6676 iwn_intr_str(uint8_t cmd)
6677 {
6678 	switch (cmd) {
6679 	/* Notifications */
6680 	case IWN_UC_READY:		return "UC_READY";
6681 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
6682 	case IWN_TX_DONE:		return "TX_DONE";
6683 	case IWN_START_SCAN:		return "START_SCAN";
6684 	case IWN_STOP_SCAN:		return "STOP_SCAN";
6685 	case IWN_RX_STATISTICS:		return "RX_STATS";
6686 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
6687 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
6688 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
6689 	case IWN_RX_PHY:		return "RX_PHY";
6690 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
6691 	case IWN_RX_DONE:		return "RX_DONE";
6692 
6693 	/* Command Notifications */
6694 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
6695 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
6696 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
6697 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
6698 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
6699 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
6700 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
6701 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
6702 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
6703 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
6704 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
6705 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
6706 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
6707 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
6708 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
6709 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
6710 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
6711 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
6712 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
6713 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
6714 	}
6715 	return "UNKNOWN INTR NOTIF/CMD";
6716 }
6717 #endif /* IWN_DEBUG */
6718 
6719 static device_method_t iwn_methods[] = {
6720 	/* Device interface */
6721 	DEVMETHOD(device_probe,		iwn_probe),
6722 	DEVMETHOD(device_attach,	iwn_attach),
6723 	DEVMETHOD(device_detach,	iwn_detach),
6724 	DEVMETHOD(device_shutdown,	iwn_shutdown),
6725 	DEVMETHOD(device_suspend,	iwn_suspend),
6726 	DEVMETHOD(device_resume,	iwn_resume),
6727 	{ 0, 0 }
6728 };
6729 
6730 static driver_t iwn_driver = {
6731 	"iwn",
6732 	iwn_methods,
6733 	sizeof (struct iwn_softc)
6734 };
6735 static devclass_t iwn_devclass;
6736 
6737 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
6738 MODULE_DEPEND(iwn, pci, 1, 1, 1);
6739 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
6740 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
6741