xref: /freebsd/sys/dev/iwn/if_iwn.c (revision a25896ca1270e25b657ceaa8d47d5699515f5c25)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *);
200 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *);
203 static void	iwn5000_rx_calib_results(struct iwn_softc *,
204 		    struct iwn_rx_desc *);
205 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *);
206 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
207 		    struct iwn_rx_data *);
208 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
211 		    uint8_t);
212 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
213 		    void *);
214 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
215 static void	iwn_notif_intr(struct iwn_softc *);
216 static void	iwn_wakeup_intr(struct iwn_softc *);
217 static void	iwn_rftoggle_task(void *, int);
218 static void	iwn_fatal_intr(struct iwn_softc *);
219 static void	iwn_intr(void *);
220 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
221 		    uint16_t);
222 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
223 		    uint16_t);
224 #ifdef notyet
225 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
226 #endif
227 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
228 		    struct ieee80211_node *);
229 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
230 		    struct ieee80211_node *,
231 		    const struct ieee80211_bpf_params *params);
232 static int	iwn_tx_cmd(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *, struct iwn_tx_ring *);
234 static void	iwn_xmit_task(void *arg0, int pending);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
238 static void	iwn_scan_timeout(void *);
239 static void	iwn_watchdog(void *);
240 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
241 static void	iwn_parent(struct ieee80211com *);
242 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
243 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
244 		    int);
245 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
246 		    int);
247 static int	iwn_set_link_quality(struct iwn_softc *,
248 		    struct ieee80211_node *);
249 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
250 static int	iwn_updateedca(struct ieee80211com *);
251 static void	iwn_set_promisc(struct iwn_softc *);
252 static void	iwn_update_promisc(struct ieee80211com *);
253 static void	iwn_update_mcast(struct ieee80211com *);
254 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
255 static int	iwn_set_critical_temp(struct iwn_softc *);
256 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
257 static void	iwn4965_power_calibration(struct iwn_softc *, int);
258 static int	iwn4965_set_txpower(struct iwn_softc *, int);
259 static int	iwn5000_set_txpower(struct iwn_softc *, int);
260 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
263 static int	iwn4965_get_temperature(struct iwn_softc *);
264 static int	iwn5000_get_temperature(struct iwn_softc *);
265 static int	iwn_init_sensitivity(struct iwn_softc *);
266 static void	iwn_collect_noise(struct iwn_softc *,
267 		    const struct iwn_rx_general_stats *);
268 static int	iwn4965_init_gains(struct iwn_softc *);
269 static int	iwn5000_init_gains(struct iwn_softc *);
270 static int	iwn4965_set_gains(struct iwn_softc *);
271 static int	iwn5000_set_gains(struct iwn_softc *);
272 static void	iwn_tune_sensitivity(struct iwn_softc *,
273 		    const struct iwn_rx_stats *);
274 static void	iwn_save_stats_counters(struct iwn_softc *,
275 		    const struct iwn_stats *);
276 static int	iwn_send_sensitivity(struct iwn_softc *);
277 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
278 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
279 static int	iwn_send_btcoex(struct iwn_softc *);
280 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
281 static int	iwn5000_runtime_calib(struct iwn_softc *);
282 static int	iwn_check_bss_filter(struct iwn_softc *);
283 static int	iwn4965_rxon_assoc(struct iwn_softc *, int);
284 static int	iwn5000_rxon_assoc(struct iwn_softc *, int);
285 static int	iwn_send_rxon(struct iwn_softc *, int, int);
286 static int	iwn_config(struct iwn_softc *);
287 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
288 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
289 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
290 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
291 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
292 		    struct ieee80211_rx_ampdu *, int, int, int);
293 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
294 		    struct ieee80211_rx_ampdu *);
295 static int	iwn_addba_request(struct ieee80211_node *,
296 		    struct ieee80211_tx_ampdu *, int, int, int);
297 static int	iwn_addba_response(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *, int, int, int);
299 static int	iwn_ampdu_tx_start(struct ieee80211com *,
300 		    struct ieee80211_node *, uint8_t);
301 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
302 		    struct ieee80211_tx_ampdu *);
303 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
308 		    struct ieee80211_node *, int, uint8_t, uint16_t);
309 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
310 		    uint8_t, uint16_t);
311 static int	iwn5000_query_calibration(struct iwn_softc *);
312 static int	iwn5000_send_calibration(struct iwn_softc *);
313 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
314 static int	iwn5000_crystal_calib(struct iwn_softc *);
315 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
316 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
317 static int	iwn4965_post_alive(struct iwn_softc *);
318 static int	iwn5000_post_alive(struct iwn_softc *);
319 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
320 		    int);
321 static int	iwn4965_load_firmware(struct iwn_softc *);
322 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
323 		    const uint8_t *, int);
324 static int	iwn5000_load_firmware(struct iwn_softc *);
325 static int	iwn_read_firmware_leg(struct iwn_softc *,
326 		    struct iwn_fw_info *);
327 static int	iwn_read_firmware_tlv(struct iwn_softc *,
328 		    struct iwn_fw_info *, uint16_t);
329 static int	iwn_read_firmware(struct iwn_softc *);
330 static void	iwn_unload_firmware(struct iwn_softc *);
331 static int	iwn_clock_wait(struct iwn_softc *);
332 static int	iwn_apm_init(struct iwn_softc *);
333 static void	iwn_apm_stop_master(struct iwn_softc *);
334 static void	iwn_apm_stop(struct iwn_softc *);
335 static int	iwn4965_nic_config(struct iwn_softc *);
336 static int	iwn5000_nic_config(struct iwn_softc *);
337 static int	iwn_hw_prepare(struct iwn_softc *);
338 static int	iwn_hw_init(struct iwn_softc *);
339 static void	iwn_hw_stop(struct iwn_softc *);
340 static void	iwn_panicked(void *, int);
341 static int	iwn_init_locked(struct iwn_softc *);
342 static int	iwn_init(struct iwn_softc *);
343 static void	iwn_stop_locked(struct iwn_softc *);
344 static void	iwn_stop(struct iwn_softc *);
345 static void	iwn_scan_start(struct ieee80211com *);
346 static void	iwn_scan_end(struct ieee80211com *);
347 static void	iwn_set_channel(struct ieee80211com *);
348 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
349 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
350 #ifdef	IWN_DEBUG
351 static char	*iwn_get_csr_string(int);
352 static void	iwn_debug_register(struct iwn_softc *);
353 #endif
354 
355 static device_method_t iwn_methods[] = {
356 	/* Device interface */
357 	DEVMETHOD(device_probe,		iwn_probe),
358 	DEVMETHOD(device_attach,	iwn_attach),
359 	DEVMETHOD(device_detach,	iwn_detach),
360 	DEVMETHOD(device_shutdown,	iwn_shutdown),
361 	DEVMETHOD(device_suspend,	iwn_suspend),
362 	DEVMETHOD(device_resume,	iwn_resume),
363 
364 	DEVMETHOD_END
365 };
366 
367 static driver_t iwn_driver = {
368 	"iwn",
369 	iwn_methods,
370 	sizeof(struct iwn_softc)
371 };
372 static devclass_t iwn_devclass;
373 
374 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
375 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table,
376     nitems(iwn_ident_table) - 1);
377 MODULE_VERSION(iwn, 1);
378 
379 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
380 MODULE_DEPEND(iwn, pci, 1, 1, 1);
381 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
382 
383 static d_ioctl_t iwn_cdev_ioctl;
384 static d_open_t iwn_cdev_open;
385 static d_close_t iwn_cdev_close;
386 
387 static struct cdevsw iwn_cdevsw = {
388 	.d_version = D_VERSION,
389 	.d_flags = 0,
390 	.d_open = iwn_cdev_open,
391 	.d_close = iwn_cdev_close,
392 	.d_ioctl = iwn_cdev_ioctl,
393 	.d_name = "iwn",
394 };
395 
396 static int
397 iwn_probe(device_t dev)
398 {
399 	const struct iwn_ident *ident;
400 
401 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
402 		if (pci_get_vendor(dev) == ident->vendor &&
403 		    pci_get_device(dev) == ident->device) {
404 			device_set_desc(dev, ident->name);
405 			return (BUS_PROBE_DEFAULT);
406 		}
407 	}
408 	return ENXIO;
409 }
410 
411 static int
412 iwn_is_3stream_device(struct iwn_softc *sc)
413 {
414 	/* XXX for now only 5300, until the 5350 can be tested */
415 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
416 		return (1);
417 	return (0);
418 }
419 
420 static int
421 iwn_attach(device_t dev)
422 {
423 	struct iwn_softc *sc = device_get_softc(dev);
424 	struct ieee80211com *ic;
425 	int i, error, rid;
426 
427 	sc->sc_dev = dev;
428 
429 #ifdef	IWN_DEBUG
430 	error = resource_int_value(device_get_name(sc->sc_dev),
431 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
432 	if (error != 0)
433 		sc->sc_debug = 0;
434 #else
435 	sc->sc_debug = 0;
436 #endif
437 
438 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
439 
440 	/*
441 	 * Get the offset of the PCI Express Capability Structure in PCI
442 	 * Configuration Space.
443 	 */
444 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
445 	if (error != 0) {
446 		device_printf(dev, "PCIe capability structure not found!\n");
447 		return error;
448 	}
449 
450 	/* Clear device-specific "PCI retry timeout" register (41h). */
451 	pci_write_config(dev, 0x41, 0, 1);
452 
453 	/* Enable bus-mastering. */
454 	pci_enable_busmaster(dev);
455 
456 	rid = PCIR_BAR(0);
457 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
458 	    RF_ACTIVE);
459 	if (sc->mem == NULL) {
460 		device_printf(dev, "can't map mem space\n");
461 		error = ENOMEM;
462 		return error;
463 	}
464 	sc->sc_st = rman_get_bustag(sc->mem);
465 	sc->sc_sh = rman_get_bushandle(sc->mem);
466 
467 	i = 1;
468 	rid = 0;
469 	if (pci_alloc_msi(dev, &i) == 0)
470 		rid = 1;
471 	/* Install interrupt handler. */
472 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
473 	    (rid != 0 ? 0 : RF_SHAREABLE));
474 	if (sc->irq == NULL) {
475 		device_printf(dev, "can't map interrupt\n");
476 		error = ENOMEM;
477 		goto fail;
478 	}
479 
480 	IWN_LOCK_INIT(sc);
481 
482 	/* Read hardware revision and attach. */
483 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
484 	    & IWN_HW_REV_TYPE_MASK;
485 	sc->subdevice_id = pci_get_subdevice(dev);
486 
487 	/*
488 	 * 4965 versus 5000 and later have different methods.
489 	 * Let's set those up first.
490 	 */
491 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
492 		error = iwn4965_attach(sc, pci_get_device(dev));
493 	else
494 		error = iwn5000_attach(sc, pci_get_device(dev));
495 	if (error != 0) {
496 		device_printf(dev, "could not attach device, error %d\n",
497 		    error);
498 		goto fail;
499 	}
500 
501 	/*
502 	 * Next, let's setup the various parameters of each NIC.
503 	 */
504 	error = iwn_config_specific(sc, pci_get_device(dev));
505 	if (error != 0) {
506 		device_printf(dev, "could not attach device, error %d\n",
507 		    error);
508 		goto fail;
509 	}
510 
511 	if ((error = iwn_hw_prepare(sc)) != 0) {
512 		device_printf(dev, "hardware not ready, error %d\n", error);
513 		goto fail;
514 	}
515 
516 	/* Allocate DMA memory for firmware transfers. */
517 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
518 		device_printf(dev,
519 		    "could not allocate memory for firmware, error %d\n",
520 		    error);
521 		goto fail;
522 	}
523 
524 	/* Allocate "Keep Warm" page. */
525 	if ((error = iwn_alloc_kw(sc)) != 0) {
526 		device_printf(dev,
527 		    "could not allocate keep warm page, error %d\n", error);
528 		goto fail;
529 	}
530 
531 	/* Allocate ICT table for 5000 Series. */
532 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
533 	    (error = iwn_alloc_ict(sc)) != 0) {
534 		device_printf(dev, "could not allocate ICT table, error %d\n",
535 		    error);
536 		goto fail;
537 	}
538 
539 	/* Allocate TX scheduler "rings". */
540 	if ((error = iwn_alloc_sched(sc)) != 0) {
541 		device_printf(dev,
542 		    "could not allocate TX scheduler rings, error %d\n", error);
543 		goto fail;
544 	}
545 
546 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
547 	for (i = 0; i < sc->ntxqs; i++) {
548 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
549 			device_printf(dev,
550 			    "could not allocate TX ring %d, error %d\n", i,
551 			    error);
552 			goto fail;
553 		}
554 	}
555 
556 	/* Allocate RX ring. */
557 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
558 		device_printf(dev, "could not allocate RX ring, error %d\n",
559 		    error);
560 		goto fail;
561 	}
562 
563 	/* Clear pending interrupts. */
564 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
565 
566 	ic = &sc->sc_ic;
567 	ic->ic_softc = sc;
568 	ic->ic_name = device_get_nameunit(dev);
569 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
570 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
571 
572 	/* Set device capabilities. */
573 	ic->ic_caps =
574 		  IEEE80211_C_STA		/* station mode supported */
575 		| IEEE80211_C_MONITOR		/* monitor mode supported */
576 #if 0
577 		| IEEE80211_C_BGSCAN		/* background scanning */
578 #endif
579 		| IEEE80211_C_TXPMGT		/* tx power management */
580 		| IEEE80211_C_SHSLOT		/* short slot time supported */
581 		| IEEE80211_C_WPA
582 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
583 #if 0
584 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
585 #endif
586 		| IEEE80211_C_WME		/* WME */
587 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
588 		;
589 
590 	/* Read MAC address, channels, etc from EEPROM. */
591 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
592 		device_printf(dev, "could not read EEPROM, error %d\n",
593 		    error);
594 		goto fail;
595 	}
596 
597 	/* Count the number of available chains. */
598 	sc->ntxchains =
599 	    ((sc->txchainmask >> 2) & 1) +
600 	    ((sc->txchainmask >> 1) & 1) +
601 	    ((sc->txchainmask >> 0) & 1);
602 	sc->nrxchains =
603 	    ((sc->rxchainmask >> 2) & 1) +
604 	    ((sc->rxchainmask >> 1) & 1) +
605 	    ((sc->rxchainmask >> 0) & 1);
606 	if (bootverbose) {
607 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
608 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
609 		    ic->ic_macaddr, ":");
610 	}
611 
612 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
613 		ic->ic_rxstream = sc->nrxchains;
614 		ic->ic_txstream = sc->ntxchains;
615 
616 		/*
617 		 * Some of the 3 antenna devices (ie, the 4965) only supports
618 		 * 2x2 operation.  So correct the number of streams if
619 		 * it's not a 3-stream device.
620 		 */
621 		if (! iwn_is_3stream_device(sc)) {
622 			if (ic->ic_rxstream > 2)
623 				ic->ic_rxstream = 2;
624 			if (ic->ic_txstream > 2)
625 				ic->ic_txstream = 2;
626 		}
627 
628 		ic->ic_htcaps =
629 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
630 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
631 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
632 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
633 #ifdef notyet
634 			| IEEE80211_HTCAP_GREENFIELD
635 #if IWN_RBUF_SIZE == 8192
636 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
637 #else
638 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
639 #endif
640 #endif
641 			/* s/w capabilities */
642 			| IEEE80211_HTC_HT		/* HT operation */
643 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
644 #ifdef notyet
645 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
646 #endif
647 			;
648 	}
649 
650 	ieee80211_ifattach(ic);
651 	ic->ic_vap_create = iwn_vap_create;
652 	ic->ic_ioctl = iwn_ioctl;
653 	ic->ic_parent = iwn_parent;
654 	ic->ic_vap_delete = iwn_vap_delete;
655 	ic->ic_transmit = iwn_transmit;
656 	ic->ic_raw_xmit = iwn_raw_xmit;
657 	ic->ic_node_alloc = iwn_node_alloc;
658 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
659 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
660 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
661 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
662 	sc->sc_addba_request = ic->ic_addba_request;
663 	ic->ic_addba_request = iwn_addba_request;
664 	sc->sc_addba_response = ic->ic_addba_response;
665 	ic->ic_addba_response = iwn_addba_response;
666 	sc->sc_addba_stop = ic->ic_addba_stop;
667 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
668 	ic->ic_newassoc = iwn_newassoc;
669 	ic->ic_wme.wme_update = iwn_updateedca;
670 	ic->ic_update_promisc = iwn_update_promisc;
671 	ic->ic_update_mcast = iwn_update_mcast;
672 	ic->ic_scan_start = iwn_scan_start;
673 	ic->ic_scan_end = iwn_scan_end;
674 	ic->ic_set_channel = iwn_set_channel;
675 	ic->ic_scan_curchan = iwn_scan_curchan;
676 	ic->ic_scan_mindwell = iwn_scan_mindwell;
677 	ic->ic_getradiocaps = iwn_getradiocaps;
678 	ic->ic_setregdomain = iwn_setregdomain;
679 
680 	iwn_radiotap_attach(sc);
681 
682 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
683 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
684 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
685 	TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc);
686 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
687 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
688 
689 	mbufq_init(&sc->sc_xmit_queue, 1024);
690 
691 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
692 	    taskqueue_thread_enqueue, &sc->sc_tq);
693 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
694 	if (error != 0) {
695 		device_printf(dev, "can't start threads, error %d\n", error);
696 		goto fail;
697 	}
698 
699 	iwn_sysctlattach(sc);
700 
701 	/*
702 	 * Hook our interrupt after all initialization is complete.
703 	 */
704 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
705 	    NULL, iwn_intr, sc, &sc->sc_ih);
706 	if (error != 0) {
707 		device_printf(dev, "can't establish interrupt, error %d\n",
708 		    error);
709 		goto fail;
710 	}
711 
712 #if 0
713 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
714 	    __func__,
715 	    sizeof(struct iwn_stats),
716 	    sizeof(struct iwn_stats_bt));
717 #endif
718 
719 	if (bootverbose)
720 		ieee80211_announce(ic);
721 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
722 
723 	/* Add debug ioctl right at the end */
724 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
725 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
726 	if (sc->sc_cdev == NULL) {
727 		device_printf(dev, "failed to create debug character device\n");
728 	} else {
729 		sc->sc_cdev->si_drv1 = sc;
730 	}
731 	return 0;
732 fail:
733 	iwn_detach(dev);
734 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
735 	return error;
736 }
737 
738 /*
739  * Define specific configuration based on device id and subdevice id
740  * pid : PCI device id
741  */
742 static int
743 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
744 {
745 
746 	switch (pid) {
747 /* 4965 series */
748 	case IWN_DID_4965_1:
749 	case IWN_DID_4965_2:
750 	case IWN_DID_4965_3:
751 	case IWN_DID_4965_4:
752 		sc->base_params = &iwn4965_base_params;
753 		sc->limits = &iwn4965_sensitivity_limits;
754 		sc->fwname = "iwn4965fw";
755 		/* Override chains masks, ROM is known to be broken. */
756 		sc->txchainmask = IWN_ANT_AB;
757 		sc->rxchainmask = IWN_ANT_ABC;
758 		/* Enable normal btcoex */
759 		sc->sc_flags |= IWN_FLAG_BTCOEX;
760 		break;
761 /* 1000 Series */
762 	case IWN_DID_1000_1:
763 	case IWN_DID_1000_2:
764 		switch(sc->subdevice_id) {
765 			case	IWN_SDID_1000_1:
766 			case	IWN_SDID_1000_2:
767 			case	IWN_SDID_1000_3:
768 			case	IWN_SDID_1000_4:
769 			case	IWN_SDID_1000_5:
770 			case	IWN_SDID_1000_6:
771 			case	IWN_SDID_1000_7:
772 			case	IWN_SDID_1000_8:
773 			case	IWN_SDID_1000_9:
774 			case	IWN_SDID_1000_10:
775 			case	IWN_SDID_1000_11:
776 			case	IWN_SDID_1000_12:
777 				sc->limits = &iwn1000_sensitivity_limits;
778 				sc->base_params = &iwn1000_base_params;
779 				sc->fwname = "iwn1000fw";
780 				break;
781 			default:
782 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
783 				    "0x%04x rev %d not supported (subdevice)\n", pid,
784 				    sc->subdevice_id,sc->hw_type);
785 				return ENOTSUP;
786 		}
787 		break;
788 /* 6x00 Series */
789 	case IWN_DID_6x00_2:
790 	case IWN_DID_6x00_4:
791 	case IWN_DID_6x00_1:
792 	case IWN_DID_6x00_3:
793 		sc->fwname = "iwn6000fw";
794 		sc->limits = &iwn6000_sensitivity_limits;
795 		switch(sc->subdevice_id) {
796 			case IWN_SDID_6x00_1:
797 			case IWN_SDID_6x00_2:
798 			case IWN_SDID_6x00_8:
799 				//iwl6000_3agn_cfg
800 				sc->base_params = &iwn_6000_base_params;
801 				break;
802 			case IWN_SDID_6x00_3:
803 			case IWN_SDID_6x00_6:
804 			case IWN_SDID_6x00_9:
805 				////iwl6000i_2agn
806 			case IWN_SDID_6x00_4:
807 			case IWN_SDID_6x00_7:
808 			case IWN_SDID_6x00_10:
809 				//iwl6000i_2abg_cfg
810 			case IWN_SDID_6x00_5:
811 				//iwl6000i_2bg_cfg
812 				sc->base_params = &iwn_6000i_base_params;
813 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
814 				sc->txchainmask = IWN_ANT_BC;
815 				sc->rxchainmask = IWN_ANT_BC;
816 				break;
817 			default:
818 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
819 				    "0x%04x rev %d not supported (subdevice)\n", pid,
820 				    sc->subdevice_id,sc->hw_type);
821 				return ENOTSUP;
822 		}
823 		break;
824 /* 6x05 Series */
825 	case IWN_DID_6x05_1:
826 	case IWN_DID_6x05_2:
827 		switch(sc->subdevice_id) {
828 			case IWN_SDID_6x05_1:
829 			case IWN_SDID_6x05_4:
830 			case IWN_SDID_6x05_6:
831 				//iwl6005_2agn_cfg
832 			case IWN_SDID_6x05_2:
833 			case IWN_SDID_6x05_5:
834 			case IWN_SDID_6x05_7:
835 				//iwl6005_2abg_cfg
836 			case IWN_SDID_6x05_3:
837 				//iwl6005_2bg_cfg
838 			case IWN_SDID_6x05_8:
839 			case IWN_SDID_6x05_9:
840 				//iwl6005_2agn_sff_cfg
841 			case IWN_SDID_6x05_10:
842 				//iwl6005_2agn_d_cfg
843 			case IWN_SDID_6x05_11:
844 				//iwl6005_2agn_mow1_cfg
845 			case IWN_SDID_6x05_12:
846 				//iwl6005_2agn_mow2_cfg
847 				sc->fwname = "iwn6000g2afw";
848 				sc->limits = &iwn6000_sensitivity_limits;
849 				sc->base_params = &iwn_6000g2_base_params;
850 				break;
851 			default:
852 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
853 				    "0x%04x rev %d not supported (subdevice)\n", pid,
854 				    sc->subdevice_id,sc->hw_type);
855 				return ENOTSUP;
856 		}
857 		break;
858 /* 6x35 Series */
859 	case IWN_DID_6035_1:
860 	case IWN_DID_6035_2:
861 		switch(sc->subdevice_id) {
862 			case IWN_SDID_6035_1:
863 			case IWN_SDID_6035_2:
864 			case IWN_SDID_6035_3:
865 			case IWN_SDID_6035_4:
866 			case IWN_SDID_6035_5:
867 				sc->fwname = "iwn6000g2bfw";
868 				sc->limits = &iwn6235_sensitivity_limits;
869 				sc->base_params = &iwn_6235_base_params;
870 				break;
871 			default:
872 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
873 				    "0x%04x rev %d not supported (subdevice)\n", pid,
874 				    sc->subdevice_id,sc->hw_type);
875 				return ENOTSUP;
876 		}
877 		break;
878 /* 6x50 WiFi/WiMax Series */
879 	case IWN_DID_6050_1:
880 	case IWN_DID_6050_2:
881 		switch(sc->subdevice_id) {
882 			case IWN_SDID_6050_1:
883 			case IWN_SDID_6050_3:
884 			case IWN_SDID_6050_5:
885 				//iwl6050_2agn_cfg
886 			case IWN_SDID_6050_2:
887 			case IWN_SDID_6050_4:
888 			case IWN_SDID_6050_6:
889 				//iwl6050_2abg_cfg
890 				sc->fwname = "iwn6050fw";
891 				sc->txchainmask = IWN_ANT_AB;
892 				sc->rxchainmask = IWN_ANT_AB;
893 				sc->limits = &iwn6000_sensitivity_limits;
894 				sc->base_params = &iwn_6050_base_params;
895 				break;
896 			default:
897 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
898 				    "0x%04x rev %d not supported (subdevice)\n", pid,
899 				    sc->subdevice_id,sc->hw_type);
900 				return ENOTSUP;
901 		}
902 		break;
903 /* 6150 WiFi/WiMax Series */
904 	case IWN_DID_6150_1:
905 	case IWN_DID_6150_2:
906 		switch(sc->subdevice_id) {
907 			case IWN_SDID_6150_1:
908 			case IWN_SDID_6150_3:
909 			case IWN_SDID_6150_5:
910 				// iwl6150_bgn_cfg
911 			case IWN_SDID_6150_2:
912 			case IWN_SDID_6150_4:
913 			case IWN_SDID_6150_6:
914 				//iwl6150_bg_cfg
915 				sc->fwname = "iwn6050fw";
916 				sc->limits = &iwn6000_sensitivity_limits;
917 				sc->base_params = &iwn_6150_base_params;
918 				break;
919 			default:
920 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
921 				    "0x%04x rev %d not supported (subdevice)\n", pid,
922 				    sc->subdevice_id,sc->hw_type);
923 				return ENOTSUP;
924 		}
925 		break;
926 /* 6030 Series and 1030 Series */
927 	case IWN_DID_x030_1:
928 	case IWN_DID_x030_2:
929 	case IWN_DID_x030_3:
930 	case IWN_DID_x030_4:
931 		switch(sc->subdevice_id) {
932 			case IWN_SDID_x030_1:
933 			case IWN_SDID_x030_3:
934 			case IWN_SDID_x030_5:
935 			// iwl1030_bgn_cfg
936 			case IWN_SDID_x030_2:
937 			case IWN_SDID_x030_4:
938 			case IWN_SDID_x030_6:
939 			//iwl1030_bg_cfg
940 			case IWN_SDID_x030_7:
941 			case IWN_SDID_x030_10:
942 			case IWN_SDID_x030_14:
943 			//iwl6030_2agn_cfg
944 			case IWN_SDID_x030_8:
945 			case IWN_SDID_x030_11:
946 			case IWN_SDID_x030_15:
947 			// iwl6030_2bgn_cfg
948 			case IWN_SDID_x030_9:
949 			case IWN_SDID_x030_12:
950 			case IWN_SDID_x030_16:
951 			// iwl6030_2abg_cfg
952 			case IWN_SDID_x030_13:
953 			//iwl6030_2bg_cfg
954 				sc->fwname = "iwn6000g2bfw";
955 				sc->limits = &iwn6000_sensitivity_limits;
956 				sc->base_params = &iwn_6000g2b_base_params;
957 				break;
958 			default:
959 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
960 				    "0x%04x rev %d not supported (subdevice)\n", pid,
961 				    sc->subdevice_id,sc->hw_type);
962 				return ENOTSUP;
963 		}
964 		break;
965 /* 130 Series WiFi */
966 /* XXX: This series will need adjustment for rate.
967  * see rx_with_siso_diversity in linux kernel
968  */
969 	case IWN_DID_130_1:
970 	case IWN_DID_130_2:
971 		switch(sc->subdevice_id) {
972 			case IWN_SDID_130_1:
973 			case IWN_SDID_130_3:
974 			case IWN_SDID_130_5:
975 			//iwl130_bgn_cfg
976 			case IWN_SDID_130_2:
977 			case IWN_SDID_130_4:
978 			case IWN_SDID_130_6:
979 			//iwl130_bg_cfg
980 				sc->fwname = "iwn6000g2bfw";
981 				sc->limits = &iwn6000_sensitivity_limits;
982 				sc->base_params = &iwn_6000g2b_base_params;
983 				break;
984 			default:
985 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
986 				    "0x%04x rev %d not supported (subdevice)\n", pid,
987 				    sc->subdevice_id,sc->hw_type);
988 				return ENOTSUP;
989 		}
990 		break;
991 /* 100 Series WiFi */
992 	case IWN_DID_100_1:
993 	case IWN_DID_100_2:
994 		switch(sc->subdevice_id) {
995 			case IWN_SDID_100_1:
996 			case IWN_SDID_100_2:
997 			case IWN_SDID_100_3:
998 			case IWN_SDID_100_4:
999 			case IWN_SDID_100_5:
1000 			case IWN_SDID_100_6:
1001 				sc->limits = &iwn1000_sensitivity_limits;
1002 				sc->base_params = &iwn1000_base_params;
1003 				sc->fwname = "iwn100fw";
1004 				break;
1005 			default:
1006 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1007 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1008 				    sc->subdevice_id,sc->hw_type);
1009 				return ENOTSUP;
1010 		}
1011 		break;
1012 
1013 /* 105 Series */
1014 /* XXX: This series will need adjustment for rate.
1015  * see rx_with_siso_diversity in linux kernel
1016  */
1017 	case IWN_DID_105_1:
1018 	case IWN_DID_105_2:
1019 		switch(sc->subdevice_id) {
1020 			case IWN_SDID_105_1:
1021 			case IWN_SDID_105_2:
1022 			case IWN_SDID_105_3:
1023 			//iwl105_bgn_cfg
1024 			case IWN_SDID_105_4:
1025 			//iwl105_bgn_d_cfg
1026 				sc->limits = &iwn2030_sensitivity_limits;
1027 				sc->base_params = &iwn2000_base_params;
1028 				sc->fwname = "iwn105fw";
1029 				break;
1030 			default:
1031 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1032 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1033 				    sc->subdevice_id,sc->hw_type);
1034 				return ENOTSUP;
1035 		}
1036 		break;
1037 
1038 /* 135 Series */
1039 /* XXX: This series will need adjustment for rate.
1040  * see rx_with_siso_diversity in linux kernel
1041  */
1042 	case IWN_DID_135_1:
1043 	case IWN_DID_135_2:
1044 		switch(sc->subdevice_id) {
1045 			case IWN_SDID_135_1:
1046 			case IWN_SDID_135_2:
1047 			case IWN_SDID_135_3:
1048 				sc->limits = &iwn2030_sensitivity_limits;
1049 				sc->base_params = &iwn2030_base_params;
1050 				sc->fwname = "iwn135fw";
1051 				break;
1052 			default:
1053 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1054 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1055 				    sc->subdevice_id,sc->hw_type);
1056 				return ENOTSUP;
1057 		}
1058 		break;
1059 
1060 /* 2x00 Series */
1061 	case IWN_DID_2x00_1:
1062 	case IWN_DID_2x00_2:
1063 		switch(sc->subdevice_id) {
1064 			case IWN_SDID_2x00_1:
1065 			case IWN_SDID_2x00_2:
1066 			case IWN_SDID_2x00_3:
1067 			//iwl2000_2bgn_cfg
1068 			case IWN_SDID_2x00_4:
1069 			//iwl2000_2bgn_d_cfg
1070 				sc->limits = &iwn2030_sensitivity_limits;
1071 				sc->base_params = &iwn2000_base_params;
1072 				sc->fwname = "iwn2000fw";
1073 				break;
1074 			default:
1075 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1076 				    "0x%04x rev %d not supported (subdevice) \n",
1077 				    pid, sc->subdevice_id, sc->hw_type);
1078 				return ENOTSUP;
1079 		}
1080 		break;
1081 /* 2x30 Series */
1082 	case IWN_DID_2x30_1:
1083 	case IWN_DID_2x30_2:
1084 		switch(sc->subdevice_id) {
1085 			case IWN_SDID_2x30_1:
1086 			case IWN_SDID_2x30_3:
1087 			case IWN_SDID_2x30_5:
1088 			//iwl100_bgn_cfg
1089 			case IWN_SDID_2x30_2:
1090 			case IWN_SDID_2x30_4:
1091 			case IWN_SDID_2x30_6:
1092 			//iwl100_bg_cfg
1093 				sc->limits = &iwn2030_sensitivity_limits;
1094 				sc->base_params = &iwn2030_base_params;
1095 				sc->fwname = "iwn2030fw";
1096 				break;
1097 			default:
1098 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1099 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1100 				    sc->subdevice_id,sc->hw_type);
1101 				return ENOTSUP;
1102 		}
1103 		break;
1104 /* 5x00 Series */
1105 	case IWN_DID_5x00_1:
1106 	case IWN_DID_5x00_2:
1107 	case IWN_DID_5x00_3:
1108 	case IWN_DID_5x00_4:
1109 		sc->limits = &iwn5000_sensitivity_limits;
1110 		sc->base_params = &iwn5000_base_params;
1111 		sc->fwname = "iwn5000fw";
1112 		switch(sc->subdevice_id) {
1113 			case IWN_SDID_5x00_1:
1114 			case IWN_SDID_5x00_2:
1115 			case IWN_SDID_5x00_3:
1116 			case IWN_SDID_5x00_4:
1117 			case IWN_SDID_5x00_9:
1118 			case IWN_SDID_5x00_10:
1119 			case IWN_SDID_5x00_11:
1120 			case IWN_SDID_5x00_12:
1121 			case IWN_SDID_5x00_17:
1122 			case IWN_SDID_5x00_18:
1123 			case IWN_SDID_5x00_19:
1124 			case IWN_SDID_5x00_20:
1125 			//iwl5100_agn_cfg
1126 				sc->txchainmask = IWN_ANT_B;
1127 				sc->rxchainmask = IWN_ANT_AB;
1128 				break;
1129 			case IWN_SDID_5x00_5:
1130 			case IWN_SDID_5x00_6:
1131 			case IWN_SDID_5x00_13:
1132 			case IWN_SDID_5x00_14:
1133 			case IWN_SDID_5x00_21:
1134 			case IWN_SDID_5x00_22:
1135 			//iwl5100_bgn_cfg
1136 				sc->txchainmask = IWN_ANT_B;
1137 				sc->rxchainmask = IWN_ANT_AB;
1138 				break;
1139 			case IWN_SDID_5x00_7:
1140 			case IWN_SDID_5x00_8:
1141 			case IWN_SDID_5x00_15:
1142 			case IWN_SDID_5x00_16:
1143 			case IWN_SDID_5x00_23:
1144 			case IWN_SDID_5x00_24:
1145 			//iwl5100_abg_cfg
1146 				sc->txchainmask = IWN_ANT_B;
1147 				sc->rxchainmask = IWN_ANT_AB;
1148 				break;
1149 			case IWN_SDID_5x00_25:
1150 			case IWN_SDID_5x00_26:
1151 			case IWN_SDID_5x00_27:
1152 			case IWN_SDID_5x00_28:
1153 			case IWN_SDID_5x00_29:
1154 			case IWN_SDID_5x00_30:
1155 			case IWN_SDID_5x00_31:
1156 			case IWN_SDID_5x00_32:
1157 			case IWN_SDID_5x00_33:
1158 			case IWN_SDID_5x00_34:
1159 			case IWN_SDID_5x00_35:
1160 			case IWN_SDID_5x00_36:
1161 			//iwl5300_agn_cfg
1162 				sc->txchainmask = IWN_ANT_ABC;
1163 				sc->rxchainmask = IWN_ANT_ABC;
1164 				break;
1165 			default:
1166 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1167 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1168 				    sc->subdevice_id,sc->hw_type);
1169 				return ENOTSUP;
1170 		}
1171 		break;
1172 /* 5x50 Series */
1173 	case IWN_DID_5x50_1:
1174 	case IWN_DID_5x50_2:
1175 	case IWN_DID_5x50_3:
1176 	case IWN_DID_5x50_4:
1177 		sc->limits = &iwn5000_sensitivity_limits;
1178 		sc->base_params = &iwn5000_base_params;
1179 		sc->fwname = "iwn5000fw";
1180 		switch(sc->subdevice_id) {
1181 			case IWN_SDID_5x50_1:
1182 			case IWN_SDID_5x50_2:
1183 			case IWN_SDID_5x50_3:
1184 			//iwl5350_agn_cfg
1185 				sc->limits = &iwn5000_sensitivity_limits;
1186 				sc->base_params = &iwn5000_base_params;
1187 				sc->fwname = "iwn5000fw";
1188 				break;
1189 			case IWN_SDID_5x50_4:
1190 			case IWN_SDID_5x50_5:
1191 			case IWN_SDID_5x50_8:
1192 			case IWN_SDID_5x50_9:
1193 			case IWN_SDID_5x50_10:
1194 			case IWN_SDID_5x50_11:
1195 			//iwl5150_agn_cfg
1196 			case IWN_SDID_5x50_6:
1197 			case IWN_SDID_5x50_7:
1198 			case IWN_SDID_5x50_12:
1199 			case IWN_SDID_5x50_13:
1200 			//iwl5150_abg_cfg
1201 				sc->limits = &iwn5000_sensitivity_limits;
1202 				sc->fwname = "iwn5150fw";
1203 				sc->base_params = &iwn_5x50_base_params;
1204 				break;
1205 			default:
1206 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1207 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1208 				    sc->subdevice_id,sc->hw_type);
1209 				return ENOTSUP;
1210 		}
1211 		break;
1212 	default:
1213 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1214 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1215 		     sc->hw_type);
1216 		return ENOTSUP;
1217 	}
1218 	return 0;
1219 }
1220 
1221 static int
1222 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1223 {
1224 	struct iwn_ops *ops = &sc->ops;
1225 
1226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1227 	ops->load_firmware = iwn4965_load_firmware;
1228 	ops->read_eeprom = iwn4965_read_eeprom;
1229 	ops->post_alive = iwn4965_post_alive;
1230 	ops->nic_config = iwn4965_nic_config;
1231 	ops->update_sched = iwn4965_update_sched;
1232 	ops->get_temperature = iwn4965_get_temperature;
1233 	ops->get_rssi = iwn4965_get_rssi;
1234 	ops->set_txpower = iwn4965_set_txpower;
1235 	ops->init_gains = iwn4965_init_gains;
1236 	ops->set_gains = iwn4965_set_gains;
1237 	ops->rxon_assoc = iwn4965_rxon_assoc;
1238 	ops->add_node = iwn4965_add_node;
1239 	ops->tx_done = iwn4965_tx_done;
1240 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1241 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1242 	sc->ntxqs = IWN4965_NTXQUEUES;
1243 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1244 	sc->ndmachnls = IWN4965_NDMACHNLS;
1245 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1246 	sc->rxonsz = IWN4965_RXONSZ;
1247 	sc->schedsz = IWN4965_SCHEDSZ;
1248 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1249 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1250 	sc->fwsz = IWN4965_FWSZ;
1251 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1252 	sc->limits = &iwn4965_sensitivity_limits;
1253 	sc->fwname = "iwn4965fw";
1254 	/* Override chains masks, ROM is known to be broken. */
1255 	sc->txchainmask = IWN_ANT_AB;
1256 	sc->rxchainmask = IWN_ANT_ABC;
1257 	/* Enable normal btcoex */
1258 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1259 
1260 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1261 
1262 	return 0;
1263 }
1264 
1265 static int
1266 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1267 {
1268 	struct iwn_ops *ops = &sc->ops;
1269 
1270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1271 
1272 	ops->load_firmware = iwn5000_load_firmware;
1273 	ops->read_eeprom = iwn5000_read_eeprom;
1274 	ops->post_alive = iwn5000_post_alive;
1275 	ops->nic_config = iwn5000_nic_config;
1276 	ops->update_sched = iwn5000_update_sched;
1277 	ops->get_temperature = iwn5000_get_temperature;
1278 	ops->get_rssi = iwn5000_get_rssi;
1279 	ops->set_txpower = iwn5000_set_txpower;
1280 	ops->init_gains = iwn5000_init_gains;
1281 	ops->set_gains = iwn5000_set_gains;
1282 	ops->rxon_assoc = iwn5000_rxon_assoc;
1283 	ops->add_node = iwn5000_add_node;
1284 	ops->tx_done = iwn5000_tx_done;
1285 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1286 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1287 	sc->ntxqs = IWN5000_NTXQUEUES;
1288 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1289 	sc->ndmachnls = IWN5000_NDMACHNLS;
1290 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1291 	sc->rxonsz = IWN5000_RXONSZ;
1292 	sc->schedsz = IWN5000_SCHEDSZ;
1293 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1294 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1295 	sc->fwsz = IWN5000_FWSZ;
1296 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1297 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1298 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1299 
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Attach the interface to 802.11 radiotap.
1305  */
1306 static void
1307 iwn_radiotap_attach(struct iwn_softc *sc)
1308 {
1309 
1310 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1311 	ieee80211_radiotap_attach(&sc->sc_ic,
1312 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1313 		IWN_TX_RADIOTAP_PRESENT,
1314 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1315 		IWN_RX_RADIOTAP_PRESENT);
1316 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1317 }
1318 
1319 static void
1320 iwn_sysctlattach(struct iwn_softc *sc)
1321 {
1322 #ifdef	IWN_DEBUG
1323 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1324 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1325 
1326 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1327 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1328 		"control debugging printfs");
1329 #endif
1330 }
1331 
1332 static struct ieee80211vap *
1333 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1334     enum ieee80211_opmode opmode, int flags,
1335     const uint8_t bssid[IEEE80211_ADDR_LEN],
1336     const uint8_t mac[IEEE80211_ADDR_LEN])
1337 {
1338 	struct iwn_softc *sc = ic->ic_softc;
1339 	struct iwn_vap *ivp;
1340 	struct ieee80211vap *vap;
1341 
1342 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1343 		return NULL;
1344 
1345 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1346 	vap = &ivp->iv_vap;
1347 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1348 	ivp->ctx = IWN_RXON_BSS_CTX;
1349 	vap->iv_bmissthreshold = 10;		/* override default */
1350 	/* Override with driver methods. */
1351 	ivp->iv_newstate = vap->iv_newstate;
1352 	vap->iv_newstate = iwn_newstate;
1353 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1354 
1355 	ieee80211_ratectl_init(vap);
1356 	/* Complete setup. */
1357 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1358 	    mac);
1359 	ic->ic_opmode = opmode;
1360 	return vap;
1361 }
1362 
1363 static void
1364 iwn_vap_delete(struct ieee80211vap *vap)
1365 {
1366 	struct iwn_vap *ivp = IWN_VAP(vap);
1367 
1368 	ieee80211_ratectl_deinit(vap);
1369 	ieee80211_vap_detach(vap);
1370 	free(ivp, M_80211_VAP);
1371 }
1372 
1373 static void
1374 iwn_xmit_queue_drain(struct iwn_softc *sc)
1375 {
1376 	struct mbuf *m;
1377 	struct ieee80211_node *ni;
1378 
1379 	IWN_LOCK_ASSERT(sc);
1380 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1381 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1382 		ieee80211_free_node(ni);
1383 		m_freem(m);
1384 	}
1385 }
1386 
1387 static int
1388 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1389 {
1390 
1391 	IWN_LOCK_ASSERT(sc);
1392 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1393 }
1394 
1395 static int
1396 iwn_detach(device_t dev)
1397 {
1398 	struct iwn_softc *sc = device_get_softc(dev);
1399 	int qid;
1400 
1401 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1402 
1403 	if (sc->sc_ic.ic_softc != NULL) {
1404 		/* Free the mbuf queue and node references */
1405 		IWN_LOCK(sc);
1406 		iwn_xmit_queue_drain(sc);
1407 		IWN_UNLOCK(sc);
1408 
1409 		iwn_stop(sc);
1410 
1411 		taskqueue_drain_all(sc->sc_tq);
1412 		taskqueue_free(sc->sc_tq);
1413 
1414 		callout_drain(&sc->watchdog_to);
1415 		callout_drain(&sc->scan_timeout);
1416 		callout_drain(&sc->calib_to);
1417 		ieee80211_ifdetach(&sc->sc_ic);
1418 	}
1419 
1420 	/* Uninstall interrupt handler. */
1421 	if (sc->irq != NULL) {
1422 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1423 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1424 		    sc->irq);
1425 		pci_release_msi(dev);
1426 	}
1427 
1428 	/* Free DMA resources. */
1429 	iwn_free_rx_ring(sc, &sc->rxq);
1430 	for (qid = 0; qid < sc->ntxqs; qid++)
1431 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1432 	iwn_free_sched(sc);
1433 	iwn_free_kw(sc);
1434 	if (sc->ict != NULL)
1435 		iwn_free_ict(sc);
1436 	iwn_free_fwmem(sc);
1437 
1438 	if (sc->mem != NULL)
1439 		bus_release_resource(dev, SYS_RES_MEMORY,
1440 		    rman_get_rid(sc->mem), sc->mem);
1441 
1442 	if (sc->sc_cdev) {
1443 		destroy_dev(sc->sc_cdev);
1444 		sc->sc_cdev = NULL;
1445 	}
1446 
1447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1448 	IWN_LOCK_DESTROY(sc);
1449 	return 0;
1450 }
1451 
1452 static int
1453 iwn_shutdown(device_t dev)
1454 {
1455 	struct iwn_softc *sc = device_get_softc(dev);
1456 
1457 	iwn_stop(sc);
1458 	return 0;
1459 }
1460 
1461 static int
1462 iwn_suspend(device_t dev)
1463 {
1464 	struct iwn_softc *sc = device_get_softc(dev);
1465 
1466 	ieee80211_suspend_all(&sc->sc_ic);
1467 	return 0;
1468 }
1469 
1470 static int
1471 iwn_resume(device_t dev)
1472 {
1473 	struct iwn_softc *sc = device_get_softc(dev);
1474 
1475 	/* Clear device-specific "PCI retry timeout" register (41h). */
1476 	pci_write_config(dev, 0x41, 0, 1);
1477 
1478 	ieee80211_resume_all(&sc->sc_ic);
1479 	return 0;
1480 }
1481 
1482 static int
1483 iwn_nic_lock(struct iwn_softc *sc)
1484 {
1485 	int ntries;
1486 
1487 	/* Request exclusive access to NIC. */
1488 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1489 
1490 	/* Spin until we actually get the lock. */
1491 	for (ntries = 0; ntries < 1000; ntries++) {
1492 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1493 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1494 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1495 			return 0;
1496 		DELAY(10);
1497 	}
1498 	return ETIMEDOUT;
1499 }
1500 
1501 static __inline void
1502 iwn_nic_unlock(struct iwn_softc *sc)
1503 {
1504 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1505 }
1506 
1507 static __inline uint32_t
1508 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1509 {
1510 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1511 	IWN_BARRIER_READ_WRITE(sc);
1512 	return IWN_READ(sc, IWN_PRPH_RDATA);
1513 }
1514 
1515 static __inline void
1516 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1517 {
1518 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1519 	IWN_BARRIER_WRITE(sc);
1520 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1521 }
1522 
1523 static __inline void
1524 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1525 {
1526 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1527 }
1528 
1529 static __inline void
1530 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1531 {
1532 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1533 }
1534 
1535 static __inline void
1536 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1537     const uint32_t *data, int count)
1538 {
1539 	for (; count > 0; count--, data++, addr += 4)
1540 		iwn_prph_write(sc, addr, *data);
1541 }
1542 
1543 static __inline uint32_t
1544 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1545 {
1546 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1547 	IWN_BARRIER_READ_WRITE(sc);
1548 	return IWN_READ(sc, IWN_MEM_RDATA);
1549 }
1550 
1551 static __inline void
1552 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1553 {
1554 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1555 	IWN_BARRIER_WRITE(sc);
1556 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1557 }
1558 
1559 static __inline void
1560 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1561 {
1562 	uint32_t tmp;
1563 
1564 	tmp = iwn_mem_read(sc, addr & ~3);
1565 	if (addr & 3)
1566 		tmp = (tmp & 0x0000ffff) | data << 16;
1567 	else
1568 		tmp = (tmp & 0xffff0000) | data;
1569 	iwn_mem_write(sc, addr & ~3, tmp);
1570 }
1571 
1572 static __inline void
1573 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1574     int count)
1575 {
1576 	for (; count > 0; count--, addr += 4)
1577 		*data++ = iwn_mem_read(sc, addr);
1578 }
1579 
1580 static __inline void
1581 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1582     int count)
1583 {
1584 	for (; count > 0; count--, addr += 4)
1585 		iwn_mem_write(sc, addr, val);
1586 }
1587 
1588 static int
1589 iwn_eeprom_lock(struct iwn_softc *sc)
1590 {
1591 	int i, ntries;
1592 
1593 	for (i = 0; i < 100; i++) {
1594 		/* Request exclusive access to EEPROM. */
1595 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1596 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1597 
1598 		/* Spin until we actually get the lock. */
1599 		for (ntries = 0; ntries < 100; ntries++) {
1600 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1601 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1602 				return 0;
1603 			DELAY(10);
1604 		}
1605 	}
1606 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1607 	return ETIMEDOUT;
1608 }
1609 
1610 static __inline void
1611 iwn_eeprom_unlock(struct iwn_softc *sc)
1612 {
1613 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1614 }
1615 
1616 /*
1617  * Initialize access by host to One Time Programmable ROM.
1618  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1619  */
1620 static int
1621 iwn_init_otprom(struct iwn_softc *sc)
1622 {
1623 	uint16_t prev, base, next;
1624 	int count, error;
1625 
1626 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1627 
1628 	/* Wait for clock stabilization before accessing prph. */
1629 	if ((error = iwn_clock_wait(sc)) != 0)
1630 		return error;
1631 
1632 	if ((error = iwn_nic_lock(sc)) != 0)
1633 		return error;
1634 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1635 	DELAY(5);
1636 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1637 	iwn_nic_unlock(sc);
1638 
1639 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1640 	if (sc->base_params->shadow_ram_support) {
1641 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1642 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1643 	}
1644 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1645 	/* Clear ECC status. */
1646 	IWN_SETBITS(sc, IWN_OTP_GP,
1647 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1648 
1649 	/*
1650 	 * Find the block before last block (contains the EEPROM image)
1651 	 * for HW without OTP shadow RAM.
1652 	 */
1653 	if (! sc->base_params->shadow_ram_support) {
1654 		/* Switch to absolute addressing mode. */
1655 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1656 		base = prev = 0;
1657 		for (count = 0; count < sc->base_params->max_ll_items;
1658 		    count++) {
1659 			error = iwn_read_prom_data(sc, base, &next, 2);
1660 			if (error != 0)
1661 				return error;
1662 			if (next == 0)	/* End of linked-list. */
1663 				break;
1664 			prev = base;
1665 			base = le16toh(next);
1666 		}
1667 		if (count == 0 || count == sc->base_params->max_ll_items)
1668 			return EIO;
1669 		/* Skip "next" word. */
1670 		sc->prom_base = prev + 1;
1671 	}
1672 
1673 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1674 
1675 	return 0;
1676 }
1677 
1678 static int
1679 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1680 {
1681 	uint8_t *out = data;
1682 	uint32_t val, tmp;
1683 	int ntries;
1684 
1685 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1686 
1687 	addr += sc->prom_base;
1688 	for (; count > 0; count -= 2, addr++) {
1689 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1690 		for (ntries = 0; ntries < 10; ntries++) {
1691 			val = IWN_READ(sc, IWN_EEPROM);
1692 			if (val & IWN_EEPROM_READ_VALID)
1693 				break;
1694 			DELAY(5);
1695 		}
1696 		if (ntries == 10) {
1697 			device_printf(sc->sc_dev,
1698 			    "timeout reading ROM at 0x%x\n", addr);
1699 			return ETIMEDOUT;
1700 		}
1701 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1702 			/* OTPROM, check for ECC errors. */
1703 			tmp = IWN_READ(sc, IWN_OTP_GP);
1704 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1705 				device_printf(sc->sc_dev,
1706 				    "OTPROM ECC error at 0x%x\n", addr);
1707 				return EIO;
1708 			}
1709 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1710 				/* Correctable ECC error, clear bit. */
1711 				IWN_SETBITS(sc, IWN_OTP_GP,
1712 				    IWN_OTP_GP_ECC_CORR_STTS);
1713 			}
1714 		}
1715 		*out++ = val >> 16;
1716 		if (count > 1)
1717 			*out++ = val >> 24;
1718 	}
1719 
1720 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1721 
1722 	return 0;
1723 }
1724 
1725 static void
1726 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1727 {
1728 	if (error != 0)
1729 		return;
1730 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1731 	*(bus_addr_t *)arg = segs[0].ds_addr;
1732 }
1733 
1734 static int
1735 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1736     void **kvap, bus_size_t size, bus_size_t alignment)
1737 {
1738 	int error;
1739 
1740 	dma->tag = NULL;
1741 	dma->size = size;
1742 
1743 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1744 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1745 	    1, size, 0, NULL, NULL, &dma->tag);
1746 	if (error != 0)
1747 		goto fail;
1748 
1749 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1750 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1751 	if (error != 0)
1752 		goto fail;
1753 
1754 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1755 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1756 	if (error != 0)
1757 		goto fail;
1758 
1759 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1760 
1761 	if (kvap != NULL)
1762 		*kvap = dma->vaddr;
1763 
1764 	return 0;
1765 
1766 fail:	iwn_dma_contig_free(dma);
1767 	return error;
1768 }
1769 
1770 static void
1771 iwn_dma_contig_free(struct iwn_dma_info *dma)
1772 {
1773 	if (dma->vaddr != NULL) {
1774 		bus_dmamap_sync(dma->tag, dma->map,
1775 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1776 		bus_dmamap_unload(dma->tag, dma->map);
1777 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1778 		dma->vaddr = NULL;
1779 	}
1780 	if (dma->tag != NULL) {
1781 		bus_dma_tag_destroy(dma->tag);
1782 		dma->tag = NULL;
1783 	}
1784 }
1785 
1786 static int
1787 iwn_alloc_sched(struct iwn_softc *sc)
1788 {
1789 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1790 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1791 	    sc->schedsz, 1024);
1792 }
1793 
1794 static void
1795 iwn_free_sched(struct iwn_softc *sc)
1796 {
1797 	iwn_dma_contig_free(&sc->sched_dma);
1798 }
1799 
1800 static int
1801 iwn_alloc_kw(struct iwn_softc *sc)
1802 {
1803 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1804 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1805 }
1806 
1807 static void
1808 iwn_free_kw(struct iwn_softc *sc)
1809 {
1810 	iwn_dma_contig_free(&sc->kw_dma);
1811 }
1812 
1813 static int
1814 iwn_alloc_ict(struct iwn_softc *sc)
1815 {
1816 	/* ICT table must be aligned on a 4KB boundary. */
1817 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1818 	    IWN_ICT_SIZE, 4096);
1819 }
1820 
1821 static void
1822 iwn_free_ict(struct iwn_softc *sc)
1823 {
1824 	iwn_dma_contig_free(&sc->ict_dma);
1825 }
1826 
1827 static int
1828 iwn_alloc_fwmem(struct iwn_softc *sc)
1829 {
1830 	/* Must be aligned on a 16-byte boundary. */
1831 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1832 }
1833 
1834 static void
1835 iwn_free_fwmem(struct iwn_softc *sc)
1836 {
1837 	iwn_dma_contig_free(&sc->fw_dma);
1838 }
1839 
1840 static int
1841 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1842 {
1843 	bus_size_t size;
1844 	int i, error;
1845 
1846 	ring->cur = 0;
1847 
1848 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1849 
1850 	/* Allocate RX descriptors (256-byte aligned). */
1851 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1852 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1853 	    size, 256);
1854 	if (error != 0) {
1855 		device_printf(sc->sc_dev,
1856 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1857 		    __func__, error);
1858 		goto fail;
1859 	}
1860 
1861 	/* Allocate RX status area (16-byte aligned). */
1862 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1863 	    sizeof (struct iwn_rx_status), 16);
1864 	if (error != 0) {
1865 		device_printf(sc->sc_dev,
1866 		    "%s: could not allocate RX status DMA memory, error %d\n",
1867 		    __func__, error);
1868 		goto fail;
1869 	}
1870 
1871 	/* Create RX buffer DMA tag. */
1872 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1873 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1874 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1875 	if (error != 0) {
1876 		device_printf(sc->sc_dev,
1877 		    "%s: could not create RX buf DMA tag, error %d\n",
1878 		    __func__, error);
1879 		goto fail;
1880 	}
1881 
1882 	/*
1883 	 * Allocate and map RX buffers.
1884 	 */
1885 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1886 		struct iwn_rx_data *data = &ring->data[i];
1887 		bus_addr_t paddr;
1888 
1889 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1890 		if (error != 0) {
1891 			device_printf(sc->sc_dev,
1892 			    "%s: could not create RX buf DMA map, error %d\n",
1893 			    __func__, error);
1894 			goto fail;
1895 		}
1896 
1897 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1898 		    IWN_RBUF_SIZE);
1899 		if (data->m == NULL) {
1900 			device_printf(sc->sc_dev,
1901 			    "%s: could not allocate RX mbuf\n", __func__);
1902 			error = ENOBUFS;
1903 			goto fail;
1904 		}
1905 
1906 		error = bus_dmamap_load(ring->data_dmat, data->map,
1907 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1908 		    &paddr, BUS_DMA_NOWAIT);
1909 		if (error != 0 && error != EFBIG) {
1910 			device_printf(sc->sc_dev,
1911 			    "%s: can't map mbuf, error %d\n", __func__,
1912 			    error);
1913 			goto fail;
1914 		}
1915 
1916 		bus_dmamap_sync(ring->data_dmat, data->map,
1917 		    BUS_DMASYNC_PREREAD);
1918 
1919 		/* Set physical address of RX buffer (256-byte aligned). */
1920 		ring->desc[i] = htole32(paddr >> 8);
1921 	}
1922 
1923 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1924 	    BUS_DMASYNC_PREWRITE);
1925 
1926 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1927 
1928 	return 0;
1929 
1930 fail:	iwn_free_rx_ring(sc, ring);
1931 
1932 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1933 
1934 	return error;
1935 }
1936 
1937 static void
1938 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1939 {
1940 	int ntries;
1941 
1942 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1943 
1944 	if (iwn_nic_lock(sc) == 0) {
1945 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1946 		for (ntries = 0; ntries < 1000; ntries++) {
1947 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1948 			    IWN_FH_RX_STATUS_IDLE)
1949 				break;
1950 			DELAY(10);
1951 		}
1952 		iwn_nic_unlock(sc);
1953 	}
1954 	ring->cur = 0;
1955 	sc->last_rx_valid = 0;
1956 }
1957 
1958 static void
1959 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1960 {
1961 	int i;
1962 
1963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1964 
1965 	iwn_dma_contig_free(&ring->desc_dma);
1966 	iwn_dma_contig_free(&ring->stat_dma);
1967 
1968 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1969 		struct iwn_rx_data *data = &ring->data[i];
1970 
1971 		if (data->m != NULL) {
1972 			bus_dmamap_sync(ring->data_dmat, data->map,
1973 			    BUS_DMASYNC_POSTREAD);
1974 			bus_dmamap_unload(ring->data_dmat, data->map);
1975 			m_freem(data->m);
1976 			data->m = NULL;
1977 		}
1978 		if (data->map != NULL)
1979 			bus_dmamap_destroy(ring->data_dmat, data->map);
1980 	}
1981 	if (ring->data_dmat != NULL) {
1982 		bus_dma_tag_destroy(ring->data_dmat);
1983 		ring->data_dmat = NULL;
1984 	}
1985 }
1986 
1987 static int
1988 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1989 {
1990 	bus_addr_t paddr;
1991 	bus_size_t size;
1992 	int i, error;
1993 
1994 	ring->qid = qid;
1995 	ring->queued = 0;
1996 	ring->cur = 0;
1997 
1998 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1999 
2000 	/* Allocate TX descriptors (256-byte aligned). */
2001 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
2002 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2003 	    size, 256);
2004 	if (error != 0) {
2005 		device_printf(sc->sc_dev,
2006 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2007 		    __func__, error);
2008 		goto fail;
2009 	}
2010 
2011 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2012 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2013 	    size, 4);
2014 	if (error != 0) {
2015 		device_printf(sc->sc_dev,
2016 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2017 		    __func__, error);
2018 		goto fail;
2019 	}
2020 
2021 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2022 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2023 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2024 	if (error != 0) {
2025 		device_printf(sc->sc_dev,
2026 		    "%s: could not create TX buf DMA tag, error %d\n",
2027 		    __func__, error);
2028 		goto fail;
2029 	}
2030 
2031 	paddr = ring->cmd_dma.paddr;
2032 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2033 		struct iwn_tx_data *data = &ring->data[i];
2034 
2035 		data->cmd_paddr = paddr;
2036 		data->scratch_paddr = paddr + 12;
2037 		paddr += sizeof (struct iwn_tx_cmd);
2038 
2039 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2040 		if (error != 0) {
2041 			device_printf(sc->sc_dev,
2042 			    "%s: could not create TX buf DMA map, error %d\n",
2043 			    __func__, error);
2044 			goto fail;
2045 		}
2046 	}
2047 
2048 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2049 
2050 	return 0;
2051 
2052 fail:	iwn_free_tx_ring(sc, ring);
2053 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2054 	return error;
2055 }
2056 
2057 static void
2058 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2059 {
2060 	int i;
2061 
2062 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2063 
2064 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2065 		struct iwn_tx_data *data = &ring->data[i];
2066 
2067 		if (data->m != NULL) {
2068 			bus_dmamap_sync(ring->data_dmat, data->map,
2069 			    BUS_DMASYNC_POSTWRITE);
2070 			bus_dmamap_unload(ring->data_dmat, data->map);
2071 			m_freem(data->m);
2072 			data->m = NULL;
2073 		}
2074 		if (data->ni != NULL) {
2075 			ieee80211_free_node(data->ni);
2076 			data->ni = NULL;
2077 		}
2078 	}
2079 	/* Clear TX descriptors. */
2080 	memset(ring->desc, 0, ring->desc_dma.size);
2081 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2082 	    BUS_DMASYNC_PREWRITE);
2083 	sc->qfullmsk &= ~(1 << ring->qid);
2084 	ring->queued = 0;
2085 	ring->cur = 0;
2086 }
2087 
2088 static void
2089 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2090 {
2091 	int i;
2092 
2093 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2094 
2095 	iwn_dma_contig_free(&ring->desc_dma);
2096 	iwn_dma_contig_free(&ring->cmd_dma);
2097 
2098 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2099 		struct iwn_tx_data *data = &ring->data[i];
2100 
2101 		if (data->m != NULL) {
2102 			bus_dmamap_sync(ring->data_dmat, data->map,
2103 			    BUS_DMASYNC_POSTWRITE);
2104 			bus_dmamap_unload(ring->data_dmat, data->map);
2105 			m_freem(data->m);
2106 		}
2107 		if (data->map != NULL)
2108 			bus_dmamap_destroy(ring->data_dmat, data->map);
2109 	}
2110 	if (ring->data_dmat != NULL) {
2111 		bus_dma_tag_destroy(ring->data_dmat);
2112 		ring->data_dmat = NULL;
2113 	}
2114 }
2115 
2116 static void
2117 iwn5000_ict_reset(struct iwn_softc *sc)
2118 {
2119 	/* Disable interrupts. */
2120 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2121 
2122 	/* Reset ICT table. */
2123 	memset(sc->ict, 0, IWN_ICT_SIZE);
2124 	sc->ict_cur = 0;
2125 
2126 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2127 	    BUS_DMASYNC_PREWRITE);
2128 
2129 	/* Set physical address of ICT table (4KB aligned). */
2130 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2131 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2132 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2133 
2134 	/* Enable periodic RX interrupt. */
2135 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2136 	/* Switch to ICT interrupt mode in driver. */
2137 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2138 
2139 	/* Re-enable interrupts. */
2140 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2141 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2142 }
2143 
2144 static int
2145 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2146 {
2147 	struct iwn_ops *ops = &sc->ops;
2148 	uint16_t val;
2149 	int error;
2150 
2151 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2152 
2153 	/* Check whether adapter has an EEPROM or an OTPROM. */
2154 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2155 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2156 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2157 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2158 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2159 
2160 	/* Adapter has to be powered on for EEPROM access to work. */
2161 	if ((error = iwn_apm_init(sc)) != 0) {
2162 		device_printf(sc->sc_dev,
2163 		    "%s: could not power ON adapter, error %d\n", __func__,
2164 		    error);
2165 		return error;
2166 	}
2167 
2168 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2169 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2170 		return EIO;
2171 	}
2172 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2173 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2174 		    __func__, error);
2175 		return error;
2176 	}
2177 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2178 		if ((error = iwn_init_otprom(sc)) != 0) {
2179 			device_printf(sc->sc_dev,
2180 			    "%s: could not initialize OTPROM, error %d\n",
2181 			    __func__, error);
2182 			return error;
2183 		}
2184 	}
2185 
2186 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2187 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2188 	/* Check if HT support is bonded out. */
2189 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2190 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2191 
2192 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2193 	sc->rfcfg = le16toh(val);
2194 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2195 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2196 	if (sc->txchainmask == 0)
2197 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2198 	if (sc->rxchainmask == 0)
2199 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2200 
2201 	/* Read MAC address. */
2202 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2203 
2204 	/* Read adapter-specific information from EEPROM. */
2205 	ops->read_eeprom(sc);
2206 
2207 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2208 
2209 	iwn_eeprom_unlock(sc);
2210 
2211 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2212 
2213 	return 0;
2214 }
2215 
2216 static void
2217 iwn4965_read_eeprom(struct iwn_softc *sc)
2218 {
2219 	uint32_t addr;
2220 	uint16_t val;
2221 	int i;
2222 
2223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2224 
2225 	/* Read regulatory domain (4 ASCII characters). */
2226 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2227 
2228 	/* Read the list of authorized channels (20MHz & 40MHz). */
2229 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2230 		addr = iwn4965_regulatory_bands[i];
2231 		iwn_read_eeprom_channels(sc, i, addr);
2232 	}
2233 
2234 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2235 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2236 	sc->maxpwr2GHz = val & 0xff;
2237 	sc->maxpwr5GHz = val >> 8;
2238 	/* Check that EEPROM values are within valid range. */
2239 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2240 		sc->maxpwr5GHz = 38;
2241 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2242 		sc->maxpwr2GHz = 38;
2243 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2244 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2245 
2246 	/* Read samples for each TX power group. */
2247 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2248 	    sizeof sc->bands);
2249 
2250 	/* Read voltage at which samples were taken. */
2251 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2252 	sc->eeprom_voltage = (int16_t)le16toh(val);
2253 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2254 	    sc->eeprom_voltage);
2255 
2256 #ifdef IWN_DEBUG
2257 	/* Print samples. */
2258 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2259 		for (i = 0; i < IWN_NBANDS - 1; i++)
2260 			iwn4965_print_power_group(sc, i);
2261 	}
2262 #endif
2263 
2264 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2265 }
2266 
2267 #ifdef IWN_DEBUG
2268 static void
2269 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2270 {
2271 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2272 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2273 	int j, c;
2274 
2275 	printf("===band %d===\n", i);
2276 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2277 	printf("chan1 num=%d\n", chans[0].num);
2278 	for (c = 0; c < 2; c++) {
2279 		for (j = 0; j < IWN_NSAMPLES; j++) {
2280 			printf("chain %d, sample %d: temp=%d gain=%d "
2281 			    "power=%d pa_det=%d\n", c, j,
2282 			    chans[0].samples[c][j].temp,
2283 			    chans[0].samples[c][j].gain,
2284 			    chans[0].samples[c][j].power,
2285 			    chans[0].samples[c][j].pa_det);
2286 		}
2287 	}
2288 	printf("chan2 num=%d\n", chans[1].num);
2289 	for (c = 0; c < 2; c++) {
2290 		for (j = 0; j < IWN_NSAMPLES; j++) {
2291 			printf("chain %d, sample %d: temp=%d gain=%d "
2292 			    "power=%d pa_det=%d\n", c, j,
2293 			    chans[1].samples[c][j].temp,
2294 			    chans[1].samples[c][j].gain,
2295 			    chans[1].samples[c][j].power,
2296 			    chans[1].samples[c][j].pa_det);
2297 		}
2298 	}
2299 }
2300 #endif
2301 
2302 static void
2303 iwn5000_read_eeprom(struct iwn_softc *sc)
2304 {
2305 	struct iwn5000_eeprom_calib_hdr hdr;
2306 	int32_t volt;
2307 	uint32_t base, addr;
2308 	uint16_t val;
2309 	int i;
2310 
2311 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2312 
2313 	/* Read regulatory domain (4 ASCII characters). */
2314 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2315 	base = le16toh(val);
2316 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2317 	    sc->eeprom_domain, 4);
2318 
2319 	/* Read the list of authorized channels (20MHz & 40MHz). */
2320 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2321 		addr =  base + sc->base_params->regulatory_bands[i];
2322 		iwn_read_eeprom_channels(sc, i, addr);
2323 	}
2324 
2325 	/* Read enhanced TX power information for 6000 Series. */
2326 	if (sc->base_params->enhanced_TX_power)
2327 		iwn_read_eeprom_enhinfo(sc);
2328 
2329 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2330 	base = le16toh(val);
2331 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2332 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2333 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2334 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2335 	sc->calib_ver = hdr.version;
2336 
2337 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2338 		sc->eeprom_voltage = le16toh(hdr.volt);
2339 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2340 		sc->eeprom_temp_high=le16toh(val);
2341 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2342 		sc->eeprom_temp = le16toh(val);
2343 	}
2344 
2345 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2346 		/* Compute temperature offset. */
2347 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2348 		sc->eeprom_temp = le16toh(val);
2349 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2350 		volt = le16toh(val);
2351 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2352 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2353 		    sc->eeprom_temp, volt, sc->temp_off);
2354 	} else {
2355 		/* Read crystal calibration. */
2356 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2357 		    &sc->eeprom_crystal, sizeof (uint32_t));
2358 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2359 		    le32toh(sc->eeprom_crystal));
2360 	}
2361 
2362 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2363 
2364 }
2365 
2366 /*
2367  * Translate EEPROM flags to net80211.
2368  */
2369 static uint32_t
2370 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2371 {
2372 	uint32_t nflags;
2373 
2374 	nflags = 0;
2375 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2376 		nflags |= IEEE80211_CHAN_PASSIVE;
2377 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2378 		nflags |= IEEE80211_CHAN_NOADHOC;
2379 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2380 		nflags |= IEEE80211_CHAN_DFS;
2381 		/* XXX apparently IBSS may still be marked */
2382 		nflags |= IEEE80211_CHAN_NOADHOC;
2383 	}
2384 
2385 	return nflags;
2386 }
2387 
2388 static void
2389 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2390     struct ieee80211_channel chans[])
2391 {
2392 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2393 	const struct iwn_chan_band *band = &iwn_bands[n];
2394 	uint8_t bands[IEEE80211_MODE_BYTES];
2395 	uint8_t chan;
2396 	int i, error, nflags;
2397 
2398 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2399 
2400 	memset(bands, 0, sizeof(bands));
2401 	if (n == 0) {
2402 		setbit(bands, IEEE80211_MODE_11B);
2403 		setbit(bands, IEEE80211_MODE_11G);
2404 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2405 			setbit(bands, IEEE80211_MODE_11NG);
2406 	} else {
2407 		setbit(bands, IEEE80211_MODE_11A);
2408 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2409 			setbit(bands, IEEE80211_MODE_11NA);
2410 	}
2411 
2412 	for (i = 0; i < band->nchan; i++) {
2413 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2414 			DPRINTF(sc, IWN_DEBUG_RESET,
2415 			    "skip chan %d flags 0x%x maxpwr %d\n",
2416 			    band->chan[i], channels[i].flags,
2417 			    channels[i].maxpwr);
2418 			continue;
2419 		}
2420 
2421 		chan = band->chan[i];
2422 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2423 		error = ieee80211_add_channel(chans, maxchans, nchans,
2424 		    chan, 0, channels[i].maxpwr, nflags, bands);
2425 		if (error != 0)
2426 			break;
2427 
2428 		/* Save maximum allowed TX power for this channel. */
2429 		/* XXX wrong */
2430 		sc->maxpwr[chan] = channels[i].maxpwr;
2431 
2432 		DPRINTF(sc, IWN_DEBUG_RESET,
2433 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2434 		    channels[i].flags, channels[i].maxpwr);
2435 	}
2436 
2437 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2438 
2439 }
2440 
2441 static void
2442 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2443     struct ieee80211_channel chans[])
2444 {
2445 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2446 	const struct iwn_chan_band *band = &iwn_bands[n];
2447 	uint8_t chan;
2448 	int i, error, nflags;
2449 
2450 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2451 
2452 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2453 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2454 		return;
2455 	}
2456 
2457 	for (i = 0; i < band->nchan; i++) {
2458 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2459 			DPRINTF(sc, IWN_DEBUG_RESET,
2460 			    "skip chan %d flags 0x%x maxpwr %d\n",
2461 			    band->chan[i], channels[i].flags,
2462 			    channels[i].maxpwr);
2463 			continue;
2464 		}
2465 
2466 		chan = band->chan[i];
2467 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2468 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2469 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2470 		    chan, channels[i].maxpwr, nflags);
2471 		switch (error) {
2472 		case EINVAL:
2473 			device_printf(sc->sc_dev,
2474 			    "%s: no entry for channel %d\n", __func__, chan);
2475 			continue;
2476 		case ENOENT:
2477 			DPRINTF(sc, IWN_DEBUG_RESET,
2478 			    "%s: skip chan %d, extension channel not found\n",
2479 			    __func__, chan);
2480 			continue;
2481 		case ENOBUFS:
2482 			device_printf(sc->sc_dev,
2483 			    "%s: channel table is full!\n", __func__);
2484 			break;
2485 		case 0:
2486 			DPRINTF(sc, IWN_DEBUG_RESET,
2487 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2488 			    chan, channels[i].flags, channels[i].maxpwr);
2489 			/* FALLTHROUGH */
2490 		default:
2491 			break;
2492 		}
2493 	}
2494 
2495 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2496 
2497 }
2498 
2499 static void
2500 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2501 {
2502 	struct ieee80211com *ic = &sc->sc_ic;
2503 
2504 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2505 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2506 
2507 	if (n < 5) {
2508 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2509 		    ic->ic_channels);
2510 	} else {
2511 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2512 		    ic->ic_channels);
2513 	}
2514 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2515 }
2516 
2517 static struct iwn_eeprom_chan *
2518 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2519 {
2520 	int band, chan, i, j;
2521 
2522 	if (IEEE80211_IS_CHAN_HT40(c)) {
2523 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2524 		if (IEEE80211_IS_CHAN_HT40D(c))
2525 			chan = c->ic_extieee;
2526 		else
2527 			chan = c->ic_ieee;
2528 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2529 			if (iwn_bands[band].chan[i] == chan)
2530 				return &sc->eeprom_channels[band][i];
2531 		}
2532 	} else {
2533 		for (j = 0; j < 5; j++) {
2534 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2535 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2536 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2537 					return &sc->eeprom_channels[j][i];
2538 			}
2539 		}
2540 	}
2541 	return NULL;
2542 }
2543 
2544 static void
2545 iwn_getradiocaps(struct ieee80211com *ic,
2546     int maxchans, int *nchans, struct ieee80211_channel chans[])
2547 {
2548 	struct iwn_softc *sc = ic->ic_softc;
2549 	int i;
2550 
2551 	/* Parse the list of authorized channels. */
2552 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2553 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2554 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2555 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2556 }
2557 
2558 /*
2559  * Enforce flags read from EEPROM.
2560  */
2561 static int
2562 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2563     int nchan, struct ieee80211_channel chans[])
2564 {
2565 	struct iwn_softc *sc = ic->ic_softc;
2566 	int i;
2567 
2568 	for (i = 0; i < nchan; i++) {
2569 		struct ieee80211_channel *c = &chans[i];
2570 		struct iwn_eeprom_chan *channel;
2571 
2572 		channel = iwn_find_eeprom_channel(sc, c);
2573 		if (channel == NULL) {
2574 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2575 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2576 			return EINVAL;
2577 		}
2578 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static void
2585 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2586 {
2587 	struct iwn_eeprom_enhinfo enhinfo[35];
2588 	struct ieee80211com *ic = &sc->sc_ic;
2589 	struct ieee80211_channel *c;
2590 	uint16_t val, base;
2591 	int8_t maxpwr;
2592 	uint8_t flags;
2593 	int i, j;
2594 
2595 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2596 
2597 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2598 	base = le16toh(val);
2599 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2600 	    enhinfo, sizeof enhinfo);
2601 
2602 	for (i = 0; i < nitems(enhinfo); i++) {
2603 		flags = enhinfo[i].flags;
2604 		if (!(flags & IWN_ENHINFO_VALID))
2605 			continue;	/* Skip invalid entries. */
2606 
2607 		maxpwr = 0;
2608 		if (sc->txchainmask & IWN_ANT_A)
2609 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2610 		if (sc->txchainmask & IWN_ANT_B)
2611 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2612 		if (sc->txchainmask & IWN_ANT_C)
2613 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2614 		if (sc->ntxchains == 2)
2615 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2616 		else if (sc->ntxchains == 3)
2617 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2618 
2619 		for (j = 0; j < ic->ic_nchans; j++) {
2620 			c = &ic->ic_channels[j];
2621 			if ((flags & IWN_ENHINFO_5GHZ)) {
2622 				if (!IEEE80211_IS_CHAN_A(c))
2623 					continue;
2624 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2625 				if (!IEEE80211_IS_CHAN_G(c))
2626 					continue;
2627 			} else if (!IEEE80211_IS_CHAN_B(c))
2628 				continue;
2629 			if ((flags & IWN_ENHINFO_HT40)) {
2630 				if (!IEEE80211_IS_CHAN_HT40(c))
2631 					continue;
2632 			} else {
2633 				if (IEEE80211_IS_CHAN_HT40(c))
2634 					continue;
2635 			}
2636 			if (enhinfo[i].chan != 0 &&
2637 			    enhinfo[i].chan != c->ic_ieee)
2638 				continue;
2639 
2640 			DPRINTF(sc, IWN_DEBUG_RESET,
2641 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2642 			    c->ic_flags, maxpwr / 2);
2643 			c->ic_maxregpower = maxpwr / 2;
2644 			c->ic_maxpower = maxpwr;
2645 		}
2646 	}
2647 
2648 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2649 
2650 }
2651 
2652 static struct ieee80211_node *
2653 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2654 {
2655 	struct iwn_node *wn;
2656 
2657 	wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
2658 	if (wn == NULL)
2659 		return (NULL);
2660 
2661 	wn->id = IWN_ID_UNDEFINED;
2662 
2663 	return (&wn->ni);
2664 }
2665 
2666 static __inline int
2667 rate2plcp(int rate)
2668 {
2669 	switch (rate & 0xff) {
2670 	case 12:	return 0xd;
2671 	case 18:	return 0xf;
2672 	case 24:	return 0x5;
2673 	case 36:	return 0x7;
2674 	case 48:	return 0x9;
2675 	case 72:	return 0xb;
2676 	case 96:	return 0x1;
2677 	case 108:	return 0x3;
2678 	case 2:		return 10;
2679 	case 4:		return 20;
2680 	case 11:	return 55;
2681 	case 22:	return 110;
2682 	}
2683 	return 0;
2684 }
2685 
2686 static __inline uint8_t
2687 plcp2rate(const uint8_t rate_plcp)
2688 {
2689 	switch (rate_plcp) {
2690 	case 0xd:	return 12;
2691 	case 0xf:	return 18;
2692 	case 0x5:	return 24;
2693 	case 0x7:	return 36;
2694 	case 0x9:	return 48;
2695 	case 0xb:	return 72;
2696 	case 0x1:	return 96;
2697 	case 0x3:	return 108;
2698 	case 10:	return 2;
2699 	case 20:	return 4;
2700 	case 55:	return 11;
2701 	case 110:	return 22;
2702 	default:	return 0;
2703 	}
2704 }
2705 
2706 static int
2707 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2708 {
2709 
2710 	return IWN_LSB(sc->txchainmask);
2711 }
2712 
2713 static int
2714 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2715 {
2716 	int tx;
2717 
2718 	/*
2719 	 * The '2 stream' setup is a bit .. odd.
2720 	 *
2721 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2722 	 * the firmware panics (eg Intel 5100.)
2723 	 *
2724 	 * For NICs that support two antennas, we use ANT_AB.
2725 	 *
2726 	 * For NICs that support three antennas, we use the two that
2727 	 * wasn't the default one.
2728 	 *
2729 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2730 	 * this to only one antenna.
2731 	 */
2732 
2733 	/* Default - transmit on the other antennas */
2734 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2735 
2736 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2737 	if (tx == 0)
2738 		tx = IWN_ANT_AB;
2739 
2740 	/*
2741 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2742 	 * the default chainmask
2743 	 */
2744 	else if (sc->ntxchains == 2)
2745 		tx = sc->txchainmask;
2746 
2747 	return (tx);
2748 }
2749 
2750 
2751 
2752 /*
2753  * Calculate the required PLCP value from the given rate,
2754  * to the given node.
2755  *
2756  * This will take the node configuration (eg 11n, rate table
2757  * setup, etc) into consideration.
2758  */
2759 static uint32_t
2760 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2761     uint8_t rate)
2762 {
2763 	struct ieee80211com *ic = ni->ni_ic;
2764 	uint32_t plcp = 0;
2765 	int ridx;
2766 
2767 	/*
2768 	 * If it's an MCS rate, let's set the plcp correctly
2769 	 * and set the relevant flags based on the node config.
2770 	 */
2771 	if (rate & IEEE80211_RATE_MCS) {
2772 		/*
2773 		 * Set the initial PLCP value to be between 0->31 for
2774 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2775 		 * flag.
2776 		 */
2777 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2778 
2779 		/*
2780 		 * XXX the following should only occur if both
2781 		 * the local configuration _and_ the remote node
2782 		 * advertise these capabilities.  Thus this code
2783 		 * may need fixing!
2784 		 */
2785 
2786 		/*
2787 		 * Set the channel width and guard interval.
2788 		 */
2789 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2790 			plcp |= IWN_RFLAG_HT40;
2791 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2792 				plcp |= IWN_RFLAG_SGI;
2793 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2794 			plcp |= IWN_RFLAG_SGI;
2795 		}
2796 
2797 		/*
2798 		 * Ensure the selected rate matches the link quality
2799 		 * table entries being used.
2800 		 */
2801 		if (rate > 0x8f)
2802 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2803 		else if (rate > 0x87)
2804 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2805 		else
2806 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2807 	} else {
2808 		/*
2809 		 * Set the initial PLCP - fine for both
2810 		 * OFDM and CCK rates.
2811 		 */
2812 		plcp = rate2plcp(rate);
2813 
2814 		/* Set CCK flag if it's CCK */
2815 
2816 		/* XXX It would be nice to have a method
2817 		 * to map the ridx -> phy table entry
2818 		 * so we could just query that, rather than
2819 		 * this hack to check against IWN_RIDX_OFDM6.
2820 		 */
2821 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2822 		    rate & IEEE80211_RATE_VAL);
2823 		if (ridx < IWN_RIDX_OFDM6 &&
2824 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2825 			plcp |= IWN_RFLAG_CCK;
2826 
2827 		/* Set antenna configuration */
2828 		/* XXX TODO: is this the right antenna to use for legacy? */
2829 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2830 	}
2831 
2832 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2833 	    __func__,
2834 	    rate,
2835 	    plcp);
2836 
2837 	return (htole32(plcp));
2838 }
2839 
2840 static void
2841 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2842 {
2843 	/* Doesn't do anything at the moment */
2844 }
2845 
2846 static int
2847 iwn_media_change(struct ifnet *ifp)
2848 {
2849 	int error;
2850 
2851 	error = ieee80211_media_change(ifp);
2852 	/* NB: only the fixed rate can change and that doesn't need a reset */
2853 	return (error == ENETRESET ? 0 : error);
2854 }
2855 
2856 static int
2857 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2858 {
2859 	struct iwn_vap *ivp = IWN_VAP(vap);
2860 	struct ieee80211com *ic = vap->iv_ic;
2861 	struct iwn_softc *sc = ic->ic_softc;
2862 	int error = 0;
2863 
2864 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2865 
2866 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2867 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2868 
2869 	IEEE80211_UNLOCK(ic);
2870 	IWN_LOCK(sc);
2871 	callout_stop(&sc->calib_to);
2872 
2873 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2874 
2875 	switch (nstate) {
2876 	case IEEE80211_S_ASSOC:
2877 		if (vap->iv_state != IEEE80211_S_RUN)
2878 			break;
2879 		/* FALLTHROUGH */
2880 	case IEEE80211_S_AUTH:
2881 		if (vap->iv_state == IEEE80211_S_AUTH)
2882 			break;
2883 
2884 		/*
2885 		 * !AUTH -> AUTH transition requires state reset to handle
2886 		 * reassociations correctly.
2887 		 */
2888 		sc->rxon->associd = 0;
2889 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2890 		sc->calib.state = IWN_CALIB_STATE_INIT;
2891 
2892 		/* Wait until we hear a beacon before we transmit */
2893 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2894 			sc->sc_beacon_wait = 1;
2895 
2896 		if ((error = iwn_auth(sc, vap)) != 0) {
2897 			device_printf(sc->sc_dev,
2898 			    "%s: could not move to auth state\n", __func__);
2899 		}
2900 		break;
2901 
2902 	case IEEE80211_S_RUN:
2903 		/*
2904 		 * RUN -> RUN transition; Just restart the timers.
2905 		 */
2906 		if (vap->iv_state == IEEE80211_S_RUN) {
2907 			sc->calib_cnt = 0;
2908 			break;
2909 		}
2910 
2911 		/* Wait until we hear a beacon before we transmit */
2912 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2913 			sc->sc_beacon_wait = 1;
2914 
2915 		/*
2916 		 * !RUN -> RUN requires setting the association id
2917 		 * which is done with a firmware cmd.  We also defer
2918 		 * starting the timers until that work is done.
2919 		 */
2920 		if ((error = iwn_run(sc, vap)) != 0) {
2921 			device_printf(sc->sc_dev,
2922 			    "%s: could not move to run state\n", __func__);
2923 		}
2924 		break;
2925 
2926 	case IEEE80211_S_INIT:
2927 		sc->calib.state = IWN_CALIB_STATE_INIT;
2928 		/*
2929 		 * Purge the xmit queue so we don't have old frames
2930 		 * during a new association attempt.
2931 		 */
2932 		sc->sc_beacon_wait = 0;
2933 		iwn_xmit_queue_drain(sc);
2934 		break;
2935 
2936 	default:
2937 		break;
2938 	}
2939 	IWN_UNLOCK(sc);
2940 	IEEE80211_LOCK(ic);
2941 	if (error != 0){
2942 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2943 		return error;
2944 	}
2945 
2946 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2947 
2948 	return ivp->iv_newstate(vap, nstate, arg);
2949 }
2950 
2951 static void
2952 iwn_calib_timeout(void *arg)
2953 {
2954 	struct iwn_softc *sc = arg;
2955 
2956 	IWN_LOCK_ASSERT(sc);
2957 
2958 	/* Force automatic TX power calibration every 60 secs. */
2959 	if (++sc->calib_cnt >= 120) {
2960 		uint32_t flags = 0;
2961 
2962 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2963 		    "sending request for statistics");
2964 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2965 		    sizeof flags, 1);
2966 		sc->calib_cnt = 0;
2967 	}
2968 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2969 	    sc);
2970 }
2971 
2972 /*
2973  * Process an RX_PHY firmware notification.  This is usually immediately
2974  * followed by an MPDU_RX_DONE notification.
2975  */
2976 static void
2977 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2978 {
2979 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2980 
2981 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2982 
2983 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2984 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2985 	sc->last_rx_valid = 1;
2986 }
2987 
2988 /*
2989  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2990  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2991  */
2992 static void
2993 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2994     struct iwn_rx_data *data)
2995 {
2996 	struct iwn_ops *ops = &sc->ops;
2997 	struct ieee80211com *ic = &sc->sc_ic;
2998 	struct iwn_rx_ring *ring = &sc->rxq;
2999 	struct ieee80211_frame_min *wh;
3000 	struct ieee80211_node *ni;
3001 	struct mbuf *m, *m1;
3002 	struct iwn_rx_stat *stat;
3003 	caddr_t head;
3004 	bus_addr_t paddr;
3005 	uint32_t flags;
3006 	int error, len, rssi, nf;
3007 
3008 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3009 
3010 	if (desc->type == IWN_MPDU_RX_DONE) {
3011 		/* Check for prior RX_PHY notification. */
3012 		if (!sc->last_rx_valid) {
3013 			DPRINTF(sc, IWN_DEBUG_ANY,
3014 			    "%s: missing RX_PHY\n", __func__);
3015 			return;
3016 		}
3017 		stat = &sc->last_rx_stat;
3018 	} else
3019 		stat = (struct iwn_rx_stat *)(desc + 1);
3020 
3021 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
3022 		device_printf(sc->sc_dev,
3023 		    "%s: invalid RX statistic header, len %d\n", __func__,
3024 		    stat->cfg_phy_len);
3025 		return;
3026 	}
3027 	if (desc->type == IWN_MPDU_RX_DONE) {
3028 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3029 		head = (caddr_t)(mpdu + 1);
3030 		len = le16toh(mpdu->len);
3031 	} else {
3032 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3033 		len = le16toh(stat->len);
3034 	}
3035 
3036 	flags = le32toh(*(uint32_t *)(head + len));
3037 
3038 	/* Discard frames with a bad FCS early. */
3039 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3040 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3041 		    __func__, flags);
3042 		counter_u64_add(ic->ic_ierrors, 1);
3043 		return;
3044 	}
3045 	/* Discard frames that are too short. */
3046 	if (len < sizeof (struct ieee80211_frame_ack)) {
3047 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3048 		    __func__, len);
3049 		counter_u64_add(ic->ic_ierrors, 1);
3050 		return;
3051 	}
3052 
3053 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3054 	if (m1 == NULL) {
3055 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3056 		    __func__);
3057 		counter_u64_add(ic->ic_ierrors, 1);
3058 		return;
3059 	}
3060 	bus_dmamap_unload(ring->data_dmat, data->map);
3061 
3062 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3063 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3064 	if (error != 0 && error != EFBIG) {
3065 		device_printf(sc->sc_dev,
3066 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3067 		m_freem(m1);
3068 
3069 		/* Try to reload the old mbuf. */
3070 		error = bus_dmamap_load(ring->data_dmat, data->map,
3071 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3072 		    &paddr, BUS_DMA_NOWAIT);
3073 		if (error != 0 && error != EFBIG) {
3074 			panic("%s: could not load old RX mbuf", __func__);
3075 		}
3076 		bus_dmamap_sync(ring->data_dmat, data->map,
3077 		    BUS_DMASYNC_PREREAD);
3078 		/* Physical address may have changed. */
3079 		ring->desc[ring->cur] = htole32(paddr >> 8);
3080 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3081 		    BUS_DMASYNC_PREWRITE);
3082 		counter_u64_add(ic->ic_ierrors, 1);
3083 		return;
3084 	}
3085 
3086 	bus_dmamap_sync(ring->data_dmat, data->map,
3087 	    BUS_DMASYNC_PREREAD);
3088 
3089 	m = data->m;
3090 	data->m = m1;
3091 	/* Update RX descriptor. */
3092 	ring->desc[ring->cur] = htole32(paddr >> 8);
3093 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3094 	    BUS_DMASYNC_PREWRITE);
3095 
3096 	/* Finalize mbuf. */
3097 	m->m_data = head;
3098 	m->m_pkthdr.len = m->m_len = len;
3099 
3100 	/* Grab a reference to the source node. */
3101 	wh = mtod(m, struct ieee80211_frame_min *);
3102 	if (len >= sizeof(struct ieee80211_frame_min))
3103 		ni = ieee80211_find_rxnode(ic, wh);
3104 	else
3105 		ni = NULL;
3106 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3107 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3108 
3109 	rssi = ops->get_rssi(sc, stat);
3110 
3111 	if (ieee80211_radiotap_active(ic)) {
3112 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3113 		uint32_t rate = le32toh(stat->rate);
3114 
3115 		tap->wr_flags = 0;
3116 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3117 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3118 		tap->wr_dbm_antsignal = (int8_t)rssi;
3119 		tap->wr_dbm_antnoise = (int8_t)nf;
3120 		tap->wr_tsft = stat->tstamp;
3121 		if (rate & IWN_RFLAG_MCS) {
3122 			tap->wr_rate = rate & IWN_RFLAG_RATE_MCS;
3123 			tap->wr_rate |= IEEE80211_RATE_MCS;
3124 		} else
3125 			tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE);
3126 	}
3127 
3128 	/*
3129 	 * If it's a beacon and we're waiting, then do the
3130 	 * wakeup.  This should unblock raw_xmit/start.
3131 	 */
3132 	if (sc->sc_beacon_wait) {
3133 		uint8_t type, subtype;
3134 		/* NB: Re-assign wh */
3135 		wh = mtod(m, struct ieee80211_frame_min *);
3136 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3137 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3138 		/*
3139 		 * This assumes at this point we've received our own
3140 		 * beacon.
3141 		 */
3142 		DPRINTF(sc, IWN_DEBUG_TRACE,
3143 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3144 		    __func__, type, subtype);
3145 		if (type == IEEE80211_FC0_TYPE_MGT &&
3146 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3147 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3148 			    "%s: waking things up\n", __func__);
3149 			/* queue taskqueue to transmit! */
3150 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3151 		}
3152 	}
3153 
3154 	IWN_UNLOCK(sc);
3155 
3156 	/* Send the frame to the 802.11 layer. */
3157 	if (ni != NULL) {
3158 		if (ni->ni_flags & IEEE80211_NODE_HT)
3159 			m->m_flags |= M_AMPDU;
3160 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3161 		/* Node is no longer needed. */
3162 		ieee80211_free_node(ni);
3163 	} else
3164 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3165 
3166 	IWN_LOCK(sc);
3167 
3168 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3169 
3170 }
3171 
3172 /* Process an incoming Compressed BlockAck. */
3173 static void
3174 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3175 {
3176 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3177 	struct iwn_ops *ops = &sc->ops;
3178 	struct iwn_node *wn;
3179 	struct ieee80211_node *ni;
3180 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3181 	struct iwn_tx_ring *txq;
3182 	struct iwn_tx_data *txdata;
3183 	struct ieee80211_tx_ampdu *tap;
3184 	struct mbuf *m;
3185 	uint64_t bitmap;
3186 	uint16_t ssn;
3187 	uint8_t tid;
3188 	int i, lastidx, qid, *res, shift;
3189 	int tx_ok = 0, tx_err = 0;
3190 
3191 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3192 
3193 	qid = le16toh(ba->qid);
3194 	txq = &sc->txq[ba->qid];
3195 	tap = sc->qid2tap[ba->qid];
3196 	tid = tap->txa_tid;
3197 	wn = (void *)tap->txa_ni;
3198 
3199 	res = NULL;
3200 	ssn = 0;
3201 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3202 		res = tap->txa_private;
3203 		ssn = tap->txa_start & 0xfff;
3204 	}
3205 
3206 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3207 		txdata = &txq->data[txq->read];
3208 
3209 		/* Unmap and free mbuf. */
3210 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3211 		    BUS_DMASYNC_POSTWRITE);
3212 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3213 		m = txdata->m, txdata->m = NULL;
3214 		ni = txdata->ni, txdata->ni = NULL;
3215 
3216 		KASSERT(ni != NULL, ("no node"));
3217 		KASSERT(m != NULL, ("no mbuf"));
3218 
3219 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3220 		ieee80211_tx_complete(ni, m, 1);
3221 
3222 		txq->queued--;
3223 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3224 	}
3225 
3226 	if (txq->queued == 0 && res != NULL) {
3227 		iwn_nic_lock(sc);
3228 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3229 		iwn_nic_unlock(sc);
3230 		sc->qid2tap[qid] = NULL;
3231 		free(res, M_DEVBUF);
3232 		return;
3233 	}
3234 
3235 	if (wn->agg[tid].bitmap == 0)
3236 		return;
3237 
3238 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3239 	if (shift < 0)
3240 		shift += 0x100;
3241 
3242 	if (wn->agg[tid].nframes > (64 - shift))
3243 		return;
3244 
3245 	/*
3246 	 * Walk the bitmap and calculate how many successful and failed
3247 	 * attempts are made.
3248 	 *
3249 	 * Yes, the rate control code doesn't know these are A-MPDU
3250 	 * subframes and that it's okay to fail some of these.
3251 	 */
3252 	ni = tap->txa_ni;
3253 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3254 	for (i = 0; bitmap; i++) {
3255 		txs->flags = 0;		/* XXX TODO */
3256 		if ((bitmap & 1) == 0) {
3257 			tx_err ++;
3258 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3259 		} else {
3260 			tx_ok ++;
3261 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3262 		}
3263 		ieee80211_ratectl_tx_complete(ni, txs);
3264 		bitmap >>= 1;
3265 	}
3266 
3267 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3268 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3269 
3270 }
3271 
3272 /*
3273  * Process a CALIBRATION_RESULT notification sent by the initialization
3274  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3275  */
3276 static void
3277 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3278 {
3279 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3280 	int len, idx = -1;
3281 
3282 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3283 
3284 	/* Runtime firmware should not send such a notification. */
3285 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3286 		DPRINTF(sc, IWN_DEBUG_TRACE,
3287 		    "->%s received after calib done\n", __func__);
3288 		return;
3289 	}
3290 	len = (le32toh(desc->len) & 0x3fff) - 4;
3291 
3292 	switch (calib->code) {
3293 	case IWN5000_PHY_CALIB_DC:
3294 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3295 			idx = 0;
3296 		break;
3297 	case IWN5000_PHY_CALIB_LO:
3298 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3299 			idx = 1;
3300 		break;
3301 	case IWN5000_PHY_CALIB_TX_IQ:
3302 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3303 			idx = 2;
3304 		break;
3305 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3306 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3307 			idx = 3;
3308 		break;
3309 	case IWN5000_PHY_CALIB_BASE_BAND:
3310 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3311 			idx = 4;
3312 		break;
3313 	}
3314 	if (idx == -1)	/* Ignore other results. */
3315 		return;
3316 
3317 	/* Save calibration result. */
3318 	if (sc->calibcmd[idx].buf != NULL)
3319 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3320 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3321 	if (sc->calibcmd[idx].buf == NULL) {
3322 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3323 		    "not enough memory for calibration result %d\n",
3324 		    calib->code);
3325 		return;
3326 	}
3327 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3328 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3329 	sc->calibcmd[idx].len = len;
3330 	memcpy(sc->calibcmd[idx].buf, calib, len);
3331 }
3332 
3333 static void
3334 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3335     struct iwn_stats *stats, int len)
3336 {
3337 	struct iwn_stats_bt *stats_bt;
3338 	struct iwn_stats *lstats;
3339 
3340 	/*
3341 	 * First - check whether the length is the bluetooth or normal.
3342 	 *
3343 	 * If it's normal - just copy it and bump out.
3344 	 * Otherwise we have to convert things.
3345 	 */
3346 
3347 	if (len == sizeof(struct iwn_stats) + 4) {
3348 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3349 		sc->last_stat_valid = 1;
3350 		return;
3351 	}
3352 
3353 	/*
3354 	 * If it's not the bluetooth size - log, then just copy.
3355 	 */
3356 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3357 		DPRINTF(sc, IWN_DEBUG_STATS,
3358 		    "%s: size of rx statistics (%d) not an expected size!\n",
3359 		    __func__,
3360 		    len);
3361 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3362 		sc->last_stat_valid = 1;
3363 		return;
3364 	}
3365 
3366 	/*
3367 	 * Ok. Time to copy.
3368 	 */
3369 	stats_bt = (struct iwn_stats_bt *) stats;
3370 	lstats = &sc->last_stat;
3371 
3372 	/* flags */
3373 	lstats->flags = stats_bt->flags;
3374 	/* rx_bt */
3375 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3376 	    sizeof(struct iwn_rx_phy_stats));
3377 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3378 	    sizeof(struct iwn_rx_phy_stats));
3379 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3380 	    sizeof(struct iwn_rx_general_stats));
3381 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3382 	    sizeof(struct iwn_rx_ht_phy_stats));
3383 	/* tx */
3384 	memcpy(&lstats->tx, &stats_bt->tx,
3385 	    sizeof(struct iwn_tx_stats));
3386 	/* general */
3387 	memcpy(&lstats->general, &stats_bt->general,
3388 	    sizeof(struct iwn_general_stats));
3389 
3390 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3391 	sc->last_stat_valid = 1;
3392 }
3393 
3394 /*
3395  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3396  * The latter is sent by the firmware after each received beacon.
3397  */
3398 static void
3399 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3400 {
3401 	struct iwn_ops *ops = &sc->ops;
3402 	struct ieee80211com *ic = &sc->sc_ic;
3403 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3404 	struct iwn_calib_state *calib = &sc->calib;
3405 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3406 	struct iwn_stats *lstats;
3407 	int temp;
3408 
3409 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3410 
3411 	/* Ignore statistics received during a scan. */
3412 	if (vap->iv_state != IEEE80211_S_RUN ||
3413 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3414 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3415 	    __func__);
3416 		return;
3417 	}
3418 
3419 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3420 	    "%s: received statistics, cmd %d, len %d\n",
3421 	    __func__, desc->type, le16toh(desc->len));
3422 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3423 
3424 	/*
3425 	 * Collect/track general statistics for reporting.
3426 	 *
3427 	 * This takes care of ensuring that the bluetooth sized message
3428 	 * will be correctly converted to the legacy sized message.
3429 	 */
3430 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3431 
3432 	/*
3433 	 * And now, let's take a reference of it to use!
3434 	 */
3435 	lstats = &sc->last_stat;
3436 
3437 	/* Test if temperature has changed. */
3438 	if (lstats->general.temp != sc->rawtemp) {
3439 		/* Convert "raw" temperature to degC. */
3440 		sc->rawtemp = stats->general.temp;
3441 		temp = ops->get_temperature(sc);
3442 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3443 		    __func__, temp);
3444 
3445 		/* Update TX power if need be (4965AGN only). */
3446 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3447 			iwn4965_power_calibration(sc, temp);
3448 	}
3449 
3450 	if (desc->type != IWN_BEACON_STATISTICS)
3451 		return;	/* Reply to a statistics request. */
3452 
3453 	sc->noise = iwn_get_noise(&lstats->rx.general);
3454 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3455 
3456 	/* Test that RSSI and noise are present in stats report. */
3457 	if (le32toh(lstats->rx.general.flags) != 1) {
3458 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3459 		    "received statistics without RSSI");
3460 		return;
3461 	}
3462 
3463 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3464 		iwn_collect_noise(sc, &lstats->rx.general);
3465 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3466 		iwn_tune_sensitivity(sc, &lstats->rx);
3467 		/*
3468 		 * XXX TODO: Only run the RX recovery if we're associated!
3469 		 */
3470 		iwn_check_rx_recovery(sc, lstats);
3471 		iwn_save_stats_counters(sc, lstats);
3472 	}
3473 
3474 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3475 }
3476 
3477 /*
3478  * Save the relevant statistic counters for the next calibration
3479  * pass.
3480  */
3481 static void
3482 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3483 {
3484 	struct iwn_calib_state *calib = &sc->calib;
3485 
3486 	/* Save counters values for next call. */
3487 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3488 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3489 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3490 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3491 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3492 
3493 	/* Last time we received these tick values */
3494 	sc->last_calib_ticks = ticks;
3495 }
3496 
3497 /*
3498  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3499  * and 5000 adapters have different incompatible TX status formats.
3500  */
3501 static void
3502 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3503     struct iwn_rx_data *data)
3504 {
3505 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3506 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3507 
3508 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3509 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3510 	    __func__, desc->qid, desc->idx,
3511 	    stat->rtsfailcnt,
3512 	    stat->ackfailcnt,
3513 	    stat->btkillcnt,
3514 	    stat->rate, le16toh(stat->duration),
3515 	    le32toh(stat->status));
3516 
3517 	if (qid >= sc->firstaggqueue) {
3518 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3519 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3520 	} else {
3521 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3522 		    le32toh(stat->status) & 0xff);
3523 	}
3524 }
3525 
3526 static void
3527 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3528     struct iwn_rx_data *data)
3529 {
3530 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3531 	int qid = desc->qid & IWN_RX_DESC_QID_MSK;
3532 
3533 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3534 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3535 	    __func__, desc->qid, desc->idx,
3536 	    stat->rtsfailcnt,
3537 	    stat->ackfailcnt,
3538 	    stat->btkillcnt,
3539 	    stat->rate, le16toh(stat->duration),
3540 	    le32toh(stat->status));
3541 
3542 #ifdef notyet
3543 	/* Reset TX scheduler slot. */
3544 	iwn5000_reset_sched(sc, qid, desc->idx);
3545 #endif
3546 
3547 	if (qid >= sc->firstaggqueue) {
3548 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3549 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3550 	} else {
3551 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3552 		    le16toh(stat->status) & 0xff);
3553 	}
3554 }
3555 
3556 /*
3557  * Adapter-independent backend for TX_DONE firmware notifications.
3558  */
3559 static void
3560 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3561     int ackfailcnt, uint8_t status)
3562 {
3563 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3564 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK];
3565 	struct iwn_tx_data *data = &ring->data[desc->idx];
3566 	struct mbuf *m;
3567 	struct ieee80211_node *ni;
3568 
3569 	KASSERT(data->ni != NULL, ("no node"));
3570 
3571 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3572 
3573 	/* Unmap and free mbuf. */
3574 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3575 	bus_dmamap_unload(ring->data_dmat, data->map);
3576 	m = data->m, data->m = NULL;
3577 	ni = data->ni, data->ni = NULL;
3578 
3579 	/*
3580 	 * Update rate control statistics for the node.
3581 	 */
3582 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3583 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3584 	txs->short_retries = rtsfailcnt;
3585 	txs->long_retries = ackfailcnt;
3586 	if (!(status & IWN_TX_FAIL))
3587 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3588 	else {
3589 		switch (status) {
3590 		case IWN_TX_FAIL_SHORT_LIMIT:
3591 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3592 			break;
3593 		case IWN_TX_FAIL_LONG_LIMIT:
3594 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3595 			break;
3596 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3597 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3598 			break;
3599 		default:
3600 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3601 			break;
3602 		}
3603 	}
3604 	ieee80211_ratectl_tx_complete(ni, txs);
3605 
3606 	/*
3607 	 * Channels marked for "radar" require traffic to be received
3608 	 * to unlock before we can transmit.  Until traffic is seen
3609 	 * any attempt to transmit is returned immediately with status
3610 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3611 	 * happen on first authenticate after scanning.  To workaround
3612 	 * this we ignore a failure of this sort in AUTH state so the
3613 	 * 802.11 layer will fall back to using a timeout to wait for
3614 	 * the AUTH reply.  This allows the firmware time to see
3615 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3616 	 * unclear why the firmware does not maintain state for
3617 	 * channels recently visited as this would allow immediate
3618 	 * use of the channel after a scan (where we see traffic).
3619 	 */
3620 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3621 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3622 		ieee80211_tx_complete(ni, m, 0);
3623 	else
3624 		ieee80211_tx_complete(ni, m,
3625 		    (status & IWN_TX_FAIL) != 0);
3626 
3627 	sc->sc_tx_timer = 0;
3628 	if (--ring->queued < IWN_TX_RING_LOMARK)
3629 		sc->qfullmsk &= ~(1 << ring->qid);
3630 
3631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3632 }
3633 
3634 /*
3635  * Process a "command done" firmware notification.  This is where we wakeup
3636  * processes waiting for a synchronous command completion.
3637  */
3638 static void
3639 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3640 {
3641 	struct iwn_tx_ring *ring;
3642 	struct iwn_tx_data *data;
3643 	int cmd_queue_num;
3644 
3645 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3646 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3647 	else
3648 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3649 
3650 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3651 		return;	/* Not a command ack. */
3652 
3653 	ring = &sc->txq[cmd_queue_num];
3654 	data = &ring->data[desc->idx];
3655 
3656 	/* If the command was mapped in an mbuf, free it. */
3657 	if (data->m != NULL) {
3658 		bus_dmamap_sync(ring->data_dmat, data->map,
3659 		    BUS_DMASYNC_POSTWRITE);
3660 		bus_dmamap_unload(ring->data_dmat, data->map);
3661 		m_freem(data->m);
3662 		data->m = NULL;
3663 	}
3664 	wakeup(&ring->desc[desc->idx]);
3665 }
3666 
3667 static void
3668 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3669     int rtsfailcnt, int ackfailcnt, void *stat)
3670 {
3671 	struct iwn_ops *ops = &sc->ops;
3672 	struct iwn_tx_ring *ring = &sc->txq[qid];
3673 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3674 	struct iwn_tx_data *data;
3675 	struct mbuf *m;
3676 	struct iwn_node *wn;
3677 	struct ieee80211_node *ni;
3678 	struct ieee80211_tx_ampdu *tap;
3679 	uint64_t bitmap;
3680 	uint32_t *status = stat;
3681 	uint16_t *aggstatus = stat;
3682 	uint16_t ssn;
3683 	uint8_t tid;
3684 	int bit, i, lastidx, *res, seqno, shift, start;
3685 
3686 	/* XXX TODO: status is le16 field! Grr */
3687 
3688 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3689 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3690 	    __func__,
3691 	    nframes,
3692 	    *status);
3693 
3694 	tap = sc->qid2tap[qid];
3695 	tid = tap->txa_tid;
3696 	wn = (void *)tap->txa_ni;
3697 	ni = tap->txa_ni;
3698 
3699 	/*
3700 	 * XXX TODO: ACK and RTS failures would be nice here!
3701 	 */
3702 
3703 	/*
3704 	 * A-MPDU single frame status - if we failed to transmit it
3705 	 * in A-MPDU, then it may be a permanent failure.
3706 	 *
3707 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3708 	 * there's some permanent and temporary failures that may be
3709 	 * handled differently.
3710 	 */
3711 	if (nframes == 1) {
3712 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3713 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3714 		txs->short_retries = rtsfailcnt;
3715 		txs->long_retries = ackfailcnt;
3716 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3717 #ifdef	NOT_YET
3718 			printf("ieee80211_send_bar()\n");
3719 #endif
3720 			/*
3721 			 * If we completely fail a transmit, make sure a
3722 			 * notification is pushed up to the rate control
3723 			 * layer.
3724 			 */
3725 			/* XXX */
3726 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3727 		} else {
3728 			/*
3729 			 * If nframes=1, then we won't be getting a BA for
3730 			 * this frame.  Ensure that we correctly update the
3731 			 * rate control code with how many retries were
3732 			 * needed to send it.
3733 			 */
3734 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3735 		}
3736 		ieee80211_ratectl_tx_complete(ni, txs);
3737 	}
3738 
3739 	bitmap = 0;
3740 	start = idx;
3741 	for (i = 0; i < nframes; i++) {
3742 		if (le16toh(aggstatus[i * 2]) & 0xc)
3743 			continue;
3744 
3745 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3746 		bit = idx - start;
3747 		shift = 0;
3748 		if (bit >= 64) {
3749 			shift = 0x100 - idx + start;
3750 			bit = 0;
3751 			start = idx;
3752 		} else if (bit <= -64)
3753 			bit = 0x100 - start + idx;
3754 		else if (bit < 0) {
3755 			shift = start - idx;
3756 			start = idx;
3757 			bit = 0;
3758 		}
3759 		bitmap = bitmap << shift;
3760 		bitmap |= 1ULL << bit;
3761 	}
3762 	tap = sc->qid2tap[qid];
3763 	tid = tap->txa_tid;
3764 	wn = (void *)tap->txa_ni;
3765 	wn->agg[tid].bitmap = bitmap;
3766 	wn->agg[tid].startidx = start;
3767 	wn->agg[tid].nframes = nframes;
3768 
3769 	res = NULL;
3770 	ssn = 0;
3771 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3772 		res = tap->txa_private;
3773 		ssn = tap->txa_start & 0xfff;
3774 	}
3775 
3776 	/* This is going nframes DWORDS into the descriptor? */
3777 	seqno = le32toh(*(status + nframes)) & 0xfff;
3778 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3779 		data = &ring->data[ring->read];
3780 
3781 		/* Unmap and free mbuf. */
3782 		bus_dmamap_sync(ring->data_dmat, data->map,
3783 		    BUS_DMASYNC_POSTWRITE);
3784 		bus_dmamap_unload(ring->data_dmat, data->map);
3785 		m = data->m, data->m = NULL;
3786 		ni = data->ni, data->ni = NULL;
3787 
3788 		KASSERT(ni != NULL, ("no node"));
3789 		KASSERT(m != NULL, ("no mbuf"));
3790 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3791 		ieee80211_tx_complete(ni, m, 1);
3792 
3793 		ring->queued--;
3794 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3795 	}
3796 
3797 	if (ring->queued == 0 && res != NULL) {
3798 		iwn_nic_lock(sc);
3799 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3800 		iwn_nic_unlock(sc);
3801 		sc->qid2tap[qid] = NULL;
3802 		free(res, M_DEVBUF);
3803 		return;
3804 	}
3805 
3806 	sc->sc_tx_timer = 0;
3807 	if (ring->queued < IWN_TX_RING_LOMARK)
3808 		sc->qfullmsk &= ~(1 << ring->qid);
3809 
3810 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3811 }
3812 
3813 /*
3814  * Process an INT_FH_RX or INT_SW_RX interrupt.
3815  */
3816 static void
3817 iwn_notif_intr(struct iwn_softc *sc)
3818 {
3819 	struct iwn_ops *ops = &sc->ops;
3820 	struct ieee80211com *ic = &sc->sc_ic;
3821 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3822 	uint16_t hw;
3823 
3824 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3825 	    BUS_DMASYNC_POSTREAD);
3826 
3827 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3828 	while (sc->rxq.cur != hw) {
3829 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3830 		struct iwn_rx_desc *desc;
3831 
3832 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3833 		    BUS_DMASYNC_POSTREAD);
3834 		desc = mtod(data->m, struct iwn_rx_desc *);
3835 
3836 		DPRINTF(sc, IWN_DEBUG_RECV,
3837 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3838 		    __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK,
3839 		    desc->idx, desc->flags, desc->type,
3840 		    iwn_intr_str(desc->type), le16toh(desc->len));
3841 
3842 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3843 			iwn_cmd_done(sc, desc);
3844 
3845 		switch (desc->type) {
3846 		case IWN_RX_PHY:
3847 			iwn_rx_phy(sc, desc);
3848 			break;
3849 
3850 		case IWN_RX_DONE:		/* 4965AGN only. */
3851 		case IWN_MPDU_RX_DONE:
3852 			/* An 802.11 frame has been received. */
3853 			iwn_rx_done(sc, desc, data);
3854 			break;
3855 
3856 		case IWN_RX_COMPRESSED_BA:
3857 			/* A Compressed BlockAck has been received. */
3858 			iwn_rx_compressed_ba(sc, desc);
3859 			break;
3860 
3861 		case IWN_TX_DONE:
3862 			/* An 802.11 frame has been transmitted. */
3863 			ops->tx_done(sc, desc, data);
3864 			break;
3865 
3866 		case IWN_RX_STATISTICS:
3867 		case IWN_BEACON_STATISTICS:
3868 			iwn_rx_statistics(sc, desc);
3869 			break;
3870 
3871 		case IWN_BEACON_MISSED:
3872 		{
3873 			struct iwn_beacon_missed *miss =
3874 			    (struct iwn_beacon_missed *)(desc + 1);
3875 			int misses;
3876 
3877 			misses = le32toh(miss->consecutive);
3878 
3879 			DPRINTF(sc, IWN_DEBUG_STATE,
3880 			    "%s: beacons missed %d/%d\n", __func__,
3881 			    misses, le32toh(miss->total));
3882 			/*
3883 			 * If more than 5 consecutive beacons are missed,
3884 			 * reinitialize the sensitivity state machine.
3885 			 */
3886 			if (vap->iv_state == IEEE80211_S_RUN &&
3887 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3888 				if (misses > 5)
3889 					(void)iwn_init_sensitivity(sc);
3890 				if (misses >= vap->iv_bmissthreshold) {
3891 					IWN_UNLOCK(sc);
3892 					ieee80211_beacon_miss(ic);
3893 					IWN_LOCK(sc);
3894 				}
3895 			}
3896 			break;
3897 		}
3898 		case IWN_UC_READY:
3899 		{
3900 			struct iwn_ucode_info *uc =
3901 			    (struct iwn_ucode_info *)(desc + 1);
3902 
3903 			/* The microcontroller is ready. */
3904 			DPRINTF(sc, IWN_DEBUG_RESET,
3905 			    "microcode alive notification version=%d.%d "
3906 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3907 			    uc->subtype, le32toh(uc->valid));
3908 
3909 			if (le32toh(uc->valid) != 1) {
3910 				device_printf(sc->sc_dev,
3911 				    "microcontroller initialization failed");
3912 				break;
3913 			}
3914 			if (uc->subtype == IWN_UCODE_INIT) {
3915 				/* Save microcontroller report. */
3916 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3917 			}
3918 			/* Save the address of the error log in SRAM. */
3919 			sc->errptr = le32toh(uc->errptr);
3920 			break;
3921 		}
3922 #ifdef IWN_DEBUG
3923 		case IWN_STATE_CHANGED:
3924 		{
3925 			/*
3926 			 * State change allows hardware switch change to be
3927 			 * noted. However, we handle this in iwn_intr as we
3928 			 * get both the enable/disble intr.
3929 			 */
3930 			uint32_t *status = (uint32_t *)(desc + 1);
3931 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3932 			    "state changed to %x\n",
3933 			    le32toh(*status));
3934 			break;
3935 		}
3936 		case IWN_START_SCAN:
3937 		{
3938 			struct iwn_start_scan *scan =
3939 			    (struct iwn_start_scan *)(desc + 1);
3940 			DPRINTF(sc, IWN_DEBUG_ANY,
3941 			    "%s: scanning channel %d status %x\n",
3942 			    __func__, scan->chan, le32toh(scan->status));
3943 			break;
3944 		}
3945 #endif
3946 		case IWN_STOP_SCAN:
3947 		{
3948 #ifdef	IWN_DEBUG
3949 			struct iwn_stop_scan *scan =
3950 			    (struct iwn_stop_scan *)(desc + 1);
3951 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3952 			    "scan finished nchan=%d status=%d chan=%d\n",
3953 			    scan->nchan, scan->status, scan->chan);
3954 #endif
3955 			sc->sc_is_scanning = 0;
3956 			callout_stop(&sc->scan_timeout);
3957 			IWN_UNLOCK(sc);
3958 			ieee80211_scan_next(vap);
3959 			IWN_LOCK(sc);
3960 			break;
3961 		}
3962 		case IWN5000_CALIBRATION_RESULT:
3963 			iwn5000_rx_calib_results(sc, desc);
3964 			break;
3965 
3966 		case IWN5000_CALIBRATION_DONE:
3967 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3968 			wakeup(sc);
3969 			break;
3970 		}
3971 
3972 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3973 	}
3974 
3975 	/* Tell the firmware what we have processed. */
3976 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3977 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3978 }
3979 
3980 /*
3981  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3982  * from power-down sleep mode.
3983  */
3984 static void
3985 iwn_wakeup_intr(struct iwn_softc *sc)
3986 {
3987 	int qid;
3988 
3989 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3990 	    __func__);
3991 
3992 	/* Wakeup RX and TX rings. */
3993 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3994 	for (qid = 0; qid < sc->ntxqs; qid++) {
3995 		struct iwn_tx_ring *ring = &sc->txq[qid];
3996 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3997 	}
3998 }
3999 
4000 static void
4001 iwn_rftoggle_task(void *arg, int npending)
4002 {
4003 	struct iwn_softc *sc = arg;
4004 	struct ieee80211com *ic = &sc->sc_ic;
4005 	uint32_t tmp;
4006 
4007 	IWN_LOCK(sc);
4008 	tmp = IWN_READ(sc, IWN_GP_CNTRL);
4009 	IWN_UNLOCK(sc);
4010 
4011 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4012 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4013 	if (!(tmp & IWN_GP_CNTRL_RFKILL)) {
4014 		ieee80211_suspend_all(ic);
4015 
4016 		/* Enable interrupts to get RF toggle notification. */
4017 		IWN_LOCK(sc);
4018 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
4019 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4020 		IWN_UNLOCK(sc);
4021 	} else
4022 		ieee80211_resume_all(ic);
4023 }
4024 
4025 /*
4026  * Dump the error log of the firmware when a firmware panic occurs.  Although
4027  * we can't debug the firmware because it is neither open source nor free, it
4028  * can help us to identify certain classes of problems.
4029  */
4030 static void
4031 iwn_fatal_intr(struct iwn_softc *sc)
4032 {
4033 	struct iwn_fw_dump dump;
4034 	int i;
4035 
4036 	IWN_LOCK_ASSERT(sc);
4037 
4038 	/* Force a complete recalibration on next init. */
4039 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4040 
4041 	/* Check that the error log address is valid. */
4042 	if (sc->errptr < IWN_FW_DATA_BASE ||
4043 	    sc->errptr + sizeof (dump) >
4044 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4045 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4046 		    sc->errptr);
4047 		return;
4048 	}
4049 	if (iwn_nic_lock(sc) != 0) {
4050 		printf("%s: could not read firmware error log\n", __func__);
4051 		return;
4052 	}
4053 	/* Read firmware error log from SRAM. */
4054 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4055 	    sizeof (dump) / sizeof (uint32_t));
4056 	iwn_nic_unlock(sc);
4057 
4058 	if (dump.valid == 0) {
4059 		printf("%s: firmware error log is empty\n", __func__);
4060 		return;
4061 	}
4062 	printf("firmware error log:\n");
4063 	printf("  error type      = \"%s\" (0x%08X)\n",
4064 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4065 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4066 	    dump.id);
4067 	printf("  program counter = 0x%08X\n", dump.pc);
4068 	printf("  source line     = 0x%08X\n", dump.src_line);
4069 	printf("  error data      = 0x%08X%08X\n",
4070 	    dump.error_data[0], dump.error_data[1]);
4071 	printf("  branch link     = 0x%08X%08X\n",
4072 	    dump.branch_link[0], dump.branch_link[1]);
4073 	printf("  interrupt link  = 0x%08X%08X\n",
4074 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4075 	printf("  time            = %u\n", dump.time[0]);
4076 
4077 	/* Dump driver status (TX and RX rings) while we're here. */
4078 	printf("driver status:\n");
4079 	for (i = 0; i < sc->ntxqs; i++) {
4080 		struct iwn_tx_ring *ring = &sc->txq[i];
4081 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4082 		    i, ring->qid, ring->cur, ring->queued);
4083 	}
4084 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4085 }
4086 
4087 static void
4088 iwn_intr(void *arg)
4089 {
4090 	struct iwn_softc *sc = arg;
4091 	uint32_t r1, r2, tmp;
4092 
4093 	IWN_LOCK(sc);
4094 
4095 	/* Disable interrupts. */
4096 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4097 
4098 	/* Read interrupts from ICT (fast) or from registers (slow). */
4099 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4100 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4101 		    BUS_DMASYNC_POSTREAD);
4102 		tmp = 0;
4103 		while (sc->ict[sc->ict_cur] != 0) {
4104 			tmp |= sc->ict[sc->ict_cur];
4105 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4106 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4107 		}
4108 		tmp = le32toh(tmp);
4109 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4110 			tmp = 0;
4111 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4112 			tmp |= 0x8000;
4113 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4114 		r2 = 0;	/* Unused. */
4115 	} else {
4116 		r1 = IWN_READ(sc, IWN_INT);
4117 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4118 			IWN_UNLOCK(sc);
4119 			return;	/* Hardware gone! */
4120 		}
4121 		r2 = IWN_READ(sc, IWN_FH_INT);
4122 	}
4123 
4124 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4125     , r1, r2);
4126 
4127 	if (r1 == 0 && r2 == 0)
4128 		goto done;	/* Interrupt not for us. */
4129 
4130 	/* Acknowledge interrupts. */
4131 	IWN_WRITE(sc, IWN_INT, r1);
4132 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4133 		IWN_WRITE(sc, IWN_FH_INT, r2);
4134 
4135 	if (r1 & IWN_INT_RF_TOGGLED) {
4136 		taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
4137 		goto done;
4138 	}
4139 	if (r1 & IWN_INT_CT_REACHED) {
4140 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4141 		    __func__);
4142 	}
4143 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4144 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4145 		    __func__);
4146 #ifdef	IWN_DEBUG
4147 		iwn_debug_register(sc);
4148 #endif
4149 		/* Dump firmware error log and stop. */
4150 		iwn_fatal_intr(sc);
4151 
4152 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4153 		goto done;
4154 	}
4155 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4156 	    (r2 & IWN_FH_INT_RX)) {
4157 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4158 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4159 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4160 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4161 			    IWN_INT_PERIODIC_DIS);
4162 			iwn_notif_intr(sc);
4163 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4164 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4165 				    IWN_INT_PERIODIC_ENA);
4166 			}
4167 		} else
4168 			iwn_notif_intr(sc);
4169 	}
4170 
4171 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4172 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4173 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4174 		wakeup(sc);	/* FH DMA transfer completed. */
4175 	}
4176 
4177 	if (r1 & IWN_INT_ALIVE)
4178 		wakeup(sc);	/* Firmware is alive. */
4179 
4180 	if (r1 & IWN_INT_WAKEUP)
4181 		iwn_wakeup_intr(sc);
4182 
4183 done:
4184 	/* Re-enable interrupts. */
4185 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4186 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4187 
4188 	IWN_UNLOCK(sc);
4189 }
4190 
4191 /*
4192  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4193  * 5000 adapters use a slightly different format).
4194  */
4195 static void
4196 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4197     uint16_t len)
4198 {
4199 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4200 
4201 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4202 
4203 	*w = htole16(len + 8);
4204 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4205 	    BUS_DMASYNC_PREWRITE);
4206 	if (idx < IWN_SCHED_WINSZ) {
4207 		*(w + IWN_TX_RING_COUNT) = *w;
4208 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4209 		    BUS_DMASYNC_PREWRITE);
4210 	}
4211 }
4212 
4213 static void
4214 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4215     uint16_t len)
4216 {
4217 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4218 
4219 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4220 
4221 	*w = htole16(id << 12 | (len + 8));
4222 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4223 	    BUS_DMASYNC_PREWRITE);
4224 	if (idx < IWN_SCHED_WINSZ) {
4225 		*(w + IWN_TX_RING_COUNT) = *w;
4226 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4227 		    BUS_DMASYNC_PREWRITE);
4228 	}
4229 }
4230 
4231 #ifdef notyet
4232 static void
4233 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4234 {
4235 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4236 
4237 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4238 
4239 	*w = (*w & htole16(0xf000)) | htole16(1);
4240 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4241 	    BUS_DMASYNC_PREWRITE);
4242 	if (idx < IWN_SCHED_WINSZ) {
4243 		*(w + IWN_TX_RING_COUNT) = *w;
4244 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4245 		    BUS_DMASYNC_PREWRITE);
4246 	}
4247 }
4248 #endif
4249 
4250 /*
4251  * Check whether OFDM 11g protection will be enabled for the given rate.
4252  *
4253  * The original driver code only enabled protection for OFDM rates.
4254  * It didn't check to see whether it was operating in 11a or 11bg mode.
4255  */
4256 static int
4257 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4258     struct ieee80211vap *vap, uint8_t rate)
4259 {
4260 	struct ieee80211com *ic = vap->iv_ic;
4261 
4262 	/*
4263 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4264 	 * 11bg protection.
4265 	 */
4266 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4267 		return (0);
4268 	}
4269 
4270 	/*
4271 	 * 11bg protection not enabled? Then don't use it.
4272 	 */
4273 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4274 		return (0);
4275 
4276 	/*
4277 	 * If it's an 11n rate - no protection.
4278 	 * We'll do it via a specific 11n check.
4279 	 */
4280 	if (rate & IEEE80211_RATE_MCS) {
4281 		return (0);
4282 	}
4283 
4284 	/*
4285 	 * Do a rate table lookup.  If the PHY is CCK,
4286 	 * don't do protection.
4287 	 */
4288 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4289 		return (0);
4290 
4291 	/*
4292 	 * Yup, enable protection.
4293 	 */
4294 	return (1);
4295 }
4296 
4297 /*
4298  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4299  * the link quality table that reflects this particular entry.
4300  */
4301 static int
4302 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4303     uint8_t rate)
4304 {
4305 	struct ieee80211_rateset *rs;
4306 	int is_11n;
4307 	int nr;
4308 	int i;
4309 	uint8_t cmp_rate;
4310 
4311 	/*
4312 	 * Figure out if we're using 11n or not here.
4313 	 */
4314 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4315 		is_11n = 1;
4316 	else
4317 		is_11n = 0;
4318 
4319 	/*
4320 	 * Use the correct rate table.
4321 	 */
4322 	if (is_11n) {
4323 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4324 		nr = ni->ni_htrates.rs_nrates;
4325 	} else {
4326 		rs = &ni->ni_rates;
4327 		nr = rs->rs_nrates;
4328 	}
4329 
4330 	/*
4331 	 * Find the relevant link quality entry in the table.
4332 	 */
4333 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4334 		/*
4335 		 * The link quality table index starts at 0 == highest
4336 		 * rate, so we walk the rate table backwards.
4337 		 */
4338 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4339 		if (rate & IEEE80211_RATE_MCS)
4340 			cmp_rate |= IEEE80211_RATE_MCS;
4341 
4342 #if 0
4343 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4344 		    __func__,
4345 		    i,
4346 		    nr,
4347 		    rate,
4348 		    cmp_rate);
4349 #endif
4350 
4351 		if (cmp_rate == rate)
4352 			return (i);
4353 	}
4354 
4355 	/* Failed? Start at the end */
4356 	return (IWN_MAX_TX_RETRIES - 1);
4357 }
4358 
4359 static int
4360 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4361 {
4362 	const struct ieee80211_txparam *tp = ni->ni_txparms;
4363 	struct ieee80211vap *vap = ni->ni_vap;
4364 	struct ieee80211com *ic = ni->ni_ic;
4365 	struct iwn_node *wn = (void *)ni;
4366 	struct iwn_tx_ring *ring;
4367 	struct iwn_tx_cmd *cmd;
4368 	struct iwn_cmd_data *tx;
4369 	struct ieee80211_frame *wh;
4370 	struct ieee80211_key *k = NULL;
4371 	uint32_t flags;
4372 	uint16_t seqno, qos;
4373 	uint8_t tid, type;
4374 	int ac, totlen, rate;
4375 
4376 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4377 
4378 	IWN_LOCK_ASSERT(sc);
4379 
4380 	wh = mtod(m, struct ieee80211_frame *);
4381 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4382 
4383 	/* Select EDCA Access Category and TX ring for this frame. */
4384 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4385 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4386 		tid = qos & IEEE80211_QOS_TID;
4387 	} else {
4388 		qos = 0;
4389 		tid = 0;
4390 	}
4391 
4392 	/* Choose a TX rate index. */
4393 	if (type == IEEE80211_FC0_TYPE_MGT ||
4394 	    type == IEEE80211_FC0_TYPE_CTL ||
4395 	    (m->m_flags & M_EAPOL) != 0)
4396 		rate = tp->mgmtrate;
4397 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4398 		rate = tp->mcastrate;
4399 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4400 		rate = tp->ucastrate;
4401 	else {
4402 		/* XXX pass pktlen */
4403 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4404 		rate = ni->ni_txrate;
4405 	}
4406 
4407 	/*
4408 	 * XXX TODO: Group addressed frames aren't aggregated and must
4409 	 * go to the normal non-aggregation queue, and have a NONQOS TID
4410 	 * assigned from net80211.
4411 	 */
4412 
4413 	ac = M_WME_GETAC(m);
4414 	seqno = ni->ni_txseqs[tid];
4415 	if (m->m_flags & M_AMPDU_MPDU) {
4416 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4417 
4418 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4419 			return (EINVAL);
4420 		}
4421 
4422 		/*
4423 		 * Queue this frame to the hardware ring that we've
4424 		 * negotiated AMPDU TX on.
4425 		 *
4426 		 * Note that the sequence number must match the TX slot
4427 		 * being used!
4428 		 */
4429 		ac = *(int *)tap->txa_private;
4430 		*(uint16_t *)wh->i_seq =
4431 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4432 		ni->ni_txseqs[tid]++;
4433 	}
4434 
4435 	/* Encrypt the frame if need be. */
4436 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4437 		/* Retrieve key for TX. */
4438 		k = ieee80211_crypto_encap(ni, m);
4439 		if (k == NULL) {
4440 			return ENOBUFS;
4441 		}
4442 		/* 802.11 header may have moved. */
4443 		wh = mtod(m, struct ieee80211_frame *);
4444 	}
4445 	totlen = m->m_pkthdr.len;
4446 
4447 	if (ieee80211_radiotap_active_vap(vap)) {
4448 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4449 
4450 		tap->wt_flags = 0;
4451 		tap->wt_rate = rate;
4452 		if (k != NULL)
4453 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4454 
4455 		ieee80211_radiotap_tx(vap, m);
4456 	}
4457 
4458 	flags = 0;
4459 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4460 		/* Unicast frame, check if an ACK is expected. */
4461 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4462 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4463 			flags |= IWN_TX_NEED_ACK;
4464 	}
4465 	if ((wh->i_fc[0] &
4466 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4467 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4468 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4469 
4470 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4471 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4472 
4473 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4474 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4475 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4476 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4477 			flags |= IWN_TX_NEED_RTS;
4478 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4479 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4480 				flags |= IWN_TX_NEED_CTS;
4481 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4482 				flags |= IWN_TX_NEED_RTS;
4483 		} else if ((rate & IEEE80211_RATE_MCS) &&
4484 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4485 			flags |= IWN_TX_NEED_RTS;
4486 		}
4487 
4488 		/* XXX HT protection? */
4489 
4490 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4491 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4492 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4493 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4494 				flags |= IWN_TX_NEED_PROTECTION;
4495 			} else
4496 				flags |= IWN_TX_FULL_TXOP;
4497 		}
4498 	}
4499 
4500 	ring = &sc->txq[ac];
4501 	if ((m->m_flags & M_AMPDU_MPDU) != 0 &&
4502 	    (seqno % 256) != ring->cur) {
4503 		device_printf(sc->sc_dev,
4504 		    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4505 		    __func__,
4506 		    m,
4507 		    seqno,
4508 		    seqno % 256,
4509 		    ring->cur);
4510 	}
4511 
4512 	/* Prepare TX firmware command. */
4513 	cmd = &ring->cmd[ring->cur];
4514 	tx = (struct iwn_cmd_data *)cmd->data;
4515 
4516 	/* NB: No need to clear tx, all fields are reinitialized here. */
4517 	tx->scratch = 0;	/* clear "scratch" area */
4518 
4519 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4520 	    type != IEEE80211_FC0_TYPE_DATA)
4521 		tx->id = sc->broadcast_id;
4522 	else
4523 		tx->id = wn->id;
4524 
4525 	if (type == IEEE80211_FC0_TYPE_MGT) {
4526 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4527 
4528 		/* Tell HW to set timestamp in probe responses. */
4529 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4530 			flags |= IWN_TX_INSERT_TSTAMP;
4531 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4532 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4533 			tx->timeout = htole16(3);
4534 		else
4535 			tx->timeout = htole16(2);
4536 	} else
4537 		tx->timeout = htole16(0);
4538 
4539 	if (tx->id == sc->broadcast_id) {
4540 		/* Group or management frame. */
4541 		tx->linkq = 0;
4542 	} else {
4543 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4544 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4545 	}
4546 
4547 	tx->tid = tid;
4548 	tx->rts_ntries = 60;
4549 	tx->data_ntries = 15;
4550 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4551 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4552 	tx->security = 0;
4553 	tx->flags = htole32(flags);
4554 
4555 	return (iwn_tx_cmd(sc, m, ni, ring));
4556 }
4557 
4558 static int
4559 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4560     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4561 {
4562 	struct ieee80211vap *vap = ni->ni_vap;
4563 	struct iwn_tx_cmd *cmd;
4564 	struct iwn_cmd_data *tx;
4565 	struct ieee80211_frame *wh;
4566 	struct iwn_tx_ring *ring;
4567 	uint32_t flags;
4568 	int ac, rate;
4569 	uint8_t type;
4570 
4571 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4572 
4573 	IWN_LOCK_ASSERT(sc);
4574 
4575 	wh = mtod(m, struct ieee80211_frame *);
4576 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4577 
4578 	ac = params->ibp_pri & 3;
4579 
4580 	/* Choose a TX rate. */
4581 	rate = params->ibp_rate0;
4582 
4583 	flags = 0;
4584 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4585 		flags |= IWN_TX_NEED_ACK;
4586 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4587 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4588 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4589 			flags &= ~IWN_TX_NEED_RTS;
4590 			flags |= IWN_TX_NEED_PROTECTION;
4591 		} else
4592 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4593 	}
4594 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4595 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4596 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4597 			flags &= ~IWN_TX_NEED_CTS;
4598 			flags |= IWN_TX_NEED_PROTECTION;
4599 		} else
4600 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4601 	}
4602 
4603 	if (ieee80211_radiotap_active_vap(vap)) {
4604 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4605 
4606 		tap->wt_flags = 0;
4607 		tap->wt_rate = rate;
4608 
4609 		ieee80211_radiotap_tx(vap, m);
4610 	}
4611 
4612 	ring = &sc->txq[ac];
4613 	cmd = &ring->cmd[ring->cur];
4614 
4615 	tx = (struct iwn_cmd_data *)cmd->data;
4616 	/* NB: No need to clear tx, all fields are reinitialized here. */
4617 	tx->scratch = 0;	/* clear "scratch" area */
4618 
4619 	if (type == IEEE80211_FC0_TYPE_MGT) {
4620 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4621 
4622 		/* Tell HW to set timestamp in probe responses. */
4623 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4624 			flags |= IWN_TX_INSERT_TSTAMP;
4625 
4626 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4627 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4628 			tx->timeout = htole16(3);
4629 		else
4630 			tx->timeout = htole16(2);
4631 	} else
4632 		tx->timeout = htole16(0);
4633 
4634 	tx->tid = 0;
4635 	tx->id = sc->broadcast_id;
4636 	tx->rts_ntries = params->ibp_try1;
4637 	tx->data_ntries = params->ibp_try0;
4638 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4639 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4640 	tx->security = 0;
4641 	tx->flags = htole32(flags);
4642 
4643 	/* Group or management frame. */
4644 	tx->linkq = 0;
4645 
4646 	return (iwn_tx_cmd(sc, m, ni, ring));
4647 }
4648 
4649 static int
4650 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
4651     struct iwn_tx_ring *ring)
4652 {
4653 	struct iwn_ops *ops = &sc->ops;
4654 	struct iwn_tx_cmd *cmd;
4655 	struct iwn_cmd_data *tx;
4656 	struct ieee80211_frame *wh;
4657 	struct iwn_tx_desc *desc;
4658 	struct iwn_tx_data *data;
4659 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4660 	struct mbuf *m1;
4661 	u_int hdrlen;
4662 	int totlen, error, pad, nsegs = 0, i;
4663 
4664 	wh = mtod(m, struct ieee80211_frame *);
4665 	hdrlen = ieee80211_anyhdrsize(wh);
4666 	totlen = m->m_pkthdr.len;
4667 
4668 	desc = &ring->desc[ring->cur];
4669 	data = &ring->data[ring->cur];
4670 
4671 	/* Prepare TX firmware command. */
4672 	cmd = &ring->cmd[ring->cur];
4673 	cmd->code = IWN_CMD_TX_DATA;
4674 	cmd->flags = 0;
4675 	cmd->qid = ring->qid;
4676 	cmd->idx = ring->cur;
4677 
4678 	tx = (struct iwn_cmd_data *)cmd->data;
4679 	tx->len = htole16(totlen);
4680 
4681 	/* Set physical address of "scratch area". */
4682 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4683 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4684 	if (hdrlen & 3) {
4685 		/* First segment length must be a multiple of 4. */
4686 		tx->flags |= htole32(IWN_TX_NEED_PADDING);
4687 		pad = 4 - (hdrlen & 3);
4688 	} else
4689 		pad = 0;
4690 
4691 	/* Copy 802.11 header in TX command. */
4692 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4693 
4694 	/* Trim 802.11 header. */
4695 	m_adj(m, hdrlen);
4696 
4697 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4698 	    &nsegs, BUS_DMA_NOWAIT);
4699 	if (error != 0) {
4700 		if (error != EFBIG) {
4701 			device_printf(sc->sc_dev,
4702 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4703 			return error;
4704 		}
4705 		/* Too many DMA segments, linearize mbuf. */
4706 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4707 		if (m1 == NULL) {
4708 			device_printf(sc->sc_dev,
4709 			    "%s: could not defrag mbuf\n", __func__);
4710 			return ENOBUFS;
4711 		}
4712 		m = m1;
4713 
4714 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4715 		    segs, &nsegs, BUS_DMA_NOWAIT);
4716 		if (error != 0) {
4717 			/* XXX fix this */
4718 			/*
4719 			 * NB: Do not return error;
4720 			 * original mbuf does not exist anymore.
4721 			 */
4722 			device_printf(sc->sc_dev,
4723 			    "%s: can't map mbuf (error %d)\n",
4724 			    __func__, error);
4725 			if_inc_counter(ni->ni_vap->iv_ifp,
4726 			    IFCOUNTER_OERRORS, 1);
4727 			ieee80211_free_node(ni);
4728 			m_freem(m);
4729 			return 0;
4730 		}
4731 	}
4732 
4733 	data->m = m;
4734 	data->ni = ni;
4735 
4736 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d "
4737 	    "plcp %d\n",
4738 	    __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate);
4739 
4740 	/* Fill TX descriptor. */
4741 	desc->nsegs = 1;
4742 	if (m->m_len != 0)
4743 		desc->nsegs += nsegs;
4744 	/* First DMA segment is used by the TX command. */
4745 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4746 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4747 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4748 	/* Other DMA segments are for data payload. */
4749 	seg = &segs[0];
4750 	for (i = 1; i <= nsegs; i++) {
4751 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4752 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4753 		    seg->ds_len << 4);
4754 		seg++;
4755 	}
4756 
4757 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4758 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4759 	    BUS_DMASYNC_PREWRITE);
4760 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4761 	    BUS_DMASYNC_PREWRITE);
4762 
4763 	/* Update TX scheduler. */
4764 	if (ring->qid >= sc->firstaggqueue)
4765 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4766 
4767 	/* Kick TX ring. */
4768 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4769 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4770 
4771 	/* Mark TX ring as full if we reach a certain threshold. */
4772 	if (++ring->queued > IWN_TX_RING_HIMARK)
4773 		sc->qfullmsk |= 1 << ring->qid;
4774 
4775 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4776 
4777 	return 0;
4778 }
4779 
4780 static void
4781 iwn_xmit_task(void *arg0, int pending)
4782 {
4783 	struct iwn_softc *sc = arg0;
4784 	struct ieee80211_node *ni;
4785 	struct mbuf *m;
4786 	int error;
4787 	struct ieee80211_bpf_params p;
4788 	int have_p;
4789 
4790 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4791 
4792 	IWN_LOCK(sc);
4793 	/*
4794 	 * Dequeue frames, attempt to transmit,
4795 	 * then disable beaconwait when we're done.
4796 	 */
4797 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4798 		have_p = 0;
4799 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4800 
4801 		/* Get xmit params if appropriate */
4802 		if (ieee80211_get_xmit_params(m, &p) == 0)
4803 			have_p = 1;
4804 
4805 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4806 		    __func__, m, have_p);
4807 
4808 		/* If we have xmit params, use them */
4809 		if (have_p)
4810 			error = iwn_tx_data_raw(sc, m, ni, &p);
4811 		else
4812 			error = iwn_tx_data(sc, m, ni);
4813 
4814 		if (error != 0) {
4815 			if_inc_counter(ni->ni_vap->iv_ifp,
4816 			    IFCOUNTER_OERRORS, 1);
4817 			ieee80211_free_node(ni);
4818 			m_freem(m);
4819 		}
4820 	}
4821 
4822 	sc->sc_beacon_wait = 0;
4823 	IWN_UNLOCK(sc);
4824 }
4825 
4826 /*
4827  * raw frame xmit - free node/reference if failed.
4828  */
4829 static int
4830 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4831     const struct ieee80211_bpf_params *params)
4832 {
4833 	struct ieee80211com *ic = ni->ni_ic;
4834 	struct iwn_softc *sc = ic->ic_softc;
4835 	int error = 0;
4836 
4837 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4838 
4839 	IWN_LOCK(sc);
4840 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4841 		m_freem(m);
4842 		IWN_UNLOCK(sc);
4843 		return (ENETDOWN);
4844 	}
4845 
4846 	/* queue frame if we have to */
4847 	if (sc->sc_beacon_wait) {
4848 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4849 			m_freem(m);
4850 			IWN_UNLOCK(sc);
4851 			return (ENOBUFS);
4852 		}
4853 		/* Queued, so just return OK */
4854 		IWN_UNLOCK(sc);
4855 		return (0);
4856 	}
4857 
4858 	if (params == NULL) {
4859 		/*
4860 		 * Legacy path; interpret frame contents to decide
4861 		 * precisely how to send the frame.
4862 		 */
4863 		error = iwn_tx_data(sc, m, ni);
4864 	} else {
4865 		/*
4866 		 * Caller supplied explicit parameters to use in
4867 		 * sending the frame.
4868 		 */
4869 		error = iwn_tx_data_raw(sc, m, ni, params);
4870 	}
4871 	if (error == 0)
4872 		sc->sc_tx_timer = 5;
4873 	else
4874 		m_freem(m);
4875 
4876 	IWN_UNLOCK(sc);
4877 
4878 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4879 
4880 	return (error);
4881 }
4882 
4883 /*
4884  * transmit - don't free mbuf if failed; don't free node ref if failed.
4885  */
4886 static int
4887 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4888 {
4889 	struct iwn_softc *sc = ic->ic_softc;
4890 	struct ieee80211_node *ni;
4891 	int error;
4892 
4893 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4894 
4895 	IWN_LOCK(sc);
4896 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4897 		IWN_UNLOCK(sc);
4898 		return (ENXIO);
4899 	}
4900 
4901 	if (sc->qfullmsk) {
4902 		IWN_UNLOCK(sc);
4903 		return (ENOBUFS);
4904 	}
4905 
4906 	error = iwn_tx_data(sc, m, ni);
4907 	if (!error)
4908 		sc->sc_tx_timer = 5;
4909 	IWN_UNLOCK(sc);
4910 	return (error);
4911 }
4912 
4913 static void
4914 iwn_scan_timeout(void *arg)
4915 {
4916 	struct iwn_softc *sc = arg;
4917 	struct ieee80211com *ic = &sc->sc_ic;
4918 
4919 	ic_printf(ic, "scan timeout\n");
4920 	ieee80211_restart_all(ic);
4921 }
4922 
4923 static void
4924 iwn_watchdog(void *arg)
4925 {
4926 	struct iwn_softc *sc = arg;
4927 	struct ieee80211com *ic = &sc->sc_ic;
4928 
4929 	IWN_LOCK_ASSERT(sc);
4930 
4931 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
4932 
4933 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4934 
4935 	if (sc->sc_tx_timer > 0) {
4936 		if (--sc->sc_tx_timer == 0) {
4937 			ic_printf(ic, "device timeout\n");
4938 			ieee80211_restart_all(ic);
4939 			return;
4940 		}
4941 	}
4942 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4943 }
4944 
4945 static int
4946 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
4947 {
4948 
4949 	return (0);
4950 }
4951 
4952 static int
4953 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
4954 {
4955 
4956 	return (0);
4957 }
4958 
4959 static int
4960 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
4961     struct thread *td)
4962 {
4963 	int rc;
4964 	struct iwn_softc *sc = dev->si_drv1;
4965 	struct iwn_ioctl_data *d;
4966 
4967 	rc = priv_check(td, PRIV_DRIVER);
4968 	if (rc != 0)
4969 		return (0);
4970 
4971 	switch (cmd) {
4972 	case SIOCGIWNSTATS:
4973 		d = (struct iwn_ioctl_data *) data;
4974 		IWN_LOCK(sc);
4975 		/* XXX validate permissions/memory/etc? */
4976 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
4977 		IWN_UNLOCK(sc);
4978 		break;
4979 	case SIOCZIWNSTATS:
4980 		IWN_LOCK(sc);
4981 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4982 		IWN_UNLOCK(sc);
4983 		break;
4984 	default:
4985 		rc = EINVAL;
4986 		break;
4987 	}
4988 	return (rc);
4989 }
4990 
4991 static int
4992 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
4993 {
4994 
4995 	return (ENOTTY);
4996 }
4997 
4998 static void
4999 iwn_parent(struct ieee80211com *ic)
5000 {
5001 	struct iwn_softc *sc = ic->ic_softc;
5002 	struct ieee80211vap *vap;
5003 	int error;
5004 
5005 	if (ic->ic_nrunning > 0) {
5006 		error = iwn_init(sc);
5007 
5008 		switch (error) {
5009 		case 0:
5010 			ieee80211_start_all(ic);
5011 			break;
5012 		case 1:
5013 			/* radio is disabled via RFkill switch */
5014 			taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task);
5015 			break;
5016 		default:
5017 			vap = TAILQ_FIRST(&ic->ic_vaps);
5018 			if (vap != NULL)
5019 				ieee80211_stop(vap);
5020 			break;
5021 		}
5022 	} else
5023 		iwn_stop(sc);
5024 }
5025 
5026 /*
5027  * Send a command to the firmware.
5028  */
5029 static int
5030 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5031 {
5032 	struct iwn_tx_ring *ring;
5033 	struct iwn_tx_desc *desc;
5034 	struct iwn_tx_data *data;
5035 	struct iwn_tx_cmd *cmd;
5036 	struct mbuf *m;
5037 	bus_addr_t paddr;
5038 	int totlen, error;
5039 	int cmd_queue_num;
5040 
5041 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5042 
5043 	if (async == 0)
5044 		IWN_LOCK_ASSERT(sc);
5045 
5046 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5047 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5048 	else
5049 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5050 
5051 	ring = &sc->txq[cmd_queue_num];
5052 	desc = &ring->desc[ring->cur];
5053 	data = &ring->data[ring->cur];
5054 	totlen = 4 + size;
5055 
5056 	if (size > sizeof cmd->data) {
5057 		/* Command is too large to fit in a descriptor. */
5058 		if (totlen > MCLBYTES)
5059 			return EINVAL;
5060 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5061 		if (m == NULL)
5062 			return ENOMEM;
5063 		cmd = mtod(m, struct iwn_tx_cmd *);
5064 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5065 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5066 		if (error != 0) {
5067 			m_freem(m);
5068 			return error;
5069 		}
5070 		data->m = m;
5071 	} else {
5072 		cmd = &ring->cmd[ring->cur];
5073 		paddr = data->cmd_paddr;
5074 	}
5075 
5076 	cmd->code = code;
5077 	cmd->flags = 0;
5078 	cmd->qid = ring->qid;
5079 	cmd->idx = ring->cur;
5080 	memcpy(cmd->data, buf, size);
5081 
5082 	desc->nsegs = 1;
5083 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5084 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5085 
5086 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5087 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5088 	    cmd->flags, cmd->qid, cmd->idx);
5089 
5090 	if (size > sizeof cmd->data) {
5091 		bus_dmamap_sync(ring->data_dmat, data->map,
5092 		    BUS_DMASYNC_PREWRITE);
5093 	} else {
5094 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5095 		    BUS_DMASYNC_PREWRITE);
5096 	}
5097 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5098 	    BUS_DMASYNC_PREWRITE);
5099 
5100 	/* Kick command ring. */
5101 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5102 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5103 
5104 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5105 
5106 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5107 }
5108 
5109 static int
5110 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5111 {
5112 	struct iwn4965_node_info hnode;
5113 	caddr_t src, dst;
5114 
5115 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5116 
5117 	/*
5118 	 * We use the node structure for 5000 Series internally (it is
5119 	 * a superset of the one for 4965AGN). We thus copy the common
5120 	 * fields before sending the command.
5121 	 */
5122 	src = (caddr_t)node;
5123 	dst = (caddr_t)&hnode;
5124 	memcpy(dst, src, 48);
5125 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5126 	memcpy(dst + 48, src + 72, 20);
5127 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5128 }
5129 
5130 static int
5131 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5132 {
5133 
5134 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5135 
5136 	/* Direct mapping. */
5137 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5138 }
5139 
5140 static int
5141 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5142 {
5143 	struct iwn_node *wn = (void *)ni;
5144 	struct ieee80211_rateset *rs;
5145 	struct iwn_cmd_link_quality linkq;
5146 	int i, rate, txrate;
5147 	int is_11n;
5148 
5149 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5150 
5151 	memset(&linkq, 0, sizeof linkq);
5152 	linkq.id = wn->id;
5153 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5154 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5155 
5156 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5157 	linkq.ampdu_threshold = 3;
5158 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5159 
5160 	DPRINTF(sc, IWN_DEBUG_XMIT,
5161 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5162 	    __func__,
5163 	    linkq.antmsk_1stream,
5164 	    linkq.antmsk_2stream,
5165 	    sc->ntxchains);
5166 
5167 	/*
5168 	 * Are we using 11n rates? Ensure the channel is
5169 	 * 11n _and_ we have some 11n rates, or don't
5170 	 * try.
5171 	 */
5172 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5173 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5174 		is_11n = 1;
5175 	} else {
5176 		rs = &ni->ni_rates;
5177 		is_11n = 0;
5178 	}
5179 
5180 	/* Start at highest available bit-rate. */
5181 	/*
5182 	 * XXX this is all very dirty!
5183 	 */
5184 	if (is_11n)
5185 		txrate = ni->ni_htrates.rs_nrates - 1;
5186 	else
5187 		txrate = rs->rs_nrates - 1;
5188 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5189 		uint32_t plcp;
5190 
5191 		/*
5192 		 * XXX TODO: ensure the last two slots are the two lowest
5193 		 * rate entries, just for now.
5194 		 */
5195 		if (i == 14 || i == 15)
5196 			txrate = 0;
5197 
5198 		if (is_11n)
5199 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5200 		else
5201 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5202 
5203 		/* Do rate -> PLCP config mapping */
5204 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5205 		linkq.retry[i] = plcp;
5206 		DPRINTF(sc, IWN_DEBUG_XMIT,
5207 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5208 		    __func__,
5209 		    i,
5210 		    txrate,
5211 		    rate,
5212 		    le32toh(plcp));
5213 
5214 		/*
5215 		 * The mimo field is an index into the table which
5216 		 * indicates the first index where it and subsequent entries
5217 		 * will not be using MIMO.
5218 		 *
5219 		 * Since we're filling linkq from 0..15 and we're filling
5220 		 * from the highest MCS rates to the lowest rates, if we
5221 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5222 		 * the next entry.)  That way if the next entry is a non-MIMO
5223 		 * entry, we're already pointing at it.
5224 		 */
5225 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5226 		    IEEE80211_RV(le32toh(plcp)) > 7)
5227 			linkq.mimo = i + 1;
5228 
5229 		/* Next retry at immediate lower bit-rate. */
5230 		if (txrate > 0)
5231 			txrate--;
5232 	}
5233 	/*
5234 	 * If we reached the end of the list and indeed we hit
5235 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5236 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5237 	 */
5238 	if (linkq.mimo > 15)
5239 		linkq.mimo = 15;
5240 
5241 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5242 
5243 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5244 
5245 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5246 }
5247 
5248 /*
5249  * Broadcast node is used to send group-addressed and management frames.
5250  */
5251 static int
5252 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5253 {
5254 	struct iwn_ops *ops = &sc->ops;
5255 	struct ieee80211com *ic = &sc->sc_ic;
5256 	struct iwn_node_info node;
5257 	struct iwn_cmd_link_quality linkq;
5258 	uint8_t txant;
5259 	int i, error;
5260 
5261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5262 
5263 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5264 
5265 	memset(&node, 0, sizeof node);
5266 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5267 	node.id = sc->broadcast_id;
5268 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5269 	if ((error = ops->add_node(sc, &node, async)) != 0)
5270 		return error;
5271 
5272 	/* Use the first valid TX antenna. */
5273 	txant = IWN_LSB(sc->txchainmask);
5274 
5275 	memset(&linkq, 0, sizeof linkq);
5276 	linkq.id = sc->broadcast_id;
5277 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5278 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5279 	linkq.ampdu_max = 64;
5280 	linkq.ampdu_threshold = 3;
5281 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5282 
5283 	/* Use lowest mandatory bit-rate. */
5284 	/* XXX rate table lookup? */
5285 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5286 		linkq.retry[0] = htole32(0xd);
5287 	else
5288 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5289 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5290 	/* Use same bit-rate for all TX retries. */
5291 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5292 		linkq.retry[i] = linkq.retry[0];
5293 	}
5294 
5295 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5296 
5297 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5298 }
5299 
5300 static int
5301 iwn_updateedca(struct ieee80211com *ic)
5302 {
5303 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5304 	struct iwn_softc *sc = ic->ic_softc;
5305 	struct iwn_edca_params cmd;
5306 	struct chanAccParams chp;
5307 	int aci;
5308 
5309 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5310 
5311 	ieee80211_wme_ic_getparams(ic, &chp);
5312 
5313 	memset(&cmd, 0, sizeof cmd);
5314 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5315 
5316 	IEEE80211_LOCK(ic);
5317 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5318 		const struct wmeParams *ac = &chp.cap_wmeParams[aci];
5319 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5320 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5321 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5322 		cmd.ac[aci].txoplimit =
5323 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5324 	}
5325 	IEEE80211_UNLOCK(ic);
5326 
5327 	IWN_LOCK(sc);
5328 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5329 	IWN_UNLOCK(sc);
5330 
5331 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5332 
5333 	return 0;
5334 #undef IWN_EXP2
5335 }
5336 
5337 static void
5338 iwn_set_promisc(struct iwn_softc *sc)
5339 {
5340 	struct ieee80211com *ic = &sc->sc_ic;
5341 	uint32_t promisc_filter;
5342 
5343 	promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC;
5344 	if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR)
5345 		sc->rxon->filter |= htole32(promisc_filter);
5346 	else
5347 		sc->rxon->filter &= ~htole32(promisc_filter);
5348 }
5349 
5350 static void
5351 iwn_update_promisc(struct ieee80211com *ic)
5352 {
5353 	struct iwn_softc *sc = ic->ic_softc;
5354 	int error;
5355 
5356 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
5357 		return;		/* nothing to do */
5358 
5359 	IWN_LOCK(sc);
5360 	if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5361 		IWN_UNLOCK(sc);
5362 		return;
5363 	}
5364 
5365 	iwn_set_promisc(sc);
5366 	if ((error = iwn_send_rxon(sc, 1, 1)) != 0) {
5367 		device_printf(sc->sc_dev,
5368 		    "%s: could not send RXON, error %d\n",
5369 		    __func__, error);
5370 	}
5371 	IWN_UNLOCK(sc);
5372 }
5373 
5374 static void
5375 iwn_update_mcast(struct ieee80211com *ic)
5376 {
5377 	/* Ignore */
5378 }
5379 
5380 static void
5381 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5382 {
5383 	struct iwn_cmd_led led;
5384 
5385 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5386 
5387 #if 0
5388 	/* XXX don't set LEDs during scan? */
5389 	if (sc->sc_is_scanning)
5390 		return;
5391 #endif
5392 
5393 	/* Clear microcode LED ownership. */
5394 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5395 
5396 	led.which = which;
5397 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5398 	led.off = off;
5399 	led.on = on;
5400 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5401 }
5402 
5403 /*
5404  * Set the critical temperature at which the firmware will stop the radio
5405  * and notify us.
5406  */
5407 static int
5408 iwn_set_critical_temp(struct iwn_softc *sc)
5409 {
5410 	struct iwn_critical_temp crit;
5411 	int32_t temp;
5412 
5413 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5414 
5415 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5416 
5417 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5418 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5419 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5420 		temp = IWN_CTOK(110);
5421 	else
5422 		temp = 110;
5423 	memset(&crit, 0, sizeof crit);
5424 	crit.tempR = htole32(temp);
5425 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5426 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5427 }
5428 
5429 static int
5430 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5431 {
5432 	struct iwn_cmd_timing cmd;
5433 	uint64_t val, mod;
5434 
5435 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5436 
5437 	memset(&cmd, 0, sizeof cmd);
5438 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5439 	cmd.bintval = htole16(ni->ni_intval);
5440 	cmd.lintval = htole16(10);
5441 
5442 	/* Compute remaining time until next beacon. */
5443 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5444 	mod = le64toh(cmd.tstamp) % val;
5445 	cmd.binitval = htole32((uint32_t)(val - mod));
5446 
5447 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5448 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5449 
5450 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5451 }
5452 
5453 static void
5454 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5455 {
5456 
5457 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5458 
5459 	/* Adjust TX power if need be (delta >= 3 degC). */
5460 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5461 	    __func__, sc->temp, temp);
5462 	if (abs(temp - sc->temp) >= 3) {
5463 		/* Record temperature of last calibration. */
5464 		sc->temp = temp;
5465 		(void)iwn4965_set_txpower(sc, 1);
5466 	}
5467 }
5468 
5469 /*
5470  * Set TX power for current channel (each rate has its own power settings).
5471  * This function takes into account the regulatory information from EEPROM,
5472  * the current temperature and the current voltage.
5473  */
5474 static int
5475 iwn4965_set_txpower(struct iwn_softc *sc, int async)
5476 {
5477 /* Fixed-point arithmetic division using a n-bit fractional part. */
5478 #define fdivround(a, b, n)	\
5479 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5480 /* Linear interpolation. */
5481 #define interpolate(x, x1, y1, x2, y2, n)	\
5482 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5483 
5484 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5485 	struct iwn_ucode_info *uc = &sc->ucode_info;
5486 	struct iwn4965_cmd_txpower cmd;
5487 	struct iwn4965_eeprom_chan_samples *chans;
5488 	const uint8_t *rf_gain, *dsp_gain;
5489 	int32_t vdiff, tdiff;
5490 	int i, is_chan_5ghz, c, grp, maxpwr;
5491 	uint8_t chan;
5492 
5493 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5494 	/* Retrieve current channel from last RXON. */
5495 	chan = sc->rxon->chan;
5496 	is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0;
5497 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5498 	    chan);
5499 
5500 	memset(&cmd, 0, sizeof cmd);
5501 	cmd.band = is_chan_5ghz ? 0 : 1;
5502 	cmd.chan = chan;
5503 
5504 	if (is_chan_5ghz) {
5505 		maxpwr   = sc->maxpwr5GHz;
5506 		rf_gain  = iwn4965_rf_gain_5ghz;
5507 		dsp_gain = iwn4965_dsp_gain_5ghz;
5508 	} else {
5509 		maxpwr   = sc->maxpwr2GHz;
5510 		rf_gain  = iwn4965_rf_gain_2ghz;
5511 		dsp_gain = iwn4965_dsp_gain_2ghz;
5512 	}
5513 
5514 	/* Compute voltage compensation. */
5515 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5516 	if (vdiff > 0)
5517 		vdiff *= 2;
5518 	if (abs(vdiff) > 2)
5519 		vdiff = 0;
5520 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5521 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5522 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5523 
5524 	/* Get channel attenuation group. */
5525 	if (chan <= 20)		/* 1-20 */
5526 		grp = 4;
5527 	else if (chan <= 43)	/* 34-43 */
5528 		grp = 0;
5529 	else if (chan <= 70)	/* 44-70 */
5530 		grp = 1;
5531 	else if (chan <= 124)	/* 71-124 */
5532 		grp = 2;
5533 	else			/* 125-200 */
5534 		grp = 3;
5535 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5536 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5537 
5538 	/* Get channel sub-band. */
5539 	for (i = 0; i < IWN_NBANDS; i++)
5540 		if (sc->bands[i].lo != 0 &&
5541 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5542 			break;
5543 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5544 		return EINVAL;
5545 	chans = sc->bands[i].chans;
5546 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5547 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5548 
5549 	for (c = 0; c < 2; c++) {
5550 		uint8_t power, gain, temp;
5551 		int maxchpwr, pwr, ridx, idx;
5552 
5553 		power = interpolate(chan,
5554 		    chans[0].num, chans[0].samples[c][1].power,
5555 		    chans[1].num, chans[1].samples[c][1].power, 1);
5556 		gain  = interpolate(chan,
5557 		    chans[0].num, chans[0].samples[c][1].gain,
5558 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5559 		temp  = interpolate(chan,
5560 		    chans[0].num, chans[0].samples[c][1].temp,
5561 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5562 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5563 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5564 		    __func__, c, power, gain, temp);
5565 
5566 		/* Compute temperature compensation. */
5567 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5568 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5569 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5570 		    __func__, tdiff, sc->temp, temp);
5571 
5572 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5573 			/* Convert dBm to half-dBm. */
5574 			maxchpwr = sc->maxpwr[chan] * 2;
5575 			if ((ridx / 8) & 1)
5576 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5577 
5578 			pwr = maxpwr;
5579 
5580 			/* Adjust TX power based on rate. */
5581 			if ((ridx % 8) == 5)
5582 				pwr -= 15;	/* OFDM48: -7.5dB */
5583 			else if ((ridx % 8) == 6)
5584 				pwr -= 17;	/* OFDM54: -8.5dB */
5585 			else if ((ridx % 8) == 7)
5586 				pwr -= 20;	/* OFDM60: -10dB */
5587 			else
5588 				pwr -= 10;	/* Others: -5dB */
5589 
5590 			/* Do not exceed channel max TX power. */
5591 			if (pwr > maxchpwr)
5592 				pwr = maxchpwr;
5593 
5594 			idx = gain - (pwr - power) - tdiff - vdiff;
5595 			if ((ridx / 8) & 1)	/* MIMO */
5596 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5597 
5598 			if (cmd.band == 0)
5599 				idx += 9;	/* 5GHz */
5600 			if (ridx == IWN_RIDX_MAX)
5601 				idx += 5;	/* CCK */
5602 
5603 			/* Make sure idx stays in a valid range. */
5604 			if (idx < 0)
5605 				idx = 0;
5606 			else if (idx > IWN4965_MAX_PWR_INDEX)
5607 				idx = IWN4965_MAX_PWR_INDEX;
5608 
5609 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5610 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5611 			    __func__, c, ridx, idx);
5612 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5613 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5614 		}
5615 	}
5616 
5617 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5618 	    "%s: set tx power for chan %d\n", __func__, chan);
5619 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5620 
5621 #undef interpolate
5622 #undef fdivround
5623 }
5624 
5625 static int
5626 iwn5000_set_txpower(struct iwn_softc *sc, int async)
5627 {
5628 	struct iwn5000_cmd_txpower cmd;
5629 	int cmdid;
5630 
5631 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5632 
5633 	/*
5634 	 * TX power calibration is handled automatically by the firmware
5635 	 * for 5000 Series.
5636 	 */
5637 	memset(&cmd, 0, sizeof cmd);
5638 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5639 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5640 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5641 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5642 	    "%s: setting TX power; rev=%d\n",
5643 	    __func__,
5644 	    IWN_UCODE_API(sc->ucode_rev));
5645 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5646 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5647 	else
5648 		cmdid = IWN_CMD_TXPOWER_DBM;
5649 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5650 }
5651 
5652 /*
5653  * Retrieve the maximum RSSI (in dBm) among receivers.
5654  */
5655 static int
5656 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5657 {
5658 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5659 	uint8_t mask, agc;
5660 	int rssi;
5661 
5662 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5663 
5664 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5665 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5666 
5667 	rssi = 0;
5668 	if (mask & IWN_ANT_A)
5669 		rssi = MAX(rssi, phy->rssi[0]);
5670 	if (mask & IWN_ANT_B)
5671 		rssi = MAX(rssi, phy->rssi[2]);
5672 	if (mask & IWN_ANT_C)
5673 		rssi = MAX(rssi, phy->rssi[4]);
5674 
5675 	DPRINTF(sc, IWN_DEBUG_RECV,
5676 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5677 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5678 	    rssi - agc - IWN_RSSI_TO_DBM);
5679 	return rssi - agc - IWN_RSSI_TO_DBM;
5680 }
5681 
5682 static int
5683 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5684 {
5685 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5686 	uint8_t agc;
5687 	int rssi;
5688 
5689 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5690 
5691 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5692 
5693 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5694 		   le16toh(phy->rssi[1]) & 0xff);
5695 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5696 
5697 	DPRINTF(sc, IWN_DEBUG_RECV,
5698 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5699 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5700 	    rssi - agc - IWN_RSSI_TO_DBM);
5701 	return rssi - agc - IWN_RSSI_TO_DBM;
5702 }
5703 
5704 /*
5705  * Retrieve the average noise (in dBm) among receivers.
5706  */
5707 static int
5708 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5709 {
5710 	int i, total, nbant, noise;
5711 
5712 	total = nbant = 0;
5713 	for (i = 0; i < 3; i++) {
5714 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5715 			continue;
5716 		total += noise;
5717 		nbant++;
5718 	}
5719 	/* There should be at least one antenna but check anyway. */
5720 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5721 }
5722 
5723 /*
5724  * Compute temperature (in degC) from last received statistics.
5725  */
5726 static int
5727 iwn4965_get_temperature(struct iwn_softc *sc)
5728 {
5729 	struct iwn_ucode_info *uc = &sc->ucode_info;
5730 	int32_t r1, r2, r3, r4, temp;
5731 
5732 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5733 
5734 	r1 = le32toh(uc->temp[0].chan20MHz);
5735 	r2 = le32toh(uc->temp[1].chan20MHz);
5736 	r3 = le32toh(uc->temp[2].chan20MHz);
5737 	r4 = le32toh(sc->rawtemp);
5738 
5739 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5740 		return 0;
5741 
5742 	/* Sign-extend 23-bit R4 value to 32-bit. */
5743 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5744 	/* Compute temperature in Kelvin. */
5745 	temp = (259 * (r4 - r2)) / (r3 - r1);
5746 	temp = (temp * 97) / 100 + 8;
5747 
5748 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5749 	    IWN_KTOC(temp));
5750 	return IWN_KTOC(temp);
5751 }
5752 
5753 static int
5754 iwn5000_get_temperature(struct iwn_softc *sc)
5755 {
5756 	int32_t temp;
5757 
5758 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5759 
5760 	/*
5761 	 * Temperature is not used by the driver for 5000 Series because
5762 	 * TX power calibration is handled by firmware.
5763 	 */
5764 	temp = le32toh(sc->rawtemp);
5765 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5766 		temp = (temp / -5) + sc->temp_off;
5767 		temp = IWN_KTOC(temp);
5768 	}
5769 	return temp;
5770 }
5771 
5772 /*
5773  * Initialize sensitivity calibration state machine.
5774  */
5775 static int
5776 iwn_init_sensitivity(struct iwn_softc *sc)
5777 {
5778 	struct iwn_ops *ops = &sc->ops;
5779 	struct iwn_calib_state *calib = &sc->calib;
5780 	uint32_t flags;
5781 	int error;
5782 
5783 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5784 
5785 	/* Reset calibration state machine. */
5786 	memset(calib, 0, sizeof (*calib));
5787 	calib->state = IWN_CALIB_STATE_INIT;
5788 	calib->cck_state = IWN_CCK_STATE_HIFA;
5789 	/* Set initial correlation values. */
5790 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5791 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5792 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5793 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5794 	calib->cck_x4      = 125;
5795 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5796 	calib->energy_cck  = sc->limits->energy_cck;
5797 
5798 	/* Write initial sensitivity. */
5799 	if ((error = iwn_send_sensitivity(sc)) != 0)
5800 		return error;
5801 
5802 	/* Write initial gains. */
5803 	if ((error = ops->init_gains(sc)) != 0)
5804 		return error;
5805 
5806 	/* Request statistics at each beacon interval. */
5807 	flags = 0;
5808 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5809 	    __func__);
5810 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5811 }
5812 
5813 /*
5814  * Collect noise and RSSI statistics for the first 20 beacons received
5815  * after association and use them to determine connected antennas and
5816  * to set differential gains.
5817  */
5818 static void
5819 iwn_collect_noise(struct iwn_softc *sc,
5820     const struct iwn_rx_general_stats *stats)
5821 {
5822 	struct iwn_ops *ops = &sc->ops;
5823 	struct iwn_calib_state *calib = &sc->calib;
5824 	struct ieee80211com *ic = &sc->sc_ic;
5825 	uint32_t val;
5826 	int i;
5827 
5828 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5829 
5830 	/* Accumulate RSSI and noise for all 3 antennas. */
5831 	for (i = 0; i < 3; i++) {
5832 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5833 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5834 	}
5835 	/* NB: We update differential gains only once after 20 beacons. */
5836 	if (++calib->nbeacons < 20)
5837 		return;
5838 
5839 	/* Determine highest average RSSI. */
5840 	val = MAX(calib->rssi[0], calib->rssi[1]);
5841 	val = MAX(calib->rssi[2], val);
5842 
5843 	/* Determine which antennas are connected. */
5844 	sc->chainmask = sc->rxchainmask;
5845 	for (i = 0; i < 3; i++)
5846 		if (val - calib->rssi[i] > 15 * 20)
5847 			sc->chainmask &= ~(1 << i);
5848 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5849 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5850 	    __func__, sc->rxchainmask, sc->chainmask);
5851 
5852 	/* If none of the TX antennas are connected, keep at least one. */
5853 	if ((sc->chainmask & sc->txchainmask) == 0)
5854 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5855 
5856 	(void)ops->set_gains(sc);
5857 	calib->state = IWN_CALIB_STATE_RUN;
5858 
5859 #ifdef notyet
5860 	/* XXX Disable RX chains with no antennas connected. */
5861 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5862 	if (sc->sc_is_scanning)
5863 		device_printf(sc->sc_dev,
5864 		    "%s: is_scanning set, before RXON\n",
5865 		    __func__);
5866 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5867 #endif
5868 
5869 	/* Enable power-saving mode if requested by user. */
5870 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5871 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5872 
5873 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5874 
5875 }
5876 
5877 static int
5878 iwn4965_init_gains(struct iwn_softc *sc)
5879 {
5880 	struct iwn_phy_calib_gain cmd;
5881 
5882 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5883 
5884 	memset(&cmd, 0, sizeof cmd);
5885 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5886 	/* Differential gains initially set to 0 for all 3 antennas. */
5887 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5888 	    "%s: setting initial differential gains\n", __func__);
5889 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5890 }
5891 
5892 static int
5893 iwn5000_init_gains(struct iwn_softc *sc)
5894 {
5895 	struct iwn_phy_calib cmd;
5896 
5897 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5898 
5899 	memset(&cmd, 0, sizeof cmd);
5900 	cmd.code = sc->reset_noise_gain;
5901 	cmd.ngroups = 1;
5902 	cmd.isvalid = 1;
5903 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5904 	    "%s: setting initial differential gains\n", __func__);
5905 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5906 }
5907 
5908 static int
5909 iwn4965_set_gains(struct iwn_softc *sc)
5910 {
5911 	struct iwn_calib_state *calib = &sc->calib;
5912 	struct iwn_phy_calib_gain cmd;
5913 	int i, delta, noise;
5914 
5915 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5916 
5917 	/* Get minimal noise among connected antennas. */
5918 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5919 	for (i = 0; i < 3; i++)
5920 		if (sc->chainmask & (1 << i))
5921 			noise = MIN(calib->noise[i], noise);
5922 
5923 	memset(&cmd, 0, sizeof cmd);
5924 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5925 	/* Set differential gains for connected antennas. */
5926 	for (i = 0; i < 3; i++) {
5927 		if (sc->chainmask & (1 << i)) {
5928 			/* Compute attenuation (in unit of 1.5dB). */
5929 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5930 			/* NB: delta <= 0 */
5931 			/* Limit to [-4.5dB,0]. */
5932 			cmd.gain[i] = MIN(abs(delta), 3);
5933 			if (delta < 0)
5934 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5935 		}
5936 	}
5937 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5938 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5939 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5940 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5941 }
5942 
5943 static int
5944 iwn5000_set_gains(struct iwn_softc *sc)
5945 {
5946 	struct iwn_calib_state *calib = &sc->calib;
5947 	struct iwn_phy_calib_gain cmd;
5948 	int i, ant, div, delta;
5949 
5950 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5951 
5952 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5953 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5954 
5955 	memset(&cmd, 0, sizeof cmd);
5956 	cmd.code = sc->noise_gain;
5957 	cmd.ngroups = 1;
5958 	cmd.isvalid = 1;
5959 	/* Get first available RX antenna as referential. */
5960 	ant = IWN_LSB(sc->rxchainmask);
5961 	/* Set differential gains for other antennas. */
5962 	for (i = ant + 1; i < 3; i++) {
5963 		if (sc->chainmask & (1 << i)) {
5964 			/* The delta is relative to antenna "ant". */
5965 			delta = ((int32_t)calib->noise[ant] -
5966 			    (int32_t)calib->noise[i]) / div;
5967 			/* Limit to [-4.5dB,+4.5dB]. */
5968 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5969 			if (delta < 0)
5970 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5971 		}
5972 	}
5973 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5974 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5975 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5976 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5977 }
5978 
5979 /*
5980  * Tune RF RX sensitivity based on the number of false alarms detected
5981  * during the last beacon period.
5982  */
5983 static void
5984 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5985 {
5986 #define inc(val, inc, max)			\
5987 	if ((val) < (max)) {			\
5988 		if ((val) < (max) - (inc))	\
5989 			(val) += (inc);		\
5990 		else				\
5991 			(val) = (max);		\
5992 		needs_update = 1;		\
5993 	}
5994 #define dec(val, dec, min)			\
5995 	if ((val) > (min)) {			\
5996 		if ((val) > (min) + (dec))	\
5997 			(val) -= (dec);		\
5998 		else				\
5999 			(val) = (min);		\
6000 		needs_update = 1;		\
6001 	}
6002 
6003 	const struct iwn_sensitivity_limits *limits = sc->limits;
6004 	struct iwn_calib_state *calib = &sc->calib;
6005 	uint32_t val, rxena, fa;
6006 	uint32_t energy[3], energy_min;
6007 	uint8_t noise[3], noise_ref;
6008 	int i, needs_update = 0;
6009 
6010 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6011 
6012 	/* Check that we've been enabled long enough. */
6013 	if ((rxena = le32toh(stats->general.load)) == 0){
6014 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6015 		return;
6016 	}
6017 
6018 	/* Compute number of false alarms since last call for OFDM. */
6019 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6020 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6021 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6022 
6023 	if (fa > 50 * rxena) {
6024 		/* High false alarm count, decrease sensitivity. */
6025 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6026 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6027 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6028 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6029 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6030 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6031 
6032 	} else if (fa < 5 * rxena) {
6033 		/* Low false alarm count, increase sensitivity. */
6034 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6035 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6036 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6037 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6038 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6039 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6040 	}
6041 
6042 	/* Compute maximum noise among 3 receivers. */
6043 	for (i = 0; i < 3; i++)
6044 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6045 	val = MAX(noise[0], noise[1]);
6046 	val = MAX(noise[2], val);
6047 	/* Insert it into our samples table. */
6048 	calib->noise_samples[calib->cur_noise_sample] = val;
6049 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6050 
6051 	/* Compute maximum noise among last 20 samples. */
6052 	noise_ref = calib->noise_samples[0];
6053 	for (i = 1; i < 20; i++)
6054 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6055 
6056 	/* Compute maximum energy among 3 receivers. */
6057 	for (i = 0; i < 3; i++)
6058 		energy[i] = le32toh(stats->general.energy[i]);
6059 	val = MIN(energy[0], energy[1]);
6060 	val = MIN(energy[2], val);
6061 	/* Insert it into our samples table. */
6062 	calib->energy_samples[calib->cur_energy_sample] = val;
6063 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6064 
6065 	/* Compute minimum energy among last 10 samples. */
6066 	energy_min = calib->energy_samples[0];
6067 	for (i = 1; i < 10; i++)
6068 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6069 	energy_min += 6;
6070 
6071 	/* Compute number of false alarms since last call for CCK. */
6072 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6073 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6074 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6075 
6076 	if (fa > 50 * rxena) {
6077 		/* High false alarm count, decrease sensitivity. */
6078 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6079 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6080 		calib->cck_state = IWN_CCK_STATE_HIFA;
6081 		calib->low_fa = 0;
6082 
6083 		if (calib->cck_x4 > 160) {
6084 			calib->noise_ref = noise_ref;
6085 			if (calib->energy_cck > 2)
6086 				dec(calib->energy_cck, 2, energy_min);
6087 		}
6088 		if (calib->cck_x4 < 160) {
6089 			calib->cck_x4 = 161;
6090 			needs_update = 1;
6091 		} else
6092 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6093 
6094 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6095 
6096 	} else if (fa < 5 * rxena) {
6097 		/* Low false alarm count, increase sensitivity. */
6098 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6099 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6100 		calib->cck_state = IWN_CCK_STATE_LOFA;
6101 		calib->low_fa++;
6102 
6103 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6104 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6105 		     calib->low_fa > 100)) {
6106 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6107 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6108 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6109 		}
6110 	} else {
6111 		/* Not worth to increase or decrease sensitivity. */
6112 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6113 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6114 		calib->low_fa = 0;
6115 		calib->noise_ref = noise_ref;
6116 
6117 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6118 			/* Previous interval had many false alarms. */
6119 			dec(calib->energy_cck, 8, energy_min);
6120 		}
6121 		calib->cck_state = IWN_CCK_STATE_INIT;
6122 	}
6123 
6124 	if (needs_update)
6125 		(void)iwn_send_sensitivity(sc);
6126 
6127 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6128 
6129 #undef dec
6130 #undef inc
6131 }
6132 
6133 static int
6134 iwn_send_sensitivity(struct iwn_softc *sc)
6135 {
6136 	struct iwn_calib_state *calib = &sc->calib;
6137 	struct iwn_enhanced_sensitivity_cmd cmd;
6138 	int len;
6139 
6140 	memset(&cmd, 0, sizeof cmd);
6141 	len = sizeof (struct iwn_sensitivity_cmd);
6142 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6143 	/* OFDM modulation. */
6144 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6145 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6146 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6147 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6148 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6149 	cmd.energy_ofdm_th     = htole16(62);
6150 	/* CCK modulation. */
6151 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6152 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6153 	cmd.energy_cck         = htole16(calib->energy_cck);
6154 	/* Barker modulation: use default values. */
6155 	cmd.corr_barker        = htole16(190);
6156 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6157 
6158 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6159 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6160 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6161 	    calib->ofdm_mrc_x4, calib->cck_x4,
6162 	    calib->cck_mrc_x4, calib->energy_cck);
6163 
6164 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6165 		goto send;
6166 	/* Enhanced sensitivity settings. */
6167 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6168 	cmd.ofdm_det_slope_mrc = htole16(668);
6169 	cmd.ofdm_det_icept_mrc = htole16(4);
6170 	cmd.ofdm_det_slope     = htole16(486);
6171 	cmd.ofdm_det_icept     = htole16(37);
6172 	cmd.cck_det_slope_mrc  = htole16(853);
6173 	cmd.cck_det_icept_mrc  = htole16(4);
6174 	cmd.cck_det_slope      = htole16(476);
6175 	cmd.cck_det_icept      = htole16(99);
6176 send:
6177 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6178 }
6179 
6180 /*
6181  * Look at the increase of PLCP errors over time; if it exceeds
6182  * a programmed threshold then trigger an RF retune.
6183  */
6184 static void
6185 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6186 {
6187 	int32_t delta_ofdm, delta_ht, delta_cck;
6188 	struct iwn_calib_state *calib = &sc->calib;
6189 	int delta_ticks, cur_ticks;
6190 	int delta_msec;
6191 	int thresh;
6192 
6193 	/*
6194 	 * Calculate the difference between the current and
6195 	 * previous statistics.
6196 	 */
6197 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6198 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6199 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6200 
6201 	/*
6202 	 * Calculate the delta in time between successive statistics
6203 	 * messages.  Yes, it can roll over; so we make sure that
6204 	 * this doesn't happen.
6205 	 *
6206 	 * XXX go figure out what to do about rollover
6207 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6208 	 * XXX go stab signed integer overflow undefined-ness in the face.
6209 	 */
6210 	cur_ticks = ticks;
6211 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6212 
6213 	/*
6214 	 * If any are negative, then the firmware likely reset; so just
6215 	 * bail.  We'll pick this up next time.
6216 	 */
6217 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6218 		return;
6219 
6220 	/*
6221 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6222 	 * so we can do some useful math with it.
6223 	 */
6224 	delta_msec = ticks_to_msecs(delta_ticks);
6225 
6226 	/*
6227 	 * Calculate what our threshold is given the current delta_msec.
6228 	 */
6229 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6230 
6231 	DPRINTF(sc, IWN_DEBUG_STATE,
6232 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6233 	    __func__,
6234 	    delta_msec,
6235 	    delta_cck,
6236 	    delta_ofdm,
6237 	    delta_ht,
6238 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6239 	    thresh);
6240 
6241 	/*
6242 	 * If we need a retune, then schedule a single channel scan
6243 	 * to a channel that isn't the currently active one!
6244 	 *
6245 	 * The math from linux iwlwifi:
6246 	 *
6247 	 * if ((delta * 100 / msecs) > threshold)
6248 	 */
6249 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6250 		DPRINTF(sc, IWN_DEBUG_ANY,
6251 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6252 		    "over limit (%d); retune!\n",
6253 		    __func__,
6254 		    (delta_cck + delta_ofdm + delta_ht),
6255 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6256 		    thresh);
6257 	}
6258 }
6259 
6260 /*
6261  * Set STA mode power saving level (between 0 and 5).
6262  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6263  */
6264 static int
6265 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6266 {
6267 	struct iwn_pmgt_cmd cmd;
6268 	const struct iwn_pmgt *pmgt;
6269 	uint32_t max, skip_dtim;
6270 	uint32_t reg;
6271 	int i;
6272 
6273 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6274 	    "%s: dtim=%d, level=%d, async=%d\n",
6275 	    __func__,
6276 	    dtim,
6277 	    level,
6278 	    async);
6279 
6280 	/* Select which PS parameters to use. */
6281 	if (dtim <= 2)
6282 		pmgt = &iwn_pmgt[0][level];
6283 	else if (dtim <= 10)
6284 		pmgt = &iwn_pmgt[1][level];
6285 	else
6286 		pmgt = &iwn_pmgt[2][level];
6287 
6288 	memset(&cmd, 0, sizeof cmd);
6289 	if (level != 0)	/* not CAM */
6290 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6291 	if (level == 5)
6292 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6293 	/* Retrieve PCIe Active State Power Management (ASPM). */
6294 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6295 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6296 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6297 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6298 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6299 
6300 	if (dtim == 0) {
6301 		dtim = 1;
6302 		skip_dtim = 0;
6303 	} else
6304 		skip_dtim = pmgt->skip_dtim;
6305 	if (skip_dtim != 0) {
6306 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6307 		max = pmgt->intval[4];
6308 		if (max == (uint32_t)-1)
6309 			max = dtim * (skip_dtim + 1);
6310 		else if (max > dtim)
6311 			max = rounddown(max, dtim);
6312 	} else
6313 		max = dtim;
6314 	for (i = 0; i < 5; i++)
6315 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6316 
6317 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6318 	    level);
6319 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6320 }
6321 
6322 static int
6323 iwn_send_btcoex(struct iwn_softc *sc)
6324 {
6325 	struct iwn_bluetooth cmd;
6326 
6327 	memset(&cmd, 0, sizeof cmd);
6328 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6329 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6330 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6331 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6332 	    __func__);
6333 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6334 }
6335 
6336 static int
6337 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6338 {
6339 	static const uint32_t btcoex_3wire[12] = {
6340 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6341 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6342 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6343 	};
6344 	struct iwn6000_btcoex_config btconfig;
6345 	struct iwn2000_btcoex_config btconfig2k;
6346 	struct iwn_btcoex_priotable btprio;
6347 	struct iwn_btcoex_prot btprot;
6348 	int error, i;
6349 	uint8_t flags;
6350 
6351 	memset(&btconfig, 0, sizeof btconfig);
6352 	memset(&btconfig2k, 0, sizeof btconfig2k);
6353 
6354 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6355 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6356 
6357 	if (sc->base_params->bt_sco_disable)
6358 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6359 	else
6360 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6361 
6362 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6363 
6364 	/* Default flags result is 145 as old value */
6365 
6366 	/*
6367 	 * Flags value has to be review. Values must change if we
6368 	 * which to disable it
6369 	 */
6370 	if (sc->base_params->bt_session_2) {
6371 		btconfig2k.flags = flags;
6372 		btconfig2k.max_kill = 5;
6373 		btconfig2k.bt3_t7_timer = 1;
6374 		btconfig2k.kill_ack = htole32(0xffff0000);
6375 		btconfig2k.kill_cts = htole32(0xffff0000);
6376 		btconfig2k.sample_time = 2;
6377 		btconfig2k.bt3_t2_timer = 0xc;
6378 
6379 		for (i = 0; i < 12; i++)
6380 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6381 		btconfig2k.valid = htole16(0xff);
6382 		btconfig2k.prio_boost = htole32(0xf0);
6383 		DPRINTF(sc, IWN_DEBUG_RESET,
6384 		    "%s: configuring advanced bluetooth coexistence"
6385 		    " session 2, flags : 0x%x\n",
6386 		    __func__,
6387 		    flags);
6388 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6389 		    sizeof(btconfig2k), 1);
6390 	} else {
6391 		btconfig.flags = flags;
6392 		btconfig.max_kill = 5;
6393 		btconfig.bt3_t7_timer = 1;
6394 		btconfig.kill_ack = htole32(0xffff0000);
6395 		btconfig.kill_cts = htole32(0xffff0000);
6396 		btconfig.sample_time = 2;
6397 		btconfig.bt3_t2_timer = 0xc;
6398 
6399 		for (i = 0; i < 12; i++)
6400 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6401 		btconfig.valid = htole16(0xff);
6402 		btconfig.prio_boost = 0xf0;
6403 		DPRINTF(sc, IWN_DEBUG_RESET,
6404 		    "%s: configuring advanced bluetooth coexistence,"
6405 		    " flags : 0x%x\n",
6406 		    __func__,
6407 		    flags);
6408 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6409 		    sizeof(btconfig), 1);
6410 	}
6411 
6412 	if (error != 0)
6413 		return error;
6414 
6415 	memset(&btprio, 0, sizeof btprio);
6416 	btprio.calib_init1 = 0x6;
6417 	btprio.calib_init2 = 0x7;
6418 	btprio.calib_periodic_low1 = 0x2;
6419 	btprio.calib_periodic_low2 = 0x3;
6420 	btprio.calib_periodic_high1 = 0x4;
6421 	btprio.calib_periodic_high2 = 0x5;
6422 	btprio.dtim = 0x6;
6423 	btprio.scan52 = 0x8;
6424 	btprio.scan24 = 0xa;
6425 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6426 	    1);
6427 	if (error != 0)
6428 		return error;
6429 
6430 	/* Force BT state machine change. */
6431 	memset(&btprot, 0, sizeof btprot);
6432 	btprot.open = 1;
6433 	btprot.type = 1;
6434 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6435 	if (error != 0)
6436 		return error;
6437 	btprot.open = 0;
6438 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6439 }
6440 
6441 static int
6442 iwn5000_runtime_calib(struct iwn_softc *sc)
6443 {
6444 	struct iwn5000_calib_config cmd;
6445 
6446 	memset(&cmd, 0, sizeof cmd);
6447 	cmd.ucode.once.enable = 0xffffffff;
6448 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6449 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6450 	    "%s: configuring runtime calibration\n", __func__);
6451 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6452 }
6453 
6454 static uint32_t
6455 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6456 {
6457 	struct ieee80211com *ic = &sc->sc_ic;
6458 	uint32_t htflags = 0;
6459 
6460 	if (! IEEE80211_IS_CHAN_HT(c))
6461 		return (0);
6462 
6463 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6464 
6465 	if (IEEE80211_IS_CHAN_HT40(c)) {
6466 		switch (ic->ic_curhtprotmode) {
6467 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6468 			htflags |= IWN_RXON_HT_MODEPURE40;
6469 			break;
6470 		default:
6471 			htflags |= IWN_RXON_HT_MODEMIXED;
6472 			break;
6473 		}
6474 	}
6475 	if (IEEE80211_IS_CHAN_HT40D(c))
6476 		htflags |= IWN_RXON_HT_HT40MINUS;
6477 
6478 	return (htflags);
6479 }
6480 
6481 static int
6482 iwn_check_bss_filter(struct iwn_softc *sc)
6483 {
6484 	return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0);
6485 }
6486 
6487 static int
6488 iwn4965_rxon_assoc(struct iwn_softc *sc, int async)
6489 {
6490 	struct iwn4965_rxon_assoc cmd;
6491 	struct iwn_rxon *rxon = sc->rxon;
6492 
6493 	cmd.flags = rxon->flags;
6494 	cmd.filter = rxon->filter;
6495 	cmd.ofdm_mask = rxon->ofdm_mask;
6496 	cmd.cck_mask = rxon->cck_mask;
6497 	cmd.ht_single_mask = rxon->ht_single_mask;
6498 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6499 	cmd.rxchain = rxon->rxchain;
6500 	cmd.reserved = 0;
6501 
6502 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6503 }
6504 
6505 static int
6506 iwn5000_rxon_assoc(struct iwn_softc *sc, int async)
6507 {
6508 	struct iwn5000_rxon_assoc cmd;
6509 	struct iwn_rxon *rxon = sc->rxon;
6510 
6511 	cmd.flags = rxon->flags;
6512 	cmd.filter = rxon->filter;
6513 	cmd.ofdm_mask = rxon->ofdm_mask;
6514 	cmd.cck_mask = rxon->cck_mask;
6515 	cmd.reserved1 = 0;
6516 	cmd.ht_single_mask = rxon->ht_single_mask;
6517 	cmd.ht_dual_mask = rxon->ht_dual_mask;
6518 	cmd.ht_triple_mask = rxon->ht_triple_mask;
6519 	cmd.reserved2 = 0;
6520 	cmd.rxchain = rxon->rxchain;
6521 	cmd.acquisition = rxon->acquisition;
6522 	cmd.reserved3 = 0;
6523 
6524 	return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async));
6525 }
6526 
6527 static int
6528 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async)
6529 {
6530 	struct iwn_ops *ops = &sc->ops;
6531 	int error;
6532 
6533 	IWN_LOCK_ASSERT(sc);
6534 
6535 	if (assoc && iwn_check_bss_filter(sc) != 0) {
6536 		error = ops->rxon_assoc(sc, async);
6537 		if (error != 0) {
6538 			device_printf(sc->sc_dev,
6539 			    "%s: RXON_ASSOC command failed, error %d\n",
6540 			    __func__, error);
6541 			return (error);
6542 		}
6543 	} else {
6544 		if (sc->sc_is_scanning)
6545 			device_printf(sc->sc_dev,
6546 			    "%s: is_scanning set, before RXON\n",
6547 			    __func__);
6548 
6549 		error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async);
6550 		if (error != 0) {
6551 			device_printf(sc->sc_dev,
6552 			    "%s: RXON command failed, error %d\n",
6553 			    __func__, error);
6554 			return (error);
6555 		}
6556 
6557 		/*
6558 		 * Reconfiguring RXON clears the firmware nodes table so
6559 		 * we must add the broadcast node again.
6560 		 */
6561 		if (iwn_check_bss_filter(sc) == 0 &&
6562 		    (error = iwn_add_broadcast_node(sc, async)) != 0) {
6563 			device_printf(sc->sc_dev,
6564 			    "%s: could not add broadcast node, error %d\n",
6565 			    __func__, error);
6566 			return (error);
6567 		}
6568 	}
6569 
6570 	/* Configuration has changed, set TX power accordingly. */
6571 	if ((error = ops->set_txpower(sc, async)) != 0) {
6572 		device_printf(sc->sc_dev,
6573 		    "%s: could not set TX power, error %d\n",
6574 		    __func__, error);
6575 		return (error);
6576 	}
6577 
6578 	return (0);
6579 }
6580 
6581 static int
6582 iwn_config(struct iwn_softc *sc)
6583 {
6584 	struct ieee80211com *ic = &sc->sc_ic;
6585 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6586 	const uint8_t *macaddr;
6587 	uint32_t txmask;
6588 	uint16_t rxchain;
6589 	int error;
6590 
6591 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6592 
6593 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6594 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6595 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6596 		    " exclusive each together. Review NIC config file. Conf"
6597 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6598 		    sc->base_params->calib_need,
6599 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6600 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6601 		return (EINVAL);
6602 	}
6603 
6604 	/* Compute temperature calib if needed. Will be send by send calib */
6605 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6606 		error = iwn5000_temp_offset_calib(sc);
6607 		if (error != 0) {
6608 			device_printf(sc->sc_dev,
6609 			    "%s: could not set temperature offset\n", __func__);
6610 			return (error);
6611 		}
6612 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6613 		error = iwn5000_temp_offset_calibv2(sc);
6614 		if (error != 0) {
6615 			device_printf(sc->sc_dev,
6616 			    "%s: could not compute temperature offset v2\n",
6617 			    __func__);
6618 			return (error);
6619 		}
6620 	}
6621 
6622 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6623 		/* Configure runtime DC calibration. */
6624 		error = iwn5000_runtime_calib(sc);
6625 		if (error != 0) {
6626 			device_printf(sc->sc_dev,
6627 			    "%s: could not configure runtime calibration\n",
6628 			    __func__);
6629 			return error;
6630 		}
6631 	}
6632 
6633 	/* Configure valid TX chains for >=5000 Series. */
6634 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6635 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6636 		txmask = htole32(sc->txchainmask);
6637 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6638 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6639 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6640 		    sizeof txmask, 0);
6641 		if (error != 0) {
6642 			device_printf(sc->sc_dev,
6643 			    "%s: could not configure valid TX chains, "
6644 			    "error %d\n", __func__, error);
6645 			return error;
6646 		}
6647 	}
6648 
6649 	/* Configure bluetooth coexistence. */
6650 	error = 0;
6651 
6652 	/* Configure bluetooth coexistence if needed. */
6653 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6654 		error = iwn_send_advanced_btcoex(sc);
6655 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6656 		error = iwn_send_btcoex(sc);
6657 
6658 	if (error != 0) {
6659 		device_printf(sc->sc_dev,
6660 		    "%s: could not configure bluetooth coexistence, error %d\n",
6661 		    __func__, error);
6662 		return error;
6663 	}
6664 
6665 	/* Set mode, channel, RX filter and enable RX. */
6666 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6667 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6668 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6669 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6670 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6671 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6672 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6673 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6674 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6675 
6676 	sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6677 	switch (ic->ic_opmode) {
6678 	case IEEE80211_M_STA:
6679 		sc->rxon->mode = IWN_MODE_STA;
6680 		break;
6681 	case IEEE80211_M_MONITOR:
6682 		sc->rxon->mode = IWN_MODE_MONITOR;
6683 		break;
6684 	default:
6685 		/* Should not get there. */
6686 		break;
6687 	}
6688 	iwn_set_promisc(sc);
6689 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6690 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6691 	sc->rxon->ht_single_mask = 0xff;
6692 	sc->rxon->ht_dual_mask = 0xff;
6693 	sc->rxon->ht_triple_mask = 0xff;
6694 	/*
6695 	 * In active association mode, ensure that
6696 	 * all the receive chains are enabled.
6697 	 *
6698 	 * Since we're not yet doing SMPS, don't allow the
6699 	 * number of idle RX chains to be less than the active
6700 	 * number.
6701 	 */
6702 	rxchain =
6703 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6704 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6705 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6706 	sc->rxon->rxchain = htole16(rxchain);
6707 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6708 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6709 	    __func__,
6710 	    sc->rxchainmask,
6711 	    sc->nrxchains);
6712 
6713 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6714 
6715 	DPRINTF(sc, IWN_DEBUG_RESET,
6716 	    "%s: setting configuration; flags=0x%08x\n",
6717 	    __func__, le32toh(sc->rxon->flags));
6718 	if ((error = iwn_send_rxon(sc, 0, 0)) != 0) {
6719 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
6720 		    __func__);
6721 		return error;
6722 	}
6723 
6724 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6725 		device_printf(sc->sc_dev,
6726 		    "%s: could not set critical temperature\n", __func__);
6727 		return error;
6728 	}
6729 
6730 	/* Set power saving level to CAM during initialization. */
6731 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6732 		device_printf(sc->sc_dev,
6733 		    "%s: could not set power saving level\n", __func__);
6734 		return error;
6735 	}
6736 
6737 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6738 
6739 	return 0;
6740 }
6741 
6742 static uint16_t
6743 iwn_get_active_dwell_time(struct iwn_softc *sc,
6744     struct ieee80211_channel *c, uint8_t n_probes)
6745 {
6746 	/* No channel? Default to 2GHz settings */
6747 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6748 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6749 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6750 	}
6751 
6752 	/* 5GHz dwell time */
6753 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6754 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6755 }
6756 
6757 /*
6758  * Limit the total dwell time to 85% of the beacon interval.
6759  *
6760  * Returns the dwell time in milliseconds.
6761  */
6762 static uint16_t
6763 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6764 {
6765 	struct ieee80211com *ic = &sc->sc_ic;
6766 	struct ieee80211vap *vap = NULL;
6767 	int bintval = 0;
6768 
6769 	/* bintval is in TU (1.024mS) */
6770 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6771 		vap = TAILQ_FIRST(&ic->ic_vaps);
6772 		bintval = vap->iv_bss->ni_intval;
6773 	}
6774 
6775 	/*
6776 	 * If it's non-zero, we should calculate the minimum of
6777 	 * it and the DWELL_BASE.
6778 	 *
6779 	 * XXX Yes, the math should take into account that bintval
6780 	 * is 1.024mS, not 1mS..
6781 	 */
6782 	if (bintval > 0) {
6783 		DPRINTF(sc, IWN_DEBUG_SCAN,
6784 		    "%s: bintval=%d\n",
6785 		    __func__,
6786 		    bintval);
6787 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6788 	}
6789 
6790 	/* No association context? Default */
6791 	return (IWN_PASSIVE_DWELL_BASE);
6792 }
6793 
6794 static uint16_t
6795 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6796 {
6797 	uint16_t passive;
6798 
6799 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6800 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6801 	} else {
6802 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6803 	}
6804 
6805 	/* Clamp to the beacon interval if we're associated */
6806 	return (iwn_limit_dwell(sc, passive));
6807 }
6808 
6809 static int
6810 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6811     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6812 {
6813 	struct ieee80211com *ic = &sc->sc_ic;
6814 	struct ieee80211_node *ni = vap->iv_bss;
6815 	struct iwn_scan_hdr *hdr;
6816 	struct iwn_cmd_data *tx;
6817 	struct iwn_scan_essid *essid;
6818 	struct iwn_scan_chan *chan;
6819 	struct ieee80211_frame *wh;
6820 	struct ieee80211_rateset *rs;
6821 	uint8_t *buf, *frm;
6822 	uint16_t rxchain;
6823 	uint8_t txant;
6824 	int buflen, error;
6825 	int is_active;
6826 	uint16_t dwell_active, dwell_passive;
6827 	uint32_t extra, scan_service_time;
6828 
6829 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6830 
6831 	/*
6832 	 * We are absolutely not allowed to send a scan command when another
6833 	 * scan command is pending.
6834 	 */
6835 	if (sc->sc_is_scanning) {
6836 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6837 		    __func__);
6838 		return (EAGAIN);
6839 	}
6840 
6841 	/* Assign the scan channel */
6842 	c = ic->ic_curchan;
6843 
6844 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6845 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6846 	if (buf == NULL) {
6847 		device_printf(sc->sc_dev,
6848 		    "%s: could not allocate buffer for scan command\n",
6849 		    __func__);
6850 		return ENOMEM;
6851 	}
6852 	hdr = (struct iwn_scan_hdr *)buf;
6853 	/*
6854 	 * Move to the next channel if no frames are received within 10ms
6855 	 * after sending the probe request.
6856 	 */
6857 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6858 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6859 	/*
6860 	 * Max needs to be greater than active and passive and quiet!
6861 	 * It's also in microseconds!
6862 	 */
6863 	hdr->max_svc = htole32(250 * 1024);
6864 
6865 	/*
6866 	 * Reset scan: interval=100
6867 	 * Normal scan: interval=becaon interval
6868 	 * suspend_time: 100 (TU)
6869 	 *
6870 	 */
6871 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6872 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6873 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6874 	hdr->pause_svc = htole32(scan_service_time);
6875 
6876 	/* Select antennas for scanning. */
6877 	rxchain =
6878 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6879 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6880 	    IWN_RXCHAIN_DRIVER_FORCE;
6881 	if (IEEE80211_IS_CHAN_A(c) &&
6882 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6883 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6884 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6885 	} else	/* Use all available RX antennas. */
6886 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6887 	hdr->rxchain = htole16(rxchain);
6888 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6889 
6890 	tx = (struct iwn_cmd_data *)(hdr + 1);
6891 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6892 	tx->id = sc->broadcast_id;
6893 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6894 
6895 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6896 		/* Send probe requests at 6Mbps. */
6897 		tx->rate = htole32(0xd);
6898 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6899 	} else {
6900 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6901 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6902 		    sc->rxon->associd && sc->rxon->chan > 14)
6903 			tx->rate = htole32(0xd);
6904 		else {
6905 			/* Send probe requests at 1Mbps. */
6906 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6907 		}
6908 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6909 	}
6910 	/* Use the first valid TX antenna. */
6911 	txant = IWN_LSB(sc->txchainmask);
6912 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6913 
6914 	/*
6915 	 * Only do active scanning if we're announcing a probe request
6916 	 * for a given SSID (or more, if we ever add it to the driver.)
6917 	 */
6918 	is_active = 0;
6919 
6920 	/*
6921 	 * If we're scanning for a specific SSID, add it to the command.
6922 	 *
6923 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6924 	 */
6925 	essid = (struct iwn_scan_essid *)(tx + 1);
6926 	if (ss != NULL) {
6927 		if (ss->ss_ssid[0].len != 0) {
6928 			essid[0].id = IEEE80211_ELEMID_SSID;
6929 			essid[0].len = ss->ss_ssid[0].len;
6930 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6931 		}
6932 
6933 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6934 		    __func__,
6935 		    ss->ss_ssid[0].len,
6936 		    ss->ss_ssid[0].len,
6937 		    ss->ss_ssid[0].ssid);
6938 
6939 		if (ss->ss_nssid > 0)
6940 			is_active = 1;
6941 	}
6942 
6943 	/*
6944 	 * Build a probe request frame.  Most of the following code is a
6945 	 * copy & paste of what is done in net80211.
6946 	 */
6947 	wh = (struct ieee80211_frame *)(essid + 20);
6948 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6949 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6950 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6951 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6952 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6953 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6954 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6955 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6956 
6957 	frm = (uint8_t *)(wh + 1);
6958 	frm = ieee80211_add_ssid(frm, NULL, 0);
6959 	frm = ieee80211_add_rates(frm, rs);
6960 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6961 		frm = ieee80211_add_xrates(frm, rs);
6962 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6963 		frm = ieee80211_add_htcap(frm, ni);
6964 
6965 	/* Set length of probe request. */
6966 	tx->len = htole16(frm - (uint8_t *)wh);
6967 
6968 	/*
6969 	 * If active scanning is requested but a certain channel is
6970 	 * marked passive, we can do active scanning if we detect
6971 	 * transmissions.
6972 	 *
6973 	 * There is an issue with some firmware versions that triggers
6974 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6975 	 * on a radar channel even though this means that we should NOT
6976 	 * send probes.
6977 	 *
6978 	 * The "good CRC threshold" is the number of frames that we
6979 	 * need to receive during our dwell time on a channel before
6980 	 * sending out probes -- setting this to a huge value will
6981 	 * mean we never reach it, but at the same time work around
6982 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6983 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6984 	 *
6985 	 * This was fixed in later versions along with some other
6986 	 * scan changes, and the threshold behaves as a flag in those
6987 	 * versions.
6988 	 */
6989 
6990 	/*
6991 	 * If we're doing active scanning, set the crc_threshold
6992 	 * to a suitable value.  This is different to active veruss
6993 	 * passive scanning depending upon the channel flags; the
6994 	 * firmware will obey that particular check for us.
6995 	 */
6996 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6997 		hdr->crc_threshold = is_active ?
6998 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6999 	else
7000 		hdr->crc_threshold = is_active ?
7001 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
7002 
7003 	chan = (struct iwn_scan_chan *)frm;
7004 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
7005 	chan->flags = 0;
7006 	if (ss->ss_nssid > 0)
7007 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
7008 	chan->dsp_gain = 0x6e;
7009 
7010 	/*
7011 	 * Set the passive/active flag depending upon the channel mode.
7012 	 * XXX TODO: take the is_active flag into account as well?
7013 	 */
7014 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
7015 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
7016 	else
7017 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
7018 
7019 	/*
7020 	 * Calculate the active/passive dwell times.
7021 	 */
7022 
7023 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
7024 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
7025 
7026 	/* Make sure they're valid */
7027 	if (dwell_passive <= dwell_active)
7028 		dwell_passive = dwell_active + 1;
7029 
7030 	chan->active = htole16(dwell_active);
7031 	chan->passive = htole16(dwell_passive);
7032 
7033 	if (IEEE80211_IS_CHAN_5GHZ(c))
7034 		chan->rf_gain = 0x3b;
7035 	else
7036 		chan->rf_gain = 0x28;
7037 
7038 	DPRINTF(sc, IWN_DEBUG_STATE,
7039 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
7040 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
7041 	    "isactive=%d numssid=%d\n", __func__,
7042 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7043 	    dwell_active, dwell_passive, scan_service_time,
7044 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7045 
7046 	hdr->nchan++;
7047 	chan++;
7048 	buflen = (uint8_t *)chan - buf;
7049 	hdr->len = htole16(buflen);
7050 
7051 	if (sc->sc_is_scanning) {
7052 		device_printf(sc->sc_dev,
7053 		    "%s: called with is_scanning set!\n",
7054 		    __func__);
7055 	}
7056 	sc->sc_is_scanning = 1;
7057 
7058 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7059 	    hdr->nchan);
7060 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7061 	free(buf, M_DEVBUF);
7062 	if (error == 0)
7063 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7064 
7065 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7066 
7067 	return error;
7068 }
7069 
7070 static int
7071 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7072 {
7073 	struct ieee80211com *ic = &sc->sc_ic;
7074 	struct ieee80211_node *ni = vap->iv_bss;
7075 	int error;
7076 
7077 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7078 
7079 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7080 	/* Update adapter configuration. */
7081 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7082 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7083 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7084 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7085 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7086 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7087 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7088 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7089 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7090 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7091 		sc->rxon->cck_mask  = 0;
7092 		sc->rxon->ofdm_mask = 0x15;
7093 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7094 		sc->rxon->cck_mask  = 0x03;
7095 		sc->rxon->ofdm_mask = 0;
7096 	} else {
7097 		/* Assume 802.11b/g. */
7098 		sc->rxon->cck_mask  = 0x03;
7099 		sc->rxon->ofdm_mask = 0x15;
7100 	}
7101 
7102 	/* try HT */
7103 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7104 
7105 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7106 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7107 	    sc->rxon->ofdm_mask);
7108 
7109 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7110 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7111 		    __func__);
7112 		return (error);
7113 	}
7114 
7115 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7116 
7117 	return (0);
7118 }
7119 
7120 static int
7121 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7122 {
7123 	struct iwn_ops *ops = &sc->ops;
7124 	struct ieee80211com *ic = &sc->sc_ic;
7125 	struct ieee80211_node *ni = vap->iv_bss;
7126 	struct iwn_node_info node;
7127 	int error;
7128 
7129 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7130 
7131 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7132 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7133 		/* Link LED blinks while monitoring. */
7134 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7135 		return 0;
7136 	}
7137 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7138 		device_printf(sc->sc_dev,
7139 		    "%s: could not set timing, error %d\n", __func__, error);
7140 		return error;
7141 	}
7142 
7143 	/* Update adapter configuration. */
7144 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7145 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7146 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7147 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7148 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7149 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7150 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7151 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7152 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7153 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7154 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7155 		sc->rxon->cck_mask  = 0;
7156 		sc->rxon->ofdm_mask = 0x15;
7157 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7158 		sc->rxon->cck_mask  = 0x03;
7159 		sc->rxon->ofdm_mask = 0;
7160 	} else {
7161 		/* Assume 802.11b/g. */
7162 		sc->rxon->cck_mask  = 0x0f;
7163 		sc->rxon->ofdm_mask = 0x15;
7164 	}
7165 	/* try HT */
7166 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7167 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7168 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7169 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7170 
7171 	if ((error = iwn_send_rxon(sc, 0, 1)) != 0) {
7172 		device_printf(sc->sc_dev, "%s: could not send RXON\n",
7173 		    __func__);
7174 		return error;
7175 	}
7176 
7177 	/* Fake a join to initialize the TX rate. */
7178 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7179 	iwn_newassoc(ni, 1);
7180 
7181 	/* Add BSS node. */
7182 	memset(&node, 0, sizeof node);
7183 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7184 	node.id = IWN_ID_BSS;
7185 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7186 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7187 		case IEEE80211_HTCAP_SMPS_ENA:
7188 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7189 			break;
7190 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7191 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7192 			break;
7193 		}
7194 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7195 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7196 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7197 			node.htflags |= htole32(IWN_NODE_HT40);
7198 	}
7199 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7200 	error = ops->add_node(sc, &node, 1);
7201 	if (error != 0) {
7202 		device_printf(sc->sc_dev,
7203 		    "%s: could not add BSS node, error %d\n", __func__, error);
7204 		return error;
7205 	}
7206 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7207 	    __func__, node.id);
7208 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7209 		device_printf(sc->sc_dev,
7210 		    "%s: could not setup link quality for node %d, error %d\n",
7211 		    __func__, node.id, error);
7212 		return error;
7213 	}
7214 
7215 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7216 		device_printf(sc->sc_dev,
7217 		    "%s: could not set sensitivity, error %d\n", __func__,
7218 		    error);
7219 		return error;
7220 	}
7221 	/* Start periodic calibration timer. */
7222 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7223 	sc->calib_cnt = 0;
7224 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7225 	    sc);
7226 
7227 	/* Link LED always on while associated. */
7228 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7229 
7230 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7231 
7232 	return 0;
7233 }
7234 
7235 /*
7236  * This function is called by upper layer when an ADDBA request is received
7237  * from another STA and before the ADDBA response is sent.
7238  */
7239 static int
7240 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7241     int baparamset, int batimeout, int baseqctl)
7242 {
7243 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7244 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7245 	struct iwn_ops *ops = &sc->ops;
7246 	struct iwn_node *wn = (void *)ni;
7247 	struct iwn_node_info node;
7248 	uint16_t ssn;
7249 	uint8_t tid;
7250 	int error;
7251 
7252 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7253 
7254 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7255 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7256 
7257 	if (wn->id == IWN_ID_UNDEFINED)
7258 		return (ENOENT);
7259 
7260 	memset(&node, 0, sizeof node);
7261 	node.id = wn->id;
7262 	node.control = IWN_NODE_UPDATE;
7263 	node.flags = IWN_FLAG_SET_ADDBA;
7264 	node.addba_tid = tid;
7265 	node.addba_ssn = htole16(ssn);
7266 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7267 	    wn->id, tid, ssn);
7268 	error = ops->add_node(sc, &node, 1);
7269 	if (error != 0)
7270 		return error;
7271 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7272 #undef MS
7273 }
7274 
7275 /*
7276  * This function is called by upper layer on teardown of an HT-immediate
7277  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7278  */
7279 static void
7280 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7281 {
7282 	struct ieee80211com *ic = ni->ni_ic;
7283 	struct iwn_softc *sc = ic->ic_softc;
7284 	struct iwn_ops *ops = &sc->ops;
7285 	struct iwn_node *wn = (void *)ni;
7286 	struct iwn_node_info node;
7287 	uint8_t tid;
7288 
7289 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7290 
7291 	if (wn->id == IWN_ID_UNDEFINED)
7292 		goto end;
7293 
7294 	/* XXX: tid as an argument */
7295 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7296 		if (&ni->ni_rx_ampdu[tid] == rap)
7297 			break;
7298 	}
7299 
7300 	memset(&node, 0, sizeof node);
7301 	node.id = wn->id;
7302 	node.control = IWN_NODE_UPDATE;
7303 	node.flags = IWN_FLAG_SET_DELBA;
7304 	node.delba_tid = tid;
7305 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7306 	(void)ops->add_node(sc, &node, 1);
7307 end:
7308 	sc->sc_ampdu_rx_stop(ni, rap);
7309 }
7310 
7311 static int
7312 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7313     int dialogtoken, int baparamset, int batimeout)
7314 {
7315 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7316 	int qid;
7317 
7318 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7319 
7320 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7321 		if (sc->qid2tap[qid] == NULL)
7322 			break;
7323 	}
7324 	if (qid == sc->ntxqs) {
7325 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7326 		    __func__);
7327 		return 0;
7328 	}
7329 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7330 	if (tap->txa_private == NULL) {
7331 		device_printf(sc->sc_dev,
7332 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7333 		return 0;
7334 	}
7335 	sc->qid2tap[qid] = tap;
7336 	*(int *)tap->txa_private = qid;
7337 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7338 	    batimeout);
7339 }
7340 
7341 static int
7342 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7343     int code, int baparamset, int batimeout)
7344 {
7345 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7346 	int qid = *(int *)tap->txa_private;
7347 	uint8_t tid = tap->txa_tid;
7348 	int ret;
7349 
7350 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7351 
7352 	if (code == IEEE80211_STATUS_SUCCESS) {
7353 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7354 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7355 		if (ret != 1)
7356 			return ret;
7357 	} else {
7358 		sc->qid2tap[qid] = NULL;
7359 		free(tap->txa_private, M_DEVBUF);
7360 		tap->txa_private = NULL;
7361 	}
7362 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7363 }
7364 
7365 /*
7366  * This function is called by upper layer when an ADDBA response is received
7367  * from another STA.
7368  */
7369 static int
7370 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7371     uint8_t tid)
7372 {
7373 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7374 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7375 	struct iwn_ops *ops = &sc->ops;
7376 	struct iwn_node *wn = (void *)ni;
7377 	struct iwn_node_info node;
7378 	int error, qid;
7379 
7380 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7381 
7382 	if (wn->id == IWN_ID_UNDEFINED)
7383 		return (0);
7384 
7385 	/* Enable TX for the specified RA/TID. */
7386 	wn->disable_tid &= ~(1 << tid);
7387 	memset(&node, 0, sizeof node);
7388 	node.id = wn->id;
7389 	node.control = IWN_NODE_UPDATE;
7390 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7391 	node.disable_tid = htole16(wn->disable_tid);
7392 	error = ops->add_node(sc, &node, 1);
7393 	if (error != 0)
7394 		return 0;
7395 
7396 	if ((error = iwn_nic_lock(sc)) != 0)
7397 		return 0;
7398 	qid = *(int *)tap->txa_private;
7399 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7400 	    __func__, wn->id, tid, tap->txa_start, qid);
7401 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7402 	iwn_nic_unlock(sc);
7403 
7404 	iwn_set_link_quality(sc, ni);
7405 	return 1;
7406 }
7407 
7408 static void
7409 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7410 {
7411 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7412 	struct iwn_ops *ops = &sc->ops;
7413 	uint8_t tid = tap->txa_tid;
7414 	int qid;
7415 
7416 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7417 
7418 	sc->sc_addba_stop(ni, tap);
7419 
7420 	if (tap->txa_private == NULL)
7421 		return;
7422 
7423 	qid = *(int *)tap->txa_private;
7424 	if (sc->txq[qid].queued != 0)
7425 		return;
7426 	if (iwn_nic_lock(sc) != 0)
7427 		return;
7428 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7429 	iwn_nic_unlock(sc);
7430 	sc->qid2tap[qid] = NULL;
7431 	free(tap->txa_private, M_DEVBUF);
7432 	tap->txa_private = NULL;
7433 }
7434 
7435 static void
7436 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7437     int qid, uint8_t tid, uint16_t ssn)
7438 {
7439 	struct iwn_node *wn = (void *)ni;
7440 
7441 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7442 
7443 	/* Stop TX scheduler while we're changing its configuration. */
7444 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7445 	    IWN4965_TXQ_STATUS_CHGACT);
7446 
7447 	/* Assign RA/TID translation to the queue. */
7448 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7449 	    wn->id << 4 | tid);
7450 
7451 	/* Enable chain-building mode for the queue. */
7452 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7453 
7454 	/* Set starting sequence number from the ADDBA request. */
7455 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7456 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7457 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7458 
7459 	/* Set scheduler window size. */
7460 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7461 	    IWN_SCHED_WINSZ);
7462 	/* Set scheduler frame limit. */
7463 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7464 	    IWN_SCHED_LIMIT << 16);
7465 
7466 	/* Enable interrupts for the queue. */
7467 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7468 
7469 	/* Mark the queue as active. */
7470 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7471 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7472 	    iwn_tid2fifo[tid] << 1);
7473 }
7474 
7475 static void
7476 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7477 {
7478 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7479 
7480 	/* Stop TX scheduler while we're changing its configuration. */
7481 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7482 	    IWN4965_TXQ_STATUS_CHGACT);
7483 
7484 	/* Set starting sequence number from the ADDBA request. */
7485 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7486 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7487 
7488 	/* Disable interrupts for the queue. */
7489 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7490 
7491 	/* Mark the queue as inactive. */
7492 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7493 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7494 }
7495 
7496 static void
7497 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7498     int qid, uint8_t tid, uint16_t ssn)
7499 {
7500 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7501 
7502 	struct iwn_node *wn = (void *)ni;
7503 
7504 	/* Stop TX scheduler while we're changing its configuration. */
7505 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7506 	    IWN5000_TXQ_STATUS_CHGACT);
7507 
7508 	/* Assign RA/TID translation to the queue. */
7509 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7510 	    wn->id << 4 | tid);
7511 
7512 	/* Enable chain-building mode for the queue. */
7513 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7514 
7515 	/* Enable aggregation for the queue. */
7516 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7517 
7518 	/* Set starting sequence number from the ADDBA request. */
7519 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7520 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7521 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7522 
7523 	/* Set scheduler window size and frame limit. */
7524 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7525 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7526 
7527 	/* Enable interrupts for the queue. */
7528 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7529 
7530 	/* Mark the queue as active. */
7531 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7532 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7533 }
7534 
7535 static void
7536 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7537 {
7538 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7539 
7540 	/* Stop TX scheduler while we're changing its configuration. */
7541 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7542 	    IWN5000_TXQ_STATUS_CHGACT);
7543 
7544 	/* Disable aggregation for the queue. */
7545 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7546 
7547 	/* Set starting sequence number from the ADDBA request. */
7548 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7549 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7550 
7551 	/* Disable interrupts for the queue. */
7552 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7553 
7554 	/* Mark the queue as inactive. */
7555 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7556 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7557 }
7558 
7559 /*
7560  * Query calibration tables from the initialization firmware.  We do this
7561  * only once at first boot.  Called from a process context.
7562  */
7563 static int
7564 iwn5000_query_calibration(struct iwn_softc *sc)
7565 {
7566 	struct iwn5000_calib_config cmd;
7567 	int error;
7568 
7569 	memset(&cmd, 0, sizeof cmd);
7570 	cmd.ucode.once.enable = htole32(0xffffffff);
7571 	cmd.ucode.once.start  = htole32(0xffffffff);
7572 	cmd.ucode.once.send   = htole32(0xffffffff);
7573 	cmd.ucode.flags       = htole32(0xffffffff);
7574 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7575 	    __func__);
7576 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7577 	if (error != 0)
7578 		return error;
7579 
7580 	/* Wait at most two seconds for calibration to complete. */
7581 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7582 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7583 	return error;
7584 }
7585 
7586 /*
7587  * Send calibration results to the runtime firmware.  These results were
7588  * obtained on first boot from the initialization firmware.
7589  */
7590 static int
7591 iwn5000_send_calibration(struct iwn_softc *sc)
7592 {
7593 	int idx, error;
7594 
7595 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7596 		if (!(sc->base_params->calib_need & (1<<idx))) {
7597 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7598 			    "No need of calib %d\n",
7599 			    idx);
7600 			continue; /* no need for this calib */
7601 		}
7602 		if (sc->calibcmd[idx].buf == NULL) {
7603 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7604 			    "Need calib idx : %d but no available data\n",
7605 			    idx);
7606 			continue;
7607 		}
7608 
7609 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7610 		    "send calibration result idx=%d len=%d\n", idx,
7611 		    sc->calibcmd[idx].len);
7612 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7613 		    sc->calibcmd[idx].len, 0);
7614 		if (error != 0) {
7615 			device_printf(sc->sc_dev,
7616 			    "%s: could not send calibration result, error %d\n",
7617 			    __func__, error);
7618 			return error;
7619 		}
7620 	}
7621 	return 0;
7622 }
7623 
7624 static int
7625 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7626 {
7627 	struct iwn5000_wimax_coex wimax;
7628 
7629 #if 0
7630 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7631 		/* Enable WiMAX coexistence for combo adapters. */
7632 		wimax.flags =
7633 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7634 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7635 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7636 		    IWN_WIMAX_COEX_ENABLE;
7637 		memcpy(wimax.events, iwn6050_wimax_events,
7638 		    sizeof iwn6050_wimax_events);
7639 	} else
7640 #endif
7641 	{
7642 		/* Disable WiMAX coexistence. */
7643 		wimax.flags = 0;
7644 		memset(wimax.events, 0, sizeof wimax.events);
7645 	}
7646 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7647 	    __func__);
7648 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7649 }
7650 
7651 static int
7652 iwn5000_crystal_calib(struct iwn_softc *sc)
7653 {
7654 	struct iwn5000_phy_calib_crystal cmd;
7655 
7656 	memset(&cmd, 0, sizeof cmd);
7657 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7658 	cmd.ngroups = 1;
7659 	cmd.isvalid = 1;
7660 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7661 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7662 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7663 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7664 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7665 }
7666 
7667 static int
7668 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7669 {
7670 	struct iwn5000_phy_calib_temp_offset cmd;
7671 
7672 	memset(&cmd, 0, sizeof cmd);
7673 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7674 	cmd.ngroups = 1;
7675 	cmd.isvalid = 1;
7676 	if (sc->eeprom_temp != 0)
7677 		cmd.offset = htole16(sc->eeprom_temp);
7678 	else
7679 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7680 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7681 	    le16toh(cmd.offset));
7682 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7683 }
7684 
7685 static int
7686 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7687 {
7688 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7689 
7690 	memset(&cmd, 0, sizeof cmd);
7691 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7692 	cmd.ngroups = 1;
7693 	cmd.isvalid = 1;
7694 	if (sc->eeprom_temp != 0) {
7695 		cmd.offset_low = htole16(sc->eeprom_temp);
7696 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7697 	} else {
7698 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7699 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7700 	}
7701 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7702 
7703 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7704 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7705 	    le16toh(cmd.offset_low),
7706 	    le16toh(cmd.offset_high),
7707 	    le16toh(cmd.burnt_voltage_ref));
7708 
7709 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7710 }
7711 
7712 /*
7713  * This function is called after the runtime firmware notifies us of its
7714  * readiness (called in a process context).
7715  */
7716 static int
7717 iwn4965_post_alive(struct iwn_softc *sc)
7718 {
7719 	int error, qid;
7720 
7721 	if ((error = iwn_nic_lock(sc)) != 0)
7722 		return error;
7723 
7724 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7725 
7726 	/* Clear TX scheduler state in SRAM. */
7727 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7728 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7729 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7730 
7731 	/* Set physical address of TX scheduler rings (1KB aligned). */
7732 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7733 
7734 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7735 
7736 	/* Disable chain mode for all our 16 queues. */
7737 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7738 
7739 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7740 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7741 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7742 
7743 		/* Set scheduler window size. */
7744 		iwn_mem_write(sc, sc->sched_base +
7745 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7746 		/* Set scheduler frame limit. */
7747 		iwn_mem_write(sc, sc->sched_base +
7748 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7749 		    IWN_SCHED_LIMIT << 16);
7750 	}
7751 
7752 	/* Enable interrupts for all our 16 queues. */
7753 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7754 	/* Identify TX FIFO rings (0-7). */
7755 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7756 
7757 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7758 	for (qid = 0; qid < 7; qid++) {
7759 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7760 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7761 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7762 	}
7763 	iwn_nic_unlock(sc);
7764 	return 0;
7765 }
7766 
7767 /*
7768  * This function is called after the initialization or runtime firmware
7769  * notifies us of its readiness (called in a process context).
7770  */
7771 static int
7772 iwn5000_post_alive(struct iwn_softc *sc)
7773 {
7774 	int error, qid;
7775 
7776 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7777 
7778 	/* Switch to using ICT interrupt mode. */
7779 	iwn5000_ict_reset(sc);
7780 
7781 	if ((error = iwn_nic_lock(sc)) != 0){
7782 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7783 		return error;
7784 	}
7785 
7786 	/* Clear TX scheduler state in SRAM. */
7787 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7788 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7789 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7790 
7791 	/* Set physical address of TX scheduler rings (1KB aligned). */
7792 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7793 
7794 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7795 
7796 	/* Enable chain mode for all queues, except command queue. */
7797 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7798 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7799 	else
7800 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7801 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7802 
7803 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7804 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7805 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7806 
7807 		iwn_mem_write(sc, sc->sched_base +
7808 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7809 		/* Set scheduler window size and frame limit. */
7810 		iwn_mem_write(sc, sc->sched_base +
7811 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7812 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7813 	}
7814 
7815 	/* Enable interrupts for all our 20 queues. */
7816 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7817 	/* Identify TX FIFO rings (0-7). */
7818 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7819 
7820 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7821 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7822 		/* Mark TX rings as active. */
7823 		for (qid = 0; qid < 11; qid++) {
7824 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7825 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7826 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7827 		}
7828 	} else {
7829 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7830 		for (qid = 0; qid < 7; qid++) {
7831 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7832 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7833 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7834 		}
7835 	}
7836 	iwn_nic_unlock(sc);
7837 
7838 	/* Configure WiMAX coexistence for combo adapters. */
7839 	error = iwn5000_send_wimax_coex(sc);
7840 	if (error != 0) {
7841 		device_printf(sc->sc_dev,
7842 		    "%s: could not configure WiMAX coexistence, error %d\n",
7843 		    __func__, error);
7844 		return error;
7845 	}
7846 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7847 		/* Perform crystal calibration. */
7848 		error = iwn5000_crystal_calib(sc);
7849 		if (error != 0) {
7850 			device_printf(sc->sc_dev,
7851 			    "%s: crystal calibration failed, error %d\n",
7852 			    __func__, error);
7853 			return error;
7854 		}
7855 	}
7856 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7857 		/* Query calibration from the initialization firmware. */
7858 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7859 			device_printf(sc->sc_dev,
7860 			    "%s: could not query calibration, error %d\n",
7861 			    __func__, error);
7862 			return error;
7863 		}
7864 		/*
7865 		 * We have the calibration results now, reboot with the
7866 		 * runtime firmware (call ourselves recursively!)
7867 		 */
7868 		iwn_hw_stop(sc);
7869 		error = iwn_hw_init(sc);
7870 	} else {
7871 		/* Send calibration results to runtime firmware. */
7872 		error = iwn5000_send_calibration(sc);
7873 	}
7874 
7875 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7876 
7877 	return error;
7878 }
7879 
7880 /*
7881  * The firmware boot code is small and is intended to be copied directly into
7882  * the NIC internal memory (no DMA transfer).
7883  */
7884 static int
7885 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7886 {
7887 	int error, ntries;
7888 
7889 	size /= sizeof (uint32_t);
7890 
7891 	if ((error = iwn_nic_lock(sc)) != 0)
7892 		return error;
7893 
7894 	/* Copy microcode image into NIC memory. */
7895 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7896 	    (const uint32_t *)ucode, size);
7897 
7898 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7899 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7900 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7901 
7902 	/* Start boot load now. */
7903 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7904 
7905 	/* Wait for transfer to complete. */
7906 	for (ntries = 0; ntries < 1000; ntries++) {
7907 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7908 		    IWN_BSM_WR_CTRL_START))
7909 			break;
7910 		DELAY(10);
7911 	}
7912 	if (ntries == 1000) {
7913 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7914 		    __func__);
7915 		iwn_nic_unlock(sc);
7916 		return ETIMEDOUT;
7917 	}
7918 
7919 	/* Enable boot after power up. */
7920 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7921 
7922 	iwn_nic_unlock(sc);
7923 	return 0;
7924 }
7925 
7926 static int
7927 iwn4965_load_firmware(struct iwn_softc *sc)
7928 {
7929 	struct iwn_fw_info *fw = &sc->fw;
7930 	struct iwn_dma_info *dma = &sc->fw_dma;
7931 	int error;
7932 
7933 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7934 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7935 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7936 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7937 	    fw->init.text, fw->init.textsz);
7938 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7939 
7940 	/* Tell adapter where to find initialization sections. */
7941 	if ((error = iwn_nic_lock(sc)) != 0)
7942 		return error;
7943 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7944 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7945 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7946 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7947 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7948 	iwn_nic_unlock(sc);
7949 
7950 	/* Load firmware boot code. */
7951 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7952 	if (error != 0) {
7953 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7954 		    __func__);
7955 		return error;
7956 	}
7957 	/* Now press "execute". */
7958 	IWN_WRITE(sc, IWN_RESET, 0);
7959 
7960 	/* Wait at most one second for first alive notification. */
7961 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7962 		device_printf(sc->sc_dev,
7963 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7964 		    __func__, error);
7965 		return error;
7966 	}
7967 
7968 	/* Retrieve current temperature for initial TX power calibration. */
7969 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7970 	sc->temp = iwn4965_get_temperature(sc);
7971 
7972 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7973 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7974 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7975 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7976 	    fw->main.text, fw->main.textsz);
7977 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7978 
7979 	/* Tell adapter where to find runtime sections. */
7980 	if ((error = iwn_nic_lock(sc)) != 0)
7981 		return error;
7982 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7983 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7984 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7985 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7986 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7987 	    IWN_FW_UPDATED | fw->main.textsz);
7988 	iwn_nic_unlock(sc);
7989 
7990 	return 0;
7991 }
7992 
7993 static int
7994 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7995     const uint8_t *section, int size)
7996 {
7997 	struct iwn_dma_info *dma = &sc->fw_dma;
7998 	int error;
7999 
8000 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8001 
8002 	/* Copy firmware section into pre-allocated DMA-safe memory. */
8003 	memcpy(dma->vaddr, section, size);
8004 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
8005 
8006 	if ((error = iwn_nic_lock(sc)) != 0)
8007 		return error;
8008 
8009 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8010 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
8011 
8012 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
8013 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
8014 	    IWN_LOADDR(dma->paddr));
8015 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
8016 	    IWN_HIADDR(dma->paddr) << 28 | size);
8017 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
8018 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8019 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8020 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8021 
8022 	/* Kick Flow Handler to start DMA transfer. */
8023 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8024 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8025 
8026 	iwn_nic_unlock(sc);
8027 
8028 	/* Wait at most five seconds for FH DMA transfer to complete. */
8029 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8030 }
8031 
8032 static int
8033 iwn5000_load_firmware(struct iwn_softc *sc)
8034 {
8035 	struct iwn_fw_part *fw;
8036 	int error;
8037 
8038 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8039 
8040 	/* Load the initialization firmware on first boot only. */
8041 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8042 	    &sc->fw.main : &sc->fw.init;
8043 
8044 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8045 	    fw->text, fw->textsz);
8046 	if (error != 0) {
8047 		device_printf(sc->sc_dev,
8048 		    "%s: could not load firmware %s section, error %d\n",
8049 		    __func__, ".text", error);
8050 		return error;
8051 	}
8052 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8053 	    fw->data, fw->datasz);
8054 	if (error != 0) {
8055 		device_printf(sc->sc_dev,
8056 		    "%s: could not load firmware %s section, error %d\n",
8057 		    __func__, ".data", error);
8058 		return error;
8059 	}
8060 
8061 	/* Now press "execute". */
8062 	IWN_WRITE(sc, IWN_RESET, 0);
8063 	return 0;
8064 }
8065 
8066 /*
8067  * Extract text and data sections from a legacy firmware image.
8068  */
8069 static int
8070 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8071 {
8072 	const uint32_t *ptr;
8073 	size_t hdrlen = 24;
8074 	uint32_t rev;
8075 
8076 	ptr = (const uint32_t *)fw->data;
8077 	rev = le32toh(*ptr++);
8078 
8079 	sc->ucode_rev = rev;
8080 
8081 	/* Check firmware API version. */
8082 	if (IWN_FW_API(rev) <= 1) {
8083 		device_printf(sc->sc_dev,
8084 		    "%s: bad firmware, need API version >=2\n", __func__);
8085 		return EINVAL;
8086 	}
8087 	if (IWN_FW_API(rev) >= 3) {
8088 		/* Skip build number (version 2 header). */
8089 		hdrlen += 4;
8090 		ptr++;
8091 	}
8092 	if (fw->size < hdrlen) {
8093 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8094 		    __func__, fw->size);
8095 		return EINVAL;
8096 	}
8097 	fw->main.textsz = le32toh(*ptr++);
8098 	fw->main.datasz = le32toh(*ptr++);
8099 	fw->init.textsz = le32toh(*ptr++);
8100 	fw->init.datasz = le32toh(*ptr++);
8101 	fw->boot.textsz = le32toh(*ptr++);
8102 
8103 	/* Check that all firmware sections fit. */
8104 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8105 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8106 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8107 		    __func__, fw->size);
8108 		return EINVAL;
8109 	}
8110 
8111 	/* Get pointers to firmware sections. */
8112 	fw->main.text = (const uint8_t *)ptr;
8113 	fw->main.data = fw->main.text + fw->main.textsz;
8114 	fw->init.text = fw->main.data + fw->main.datasz;
8115 	fw->init.data = fw->init.text + fw->init.textsz;
8116 	fw->boot.text = fw->init.data + fw->init.datasz;
8117 	return 0;
8118 }
8119 
8120 /*
8121  * Extract text and data sections from a TLV firmware image.
8122  */
8123 static int
8124 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8125     uint16_t alt)
8126 {
8127 	const struct iwn_fw_tlv_hdr *hdr;
8128 	const struct iwn_fw_tlv *tlv;
8129 	const uint8_t *ptr, *end;
8130 	uint64_t altmask;
8131 	uint32_t len, tmp;
8132 
8133 	if (fw->size < sizeof (*hdr)) {
8134 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8135 		    __func__, fw->size);
8136 		return EINVAL;
8137 	}
8138 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8139 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8140 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8141 		    __func__, le32toh(hdr->signature));
8142 		return EINVAL;
8143 	}
8144 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8145 	    le32toh(hdr->build));
8146 	sc->ucode_rev = le32toh(hdr->rev);
8147 
8148 	/*
8149 	 * Select the closest supported alternative that is less than
8150 	 * or equal to the specified one.
8151 	 */
8152 	altmask = le64toh(hdr->altmask);
8153 	while (alt > 0 && !(altmask & (1ULL << alt)))
8154 		alt--;	/* Downgrade. */
8155 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8156 
8157 	ptr = (const uint8_t *)(hdr + 1);
8158 	end = (const uint8_t *)(fw->data + fw->size);
8159 
8160 	/* Parse type-length-value fields. */
8161 	while (ptr + sizeof (*tlv) <= end) {
8162 		tlv = (const struct iwn_fw_tlv *)ptr;
8163 		len = le32toh(tlv->len);
8164 
8165 		ptr += sizeof (*tlv);
8166 		if (ptr + len > end) {
8167 			device_printf(sc->sc_dev,
8168 			    "%s: firmware too short: %zu bytes\n", __func__,
8169 			    fw->size);
8170 			return EINVAL;
8171 		}
8172 		/* Skip other alternatives. */
8173 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8174 			goto next;
8175 
8176 		switch (le16toh(tlv->type)) {
8177 		case IWN_FW_TLV_MAIN_TEXT:
8178 			fw->main.text = ptr;
8179 			fw->main.textsz = len;
8180 			break;
8181 		case IWN_FW_TLV_MAIN_DATA:
8182 			fw->main.data = ptr;
8183 			fw->main.datasz = len;
8184 			break;
8185 		case IWN_FW_TLV_INIT_TEXT:
8186 			fw->init.text = ptr;
8187 			fw->init.textsz = len;
8188 			break;
8189 		case IWN_FW_TLV_INIT_DATA:
8190 			fw->init.data = ptr;
8191 			fw->init.datasz = len;
8192 			break;
8193 		case IWN_FW_TLV_BOOT_TEXT:
8194 			fw->boot.text = ptr;
8195 			fw->boot.textsz = len;
8196 			break;
8197 		case IWN_FW_TLV_ENH_SENS:
8198 			if (!len)
8199 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8200 			break;
8201 		case IWN_FW_TLV_PHY_CALIB:
8202 			tmp = le32toh(*ptr);
8203 			if (tmp < 253) {
8204 				sc->reset_noise_gain = tmp;
8205 				sc->noise_gain = tmp + 1;
8206 			}
8207 			break;
8208 		case IWN_FW_TLV_PAN:
8209 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8210 			DPRINTF(sc, IWN_DEBUG_RESET,
8211 			    "PAN Support found: %d\n", 1);
8212 			break;
8213 		case IWN_FW_TLV_FLAGS:
8214 			if (len < sizeof(uint32_t))
8215 				break;
8216 			if (len % sizeof(uint32_t))
8217 				break;
8218 			sc->tlv_feature_flags = le32toh(*ptr);
8219 			DPRINTF(sc, IWN_DEBUG_RESET,
8220 			    "%s: feature: 0x%08x\n",
8221 			    __func__,
8222 			    sc->tlv_feature_flags);
8223 			break;
8224 		case IWN_FW_TLV_PBREQ_MAXLEN:
8225 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8226 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8227 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8228 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8229 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8230 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8231 		case IWN_FW_TLV_WOWLAN_INST:
8232 		case IWN_FW_TLV_WOWLAN_DATA:
8233 			DPRINTF(sc, IWN_DEBUG_RESET,
8234 			    "TLV type %d recognized but not handled\n",
8235 			    le16toh(tlv->type));
8236 			break;
8237 		default:
8238 			DPRINTF(sc, IWN_DEBUG_RESET,
8239 			    "TLV type %d not handled\n", le16toh(tlv->type));
8240 			break;
8241 		}
8242  next:		/* TLV fields are 32-bit aligned. */
8243 		ptr += (len + 3) & ~3;
8244 	}
8245 	return 0;
8246 }
8247 
8248 static int
8249 iwn_read_firmware(struct iwn_softc *sc)
8250 {
8251 	struct iwn_fw_info *fw = &sc->fw;
8252 	int error;
8253 
8254 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8255 
8256 	IWN_UNLOCK(sc);
8257 
8258 	memset(fw, 0, sizeof (*fw));
8259 
8260 	/* Read firmware image from filesystem. */
8261 	sc->fw_fp = firmware_get(sc->fwname);
8262 	if (sc->fw_fp == NULL) {
8263 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8264 		    __func__, sc->fwname);
8265 		IWN_LOCK(sc);
8266 		return EINVAL;
8267 	}
8268 	IWN_LOCK(sc);
8269 
8270 	fw->size = sc->fw_fp->datasize;
8271 	fw->data = (const uint8_t *)sc->fw_fp->data;
8272 	if (fw->size < sizeof (uint32_t)) {
8273 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8274 		    __func__, fw->size);
8275 		error = EINVAL;
8276 		goto fail;
8277 	}
8278 
8279 	/* Retrieve text and data sections. */
8280 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8281 		error = iwn_read_firmware_leg(sc, fw);
8282 	else
8283 		error = iwn_read_firmware_tlv(sc, fw, 1);
8284 	if (error != 0) {
8285 		device_printf(sc->sc_dev,
8286 		    "%s: could not read firmware sections, error %d\n",
8287 		    __func__, error);
8288 		goto fail;
8289 	}
8290 
8291 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8292 
8293 	/* Make sure text and data sections fit in hardware memory. */
8294 	if (fw->main.textsz > sc->fw_text_maxsz ||
8295 	    fw->main.datasz > sc->fw_data_maxsz ||
8296 	    fw->init.textsz > sc->fw_text_maxsz ||
8297 	    fw->init.datasz > sc->fw_data_maxsz ||
8298 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8299 	    (fw->boot.textsz & 3) != 0) {
8300 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8301 		    __func__);
8302 		error = EINVAL;
8303 		goto fail;
8304 	}
8305 
8306 	/* We can proceed with loading the firmware. */
8307 	return 0;
8308 
8309 fail:	iwn_unload_firmware(sc);
8310 	return error;
8311 }
8312 
8313 static void
8314 iwn_unload_firmware(struct iwn_softc *sc)
8315 {
8316 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8317 	sc->fw_fp = NULL;
8318 }
8319 
8320 static int
8321 iwn_clock_wait(struct iwn_softc *sc)
8322 {
8323 	int ntries;
8324 
8325 	/* Set "initialization complete" bit. */
8326 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8327 
8328 	/* Wait for clock stabilization. */
8329 	for (ntries = 0; ntries < 2500; ntries++) {
8330 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8331 			return 0;
8332 		DELAY(10);
8333 	}
8334 	device_printf(sc->sc_dev,
8335 	    "%s: timeout waiting for clock stabilization\n", __func__);
8336 	return ETIMEDOUT;
8337 }
8338 
8339 static int
8340 iwn_apm_init(struct iwn_softc *sc)
8341 {
8342 	uint32_t reg;
8343 	int error;
8344 
8345 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8346 
8347 	/* Disable L0s exit timer (NMI bug workaround). */
8348 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8349 	/* Don't wait for ICH L0s (ICH bug workaround). */
8350 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8351 
8352 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8353 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8354 
8355 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8356 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8357 
8358 	/* Retrieve PCIe Active State Power Management (ASPM). */
8359 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8360 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8361 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8362 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8363 	else
8364 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8365 
8366 	if (sc->base_params->pll_cfg_val)
8367 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8368 
8369 	/* Wait for clock stabilization before accessing prph. */
8370 	if ((error = iwn_clock_wait(sc)) != 0)
8371 		return error;
8372 
8373 	if ((error = iwn_nic_lock(sc)) != 0)
8374 		return error;
8375 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8376 		/* Enable DMA and BSM (Bootstrap State Machine). */
8377 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8378 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8379 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8380 	} else {
8381 		/* Enable DMA. */
8382 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8383 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8384 	}
8385 	DELAY(20);
8386 	/* Disable L1-Active. */
8387 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8388 	iwn_nic_unlock(sc);
8389 
8390 	return 0;
8391 }
8392 
8393 static void
8394 iwn_apm_stop_master(struct iwn_softc *sc)
8395 {
8396 	int ntries;
8397 
8398 	/* Stop busmaster DMA activity. */
8399 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8400 	for (ntries = 0; ntries < 100; ntries++) {
8401 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8402 			return;
8403 		DELAY(10);
8404 	}
8405 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8406 }
8407 
8408 static void
8409 iwn_apm_stop(struct iwn_softc *sc)
8410 {
8411 	iwn_apm_stop_master(sc);
8412 
8413 	/* Reset the entire device. */
8414 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8415 	DELAY(10);
8416 	/* Clear "initialization complete" bit. */
8417 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8418 }
8419 
8420 static int
8421 iwn4965_nic_config(struct iwn_softc *sc)
8422 {
8423 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8424 
8425 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8426 		/*
8427 		 * I don't believe this to be correct but this is what the
8428 		 * vendor driver is doing. Probably the bits should not be
8429 		 * shifted in IWN_RFCFG_*.
8430 		 */
8431 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8432 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8433 		    IWN_RFCFG_STEP(sc->rfcfg) |
8434 		    IWN_RFCFG_DASH(sc->rfcfg));
8435 	}
8436 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8437 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8438 	return 0;
8439 }
8440 
8441 static int
8442 iwn5000_nic_config(struct iwn_softc *sc)
8443 {
8444 	uint32_t tmp;
8445 	int error;
8446 
8447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8448 
8449 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8450 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8451 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8452 		    IWN_RFCFG_STEP(sc->rfcfg) |
8453 		    IWN_RFCFG_DASH(sc->rfcfg));
8454 	}
8455 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8456 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8457 
8458 	if ((error = iwn_nic_lock(sc)) != 0)
8459 		return error;
8460 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8461 
8462 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8463 		/*
8464 		 * Select first Switching Voltage Regulator (1.32V) to
8465 		 * solve a stability issue related to noisy DC2DC line
8466 		 * in the silicon of 1000 Series.
8467 		 */
8468 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8469 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8470 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8471 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8472 	}
8473 	iwn_nic_unlock(sc);
8474 
8475 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8476 		/* Use internal power amplifier only. */
8477 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8478 	}
8479 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8480 		/* Indicate that ROM calibration version is >=6. */
8481 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8482 	}
8483 	if (sc->base_params->additional_gp_drv_bit)
8484 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8485 		    sc->base_params->additional_gp_drv_bit);
8486 	return 0;
8487 }
8488 
8489 /*
8490  * Take NIC ownership over Intel Active Management Technology (AMT).
8491  */
8492 static int
8493 iwn_hw_prepare(struct iwn_softc *sc)
8494 {
8495 	int ntries;
8496 
8497 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8498 
8499 	/* Check if hardware is ready. */
8500 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8501 	for (ntries = 0; ntries < 5; ntries++) {
8502 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8503 		    IWN_HW_IF_CONFIG_NIC_READY)
8504 			return 0;
8505 		DELAY(10);
8506 	}
8507 
8508 	/* Hardware not ready, force into ready state. */
8509 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8510 	for (ntries = 0; ntries < 15000; ntries++) {
8511 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8512 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8513 			break;
8514 		DELAY(10);
8515 	}
8516 	if (ntries == 15000)
8517 		return ETIMEDOUT;
8518 
8519 	/* Hardware should be ready now. */
8520 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8521 	for (ntries = 0; ntries < 5; ntries++) {
8522 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8523 		    IWN_HW_IF_CONFIG_NIC_READY)
8524 			return 0;
8525 		DELAY(10);
8526 	}
8527 	return ETIMEDOUT;
8528 }
8529 
8530 static int
8531 iwn_hw_init(struct iwn_softc *sc)
8532 {
8533 	struct iwn_ops *ops = &sc->ops;
8534 	int error, chnl, qid;
8535 
8536 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8537 
8538 	/* Clear pending interrupts. */
8539 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8540 
8541 	if ((error = iwn_apm_init(sc)) != 0) {
8542 		device_printf(sc->sc_dev,
8543 		    "%s: could not power ON adapter, error %d\n", __func__,
8544 		    error);
8545 		return error;
8546 	}
8547 
8548 	/* Select VMAIN power source. */
8549 	if ((error = iwn_nic_lock(sc)) != 0)
8550 		return error;
8551 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8552 	iwn_nic_unlock(sc);
8553 
8554 	/* Perform adapter-specific initialization. */
8555 	if ((error = ops->nic_config(sc)) != 0)
8556 		return error;
8557 
8558 	/* Initialize RX ring. */
8559 	if ((error = iwn_nic_lock(sc)) != 0)
8560 		return error;
8561 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8562 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8563 	/* Set physical address of RX ring (256-byte aligned). */
8564 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8565 	/* Set physical address of RX status (16-byte aligned). */
8566 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8567 	/* Enable RX. */
8568 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8569 	    IWN_FH_RX_CONFIG_ENA           |
8570 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8571 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8572 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8573 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8574 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8575 	iwn_nic_unlock(sc);
8576 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8577 
8578 	if ((error = iwn_nic_lock(sc)) != 0)
8579 		return error;
8580 
8581 	/* Initialize TX scheduler. */
8582 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8583 
8584 	/* Set physical address of "keep warm" page (16-byte aligned). */
8585 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8586 
8587 	/* Initialize TX rings. */
8588 	for (qid = 0; qid < sc->ntxqs; qid++) {
8589 		struct iwn_tx_ring *txq = &sc->txq[qid];
8590 
8591 		/* Set physical address of TX ring (256-byte aligned). */
8592 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8593 		    txq->desc_dma.paddr >> 8);
8594 	}
8595 	iwn_nic_unlock(sc);
8596 
8597 	/* Enable DMA channels. */
8598 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8599 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8600 		    IWN_FH_TX_CONFIG_DMA_ENA |
8601 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8602 	}
8603 
8604 	/* Clear "radio off" and "commands blocked" bits. */
8605 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8606 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8607 
8608 	/* Clear pending interrupts. */
8609 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8610 	/* Enable interrupt coalescing. */
8611 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8612 	/* Enable interrupts. */
8613 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8614 
8615 	/* _Really_ make sure "radio off" bit is cleared! */
8616 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8617 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8618 
8619 	/* Enable shadow registers. */
8620 	if (sc->base_params->shadow_reg_enable)
8621 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8622 
8623 	if ((error = ops->load_firmware(sc)) != 0) {
8624 		device_printf(sc->sc_dev,
8625 		    "%s: could not load firmware, error %d\n", __func__,
8626 		    error);
8627 		return error;
8628 	}
8629 	/* Wait at most one second for firmware alive notification. */
8630 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8631 		device_printf(sc->sc_dev,
8632 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8633 		    __func__, error);
8634 		return error;
8635 	}
8636 	/* Do post-firmware initialization. */
8637 
8638 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8639 
8640 	return ops->post_alive(sc);
8641 }
8642 
8643 static void
8644 iwn_hw_stop(struct iwn_softc *sc)
8645 {
8646 	int chnl, qid, ntries;
8647 
8648 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8649 
8650 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8651 
8652 	/* Disable interrupts. */
8653 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8654 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8655 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8656 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8657 
8658 	/* Make sure we no longer hold the NIC lock. */
8659 	iwn_nic_unlock(sc);
8660 
8661 	/* Stop TX scheduler. */
8662 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8663 
8664 	/* Stop all DMA channels. */
8665 	if (iwn_nic_lock(sc) == 0) {
8666 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8667 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8668 			for (ntries = 0; ntries < 200; ntries++) {
8669 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8670 				    IWN_FH_TX_STATUS_IDLE(chnl))
8671 					break;
8672 				DELAY(10);
8673 			}
8674 		}
8675 		iwn_nic_unlock(sc);
8676 	}
8677 
8678 	/* Stop RX ring. */
8679 	iwn_reset_rx_ring(sc, &sc->rxq);
8680 
8681 	/* Reset all TX rings. */
8682 	for (qid = 0; qid < sc->ntxqs; qid++)
8683 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8684 
8685 	if (iwn_nic_lock(sc) == 0) {
8686 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8687 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8688 		iwn_nic_unlock(sc);
8689 	}
8690 	DELAY(5);
8691 	/* Power OFF adapter. */
8692 	iwn_apm_stop(sc);
8693 }
8694 
8695 static void
8696 iwn_panicked(void *arg0, int pending)
8697 {
8698 	struct iwn_softc *sc = arg0;
8699 	struct ieee80211com *ic = &sc->sc_ic;
8700 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8701 #if 0
8702 	int error;
8703 #endif
8704 
8705 	if (vap == NULL) {
8706 		printf("%s: null vap\n", __func__);
8707 		return;
8708 	}
8709 
8710 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8711 	    "restarting\n", __func__, vap->iv_state);
8712 
8713 	/*
8714 	 * This is not enough work. We need to also reinitialise
8715 	 * the correct transmit state for aggregation enabled queues,
8716 	 * which has a very specific requirement of
8717 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8718 	 * we definitely don't!) then the firmware will just panic again.
8719 	 */
8720 #if 1
8721 	ieee80211_restart_all(ic);
8722 #else
8723 	IWN_LOCK(sc);
8724 
8725 	iwn_stop_locked(sc);
8726 	if ((error = iwn_init_locked(sc)) != 0) {
8727 		device_printf(sc->sc_dev,
8728 		    "%s: could not init hardware\n", __func__);
8729 		goto unlock;
8730 	}
8731 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8732 	    (error = iwn_auth(sc, vap)) != 0) {
8733 		device_printf(sc->sc_dev,
8734 		    "%s: could not move to auth state\n", __func__);
8735 	}
8736 	if (vap->iv_state >= IEEE80211_S_RUN &&
8737 	    (error = iwn_run(sc, vap)) != 0) {
8738 		device_printf(sc->sc_dev,
8739 		    "%s: could not move to run state\n", __func__);
8740 	}
8741 
8742 unlock:
8743 	IWN_UNLOCK(sc);
8744 #endif
8745 }
8746 
8747 static int
8748 iwn_init_locked(struct iwn_softc *sc)
8749 {
8750 	int error;
8751 
8752 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8753 
8754 	IWN_LOCK_ASSERT(sc);
8755 
8756 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8757 		goto end;
8758 
8759 	sc->sc_flags |= IWN_FLAG_RUNNING;
8760 
8761 	if ((error = iwn_hw_prepare(sc)) != 0) {
8762 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8763 		    __func__, error);
8764 		goto fail;
8765 	}
8766 
8767 	/* Initialize interrupt mask to default value. */
8768 	sc->int_mask = IWN_INT_MASK_DEF;
8769 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8770 
8771 	/* Check that the radio is not disabled by hardware switch. */
8772 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8773 		iwn_stop_locked(sc);
8774 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8775 
8776 		return (1);
8777 	}
8778 
8779 	/* Read firmware images from the filesystem. */
8780 	if ((error = iwn_read_firmware(sc)) != 0) {
8781 		device_printf(sc->sc_dev,
8782 		    "%s: could not read firmware, error %d\n", __func__,
8783 		    error);
8784 		goto fail;
8785 	}
8786 
8787 	/* Initialize hardware and upload firmware. */
8788 	error = iwn_hw_init(sc);
8789 	iwn_unload_firmware(sc);
8790 	if (error != 0) {
8791 		device_printf(sc->sc_dev,
8792 		    "%s: could not initialize hardware, error %d\n", __func__,
8793 		    error);
8794 		goto fail;
8795 	}
8796 
8797 	/* Configure adapter now that it is ready. */
8798 	if ((error = iwn_config(sc)) != 0) {
8799 		device_printf(sc->sc_dev,
8800 		    "%s: could not configure device, error %d\n", __func__,
8801 		    error);
8802 		goto fail;
8803 	}
8804 
8805 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8806 
8807 end:
8808 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8809 
8810 	return (0);
8811 
8812 fail:
8813 	iwn_stop_locked(sc);
8814 
8815 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8816 
8817 	return (-1);
8818 }
8819 
8820 static int
8821 iwn_init(struct iwn_softc *sc)
8822 {
8823 	int error;
8824 
8825 	IWN_LOCK(sc);
8826 	error = iwn_init_locked(sc);
8827 	IWN_UNLOCK(sc);
8828 
8829 	return (error);
8830 }
8831 
8832 static void
8833 iwn_stop_locked(struct iwn_softc *sc)
8834 {
8835 
8836 	IWN_LOCK_ASSERT(sc);
8837 
8838 	if (!(sc->sc_flags & IWN_FLAG_RUNNING))
8839 		return;
8840 
8841 	sc->sc_is_scanning = 0;
8842 	sc->sc_tx_timer = 0;
8843 	callout_stop(&sc->watchdog_to);
8844 	callout_stop(&sc->scan_timeout);
8845 	callout_stop(&sc->calib_to);
8846 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8847 
8848 	/* Power OFF hardware. */
8849 	iwn_hw_stop(sc);
8850 }
8851 
8852 static void
8853 iwn_stop(struct iwn_softc *sc)
8854 {
8855 	IWN_LOCK(sc);
8856 	iwn_stop_locked(sc);
8857 	IWN_UNLOCK(sc);
8858 }
8859 
8860 /*
8861  * Callback from net80211 to start a scan.
8862  */
8863 static void
8864 iwn_scan_start(struct ieee80211com *ic)
8865 {
8866 	struct iwn_softc *sc = ic->ic_softc;
8867 
8868 	IWN_LOCK(sc);
8869 	/* make the link LED blink while we're scanning */
8870 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8871 	IWN_UNLOCK(sc);
8872 }
8873 
8874 /*
8875  * Callback from net80211 to terminate a scan.
8876  */
8877 static void
8878 iwn_scan_end(struct ieee80211com *ic)
8879 {
8880 	struct iwn_softc *sc = ic->ic_softc;
8881 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8882 
8883 	IWN_LOCK(sc);
8884 	if (vap->iv_state == IEEE80211_S_RUN) {
8885 		/* Set link LED to ON status if we are associated */
8886 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8887 	}
8888 	IWN_UNLOCK(sc);
8889 }
8890 
8891 /*
8892  * Callback from net80211 to force a channel change.
8893  */
8894 static void
8895 iwn_set_channel(struct ieee80211com *ic)
8896 {
8897 	const struct ieee80211_channel *c = ic->ic_curchan;
8898 	struct iwn_softc *sc = ic->ic_softc;
8899 	int error;
8900 
8901 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8902 
8903 	IWN_LOCK(sc);
8904 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8905 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8906 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8907 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8908 
8909 	/*
8910 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8911 	 * are already taken care of by their respective firmware commands.
8912 	 */
8913 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8914 		error = iwn_config(sc);
8915 		if (error != 0)
8916 		device_printf(sc->sc_dev,
8917 		    "%s: error %d settting channel\n", __func__, error);
8918 	}
8919 	IWN_UNLOCK(sc);
8920 }
8921 
8922 /*
8923  * Callback from net80211 to start scanning of the current channel.
8924  */
8925 static void
8926 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8927 {
8928 	struct ieee80211vap *vap = ss->ss_vap;
8929 	struct ieee80211com *ic = vap->iv_ic;
8930 	struct iwn_softc *sc = ic->ic_softc;
8931 	int error;
8932 
8933 	IWN_LOCK(sc);
8934 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8935 	IWN_UNLOCK(sc);
8936 	if (error != 0)
8937 		ieee80211_cancel_scan(vap);
8938 }
8939 
8940 /*
8941  * Callback from net80211 to handle the minimum dwell time being met.
8942  * The intent is to terminate the scan but we just let the firmware
8943  * notify us when it's finished as we have no safe way to abort it.
8944  */
8945 static void
8946 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8947 {
8948 	/* NB: don't try to abort scan; wait for firmware to finish */
8949 }
8950 #ifdef	IWN_DEBUG
8951 #define	IWN_DESC(x) case x:	return #x
8952 
8953 /*
8954  * Translate CSR code to string
8955  */
8956 static char *iwn_get_csr_string(int csr)
8957 {
8958 	switch (csr) {
8959 		IWN_DESC(IWN_HW_IF_CONFIG);
8960 		IWN_DESC(IWN_INT_COALESCING);
8961 		IWN_DESC(IWN_INT);
8962 		IWN_DESC(IWN_INT_MASK);
8963 		IWN_DESC(IWN_FH_INT);
8964 		IWN_DESC(IWN_GPIO_IN);
8965 		IWN_DESC(IWN_RESET);
8966 		IWN_DESC(IWN_GP_CNTRL);
8967 		IWN_DESC(IWN_HW_REV);
8968 		IWN_DESC(IWN_EEPROM);
8969 		IWN_DESC(IWN_EEPROM_GP);
8970 		IWN_DESC(IWN_OTP_GP);
8971 		IWN_DESC(IWN_GIO);
8972 		IWN_DESC(IWN_GP_UCODE);
8973 		IWN_DESC(IWN_GP_DRIVER);
8974 		IWN_DESC(IWN_UCODE_GP1);
8975 		IWN_DESC(IWN_UCODE_GP2);
8976 		IWN_DESC(IWN_LED);
8977 		IWN_DESC(IWN_DRAM_INT_TBL);
8978 		IWN_DESC(IWN_GIO_CHICKEN);
8979 		IWN_DESC(IWN_ANA_PLL);
8980 		IWN_DESC(IWN_HW_REV_WA);
8981 		IWN_DESC(IWN_DBG_HPET_MEM);
8982 	default:
8983 		return "UNKNOWN CSR";
8984 	}
8985 }
8986 
8987 /*
8988  * This function print firmware register
8989  */
8990 static void
8991 iwn_debug_register(struct iwn_softc *sc)
8992 {
8993 	int i;
8994 	static const uint32_t csr_tbl[] = {
8995 		IWN_HW_IF_CONFIG,
8996 		IWN_INT_COALESCING,
8997 		IWN_INT,
8998 		IWN_INT_MASK,
8999 		IWN_FH_INT,
9000 		IWN_GPIO_IN,
9001 		IWN_RESET,
9002 		IWN_GP_CNTRL,
9003 		IWN_HW_REV,
9004 		IWN_EEPROM,
9005 		IWN_EEPROM_GP,
9006 		IWN_OTP_GP,
9007 		IWN_GIO,
9008 		IWN_GP_UCODE,
9009 		IWN_GP_DRIVER,
9010 		IWN_UCODE_GP1,
9011 		IWN_UCODE_GP2,
9012 		IWN_LED,
9013 		IWN_DRAM_INT_TBL,
9014 		IWN_GIO_CHICKEN,
9015 		IWN_ANA_PLL,
9016 		IWN_HW_REV_WA,
9017 		IWN_DBG_HPET_MEM,
9018 	};
9019 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9020 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9021 	    "\n");
9022 	for (i = 0; i <  nitems(csr_tbl); i++){
9023 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9024 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9025 		if ((i+1) % 3 == 0)
9026 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9027 	}
9028 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9029 }
9030 #endif
9031 
9032 
9033