1 /*- 2 * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr> 3 * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org> 4 * Copyright (c) 2008 Sam Leffler, Errno Consulting 5 * Copyright (c) 2011 Intel Corporation 6 * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr> 7 * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network 24 * adapters. 25 */ 26 27 #include <sys/cdefs.h> 28 #include "opt_wlan.h" 29 #include "opt_iwn.h" 30 31 #include <sys/param.h> 32 #include <sys/sockio.h> 33 #include <sys/sysctl.h> 34 #include <sys/mbuf.h> 35 #include <sys/kernel.h> 36 #include <sys/socket.h> 37 #include <sys/systm.h> 38 #include <sys/malloc.h> 39 #include <sys/bus.h> 40 #include <sys/conf.h> 41 #include <sys/rman.h> 42 #include <sys/endian.h> 43 #include <sys/firmware.h> 44 #include <sys/limits.h> 45 #include <sys/module.h> 46 #include <sys/priv.h> 47 #include <sys/queue.h> 48 #include <sys/taskqueue.h> 49 50 #include <machine/bus.h> 51 #include <machine/resource.h> 52 #include <machine/clock.h> 53 54 #include <dev/pci/pcireg.h> 55 #include <dev/pci/pcivar.h> 56 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 62 #include <netinet/in.h> 63 #include <netinet/if_ether.h> 64 65 #include <net80211/ieee80211_var.h> 66 #include <net80211/ieee80211_radiotap.h> 67 #include <net80211/ieee80211_regdomain.h> 68 #include <net80211/ieee80211_ratectl.h> 69 70 #include <dev/iwn/if_iwnreg.h> 71 #include <dev/iwn/if_iwnvar.h> 72 #include <dev/iwn/if_iwn_devid.h> 73 #include <dev/iwn/if_iwn_chip_cfg.h> 74 #include <dev/iwn/if_iwn_debug.h> 75 #include <dev/iwn/if_iwn_ioctl.h> 76 77 struct iwn_ident { 78 uint16_t vendor; 79 uint16_t device; 80 const char *name; 81 }; 82 83 static const struct iwn_ident iwn_ident_table[] = { 84 { 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205" }, 85 { 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000" }, 86 { 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000" }, 87 { 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205" }, 88 { 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250" }, 89 { 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250" }, 90 { 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030" }, 91 { 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030" }, 92 { 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230" }, 93 { 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230" }, 94 { 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150" }, 95 { 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150" }, 96 { 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 97 { 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN" }, 98 /* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */ 99 { 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230" }, 100 { 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230" }, 101 { 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130" }, 102 { 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130" }, 103 { 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100" }, 104 { 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100" }, 105 { 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105" }, 106 { 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105" }, 107 { 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135" }, 108 { 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135" }, 109 { 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965" }, 110 { 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300" }, 111 { 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200" }, 112 { 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965" }, 113 { 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965" }, 114 { 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100" }, 115 { 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965" }, 116 { 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300" }, 117 { 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300" }, 118 { 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100" }, 119 { 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300" }, 120 { 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200" }, 121 { 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350" }, 122 { 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350" }, 123 { 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150" }, 124 { 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150" }, 125 { 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235" }, 126 { 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235" }, 127 { 0, 0, NULL } 128 }; 129 130 static int iwn_probe(device_t); 131 static int iwn_attach(device_t); 132 static void iwn4965_attach(struct iwn_softc *, uint16_t); 133 static void iwn5000_attach(struct iwn_softc *, uint16_t); 134 static int iwn_config_specific(struct iwn_softc *, uint16_t); 135 static void iwn_radiotap_attach(struct iwn_softc *); 136 static void iwn_sysctlattach(struct iwn_softc *); 137 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *, 138 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 139 const uint8_t [IEEE80211_ADDR_LEN], 140 const uint8_t [IEEE80211_ADDR_LEN]); 141 static void iwn_vap_delete(struct ieee80211vap *); 142 static int iwn_detach(device_t); 143 static int iwn_shutdown(device_t); 144 static int iwn_suspend(device_t); 145 static int iwn_resume(device_t); 146 static int iwn_nic_lock(struct iwn_softc *); 147 static int iwn_eeprom_lock(struct iwn_softc *); 148 static int iwn_init_otprom(struct iwn_softc *); 149 static int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); 150 static void iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int); 151 static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *, 152 void **, bus_size_t, bus_size_t); 153 static void iwn_dma_contig_free(struct iwn_dma_info *); 154 static int iwn_alloc_sched(struct iwn_softc *); 155 static void iwn_free_sched(struct iwn_softc *); 156 static int iwn_alloc_kw(struct iwn_softc *); 157 static void iwn_free_kw(struct iwn_softc *); 158 static int iwn_alloc_ict(struct iwn_softc *); 159 static void iwn_free_ict(struct iwn_softc *); 160 static int iwn_alloc_fwmem(struct iwn_softc *); 161 static void iwn_free_fwmem(struct iwn_softc *); 162 static int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 163 static void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 164 static void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); 165 static int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, 166 int); 167 static void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 168 static void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); 169 static void iwn_check_tx_ring(struct iwn_softc *, int); 170 static void iwn5000_ict_reset(struct iwn_softc *); 171 static int iwn_read_eeprom(struct iwn_softc *, 172 uint8_t macaddr[IEEE80211_ADDR_LEN]); 173 static void iwn4965_read_eeprom(struct iwn_softc *); 174 #ifdef IWN_DEBUG 175 static void iwn4965_print_power_group(struct iwn_softc *, int); 176 #endif 177 static void iwn5000_read_eeprom(struct iwn_softc *); 178 static uint32_t iwn_eeprom_channel_flags(struct iwn_eeprom_chan *); 179 static void iwn_read_eeprom_band(struct iwn_softc *, int, int, int *, 180 struct ieee80211_channel[]); 181 static void iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *, 182 struct ieee80211_channel[]); 183 static void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); 184 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *, 185 struct ieee80211_channel *); 186 static void iwn_getradiocaps(struct ieee80211com *, int, int *, 187 struct ieee80211_channel[]); 188 static int iwn_setregdomain(struct ieee80211com *, 189 struct ieee80211_regdomain *, int, 190 struct ieee80211_channel[]); 191 static void iwn_read_eeprom_enhinfo(struct iwn_softc *); 192 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *, 193 const uint8_t mac[IEEE80211_ADDR_LEN]); 194 static void iwn_newassoc(struct ieee80211_node *, int); 195 static int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int); 196 static void iwn_calib_timeout(void *); 197 static void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *); 198 static void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, 199 struct iwn_rx_data *); 200 static void iwn_agg_tx_complete(struct iwn_softc *, struct iwn_tx_ring *, 201 int, int, int); 202 static void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *); 203 static void iwn5000_rx_calib_results(struct iwn_softc *, 204 struct iwn_rx_desc *); 205 static void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *); 206 static void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 207 struct iwn_rx_data *); 208 static void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, 209 struct iwn_rx_data *); 210 static void iwn_adj_ampdu_ptr(struct iwn_softc *, struct iwn_tx_ring *); 211 static void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int, 212 uint8_t); 213 static int iwn_ampdu_check_bitmap(uint64_t, int, int); 214 static int iwn_ampdu_index_check(struct iwn_softc *, struct iwn_tx_ring *, 215 uint64_t, int, int); 216 static void iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *); 217 static void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); 218 static void iwn_notif_intr(struct iwn_softc *); 219 static void iwn_wakeup_intr(struct iwn_softc *); 220 static void iwn_rftoggle_task(void *, int); 221 static void iwn_fatal_intr(struct iwn_softc *); 222 static void iwn_intr(void *); 223 static void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, 224 uint16_t); 225 static void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, 226 uint16_t); 227 #ifdef notyet 228 static void iwn5000_reset_sched(struct iwn_softc *, int, int); 229 #endif 230 static int iwn_tx_data(struct iwn_softc *, struct mbuf *, 231 struct ieee80211_node *); 232 static int iwn_tx_data_raw(struct iwn_softc *, struct mbuf *, 233 struct ieee80211_node *, 234 const struct ieee80211_bpf_params *params); 235 static int iwn_tx_cmd(struct iwn_softc *, struct mbuf *, 236 struct ieee80211_node *, struct iwn_tx_ring *); 237 static void iwn_xmit_task(void *arg0, int pending); 238 static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *, 239 const struct ieee80211_bpf_params *); 240 static int iwn_transmit(struct ieee80211com *, struct mbuf *); 241 static void iwn_scan_timeout(void *); 242 static void iwn_watchdog(void *); 243 static int iwn_ioctl(struct ieee80211com *, u_long , void *); 244 static void iwn_parent(struct ieee80211com *); 245 static int iwn_cmd(struct iwn_softc *, int, const void *, int, int); 246 static int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, 247 int); 248 static int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, 249 int); 250 static int iwn_set_link_quality(struct iwn_softc *, 251 struct ieee80211_node *); 252 static int iwn_add_broadcast_node(struct iwn_softc *, int); 253 static int iwn_updateedca(struct ieee80211com *); 254 static void iwn_set_promisc(struct iwn_softc *); 255 static void iwn_update_promisc(struct ieee80211com *); 256 static void iwn_update_mcast(struct ieee80211com *); 257 static void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); 258 static int iwn_set_critical_temp(struct iwn_softc *); 259 static int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); 260 static void iwn4965_power_calibration(struct iwn_softc *, int); 261 static int iwn4965_set_txpower(struct iwn_softc *, int); 262 static int iwn5000_set_txpower(struct iwn_softc *, int); 263 static int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 264 static int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *); 265 static int iwn_get_noise(const struct iwn_rx_general_stats *); 266 static int iwn4965_get_temperature(struct iwn_softc *); 267 static int iwn5000_get_temperature(struct iwn_softc *); 268 static int iwn_init_sensitivity(struct iwn_softc *); 269 static void iwn_collect_noise(struct iwn_softc *, 270 const struct iwn_rx_general_stats *); 271 static int iwn4965_init_gains(struct iwn_softc *); 272 static int iwn5000_init_gains(struct iwn_softc *); 273 static int iwn4965_set_gains(struct iwn_softc *); 274 static int iwn5000_set_gains(struct iwn_softc *); 275 static void iwn_tune_sensitivity(struct iwn_softc *, 276 const struct iwn_rx_stats *); 277 static void iwn_save_stats_counters(struct iwn_softc *, 278 const struct iwn_stats *); 279 static int iwn_send_sensitivity(struct iwn_softc *); 280 static void iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *); 281 static int iwn_set_pslevel(struct iwn_softc *, int, int, int); 282 static int iwn_send_btcoex(struct iwn_softc *); 283 static int iwn_send_advanced_btcoex(struct iwn_softc *); 284 static int iwn5000_runtime_calib(struct iwn_softc *); 285 static int iwn_check_bss_filter(struct iwn_softc *); 286 static int iwn4965_rxon_assoc(struct iwn_softc *, int); 287 static int iwn5000_rxon_assoc(struct iwn_softc *, int); 288 static int iwn_send_rxon(struct iwn_softc *, int, int); 289 static int iwn_config(struct iwn_softc *); 290 static int iwn_scan(struct iwn_softc *, struct ieee80211vap *, 291 struct ieee80211_scan_state *, struct ieee80211_channel *); 292 static int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap); 293 static int iwn_run(struct iwn_softc *, struct ieee80211vap *vap); 294 static int iwn_ampdu_rx_start(struct ieee80211_node *, 295 struct ieee80211_rx_ampdu *, int, int, int); 296 static void iwn_ampdu_rx_stop(struct ieee80211_node *, 297 struct ieee80211_rx_ampdu *); 298 static int iwn_addba_request(struct ieee80211_node *, 299 struct ieee80211_tx_ampdu *, int, int, int); 300 static int iwn_addba_response(struct ieee80211_node *, 301 struct ieee80211_tx_ampdu *, int, int, int); 302 static int iwn_ampdu_tx_start(struct ieee80211com *, 303 struct ieee80211_node *, uint8_t); 304 static void iwn_ampdu_tx_stop(struct ieee80211_node *, 305 struct ieee80211_tx_ampdu *); 306 static void iwn4965_ampdu_tx_start(struct iwn_softc *, 307 struct ieee80211_node *, int, uint8_t, uint16_t); 308 static void iwn4965_ampdu_tx_stop(struct iwn_softc *, int, 309 uint8_t, uint16_t); 310 static void iwn5000_ampdu_tx_start(struct iwn_softc *, 311 struct ieee80211_node *, int, uint8_t, uint16_t); 312 static void iwn5000_ampdu_tx_stop(struct iwn_softc *, int, 313 uint8_t, uint16_t); 314 static int iwn5000_query_calibration(struct iwn_softc *); 315 static int iwn5000_send_calibration(struct iwn_softc *); 316 static int iwn5000_send_wimax_coex(struct iwn_softc *); 317 static int iwn5000_crystal_calib(struct iwn_softc *); 318 static int iwn5000_temp_offset_calib(struct iwn_softc *); 319 static int iwn5000_temp_offset_calibv2(struct iwn_softc *); 320 static int iwn4965_post_alive(struct iwn_softc *); 321 static int iwn5000_post_alive(struct iwn_softc *); 322 static int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, 323 int); 324 static int iwn4965_load_firmware(struct iwn_softc *); 325 static int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, 326 const uint8_t *, int); 327 static int iwn5000_load_firmware(struct iwn_softc *); 328 static int iwn_read_firmware_leg(struct iwn_softc *, 329 struct iwn_fw_info *); 330 static int iwn_read_firmware_tlv(struct iwn_softc *, 331 struct iwn_fw_info *, uint16_t); 332 static int iwn_read_firmware(struct iwn_softc *); 333 static void iwn_unload_firmware(struct iwn_softc *); 334 static int iwn_clock_wait(struct iwn_softc *); 335 static int iwn_apm_init(struct iwn_softc *); 336 static void iwn_apm_stop_master(struct iwn_softc *); 337 static void iwn_apm_stop(struct iwn_softc *); 338 static int iwn4965_nic_config(struct iwn_softc *); 339 static int iwn5000_nic_config(struct iwn_softc *); 340 static int iwn_hw_prepare(struct iwn_softc *); 341 static int iwn_hw_init(struct iwn_softc *); 342 static void iwn_hw_stop(struct iwn_softc *); 343 static void iwn_panicked(void *, int); 344 static int iwn_init_locked(struct iwn_softc *); 345 static int iwn_init(struct iwn_softc *); 346 static void iwn_stop_locked(struct iwn_softc *); 347 static void iwn_stop(struct iwn_softc *); 348 static void iwn_scan_start(struct ieee80211com *); 349 static void iwn_scan_end(struct ieee80211com *); 350 static void iwn_set_channel(struct ieee80211com *); 351 static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long); 352 static void iwn_scan_mindwell(struct ieee80211_scan_state *); 353 #ifdef IWN_DEBUG 354 static char *iwn_get_csr_string(int); 355 static void iwn_debug_register(struct iwn_softc *); 356 #endif 357 358 static device_method_t iwn_methods[] = { 359 /* Device interface */ 360 DEVMETHOD(device_probe, iwn_probe), 361 DEVMETHOD(device_attach, iwn_attach), 362 DEVMETHOD(device_detach, iwn_detach), 363 DEVMETHOD(device_shutdown, iwn_shutdown), 364 DEVMETHOD(device_suspend, iwn_suspend), 365 DEVMETHOD(device_resume, iwn_resume), 366 367 DEVMETHOD_END 368 }; 369 370 static driver_t iwn_driver = { 371 "iwn", 372 iwn_methods, 373 sizeof(struct iwn_softc) 374 }; 375 376 DRIVER_MODULE(iwn, pci, iwn_driver, NULL, NULL); 377 MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, iwn, iwn_ident_table, 378 nitems(iwn_ident_table) - 1); 379 MODULE_VERSION(iwn, 1); 380 381 MODULE_DEPEND(iwn, firmware, 1, 1, 1); 382 MODULE_DEPEND(iwn, pci, 1, 1, 1); 383 MODULE_DEPEND(iwn, wlan, 1, 1, 1); 384 385 static d_ioctl_t iwn_cdev_ioctl; 386 static d_open_t iwn_cdev_open; 387 static d_close_t iwn_cdev_close; 388 389 static struct cdevsw iwn_cdevsw = { 390 .d_version = D_VERSION, 391 .d_flags = 0, 392 .d_open = iwn_cdev_open, 393 .d_close = iwn_cdev_close, 394 .d_ioctl = iwn_cdev_ioctl, 395 .d_name = "iwn", 396 }; 397 398 static int 399 iwn_probe(device_t dev) 400 { 401 const struct iwn_ident *ident; 402 403 for (ident = iwn_ident_table; ident->name != NULL; ident++) { 404 if (pci_get_vendor(dev) == ident->vendor && 405 pci_get_device(dev) == ident->device) { 406 device_set_desc(dev, ident->name); 407 return (BUS_PROBE_DEFAULT); 408 } 409 } 410 return ENXIO; 411 } 412 413 static int 414 iwn_is_3stream_device(struct iwn_softc *sc) 415 { 416 /* XXX for now only 5300, until the 5350 can be tested */ 417 if (sc->hw_type == IWN_HW_REV_TYPE_5300) 418 return (1); 419 return (0); 420 } 421 422 static int 423 iwn_attach(device_t dev) 424 { 425 struct iwn_softc *sc = device_get_softc(dev); 426 struct ieee80211com *ic; 427 int i, error, rid; 428 429 sc->sc_dev = dev; 430 431 #ifdef IWN_DEBUG 432 error = resource_int_value(device_get_name(sc->sc_dev), 433 device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug)); 434 if (error != 0) 435 sc->sc_debug = 0; 436 #else 437 sc->sc_debug = 0; 438 #endif 439 440 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__); 441 442 /* 443 * Get the offset of the PCI Express Capability Structure in PCI 444 * Configuration Space. 445 */ 446 error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off); 447 if (error != 0) { 448 device_printf(dev, "PCIe capability structure not found!\n"); 449 return error; 450 } 451 452 /* Clear device-specific "PCI retry timeout" register (41h). */ 453 pci_write_config(dev, 0x41, 0, 1); 454 455 /* Enable bus-mastering. */ 456 pci_enable_busmaster(dev); 457 458 rid = PCIR_BAR(0); 459 sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 460 RF_ACTIVE); 461 if (sc->mem == NULL) { 462 device_printf(dev, "can't map mem space\n"); 463 error = ENOMEM; 464 return error; 465 } 466 sc->sc_st = rman_get_bustag(sc->mem); 467 sc->sc_sh = rman_get_bushandle(sc->mem); 468 469 i = 1; 470 rid = 0; 471 if (pci_alloc_msi(dev, &i) == 0) 472 rid = 1; 473 /* Install interrupt handler. */ 474 sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | 475 (rid != 0 ? 0 : RF_SHAREABLE)); 476 if (sc->irq == NULL) { 477 device_printf(dev, "can't map interrupt\n"); 478 error = ENOMEM; 479 goto fail; 480 } 481 482 IWN_LOCK_INIT(sc); 483 484 /* Read hardware revision and attach. */ 485 sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT) 486 & IWN_HW_REV_TYPE_MASK; 487 sc->subdevice_id = pci_get_subdevice(dev); 488 489 /* 490 * 4965 versus 5000 and later have different methods. 491 * Let's set those up first. 492 */ 493 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 494 iwn4965_attach(sc, pci_get_device(dev)); 495 else 496 iwn5000_attach(sc, pci_get_device(dev)); 497 498 /* 499 * Next, let's setup the various parameters of each NIC. 500 */ 501 error = iwn_config_specific(sc, pci_get_device(dev)); 502 if (error != 0) { 503 device_printf(dev, "could not attach device, error %d\n", 504 error); 505 goto fail; 506 } 507 508 if ((error = iwn_hw_prepare(sc)) != 0) { 509 device_printf(dev, "hardware not ready, error %d\n", error); 510 goto fail; 511 } 512 513 /* Allocate DMA memory for firmware transfers. */ 514 if ((error = iwn_alloc_fwmem(sc)) != 0) { 515 device_printf(dev, 516 "could not allocate memory for firmware, error %d\n", 517 error); 518 goto fail; 519 } 520 521 /* Allocate "Keep Warm" page. */ 522 if ((error = iwn_alloc_kw(sc)) != 0) { 523 device_printf(dev, 524 "could not allocate keep warm page, error %d\n", error); 525 goto fail; 526 } 527 528 /* Allocate ICT table for 5000 Series. */ 529 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 530 (error = iwn_alloc_ict(sc)) != 0) { 531 device_printf(dev, "could not allocate ICT table, error %d\n", 532 error); 533 goto fail; 534 } 535 536 /* Allocate TX scheduler "rings". */ 537 if ((error = iwn_alloc_sched(sc)) != 0) { 538 device_printf(dev, 539 "could not allocate TX scheduler rings, error %d\n", error); 540 goto fail; 541 } 542 543 /* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */ 544 for (i = 0; i < sc->ntxqs; i++) { 545 if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { 546 device_printf(dev, 547 "could not allocate TX ring %d, error %d\n", i, 548 error); 549 goto fail; 550 } 551 } 552 553 /* Allocate RX ring. */ 554 if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { 555 device_printf(dev, "could not allocate RX ring, error %d\n", 556 error); 557 goto fail; 558 } 559 560 /* Clear pending interrupts. */ 561 IWN_WRITE(sc, IWN_INT, 0xffffffff); 562 563 ic = &sc->sc_ic; 564 ic->ic_softc = sc; 565 ic->ic_name = device_get_nameunit(dev); 566 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 567 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 568 569 /* Set device capabilities. */ 570 ic->ic_caps = 571 IEEE80211_C_STA /* station mode supported */ 572 | IEEE80211_C_MONITOR /* monitor mode supported */ 573 #if 0 574 | IEEE80211_C_BGSCAN /* background scanning */ 575 #endif 576 | IEEE80211_C_TXPMGT /* tx power management */ 577 | IEEE80211_C_SHSLOT /* short slot time supported */ 578 | IEEE80211_C_WPA 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 #if 0 581 | IEEE80211_C_IBSS /* ibss/adhoc mode */ 582 #endif 583 | IEEE80211_C_WME /* WME */ 584 | IEEE80211_C_PMGT /* Station-side power mgmt */ 585 ; 586 587 /* Read MAC address, channels, etc from EEPROM. */ 588 if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) { 589 device_printf(dev, "could not read EEPROM, error %d\n", 590 error); 591 goto fail; 592 } 593 594 /* Count the number of available chains. */ 595 sc->ntxchains = 596 ((sc->txchainmask >> 2) & 1) + 597 ((sc->txchainmask >> 1) & 1) + 598 ((sc->txchainmask >> 0) & 1); 599 sc->nrxchains = 600 ((sc->rxchainmask >> 2) & 1) + 601 ((sc->rxchainmask >> 1) & 1) + 602 ((sc->rxchainmask >> 0) & 1); 603 if (bootverbose) { 604 device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n", 605 sc->ntxchains, sc->nrxchains, sc->eeprom_domain, 606 ic->ic_macaddr, ":"); 607 } 608 609 if (sc->sc_flags & IWN_FLAG_HAS_11N) { 610 ic->ic_rxstream = sc->nrxchains; 611 ic->ic_txstream = sc->ntxchains; 612 613 /* 614 * Some of the 3 antenna devices (ie, the 4965) only supports 615 * 2x2 operation. So correct the number of streams if 616 * it's not a 3-stream device. 617 */ 618 if (! iwn_is_3stream_device(sc)) { 619 if (ic->ic_rxstream > 2) 620 ic->ic_rxstream = 2; 621 if (ic->ic_txstream > 2) 622 ic->ic_txstream = 2; 623 } 624 625 ic->ic_htcaps = 626 IEEE80211_HTCAP_SMPS_OFF /* SMPS mode disabled */ 627 | IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */ 628 | IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width*/ 629 | IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */ 630 #ifdef notyet 631 | IEEE80211_HTCAP_GREENFIELD 632 #if IWN_RBUF_SIZE == 8192 633 | IEEE80211_HTCAP_MAXAMSDU_7935 /* max A-MSDU length */ 634 #else 635 | IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */ 636 #endif 637 #endif 638 /* s/w capabilities */ 639 | IEEE80211_HTC_HT /* HT operation */ 640 | IEEE80211_HTC_AMPDU /* tx A-MPDU */ 641 #ifdef notyet 642 | IEEE80211_HTC_AMSDU /* tx A-MSDU */ 643 #endif 644 ; 645 } 646 647 ieee80211_ifattach(ic); 648 ic->ic_vap_create = iwn_vap_create; 649 ic->ic_ioctl = iwn_ioctl; 650 ic->ic_parent = iwn_parent; 651 ic->ic_vap_delete = iwn_vap_delete; 652 ic->ic_transmit = iwn_transmit; 653 ic->ic_raw_xmit = iwn_raw_xmit; 654 ic->ic_node_alloc = iwn_node_alloc; 655 sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start; 656 ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; 657 sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop; 658 ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; 659 sc->sc_addba_request = ic->ic_addba_request; 660 ic->ic_addba_request = iwn_addba_request; 661 sc->sc_addba_response = ic->ic_addba_response; 662 ic->ic_addba_response = iwn_addba_response; 663 sc->sc_addba_stop = ic->ic_addba_stop; 664 ic->ic_addba_stop = iwn_ampdu_tx_stop; 665 ic->ic_newassoc = iwn_newassoc; 666 ic->ic_wme.wme_update = iwn_updateedca; 667 ic->ic_update_promisc = iwn_update_promisc; 668 ic->ic_update_mcast = iwn_update_mcast; 669 ic->ic_scan_start = iwn_scan_start; 670 ic->ic_scan_end = iwn_scan_end; 671 ic->ic_set_channel = iwn_set_channel; 672 ic->ic_scan_curchan = iwn_scan_curchan; 673 ic->ic_scan_mindwell = iwn_scan_mindwell; 674 ic->ic_getradiocaps = iwn_getradiocaps; 675 ic->ic_setregdomain = iwn_setregdomain; 676 677 iwn_radiotap_attach(sc); 678 679 callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0); 680 callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0); 681 callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0); 682 TASK_INIT(&sc->sc_rftoggle_task, 0, iwn_rftoggle_task, sc); 683 TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc); 684 TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc); 685 686 mbufq_init(&sc->sc_xmit_queue, 1024); 687 688 sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK, 689 taskqueue_thread_enqueue, &sc->sc_tq); 690 error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq"); 691 if (error != 0) { 692 device_printf(dev, "can't start threads, error %d\n", error); 693 goto fail; 694 } 695 696 iwn_sysctlattach(sc); 697 698 /* 699 * Hook our interrupt after all initialization is complete. 700 */ 701 error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE, 702 NULL, iwn_intr, sc, &sc->sc_ih); 703 if (error != 0) { 704 device_printf(dev, "can't establish interrupt, error %d\n", 705 error); 706 goto fail; 707 } 708 709 #if 0 710 device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n", 711 __func__, 712 sizeof(struct iwn_stats), 713 sizeof(struct iwn_stats_bt)); 714 #endif 715 716 if (bootverbose) 717 ieee80211_announce(ic); 718 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 719 720 /* Add debug ioctl right at the end */ 721 sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev), 722 UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev)); 723 if (sc->sc_cdev == NULL) { 724 device_printf(dev, "failed to create debug character device\n"); 725 } else { 726 sc->sc_cdev->si_drv1 = sc; 727 } 728 return 0; 729 fail: 730 iwn_detach(dev); 731 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 732 return error; 733 } 734 735 /* 736 * Define specific configuration based on device id and subdevice id 737 * pid : PCI device id 738 */ 739 static int 740 iwn_config_specific(struct iwn_softc *sc, uint16_t pid) 741 { 742 743 switch (pid) { 744 /* 4965 series */ 745 case IWN_DID_4965_1: 746 case IWN_DID_4965_2: 747 case IWN_DID_4965_3: 748 case IWN_DID_4965_4: 749 sc->base_params = &iwn4965_base_params; 750 sc->limits = &iwn4965_sensitivity_limits; 751 sc->fwname = "iwn4965fw"; 752 /* Override chains masks, ROM is known to be broken. */ 753 sc->txchainmask = IWN_ANT_AB; 754 sc->rxchainmask = IWN_ANT_ABC; 755 /* Enable normal btcoex */ 756 sc->sc_flags |= IWN_FLAG_BTCOEX; 757 break; 758 /* 1000 Series */ 759 case IWN_DID_1000_1: 760 case IWN_DID_1000_2: 761 switch(sc->subdevice_id) { 762 case IWN_SDID_1000_1: 763 case IWN_SDID_1000_2: 764 case IWN_SDID_1000_3: 765 case IWN_SDID_1000_4: 766 case IWN_SDID_1000_5: 767 case IWN_SDID_1000_6: 768 case IWN_SDID_1000_7: 769 case IWN_SDID_1000_8: 770 case IWN_SDID_1000_9: 771 case IWN_SDID_1000_10: 772 case IWN_SDID_1000_11: 773 case IWN_SDID_1000_12: 774 sc->limits = &iwn1000_sensitivity_limits; 775 sc->base_params = &iwn1000_base_params; 776 sc->fwname = "iwn1000fw"; 777 break; 778 default: 779 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 780 "0x%04x rev %d not supported (subdevice)\n", pid, 781 sc->subdevice_id,sc->hw_type); 782 return ENOTSUP; 783 } 784 break; 785 /* 6x00 Series */ 786 case IWN_DID_6x00_2: 787 case IWN_DID_6x00_4: 788 case IWN_DID_6x00_1: 789 case IWN_DID_6x00_3: 790 sc->fwname = "iwn6000fw"; 791 sc->limits = &iwn6000_sensitivity_limits; 792 switch(sc->subdevice_id) { 793 case IWN_SDID_6x00_1: 794 case IWN_SDID_6x00_2: 795 case IWN_SDID_6x00_8: 796 //iwl6000_3agn_cfg 797 sc->base_params = &iwn_6000_base_params; 798 break; 799 case IWN_SDID_6x00_3: 800 case IWN_SDID_6x00_6: 801 case IWN_SDID_6x00_9: 802 ////iwl6000i_2agn 803 case IWN_SDID_6x00_4: 804 case IWN_SDID_6x00_7: 805 case IWN_SDID_6x00_10: 806 //iwl6000i_2abg_cfg 807 case IWN_SDID_6x00_5: 808 //iwl6000i_2bg_cfg 809 sc->base_params = &iwn_6000i_base_params; 810 sc->sc_flags |= IWN_FLAG_INTERNAL_PA; 811 sc->txchainmask = IWN_ANT_BC; 812 sc->rxchainmask = IWN_ANT_BC; 813 break; 814 default: 815 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 816 "0x%04x rev %d not supported (subdevice)\n", pid, 817 sc->subdevice_id,sc->hw_type); 818 return ENOTSUP; 819 } 820 break; 821 /* 6x05 Series */ 822 case IWN_DID_6x05_1: 823 case IWN_DID_6x05_2: 824 switch(sc->subdevice_id) { 825 case IWN_SDID_6x05_1: 826 case IWN_SDID_6x05_4: 827 case IWN_SDID_6x05_6: 828 //iwl6005_2agn_cfg 829 case IWN_SDID_6x05_2: 830 case IWN_SDID_6x05_5: 831 case IWN_SDID_6x05_7: 832 //iwl6005_2abg_cfg 833 case IWN_SDID_6x05_3: 834 //iwl6005_2bg_cfg 835 case IWN_SDID_6x05_8: 836 case IWN_SDID_6x05_9: 837 //iwl6005_2agn_sff_cfg 838 case IWN_SDID_6x05_10: 839 //iwl6005_2agn_d_cfg 840 case IWN_SDID_6x05_11: 841 //iwl6005_2agn_mow1_cfg 842 case IWN_SDID_6x05_12: 843 //iwl6005_2agn_mow2_cfg 844 sc->fwname = "iwn6000g2afw"; 845 sc->limits = &iwn6000_sensitivity_limits; 846 sc->base_params = &iwn_6000g2_base_params; 847 break; 848 default: 849 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 850 "0x%04x rev %d not supported (subdevice)\n", pid, 851 sc->subdevice_id,sc->hw_type); 852 return ENOTSUP; 853 } 854 break; 855 /* 6x35 Series */ 856 case IWN_DID_6035_1: 857 case IWN_DID_6035_2: 858 switch(sc->subdevice_id) { 859 case IWN_SDID_6035_1: 860 case IWN_SDID_6035_2: 861 case IWN_SDID_6035_3: 862 case IWN_SDID_6035_4: 863 case IWN_SDID_6035_5: 864 sc->fwname = "iwn6000g2bfw"; 865 sc->limits = &iwn6235_sensitivity_limits; 866 sc->base_params = &iwn_6235_base_params; 867 break; 868 default: 869 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 870 "0x%04x rev %d not supported (subdevice)\n", pid, 871 sc->subdevice_id,sc->hw_type); 872 return ENOTSUP; 873 } 874 break; 875 /* 6x50 WiFi/WiMax Series */ 876 case IWN_DID_6050_1: 877 case IWN_DID_6050_2: 878 switch(sc->subdevice_id) { 879 case IWN_SDID_6050_1: 880 case IWN_SDID_6050_3: 881 case IWN_SDID_6050_5: 882 //iwl6050_2agn_cfg 883 case IWN_SDID_6050_2: 884 case IWN_SDID_6050_4: 885 case IWN_SDID_6050_6: 886 //iwl6050_2abg_cfg 887 sc->fwname = "iwn6050fw"; 888 sc->txchainmask = IWN_ANT_AB; 889 sc->rxchainmask = IWN_ANT_AB; 890 sc->limits = &iwn6000_sensitivity_limits; 891 sc->base_params = &iwn_6050_base_params; 892 break; 893 default: 894 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 895 "0x%04x rev %d not supported (subdevice)\n", pid, 896 sc->subdevice_id,sc->hw_type); 897 return ENOTSUP; 898 } 899 break; 900 /* 6150 WiFi/WiMax Series */ 901 case IWN_DID_6150_1: 902 case IWN_DID_6150_2: 903 switch(sc->subdevice_id) { 904 case IWN_SDID_6150_1: 905 case IWN_SDID_6150_3: 906 case IWN_SDID_6150_5: 907 // iwl6150_bgn_cfg 908 case IWN_SDID_6150_2: 909 case IWN_SDID_6150_4: 910 case IWN_SDID_6150_6: 911 //iwl6150_bg_cfg 912 sc->fwname = "iwn6050fw"; 913 sc->limits = &iwn6000_sensitivity_limits; 914 sc->base_params = &iwn_6150_base_params; 915 break; 916 default: 917 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 918 "0x%04x rev %d not supported (subdevice)\n", pid, 919 sc->subdevice_id,sc->hw_type); 920 return ENOTSUP; 921 } 922 break; 923 /* 6030 Series and 1030 Series */ 924 case IWN_DID_x030_1: 925 case IWN_DID_x030_2: 926 case IWN_DID_x030_3: 927 case IWN_DID_x030_4: 928 switch(sc->subdevice_id) { 929 case IWN_SDID_x030_1: 930 case IWN_SDID_x030_3: 931 case IWN_SDID_x030_5: 932 // iwl1030_bgn_cfg 933 case IWN_SDID_x030_2: 934 case IWN_SDID_x030_4: 935 case IWN_SDID_x030_6: 936 //iwl1030_bg_cfg 937 case IWN_SDID_x030_7: 938 case IWN_SDID_x030_10: 939 case IWN_SDID_x030_14: 940 //iwl6030_2agn_cfg 941 case IWN_SDID_x030_8: 942 case IWN_SDID_x030_11: 943 case IWN_SDID_x030_15: 944 // iwl6030_2bgn_cfg 945 case IWN_SDID_x030_9: 946 case IWN_SDID_x030_12: 947 case IWN_SDID_x030_16: 948 // iwl6030_2abg_cfg 949 case IWN_SDID_x030_13: 950 //iwl6030_2bg_cfg 951 sc->fwname = "iwn6000g2bfw"; 952 sc->limits = &iwn6000_sensitivity_limits; 953 sc->base_params = &iwn_6000g2b_base_params; 954 break; 955 default: 956 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 957 "0x%04x rev %d not supported (subdevice)\n", pid, 958 sc->subdevice_id,sc->hw_type); 959 return ENOTSUP; 960 } 961 break; 962 /* 130 Series WiFi */ 963 /* XXX: This series will need adjustment for rate. 964 * see rx_with_siso_diversity in linux kernel 965 */ 966 case IWN_DID_130_1: 967 case IWN_DID_130_2: 968 switch(sc->subdevice_id) { 969 case IWN_SDID_130_1: 970 case IWN_SDID_130_3: 971 case IWN_SDID_130_5: 972 //iwl130_bgn_cfg 973 case IWN_SDID_130_2: 974 case IWN_SDID_130_4: 975 case IWN_SDID_130_6: 976 //iwl130_bg_cfg 977 sc->fwname = "iwn6000g2bfw"; 978 sc->limits = &iwn6000_sensitivity_limits; 979 sc->base_params = &iwn_6000g2b_base_params; 980 break; 981 default: 982 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 983 "0x%04x rev %d not supported (subdevice)\n", pid, 984 sc->subdevice_id,sc->hw_type); 985 return ENOTSUP; 986 } 987 break; 988 /* 100 Series WiFi */ 989 case IWN_DID_100_1: 990 case IWN_DID_100_2: 991 switch(sc->subdevice_id) { 992 case IWN_SDID_100_1: 993 case IWN_SDID_100_2: 994 case IWN_SDID_100_3: 995 case IWN_SDID_100_4: 996 case IWN_SDID_100_5: 997 case IWN_SDID_100_6: 998 sc->limits = &iwn1000_sensitivity_limits; 999 sc->base_params = &iwn1000_base_params; 1000 sc->fwname = "iwn100fw"; 1001 break; 1002 default: 1003 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1004 "0x%04x rev %d not supported (subdevice)\n", pid, 1005 sc->subdevice_id,sc->hw_type); 1006 return ENOTSUP; 1007 } 1008 break; 1009 1010 /* 105 Series */ 1011 /* XXX: This series will need adjustment for rate. 1012 * see rx_with_siso_diversity in linux kernel 1013 */ 1014 case IWN_DID_105_1: 1015 case IWN_DID_105_2: 1016 switch(sc->subdevice_id) { 1017 case IWN_SDID_105_1: 1018 case IWN_SDID_105_2: 1019 case IWN_SDID_105_3: 1020 //iwl105_bgn_cfg 1021 case IWN_SDID_105_4: 1022 //iwl105_bgn_d_cfg 1023 sc->limits = &iwn2030_sensitivity_limits; 1024 sc->base_params = &iwn2000_base_params; 1025 sc->fwname = "iwn105fw"; 1026 break; 1027 default: 1028 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1029 "0x%04x rev %d not supported (subdevice)\n", pid, 1030 sc->subdevice_id,sc->hw_type); 1031 return ENOTSUP; 1032 } 1033 break; 1034 1035 /* 135 Series */ 1036 /* XXX: This series will need adjustment for rate. 1037 * see rx_with_siso_diversity in linux kernel 1038 */ 1039 case IWN_DID_135_1: 1040 case IWN_DID_135_2: 1041 switch(sc->subdevice_id) { 1042 case IWN_SDID_135_1: 1043 case IWN_SDID_135_2: 1044 case IWN_SDID_135_3: 1045 sc->limits = &iwn2030_sensitivity_limits; 1046 sc->base_params = &iwn2030_base_params; 1047 sc->fwname = "iwn135fw"; 1048 break; 1049 default: 1050 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1051 "0x%04x rev %d not supported (subdevice)\n", pid, 1052 sc->subdevice_id,sc->hw_type); 1053 return ENOTSUP; 1054 } 1055 break; 1056 1057 /* 2x00 Series */ 1058 case IWN_DID_2x00_1: 1059 case IWN_DID_2x00_2: 1060 switch(sc->subdevice_id) { 1061 case IWN_SDID_2x00_1: 1062 case IWN_SDID_2x00_2: 1063 case IWN_SDID_2x00_3: 1064 //iwl2000_2bgn_cfg 1065 case IWN_SDID_2x00_4: 1066 //iwl2000_2bgn_d_cfg 1067 sc->limits = &iwn2030_sensitivity_limits; 1068 sc->base_params = &iwn2000_base_params; 1069 sc->fwname = "iwn2000fw"; 1070 break; 1071 default: 1072 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1073 "0x%04x rev %d not supported (subdevice) \n", 1074 pid, sc->subdevice_id, sc->hw_type); 1075 return ENOTSUP; 1076 } 1077 break; 1078 /* 2x30 Series */ 1079 case IWN_DID_2x30_1: 1080 case IWN_DID_2x30_2: 1081 switch(sc->subdevice_id) { 1082 case IWN_SDID_2x30_1: 1083 case IWN_SDID_2x30_3: 1084 case IWN_SDID_2x30_5: 1085 //iwl100_bgn_cfg 1086 case IWN_SDID_2x30_2: 1087 case IWN_SDID_2x30_4: 1088 case IWN_SDID_2x30_6: 1089 //iwl100_bg_cfg 1090 sc->limits = &iwn2030_sensitivity_limits; 1091 sc->base_params = &iwn2030_base_params; 1092 sc->fwname = "iwn2030fw"; 1093 break; 1094 default: 1095 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1096 "0x%04x rev %d not supported (subdevice)\n", pid, 1097 sc->subdevice_id,sc->hw_type); 1098 return ENOTSUP; 1099 } 1100 break; 1101 /* 5x00 Series */ 1102 case IWN_DID_5x00_1: 1103 case IWN_DID_5x00_2: 1104 case IWN_DID_5x00_3: 1105 case IWN_DID_5x00_4: 1106 sc->limits = &iwn5000_sensitivity_limits; 1107 sc->base_params = &iwn5000_base_params; 1108 sc->fwname = "iwn5000fw"; 1109 switch(sc->subdevice_id) { 1110 case IWN_SDID_5x00_1: 1111 case IWN_SDID_5x00_2: 1112 case IWN_SDID_5x00_3: 1113 case IWN_SDID_5x00_4: 1114 case IWN_SDID_5x00_9: 1115 case IWN_SDID_5x00_10: 1116 case IWN_SDID_5x00_11: 1117 case IWN_SDID_5x00_12: 1118 case IWN_SDID_5x00_17: 1119 case IWN_SDID_5x00_18: 1120 case IWN_SDID_5x00_19: 1121 case IWN_SDID_5x00_20: 1122 //iwl5100_agn_cfg 1123 sc->txchainmask = IWN_ANT_B; 1124 sc->rxchainmask = IWN_ANT_AB; 1125 break; 1126 case IWN_SDID_5x00_5: 1127 case IWN_SDID_5x00_6: 1128 case IWN_SDID_5x00_13: 1129 case IWN_SDID_5x00_14: 1130 case IWN_SDID_5x00_21: 1131 case IWN_SDID_5x00_22: 1132 //iwl5100_bgn_cfg 1133 sc->txchainmask = IWN_ANT_B; 1134 sc->rxchainmask = IWN_ANT_AB; 1135 break; 1136 case IWN_SDID_5x00_7: 1137 case IWN_SDID_5x00_8: 1138 case IWN_SDID_5x00_15: 1139 case IWN_SDID_5x00_16: 1140 case IWN_SDID_5x00_23: 1141 case IWN_SDID_5x00_24: 1142 //iwl5100_abg_cfg 1143 sc->txchainmask = IWN_ANT_B; 1144 sc->rxchainmask = IWN_ANT_AB; 1145 break; 1146 case IWN_SDID_5x00_25: 1147 case IWN_SDID_5x00_26: 1148 case IWN_SDID_5x00_27: 1149 case IWN_SDID_5x00_28: 1150 case IWN_SDID_5x00_29: 1151 case IWN_SDID_5x00_30: 1152 case IWN_SDID_5x00_31: 1153 case IWN_SDID_5x00_32: 1154 case IWN_SDID_5x00_33: 1155 case IWN_SDID_5x00_34: 1156 case IWN_SDID_5x00_35: 1157 case IWN_SDID_5x00_36: 1158 //iwl5300_agn_cfg 1159 sc->txchainmask = IWN_ANT_ABC; 1160 sc->rxchainmask = IWN_ANT_ABC; 1161 break; 1162 default: 1163 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1164 "0x%04x rev %d not supported (subdevice)\n", pid, 1165 sc->subdevice_id,sc->hw_type); 1166 return ENOTSUP; 1167 } 1168 break; 1169 /* 5x50 Series */ 1170 case IWN_DID_5x50_1: 1171 case IWN_DID_5x50_2: 1172 case IWN_DID_5x50_3: 1173 case IWN_DID_5x50_4: 1174 sc->limits = &iwn5000_sensitivity_limits; 1175 sc->base_params = &iwn5000_base_params; 1176 sc->fwname = "iwn5000fw"; 1177 switch(sc->subdevice_id) { 1178 case IWN_SDID_5x50_1: 1179 case IWN_SDID_5x50_2: 1180 case IWN_SDID_5x50_3: 1181 //iwl5350_agn_cfg 1182 sc->limits = &iwn5000_sensitivity_limits; 1183 sc->base_params = &iwn5000_base_params; 1184 sc->fwname = "iwn5000fw"; 1185 break; 1186 case IWN_SDID_5x50_4: 1187 case IWN_SDID_5x50_5: 1188 case IWN_SDID_5x50_8: 1189 case IWN_SDID_5x50_9: 1190 case IWN_SDID_5x50_10: 1191 case IWN_SDID_5x50_11: 1192 //iwl5150_agn_cfg 1193 case IWN_SDID_5x50_6: 1194 case IWN_SDID_5x50_7: 1195 case IWN_SDID_5x50_12: 1196 case IWN_SDID_5x50_13: 1197 //iwl5150_abg_cfg 1198 sc->limits = &iwn5000_sensitivity_limits; 1199 sc->fwname = "iwn5150fw"; 1200 sc->base_params = &iwn_5x50_base_params; 1201 break; 1202 default: 1203 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :" 1204 "0x%04x rev %d not supported (subdevice)\n", pid, 1205 sc->subdevice_id,sc->hw_type); 1206 return ENOTSUP; 1207 } 1208 break; 1209 default: 1210 device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x" 1211 "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id, 1212 sc->hw_type); 1213 return ENOTSUP; 1214 } 1215 return 0; 1216 } 1217 1218 static void 1219 iwn4965_attach(struct iwn_softc *sc, uint16_t pid) 1220 { 1221 struct iwn_ops *ops = &sc->ops; 1222 1223 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1224 1225 ops->load_firmware = iwn4965_load_firmware; 1226 ops->read_eeprom = iwn4965_read_eeprom; 1227 ops->post_alive = iwn4965_post_alive; 1228 ops->nic_config = iwn4965_nic_config; 1229 ops->update_sched = iwn4965_update_sched; 1230 ops->get_temperature = iwn4965_get_temperature; 1231 ops->get_rssi = iwn4965_get_rssi; 1232 ops->set_txpower = iwn4965_set_txpower; 1233 ops->init_gains = iwn4965_init_gains; 1234 ops->set_gains = iwn4965_set_gains; 1235 ops->rxon_assoc = iwn4965_rxon_assoc; 1236 ops->add_node = iwn4965_add_node; 1237 ops->tx_done = iwn4965_tx_done; 1238 ops->ampdu_tx_start = iwn4965_ampdu_tx_start; 1239 ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop; 1240 sc->ntxqs = IWN4965_NTXQUEUES; 1241 sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE; 1242 sc->ndmachnls = IWN4965_NDMACHNLS; 1243 sc->broadcast_id = IWN4965_ID_BROADCAST; 1244 sc->rxonsz = IWN4965_RXONSZ; 1245 sc->schedsz = IWN4965_SCHEDSZ; 1246 sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ; 1247 sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ; 1248 sc->fwsz = IWN4965_FWSZ; 1249 sc->sched_txfact_addr = IWN4965_SCHED_TXFACT; 1250 sc->limits = &iwn4965_sensitivity_limits; 1251 sc->fwname = "iwn4965fw"; 1252 /* Override chains masks, ROM is known to be broken. */ 1253 sc->txchainmask = IWN_ANT_AB; 1254 sc->rxchainmask = IWN_ANT_ABC; 1255 /* Enable normal btcoex */ 1256 sc->sc_flags |= IWN_FLAG_BTCOEX; 1257 1258 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1259 } 1260 1261 static void 1262 iwn5000_attach(struct iwn_softc *sc, uint16_t pid) 1263 { 1264 struct iwn_ops *ops = &sc->ops; 1265 1266 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1267 1268 ops->load_firmware = iwn5000_load_firmware; 1269 ops->read_eeprom = iwn5000_read_eeprom; 1270 ops->post_alive = iwn5000_post_alive; 1271 ops->nic_config = iwn5000_nic_config; 1272 ops->update_sched = iwn5000_update_sched; 1273 ops->get_temperature = iwn5000_get_temperature; 1274 ops->get_rssi = iwn5000_get_rssi; 1275 ops->set_txpower = iwn5000_set_txpower; 1276 ops->init_gains = iwn5000_init_gains; 1277 ops->set_gains = iwn5000_set_gains; 1278 ops->rxon_assoc = iwn5000_rxon_assoc; 1279 ops->add_node = iwn5000_add_node; 1280 ops->tx_done = iwn5000_tx_done; 1281 ops->ampdu_tx_start = iwn5000_ampdu_tx_start; 1282 ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop; 1283 sc->ntxqs = IWN5000_NTXQUEUES; 1284 sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE; 1285 sc->ndmachnls = IWN5000_NDMACHNLS; 1286 sc->broadcast_id = IWN5000_ID_BROADCAST; 1287 sc->rxonsz = IWN5000_RXONSZ; 1288 sc->schedsz = IWN5000_SCHEDSZ; 1289 sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ; 1290 sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ; 1291 sc->fwsz = IWN5000_FWSZ; 1292 sc->sched_txfact_addr = IWN5000_SCHED_TXFACT; 1293 sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; 1294 sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN; 1295 1296 DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__); 1297 } 1298 1299 /* 1300 * Attach the interface to 802.11 radiotap. 1301 */ 1302 static void 1303 iwn_radiotap_attach(struct iwn_softc *sc) 1304 { 1305 1306 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1307 ieee80211_radiotap_attach(&sc->sc_ic, 1308 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 1309 IWN_TX_RADIOTAP_PRESENT, 1310 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 1311 IWN_RX_RADIOTAP_PRESENT); 1312 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1313 } 1314 1315 static void 1316 iwn_sysctlattach(struct iwn_softc *sc) 1317 { 1318 #ifdef IWN_DEBUG 1319 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev); 1320 struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev); 1321 1322 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO, 1323 "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug, 1324 "control debugging printfs"); 1325 #endif 1326 } 1327 1328 static struct ieee80211vap * 1329 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1330 enum ieee80211_opmode opmode, int flags, 1331 const uint8_t bssid[IEEE80211_ADDR_LEN], 1332 const uint8_t mac[IEEE80211_ADDR_LEN]) 1333 { 1334 struct iwn_softc *sc = ic->ic_softc; 1335 struct iwn_vap *ivp; 1336 struct ieee80211vap *vap; 1337 1338 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */ 1339 return NULL; 1340 1341 ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO); 1342 vap = &ivp->iv_vap; 1343 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid); 1344 ivp->ctx = IWN_RXON_BSS_CTX; 1345 vap->iv_bmissthreshold = 10; /* override default */ 1346 /* Override with driver methods. */ 1347 ivp->iv_newstate = vap->iv_newstate; 1348 vap->iv_newstate = iwn_newstate; 1349 sc->ivap[IWN_RXON_BSS_CTX] = vap; 1350 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1351 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4; /* 4uS */ 1352 1353 ieee80211_ratectl_init(vap); 1354 /* Complete setup. */ 1355 ieee80211_vap_attach(vap, ieee80211_media_change, 1356 ieee80211_media_status, mac); 1357 ic->ic_opmode = opmode; 1358 return vap; 1359 } 1360 1361 static void 1362 iwn_vap_delete(struct ieee80211vap *vap) 1363 { 1364 struct iwn_vap *ivp = IWN_VAP(vap); 1365 1366 ieee80211_ratectl_deinit(vap); 1367 ieee80211_vap_detach(vap); 1368 free(ivp, M_80211_VAP); 1369 } 1370 1371 static void 1372 iwn_xmit_queue_drain(struct iwn_softc *sc) 1373 { 1374 struct mbuf *m; 1375 struct ieee80211_node *ni; 1376 1377 IWN_LOCK_ASSERT(sc); 1378 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 1379 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 1380 ieee80211_free_node(ni); 1381 m_freem(m); 1382 } 1383 } 1384 1385 static int 1386 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m) 1387 { 1388 1389 IWN_LOCK_ASSERT(sc); 1390 return (mbufq_enqueue(&sc->sc_xmit_queue, m)); 1391 } 1392 1393 static int 1394 iwn_detach(device_t dev) 1395 { 1396 struct iwn_softc *sc = device_get_softc(dev); 1397 int qid; 1398 1399 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1400 1401 if (sc->sc_ic.ic_softc != NULL) { 1402 /* Free the mbuf queue and node references */ 1403 IWN_LOCK(sc); 1404 iwn_xmit_queue_drain(sc); 1405 IWN_UNLOCK(sc); 1406 1407 iwn_stop(sc); 1408 1409 taskqueue_drain_all(sc->sc_tq); 1410 taskqueue_free(sc->sc_tq); 1411 1412 callout_drain(&sc->watchdog_to); 1413 callout_drain(&sc->scan_timeout); 1414 callout_drain(&sc->calib_to); 1415 ieee80211_ifdetach(&sc->sc_ic); 1416 } 1417 1418 /* Uninstall interrupt handler. */ 1419 if (sc->irq != NULL) { 1420 bus_teardown_intr(dev, sc->irq, sc->sc_ih); 1421 bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq), 1422 sc->irq); 1423 pci_release_msi(dev); 1424 } 1425 1426 /* Free DMA resources. */ 1427 iwn_free_rx_ring(sc, &sc->rxq); 1428 for (qid = 0; qid < sc->ntxqs; qid++) 1429 iwn_free_tx_ring(sc, &sc->txq[qid]); 1430 iwn_free_sched(sc); 1431 iwn_free_kw(sc); 1432 if (sc->ict != NULL) 1433 iwn_free_ict(sc); 1434 iwn_free_fwmem(sc); 1435 1436 if (sc->mem != NULL) 1437 bus_release_resource(dev, SYS_RES_MEMORY, 1438 rman_get_rid(sc->mem), sc->mem); 1439 1440 if (sc->sc_cdev) { 1441 destroy_dev(sc->sc_cdev); 1442 sc->sc_cdev = NULL; 1443 } 1444 1445 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__); 1446 IWN_LOCK_DESTROY(sc); 1447 return 0; 1448 } 1449 1450 static int 1451 iwn_shutdown(device_t dev) 1452 { 1453 struct iwn_softc *sc = device_get_softc(dev); 1454 1455 iwn_stop(sc); 1456 return 0; 1457 } 1458 1459 static int 1460 iwn_suspend(device_t dev) 1461 { 1462 struct iwn_softc *sc = device_get_softc(dev); 1463 1464 ieee80211_suspend_all(&sc->sc_ic); 1465 return 0; 1466 } 1467 1468 static int 1469 iwn_resume(device_t dev) 1470 { 1471 struct iwn_softc *sc = device_get_softc(dev); 1472 1473 /* Clear device-specific "PCI retry timeout" register (41h). */ 1474 pci_write_config(dev, 0x41, 0, 1); 1475 1476 ieee80211_resume_all(&sc->sc_ic); 1477 return 0; 1478 } 1479 1480 static int 1481 iwn_nic_lock(struct iwn_softc *sc) 1482 { 1483 int ntries; 1484 1485 /* Request exclusive access to NIC. */ 1486 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1487 1488 /* Spin until we actually get the lock. */ 1489 for (ntries = 0; ntries < 1000; ntries++) { 1490 if ((IWN_READ(sc, IWN_GP_CNTRL) & 1491 (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == 1492 IWN_GP_CNTRL_MAC_ACCESS_ENA) 1493 return 0; 1494 DELAY(10); 1495 } 1496 return ETIMEDOUT; 1497 } 1498 1499 static __inline void 1500 iwn_nic_unlock(struct iwn_softc *sc) 1501 { 1502 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); 1503 } 1504 1505 static __inline uint32_t 1506 iwn_prph_read(struct iwn_softc *sc, uint32_t addr) 1507 { 1508 IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); 1509 IWN_BARRIER_READ_WRITE(sc); 1510 return IWN_READ(sc, IWN_PRPH_RDATA); 1511 } 1512 1513 static __inline void 1514 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1515 { 1516 IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); 1517 IWN_BARRIER_WRITE(sc); 1518 IWN_WRITE(sc, IWN_PRPH_WDATA, data); 1519 } 1520 1521 static __inline void 1522 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1523 { 1524 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); 1525 } 1526 1527 static __inline void 1528 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) 1529 { 1530 iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); 1531 } 1532 1533 static __inline void 1534 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, 1535 const uint32_t *data, int count) 1536 { 1537 for (; count > 0; count--, data++, addr += 4) 1538 iwn_prph_write(sc, addr, *data); 1539 } 1540 1541 static __inline uint32_t 1542 iwn_mem_read(struct iwn_softc *sc, uint32_t addr) 1543 { 1544 IWN_WRITE(sc, IWN_MEM_RADDR, addr); 1545 IWN_BARRIER_READ_WRITE(sc); 1546 return IWN_READ(sc, IWN_MEM_RDATA); 1547 } 1548 1549 static __inline void 1550 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) 1551 { 1552 IWN_WRITE(sc, IWN_MEM_WADDR, addr); 1553 IWN_BARRIER_WRITE(sc); 1554 IWN_WRITE(sc, IWN_MEM_WDATA, data); 1555 } 1556 1557 static __inline void 1558 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) 1559 { 1560 uint32_t tmp; 1561 1562 tmp = iwn_mem_read(sc, addr & ~3); 1563 if (addr & 3) 1564 tmp = (tmp & 0x0000ffff) | data << 16; 1565 else 1566 tmp = (tmp & 0xffff0000) | data; 1567 iwn_mem_write(sc, addr & ~3, tmp); 1568 } 1569 1570 static __inline void 1571 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, 1572 int count) 1573 { 1574 for (; count > 0; count--, addr += 4) 1575 *data++ = iwn_mem_read(sc, addr); 1576 } 1577 1578 static __inline void 1579 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, 1580 int count) 1581 { 1582 for (; count > 0; count--, addr += 4) 1583 iwn_mem_write(sc, addr, val); 1584 } 1585 1586 static int 1587 iwn_eeprom_lock(struct iwn_softc *sc) 1588 { 1589 int i, ntries; 1590 1591 for (i = 0; i < 100; i++) { 1592 /* Request exclusive access to EEPROM. */ 1593 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 1594 IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1595 1596 /* Spin until we actually get the lock. */ 1597 for (ntries = 0; ntries < 100; ntries++) { 1598 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 1599 IWN_HW_IF_CONFIG_EEPROM_LOCKED) 1600 return 0; 1601 DELAY(10); 1602 } 1603 } 1604 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__); 1605 return ETIMEDOUT; 1606 } 1607 1608 static __inline void 1609 iwn_eeprom_unlock(struct iwn_softc *sc) 1610 { 1611 IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); 1612 } 1613 1614 /* 1615 * Initialize access by host to One Time Programmable ROM. 1616 * NB: This kind of ROM can be found on 1000 or 6000 Series only. 1617 */ 1618 static int 1619 iwn_init_otprom(struct iwn_softc *sc) 1620 { 1621 uint16_t prev, base, next; 1622 int count, error; 1623 1624 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1625 1626 /* Wait for clock stabilization before accessing prph. */ 1627 if ((error = iwn_clock_wait(sc)) != 0) 1628 return error; 1629 1630 if ((error = iwn_nic_lock(sc)) != 0) 1631 return error; 1632 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1633 DELAY(5); 1634 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); 1635 iwn_nic_unlock(sc); 1636 1637 /* Set auto clock gate disable bit for HW with OTP shadow RAM. */ 1638 if (sc->base_params->shadow_ram_support) { 1639 IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT, 1640 IWN_RESET_LINK_PWR_MGMT_DIS); 1641 } 1642 IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); 1643 /* Clear ECC status. */ 1644 IWN_SETBITS(sc, IWN_OTP_GP, 1645 IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); 1646 1647 /* 1648 * Find the block before last block (contains the EEPROM image) 1649 * for HW without OTP shadow RAM. 1650 */ 1651 if (! sc->base_params->shadow_ram_support) { 1652 /* Switch to absolute addressing mode. */ 1653 IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS); 1654 base = prev = 0; 1655 for (count = 0; count < sc->base_params->max_ll_items; 1656 count++) { 1657 error = iwn_read_prom_data(sc, base, &next, 2); 1658 if (error != 0) 1659 return error; 1660 if (next == 0) /* End of linked-list. */ 1661 break; 1662 prev = base; 1663 base = le16toh(next); 1664 } 1665 if (count == 0 || count == sc->base_params->max_ll_items) 1666 return EIO; 1667 /* Skip "next" word. */ 1668 sc->prom_base = prev + 1; 1669 } 1670 1671 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1672 1673 return 0; 1674 } 1675 1676 static int 1677 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) 1678 { 1679 uint8_t *out = data; 1680 uint32_t val, tmp; 1681 int ntries; 1682 1683 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1684 1685 addr += sc->prom_base; 1686 for (; count > 0; count -= 2, addr++) { 1687 IWN_WRITE(sc, IWN_EEPROM, addr << 2); 1688 for (ntries = 0; ntries < 20; ntries++) { 1689 val = IWN_READ(sc, IWN_EEPROM); 1690 if (val & IWN_EEPROM_READ_VALID) 1691 break; 1692 DELAY(5); 1693 } 1694 if (ntries == 20) { 1695 device_printf(sc->sc_dev, 1696 "timeout reading ROM at 0x%x\n", addr); 1697 return ETIMEDOUT; 1698 } 1699 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 1700 /* OTPROM, check for ECC errors. */ 1701 tmp = IWN_READ(sc, IWN_OTP_GP); 1702 if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { 1703 device_printf(sc->sc_dev, 1704 "OTPROM ECC error at 0x%x\n", addr); 1705 return EIO; 1706 } 1707 if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { 1708 /* Correctable ECC error, clear bit. */ 1709 IWN_SETBITS(sc, IWN_OTP_GP, 1710 IWN_OTP_GP_ECC_CORR_STTS); 1711 } 1712 } 1713 *out++ = val >> 16; 1714 if (count > 1) 1715 *out++ = val >> 24; 1716 } 1717 1718 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 1719 1720 return 0; 1721 } 1722 1723 static void 1724 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1725 { 1726 if (error != 0) 1727 return; 1728 KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs)); 1729 *(bus_addr_t *)arg = segs[0].ds_addr; 1730 } 1731 1732 static int 1733 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma, 1734 void **kvap, bus_size_t size, bus_size_t alignment) 1735 { 1736 int error; 1737 1738 dma->tag = NULL; 1739 dma->size = size; 1740 1741 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment, 1742 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size, 1743 1, size, 0, NULL, NULL, &dma->tag); 1744 if (error != 0) 1745 goto fail; 1746 1747 error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr, 1748 BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map); 1749 if (error != 0) 1750 goto fail; 1751 1752 error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size, 1753 iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT); 1754 if (error != 0) 1755 goto fail; 1756 1757 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 1758 1759 if (kvap != NULL) 1760 *kvap = dma->vaddr; 1761 1762 return 0; 1763 1764 fail: iwn_dma_contig_free(dma); 1765 return error; 1766 } 1767 1768 static void 1769 iwn_dma_contig_free(struct iwn_dma_info *dma) 1770 { 1771 if (dma->vaddr != NULL) { 1772 bus_dmamap_sync(dma->tag, dma->map, 1773 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1774 bus_dmamap_unload(dma->tag, dma->map); 1775 bus_dmamem_free(dma->tag, dma->vaddr, dma->map); 1776 dma->vaddr = NULL; 1777 } 1778 if (dma->tag != NULL) { 1779 bus_dma_tag_destroy(dma->tag); 1780 dma->tag = NULL; 1781 } 1782 } 1783 1784 static int 1785 iwn_alloc_sched(struct iwn_softc *sc) 1786 { 1787 /* TX scheduler rings must be aligned on a 1KB boundary. */ 1788 return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched, 1789 sc->schedsz, 1024); 1790 } 1791 1792 static void 1793 iwn_free_sched(struct iwn_softc *sc) 1794 { 1795 iwn_dma_contig_free(&sc->sched_dma); 1796 } 1797 1798 static int 1799 iwn_alloc_kw(struct iwn_softc *sc) 1800 { 1801 /* "Keep Warm" page must be aligned on a 4KB boundary. */ 1802 return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096); 1803 } 1804 1805 static void 1806 iwn_free_kw(struct iwn_softc *sc) 1807 { 1808 iwn_dma_contig_free(&sc->kw_dma); 1809 } 1810 1811 static int 1812 iwn_alloc_ict(struct iwn_softc *sc) 1813 { 1814 /* ICT table must be aligned on a 4KB boundary. */ 1815 return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict, 1816 IWN_ICT_SIZE, 4096); 1817 } 1818 1819 static void 1820 iwn_free_ict(struct iwn_softc *sc) 1821 { 1822 iwn_dma_contig_free(&sc->ict_dma); 1823 } 1824 1825 static int 1826 iwn_alloc_fwmem(struct iwn_softc *sc) 1827 { 1828 /* Must be aligned on a 16-byte boundary. */ 1829 return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16); 1830 } 1831 1832 static void 1833 iwn_free_fwmem(struct iwn_softc *sc) 1834 { 1835 iwn_dma_contig_free(&sc->fw_dma); 1836 } 1837 1838 static int 1839 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1840 { 1841 bus_size_t size; 1842 int i, error; 1843 1844 ring->cur = 0; 1845 1846 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1847 1848 /* Allocate RX descriptors (256-byte aligned). */ 1849 size = IWN_RX_RING_COUNT * sizeof (uint32_t); 1850 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 1851 size, 256); 1852 if (error != 0) { 1853 device_printf(sc->sc_dev, 1854 "%s: could not allocate RX ring DMA memory, error %d\n", 1855 __func__, error); 1856 goto fail; 1857 } 1858 1859 /* Allocate RX status area (16-byte aligned). */ 1860 error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat, 1861 sizeof (struct iwn_rx_status), 16); 1862 if (error != 0) { 1863 device_printf(sc->sc_dev, 1864 "%s: could not allocate RX status DMA memory, error %d\n", 1865 __func__, error); 1866 goto fail; 1867 } 1868 1869 /* Create RX buffer DMA tag. */ 1870 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 1871 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 1872 IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat); 1873 if (error != 0) { 1874 device_printf(sc->sc_dev, 1875 "%s: could not create RX buf DMA tag, error %d\n", 1876 __func__, error); 1877 goto fail; 1878 } 1879 1880 /* 1881 * Allocate and map RX buffers. 1882 */ 1883 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1884 struct iwn_rx_data *data = &ring->data[i]; 1885 bus_addr_t paddr; 1886 1887 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 1888 if (error != 0) { 1889 device_printf(sc->sc_dev, 1890 "%s: could not create RX buf DMA map, error %d\n", 1891 __func__, error); 1892 goto fail; 1893 } 1894 1895 data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, 1896 IWN_RBUF_SIZE); 1897 if (data->m == NULL) { 1898 device_printf(sc->sc_dev, 1899 "%s: could not allocate RX mbuf\n", __func__); 1900 error = ENOBUFS; 1901 goto fail; 1902 } 1903 1904 error = bus_dmamap_load(ring->data_dmat, data->map, 1905 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 1906 &paddr, BUS_DMA_NOWAIT); 1907 if (error != 0 && error != EFBIG) { 1908 device_printf(sc->sc_dev, 1909 "%s: can't map mbuf, error %d\n", __func__, 1910 error); 1911 goto fail; 1912 } 1913 1914 bus_dmamap_sync(ring->data_dmat, data->map, 1915 BUS_DMASYNC_PREREAD); 1916 1917 /* Set physical address of RX buffer (256-byte aligned). */ 1918 ring->desc[i] = htole32(paddr >> 8); 1919 } 1920 1921 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 1922 BUS_DMASYNC_PREWRITE); 1923 1924 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 1925 1926 return 0; 1927 1928 fail: iwn_free_rx_ring(sc, ring); 1929 1930 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 1931 1932 return error; 1933 } 1934 1935 static void 1936 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1937 { 1938 int ntries; 1939 1940 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 1941 1942 if (iwn_nic_lock(sc) == 0) { 1943 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 1944 for (ntries = 0; ntries < 1000; ntries++) { 1945 if (IWN_READ(sc, IWN_FH_RX_STATUS) & 1946 IWN_FH_RX_STATUS_IDLE) 1947 break; 1948 DELAY(10); 1949 } 1950 iwn_nic_unlock(sc); 1951 } 1952 ring->cur = 0; 1953 sc->last_rx_valid = 0; 1954 } 1955 1956 static void 1957 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) 1958 { 1959 int i; 1960 1961 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 1962 1963 iwn_dma_contig_free(&ring->desc_dma); 1964 iwn_dma_contig_free(&ring->stat_dma); 1965 1966 for (i = 0; i < IWN_RX_RING_COUNT; i++) { 1967 struct iwn_rx_data *data = &ring->data[i]; 1968 1969 if (data->m != NULL) { 1970 bus_dmamap_sync(ring->data_dmat, data->map, 1971 BUS_DMASYNC_POSTREAD); 1972 bus_dmamap_unload(ring->data_dmat, data->map); 1973 m_freem(data->m); 1974 data->m = NULL; 1975 } 1976 if (data->map != NULL) 1977 bus_dmamap_destroy(ring->data_dmat, data->map); 1978 } 1979 if (ring->data_dmat != NULL) { 1980 bus_dma_tag_destroy(ring->data_dmat); 1981 ring->data_dmat = NULL; 1982 } 1983 } 1984 1985 static int 1986 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) 1987 { 1988 bus_addr_t paddr; 1989 bus_size_t size; 1990 int i, error; 1991 1992 ring->qid = qid; 1993 ring->queued = 0; 1994 ring->cur = 0; 1995 1996 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 1997 1998 /* Allocate TX descriptors (256-byte aligned). */ 1999 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); 2000 error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc, 2001 size, 256); 2002 if (error != 0) { 2003 device_printf(sc->sc_dev, 2004 "%s: could not allocate TX ring DMA memory, error %d\n", 2005 __func__, error); 2006 goto fail; 2007 } 2008 2009 size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); 2010 error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd, 2011 size, 4); 2012 if (error != 0) { 2013 device_printf(sc->sc_dev, 2014 "%s: could not allocate TX cmd DMA memory, error %d\n", 2015 __func__, error); 2016 goto fail; 2017 } 2018 2019 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 2020 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 2021 IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 2022 if (error != 0) { 2023 device_printf(sc->sc_dev, 2024 "%s: could not create TX buf DMA tag, error %d\n", 2025 __func__, error); 2026 goto fail; 2027 } 2028 2029 paddr = ring->cmd_dma.paddr; 2030 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2031 struct iwn_tx_data *data = &ring->data[i]; 2032 2033 data->cmd_paddr = paddr; 2034 data->scratch_paddr = paddr + 12; 2035 paddr += sizeof (struct iwn_tx_cmd); 2036 2037 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 2038 if (error != 0) { 2039 device_printf(sc->sc_dev, 2040 "%s: could not create TX buf DMA map, error %d\n", 2041 __func__, error); 2042 goto fail; 2043 } 2044 } 2045 2046 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2047 2048 return 0; 2049 2050 fail: iwn_free_tx_ring(sc, ring); 2051 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2052 return error; 2053 } 2054 2055 static void 2056 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2057 { 2058 int i; 2059 2060 DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__); 2061 2062 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2063 struct iwn_tx_data *data = &ring->data[i]; 2064 2065 if (data->m != NULL) { 2066 bus_dmamap_sync(ring->data_dmat, data->map, 2067 BUS_DMASYNC_POSTWRITE); 2068 bus_dmamap_unload(ring->data_dmat, data->map); 2069 m_freem(data->m); 2070 data->m = NULL; 2071 } 2072 if (data->ni != NULL) { 2073 ieee80211_free_node(data->ni); 2074 data->ni = NULL; 2075 } 2076 data->remapped = 0; 2077 data->long_retries = 0; 2078 } 2079 /* Clear TX descriptors. */ 2080 memset(ring->desc, 0, ring->desc_dma.size); 2081 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 2082 BUS_DMASYNC_PREWRITE); 2083 sc->qfullmsk &= ~(1 << ring->qid); 2084 ring->queued = 0; 2085 ring->cur = 0; 2086 } 2087 2088 static void 2089 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) 2090 { 2091 int i; 2092 2093 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__); 2094 2095 iwn_dma_contig_free(&ring->desc_dma); 2096 iwn_dma_contig_free(&ring->cmd_dma); 2097 2098 for (i = 0; i < IWN_TX_RING_COUNT; i++) { 2099 struct iwn_tx_data *data = &ring->data[i]; 2100 2101 if (data->m != NULL) { 2102 bus_dmamap_sync(ring->data_dmat, data->map, 2103 BUS_DMASYNC_POSTWRITE); 2104 bus_dmamap_unload(ring->data_dmat, data->map); 2105 m_freem(data->m); 2106 } 2107 if (data->map != NULL) 2108 bus_dmamap_destroy(ring->data_dmat, data->map); 2109 } 2110 if (ring->data_dmat != NULL) { 2111 bus_dma_tag_destroy(ring->data_dmat); 2112 ring->data_dmat = NULL; 2113 } 2114 } 2115 2116 static void 2117 iwn_check_tx_ring(struct iwn_softc *sc, int qid) 2118 { 2119 struct iwn_tx_ring *ring = &sc->txq[qid]; 2120 2121 KASSERT(ring->queued >= 0, ("%s: ring->queued (%d) for queue %d < 0!", 2122 __func__, ring->queued, qid)); 2123 2124 if (qid >= sc->firstaggqueue) { 2125 struct iwn_ops *ops = &sc->ops; 2126 struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid]; 2127 2128 if (ring->queued == 0 && !IEEE80211_AMPDU_RUNNING(tap)) { 2129 uint16_t ssn = tap->txa_start & 0xfff; 2130 uint8_t tid = tap->txa_tid; 2131 int *res = tap->txa_private; 2132 2133 iwn_nic_lock(sc); 2134 ops->ampdu_tx_stop(sc, qid, tid, ssn); 2135 iwn_nic_unlock(sc); 2136 2137 sc->qid2tap[qid] = NULL; 2138 free(res, M_DEVBUF); 2139 } 2140 } 2141 2142 if (ring->queued < IWN_TX_RING_LOMARK) { 2143 sc->qfullmsk &= ~(1 << qid); 2144 2145 if (ring->queued == 0) 2146 sc->sc_tx_timer = 0; 2147 else 2148 sc->sc_tx_timer = 5; 2149 } 2150 } 2151 2152 static void 2153 iwn5000_ict_reset(struct iwn_softc *sc) 2154 { 2155 /* Disable interrupts. */ 2156 IWN_WRITE(sc, IWN_INT_MASK, 0); 2157 2158 /* Reset ICT table. */ 2159 memset(sc->ict, 0, IWN_ICT_SIZE); 2160 sc->ict_cur = 0; 2161 2162 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, 2163 BUS_DMASYNC_PREWRITE); 2164 2165 /* Set physical address of ICT table (4KB aligned). */ 2166 DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__); 2167 IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE | 2168 IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12); 2169 2170 /* Enable periodic RX interrupt. */ 2171 sc->int_mask |= IWN_INT_RX_PERIODIC; 2172 /* Switch to ICT interrupt mode in driver. */ 2173 sc->sc_flags |= IWN_FLAG_USE_ICT; 2174 2175 /* Re-enable interrupts. */ 2176 IWN_WRITE(sc, IWN_INT, 0xffffffff); 2177 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 2178 } 2179 2180 static int 2181 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN]) 2182 { 2183 struct iwn_ops *ops = &sc->ops; 2184 uint16_t val; 2185 int error; 2186 2187 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2188 2189 /* Check whether adapter has an EEPROM or an OTPROM. */ 2190 if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && 2191 (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) 2192 sc->sc_flags |= IWN_FLAG_HAS_OTPROM; 2193 DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n", 2194 (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM"); 2195 2196 /* Adapter has to be powered on for EEPROM access to work. */ 2197 if ((error = iwn_apm_init(sc)) != 0) { 2198 device_printf(sc->sc_dev, 2199 "%s: could not power ON adapter, error %d\n", __func__, 2200 error); 2201 return error; 2202 } 2203 2204 if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { 2205 device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__); 2206 return EIO; 2207 } 2208 if ((error = iwn_eeprom_lock(sc)) != 0) { 2209 device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n", 2210 __func__, error); 2211 return error; 2212 } 2213 if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { 2214 if ((error = iwn_init_otprom(sc)) != 0) { 2215 device_printf(sc->sc_dev, 2216 "%s: could not initialize OTPROM, error %d\n", 2217 __func__, error); 2218 return error; 2219 } 2220 } 2221 2222 iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2); 2223 DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val)); 2224 /* Check if HT support is bonded out. */ 2225 if (val & htole16(IWN_EEPROM_SKU_CAP_11N)) 2226 sc->sc_flags |= IWN_FLAG_HAS_11N; 2227 2228 iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); 2229 sc->rfcfg = le16toh(val); 2230 DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg); 2231 /* Read Tx/Rx chains from ROM unless it's known to be broken. */ 2232 if (sc->txchainmask == 0) 2233 sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg); 2234 if (sc->rxchainmask == 0) 2235 sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg); 2236 2237 /* Read MAC address. */ 2238 iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6); 2239 2240 /* Read adapter-specific information from EEPROM. */ 2241 ops->read_eeprom(sc); 2242 2243 iwn_apm_stop(sc); /* Power OFF adapter. */ 2244 2245 iwn_eeprom_unlock(sc); 2246 2247 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2248 2249 return 0; 2250 } 2251 2252 static void 2253 iwn4965_read_eeprom(struct iwn_softc *sc) 2254 { 2255 uint32_t addr; 2256 uint16_t val; 2257 int i; 2258 2259 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2260 2261 /* Read regulatory domain (4 ASCII characters). */ 2262 iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); 2263 2264 /* Read the list of authorized channels (20MHz & 40MHz). */ 2265 for (i = 0; i < IWN_NBANDS - 1; i++) { 2266 addr = iwn4965_regulatory_bands[i]; 2267 iwn_read_eeprom_channels(sc, i, addr); 2268 } 2269 2270 /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ 2271 iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); 2272 sc->maxpwr2GHz = val & 0xff; 2273 sc->maxpwr5GHz = val >> 8; 2274 /* Check that EEPROM values are within valid range. */ 2275 if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) 2276 sc->maxpwr5GHz = 38; 2277 if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) 2278 sc->maxpwr2GHz = 38; 2279 DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n", 2280 sc->maxpwr2GHz, sc->maxpwr5GHz); 2281 2282 /* Read samples for each TX power group. */ 2283 iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, 2284 sizeof sc->bands); 2285 2286 /* Read voltage at which samples were taken. */ 2287 iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); 2288 sc->eeprom_voltage = (int16_t)le16toh(val); 2289 DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n", 2290 sc->eeprom_voltage); 2291 2292 #ifdef IWN_DEBUG 2293 /* Print samples. */ 2294 if (sc->sc_debug & IWN_DEBUG_ANY) { 2295 for (i = 0; i < IWN_NBANDS - 1; i++) 2296 iwn4965_print_power_group(sc, i); 2297 } 2298 #endif 2299 2300 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2301 } 2302 2303 #ifdef IWN_DEBUG 2304 static void 2305 iwn4965_print_power_group(struct iwn_softc *sc, int i) 2306 { 2307 struct iwn4965_eeprom_band *band = &sc->bands[i]; 2308 struct iwn4965_eeprom_chan_samples *chans = band->chans; 2309 int j, c; 2310 2311 printf("===band %d===\n", i); 2312 printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); 2313 printf("chan1 num=%d\n", chans[0].num); 2314 for (c = 0; c < 2; c++) { 2315 for (j = 0; j < IWN_NSAMPLES; j++) { 2316 printf("chain %d, sample %d: temp=%d gain=%d " 2317 "power=%d pa_det=%d\n", c, j, 2318 chans[0].samples[c][j].temp, 2319 chans[0].samples[c][j].gain, 2320 chans[0].samples[c][j].power, 2321 chans[0].samples[c][j].pa_det); 2322 } 2323 } 2324 printf("chan2 num=%d\n", chans[1].num); 2325 for (c = 0; c < 2; c++) { 2326 for (j = 0; j < IWN_NSAMPLES; j++) { 2327 printf("chain %d, sample %d: temp=%d gain=%d " 2328 "power=%d pa_det=%d\n", c, j, 2329 chans[1].samples[c][j].temp, 2330 chans[1].samples[c][j].gain, 2331 chans[1].samples[c][j].power, 2332 chans[1].samples[c][j].pa_det); 2333 } 2334 } 2335 } 2336 #endif 2337 2338 static void 2339 iwn5000_read_eeprom(struct iwn_softc *sc) 2340 { 2341 struct iwn5000_eeprom_calib_hdr hdr; 2342 int32_t volt; 2343 uint32_t base, addr; 2344 uint16_t val; 2345 int i; 2346 2347 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2348 2349 /* Read regulatory domain (4 ASCII characters). */ 2350 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2351 base = le16toh(val); 2352 iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, 2353 sc->eeprom_domain, 4); 2354 2355 /* Read the list of authorized channels (20MHz & 40MHz). */ 2356 for (i = 0; i < IWN_NBANDS - 1; i++) { 2357 addr = base + sc->base_params->regulatory_bands[i]; 2358 iwn_read_eeprom_channels(sc, i, addr); 2359 } 2360 2361 /* Read enhanced TX power information for 6000 Series. */ 2362 if (sc->base_params->enhanced_TX_power) 2363 iwn_read_eeprom_enhinfo(sc); 2364 2365 iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); 2366 base = le16toh(val); 2367 iwn_read_prom_data(sc, base, &hdr, sizeof hdr); 2368 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 2369 "%s: calib version=%u pa type=%u voltage=%u\n", __func__, 2370 hdr.version, hdr.pa_type, le16toh(hdr.volt)); 2371 sc->calib_ver = hdr.version; 2372 2373 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 2374 sc->eeprom_voltage = le16toh(hdr.volt); 2375 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2376 sc->eeprom_temp_high=le16toh(val); 2377 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2378 sc->eeprom_temp = le16toh(val); 2379 } 2380 2381 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 2382 /* Compute temperature offset. */ 2383 iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); 2384 sc->eeprom_temp = le16toh(val); 2385 iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); 2386 volt = le16toh(val); 2387 sc->temp_off = sc->eeprom_temp - (volt / -5); 2388 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n", 2389 sc->eeprom_temp, volt, sc->temp_off); 2390 } else { 2391 /* Read crystal calibration. */ 2392 iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, 2393 &sc->eeprom_crystal, sizeof (uint32_t)); 2394 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n", 2395 le32toh(sc->eeprom_crystal)); 2396 } 2397 2398 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2399 2400 } 2401 2402 /* 2403 * Translate EEPROM flags to net80211. 2404 */ 2405 static uint32_t 2406 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel) 2407 { 2408 uint32_t nflags; 2409 2410 nflags = 0; 2411 if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0) 2412 nflags |= IEEE80211_CHAN_PASSIVE; 2413 if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0) 2414 nflags |= IEEE80211_CHAN_NOADHOC; 2415 if (channel->flags & IWN_EEPROM_CHAN_RADAR) { 2416 nflags |= IEEE80211_CHAN_DFS; 2417 /* XXX apparently IBSS may still be marked */ 2418 nflags |= IEEE80211_CHAN_NOADHOC; 2419 } 2420 2421 return nflags; 2422 } 2423 2424 static void 2425 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2426 struct ieee80211_channel chans[]) 2427 { 2428 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2429 const struct iwn_chan_band *band = &iwn_bands[n]; 2430 uint8_t bands[IEEE80211_MODE_BYTES]; 2431 uint8_t chan; 2432 int i, error, nflags; 2433 2434 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2435 2436 memset(bands, 0, sizeof(bands)); 2437 if (n == 0) { 2438 setbit(bands, IEEE80211_MODE_11B); 2439 setbit(bands, IEEE80211_MODE_11G); 2440 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2441 setbit(bands, IEEE80211_MODE_11NG); 2442 } else { 2443 setbit(bands, IEEE80211_MODE_11A); 2444 if (sc->sc_flags & IWN_FLAG_HAS_11N) 2445 setbit(bands, IEEE80211_MODE_11NA); 2446 } 2447 2448 for (i = 0; i < band->nchan; i++) { 2449 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2450 DPRINTF(sc, IWN_DEBUG_RESET, 2451 "skip chan %d flags 0x%x maxpwr %d\n", 2452 band->chan[i], channels[i].flags, 2453 channels[i].maxpwr); 2454 continue; 2455 } 2456 2457 chan = band->chan[i]; 2458 nflags = iwn_eeprom_channel_flags(&channels[i]); 2459 error = ieee80211_add_channel(chans, maxchans, nchans, 2460 chan, 0, channels[i].maxpwr, nflags, bands); 2461 if (error != 0) 2462 break; 2463 2464 /* Save maximum allowed TX power for this channel. */ 2465 /* XXX wrong */ 2466 sc->maxpwr[chan] = channels[i].maxpwr; 2467 2468 DPRINTF(sc, IWN_DEBUG_RESET, 2469 "add chan %d flags 0x%x maxpwr %d\n", chan, 2470 channels[i].flags, channels[i].maxpwr); 2471 } 2472 2473 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2474 2475 } 2476 2477 static void 2478 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans, 2479 struct ieee80211_channel chans[]) 2480 { 2481 struct iwn_eeprom_chan *channels = sc->eeprom_channels[n]; 2482 const struct iwn_chan_band *band = &iwn_bands[n]; 2483 uint8_t chan; 2484 int i, error, nflags; 2485 2486 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__); 2487 2488 if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) { 2489 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__); 2490 return; 2491 } 2492 2493 for (i = 0; i < band->nchan; i++) { 2494 if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) { 2495 DPRINTF(sc, IWN_DEBUG_RESET, 2496 "skip chan %d flags 0x%x maxpwr %d\n", 2497 band->chan[i], channels[i].flags, 2498 channels[i].maxpwr); 2499 continue; 2500 } 2501 2502 chan = band->chan[i]; 2503 nflags = iwn_eeprom_channel_flags(&channels[i]); 2504 nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A); 2505 error = ieee80211_add_channel_ht40(chans, maxchans, nchans, 2506 chan, channels[i].maxpwr, nflags); 2507 switch (error) { 2508 case EINVAL: 2509 device_printf(sc->sc_dev, 2510 "%s: no entry for channel %d\n", __func__, chan); 2511 continue; 2512 case ENOENT: 2513 DPRINTF(sc, IWN_DEBUG_RESET, 2514 "%s: skip chan %d, extension channel not found\n", 2515 __func__, chan); 2516 continue; 2517 case ENOBUFS: 2518 device_printf(sc->sc_dev, 2519 "%s: channel table is full!\n", __func__); 2520 break; 2521 case 0: 2522 DPRINTF(sc, IWN_DEBUG_RESET, 2523 "add ht40 chan %d flags 0x%x maxpwr %d\n", 2524 chan, channels[i].flags, channels[i].maxpwr); 2525 /* FALLTHROUGH */ 2526 default: 2527 break; 2528 } 2529 } 2530 2531 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2532 2533 } 2534 2535 static void 2536 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) 2537 { 2538 struct ieee80211com *ic = &sc->sc_ic; 2539 2540 iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n], 2541 iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan)); 2542 2543 if (n < 5) { 2544 iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2545 ic->ic_channels); 2546 } else { 2547 iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans, 2548 ic->ic_channels); 2549 } 2550 ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); 2551 } 2552 2553 static struct iwn_eeprom_chan * 2554 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c) 2555 { 2556 int band, chan, i, j; 2557 2558 if (IEEE80211_IS_CHAN_HT40(c)) { 2559 band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5; 2560 if (IEEE80211_IS_CHAN_HT40D(c)) 2561 chan = c->ic_extieee; 2562 else 2563 chan = c->ic_ieee; 2564 for (i = 0; i < iwn_bands[band].nchan; i++) { 2565 if (iwn_bands[band].chan[i] == chan) 2566 return &sc->eeprom_channels[band][i]; 2567 } 2568 } else { 2569 for (j = 0; j < 5; j++) { 2570 for (i = 0; i < iwn_bands[j].nchan; i++) { 2571 if (iwn_bands[j].chan[i] == c->ic_ieee && 2572 ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1) 2573 return &sc->eeprom_channels[j][i]; 2574 } 2575 } 2576 } 2577 return NULL; 2578 } 2579 2580 static void 2581 iwn_getradiocaps(struct ieee80211com *ic, 2582 int maxchans, int *nchans, struct ieee80211_channel chans[]) 2583 { 2584 struct iwn_softc *sc = ic->ic_softc; 2585 int i; 2586 2587 /* Parse the list of authorized channels. */ 2588 for (i = 0; i < 5 && *nchans < maxchans; i++) 2589 iwn_read_eeprom_band(sc, i, maxchans, nchans, chans); 2590 for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++) 2591 iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans); 2592 } 2593 2594 /* 2595 * Enforce flags read from EEPROM. 2596 */ 2597 static int 2598 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd, 2599 int nchan, struct ieee80211_channel chans[]) 2600 { 2601 struct iwn_softc *sc = ic->ic_softc; 2602 int i; 2603 2604 for (i = 0; i < nchan; i++) { 2605 struct ieee80211_channel *c = &chans[i]; 2606 struct iwn_eeprom_chan *channel; 2607 2608 channel = iwn_find_eeprom_channel(sc, c); 2609 if (channel == NULL) { 2610 ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n", 2611 __func__, c->ic_ieee, c->ic_freq, c->ic_flags); 2612 return EINVAL; 2613 } 2614 c->ic_flags |= iwn_eeprom_channel_flags(channel); 2615 } 2616 2617 return 0; 2618 } 2619 2620 static void 2621 iwn_read_eeprom_enhinfo(struct iwn_softc *sc) 2622 { 2623 struct iwn_eeprom_enhinfo enhinfo[35]; 2624 struct ieee80211com *ic = &sc->sc_ic; 2625 struct ieee80211_channel *c; 2626 uint16_t val, base; 2627 int8_t maxpwr; 2628 uint8_t flags; 2629 int i, j; 2630 2631 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2632 2633 iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); 2634 base = le16toh(val); 2635 iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO, 2636 enhinfo, sizeof enhinfo); 2637 2638 for (i = 0; i < nitems(enhinfo); i++) { 2639 flags = enhinfo[i].flags; 2640 if (!(flags & IWN_ENHINFO_VALID)) 2641 continue; /* Skip invalid entries. */ 2642 2643 maxpwr = 0; 2644 if (sc->txchainmask & IWN_ANT_A) 2645 maxpwr = MAX(maxpwr, enhinfo[i].chain[0]); 2646 if (sc->txchainmask & IWN_ANT_B) 2647 maxpwr = MAX(maxpwr, enhinfo[i].chain[1]); 2648 if (sc->txchainmask & IWN_ANT_C) 2649 maxpwr = MAX(maxpwr, enhinfo[i].chain[2]); 2650 if (sc->ntxchains == 2) 2651 maxpwr = MAX(maxpwr, enhinfo[i].mimo2); 2652 else if (sc->ntxchains == 3) 2653 maxpwr = MAX(maxpwr, enhinfo[i].mimo3); 2654 2655 for (j = 0; j < ic->ic_nchans; j++) { 2656 c = &ic->ic_channels[j]; 2657 if ((flags & IWN_ENHINFO_5GHZ)) { 2658 if (!IEEE80211_IS_CHAN_A(c)) 2659 continue; 2660 } else if ((flags & IWN_ENHINFO_OFDM)) { 2661 if (!IEEE80211_IS_CHAN_G(c)) 2662 continue; 2663 } else if (!IEEE80211_IS_CHAN_B(c)) 2664 continue; 2665 if ((flags & IWN_ENHINFO_HT40)) { 2666 if (!IEEE80211_IS_CHAN_HT40(c)) 2667 continue; 2668 } else { 2669 if (IEEE80211_IS_CHAN_HT40(c)) 2670 continue; 2671 } 2672 if (enhinfo[i].chan != 0 && 2673 enhinfo[i].chan != c->ic_ieee) 2674 continue; 2675 2676 DPRINTF(sc, IWN_DEBUG_RESET, 2677 "channel %d(%x), maxpwr %d\n", c->ic_ieee, 2678 c->ic_flags, maxpwr / 2); 2679 c->ic_maxregpower = maxpwr / 2; 2680 c->ic_maxpower = maxpwr; 2681 } 2682 } 2683 2684 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__); 2685 2686 } 2687 2688 static struct ieee80211_node * 2689 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 2690 { 2691 struct iwn_node *wn; 2692 2693 wn = malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO); 2694 if (wn == NULL) 2695 return (NULL); 2696 2697 wn->id = IWN_ID_UNDEFINED; 2698 2699 return (&wn->ni); 2700 } 2701 2702 static __inline int 2703 rate2plcp(int rate) 2704 { 2705 switch (rate & 0xff) { 2706 case 12: return 0xd; 2707 case 18: return 0xf; 2708 case 24: return 0x5; 2709 case 36: return 0x7; 2710 case 48: return 0x9; 2711 case 72: return 0xb; 2712 case 96: return 0x1; 2713 case 108: return 0x3; 2714 case 2: return 10; 2715 case 4: return 20; 2716 case 11: return 55; 2717 case 22: return 110; 2718 } 2719 return 0; 2720 } 2721 2722 static __inline uint8_t 2723 plcp2rate(const uint8_t rate_plcp) 2724 { 2725 switch (rate_plcp) { 2726 case 0xd: return 12; 2727 case 0xf: return 18; 2728 case 0x5: return 24; 2729 case 0x7: return 36; 2730 case 0x9: return 48; 2731 case 0xb: return 72; 2732 case 0x1: return 96; 2733 case 0x3: return 108; 2734 case 10: return 2; 2735 case 20: return 4; 2736 case 55: return 11; 2737 case 110: return 22; 2738 default: return 0; 2739 } 2740 } 2741 2742 static int 2743 iwn_get_1stream_tx_antmask(struct iwn_softc *sc) 2744 { 2745 2746 return IWN_LSB(sc->txchainmask); 2747 } 2748 2749 static int 2750 iwn_get_2stream_tx_antmask(struct iwn_softc *sc) 2751 { 2752 int tx; 2753 2754 /* 2755 * The '2 stream' setup is a bit .. odd. 2756 * 2757 * For NICs that support only 1 antenna, default to IWN_ANT_AB or 2758 * the firmware panics (eg Intel 5100.) 2759 * 2760 * For NICs that support two antennas, we use ANT_AB. 2761 * 2762 * For NICs that support three antennas, we use the two that 2763 * wasn't the default one. 2764 * 2765 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict 2766 * this to only one antenna. 2767 */ 2768 2769 /* Default - transmit on the other antennas */ 2770 tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask)); 2771 2772 /* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */ 2773 if (tx == 0) 2774 tx = IWN_ANT_AB; 2775 2776 /* 2777 * If the NIC is a two-stream TX NIC, configure the TX mask to 2778 * the default chainmask 2779 */ 2780 else if (sc->ntxchains == 2) 2781 tx = sc->txchainmask; 2782 2783 return (tx); 2784 } 2785 2786 2787 2788 /* 2789 * Calculate the required PLCP value from the given rate, 2790 * to the given node. 2791 * 2792 * This will take the node configuration (eg 11n, rate table 2793 * setup, etc) into consideration. 2794 */ 2795 static uint32_t 2796 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni, 2797 uint8_t rate) 2798 { 2799 struct ieee80211com *ic = ni->ni_ic; 2800 uint32_t plcp = 0; 2801 int ridx; 2802 2803 /* 2804 * If it's an MCS rate, let's set the plcp correctly 2805 * and set the relevant flags based on the node config. 2806 */ 2807 if (rate & IEEE80211_RATE_MCS) { 2808 /* 2809 * Set the initial PLCP value to be between 0->31 for 2810 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!" 2811 * flag. 2812 */ 2813 plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS; 2814 2815 /* 2816 * XXX the following should only occur if both 2817 * the local configuration _and_ the remote node 2818 * advertise these capabilities. Thus this code 2819 * may need fixing! 2820 */ 2821 2822 /* 2823 * Set the channel width and guard interval. 2824 */ 2825 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) { 2826 plcp |= IWN_RFLAG_HT40; 2827 if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40) 2828 plcp |= IWN_RFLAG_SGI; 2829 } else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) { 2830 plcp |= IWN_RFLAG_SGI; 2831 } 2832 2833 /* 2834 * Ensure the selected rate matches the link quality 2835 * table entries being used. 2836 */ 2837 if (rate > 0x8f) 2838 plcp |= IWN_RFLAG_ANT(sc->txchainmask); 2839 else if (rate > 0x87) 2840 plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc)); 2841 else 2842 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2843 } else { 2844 /* 2845 * Set the initial PLCP - fine for both 2846 * OFDM and CCK rates. 2847 */ 2848 plcp = rate2plcp(rate); 2849 2850 /* Set CCK flag if it's CCK */ 2851 2852 /* XXX It would be nice to have a method 2853 * to map the ridx -> phy table entry 2854 * so we could just query that, rather than 2855 * this hack to check against IWN_RIDX_OFDM6. 2856 */ 2857 ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, 2858 rate & IEEE80211_RATE_VAL); 2859 if (ridx < IWN_RIDX_OFDM6 && 2860 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 2861 plcp |= IWN_RFLAG_CCK; 2862 2863 /* Set antenna configuration */ 2864 /* XXX TODO: is this the right antenna to use for legacy? */ 2865 plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc)); 2866 } 2867 2868 DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n", 2869 __func__, 2870 rate, 2871 plcp); 2872 2873 return (htole32(plcp)); 2874 } 2875 2876 static void 2877 iwn_newassoc(struct ieee80211_node *ni, int isnew) 2878 { 2879 /* Doesn't do anything at the moment */ 2880 } 2881 2882 static int 2883 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 2884 { 2885 struct iwn_vap *ivp = IWN_VAP(vap); 2886 struct ieee80211com *ic = vap->iv_ic; 2887 struct iwn_softc *sc = ic->ic_softc; 2888 int error = 0; 2889 2890 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 2891 2892 DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__, 2893 ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]); 2894 2895 IEEE80211_UNLOCK(ic); 2896 IWN_LOCK(sc); 2897 callout_stop(&sc->calib_to); 2898 2899 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 2900 2901 switch (nstate) { 2902 case IEEE80211_S_ASSOC: 2903 if (vap->iv_state != IEEE80211_S_RUN) 2904 break; 2905 /* FALLTHROUGH */ 2906 case IEEE80211_S_AUTH: 2907 if (vap->iv_state == IEEE80211_S_AUTH) 2908 break; 2909 2910 /* 2911 * !AUTH -> AUTH transition requires state reset to handle 2912 * reassociations correctly. 2913 */ 2914 sc->rxon->associd = 0; 2915 sc->rxon->filter &= ~htole32(IWN_FILTER_BSS); 2916 sc->calib.state = IWN_CALIB_STATE_INIT; 2917 2918 /* Wait until we hear a beacon before we transmit */ 2919 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2920 sc->sc_beacon_wait = 1; 2921 2922 if ((error = iwn_auth(sc, vap)) != 0) { 2923 device_printf(sc->sc_dev, 2924 "%s: could not move to auth state\n", __func__); 2925 } 2926 break; 2927 2928 case IEEE80211_S_RUN: 2929 /* 2930 * RUN -> RUN transition; Just restart the timers. 2931 */ 2932 if (vap->iv_state == IEEE80211_S_RUN) { 2933 sc->calib_cnt = 0; 2934 break; 2935 } 2936 2937 /* Wait until we hear a beacon before we transmit */ 2938 if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan)) 2939 sc->sc_beacon_wait = 1; 2940 2941 /* 2942 * !RUN -> RUN requires setting the association id 2943 * which is done with a firmware cmd. We also defer 2944 * starting the timers until that work is done. 2945 */ 2946 if ((error = iwn_run(sc, vap)) != 0) { 2947 device_printf(sc->sc_dev, 2948 "%s: could not move to run state\n", __func__); 2949 } 2950 break; 2951 2952 case IEEE80211_S_INIT: 2953 sc->calib.state = IWN_CALIB_STATE_INIT; 2954 /* 2955 * Purge the xmit queue so we don't have old frames 2956 * during a new association attempt. 2957 */ 2958 sc->sc_beacon_wait = 0; 2959 iwn_xmit_queue_drain(sc); 2960 break; 2961 2962 default: 2963 break; 2964 } 2965 IWN_UNLOCK(sc); 2966 IEEE80211_LOCK(ic); 2967 if (error != 0){ 2968 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 2969 return error; 2970 } 2971 2972 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 2973 2974 return ivp->iv_newstate(vap, nstate, arg); 2975 } 2976 2977 static void 2978 iwn_calib_timeout(void *arg) 2979 { 2980 struct iwn_softc *sc = arg; 2981 2982 IWN_LOCK_ASSERT(sc); 2983 2984 /* Force automatic TX power calibration every 60 secs. */ 2985 if (++sc->calib_cnt >= 120) { 2986 uint32_t flags = 0; 2987 2988 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n", 2989 "sending request for statistics"); 2990 (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, 2991 sizeof flags, 1); 2992 sc->calib_cnt = 0; 2993 } 2994 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 2995 sc); 2996 } 2997 2998 /* 2999 * Process an RX_PHY firmware notification. This is usually immediately 3000 * followed by an MPDU_RX_DONE notification. 3001 */ 3002 static void 3003 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3004 { 3005 struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); 3006 3007 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__); 3008 3009 /* Save RX statistics, they will be used on MPDU_RX_DONE. */ 3010 memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); 3011 sc->last_rx_valid = 1; 3012 } 3013 3014 /* 3015 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. 3016 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. 3017 */ 3018 static void 3019 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3020 struct iwn_rx_data *data) 3021 { 3022 struct iwn_ops *ops = &sc->ops; 3023 struct ieee80211com *ic = &sc->sc_ic; 3024 struct iwn_rx_ring *ring = &sc->rxq; 3025 struct ieee80211_frame_min *wh; 3026 struct ieee80211_node *ni; 3027 struct mbuf *m, *m1; 3028 struct iwn_rx_stat *stat; 3029 caddr_t head; 3030 bus_addr_t paddr; 3031 uint32_t flags; 3032 int error, len, rssi, nf; 3033 3034 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3035 3036 if (desc->type == IWN_MPDU_RX_DONE) { 3037 /* Check for prior RX_PHY notification. */ 3038 if (!sc->last_rx_valid) { 3039 DPRINTF(sc, IWN_DEBUG_ANY, 3040 "%s: missing RX_PHY\n", __func__); 3041 return; 3042 } 3043 stat = &sc->last_rx_stat; 3044 } else 3045 stat = (struct iwn_rx_stat *)(desc + 1); 3046 3047 if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { 3048 device_printf(sc->sc_dev, 3049 "%s: invalid RX statistic header, len %d\n", __func__, 3050 stat->cfg_phy_len); 3051 return; 3052 } 3053 if (desc->type == IWN_MPDU_RX_DONE) { 3054 struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); 3055 head = (caddr_t)(mpdu + 1); 3056 len = le16toh(mpdu->len); 3057 } else { 3058 head = (caddr_t)(stat + 1) + stat->cfg_phy_len; 3059 len = le16toh(stat->len); 3060 } 3061 3062 flags = le32toh(*(uint32_t *)(head + len)); 3063 3064 /* Discard frames with a bad FCS early. */ 3065 if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { 3066 DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n", 3067 __func__, flags); 3068 counter_u64_add(ic->ic_ierrors, 1); 3069 return; 3070 } 3071 /* Discard frames that are too short. */ 3072 if (len < sizeof (struct ieee80211_frame_ack)) { 3073 DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n", 3074 __func__, len); 3075 counter_u64_add(ic->ic_ierrors, 1); 3076 return; 3077 } 3078 3079 m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE); 3080 if (m1 == NULL) { 3081 DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n", 3082 __func__); 3083 counter_u64_add(ic->ic_ierrors, 1); 3084 return; 3085 } 3086 bus_dmamap_unload(ring->data_dmat, data->map); 3087 3088 error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *), 3089 IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 3090 if (error != 0 && error != EFBIG) { 3091 device_printf(sc->sc_dev, 3092 "%s: bus_dmamap_load failed, error %d\n", __func__, error); 3093 m_freem(m1); 3094 3095 /* Try to reload the old mbuf. */ 3096 error = bus_dmamap_load(ring->data_dmat, data->map, 3097 mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr, 3098 &paddr, BUS_DMA_NOWAIT); 3099 if (error != 0 && error != EFBIG) { 3100 panic("%s: could not load old RX mbuf", __func__); 3101 } 3102 bus_dmamap_sync(ring->data_dmat, data->map, 3103 BUS_DMASYNC_PREREAD); 3104 /* Physical address may have changed. */ 3105 ring->desc[ring->cur] = htole32(paddr >> 8); 3106 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3107 BUS_DMASYNC_PREWRITE); 3108 counter_u64_add(ic->ic_ierrors, 1); 3109 return; 3110 } 3111 3112 bus_dmamap_sync(ring->data_dmat, data->map, 3113 BUS_DMASYNC_PREREAD); 3114 3115 m = data->m; 3116 data->m = m1; 3117 /* Update RX descriptor. */ 3118 ring->desc[ring->cur] = htole32(paddr >> 8); 3119 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 3120 BUS_DMASYNC_PREWRITE); 3121 3122 /* Finalize mbuf. */ 3123 m->m_data = head; 3124 m->m_pkthdr.len = m->m_len = len; 3125 3126 /* Grab a reference to the source node. */ 3127 wh = mtod(m, struct ieee80211_frame_min *); 3128 if (len >= sizeof(struct ieee80211_frame_min)) 3129 ni = ieee80211_find_rxnode(ic, wh); 3130 else 3131 ni = NULL; 3132 nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN && 3133 (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95; 3134 3135 rssi = ops->get_rssi(sc, stat); 3136 3137 if (ieee80211_radiotap_active(ic)) { 3138 struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; 3139 uint32_t rate = le32toh(stat->rate); 3140 3141 tap->wr_flags = 0; 3142 if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) 3143 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 3144 tap->wr_dbm_antsignal = (int8_t)rssi; 3145 tap->wr_dbm_antnoise = (int8_t)nf; 3146 tap->wr_tsft = stat->tstamp; 3147 if (rate & IWN_RFLAG_MCS) { 3148 tap->wr_rate = rate & IWN_RFLAG_RATE_MCS; 3149 tap->wr_rate |= IEEE80211_RATE_MCS; 3150 } else 3151 tap->wr_rate = plcp2rate(rate & IWN_RFLAG_RATE); 3152 } 3153 3154 /* 3155 * If it's a beacon and we're waiting, then do the 3156 * wakeup. This should unblock raw_xmit/start. 3157 */ 3158 if (sc->sc_beacon_wait) { 3159 uint8_t type, subtype; 3160 /* NB: Re-assign wh */ 3161 wh = mtod(m, struct ieee80211_frame_min *); 3162 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3163 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3164 /* 3165 * This assumes at this point we've received our own 3166 * beacon. 3167 */ 3168 DPRINTF(sc, IWN_DEBUG_TRACE, 3169 "%s: beacon_wait, type=%d, subtype=%d\n", 3170 __func__, type, subtype); 3171 if (type == IEEE80211_FC0_TYPE_MGT && 3172 subtype == IEEE80211_FC0_SUBTYPE_BEACON) { 3173 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, 3174 "%s: waking things up\n", __func__); 3175 /* queue taskqueue to transmit! */ 3176 taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task); 3177 } 3178 } 3179 3180 IWN_UNLOCK(sc); 3181 3182 /* Send the frame to the 802.11 layer. */ 3183 if (ni != NULL) { 3184 if (ni->ni_flags & IEEE80211_NODE_HT) 3185 m->m_flags |= M_AMPDU; 3186 (void)ieee80211_input(ni, m, rssi - nf, nf); 3187 /* Node is no longer needed. */ 3188 ieee80211_free_node(ni); 3189 } else 3190 (void)ieee80211_input_all(ic, m, rssi - nf, nf); 3191 3192 IWN_LOCK(sc); 3193 3194 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3195 3196 } 3197 3198 static void 3199 iwn_agg_tx_complete(struct iwn_softc *sc, struct iwn_tx_ring *ring, int tid, 3200 int idx, int success) 3201 { 3202 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3203 struct iwn_tx_data *data = &ring->data[idx]; 3204 struct iwn_node *wn; 3205 struct mbuf *m; 3206 struct ieee80211_node *ni; 3207 3208 KASSERT(data->ni != NULL, ("idx %d: no node", idx)); 3209 KASSERT(data->m != NULL, ("idx %d: no mbuf", idx)); 3210 3211 /* Unmap and free mbuf. */ 3212 bus_dmamap_sync(ring->data_dmat, data->map, 3213 BUS_DMASYNC_POSTWRITE); 3214 bus_dmamap_unload(ring->data_dmat, data->map); 3215 m = data->m, data->m = NULL; 3216 ni = data->ni, data->ni = NULL; 3217 wn = (void *)ni; 3218 3219 #if 0 3220 /* XXX causes significant performance degradation. */ 3221 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3222 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3223 txs->long_retries = data->long_retries - 1; 3224 #else 3225 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY; 3226 #endif 3227 txs->short_retries = wn->agg[tid].short_retries; 3228 if (success) 3229 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3230 else 3231 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3232 3233 wn->agg[tid].short_retries = 0; 3234 data->long_retries = 0; 3235 3236 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: freeing m %p ni %p idx %d qid %d\n", 3237 __func__, m, ni, idx, ring->qid); 3238 ieee80211_ratectl_tx_complete(ni, txs); 3239 ieee80211_tx_complete(ni, m, !success); 3240 } 3241 3242 /* Process an incoming Compressed BlockAck. */ 3243 static void 3244 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3245 { 3246 struct iwn_tx_ring *ring; 3247 struct iwn_tx_data *data; 3248 struct iwn_node *wn; 3249 struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1); 3250 struct ieee80211_tx_ampdu *tap; 3251 uint64_t bitmap; 3252 uint8_t tid; 3253 int i, qid, shift; 3254 int tx_ok = 0; 3255 3256 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3257 3258 qid = le16toh(ba->qid); 3259 tap = sc->qid2tap[qid]; 3260 ring = &sc->txq[qid]; 3261 tid = tap->txa_tid; 3262 wn = (void *)tap->txa_ni; 3263 3264 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: qid %d tid %d seq %04X ssn %04X\n" 3265 "bitmap: ba %016jX wn %016jX, start %d\n", 3266 __func__, qid, tid, le16toh(ba->seq), le16toh(ba->ssn), 3267 (uintmax_t)le64toh(ba->bitmap), (uintmax_t)wn->agg[tid].bitmap, 3268 wn->agg[tid].startidx); 3269 3270 if (wn->agg[tid].bitmap == 0) 3271 return; 3272 3273 shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff); 3274 if (shift <= -64) 3275 shift += 0x100; 3276 3277 /* 3278 * Walk the bitmap and calculate how many successful attempts 3279 * are made. 3280 * 3281 * Yes, the rate control code doesn't know these are A-MPDU 3282 * subframes; due to that long_retries stats are not used here. 3283 */ 3284 bitmap = le64toh(ba->bitmap); 3285 if (shift >= 0) 3286 bitmap >>= shift; 3287 else 3288 bitmap <<= -shift; 3289 bitmap &= wn->agg[tid].bitmap; 3290 wn->agg[tid].bitmap = 0; 3291 3292 for (i = wn->agg[tid].startidx; 3293 bitmap; 3294 bitmap >>= 1, i = (i + 1) % IWN_TX_RING_COUNT) { 3295 if ((bitmap & 1) == 0) 3296 continue; 3297 3298 data = &ring->data[i]; 3299 if (__predict_false(data->m == NULL)) { 3300 /* 3301 * There is no frame; skip this entry. 3302 * 3303 * NB: it is "ok" to have both 3304 * 'tx done' + 'compressed BA' replies for frame 3305 * with STATE_SCD_QUERY status. 3306 */ 3307 DPRINTF(sc, IWN_DEBUG_AMPDU, 3308 "%s: ring %d: no entry %d\n", __func__, qid, i); 3309 continue; 3310 } 3311 3312 tx_ok++; 3313 iwn_agg_tx_complete(sc, ring, tid, i, 1); 3314 } 3315 3316 ring->queued -= tx_ok; 3317 iwn_check_tx_ring(sc, qid); 3318 3319 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_AMPDU, 3320 "->%s: end; %d ok\n",__func__, tx_ok); 3321 } 3322 3323 /* 3324 * Process a CALIBRATION_RESULT notification sent by the initialization 3325 * firmware on response to a CMD_CALIB_CONFIG command (5000 only). 3326 */ 3327 static void 3328 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3329 { 3330 struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); 3331 int len, idx = -1; 3332 3333 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3334 3335 /* Runtime firmware should not send such a notification. */ 3336 if (sc->sc_flags & IWN_FLAG_CALIB_DONE){ 3337 DPRINTF(sc, IWN_DEBUG_TRACE, 3338 "->%s received after calib done\n", __func__); 3339 return; 3340 } 3341 len = (le32toh(desc->len) & 0x3fff) - 4; 3342 3343 switch (calib->code) { 3344 case IWN5000_PHY_CALIB_DC: 3345 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC) 3346 idx = 0; 3347 break; 3348 case IWN5000_PHY_CALIB_LO: 3349 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO) 3350 idx = 1; 3351 break; 3352 case IWN5000_PHY_CALIB_TX_IQ: 3353 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ) 3354 idx = 2; 3355 break; 3356 case IWN5000_PHY_CALIB_TX_IQ_PERIODIC: 3357 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC) 3358 idx = 3; 3359 break; 3360 case IWN5000_PHY_CALIB_BASE_BAND: 3361 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND) 3362 idx = 4; 3363 break; 3364 } 3365 if (idx == -1) /* Ignore other results. */ 3366 return; 3367 3368 /* Save calibration result. */ 3369 if (sc->calibcmd[idx].buf != NULL) 3370 free(sc->calibcmd[idx].buf, M_DEVBUF); 3371 sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); 3372 if (sc->calibcmd[idx].buf == NULL) { 3373 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3374 "not enough memory for calibration result %d\n", 3375 calib->code); 3376 return; 3377 } 3378 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 3379 "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len); 3380 sc->calibcmd[idx].len = len; 3381 memcpy(sc->calibcmd[idx].buf, calib, len); 3382 } 3383 3384 static void 3385 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib, 3386 struct iwn_stats *stats, int len) 3387 { 3388 struct iwn_stats_bt *stats_bt; 3389 struct iwn_stats *lstats; 3390 3391 /* 3392 * First - check whether the length is the bluetooth or normal. 3393 * 3394 * If it's normal - just copy it and bump out. 3395 * Otherwise we have to convert things. 3396 */ 3397 3398 if (len == sizeof(struct iwn_stats) + 4) { 3399 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3400 sc->last_stat_valid = 1; 3401 return; 3402 } 3403 3404 /* 3405 * If it's not the bluetooth size - log, then just copy. 3406 */ 3407 if (len != sizeof(struct iwn_stats_bt) + 4) { 3408 DPRINTF(sc, IWN_DEBUG_STATS, 3409 "%s: size of rx statistics (%d) not an expected size!\n", 3410 __func__, 3411 len); 3412 memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats)); 3413 sc->last_stat_valid = 1; 3414 return; 3415 } 3416 3417 /* 3418 * Ok. Time to copy. 3419 */ 3420 stats_bt = (struct iwn_stats_bt *) stats; 3421 lstats = &sc->last_stat; 3422 3423 /* flags */ 3424 lstats->flags = stats_bt->flags; 3425 /* rx_bt */ 3426 memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm, 3427 sizeof(struct iwn_rx_phy_stats)); 3428 memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck, 3429 sizeof(struct iwn_rx_phy_stats)); 3430 memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common, 3431 sizeof(struct iwn_rx_general_stats)); 3432 memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht, 3433 sizeof(struct iwn_rx_ht_phy_stats)); 3434 /* tx */ 3435 memcpy(&lstats->tx, &stats_bt->tx, 3436 sizeof(struct iwn_tx_stats)); 3437 /* general */ 3438 memcpy(&lstats->general, &stats_bt->general, 3439 sizeof(struct iwn_general_stats)); 3440 3441 /* XXX TODO: Squirrel away the extra bluetooth stats somewhere */ 3442 sc->last_stat_valid = 1; 3443 } 3444 3445 /* 3446 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. 3447 * The latter is sent by the firmware after each received beacon. 3448 */ 3449 static void 3450 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3451 { 3452 struct iwn_ops *ops = &sc->ops; 3453 struct ieee80211com *ic = &sc->sc_ic; 3454 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3455 struct iwn_calib_state *calib = &sc->calib; 3456 struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); 3457 struct iwn_stats *lstats; 3458 int temp; 3459 3460 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3461 3462 /* Ignore statistics received during a scan. */ 3463 if (vap->iv_state != IEEE80211_S_RUN || 3464 (ic->ic_flags & IEEE80211_F_SCAN)){ 3465 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n", 3466 __func__); 3467 return; 3468 } 3469 3470 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS, 3471 "%s: received statistics, cmd %d, len %d\n", 3472 __func__, desc->type, le16toh(desc->len)); 3473 sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ 3474 3475 /* 3476 * Collect/track general statistics for reporting. 3477 * 3478 * This takes care of ensuring that the bluetooth sized message 3479 * will be correctly converted to the legacy sized message. 3480 */ 3481 iwn_stats_update(sc, calib, stats, le16toh(desc->len)); 3482 3483 /* 3484 * And now, let's take a reference of it to use! 3485 */ 3486 lstats = &sc->last_stat; 3487 3488 /* Test if temperature has changed. */ 3489 if (lstats->general.temp != sc->rawtemp) { 3490 /* Convert "raw" temperature to degC. */ 3491 sc->rawtemp = stats->general.temp; 3492 temp = ops->get_temperature(sc); 3493 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n", 3494 __func__, temp); 3495 3496 /* Update TX power if need be (4965AGN only). */ 3497 if (sc->hw_type == IWN_HW_REV_TYPE_4965) 3498 iwn4965_power_calibration(sc, temp); 3499 } 3500 3501 if (desc->type != IWN_BEACON_STATISTICS) 3502 return; /* Reply to a statistics request. */ 3503 3504 sc->noise = iwn_get_noise(&lstats->rx.general); 3505 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise); 3506 3507 /* Test that RSSI and noise are present in stats report. */ 3508 if (le32toh(lstats->rx.general.flags) != 1) { 3509 DPRINTF(sc, IWN_DEBUG_ANY, "%s\n", 3510 "received statistics without RSSI"); 3511 return; 3512 } 3513 3514 if (calib->state == IWN_CALIB_STATE_ASSOC) 3515 iwn_collect_noise(sc, &lstats->rx.general); 3516 else if (calib->state == IWN_CALIB_STATE_RUN) { 3517 iwn_tune_sensitivity(sc, &lstats->rx); 3518 /* 3519 * XXX TODO: Only run the RX recovery if we're associated! 3520 */ 3521 iwn_check_rx_recovery(sc, lstats); 3522 iwn_save_stats_counters(sc, lstats); 3523 } 3524 3525 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3526 } 3527 3528 /* 3529 * Save the relevant statistic counters for the next calibration 3530 * pass. 3531 */ 3532 static void 3533 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs) 3534 { 3535 struct iwn_calib_state *calib = &sc->calib; 3536 3537 /* Save counters values for next call. */ 3538 calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp); 3539 calib->fa_cck = le32toh(rs->rx.cck.fa); 3540 calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp); 3541 calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp); 3542 calib->fa_ofdm = le32toh(rs->rx.ofdm.fa); 3543 3544 /* Last time we received these tick values */ 3545 sc->last_calib_ticks = ticks; 3546 } 3547 3548 /* 3549 * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN 3550 * and 5000 adapters have different incompatible TX status formats. 3551 */ 3552 static void 3553 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3554 struct iwn_rx_data *data) 3555 { 3556 struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); 3557 int qid = desc->qid & IWN_RX_DESC_QID_MSK; 3558 3559 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3560 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3561 __func__, desc->qid, desc->idx, 3562 stat->rtsfailcnt, 3563 stat->ackfailcnt, 3564 stat->btkillcnt, 3565 stat->rate, le16toh(stat->duration), 3566 le32toh(stat->status)); 3567 3568 if (qid >= sc->firstaggqueue && stat->nframes != 1) { 3569 iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt, 3570 &stat->status); 3571 } else { 3572 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, 3573 le32toh(stat->status) & 0xff); 3574 } 3575 } 3576 3577 static void 3578 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, 3579 struct iwn_rx_data *data) 3580 { 3581 struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); 3582 int qid = desc->qid & IWN_RX_DESC_QID_MSK; 3583 3584 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: " 3585 "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n", 3586 __func__, desc->qid, desc->idx, 3587 stat->rtsfailcnt, 3588 stat->ackfailcnt, 3589 stat->btkillcnt, 3590 stat->rate, le16toh(stat->duration), 3591 le32toh(stat->status)); 3592 3593 #ifdef notyet 3594 /* Reset TX scheduler slot. */ 3595 iwn5000_reset_sched(sc, qid, desc->idx); 3596 #endif 3597 3598 if (qid >= sc->firstaggqueue && stat->nframes != 1) { 3599 iwn_ampdu_tx_done(sc, qid, stat->nframes, stat->rtsfailcnt, 3600 &stat->status); 3601 } else { 3602 iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt, 3603 le16toh(stat->status) & 0xff); 3604 } 3605 } 3606 3607 static void 3608 iwn_adj_ampdu_ptr(struct iwn_softc *sc, struct iwn_tx_ring *ring) 3609 { 3610 int i; 3611 3612 for (i = ring->read; i != ring->cur; i = (i + 1) % IWN_TX_RING_COUNT) { 3613 struct iwn_tx_data *data = &ring->data[i]; 3614 3615 if (data->m != NULL) 3616 break; 3617 3618 data->remapped = 0; 3619 } 3620 3621 ring->read = i; 3622 } 3623 3624 /* 3625 * Adapter-independent backend for TX_DONE firmware notifications. 3626 */ 3627 static void 3628 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt, 3629 int ackfailcnt, uint8_t status) 3630 { 3631 struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs; 3632 struct iwn_tx_ring *ring = &sc->txq[desc->qid & IWN_RX_DESC_QID_MSK]; 3633 struct iwn_tx_data *data = &ring->data[desc->idx]; 3634 struct mbuf *m; 3635 struct ieee80211_node *ni; 3636 3637 if (__predict_false(data->m == NULL && 3638 ring->qid >= sc->firstaggqueue)) { 3639 /* 3640 * There is no frame; skip this entry. 3641 */ 3642 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: ring %d: no entry %d\n", 3643 __func__, ring->qid, desc->idx); 3644 return; 3645 } 3646 3647 KASSERT(data->ni != NULL, ("no node")); 3648 KASSERT(data->m != NULL, ("no mbuf")); 3649 3650 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3651 3652 /* Unmap and free mbuf. */ 3653 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 3654 bus_dmamap_unload(ring->data_dmat, data->map); 3655 m = data->m, data->m = NULL; 3656 ni = data->ni, data->ni = NULL; 3657 3658 data->long_retries = 0; 3659 3660 if (ring->qid >= sc->firstaggqueue) 3661 iwn_adj_ampdu_ptr(sc, ring); 3662 3663 /* 3664 * XXX f/w may hang (device timeout) when desc->idx - ring->read == 64 3665 * (aggregation queues only). 3666 */ 3667 3668 ring->queued--; 3669 iwn_check_tx_ring(sc, ring->qid); 3670 3671 /* 3672 * Update rate control statistics for the node. 3673 */ 3674 txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY | 3675 IEEE80211_RATECTL_STATUS_LONG_RETRY; 3676 txs->short_retries = rtsfailcnt; 3677 txs->long_retries = ackfailcnt; 3678 if (!(status & IWN_TX_FAIL)) 3679 txs->status = IEEE80211_RATECTL_TX_SUCCESS; 3680 else { 3681 switch (status) { 3682 case IWN_TX_FAIL_SHORT_LIMIT: 3683 txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT; 3684 break; 3685 case IWN_TX_FAIL_LONG_LIMIT: 3686 txs->status = IEEE80211_RATECTL_TX_FAIL_LONG; 3687 break; 3688 case IWN_TX_STATUS_FAIL_LIFE_EXPIRE: 3689 txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED; 3690 break; 3691 default: 3692 txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED; 3693 break; 3694 } 3695 } 3696 ieee80211_ratectl_tx_complete(ni, txs); 3697 3698 /* 3699 * Channels marked for "radar" require traffic to be received 3700 * to unlock before we can transmit. Until traffic is seen 3701 * any attempt to transmit is returned immediately with status 3702 * set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily 3703 * happen on first authenticate after scanning. To workaround 3704 * this we ignore a failure of this sort in AUTH state so the 3705 * 802.11 layer will fall back to using a timeout to wait for 3706 * the AUTH reply. This allows the firmware time to see 3707 * traffic so a subsequent retry of AUTH succeeds. It's 3708 * unclear why the firmware does not maintain state for 3709 * channels recently visited as this would allow immediate 3710 * use of the channel after a scan (where we see traffic). 3711 */ 3712 if (status == IWN_TX_FAIL_TX_LOCKED && 3713 ni->ni_vap->iv_state == IEEE80211_S_AUTH) 3714 ieee80211_tx_complete(ni, m, 0); 3715 else 3716 ieee80211_tx_complete(ni, m, 3717 (status & IWN_TX_FAIL) != 0); 3718 3719 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3720 } 3721 3722 /* 3723 * Process a "command done" firmware notification. This is where we wakeup 3724 * processes waiting for a synchronous command completion. 3725 */ 3726 static void 3727 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) 3728 { 3729 struct iwn_tx_ring *ring; 3730 struct iwn_tx_data *data; 3731 int cmd_queue_num; 3732 3733 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 3734 cmd_queue_num = IWN_PAN_CMD_QUEUE; 3735 else 3736 cmd_queue_num = IWN_CMD_QUEUE_NUM; 3737 3738 if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num) 3739 return; /* Not a command ack. */ 3740 3741 ring = &sc->txq[cmd_queue_num]; 3742 data = &ring->data[desc->idx]; 3743 3744 /* If the command was mapped in an mbuf, free it. */ 3745 if (data->m != NULL) { 3746 bus_dmamap_sync(ring->data_dmat, data->map, 3747 BUS_DMASYNC_POSTWRITE); 3748 bus_dmamap_unload(ring->data_dmat, data->map); 3749 m_freem(data->m); 3750 data->m = NULL; 3751 } 3752 wakeup(&ring->desc[desc->idx]); 3753 } 3754 3755 static int 3756 iwn_ampdu_check_bitmap(uint64_t bitmap, int start, int idx) 3757 { 3758 int bit, shift; 3759 3760 bit = idx - start; 3761 shift = 0; 3762 if (bit >= 64) { 3763 shift = 0x100 - bit; 3764 bit = 0; 3765 } else if (bit <= -64) 3766 bit = 0x100 + bit; 3767 else if (bit < 0) { 3768 shift = -bit; 3769 bit = 0; 3770 } 3771 3772 if (bit - shift >= 64) 3773 return (0); 3774 3775 return ((bitmap & (1ULL << (bit - shift))) != 0); 3776 } 3777 3778 /* 3779 * Firmware bug workaround: in case if 'retries' counter 3780 * overflows 'seqno' field will be incremented: 3781 * status|sequence|status|sequence|status|sequence 3782 * 0000 0A48 0001 0A49 0000 0A6A 3783 * 1000 0A48 1000 0A49 1000 0A6A 3784 * 2000 0A48 2000 0A49 2000 0A6A 3785 * ... 3786 * E000 0A48 E000 0A49 E000 0A6A 3787 * F000 0A48 F000 0A49 F000 0A6A 3788 * 0000 0A49 0000 0A49 0000 0A6B 3789 * 1000 0A49 1000 0A49 1000 0A6B 3790 * ... 3791 * D000 0A49 D000 0A49 D000 0A6B 3792 * E000 0A49 E001 0A49 E000 0A6B 3793 * F000 0A49 F001 0A49 F000 0A6B 3794 * 0000 0A4A 0000 0A4B 0000 0A6A 3795 * 1000 0A4A 1000 0A4B 1000 0A6A 3796 * ... 3797 * 3798 * Odd 'seqno' numbers are incremened by 2 every 2 overflows. 3799 * For even 'seqno' % 4 != 0 overflow is cyclic (0 -> +1 -> 0). 3800 * Not checked with nretries >= 64. 3801 * 3802 */ 3803 static int 3804 iwn_ampdu_index_check(struct iwn_softc *sc, struct iwn_tx_ring *ring, 3805 uint64_t bitmap, int start, int idx) 3806 { 3807 struct ieee80211com *ic = &sc->sc_ic; 3808 struct iwn_tx_data *data; 3809 int diff, min_retries, max_retries, new_idx, loop_end; 3810 3811 new_idx = idx - IWN_LONG_RETRY_LIMIT_LOG; 3812 if (new_idx < 0) 3813 new_idx += IWN_TX_RING_COUNT; 3814 3815 /* 3816 * Corner case: check if retry count is not too big; 3817 * reset device otherwise. 3818 */ 3819 if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx)) { 3820 data = &ring->data[new_idx]; 3821 if (data->long_retries > IWN_LONG_RETRY_LIMIT) { 3822 device_printf(sc->sc_dev, 3823 "%s: retry count (%d) for idx %d/%d overflow, " 3824 "resetting...\n", __func__, data->long_retries, 3825 ring->qid, new_idx); 3826 ieee80211_restart_all(ic); 3827 return (-1); 3828 } 3829 } 3830 3831 /* Correct index if needed. */ 3832 loop_end = idx; 3833 do { 3834 data = &ring->data[new_idx]; 3835 diff = idx - new_idx; 3836 if (diff < 0) 3837 diff += IWN_TX_RING_COUNT; 3838 3839 min_retries = IWN_LONG_RETRY_FW_OVERFLOW * diff; 3840 if ((new_idx % 2) == 0) 3841 max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 1); 3842 else 3843 max_retries = IWN_LONG_RETRY_FW_OVERFLOW * (diff + 2); 3844 3845 if (!iwn_ampdu_check_bitmap(bitmap, start, new_idx) && 3846 ((data->long_retries >= min_retries && 3847 data->long_retries < max_retries) || 3848 (diff == 1 && 3849 (new_idx & 0x03) == 0x02 && 3850 data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW))) { 3851 DPRINTF(sc, IWN_DEBUG_AMPDU, 3852 "%s: correcting index %d -> %d in queue %d" 3853 " (retries %d)\n", __func__, idx, new_idx, 3854 ring->qid, data->long_retries); 3855 return (new_idx); 3856 } 3857 3858 new_idx = (new_idx + 1) % IWN_TX_RING_COUNT; 3859 } while (new_idx != loop_end); 3860 3861 return (idx); 3862 } 3863 3864 static void 3865 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int nframes, int rtsfailcnt, 3866 void *stat) 3867 { 3868 struct iwn_tx_ring *ring = &sc->txq[qid]; 3869 struct ieee80211_tx_ampdu *tap = sc->qid2tap[qid]; 3870 struct iwn_node *wn = (void *)tap->txa_ni; 3871 struct iwn_tx_data *data; 3872 uint64_t bitmap = 0; 3873 uint16_t *aggstatus = stat; 3874 uint8_t tid = tap->txa_tid; 3875 int bit, i, idx, shift, start, tx_err; 3876 3877 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 3878 3879 start = le16toh(*(aggstatus + nframes * 2)) & 0xff; 3880 3881 for (i = 0; i < nframes; i++) { 3882 uint16_t status = le16toh(aggstatus[i * 2]); 3883 3884 if (status & IWN_AGG_TX_STATE_IGNORE_MASK) 3885 continue; 3886 3887 idx = le16toh(aggstatus[i * 2 + 1]) & 0xff; 3888 data = &ring->data[idx]; 3889 if (data->remapped) { 3890 idx = iwn_ampdu_index_check(sc, ring, bitmap, start, idx); 3891 if (idx == -1) { 3892 /* skip error (device will be restarted anyway). */ 3893 continue; 3894 } 3895 3896 /* Index may have changed. */ 3897 data = &ring->data[idx]; 3898 } 3899 3900 /* 3901 * XXX Sometimes (rarely) some frames are excluded from events. 3902 * XXX Due to that long_retries counter may be wrong. 3903 */ 3904 data->long_retries &= ~0x0f; 3905 data->long_retries += IWN_AGG_TX_TRY_COUNT(status) + 1; 3906 3907 if (data->long_retries >= IWN_LONG_RETRY_FW_OVERFLOW) { 3908 int diff, wrong_idx; 3909 3910 diff = data->long_retries / IWN_LONG_RETRY_FW_OVERFLOW; 3911 wrong_idx = (idx + diff) % IWN_TX_RING_COUNT; 3912 3913 /* 3914 * Mark the entry so the above code will check it 3915 * next time. 3916 */ 3917 ring->data[wrong_idx].remapped = 1; 3918 } 3919 3920 if (status & IWN_AGG_TX_STATE_UNDERRUN_MSK) { 3921 /* 3922 * NB: count retries but postpone - it was not 3923 * transmitted. 3924 */ 3925 continue; 3926 } 3927 3928 bit = idx - start; 3929 shift = 0; 3930 if (bit >= 64) { 3931 shift = 0x100 - bit; 3932 bit = 0; 3933 } else if (bit <= -64) 3934 bit = 0x100 + bit; 3935 else if (bit < 0) { 3936 shift = -bit; 3937 bit = 0; 3938 } 3939 bitmap = bitmap << shift; 3940 bitmap |= 1ULL << bit; 3941 } 3942 wn->agg[tid].startidx = start; 3943 wn->agg[tid].bitmap = bitmap; 3944 wn->agg[tid].short_retries = rtsfailcnt; 3945 3946 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: nframes %d start %d bitmap %016jX\n", 3947 __func__, nframes, start, (uintmax_t)bitmap); 3948 3949 i = ring->read; 3950 3951 for (tx_err = 0; 3952 i != wn->agg[tid].startidx; 3953 i = (i + 1) % IWN_TX_RING_COUNT) { 3954 data = &ring->data[i]; 3955 data->remapped = 0; 3956 if (data->m == NULL) 3957 continue; 3958 3959 tx_err++; 3960 iwn_agg_tx_complete(sc, ring, tid, i, 0); 3961 } 3962 3963 ring->read = wn->agg[tid].startidx; 3964 ring->queued -= tx_err; 3965 3966 iwn_check_tx_ring(sc, qid); 3967 3968 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 3969 } 3970 3971 /* 3972 * Process an INT_FH_RX or INT_SW_RX interrupt. 3973 */ 3974 static void 3975 iwn_notif_intr(struct iwn_softc *sc) 3976 { 3977 struct iwn_ops *ops = &sc->ops; 3978 struct ieee80211com *ic = &sc->sc_ic; 3979 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 3980 uint16_t hw; 3981 int is_stopped; 3982 3983 bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map, 3984 BUS_DMASYNC_POSTREAD); 3985 3986 hw = le16toh(sc->rxq.stat->closed_count) & 0xfff; 3987 while (sc->rxq.cur != hw) { 3988 struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; 3989 struct iwn_rx_desc *desc; 3990 3991 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 3992 BUS_DMASYNC_POSTREAD); 3993 desc = mtod(data->m, struct iwn_rx_desc *); 3994 3995 DPRINTF(sc, IWN_DEBUG_RECV, 3996 "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n", 3997 __func__, sc->rxq.cur, desc->qid & IWN_RX_DESC_QID_MSK, 3998 desc->idx, desc->flags, desc->type, 3999 iwn_intr_str(desc->type), le16toh(desc->len)); 4000 4001 if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF)) /* Reply to a command. */ 4002 iwn_cmd_done(sc, desc); 4003 4004 switch (desc->type) { 4005 case IWN_RX_PHY: 4006 iwn_rx_phy(sc, desc); 4007 break; 4008 4009 case IWN_RX_DONE: /* 4965AGN only. */ 4010 case IWN_MPDU_RX_DONE: 4011 /* An 802.11 frame has been received. */ 4012 iwn_rx_done(sc, desc, data); 4013 4014 is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; 4015 if (__predict_false(is_stopped)) 4016 return; 4017 4018 break; 4019 4020 case IWN_RX_COMPRESSED_BA: 4021 /* A Compressed BlockAck has been received. */ 4022 iwn_rx_compressed_ba(sc, desc); 4023 break; 4024 4025 case IWN_TX_DONE: 4026 /* An 802.11 frame has been transmitted. */ 4027 ops->tx_done(sc, desc, data); 4028 break; 4029 4030 case IWN_RX_STATISTICS: 4031 case IWN_BEACON_STATISTICS: 4032 iwn_rx_statistics(sc, desc); 4033 break; 4034 4035 case IWN_BEACON_MISSED: 4036 { 4037 struct iwn_beacon_missed *miss = 4038 (struct iwn_beacon_missed *)(desc + 1); 4039 int misses; 4040 4041 misses = le32toh(miss->consecutive); 4042 4043 DPRINTF(sc, IWN_DEBUG_STATE, 4044 "%s: beacons missed %d/%d\n", __func__, 4045 misses, le32toh(miss->total)); 4046 /* 4047 * If more than 5 consecutive beacons are missed, 4048 * reinitialize the sensitivity state machine. 4049 */ 4050 if (vap->iv_state == IEEE80211_S_RUN && 4051 (ic->ic_flags & IEEE80211_F_SCAN) == 0) { 4052 if (misses > 5) 4053 (void)iwn_init_sensitivity(sc); 4054 if (misses >= vap->iv_bmissthreshold) { 4055 IWN_UNLOCK(sc); 4056 ieee80211_beacon_miss(ic); 4057 IWN_LOCK(sc); 4058 4059 is_stopped = (sc->sc_flags & 4060 IWN_FLAG_RUNNING) == 0; 4061 if (__predict_false(is_stopped)) 4062 return; 4063 } 4064 } 4065 break; 4066 } 4067 case IWN_UC_READY: 4068 { 4069 struct iwn_ucode_info *uc = 4070 (struct iwn_ucode_info *)(desc + 1); 4071 4072 /* The microcontroller is ready. */ 4073 DPRINTF(sc, IWN_DEBUG_RESET, 4074 "microcode alive notification version=%d.%d " 4075 "subtype=%x alive=%x\n", uc->major, uc->minor, 4076 uc->subtype, le32toh(uc->valid)); 4077 4078 if (le32toh(uc->valid) != 1) { 4079 device_printf(sc->sc_dev, 4080 "microcontroller initialization failed"); 4081 break; 4082 } 4083 if (uc->subtype == IWN_UCODE_INIT) { 4084 /* Save microcontroller report. */ 4085 memcpy(&sc->ucode_info, uc, sizeof (*uc)); 4086 } 4087 /* Save the address of the error log in SRAM. */ 4088 sc->errptr = le32toh(uc->errptr); 4089 break; 4090 } 4091 #ifdef IWN_DEBUG 4092 case IWN_STATE_CHANGED: 4093 { 4094 /* 4095 * State change allows hardware switch change to be 4096 * noted. However, we handle this in iwn_intr as we 4097 * get both the enable/disble intr. 4098 */ 4099 uint32_t *status = (uint32_t *)(desc + 1); 4100 DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE, 4101 "state changed to %x\n", 4102 le32toh(*status)); 4103 break; 4104 } 4105 case IWN_START_SCAN: 4106 { 4107 struct iwn_start_scan *scan = 4108 (struct iwn_start_scan *)(desc + 1); 4109 DPRINTF(sc, IWN_DEBUG_ANY, 4110 "%s: scanning channel %d status %x\n", 4111 __func__, scan->chan, le32toh(scan->status)); 4112 break; 4113 } 4114 #endif 4115 case IWN_STOP_SCAN: 4116 { 4117 #ifdef IWN_DEBUG 4118 struct iwn_stop_scan *scan = 4119 (struct iwn_stop_scan *)(desc + 1); 4120 DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN, 4121 "scan finished nchan=%d status=%d chan=%d\n", 4122 scan->nchan, scan->status, scan->chan); 4123 #endif 4124 sc->sc_is_scanning = 0; 4125 callout_stop(&sc->scan_timeout); 4126 IWN_UNLOCK(sc); 4127 ieee80211_scan_next(vap); 4128 IWN_LOCK(sc); 4129 4130 is_stopped = (sc->sc_flags & IWN_FLAG_RUNNING) == 0; 4131 if (__predict_false(is_stopped)) 4132 return; 4133 4134 break; 4135 } 4136 case IWN5000_CALIBRATION_RESULT: 4137 iwn5000_rx_calib_results(sc, desc); 4138 break; 4139 4140 case IWN5000_CALIBRATION_DONE: 4141 sc->sc_flags |= IWN_FLAG_CALIB_DONE; 4142 wakeup(sc); 4143 break; 4144 } 4145 4146 sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; 4147 } 4148 4149 /* Tell the firmware what we have processed. */ 4150 hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; 4151 IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); 4152 } 4153 4154 /* 4155 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up 4156 * from power-down sleep mode. 4157 */ 4158 static void 4159 iwn_wakeup_intr(struct iwn_softc *sc) 4160 { 4161 int qid; 4162 4163 DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n", 4164 __func__); 4165 4166 /* Wakeup RX and TX rings. */ 4167 IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); 4168 for (qid = 0; qid < sc->ntxqs; qid++) { 4169 struct iwn_tx_ring *ring = &sc->txq[qid]; 4170 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); 4171 } 4172 } 4173 4174 static void 4175 iwn_rftoggle_task(void *arg, int npending) 4176 { 4177 struct iwn_softc *sc = arg; 4178 struct ieee80211com *ic = &sc->sc_ic; 4179 uint32_t tmp; 4180 4181 IWN_LOCK(sc); 4182 tmp = IWN_READ(sc, IWN_GP_CNTRL); 4183 IWN_UNLOCK(sc); 4184 4185 device_printf(sc->sc_dev, "RF switch: radio %s\n", 4186 (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); 4187 if (!(tmp & IWN_GP_CNTRL_RFKILL)) { 4188 ieee80211_suspend_all(ic); 4189 4190 /* Enable interrupts to get RF toggle notification. */ 4191 IWN_LOCK(sc); 4192 IWN_WRITE(sc, IWN_INT, 0xffffffff); 4193 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4194 IWN_UNLOCK(sc); 4195 } else 4196 ieee80211_resume_all(ic); 4197 } 4198 4199 /* 4200 * Dump the error log of the firmware when a firmware panic occurs. Although 4201 * we can't debug the firmware because it is neither open source nor free, it 4202 * can help us to identify certain classes of problems. 4203 */ 4204 static void 4205 iwn_fatal_intr(struct iwn_softc *sc) 4206 { 4207 struct iwn_fw_dump dump; 4208 int i; 4209 4210 IWN_LOCK_ASSERT(sc); 4211 4212 /* Force a complete recalibration on next init. */ 4213 sc->sc_flags &= ~IWN_FLAG_CALIB_DONE; 4214 4215 /* Check that the error log address is valid. */ 4216 if (sc->errptr < IWN_FW_DATA_BASE || 4217 sc->errptr + sizeof (dump) > 4218 IWN_FW_DATA_BASE + sc->fw_data_maxsz) { 4219 printf("%s: bad firmware error log address 0x%08x\n", __func__, 4220 sc->errptr); 4221 return; 4222 } 4223 if (iwn_nic_lock(sc) != 0) { 4224 printf("%s: could not read firmware error log\n", __func__); 4225 return; 4226 } 4227 /* Read firmware error log from SRAM. */ 4228 iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, 4229 sizeof (dump) / sizeof (uint32_t)); 4230 iwn_nic_unlock(sc); 4231 4232 if (dump.valid == 0) { 4233 printf("%s: firmware error log is empty\n", __func__); 4234 return; 4235 } 4236 printf("firmware error log:\n"); 4237 printf(" error type = \"%s\" (0x%08X)\n", 4238 (dump.id < nitems(iwn_fw_errmsg)) ? 4239 iwn_fw_errmsg[dump.id] : "UNKNOWN", 4240 dump.id); 4241 printf(" program counter = 0x%08X\n", dump.pc); 4242 printf(" source line = 0x%08X\n", dump.src_line); 4243 printf(" error data = 0x%08X%08X\n", 4244 dump.error_data[0], dump.error_data[1]); 4245 printf(" branch link = 0x%08X%08X\n", 4246 dump.branch_link[0], dump.branch_link[1]); 4247 printf(" interrupt link = 0x%08X%08X\n", 4248 dump.interrupt_link[0], dump.interrupt_link[1]); 4249 printf(" time = %u\n", dump.time[0]); 4250 4251 /* Dump driver status (TX and RX rings) while we're here. */ 4252 printf("driver status:\n"); 4253 for (i = 0; i < sc->ntxqs; i++) { 4254 struct iwn_tx_ring *ring = &sc->txq[i]; 4255 printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", 4256 i, ring->qid, ring->cur, ring->queued); 4257 } 4258 printf(" rx ring: cur=%d\n", sc->rxq.cur); 4259 } 4260 4261 static void 4262 iwn_intr(void *arg) 4263 { 4264 struct iwn_softc *sc = arg; 4265 uint32_t r1, r2, tmp; 4266 4267 IWN_LOCK(sc); 4268 4269 /* Disable interrupts. */ 4270 IWN_WRITE(sc, IWN_INT_MASK, 0); 4271 4272 /* Read interrupts from ICT (fast) or from registers (slow). */ 4273 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4274 bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map, 4275 BUS_DMASYNC_POSTREAD); 4276 tmp = 0; 4277 while (sc->ict[sc->ict_cur] != 0) { 4278 tmp |= sc->ict[sc->ict_cur]; 4279 sc->ict[sc->ict_cur] = 0; /* Acknowledge. */ 4280 sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT; 4281 } 4282 tmp = le32toh(tmp); 4283 if (tmp == 0xffffffff) /* Shouldn't happen. */ 4284 tmp = 0; 4285 else if (tmp & 0xc0000) /* Workaround a HW bug. */ 4286 tmp |= 0x8000; 4287 r1 = (tmp & 0xff00) << 16 | (tmp & 0xff); 4288 r2 = 0; /* Unused. */ 4289 } else { 4290 r1 = IWN_READ(sc, IWN_INT); 4291 if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) { 4292 IWN_UNLOCK(sc); 4293 return; /* Hardware gone! */ 4294 } 4295 r2 = IWN_READ(sc, IWN_FH_INT); 4296 } 4297 4298 DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n" 4299 , r1, r2); 4300 4301 if (r1 == 0 && r2 == 0) 4302 goto done; /* Interrupt not for us. */ 4303 4304 /* Acknowledge interrupts. */ 4305 IWN_WRITE(sc, IWN_INT, r1); 4306 if (!(sc->sc_flags & IWN_FLAG_USE_ICT)) 4307 IWN_WRITE(sc, IWN_FH_INT, r2); 4308 4309 if (r1 & IWN_INT_RF_TOGGLED) { 4310 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 4311 goto done; 4312 } 4313 if (r1 & IWN_INT_CT_REACHED) { 4314 device_printf(sc->sc_dev, "%s: critical temperature reached!\n", 4315 __func__); 4316 } 4317 if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { 4318 device_printf(sc->sc_dev, "%s: fatal firmware error\n", 4319 __func__); 4320 #ifdef IWN_DEBUG 4321 iwn_debug_register(sc); 4322 #endif 4323 /* Dump firmware error log and stop. */ 4324 iwn_fatal_intr(sc); 4325 4326 taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task); 4327 goto done; 4328 } 4329 if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) || 4330 (r2 & IWN_FH_INT_RX)) { 4331 if (sc->sc_flags & IWN_FLAG_USE_ICT) { 4332 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) 4333 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX); 4334 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4335 IWN_INT_PERIODIC_DIS); 4336 iwn_notif_intr(sc); 4337 if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) { 4338 IWN_WRITE_1(sc, IWN_INT_PERIODIC, 4339 IWN_INT_PERIODIC_ENA); 4340 } 4341 } else 4342 iwn_notif_intr(sc); 4343 } 4344 4345 if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) { 4346 if (sc->sc_flags & IWN_FLAG_USE_ICT) 4347 IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX); 4348 wakeup(sc); /* FH DMA transfer completed. */ 4349 } 4350 4351 if (r1 & IWN_INT_ALIVE) 4352 wakeup(sc); /* Firmware is alive. */ 4353 4354 if (r1 & IWN_INT_WAKEUP) 4355 iwn_wakeup_intr(sc); 4356 4357 done: 4358 /* Re-enable interrupts. */ 4359 if (sc->sc_flags & IWN_FLAG_RUNNING) 4360 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 4361 4362 IWN_UNLOCK(sc); 4363 } 4364 4365 /* 4366 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and 4367 * 5000 adapters use a slightly different format). 4368 */ 4369 static void 4370 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4371 uint16_t len) 4372 { 4373 uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; 4374 4375 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4376 4377 *w = htole16(len + 8); 4378 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4379 BUS_DMASYNC_PREWRITE); 4380 if (idx < IWN_SCHED_WINSZ) { 4381 *(w + IWN_TX_RING_COUNT) = *w; 4382 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4383 BUS_DMASYNC_PREWRITE); 4384 } 4385 } 4386 4387 static void 4388 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, 4389 uint16_t len) 4390 { 4391 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4392 4393 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4394 4395 *w = htole16(id << 12 | (len + 8)); 4396 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4397 BUS_DMASYNC_PREWRITE); 4398 if (idx < IWN_SCHED_WINSZ) { 4399 *(w + IWN_TX_RING_COUNT) = *w; 4400 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4401 BUS_DMASYNC_PREWRITE); 4402 } 4403 } 4404 4405 #ifdef notyet 4406 static void 4407 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) 4408 { 4409 uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; 4410 4411 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 4412 4413 *w = (*w & htole16(0xf000)) | htole16(1); 4414 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4415 BUS_DMASYNC_PREWRITE); 4416 if (idx < IWN_SCHED_WINSZ) { 4417 *(w + IWN_TX_RING_COUNT) = *w; 4418 bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map, 4419 BUS_DMASYNC_PREWRITE); 4420 } 4421 } 4422 #endif 4423 4424 /* 4425 * Check whether OFDM 11g protection will be enabled for the given rate. 4426 * 4427 * The original driver code only enabled protection for OFDM rates. 4428 * It didn't check to see whether it was operating in 11a or 11bg mode. 4429 */ 4430 static int 4431 iwn_check_rate_needs_protection(struct iwn_softc *sc, 4432 struct ieee80211vap *vap, uint8_t rate) 4433 { 4434 struct ieee80211com *ic = vap->iv_ic; 4435 4436 /* 4437 * Not in 2GHz mode? Then there's no need to enable OFDM 4438 * 11bg protection. 4439 */ 4440 if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) { 4441 return (0); 4442 } 4443 4444 /* 4445 * 11bg protection not enabled? Then don't use it. 4446 */ 4447 if ((vap->iv_flags & IEEE80211_F_USEPROT) == 0) 4448 return (0); 4449 4450 /* 4451 * If it's an 11n rate - no protection. 4452 * We'll do it via a specific 11n check. 4453 */ 4454 if (rate & IEEE80211_RATE_MCS) { 4455 return (0); 4456 } 4457 4458 /* 4459 * Do a rate table lookup. If the PHY is CCK, 4460 * don't do protection. 4461 */ 4462 if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK) 4463 return (0); 4464 4465 /* 4466 * Yup, enable protection. 4467 */ 4468 return (1); 4469 } 4470 4471 /* 4472 * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into 4473 * the link quality table that reflects this particular entry. 4474 */ 4475 static int 4476 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni, 4477 uint8_t rate) 4478 { 4479 struct ieee80211_rateset *rs; 4480 int is_11n; 4481 int nr; 4482 int i; 4483 uint8_t cmp_rate; 4484 4485 /* 4486 * Figure out if we're using 11n or not here. 4487 */ 4488 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) 4489 is_11n = 1; 4490 else 4491 is_11n = 0; 4492 4493 /* 4494 * Use the correct rate table. 4495 */ 4496 if (is_11n) { 4497 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 4498 nr = ni->ni_htrates.rs_nrates; 4499 } else { 4500 rs = &ni->ni_rates; 4501 nr = rs->rs_nrates; 4502 } 4503 4504 /* 4505 * Find the relevant link quality entry in the table. 4506 */ 4507 for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) { 4508 /* 4509 * The link quality table index starts at 0 == highest 4510 * rate, so we walk the rate table backwards. 4511 */ 4512 cmp_rate = rs->rs_rates[(nr - 1) - i]; 4513 if (rate & IEEE80211_RATE_MCS) 4514 cmp_rate |= IEEE80211_RATE_MCS; 4515 4516 #if 0 4517 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n", 4518 __func__, 4519 i, 4520 nr, 4521 rate, 4522 cmp_rate); 4523 #endif 4524 4525 if (cmp_rate == rate) 4526 return (i); 4527 } 4528 4529 /* Failed? Start at the end */ 4530 return (IWN_MAX_TX_RETRIES - 1); 4531 } 4532 4533 static int 4534 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 4535 { 4536 const struct ieee80211_txparam *tp = ni->ni_txparms; 4537 struct ieee80211vap *vap = ni->ni_vap; 4538 struct ieee80211com *ic = ni->ni_ic; 4539 struct iwn_node *wn = (void *)ni; 4540 struct iwn_tx_ring *ring; 4541 struct iwn_tx_cmd *cmd; 4542 struct iwn_cmd_data *tx; 4543 struct ieee80211_frame *wh; 4544 struct ieee80211_key *k = NULL; 4545 uint32_t flags; 4546 uint16_t qos; 4547 uint8_t tid, type; 4548 int ac, totlen, rate; 4549 4550 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4551 4552 IWN_LOCK_ASSERT(sc); 4553 4554 wh = mtod(m, struct ieee80211_frame *); 4555 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4556 4557 /* Select EDCA Access Category and TX ring for this frame. */ 4558 if (IEEE80211_QOS_HAS_SEQ(wh)) { 4559 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 4560 tid = qos & IEEE80211_QOS_TID; 4561 } else { 4562 qos = 0; 4563 tid = 0; 4564 } 4565 4566 /* Choose a TX rate index. */ 4567 if (type == IEEE80211_FC0_TYPE_MGT || 4568 type == IEEE80211_FC0_TYPE_CTL || 4569 (m->m_flags & M_EAPOL) != 0) 4570 rate = tp->mgmtrate; 4571 else if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 4572 rate = tp->mcastrate; 4573 else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 4574 rate = tp->ucastrate; 4575 else { 4576 /* XXX pass pktlen */ 4577 (void) ieee80211_ratectl_rate(ni, NULL, 0); 4578 rate = ni->ni_txrate; 4579 } 4580 4581 /* 4582 * XXX TODO: Group addressed frames aren't aggregated and must 4583 * go to the normal non-aggregation queue, and have a NONQOS TID 4584 * assigned from net80211. 4585 */ 4586 4587 ac = M_WME_GETAC(m); 4588 if (m->m_flags & M_AMPDU_MPDU) { 4589 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac]; 4590 4591 if (!IEEE80211_AMPDU_RUNNING(tap)) 4592 return (EINVAL); 4593 4594 ac = *(int *)tap->txa_private; 4595 } 4596 4597 /* Encrypt the frame if need be. */ 4598 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 4599 /* Retrieve key for TX. */ 4600 k = ieee80211_crypto_encap(ni, m); 4601 if (k == NULL) { 4602 return ENOBUFS; 4603 } 4604 /* 802.11 header may have moved. */ 4605 wh = mtod(m, struct ieee80211_frame *); 4606 } 4607 totlen = m->m_pkthdr.len; 4608 4609 if (ieee80211_radiotap_active_vap(vap)) { 4610 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4611 4612 tap->wt_flags = 0; 4613 tap->wt_rate = rate; 4614 if (k != NULL) 4615 tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; 4616 4617 ieee80211_radiotap_tx(vap, m); 4618 } 4619 4620 flags = 0; 4621 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4622 /* Unicast frame, check if an ACK is expected. */ 4623 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) != 4624 IEEE80211_QOS_ACKPOLICY_NOACK) 4625 flags |= IWN_TX_NEED_ACK; 4626 } 4627 if ((wh->i_fc[0] & 4628 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 4629 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) 4630 flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ 4631 4632 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) 4633 flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ 4634 4635 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ 4636 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 4637 /* NB: Group frames are sent using CCK in 802.11b/g. */ 4638 if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) { 4639 flags |= IWN_TX_NEED_RTS; 4640 } else if (iwn_check_rate_needs_protection(sc, vap, rate)) { 4641 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 4642 flags |= IWN_TX_NEED_CTS; 4643 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 4644 flags |= IWN_TX_NEED_RTS; 4645 } else if ((rate & IEEE80211_RATE_MCS) && 4646 (ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) { 4647 flags |= IWN_TX_NEED_RTS; 4648 } 4649 4650 /* XXX HT protection? */ 4651 4652 if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { 4653 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4654 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4655 flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); 4656 flags |= IWN_TX_NEED_PROTECTION; 4657 } else 4658 flags |= IWN_TX_FULL_TXOP; 4659 } 4660 } 4661 4662 ring = &sc->txq[ac]; 4663 if (m->m_flags & M_AMPDU_MPDU) { 4664 uint16_t seqno = ni->ni_txseqs[tid]; 4665 4666 if (ring->queued > IWN_TX_RING_COUNT / 2 && 4667 (ring->cur + 1) % IWN_TX_RING_COUNT == ring->read) { 4668 DPRINTF(sc, IWN_DEBUG_AMPDU, "%s: no more space " 4669 "(queued %d) left in %d queue!\n", 4670 __func__, ring->queued, ac); 4671 return (ENOBUFS); 4672 } 4673 4674 /* 4675 * Queue this frame to the hardware ring that we've 4676 * negotiated AMPDU TX on. 4677 * 4678 * Note that the sequence number must match the TX slot 4679 * being used! 4680 */ 4681 if ((seqno % 256) != ring->cur) { 4682 device_printf(sc->sc_dev, 4683 "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n", 4684 __func__, 4685 m, 4686 seqno, 4687 seqno % 256, 4688 ring->cur); 4689 4690 /* XXX until D9195 will not be committed */ 4691 ni->ni_txseqs[tid] &= ~0xff; 4692 ni->ni_txseqs[tid] += ring->cur; 4693 seqno = ni->ni_txseqs[tid]; 4694 } 4695 4696 *(uint16_t *)wh->i_seq = 4697 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 4698 ni->ni_txseqs[tid]++; 4699 } 4700 4701 /* Prepare TX firmware command. */ 4702 cmd = &ring->cmd[ring->cur]; 4703 tx = (struct iwn_cmd_data *)cmd->data; 4704 4705 /* NB: No need to clear tx, all fields are reinitialized here. */ 4706 tx->scratch = 0; /* clear "scratch" area */ 4707 4708 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 4709 type != IEEE80211_FC0_TYPE_DATA) 4710 tx->id = sc->broadcast_id; 4711 else 4712 tx->id = wn->id; 4713 4714 if (type == IEEE80211_FC0_TYPE_MGT) { 4715 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4716 4717 /* Tell HW to set timestamp in probe responses. */ 4718 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4719 flags |= IWN_TX_INSERT_TSTAMP; 4720 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4721 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4722 tx->timeout = htole16(3); 4723 else 4724 tx->timeout = htole16(2); 4725 } else 4726 tx->timeout = htole16(0); 4727 4728 if (tx->id == sc->broadcast_id) { 4729 /* Group or management frame. */ 4730 tx->linkq = 0; 4731 } else { 4732 tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate); 4733 flags |= IWN_TX_LINKQ; /* enable MRR */ 4734 } 4735 4736 tx->tid = tid; 4737 tx->rts_ntries = 60; 4738 tx->data_ntries = 15; 4739 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4740 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4741 tx->security = 0; 4742 tx->flags = htole32(flags); 4743 4744 return (iwn_tx_cmd(sc, m, ni, ring)); 4745 } 4746 4747 static int 4748 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m, 4749 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 4750 { 4751 struct ieee80211vap *vap = ni->ni_vap; 4752 struct iwn_tx_cmd *cmd; 4753 struct iwn_cmd_data *tx; 4754 struct ieee80211_frame *wh; 4755 struct iwn_tx_ring *ring; 4756 uint32_t flags; 4757 int ac, rate; 4758 uint8_t type; 4759 4760 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 4761 4762 IWN_LOCK_ASSERT(sc); 4763 4764 wh = mtod(m, struct ieee80211_frame *); 4765 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 4766 4767 ac = params->ibp_pri & 3; 4768 4769 /* Choose a TX rate. */ 4770 rate = params->ibp_rate0; 4771 4772 flags = 0; 4773 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 4774 flags |= IWN_TX_NEED_ACK; 4775 if (params->ibp_flags & IEEE80211_BPF_RTS) { 4776 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4777 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4778 flags &= ~IWN_TX_NEED_RTS; 4779 flags |= IWN_TX_NEED_PROTECTION; 4780 } else 4781 flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; 4782 } 4783 if (params->ibp_flags & IEEE80211_BPF_CTS) { 4784 if (sc->hw_type != IWN_HW_REV_TYPE_4965) { 4785 /* 5000 autoselects RTS/CTS or CTS-to-self. */ 4786 flags &= ~IWN_TX_NEED_CTS; 4787 flags |= IWN_TX_NEED_PROTECTION; 4788 } else 4789 flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; 4790 } 4791 4792 if (ieee80211_radiotap_active_vap(vap)) { 4793 struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; 4794 4795 tap->wt_flags = 0; 4796 tap->wt_rate = rate; 4797 4798 ieee80211_radiotap_tx(vap, m); 4799 } 4800 4801 ring = &sc->txq[ac]; 4802 cmd = &ring->cmd[ring->cur]; 4803 4804 tx = (struct iwn_cmd_data *)cmd->data; 4805 /* NB: No need to clear tx, all fields are reinitialized here. */ 4806 tx->scratch = 0; /* clear "scratch" area */ 4807 4808 if (type == IEEE80211_FC0_TYPE_MGT) { 4809 uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 4810 4811 /* Tell HW to set timestamp in probe responses. */ 4812 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 4813 flags |= IWN_TX_INSERT_TSTAMP; 4814 4815 if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || 4816 subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) 4817 tx->timeout = htole16(3); 4818 else 4819 tx->timeout = htole16(2); 4820 } else 4821 tx->timeout = htole16(0); 4822 4823 tx->tid = 0; 4824 tx->id = sc->broadcast_id; 4825 tx->rts_ntries = params->ibp_try1; 4826 tx->data_ntries = params->ibp_try0; 4827 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 4828 tx->rate = iwn_rate_to_plcp(sc, ni, rate); 4829 tx->security = 0; 4830 tx->flags = htole32(flags); 4831 4832 /* Group or management frame. */ 4833 tx->linkq = 0; 4834 4835 return (iwn_tx_cmd(sc, m, ni, ring)); 4836 } 4837 4838 static int 4839 iwn_tx_cmd(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 4840 struct iwn_tx_ring *ring) 4841 { 4842 struct iwn_ops *ops = &sc->ops; 4843 struct iwn_tx_cmd *cmd; 4844 struct iwn_cmd_data *tx; 4845 struct ieee80211_frame *wh; 4846 struct iwn_tx_desc *desc; 4847 struct iwn_tx_data *data; 4848 bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER]; 4849 struct mbuf *m1; 4850 u_int hdrlen; 4851 int totlen, error, pad, nsegs = 0, i; 4852 4853 wh = mtod(m, struct ieee80211_frame *); 4854 hdrlen = ieee80211_anyhdrsize(wh); 4855 totlen = m->m_pkthdr.len; 4856 4857 desc = &ring->desc[ring->cur]; 4858 data = &ring->data[ring->cur]; 4859 4860 if (__predict_false(data->m != NULL || data->ni != NULL)) { 4861 device_printf(sc->sc_dev, "%s: ni (%p) or m (%p) for idx %d " 4862 "in queue %d is not NULL!\n", __func__, data->ni, data->m, 4863 ring->cur, ring->qid); 4864 return EIO; 4865 } 4866 4867 /* Prepare TX firmware command. */ 4868 cmd = &ring->cmd[ring->cur]; 4869 cmd->code = IWN_CMD_TX_DATA; 4870 cmd->flags = 0; 4871 cmd->qid = ring->qid; 4872 cmd->idx = ring->cur; 4873 4874 tx = (struct iwn_cmd_data *)cmd->data; 4875 tx->len = htole16(totlen); 4876 4877 /* Set physical address of "scratch area". */ 4878 tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); 4879 tx->hiaddr = IWN_HIADDR(data->scratch_paddr); 4880 if (hdrlen & 3) { 4881 /* First segment length must be a multiple of 4. */ 4882 tx->flags |= htole32(IWN_TX_NEED_PADDING); 4883 pad = 4 - (hdrlen & 3); 4884 } else 4885 pad = 0; 4886 4887 /* Copy 802.11 header in TX command. */ 4888 memcpy((uint8_t *)(tx + 1), wh, hdrlen); 4889 4890 /* Trim 802.11 header. */ 4891 m_adj(m, hdrlen); 4892 4893 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs, 4894 &nsegs, BUS_DMA_NOWAIT); 4895 if (error != 0) { 4896 if (error != EFBIG) { 4897 device_printf(sc->sc_dev, 4898 "%s: can't map mbuf (error %d)\n", __func__, error); 4899 return error; 4900 } 4901 /* Too many DMA segments, linearize mbuf. */ 4902 m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1); 4903 if (m1 == NULL) { 4904 device_printf(sc->sc_dev, 4905 "%s: could not defrag mbuf\n", __func__); 4906 return ENOBUFS; 4907 } 4908 m = m1; 4909 4910 error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, 4911 segs, &nsegs, BUS_DMA_NOWAIT); 4912 if (error != 0) { 4913 /* XXX fix this */ 4914 /* 4915 * NB: Do not return error; 4916 * original mbuf does not exist anymore. 4917 */ 4918 device_printf(sc->sc_dev, 4919 "%s: can't map mbuf (error %d)\n", 4920 __func__, error); 4921 if_inc_counter(ni->ni_vap->iv_ifp, 4922 IFCOUNTER_OERRORS, 1); 4923 ieee80211_free_node(ni); 4924 m_freem(m); 4925 return 0; 4926 } 4927 } 4928 4929 data->m = m; 4930 data->ni = ni; 4931 4932 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d " 4933 "plcp 0x%x\n", 4934 __func__, ring->qid, ring->cur, totlen, nsegs, tx->rate); 4935 4936 /* Fill TX descriptor. */ 4937 desc->nsegs = 1; 4938 if (m->m_len != 0) 4939 desc->nsegs += nsegs; 4940 /* First DMA segment is used by the TX command. */ 4941 desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); 4942 desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | 4943 (4 + sizeof (*tx) + hdrlen + pad) << 4); 4944 /* Other DMA segments are for data payload. */ 4945 seg = &segs[0]; 4946 for (i = 1; i <= nsegs; i++) { 4947 desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); 4948 desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | 4949 seg->ds_len << 4); 4950 seg++; 4951 } 4952 4953 bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 4954 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 4955 BUS_DMASYNC_PREWRITE); 4956 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 4957 BUS_DMASYNC_PREWRITE); 4958 4959 /* Update TX scheduler. */ 4960 if (ring->qid >= sc->firstaggqueue) 4961 ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); 4962 4963 /* Kick TX ring. */ 4964 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 4965 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 4966 4967 /* Mark TX ring as full if we reach a certain threshold. */ 4968 if (++ring->queued > IWN_TX_RING_HIMARK) 4969 sc->qfullmsk |= 1 << ring->qid; 4970 4971 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 4972 4973 return 0; 4974 } 4975 4976 static void 4977 iwn_xmit_task(void *arg0, int pending) 4978 { 4979 struct iwn_softc *sc = arg0; 4980 struct ieee80211_node *ni; 4981 struct mbuf *m; 4982 int error; 4983 struct ieee80211_bpf_params p; 4984 int have_p; 4985 4986 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__); 4987 4988 IWN_LOCK(sc); 4989 /* 4990 * Dequeue frames, attempt to transmit, 4991 * then disable beaconwait when we're done. 4992 */ 4993 while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) { 4994 have_p = 0; 4995 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 4996 4997 /* Get xmit params if appropriate */ 4998 if (ieee80211_get_xmit_params(m, &p) == 0) 4999 have_p = 1; 5000 5001 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n", 5002 __func__, m, have_p); 5003 5004 /* If we have xmit params, use them */ 5005 if (have_p) 5006 error = iwn_tx_data_raw(sc, m, ni, &p); 5007 else 5008 error = iwn_tx_data(sc, m, ni); 5009 5010 if (error != 0) { 5011 if_inc_counter(ni->ni_vap->iv_ifp, 5012 IFCOUNTER_OERRORS, 1); 5013 ieee80211_free_node(ni); 5014 m_freem(m); 5015 } 5016 } 5017 5018 sc->sc_beacon_wait = 0; 5019 IWN_UNLOCK(sc); 5020 } 5021 5022 /* 5023 * raw frame xmit - free node/reference if failed. 5024 */ 5025 static int 5026 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 5027 const struct ieee80211_bpf_params *params) 5028 { 5029 struct ieee80211com *ic = ni->ni_ic; 5030 struct iwn_softc *sc = ic->ic_softc; 5031 int error = 0; 5032 5033 DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5034 5035 IWN_LOCK(sc); 5036 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) { 5037 m_freem(m); 5038 IWN_UNLOCK(sc); 5039 return (ENETDOWN); 5040 } 5041 5042 /* queue frame if we have to */ 5043 if (sc->sc_beacon_wait) { 5044 if (iwn_xmit_queue_enqueue(sc, m) != 0) { 5045 m_freem(m); 5046 IWN_UNLOCK(sc); 5047 return (ENOBUFS); 5048 } 5049 /* Queued, so just return OK */ 5050 IWN_UNLOCK(sc); 5051 return (0); 5052 } 5053 5054 if (params == NULL) { 5055 /* 5056 * Legacy path; interpret frame contents to decide 5057 * precisely how to send the frame. 5058 */ 5059 error = iwn_tx_data(sc, m, ni); 5060 } else { 5061 /* 5062 * Caller supplied explicit parameters to use in 5063 * sending the frame. 5064 */ 5065 error = iwn_tx_data_raw(sc, m, ni, params); 5066 } 5067 if (error == 0) 5068 sc->sc_tx_timer = 5; 5069 else 5070 m_freem(m); 5071 5072 IWN_UNLOCK(sc); 5073 5074 DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__); 5075 5076 return (error); 5077 } 5078 5079 /* 5080 * transmit - don't free mbuf if failed; don't free node ref if failed. 5081 */ 5082 static int 5083 iwn_transmit(struct ieee80211com *ic, struct mbuf *m) 5084 { 5085 struct iwn_softc *sc = ic->ic_softc; 5086 struct ieee80211_node *ni; 5087 int error; 5088 5089 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 5090 5091 IWN_LOCK(sc); 5092 if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) { 5093 IWN_UNLOCK(sc); 5094 return (ENXIO); 5095 } 5096 5097 if (sc->qfullmsk) { 5098 IWN_UNLOCK(sc); 5099 return (ENOBUFS); 5100 } 5101 5102 error = iwn_tx_data(sc, m, ni); 5103 if (!error) 5104 sc->sc_tx_timer = 5; 5105 IWN_UNLOCK(sc); 5106 return (error); 5107 } 5108 5109 static void 5110 iwn_scan_timeout(void *arg) 5111 { 5112 struct iwn_softc *sc = arg; 5113 struct ieee80211com *ic = &sc->sc_ic; 5114 5115 ic_printf(ic, "scan timeout\n"); 5116 ieee80211_restart_all(ic); 5117 } 5118 5119 static void 5120 iwn_watchdog(void *arg) 5121 { 5122 struct iwn_softc *sc = arg; 5123 struct ieee80211com *ic = &sc->sc_ic; 5124 5125 IWN_LOCK_ASSERT(sc); 5126 5127 KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running")); 5128 5129 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5130 5131 if (sc->sc_tx_timer > 0) { 5132 if (--sc->sc_tx_timer == 0) { 5133 ic_printf(ic, "device timeout\n"); 5134 ieee80211_restart_all(ic); 5135 return; 5136 } 5137 } 5138 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 5139 } 5140 5141 static int 5142 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td) 5143 { 5144 5145 return (0); 5146 } 5147 5148 static int 5149 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td) 5150 { 5151 5152 return (0); 5153 } 5154 5155 static int 5156 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 5157 struct thread *td) 5158 { 5159 int rc; 5160 struct iwn_softc *sc = dev->si_drv1; 5161 struct iwn_ioctl_data *d; 5162 5163 rc = priv_check(td, PRIV_DRIVER); 5164 if (rc != 0) 5165 return (0); 5166 5167 switch (cmd) { 5168 case SIOCGIWNSTATS: 5169 d = (struct iwn_ioctl_data *) data; 5170 IWN_LOCK(sc); 5171 /* XXX validate permissions/memory/etc? */ 5172 rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats)); 5173 IWN_UNLOCK(sc); 5174 break; 5175 case SIOCZIWNSTATS: 5176 IWN_LOCK(sc); 5177 memset(&sc->last_stat, 0, sizeof(struct iwn_stats)); 5178 IWN_UNLOCK(sc); 5179 break; 5180 default: 5181 rc = EINVAL; 5182 break; 5183 } 5184 return (rc); 5185 } 5186 5187 static int 5188 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data) 5189 { 5190 5191 return (ENOTTY); 5192 } 5193 5194 static void 5195 iwn_parent(struct ieee80211com *ic) 5196 { 5197 struct iwn_softc *sc = ic->ic_softc; 5198 struct ieee80211vap *vap; 5199 int error; 5200 5201 if (ic->ic_nrunning > 0) { 5202 error = iwn_init(sc); 5203 5204 switch (error) { 5205 case 0: 5206 ieee80211_start_all(ic); 5207 break; 5208 case 1: 5209 /* radio is disabled via RFkill switch */ 5210 taskqueue_enqueue(sc->sc_tq, &sc->sc_rftoggle_task); 5211 break; 5212 default: 5213 vap = TAILQ_FIRST(&ic->ic_vaps); 5214 if (vap != NULL) 5215 ieee80211_stop(vap); 5216 break; 5217 } 5218 } else 5219 iwn_stop(sc); 5220 } 5221 5222 /* 5223 * Send a command to the firmware. 5224 */ 5225 static int 5226 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) 5227 { 5228 struct iwn_tx_ring *ring; 5229 struct iwn_tx_desc *desc; 5230 struct iwn_tx_data *data; 5231 struct iwn_tx_cmd *cmd; 5232 struct mbuf *m; 5233 bus_addr_t paddr; 5234 int totlen, error; 5235 int cmd_queue_num; 5236 5237 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5238 5239 if (async == 0) 5240 IWN_LOCK_ASSERT(sc); 5241 5242 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 5243 cmd_queue_num = IWN_PAN_CMD_QUEUE; 5244 else 5245 cmd_queue_num = IWN_CMD_QUEUE_NUM; 5246 5247 ring = &sc->txq[cmd_queue_num]; 5248 desc = &ring->desc[ring->cur]; 5249 data = &ring->data[ring->cur]; 5250 totlen = 4 + size; 5251 5252 if (size > sizeof cmd->data) { 5253 /* Command is too large to fit in a descriptor. */ 5254 if (totlen > MCLBYTES) 5255 return EINVAL; 5256 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE); 5257 if (m == NULL) 5258 return ENOMEM; 5259 cmd = mtod(m, struct iwn_tx_cmd *); 5260 error = bus_dmamap_load(ring->data_dmat, data->map, cmd, 5261 totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT); 5262 if (error != 0) { 5263 m_freem(m); 5264 return error; 5265 } 5266 data->m = m; 5267 } else { 5268 cmd = &ring->cmd[ring->cur]; 5269 paddr = data->cmd_paddr; 5270 } 5271 5272 cmd->code = code; 5273 cmd->flags = 0; 5274 cmd->qid = ring->qid; 5275 cmd->idx = ring->cur; 5276 memcpy(cmd->data, buf, size); 5277 5278 desc->nsegs = 1; 5279 desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); 5280 desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); 5281 5282 DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n", 5283 __func__, iwn_intr_str(cmd->code), cmd->code, 5284 cmd->flags, cmd->qid, cmd->idx); 5285 5286 if (size > sizeof cmd->data) { 5287 bus_dmamap_sync(ring->data_dmat, data->map, 5288 BUS_DMASYNC_PREWRITE); 5289 } else { 5290 bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map, 5291 BUS_DMASYNC_PREWRITE); 5292 } 5293 bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map, 5294 BUS_DMASYNC_PREWRITE); 5295 5296 /* Kick command ring. */ 5297 ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; 5298 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); 5299 5300 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5301 5302 return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz); 5303 } 5304 5305 static int 5306 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5307 { 5308 struct iwn4965_node_info hnode; 5309 caddr_t src, dst; 5310 5311 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5312 5313 /* 5314 * We use the node structure for 5000 Series internally (it is 5315 * a superset of the one for 4965AGN). We thus copy the common 5316 * fields before sending the command. 5317 */ 5318 src = (caddr_t)node; 5319 dst = (caddr_t)&hnode; 5320 memcpy(dst, src, 48); 5321 /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ 5322 memcpy(dst + 48, src + 72, 20); 5323 return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); 5324 } 5325 5326 static int 5327 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) 5328 { 5329 5330 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5331 5332 /* Direct mapping. */ 5333 return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); 5334 } 5335 5336 static int 5337 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) 5338 { 5339 struct iwn_node *wn = (void *)ni; 5340 struct ieee80211_rateset *rs; 5341 struct iwn_cmd_link_quality linkq; 5342 int i, rate, txrate; 5343 int is_11n; 5344 5345 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5346 5347 memset(&linkq, 0, sizeof linkq); 5348 linkq.id = wn->id; 5349 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5350 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5351 5352 linkq.ampdu_max = 32; /* XXX negotiated? */ 5353 linkq.ampdu_threshold = 3; 5354 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5355 5356 DPRINTF(sc, IWN_DEBUG_XMIT, 5357 "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n", 5358 __func__, 5359 linkq.antmsk_1stream, 5360 linkq.antmsk_2stream, 5361 sc->ntxchains); 5362 5363 /* 5364 * Are we using 11n rates? Ensure the channel is 5365 * 11n _and_ we have some 11n rates, or don't 5366 * try. 5367 */ 5368 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) { 5369 rs = (struct ieee80211_rateset *) &ni->ni_htrates; 5370 is_11n = 1; 5371 } else { 5372 rs = &ni->ni_rates; 5373 is_11n = 0; 5374 } 5375 5376 /* Start at highest available bit-rate. */ 5377 /* 5378 * XXX this is all very dirty! 5379 */ 5380 if (is_11n) 5381 txrate = ni->ni_htrates.rs_nrates - 1; 5382 else 5383 txrate = rs->rs_nrates - 1; 5384 for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { 5385 uint32_t plcp; 5386 5387 /* 5388 * XXX TODO: ensure the last two slots are the two lowest 5389 * rate entries, just for now. 5390 */ 5391 if (i == 14 || i == 15) 5392 txrate = 0; 5393 5394 if (is_11n) 5395 rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate]; 5396 else 5397 rate = IEEE80211_RV(rs->rs_rates[txrate]); 5398 5399 /* Do rate -> PLCP config mapping */ 5400 plcp = iwn_rate_to_plcp(sc, ni, rate); 5401 linkq.retry[i] = plcp; 5402 DPRINTF(sc, IWN_DEBUG_XMIT, 5403 "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n", 5404 __func__, 5405 i, 5406 txrate, 5407 rate, 5408 le32toh(plcp)); 5409 5410 /* 5411 * The mimo field is an index into the table which 5412 * indicates the first index where it and subsequent entries 5413 * will not be using MIMO. 5414 * 5415 * Since we're filling linkq from 0..15 and we're filling 5416 * from the highest MCS rates to the lowest rates, if we 5417 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie, 5418 * the next entry.) That way if the next entry is a non-MIMO 5419 * entry, we're already pointing at it. 5420 */ 5421 if ((le32toh(plcp) & IWN_RFLAG_MCS) && 5422 IEEE80211_RV(le32toh(plcp)) > 7) 5423 linkq.mimo = i + 1; 5424 5425 /* Next retry at immediate lower bit-rate. */ 5426 if (txrate > 0) 5427 txrate--; 5428 } 5429 /* 5430 * If we reached the end of the list and indeed we hit 5431 * all MIMO rates (eg 5300 doing MCS23-15) then yes, 5432 * set mimo to 15. Setting it to 16 panics the firmware. 5433 */ 5434 if (linkq.mimo > 15) 5435 linkq.mimo = 15; 5436 5437 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo); 5438 5439 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5440 5441 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); 5442 } 5443 5444 /* 5445 * Broadcast node is used to send group-addressed and management frames. 5446 */ 5447 static int 5448 iwn_add_broadcast_node(struct iwn_softc *sc, int async) 5449 { 5450 struct iwn_ops *ops = &sc->ops; 5451 struct ieee80211com *ic = &sc->sc_ic; 5452 struct iwn_node_info node; 5453 struct iwn_cmd_link_quality linkq; 5454 uint8_t txant; 5455 int i, error; 5456 5457 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5458 5459 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5460 5461 memset(&node, 0, sizeof node); 5462 IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr); 5463 node.id = sc->broadcast_id; 5464 DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__); 5465 if ((error = ops->add_node(sc, &node, async)) != 0) 5466 return error; 5467 5468 /* Use the first valid TX antenna. */ 5469 txant = IWN_LSB(sc->txchainmask); 5470 5471 memset(&linkq, 0, sizeof linkq); 5472 linkq.id = sc->broadcast_id; 5473 linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc); 5474 linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc); 5475 linkq.ampdu_max = 64; 5476 linkq.ampdu_threshold = 3; 5477 linkq.ampdu_limit = htole16(4000); /* 4ms */ 5478 5479 /* Use lowest mandatory bit-rate. */ 5480 /* XXX rate table lookup? */ 5481 if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) 5482 linkq.retry[0] = htole32(0xd); 5483 else 5484 linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK); 5485 linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant)); 5486 /* Use same bit-rate for all TX retries. */ 5487 for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { 5488 linkq.retry[i] = linkq.retry[0]; 5489 } 5490 5491 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5492 5493 return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); 5494 } 5495 5496 static int 5497 iwn_updateedca(struct ieee80211com *ic) 5498 { 5499 #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ 5500 struct iwn_softc *sc = ic->ic_softc; 5501 struct iwn_edca_params cmd; 5502 struct chanAccParams chp; 5503 int aci; 5504 5505 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 5506 5507 ieee80211_wme_ic_getparams(ic, &chp); 5508 5509 memset(&cmd, 0, sizeof cmd); 5510 cmd.flags = htole32(IWN_EDCA_UPDATE); 5511 5512 IEEE80211_LOCK(ic); 5513 for (aci = 0; aci < WME_NUM_AC; aci++) { 5514 const struct wmeParams *ac = &chp.cap_wmeParams[aci]; 5515 cmd.ac[aci].aifsn = ac->wmep_aifsn; 5516 cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin)); 5517 cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax)); 5518 cmd.ac[aci].txoplimit = 5519 htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit)); 5520 } 5521 IEEE80211_UNLOCK(ic); 5522 5523 IWN_LOCK(sc); 5524 (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); 5525 IWN_UNLOCK(sc); 5526 5527 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 5528 5529 return 0; 5530 #undef IWN_EXP2 5531 } 5532 5533 static void 5534 iwn_set_promisc(struct iwn_softc *sc) 5535 { 5536 struct ieee80211com *ic = &sc->sc_ic; 5537 uint32_t promisc_filter; 5538 5539 promisc_filter = IWN_FILTER_CTL | IWN_FILTER_PROMISC; 5540 if (ic->ic_promisc > 0 || ic->ic_opmode == IEEE80211_M_MONITOR) 5541 sc->rxon->filter |= htole32(promisc_filter); 5542 else 5543 sc->rxon->filter &= ~htole32(promisc_filter); 5544 } 5545 5546 static void 5547 iwn_update_promisc(struct ieee80211com *ic) 5548 { 5549 struct iwn_softc *sc = ic->ic_softc; 5550 int error; 5551 5552 if (ic->ic_opmode == IEEE80211_M_MONITOR) 5553 return; /* nothing to do */ 5554 5555 IWN_LOCK(sc); 5556 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) { 5557 IWN_UNLOCK(sc); 5558 return; 5559 } 5560 5561 iwn_set_promisc(sc); 5562 if ((error = iwn_send_rxon(sc, 1, 1)) != 0) { 5563 device_printf(sc->sc_dev, 5564 "%s: could not send RXON, error %d\n", 5565 __func__, error); 5566 } 5567 IWN_UNLOCK(sc); 5568 } 5569 5570 static void 5571 iwn_update_mcast(struct ieee80211com *ic) 5572 { 5573 /* Ignore */ 5574 } 5575 5576 static void 5577 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) 5578 { 5579 struct iwn_cmd_led led; 5580 5581 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5582 5583 #if 0 5584 /* XXX don't set LEDs during scan? */ 5585 if (sc->sc_is_scanning) 5586 return; 5587 #endif 5588 5589 /* Clear microcode LED ownership. */ 5590 IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); 5591 5592 led.which = which; 5593 led.unit = htole32(10000); /* on/off in unit of 100ms */ 5594 led.off = off; 5595 led.on = on; 5596 (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); 5597 } 5598 5599 /* 5600 * Set the critical temperature at which the firmware will stop the radio 5601 * and notify us. 5602 */ 5603 static int 5604 iwn_set_critical_temp(struct iwn_softc *sc) 5605 { 5606 struct iwn_critical_temp crit; 5607 int32_t temp; 5608 5609 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5610 5611 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); 5612 5613 if (sc->hw_type == IWN_HW_REV_TYPE_5150) 5614 temp = (IWN_CTOK(110) - sc->temp_off) * -5; 5615 else if (sc->hw_type == IWN_HW_REV_TYPE_4965) 5616 temp = IWN_CTOK(110); 5617 else 5618 temp = 110; 5619 memset(&crit, 0, sizeof crit); 5620 crit.tempR = htole32(temp); 5621 DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp); 5622 return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); 5623 } 5624 5625 static int 5626 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) 5627 { 5628 struct iwn_cmd_timing cmd; 5629 uint64_t val, mod; 5630 5631 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5632 5633 memset(&cmd, 0, sizeof cmd); 5634 memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t)); 5635 cmd.bintval = htole16(ni->ni_intval); 5636 cmd.lintval = htole16(10); 5637 5638 /* Compute remaining time until next beacon. */ 5639 val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU; 5640 mod = le64toh(cmd.tstamp) % val; 5641 cmd.binitval = htole32((uint32_t)(val - mod)); 5642 5643 DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n", 5644 ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)); 5645 5646 return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); 5647 } 5648 5649 static void 5650 iwn4965_power_calibration(struct iwn_softc *sc, int temp) 5651 { 5652 5653 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5654 5655 /* Adjust TX power if need be (delta >= 3 degC). */ 5656 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n", 5657 __func__, sc->temp, temp); 5658 if (abs(temp - sc->temp) >= 3) { 5659 /* Record temperature of last calibration. */ 5660 sc->temp = temp; 5661 (void)iwn4965_set_txpower(sc, 1); 5662 } 5663 } 5664 5665 /* 5666 * Set TX power for current channel (each rate has its own power settings). 5667 * This function takes into account the regulatory information from EEPROM, 5668 * the current temperature and the current voltage. 5669 */ 5670 static int 5671 iwn4965_set_txpower(struct iwn_softc *sc, int async) 5672 { 5673 /* Fixed-point arithmetic division using a n-bit fractional part. */ 5674 #define fdivround(a, b, n) \ 5675 ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) 5676 /* Linear interpolation. */ 5677 #define interpolate(x, x1, y1, x2, y2, n) \ 5678 ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) 5679 5680 static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; 5681 struct iwn_ucode_info *uc = &sc->ucode_info; 5682 struct iwn4965_cmd_txpower cmd; 5683 struct iwn4965_eeprom_chan_samples *chans; 5684 const uint8_t *rf_gain, *dsp_gain; 5685 int32_t vdiff, tdiff; 5686 int i, is_chan_5ghz, c, grp, maxpwr; 5687 uint8_t chan; 5688 5689 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 5690 /* Retrieve current channel from last RXON. */ 5691 chan = sc->rxon->chan; 5692 is_chan_5ghz = (sc->rxon->flags & htole32(IWN_RXON_24GHZ)) == 0; 5693 DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n", 5694 chan); 5695 5696 memset(&cmd, 0, sizeof cmd); 5697 cmd.band = is_chan_5ghz ? 0 : 1; 5698 cmd.chan = chan; 5699 5700 if (is_chan_5ghz) { 5701 maxpwr = sc->maxpwr5GHz; 5702 rf_gain = iwn4965_rf_gain_5ghz; 5703 dsp_gain = iwn4965_dsp_gain_5ghz; 5704 } else { 5705 maxpwr = sc->maxpwr2GHz; 5706 rf_gain = iwn4965_rf_gain_2ghz; 5707 dsp_gain = iwn4965_dsp_gain_2ghz; 5708 } 5709 5710 /* Compute voltage compensation. */ 5711 vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7; 5712 if (vdiff > 0) 5713 vdiff *= 2; 5714 if (abs(vdiff) > 2) 5715 vdiff = 0; 5716 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5717 "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", 5718 __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage); 5719 5720 /* Get channel attenuation group. */ 5721 if (chan <= 20) /* 1-20 */ 5722 grp = 4; 5723 else if (chan <= 43) /* 34-43 */ 5724 grp = 0; 5725 else if (chan <= 70) /* 44-70 */ 5726 grp = 1; 5727 else if (chan <= 124) /* 71-124 */ 5728 grp = 2; 5729 else /* 125-200 */ 5730 grp = 3; 5731 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5732 "%s: chan %d, attenuation group=%d\n", __func__, chan, grp); 5733 5734 /* Get channel sub-band. */ 5735 for (i = 0; i < IWN_NBANDS; i++) 5736 if (sc->bands[i].lo != 0 && 5737 sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) 5738 break; 5739 if (i == IWN_NBANDS) /* Can't happen in real-life. */ 5740 return EINVAL; 5741 chans = sc->bands[i].chans; 5742 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5743 "%s: chan %d sub-band=%d\n", __func__, chan, i); 5744 5745 for (c = 0; c < 2; c++) { 5746 uint8_t power, gain, temp; 5747 int maxchpwr, pwr, ridx, idx; 5748 5749 power = interpolate(chan, 5750 chans[0].num, chans[0].samples[c][1].power, 5751 chans[1].num, chans[1].samples[c][1].power, 1); 5752 gain = interpolate(chan, 5753 chans[0].num, chans[0].samples[c][1].gain, 5754 chans[1].num, chans[1].samples[c][1].gain, 1); 5755 temp = interpolate(chan, 5756 chans[0].num, chans[0].samples[c][1].temp, 5757 chans[1].num, chans[1].samples[c][1].temp, 1); 5758 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5759 "%s: Tx chain %d: power=%d gain=%d temp=%d\n", 5760 __func__, c, power, gain, temp); 5761 5762 /* Compute temperature compensation. */ 5763 tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; 5764 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5765 "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n", 5766 __func__, tdiff, sc->temp, temp); 5767 5768 for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { 5769 /* Convert dBm to half-dBm. */ 5770 maxchpwr = sc->maxpwr[chan] * 2; 5771 if ((ridx / 8) & 1) 5772 maxchpwr -= 6; /* MIMO 2T: -3dB */ 5773 5774 pwr = maxpwr; 5775 5776 /* Adjust TX power based on rate. */ 5777 if ((ridx % 8) == 5) 5778 pwr -= 15; /* OFDM48: -7.5dB */ 5779 else if ((ridx % 8) == 6) 5780 pwr -= 17; /* OFDM54: -8.5dB */ 5781 else if ((ridx % 8) == 7) 5782 pwr -= 20; /* OFDM60: -10dB */ 5783 else 5784 pwr -= 10; /* Others: -5dB */ 5785 5786 /* Do not exceed channel max TX power. */ 5787 if (pwr > maxchpwr) 5788 pwr = maxchpwr; 5789 5790 idx = gain - (pwr - power) - tdiff - vdiff; 5791 if ((ridx / 8) & 1) /* MIMO */ 5792 idx += (int32_t)le32toh(uc->atten[grp][c]); 5793 5794 if (cmd.band == 0) 5795 idx += 9; /* 5GHz */ 5796 if (ridx == IWN_RIDX_MAX) 5797 idx += 5; /* CCK */ 5798 5799 /* Make sure idx stays in a valid range. */ 5800 if (idx < 0) 5801 idx = 0; 5802 else if (idx > IWN4965_MAX_PWR_INDEX) 5803 idx = IWN4965_MAX_PWR_INDEX; 5804 5805 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5806 "%s: Tx chain %d, rate idx %d: power=%d\n", 5807 __func__, c, ridx, idx); 5808 cmd.power[ridx].rf_gain[c] = rf_gain[idx]; 5809 cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; 5810 } 5811 } 5812 5813 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW, 5814 "%s: set tx power for chan %d\n", __func__, chan); 5815 return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); 5816 5817 #undef interpolate 5818 #undef fdivround 5819 } 5820 5821 static int 5822 iwn5000_set_txpower(struct iwn_softc *sc, int async) 5823 { 5824 struct iwn5000_cmd_txpower cmd; 5825 int cmdid; 5826 5827 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5828 5829 /* 5830 * TX power calibration is handled automatically by the firmware 5831 * for 5000 Series. 5832 */ 5833 memset(&cmd, 0, sizeof cmd); 5834 cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ 5835 cmd.flags = IWN5000_TXPOWER_NO_CLOSED; 5836 cmd.srv_limit = IWN5000_TXPOWER_AUTO; 5837 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 5838 "%s: setting TX power; rev=%d\n", 5839 __func__, 5840 IWN_UCODE_API(sc->ucode_rev)); 5841 if (IWN_UCODE_API(sc->ucode_rev) == 1) 5842 cmdid = IWN_CMD_TXPOWER_DBM_V1; 5843 else 5844 cmdid = IWN_CMD_TXPOWER_DBM; 5845 return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async); 5846 } 5847 5848 /* 5849 * Retrieve the maximum RSSI (in dBm) among receivers. 5850 */ 5851 static int 5852 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5853 { 5854 struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; 5855 uint8_t mask, agc; 5856 int rssi; 5857 5858 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5859 5860 mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC; 5861 agc = (le16toh(phy->agc) >> 7) & 0x7f; 5862 5863 rssi = 0; 5864 if (mask & IWN_ANT_A) 5865 rssi = MAX(rssi, phy->rssi[0]); 5866 if (mask & IWN_ANT_B) 5867 rssi = MAX(rssi, phy->rssi[2]); 5868 if (mask & IWN_ANT_C) 5869 rssi = MAX(rssi, phy->rssi[4]); 5870 5871 DPRINTF(sc, IWN_DEBUG_RECV, 5872 "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc, 5873 mask, phy->rssi[0], phy->rssi[2], phy->rssi[4], 5874 rssi - agc - IWN_RSSI_TO_DBM); 5875 return rssi - agc - IWN_RSSI_TO_DBM; 5876 } 5877 5878 static int 5879 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat) 5880 { 5881 struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; 5882 uint8_t agc; 5883 int rssi; 5884 5885 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5886 5887 agc = (le32toh(phy->agc) >> 9) & 0x7f; 5888 5889 rssi = MAX(le16toh(phy->rssi[0]) & 0xff, 5890 le16toh(phy->rssi[1]) & 0xff); 5891 rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi); 5892 5893 DPRINTF(sc, IWN_DEBUG_RECV, 5894 "%s: agc %d rssi %d %d %d result %d\n", __func__, agc, 5895 phy->rssi[0], phy->rssi[1], phy->rssi[2], 5896 rssi - agc - IWN_RSSI_TO_DBM); 5897 return rssi - agc - IWN_RSSI_TO_DBM; 5898 } 5899 5900 /* 5901 * Retrieve the average noise (in dBm) among receivers. 5902 */ 5903 static int 5904 iwn_get_noise(const struct iwn_rx_general_stats *stats) 5905 { 5906 int i, total, nbant, noise; 5907 5908 total = nbant = 0; 5909 for (i = 0; i < 3; i++) { 5910 if ((noise = le32toh(stats->noise[i]) & 0xff) == 0) 5911 continue; 5912 total += noise; 5913 nbant++; 5914 } 5915 /* There should be at least one antenna but check anyway. */ 5916 return (nbant == 0) ? -127 : (total / nbant) - 107; 5917 } 5918 5919 /* 5920 * Compute temperature (in degC) from last received statistics. 5921 */ 5922 static int 5923 iwn4965_get_temperature(struct iwn_softc *sc) 5924 { 5925 struct iwn_ucode_info *uc = &sc->ucode_info; 5926 int32_t r1, r2, r3, r4, temp; 5927 5928 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5929 5930 r1 = le32toh(uc->temp[0].chan20MHz); 5931 r2 = le32toh(uc->temp[1].chan20MHz); 5932 r3 = le32toh(uc->temp[2].chan20MHz); 5933 r4 = le32toh(sc->rawtemp); 5934 5935 if (r1 == r3) /* Prevents division by 0 (should not happen). */ 5936 return 0; 5937 5938 /* Sign-extend 23-bit R4 value to 32-bit. */ 5939 r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000; 5940 /* Compute temperature in Kelvin. */ 5941 temp = (259 * (r4 - r2)) / (r3 - r1); 5942 temp = (temp * 97) / 100 + 8; 5943 5944 DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp, 5945 IWN_KTOC(temp)); 5946 return IWN_KTOC(temp); 5947 } 5948 5949 static int 5950 iwn5000_get_temperature(struct iwn_softc *sc) 5951 { 5952 int32_t temp; 5953 5954 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5955 5956 /* 5957 * Temperature is not used by the driver for 5000 Series because 5958 * TX power calibration is handled by firmware. 5959 */ 5960 temp = le32toh(sc->rawtemp); 5961 if (sc->hw_type == IWN_HW_REV_TYPE_5150) { 5962 temp = (temp / -5) + sc->temp_off; 5963 temp = IWN_KTOC(temp); 5964 } 5965 return temp; 5966 } 5967 5968 /* 5969 * Initialize sensitivity calibration state machine. 5970 */ 5971 static int 5972 iwn_init_sensitivity(struct iwn_softc *sc) 5973 { 5974 struct iwn_ops *ops = &sc->ops; 5975 struct iwn_calib_state *calib = &sc->calib; 5976 uint32_t flags; 5977 int error; 5978 5979 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 5980 5981 /* Reset calibration state machine. */ 5982 memset(calib, 0, sizeof (*calib)); 5983 calib->state = IWN_CALIB_STATE_INIT; 5984 calib->cck_state = IWN_CCK_STATE_HIFA; 5985 /* Set initial correlation values. */ 5986 calib->ofdm_x1 = sc->limits->min_ofdm_x1; 5987 calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1; 5988 calib->ofdm_x4 = sc->limits->min_ofdm_x4; 5989 calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4; 5990 calib->cck_x4 = 125; 5991 calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4; 5992 calib->energy_cck = sc->limits->energy_cck; 5993 5994 /* Write initial sensitivity. */ 5995 if ((error = iwn_send_sensitivity(sc)) != 0) 5996 return error; 5997 5998 /* Write initial gains. */ 5999 if ((error = ops->init_gains(sc)) != 0) 6000 return error; 6001 6002 /* Request statistics at each beacon interval. */ 6003 flags = 0; 6004 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n", 6005 __func__); 6006 return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); 6007 } 6008 6009 /* 6010 * Collect noise and RSSI statistics for the first 20 beacons received 6011 * after association and use them to determine connected antennas and 6012 * to set differential gains. 6013 */ 6014 static void 6015 iwn_collect_noise(struct iwn_softc *sc, 6016 const struct iwn_rx_general_stats *stats) 6017 { 6018 struct iwn_ops *ops = &sc->ops; 6019 struct iwn_calib_state *calib = &sc->calib; 6020 struct ieee80211com *ic = &sc->sc_ic; 6021 uint32_t val; 6022 int i; 6023 6024 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6025 6026 /* Accumulate RSSI and noise for all 3 antennas. */ 6027 for (i = 0; i < 3; i++) { 6028 calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff; 6029 calib->noise[i] += le32toh(stats->noise[i]) & 0xff; 6030 } 6031 /* NB: We update differential gains only once after 20 beacons. */ 6032 if (++calib->nbeacons < 20) 6033 return; 6034 6035 /* Determine highest average RSSI. */ 6036 val = MAX(calib->rssi[0], calib->rssi[1]); 6037 val = MAX(calib->rssi[2], val); 6038 6039 /* Determine which antennas are connected. */ 6040 sc->chainmask = sc->rxchainmask; 6041 for (i = 0; i < 3; i++) 6042 if (val - calib->rssi[i] > 15 * 20) 6043 sc->chainmask &= ~(1 << i); 6044 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 6045 "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n", 6046 __func__, sc->rxchainmask, sc->chainmask); 6047 6048 /* If none of the TX antennas are connected, keep at least one. */ 6049 if ((sc->chainmask & sc->txchainmask) == 0) 6050 sc->chainmask |= IWN_LSB(sc->txchainmask); 6051 6052 (void)ops->set_gains(sc); 6053 calib->state = IWN_CALIB_STATE_RUN; 6054 6055 #ifdef notyet 6056 /* XXX Disable RX chains with no antennas connected. */ 6057 sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask)); 6058 if (sc->sc_is_scanning) 6059 device_printf(sc->sc_dev, 6060 "%s: is_scanning set, before RXON\n", 6061 __func__); 6062 (void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1); 6063 #endif 6064 6065 /* Enable power-saving mode if requested by user. */ 6066 if (ic->ic_flags & IEEE80211_F_PMGTON) 6067 (void)iwn_set_pslevel(sc, 0, 3, 1); 6068 6069 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6070 6071 } 6072 6073 static int 6074 iwn4965_init_gains(struct iwn_softc *sc) 6075 { 6076 struct iwn_phy_calib_gain cmd; 6077 6078 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6079 6080 memset(&cmd, 0, sizeof cmd); 6081 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 6082 /* Differential gains initially set to 0 for all 3 antennas. */ 6083 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6084 "%s: setting initial differential gains\n", __func__); 6085 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6086 } 6087 6088 static int 6089 iwn5000_init_gains(struct iwn_softc *sc) 6090 { 6091 struct iwn_phy_calib cmd; 6092 6093 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6094 6095 memset(&cmd, 0, sizeof cmd); 6096 cmd.code = sc->reset_noise_gain; 6097 cmd.ngroups = 1; 6098 cmd.isvalid = 1; 6099 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6100 "%s: setting initial differential gains\n", __func__); 6101 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6102 } 6103 6104 static int 6105 iwn4965_set_gains(struct iwn_softc *sc) 6106 { 6107 struct iwn_calib_state *calib = &sc->calib; 6108 struct iwn_phy_calib_gain cmd; 6109 int i, delta, noise; 6110 6111 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6112 6113 /* Get minimal noise among connected antennas. */ 6114 noise = INT_MAX; /* NB: There's at least one antenna. */ 6115 for (i = 0; i < 3; i++) 6116 if (sc->chainmask & (1 << i)) 6117 noise = MIN(calib->noise[i], noise); 6118 6119 memset(&cmd, 0, sizeof cmd); 6120 cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; 6121 /* Set differential gains for connected antennas. */ 6122 for (i = 0; i < 3; i++) { 6123 if (sc->chainmask & (1 << i)) { 6124 /* Compute attenuation (in unit of 1.5dB). */ 6125 delta = (noise - (int32_t)calib->noise[i]) / 30; 6126 /* NB: delta <= 0 */ 6127 /* Limit to [-4.5dB,0]. */ 6128 cmd.gain[i] = MIN(abs(delta), 3); 6129 if (delta < 0) 6130 cmd.gain[i] |= 1 << 2; /* sign bit */ 6131 } 6132 } 6133 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6134 "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", 6135 cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask); 6136 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6137 } 6138 6139 static int 6140 iwn5000_set_gains(struct iwn_softc *sc) 6141 { 6142 struct iwn_calib_state *calib = &sc->calib; 6143 struct iwn_phy_calib_gain cmd; 6144 int i, ant, div, delta; 6145 6146 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 6147 6148 /* We collected 20 beacons and !=6050 need a 1.5 factor. */ 6149 div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30; 6150 6151 memset(&cmd, 0, sizeof cmd); 6152 cmd.code = sc->noise_gain; 6153 cmd.ngroups = 1; 6154 cmd.isvalid = 1; 6155 /* Get first available RX antenna as referential. */ 6156 ant = IWN_LSB(sc->rxchainmask); 6157 /* Set differential gains for other antennas. */ 6158 for (i = ant + 1; i < 3; i++) { 6159 if (sc->chainmask & (1 << i)) { 6160 /* The delta is relative to antenna "ant". */ 6161 delta = ((int32_t)calib->noise[ant] - 6162 (int32_t)calib->noise[i]) / div; 6163 /* Limit to [-4.5dB,+4.5dB]. */ 6164 cmd.gain[i - 1] = MIN(abs(delta), 3); 6165 if (delta < 0) 6166 cmd.gain[i - 1] |= 1 << 2; /* sign bit */ 6167 } 6168 } 6169 DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT, 6170 "setting differential gains Ant B/C: %x/%x (%x)\n", 6171 cmd.gain[0], cmd.gain[1], sc->chainmask); 6172 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); 6173 } 6174 6175 /* 6176 * Tune RF RX sensitivity based on the number of false alarms detected 6177 * during the last beacon period. 6178 */ 6179 static void 6180 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) 6181 { 6182 #define inc(val, inc, max) \ 6183 if ((val) < (max)) { \ 6184 if ((val) < (max) - (inc)) \ 6185 (val) += (inc); \ 6186 else \ 6187 (val) = (max); \ 6188 needs_update = 1; \ 6189 } 6190 #define dec(val, dec, min) \ 6191 if ((val) > (min)) { \ 6192 if ((val) > (min) + (dec)) \ 6193 (val) -= (dec); \ 6194 else \ 6195 (val) = (min); \ 6196 needs_update = 1; \ 6197 } 6198 6199 const struct iwn_sensitivity_limits *limits = sc->limits; 6200 struct iwn_calib_state *calib = &sc->calib; 6201 uint32_t val, rxena, fa; 6202 uint32_t energy[3], energy_min; 6203 uint8_t noise[3], noise_ref; 6204 int i, needs_update = 0; 6205 6206 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6207 6208 /* Check that we've been enabled long enough. */ 6209 if ((rxena = le32toh(stats->general.load)) == 0){ 6210 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__); 6211 return; 6212 } 6213 6214 /* Compute number of false alarms since last call for OFDM. */ 6215 fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6216 fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm; 6217 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6218 6219 if (fa > 50 * rxena) { 6220 /* High false alarm count, decrease sensitivity. */ 6221 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6222 "%s: OFDM high false alarm count: %u\n", __func__, fa); 6223 inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); 6224 inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); 6225 inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); 6226 inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); 6227 6228 } else if (fa < 5 * rxena) { 6229 /* Low false alarm count, increase sensitivity. */ 6230 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6231 "%s: OFDM low false alarm count: %u\n", __func__, fa); 6232 dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); 6233 dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); 6234 dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); 6235 dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); 6236 } 6237 6238 /* Compute maximum noise among 3 receivers. */ 6239 for (i = 0; i < 3; i++) 6240 noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff; 6241 val = MAX(noise[0], noise[1]); 6242 val = MAX(noise[2], val); 6243 /* Insert it into our samples table. */ 6244 calib->noise_samples[calib->cur_noise_sample] = val; 6245 calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; 6246 6247 /* Compute maximum noise among last 20 samples. */ 6248 noise_ref = calib->noise_samples[0]; 6249 for (i = 1; i < 20; i++) 6250 noise_ref = MAX(noise_ref, calib->noise_samples[i]); 6251 6252 /* Compute maximum energy among 3 receivers. */ 6253 for (i = 0; i < 3; i++) 6254 energy[i] = le32toh(stats->general.energy[i]); 6255 val = MIN(energy[0], energy[1]); 6256 val = MIN(energy[2], val); 6257 /* Insert it into our samples table. */ 6258 calib->energy_samples[calib->cur_energy_sample] = val; 6259 calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; 6260 6261 /* Compute minimum energy among last 10 samples. */ 6262 energy_min = calib->energy_samples[0]; 6263 for (i = 1; i < 10; i++) 6264 energy_min = MAX(energy_min, calib->energy_samples[i]); 6265 energy_min += 6; 6266 6267 /* Compute number of false alarms since last call for CCK. */ 6268 fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck; 6269 fa += le32toh(stats->cck.fa) - calib->fa_cck; 6270 fa *= 200 * IEEE80211_DUR_TU; /* 200TU */ 6271 6272 if (fa > 50 * rxena) { 6273 /* High false alarm count, decrease sensitivity. */ 6274 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6275 "%s: CCK high false alarm count: %u\n", __func__, fa); 6276 calib->cck_state = IWN_CCK_STATE_HIFA; 6277 calib->low_fa = 0; 6278 6279 if (calib->cck_x4 > 160) { 6280 calib->noise_ref = noise_ref; 6281 if (calib->energy_cck > 2) 6282 dec(calib->energy_cck, 2, energy_min); 6283 } 6284 if (calib->cck_x4 < 160) { 6285 calib->cck_x4 = 161; 6286 needs_update = 1; 6287 } else 6288 inc(calib->cck_x4, 3, limits->max_cck_x4); 6289 6290 inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); 6291 6292 } else if (fa < 5 * rxena) { 6293 /* Low false alarm count, increase sensitivity. */ 6294 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6295 "%s: CCK low false alarm count: %u\n", __func__, fa); 6296 calib->cck_state = IWN_CCK_STATE_LOFA; 6297 calib->low_fa++; 6298 6299 if (calib->cck_state != IWN_CCK_STATE_INIT && 6300 (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || 6301 calib->low_fa > 100)) { 6302 inc(calib->energy_cck, 2, limits->min_energy_cck); 6303 dec(calib->cck_x4, 3, limits->min_cck_x4); 6304 dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); 6305 } 6306 } else { 6307 /* Not worth to increase or decrease sensitivity. */ 6308 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6309 "%s: CCK normal false alarm count: %u\n", __func__, fa); 6310 calib->low_fa = 0; 6311 calib->noise_ref = noise_ref; 6312 6313 if (calib->cck_state == IWN_CCK_STATE_HIFA) { 6314 /* Previous interval had many false alarms. */ 6315 dec(calib->energy_cck, 8, energy_min); 6316 } 6317 calib->cck_state = IWN_CCK_STATE_INIT; 6318 } 6319 6320 if (needs_update) 6321 (void)iwn_send_sensitivity(sc); 6322 6323 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6324 6325 #undef dec 6326 #undef inc 6327 } 6328 6329 static int 6330 iwn_send_sensitivity(struct iwn_softc *sc) 6331 { 6332 struct iwn_calib_state *calib = &sc->calib; 6333 struct iwn_enhanced_sensitivity_cmd cmd; 6334 int len; 6335 6336 memset(&cmd, 0, sizeof cmd); 6337 len = sizeof (struct iwn_sensitivity_cmd); 6338 cmd.which = IWN_SENSITIVITY_WORKTBL; 6339 /* OFDM modulation. */ 6340 cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); 6341 cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); 6342 cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); 6343 cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); 6344 cmd.energy_ofdm = htole16(sc->limits->energy_ofdm); 6345 cmd.energy_ofdm_th = htole16(62); 6346 /* CCK modulation. */ 6347 cmd.corr_cck_x4 = htole16(calib->cck_x4); 6348 cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); 6349 cmd.energy_cck = htole16(calib->energy_cck); 6350 /* Barker modulation: use default values. */ 6351 cmd.corr_barker = htole16(190); 6352 cmd.corr_barker_mrc = htole16(sc->limits->barker_mrc); 6353 6354 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6355 "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__, 6356 calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, 6357 calib->ofdm_mrc_x4, calib->cck_x4, 6358 calib->cck_mrc_x4, calib->energy_cck); 6359 6360 if (!(sc->sc_flags & IWN_FLAG_ENH_SENS)) 6361 goto send; 6362 /* Enhanced sensitivity settings. */ 6363 len = sizeof (struct iwn_enhanced_sensitivity_cmd); 6364 cmd.ofdm_det_slope_mrc = htole16(668); 6365 cmd.ofdm_det_icept_mrc = htole16(4); 6366 cmd.ofdm_det_slope = htole16(486); 6367 cmd.ofdm_det_icept = htole16(37); 6368 cmd.cck_det_slope_mrc = htole16(853); 6369 cmd.cck_det_icept_mrc = htole16(4); 6370 cmd.cck_det_slope = htole16(476); 6371 cmd.cck_det_icept = htole16(99); 6372 send: 6373 return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1); 6374 } 6375 6376 /* 6377 * Look at the increase of PLCP errors over time; if it exceeds 6378 * a programmed threshold then trigger an RF retune. 6379 */ 6380 static void 6381 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs) 6382 { 6383 int32_t delta_ofdm, delta_ht, delta_cck; 6384 struct iwn_calib_state *calib = &sc->calib; 6385 int delta_ticks, cur_ticks; 6386 int delta_msec; 6387 int thresh; 6388 6389 /* 6390 * Calculate the difference between the current and 6391 * previous statistics. 6392 */ 6393 delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck; 6394 delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm; 6395 delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht; 6396 6397 /* 6398 * Calculate the delta in time between successive statistics 6399 * messages. Yes, it can roll over; so we make sure that 6400 * this doesn't happen. 6401 * 6402 * XXX go figure out what to do about rollover 6403 * XXX go figure out what to do if ticks rolls over to -ve instead! 6404 * XXX go stab signed integer overflow undefined-ness in the face. 6405 */ 6406 cur_ticks = ticks; 6407 delta_ticks = cur_ticks - sc->last_calib_ticks; 6408 6409 /* 6410 * If any are negative, then the firmware likely reset; so just 6411 * bail. We'll pick this up next time. 6412 */ 6413 if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0) 6414 return; 6415 6416 /* 6417 * delta_ticks is in ticks; we need to convert it up to milliseconds 6418 * so we can do some useful math with it. 6419 */ 6420 delta_msec = ticks_to_msecs(delta_ticks); 6421 6422 /* 6423 * Calculate what our threshold is given the current delta_msec. 6424 */ 6425 thresh = sc->base_params->plcp_err_threshold * delta_msec; 6426 6427 DPRINTF(sc, IWN_DEBUG_STATE, 6428 "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n", 6429 __func__, 6430 delta_msec, 6431 delta_cck, 6432 delta_ofdm, 6433 delta_ht, 6434 (delta_msec + delta_cck + delta_ofdm + delta_ht), 6435 thresh); 6436 6437 /* 6438 * If we need a retune, then schedule a single channel scan 6439 * to a channel that isn't the currently active one! 6440 * 6441 * The math from linux iwlwifi: 6442 * 6443 * if ((delta * 100 / msecs) > threshold) 6444 */ 6445 if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) { 6446 DPRINTF(sc, IWN_DEBUG_ANY, 6447 "%s: PLCP error threshold raw (%d) comparison (%d) " 6448 "over limit (%d); retune!\n", 6449 __func__, 6450 (delta_cck + delta_ofdm + delta_ht), 6451 (delta_cck + delta_ofdm + delta_ht) * 100, 6452 thresh); 6453 } 6454 } 6455 6456 /* 6457 * Set STA mode power saving level (between 0 and 5). 6458 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. 6459 */ 6460 static int 6461 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) 6462 { 6463 struct iwn_pmgt_cmd cmd; 6464 const struct iwn_pmgt *pmgt; 6465 uint32_t max, skip_dtim; 6466 uint32_t reg; 6467 int i; 6468 6469 DPRINTF(sc, IWN_DEBUG_PWRSAVE, 6470 "%s: dtim=%d, level=%d, async=%d\n", 6471 __func__, 6472 dtim, 6473 level, 6474 async); 6475 6476 /* Select which PS parameters to use. */ 6477 if (dtim <= 2) 6478 pmgt = &iwn_pmgt[0][level]; 6479 else if (dtim <= 10) 6480 pmgt = &iwn_pmgt[1][level]; 6481 else 6482 pmgt = &iwn_pmgt[2][level]; 6483 6484 memset(&cmd, 0, sizeof cmd); 6485 if (level != 0) /* not CAM */ 6486 cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); 6487 if (level == 5) 6488 cmd.flags |= htole16(IWN_PS_FAST_PD); 6489 /* Retrieve PCIe Active State Power Management (ASPM). */ 6490 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 6491 if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S)) /* L0s Entry disabled. */ 6492 cmd.flags |= htole16(IWN_PS_PCI_PMGT); 6493 cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); 6494 cmd.txtimeout = htole32(pmgt->txtimeout * 1024); 6495 6496 if (dtim == 0) { 6497 dtim = 1; 6498 skip_dtim = 0; 6499 } else 6500 skip_dtim = pmgt->skip_dtim; 6501 if (skip_dtim != 0) { 6502 cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); 6503 max = pmgt->intval[4]; 6504 if (max == (uint32_t)-1) 6505 max = dtim * (skip_dtim + 1); 6506 else if (max > dtim) 6507 max = rounddown(max, dtim); 6508 } else 6509 max = dtim; 6510 for (i = 0; i < 5; i++) 6511 cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); 6512 6513 DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n", 6514 level); 6515 return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); 6516 } 6517 6518 static int 6519 iwn_send_btcoex(struct iwn_softc *sc) 6520 { 6521 struct iwn_bluetooth cmd; 6522 6523 memset(&cmd, 0, sizeof cmd); 6524 cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO; 6525 cmd.lead_time = IWN_BT_LEAD_TIME_DEF; 6526 cmd.max_kill = IWN_BT_MAX_KILL_DEF; 6527 DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n", 6528 __func__); 6529 return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0); 6530 } 6531 6532 static int 6533 iwn_send_advanced_btcoex(struct iwn_softc *sc) 6534 { 6535 static const uint32_t btcoex_3wire[12] = { 6536 0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa, 6537 0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa, 6538 0xc0004000, 0x00004000, 0xf0005000, 0xf0005000, 6539 }; 6540 struct iwn6000_btcoex_config btconfig; 6541 struct iwn2000_btcoex_config btconfig2k; 6542 struct iwn_btcoex_priotable btprio; 6543 struct iwn_btcoex_prot btprot; 6544 int error, i; 6545 uint8_t flags; 6546 6547 memset(&btconfig, 0, sizeof btconfig); 6548 memset(&btconfig2k, 0, sizeof btconfig2k); 6549 6550 flags = IWN_BT_FLAG_COEX6000_MODE_3W << 6551 IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2 6552 6553 if (sc->base_params->bt_sco_disable) 6554 flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6555 else 6556 flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE; 6557 6558 flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION; 6559 6560 /* Default flags result is 145 as old value */ 6561 6562 /* 6563 * Flags value has to be review. Values must change if we 6564 * which to disable it 6565 */ 6566 if (sc->base_params->bt_session_2) { 6567 btconfig2k.flags = flags; 6568 btconfig2k.max_kill = 5; 6569 btconfig2k.bt3_t7_timer = 1; 6570 btconfig2k.kill_ack = htole32(0xffff0000); 6571 btconfig2k.kill_cts = htole32(0xffff0000); 6572 btconfig2k.sample_time = 2; 6573 btconfig2k.bt3_t2_timer = 0xc; 6574 6575 for (i = 0; i < 12; i++) 6576 btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]); 6577 btconfig2k.valid = htole16(0xff); 6578 btconfig2k.prio_boost = htole32(0xf0); 6579 DPRINTF(sc, IWN_DEBUG_RESET, 6580 "%s: configuring advanced bluetooth coexistence" 6581 " session 2, flags : 0x%x\n", 6582 __func__, 6583 flags); 6584 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k, 6585 sizeof(btconfig2k), 1); 6586 } else { 6587 btconfig.flags = flags; 6588 btconfig.max_kill = 5; 6589 btconfig.bt3_t7_timer = 1; 6590 btconfig.kill_ack = htole32(0xffff0000); 6591 btconfig.kill_cts = htole32(0xffff0000); 6592 btconfig.sample_time = 2; 6593 btconfig.bt3_t2_timer = 0xc; 6594 6595 for (i = 0; i < 12; i++) 6596 btconfig.lookup_table[i] = htole32(btcoex_3wire[i]); 6597 btconfig.valid = htole16(0xff); 6598 btconfig.prio_boost = 0xf0; 6599 DPRINTF(sc, IWN_DEBUG_RESET, 6600 "%s: configuring advanced bluetooth coexistence," 6601 " flags : 0x%x\n", 6602 __func__, 6603 flags); 6604 error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, 6605 sizeof(btconfig), 1); 6606 } 6607 6608 if (error != 0) 6609 return error; 6610 6611 memset(&btprio, 0, sizeof btprio); 6612 btprio.calib_init1 = 0x6; 6613 btprio.calib_init2 = 0x7; 6614 btprio.calib_periodic_low1 = 0x2; 6615 btprio.calib_periodic_low2 = 0x3; 6616 btprio.calib_periodic_high1 = 0x4; 6617 btprio.calib_periodic_high2 = 0x5; 6618 btprio.dtim = 0x6; 6619 btprio.scan52 = 0x8; 6620 btprio.scan24 = 0xa; 6621 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio), 6622 1); 6623 if (error != 0) 6624 return error; 6625 6626 /* Force BT state machine change. */ 6627 memset(&btprot, 0, sizeof btprot); 6628 btprot.open = 1; 6629 btprot.type = 1; 6630 error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6631 if (error != 0) 6632 return error; 6633 btprot.open = 0; 6634 return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1); 6635 } 6636 6637 static int 6638 iwn5000_runtime_calib(struct iwn_softc *sc) 6639 { 6640 struct iwn5000_calib_config cmd; 6641 6642 memset(&cmd, 0, sizeof cmd); 6643 cmd.ucode.once.enable = 0xffffffff; 6644 cmd.ucode.once.start = IWN5000_CALIB_DC; 6645 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 6646 "%s: configuring runtime calibration\n", __func__); 6647 return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0); 6648 } 6649 6650 static uint32_t 6651 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211vap *vap, 6652 struct ieee80211_channel *c) 6653 { 6654 uint32_t htflags = 0; 6655 6656 if (! IEEE80211_IS_CHAN_HT(c)) 6657 return (0); 6658 6659 htflags |= IWN_RXON_HT_PROTMODE(vap->iv_curhtprotmode); 6660 6661 if (IEEE80211_IS_CHAN_HT40(c)) { 6662 switch (vap->iv_curhtprotmode) { 6663 case IEEE80211_HTINFO_OPMODE_HT20PR: 6664 htflags |= IWN_RXON_HT_MODEPURE40; 6665 break; 6666 default: 6667 htflags |= IWN_RXON_HT_MODEMIXED; 6668 break; 6669 } 6670 } 6671 if (IEEE80211_IS_CHAN_HT40D(c)) 6672 htflags |= IWN_RXON_HT_HT40MINUS; 6673 6674 return (htflags); 6675 } 6676 6677 static int 6678 iwn_check_bss_filter(struct iwn_softc *sc) 6679 { 6680 return ((sc->rxon->filter & htole32(IWN_FILTER_BSS)) != 0); 6681 } 6682 6683 static int 6684 iwn4965_rxon_assoc(struct iwn_softc *sc, int async) 6685 { 6686 struct iwn4965_rxon_assoc cmd; 6687 struct iwn_rxon *rxon = sc->rxon; 6688 6689 cmd.flags = rxon->flags; 6690 cmd.filter = rxon->filter; 6691 cmd.ofdm_mask = rxon->ofdm_mask; 6692 cmd.cck_mask = rxon->cck_mask; 6693 cmd.ht_single_mask = rxon->ht_single_mask; 6694 cmd.ht_dual_mask = rxon->ht_dual_mask; 6695 cmd.rxchain = rxon->rxchain; 6696 cmd.reserved = 0; 6697 6698 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); 6699 } 6700 6701 static int 6702 iwn5000_rxon_assoc(struct iwn_softc *sc, int async) 6703 { 6704 struct iwn5000_rxon_assoc cmd; 6705 struct iwn_rxon *rxon = sc->rxon; 6706 6707 cmd.flags = rxon->flags; 6708 cmd.filter = rxon->filter; 6709 cmd.ofdm_mask = rxon->ofdm_mask; 6710 cmd.cck_mask = rxon->cck_mask; 6711 cmd.reserved1 = 0; 6712 cmd.ht_single_mask = rxon->ht_single_mask; 6713 cmd.ht_dual_mask = rxon->ht_dual_mask; 6714 cmd.ht_triple_mask = rxon->ht_triple_mask; 6715 cmd.reserved2 = 0; 6716 cmd.rxchain = rxon->rxchain; 6717 cmd.acquisition = rxon->acquisition; 6718 cmd.reserved3 = 0; 6719 6720 return (iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &cmd, sizeof(cmd), async)); 6721 } 6722 6723 static int 6724 iwn_send_rxon(struct iwn_softc *sc, int assoc, int async) 6725 { 6726 struct iwn_ops *ops = &sc->ops; 6727 int error; 6728 6729 IWN_LOCK_ASSERT(sc); 6730 6731 if (assoc && iwn_check_bss_filter(sc) != 0) { 6732 error = ops->rxon_assoc(sc, async); 6733 if (error != 0) { 6734 device_printf(sc->sc_dev, 6735 "%s: RXON_ASSOC command failed, error %d\n", 6736 __func__, error); 6737 return (error); 6738 } 6739 } else { 6740 if (sc->sc_is_scanning) 6741 device_printf(sc->sc_dev, 6742 "%s: is_scanning set, before RXON\n", 6743 __func__); 6744 6745 error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, async); 6746 if (error != 0) { 6747 device_printf(sc->sc_dev, 6748 "%s: RXON command failed, error %d\n", 6749 __func__, error); 6750 return (error); 6751 } 6752 6753 /* 6754 * Reconfiguring RXON clears the firmware nodes table so 6755 * we must add the broadcast node again. 6756 */ 6757 if (iwn_check_bss_filter(sc) == 0 && 6758 (error = iwn_add_broadcast_node(sc, async)) != 0) { 6759 device_printf(sc->sc_dev, 6760 "%s: could not add broadcast node, error %d\n", 6761 __func__, error); 6762 return (error); 6763 } 6764 } 6765 6766 /* Configuration has changed, set TX power accordingly. */ 6767 if ((error = ops->set_txpower(sc, async)) != 0) { 6768 device_printf(sc->sc_dev, 6769 "%s: could not set TX power, error %d\n", 6770 __func__, error); 6771 return (error); 6772 } 6773 6774 return (0); 6775 } 6776 6777 static int 6778 iwn_config(struct iwn_softc *sc) 6779 { 6780 struct ieee80211com *ic = &sc->sc_ic; 6781 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 6782 const uint8_t *macaddr; 6783 uint32_t txmask; 6784 uint16_t rxchain; 6785 int error; 6786 6787 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 6788 6789 if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) 6790 && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) { 6791 device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are" 6792 " exclusive each together. Review NIC config file. Conf" 6793 " : 0x%08x Flags : 0x%08x \n", __func__, 6794 sc->base_params->calib_need, 6795 (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET | 6796 IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)); 6797 return (EINVAL); 6798 } 6799 6800 /* Compute temperature calib if needed. Will be send by send calib */ 6801 if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) { 6802 error = iwn5000_temp_offset_calib(sc); 6803 if (error != 0) { 6804 device_printf(sc->sc_dev, 6805 "%s: could not set temperature offset\n", __func__); 6806 return (error); 6807 } 6808 } else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) { 6809 error = iwn5000_temp_offset_calibv2(sc); 6810 if (error != 0) { 6811 device_printf(sc->sc_dev, 6812 "%s: could not compute temperature offset v2\n", 6813 __func__); 6814 return (error); 6815 } 6816 } 6817 6818 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 6819 /* Configure runtime DC calibration. */ 6820 error = iwn5000_runtime_calib(sc); 6821 if (error != 0) { 6822 device_printf(sc->sc_dev, 6823 "%s: could not configure runtime calibration\n", 6824 __func__); 6825 return error; 6826 } 6827 } 6828 6829 /* Configure valid TX chains for >=5000 Series. */ 6830 if (sc->hw_type != IWN_HW_REV_TYPE_4965 && 6831 IWN_UCODE_API(sc->ucode_rev) > 1) { 6832 txmask = htole32(sc->txchainmask); 6833 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6834 "%s: configuring valid TX chains 0x%x\n", __func__, txmask); 6835 error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask, 6836 sizeof txmask, 0); 6837 if (error != 0) { 6838 device_printf(sc->sc_dev, 6839 "%s: could not configure valid TX chains, " 6840 "error %d\n", __func__, error); 6841 return error; 6842 } 6843 } 6844 6845 /* Configure bluetooth coexistence. */ 6846 error = 0; 6847 6848 /* Configure bluetooth coexistence if needed. */ 6849 if (sc->base_params->bt_mode == IWN_BT_ADVANCED) 6850 error = iwn_send_advanced_btcoex(sc); 6851 if (sc->base_params->bt_mode == IWN_BT_SIMPLE) 6852 error = iwn_send_btcoex(sc); 6853 6854 if (error != 0) { 6855 device_printf(sc->sc_dev, 6856 "%s: could not configure bluetooth coexistence, error %d\n", 6857 __func__, error); 6858 return error; 6859 } 6860 6861 /* Set mode, channel, RX filter and enable RX. */ 6862 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 6863 memset(sc->rxon, 0, sizeof (struct iwn_rxon)); 6864 macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr; 6865 IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr); 6866 IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr); 6867 sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 6868 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 6869 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 6870 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 6871 6872 sc->rxon->filter = htole32(IWN_FILTER_MULTICAST); 6873 switch (ic->ic_opmode) { 6874 case IEEE80211_M_STA: 6875 sc->rxon->mode = IWN_MODE_STA; 6876 break; 6877 case IEEE80211_M_MONITOR: 6878 sc->rxon->mode = IWN_MODE_MONITOR; 6879 break; 6880 default: 6881 /* Should not get there. */ 6882 break; 6883 } 6884 iwn_set_promisc(sc); 6885 sc->rxon->cck_mask = 0x0f; /* not yet negotiated */ 6886 sc->rxon->ofdm_mask = 0xff; /* not yet negotiated */ 6887 sc->rxon->ht_single_mask = 0xff; 6888 sc->rxon->ht_dual_mask = 0xff; 6889 sc->rxon->ht_triple_mask = 0xff; 6890 /* 6891 * In active association mode, ensure that 6892 * all the receive chains are enabled. 6893 * 6894 * Since we're not yet doing SMPS, don't allow the 6895 * number of idle RX chains to be less than the active 6896 * number. 6897 */ 6898 rxchain = 6899 IWN_RXCHAIN_VALID(sc->rxchainmask) | 6900 IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) | 6901 IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains); 6902 sc->rxon->rxchain = htole16(rxchain); 6903 DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT, 6904 "%s: rxchainmask=0x%x, nrxchains=%d\n", 6905 __func__, 6906 sc->rxchainmask, 6907 sc->nrxchains); 6908 6909 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan)); 6910 6911 DPRINTF(sc, IWN_DEBUG_RESET, 6912 "%s: setting configuration; flags=0x%08x\n", 6913 __func__, le32toh(sc->rxon->flags)); 6914 if ((error = iwn_send_rxon(sc, 0, 0)) != 0) { 6915 device_printf(sc->sc_dev, "%s: could not send RXON\n", 6916 __func__); 6917 return error; 6918 } 6919 6920 if ((error = iwn_set_critical_temp(sc)) != 0) { 6921 device_printf(sc->sc_dev, 6922 "%s: could not set critical temperature\n", __func__); 6923 return error; 6924 } 6925 6926 /* Set power saving level to CAM during initialization. */ 6927 if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { 6928 device_printf(sc->sc_dev, 6929 "%s: could not set power saving level\n", __func__); 6930 return error; 6931 } 6932 6933 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 6934 6935 return 0; 6936 } 6937 6938 static uint16_t 6939 iwn_get_active_dwell_time(struct iwn_softc *sc, 6940 struct ieee80211_channel *c, uint8_t n_probes) 6941 { 6942 /* No channel? Default to 2GHz settings */ 6943 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6944 return (IWN_ACTIVE_DWELL_TIME_2GHZ + 6945 IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1)); 6946 } 6947 6948 /* 5GHz dwell time */ 6949 return (IWN_ACTIVE_DWELL_TIME_5GHZ + 6950 IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1)); 6951 } 6952 6953 /* 6954 * Limit the total dwell time to 85% of the beacon interval. 6955 * 6956 * Returns the dwell time in milliseconds. 6957 */ 6958 static uint16_t 6959 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time) 6960 { 6961 struct ieee80211com *ic = &sc->sc_ic; 6962 struct ieee80211vap *vap = NULL; 6963 int bintval = 0; 6964 6965 /* bintval is in TU (1.024mS) */ 6966 if (! TAILQ_EMPTY(&ic->ic_vaps)) { 6967 vap = TAILQ_FIRST(&ic->ic_vaps); 6968 bintval = vap->iv_bss->ni_intval; 6969 } 6970 6971 /* 6972 * If it's non-zero, we should calculate the minimum of 6973 * it and the DWELL_BASE. 6974 * 6975 * XXX Yes, the math should take into account that bintval 6976 * is 1.024mS, not 1mS.. 6977 */ 6978 if (bintval > 0) { 6979 DPRINTF(sc, IWN_DEBUG_SCAN, 6980 "%s: bintval=%d\n", 6981 __func__, 6982 bintval); 6983 return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100))); 6984 } 6985 6986 /* No association context? Default */ 6987 return (IWN_PASSIVE_DWELL_BASE); 6988 } 6989 6990 static uint16_t 6991 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c) 6992 { 6993 uint16_t passive; 6994 6995 if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) { 6996 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ; 6997 } else { 6998 passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ; 6999 } 7000 7001 /* Clamp to the beacon interval if we're associated */ 7002 return (iwn_limit_dwell(sc, passive)); 7003 } 7004 7005 static int 7006 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap, 7007 struct ieee80211_scan_state *ss, struct ieee80211_channel *c) 7008 { 7009 struct ieee80211com *ic = &sc->sc_ic; 7010 struct ieee80211_node *ni = vap->iv_bss; 7011 struct iwn_scan_hdr *hdr; 7012 struct iwn_cmd_data *tx; 7013 struct iwn_scan_essid *essid; 7014 struct iwn_scan_chan *chan; 7015 struct ieee80211_frame *wh; 7016 struct ieee80211_rateset *rs; 7017 uint8_t *buf, *frm; 7018 uint16_t rxchain; 7019 uint8_t txant; 7020 int buflen, error; 7021 int is_active; 7022 uint16_t dwell_active, dwell_passive; 7023 uint32_t scan_service_time; 7024 7025 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7026 7027 /* 7028 * We are absolutely not allowed to send a scan command when another 7029 * scan command is pending. 7030 */ 7031 if (sc->sc_is_scanning) { 7032 device_printf(sc->sc_dev, "%s: called whilst scanning!\n", 7033 __func__); 7034 return (EAGAIN); 7035 } 7036 7037 /* Assign the scan channel */ 7038 c = ic->ic_curchan; 7039 7040 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7041 buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); 7042 if (buf == NULL) { 7043 device_printf(sc->sc_dev, 7044 "%s: could not allocate buffer for scan command\n", 7045 __func__); 7046 return ENOMEM; 7047 } 7048 hdr = (struct iwn_scan_hdr *)buf; 7049 /* 7050 * Move to the next channel if no frames are received within 10ms 7051 * after sending the probe request. 7052 */ 7053 hdr->quiet_time = htole16(10); /* timeout in milliseconds */ 7054 hdr->quiet_threshold = htole16(1); /* min # of packets */ 7055 /* 7056 * Max needs to be greater than active and passive and quiet! 7057 * It's also in microseconds! 7058 */ 7059 hdr->max_svc = htole32(250 * 1024); 7060 7061 /* 7062 * Reset scan: interval=100 7063 * Normal scan: interval=becaon interval 7064 * suspend_time: 100 (TU) 7065 * 7066 */ 7067 #if 0 7068 extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22; 7069 scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024); 7070 #else 7071 scan_service_time = (4 << 22) | (100 * 1024); /* Hardcode for now! */ 7072 #endif 7073 hdr->pause_svc = htole32(scan_service_time); 7074 7075 /* Select antennas for scanning. */ 7076 rxchain = 7077 IWN_RXCHAIN_VALID(sc->rxchainmask) | 7078 IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) | 7079 IWN_RXCHAIN_DRIVER_FORCE; 7080 if (IEEE80211_IS_CHAN_A(c) && 7081 sc->hw_type == IWN_HW_REV_TYPE_4965) { 7082 /* Ant A must be avoided in 5GHz because of an HW bug. */ 7083 rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B); 7084 } else /* Use all available RX antennas. */ 7085 rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask); 7086 hdr->rxchain = htole16(rxchain); 7087 hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); 7088 7089 tx = (struct iwn_cmd_data *)(hdr + 1); 7090 tx->flags = htole32(IWN_TX_AUTO_SEQ); 7091 tx->id = sc->broadcast_id; 7092 tx->lifetime = htole32(IWN_LIFETIME_INFINITE); 7093 7094 if (IEEE80211_IS_CHAN_5GHZ(c)) { 7095 /* Send probe requests at 6Mbps. */ 7096 tx->rate = htole32(0xd); 7097 rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; 7098 } else { 7099 hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); 7100 if (sc->hw_type == IWN_HW_REV_TYPE_4965 && 7101 sc->rxon->associd && sc->rxon->chan > 14) 7102 tx->rate = htole32(0xd); 7103 else { 7104 /* Send probe requests at 1Mbps. */ 7105 tx->rate = htole32(10 | IWN_RFLAG_CCK); 7106 } 7107 rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; 7108 } 7109 /* Use the first valid TX antenna. */ 7110 txant = IWN_LSB(sc->txchainmask); 7111 tx->rate |= htole32(IWN_RFLAG_ANT(txant)); 7112 7113 /* 7114 * Only do active scanning if we're announcing a probe request 7115 * for a given SSID (or more, if we ever add it to the driver.) 7116 */ 7117 is_active = 0; 7118 7119 /* 7120 * If we're scanning for a specific SSID, add it to the command. 7121 * 7122 * XXX maybe look at adding support for scanning multiple SSIDs? 7123 */ 7124 essid = (struct iwn_scan_essid *)(tx + 1); 7125 if (ss != NULL) { 7126 if (ss->ss_ssid[0].len != 0) { 7127 essid[0].id = IEEE80211_ELEMID_SSID; 7128 essid[0].len = ss->ss_ssid[0].len; 7129 memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len); 7130 } 7131 7132 DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n", 7133 __func__, 7134 ss->ss_ssid[0].len, 7135 ss->ss_ssid[0].len, 7136 ss->ss_ssid[0].ssid); 7137 7138 if (ss->ss_nssid > 0) 7139 is_active = 1; 7140 } 7141 7142 /* 7143 * Build a probe request frame. Most of the following code is a 7144 * copy & paste of what is done in net80211. 7145 */ 7146 wh = (struct ieee80211_frame *)(essid + 20); 7147 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 7148 IEEE80211_FC0_SUBTYPE_PROBE_REQ; 7149 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 7150 IEEE80211_ADDR_COPY(wh->i_addr1, if_getbroadcastaddr(vap->iv_ifp)); 7151 IEEE80211_ADDR_COPY(wh->i_addr2, if_getlladdr(vap->iv_ifp)); 7152 IEEE80211_ADDR_COPY(wh->i_addr3, if_getbroadcastaddr(vap->iv_ifp)); 7153 *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ 7154 *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ 7155 7156 frm = (uint8_t *)(wh + 1); 7157 frm = ieee80211_add_ssid(frm, NULL, 0); 7158 frm = ieee80211_add_rates(frm, rs); 7159 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 7160 frm = ieee80211_add_xrates(frm, rs); 7161 if (ic->ic_htcaps & IEEE80211_HTC_HT) 7162 frm = ieee80211_add_htcap(frm, ni); 7163 7164 /* Set length of probe request. */ 7165 tx->len = htole16(frm - (uint8_t *)wh); 7166 7167 /* 7168 * If active scanning is requested but a certain channel is 7169 * marked passive, we can do active scanning if we detect 7170 * transmissions. 7171 * 7172 * There is an issue with some firmware versions that triggers 7173 * a sysassert on a "good CRC threshold" of zero (== disabled), 7174 * on a radar channel even though this means that we should NOT 7175 * send probes. 7176 * 7177 * The "good CRC threshold" is the number of frames that we 7178 * need to receive during our dwell time on a channel before 7179 * sending out probes -- setting this to a huge value will 7180 * mean we never reach it, but at the same time work around 7181 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER 7182 * here instead of IWL_GOOD_CRC_TH_DISABLED. 7183 * 7184 * This was fixed in later versions along with some other 7185 * scan changes, and the threshold behaves as a flag in those 7186 * versions. 7187 */ 7188 7189 /* 7190 * If we're doing active scanning, set the crc_threshold 7191 * to a suitable value. This is different to active veruss 7192 * passive scanning depending upon the channel flags; the 7193 * firmware will obey that particular check for us. 7194 */ 7195 if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN) 7196 hdr->crc_threshold = is_active ? 7197 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED; 7198 else 7199 hdr->crc_threshold = is_active ? 7200 IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER; 7201 7202 chan = (struct iwn_scan_chan *)frm; 7203 chan->chan = htole16(ieee80211_chan2ieee(ic, c)); 7204 chan->flags = 0; 7205 if (ss->ss_nssid > 0) 7206 chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); 7207 chan->dsp_gain = 0x6e; 7208 7209 /* 7210 * Set the passive/active flag depending upon the channel mode. 7211 * XXX TODO: take the is_active flag into account as well? 7212 */ 7213 if (c->ic_flags & IEEE80211_CHAN_PASSIVE) 7214 chan->flags |= htole32(IWN_CHAN_PASSIVE); 7215 else 7216 chan->flags |= htole32(IWN_CHAN_ACTIVE); 7217 7218 /* 7219 * Calculate the active/passive dwell times. 7220 */ 7221 7222 dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid); 7223 dwell_passive = iwn_get_passive_dwell_time(sc, c); 7224 7225 /* Make sure they're valid */ 7226 if (dwell_passive <= dwell_active) 7227 dwell_passive = dwell_active + 1; 7228 7229 chan->active = htole16(dwell_active); 7230 chan->passive = htole16(dwell_passive); 7231 7232 if (IEEE80211_IS_CHAN_5GHZ(c)) 7233 chan->rf_gain = 0x3b; 7234 else 7235 chan->rf_gain = 0x28; 7236 7237 DPRINTF(sc, IWN_DEBUG_STATE, 7238 "%s: chan %u flags 0x%x rf_gain 0x%x " 7239 "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x " 7240 "isactive=%d numssid=%d\n", __func__, 7241 chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain, 7242 dwell_active, dwell_passive, scan_service_time, 7243 hdr->crc_threshold, is_active, ss->ss_nssid); 7244 7245 hdr->nchan++; 7246 chan++; 7247 buflen = (uint8_t *)chan - buf; 7248 hdr->len = htole16(buflen); 7249 7250 if (sc->sc_is_scanning) { 7251 device_printf(sc->sc_dev, 7252 "%s: called with is_scanning set!\n", 7253 __func__); 7254 } 7255 sc->sc_is_scanning = 1; 7256 7257 DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n", 7258 hdr->nchan); 7259 error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); 7260 free(buf, M_DEVBUF); 7261 if (error == 0) 7262 callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc); 7263 7264 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7265 7266 return error; 7267 } 7268 7269 static int 7270 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap) 7271 { 7272 struct ieee80211com *ic = &sc->sc_ic; 7273 struct ieee80211_node *ni = vap->iv_bss; 7274 int error; 7275 7276 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7277 7278 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7279 /* Update adapter configuration. */ 7280 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7281 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7282 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7283 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7284 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7285 7286 /* 7287 * We always set short slot on 5GHz channels. 7288 * We optionally set it for 2.4GHz channels. 7289 */ 7290 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 7291 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7292 else if (vap->iv_flags & IEEE80211_F_SHSLOT) 7293 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7294 7295 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 7296 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7297 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7298 sc->rxon->cck_mask = 0; 7299 sc->rxon->ofdm_mask = 0x15; 7300 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7301 sc->rxon->cck_mask = 0x03; 7302 sc->rxon->ofdm_mask = 0; 7303 } else { 7304 /* Assume 802.11b/g. */ 7305 sc->rxon->cck_mask = 0x03; 7306 sc->rxon->ofdm_mask = 0x15; 7307 } 7308 7309 /* try HT */ 7310 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ic->ic_curchan)); 7311 7312 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n", 7313 sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask, 7314 sc->rxon->ofdm_mask); 7315 7316 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { 7317 device_printf(sc->sc_dev, "%s: could not send RXON\n", 7318 __func__); 7319 return (error); 7320 } 7321 7322 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7323 7324 return (0); 7325 } 7326 7327 static int 7328 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap) 7329 { 7330 struct iwn_ops *ops = &sc->ops; 7331 struct ieee80211com *ic = &sc->sc_ic; 7332 struct ieee80211_node *ni = vap->iv_bss; 7333 struct iwn_node_info node; 7334 int error; 7335 7336 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7337 7338 sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX]; 7339 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 7340 /* Link LED blinks while monitoring. */ 7341 iwn_set_led(sc, IWN_LED_LINK, 5, 5); 7342 return 0; 7343 } 7344 if ((error = iwn_set_timing(sc, ni)) != 0) { 7345 device_printf(sc->sc_dev, 7346 "%s: could not set timing, error %d\n", __func__, error); 7347 return error; 7348 } 7349 7350 /* Update adapter configuration. */ 7351 IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid); 7352 sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd)); 7353 sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan); 7354 sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); 7355 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 7356 sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); 7357 7358 /* As previously - short slot only on 5GHz */ 7359 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 7360 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7361 else if (vap->iv_flags & IEEE80211_F_SHSLOT) 7362 sc->rxon->flags |= htole32(IWN_RXON_SHSLOT); 7363 7364 if (vap->iv_flags & IEEE80211_F_SHPREAMBLE) 7365 sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE); 7366 if (IEEE80211_IS_CHAN_A(ni->ni_chan)) { 7367 sc->rxon->cck_mask = 0; 7368 sc->rxon->ofdm_mask = 0x15; 7369 } else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) { 7370 sc->rxon->cck_mask = 0x03; 7371 sc->rxon->ofdm_mask = 0; 7372 } else { 7373 /* Assume 802.11b/g. */ 7374 sc->rxon->cck_mask = 0x0f; 7375 sc->rxon->ofdm_mask = 0x15; 7376 } 7377 /* try HT */ 7378 sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, vap, ni->ni_chan)); 7379 sc->rxon->filter |= htole32(IWN_FILTER_BSS); 7380 DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n", 7381 sc->rxon->chan, le32toh(sc->rxon->flags), vap->iv_curhtprotmode); 7382 7383 if ((error = iwn_send_rxon(sc, 0, 1)) != 0) { 7384 device_printf(sc->sc_dev, "%s: could not send RXON\n", 7385 __func__); 7386 return error; 7387 } 7388 7389 /* Fake a join to initialize the TX rate. */ 7390 ((struct iwn_node *)ni)->id = IWN_ID_BSS; 7391 iwn_newassoc(ni, 1); 7392 7393 /* Add BSS node. */ 7394 memset(&node, 0, sizeof node); 7395 IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); 7396 node.id = IWN_ID_BSS; 7397 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 7398 switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) { 7399 case IEEE80211_HTCAP_SMPS_ENA: 7400 node.htflags |= htole32(IWN_SMPS_MIMO_DIS); 7401 break; 7402 case IEEE80211_HTCAP_SMPS_DYNAMIC: 7403 node.htflags |= htole32(IWN_SMPS_MIMO_PROT); 7404 break; 7405 } 7406 node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) | 7407 IWN_AMDPU_DENSITY(5)); /* 4us */ 7408 if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) 7409 node.htflags |= htole32(IWN_NODE_HT40); 7410 } 7411 DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__); 7412 error = ops->add_node(sc, &node, 1); 7413 if (error != 0) { 7414 device_printf(sc->sc_dev, 7415 "%s: could not add BSS node, error %d\n", __func__, error); 7416 return error; 7417 } 7418 DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n", 7419 __func__, node.id); 7420 if ((error = iwn_set_link_quality(sc, ni)) != 0) { 7421 device_printf(sc->sc_dev, 7422 "%s: could not setup link quality for node %d, error %d\n", 7423 __func__, node.id, error); 7424 return error; 7425 } 7426 7427 if ((error = iwn_init_sensitivity(sc)) != 0) { 7428 device_printf(sc->sc_dev, 7429 "%s: could not set sensitivity, error %d\n", __func__, 7430 error); 7431 return error; 7432 } 7433 /* Start periodic calibration timer. */ 7434 sc->calib.state = IWN_CALIB_STATE_ASSOC; 7435 sc->calib_cnt = 0; 7436 callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout, 7437 sc); 7438 7439 /* Link LED always on while associated. */ 7440 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 7441 7442 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 7443 7444 return 0; 7445 } 7446 7447 /* 7448 * This function is called by upper layer when an ADDBA request is received 7449 * from another STA and before the ADDBA response is sent. 7450 */ 7451 static int 7452 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap, 7453 int baparamset, int batimeout, int baseqctl) 7454 { 7455 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7456 struct iwn_ops *ops = &sc->ops; 7457 struct iwn_node *wn = (void *)ni; 7458 struct iwn_node_info node; 7459 uint16_t ssn; 7460 uint8_t tid; 7461 int error; 7462 7463 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7464 7465 tid = _IEEE80211_MASKSHIFT(le16toh(baparamset), IEEE80211_BAPS_TID); 7466 ssn = _IEEE80211_MASKSHIFT(le16toh(baseqctl), IEEE80211_BASEQ_START); 7467 7468 if (wn->id == IWN_ID_UNDEFINED) 7469 return (ENOENT); 7470 7471 memset(&node, 0, sizeof node); 7472 node.id = wn->id; 7473 node.control = IWN_NODE_UPDATE; 7474 node.flags = IWN_FLAG_SET_ADDBA; 7475 node.addba_tid = tid; 7476 node.addba_ssn = htole16(ssn); 7477 DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n", 7478 wn->id, tid, ssn); 7479 error = ops->add_node(sc, &node, 1); 7480 if (error != 0) 7481 return error; 7482 return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl); 7483 } 7484 7485 /* 7486 * This function is called by upper layer on teardown of an HT-immediate 7487 * Block Ack agreement (eg. uppon receipt of a DELBA frame). 7488 */ 7489 static void 7490 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap) 7491 { 7492 struct ieee80211com *ic = ni->ni_ic; 7493 struct iwn_softc *sc = ic->ic_softc; 7494 struct iwn_ops *ops = &sc->ops; 7495 struct iwn_node *wn = (void *)ni; 7496 struct iwn_node_info node; 7497 uint8_t tid; 7498 7499 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7500 7501 if (wn->id == IWN_ID_UNDEFINED) 7502 goto end; 7503 7504 /* XXX: tid as an argument */ 7505 for (tid = 0; tid < WME_NUM_TID; tid++) { 7506 if (&ni->ni_rx_ampdu[tid] == rap) 7507 break; 7508 } 7509 7510 memset(&node, 0, sizeof node); 7511 node.id = wn->id; 7512 node.control = IWN_NODE_UPDATE; 7513 node.flags = IWN_FLAG_SET_DELBA; 7514 node.delba_tid = tid; 7515 DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid); 7516 (void)ops->add_node(sc, &node, 1); 7517 end: 7518 sc->sc_ampdu_rx_stop(ni, rap); 7519 } 7520 7521 static int 7522 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7523 int dialogtoken, int baparamset, int batimeout) 7524 { 7525 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7526 int qid; 7527 7528 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7529 7530 for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) { 7531 if (sc->qid2tap[qid] == NULL) 7532 break; 7533 } 7534 if (qid == sc->ntxqs) { 7535 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: no free aggregation queue\n", 7536 __func__); 7537 return 0; 7538 } 7539 tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); 7540 if (tap->txa_private == NULL) { 7541 device_printf(sc->sc_dev, 7542 "%s: failed to alloc TX aggregation structure\n", __func__); 7543 return 0; 7544 } 7545 sc->qid2tap[qid] = tap; 7546 *(int *)tap->txa_private = qid; 7547 return sc->sc_addba_request(ni, tap, dialogtoken, baparamset, 7548 batimeout); 7549 } 7550 7551 static int 7552 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap, 7553 int code, int baparamset, int batimeout) 7554 { 7555 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7556 int qid = *(int *)tap->txa_private; 7557 uint8_t tid = tap->txa_tid; 7558 int ret; 7559 7560 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7561 7562 if (code == IEEE80211_STATUS_SUCCESS) { 7563 ni->ni_txseqs[tid] = tap->txa_start & 0xfff; 7564 ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid); 7565 if (ret != 1) 7566 return ret; 7567 } else { 7568 sc->qid2tap[qid] = NULL; 7569 free(tap->txa_private, M_DEVBUF); 7570 tap->txa_private = NULL; 7571 } 7572 return sc->sc_addba_response(ni, tap, code, baparamset, batimeout); 7573 } 7574 7575 /* 7576 * This function is called by upper layer when an ADDBA response is received 7577 * from another STA. 7578 */ 7579 static int 7580 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, 7581 uint8_t tid) 7582 { 7583 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 7584 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7585 struct iwn_ops *ops = &sc->ops; 7586 struct iwn_node *wn = (void *)ni; 7587 struct iwn_node_info node; 7588 int error, qid; 7589 7590 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7591 7592 if (wn->id == IWN_ID_UNDEFINED) 7593 return (0); 7594 7595 /* Enable TX for the specified RA/TID. */ 7596 wn->disable_tid &= ~(1 << tid); 7597 memset(&node, 0, sizeof node); 7598 node.id = wn->id; 7599 node.control = IWN_NODE_UPDATE; 7600 node.flags = IWN_FLAG_SET_DISABLE_TID; 7601 node.disable_tid = htole16(wn->disable_tid); 7602 error = ops->add_node(sc, &node, 1); 7603 if (error != 0) 7604 return 0; 7605 7606 if ((error = iwn_nic_lock(sc)) != 0) 7607 return 0; 7608 qid = *(int *)tap->txa_private; 7609 DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n", 7610 __func__, wn->id, tid, tap->txa_start, qid); 7611 ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff); 7612 iwn_nic_unlock(sc); 7613 7614 iwn_set_link_quality(sc, ni); 7615 return 1; 7616 } 7617 7618 static void 7619 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap) 7620 { 7621 struct iwn_softc *sc = ni->ni_ic->ic_softc; 7622 struct iwn_ops *ops = &sc->ops; 7623 uint8_t tid = tap->txa_tid; 7624 int qid; 7625 7626 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7627 7628 sc->sc_addba_stop(ni, tap); 7629 7630 if (tap->txa_private == NULL) 7631 return; 7632 7633 qid = *(int *)tap->txa_private; 7634 if (sc->txq[qid].queued != 0) 7635 return; 7636 if (iwn_nic_lock(sc) != 0) 7637 return; 7638 ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff); 7639 iwn_nic_unlock(sc); 7640 sc->qid2tap[qid] = NULL; 7641 free(tap->txa_private, M_DEVBUF); 7642 tap->txa_private = NULL; 7643 } 7644 7645 static void 7646 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7647 int qid, uint8_t tid, uint16_t ssn) 7648 { 7649 struct iwn_node *wn = (void *)ni; 7650 7651 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7652 7653 /* Stop TX scheduler while we're changing its configuration. */ 7654 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7655 IWN4965_TXQ_STATUS_CHGACT); 7656 7657 /* Assign RA/TID translation to the queue. */ 7658 iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), 7659 wn->id << 4 | tid); 7660 7661 /* Enable chain-building mode for the queue. */ 7662 iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); 7663 7664 /* Set starting sequence number from the ADDBA request. */ 7665 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7666 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7667 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7668 7669 /* Set scheduler window size. */ 7670 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), 7671 IWN_SCHED_WINSZ); 7672 /* Set scheduler frame limit. */ 7673 iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7674 IWN_SCHED_LIMIT << 16); 7675 7676 /* Enable interrupts for the queue. */ 7677 iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7678 7679 /* Mark the queue as active. */ 7680 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7681 IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | 7682 iwn_tid2fifo[tid] << 1); 7683 } 7684 7685 static void 7686 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7687 { 7688 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7689 7690 /* Stop TX scheduler while we're changing its configuration. */ 7691 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7692 IWN4965_TXQ_STATUS_CHGACT); 7693 7694 /* Set starting sequence number from the ADDBA request. */ 7695 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7696 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); 7697 7698 /* Disable interrupts for the queue. */ 7699 iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); 7700 7701 /* Mark the queue as inactive. */ 7702 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7703 IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); 7704 } 7705 7706 static void 7707 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, 7708 int qid, uint8_t tid, uint16_t ssn) 7709 { 7710 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7711 7712 struct iwn_node *wn = (void *)ni; 7713 7714 /* Stop TX scheduler while we're changing its configuration. */ 7715 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7716 IWN5000_TXQ_STATUS_CHGACT); 7717 7718 /* Assign RA/TID translation to the queue. */ 7719 iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), 7720 wn->id << 4 | tid); 7721 7722 /* Enable chain-building mode for the queue. */ 7723 iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); 7724 7725 /* Enable aggregation for the queue. */ 7726 iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7727 7728 /* Set starting sequence number from the ADDBA request. */ 7729 sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff); 7730 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7731 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7732 7733 /* Set scheduler window size and frame limit. */ 7734 iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 7735 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 7736 7737 /* Enable interrupts for the queue. */ 7738 iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7739 7740 /* Mark the queue as active. */ 7741 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7742 IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); 7743 } 7744 7745 static void 7746 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn) 7747 { 7748 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7749 7750 /* Stop TX scheduler while we're changing its configuration. */ 7751 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7752 IWN5000_TXQ_STATUS_CHGACT); 7753 7754 /* Disable aggregation for the queue. */ 7755 iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); 7756 7757 /* Set starting sequence number from the ADDBA request. */ 7758 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff)); 7759 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); 7760 7761 /* Disable interrupts for the queue. */ 7762 iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); 7763 7764 /* Mark the queue as inactive. */ 7765 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 7766 IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); 7767 } 7768 7769 /* 7770 * Query calibration tables from the initialization firmware. We do this 7771 * only once at first boot. Called from a process context. 7772 */ 7773 static int 7774 iwn5000_query_calibration(struct iwn_softc *sc) 7775 { 7776 struct iwn5000_calib_config cmd; 7777 int error; 7778 7779 memset(&cmd, 0, sizeof cmd); 7780 cmd.ucode.once.enable = htole32(0xffffffff); 7781 cmd.ucode.once.start = htole32(0xffffffff); 7782 cmd.ucode.once.send = htole32(0xffffffff); 7783 cmd.ucode.flags = htole32(0xffffffff); 7784 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n", 7785 __func__); 7786 error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); 7787 if (error != 0) 7788 return error; 7789 7790 /* Wait at most two seconds for calibration to complete. */ 7791 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) 7792 error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz); 7793 return error; 7794 } 7795 7796 /* 7797 * Send calibration results to the runtime firmware. These results were 7798 * obtained on first boot from the initialization firmware. 7799 */ 7800 static int 7801 iwn5000_send_calibration(struct iwn_softc *sc) 7802 { 7803 int idx, error; 7804 7805 for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) { 7806 if (!(sc->base_params->calib_need & (1<<idx))) { 7807 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7808 "No need of calib %d\n", 7809 idx); 7810 continue; /* no need for this calib */ 7811 } 7812 if (sc->calibcmd[idx].buf == NULL) { 7813 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7814 "Need calib idx : %d but no available data\n", 7815 idx); 7816 continue; 7817 } 7818 7819 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7820 "send calibration result idx=%d len=%d\n", idx, 7821 sc->calibcmd[idx].len); 7822 error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, 7823 sc->calibcmd[idx].len, 0); 7824 if (error != 0) { 7825 device_printf(sc->sc_dev, 7826 "%s: could not send calibration result, error %d\n", 7827 __func__, error); 7828 return error; 7829 } 7830 } 7831 return 0; 7832 } 7833 7834 static int 7835 iwn5000_send_wimax_coex(struct iwn_softc *sc) 7836 { 7837 struct iwn5000_wimax_coex wimax; 7838 7839 #if 0 7840 if (sc->hw_type == IWN_HW_REV_TYPE_6050) { 7841 /* Enable WiMAX coexistence for combo adapters. */ 7842 wimax.flags = 7843 IWN_WIMAX_COEX_ASSOC_WA_UNMASK | 7844 IWN_WIMAX_COEX_UNASSOC_WA_UNMASK | 7845 IWN_WIMAX_COEX_STA_TABLE_VALID | 7846 IWN_WIMAX_COEX_ENABLE; 7847 memcpy(wimax.events, iwn6050_wimax_events, 7848 sizeof iwn6050_wimax_events); 7849 } else 7850 #endif 7851 { 7852 /* Disable WiMAX coexistence. */ 7853 wimax.flags = 0; 7854 memset(wimax.events, 0, sizeof wimax.events); 7855 } 7856 DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n", 7857 __func__); 7858 return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); 7859 } 7860 7861 static int 7862 iwn5000_crystal_calib(struct iwn_softc *sc) 7863 { 7864 struct iwn5000_phy_calib_crystal cmd; 7865 7866 memset(&cmd, 0, sizeof cmd); 7867 cmd.code = IWN5000_PHY_CALIB_CRYSTAL; 7868 cmd.ngroups = 1; 7869 cmd.isvalid = 1; 7870 cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff; 7871 cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff; 7872 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n", 7873 cmd.cap_pin[0], cmd.cap_pin[1]); 7874 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7875 } 7876 7877 static int 7878 iwn5000_temp_offset_calib(struct iwn_softc *sc) 7879 { 7880 struct iwn5000_phy_calib_temp_offset cmd; 7881 7882 memset(&cmd, 0, sizeof cmd); 7883 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7884 cmd.ngroups = 1; 7885 cmd.isvalid = 1; 7886 if (sc->eeprom_temp != 0) 7887 cmd.offset = htole16(sc->eeprom_temp); 7888 else 7889 cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET); 7890 DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n", 7891 le16toh(cmd.offset)); 7892 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7893 } 7894 7895 static int 7896 iwn5000_temp_offset_calibv2(struct iwn_softc *sc) 7897 { 7898 struct iwn5000_phy_calib_temp_offsetv2 cmd; 7899 7900 memset(&cmd, 0, sizeof cmd); 7901 cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET; 7902 cmd.ngroups = 1; 7903 cmd.isvalid = 1; 7904 if (sc->eeprom_temp != 0) { 7905 cmd.offset_low = htole16(sc->eeprom_temp); 7906 cmd.offset_high = htole16(sc->eeprom_temp_high); 7907 } else { 7908 cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET); 7909 cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET); 7910 } 7911 cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage); 7912 7913 DPRINTF(sc, IWN_DEBUG_CALIBRATE, 7914 "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n", 7915 le16toh(cmd.offset_low), 7916 le16toh(cmd.offset_high), 7917 le16toh(cmd.burnt_voltage_ref)); 7918 7919 return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); 7920 } 7921 7922 /* 7923 * This function is called after the runtime firmware notifies us of its 7924 * readiness (called in a process context). 7925 */ 7926 static int 7927 iwn4965_post_alive(struct iwn_softc *sc) 7928 { 7929 int error, qid; 7930 7931 if ((error = iwn_nic_lock(sc)) != 0) 7932 return error; 7933 7934 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 7935 7936 /* Clear TX scheduler state in SRAM. */ 7937 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7938 iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, 7939 IWN4965_SCHED_CTX_LEN / sizeof (uint32_t)); 7940 7941 /* Set physical address of TX scheduler rings (1KB aligned). */ 7942 iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 7943 7944 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 7945 7946 /* Disable chain mode for all our 16 queues. */ 7947 iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); 7948 7949 for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { 7950 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); 7951 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 7952 7953 /* Set scheduler window size. */ 7954 iwn_mem_write(sc, sc->sched_base + 7955 IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); 7956 /* Set scheduler frame limit. */ 7957 iwn_mem_write(sc, sc->sched_base + 7958 IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, 7959 IWN_SCHED_LIMIT << 16); 7960 } 7961 7962 /* Enable interrupts for all our 16 queues. */ 7963 iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); 7964 /* Identify TX FIFO rings (0-7). */ 7965 iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); 7966 7967 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 7968 for (qid = 0; qid < 7; qid++) { 7969 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; 7970 iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), 7971 IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); 7972 } 7973 iwn_nic_unlock(sc); 7974 return 0; 7975 } 7976 7977 /* 7978 * This function is called after the initialization or runtime firmware 7979 * notifies us of its readiness (called in a process context). 7980 */ 7981 static int 7982 iwn5000_post_alive(struct iwn_softc *sc) 7983 { 7984 int error, qid; 7985 7986 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 7987 7988 /* Switch to using ICT interrupt mode. */ 7989 iwn5000_ict_reset(sc); 7990 7991 if ((error = iwn_nic_lock(sc)) != 0){ 7992 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__); 7993 return error; 7994 } 7995 7996 /* Clear TX scheduler state in SRAM. */ 7997 sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); 7998 iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, 7999 IWN5000_SCHED_CTX_LEN / sizeof (uint32_t)); 8000 8001 /* Set physical address of TX scheduler rings (1KB aligned). */ 8002 iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); 8003 8004 IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); 8005 8006 /* Enable chain mode for all queues, except command queue. */ 8007 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) 8008 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf); 8009 else 8010 iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef); 8011 iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); 8012 8013 for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { 8014 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); 8015 IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); 8016 8017 iwn_mem_write(sc, sc->sched_base + 8018 IWN5000_SCHED_QUEUE_OFFSET(qid), 0); 8019 /* Set scheduler window size and frame limit. */ 8020 iwn_mem_write(sc, sc->sched_base + 8021 IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, 8022 IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); 8023 } 8024 8025 /* Enable interrupts for all our 20 queues. */ 8026 iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); 8027 /* Identify TX FIFO rings (0-7). */ 8028 iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); 8029 8030 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 8031 if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) { 8032 /* Mark TX rings as active. */ 8033 for (qid = 0; qid < 11; qid++) { 8034 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 }; 8035 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 8036 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 8037 } 8038 } else { 8039 /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ 8040 for (qid = 0; qid < 7; qid++) { 8041 static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; 8042 iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), 8043 IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); 8044 } 8045 } 8046 iwn_nic_unlock(sc); 8047 8048 /* Configure WiMAX coexistence for combo adapters. */ 8049 error = iwn5000_send_wimax_coex(sc); 8050 if (error != 0) { 8051 device_printf(sc->sc_dev, 8052 "%s: could not configure WiMAX coexistence, error %d\n", 8053 __func__, error); 8054 return error; 8055 } 8056 if (sc->hw_type != IWN_HW_REV_TYPE_5150) { 8057 /* Perform crystal calibration. */ 8058 error = iwn5000_crystal_calib(sc); 8059 if (error != 0) { 8060 device_printf(sc->sc_dev, 8061 "%s: crystal calibration failed, error %d\n", 8062 __func__, error); 8063 return error; 8064 } 8065 } 8066 if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) { 8067 /* Query calibration from the initialization firmware. */ 8068 if ((error = iwn5000_query_calibration(sc)) != 0) { 8069 device_printf(sc->sc_dev, 8070 "%s: could not query calibration, error %d\n", 8071 __func__, error); 8072 return error; 8073 } 8074 /* 8075 * We have the calibration results now, reboot with the 8076 * runtime firmware (call ourselves recursively!) 8077 */ 8078 iwn_hw_stop(sc); 8079 error = iwn_hw_init(sc); 8080 } else { 8081 /* Send calibration results to runtime firmware. */ 8082 error = iwn5000_send_calibration(sc); 8083 } 8084 8085 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8086 8087 return error; 8088 } 8089 8090 /* 8091 * The firmware boot code is small and is intended to be copied directly into 8092 * the NIC internal memory (no DMA transfer). 8093 */ 8094 static int 8095 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) 8096 { 8097 int error, ntries; 8098 8099 size /= sizeof (uint32_t); 8100 8101 if ((error = iwn_nic_lock(sc)) != 0) 8102 return error; 8103 8104 /* Copy microcode image into NIC memory. */ 8105 iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, 8106 (const uint32_t *)ucode, size); 8107 8108 iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); 8109 iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); 8110 iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); 8111 8112 /* Start boot load now. */ 8113 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); 8114 8115 /* Wait for transfer to complete. */ 8116 for (ntries = 0; ntries < 1000; ntries++) { 8117 if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & 8118 IWN_BSM_WR_CTRL_START)) 8119 break; 8120 DELAY(10); 8121 } 8122 if (ntries == 1000) { 8123 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 8124 __func__); 8125 iwn_nic_unlock(sc); 8126 return ETIMEDOUT; 8127 } 8128 8129 /* Enable boot after power up. */ 8130 iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); 8131 8132 iwn_nic_unlock(sc); 8133 return 0; 8134 } 8135 8136 static int 8137 iwn4965_load_firmware(struct iwn_softc *sc) 8138 { 8139 struct iwn_fw_info *fw = &sc->fw; 8140 struct iwn_dma_info *dma = &sc->fw_dma; 8141 int error; 8142 8143 /* Copy initialization sections into pre-allocated DMA-safe memory. */ 8144 memcpy(dma->vaddr, fw->init.data, fw->init.datasz); 8145 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8146 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 8147 fw->init.text, fw->init.textsz); 8148 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8149 8150 /* Tell adapter where to find initialization sections. */ 8151 if ((error = iwn_nic_lock(sc)) != 0) 8152 return error; 8153 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 8154 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); 8155 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 8156 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 8157 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); 8158 iwn_nic_unlock(sc); 8159 8160 /* Load firmware boot code. */ 8161 error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); 8162 if (error != 0) { 8163 device_printf(sc->sc_dev, "%s: could not load boot firmware\n", 8164 __func__); 8165 return error; 8166 } 8167 /* Now press "execute". */ 8168 IWN_WRITE(sc, IWN_RESET, 0); 8169 8170 /* Wait at most one second for first alive notification. */ 8171 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8172 device_printf(sc->sc_dev, 8173 "%s: timeout waiting for adapter to initialize, error %d\n", 8174 __func__, error); 8175 return error; 8176 } 8177 8178 /* Retrieve current temperature for initial TX power calibration. */ 8179 sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; 8180 sc->temp = iwn4965_get_temperature(sc); 8181 8182 /* Copy runtime sections into pre-allocated DMA-safe memory. */ 8183 memcpy(dma->vaddr, fw->main.data, fw->main.datasz); 8184 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8185 memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, 8186 fw->main.text, fw->main.textsz); 8187 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8188 8189 /* Tell adapter where to find runtime sections. */ 8190 if ((error = iwn_nic_lock(sc)) != 0) 8191 return error; 8192 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); 8193 iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); 8194 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, 8195 (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); 8196 iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, 8197 IWN_FW_UPDATED | fw->main.textsz); 8198 iwn_nic_unlock(sc); 8199 8200 return 0; 8201 } 8202 8203 static int 8204 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, 8205 const uint8_t *section, int size) 8206 { 8207 struct iwn_dma_info *dma = &sc->fw_dma; 8208 int error; 8209 8210 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8211 8212 /* Copy firmware section into pre-allocated DMA-safe memory. */ 8213 memcpy(dma->vaddr, section, size); 8214 bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE); 8215 8216 if ((error = iwn_nic_lock(sc)) != 0) 8217 return error; 8218 8219 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 8220 IWN_FH_TX_CONFIG_DMA_PAUSE); 8221 8222 IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); 8223 IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), 8224 IWN_LOADDR(dma->paddr)); 8225 IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), 8226 IWN_HIADDR(dma->paddr) << 28 | size); 8227 IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), 8228 IWN_FH_TXBUF_STATUS_TBNUM(1) | 8229 IWN_FH_TXBUF_STATUS_TBIDX(1) | 8230 IWN_FH_TXBUF_STATUS_TFBD_VALID); 8231 8232 /* Kick Flow Handler to start DMA transfer. */ 8233 IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), 8234 IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); 8235 8236 iwn_nic_unlock(sc); 8237 8238 /* Wait at most five seconds for FH DMA transfer to complete. */ 8239 return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz); 8240 } 8241 8242 static int 8243 iwn5000_load_firmware(struct iwn_softc *sc) 8244 { 8245 struct iwn_fw_part *fw; 8246 int error; 8247 8248 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8249 8250 /* Load the initialization firmware on first boot only. */ 8251 fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ? 8252 &sc->fw.main : &sc->fw.init; 8253 8254 error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, 8255 fw->text, fw->textsz); 8256 if (error != 0) { 8257 device_printf(sc->sc_dev, 8258 "%s: could not load firmware %s section, error %d\n", 8259 __func__, ".text", error); 8260 return error; 8261 } 8262 error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, 8263 fw->data, fw->datasz); 8264 if (error != 0) { 8265 device_printf(sc->sc_dev, 8266 "%s: could not load firmware %s section, error %d\n", 8267 __func__, ".data", error); 8268 return error; 8269 } 8270 8271 /* Now press "execute". */ 8272 IWN_WRITE(sc, IWN_RESET, 0); 8273 return 0; 8274 } 8275 8276 /* 8277 * Extract text and data sections from a legacy firmware image. 8278 */ 8279 static int 8280 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw) 8281 { 8282 const uint32_t *ptr; 8283 size_t hdrlen = 24; 8284 uint32_t rev; 8285 8286 ptr = (const uint32_t *)fw->data; 8287 rev = le32toh(*ptr++); 8288 8289 sc->ucode_rev = rev; 8290 8291 /* Check firmware API version. */ 8292 if (IWN_FW_API(rev) <= 1) { 8293 device_printf(sc->sc_dev, 8294 "%s: bad firmware, need API version >=2\n", __func__); 8295 return EINVAL; 8296 } 8297 if (IWN_FW_API(rev) >= 3) { 8298 /* Skip build number (version 2 header). */ 8299 hdrlen += 4; 8300 ptr++; 8301 } 8302 if (fw->size < hdrlen) { 8303 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8304 __func__, fw->size); 8305 return EINVAL; 8306 } 8307 fw->main.textsz = le32toh(*ptr++); 8308 fw->main.datasz = le32toh(*ptr++); 8309 fw->init.textsz = le32toh(*ptr++); 8310 fw->init.datasz = le32toh(*ptr++); 8311 fw->boot.textsz = le32toh(*ptr++); 8312 8313 /* Check that all firmware sections fit. */ 8314 if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz + 8315 fw->init.textsz + fw->init.datasz + fw->boot.textsz) { 8316 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8317 __func__, fw->size); 8318 return EINVAL; 8319 } 8320 8321 /* Get pointers to firmware sections. */ 8322 fw->main.text = (const uint8_t *)ptr; 8323 fw->main.data = fw->main.text + fw->main.textsz; 8324 fw->init.text = fw->main.data + fw->main.datasz; 8325 fw->init.data = fw->init.text + fw->init.textsz; 8326 fw->boot.text = fw->init.data + fw->init.datasz; 8327 return 0; 8328 } 8329 8330 /* 8331 * Extract text and data sections from a TLV firmware image. 8332 */ 8333 static int 8334 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw, 8335 uint16_t alt) 8336 { 8337 const struct iwn_fw_tlv_hdr *hdr; 8338 const struct iwn_fw_tlv *tlv; 8339 const uint8_t *ptr, *end; 8340 uint64_t altmask; 8341 uint32_t len, tmp; 8342 8343 if (fw->size < sizeof (*hdr)) { 8344 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8345 __func__, fw->size); 8346 return EINVAL; 8347 } 8348 hdr = (const struct iwn_fw_tlv_hdr *)fw->data; 8349 if (hdr->signature != htole32(IWN_FW_SIGNATURE)) { 8350 device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n", 8351 __func__, le32toh(hdr->signature)); 8352 return EINVAL; 8353 } 8354 DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr, 8355 le32toh(hdr->build)); 8356 sc->ucode_rev = le32toh(hdr->rev); 8357 8358 /* 8359 * Select the closest supported alternative that is less than 8360 * or equal to the specified one. 8361 */ 8362 altmask = le64toh(hdr->altmask); 8363 while (alt > 0 && !(altmask & (1ULL << alt))) 8364 alt--; /* Downgrade. */ 8365 DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt); 8366 8367 ptr = (const uint8_t *)(hdr + 1); 8368 end = (const uint8_t *)(fw->data + fw->size); 8369 8370 /* Parse type-length-value fields. */ 8371 while (ptr + sizeof (*tlv) <= end) { 8372 tlv = (const struct iwn_fw_tlv *)ptr; 8373 len = le32toh(tlv->len); 8374 8375 ptr += sizeof (*tlv); 8376 if (ptr + len > end) { 8377 device_printf(sc->sc_dev, 8378 "%s: firmware too short: %zu bytes\n", __func__, 8379 fw->size); 8380 return EINVAL; 8381 } 8382 /* Skip other alternatives. */ 8383 if (tlv->alt != 0 && tlv->alt != htole16(alt)) 8384 goto next; 8385 8386 switch (le16toh(tlv->type)) { 8387 case IWN_FW_TLV_MAIN_TEXT: 8388 fw->main.text = ptr; 8389 fw->main.textsz = len; 8390 break; 8391 case IWN_FW_TLV_MAIN_DATA: 8392 fw->main.data = ptr; 8393 fw->main.datasz = len; 8394 break; 8395 case IWN_FW_TLV_INIT_TEXT: 8396 fw->init.text = ptr; 8397 fw->init.textsz = len; 8398 break; 8399 case IWN_FW_TLV_INIT_DATA: 8400 fw->init.data = ptr; 8401 fw->init.datasz = len; 8402 break; 8403 case IWN_FW_TLV_BOOT_TEXT: 8404 fw->boot.text = ptr; 8405 fw->boot.textsz = len; 8406 break; 8407 case IWN_FW_TLV_ENH_SENS: 8408 if (!len) 8409 sc->sc_flags |= IWN_FLAG_ENH_SENS; 8410 break; 8411 case IWN_FW_TLV_PHY_CALIB: 8412 tmp = le32toh(*ptr); 8413 if (tmp < 253) { 8414 sc->reset_noise_gain = tmp; 8415 sc->noise_gain = tmp + 1; 8416 } 8417 break; 8418 case IWN_FW_TLV_PAN: 8419 sc->sc_flags |= IWN_FLAG_PAN_SUPPORT; 8420 DPRINTF(sc, IWN_DEBUG_RESET, 8421 "PAN Support found: %d\n", 1); 8422 break; 8423 case IWN_FW_TLV_FLAGS: 8424 if (len < sizeof(uint32_t)) 8425 break; 8426 if (len % sizeof(uint32_t)) 8427 break; 8428 sc->tlv_feature_flags = le32toh(*ptr); 8429 DPRINTF(sc, IWN_DEBUG_RESET, 8430 "%s: feature: 0x%08x\n", 8431 __func__, 8432 sc->tlv_feature_flags); 8433 break; 8434 case IWN_FW_TLV_PBREQ_MAXLEN: 8435 case IWN_FW_TLV_RUNT_EVTLOG_PTR: 8436 case IWN_FW_TLV_RUNT_EVTLOG_SIZE: 8437 case IWN_FW_TLV_RUNT_ERRLOG_PTR: 8438 case IWN_FW_TLV_INIT_EVTLOG_PTR: 8439 case IWN_FW_TLV_INIT_EVTLOG_SIZE: 8440 case IWN_FW_TLV_INIT_ERRLOG_PTR: 8441 case IWN_FW_TLV_WOWLAN_INST: 8442 case IWN_FW_TLV_WOWLAN_DATA: 8443 DPRINTF(sc, IWN_DEBUG_RESET, 8444 "TLV type %d recognized but not handled\n", 8445 le16toh(tlv->type)); 8446 break; 8447 default: 8448 DPRINTF(sc, IWN_DEBUG_RESET, 8449 "TLV type %d not handled\n", le16toh(tlv->type)); 8450 break; 8451 } 8452 next: /* TLV fields are 32-bit aligned. */ 8453 ptr += (len + 3) & ~3; 8454 } 8455 return 0; 8456 } 8457 8458 static int 8459 iwn_read_firmware(struct iwn_softc *sc) 8460 { 8461 struct iwn_fw_info *fw = &sc->fw; 8462 int error; 8463 8464 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8465 8466 IWN_UNLOCK(sc); 8467 8468 memset(fw, 0, sizeof (*fw)); 8469 8470 /* Read firmware image from filesystem. */ 8471 sc->fw_fp = firmware_get(sc->fwname); 8472 if (sc->fw_fp == NULL) { 8473 device_printf(sc->sc_dev, "%s: could not read firmware %s\n", 8474 __func__, sc->fwname); 8475 IWN_LOCK(sc); 8476 return EINVAL; 8477 } 8478 IWN_LOCK(sc); 8479 8480 fw->size = sc->fw_fp->datasize; 8481 fw->data = (const uint8_t *)sc->fw_fp->data; 8482 if (fw->size < sizeof (uint32_t)) { 8483 device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n", 8484 __func__, fw->size); 8485 error = EINVAL; 8486 goto fail; 8487 } 8488 8489 /* Retrieve text and data sections. */ 8490 if (*(const uint32_t *)fw->data != 0) /* Legacy image. */ 8491 error = iwn_read_firmware_leg(sc, fw); 8492 else 8493 error = iwn_read_firmware_tlv(sc, fw, 1); 8494 if (error != 0) { 8495 device_printf(sc->sc_dev, 8496 "%s: could not read firmware sections, error %d\n", 8497 __func__, error); 8498 goto fail; 8499 } 8500 8501 device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev); 8502 8503 /* Make sure text and data sections fit in hardware memory. */ 8504 if (fw->main.textsz > sc->fw_text_maxsz || 8505 fw->main.datasz > sc->fw_data_maxsz || 8506 fw->init.textsz > sc->fw_text_maxsz || 8507 fw->init.datasz > sc->fw_data_maxsz || 8508 fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || 8509 (fw->boot.textsz & 3) != 0) { 8510 device_printf(sc->sc_dev, "%s: firmware sections too large\n", 8511 __func__); 8512 error = EINVAL; 8513 goto fail; 8514 } 8515 8516 /* We can proceed with loading the firmware. */ 8517 return 0; 8518 8519 fail: iwn_unload_firmware(sc); 8520 return error; 8521 } 8522 8523 static void 8524 iwn_unload_firmware(struct iwn_softc *sc) 8525 { 8526 firmware_put(sc->fw_fp, FIRMWARE_UNLOAD); 8527 sc->fw_fp = NULL; 8528 } 8529 8530 static int 8531 iwn_clock_wait(struct iwn_softc *sc) 8532 { 8533 int ntries; 8534 8535 /* Set "initialization complete" bit. */ 8536 IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8537 8538 /* Wait for clock stabilization. */ 8539 for (ntries = 0; ntries < 2500; ntries++) { 8540 if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) 8541 return 0; 8542 DELAY(10); 8543 } 8544 device_printf(sc->sc_dev, 8545 "%s: timeout waiting for clock stabilization\n", __func__); 8546 return ETIMEDOUT; 8547 } 8548 8549 static int 8550 iwn_apm_init(struct iwn_softc *sc) 8551 { 8552 uint32_t reg; 8553 int error; 8554 8555 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8556 8557 /* Disable L0s exit timer (NMI bug workaround). */ 8558 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); 8559 /* Don't wait for ICH L0s (ICH bug workaround). */ 8560 IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); 8561 8562 /* Set FH wait threshold to max (HW bug under stress workaround). */ 8563 IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); 8564 8565 /* Enable HAP INTA to move adapter from L1a to L0s. */ 8566 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); 8567 8568 /* Retrieve PCIe Active State Power Management (ASPM). */ 8569 reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4); 8570 /* Workaround for HW instability in PCIe L0->L0s->L1 transition. */ 8571 if (reg & PCIEM_LINK_CTL_ASPMC_L1) /* L1 Entry enabled. */ 8572 IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8573 else 8574 IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); 8575 8576 if (sc->base_params->pll_cfg_val) 8577 IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val); 8578 8579 /* Wait for clock stabilization before accessing prph. */ 8580 if ((error = iwn_clock_wait(sc)) != 0) 8581 return error; 8582 8583 if ((error = iwn_nic_lock(sc)) != 0) 8584 return error; 8585 if (sc->hw_type == IWN_HW_REV_TYPE_4965) { 8586 /* Enable DMA and BSM (Bootstrap State Machine). */ 8587 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8588 IWN_APMG_CLK_CTRL_DMA_CLK_RQT | 8589 IWN_APMG_CLK_CTRL_BSM_CLK_RQT); 8590 } else { 8591 /* Enable DMA. */ 8592 iwn_prph_write(sc, IWN_APMG_CLK_EN, 8593 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8594 } 8595 DELAY(20); 8596 /* Disable L1-Active. */ 8597 iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); 8598 iwn_nic_unlock(sc); 8599 8600 return 0; 8601 } 8602 8603 static void 8604 iwn_apm_stop_master(struct iwn_softc *sc) 8605 { 8606 int ntries; 8607 8608 /* Stop busmaster DMA activity. */ 8609 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); 8610 for (ntries = 0; ntries < 100; ntries++) { 8611 if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) 8612 return; 8613 DELAY(10); 8614 } 8615 device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__); 8616 } 8617 8618 static void 8619 iwn_apm_stop(struct iwn_softc *sc) 8620 { 8621 iwn_apm_stop_master(sc); 8622 8623 /* Reset the entire device. */ 8624 IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); 8625 DELAY(10); 8626 /* Clear "initialization complete" bit. */ 8627 IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); 8628 } 8629 8630 static int 8631 iwn4965_nic_config(struct iwn_softc *sc) 8632 { 8633 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8634 8635 if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { 8636 /* 8637 * I don't believe this to be correct but this is what the 8638 * vendor driver is doing. Probably the bits should not be 8639 * shifted in IWN_RFCFG_*. 8640 */ 8641 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8642 IWN_RFCFG_TYPE(sc->rfcfg) | 8643 IWN_RFCFG_STEP(sc->rfcfg) | 8644 IWN_RFCFG_DASH(sc->rfcfg)); 8645 } 8646 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8647 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8648 return 0; 8649 } 8650 8651 static int 8652 iwn5000_nic_config(struct iwn_softc *sc) 8653 { 8654 uint32_t tmp; 8655 int error; 8656 8657 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8658 8659 if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { 8660 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8661 IWN_RFCFG_TYPE(sc->rfcfg) | 8662 IWN_RFCFG_STEP(sc->rfcfg) | 8663 IWN_RFCFG_DASH(sc->rfcfg)); 8664 } 8665 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, 8666 IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); 8667 8668 if ((error = iwn_nic_lock(sc)) != 0) 8669 return error; 8670 iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); 8671 8672 if (sc->hw_type == IWN_HW_REV_TYPE_1000) { 8673 /* 8674 * Select first Switching Voltage Regulator (1.32V) to 8675 * solve a stability issue related to noisy DC2DC line 8676 * in the silicon of 1000 Series. 8677 */ 8678 tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR); 8679 tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK; 8680 tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32; 8681 iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp); 8682 } 8683 iwn_nic_unlock(sc); 8684 8685 if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) { 8686 /* Use internal power amplifier only. */ 8687 IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA); 8688 } 8689 if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) { 8690 /* Indicate that ROM calibration version is >=6. */ 8691 IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6); 8692 } 8693 if (sc->base_params->additional_gp_drv_bit) 8694 IWN_SETBITS(sc, IWN_GP_DRIVER, 8695 sc->base_params->additional_gp_drv_bit); 8696 return 0; 8697 } 8698 8699 /* 8700 * Take NIC ownership over Intel Active Management Technology (AMT). 8701 */ 8702 static int 8703 iwn_hw_prepare(struct iwn_softc *sc) 8704 { 8705 int ntries; 8706 8707 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8708 8709 /* Check if hardware is ready. */ 8710 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8711 for (ntries = 0; ntries < 5; ntries++) { 8712 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8713 IWN_HW_IF_CONFIG_NIC_READY) 8714 return 0; 8715 DELAY(10); 8716 } 8717 8718 /* Hardware not ready, force into ready state. */ 8719 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); 8720 for (ntries = 0; ntries < 15000; ntries++) { 8721 if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & 8722 IWN_HW_IF_CONFIG_PREPARE_DONE)) 8723 break; 8724 DELAY(10); 8725 } 8726 if (ntries == 15000) 8727 return ETIMEDOUT; 8728 8729 /* Hardware should be ready now. */ 8730 IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); 8731 for (ntries = 0; ntries < 5; ntries++) { 8732 if (IWN_READ(sc, IWN_HW_IF_CONFIG) & 8733 IWN_HW_IF_CONFIG_NIC_READY) 8734 return 0; 8735 DELAY(10); 8736 } 8737 return ETIMEDOUT; 8738 } 8739 8740 static int 8741 iwn_hw_init(struct iwn_softc *sc) 8742 { 8743 struct iwn_ops *ops = &sc->ops; 8744 int error, chnl, qid; 8745 8746 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8747 8748 /* Clear pending interrupts. */ 8749 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8750 8751 if ((error = iwn_apm_init(sc)) != 0) { 8752 device_printf(sc->sc_dev, 8753 "%s: could not power ON adapter, error %d\n", __func__, 8754 error); 8755 return error; 8756 } 8757 8758 /* Select VMAIN power source. */ 8759 if ((error = iwn_nic_lock(sc)) != 0) 8760 return error; 8761 iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); 8762 iwn_nic_unlock(sc); 8763 8764 /* Perform adapter-specific initialization. */ 8765 if ((error = ops->nic_config(sc)) != 0) 8766 return error; 8767 8768 /* Initialize RX ring. */ 8769 if ((error = iwn_nic_lock(sc)) != 0) 8770 return error; 8771 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); 8772 IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); 8773 /* Set physical address of RX ring (256-byte aligned). */ 8774 IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); 8775 /* Set physical address of RX status (16-byte aligned). */ 8776 IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); 8777 /* Enable RX. */ 8778 IWN_WRITE(sc, IWN_FH_RX_CONFIG, 8779 IWN_FH_RX_CONFIG_ENA | 8780 IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ 8781 IWN_FH_RX_CONFIG_IRQ_DST_HOST | 8782 IWN_FH_RX_CONFIG_SINGLE_FRAME | 8783 IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | 8784 IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); 8785 iwn_nic_unlock(sc); 8786 IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); 8787 8788 if ((error = iwn_nic_lock(sc)) != 0) 8789 return error; 8790 8791 /* Initialize TX scheduler. */ 8792 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8793 8794 /* Set physical address of "keep warm" page (16-byte aligned). */ 8795 IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); 8796 8797 /* Initialize TX rings. */ 8798 for (qid = 0; qid < sc->ntxqs; qid++) { 8799 struct iwn_tx_ring *txq = &sc->txq[qid]; 8800 8801 /* Set physical address of TX ring (256-byte aligned). */ 8802 IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), 8803 txq->desc_dma.paddr >> 8); 8804 } 8805 iwn_nic_unlock(sc); 8806 8807 /* Enable DMA channels. */ 8808 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8809 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 8810 IWN_FH_TX_CONFIG_DMA_ENA | 8811 IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); 8812 } 8813 8814 /* Clear "radio off" and "commands blocked" bits. */ 8815 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8816 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); 8817 8818 /* Clear pending interrupts. */ 8819 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8820 /* Enable interrupt coalescing. */ 8821 IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); 8822 /* Enable interrupts. */ 8823 IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask); 8824 8825 /* _Really_ make sure "radio off" bit is cleared! */ 8826 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8827 IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); 8828 8829 /* Enable shadow registers. */ 8830 if (sc->base_params->shadow_reg_enable) 8831 IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff); 8832 8833 if ((error = ops->load_firmware(sc)) != 0) { 8834 device_printf(sc->sc_dev, 8835 "%s: could not load firmware, error %d\n", __func__, 8836 error); 8837 return error; 8838 } 8839 /* Wait at most one second for firmware alive notification. */ 8840 if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) { 8841 device_printf(sc->sc_dev, 8842 "%s: timeout waiting for adapter to initialize, error %d\n", 8843 __func__, error); 8844 return error; 8845 } 8846 /* Do post-firmware initialization. */ 8847 8848 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8849 8850 return ops->post_alive(sc); 8851 } 8852 8853 static void 8854 iwn_hw_stop(struct iwn_softc *sc) 8855 { 8856 int chnl, qid, ntries; 8857 8858 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 8859 8860 IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); 8861 8862 /* Disable interrupts. */ 8863 IWN_WRITE(sc, IWN_INT_MASK, 0); 8864 IWN_WRITE(sc, IWN_INT, 0xffffffff); 8865 IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); 8866 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8867 8868 /* Make sure we no longer hold the NIC lock. */ 8869 iwn_nic_unlock(sc); 8870 8871 /* Stop TX scheduler. */ 8872 iwn_prph_write(sc, sc->sched_txfact_addr, 0); 8873 8874 /* Stop all DMA channels. */ 8875 if (iwn_nic_lock(sc) == 0) { 8876 for (chnl = 0; chnl < sc->ndmachnls; chnl++) { 8877 IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); 8878 for (ntries = 0; ntries < 200; ntries++) { 8879 if (IWN_READ(sc, IWN_FH_TX_STATUS) & 8880 IWN_FH_TX_STATUS_IDLE(chnl)) 8881 break; 8882 DELAY(10); 8883 } 8884 } 8885 iwn_nic_unlock(sc); 8886 } 8887 8888 /* Stop RX ring. */ 8889 iwn_reset_rx_ring(sc, &sc->rxq); 8890 8891 /* Reset all TX rings. */ 8892 for (qid = 0; qid < sc->ntxqs; qid++) 8893 iwn_reset_tx_ring(sc, &sc->txq[qid]); 8894 8895 if (iwn_nic_lock(sc) == 0) { 8896 iwn_prph_write(sc, IWN_APMG_CLK_DIS, 8897 IWN_APMG_CLK_CTRL_DMA_CLK_RQT); 8898 iwn_nic_unlock(sc); 8899 } 8900 DELAY(5); 8901 /* Power OFF adapter. */ 8902 iwn_apm_stop(sc); 8903 } 8904 8905 static void 8906 iwn_panicked(void *arg0, int pending) 8907 { 8908 struct iwn_softc *sc = arg0; 8909 struct ieee80211com *ic = &sc->sc_ic; 8910 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 8911 #if 0 8912 int error; 8913 #endif 8914 8915 if (vap == NULL) { 8916 printf("%s: null vap\n", __func__); 8917 return; 8918 } 8919 8920 device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; " 8921 "restarting\n", __func__, vap->iv_state); 8922 8923 /* 8924 * This is not enough work. We need to also reinitialise 8925 * the correct transmit state for aggregation enabled queues, 8926 * which has a very specific requirement of 8927 * ring index = 802.11 seqno % 256. If we don't do this (which 8928 * we definitely don't!) then the firmware will just panic again. 8929 */ 8930 #if 1 8931 ieee80211_restart_all(ic); 8932 #else 8933 IWN_LOCK(sc); 8934 8935 iwn_stop_locked(sc); 8936 if ((error = iwn_init_locked(sc)) != 0) { 8937 device_printf(sc->sc_dev, 8938 "%s: could not init hardware\n", __func__); 8939 goto unlock; 8940 } 8941 if (vap->iv_state >= IEEE80211_S_AUTH && 8942 (error = iwn_auth(sc, vap)) != 0) { 8943 device_printf(sc->sc_dev, 8944 "%s: could not move to auth state\n", __func__); 8945 } 8946 if (vap->iv_state >= IEEE80211_S_RUN && 8947 (error = iwn_run(sc, vap)) != 0) { 8948 device_printf(sc->sc_dev, 8949 "%s: could not move to run state\n", __func__); 8950 } 8951 8952 unlock: 8953 IWN_UNLOCK(sc); 8954 #endif 8955 } 8956 8957 static int 8958 iwn_init_locked(struct iwn_softc *sc) 8959 { 8960 int error; 8961 8962 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__); 8963 8964 IWN_LOCK_ASSERT(sc); 8965 8966 if (sc->sc_flags & IWN_FLAG_RUNNING) 8967 goto end; 8968 8969 sc->sc_flags |= IWN_FLAG_RUNNING; 8970 8971 if ((error = iwn_hw_prepare(sc)) != 0) { 8972 device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n", 8973 __func__, error); 8974 goto fail; 8975 } 8976 8977 /* Initialize interrupt mask to default value. */ 8978 sc->int_mask = IWN_INT_MASK_DEF; 8979 sc->sc_flags &= ~IWN_FLAG_USE_ICT; 8980 8981 /* Check that the radio is not disabled by hardware switch. */ 8982 if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { 8983 iwn_stop_locked(sc); 8984 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 8985 8986 return (1); 8987 } 8988 8989 /* Read firmware images from the filesystem. */ 8990 if ((error = iwn_read_firmware(sc)) != 0) { 8991 device_printf(sc->sc_dev, 8992 "%s: could not read firmware, error %d\n", __func__, 8993 error); 8994 goto fail; 8995 } 8996 8997 /* Initialize hardware and upload firmware. */ 8998 error = iwn_hw_init(sc); 8999 iwn_unload_firmware(sc); 9000 if (error != 0) { 9001 device_printf(sc->sc_dev, 9002 "%s: could not initialize hardware, error %d\n", __func__, 9003 error); 9004 goto fail; 9005 } 9006 9007 /* Configure adapter now that it is ready. */ 9008 if ((error = iwn_config(sc)) != 0) { 9009 device_printf(sc->sc_dev, 9010 "%s: could not configure device, error %d\n", __func__, 9011 error); 9012 goto fail; 9013 } 9014 9015 callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc); 9016 9017 end: 9018 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__); 9019 9020 return (0); 9021 9022 fail: 9023 iwn_stop_locked(sc); 9024 9025 DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__); 9026 9027 return (-1); 9028 } 9029 9030 static int 9031 iwn_init(struct iwn_softc *sc) 9032 { 9033 int error; 9034 9035 IWN_LOCK(sc); 9036 error = iwn_init_locked(sc); 9037 IWN_UNLOCK(sc); 9038 9039 return (error); 9040 } 9041 9042 static void 9043 iwn_stop_locked(struct iwn_softc *sc) 9044 { 9045 9046 IWN_LOCK_ASSERT(sc); 9047 9048 if (!(sc->sc_flags & IWN_FLAG_RUNNING)) 9049 return; 9050 9051 sc->sc_is_scanning = 0; 9052 sc->sc_tx_timer = 0; 9053 callout_stop(&sc->watchdog_to); 9054 callout_stop(&sc->scan_timeout); 9055 callout_stop(&sc->calib_to); 9056 sc->sc_flags &= ~IWN_FLAG_RUNNING; 9057 9058 /* Power OFF hardware. */ 9059 iwn_hw_stop(sc); 9060 } 9061 9062 static void 9063 iwn_stop(struct iwn_softc *sc) 9064 { 9065 IWN_LOCK(sc); 9066 iwn_stop_locked(sc); 9067 IWN_UNLOCK(sc); 9068 } 9069 9070 /* 9071 * Callback from net80211 to start a scan. 9072 */ 9073 static void 9074 iwn_scan_start(struct ieee80211com *ic) 9075 { 9076 struct iwn_softc *sc = ic->ic_softc; 9077 9078 IWN_LOCK(sc); 9079 /* make the link LED blink while we're scanning */ 9080 iwn_set_led(sc, IWN_LED_LINK, 20, 2); 9081 IWN_UNLOCK(sc); 9082 } 9083 9084 /* 9085 * Callback from net80211 to terminate a scan. 9086 */ 9087 static void 9088 iwn_scan_end(struct ieee80211com *ic) 9089 { 9090 struct iwn_softc *sc = ic->ic_softc; 9091 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 9092 9093 IWN_LOCK(sc); 9094 if (vap->iv_state == IEEE80211_S_RUN) { 9095 /* Set link LED to ON status if we are associated */ 9096 iwn_set_led(sc, IWN_LED_LINK, 0, 1); 9097 } 9098 IWN_UNLOCK(sc); 9099 } 9100 9101 /* 9102 * Callback from net80211 to force a channel change. 9103 */ 9104 static void 9105 iwn_set_channel(struct ieee80211com *ic) 9106 { 9107 struct iwn_softc *sc = ic->ic_softc; 9108 int error; 9109 9110 DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__); 9111 9112 IWN_LOCK(sc); 9113 /* 9114 * Only need to set the channel in Monitor mode. AP scanning and auth 9115 * are already taken care of by their respective firmware commands. 9116 */ 9117 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 9118 error = iwn_config(sc); 9119 if (error != 0) 9120 device_printf(sc->sc_dev, 9121 "%s: error %d setting channel\n", __func__, error); 9122 } 9123 IWN_UNLOCK(sc); 9124 } 9125 9126 /* 9127 * Callback from net80211 to start scanning of the current channel. 9128 */ 9129 static void 9130 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell) 9131 { 9132 struct ieee80211vap *vap = ss->ss_vap; 9133 struct ieee80211com *ic = vap->iv_ic; 9134 struct iwn_softc *sc = ic->ic_softc; 9135 int error; 9136 9137 IWN_LOCK(sc); 9138 error = iwn_scan(sc, vap, ss, ic->ic_curchan); 9139 IWN_UNLOCK(sc); 9140 if (error != 0) 9141 ieee80211_cancel_scan(vap); 9142 } 9143 9144 /* 9145 * Callback from net80211 to handle the minimum dwell time being met. 9146 * The intent is to terminate the scan but we just let the firmware 9147 * notify us when it's finished as we have no safe way to abort it. 9148 */ 9149 static void 9150 iwn_scan_mindwell(struct ieee80211_scan_state *ss) 9151 { 9152 /* NB: don't try to abort scan; wait for firmware to finish */ 9153 } 9154 #ifdef IWN_DEBUG 9155 #define IWN_DESC(x) case x: return #x 9156 9157 /* 9158 * Translate CSR code to string 9159 */ 9160 static char *iwn_get_csr_string(int csr) 9161 { 9162 switch (csr) { 9163 IWN_DESC(IWN_HW_IF_CONFIG); 9164 IWN_DESC(IWN_INT_COALESCING); 9165 IWN_DESC(IWN_INT); 9166 IWN_DESC(IWN_INT_MASK); 9167 IWN_DESC(IWN_FH_INT); 9168 IWN_DESC(IWN_GPIO_IN); 9169 IWN_DESC(IWN_RESET); 9170 IWN_DESC(IWN_GP_CNTRL); 9171 IWN_DESC(IWN_HW_REV); 9172 IWN_DESC(IWN_EEPROM); 9173 IWN_DESC(IWN_EEPROM_GP); 9174 IWN_DESC(IWN_OTP_GP); 9175 IWN_DESC(IWN_GIO); 9176 IWN_DESC(IWN_GP_UCODE); 9177 IWN_DESC(IWN_GP_DRIVER); 9178 IWN_DESC(IWN_UCODE_GP1); 9179 IWN_DESC(IWN_UCODE_GP2); 9180 IWN_DESC(IWN_LED); 9181 IWN_DESC(IWN_DRAM_INT_TBL); 9182 IWN_DESC(IWN_GIO_CHICKEN); 9183 IWN_DESC(IWN_ANA_PLL); 9184 IWN_DESC(IWN_HW_REV_WA); 9185 IWN_DESC(IWN_DBG_HPET_MEM); 9186 default: 9187 return "UNKNOWN CSR"; 9188 } 9189 } 9190 9191 /* 9192 * This function print firmware register 9193 */ 9194 static void 9195 iwn_debug_register(struct iwn_softc *sc) 9196 { 9197 int i; 9198 static const uint32_t csr_tbl[] = { 9199 IWN_HW_IF_CONFIG, 9200 IWN_INT_COALESCING, 9201 IWN_INT, 9202 IWN_INT_MASK, 9203 IWN_FH_INT, 9204 IWN_GPIO_IN, 9205 IWN_RESET, 9206 IWN_GP_CNTRL, 9207 IWN_HW_REV, 9208 IWN_EEPROM, 9209 IWN_EEPROM_GP, 9210 IWN_OTP_GP, 9211 IWN_GIO, 9212 IWN_GP_UCODE, 9213 IWN_GP_DRIVER, 9214 IWN_UCODE_GP1, 9215 IWN_UCODE_GP2, 9216 IWN_LED, 9217 IWN_DRAM_INT_TBL, 9218 IWN_GIO_CHICKEN, 9219 IWN_ANA_PLL, 9220 IWN_HW_REV_WA, 9221 IWN_DBG_HPET_MEM, 9222 }; 9223 DPRINTF(sc, IWN_DEBUG_REGISTER, 9224 "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s", 9225 "\n"); 9226 for (i = 0; i < nitems(csr_tbl); i++){ 9227 DPRINTF(sc, IWN_DEBUG_REGISTER," %10s: 0x%08x ", 9228 iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i])); 9229 if ((i+1) % 3 == 0) 9230 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9231 } 9232 DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n"); 9233 } 9234 #endif 9235 9236 9237