xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 8b25e8410533a6e69cceff910546b2dc485a5059)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/conf.h>
43 #include <sys/rman.h>
44 #include <sys/endian.h>
45 #include <sys/firmware.h>
46 #include <sys/limits.h>
47 #include <sys/module.h>
48 #include <sys/priv.h>
49 #include <sys/queue.h>
50 #include <sys/taskqueue.h>
51 
52 #include <machine/bus.h>
53 #include <machine/resource.h>
54 #include <machine/clock.h>
55 
56 #include <dev/pci/pcireg.h>
57 #include <dev/pci/pcivar.h>
58 
59 #include <net/if.h>
60 #include <net/if_var.h>
61 #include <net/if_dl.h>
62 #include <net/if_media.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/if_ether.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 #include <dev/iwn/if_iwn_devid.h>
75 #include <dev/iwn/if_iwn_chip_cfg.h>
76 #include <dev/iwn/if_iwn_debug.h>
77 #include <dev/iwn/if_iwn_ioctl.h>
78 
79 struct iwn_ident {
80 	uint16_t	vendor;
81 	uint16_t	device;
82 	const char	*name;
83 };
84 
85 static const struct iwn_ident iwn_ident_table[] = {
86 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
87 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
88 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
89 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
90 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
91 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
92 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
93 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
94 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
95 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
96 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
97 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
98 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
99 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
100 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
101 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
102 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
103 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
104 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
105 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
106 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
107 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
108 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
109 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
110 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
111 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
112 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
113 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
114 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
115 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
116 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
117 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
118 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
119 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
120 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
121 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
122 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
123 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
124 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
125 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
126 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
127 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
128 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
129 	{ 0, 0, NULL }
130 };
131 
132 static int	iwn_probe(device_t);
133 static int	iwn_attach(device_t);
134 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
135 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
136 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
137 static void	iwn_radiotap_attach(struct iwn_softc *);
138 static void	iwn_sysctlattach(struct iwn_softc *);
139 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
140 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
141 		    const uint8_t [IEEE80211_ADDR_LEN],
142 		    const uint8_t [IEEE80211_ADDR_LEN]);
143 static void	iwn_vap_delete(struct ieee80211vap *);
144 static int	iwn_detach(device_t);
145 static int	iwn_shutdown(device_t);
146 static int	iwn_suspend(device_t);
147 static int	iwn_resume(device_t);
148 static int	iwn_nic_lock(struct iwn_softc *);
149 static int	iwn_eeprom_lock(struct iwn_softc *);
150 static int	iwn_init_otprom(struct iwn_softc *);
151 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
152 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
153 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
154 		    void **, bus_size_t, bus_size_t);
155 static void	iwn_dma_contig_free(struct iwn_dma_info *);
156 static int	iwn_alloc_sched(struct iwn_softc *);
157 static void	iwn_free_sched(struct iwn_softc *);
158 static int	iwn_alloc_kw(struct iwn_softc *);
159 static void	iwn_free_kw(struct iwn_softc *);
160 static int	iwn_alloc_ict(struct iwn_softc *);
161 static void	iwn_free_ict(struct iwn_softc *);
162 static int	iwn_alloc_fwmem(struct iwn_softc *);
163 static void	iwn_free_fwmem(struct iwn_softc *);
164 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
165 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
166 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
167 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
168 		    int);
169 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
170 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
171 static void	iwn5000_ict_reset(struct iwn_softc *);
172 static int	iwn_read_eeprom(struct iwn_softc *,
173 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
174 static void	iwn4965_read_eeprom(struct iwn_softc *);
175 #ifdef	IWN_DEBUG
176 static void	iwn4965_print_power_group(struct iwn_softc *, int);
177 #endif
178 static void	iwn5000_read_eeprom(struct iwn_softc *);
179 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
180 static void	iwn_read_eeprom_band(struct iwn_softc *, int, int, int *,
181 		    struct ieee80211_channel[]);
182 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int, int, int *,
183 		    struct ieee80211_channel[]);
184 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
185 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
186 		    struct ieee80211_channel *);
187 static void	iwn_getradiocaps(struct ieee80211com *, int, int *,
188 		    struct ieee80211_channel[]);
189 static int	iwn_setregdomain(struct ieee80211com *,
190 		    struct ieee80211_regdomain *, int,
191 		    struct ieee80211_channel[]);
192 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
193 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
194 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
195 static void	iwn_newassoc(struct ieee80211_node *, int);
196 static int	iwn_media_change(struct ifnet *);
197 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198 static void	iwn_calib_timeout(void *);
199 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
200 		    struct iwn_rx_data *);
201 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
202 		    struct iwn_rx_data *);
203 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
204 		    struct iwn_rx_data *);
205 static void	iwn5000_rx_calib_results(struct iwn_softc *,
206 		    struct iwn_rx_desc *, struct iwn_rx_data *);
207 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
208 		    struct iwn_rx_data *);
209 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
210 		    struct iwn_rx_data *);
211 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
212 		    struct iwn_rx_data *);
213 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, int,
214 		    uint8_t);
215 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, int, int,
216 		    void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_intr(struct iwn_softc *);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static void	iwn_xmit_task(void *arg0, int pending);
236 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
237 		    const struct ieee80211_bpf_params *);
238 static int	iwn_transmit(struct ieee80211com *, struct mbuf *);
239 static void	iwn_scan_timeout(void *);
240 static void	iwn_watchdog(void *);
241 static int	iwn_ioctl(struct ieee80211com *, u_long , void *);
242 static void	iwn_parent(struct ieee80211com *);
243 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
244 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
245 		    int);
246 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
247 		    int);
248 static int	iwn_set_link_quality(struct iwn_softc *,
249 		    struct ieee80211_node *);
250 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
251 static int	iwn_updateedca(struct ieee80211com *);
252 static void	iwn_update_mcast(struct ieee80211com *);
253 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
254 static int	iwn_set_critical_temp(struct iwn_softc *);
255 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
256 static void	iwn4965_power_calibration(struct iwn_softc *, int);
257 static int	iwn4965_set_txpower(struct iwn_softc *,
258 		    struct ieee80211_channel *, int);
259 static int	iwn5000_set_txpower(struct iwn_softc *,
260 		    struct ieee80211_channel *, int);
261 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
262 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
263 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
264 static int	iwn4965_get_temperature(struct iwn_softc *);
265 static int	iwn5000_get_temperature(struct iwn_softc *);
266 static int	iwn_init_sensitivity(struct iwn_softc *);
267 static void	iwn_collect_noise(struct iwn_softc *,
268 		    const struct iwn_rx_general_stats *);
269 static int	iwn4965_init_gains(struct iwn_softc *);
270 static int	iwn5000_init_gains(struct iwn_softc *);
271 static int	iwn4965_set_gains(struct iwn_softc *);
272 static int	iwn5000_set_gains(struct iwn_softc *);
273 static void	iwn_tune_sensitivity(struct iwn_softc *,
274 		    const struct iwn_rx_stats *);
275 static void	iwn_save_stats_counters(struct iwn_softc *,
276 		    const struct iwn_stats *);
277 static int	iwn_send_sensitivity(struct iwn_softc *);
278 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
279 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
280 static int	iwn_send_btcoex(struct iwn_softc *);
281 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
282 static int	iwn5000_runtime_calib(struct iwn_softc *);
283 static int	iwn_config(struct iwn_softc *);
284 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
285 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
286 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
287 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
288 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
289 		    struct ieee80211_rx_ampdu *, int, int, int);
290 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
291 		    struct ieee80211_rx_ampdu *);
292 static int	iwn_addba_request(struct ieee80211_node *,
293 		    struct ieee80211_tx_ampdu *, int, int, int);
294 static int	iwn_addba_response(struct ieee80211_node *,
295 		    struct ieee80211_tx_ampdu *, int, int, int);
296 static int	iwn_ampdu_tx_start(struct ieee80211com *,
297 		    struct ieee80211_node *, uint8_t);
298 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
299 		    struct ieee80211_tx_ampdu *);
300 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
301 		    struct ieee80211_node *, int, uint8_t, uint16_t);
302 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
303 		    uint8_t, uint16_t);
304 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
305 		    struct ieee80211_node *, int, uint8_t, uint16_t);
306 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
307 		    uint8_t, uint16_t);
308 static int	iwn5000_query_calibration(struct iwn_softc *);
309 static int	iwn5000_send_calibration(struct iwn_softc *);
310 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
311 static int	iwn5000_crystal_calib(struct iwn_softc *);
312 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
313 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
314 static int	iwn4965_post_alive(struct iwn_softc *);
315 static int	iwn5000_post_alive(struct iwn_softc *);
316 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
317 		    int);
318 static int	iwn4965_load_firmware(struct iwn_softc *);
319 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
320 		    const uint8_t *, int);
321 static int	iwn5000_load_firmware(struct iwn_softc *);
322 static int	iwn_read_firmware_leg(struct iwn_softc *,
323 		    struct iwn_fw_info *);
324 static int	iwn_read_firmware_tlv(struct iwn_softc *,
325 		    struct iwn_fw_info *, uint16_t);
326 static int	iwn_read_firmware(struct iwn_softc *);
327 static void	iwn_unload_firmware(struct iwn_softc *);
328 static int	iwn_clock_wait(struct iwn_softc *);
329 static int	iwn_apm_init(struct iwn_softc *);
330 static void	iwn_apm_stop_master(struct iwn_softc *);
331 static void	iwn_apm_stop(struct iwn_softc *);
332 static int	iwn4965_nic_config(struct iwn_softc *);
333 static int	iwn5000_nic_config(struct iwn_softc *);
334 static int	iwn_hw_prepare(struct iwn_softc *);
335 static int	iwn_hw_init(struct iwn_softc *);
336 static void	iwn_hw_stop(struct iwn_softc *);
337 static void	iwn_radio_on(void *, int);
338 static void	iwn_radio_off(void *, int);
339 static void	iwn_panicked(void *, int);
340 static void	iwn_init_locked(struct iwn_softc *);
341 static void	iwn_init(struct iwn_softc *);
342 static void	iwn_stop_locked(struct iwn_softc *);
343 static void	iwn_stop(struct iwn_softc *);
344 static void	iwn_scan_start(struct ieee80211com *);
345 static void	iwn_scan_end(struct ieee80211com *);
346 static void	iwn_set_channel(struct ieee80211com *);
347 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
348 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
349 #ifdef	IWN_DEBUG
350 static char	*iwn_get_csr_string(int);
351 static void	iwn_debug_register(struct iwn_softc *);
352 #endif
353 
354 static device_method_t iwn_methods[] = {
355 	/* Device interface */
356 	DEVMETHOD(device_probe,		iwn_probe),
357 	DEVMETHOD(device_attach,	iwn_attach),
358 	DEVMETHOD(device_detach,	iwn_detach),
359 	DEVMETHOD(device_shutdown,	iwn_shutdown),
360 	DEVMETHOD(device_suspend,	iwn_suspend),
361 	DEVMETHOD(device_resume,	iwn_resume),
362 
363 	DEVMETHOD_END
364 };
365 
366 static driver_t iwn_driver = {
367 	"iwn",
368 	iwn_methods,
369 	sizeof(struct iwn_softc)
370 };
371 static devclass_t iwn_devclass;
372 
373 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
374 
375 MODULE_VERSION(iwn, 1);
376 
377 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
378 MODULE_DEPEND(iwn, pci, 1, 1, 1);
379 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
380 
381 static d_ioctl_t iwn_cdev_ioctl;
382 static d_open_t iwn_cdev_open;
383 static d_close_t iwn_cdev_close;
384 
385 static struct cdevsw iwn_cdevsw = {
386 	.d_version = D_VERSION,
387 	.d_flags = 0,
388 	.d_open = iwn_cdev_open,
389 	.d_close = iwn_cdev_close,
390 	.d_ioctl = iwn_cdev_ioctl,
391 	.d_name = "iwn",
392 };
393 
394 static int
395 iwn_probe(device_t dev)
396 {
397 	const struct iwn_ident *ident;
398 
399 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
400 		if (pci_get_vendor(dev) == ident->vendor &&
401 		    pci_get_device(dev) == ident->device) {
402 			device_set_desc(dev, ident->name);
403 			return (BUS_PROBE_DEFAULT);
404 		}
405 	}
406 	return ENXIO;
407 }
408 
409 static int
410 iwn_is_3stream_device(struct iwn_softc *sc)
411 {
412 	/* XXX for now only 5300, until the 5350 can be tested */
413 	if (sc->hw_type == IWN_HW_REV_TYPE_5300)
414 		return (1);
415 	return (0);
416 }
417 
418 static int
419 iwn_attach(device_t dev)
420 {
421 	struct iwn_softc *sc = device_get_softc(dev);
422 	struct ieee80211com *ic;
423 	int i, error, rid;
424 
425 	sc->sc_dev = dev;
426 
427 #ifdef	IWN_DEBUG
428 	error = resource_int_value(device_get_name(sc->sc_dev),
429 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
430 	if (error != 0)
431 		sc->sc_debug = 0;
432 #else
433 	sc->sc_debug = 0;
434 #endif
435 
436 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
437 
438 	/*
439 	 * Get the offset of the PCI Express Capability Structure in PCI
440 	 * Configuration Space.
441 	 */
442 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
443 	if (error != 0) {
444 		device_printf(dev, "PCIe capability structure not found!\n");
445 		return error;
446 	}
447 
448 	/* Clear device-specific "PCI retry timeout" register (41h). */
449 	pci_write_config(dev, 0x41, 0, 1);
450 
451 	/* Enable bus-mastering. */
452 	pci_enable_busmaster(dev);
453 
454 	rid = PCIR_BAR(0);
455 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
456 	    RF_ACTIVE);
457 	if (sc->mem == NULL) {
458 		device_printf(dev, "can't map mem space\n");
459 		error = ENOMEM;
460 		return error;
461 	}
462 	sc->sc_st = rman_get_bustag(sc->mem);
463 	sc->sc_sh = rman_get_bushandle(sc->mem);
464 
465 	i = 1;
466 	rid = 0;
467 	if (pci_alloc_msi(dev, &i) == 0)
468 		rid = 1;
469 	/* Install interrupt handler. */
470 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
471 	    (rid != 0 ? 0 : RF_SHAREABLE));
472 	if (sc->irq == NULL) {
473 		device_printf(dev, "can't map interrupt\n");
474 		error = ENOMEM;
475 		goto fail;
476 	}
477 
478 	IWN_LOCK_INIT(sc);
479 
480 	/* Read hardware revision and attach. */
481 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
482 	    & IWN_HW_REV_TYPE_MASK;
483 	sc->subdevice_id = pci_get_subdevice(dev);
484 
485 	/*
486 	 * 4965 versus 5000 and later have different methods.
487 	 * Let's set those up first.
488 	 */
489 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
490 		error = iwn4965_attach(sc, pci_get_device(dev));
491 	else
492 		error = iwn5000_attach(sc, pci_get_device(dev));
493 	if (error != 0) {
494 		device_printf(dev, "could not attach device, error %d\n",
495 		    error);
496 		goto fail;
497 	}
498 
499 	/*
500 	 * Next, let's setup the various parameters of each NIC.
501 	 */
502 	error = iwn_config_specific(sc, pci_get_device(dev));
503 	if (error != 0) {
504 		device_printf(dev, "could not attach device, error %d\n",
505 		    error);
506 		goto fail;
507 	}
508 
509 	if ((error = iwn_hw_prepare(sc)) != 0) {
510 		device_printf(dev, "hardware not ready, error %d\n", error);
511 		goto fail;
512 	}
513 
514 	/* Allocate DMA memory for firmware transfers. */
515 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
516 		device_printf(dev,
517 		    "could not allocate memory for firmware, error %d\n",
518 		    error);
519 		goto fail;
520 	}
521 
522 	/* Allocate "Keep Warm" page. */
523 	if ((error = iwn_alloc_kw(sc)) != 0) {
524 		device_printf(dev,
525 		    "could not allocate keep warm page, error %d\n", error);
526 		goto fail;
527 	}
528 
529 	/* Allocate ICT table for 5000 Series. */
530 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
531 	    (error = iwn_alloc_ict(sc)) != 0) {
532 		device_printf(dev, "could not allocate ICT table, error %d\n",
533 		    error);
534 		goto fail;
535 	}
536 
537 	/* Allocate TX scheduler "rings". */
538 	if ((error = iwn_alloc_sched(sc)) != 0) {
539 		device_printf(dev,
540 		    "could not allocate TX scheduler rings, error %d\n", error);
541 		goto fail;
542 	}
543 
544 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
545 	for (i = 0; i < sc->ntxqs; i++) {
546 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
547 			device_printf(dev,
548 			    "could not allocate TX ring %d, error %d\n", i,
549 			    error);
550 			goto fail;
551 		}
552 	}
553 
554 	/* Allocate RX ring. */
555 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
556 		device_printf(dev, "could not allocate RX ring, error %d\n",
557 		    error);
558 		goto fail;
559 	}
560 
561 	/* Clear pending interrupts. */
562 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
563 
564 	ic = &sc->sc_ic;
565 	ic->ic_softc = sc;
566 	ic->ic_name = device_get_nameunit(dev);
567 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
568 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
569 
570 	/* Set device capabilities. */
571 	ic->ic_caps =
572 		  IEEE80211_C_STA		/* station mode supported */
573 		| IEEE80211_C_MONITOR		/* monitor mode supported */
574 #if 0
575 		| IEEE80211_C_BGSCAN		/* background scanning */
576 #endif
577 		| IEEE80211_C_TXPMGT		/* tx power management */
578 		| IEEE80211_C_SHSLOT		/* short slot time supported */
579 		| IEEE80211_C_WPA
580 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
581 #if 0
582 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
583 #endif
584 		| IEEE80211_C_WME		/* WME */
585 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
586 		;
587 
588 	/* Read MAC address, channels, etc from EEPROM. */
589 	if ((error = iwn_read_eeprom(sc, ic->ic_macaddr)) != 0) {
590 		device_printf(dev, "could not read EEPROM, error %d\n",
591 		    error);
592 		goto fail;
593 	}
594 
595 	/* Count the number of available chains. */
596 	sc->ntxchains =
597 	    ((sc->txchainmask >> 2) & 1) +
598 	    ((sc->txchainmask >> 1) & 1) +
599 	    ((sc->txchainmask >> 0) & 1);
600 	sc->nrxchains =
601 	    ((sc->rxchainmask >> 2) & 1) +
602 	    ((sc->rxchainmask >> 1) & 1) +
603 	    ((sc->rxchainmask >> 0) & 1);
604 	if (bootverbose) {
605 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
606 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
607 		    ic->ic_macaddr, ":");
608 	}
609 
610 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
611 		ic->ic_rxstream = sc->nrxchains;
612 		ic->ic_txstream = sc->ntxchains;
613 
614 		/*
615 		 * Some of the 3 antenna devices (ie, the 4965) only supports
616 		 * 2x2 operation.  So correct the number of streams if
617 		 * it's not a 3-stream device.
618 		 */
619 		if (! iwn_is_3stream_device(sc)) {
620 			if (ic->ic_rxstream > 2)
621 				ic->ic_rxstream = 2;
622 			if (ic->ic_txstream > 2)
623 				ic->ic_txstream = 2;
624 		}
625 
626 		ic->ic_htcaps =
627 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
628 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
629 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
630 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
631 #ifdef notyet
632 			| IEEE80211_HTCAP_GREENFIELD
633 #if IWN_RBUF_SIZE == 8192
634 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
635 #else
636 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
637 #endif
638 #endif
639 			/* s/w capabilities */
640 			| IEEE80211_HTC_HT		/* HT operation */
641 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
642 #ifdef notyet
643 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
644 #endif
645 			;
646 	}
647 
648 	ieee80211_ifattach(ic);
649 	ic->ic_vap_create = iwn_vap_create;
650 	ic->ic_ioctl = iwn_ioctl;
651 	ic->ic_parent = iwn_parent;
652 	ic->ic_vap_delete = iwn_vap_delete;
653 	ic->ic_transmit = iwn_transmit;
654 	ic->ic_raw_xmit = iwn_raw_xmit;
655 	ic->ic_node_alloc = iwn_node_alloc;
656 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
657 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
658 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
659 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
660 	sc->sc_addba_request = ic->ic_addba_request;
661 	ic->ic_addba_request = iwn_addba_request;
662 	sc->sc_addba_response = ic->ic_addba_response;
663 	ic->ic_addba_response = iwn_addba_response;
664 	sc->sc_addba_stop = ic->ic_addba_stop;
665 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
666 	ic->ic_newassoc = iwn_newassoc;
667 	ic->ic_wme.wme_update = iwn_updateedca;
668 	ic->ic_update_mcast = iwn_update_mcast;
669 	ic->ic_scan_start = iwn_scan_start;
670 	ic->ic_scan_end = iwn_scan_end;
671 	ic->ic_set_channel = iwn_set_channel;
672 	ic->ic_scan_curchan = iwn_scan_curchan;
673 	ic->ic_scan_mindwell = iwn_scan_mindwell;
674 	ic->ic_getradiocaps = iwn_getradiocaps;
675 	ic->ic_setregdomain = iwn_setregdomain;
676 
677 	iwn_radiotap_attach(sc);
678 
679 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
680 	callout_init_mtx(&sc->scan_timeout, &sc->sc_mtx, 0);
681 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
682 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
683 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
684 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
685 	TASK_INIT(&sc->sc_xmit_task, 0, iwn_xmit_task, sc);
686 
687 	mbufq_init(&sc->sc_xmit_queue, 1024);
688 
689 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
690 	    taskqueue_thread_enqueue, &sc->sc_tq);
691 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
692 	if (error != 0) {
693 		device_printf(dev, "can't start threads, error %d\n", error);
694 		goto fail;
695 	}
696 
697 	iwn_sysctlattach(sc);
698 
699 	/*
700 	 * Hook our interrupt after all initialization is complete.
701 	 */
702 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
703 	    NULL, iwn_intr, sc, &sc->sc_ih);
704 	if (error != 0) {
705 		device_printf(dev, "can't establish interrupt, error %d\n",
706 		    error);
707 		goto fail;
708 	}
709 
710 #if 0
711 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
712 	    __func__,
713 	    sizeof(struct iwn_stats),
714 	    sizeof(struct iwn_stats_bt));
715 #endif
716 
717 	if (bootverbose)
718 		ieee80211_announce(ic);
719 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
720 
721 	/* Add debug ioctl right at the end */
722 	sc->sc_cdev = make_dev(&iwn_cdevsw, device_get_unit(dev),
723 	    UID_ROOT, GID_WHEEL, 0600, "%s", device_get_nameunit(dev));
724 	if (sc->sc_cdev == NULL) {
725 		device_printf(dev, "failed to create debug character device\n");
726 	} else {
727 		sc->sc_cdev->si_drv1 = sc;
728 	}
729 	return 0;
730 fail:
731 	iwn_detach(dev);
732 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
733 	return error;
734 }
735 
736 /*
737  * Define specific configuration based on device id and subdevice id
738  * pid : PCI device id
739  */
740 static int
741 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
742 {
743 
744 	switch (pid) {
745 /* 4965 series */
746 	case IWN_DID_4965_1:
747 	case IWN_DID_4965_2:
748 	case IWN_DID_4965_3:
749 	case IWN_DID_4965_4:
750 		sc->base_params = &iwn4965_base_params;
751 		sc->limits = &iwn4965_sensitivity_limits;
752 		sc->fwname = "iwn4965fw";
753 		/* Override chains masks, ROM is known to be broken. */
754 		sc->txchainmask = IWN_ANT_AB;
755 		sc->rxchainmask = IWN_ANT_ABC;
756 		/* Enable normal btcoex */
757 		sc->sc_flags |= IWN_FLAG_BTCOEX;
758 		break;
759 /* 1000 Series */
760 	case IWN_DID_1000_1:
761 	case IWN_DID_1000_2:
762 		switch(sc->subdevice_id) {
763 			case	IWN_SDID_1000_1:
764 			case	IWN_SDID_1000_2:
765 			case	IWN_SDID_1000_3:
766 			case	IWN_SDID_1000_4:
767 			case	IWN_SDID_1000_5:
768 			case	IWN_SDID_1000_6:
769 			case	IWN_SDID_1000_7:
770 			case	IWN_SDID_1000_8:
771 			case	IWN_SDID_1000_9:
772 			case	IWN_SDID_1000_10:
773 			case	IWN_SDID_1000_11:
774 			case	IWN_SDID_1000_12:
775 				sc->limits = &iwn1000_sensitivity_limits;
776 				sc->base_params = &iwn1000_base_params;
777 				sc->fwname = "iwn1000fw";
778 				break;
779 			default:
780 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
781 				    "0x%04x rev %d not supported (subdevice)\n", pid,
782 				    sc->subdevice_id,sc->hw_type);
783 				return ENOTSUP;
784 		}
785 		break;
786 /* 6x00 Series */
787 	case IWN_DID_6x00_2:
788 	case IWN_DID_6x00_4:
789 	case IWN_DID_6x00_1:
790 	case IWN_DID_6x00_3:
791 		sc->fwname = "iwn6000fw";
792 		sc->limits = &iwn6000_sensitivity_limits;
793 		switch(sc->subdevice_id) {
794 			case IWN_SDID_6x00_1:
795 			case IWN_SDID_6x00_2:
796 			case IWN_SDID_6x00_8:
797 				//iwl6000_3agn_cfg
798 				sc->base_params = &iwn_6000_base_params;
799 				break;
800 			case IWN_SDID_6x00_3:
801 			case IWN_SDID_6x00_6:
802 			case IWN_SDID_6x00_9:
803 				////iwl6000i_2agn
804 			case IWN_SDID_6x00_4:
805 			case IWN_SDID_6x00_7:
806 			case IWN_SDID_6x00_10:
807 				//iwl6000i_2abg_cfg
808 			case IWN_SDID_6x00_5:
809 				//iwl6000i_2bg_cfg
810 				sc->base_params = &iwn_6000i_base_params;
811 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
812 				sc->txchainmask = IWN_ANT_BC;
813 				sc->rxchainmask = IWN_ANT_BC;
814 				break;
815 			default:
816 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
817 				    "0x%04x rev %d not supported (subdevice)\n", pid,
818 				    sc->subdevice_id,sc->hw_type);
819 				return ENOTSUP;
820 		}
821 		break;
822 /* 6x05 Series */
823 	case IWN_DID_6x05_1:
824 	case IWN_DID_6x05_2:
825 		switch(sc->subdevice_id) {
826 			case IWN_SDID_6x05_1:
827 			case IWN_SDID_6x05_4:
828 			case IWN_SDID_6x05_6:
829 				//iwl6005_2agn_cfg
830 			case IWN_SDID_6x05_2:
831 			case IWN_SDID_6x05_5:
832 			case IWN_SDID_6x05_7:
833 				//iwl6005_2abg_cfg
834 			case IWN_SDID_6x05_3:
835 				//iwl6005_2bg_cfg
836 			case IWN_SDID_6x05_8:
837 			case IWN_SDID_6x05_9:
838 				//iwl6005_2agn_sff_cfg
839 			case IWN_SDID_6x05_10:
840 				//iwl6005_2agn_d_cfg
841 			case IWN_SDID_6x05_11:
842 				//iwl6005_2agn_mow1_cfg
843 			case IWN_SDID_6x05_12:
844 				//iwl6005_2agn_mow2_cfg
845 				sc->fwname = "iwn6000g2afw";
846 				sc->limits = &iwn6000_sensitivity_limits;
847 				sc->base_params = &iwn_6000g2_base_params;
848 				break;
849 			default:
850 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
851 				    "0x%04x rev %d not supported (subdevice)\n", pid,
852 				    sc->subdevice_id,sc->hw_type);
853 				return ENOTSUP;
854 		}
855 		break;
856 /* 6x35 Series */
857 	case IWN_DID_6035_1:
858 	case IWN_DID_6035_2:
859 		switch(sc->subdevice_id) {
860 			case IWN_SDID_6035_1:
861 			case IWN_SDID_6035_2:
862 			case IWN_SDID_6035_3:
863 			case IWN_SDID_6035_4:
864 				sc->fwname = "iwn6000g2bfw";
865 				sc->limits = &iwn6235_sensitivity_limits;
866 				sc->base_params = &iwn_6235_base_params;
867 				break;
868 			default:
869 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
870 				    "0x%04x rev %d not supported (subdevice)\n", pid,
871 				    sc->subdevice_id,sc->hw_type);
872 				return ENOTSUP;
873 		}
874 		break;
875 /* 6x50 WiFi/WiMax Series */
876 	case IWN_DID_6050_1:
877 	case IWN_DID_6050_2:
878 		switch(sc->subdevice_id) {
879 			case IWN_SDID_6050_1:
880 			case IWN_SDID_6050_3:
881 			case IWN_SDID_6050_5:
882 				//iwl6050_2agn_cfg
883 			case IWN_SDID_6050_2:
884 			case IWN_SDID_6050_4:
885 			case IWN_SDID_6050_6:
886 				//iwl6050_2abg_cfg
887 				sc->fwname = "iwn6050fw";
888 				sc->txchainmask = IWN_ANT_AB;
889 				sc->rxchainmask = IWN_ANT_AB;
890 				sc->limits = &iwn6000_sensitivity_limits;
891 				sc->base_params = &iwn_6050_base_params;
892 				break;
893 			default:
894 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
895 				    "0x%04x rev %d not supported (subdevice)\n", pid,
896 				    sc->subdevice_id,sc->hw_type);
897 				return ENOTSUP;
898 		}
899 		break;
900 /* 6150 WiFi/WiMax Series */
901 	case IWN_DID_6150_1:
902 	case IWN_DID_6150_2:
903 		switch(sc->subdevice_id) {
904 			case IWN_SDID_6150_1:
905 			case IWN_SDID_6150_3:
906 			case IWN_SDID_6150_5:
907 				// iwl6150_bgn_cfg
908 			case IWN_SDID_6150_2:
909 			case IWN_SDID_6150_4:
910 			case IWN_SDID_6150_6:
911 				//iwl6150_bg_cfg
912 				sc->fwname = "iwn6050fw";
913 				sc->limits = &iwn6000_sensitivity_limits;
914 				sc->base_params = &iwn_6150_base_params;
915 				break;
916 			default:
917 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
918 				    "0x%04x rev %d not supported (subdevice)\n", pid,
919 				    sc->subdevice_id,sc->hw_type);
920 				return ENOTSUP;
921 		}
922 		break;
923 /* 6030 Series and 1030 Series */
924 	case IWN_DID_x030_1:
925 	case IWN_DID_x030_2:
926 	case IWN_DID_x030_3:
927 	case IWN_DID_x030_4:
928 		switch(sc->subdevice_id) {
929 			case IWN_SDID_x030_1:
930 			case IWN_SDID_x030_3:
931 			case IWN_SDID_x030_5:
932 			// iwl1030_bgn_cfg
933 			case IWN_SDID_x030_2:
934 			case IWN_SDID_x030_4:
935 			case IWN_SDID_x030_6:
936 			//iwl1030_bg_cfg
937 			case IWN_SDID_x030_7:
938 			case IWN_SDID_x030_10:
939 			case IWN_SDID_x030_14:
940 			//iwl6030_2agn_cfg
941 			case IWN_SDID_x030_8:
942 			case IWN_SDID_x030_11:
943 			case IWN_SDID_x030_15:
944 			// iwl6030_2bgn_cfg
945 			case IWN_SDID_x030_9:
946 			case IWN_SDID_x030_12:
947 			case IWN_SDID_x030_16:
948 			// iwl6030_2abg_cfg
949 			case IWN_SDID_x030_13:
950 			//iwl6030_2bg_cfg
951 				sc->fwname = "iwn6000g2bfw";
952 				sc->limits = &iwn6000_sensitivity_limits;
953 				sc->base_params = &iwn_6000g2b_base_params;
954 				break;
955 			default:
956 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
957 				    "0x%04x rev %d not supported (subdevice)\n", pid,
958 				    sc->subdevice_id,sc->hw_type);
959 				return ENOTSUP;
960 		}
961 		break;
962 /* 130 Series WiFi */
963 /* XXX: This series will need adjustment for rate.
964  * see rx_with_siso_diversity in linux kernel
965  */
966 	case IWN_DID_130_1:
967 	case IWN_DID_130_2:
968 		switch(sc->subdevice_id) {
969 			case IWN_SDID_130_1:
970 			case IWN_SDID_130_3:
971 			case IWN_SDID_130_5:
972 			//iwl130_bgn_cfg
973 			case IWN_SDID_130_2:
974 			case IWN_SDID_130_4:
975 			case IWN_SDID_130_6:
976 			//iwl130_bg_cfg
977 				sc->fwname = "iwn6000g2bfw";
978 				sc->limits = &iwn6000_sensitivity_limits;
979 				sc->base_params = &iwn_6000g2b_base_params;
980 				break;
981 			default:
982 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
983 				    "0x%04x rev %d not supported (subdevice)\n", pid,
984 				    sc->subdevice_id,sc->hw_type);
985 				return ENOTSUP;
986 		}
987 		break;
988 /* 100 Series WiFi */
989 	case IWN_DID_100_1:
990 	case IWN_DID_100_2:
991 		switch(sc->subdevice_id) {
992 			case IWN_SDID_100_1:
993 			case IWN_SDID_100_2:
994 			case IWN_SDID_100_3:
995 			case IWN_SDID_100_4:
996 			case IWN_SDID_100_5:
997 			case IWN_SDID_100_6:
998 				sc->limits = &iwn1000_sensitivity_limits;
999 				sc->base_params = &iwn1000_base_params;
1000 				sc->fwname = "iwn100fw";
1001 				break;
1002 			default:
1003 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1004 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1005 				    sc->subdevice_id,sc->hw_type);
1006 				return ENOTSUP;
1007 		}
1008 		break;
1009 
1010 /* 105 Series */
1011 /* XXX: This series will need adjustment for rate.
1012  * see rx_with_siso_diversity in linux kernel
1013  */
1014 	case IWN_DID_105_1:
1015 	case IWN_DID_105_2:
1016 		switch(sc->subdevice_id) {
1017 			case IWN_SDID_105_1:
1018 			case IWN_SDID_105_2:
1019 			case IWN_SDID_105_3:
1020 			//iwl105_bgn_cfg
1021 			case IWN_SDID_105_4:
1022 			//iwl105_bgn_d_cfg
1023 				sc->limits = &iwn2030_sensitivity_limits;
1024 				sc->base_params = &iwn2000_base_params;
1025 				sc->fwname = "iwn105fw";
1026 				break;
1027 			default:
1028 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1029 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1030 				    sc->subdevice_id,sc->hw_type);
1031 				return ENOTSUP;
1032 		}
1033 		break;
1034 
1035 /* 135 Series */
1036 /* XXX: This series will need adjustment for rate.
1037  * see rx_with_siso_diversity in linux kernel
1038  */
1039 	case IWN_DID_135_1:
1040 	case IWN_DID_135_2:
1041 		switch(sc->subdevice_id) {
1042 			case IWN_SDID_135_1:
1043 			case IWN_SDID_135_2:
1044 			case IWN_SDID_135_3:
1045 				sc->limits = &iwn2030_sensitivity_limits;
1046 				sc->base_params = &iwn2030_base_params;
1047 				sc->fwname = "iwn135fw";
1048 				break;
1049 			default:
1050 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1051 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1052 				    sc->subdevice_id,sc->hw_type);
1053 				return ENOTSUP;
1054 		}
1055 		break;
1056 
1057 /* 2x00 Series */
1058 	case IWN_DID_2x00_1:
1059 	case IWN_DID_2x00_2:
1060 		switch(sc->subdevice_id) {
1061 			case IWN_SDID_2x00_1:
1062 			case IWN_SDID_2x00_2:
1063 			case IWN_SDID_2x00_3:
1064 			//iwl2000_2bgn_cfg
1065 			case IWN_SDID_2x00_4:
1066 			//iwl2000_2bgn_d_cfg
1067 				sc->limits = &iwn2030_sensitivity_limits;
1068 				sc->base_params = &iwn2000_base_params;
1069 				sc->fwname = "iwn2000fw";
1070 				break;
1071 			default:
1072 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1073 				    "0x%04x rev %d not supported (subdevice) \n",
1074 				    pid, sc->subdevice_id, sc->hw_type);
1075 				return ENOTSUP;
1076 		}
1077 		break;
1078 /* 2x30 Series */
1079 	case IWN_DID_2x30_1:
1080 	case IWN_DID_2x30_2:
1081 		switch(sc->subdevice_id) {
1082 			case IWN_SDID_2x30_1:
1083 			case IWN_SDID_2x30_3:
1084 			case IWN_SDID_2x30_5:
1085 			//iwl100_bgn_cfg
1086 			case IWN_SDID_2x30_2:
1087 			case IWN_SDID_2x30_4:
1088 			case IWN_SDID_2x30_6:
1089 			//iwl100_bg_cfg
1090 				sc->limits = &iwn2030_sensitivity_limits;
1091 				sc->base_params = &iwn2030_base_params;
1092 				sc->fwname = "iwn2030fw";
1093 				break;
1094 			default:
1095 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1096 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1097 				    sc->subdevice_id,sc->hw_type);
1098 				return ENOTSUP;
1099 		}
1100 		break;
1101 /* 5x00 Series */
1102 	case IWN_DID_5x00_1:
1103 	case IWN_DID_5x00_2:
1104 	case IWN_DID_5x00_3:
1105 	case IWN_DID_5x00_4:
1106 		sc->limits = &iwn5000_sensitivity_limits;
1107 		sc->base_params = &iwn5000_base_params;
1108 		sc->fwname = "iwn5000fw";
1109 		switch(sc->subdevice_id) {
1110 			case IWN_SDID_5x00_1:
1111 			case IWN_SDID_5x00_2:
1112 			case IWN_SDID_5x00_3:
1113 			case IWN_SDID_5x00_4:
1114 			case IWN_SDID_5x00_9:
1115 			case IWN_SDID_5x00_10:
1116 			case IWN_SDID_5x00_11:
1117 			case IWN_SDID_5x00_12:
1118 			case IWN_SDID_5x00_17:
1119 			case IWN_SDID_5x00_18:
1120 			case IWN_SDID_5x00_19:
1121 			case IWN_SDID_5x00_20:
1122 			//iwl5100_agn_cfg
1123 				sc->txchainmask = IWN_ANT_B;
1124 				sc->rxchainmask = IWN_ANT_AB;
1125 				break;
1126 			case IWN_SDID_5x00_5:
1127 			case IWN_SDID_5x00_6:
1128 			case IWN_SDID_5x00_13:
1129 			case IWN_SDID_5x00_14:
1130 			case IWN_SDID_5x00_21:
1131 			case IWN_SDID_5x00_22:
1132 			//iwl5100_bgn_cfg
1133 				sc->txchainmask = IWN_ANT_B;
1134 				sc->rxchainmask = IWN_ANT_AB;
1135 				break;
1136 			case IWN_SDID_5x00_7:
1137 			case IWN_SDID_5x00_8:
1138 			case IWN_SDID_5x00_15:
1139 			case IWN_SDID_5x00_16:
1140 			case IWN_SDID_5x00_23:
1141 			case IWN_SDID_5x00_24:
1142 			//iwl5100_abg_cfg
1143 				sc->txchainmask = IWN_ANT_B;
1144 				sc->rxchainmask = IWN_ANT_AB;
1145 				break;
1146 			case IWN_SDID_5x00_25:
1147 			case IWN_SDID_5x00_26:
1148 			case IWN_SDID_5x00_27:
1149 			case IWN_SDID_5x00_28:
1150 			case IWN_SDID_5x00_29:
1151 			case IWN_SDID_5x00_30:
1152 			case IWN_SDID_5x00_31:
1153 			case IWN_SDID_5x00_32:
1154 			case IWN_SDID_5x00_33:
1155 			case IWN_SDID_5x00_34:
1156 			case IWN_SDID_5x00_35:
1157 			case IWN_SDID_5x00_36:
1158 			//iwl5300_agn_cfg
1159 				sc->txchainmask = IWN_ANT_ABC;
1160 				sc->rxchainmask = IWN_ANT_ABC;
1161 				break;
1162 			default:
1163 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1164 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1165 				    sc->subdevice_id,sc->hw_type);
1166 				return ENOTSUP;
1167 		}
1168 		break;
1169 /* 5x50 Series */
1170 	case IWN_DID_5x50_1:
1171 	case IWN_DID_5x50_2:
1172 	case IWN_DID_5x50_3:
1173 	case IWN_DID_5x50_4:
1174 		sc->limits = &iwn5000_sensitivity_limits;
1175 		sc->base_params = &iwn5000_base_params;
1176 		sc->fwname = "iwn5000fw";
1177 		switch(sc->subdevice_id) {
1178 			case IWN_SDID_5x50_1:
1179 			case IWN_SDID_5x50_2:
1180 			case IWN_SDID_5x50_3:
1181 			//iwl5350_agn_cfg
1182 				sc->limits = &iwn5000_sensitivity_limits;
1183 				sc->base_params = &iwn5000_base_params;
1184 				sc->fwname = "iwn5000fw";
1185 				break;
1186 			case IWN_SDID_5x50_4:
1187 			case IWN_SDID_5x50_5:
1188 			case IWN_SDID_5x50_8:
1189 			case IWN_SDID_5x50_9:
1190 			case IWN_SDID_5x50_10:
1191 			case IWN_SDID_5x50_11:
1192 			//iwl5150_agn_cfg
1193 			case IWN_SDID_5x50_6:
1194 			case IWN_SDID_5x50_7:
1195 			case IWN_SDID_5x50_12:
1196 			case IWN_SDID_5x50_13:
1197 			//iwl5150_abg_cfg
1198 				sc->limits = &iwn5000_sensitivity_limits;
1199 				sc->fwname = "iwn5150fw";
1200 				sc->base_params = &iwn_5x50_base_params;
1201 				break;
1202 			default:
1203 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1204 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1205 				    sc->subdevice_id,sc->hw_type);
1206 				return ENOTSUP;
1207 		}
1208 		break;
1209 	default:
1210 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1211 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1212 		     sc->hw_type);
1213 		return ENOTSUP;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static int
1219 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1220 {
1221 	struct iwn_ops *ops = &sc->ops;
1222 
1223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1224 	ops->load_firmware = iwn4965_load_firmware;
1225 	ops->read_eeprom = iwn4965_read_eeprom;
1226 	ops->post_alive = iwn4965_post_alive;
1227 	ops->nic_config = iwn4965_nic_config;
1228 	ops->update_sched = iwn4965_update_sched;
1229 	ops->get_temperature = iwn4965_get_temperature;
1230 	ops->get_rssi = iwn4965_get_rssi;
1231 	ops->set_txpower = iwn4965_set_txpower;
1232 	ops->init_gains = iwn4965_init_gains;
1233 	ops->set_gains = iwn4965_set_gains;
1234 	ops->add_node = iwn4965_add_node;
1235 	ops->tx_done = iwn4965_tx_done;
1236 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1237 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1238 	sc->ntxqs = IWN4965_NTXQUEUES;
1239 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1240 	sc->ndmachnls = IWN4965_NDMACHNLS;
1241 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1242 	sc->rxonsz = IWN4965_RXONSZ;
1243 	sc->schedsz = IWN4965_SCHEDSZ;
1244 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1245 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1246 	sc->fwsz = IWN4965_FWSZ;
1247 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1248 	sc->limits = &iwn4965_sensitivity_limits;
1249 	sc->fwname = "iwn4965fw";
1250 	/* Override chains masks, ROM is known to be broken. */
1251 	sc->txchainmask = IWN_ANT_AB;
1252 	sc->rxchainmask = IWN_ANT_ABC;
1253 	/* Enable normal btcoex */
1254 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1255 
1256 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1257 
1258 	return 0;
1259 }
1260 
1261 static int
1262 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1263 {
1264 	struct iwn_ops *ops = &sc->ops;
1265 
1266 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1267 
1268 	ops->load_firmware = iwn5000_load_firmware;
1269 	ops->read_eeprom = iwn5000_read_eeprom;
1270 	ops->post_alive = iwn5000_post_alive;
1271 	ops->nic_config = iwn5000_nic_config;
1272 	ops->update_sched = iwn5000_update_sched;
1273 	ops->get_temperature = iwn5000_get_temperature;
1274 	ops->get_rssi = iwn5000_get_rssi;
1275 	ops->set_txpower = iwn5000_set_txpower;
1276 	ops->init_gains = iwn5000_init_gains;
1277 	ops->set_gains = iwn5000_set_gains;
1278 	ops->add_node = iwn5000_add_node;
1279 	ops->tx_done = iwn5000_tx_done;
1280 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1281 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1282 	sc->ntxqs = IWN5000_NTXQUEUES;
1283 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1284 	sc->ndmachnls = IWN5000_NDMACHNLS;
1285 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1286 	sc->rxonsz = IWN5000_RXONSZ;
1287 	sc->schedsz = IWN5000_SCHEDSZ;
1288 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1289 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1290 	sc->fwsz = IWN5000_FWSZ;
1291 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1292 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1293 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * Attach the interface to 802.11 radiotap.
1300  */
1301 static void
1302 iwn_radiotap_attach(struct iwn_softc *sc)
1303 {
1304 
1305 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1306 	ieee80211_radiotap_attach(&sc->sc_ic,
1307 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1308 		IWN_TX_RADIOTAP_PRESENT,
1309 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1310 		IWN_RX_RADIOTAP_PRESENT);
1311 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1312 }
1313 
1314 static void
1315 iwn_sysctlattach(struct iwn_softc *sc)
1316 {
1317 #ifdef	IWN_DEBUG
1318 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1319 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1320 
1321 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1322 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1323 		"control debugging printfs");
1324 #endif
1325 }
1326 
1327 static struct ieee80211vap *
1328 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1329     enum ieee80211_opmode opmode, int flags,
1330     const uint8_t bssid[IEEE80211_ADDR_LEN],
1331     const uint8_t mac[IEEE80211_ADDR_LEN])
1332 {
1333 	struct iwn_softc *sc = ic->ic_softc;
1334 	struct iwn_vap *ivp;
1335 	struct ieee80211vap *vap;
1336 
1337 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1338 		return NULL;
1339 
1340 	ivp = malloc(sizeof(struct iwn_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1341 	vap = &ivp->iv_vap;
1342 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1343 	ivp->ctx = IWN_RXON_BSS_CTX;
1344 	vap->iv_bmissthreshold = 10;		/* override default */
1345 	/* Override with driver methods. */
1346 	ivp->iv_newstate = vap->iv_newstate;
1347 	vap->iv_newstate = iwn_newstate;
1348 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1349 
1350 	ieee80211_ratectl_init(vap);
1351 	/* Complete setup. */
1352 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status,
1353 	    mac);
1354 	ic->ic_opmode = opmode;
1355 	return vap;
1356 }
1357 
1358 static void
1359 iwn_vap_delete(struct ieee80211vap *vap)
1360 {
1361 	struct iwn_vap *ivp = IWN_VAP(vap);
1362 
1363 	ieee80211_ratectl_deinit(vap);
1364 	ieee80211_vap_detach(vap);
1365 	free(ivp, M_80211_VAP);
1366 }
1367 
1368 static void
1369 iwn_xmit_queue_drain(struct iwn_softc *sc)
1370 {
1371 	struct mbuf *m;
1372 	struct ieee80211_node *ni;
1373 
1374 	IWN_LOCK_ASSERT(sc);
1375 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
1376 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
1377 		ieee80211_free_node(ni);
1378 		m_freem(m);
1379 	}
1380 }
1381 
1382 static int
1383 iwn_xmit_queue_enqueue(struct iwn_softc *sc, struct mbuf *m)
1384 {
1385 
1386 	IWN_LOCK_ASSERT(sc);
1387 	return (mbufq_enqueue(&sc->sc_xmit_queue, m));
1388 }
1389 
1390 static int
1391 iwn_detach(device_t dev)
1392 {
1393 	struct iwn_softc *sc = device_get_softc(dev);
1394 	int qid;
1395 
1396 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1397 
1398 	if (sc->sc_ic.ic_softc != NULL) {
1399 		/* Free the mbuf queue and node references */
1400 		IWN_LOCK(sc);
1401 		iwn_xmit_queue_drain(sc);
1402 		IWN_UNLOCK(sc);
1403 
1404 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radioon_task);
1405 		ieee80211_draintask(&sc->sc_ic, &sc->sc_radiooff_task);
1406 		iwn_stop(sc);
1407 
1408 		taskqueue_drain_all(sc->sc_tq);
1409 		taskqueue_free(sc->sc_tq);
1410 
1411 		callout_drain(&sc->watchdog_to);
1412 		callout_drain(&sc->scan_timeout);
1413 		callout_drain(&sc->calib_to);
1414 		ieee80211_ifdetach(&sc->sc_ic);
1415 	}
1416 
1417 	/* Uninstall interrupt handler. */
1418 	if (sc->irq != NULL) {
1419 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1420 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1421 		    sc->irq);
1422 		pci_release_msi(dev);
1423 	}
1424 
1425 	/* Free DMA resources. */
1426 	iwn_free_rx_ring(sc, &sc->rxq);
1427 	for (qid = 0; qid < sc->ntxqs; qid++)
1428 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1429 	iwn_free_sched(sc);
1430 	iwn_free_kw(sc);
1431 	if (sc->ict != NULL)
1432 		iwn_free_ict(sc);
1433 	iwn_free_fwmem(sc);
1434 
1435 	if (sc->mem != NULL)
1436 		bus_release_resource(dev, SYS_RES_MEMORY,
1437 		    rman_get_rid(sc->mem), sc->mem);
1438 
1439 	if (sc->sc_cdev) {
1440 		destroy_dev(sc->sc_cdev);
1441 		sc->sc_cdev = NULL;
1442 	}
1443 
1444 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1445 	IWN_LOCK_DESTROY(sc);
1446 	return 0;
1447 }
1448 
1449 static int
1450 iwn_shutdown(device_t dev)
1451 {
1452 	struct iwn_softc *sc = device_get_softc(dev);
1453 
1454 	iwn_stop(sc);
1455 	return 0;
1456 }
1457 
1458 static int
1459 iwn_suspend(device_t dev)
1460 {
1461 	struct iwn_softc *sc = device_get_softc(dev);
1462 
1463 	ieee80211_suspend_all(&sc->sc_ic);
1464 	return 0;
1465 }
1466 
1467 static int
1468 iwn_resume(device_t dev)
1469 {
1470 	struct iwn_softc *sc = device_get_softc(dev);
1471 
1472 	/* Clear device-specific "PCI retry timeout" register (41h). */
1473 	pci_write_config(dev, 0x41, 0, 1);
1474 
1475 	ieee80211_resume_all(&sc->sc_ic);
1476 	return 0;
1477 }
1478 
1479 static int
1480 iwn_nic_lock(struct iwn_softc *sc)
1481 {
1482 	int ntries;
1483 
1484 	/* Request exclusive access to NIC. */
1485 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1486 
1487 	/* Spin until we actually get the lock. */
1488 	for (ntries = 0; ntries < 1000; ntries++) {
1489 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1490 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1491 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1492 			return 0;
1493 		DELAY(10);
1494 	}
1495 	return ETIMEDOUT;
1496 }
1497 
1498 static __inline void
1499 iwn_nic_unlock(struct iwn_softc *sc)
1500 {
1501 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1502 }
1503 
1504 static __inline uint32_t
1505 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1506 {
1507 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1508 	IWN_BARRIER_READ_WRITE(sc);
1509 	return IWN_READ(sc, IWN_PRPH_RDATA);
1510 }
1511 
1512 static __inline void
1513 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1514 {
1515 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1516 	IWN_BARRIER_WRITE(sc);
1517 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1518 }
1519 
1520 static __inline void
1521 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1522 {
1523 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1524 }
1525 
1526 static __inline void
1527 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1528 {
1529 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1530 }
1531 
1532 static __inline void
1533 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1534     const uint32_t *data, int count)
1535 {
1536 	for (; count > 0; count--, data++, addr += 4)
1537 		iwn_prph_write(sc, addr, *data);
1538 }
1539 
1540 static __inline uint32_t
1541 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1542 {
1543 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1544 	IWN_BARRIER_READ_WRITE(sc);
1545 	return IWN_READ(sc, IWN_MEM_RDATA);
1546 }
1547 
1548 static __inline void
1549 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1550 {
1551 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1552 	IWN_BARRIER_WRITE(sc);
1553 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1554 }
1555 
1556 static __inline void
1557 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1558 {
1559 	uint32_t tmp;
1560 
1561 	tmp = iwn_mem_read(sc, addr & ~3);
1562 	if (addr & 3)
1563 		tmp = (tmp & 0x0000ffff) | data << 16;
1564 	else
1565 		tmp = (tmp & 0xffff0000) | data;
1566 	iwn_mem_write(sc, addr & ~3, tmp);
1567 }
1568 
1569 static __inline void
1570 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1571     int count)
1572 {
1573 	for (; count > 0; count--, addr += 4)
1574 		*data++ = iwn_mem_read(sc, addr);
1575 }
1576 
1577 static __inline void
1578 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1579     int count)
1580 {
1581 	for (; count > 0; count--, addr += 4)
1582 		iwn_mem_write(sc, addr, val);
1583 }
1584 
1585 static int
1586 iwn_eeprom_lock(struct iwn_softc *sc)
1587 {
1588 	int i, ntries;
1589 
1590 	for (i = 0; i < 100; i++) {
1591 		/* Request exclusive access to EEPROM. */
1592 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1593 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1594 
1595 		/* Spin until we actually get the lock. */
1596 		for (ntries = 0; ntries < 100; ntries++) {
1597 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1598 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1599 				return 0;
1600 			DELAY(10);
1601 		}
1602 	}
1603 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1604 	return ETIMEDOUT;
1605 }
1606 
1607 static __inline void
1608 iwn_eeprom_unlock(struct iwn_softc *sc)
1609 {
1610 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1611 }
1612 
1613 /*
1614  * Initialize access by host to One Time Programmable ROM.
1615  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1616  */
1617 static int
1618 iwn_init_otprom(struct iwn_softc *sc)
1619 {
1620 	uint16_t prev, base, next;
1621 	int count, error;
1622 
1623 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1624 
1625 	/* Wait for clock stabilization before accessing prph. */
1626 	if ((error = iwn_clock_wait(sc)) != 0)
1627 		return error;
1628 
1629 	if ((error = iwn_nic_lock(sc)) != 0)
1630 		return error;
1631 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1632 	DELAY(5);
1633 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1634 	iwn_nic_unlock(sc);
1635 
1636 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1637 	if (sc->base_params->shadow_ram_support) {
1638 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1639 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1640 	}
1641 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1642 	/* Clear ECC status. */
1643 	IWN_SETBITS(sc, IWN_OTP_GP,
1644 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1645 
1646 	/*
1647 	 * Find the block before last block (contains the EEPROM image)
1648 	 * for HW without OTP shadow RAM.
1649 	 */
1650 	if (! sc->base_params->shadow_ram_support) {
1651 		/* Switch to absolute addressing mode. */
1652 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1653 		base = prev = 0;
1654 		for (count = 0; count < sc->base_params->max_ll_items;
1655 		    count++) {
1656 			error = iwn_read_prom_data(sc, base, &next, 2);
1657 			if (error != 0)
1658 				return error;
1659 			if (next == 0)	/* End of linked-list. */
1660 				break;
1661 			prev = base;
1662 			base = le16toh(next);
1663 		}
1664 		if (count == 0 || count == sc->base_params->max_ll_items)
1665 			return EIO;
1666 		/* Skip "next" word. */
1667 		sc->prom_base = prev + 1;
1668 	}
1669 
1670 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1671 
1672 	return 0;
1673 }
1674 
1675 static int
1676 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1677 {
1678 	uint8_t *out = data;
1679 	uint32_t val, tmp;
1680 	int ntries;
1681 
1682 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1683 
1684 	addr += sc->prom_base;
1685 	for (; count > 0; count -= 2, addr++) {
1686 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1687 		for (ntries = 0; ntries < 10; ntries++) {
1688 			val = IWN_READ(sc, IWN_EEPROM);
1689 			if (val & IWN_EEPROM_READ_VALID)
1690 				break;
1691 			DELAY(5);
1692 		}
1693 		if (ntries == 10) {
1694 			device_printf(sc->sc_dev,
1695 			    "timeout reading ROM at 0x%x\n", addr);
1696 			return ETIMEDOUT;
1697 		}
1698 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1699 			/* OTPROM, check for ECC errors. */
1700 			tmp = IWN_READ(sc, IWN_OTP_GP);
1701 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1702 				device_printf(sc->sc_dev,
1703 				    "OTPROM ECC error at 0x%x\n", addr);
1704 				return EIO;
1705 			}
1706 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1707 				/* Correctable ECC error, clear bit. */
1708 				IWN_SETBITS(sc, IWN_OTP_GP,
1709 				    IWN_OTP_GP_ECC_CORR_STTS);
1710 			}
1711 		}
1712 		*out++ = val >> 16;
1713 		if (count > 1)
1714 			*out++ = val >> 24;
1715 	}
1716 
1717 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1718 
1719 	return 0;
1720 }
1721 
1722 static void
1723 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1724 {
1725 	if (error != 0)
1726 		return;
1727 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1728 	*(bus_addr_t *)arg = segs[0].ds_addr;
1729 }
1730 
1731 static int
1732 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1733     void **kvap, bus_size_t size, bus_size_t alignment)
1734 {
1735 	int error;
1736 
1737 	dma->tag = NULL;
1738 	dma->size = size;
1739 
1740 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1741 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1742 	    1, size, 0, NULL, NULL, &dma->tag);
1743 	if (error != 0)
1744 		goto fail;
1745 
1746 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1747 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1748 	if (error != 0)
1749 		goto fail;
1750 
1751 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1752 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1753 	if (error != 0)
1754 		goto fail;
1755 
1756 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1757 
1758 	if (kvap != NULL)
1759 		*kvap = dma->vaddr;
1760 
1761 	return 0;
1762 
1763 fail:	iwn_dma_contig_free(dma);
1764 	return error;
1765 }
1766 
1767 static void
1768 iwn_dma_contig_free(struct iwn_dma_info *dma)
1769 {
1770 	if (dma->vaddr != NULL) {
1771 		bus_dmamap_sync(dma->tag, dma->map,
1772 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1773 		bus_dmamap_unload(dma->tag, dma->map);
1774 		bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1775 		dma->vaddr = NULL;
1776 	}
1777 	if (dma->tag != NULL) {
1778 		bus_dma_tag_destroy(dma->tag);
1779 		dma->tag = NULL;
1780 	}
1781 }
1782 
1783 static int
1784 iwn_alloc_sched(struct iwn_softc *sc)
1785 {
1786 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1787 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1788 	    sc->schedsz, 1024);
1789 }
1790 
1791 static void
1792 iwn_free_sched(struct iwn_softc *sc)
1793 {
1794 	iwn_dma_contig_free(&sc->sched_dma);
1795 }
1796 
1797 static int
1798 iwn_alloc_kw(struct iwn_softc *sc)
1799 {
1800 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1801 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1802 }
1803 
1804 static void
1805 iwn_free_kw(struct iwn_softc *sc)
1806 {
1807 	iwn_dma_contig_free(&sc->kw_dma);
1808 }
1809 
1810 static int
1811 iwn_alloc_ict(struct iwn_softc *sc)
1812 {
1813 	/* ICT table must be aligned on a 4KB boundary. */
1814 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1815 	    IWN_ICT_SIZE, 4096);
1816 }
1817 
1818 static void
1819 iwn_free_ict(struct iwn_softc *sc)
1820 {
1821 	iwn_dma_contig_free(&sc->ict_dma);
1822 }
1823 
1824 static int
1825 iwn_alloc_fwmem(struct iwn_softc *sc)
1826 {
1827 	/* Must be aligned on a 16-byte boundary. */
1828 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1829 }
1830 
1831 static void
1832 iwn_free_fwmem(struct iwn_softc *sc)
1833 {
1834 	iwn_dma_contig_free(&sc->fw_dma);
1835 }
1836 
1837 static int
1838 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1839 {
1840 	bus_size_t size;
1841 	int i, error;
1842 
1843 	ring->cur = 0;
1844 
1845 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1846 
1847 	/* Allocate RX descriptors (256-byte aligned). */
1848 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1849 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1850 	    size, 256);
1851 	if (error != 0) {
1852 		device_printf(sc->sc_dev,
1853 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1854 		    __func__, error);
1855 		goto fail;
1856 	}
1857 
1858 	/* Allocate RX status area (16-byte aligned). */
1859 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1860 	    sizeof (struct iwn_rx_status), 16);
1861 	if (error != 0) {
1862 		device_printf(sc->sc_dev,
1863 		    "%s: could not allocate RX status DMA memory, error %d\n",
1864 		    __func__, error);
1865 		goto fail;
1866 	}
1867 
1868 	/* Create RX buffer DMA tag. */
1869 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1870 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1871 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, NULL, NULL, &ring->data_dmat);
1872 	if (error != 0) {
1873 		device_printf(sc->sc_dev,
1874 		    "%s: could not create RX buf DMA tag, error %d\n",
1875 		    __func__, error);
1876 		goto fail;
1877 	}
1878 
1879 	/*
1880 	 * Allocate and map RX buffers.
1881 	 */
1882 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1883 		struct iwn_rx_data *data = &ring->data[i];
1884 		bus_addr_t paddr;
1885 
1886 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1887 		if (error != 0) {
1888 			device_printf(sc->sc_dev,
1889 			    "%s: could not create RX buf DMA map, error %d\n",
1890 			    __func__, error);
1891 			goto fail;
1892 		}
1893 
1894 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1895 		    IWN_RBUF_SIZE);
1896 		if (data->m == NULL) {
1897 			device_printf(sc->sc_dev,
1898 			    "%s: could not allocate RX mbuf\n", __func__);
1899 			error = ENOBUFS;
1900 			goto fail;
1901 		}
1902 
1903 		error = bus_dmamap_load(ring->data_dmat, data->map,
1904 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1905 		    &paddr, BUS_DMA_NOWAIT);
1906 		if (error != 0 && error != EFBIG) {
1907 			device_printf(sc->sc_dev,
1908 			    "%s: can't map mbuf, error %d\n", __func__,
1909 			    error);
1910 			goto fail;
1911 		}
1912 
1913 		bus_dmamap_sync(ring->data_dmat, data->map,
1914 		    BUS_DMASYNC_PREREAD);
1915 
1916 		/* Set physical address of RX buffer (256-byte aligned). */
1917 		ring->desc[i] = htole32(paddr >> 8);
1918 	}
1919 
1920 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1921 	    BUS_DMASYNC_PREWRITE);
1922 
1923 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1924 
1925 	return 0;
1926 
1927 fail:	iwn_free_rx_ring(sc, ring);
1928 
1929 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1930 
1931 	return error;
1932 }
1933 
1934 static void
1935 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1936 {
1937 	int ntries;
1938 
1939 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1940 
1941 	if (iwn_nic_lock(sc) == 0) {
1942 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1943 		for (ntries = 0; ntries < 1000; ntries++) {
1944 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1945 			    IWN_FH_RX_STATUS_IDLE)
1946 				break;
1947 			DELAY(10);
1948 		}
1949 		iwn_nic_unlock(sc);
1950 	}
1951 	ring->cur = 0;
1952 	sc->last_rx_valid = 0;
1953 }
1954 
1955 static void
1956 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1957 {
1958 	int i;
1959 
1960 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1961 
1962 	iwn_dma_contig_free(&ring->desc_dma);
1963 	iwn_dma_contig_free(&ring->stat_dma);
1964 
1965 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1966 		struct iwn_rx_data *data = &ring->data[i];
1967 
1968 		if (data->m != NULL) {
1969 			bus_dmamap_sync(ring->data_dmat, data->map,
1970 			    BUS_DMASYNC_POSTREAD);
1971 			bus_dmamap_unload(ring->data_dmat, data->map);
1972 			m_freem(data->m);
1973 			data->m = NULL;
1974 		}
1975 		if (data->map != NULL)
1976 			bus_dmamap_destroy(ring->data_dmat, data->map);
1977 	}
1978 	if (ring->data_dmat != NULL) {
1979 		bus_dma_tag_destroy(ring->data_dmat);
1980 		ring->data_dmat = NULL;
1981 	}
1982 }
1983 
1984 static int
1985 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1986 {
1987 	bus_addr_t paddr;
1988 	bus_size_t size;
1989 	int i, error;
1990 
1991 	ring->qid = qid;
1992 	ring->queued = 0;
1993 	ring->cur = 0;
1994 
1995 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1996 
1997 	/* Allocate TX descriptors (256-byte aligned). */
1998 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1999 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
2000 	    size, 256);
2001 	if (error != 0) {
2002 		device_printf(sc->sc_dev,
2003 		    "%s: could not allocate TX ring DMA memory, error %d\n",
2004 		    __func__, error);
2005 		goto fail;
2006 	}
2007 
2008 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
2009 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
2010 	    size, 4);
2011 	if (error != 0) {
2012 		device_printf(sc->sc_dev,
2013 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
2014 		    __func__, error);
2015 		goto fail;
2016 	}
2017 
2018 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
2019 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
2020 	    IWN_MAX_SCATTER - 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
2021 	if (error != 0) {
2022 		device_printf(sc->sc_dev,
2023 		    "%s: could not create TX buf DMA tag, error %d\n",
2024 		    __func__, error);
2025 		goto fail;
2026 	}
2027 
2028 	paddr = ring->cmd_dma.paddr;
2029 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2030 		struct iwn_tx_data *data = &ring->data[i];
2031 
2032 		data->cmd_paddr = paddr;
2033 		data->scratch_paddr = paddr + 12;
2034 		paddr += sizeof (struct iwn_tx_cmd);
2035 
2036 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2037 		if (error != 0) {
2038 			device_printf(sc->sc_dev,
2039 			    "%s: could not create TX buf DMA map, error %d\n",
2040 			    __func__, error);
2041 			goto fail;
2042 		}
2043 	}
2044 
2045 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2046 
2047 	return 0;
2048 
2049 fail:	iwn_free_tx_ring(sc, ring);
2050 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2051 	return error;
2052 }
2053 
2054 static void
2055 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2056 {
2057 	int i;
2058 
2059 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2060 
2061 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2062 		struct iwn_tx_data *data = &ring->data[i];
2063 
2064 		if (data->m != NULL) {
2065 			bus_dmamap_sync(ring->data_dmat, data->map,
2066 			    BUS_DMASYNC_POSTWRITE);
2067 			bus_dmamap_unload(ring->data_dmat, data->map);
2068 			m_freem(data->m);
2069 			data->m = NULL;
2070 		}
2071 		if (data->ni != NULL) {
2072 			ieee80211_free_node(data->ni);
2073 			data->ni = NULL;
2074 		}
2075 	}
2076 	/* Clear TX descriptors. */
2077 	memset(ring->desc, 0, ring->desc_dma.size);
2078 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2079 	    BUS_DMASYNC_PREWRITE);
2080 	sc->qfullmsk &= ~(1 << ring->qid);
2081 	ring->queued = 0;
2082 	ring->cur = 0;
2083 }
2084 
2085 static void
2086 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2087 {
2088 	int i;
2089 
2090 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2091 
2092 	iwn_dma_contig_free(&ring->desc_dma);
2093 	iwn_dma_contig_free(&ring->cmd_dma);
2094 
2095 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2096 		struct iwn_tx_data *data = &ring->data[i];
2097 
2098 		if (data->m != NULL) {
2099 			bus_dmamap_sync(ring->data_dmat, data->map,
2100 			    BUS_DMASYNC_POSTWRITE);
2101 			bus_dmamap_unload(ring->data_dmat, data->map);
2102 			m_freem(data->m);
2103 		}
2104 		if (data->map != NULL)
2105 			bus_dmamap_destroy(ring->data_dmat, data->map);
2106 	}
2107 	if (ring->data_dmat != NULL) {
2108 		bus_dma_tag_destroy(ring->data_dmat);
2109 		ring->data_dmat = NULL;
2110 	}
2111 }
2112 
2113 static void
2114 iwn5000_ict_reset(struct iwn_softc *sc)
2115 {
2116 	/* Disable interrupts. */
2117 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2118 
2119 	/* Reset ICT table. */
2120 	memset(sc->ict, 0, IWN_ICT_SIZE);
2121 	sc->ict_cur = 0;
2122 
2123 	bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
2124 	    BUS_DMASYNC_PREWRITE);
2125 
2126 	/* Set physical address of ICT table (4KB aligned). */
2127 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2128 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2129 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2130 
2131 	/* Enable periodic RX interrupt. */
2132 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2133 	/* Switch to ICT interrupt mode in driver. */
2134 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2135 
2136 	/* Re-enable interrupts. */
2137 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2138 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2139 }
2140 
2141 static int
2142 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2143 {
2144 	struct iwn_ops *ops = &sc->ops;
2145 	uint16_t val;
2146 	int error;
2147 
2148 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2149 
2150 	/* Check whether adapter has an EEPROM or an OTPROM. */
2151 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2152 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2153 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2154 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2155 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2156 
2157 	/* Adapter has to be powered on for EEPROM access to work. */
2158 	if ((error = iwn_apm_init(sc)) != 0) {
2159 		device_printf(sc->sc_dev,
2160 		    "%s: could not power ON adapter, error %d\n", __func__,
2161 		    error);
2162 		return error;
2163 	}
2164 
2165 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2166 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2167 		return EIO;
2168 	}
2169 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2170 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2171 		    __func__, error);
2172 		return error;
2173 	}
2174 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2175 		if ((error = iwn_init_otprom(sc)) != 0) {
2176 			device_printf(sc->sc_dev,
2177 			    "%s: could not initialize OTPROM, error %d\n",
2178 			    __func__, error);
2179 			return error;
2180 		}
2181 	}
2182 
2183 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2184 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2185 	/* Check if HT support is bonded out. */
2186 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2187 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2188 
2189 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2190 	sc->rfcfg = le16toh(val);
2191 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2192 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2193 	if (sc->txchainmask == 0)
2194 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2195 	if (sc->rxchainmask == 0)
2196 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2197 
2198 	/* Read MAC address. */
2199 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2200 
2201 	/* Read adapter-specific information from EEPROM. */
2202 	ops->read_eeprom(sc);
2203 
2204 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2205 
2206 	iwn_eeprom_unlock(sc);
2207 
2208 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2209 
2210 	return 0;
2211 }
2212 
2213 static void
2214 iwn4965_read_eeprom(struct iwn_softc *sc)
2215 {
2216 	uint32_t addr;
2217 	uint16_t val;
2218 	int i;
2219 
2220 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2221 
2222 	/* Read regulatory domain (4 ASCII characters). */
2223 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2224 
2225 	/* Read the list of authorized channels (20MHz & 40MHz). */
2226 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2227 		addr = iwn4965_regulatory_bands[i];
2228 		iwn_read_eeprom_channels(sc, i, addr);
2229 	}
2230 
2231 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2232 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2233 	sc->maxpwr2GHz = val & 0xff;
2234 	sc->maxpwr5GHz = val >> 8;
2235 	/* Check that EEPROM values are within valid range. */
2236 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2237 		sc->maxpwr5GHz = 38;
2238 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2239 		sc->maxpwr2GHz = 38;
2240 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2241 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2242 
2243 	/* Read samples for each TX power group. */
2244 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2245 	    sizeof sc->bands);
2246 
2247 	/* Read voltage at which samples were taken. */
2248 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2249 	sc->eeprom_voltage = (int16_t)le16toh(val);
2250 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2251 	    sc->eeprom_voltage);
2252 
2253 #ifdef IWN_DEBUG
2254 	/* Print samples. */
2255 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2256 		for (i = 0; i < IWN_NBANDS - 1; i++)
2257 			iwn4965_print_power_group(sc, i);
2258 	}
2259 #endif
2260 
2261 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2262 }
2263 
2264 #ifdef IWN_DEBUG
2265 static void
2266 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2267 {
2268 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2269 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2270 	int j, c;
2271 
2272 	printf("===band %d===\n", i);
2273 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2274 	printf("chan1 num=%d\n", chans[0].num);
2275 	for (c = 0; c < 2; c++) {
2276 		for (j = 0; j < IWN_NSAMPLES; j++) {
2277 			printf("chain %d, sample %d: temp=%d gain=%d "
2278 			    "power=%d pa_det=%d\n", c, j,
2279 			    chans[0].samples[c][j].temp,
2280 			    chans[0].samples[c][j].gain,
2281 			    chans[0].samples[c][j].power,
2282 			    chans[0].samples[c][j].pa_det);
2283 		}
2284 	}
2285 	printf("chan2 num=%d\n", chans[1].num);
2286 	for (c = 0; c < 2; c++) {
2287 		for (j = 0; j < IWN_NSAMPLES; j++) {
2288 			printf("chain %d, sample %d: temp=%d gain=%d "
2289 			    "power=%d pa_det=%d\n", c, j,
2290 			    chans[1].samples[c][j].temp,
2291 			    chans[1].samples[c][j].gain,
2292 			    chans[1].samples[c][j].power,
2293 			    chans[1].samples[c][j].pa_det);
2294 		}
2295 	}
2296 }
2297 #endif
2298 
2299 static void
2300 iwn5000_read_eeprom(struct iwn_softc *sc)
2301 {
2302 	struct iwn5000_eeprom_calib_hdr hdr;
2303 	int32_t volt;
2304 	uint32_t base, addr;
2305 	uint16_t val;
2306 	int i;
2307 
2308 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2309 
2310 	/* Read regulatory domain (4 ASCII characters). */
2311 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2312 	base = le16toh(val);
2313 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2314 	    sc->eeprom_domain, 4);
2315 
2316 	/* Read the list of authorized channels (20MHz & 40MHz). */
2317 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2318 		addr =  base + sc->base_params->regulatory_bands[i];
2319 		iwn_read_eeprom_channels(sc, i, addr);
2320 	}
2321 
2322 	/* Read enhanced TX power information for 6000 Series. */
2323 	if (sc->base_params->enhanced_TX_power)
2324 		iwn_read_eeprom_enhinfo(sc);
2325 
2326 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2327 	base = le16toh(val);
2328 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2329 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2330 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2331 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2332 	sc->calib_ver = hdr.version;
2333 
2334 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2335 		sc->eeprom_voltage = le16toh(hdr.volt);
2336 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2337 		sc->eeprom_temp_high=le16toh(val);
2338 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2339 		sc->eeprom_temp = le16toh(val);
2340 	}
2341 
2342 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2343 		/* Compute temperature offset. */
2344 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2345 		sc->eeprom_temp = le16toh(val);
2346 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2347 		volt = le16toh(val);
2348 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2349 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2350 		    sc->eeprom_temp, volt, sc->temp_off);
2351 	} else {
2352 		/* Read crystal calibration. */
2353 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2354 		    &sc->eeprom_crystal, sizeof (uint32_t));
2355 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2356 		    le32toh(sc->eeprom_crystal));
2357 	}
2358 
2359 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2360 
2361 }
2362 
2363 /*
2364  * Translate EEPROM flags to net80211.
2365  */
2366 static uint32_t
2367 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2368 {
2369 	uint32_t nflags;
2370 
2371 	nflags = 0;
2372 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2373 		nflags |= IEEE80211_CHAN_PASSIVE;
2374 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2375 		nflags |= IEEE80211_CHAN_NOADHOC;
2376 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2377 		nflags |= IEEE80211_CHAN_DFS;
2378 		/* XXX apparently IBSS may still be marked */
2379 		nflags |= IEEE80211_CHAN_NOADHOC;
2380 	}
2381 
2382 	return nflags;
2383 }
2384 
2385 static void
2386 iwn_read_eeprom_band(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2387     struct ieee80211_channel chans[])
2388 {
2389 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2390 	const struct iwn_chan_band *band = &iwn_bands[n];
2391 	uint8_t bands[IEEE80211_MODE_BYTES];
2392 	uint8_t chan;
2393 	int i, error, nflags;
2394 
2395 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2396 
2397 	memset(bands, 0, sizeof(bands));
2398 	if (n == 0) {
2399 		setbit(bands, IEEE80211_MODE_11B);
2400 		setbit(bands, IEEE80211_MODE_11G);
2401 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2402 			setbit(bands, IEEE80211_MODE_11NG);
2403 	} else {
2404 		setbit(bands, IEEE80211_MODE_11A);
2405 		if (sc->sc_flags & IWN_FLAG_HAS_11N)
2406 			setbit(bands, IEEE80211_MODE_11NA);
2407 	}
2408 
2409 	for (i = 0; i < band->nchan; i++) {
2410 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2411 			DPRINTF(sc, IWN_DEBUG_RESET,
2412 			    "skip chan %d flags 0x%x maxpwr %d\n",
2413 			    band->chan[i], channels[i].flags,
2414 			    channels[i].maxpwr);
2415 			continue;
2416 		}
2417 
2418 		chan = band->chan[i];
2419 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2420 		error = ieee80211_add_channel(chans, maxchans, nchans,
2421 		    chan, 0, channels[i].maxpwr, nflags, bands);
2422 		if (error != 0)
2423 			break;
2424 
2425 		/* Save maximum allowed TX power for this channel. */
2426 		/* XXX wrong */
2427 		sc->maxpwr[chan] = channels[i].maxpwr;
2428 
2429 		DPRINTF(sc, IWN_DEBUG_RESET,
2430 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2431 		    channels[i].flags, channels[i].maxpwr);
2432 	}
2433 
2434 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2435 
2436 }
2437 
2438 static void
2439 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n, int maxchans, int *nchans,
2440     struct ieee80211_channel chans[])
2441 {
2442 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2443 	const struct iwn_chan_band *band = &iwn_bands[n];
2444 	uint8_t chan;
2445 	int i, error, nflags;
2446 
2447 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2448 
2449 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2450 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2451 		return;
2452 	}
2453 
2454 	for (i = 0; i < band->nchan; i++) {
2455 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2456 			DPRINTF(sc, IWN_DEBUG_RESET,
2457 			    "skip chan %d flags 0x%x maxpwr %d\n",
2458 			    band->chan[i], channels[i].flags,
2459 			    channels[i].maxpwr);
2460 			continue;
2461 		}
2462 
2463 		chan = band->chan[i];
2464 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2465 		nflags |= (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A);
2466 		error = ieee80211_add_channel_ht40(chans, maxchans, nchans,
2467 		    chan, channels[i].maxpwr, nflags);
2468 		switch (error) {
2469 		case EINVAL:
2470 			device_printf(sc->sc_dev,
2471 			    "%s: no entry for channel %d\n", __func__, chan);
2472 			continue;
2473 		case ENOENT:
2474 			DPRINTF(sc, IWN_DEBUG_RESET,
2475 			    "%s: skip chan %d, extension channel not found\n",
2476 			    __func__, chan);
2477 			continue;
2478 		case ENOBUFS:
2479 			device_printf(sc->sc_dev,
2480 			    "%s: channel table is full!\n", __func__);
2481 			break;
2482 		case 0:
2483 			DPRINTF(sc, IWN_DEBUG_RESET,
2484 			    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2485 			    chan, channels[i].flags, channels[i].maxpwr);
2486 			/* FALLTHROUGH */
2487 		default:
2488 			break;
2489 		}
2490 	}
2491 
2492 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2493 
2494 }
2495 
2496 static void
2497 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2498 {
2499 	struct ieee80211com *ic = &sc->sc_ic;
2500 
2501 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2502 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2503 
2504 	if (n < 5) {
2505 		iwn_read_eeprom_band(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2506 		    ic->ic_channels);
2507 	} else {
2508 		iwn_read_eeprom_ht40(sc, n, IEEE80211_CHAN_MAX, &ic->ic_nchans,
2509 		    ic->ic_channels);
2510 	}
2511 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2512 }
2513 
2514 static struct iwn_eeprom_chan *
2515 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2516 {
2517 	int band, chan, i, j;
2518 
2519 	if (IEEE80211_IS_CHAN_HT40(c)) {
2520 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2521 		if (IEEE80211_IS_CHAN_HT40D(c))
2522 			chan = c->ic_extieee;
2523 		else
2524 			chan = c->ic_ieee;
2525 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2526 			if (iwn_bands[band].chan[i] == chan)
2527 				return &sc->eeprom_channels[band][i];
2528 		}
2529 	} else {
2530 		for (j = 0; j < 5; j++) {
2531 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2532 				if (iwn_bands[j].chan[i] == c->ic_ieee &&
2533 				    ((j == 0) ^ IEEE80211_IS_CHAN_A(c)) == 1)
2534 					return &sc->eeprom_channels[j][i];
2535 			}
2536 		}
2537 	}
2538 	return NULL;
2539 }
2540 
2541 static void
2542 iwn_getradiocaps(struct ieee80211com *ic,
2543     int maxchans, int *nchans, struct ieee80211_channel chans[])
2544 {
2545 	struct iwn_softc *sc = ic->ic_softc;
2546 	int i;
2547 
2548 	/* Parse the list of authorized channels. */
2549 	for (i = 0; i < 5 && *nchans < maxchans; i++)
2550 		iwn_read_eeprom_band(sc, i, maxchans, nchans, chans);
2551 	for (i = 5; i < IWN_NBANDS - 1 && *nchans < maxchans; i++)
2552 		iwn_read_eeprom_ht40(sc, i, maxchans, nchans, chans);
2553 }
2554 
2555 /*
2556  * Enforce flags read from EEPROM.
2557  */
2558 static int
2559 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2560     int nchan, struct ieee80211_channel chans[])
2561 {
2562 	struct iwn_softc *sc = ic->ic_softc;
2563 	int i;
2564 
2565 	for (i = 0; i < nchan; i++) {
2566 		struct ieee80211_channel *c = &chans[i];
2567 		struct iwn_eeprom_chan *channel;
2568 
2569 		channel = iwn_find_eeprom_channel(sc, c);
2570 		if (channel == NULL) {
2571 			ic_printf(ic, "%s: invalid channel %u freq %u/0x%x\n",
2572 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2573 			return EINVAL;
2574 		}
2575 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2576 	}
2577 
2578 	return 0;
2579 }
2580 
2581 static void
2582 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2583 {
2584 	struct iwn_eeprom_enhinfo enhinfo[35];
2585 	struct ieee80211com *ic = &sc->sc_ic;
2586 	struct ieee80211_channel *c;
2587 	uint16_t val, base;
2588 	int8_t maxpwr;
2589 	uint8_t flags;
2590 	int i, j;
2591 
2592 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2593 
2594 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2595 	base = le16toh(val);
2596 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2597 	    enhinfo, sizeof enhinfo);
2598 
2599 	for (i = 0; i < nitems(enhinfo); i++) {
2600 		flags = enhinfo[i].flags;
2601 		if (!(flags & IWN_ENHINFO_VALID))
2602 			continue;	/* Skip invalid entries. */
2603 
2604 		maxpwr = 0;
2605 		if (sc->txchainmask & IWN_ANT_A)
2606 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2607 		if (sc->txchainmask & IWN_ANT_B)
2608 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2609 		if (sc->txchainmask & IWN_ANT_C)
2610 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2611 		if (sc->ntxchains == 2)
2612 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2613 		else if (sc->ntxchains == 3)
2614 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2615 
2616 		for (j = 0; j < ic->ic_nchans; j++) {
2617 			c = &ic->ic_channels[j];
2618 			if ((flags & IWN_ENHINFO_5GHZ)) {
2619 				if (!IEEE80211_IS_CHAN_A(c))
2620 					continue;
2621 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2622 				if (!IEEE80211_IS_CHAN_G(c))
2623 					continue;
2624 			} else if (!IEEE80211_IS_CHAN_B(c))
2625 				continue;
2626 			if ((flags & IWN_ENHINFO_HT40)) {
2627 				if (!IEEE80211_IS_CHAN_HT40(c))
2628 					continue;
2629 			} else {
2630 				if (IEEE80211_IS_CHAN_HT40(c))
2631 					continue;
2632 			}
2633 			if (enhinfo[i].chan != 0 &&
2634 			    enhinfo[i].chan != c->ic_ieee)
2635 				continue;
2636 
2637 			DPRINTF(sc, IWN_DEBUG_RESET,
2638 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2639 			    c->ic_flags, maxpwr / 2);
2640 			c->ic_maxregpower = maxpwr / 2;
2641 			c->ic_maxpower = maxpwr;
2642 		}
2643 	}
2644 
2645 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2646 
2647 }
2648 
2649 static struct ieee80211_node *
2650 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2651 {
2652 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2653 }
2654 
2655 static __inline int
2656 rate2plcp(int rate)
2657 {
2658 	switch (rate & 0xff) {
2659 	case 12:	return 0xd;
2660 	case 18:	return 0xf;
2661 	case 24:	return 0x5;
2662 	case 36:	return 0x7;
2663 	case 48:	return 0x9;
2664 	case 72:	return 0xb;
2665 	case 96:	return 0x1;
2666 	case 108:	return 0x3;
2667 	case 2:		return 10;
2668 	case 4:		return 20;
2669 	case 11:	return 55;
2670 	case 22:	return 110;
2671 	}
2672 	return 0;
2673 }
2674 
2675 static int
2676 iwn_get_1stream_tx_antmask(struct iwn_softc *sc)
2677 {
2678 
2679 	return IWN_LSB(sc->txchainmask);
2680 }
2681 
2682 static int
2683 iwn_get_2stream_tx_antmask(struct iwn_softc *sc)
2684 {
2685 	int tx;
2686 
2687 	/*
2688 	 * The '2 stream' setup is a bit .. odd.
2689 	 *
2690 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
2691 	 * the firmware panics (eg Intel 5100.)
2692 	 *
2693 	 * For NICs that support two antennas, we use ANT_AB.
2694 	 *
2695 	 * For NICs that support three antennas, we use the two that
2696 	 * wasn't the default one.
2697 	 *
2698 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
2699 	 * this to only one antenna.
2700 	 */
2701 
2702 	/* Default - transmit on the other antennas */
2703 	tx = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
2704 
2705 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
2706 	if (tx == 0)
2707 		tx = IWN_ANT_AB;
2708 
2709 	/*
2710 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
2711 	 * the default chainmask
2712 	 */
2713 	else if (sc->ntxchains == 2)
2714 		tx = sc->txchainmask;
2715 
2716 	return (tx);
2717 }
2718 
2719 
2720 
2721 /*
2722  * Calculate the required PLCP value from the given rate,
2723  * to the given node.
2724  *
2725  * This will take the node configuration (eg 11n, rate table
2726  * setup, etc) into consideration.
2727  */
2728 static uint32_t
2729 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2730     uint8_t rate)
2731 {
2732 	struct ieee80211com *ic = ni->ni_ic;
2733 	uint32_t plcp = 0;
2734 	int ridx;
2735 
2736 	/*
2737 	 * If it's an MCS rate, let's set the plcp correctly
2738 	 * and set the relevant flags based on the node config.
2739 	 */
2740 	if (rate & IEEE80211_RATE_MCS) {
2741 		/*
2742 		 * Set the initial PLCP value to be between 0->31 for
2743 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2744 		 * flag.
2745 		 */
2746 		plcp = IEEE80211_RV(rate) | IWN_RFLAG_MCS;
2747 
2748 		/*
2749 		 * XXX the following should only occur if both
2750 		 * the local configuration _and_ the remote node
2751 		 * advertise these capabilities.  Thus this code
2752 		 * may need fixing!
2753 		 */
2754 
2755 		/*
2756 		 * Set the channel width and guard interval.
2757 		 */
2758 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2759 			plcp |= IWN_RFLAG_HT40;
2760 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2761 				plcp |= IWN_RFLAG_SGI;
2762 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2763 			plcp |= IWN_RFLAG_SGI;
2764 		}
2765 
2766 		/*
2767 		 * Ensure the selected rate matches the link quality
2768 		 * table entries being used.
2769 		 */
2770 		if (rate > 0x8f)
2771 			plcp |= IWN_RFLAG_ANT(sc->txchainmask);
2772 		else if (rate > 0x87)
2773 			plcp |= IWN_RFLAG_ANT(iwn_get_2stream_tx_antmask(sc));
2774 		else
2775 			plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2776 	} else {
2777 		/*
2778 		 * Set the initial PLCP - fine for both
2779 		 * OFDM and CCK rates.
2780 		 */
2781 		plcp = rate2plcp(rate);
2782 
2783 		/* Set CCK flag if it's CCK */
2784 
2785 		/* XXX It would be nice to have a method
2786 		 * to map the ridx -> phy table entry
2787 		 * so we could just query that, rather than
2788 		 * this hack to check against IWN_RIDX_OFDM6.
2789 		 */
2790 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2791 		    rate & IEEE80211_RATE_VAL);
2792 		if (ridx < IWN_RIDX_OFDM6 &&
2793 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2794 			plcp |= IWN_RFLAG_CCK;
2795 
2796 		/* Set antenna configuration */
2797 		/* XXX TODO: is this the right antenna to use for legacy? */
2798 		plcp |= IWN_RFLAG_ANT(iwn_get_1stream_tx_antmask(sc));
2799 	}
2800 
2801 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2802 	    __func__,
2803 	    rate,
2804 	    plcp);
2805 
2806 	return (htole32(plcp));
2807 }
2808 
2809 static void
2810 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2811 {
2812 	/* Doesn't do anything at the moment */
2813 }
2814 
2815 static int
2816 iwn_media_change(struct ifnet *ifp)
2817 {
2818 	int error;
2819 
2820 	error = ieee80211_media_change(ifp);
2821 	/* NB: only the fixed rate can change and that doesn't need a reset */
2822 	return (error == ENETRESET ? 0 : error);
2823 }
2824 
2825 static int
2826 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2827 {
2828 	struct iwn_vap *ivp = IWN_VAP(vap);
2829 	struct ieee80211com *ic = vap->iv_ic;
2830 	struct iwn_softc *sc = ic->ic_softc;
2831 	int error = 0;
2832 
2833 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2834 
2835 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2836 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2837 
2838 	IEEE80211_UNLOCK(ic);
2839 	IWN_LOCK(sc);
2840 	callout_stop(&sc->calib_to);
2841 
2842 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2843 
2844 	switch (nstate) {
2845 	case IEEE80211_S_ASSOC:
2846 		if (vap->iv_state != IEEE80211_S_RUN)
2847 			break;
2848 		/* FALLTHROUGH */
2849 	case IEEE80211_S_AUTH:
2850 		if (vap->iv_state == IEEE80211_S_AUTH)
2851 			break;
2852 
2853 		/*
2854 		 * !AUTH -> AUTH transition requires state reset to handle
2855 		 * reassociations correctly.
2856 		 */
2857 		sc->rxon->associd = 0;
2858 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2859 		sc->calib.state = IWN_CALIB_STATE_INIT;
2860 
2861 		/* Wait until we hear a beacon before we transmit */
2862 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2863 			sc->sc_beacon_wait = 1;
2864 
2865 		if ((error = iwn_auth(sc, vap)) != 0) {
2866 			device_printf(sc->sc_dev,
2867 			    "%s: could not move to auth state\n", __func__);
2868 		}
2869 		break;
2870 
2871 	case IEEE80211_S_RUN:
2872 		/*
2873 		 * RUN -> RUN transition; Just restart the timers.
2874 		 */
2875 		if (vap->iv_state == IEEE80211_S_RUN) {
2876 			sc->calib_cnt = 0;
2877 			break;
2878 		}
2879 
2880 		/* Wait until we hear a beacon before we transmit */
2881 		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2882 			sc->sc_beacon_wait = 1;
2883 
2884 		/*
2885 		 * !RUN -> RUN requires setting the association id
2886 		 * which is done with a firmware cmd.  We also defer
2887 		 * starting the timers until that work is done.
2888 		 */
2889 		if ((error = iwn_run(sc, vap)) != 0) {
2890 			device_printf(sc->sc_dev,
2891 			    "%s: could not move to run state\n", __func__);
2892 		}
2893 		break;
2894 
2895 	case IEEE80211_S_INIT:
2896 		sc->calib.state = IWN_CALIB_STATE_INIT;
2897 		/*
2898 		 * Purge the xmit queue so we don't have old frames
2899 		 * during a new association attempt.
2900 		 */
2901 		sc->sc_beacon_wait = 0;
2902 		iwn_xmit_queue_drain(sc);
2903 		break;
2904 
2905 	default:
2906 		break;
2907 	}
2908 	IWN_UNLOCK(sc);
2909 	IEEE80211_LOCK(ic);
2910 	if (error != 0){
2911 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2912 		return error;
2913 	}
2914 
2915 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2916 
2917 	return ivp->iv_newstate(vap, nstate, arg);
2918 }
2919 
2920 static void
2921 iwn_calib_timeout(void *arg)
2922 {
2923 	struct iwn_softc *sc = arg;
2924 
2925 	IWN_LOCK_ASSERT(sc);
2926 
2927 	/* Force automatic TX power calibration every 60 secs. */
2928 	if (++sc->calib_cnt >= 120) {
2929 		uint32_t flags = 0;
2930 
2931 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2932 		    "sending request for statistics");
2933 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2934 		    sizeof flags, 1);
2935 		sc->calib_cnt = 0;
2936 	}
2937 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2938 	    sc);
2939 }
2940 
2941 /*
2942  * Process an RX_PHY firmware notification.  This is usually immediately
2943  * followed by an MPDU_RX_DONE notification.
2944  */
2945 static void
2946 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2947     struct iwn_rx_data *data)
2948 {
2949 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2950 
2951 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2952 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2953 
2954 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2955 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2956 	sc->last_rx_valid = 1;
2957 }
2958 
2959 /*
2960  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2961  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2962  */
2963 static void
2964 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2965     struct iwn_rx_data *data)
2966 {
2967 	struct iwn_ops *ops = &sc->ops;
2968 	struct ieee80211com *ic = &sc->sc_ic;
2969 	struct iwn_rx_ring *ring = &sc->rxq;
2970 	struct ieee80211_frame *wh;
2971 	struct ieee80211_node *ni;
2972 	struct mbuf *m, *m1;
2973 	struct iwn_rx_stat *stat;
2974 	caddr_t head;
2975 	bus_addr_t paddr;
2976 	uint32_t flags;
2977 	int error, len, rssi, nf;
2978 
2979 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2980 
2981 	if (desc->type == IWN_MPDU_RX_DONE) {
2982 		/* Check for prior RX_PHY notification. */
2983 		if (!sc->last_rx_valid) {
2984 			DPRINTF(sc, IWN_DEBUG_ANY,
2985 			    "%s: missing RX_PHY\n", __func__);
2986 			return;
2987 		}
2988 		stat = &sc->last_rx_stat;
2989 	} else
2990 		stat = (struct iwn_rx_stat *)(desc + 1);
2991 
2992 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2993 
2994 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2995 		device_printf(sc->sc_dev,
2996 		    "%s: invalid RX statistic header, len %d\n", __func__,
2997 		    stat->cfg_phy_len);
2998 		return;
2999 	}
3000 	if (desc->type == IWN_MPDU_RX_DONE) {
3001 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
3002 		head = (caddr_t)(mpdu + 1);
3003 		len = le16toh(mpdu->len);
3004 	} else {
3005 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
3006 		len = le16toh(stat->len);
3007 	}
3008 
3009 	flags = le32toh(*(uint32_t *)(head + len));
3010 
3011 	/* Discard frames with a bad FCS early. */
3012 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
3013 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
3014 		    __func__, flags);
3015 		counter_u64_add(ic->ic_ierrors, 1);
3016 		return;
3017 	}
3018 	/* Discard frames that are too short. */
3019 	if (len < sizeof (struct ieee80211_frame_ack)) {
3020 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
3021 		    __func__, len);
3022 		counter_u64_add(ic->ic_ierrors, 1);
3023 		return;
3024 	}
3025 
3026 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
3027 	if (m1 == NULL) {
3028 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
3029 		    __func__);
3030 		counter_u64_add(ic->ic_ierrors, 1);
3031 		return;
3032 	}
3033 	bus_dmamap_unload(ring->data_dmat, data->map);
3034 
3035 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
3036 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3037 	if (error != 0 && error != EFBIG) {
3038 		device_printf(sc->sc_dev,
3039 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
3040 		m_freem(m1);
3041 
3042 		/* Try to reload the old mbuf. */
3043 		error = bus_dmamap_load(ring->data_dmat, data->map,
3044 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
3045 		    &paddr, BUS_DMA_NOWAIT);
3046 		if (error != 0 && error != EFBIG) {
3047 			panic("%s: could not load old RX mbuf", __func__);
3048 		}
3049 		bus_dmamap_sync(ring->data_dmat, data->map,
3050 		    BUS_DMASYNC_PREREAD);
3051 		/* Physical address may have changed. */
3052 		ring->desc[ring->cur] = htole32(paddr >> 8);
3053 		bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3054 		    BUS_DMASYNC_PREWRITE);
3055 		counter_u64_add(ic->ic_ierrors, 1);
3056 		return;
3057 	}
3058 
3059 	bus_dmamap_sync(ring->data_dmat, data->map,
3060 	    BUS_DMASYNC_PREREAD);
3061 
3062 	m = data->m;
3063 	data->m = m1;
3064 	/* Update RX descriptor. */
3065 	ring->desc[ring->cur] = htole32(paddr >> 8);
3066 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3067 	    BUS_DMASYNC_PREWRITE);
3068 
3069 	/* Finalize mbuf. */
3070 	m->m_data = head;
3071 	m->m_pkthdr.len = m->m_len = len;
3072 
3073 	/* Grab a reference to the source node. */
3074 	wh = mtod(m, struct ieee80211_frame *);
3075 	if (len >= sizeof(struct ieee80211_frame_min))
3076 		ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
3077 	else
3078 		ni = NULL;
3079 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
3080 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
3081 
3082 	rssi = ops->get_rssi(sc, stat);
3083 
3084 	if (ieee80211_radiotap_active(ic)) {
3085 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
3086 
3087 		tap->wr_flags = 0;
3088 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
3089 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
3090 		tap->wr_dbm_antsignal = (int8_t)rssi;
3091 		tap->wr_dbm_antnoise = (int8_t)nf;
3092 		tap->wr_tsft = stat->tstamp;
3093 		switch (stat->rate) {
3094 		/* CCK rates. */
3095 		case  10: tap->wr_rate =   2; break;
3096 		case  20: tap->wr_rate =   4; break;
3097 		case  55: tap->wr_rate =  11; break;
3098 		case 110: tap->wr_rate =  22; break;
3099 		/* OFDM rates. */
3100 		case 0xd: tap->wr_rate =  12; break;
3101 		case 0xf: tap->wr_rate =  18; break;
3102 		case 0x5: tap->wr_rate =  24; break;
3103 		case 0x7: tap->wr_rate =  36; break;
3104 		case 0x9: tap->wr_rate =  48; break;
3105 		case 0xb: tap->wr_rate =  72; break;
3106 		case 0x1: tap->wr_rate =  96; break;
3107 		case 0x3: tap->wr_rate = 108; break;
3108 		/* Unknown rate: should not happen. */
3109 		default:  tap->wr_rate =   0;
3110 		}
3111 	}
3112 
3113 	/*
3114 	 * If it's a beacon and we're waiting, then do the
3115 	 * wakeup.  This should unblock raw_xmit/start.
3116 	 */
3117 	if (sc->sc_beacon_wait) {
3118 		uint8_t type, subtype;
3119 		/* NB: Re-assign wh */
3120 		wh = mtod(m, struct ieee80211_frame *);
3121 		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3122 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3123 		/*
3124 		 * This assumes at this point we've received our own
3125 		 * beacon.
3126 		 */
3127 		DPRINTF(sc, IWN_DEBUG_TRACE,
3128 		    "%s: beacon_wait, type=%d, subtype=%d\n",
3129 		    __func__, type, subtype);
3130 		if (type == IEEE80211_FC0_TYPE_MGT &&
3131 		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
3132 			DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3133 			    "%s: waking things up\n", __func__);
3134 			/* queue taskqueue to transmit! */
3135 			taskqueue_enqueue(sc->sc_tq, &sc->sc_xmit_task);
3136 		}
3137 	}
3138 
3139 	IWN_UNLOCK(sc);
3140 
3141 	/* Send the frame to the 802.11 layer. */
3142 	if (ni != NULL) {
3143 		if (ni->ni_flags & IEEE80211_NODE_HT)
3144 			m->m_flags |= M_AMPDU;
3145 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3146 		/* Node is no longer needed. */
3147 		ieee80211_free_node(ni);
3148 	} else
3149 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3150 
3151 	IWN_LOCK(sc);
3152 
3153 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3154 
3155 }
3156 
3157 /* Process an incoming Compressed BlockAck. */
3158 static void
3159 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3160     struct iwn_rx_data *data)
3161 {
3162 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3163 	struct iwn_ops *ops = &sc->ops;
3164 	struct iwn_node *wn;
3165 	struct ieee80211_node *ni;
3166 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3167 	struct iwn_tx_ring *txq;
3168 	struct iwn_tx_data *txdata;
3169 	struct ieee80211_tx_ampdu *tap;
3170 	struct mbuf *m;
3171 	uint64_t bitmap;
3172 	uint16_t ssn;
3173 	uint8_t tid;
3174 	int i, lastidx, qid, *res, shift;
3175 	int tx_ok = 0, tx_err = 0;
3176 
3177 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s begin\n", __func__);
3178 
3179 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3180 
3181 	qid = le16toh(ba->qid);
3182 	txq = &sc->txq[ba->qid];
3183 	tap = sc->qid2tap[ba->qid];
3184 	tid = tap->txa_tid;
3185 	wn = (void *)tap->txa_ni;
3186 
3187 	res = NULL;
3188 	ssn = 0;
3189 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3190 		res = tap->txa_private;
3191 		ssn = tap->txa_start & 0xfff;
3192 	}
3193 
3194 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3195 		txdata = &txq->data[txq->read];
3196 
3197 		/* Unmap and free mbuf. */
3198 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3199 		    BUS_DMASYNC_POSTWRITE);
3200 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3201 		m = txdata->m, txdata->m = NULL;
3202 		ni = txdata->ni, txdata->ni = NULL;
3203 
3204 		KASSERT(ni != NULL, ("no node"));
3205 		KASSERT(m != NULL, ("no mbuf"));
3206 
3207 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3208 		ieee80211_tx_complete(ni, m, 1);
3209 
3210 		txq->queued--;
3211 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3212 	}
3213 
3214 	if (txq->queued == 0 && res != NULL) {
3215 		iwn_nic_lock(sc);
3216 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3217 		iwn_nic_unlock(sc);
3218 		sc->qid2tap[qid] = NULL;
3219 		free(res, M_DEVBUF);
3220 		return;
3221 	}
3222 
3223 	if (wn->agg[tid].bitmap == 0)
3224 		return;
3225 
3226 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3227 	if (shift < 0)
3228 		shift += 0x100;
3229 
3230 	if (wn->agg[tid].nframes > (64 - shift))
3231 		return;
3232 
3233 	/*
3234 	 * Walk the bitmap and calculate how many successful and failed
3235 	 * attempts are made.
3236 	 *
3237 	 * Yes, the rate control code doesn't know these are A-MPDU
3238 	 * subframes and that it's okay to fail some of these.
3239 	 */
3240 	ni = tap->txa_ni;
3241 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3242 	for (i = 0; bitmap; i++) {
3243 		txs->flags = 0;		/* XXX TODO */
3244 		if ((bitmap & 1) == 0) {
3245 			tx_err ++;
3246 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3247 		} else {
3248 			tx_ok ++;
3249 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3250 		}
3251 		ieee80211_ratectl_tx_complete(ni, txs);
3252 		bitmap >>= 1;
3253 	}
3254 
3255 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT,
3256 	    "->%s: end; %d ok; %d err\n",__func__, tx_ok, tx_err);
3257 
3258 }
3259 
3260 /*
3261  * Process a CALIBRATION_RESULT notification sent by the initialization
3262  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3263  */
3264 static void
3265 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3266     struct iwn_rx_data *data)
3267 {
3268 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3269 	int len, idx = -1;
3270 
3271 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3272 
3273 	/* Runtime firmware should not send such a notification. */
3274 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3275 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3276 	    __func__);
3277 		return;
3278 	}
3279 	len = (le32toh(desc->len) & 0x3fff) - 4;
3280 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3281 
3282 	switch (calib->code) {
3283 	case IWN5000_PHY_CALIB_DC:
3284 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3285 			idx = 0;
3286 		break;
3287 	case IWN5000_PHY_CALIB_LO:
3288 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3289 			idx = 1;
3290 		break;
3291 	case IWN5000_PHY_CALIB_TX_IQ:
3292 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3293 			idx = 2;
3294 		break;
3295 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3296 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3297 			idx = 3;
3298 		break;
3299 	case IWN5000_PHY_CALIB_BASE_BAND:
3300 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3301 			idx = 4;
3302 		break;
3303 	}
3304 	if (idx == -1)	/* Ignore other results. */
3305 		return;
3306 
3307 	/* Save calibration result. */
3308 	if (sc->calibcmd[idx].buf != NULL)
3309 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3310 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3311 	if (sc->calibcmd[idx].buf == NULL) {
3312 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3313 		    "not enough memory for calibration result %d\n",
3314 		    calib->code);
3315 		return;
3316 	}
3317 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3318 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3319 	sc->calibcmd[idx].len = len;
3320 	memcpy(sc->calibcmd[idx].buf, calib, len);
3321 }
3322 
3323 static void
3324 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3325     struct iwn_stats *stats, int len)
3326 {
3327 	struct iwn_stats_bt *stats_bt;
3328 	struct iwn_stats *lstats;
3329 
3330 	/*
3331 	 * First - check whether the length is the bluetooth or normal.
3332 	 *
3333 	 * If it's normal - just copy it and bump out.
3334 	 * Otherwise we have to convert things.
3335 	 */
3336 
3337 	if (len == sizeof(struct iwn_stats) + 4) {
3338 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3339 		sc->last_stat_valid = 1;
3340 		return;
3341 	}
3342 
3343 	/*
3344 	 * If it's not the bluetooth size - log, then just copy.
3345 	 */
3346 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3347 		DPRINTF(sc, IWN_DEBUG_STATS,
3348 		    "%s: size of rx statistics (%d) not an expected size!\n",
3349 		    __func__,
3350 		    len);
3351 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3352 		sc->last_stat_valid = 1;
3353 		return;
3354 	}
3355 
3356 	/*
3357 	 * Ok. Time to copy.
3358 	 */
3359 	stats_bt = (struct iwn_stats_bt *) stats;
3360 	lstats = &sc->last_stat;
3361 
3362 	/* flags */
3363 	lstats->flags = stats_bt->flags;
3364 	/* rx_bt */
3365 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3366 	    sizeof(struct iwn_rx_phy_stats));
3367 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3368 	    sizeof(struct iwn_rx_phy_stats));
3369 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3370 	    sizeof(struct iwn_rx_general_stats));
3371 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3372 	    sizeof(struct iwn_rx_ht_phy_stats));
3373 	/* tx */
3374 	memcpy(&lstats->tx, &stats_bt->tx,
3375 	    sizeof(struct iwn_tx_stats));
3376 	/* general */
3377 	memcpy(&lstats->general, &stats_bt->general,
3378 	    sizeof(struct iwn_general_stats));
3379 
3380 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3381 	sc->last_stat_valid = 1;
3382 }
3383 
3384 /*
3385  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3386  * The latter is sent by the firmware after each received beacon.
3387  */
3388 static void
3389 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3390     struct iwn_rx_data *data)
3391 {
3392 	struct iwn_ops *ops = &sc->ops;
3393 	struct ieee80211com *ic = &sc->sc_ic;
3394 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3395 	struct iwn_calib_state *calib = &sc->calib;
3396 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3397 	struct iwn_stats *lstats;
3398 	int temp;
3399 
3400 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3401 
3402 	/* Ignore statistics received during a scan. */
3403 	if (vap->iv_state != IEEE80211_S_RUN ||
3404 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3405 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3406 	    __func__);
3407 		return;
3408 	}
3409 
3410 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3411 
3412 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3413 	    "%s: received statistics, cmd %d, len %d\n",
3414 	    __func__, desc->type, le16toh(desc->len));
3415 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3416 
3417 	/*
3418 	 * Collect/track general statistics for reporting.
3419 	 *
3420 	 * This takes care of ensuring that the bluetooth sized message
3421 	 * will be correctly converted to the legacy sized message.
3422 	 */
3423 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3424 
3425 	/*
3426 	 * And now, let's take a reference of it to use!
3427 	 */
3428 	lstats = &sc->last_stat;
3429 
3430 	/* Test if temperature has changed. */
3431 	if (lstats->general.temp != sc->rawtemp) {
3432 		/* Convert "raw" temperature to degC. */
3433 		sc->rawtemp = stats->general.temp;
3434 		temp = ops->get_temperature(sc);
3435 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3436 		    __func__, temp);
3437 
3438 		/* Update TX power if need be (4965AGN only). */
3439 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3440 			iwn4965_power_calibration(sc, temp);
3441 	}
3442 
3443 	if (desc->type != IWN_BEACON_STATISTICS)
3444 		return;	/* Reply to a statistics request. */
3445 
3446 	sc->noise = iwn_get_noise(&lstats->rx.general);
3447 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3448 
3449 	/* Test that RSSI and noise are present in stats report. */
3450 	if (le32toh(lstats->rx.general.flags) != 1) {
3451 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3452 		    "received statistics without RSSI");
3453 		return;
3454 	}
3455 
3456 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3457 		iwn_collect_noise(sc, &lstats->rx.general);
3458 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3459 		iwn_tune_sensitivity(sc, &lstats->rx);
3460 		/*
3461 		 * XXX TODO: Only run the RX recovery if we're associated!
3462 		 */
3463 		iwn_check_rx_recovery(sc, lstats);
3464 		iwn_save_stats_counters(sc, lstats);
3465 	}
3466 
3467 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3468 }
3469 
3470 /*
3471  * Save the relevant statistic counters for the next calibration
3472  * pass.
3473  */
3474 static void
3475 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3476 {
3477 	struct iwn_calib_state *calib = &sc->calib;
3478 
3479 	/* Save counters values for next call. */
3480 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3481 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3482 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3483 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3484 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3485 
3486 	/* Last time we received these tick values */
3487 	sc->last_calib_ticks = ticks;
3488 }
3489 
3490 /*
3491  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3492  * and 5000 adapters have different incompatible TX status formats.
3493  */
3494 static void
3495 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3496     struct iwn_rx_data *data)
3497 {
3498 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3499 	struct iwn_tx_ring *ring;
3500 	int qid;
3501 
3502 	qid = desc->qid & 0xf;
3503 	ring = &sc->txq[qid];
3504 
3505 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3506 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3507 	    __func__, desc->qid, desc->idx,
3508 	    stat->rtsfailcnt,
3509 	    stat->ackfailcnt,
3510 	    stat->btkillcnt,
3511 	    stat->rate, le16toh(stat->duration),
3512 	    le32toh(stat->status));
3513 
3514 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3515 	if (qid >= sc->firstaggqueue) {
3516 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3517 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3518 	} else {
3519 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3520 		    le32toh(stat->status) & 0xff);
3521 	}
3522 }
3523 
3524 static void
3525 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3526     struct iwn_rx_data *data)
3527 {
3528 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3529 	struct iwn_tx_ring *ring;
3530 	int qid;
3531 
3532 	qid = desc->qid & 0xf;
3533 	ring = &sc->txq[qid];
3534 
3535 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3536 	    "qid %d idx %d RTS retries %d ACK retries %d nkill %d rate %x duration %d status %x\n",
3537 	    __func__, desc->qid, desc->idx,
3538 	    stat->rtsfailcnt,
3539 	    stat->ackfailcnt,
3540 	    stat->btkillcnt,
3541 	    stat->rate, le16toh(stat->duration),
3542 	    le32toh(stat->status));
3543 
3544 #ifdef notyet
3545 	/* Reset TX scheduler slot. */
3546 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3547 #endif
3548 
3549 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3550 	if (qid >= sc->firstaggqueue) {
3551 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3552 		    stat->rtsfailcnt, stat->ackfailcnt, &stat->status);
3553 	} else {
3554 		iwn_tx_done(sc, desc, stat->rtsfailcnt, stat->ackfailcnt,
3555 		    le16toh(stat->status) & 0xff);
3556 	}
3557 }
3558 
3559 /*
3560  * Adapter-independent backend for TX_DONE firmware notifications.
3561  */
3562 static void
3563 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int rtsfailcnt,
3564     int ackfailcnt, uint8_t status)
3565 {
3566 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3567 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3568 	struct iwn_tx_data *data = &ring->data[desc->idx];
3569 	struct mbuf *m;
3570 	struct ieee80211_node *ni;
3571 
3572 	KASSERT(data->ni != NULL, ("no node"));
3573 
3574 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3575 
3576 	/* Unmap and free mbuf. */
3577 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3578 	bus_dmamap_unload(ring->data_dmat, data->map);
3579 	m = data->m, data->m = NULL;
3580 	ni = data->ni, data->ni = NULL;
3581 
3582 	/*
3583 	 * Update rate control statistics for the node.
3584 	 */
3585 	txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3586 		     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3587 	txs->short_retries = rtsfailcnt;
3588 	txs->long_retries = ackfailcnt;
3589 	if (!(status & IWN_TX_FAIL))
3590 		txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3591 	else {
3592 		switch (status) {
3593 		case IWN_TX_FAIL_SHORT_LIMIT:
3594 			txs->status = IEEE80211_RATECTL_TX_FAIL_SHORT;
3595 			break;
3596 		case IWN_TX_FAIL_LONG_LIMIT:
3597 			txs->status = IEEE80211_RATECTL_TX_FAIL_LONG;
3598 			break;
3599 		case IWN_TX_STATUS_FAIL_LIFE_EXPIRE:
3600 			txs->status = IEEE80211_RATECTL_TX_FAIL_EXPIRED;
3601 			break;
3602 		default:
3603 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3604 			break;
3605 		}
3606 	}
3607 	ieee80211_ratectl_tx_complete(ni, txs);
3608 
3609 	/*
3610 	 * Channels marked for "radar" require traffic to be received
3611 	 * to unlock before we can transmit.  Until traffic is seen
3612 	 * any attempt to transmit is returned immediately with status
3613 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3614 	 * happen on first authenticate after scanning.  To workaround
3615 	 * this we ignore a failure of this sort in AUTH state so the
3616 	 * 802.11 layer will fall back to using a timeout to wait for
3617 	 * the AUTH reply.  This allows the firmware time to see
3618 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3619 	 * unclear why the firmware does not maintain state for
3620 	 * channels recently visited as this would allow immediate
3621 	 * use of the channel after a scan (where we see traffic).
3622 	 */
3623 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3624 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3625 		ieee80211_tx_complete(ni, m, 0);
3626 	else
3627 		ieee80211_tx_complete(ni, m,
3628 		    (status & IWN_TX_FAIL) != 0);
3629 
3630 	sc->sc_tx_timer = 0;
3631 	if (--ring->queued < IWN_TX_RING_LOMARK)
3632 		sc->qfullmsk &= ~(1 << ring->qid);
3633 
3634 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3635 }
3636 
3637 /*
3638  * Process a "command done" firmware notification.  This is where we wakeup
3639  * processes waiting for a synchronous command completion.
3640  */
3641 static void
3642 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3643 {
3644 	struct iwn_tx_ring *ring;
3645 	struct iwn_tx_data *data;
3646 	int cmd_queue_num;
3647 
3648 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3649 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3650 	else
3651 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3652 
3653 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3654 		return;	/* Not a command ack. */
3655 
3656 	ring = &sc->txq[cmd_queue_num];
3657 	data = &ring->data[desc->idx];
3658 
3659 	/* If the command was mapped in an mbuf, free it. */
3660 	if (data->m != NULL) {
3661 		bus_dmamap_sync(ring->data_dmat, data->map,
3662 		    BUS_DMASYNC_POSTWRITE);
3663 		bus_dmamap_unload(ring->data_dmat, data->map);
3664 		m_freem(data->m);
3665 		data->m = NULL;
3666 	}
3667 	wakeup(&ring->desc[desc->idx]);
3668 }
3669 
3670 static void
3671 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3672     int rtsfailcnt, int ackfailcnt, void *stat)
3673 {
3674 	struct iwn_ops *ops = &sc->ops;
3675 	struct iwn_tx_ring *ring = &sc->txq[qid];
3676 	struct ieee80211_ratectl_tx_status *txs = &sc->sc_txs;
3677 	struct iwn_tx_data *data;
3678 	struct mbuf *m;
3679 	struct iwn_node *wn;
3680 	struct ieee80211_node *ni;
3681 	struct ieee80211_tx_ampdu *tap;
3682 	uint64_t bitmap;
3683 	uint32_t *status = stat;
3684 	uint16_t *aggstatus = stat;
3685 	uint16_t ssn;
3686 	uint8_t tid;
3687 	int bit, i, lastidx, *res, seqno, shift, start;
3688 
3689 	/* XXX TODO: status is le16 field! Grr */
3690 
3691 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3692 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: nframes=%d, status=0x%08x\n",
3693 	    __func__,
3694 	    nframes,
3695 	    *status);
3696 
3697 	tap = sc->qid2tap[qid];
3698 	tid = tap->txa_tid;
3699 	wn = (void *)tap->txa_ni;
3700 	ni = tap->txa_ni;
3701 
3702 	/*
3703 	 * XXX TODO: ACK and RTS failures would be nice here!
3704 	 */
3705 
3706 	/*
3707 	 * A-MPDU single frame status - if we failed to transmit it
3708 	 * in A-MPDU, then it may be a permanent failure.
3709 	 *
3710 	 * XXX TODO: check what the Linux iwlwifi driver does here;
3711 	 * there's some permanent and temporary failures that may be
3712 	 * handled differently.
3713 	 */
3714 	if (nframes == 1) {
3715 		txs->flags = IEEE80211_RATECTL_STATUS_SHORT_RETRY |
3716 			     IEEE80211_RATECTL_STATUS_LONG_RETRY;
3717 		txs->short_retries = rtsfailcnt;
3718 		txs->long_retries = ackfailcnt;
3719 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3720 #ifdef	NOT_YET
3721 			printf("ieee80211_send_bar()\n");
3722 #endif
3723 			/*
3724 			 * If we completely fail a transmit, make sure a
3725 			 * notification is pushed up to the rate control
3726 			 * layer.
3727 			 */
3728 			/* XXX */
3729 			txs->status = IEEE80211_RATECTL_TX_FAIL_UNSPECIFIED;
3730 		} else {
3731 			/*
3732 			 * If nframes=1, then we won't be getting a BA for
3733 			 * this frame.  Ensure that we correctly update the
3734 			 * rate control code with how many retries were
3735 			 * needed to send it.
3736 			 */
3737 			txs->status = IEEE80211_RATECTL_TX_SUCCESS;
3738 		}
3739 		ieee80211_ratectl_tx_complete(ni, txs);
3740 	}
3741 
3742 	bitmap = 0;
3743 	start = idx;
3744 	for (i = 0; i < nframes; i++) {
3745 		if (le16toh(aggstatus[i * 2]) & 0xc)
3746 			continue;
3747 
3748 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3749 		bit = idx - start;
3750 		shift = 0;
3751 		if (bit >= 64) {
3752 			shift = 0x100 - idx + start;
3753 			bit = 0;
3754 			start = idx;
3755 		} else if (bit <= -64)
3756 			bit = 0x100 - start + idx;
3757 		else if (bit < 0) {
3758 			shift = start - idx;
3759 			start = idx;
3760 			bit = 0;
3761 		}
3762 		bitmap = bitmap << shift;
3763 		bitmap |= 1ULL << bit;
3764 	}
3765 	tap = sc->qid2tap[qid];
3766 	tid = tap->txa_tid;
3767 	wn = (void *)tap->txa_ni;
3768 	wn->agg[tid].bitmap = bitmap;
3769 	wn->agg[tid].startidx = start;
3770 	wn->agg[tid].nframes = nframes;
3771 
3772 	res = NULL;
3773 	ssn = 0;
3774 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3775 		res = tap->txa_private;
3776 		ssn = tap->txa_start & 0xfff;
3777 	}
3778 
3779 	/* This is going nframes DWORDS into the descriptor? */
3780 	seqno = le32toh(*(status + nframes)) & 0xfff;
3781 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3782 		data = &ring->data[ring->read];
3783 
3784 		/* Unmap and free mbuf. */
3785 		bus_dmamap_sync(ring->data_dmat, data->map,
3786 		    BUS_DMASYNC_POSTWRITE);
3787 		bus_dmamap_unload(ring->data_dmat, data->map);
3788 		m = data->m, data->m = NULL;
3789 		ni = data->ni, data->ni = NULL;
3790 
3791 		KASSERT(ni != NULL, ("no node"));
3792 		KASSERT(m != NULL, ("no mbuf"));
3793 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: freeing m=%p\n", __func__, m);
3794 		ieee80211_tx_complete(ni, m, 1);
3795 
3796 		ring->queued--;
3797 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3798 	}
3799 
3800 	if (ring->queued == 0 && res != NULL) {
3801 		iwn_nic_lock(sc);
3802 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3803 		iwn_nic_unlock(sc);
3804 		sc->qid2tap[qid] = NULL;
3805 		free(res, M_DEVBUF);
3806 		return;
3807 	}
3808 
3809 	sc->sc_tx_timer = 0;
3810 	if (ring->queued < IWN_TX_RING_LOMARK)
3811 		sc->qfullmsk &= ~(1 << ring->qid);
3812 
3813 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3814 }
3815 
3816 /*
3817  * Process an INT_FH_RX or INT_SW_RX interrupt.
3818  */
3819 static void
3820 iwn_notif_intr(struct iwn_softc *sc)
3821 {
3822 	struct iwn_ops *ops = &sc->ops;
3823 	struct ieee80211com *ic = &sc->sc_ic;
3824 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3825 	uint16_t hw;
3826 
3827 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3828 	    BUS_DMASYNC_POSTREAD);
3829 
3830 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3831 	while (sc->rxq.cur != hw) {
3832 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3833 		struct iwn_rx_desc *desc;
3834 
3835 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3836 		    BUS_DMASYNC_POSTREAD);
3837 		desc = mtod(data->m, struct iwn_rx_desc *);
3838 
3839 		DPRINTF(sc, IWN_DEBUG_RECV,
3840 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3841 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3842 		    desc->type, iwn_intr_str(desc->type),
3843 		    le16toh(desc->len));
3844 
3845 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3846 			iwn_cmd_done(sc, desc);
3847 
3848 		switch (desc->type) {
3849 		case IWN_RX_PHY:
3850 			iwn_rx_phy(sc, desc, data);
3851 			break;
3852 
3853 		case IWN_RX_DONE:		/* 4965AGN only. */
3854 		case IWN_MPDU_RX_DONE:
3855 			/* An 802.11 frame has been received. */
3856 			iwn_rx_done(sc, desc, data);
3857 			break;
3858 
3859 		case IWN_RX_COMPRESSED_BA:
3860 			/* A Compressed BlockAck has been received. */
3861 			iwn_rx_compressed_ba(sc, desc, data);
3862 			break;
3863 
3864 		case IWN_TX_DONE:
3865 			/* An 802.11 frame has been transmitted. */
3866 			ops->tx_done(sc, desc, data);
3867 			break;
3868 
3869 		case IWN_RX_STATISTICS:
3870 		case IWN_BEACON_STATISTICS:
3871 			iwn_rx_statistics(sc, desc, data);
3872 			break;
3873 
3874 		case IWN_BEACON_MISSED:
3875 		{
3876 			struct iwn_beacon_missed *miss =
3877 			    (struct iwn_beacon_missed *)(desc + 1);
3878 			int misses;
3879 
3880 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3881 			    BUS_DMASYNC_POSTREAD);
3882 			misses = le32toh(miss->consecutive);
3883 
3884 			DPRINTF(sc, IWN_DEBUG_STATE,
3885 			    "%s: beacons missed %d/%d\n", __func__,
3886 			    misses, le32toh(miss->total));
3887 			/*
3888 			 * If more than 5 consecutive beacons are missed,
3889 			 * reinitialize the sensitivity state machine.
3890 			 */
3891 			if (vap->iv_state == IEEE80211_S_RUN &&
3892 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3893 				if (misses > 5)
3894 					(void)iwn_init_sensitivity(sc);
3895 				if (misses >= vap->iv_bmissthreshold) {
3896 					IWN_UNLOCK(sc);
3897 					ieee80211_beacon_miss(ic);
3898 					IWN_LOCK(sc);
3899 				}
3900 			}
3901 			break;
3902 		}
3903 		case IWN_UC_READY:
3904 		{
3905 			struct iwn_ucode_info *uc =
3906 			    (struct iwn_ucode_info *)(desc + 1);
3907 
3908 			/* The microcontroller is ready. */
3909 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3910 			    BUS_DMASYNC_POSTREAD);
3911 			DPRINTF(sc, IWN_DEBUG_RESET,
3912 			    "microcode alive notification version=%d.%d "
3913 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3914 			    uc->subtype, le32toh(uc->valid));
3915 
3916 			if (le32toh(uc->valid) != 1) {
3917 				device_printf(sc->sc_dev,
3918 				    "microcontroller initialization failed");
3919 				break;
3920 			}
3921 			if (uc->subtype == IWN_UCODE_INIT) {
3922 				/* Save microcontroller report. */
3923 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3924 			}
3925 			/* Save the address of the error log in SRAM. */
3926 			sc->errptr = le32toh(uc->errptr);
3927 			break;
3928 		}
3929 		case IWN_STATE_CHANGED:
3930 		{
3931 			/*
3932 			 * State change allows hardware switch change to be
3933 			 * noted. However, we handle this in iwn_intr as we
3934 			 * get both the enable/disble intr.
3935 			 */
3936 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3937 			    BUS_DMASYNC_POSTREAD);
3938 #ifdef	IWN_DEBUG
3939 			uint32_t *status = (uint32_t *)(desc + 1);
3940 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3941 			    "state changed to %x\n",
3942 			    le32toh(*status));
3943 #endif
3944 			break;
3945 		}
3946 		case IWN_START_SCAN:
3947 		{
3948 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3949 			    BUS_DMASYNC_POSTREAD);
3950 #ifdef	IWN_DEBUG
3951 			struct iwn_start_scan *scan =
3952 			    (struct iwn_start_scan *)(desc + 1);
3953 			DPRINTF(sc, IWN_DEBUG_ANY,
3954 			    "%s: scanning channel %d status %x\n",
3955 			    __func__, scan->chan, le32toh(scan->status));
3956 #endif
3957 			break;
3958 		}
3959 		case IWN_STOP_SCAN:
3960 		{
3961 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3962 			    BUS_DMASYNC_POSTREAD);
3963 #ifdef	IWN_DEBUG
3964 			struct iwn_stop_scan *scan =
3965 			    (struct iwn_stop_scan *)(desc + 1);
3966 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3967 			    "scan finished nchan=%d status=%d chan=%d\n",
3968 			    scan->nchan, scan->status, scan->chan);
3969 #endif
3970 			sc->sc_is_scanning = 0;
3971 			callout_stop(&sc->scan_timeout);
3972 			IWN_UNLOCK(sc);
3973 			ieee80211_scan_next(vap);
3974 			IWN_LOCK(sc);
3975 			break;
3976 		}
3977 		case IWN5000_CALIBRATION_RESULT:
3978 			iwn5000_rx_calib_results(sc, desc, data);
3979 			break;
3980 
3981 		case IWN5000_CALIBRATION_DONE:
3982 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3983 			wakeup(sc);
3984 			break;
3985 		}
3986 
3987 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3988 	}
3989 
3990 	/* Tell the firmware what we have processed. */
3991 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3992 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3993 }
3994 
3995 /*
3996  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3997  * from power-down sleep mode.
3998  */
3999 static void
4000 iwn_wakeup_intr(struct iwn_softc *sc)
4001 {
4002 	int qid;
4003 
4004 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
4005 	    __func__);
4006 
4007 	/* Wakeup RX and TX rings. */
4008 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
4009 	for (qid = 0; qid < sc->ntxqs; qid++) {
4010 		struct iwn_tx_ring *ring = &sc->txq[qid];
4011 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
4012 	}
4013 }
4014 
4015 static void
4016 iwn_rftoggle_intr(struct iwn_softc *sc)
4017 {
4018 	struct ieee80211com *ic = &sc->sc_ic;
4019 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
4020 
4021 	IWN_LOCK_ASSERT(sc);
4022 
4023 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
4024 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
4025 	if (tmp & IWN_GP_CNTRL_RFKILL)
4026 		ieee80211_runtask(ic, &sc->sc_radioon_task);
4027 	else
4028 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
4029 }
4030 
4031 /*
4032  * Dump the error log of the firmware when a firmware panic occurs.  Although
4033  * we can't debug the firmware because it is neither open source nor free, it
4034  * can help us to identify certain classes of problems.
4035  */
4036 static void
4037 iwn_fatal_intr(struct iwn_softc *sc)
4038 {
4039 	struct iwn_fw_dump dump;
4040 	int i;
4041 
4042 	IWN_LOCK_ASSERT(sc);
4043 
4044 	/* Force a complete recalibration on next init. */
4045 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
4046 
4047 	/* Check that the error log address is valid. */
4048 	if (sc->errptr < IWN_FW_DATA_BASE ||
4049 	    sc->errptr + sizeof (dump) >
4050 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
4051 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
4052 		    sc->errptr);
4053 		return;
4054 	}
4055 	if (iwn_nic_lock(sc) != 0) {
4056 		printf("%s: could not read firmware error log\n", __func__);
4057 		return;
4058 	}
4059 	/* Read firmware error log from SRAM. */
4060 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
4061 	    sizeof (dump) / sizeof (uint32_t));
4062 	iwn_nic_unlock(sc);
4063 
4064 	if (dump.valid == 0) {
4065 		printf("%s: firmware error log is empty\n", __func__);
4066 		return;
4067 	}
4068 	printf("firmware error log:\n");
4069 	printf("  error type      = \"%s\" (0x%08X)\n",
4070 	    (dump.id < nitems(iwn_fw_errmsg)) ?
4071 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
4072 	    dump.id);
4073 	printf("  program counter = 0x%08X\n", dump.pc);
4074 	printf("  source line     = 0x%08X\n", dump.src_line);
4075 	printf("  error data      = 0x%08X%08X\n",
4076 	    dump.error_data[0], dump.error_data[1]);
4077 	printf("  branch link     = 0x%08X%08X\n",
4078 	    dump.branch_link[0], dump.branch_link[1]);
4079 	printf("  interrupt link  = 0x%08X%08X\n",
4080 	    dump.interrupt_link[0], dump.interrupt_link[1]);
4081 	printf("  time            = %u\n", dump.time[0]);
4082 
4083 	/* Dump driver status (TX and RX rings) while we're here. */
4084 	printf("driver status:\n");
4085 	for (i = 0; i < sc->ntxqs; i++) {
4086 		struct iwn_tx_ring *ring = &sc->txq[i];
4087 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
4088 		    i, ring->qid, ring->cur, ring->queued);
4089 	}
4090 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
4091 }
4092 
4093 static void
4094 iwn_intr(void *arg)
4095 {
4096 	struct iwn_softc *sc = arg;
4097 	uint32_t r1, r2, tmp;
4098 
4099 	IWN_LOCK(sc);
4100 
4101 	/* Disable interrupts. */
4102 	IWN_WRITE(sc, IWN_INT_MASK, 0);
4103 
4104 	/* Read interrupts from ICT (fast) or from registers (slow). */
4105 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4106 		bus_dmamap_sync(sc->ict_dma.tag, sc->ict_dma.map,
4107 		    BUS_DMASYNC_POSTREAD);
4108 		tmp = 0;
4109 		while (sc->ict[sc->ict_cur] != 0) {
4110 			tmp |= sc->ict[sc->ict_cur];
4111 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
4112 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
4113 		}
4114 		tmp = le32toh(tmp);
4115 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
4116 			tmp = 0;
4117 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
4118 			tmp |= 0x8000;
4119 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
4120 		r2 = 0;	/* Unused. */
4121 	} else {
4122 		r1 = IWN_READ(sc, IWN_INT);
4123 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) {
4124 			IWN_UNLOCK(sc);
4125 			return;	/* Hardware gone! */
4126 		}
4127 		r2 = IWN_READ(sc, IWN_FH_INT);
4128 	}
4129 
4130 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
4131     , r1, r2);
4132 
4133 	if (r1 == 0 && r2 == 0)
4134 		goto done;	/* Interrupt not for us. */
4135 
4136 	/* Acknowledge interrupts. */
4137 	IWN_WRITE(sc, IWN_INT, r1);
4138 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
4139 		IWN_WRITE(sc, IWN_FH_INT, r2);
4140 
4141 	if (r1 & IWN_INT_RF_TOGGLED) {
4142 		iwn_rftoggle_intr(sc);
4143 		goto done;
4144 	}
4145 	if (r1 & IWN_INT_CT_REACHED) {
4146 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
4147 		    __func__);
4148 	}
4149 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
4150 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
4151 		    __func__);
4152 #ifdef	IWN_DEBUG
4153 		iwn_debug_register(sc);
4154 #endif
4155 		/* Dump firmware error log and stop. */
4156 		iwn_fatal_intr(sc);
4157 
4158 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
4159 		goto done;
4160 	}
4161 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
4162 	    (r2 & IWN_FH_INT_RX)) {
4163 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
4164 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
4165 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
4166 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4167 			    IWN_INT_PERIODIC_DIS);
4168 			iwn_notif_intr(sc);
4169 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4170 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4171 				    IWN_INT_PERIODIC_ENA);
4172 			}
4173 		} else
4174 			iwn_notif_intr(sc);
4175 	}
4176 
4177 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4178 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4179 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4180 		wakeup(sc);	/* FH DMA transfer completed. */
4181 	}
4182 
4183 	if (r1 & IWN_INT_ALIVE)
4184 		wakeup(sc);	/* Firmware is alive. */
4185 
4186 	if (r1 & IWN_INT_WAKEUP)
4187 		iwn_wakeup_intr(sc);
4188 
4189 done:
4190 	/* Re-enable interrupts. */
4191 	if (sc->sc_flags & IWN_FLAG_RUNNING)
4192 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4193 
4194 	IWN_UNLOCK(sc);
4195 }
4196 
4197 /*
4198  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4199  * 5000 adapters use a slightly different format).
4200  */
4201 static void
4202 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4203     uint16_t len)
4204 {
4205 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4206 
4207 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4208 
4209 	*w = htole16(len + 8);
4210 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4211 	    BUS_DMASYNC_PREWRITE);
4212 	if (idx < IWN_SCHED_WINSZ) {
4213 		*(w + IWN_TX_RING_COUNT) = *w;
4214 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4215 		    BUS_DMASYNC_PREWRITE);
4216 	}
4217 }
4218 
4219 static void
4220 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4221     uint16_t len)
4222 {
4223 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4224 
4225 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4226 
4227 	*w = htole16(id << 12 | (len + 8));
4228 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4229 	    BUS_DMASYNC_PREWRITE);
4230 	if (idx < IWN_SCHED_WINSZ) {
4231 		*(w + IWN_TX_RING_COUNT) = *w;
4232 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4233 		    BUS_DMASYNC_PREWRITE);
4234 	}
4235 }
4236 
4237 #ifdef notyet
4238 static void
4239 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4240 {
4241 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4242 
4243 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4244 
4245 	*w = (*w & htole16(0xf000)) | htole16(1);
4246 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4247 	    BUS_DMASYNC_PREWRITE);
4248 	if (idx < IWN_SCHED_WINSZ) {
4249 		*(w + IWN_TX_RING_COUNT) = *w;
4250 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4251 		    BUS_DMASYNC_PREWRITE);
4252 	}
4253 }
4254 #endif
4255 
4256 /*
4257  * Check whether OFDM 11g protection will be enabled for the given rate.
4258  *
4259  * The original driver code only enabled protection for OFDM rates.
4260  * It didn't check to see whether it was operating in 11a or 11bg mode.
4261  */
4262 static int
4263 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4264     struct ieee80211vap *vap, uint8_t rate)
4265 {
4266 	struct ieee80211com *ic = vap->iv_ic;
4267 
4268 	/*
4269 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4270 	 * 11bg protection.
4271 	 */
4272 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4273 		return (0);
4274 	}
4275 
4276 	/*
4277 	 * 11bg protection not enabled? Then don't use it.
4278 	 */
4279 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4280 		return (0);
4281 
4282 	/*
4283 	 * If it's an 11n rate - no protection.
4284 	 * We'll do it via a specific 11n check.
4285 	 */
4286 	if (rate & IEEE80211_RATE_MCS) {
4287 		return (0);
4288 	}
4289 
4290 	/*
4291 	 * Do a rate table lookup.  If the PHY is CCK,
4292 	 * don't do protection.
4293 	 */
4294 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4295 		return (0);
4296 
4297 	/*
4298 	 * Yup, enable protection.
4299 	 */
4300 	return (1);
4301 }
4302 
4303 /*
4304  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4305  * the link quality table that reflects this particular entry.
4306  */
4307 static int
4308 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4309     uint8_t rate)
4310 {
4311 	struct ieee80211_rateset *rs;
4312 	int is_11n;
4313 	int nr;
4314 	int i;
4315 	uint8_t cmp_rate;
4316 
4317 	/*
4318 	 * Figure out if we're using 11n or not here.
4319 	 */
4320 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4321 		is_11n = 1;
4322 	else
4323 		is_11n = 0;
4324 
4325 	/*
4326 	 * Use the correct rate table.
4327 	 */
4328 	if (is_11n) {
4329 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4330 		nr = ni->ni_htrates.rs_nrates;
4331 	} else {
4332 		rs = &ni->ni_rates;
4333 		nr = rs->rs_nrates;
4334 	}
4335 
4336 	/*
4337 	 * Find the relevant link quality entry in the table.
4338 	 */
4339 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4340 		/*
4341 		 * The link quality table index starts at 0 == highest
4342 		 * rate, so we walk the rate table backwards.
4343 		 */
4344 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4345 		if (rate & IEEE80211_RATE_MCS)
4346 			cmp_rate |= IEEE80211_RATE_MCS;
4347 
4348 #if 0
4349 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4350 		    __func__,
4351 		    i,
4352 		    nr,
4353 		    rate,
4354 		    cmp_rate);
4355 #endif
4356 
4357 		if (cmp_rate == rate)
4358 			return (i);
4359 	}
4360 
4361 	/* Failed? Start at the end */
4362 	return (IWN_MAX_TX_RETRIES - 1);
4363 }
4364 
4365 static int
4366 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4367 {
4368 	struct iwn_ops *ops = &sc->ops;
4369 	const struct ieee80211_txparam *tp;
4370 	struct ieee80211vap *vap = ni->ni_vap;
4371 	struct ieee80211com *ic = ni->ni_ic;
4372 	struct iwn_node *wn = (void *)ni;
4373 	struct iwn_tx_ring *ring;
4374 	struct iwn_tx_desc *desc;
4375 	struct iwn_tx_data *data;
4376 	struct iwn_tx_cmd *cmd;
4377 	struct iwn_cmd_data *tx;
4378 	struct ieee80211_frame *wh;
4379 	struct ieee80211_key *k = NULL;
4380 	struct mbuf *m1;
4381 	uint32_t flags;
4382 	uint16_t qos;
4383 	u_int hdrlen;
4384 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4385 	uint8_t tid, type;
4386 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4387 
4388 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4389 
4390 	IWN_LOCK_ASSERT(sc);
4391 
4392 	wh = mtod(m, struct ieee80211_frame *);
4393 	hdrlen = ieee80211_anyhdrsize(wh);
4394 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4395 
4396 	/* Select EDCA Access Category and TX ring for this frame. */
4397 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4398 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4399 		tid = qos & IEEE80211_QOS_TID;
4400 	} else {
4401 		qos = 0;
4402 		tid = 0;
4403 	}
4404 	ac = M_WME_GETAC(m);
4405 	if (m->m_flags & M_AMPDU_MPDU) {
4406 		uint16_t seqno;
4407 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4408 
4409 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4410 			return EINVAL;
4411 		}
4412 
4413 		/*
4414 		 * Queue this frame to the hardware ring that we've
4415 		 * negotiated AMPDU TX on.
4416 		 *
4417 		 * Note that the sequence number must match the TX slot
4418 		 * being used!
4419 		 */
4420 		ac = *(int *)tap->txa_private;
4421 		seqno = ni->ni_txseqs[tid];
4422 		*(uint16_t *)wh->i_seq =
4423 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4424 		ring = &sc->txq[ac];
4425 		if ((seqno % 256) != ring->cur) {
4426 			device_printf(sc->sc_dev,
4427 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4428 			    __func__,
4429 			    m,
4430 			    seqno,
4431 			    seqno % 256,
4432 			    ring->cur);
4433 		}
4434 		ni->ni_txseqs[tid]++;
4435 	}
4436 	ring = &sc->txq[ac];
4437 	desc = &ring->desc[ring->cur];
4438 	data = &ring->data[ring->cur];
4439 
4440 	/* Choose a TX rate index. */
4441 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4442 	if (type == IEEE80211_FC0_TYPE_MGT)
4443 		rate = tp->mgmtrate;
4444 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4445 		rate = tp->mcastrate;
4446 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4447 		rate = tp->ucastrate;
4448 	else if (m->m_flags & M_EAPOL)
4449 		rate = tp->mgmtrate;
4450 	else {
4451 		/* XXX pass pktlen */
4452 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4453 		rate = ni->ni_txrate;
4454 	}
4455 
4456 	/* Encrypt the frame if need be. */
4457 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4458 		/* Retrieve key for TX. */
4459 		k = ieee80211_crypto_encap(ni, m);
4460 		if (k == NULL) {
4461 			return ENOBUFS;
4462 		}
4463 		/* 802.11 header may have moved. */
4464 		wh = mtod(m, struct ieee80211_frame *);
4465 	}
4466 	totlen = m->m_pkthdr.len;
4467 
4468 	if (ieee80211_radiotap_active_vap(vap)) {
4469 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4470 
4471 		tap->wt_flags = 0;
4472 		tap->wt_rate = rate;
4473 		if (k != NULL)
4474 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4475 
4476 		ieee80211_radiotap_tx(vap, m);
4477 	}
4478 
4479 	/* Prepare TX firmware command. */
4480 	cmd = &ring->cmd[ring->cur];
4481 	cmd->code = IWN_CMD_TX_DATA;
4482 	cmd->flags = 0;
4483 	cmd->qid = ring->qid;
4484 	cmd->idx = ring->cur;
4485 
4486 	tx = (struct iwn_cmd_data *)cmd->data;
4487 	/* NB: No need to clear tx, all fields are reinitialized here. */
4488 	tx->scratch = 0;	/* clear "scratch" area */
4489 
4490 	flags = 0;
4491 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4492 		/* Unicast frame, check if an ACK is expected. */
4493 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4494 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4495 			flags |= IWN_TX_NEED_ACK;
4496 	}
4497 	if ((wh->i_fc[0] &
4498 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4499 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4500 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4501 
4502 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4503 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4504 
4505 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4506 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4507 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4508 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4509 			flags |= IWN_TX_NEED_RTS;
4510 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4511 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4512 				flags |= IWN_TX_NEED_CTS;
4513 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4514 				flags |= IWN_TX_NEED_RTS;
4515 		} else if ((rate & IEEE80211_RATE_MCS) &&
4516 			(ic->ic_htprotmode == IEEE80211_PROT_RTSCTS)) {
4517 			flags |= IWN_TX_NEED_RTS;
4518 		}
4519 
4520 		/* XXX HT protection? */
4521 
4522 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4523 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4524 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4525 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4526 				flags |= IWN_TX_NEED_PROTECTION;
4527 			} else
4528 				flags |= IWN_TX_FULL_TXOP;
4529 		}
4530 	}
4531 
4532 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4533 	    type != IEEE80211_FC0_TYPE_DATA)
4534 		tx->id = sc->broadcast_id;
4535 	else
4536 		tx->id = wn->id;
4537 
4538 	if (type == IEEE80211_FC0_TYPE_MGT) {
4539 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4540 
4541 		/* Tell HW to set timestamp in probe responses. */
4542 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4543 			flags |= IWN_TX_INSERT_TSTAMP;
4544 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4545 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4546 			tx->timeout = htole16(3);
4547 		else
4548 			tx->timeout = htole16(2);
4549 	} else
4550 		tx->timeout = htole16(0);
4551 
4552 	if (hdrlen & 3) {
4553 		/* First segment length must be a multiple of 4. */
4554 		flags |= IWN_TX_NEED_PADDING;
4555 		pad = 4 - (hdrlen & 3);
4556 	} else
4557 		pad = 0;
4558 
4559 	tx->len = htole16(totlen);
4560 	tx->tid = tid;
4561 	tx->rts_ntries = 60;
4562 	tx->data_ntries = 15;
4563 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4564 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4565 	if (tx->id == sc->broadcast_id) {
4566 		/* Group or management frame. */
4567 		tx->linkq = 0;
4568 	} else {
4569 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4570 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4571 	}
4572 
4573 	/* Set physical address of "scratch area". */
4574 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4575 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4576 
4577 	/* Copy 802.11 header in TX command. */
4578 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4579 
4580 	/* Trim 802.11 header. */
4581 	m_adj(m, hdrlen);
4582 	tx->security = 0;
4583 	tx->flags = htole32(flags);
4584 
4585 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4586 	    &nsegs, BUS_DMA_NOWAIT);
4587 	if (error != 0) {
4588 		if (error != EFBIG) {
4589 			device_printf(sc->sc_dev,
4590 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4591 			return error;
4592 		}
4593 		/* Too many DMA segments, linearize mbuf. */
4594 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4595 		if (m1 == NULL) {
4596 			device_printf(sc->sc_dev,
4597 			    "%s: could not defrag mbuf\n", __func__);
4598 			return ENOBUFS;
4599 		}
4600 		m = m1;
4601 
4602 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4603 		    segs, &nsegs, BUS_DMA_NOWAIT);
4604 		if (error != 0) {
4605 			device_printf(sc->sc_dev,
4606 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4607 			return error;
4608 		}
4609 	}
4610 
4611 	data->m = m;
4612 	data->ni = ni;
4613 
4614 	DPRINTF(sc, IWN_DEBUG_XMIT,
4615 	    "%s: qid %d idx %d len %d nsegs %d flags 0x%08x rate 0x%04x plcp 0x%08x\n",
4616 	    __func__,
4617 	    ring->qid,
4618 	    ring->cur,
4619 	    m->m_pkthdr.len,
4620 	    nsegs,
4621 	    flags,
4622 	    rate,
4623 	    tx->rate);
4624 
4625 	/* Fill TX descriptor. */
4626 	desc->nsegs = 1;
4627 	if (m->m_len != 0)
4628 		desc->nsegs += nsegs;
4629 	/* First DMA segment is used by the TX command. */
4630 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4631 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4632 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4633 	/* Other DMA segments are for data payload. */
4634 	seg = &segs[0];
4635 	for (i = 1; i <= nsegs; i++) {
4636 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4637 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4638 		    seg->ds_len << 4);
4639 		seg++;
4640 	}
4641 
4642 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4643 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4644 	    BUS_DMASYNC_PREWRITE);
4645 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4646 	    BUS_DMASYNC_PREWRITE);
4647 
4648 	/* Update TX scheduler. */
4649 	if (ring->qid >= sc->firstaggqueue)
4650 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4651 
4652 	/* Kick TX ring. */
4653 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4654 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4655 
4656 	/* Mark TX ring as full if we reach a certain threshold. */
4657 	if (++ring->queued > IWN_TX_RING_HIMARK)
4658 		sc->qfullmsk |= 1 << ring->qid;
4659 
4660 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4661 
4662 	return 0;
4663 }
4664 
4665 static int
4666 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4667     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4668 {
4669 	struct iwn_ops *ops = &sc->ops;
4670 	struct ieee80211vap *vap = ni->ni_vap;
4671 	struct iwn_tx_cmd *cmd;
4672 	struct iwn_cmd_data *tx;
4673 	struct ieee80211_frame *wh;
4674 	struct iwn_tx_ring *ring;
4675 	struct iwn_tx_desc *desc;
4676 	struct iwn_tx_data *data;
4677 	struct mbuf *m1;
4678 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4679 	uint32_t flags;
4680 	u_int hdrlen;
4681 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4682 	uint8_t type;
4683 
4684 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4685 
4686 	IWN_LOCK_ASSERT(sc);
4687 
4688 	wh = mtod(m, struct ieee80211_frame *);
4689 	hdrlen = ieee80211_anyhdrsize(wh);
4690 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4691 
4692 	ac = params->ibp_pri & 3;
4693 
4694 	ring = &sc->txq[ac];
4695 	desc = &ring->desc[ring->cur];
4696 	data = &ring->data[ring->cur];
4697 
4698 	/* Choose a TX rate. */
4699 	rate = params->ibp_rate0;
4700 	totlen = m->m_pkthdr.len;
4701 
4702 	/* Prepare TX firmware command. */
4703 	cmd = &ring->cmd[ring->cur];
4704 	cmd->code = IWN_CMD_TX_DATA;
4705 	cmd->flags = 0;
4706 	cmd->qid = ring->qid;
4707 	cmd->idx = ring->cur;
4708 
4709 	tx = (struct iwn_cmd_data *)cmd->data;
4710 	/* NB: No need to clear tx, all fields are reinitialized here. */
4711 	tx->scratch = 0;	/* clear "scratch" area */
4712 
4713 	flags = 0;
4714 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4715 		flags |= IWN_TX_NEED_ACK;
4716 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4717 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4718 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4719 			flags &= ~IWN_TX_NEED_RTS;
4720 			flags |= IWN_TX_NEED_PROTECTION;
4721 		} else
4722 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4723 	}
4724 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4725 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4726 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4727 			flags &= ~IWN_TX_NEED_CTS;
4728 			flags |= IWN_TX_NEED_PROTECTION;
4729 		} else
4730 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4731 	}
4732 	if (type == IEEE80211_FC0_TYPE_MGT) {
4733 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4734 
4735 		/* Tell HW to set timestamp in probe responses. */
4736 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4737 			flags |= IWN_TX_INSERT_TSTAMP;
4738 
4739 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4740 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4741 			tx->timeout = htole16(3);
4742 		else
4743 			tx->timeout = htole16(2);
4744 	} else
4745 		tx->timeout = htole16(0);
4746 
4747 	if (hdrlen & 3) {
4748 		/* First segment length must be a multiple of 4. */
4749 		flags |= IWN_TX_NEED_PADDING;
4750 		pad = 4 - (hdrlen & 3);
4751 	} else
4752 		pad = 0;
4753 
4754 	if (ieee80211_radiotap_active_vap(vap)) {
4755 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4756 
4757 		tap->wt_flags = 0;
4758 		tap->wt_rate = rate;
4759 
4760 		ieee80211_radiotap_tx(vap, m);
4761 	}
4762 
4763 	tx->len = htole16(totlen);
4764 	tx->tid = 0;
4765 	tx->id = sc->broadcast_id;
4766 	tx->rts_ntries = params->ibp_try1;
4767 	tx->data_ntries = params->ibp_try0;
4768 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4769 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4770 
4771 	/* Group or management frame. */
4772 	tx->linkq = 0;
4773 
4774 	/* Set physical address of "scratch area". */
4775 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4776 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4777 
4778 	/* Copy 802.11 header in TX command. */
4779 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4780 
4781 	/* Trim 802.11 header. */
4782 	m_adj(m, hdrlen);
4783 	tx->security = 0;
4784 	tx->flags = htole32(flags);
4785 
4786 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4787 	    &nsegs, BUS_DMA_NOWAIT);
4788 	if (error != 0) {
4789 		if (error != EFBIG) {
4790 			device_printf(sc->sc_dev,
4791 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4792 			return error;
4793 		}
4794 		/* Too many DMA segments, linearize mbuf. */
4795 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER - 1);
4796 		if (m1 == NULL) {
4797 			device_printf(sc->sc_dev,
4798 			    "%s: could not defrag mbuf\n", __func__);
4799 			return ENOBUFS;
4800 		}
4801 		m = m1;
4802 
4803 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4804 		    segs, &nsegs, BUS_DMA_NOWAIT);
4805 		if (error != 0) {
4806 			device_printf(sc->sc_dev,
4807 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4808 			return error;
4809 		}
4810 	}
4811 
4812 	data->m = m;
4813 	data->ni = ni;
4814 
4815 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4816 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4817 
4818 	/* Fill TX descriptor. */
4819 	desc->nsegs = 1;
4820 	if (m->m_len != 0)
4821 		desc->nsegs += nsegs;
4822 	/* First DMA segment is used by the TX command. */
4823 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4824 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4825 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4826 	/* Other DMA segments are for data payload. */
4827 	seg = &segs[0];
4828 	for (i = 1; i <= nsegs; i++) {
4829 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4830 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4831 		    seg->ds_len << 4);
4832 		seg++;
4833 	}
4834 
4835 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4836 	bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
4837 	    BUS_DMASYNC_PREWRITE);
4838 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4839 	    BUS_DMASYNC_PREWRITE);
4840 
4841 	/* Update TX scheduler. */
4842 	if (ring->qid >= sc->firstaggqueue)
4843 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4844 
4845 	/* Kick TX ring. */
4846 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4847 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4848 
4849 	/* Mark TX ring as full if we reach a certain threshold. */
4850 	if (++ring->queued > IWN_TX_RING_HIMARK)
4851 		sc->qfullmsk |= 1 << ring->qid;
4852 
4853 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4854 
4855 	return 0;
4856 }
4857 
4858 static void
4859 iwn_xmit_task(void *arg0, int pending)
4860 {
4861 	struct iwn_softc *sc = arg0;
4862 	struct ieee80211_node *ni;
4863 	struct mbuf *m;
4864 	int error;
4865 	struct ieee80211_bpf_params p;
4866 	int have_p;
4867 
4868 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: called\n", __func__);
4869 
4870 	IWN_LOCK(sc);
4871 	/*
4872 	 * Dequeue frames, attempt to transmit,
4873 	 * then disable beaconwait when we're done.
4874 	 */
4875 	while ((m = mbufq_dequeue(&sc->sc_xmit_queue)) != NULL) {
4876 		have_p = 0;
4877 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4878 
4879 		/* Get xmit params if appropriate */
4880 		if (ieee80211_get_xmit_params(m, &p) == 0)
4881 			have_p = 1;
4882 
4883 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: m=%p, have_p=%d\n",
4884 		    __func__, m, have_p);
4885 
4886 		/* If we have xmit params, use them */
4887 		if (have_p)
4888 			error = iwn_tx_data_raw(sc, m, ni, &p);
4889 		else
4890 			error = iwn_tx_data(sc, m, ni);
4891 
4892 		if (error != 0) {
4893 			if_inc_counter(ni->ni_vap->iv_ifp,
4894 			    IFCOUNTER_OERRORS, 1);
4895 			ieee80211_free_node(ni);
4896 			m_freem(m);
4897 		}
4898 	}
4899 
4900 	sc->sc_beacon_wait = 0;
4901 	IWN_UNLOCK(sc);
4902 }
4903 
4904 /*
4905  * raw frame xmit - free node/reference if failed.
4906  */
4907 static int
4908 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4909     const struct ieee80211_bpf_params *params)
4910 {
4911 	struct ieee80211com *ic = ni->ni_ic;
4912 	struct iwn_softc *sc = ic->ic_softc;
4913 	int error = 0;
4914 
4915 	DPRINTF(sc, IWN_DEBUG_XMIT | IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4916 
4917 	IWN_LOCK(sc);
4918 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0) {
4919 		m_freem(m);
4920 		IWN_UNLOCK(sc);
4921 		return (ENETDOWN);
4922 	}
4923 
4924 	/* queue frame if we have to */
4925 	if (sc->sc_beacon_wait) {
4926 		if (iwn_xmit_queue_enqueue(sc, m) != 0) {
4927 			m_freem(m);
4928 			IWN_UNLOCK(sc);
4929 			return (ENOBUFS);
4930 		}
4931 		/* Queued, so just return OK */
4932 		IWN_UNLOCK(sc);
4933 		return (0);
4934 	}
4935 
4936 	if (params == NULL) {
4937 		/*
4938 		 * Legacy path; interpret frame contents to decide
4939 		 * precisely how to send the frame.
4940 		 */
4941 		error = iwn_tx_data(sc, m, ni);
4942 	} else {
4943 		/*
4944 		 * Caller supplied explicit parameters to use in
4945 		 * sending the frame.
4946 		 */
4947 		error = iwn_tx_data_raw(sc, m, ni, params);
4948 	}
4949 	if (error == 0)
4950 		sc->sc_tx_timer = 5;
4951 	else
4952 		m_freem(m);
4953 
4954 	IWN_UNLOCK(sc);
4955 
4956 	DPRINTF(sc, IWN_DEBUG_TRACE | IWN_DEBUG_XMIT, "->%s: end\n",__func__);
4957 
4958 	return (error);
4959 }
4960 
4961 /*
4962  * transmit - don't free mbuf if failed; don't free node ref if failed.
4963  */
4964 static int
4965 iwn_transmit(struct ieee80211com *ic, struct mbuf *m)
4966 {
4967 	struct iwn_softc *sc = ic->ic_softc;
4968 	struct ieee80211_node *ni;
4969 	int error;
4970 
4971 	ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4972 
4973 	IWN_LOCK(sc);
4974 	if ((sc->sc_flags & IWN_FLAG_RUNNING) == 0 || sc->sc_beacon_wait) {
4975 		IWN_UNLOCK(sc);
4976 		return (ENXIO);
4977 	}
4978 
4979 	if (sc->qfullmsk) {
4980 		IWN_UNLOCK(sc);
4981 		return (ENOBUFS);
4982 	}
4983 
4984 	error = iwn_tx_data(sc, m, ni);
4985 	if (!error)
4986 		sc->sc_tx_timer = 5;
4987 	IWN_UNLOCK(sc);
4988 	return (error);
4989 }
4990 
4991 static void
4992 iwn_scan_timeout(void *arg)
4993 {
4994 	struct iwn_softc *sc = arg;
4995 	struct ieee80211com *ic = &sc->sc_ic;
4996 
4997 	ic_printf(ic, "scan timeout\n");
4998 	ieee80211_restart_all(ic);
4999 }
5000 
5001 static void
5002 iwn_watchdog(void *arg)
5003 {
5004 	struct iwn_softc *sc = arg;
5005 	struct ieee80211com *ic = &sc->sc_ic;
5006 
5007 	IWN_LOCK_ASSERT(sc);
5008 
5009 	KASSERT(sc->sc_flags & IWN_FLAG_RUNNING, ("not running"));
5010 
5011 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5012 
5013 	if (sc->sc_tx_timer > 0) {
5014 		if (--sc->sc_tx_timer == 0) {
5015 			ic_printf(ic, "device timeout\n");
5016 			ieee80211_restart_all(ic);
5017 			return;
5018 		}
5019 	}
5020 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
5021 }
5022 
5023 static int
5024 iwn_cdev_open(struct cdev *dev, int flags, int type, struct thread *td)
5025 {
5026 
5027 	return (0);
5028 }
5029 
5030 static int
5031 iwn_cdev_close(struct cdev *dev, int flags, int type, struct thread *td)
5032 {
5033 
5034 	return (0);
5035 }
5036 
5037 static int
5038 iwn_cdev_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
5039     struct thread *td)
5040 {
5041 	int rc;
5042 	struct iwn_softc *sc = dev->si_drv1;
5043 	struct iwn_ioctl_data *d;
5044 
5045 	rc = priv_check(td, PRIV_DRIVER);
5046 	if (rc != 0)
5047 		return (0);
5048 
5049 	switch (cmd) {
5050 	case SIOCGIWNSTATS:
5051 		d = (struct iwn_ioctl_data *) data;
5052 		IWN_LOCK(sc);
5053 		/* XXX validate permissions/memory/etc? */
5054 		rc = copyout(&sc->last_stat, d->dst_addr, sizeof(struct iwn_stats));
5055 		IWN_UNLOCK(sc);
5056 		break;
5057 	case SIOCZIWNSTATS:
5058 		IWN_LOCK(sc);
5059 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
5060 		IWN_UNLOCK(sc);
5061 		break;
5062 	default:
5063 		rc = EINVAL;
5064 		break;
5065 	}
5066 	return (rc);
5067 }
5068 
5069 static int
5070 iwn_ioctl(struct ieee80211com *ic, u_long cmd, void *data)
5071 {
5072 
5073 	return (ENOTTY);
5074 }
5075 
5076 static void
5077 iwn_parent(struct ieee80211com *ic)
5078 {
5079 	struct iwn_softc *sc = ic->ic_softc;
5080 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
5081 	int startall = 0, stop = 0;
5082 
5083 	IWN_LOCK(sc);
5084 	if (ic->ic_nrunning > 0) {
5085 		if (!(sc->sc_flags & IWN_FLAG_RUNNING)) {
5086 			iwn_init_locked(sc);
5087 			if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
5088 				startall = 1;
5089 			else
5090 				stop = 1;
5091 		}
5092 	} else if (sc->sc_flags & IWN_FLAG_RUNNING)
5093 		iwn_stop_locked(sc);
5094 	IWN_UNLOCK(sc);
5095 	if (startall)
5096 		ieee80211_start_all(ic);
5097 	else if (vap != NULL && stop)
5098 		ieee80211_stop(vap);
5099 }
5100 
5101 /*
5102  * Send a command to the firmware.
5103  */
5104 static int
5105 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
5106 {
5107 	struct iwn_tx_ring *ring;
5108 	struct iwn_tx_desc *desc;
5109 	struct iwn_tx_data *data;
5110 	struct iwn_tx_cmd *cmd;
5111 	struct mbuf *m;
5112 	bus_addr_t paddr;
5113 	int totlen, error;
5114 	int cmd_queue_num;
5115 
5116 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5117 
5118 	if (async == 0)
5119 		IWN_LOCK_ASSERT(sc);
5120 
5121 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
5122 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
5123 	else
5124 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
5125 
5126 	ring = &sc->txq[cmd_queue_num];
5127 	desc = &ring->desc[ring->cur];
5128 	data = &ring->data[ring->cur];
5129 	totlen = 4 + size;
5130 
5131 	if (size > sizeof cmd->data) {
5132 		/* Command is too large to fit in a descriptor. */
5133 		if (totlen > MCLBYTES)
5134 			return EINVAL;
5135 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
5136 		if (m == NULL)
5137 			return ENOMEM;
5138 		cmd = mtod(m, struct iwn_tx_cmd *);
5139 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
5140 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
5141 		if (error != 0) {
5142 			m_freem(m);
5143 			return error;
5144 		}
5145 		data->m = m;
5146 	} else {
5147 		cmd = &ring->cmd[ring->cur];
5148 		paddr = data->cmd_paddr;
5149 	}
5150 
5151 	cmd->code = code;
5152 	cmd->flags = 0;
5153 	cmd->qid = ring->qid;
5154 	cmd->idx = ring->cur;
5155 	memcpy(cmd->data, buf, size);
5156 
5157 	desc->nsegs = 1;
5158 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
5159 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
5160 
5161 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
5162 	    __func__, iwn_intr_str(cmd->code), cmd->code,
5163 	    cmd->flags, cmd->qid, cmd->idx);
5164 
5165 	if (size > sizeof cmd->data) {
5166 		bus_dmamap_sync(ring->data_dmat, data->map,
5167 		    BUS_DMASYNC_PREWRITE);
5168 	} else {
5169 		bus_dmamap_sync(ring->cmd_dma.tag, ring->cmd_dma.map,
5170 		    BUS_DMASYNC_PREWRITE);
5171 	}
5172 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
5173 	    BUS_DMASYNC_PREWRITE);
5174 
5175 	/* Kick command ring. */
5176 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
5177 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
5178 
5179 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5180 
5181 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
5182 }
5183 
5184 static int
5185 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5186 {
5187 	struct iwn4965_node_info hnode;
5188 	caddr_t src, dst;
5189 
5190 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5191 
5192 	/*
5193 	 * We use the node structure for 5000 Series internally (it is
5194 	 * a superset of the one for 4965AGN). We thus copy the common
5195 	 * fields before sending the command.
5196 	 */
5197 	src = (caddr_t)node;
5198 	dst = (caddr_t)&hnode;
5199 	memcpy(dst, src, 48);
5200 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
5201 	memcpy(dst + 48, src + 72, 20);
5202 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
5203 }
5204 
5205 static int
5206 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
5207 {
5208 
5209 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5210 
5211 	/* Direct mapping. */
5212 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
5213 }
5214 
5215 static int
5216 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
5217 {
5218 	struct iwn_node *wn = (void *)ni;
5219 	struct ieee80211_rateset *rs;
5220 	struct iwn_cmd_link_quality linkq;
5221 	int i, rate, txrate;
5222 	int is_11n;
5223 
5224 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5225 
5226 	memset(&linkq, 0, sizeof linkq);
5227 	linkq.id = wn->id;
5228 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5229 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5230 
5231 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5232 	linkq.ampdu_threshold = 3;
5233 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5234 
5235 	DPRINTF(sc, IWN_DEBUG_XMIT,
5236 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5237 	    __func__,
5238 	    linkq.antmsk_1stream,
5239 	    linkq.antmsk_2stream,
5240 	    sc->ntxchains);
5241 
5242 	/*
5243 	 * Are we using 11n rates? Ensure the channel is
5244 	 * 11n _and_ we have some 11n rates, or don't
5245 	 * try.
5246 	 */
5247 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5248 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5249 		is_11n = 1;
5250 	} else {
5251 		rs = &ni->ni_rates;
5252 		is_11n = 0;
5253 	}
5254 
5255 	/* Start at highest available bit-rate. */
5256 	/*
5257 	 * XXX this is all very dirty!
5258 	 */
5259 	if (is_11n)
5260 		txrate = ni->ni_htrates.rs_nrates - 1;
5261 	else
5262 		txrate = rs->rs_nrates - 1;
5263 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5264 		uint32_t plcp;
5265 
5266 		/*
5267 		 * XXX TODO: ensure the last two slots are the two lowest
5268 		 * rate entries, just for now.
5269 		 */
5270 		if (i == 14 || i == 15)
5271 			txrate = 0;
5272 
5273 		if (is_11n)
5274 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5275 		else
5276 			rate = IEEE80211_RV(rs->rs_rates[txrate]);
5277 
5278 		/* Do rate -> PLCP config mapping */
5279 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5280 		linkq.retry[i] = plcp;
5281 		DPRINTF(sc, IWN_DEBUG_XMIT,
5282 		    "%s: i=%d, txrate=%d, rate=0x%02x, plcp=0x%08x\n",
5283 		    __func__,
5284 		    i,
5285 		    txrate,
5286 		    rate,
5287 		    le32toh(plcp));
5288 
5289 		/*
5290 		 * The mimo field is an index into the table which
5291 		 * indicates the first index where it and subsequent entries
5292 		 * will not be using MIMO.
5293 		 *
5294 		 * Since we're filling linkq from 0..15 and we're filling
5295 		 * from the highest MCS rates to the lowest rates, if we
5296 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5297 		 * the next entry.)  That way if the next entry is a non-MIMO
5298 		 * entry, we're already pointing at it.
5299 		 */
5300 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5301 		    IEEE80211_RV(le32toh(plcp)) > 7)
5302 			linkq.mimo = i + 1;
5303 
5304 		/* Next retry at immediate lower bit-rate. */
5305 		if (txrate > 0)
5306 			txrate--;
5307 	}
5308 	/*
5309 	 * If we reached the end of the list and indeed we hit
5310 	 * all MIMO rates (eg 5300 doing MCS23-15) then yes,
5311 	 * set mimo to 15.  Setting it to 16 panics the firmware.
5312 	 */
5313 	if (linkq.mimo > 15)
5314 		linkq.mimo = 15;
5315 
5316 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: mimo = %d\n", __func__, linkq.mimo);
5317 
5318 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5319 
5320 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5321 }
5322 
5323 /*
5324  * Broadcast node is used to send group-addressed and management frames.
5325  */
5326 static int
5327 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5328 {
5329 	struct iwn_ops *ops = &sc->ops;
5330 	struct ieee80211com *ic = &sc->sc_ic;
5331 	struct iwn_node_info node;
5332 	struct iwn_cmd_link_quality linkq;
5333 	uint8_t txant;
5334 	int i, error;
5335 
5336 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5337 
5338 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5339 
5340 	memset(&node, 0, sizeof node);
5341 	IEEE80211_ADDR_COPY(node.macaddr, ieee80211broadcastaddr);
5342 	node.id = sc->broadcast_id;
5343 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5344 	if ((error = ops->add_node(sc, &node, async)) != 0)
5345 		return error;
5346 
5347 	/* Use the first valid TX antenna. */
5348 	txant = IWN_LSB(sc->txchainmask);
5349 
5350 	memset(&linkq, 0, sizeof linkq);
5351 	linkq.id = sc->broadcast_id;
5352 	linkq.antmsk_1stream = iwn_get_1stream_tx_antmask(sc);
5353 	linkq.antmsk_2stream = iwn_get_2stream_tx_antmask(sc);
5354 	linkq.ampdu_max = 64;
5355 	linkq.ampdu_threshold = 3;
5356 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5357 
5358 	/* Use lowest mandatory bit-rate. */
5359 	/* XXX rate table lookup? */
5360 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5361 		linkq.retry[0] = htole32(0xd);
5362 	else
5363 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5364 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5365 	/* Use same bit-rate for all TX retries. */
5366 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5367 		linkq.retry[i] = linkq.retry[0];
5368 	}
5369 
5370 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5371 
5372 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5373 }
5374 
5375 static int
5376 iwn_updateedca(struct ieee80211com *ic)
5377 {
5378 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5379 	struct iwn_softc *sc = ic->ic_softc;
5380 	struct iwn_edca_params cmd;
5381 	int aci;
5382 
5383 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5384 
5385 	memset(&cmd, 0, sizeof cmd);
5386 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5387 
5388 	IEEE80211_LOCK(ic);
5389 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5390 		const struct wmeParams *ac =
5391 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5392 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5393 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5394 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5395 		cmd.ac[aci].txoplimit =
5396 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5397 	}
5398 	IEEE80211_UNLOCK(ic);
5399 
5400 	IWN_LOCK(sc);
5401 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5402 	IWN_UNLOCK(sc);
5403 
5404 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5405 
5406 	return 0;
5407 #undef IWN_EXP2
5408 }
5409 
5410 static void
5411 iwn_update_mcast(struct ieee80211com *ic)
5412 {
5413 	/* Ignore */
5414 }
5415 
5416 static void
5417 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5418 {
5419 	struct iwn_cmd_led led;
5420 
5421 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5422 
5423 #if 0
5424 	/* XXX don't set LEDs during scan? */
5425 	if (sc->sc_is_scanning)
5426 		return;
5427 #endif
5428 
5429 	/* Clear microcode LED ownership. */
5430 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5431 
5432 	led.which = which;
5433 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5434 	led.off = off;
5435 	led.on = on;
5436 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5437 }
5438 
5439 /*
5440  * Set the critical temperature at which the firmware will stop the radio
5441  * and notify us.
5442  */
5443 static int
5444 iwn_set_critical_temp(struct iwn_softc *sc)
5445 {
5446 	struct iwn_critical_temp crit;
5447 	int32_t temp;
5448 
5449 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5450 
5451 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5452 
5453 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5454 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5455 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5456 		temp = IWN_CTOK(110);
5457 	else
5458 		temp = 110;
5459 	memset(&crit, 0, sizeof crit);
5460 	crit.tempR = htole32(temp);
5461 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5462 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5463 }
5464 
5465 static int
5466 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5467 {
5468 	struct iwn_cmd_timing cmd;
5469 	uint64_t val, mod;
5470 
5471 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5472 
5473 	memset(&cmd, 0, sizeof cmd);
5474 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5475 	cmd.bintval = htole16(ni->ni_intval);
5476 	cmd.lintval = htole16(10);
5477 
5478 	/* Compute remaining time until next beacon. */
5479 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5480 	mod = le64toh(cmd.tstamp) % val;
5481 	cmd.binitval = htole32((uint32_t)(val - mod));
5482 
5483 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5484 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5485 
5486 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5487 }
5488 
5489 static void
5490 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5491 {
5492 	struct ieee80211com *ic = &sc->sc_ic;
5493 
5494 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5495 
5496 	/* Adjust TX power if need be (delta >= 3 degC). */
5497 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5498 	    __func__, sc->temp, temp);
5499 	if (abs(temp - sc->temp) >= 3) {
5500 		/* Record temperature of last calibration. */
5501 		sc->temp = temp;
5502 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5503 	}
5504 }
5505 
5506 /*
5507  * Set TX power for current channel (each rate has its own power settings).
5508  * This function takes into account the regulatory information from EEPROM,
5509  * the current temperature and the current voltage.
5510  */
5511 static int
5512 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5513     int async)
5514 {
5515 /* Fixed-point arithmetic division using a n-bit fractional part. */
5516 #define fdivround(a, b, n)	\
5517 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5518 /* Linear interpolation. */
5519 #define interpolate(x, x1, y1, x2, y2, n)	\
5520 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5521 
5522 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5523 	struct iwn_ucode_info *uc = &sc->ucode_info;
5524 	struct iwn4965_cmd_txpower cmd;
5525 	struct iwn4965_eeprom_chan_samples *chans;
5526 	const uint8_t *rf_gain, *dsp_gain;
5527 	int32_t vdiff, tdiff;
5528 	int i, c, grp, maxpwr;
5529 	uint8_t chan;
5530 
5531 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5532 	/* Retrieve current channel from last RXON. */
5533 	chan = sc->rxon->chan;
5534 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5535 	    chan);
5536 
5537 	memset(&cmd, 0, sizeof cmd);
5538 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5539 	cmd.chan = chan;
5540 
5541 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5542 		maxpwr   = sc->maxpwr5GHz;
5543 		rf_gain  = iwn4965_rf_gain_5ghz;
5544 		dsp_gain = iwn4965_dsp_gain_5ghz;
5545 	} else {
5546 		maxpwr   = sc->maxpwr2GHz;
5547 		rf_gain  = iwn4965_rf_gain_2ghz;
5548 		dsp_gain = iwn4965_dsp_gain_2ghz;
5549 	}
5550 
5551 	/* Compute voltage compensation. */
5552 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5553 	if (vdiff > 0)
5554 		vdiff *= 2;
5555 	if (abs(vdiff) > 2)
5556 		vdiff = 0;
5557 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5558 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5559 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5560 
5561 	/* Get channel attenuation group. */
5562 	if (chan <= 20)		/* 1-20 */
5563 		grp = 4;
5564 	else if (chan <= 43)	/* 34-43 */
5565 		grp = 0;
5566 	else if (chan <= 70)	/* 44-70 */
5567 		grp = 1;
5568 	else if (chan <= 124)	/* 71-124 */
5569 		grp = 2;
5570 	else			/* 125-200 */
5571 		grp = 3;
5572 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5573 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5574 
5575 	/* Get channel sub-band. */
5576 	for (i = 0; i < IWN_NBANDS; i++)
5577 		if (sc->bands[i].lo != 0 &&
5578 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5579 			break;
5580 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5581 		return EINVAL;
5582 	chans = sc->bands[i].chans;
5583 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5584 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5585 
5586 	for (c = 0; c < 2; c++) {
5587 		uint8_t power, gain, temp;
5588 		int maxchpwr, pwr, ridx, idx;
5589 
5590 		power = interpolate(chan,
5591 		    chans[0].num, chans[0].samples[c][1].power,
5592 		    chans[1].num, chans[1].samples[c][1].power, 1);
5593 		gain  = interpolate(chan,
5594 		    chans[0].num, chans[0].samples[c][1].gain,
5595 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5596 		temp  = interpolate(chan,
5597 		    chans[0].num, chans[0].samples[c][1].temp,
5598 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5599 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5600 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5601 		    __func__, c, power, gain, temp);
5602 
5603 		/* Compute temperature compensation. */
5604 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5605 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5606 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5607 		    __func__, tdiff, sc->temp, temp);
5608 
5609 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5610 			/* Convert dBm to half-dBm. */
5611 			maxchpwr = sc->maxpwr[chan] * 2;
5612 			if ((ridx / 8) & 1)
5613 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5614 
5615 			pwr = maxpwr;
5616 
5617 			/* Adjust TX power based on rate. */
5618 			if ((ridx % 8) == 5)
5619 				pwr -= 15;	/* OFDM48: -7.5dB */
5620 			else if ((ridx % 8) == 6)
5621 				pwr -= 17;	/* OFDM54: -8.5dB */
5622 			else if ((ridx % 8) == 7)
5623 				pwr -= 20;	/* OFDM60: -10dB */
5624 			else
5625 				pwr -= 10;	/* Others: -5dB */
5626 
5627 			/* Do not exceed channel max TX power. */
5628 			if (pwr > maxchpwr)
5629 				pwr = maxchpwr;
5630 
5631 			idx = gain - (pwr - power) - tdiff - vdiff;
5632 			if ((ridx / 8) & 1)	/* MIMO */
5633 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5634 
5635 			if (cmd.band == 0)
5636 				idx += 9;	/* 5GHz */
5637 			if (ridx == IWN_RIDX_MAX)
5638 				idx += 5;	/* CCK */
5639 
5640 			/* Make sure idx stays in a valid range. */
5641 			if (idx < 0)
5642 				idx = 0;
5643 			else if (idx > IWN4965_MAX_PWR_INDEX)
5644 				idx = IWN4965_MAX_PWR_INDEX;
5645 
5646 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5647 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5648 			    __func__, c, ridx, idx);
5649 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5650 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5651 		}
5652 	}
5653 
5654 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5655 	    "%s: set tx power for chan %d\n", __func__, chan);
5656 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5657 
5658 #undef interpolate
5659 #undef fdivround
5660 }
5661 
5662 static int
5663 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5664     int async)
5665 {
5666 	struct iwn5000_cmd_txpower cmd;
5667 	int cmdid;
5668 
5669 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5670 
5671 	/*
5672 	 * TX power calibration is handled automatically by the firmware
5673 	 * for 5000 Series.
5674 	 */
5675 	memset(&cmd, 0, sizeof cmd);
5676 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5677 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5678 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5679 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5680 	    "%s: setting TX power; rev=%d\n",
5681 	    __func__,
5682 	    IWN_UCODE_API(sc->ucode_rev));
5683 	if (IWN_UCODE_API(sc->ucode_rev) == 1)
5684 		cmdid = IWN_CMD_TXPOWER_DBM_V1;
5685 	else
5686 		cmdid = IWN_CMD_TXPOWER_DBM;
5687 	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
5688 }
5689 
5690 /*
5691  * Retrieve the maximum RSSI (in dBm) among receivers.
5692  */
5693 static int
5694 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5695 {
5696 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5697 	uint8_t mask, agc;
5698 	int rssi;
5699 
5700 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5701 
5702 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5703 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5704 
5705 	rssi = 0;
5706 	if (mask & IWN_ANT_A)
5707 		rssi = MAX(rssi, phy->rssi[0]);
5708 	if (mask & IWN_ANT_B)
5709 		rssi = MAX(rssi, phy->rssi[2]);
5710 	if (mask & IWN_ANT_C)
5711 		rssi = MAX(rssi, phy->rssi[4]);
5712 
5713 	DPRINTF(sc, IWN_DEBUG_RECV,
5714 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5715 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5716 	    rssi - agc - IWN_RSSI_TO_DBM);
5717 	return rssi - agc - IWN_RSSI_TO_DBM;
5718 }
5719 
5720 static int
5721 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5722 {
5723 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5724 	uint8_t agc;
5725 	int rssi;
5726 
5727 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5728 
5729 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5730 
5731 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5732 		   le16toh(phy->rssi[1]) & 0xff);
5733 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5734 
5735 	DPRINTF(sc, IWN_DEBUG_RECV,
5736 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5737 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5738 	    rssi - agc - IWN_RSSI_TO_DBM);
5739 	return rssi - agc - IWN_RSSI_TO_DBM;
5740 }
5741 
5742 /*
5743  * Retrieve the average noise (in dBm) among receivers.
5744  */
5745 static int
5746 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5747 {
5748 	int i, total, nbant, noise;
5749 
5750 	total = nbant = 0;
5751 	for (i = 0; i < 3; i++) {
5752 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5753 			continue;
5754 		total += noise;
5755 		nbant++;
5756 	}
5757 	/* There should be at least one antenna but check anyway. */
5758 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5759 }
5760 
5761 /*
5762  * Compute temperature (in degC) from last received statistics.
5763  */
5764 static int
5765 iwn4965_get_temperature(struct iwn_softc *sc)
5766 {
5767 	struct iwn_ucode_info *uc = &sc->ucode_info;
5768 	int32_t r1, r2, r3, r4, temp;
5769 
5770 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5771 
5772 	r1 = le32toh(uc->temp[0].chan20MHz);
5773 	r2 = le32toh(uc->temp[1].chan20MHz);
5774 	r3 = le32toh(uc->temp[2].chan20MHz);
5775 	r4 = le32toh(sc->rawtemp);
5776 
5777 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5778 		return 0;
5779 
5780 	/* Sign-extend 23-bit R4 value to 32-bit. */
5781 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5782 	/* Compute temperature in Kelvin. */
5783 	temp = (259 * (r4 - r2)) / (r3 - r1);
5784 	temp = (temp * 97) / 100 + 8;
5785 
5786 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5787 	    IWN_KTOC(temp));
5788 	return IWN_KTOC(temp);
5789 }
5790 
5791 static int
5792 iwn5000_get_temperature(struct iwn_softc *sc)
5793 {
5794 	int32_t temp;
5795 
5796 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5797 
5798 	/*
5799 	 * Temperature is not used by the driver for 5000 Series because
5800 	 * TX power calibration is handled by firmware.
5801 	 */
5802 	temp = le32toh(sc->rawtemp);
5803 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5804 		temp = (temp / -5) + sc->temp_off;
5805 		temp = IWN_KTOC(temp);
5806 	}
5807 	return temp;
5808 }
5809 
5810 /*
5811  * Initialize sensitivity calibration state machine.
5812  */
5813 static int
5814 iwn_init_sensitivity(struct iwn_softc *sc)
5815 {
5816 	struct iwn_ops *ops = &sc->ops;
5817 	struct iwn_calib_state *calib = &sc->calib;
5818 	uint32_t flags;
5819 	int error;
5820 
5821 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5822 
5823 	/* Reset calibration state machine. */
5824 	memset(calib, 0, sizeof (*calib));
5825 	calib->state = IWN_CALIB_STATE_INIT;
5826 	calib->cck_state = IWN_CCK_STATE_HIFA;
5827 	/* Set initial correlation values. */
5828 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5829 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5830 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5831 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5832 	calib->cck_x4      = 125;
5833 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5834 	calib->energy_cck  = sc->limits->energy_cck;
5835 
5836 	/* Write initial sensitivity. */
5837 	if ((error = iwn_send_sensitivity(sc)) != 0)
5838 		return error;
5839 
5840 	/* Write initial gains. */
5841 	if ((error = ops->init_gains(sc)) != 0)
5842 		return error;
5843 
5844 	/* Request statistics at each beacon interval. */
5845 	flags = 0;
5846 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5847 	    __func__);
5848 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5849 }
5850 
5851 /*
5852  * Collect noise and RSSI statistics for the first 20 beacons received
5853  * after association and use them to determine connected antennas and
5854  * to set differential gains.
5855  */
5856 static void
5857 iwn_collect_noise(struct iwn_softc *sc,
5858     const struct iwn_rx_general_stats *stats)
5859 {
5860 	struct iwn_ops *ops = &sc->ops;
5861 	struct iwn_calib_state *calib = &sc->calib;
5862 	struct ieee80211com *ic = &sc->sc_ic;
5863 	uint32_t val;
5864 	int i;
5865 
5866 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5867 
5868 	/* Accumulate RSSI and noise for all 3 antennas. */
5869 	for (i = 0; i < 3; i++) {
5870 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5871 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5872 	}
5873 	/* NB: We update differential gains only once after 20 beacons. */
5874 	if (++calib->nbeacons < 20)
5875 		return;
5876 
5877 	/* Determine highest average RSSI. */
5878 	val = MAX(calib->rssi[0], calib->rssi[1]);
5879 	val = MAX(calib->rssi[2], val);
5880 
5881 	/* Determine which antennas are connected. */
5882 	sc->chainmask = sc->rxchainmask;
5883 	for (i = 0; i < 3; i++)
5884 		if (val - calib->rssi[i] > 15 * 20)
5885 			sc->chainmask &= ~(1 << i);
5886 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
5887 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5888 	    __func__, sc->rxchainmask, sc->chainmask);
5889 
5890 	/* If none of the TX antennas are connected, keep at least one. */
5891 	if ((sc->chainmask & sc->txchainmask) == 0)
5892 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5893 
5894 	(void)ops->set_gains(sc);
5895 	calib->state = IWN_CALIB_STATE_RUN;
5896 
5897 #ifdef notyet
5898 	/* XXX Disable RX chains with no antennas connected. */
5899 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5900 	if (sc->sc_is_scanning)
5901 		device_printf(sc->sc_dev,
5902 		    "%s: is_scanning set, before RXON\n",
5903 		    __func__);
5904 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5905 #endif
5906 
5907 	/* Enable power-saving mode if requested by user. */
5908 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5909 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5910 
5911 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5912 
5913 }
5914 
5915 static int
5916 iwn4965_init_gains(struct iwn_softc *sc)
5917 {
5918 	struct iwn_phy_calib_gain cmd;
5919 
5920 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5921 
5922 	memset(&cmd, 0, sizeof cmd);
5923 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5924 	/* Differential gains initially set to 0 for all 3 antennas. */
5925 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5926 	    "%s: setting initial differential gains\n", __func__);
5927 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5928 }
5929 
5930 static int
5931 iwn5000_init_gains(struct iwn_softc *sc)
5932 {
5933 	struct iwn_phy_calib cmd;
5934 
5935 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5936 
5937 	memset(&cmd, 0, sizeof cmd);
5938 	cmd.code = sc->reset_noise_gain;
5939 	cmd.ngroups = 1;
5940 	cmd.isvalid = 1;
5941 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5942 	    "%s: setting initial differential gains\n", __func__);
5943 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5944 }
5945 
5946 static int
5947 iwn4965_set_gains(struct iwn_softc *sc)
5948 {
5949 	struct iwn_calib_state *calib = &sc->calib;
5950 	struct iwn_phy_calib_gain cmd;
5951 	int i, delta, noise;
5952 
5953 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5954 
5955 	/* Get minimal noise among connected antennas. */
5956 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5957 	for (i = 0; i < 3; i++)
5958 		if (sc->chainmask & (1 << i))
5959 			noise = MIN(calib->noise[i], noise);
5960 
5961 	memset(&cmd, 0, sizeof cmd);
5962 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5963 	/* Set differential gains for connected antennas. */
5964 	for (i = 0; i < 3; i++) {
5965 		if (sc->chainmask & (1 << i)) {
5966 			/* Compute attenuation (in unit of 1.5dB). */
5967 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5968 			/* NB: delta <= 0 */
5969 			/* Limit to [-4.5dB,0]. */
5970 			cmd.gain[i] = MIN(abs(delta), 3);
5971 			if (delta < 0)
5972 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5973 		}
5974 	}
5975 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5976 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5977 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5978 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5979 }
5980 
5981 static int
5982 iwn5000_set_gains(struct iwn_softc *sc)
5983 {
5984 	struct iwn_calib_state *calib = &sc->calib;
5985 	struct iwn_phy_calib_gain cmd;
5986 	int i, ant, div, delta;
5987 
5988 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5989 
5990 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5991 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5992 
5993 	memset(&cmd, 0, sizeof cmd);
5994 	cmd.code = sc->noise_gain;
5995 	cmd.ngroups = 1;
5996 	cmd.isvalid = 1;
5997 	/* Get first available RX antenna as referential. */
5998 	ant = IWN_LSB(sc->rxchainmask);
5999 	/* Set differential gains for other antennas. */
6000 	for (i = ant + 1; i < 3; i++) {
6001 		if (sc->chainmask & (1 << i)) {
6002 			/* The delta is relative to antenna "ant". */
6003 			delta = ((int32_t)calib->noise[ant] -
6004 			    (int32_t)calib->noise[i]) / div;
6005 			/* Limit to [-4.5dB,+4.5dB]. */
6006 			cmd.gain[i - 1] = MIN(abs(delta), 3);
6007 			if (delta < 0)
6008 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
6009 		}
6010 	}
6011 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_XMIT,
6012 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
6013 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
6014 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
6015 }
6016 
6017 /*
6018  * Tune RF RX sensitivity based on the number of false alarms detected
6019  * during the last beacon period.
6020  */
6021 static void
6022 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
6023 {
6024 #define inc(val, inc, max)			\
6025 	if ((val) < (max)) {			\
6026 		if ((val) < (max) - (inc))	\
6027 			(val) += (inc);		\
6028 		else				\
6029 			(val) = (max);		\
6030 		needs_update = 1;		\
6031 	}
6032 #define dec(val, dec, min)			\
6033 	if ((val) > (min)) {			\
6034 		if ((val) > (min) + (dec))	\
6035 			(val) -= (dec);		\
6036 		else				\
6037 			(val) = (min);		\
6038 		needs_update = 1;		\
6039 	}
6040 
6041 	const struct iwn_sensitivity_limits *limits = sc->limits;
6042 	struct iwn_calib_state *calib = &sc->calib;
6043 	uint32_t val, rxena, fa;
6044 	uint32_t energy[3], energy_min;
6045 	uint8_t noise[3], noise_ref;
6046 	int i, needs_update = 0;
6047 
6048 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6049 
6050 	/* Check that we've been enabled long enough. */
6051 	if ((rxena = le32toh(stats->general.load)) == 0){
6052 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
6053 		return;
6054 	}
6055 
6056 	/* Compute number of false alarms since last call for OFDM. */
6057 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6058 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
6059 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6060 
6061 	if (fa > 50 * rxena) {
6062 		/* High false alarm count, decrease sensitivity. */
6063 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6064 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
6065 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
6066 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
6067 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
6068 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
6069 
6070 	} else if (fa < 5 * rxena) {
6071 		/* Low false alarm count, increase sensitivity. */
6072 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6073 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
6074 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
6075 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
6076 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
6077 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
6078 	}
6079 
6080 	/* Compute maximum noise among 3 receivers. */
6081 	for (i = 0; i < 3; i++)
6082 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
6083 	val = MAX(noise[0], noise[1]);
6084 	val = MAX(noise[2], val);
6085 	/* Insert it into our samples table. */
6086 	calib->noise_samples[calib->cur_noise_sample] = val;
6087 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
6088 
6089 	/* Compute maximum noise among last 20 samples. */
6090 	noise_ref = calib->noise_samples[0];
6091 	for (i = 1; i < 20; i++)
6092 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
6093 
6094 	/* Compute maximum energy among 3 receivers. */
6095 	for (i = 0; i < 3; i++)
6096 		energy[i] = le32toh(stats->general.energy[i]);
6097 	val = MIN(energy[0], energy[1]);
6098 	val = MIN(energy[2], val);
6099 	/* Insert it into our samples table. */
6100 	calib->energy_samples[calib->cur_energy_sample] = val;
6101 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
6102 
6103 	/* Compute minimum energy among last 10 samples. */
6104 	energy_min = calib->energy_samples[0];
6105 	for (i = 1; i < 10; i++)
6106 		energy_min = MAX(energy_min, calib->energy_samples[i]);
6107 	energy_min += 6;
6108 
6109 	/* Compute number of false alarms since last call for CCK. */
6110 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
6111 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
6112 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
6113 
6114 	if (fa > 50 * rxena) {
6115 		/* High false alarm count, decrease sensitivity. */
6116 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6117 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
6118 		calib->cck_state = IWN_CCK_STATE_HIFA;
6119 		calib->low_fa = 0;
6120 
6121 		if (calib->cck_x4 > 160) {
6122 			calib->noise_ref = noise_ref;
6123 			if (calib->energy_cck > 2)
6124 				dec(calib->energy_cck, 2, energy_min);
6125 		}
6126 		if (calib->cck_x4 < 160) {
6127 			calib->cck_x4 = 161;
6128 			needs_update = 1;
6129 		} else
6130 			inc(calib->cck_x4, 3, limits->max_cck_x4);
6131 
6132 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
6133 
6134 	} else if (fa < 5 * rxena) {
6135 		/* Low false alarm count, increase sensitivity. */
6136 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6137 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
6138 		calib->cck_state = IWN_CCK_STATE_LOFA;
6139 		calib->low_fa++;
6140 
6141 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
6142 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
6143 		     calib->low_fa > 100)) {
6144 			inc(calib->energy_cck, 2, limits->min_energy_cck);
6145 			dec(calib->cck_x4,     3, limits->min_cck_x4);
6146 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
6147 		}
6148 	} else {
6149 		/* Not worth to increase or decrease sensitivity. */
6150 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6151 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
6152 		calib->low_fa = 0;
6153 		calib->noise_ref = noise_ref;
6154 
6155 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
6156 			/* Previous interval had many false alarms. */
6157 			dec(calib->energy_cck, 8, energy_min);
6158 		}
6159 		calib->cck_state = IWN_CCK_STATE_INIT;
6160 	}
6161 
6162 	if (needs_update)
6163 		(void)iwn_send_sensitivity(sc);
6164 
6165 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6166 
6167 #undef dec
6168 #undef inc
6169 }
6170 
6171 static int
6172 iwn_send_sensitivity(struct iwn_softc *sc)
6173 {
6174 	struct iwn_calib_state *calib = &sc->calib;
6175 	struct iwn_enhanced_sensitivity_cmd cmd;
6176 	int len;
6177 
6178 	memset(&cmd, 0, sizeof cmd);
6179 	len = sizeof (struct iwn_sensitivity_cmd);
6180 	cmd.which = IWN_SENSITIVITY_WORKTBL;
6181 	/* OFDM modulation. */
6182 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
6183 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
6184 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
6185 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
6186 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
6187 	cmd.energy_ofdm_th     = htole16(62);
6188 	/* CCK modulation. */
6189 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
6190 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
6191 	cmd.energy_cck         = htole16(calib->energy_cck);
6192 	/* Barker modulation: use default values. */
6193 	cmd.corr_barker        = htole16(190);
6194 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
6195 
6196 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6197 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
6198 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
6199 	    calib->ofdm_mrc_x4, calib->cck_x4,
6200 	    calib->cck_mrc_x4, calib->energy_cck);
6201 
6202 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
6203 		goto send;
6204 	/* Enhanced sensitivity settings. */
6205 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
6206 	cmd.ofdm_det_slope_mrc = htole16(668);
6207 	cmd.ofdm_det_icept_mrc = htole16(4);
6208 	cmd.ofdm_det_slope     = htole16(486);
6209 	cmd.ofdm_det_icept     = htole16(37);
6210 	cmd.cck_det_slope_mrc  = htole16(853);
6211 	cmd.cck_det_icept_mrc  = htole16(4);
6212 	cmd.cck_det_slope      = htole16(476);
6213 	cmd.cck_det_icept      = htole16(99);
6214 send:
6215 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
6216 }
6217 
6218 /*
6219  * Look at the increase of PLCP errors over time; if it exceeds
6220  * a programmed threshold then trigger an RF retune.
6221  */
6222 static void
6223 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
6224 {
6225 	int32_t delta_ofdm, delta_ht, delta_cck;
6226 	struct iwn_calib_state *calib = &sc->calib;
6227 	int delta_ticks, cur_ticks;
6228 	int delta_msec;
6229 	int thresh;
6230 
6231 	/*
6232 	 * Calculate the difference between the current and
6233 	 * previous statistics.
6234 	 */
6235 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6236 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6237 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6238 
6239 	/*
6240 	 * Calculate the delta in time between successive statistics
6241 	 * messages.  Yes, it can roll over; so we make sure that
6242 	 * this doesn't happen.
6243 	 *
6244 	 * XXX go figure out what to do about rollover
6245 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6246 	 * XXX go stab signed integer overflow undefined-ness in the face.
6247 	 */
6248 	cur_ticks = ticks;
6249 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6250 
6251 	/*
6252 	 * If any are negative, then the firmware likely reset; so just
6253 	 * bail.  We'll pick this up next time.
6254 	 */
6255 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6256 		return;
6257 
6258 	/*
6259 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6260 	 * so we can do some useful math with it.
6261 	 */
6262 	delta_msec = ticks_to_msecs(delta_ticks);
6263 
6264 	/*
6265 	 * Calculate what our threshold is given the current delta_msec.
6266 	 */
6267 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6268 
6269 	DPRINTF(sc, IWN_DEBUG_STATE,
6270 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6271 	    __func__,
6272 	    delta_msec,
6273 	    delta_cck,
6274 	    delta_ofdm,
6275 	    delta_ht,
6276 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6277 	    thresh);
6278 
6279 	/*
6280 	 * If we need a retune, then schedule a single channel scan
6281 	 * to a channel that isn't the currently active one!
6282 	 *
6283 	 * The math from linux iwlwifi:
6284 	 *
6285 	 * if ((delta * 100 / msecs) > threshold)
6286 	 */
6287 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6288 		DPRINTF(sc, IWN_DEBUG_ANY,
6289 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6290 		    "over limit (%d); retune!\n",
6291 		    __func__,
6292 		    (delta_cck + delta_ofdm + delta_ht),
6293 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6294 		    thresh);
6295 	}
6296 }
6297 
6298 /*
6299  * Set STA mode power saving level (between 0 and 5).
6300  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6301  */
6302 static int
6303 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6304 {
6305 	struct iwn_pmgt_cmd cmd;
6306 	const struct iwn_pmgt *pmgt;
6307 	uint32_t max, skip_dtim;
6308 	uint32_t reg;
6309 	int i;
6310 
6311 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6312 	    "%s: dtim=%d, level=%d, async=%d\n",
6313 	    __func__,
6314 	    dtim,
6315 	    level,
6316 	    async);
6317 
6318 	/* Select which PS parameters to use. */
6319 	if (dtim <= 2)
6320 		pmgt = &iwn_pmgt[0][level];
6321 	else if (dtim <= 10)
6322 		pmgt = &iwn_pmgt[1][level];
6323 	else
6324 		pmgt = &iwn_pmgt[2][level];
6325 
6326 	memset(&cmd, 0, sizeof cmd);
6327 	if (level != 0)	/* not CAM */
6328 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6329 	if (level == 5)
6330 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6331 	/* Retrieve PCIe Active State Power Management (ASPM). */
6332 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
6333 	if (!(reg & PCIEM_LINK_CTL_ASPMC_L0S))	/* L0s Entry disabled. */
6334 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6335 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6336 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6337 
6338 	if (dtim == 0) {
6339 		dtim = 1;
6340 		skip_dtim = 0;
6341 	} else
6342 		skip_dtim = pmgt->skip_dtim;
6343 	if (skip_dtim != 0) {
6344 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6345 		max = pmgt->intval[4];
6346 		if (max == (uint32_t)-1)
6347 			max = dtim * (skip_dtim + 1);
6348 		else if (max > dtim)
6349 			max = rounddown(max, dtim);
6350 	} else
6351 		max = dtim;
6352 	for (i = 0; i < 5; i++)
6353 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6354 
6355 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6356 	    level);
6357 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6358 }
6359 
6360 static int
6361 iwn_send_btcoex(struct iwn_softc *sc)
6362 {
6363 	struct iwn_bluetooth cmd;
6364 
6365 	memset(&cmd, 0, sizeof cmd);
6366 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6367 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6368 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6369 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6370 	    __func__);
6371 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6372 }
6373 
6374 static int
6375 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6376 {
6377 	static const uint32_t btcoex_3wire[12] = {
6378 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6379 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6380 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6381 	};
6382 	struct iwn6000_btcoex_config btconfig;
6383 	struct iwn2000_btcoex_config btconfig2k;
6384 	struct iwn_btcoex_priotable btprio;
6385 	struct iwn_btcoex_prot btprot;
6386 	int error, i;
6387 	uint8_t flags;
6388 
6389 	memset(&btconfig, 0, sizeof btconfig);
6390 	memset(&btconfig2k, 0, sizeof btconfig2k);
6391 
6392 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6393 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6394 
6395 	if (sc->base_params->bt_sco_disable)
6396 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6397 	else
6398 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6399 
6400 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6401 
6402 	/* Default flags result is 145 as old value */
6403 
6404 	/*
6405 	 * Flags value has to be review. Values must change if we
6406 	 * which to disable it
6407 	 */
6408 	if (sc->base_params->bt_session_2) {
6409 		btconfig2k.flags = flags;
6410 		btconfig2k.max_kill = 5;
6411 		btconfig2k.bt3_t7_timer = 1;
6412 		btconfig2k.kill_ack = htole32(0xffff0000);
6413 		btconfig2k.kill_cts = htole32(0xffff0000);
6414 		btconfig2k.sample_time = 2;
6415 		btconfig2k.bt3_t2_timer = 0xc;
6416 
6417 		for (i = 0; i < 12; i++)
6418 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6419 		btconfig2k.valid = htole16(0xff);
6420 		btconfig2k.prio_boost = htole32(0xf0);
6421 		DPRINTF(sc, IWN_DEBUG_RESET,
6422 		    "%s: configuring advanced bluetooth coexistence"
6423 		    " session 2, flags : 0x%x\n",
6424 		    __func__,
6425 		    flags);
6426 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6427 		    sizeof(btconfig2k), 1);
6428 	} else {
6429 		btconfig.flags = flags;
6430 		btconfig.max_kill = 5;
6431 		btconfig.bt3_t7_timer = 1;
6432 		btconfig.kill_ack = htole32(0xffff0000);
6433 		btconfig.kill_cts = htole32(0xffff0000);
6434 		btconfig.sample_time = 2;
6435 		btconfig.bt3_t2_timer = 0xc;
6436 
6437 		for (i = 0; i < 12; i++)
6438 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6439 		btconfig.valid = htole16(0xff);
6440 		btconfig.prio_boost = 0xf0;
6441 		DPRINTF(sc, IWN_DEBUG_RESET,
6442 		    "%s: configuring advanced bluetooth coexistence,"
6443 		    " flags : 0x%x\n",
6444 		    __func__,
6445 		    flags);
6446 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6447 		    sizeof(btconfig), 1);
6448 	}
6449 
6450 	if (error != 0)
6451 		return error;
6452 
6453 	memset(&btprio, 0, sizeof btprio);
6454 	btprio.calib_init1 = 0x6;
6455 	btprio.calib_init2 = 0x7;
6456 	btprio.calib_periodic_low1 = 0x2;
6457 	btprio.calib_periodic_low2 = 0x3;
6458 	btprio.calib_periodic_high1 = 0x4;
6459 	btprio.calib_periodic_high2 = 0x5;
6460 	btprio.dtim = 0x6;
6461 	btprio.scan52 = 0x8;
6462 	btprio.scan24 = 0xa;
6463 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6464 	    1);
6465 	if (error != 0)
6466 		return error;
6467 
6468 	/* Force BT state machine change. */
6469 	memset(&btprot, 0, sizeof btprot);
6470 	btprot.open = 1;
6471 	btprot.type = 1;
6472 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6473 	if (error != 0)
6474 		return error;
6475 	btprot.open = 0;
6476 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6477 }
6478 
6479 static int
6480 iwn5000_runtime_calib(struct iwn_softc *sc)
6481 {
6482 	struct iwn5000_calib_config cmd;
6483 
6484 	memset(&cmd, 0, sizeof cmd);
6485 	cmd.ucode.once.enable = 0xffffffff;
6486 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6487 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6488 	    "%s: configuring runtime calibration\n", __func__);
6489 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6490 }
6491 
6492 static uint32_t
6493 iwn_get_rxon_ht_flags(struct iwn_softc *sc, struct ieee80211_channel *c)
6494 {
6495 	struct ieee80211com *ic = &sc->sc_ic;
6496 	uint32_t htflags = 0;
6497 
6498 	if (! IEEE80211_IS_CHAN_HT(c))
6499 		return (0);
6500 
6501 	htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6502 
6503 	if (IEEE80211_IS_CHAN_HT40(c)) {
6504 		switch (ic->ic_curhtprotmode) {
6505 		case IEEE80211_HTINFO_OPMODE_HT20PR:
6506 			htflags |= IWN_RXON_HT_MODEPURE40;
6507 			break;
6508 		default:
6509 			htflags |= IWN_RXON_HT_MODEMIXED;
6510 			break;
6511 		}
6512 	}
6513 	if (IEEE80211_IS_CHAN_HT40D(c))
6514 		htflags |= IWN_RXON_HT_HT40MINUS;
6515 
6516 	return (htflags);
6517 }
6518 
6519 static int
6520 iwn_config(struct iwn_softc *sc)
6521 {
6522 	struct iwn_ops *ops = &sc->ops;
6523 	struct ieee80211com *ic = &sc->sc_ic;
6524 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6525 	const uint8_t *macaddr;
6526 	uint32_t txmask;
6527 	uint16_t rxchain;
6528 	int error;
6529 
6530 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6531 
6532 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6533 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6534 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6535 		    " exclusive each together. Review NIC config file. Conf"
6536 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6537 		    sc->base_params->calib_need,
6538 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6539 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6540 		return (EINVAL);
6541 	}
6542 
6543 	/* Compute temperature calib if needed. Will be send by send calib */
6544 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6545 		error = iwn5000_temp_offset_calib(sc);
6546 		if (error != 0) {
6547 			device_printf(sc->sc_dev,
6548 			    "%s: could not set temperature offset\n", __func__);
6549 			return (error);
6550 		}
6551 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6552 		error = iwn5000_temp_offset_calibv2(sc);
6553 		if (error != 0) {
6554 			device_printf(sc->sc_dev,
6555 			    "%s: could not compute temperature offset v2\n",
6556 			    __func__);
6557 			return (error);
6558 		}
6559 	}
6560 
6561 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6562 		/* Configure runtime DC calibration. */
6563 		error = iwn5000_runtime_calib(sc);
6564 		if (error != 0) {
6565 			device_printf(sc->sc_dev,
6566 			    "%s: could not configure runtime calibration\n",
6567 			    __func__);
6568 			return error;
6569 		}
6570 	}
6571 
6572 	/* Configure valid TX chains for >=5000 Series. */
6573 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6574 	    IWN_UCODE_API(sc->ucode_rev) > 1) {
6575 		txmask = htole32(sc->txchainmask);
6576 		DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6577 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6578 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6579 		    sizeof txmask, 0);
6580 		if (error != 0) {
6581 			device_printf(sc->sc_dev,
6582 			    "%s: could not configure valid TX chains, "
6583 			    "error %d\n", __func__, error);
6584 			return error;
6585 		}
6586 	}
6587 
6588 	/* Configure bluetooth coexistence. */
6589 	error = 0;
6590 
6591 	/* Configure bluetooth coexistence if needed. */
6592 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6593 		error = iwn_send_advanced_btcoex(sc);
6594 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6595 		error = iwn_send_btcoex(sc);
6596 
6597 	if (error != 0) {
6598 		device_printf(sc->sc_dev,
6599 		    "%s: could not configure bluetooth coexistence, error %d\n",
6600 		    __func__, error);
6601 		return error;
6602 	}
6603 
6604 	/* Set mode, channel, RX filter and enable RX. */
6605 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6606 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6607 	macaddr = vap ? vap->iv_myaddr : ic->ic_macaddr;
6608 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, macaddr);
6609 	IEEE80211_ADDR_COPY(sc->rxon->wlap, macaddr);
6610 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6611 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6612 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6613 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6614 	switch (ic->ic_opmode) {
6615 	case IEEE80211_M_STA:
6616 		sc->rxon->mode = IWN_MODE_STA;
6617 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6618 		break;
6619 	case IEEE80211_M_MONITOR:
6620 		sc->rxon->mode = IWN_MODE_MONITOR;
6621 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6622 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6623 		break;
6624 	default:
6625 		/* Should not get there. */
6626 		break;
6627 	}
6628 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6629 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6630 	sc->rxon->ht_single_mask = 0xff;
6631 	sc->rxon->ht_dual_mask = 0xff;
6632 	sc->rxon->ht_triple_mask = 0xff;
6633 	/*
6634 	 * In active association mode, ensure that
6635 	 * all the receive chains are enabled.
6636 	 *
6637 	 * Since we're not yet doing SMPS, don't allow the
6638 	 * number of idle RX chains to be less than the active
6639 	 * number.
6640 	 */
6641 	rxchain =
6642 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6643 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
6644 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
6645 	sc->rxon->rxchain = htole16(rxchain);
6646 	DPRINTF(sc, IWN_DEBUG_RESET | IWN_DEBUG_XMIT,
6647 	    "%s: rxchainmask=0x%x, nrxchains=%d\n",
6648 	    __func__,
6649 	    sc->rxchainmask,
6650 	    sc->nrxchains);
6651 
6652 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
6653 
6654 	DPRINTF(sc, IWN_DEBUG_RESET,
6655 	    "%s: setting configuration; flags=0x%08x\n",
6656 	    __func__, le32toh(sc->rxon->flags));
6657 	if (sc->sc_is_scanning)
6658 		device_printf(sc->sc_dev,
6659 		    "%s: is_scanning set, before RXON\n",
6660 		    __func__);
6661 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6662 	if (error != 0) {
6663 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6664 		    __func__);
6665 		return error;
6666 	}
6667 
6668 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6669 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6670 		    __func__);
6671 		return error;
6672 	}
6673 
6674 	/* Configuration has changed, set TX power accordingly. */
6675 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6676 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6677 		    __func__);
6678 		return error;
6679 	}
6680 
6681 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6682 		device_printf(sc->sc_dev,
6683 		    "%s: could not set critical temperature\n", __func__);
6684 		return error;
6685 	}
6686 
6687 	/* Set power saving level to CAM during initialization. */
6688 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6689 		device_printf(sc->sc_dev,
6690 		    "%s: could not set power saving level\n", __func__);
6691 		return error;
6692 	}
6693 
6694 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6695 
6696 	return 0;
6697 }
6698 
6699 static uint16_t
6700 iwn_get_active_dwell_time(struct iwn_softc *sc,
6701     struct ieee80211_channel *c, uint8_t n_probes)
6702 {
6703 	/* No channel? Default to 2GHz settings */
6704 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6705 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6706 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6707 	}
6708 
6709 	/* 5GHz dwell time */
6710 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6711 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6712 }
6713 
6714 /*
6715  * Limit the total dwell time to 85% of the beacon interval.
6716  *
6717  * Returns the dwell time in milliseconds.
6718  */
6719 static uint16_t
6720 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6721 {
6722 	struct ieee80211com *ic = &sc->sc_ic;
6723 	struct ieee80211vap *vap = NULL;
6724 	int bintval = 0;
6725 
6726 	/* bintval is in TU (1.024mS) */
6727 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6728 		vap = TAILQ_FIRST(&ic->ic_vaps);
6729 		bintval = vap->iv_bss->ni_intval;
6730 	}
6731 
6732 	/*
6733 	 * If it's non-zero, we should calculate the minimum of
6734 	 * it and the DWELL_BASE.
6735 	 *
6736 	 * XXX Yes, the math should take into account that bintval
6737 	 * is 1.024mS, not 1mS..
6738 	 */
6739 	if (bintval > 0) {
6740 		DPRINTF(sc, IWN_DEBUG_SCAN,
6741 		    "%s: bintval=%d\n",
6742 		    __func__,
6743 		    bintval);
6744 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6745 	}
6746 
6747 	/* No association context? Default */
6748 	return (IWN_PASSIVE_DWELL_BASE);
6749 }
6750 
6751 static uint16_t
6752 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6753 {
6754 	uint16_t passive;
6755 
6756 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6757 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6758 	} else {
6759 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6760 	}
6761 
6762 	/* Clamp to the beacon interval if we're associated */
6763 	return (iwn_limit_dwell(sc, passive));
6764 }
6765 
6766 static int
6767 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6768     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6769 {
6770 	struct ieee80211com *ic = &sc->sc_ic;
6771 	struct ieee80211_node *ni = vap->iv_bss;
6772 	struct iwn_scan_hdr *hdr;
6773 	struct iwn_cmd_data *tx;
6774 	struct iwn_scan_essid *essid;
6775 	struct iwn_scan_chan *chan;
6776 	struct ieee80211_frame *wh;
6777 	struct ieee80211_rateset *rs;
6778 	uint8_t *buf, *frm;
6779 	uint16_t rxchain;
6780 	uint8_t txant;
6781 	int buflen, error;
6782 	int is_active;
6783 	uint16_t dwell_active, dwell_passive;
6784 	uint32_t extra, scan_service_time;
6785 
6786 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6787 
6788 	/*
6789 	 * We are absolutely not allowed to send a scan command when another
6790 	 * scan command is pending.
6791 	 */
6792 	if (sc->sc_is_scanning) {
6793 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6794 		    __func__);
6795 		return (EAGAIN);
6796 	}
6797 
6798 	/* Assign the scan channel */
6799 	c = ic->ic_curchan;
6800 
6801 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6802 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6803 	if (buf == NULL) {
6804 		device_printf(sc->sc_dev,
6805 		    "%s: could not allocate buffer for scan command\n",
6806 		    __func__);
6807 		return ENOMEM;
6808 	}
6809 	hdr = (struct iwn_scan_hdr *)buf;
6810 	/*
6811 	 * Move to the next channel if no frames are received within 10ms
6812 	 * after sending the probe request.
6813 	 */
6814 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6815 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6816 	/*
6817 	 * Max needs to be greater than active and passive and quiet!
6818 	 * It's also in microseconds!
6819 	 */
6820 	hdr->max_svc = htole32(250 * 1024);
6821 
6822 	/*
6823 	 * Reset scan: interval=100
6824 	 * Normal scan: interval=becaon interval
6825 	 * suspend_time: 100 (TU)
6826 	 *
6827 	 */
6828 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6829 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6830 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6831 	hdr->pause_svc = htole32(scan_service_time);
6832 
6833 	/* Select antennas for scanning. */
6834 	rxchain =
6835 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6836 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6837 	    IWN_RXCHAIN_DRIVER_FORCE;
6838 	if (IEEE80211_IS_CHAN_A(c) &&
6839 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6840 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6841 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6842 	} else	/* Use all available RX antennas. */
6843 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6844 	hdr->rxchain = htole16(rxchain);
6845 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6846 
6847 	tx = (struct iwn_cmd_data *)(hdr + 1);
6848 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6849 	tx->id = sc->broadcast_id;
6850 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6851 
6852 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6853 		/* Send probe requests at 6Mbps. */
6854 		tx->rate = htole32(0xd);
6855 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6856 	} else {
6857 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6858 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6859 		    sc->rxon->associd && sc->rxon->chan > 14)
6860 			tx->rate = htole32(0xd);
6861 		else {
6862 			/* Send probe requests at 1Mbps. */
6863 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6864 		}
6865 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6866 	}
6867 	/* Use the first valid TX antenna. */
6868 	txant = IWN_LSB(sc->txchainmask);
6869 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6870 
6871 	/*
6872 	 * Only do active scanning if we're announcing a probe request
6873 	 * for a given SSID (or more, if we ever add it to the driver.)
6874 	 */
6875 	is_active = 0;
6876 
6877 	/*
6878 	 * If we're scanning for a specific SSID, add it to the command.
6879 	 *
6880 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6881 	 */
6882 	essid = (struct iwn_scan_essid *)(tx + 1);
6883 	if (ss != NULL) {
6884 		if (ss->ss_ssid[0].len != 0) {
6885 			essid[0].id = IEEE80211_ELEMID_SSID;
6886 			essid[0].len = ss->ss_ssid[0].len;
6887 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6888 		}
6889 
6890 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6891 		    __func__,
6892 		    ss->ss_ssid[0].len,
6893 		    ss->ss_ssid[0].len,
6894 		    ss->ss_ssid[0].ssid);
6895 
6896 		if (ss->ss_nssid > 0)
6897 			is_active = 1;
6898 	}
6899 
6900 	/*
6901 	 * Build a probe request frame.  Most of the following code is a
6902 	 * copy & paste of what is done in net80211.
6903 	 */
6904 	wh = (struct ieee80211_frame *)(essid + 20);
6905 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6906 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6907 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6908 	IEEE80211_ADDR_COPY(wh->i_addr1, vap->iv_ifp->if_broadcastaddr);
6909 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(vap->iv_ifp));
6910 	IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_ifp->if_broadcastaddr);
6911 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6912 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6913 
6914 	frm = (uint8_t *)(wh + 1);
6915 	frm = ieee80211_add_ssid(frm, NULL, 0);
6916 	frm = ieee80211_add_rates(frm, rs);
6917 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6918 		frm = ieee80211_add_xrates(frm, rs);
6919 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6920 		frm = ieee80211_add_htcap(frm, ni);
6921 
6922 	/* Set length of probe request. */
6923 	tx->len = htole16(frm - (uint8_t *)wh);
6924 
6925 	/*
6926 	 * If active scanning is requested but a certain channel is
6927 	 * marked passive, we can do active scanning if we detect
6928 	 * transmissions.
6929 	 *
6930 	 * There is an issue with some firmware versions that triggers
6931 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6932 	 * on a radar channel even though this means that we should NOT
6933 	 * send probes.
6934 	 *
6935 	 * The "good CRC threshold" is the number of frames that we
6936 	 * need to receive during our dwell time on a channel before
6937 	 * sending out probes -- setting this to a huge value will
6938 	 * mean we never reach it, but at the same time work around
6939 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6940 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6941 	 *
6942 	 * This was fixed in later versions along with some other
6943 	 * scan changes, and the threshold behaves as a flag in those
6944 	 * versions.
6945 	 */
6946 
6947 	/*
6948 	 * If we're doing active scanning, set the crc_threshold
6949 	 * to a suitable value.  This is different to active veruss
6950 	 * passive scanning depending upon the channel flags; the
6951 	 * firmware will obey that particular check for us.
6952 	 */
6953 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6954 		hdr->crc_threshold = is_active ?
6955 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6956 	else
6957 		hdr->crc_threshold = is_active ?
6958 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6959 
6960 	chan = (struct iwn_scan_chan *)frm;
6961 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6962 	chan->flags = 0;
6963 	if (ss->ss_nssid > 0)
6964 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6965 	chan->dsp_gain = 0x6e;
6966 
6967 	/*
6968 	 * Set the passive/active flag depending upon the channel mode.
6969 	 * XXX TODO: take the is_active flag into account as well?
6970 	 */
6971 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6972 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6973 	else
6974 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6975 
6976 	/*
6977 	 * Calculate the active/passive dwell times.
6978 	 */
6979 
6980 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6981 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6982 
6983 	/* Make sure they're valid */
6984 	if (dwell_passive <= dwell_active)
6985 		dwell_passive = dwell_active + 1;
6986 
6987 	chan->active = htole16(dwell_active);
6988 	chan->passive = htole16(dwell_passive);
6989 
6990 	if (IEEE80211_IS_CHAN_5GHZ(c))
6991 		chan->rf_gain = 0x3b;
6992 	else
6993 		chan->rf_gain = 0x28;
6994 
6995 	DPRINTF(sc, IWN_DEBUG_STATE,
6996 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6997 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6998 	    "isactive=%d numssid=%d\n", __func__,
6999 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
7000 	    dwell_active, dwell_passive, scan_service_time,
7001 	    hdr->crc_threshold, is_active, ss->ss_nssid);
7002 
7003 	hdr->nchan++;
7004 	chan++;
7005 	buflen = (uint8_t *)chan - buf;
7006 	hdr->len = htole16(buflen);
7007 
7008 	if (sc->sc_is_scanning) {
7009 		device_printf(sc->sc_dev,
7010 		    "%s: called with is_scanning set!\n",
7011 		    __func__);
7012 	}
7013 	sc->sc_is_scanning = 1;
7014 
7015 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
7016 	    hdr->nchan);
7017 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
7018 	free(buf, M_DEVBUF);
7019 	if (error == 0)
7020 		callout_reset(&sc->scan_timeout, 5*hz, iwn_scan_timeout, sc);
7021 
7022 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7023 
7024 	return error;
7025 }
7026 
7027 static int
7028 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
7029 {
7030 	struct iwn_ops *ops = &sc->ops;
7031 	struct ieee80211com *ic = &sc->sc_ic;
7032 	struct ieee80211_node *ni = vap->iv_bss;
7033 	int error;
7034 
7035 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7036 
7037 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7038 	/* Update adapter configuration. */
7039 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7040 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7041 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7042 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7043 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7044 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7045 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7046 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7047 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7048 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7049 		sc->rxon->cck_mask  = 0;
7050 		sc->rxon->ofdm_mask = 0x15;
7051 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7052 		sc->rxon->cck_mask  = 0x03;
7053 		sc->rxon->ofdm_mask = 0;
7054 	} else {
7055 		/* Assume 802.11b/g. */
7056 		sc->rxon->cck_mask  = 0x03;
7057 		sc->rxon->ofdm_mask = 0x15;
7058 	}
7059 
7060 	/* try HT */
7061 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ic->ic_curchan));
7062 
7063 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
7064 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
7065 	    sc->rxon->ofdm_mask);
7066 	if (sc->sc_is_scanning)
7067 		device_printf(sc->sc_dev,
7068 		    "%s: is_scanning set, before RXON\n",
7069 		    __func__);
7070 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7071 	if (error != 0) {
7072 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
7073 		    __func__, error);
7074 		return error;
7075 	}
7076 
7077 	/* Configuration has changed, set TX power accordingly. */
7078 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7079 		device_printf(sc->sc_dev,
7080 		    "%s: could not set TX power, error %d\n", __func__, error);
7081 		return error;
7082 	}
7083 	/*
7084 	 * Reconfiguring RXON clears the firmware nodes table so we must
7085 	 * add the broadcast node again.
7086 	 */
7087 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
7088 		device_printf(sc->sc_dev,
7089 		    "%s: could not add broadcast node, error %d\n", __func__,
7090 		    error);
7091 		return error;
7092 	}
7093 
7094 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7095 
7096 	return 0;
7097 }
7098 
7099 static int
7100 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
7101 {
7102 	struct iwn_ops *ops = &sc->ops;
7103 	struct ieee80211com *ic = &sc->sc_ic;
7104 	struct ieee80211_node *ni = vap->iv_bss;
7105 	struct iwn_node_info node;
7106 	int error;
7107 
7108 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7109 
7110 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
7111 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7112 		/* Link LED blinks while monitoring. */
7113 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
7114 		return 0;
7115 	}
7116 	if ((error = iwn_set_timing(sc, ni)) != 0) {
7117 		device_printf(sc->sc_dev,
7118 		    "%s: could not set timing, error %d\n", __func__, error);
7119 		return error;
7120 	}
7121 
7122 	/* Update adapter configuration. */
7123 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
7124 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
7125 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
7126 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
7127 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
7128 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
7129 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
7130 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
7131 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
7132 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
7133 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
7134 		sc->rxon->cck_mask  = 0;
7135 		sc->rxon->ofdm_mask = 0x15;
7136 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
7137 		sc->rxon->cck_mask  = 0x03;
7138 		sc->rxon->ofdm_mask = 0;
7139 	} else {
7140 		/* Assume 802.11b/g. */
7141 		sc->rxon->cck_mask  = 0x0f;
7142 		sc->rxon->ofdm_mask = 0x15;
7143 	}
7144 	/* try HT */
7145 	sc->rxon->flags |= htole32(iwn_get_rxon_ht_flags(sc, ni->ni_chan));
7146 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
7147 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x, curhtprotmode=%d\n",
7148 	    sc->rxon->chan, le32toh(sc->rxon->flags), ic->ic_curhtprotmode);
7149 	if (sc->sc_is_scanning)
7150 		device_printf(sc->sc_dev,
7151 		    "%s: is_scanning set, before RXON\n",
7152 		    __func__);
7153 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
7154 	if (error != 0) {
7155 		device_printf(sc->sc_dev,
7156 		    "%s: could not update configuration, error %d\n", __func__,
7157 		    error);
7158 		return error;
7159 	}
7160 
7161 	/* Configuration has changed, set TX power accordingly. */
7162 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
7163 		device_printf(sc->sc_dev,
7164 		    "%s: could not set TX power, error %d\n", __func__, error);
7165 		return error;
7166 	}
7167 
7168 	/* Fake a join to initialize the TX rate. */
7169 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
7170 	iwn_newassoc(ni, 1);
7171 
7172 	/* Add BSS node. */
7173 	memset(&node, 0, sizeof node);
7174 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
7175 	node.id = IWN_ID_BSS;
7176 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
7177 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
7178 		case IEEE80211_HTCAP_SMPS_ENA:
7179 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
7180 			break;
7181 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
7182 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
7183 			break;
7184 		}
7185 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
7186 		    IWN_AMDPU_DENSITY(5));	/* 4us */
7187 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
7188 			node.htflags |= htole32(IWN_NODE_HT40);
7189 	}
7190 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
7191 	error = ops->add_node(sc, &node, 1);
7192 	if (error != 0) {
7193 		device_printf(sc->sc_dev,
7194 		    "%s: could not add BSS node, error %d\n", __func__, error);
7195 		return error;
7196 	}
7197 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
7198 	    __func__, node.id);
7199 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
7200 		device_printf(sc->sc_dev,
7201 		    "%s: could not setup link quality for node %d, error %d\n",
7202 		    __func__, node.id, error);
7203 		return error;
7204 	}
7205 
7206 	if ((error = iwn_init_sensitivity(sc)) != 0) {
7207 		device_printf(sc->sc_dev,
7208 		    "%s: could not set sensitivity, error %d\n", __func__,
7209 		    error);
7210 		return error;
7211 	}
7212 	/* Start periodic calibration timer. */
7213 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
7214 	sc->calib_cnt = 0;
7215 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
7216 	    sc);
7217 
7218 	/* Link LED always on while associated. */
7219 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7220 
7221 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7222 
7223 	return 0;
7224 }
7225 
7226 /*
7227  * This function is called by upper layer when an ADDBA request is received
7228  * from another STA and before the ADDBA response is sent.
7229  */
7230 static int
7231 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
7232     int baparamset, int batimeout, int baseqctl)
7233 {
7234 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
7235 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7236 	struct iwn_ops *ops = &sc->ops;
7237 	struct iwn_node *wn = (void *)ni;
7238 	struct iwn_node_info node;
7239 	uint16_t ssn;
7240 	uint8_t tid;
7241 	int error;
7242 
7243 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7244 
7245 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
7246 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7247 
7248 	memset(&node, 0, sizeof node);
7249 	node.id = wn->id;
7250 	node.control = IWN_NODE_UPDATE;
7251 	node.flags = IWN_FLAG_SET_ADDBA;
7252 	node.addba_tid = tid;
7253 	node.addba_ssn = htole16(ssn);
7254 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7255 	    wn->id, tid, ssn);
7256 	error = ops->add_node(sc, &node, 1);
7257 	if (error != 0)
7258 		return error;
7259 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7260 #undef MS
7261 }
7262 
7263 /*
7264  * This function is called by upper layer on teardown of an HT-immediate
7265  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7266  */
7267 static void
7268 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7269 {
7270 	struct ieee80211com *ic = ni->ni_ic;
7271 	struct iwn_softc *sc = ic->ic_softc;
7272 	struct iwn_ops *ops = &sc->ops;
7273 	struct iwn_node *wn = (void *)ni;
7274 	struct iwn_node_info node;
7275 	uint8_t tid;
7276 
7277 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7278 
7279 	/* XXX: tid as an argument */
7280 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7281 		if (&ni->ni_rx_ampdu[tid] == rap)
7282 			break;
7283 	}
7284 
7285 	memset(&node, 0, sizeof node);
7286 	node.id = wn->id;
7287 	node.control = IWN_NODE_UPDATE;
7288 	node.flags = IWN_FLAG_SET_DELBA;
7289 	node.delba_tid = tid;
7290 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7291 	(void)ops->add_node(sc, &node, 1);
7292 	sc->sc_ampdu_rx_stop(ni, rap);
7293 }
7294 
7295 static int
7296 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7297     int dialogtoken, int baparamset, int batimeout)
7298 {
7299 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7300 	int qid;
7301 
7302 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7303 
7304 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7305 		if (sc->qid2tap[qid] == NULL)
7306 			break;
7307 	}
7308 	if (qid == sc->ntxqs) {
7309 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7310 		    __func__);
7311 		return 0;
7312 	}
7313 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7314 	if (tap->txa_private == NULL) {
7315 		device_printf(sc->sc_dev,
7316 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7317 		return 0;
7318 	}
7319 	sc->qid2tap[qid] = tap;
7320 	*(int *)tap->txa_private = qid;
7321 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7322 	    batimeout);
7323 }
7324 
7325 static int
7326 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7327     int code, int baparamset, int batimeout)
7328 {
7329 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7330 	int qid = *(int *)tap->txa_private;
7331 	uint8_t tid = tap->txa_tid;
7332 	int ret;
7333 
7334 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7335 
7336 	if (code == IEEE80211_STATUS_SUCCESS) {
7337 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7338 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7339 		if (ret != 1)
7340 			return ret;
7341 	} else {
7342 		sc->qid2tap[qid] = NULL;
7343 		free(tap->txa_private, M_DEVBUF);
7344 		tap->txa_private = NULL;
7345 	}
7346 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7347 }
7348 
7349 /*
7350  * This function is called by upper layer when an ADDBA response is received
7351  * from another STA.
7352  */
7353 static int
7354 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7355     uint8_t tid)
7356 {
7357 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7358 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7359 	struct iwn_ops *ops = &sc->ops;
7360 	struct iwn_node *wn = (void *)ni;
7361 	struct iwn_node_info node;
7362 	int error, qid;
7363 
7364 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7365 
7366 	/* Enable TX for the specified RA/TID. */
7367 	wn->disable_tid &= ~(1 << tid);
7368 	memset(&node, 0, sizeof node);
7369 	node.id = wn->id;
7370 	node.control = IWN_NODE_UPDATE;
7371 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7372 	node.disable_tid = htole16(wn->disable_tid);
7373 	error = ops->add_node(sc, &node, 1);
7374 	if (error != 0)
7375 		return 0;
7376 
7377 	if ((error = iwn_nic_lock(sc)) != 0)
7378 		return 0;
7379 	qid = *(int *)tap->txa_private;
7380 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7381 	    __func__, wn->id, tid, tap->txa_start, qid);
7382 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7383 	iwn_nic_unlock(sc);
7384 
7385 	iwn_set_link_quality(sc, ni);
7386 	return 1;
7387 }
7388 
7389 static void
7390 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7391 {
7392 	struct iwn_softc *sc = ni->ni_ic->ic_softc;
7393 	struct iwn_ops *ops = &sc->ops;
7394 	uint8_t tid = tap->txa_tid;
7395 	int qid;
7396 
7397 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7398 
7399 	sc->sc_addba_stop(ni, tap);
7400 
7401 	if (tap->txa_private == NULL)
7402 		return;
7403 
7404 	qid = *(int *)tap->txa_private;
7405 	if (sc->txq[qid].queued != 0)
7406 		return;
7407 	if (iwn_nic_lock(sc) != 0)
7408 		return;
7409 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7410 	iwn_nic_unlock(sc);
7411 	sc->qid2tap[qid] = NULL;
7412 	free(tap->txa_private, M_DEVBUF);
7413 	tap->txa_private = NULL;
7414 }
7415 
7416 static void
7417 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7418     int qid, uint8_t tid, uint16_t ssn)
7419 {
7420 	struct iwn_node *wn = (void *)ni;
7421 
7422 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7423 
7424 	/* Stop TX scheduler while we're changing its configuration. */
7425 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7426 	    IWN4965_TXQ_STATUS_CHGACT);
7427 
7428 	/* Assign RA/TID translation to the queue. */
7429 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7430 	    wn->id << 4 | tid);
7431 
7432 	/* Enable chain-building mode for the queue. */
7433 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7434 
7435 	/* Set starting sequence number from the ADDBA request. */
7436 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7437 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7438 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7439 
7440 	/* Set scheduler window size. */
7441 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7442 	    IWN_SCHED_WINSZ);
7443 	/* Set scheduler frame limit. */
7444 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7445 	    IWN_SCHED_LIMIT << 16);
7446 
7447 	/* Enable interrupts for the queue. */
7448 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7449 
7450 	/* Mark the queue as active. */
7451 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7452 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7453 	    iwn_tid2fifo[tid] << 1);
7454 }
7455 
7456 static void
7457 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7458 {
7459 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7460 
7461 	/* Stop TX scheduler while we're changing its configuration. */
7462 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7463 	    IWN4965_TXQ_STATUS_CHGACT);
7464 
7465 	/* Set starting sequence number from the ADDBA request. */
7466 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7467 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7468 
7469 	/* Disable interrupts for the queue. */
7470 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7471 
7472 	/* Mark the queue as inactive. */
7473 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7474 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7475 }
7476 
7477 static void
7478 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7479     int qid, uint8_t tid, uint16_t ssn)
7480 {
7481 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7482 
7483 	struct iwn_node *wn = (void *)ni;
7484 
7485 	/* Stop TX scheduler while we're changing its configuration. */
7486 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7487 	    IWN5000_TXQ_STATUS_CHGACT);
7488 
7489 	/* Assign RA/TID translation to the queue. */
7490 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7491 	    wn->id << 4 | tid);
7492 
7493 	/* Enable chain-building mode for the queue. */
7494 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7495 
7496 	/* Enable aggregation for the queue. */
7497 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7498 
7499 	/* Set starting sequence number from the ADDBA request. */
7500 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7501 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7502 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7503 
7504 	/* Set scheduler window size and frame limit. */
7505 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7506 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7507 
7508 	/* Enable interrupts for the queue. */
7509 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7510 
7511 	/* Mark the queue as active. */
7512 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7513 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7514 }
7515 
7516 static void
7517 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7518 {
7519 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7520 
7521 	/* Stop TX scheduler while we're changing its configuration. */
7522 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7523 	    IWN5000_TXQ_STATUS_CHGACT);
7524 
7525 	/* Disable aggregation for the queue. */
7526 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7527 
7528 	/* Set starting sequence number from the ADDBA request. */
7529 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7530 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7531 
7532 	/* Disable interrupts for the queue. */
7533 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7534 
7535 	/* Mark the queue as inactive. */
7536 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7537 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7538 }
7539 
7540 /*
7541  * Query calibration tables from the initialization firmware.  We do this
7542  * only once at first boot.  Called from a process context.
7543  */
7544 static int
7545 iwn5000_query_calibration(struct iwn_softc *sc)
7546 {
7547 	struct iwn5000_calib_config cmd;
7548 	int error;
7549 
7550 	memset(&cmd, 0, sizeof cmd);
7551 	cmd.ucode.once.enable = htole32(0xffffffff);
7552 	cmd.ucode.once.start  = htole32(0xffffffff);
7553 	cmd.ucode.once.send   = htole32(0xffffffff);
7554 	cmd.ucode.flags       = htole32(0xffffffff);
7555 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7556 	    __func__);
7557 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7558 	if (error != 0)
7559 		return error;
7560 
7561 	/* Wait at most two seconds for calibration to complete. */
7562 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7563 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7564 	return error;
7565 }
7566 
7567 /*
7568  * Send calibration results to the runtime firmware.  These results were
7569  * obtained on first boot from the initialization firmware.
7570  */
7571 static int
7572 iwn5000_send_calibration(struct iwn_softc *sc)
7573 {
7574 	int idx, error;
7575 
7576 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7577 		if (!(sc->base_params->calib_need & (1<<idx))) {
7578 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7579 			    "No need of calib %d\n",
7580 			    idx);
7581 			continue; /* no need for this calib */
7582 		}
7583 		if (sc->calibcmd[idx].buf == NULL) {
7584 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7585 			    "Need calib idx : %d but no available data\n",
7586 			    idx);
7587 			continue;
7588 		}
7589 
7590 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7591 		    "send calibration result idx=%d len=%d\n", idx,
7592 		    sc->calibcmd[idx].len);
7593 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7594 		    sc->calibcmd[idx].len, 0);
7595 		if (error != 0) {
7596 			device_printf(sc->sc_dev,
7597 			    "%s: could not send calibration result, error %d\n",
7598 			    __func__, error);
7599 			return error;
7600 		}
7601 	}
7602 	return 0;
7603 }
7604 
7605 static int
7606 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7607 {
7608 	struct iwn5000_wimax_coex wimax;
7609 
7610 #if 0
7611 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7612 		/* Enable WiMAX coexistence for combo adapters. */
7613 		wimax.flags =
7614 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7615 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7616 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7617 		    IWN_WIMAX_COEX_ENABLE;
7618 		memcpy(wimax.events, iwn6050_wimax_events,
7619 		    sizeof iwn6050_wimax_events);
7620 	} else
7621 #endif
7622 	{
7623 		/* Disable WiMAX coexistence. */
7624 		wimax.flags = 0;
7625 		memset(wimax.events, 0, sizeof wimax.events);
7626 	}
7627 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7628 	    __func__);
7629 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7630 }
7631 
7632 static int
7633 iwn5000_crystal_calib(struct iwn_softc *sc)
7634 {
7635 	struct iwn5000_phy_calib_crystal cmd;
7636 
7637 	memset(&cmd, 0, sizeof cmd);
7638 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7639 	cmd.ngroups = 1;
7640 	cmd.isvalid = 1;
7641 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7642 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7643 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7644 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7645 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7646 }
7647 
7648 static int
7649 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7650 {
7651 	struct iwn5000_phy_calib_temp_offset cmd;
7652 
7653 	memset(&cmd, 0, sizeof cmd);
7654 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7655 	cmd.ngroups = 1;
7656 	cmd.isvalid = 1;
7657 	if (sc->eeprom_temp != 0)
7658 		cmd.offset = htole16(sc->eeprom_temp);
7659 	else
7660 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7661 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7662 	    le16toh(cmd.offset));
7663 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7664 }
7665 
7666 static int
7667 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7668 {
7669 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7670 
7671 	memset(&cmd, 0, sizeof cmd);
7672 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7673 	cmd.ngroups = 1;
7674 	cmd.isvalid = 1;
7675 	if (sc->eeprom_temp != 0) {
7676 		cmd.offset_low = htole16(sc->eeprom_temp);
7677 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7678 	} else {
7679 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7680 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7681 	}
7682 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7683 
7684 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7685 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7686 	    le16toh(cmd.offset_low),
7687 	    le16toh(cmd.offset_high),
7688 	    le16toh(cmd.burnt_voltage_ref));
7689 
7690 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7691 }
7692 
7693 /*
7694  * This function is called after the runtime firmware notifies us of its
7695  * readiness (called in a process context).
7696  */
7697 static int
7698 iwn4965_post_alive(struct iwn_softc *sc)
7699 {
7700 	int error, qid;
7701 
7702 	if ((error = iwn_nic_lock(sc)) != 0)
7703 		return error;
7704 
7705 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7706 
7707 	/* Clear TX scheduler state in SRAM. */
7708 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7709 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7710 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7711 
7712 	/* Set physical address of TX scheduler rings (1KB aligned). */
7713 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7714 
7715 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7716 
7717 	/* Disable chain mode for all our 16 queues. */
7718 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7719 
7720 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7721 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7722 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7723 
7724 		/* Set scheduler window size. */
7725 		iwn_mem_write(sc, sc->sched_base +
7726 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7727 		/* Set scheduler frame limit. */
7728 		iwn_mem_write(sc, sc->sched_base +
7729 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7730 		    IWN_SCHED_LIMIT << 16);
7731 	}
7732 
7733 	/* Enable interrupts for all our 16 queues. */
7734 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7735 	/* Identify TX FIFO rings (0-7). */
7736 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7737 
7738 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7739 	for (qid = 0; qid < 7; qid++) {
7740 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7741 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7742 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7743 	}
7744 	iwn_nic_unlock(sc);
7745 	return 0;
7746 }
7747 
7748 /*
7749  * This function is called after the initialization or runtime firmware
7750  * notifies us of its readiness (called in a process context).
7751  */
7752 static int
7753 iwn5000_post_alive(struct iwn_softc *sc)
7754 {
7755 	int error, qid;
7756 
7757 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7758 
7759 	/* Switch to using ICT interrupt mode. */
7760 	iwn5000_ict_reset(sc);
7761 
7762 	if ((error = iwn_nic_lock(sc)) != 0){
7763 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7764 		return error;
7765 	}
7766 
7767 	/* Clear TX scheduler state in SRAM. */
7768 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7769 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7770 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7771 
7772 	/* Set physical address of TX scheduler rings (1KB aligned). */
7773 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7774 
7775 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7776 
7777 	/* Enable chain mode for all queues, except command queue. */
7778 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7779 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7780 	else
7781 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7782 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7783 
7784 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7785 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7786 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7787 
7788 		iwn_mem_write(sc, sc->sched_base +
7789 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7790 		/* Set scheduler window size and frame limit. */
7791 		iwn_mem_write(sc, sc->sched_base +
7792 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7793 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7794 	}
7795 
7796 	/* Enable interrupts for all our 20 queues. */
7797 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7798 	/* Identify TX FIFO rings (0-7). */
7799 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7800 
7801 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7802 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7803 		/* Mark TX rings as active. */
7804 		for (qid = 0; qid < 11; qid++) {
7805 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7806 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7807 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7808 		}
7809 	} else {
7810 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7811 		for (qid = 0; qid < 7; qid++) {
7812 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7813 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7814 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7815 		}
7816 	}
7817 	iwn_nic_unlock(sc);
7818 
7819 	/* Configure WiMAX coexistence for combo adapters. */
7820 	error = iwn5000_send_wimax_coex(sc);
7821 	if (error != 0) {
7822 		device_printf(sc->sc_dev,
7823 		    "%s: could not configure WiMAX coexistence, error %d\n",
7824 		    __func__, error);
7825 		return error;
7826 	}
7827 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7828 		/* Perform crystal calibration. */
7829 		error = iwn5000_crystal_calib(sc);
7830 		if (error != 0) {
7831 			device_printf(sc->sc_dev,
7832 			    "%s: crystal calibration failed, error %d\n",
7833 			    __func__, error);
7834 			return error;
7835 		}
7836 	}
7837 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7838 		/* Query calibration from the initialization firmware. */
7839 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7840 			device_printf(sc->sc_dev,
7841 			    "%s: could not query calibration, error %d\n",
7842 			    __func__, error);
7843 			return error;
7844 		}
7845 		/*
7846 		 * We have the calibration results now, reboot with the
7847 		 * runtime firmware (call ourselves recursively!)
7848 		 */
7849 		iwn_hw_stop(sc);
7850 		error = iwn_hw_init(sc);
7851 	} else {
7852 		/* Send calibration results to runtime firmware. */
7853 		error = iwn5000_send_calibration(sc);
7854 	}
7855 
7856 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7857 
7858 	return error;
7859 }
7860 
7861 /*
7862  * The firmware boot code is small and is intended to be copied directly into
7863  * the NIC internal memory (no DMA transfer).
7864  */
7865 static int
7866 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7867 {
7868 	int error, ntries;
7869 
7870 	size /= sizeof (uint32_t);
7871 
7872 	if ((error = iwn_nic_lock(sc)) != 0)
7873 		return error;
7874 
7875 	/* Copy microcode image into NIC memory. */
7876 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7877 	    (const uint32_t *)ucode, size);
7878 
7879 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7880 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7881 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7882 
7883 	/* Start boot load now. */
7884 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7885 
7886 	/* Wait for transfer to complete. */
7887 	for (ntries = 0; ntries < 1000; ntries++) {
7888 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7889 		    IWN_BSM_WR_CTRL_START))
7890 			break;
7891 		DELAY(10);
7892 	}
7893 	if (ntries == 1000) {
7894 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7895 		    __func__);
7896 		iwn_nic_unlock(sc);
7897 		return ETIMEDOUT;
7898 	}
7899 
7900 	/* Enable boot after power up. */
7901 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7902 
7903 	iwn_nic_unlock(sc);
7904 	return 0;
7905 }
7906 
7907 static int
7908 iwn4965_load_firmware(struct iwn_softc *sc)
7909 {
7910 	struct iwn_fw_info *fw = &sc->fw;
7911 	struct iwn_dma_info *dma = &sc->fw_dma;
7912 	int error;
7913 
7914 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7915 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7916 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7917 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7918 	    fw->init.text, fw->init.textsz);
7919 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7920 
7921 	/* Tell adapter where to find initialization sections. */
7922 	if ((error = iwn_nic_lock(sc)) != 0)
7923 		return error;
7924 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7925 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7926 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7927 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7928 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7929 	iwn_nic_unlock(sc);
7930 
7931 	/* Load firmware boot code. */
7932 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7933 	if (error != 0) {
7934 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7935 		    __func__);
7936 		return error;
7937 	}
7938 	/* Now press "execute". */
7939 	IWN_WRITE(sc, IWN_RESET, 0);
7940 
7941 	/* Wait at most one second for first alive notification. */
7942 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7943 		device_printf(sc->sc_dev,
7944 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7945 		    __func__, error);
7946 		return error;
7947 	}
7948 
7949 	/* Retrieve current temperature for initial TX power calibration. */
7950 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7951 	sc->temp = iwn4965_get_temperature(sc);
7952 
7953 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7954 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7955 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7956 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7957 	    fw->main.text, fw->main.textsz);
7958 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7959 
7960 	/* Tell adapter where to find runtime sections. */
7961 	if ((error = iwn_nic_lock(sc)) != 0)
7962 		return error;
7963 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7964 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7965 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7966 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7967 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7968 	    IWN_FW_UPDATED | fw->main.textsz);
7969 	iwn_nic_unlock(sc);
7970 
7971 	return 0;
7972 }
7973 
7974 static int
7975 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7976     const uint8_t *section, int size)
7977 {
7978 	struct iwn_dma_info *dma = &sc->fw_dma;
7979 	int error;
7980 
7981 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7982 
7983 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7984 	memcpy(dma->vaddr, section, size);
7985 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7986 
7987 	if ((error = iwn_nic_lock(sc)) != 0)
7988 		return error;
7989 
7990 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7991 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7992 
7993 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7994 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7995 	    IWN_LOADDR(dma->paddr));
7996 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7997 	    IWN_HIADDR(dma->paddr) << 28 | size);
7998 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7999 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
8000 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
8001 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
8002 
8003 	/* Kick Flow Handler to start DMA transfer. */
8004 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
8005 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
8006 
8007 	iwn_nic_unlock(sc);
8008 
8009 	/* Wait at most five seconds for FH DMA transfer to complete. */
8010 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
8011 }
8012 
8013 static int
8014 iwn5000_load_firmware(struct iwn_softc *sc)
8015 {
8016 	struct iwn_fw_part *fw;
8017 	int error;
8018 
8019 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8020 
8021 	/* Load the initialization firmware on first boot only. */
8022 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
8023 	    &sc->fw.main : &sc->fw.init;
8024 
8025 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
8026 	    fw->text, fw->textsz);
8027 	if (error != 0) {
8028 		device_printf(sc->sc_dev,
8029 		    "%s: could not load firmware %s section, error %d\n",
8030 		    __func__, ".text", error);
8031 		return error;
8032 	}
8033 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
8034 	    fw->data, fw->datasz);
8035 	if (error != 0) {
8036 		device_printf(sc->sc_dev,
8037 		    "%s: could not load firmware %s section, error %d\n",
8038 		    __func__, ".data", error);
8039 		return error;
8040 	}
8041 
8042 	/* Now press "execute". */
8043 	IWN_WRITE(sc, IWN_RESET, 0);
8044 	return 0;
8045 }
8046 
8047 /*
8048  * Extract text and data sections from a legacy firmware image.
8049  */
8050 static int
8051 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
8052 {
8053 	const uint32_t *ptr;
8054 	size_t hdrlen = 24;
8055 	uint32_t rev;
8056 
8057 	ptr = (const uint32_t *)fw->data;
8058 	rev = le32toh(*ptr++);
8059 
8060 	sc->ucode_rev = rev;
8061 
8062 	/* Check firmware API version. */
8063 	if (IWN_FW_API(rev) <= 1) {
8064 		device_printf(sc->sc_dev,
8065 		    "%s: bad firmware, need API version >=2\n", __func__);
8066 		return EINVAL;
8067 	}
8068 	if (IWN_FW_API(rev) >= 3) {
8069 		/* Skip build number (version 2 header). */
8070 		hdrlen += 4;
8071 		ptr++;
8072 	}
8073 	if (fw->size < hdrlen) {
8074 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8075 		    __func__, fw->size);
8076 		return EINVAL;
8077 	}
8078 	fw->main.textsz = le32toh(*ptr++);
8079 	fw->main.datasz = le32toh(*ptr++);
8080 	fw->init.textsz = le32toh(*ptr++);
8081 	fw->init.datasz = le32toh(*ptr++);
8082 	fw->boot.textsz = le32toh(*ptr++);
8083 
8084 	/* Check that all firmware sections fit. */
8085 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
8086 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
8087 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8088 		    __func__, fw->size);
8089 		return EINVAL;
8090 	}
8091 
8092 	/* Get pointers to firmware sections. */
8093 	fw->main.text = (const uint8_t *)ptr;
8094 	fw->main.data = fw->main.text + fw->main.textsz;
8095 	fw->init.text = fw->main.data + fw->main.datasz;
8096 	fw->init.data = fw->init.text + fw->init.textsz;
8097 	fw->boot.text = fw->init.data + fw->init.datasz;
8098 	return 0;
8099 }
8100 
8101 /*
8102  * Extract text and data sections from a TLV firmware image.
8103  */
8104 static int
8105 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
8106     uint16_t alt)
8107 {
8108 	const struct iwn_fw_tlv_hdr *hdr;
8109 	const struct iwn_fw_tlv *tlv;
8110 	const uint8_t *ptr, *end;
8111 	uint64_t altmask;
8112 	uint32_t len, tmp;
8113 
8114 	if (fw->size < sizeof (*hdr)) {
8115 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8116 		    __func__, fw->size);
8117 		return EINVAL;
8118 	}
8119 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
8120 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
8121 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
8122 		    __func__, le32toh(hdr->signature));
8123 		return EINVAL;
8124 	}
8125 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
8126 	    le32toh(hdr->build));
8127 	sc->ucode_rev = le32toh(hdr->rev);
8128 
8129 	/*
8130 	 * Select the closest supported alternative that is less than
8131 	 * or equal to the specified one.
8132 	 */
8133 	altmask = le64toh(hdr->altmask);
8134 	while (alt > 0 && !(altmask & (1ULL << alt)))
8135 		alt--;	/* Downgrade. */
8136 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
8137 
8138 	ptr = (const uint8_t *)(hdr + 1);
8139 	end = (const uint8_t *)(fw->data + fw->size);
8140 
8141 	/* Parse type-length-value fields. */
8142 	while (ptr + sizeof (*tlv) <= end) {
8143 		tlv = (const struct iwn_fw_tlv *)ptr;
8144 		len = le32toh(tlv->len);
8145 
8146 		ptr += sizeof (*tlv);
8147 		if (ptr + len > end) {
8148 			device_printf(sc->sc_dev,
8149 			    "%s: firmware too short: %zu bytes\n", __func__,
8150 			    fw->size);
8151 			return EINVAL;
8152 		}
8153 		/* Skip other alternatives. */
8154 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
8155 			goto next;
8156 
8157 		switch (le16toh(tlv->type)) {
8158 		case IWN_FW_TLV_MAIN_TEXT:
8159 			fw->main.text = ptr;
8160 			fw->main.textsz = len;
8161 			break;
8162 		case IWN_FW_TLV_MAIN_DATA:
8163 			fw->main.data = ptr;
8164 			fw->main.datasz = len;
8165 			break;
8166 		case IWN_FW_TLV_INIT_TEXT:
8167 			fw->init.text = ptr;
8168 			fw->init.textsz = len;
8169 			break;
8170 		case IWN_FW_TLV_INIT_DATA:
8171 			fw->init.data = ptr;
8172 			fw->init.datasz = len;
8173 			break;
8174 		case IWN_FW_TLV_BOOT_TEXT:
8175 			fw->boot.text = ptr;
8176 			fw->boot.textsz = len;
8177 			break;
8178 		case IWN_FW_TLV_ENH_SENS:
8179 			if (!len)
8180 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
8181 			break;
8182 		case IWN_FW_TLV_PHY_CALIB:
8183 			tmp = le32toh(*ptr);
8184 			if (tmp < 253) {
8185 				sc->reset_noise_gain = tmp;
8186 				sc->noise_gain = tmp + 1;
8187 			}
8188 			break;
8189 		case IWN_FW_TLV_PAN:
8190 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
8191 			DPRINTF(sc, IWN_DEBUG_RESET,
8192 			    "PAN Support found: %d\n", 1);
8193 			break;
8194 		case IWN_FW_TLV_FLAGS:
8195 			if (len < sizeof(uint32_t))
8196 				break;
8197 			if (len % sizeof(uint32_t))
8198 				break;
8199 			sc->tlv_feature_flags = le32toh(*ptr);
8200 			DPRINTF(sc, IWN_DEBUG_RESET,
8201 			    "%s: feature: 0x%08x\n",
8202 			    __func__,
8203 			    sc->tlv_feature_flags);
8204 			break;
8205 		case IWN_FW_TLV_PBREQ_MAXLEN:
8206 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
8207 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
8208 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
8209 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
8210 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
8211 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
8212 		case IWN_FW_TLV_WOWLAN_INST:
8213 		case IWN_FW_TLV_WOWLAN_DATA:
8214 			DPRINTF(sc, IWN_DEBUG_RESET,
8215 			    "TLV type %d recognized but not handled\n",
8216 			    le16toh(tlv->type));
8217 			break;
8218 		default:
8219 			DPRINTF(sc, IWN_DEBUG_RESET,
8220 			    "TLV type %d not handled\n", le16toh(tlv->type));
8221 			break;
8222 		}
8223  next:		/* TLV fields are 32-bit aligned. */
8224 		ptr += (len + 3) & ~3;
8225 	}
8226 	return 0;
8227 }
8228 
8229 static int
8230 iwn_read_firmware(struct iwn_softc *sc)
8231 {
8232 	struct iwn_fw_info *fw = &sc->fw;
8233 	int error;
8234 
8235 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8236 
8237 	IWN_UNLOCK(sc);
8238 
8239 	memset(fw, 0, sizeof (*fw));
8240 
8241 	/* Read firmware image from filesystem. */
8242 	sc->fw_fp = firmware_get(sc->fwname);
8243 	if (sc->fw_fp == NULL) {
8244 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
8245 		    __func__, sc->fwname);
8246 		IWN_LOCK(sc);
8247 		return EINVAL;
8248 	}
8249 	IWN_LOCK(sc);
8250 
8251 	fw->size = sc->fw_fp->datasize;
8252 	fw->data = (const uint8_t *)sc->fw_fp->data;
8253 	if (fw->size < sizeof (uint32_t)) {
8254 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8255 		    __func__, fw->size);
8256 		error = EINVAL;
8257 		goto fail;
8258 	}
8259 
8260 	/* Retrieve text and data sections. */
8261 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8262 		error = iwn_read_firmware_leg(sc, fw);
8263 	else
8264 		error = iwn_read_firmware_tlv(sc, fw, 1);
8265 	if (error != 0) {
8266 		device_printf(sc->sc_dev,
8267 		    "%s: could not read firmware sections, error %d\n",
8268 		    __func__, error);
8269 		goto fail;
8270 	}
8271 
8272 	device_printf(sc->sc_dev, "%s: ucode rev=0x%08x\n", __func__, sc->ucode_rev);
8273 
8274 	/* Make sure text and data sections fit in hardware memory. */
8275 	if (fw->main.textsz > sc->fw_text_maxsz ||
8276 	    fw->main.datasz > sc->fw_data_maxsz ||
8277 	    fw->init.textsz > sc->fw_text_maxsz ||
8278 	    fw->init.datasz > sc->fw_data_maxsz ||
8279 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8280 	    (fw->boot.textsz & 3) != 0) {
8281 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8282 		    __func__);
8283 		error = EINVAL;
8284 		goto fail;
8285 	}
8286 
8287 	/* We can proceed with loading the firmware. */
8288 	return 0;
8289 
8290 fail:	iwn_unload_firmware(sc);
8291 	return error;
8292 }
8293 
8294 static void
8295 iwn_unload_firmware(struct iwn_softc *sc)
8296 {
8297 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8298 	sc->fw_fp = NULL;
8299 }
8300 
8301 static int
8302 iwn_clock_wait(struct iwn_softc *sc)
8303 {
8304 	int ntries;
8305 
8306 	/* Set "initialization complete" bit. */
8307 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8308 
8309 	/* Wait for clock stabilization. */
8310 	for (ntries = 0; ntries < 2500; ntries++) {
8311 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8312 			return 0;
8313 		DELAY(10);
8314 	}
8315 	device_printf(sc->sc_dev,
8316 	    "%s: timeout waiting for clock stabilization\n", __func__);
8317 	return ETIMEDOUT;
8318 }
8319 
8320 static int
8321 iwn_apm_init(struct iwn_softc *sc)
8322 {
8323 	uint32_t reg;
8324 	int error;
8325 
8326 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8327 
8328 	/* Disable L0s exit timer (NMI bug workaround). */
8329 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8330 	/* Don't wait for ICH L0s (ICH bug workaround). */
8331 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8332 
8333 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8334 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8335 
8336 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8337 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8338 
8339 	/* Retrieve PCIe Active State Power Management (ASPM). */
8340 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + PCIER_LINK_CTL, 4);
8341 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8342 	if (reg & PCIEM_LINK_CTL_ASPMC_L1)	/* L1 Entry enabled. */
8343 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8344 	else
8345 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8346 
8347 	if (sc->base_params->pll_cfg_val)
8348 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8349 
8350 	/* Wait for clock stabilization before accessing prph. */
8351 	if ((error = iwn_clock_wait(sc)) != 0)
8352 		return error;
8353 
8354 	if ((error = iwn_nic_lock(sc)) != 0)
8355 		return error;
8356 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8357 		/* Enable DMA and BSM (Bootstrap State Machine). */
8358 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8359 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8360 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8361 	} else {
8362 		/* Enable DMA. */
8363 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8364 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8365 	}
8366 	DELAY(20);
8367 	/* Disable L1-Active. */
8368 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8369 	iwn_nic_unlock(sc);
8370 
8371 	return 0;
8372 }
8373 
8374 static void
8375 iwn_apm_stop_master(struct iwn_softc *sc)
8376 {
8377 	int ntries;
8378 
8379 	/* Stop busmaster DMA activity. */
8380 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8381 	for (ntries = 0; ntries < 100; ntries++) {
8382 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8383 			return;
8384 		DELAY(10);
8385 	}
8386 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8387 }
8388 
8389 static void
8390 iwn_apm_stop(struct iwn_softc *sc)
8391 {
8392 	iwn_apm_stop_master(sc);
8393 
8394 	/* Reset the entire device. */
8395 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8396 	DELAY(10);
8397 	/* Clear "initialization complete" bit. */
8398 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8399 }
8400 
8401 static int
8402 iwn4965_nic_config(struct iwn_softc *sc)
8403 {
8404 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8405 
8406 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8407 		/*
8408 		 * I don't believe this to be correct but this is what the
8409 		 * vendor driver is doing. Probably the bits should not be
8410 		 * shifted in IWN_RFCFG_*.
8411 		 */
8412 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8413 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8414 		    IWN_RFCFG_STEP(sc->rfcfg) |
8415 		    IWN_RFCFG_DASH(sc->rfcfg));
8416 	}
8417 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8418 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8419 	return 0;
8420 }
8421 
8422 static int
8423 iwn5000_nic_config(struct iwn_softc *sc)
8424 {
8425 	uint32_t tmp;
8426 	int error;
8427 
8428 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8429 
8430 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8431 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8432 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8433 		    IWN_RFCFG_STEP(sc->rfcfg) |
8434 		    IWN_RFCFG_DASH(sc->rfcfg));
8435 	}
8436 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8437 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8438 
8439 	if ((error = iwn_nic_lock(sc)) != 0)
8440 		return error;
8441 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8442 
8443 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8444 		/*
8445 		 * Select first Switching Voltage Regulator (1.32V) to
8446 		 * solve a stability issue related to noisy DC2DC line
8447 		 * in the silicon of 1000 Series.
8448 		 */
8449 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8450 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8451 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8452 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8453 	}
8454 	iwn_nic_unlock(sc);
8455 
8456 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8457 		/* Use internal power amplifier only. */
8458 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8459 	}
8460 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8461 		/* Indicate that ROM calibration version is >=6. */
8462 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8463 	}
8464 	if (sc->base_params->additional_gp_drv_bit)
8465 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8466 		    sc->base_params->additional_gp_drv_bit);
8467 	return 0;
8468 }
8469 
8470 /*
8471  * Take NIC ownership over Intel Active Management Technology (AMT).
8472  */
8473 static int
8474 iwn_hw_prepare(struct iwn_softc *sc)
8475 {
8476 	int ntries;
8477 
8478 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8479 
8480 	/* Check if hardware is ready. */
8481 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8482 	for (ntries = 0; ntries < 5; ntries++) {
8483 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8484 		    IWN_HW_IF_CONFIG_NIC_READY)
8485 			return 0;
8486 		DELAY(10);
8487 	}
8488 
8489 	/* Hardware not ready, force into ready state. */
8490 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8491 	for (ntries = 0; ntries < 15000; ntries++) {
8492 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8493 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8494 			break;
8495 		DELAY(10);
8496 	}
8497 	if (ntries == 15000)
8498 		return ETIMEDOUT;
8499 
8500 	/* Hardware should be ready now. */
8501 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8502 	for (ntries = 0; ntries < 5; ntries++) {
8503 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8504 		    IWN_HW_IF_CONFIG_NIC_READY)
8505 			return 0;
8506 		DELAY(10);
8507 	}
8508 	return ETIMEDOUT;
8509 }
8510 
8511 static int
8512 iwn_hw_init(struct iwn_softc *sc)
8513 {
8514 	struct iwn_ops *ops = &sc->ops;
8515 	int error, chnl, qid;
8516 
8517 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8518 
8519 	/* Clear pending interrupts. */
8520 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8521 
8522 	if ((error = iwn_apm_init(sc)) != 0) {
8523 		device_printf(sc->sc_dev,
8524 		    "%s: could not power ON adapter, error %d\n", __func__,
8525 		    error);
8526 		return error;
8527 	}
8528 
8529 	/* Select VMAIN power source. */
8530 	if ((error = iwn_nic_lock(sc)) != 0)
8531 		return error;
8532 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8533 	iwn_nic_unlock(sc);
8534 
8535 	/* Perform adapter-specific initialization. */
8536 	if ((error = ops->nic_config(sc)) != 0)
8537 		return error;
8538 
8539 	/* Initialize RX ring. */
8540 	if ((error = iwn_nic_lock(sc)) != 0)
8541 		return error;
8542 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8543 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8544 	/* Set physical address of RX ring (256-byte aligned). */
8545 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8546 	/* Set physical address of RX status (16-byte aligned). */
8547 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8548 	/* Enable RX. */
8549 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8550 	    IWN_FH_RX_CONFIG_ENA           |
8551 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8552 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8553 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8554 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8555 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8556 	iwn_nic_unlock(sc);
8557 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8558 
8559 	if ((error = iwn_nic_lock(sc)) != 0)
8560 		return error;
8561 
8562 	/* Initialize TX scheduler. */
8563 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8564 
8565 	/* Set physical address of "keep warm" page (16-byte aligned). */
8566 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8567 
8568 	/* Initialize TX rings. */
8569 	for (qid = 0; qid < sc->ntxqs; qid++) {
8570 		struct iwn_tx_ring *txq = &sc->txq[qid];
8571 
8572 		/* Set physical address of TX ring (256-byte aligned). */
8573 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8574 		    txq->desc_dma.paddr >> 8);
8575 	}
8576 	iwn_nic_unlock(sc);
8577 
8578 	/* Enable DMA channels. */
8579 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8580 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8581 		    IWN_FH_TX_CONFIG_DMA_ENA |
8582 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8583 	}
8584 
8585 	/* Clear "radio off" and "commands blocked" bits. */
8586 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8587 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8588 
8589 	/* Clear pending interrupts. */
8590 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8591 	/* Enable interrupt coalescing. */
8592 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8593 	/* Enable interrupts. */
8594 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8595 
8596 	/* _Really_ make sure "radio off" bit is cleared! */
8597 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8598 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8599 
8600 	/* Enable shadow registers. */
8601 	if (sc->base_params->shadow_reg_enable)
8602 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8603 
8604 	if ((error = ops->load_firmware(sc)) != 0) {
8605 		device_printf(sc->sc_dev,
8606 		    "%s: could not load firmware, error %d\n", __func__,
8607 		    error);
8608 		return error;
8609 	}
8610 	/* Wait at most one second for firmware alive notification. */
8611 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8612 		device_printf(sc->sc_dev,
8613 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8614 		    __func__, error);
8615 		return error;
8616 	}
8617 	/* Do post-firmware initialization. */
8618 
8619 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8620 
8621 	return ops->post_alive(sc);
8622 }
8623 
8624 static void
8625 iwn_hw_stop(struct iwn_softc *sc)
8626 {
8627 	int chnl, qid, ntries;
8628 
8629 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8630 
8631 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8632 
8633 	/* Disable interrupts. */
8634 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8635 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8636 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8637 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8638 
8639 	/* Make sure we no longer hold the NIC lock. */
8640 	iwn_nic_unlock(sc);
8641 
8642 	/* Stop TX scheduler. */
8643 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8644 
8645 	/* Stop all DMA channels. */
8646 	if (iwn_nic_lock(sc) == 0) {
8647 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8648 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8649 			for (ntries = 0; ntries < 200; ntries++) {
8650 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8651 				    IWN_FH_TX_STATUS_IDLE(chnl))
8652 					break;
8653 				DELAY(10);
8654 			}
8655 		}
8656 		iwn_nic_unlock(sc);
8657 	}
8658 
8659 	/* Stop RX ring. */
8660 	iwn_reset_rx_ring(sc, &sc->rxq);
8661 
8662 	/* Reset all TX rings. */
8663 	for (qid = 0; qid < sc->ntxqs; qid++)
8664 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8665 
8666 	if (iwn_nic_lock(sc) == 0) {
8667 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8668 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8669 		iwn_nic_unlock(sc);
8670 	}
8671 	DELAY(5);
8672 	/* Power OFF adapter. */
8673 	iwn_apm_stop(sc);
8674 }
8675 
8676 static void
8677 iwn_radio_on(void *arg0, int pending)
8678 {
8679 	struct iwn_softc *sc = arg0;
8680 	struct ieee80211com *ic = &sc->sc_ic;
8681 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8682 
8683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8684 
8685 	if (vap != NULL) {
8686 		iwn_init(sc);
8687 		ieee80211_init(vap);
8688 	}
8689 }
8690 
8691 static void
8692 iwn_radio_off(void *arg0, int pending)
8693 {
8694 	struct iwn_softc *sc = arg0;
8695 	struct ieee80211com *ic = &sc->sc_ic;
8696 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8697 
8698 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8699 
8700 	iwn_stop(sc);
8701 	if (vap != NULL)
8702 		ieee80211_stop(vap);
8703 
8704 	/* Enable interrupts to get RF toggle notification. */
8705 	IWN_LOCK(sc);
8706 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8707 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8708 	IWN_UNLOCK(sc);
8709 }
8710 
8711 static void
8712 iwn_panicked(void *arg0, int pending)
8713 {
8714 	struct iwn_softc *sc = arg0;
8715 	struct ieee80211com *ic = &sc->sc_ic;
8716 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8717 #if 0
8718 	int error;
8719 #endif
8720 
8721 	if (vap == NULL) {
8722 		printf("%s: null vap\n", __func__);
8723 		return;
8724 	}
8725 
8726 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8727 	    "restarting\n", __func__, vap->iv_state);
8728 
8729 	/*
8730 	 * This is not enough work. We need to also reinitialise
8731 	 * the correct transmit state for aggregation enabled queues,
8732 	 * which has a very specific requirement of
8733 	 * ring index = 802.11 seqno % 256.  If we don't do this (which
8734 	 * we definitely don't!) then the firmware will just panic again.
8735 	 */
8736 #if 1
8737 	ieee80211_restart_all(ic);
8738 #else
8739 	IWN_LOCK(sc);
8740 
8741 	iwn_stop_locked(sc);
8742 	iwn_init_locked(sc);
8743 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8744 	    (error = iwn_auth(sc, vap)) != 0) {
8745 		device_printf(sc->sc_dev,
8746 		    "%s: could not move to auth state\n", __func__);
8747 	}
8748 	if (vap->iv_state >= IEEE80211_S_RUN &&
8749 	    (error = iwn_run(sc, vap)) != 0) {
8750 		device_printf(sc->sc_dev,
8751 		    "%s: could not move to run state\n", __func__);
8752 	}
8753 
8754 	IWN_UNLOCK(sc);
8755 #endif
8756 }
8757 
8758 static void
8759 iwn_init_locked(struct iwn_softc *sc)
8760 {
8761 	int error;
8762 
8763 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8764 
8765 	IWN_LOCK_ASSERT(sc);
8766 
8767 	sc->sc_flags |= IWN_FLAG_RUNNING;
8768 
8769 	if ((error = iwn_hw_prepare(sc)) != 0) {
8770 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8771 		    __func__, error);
8772 		goto fail;
8773 	}
8774 
8775 	/* Initialize interrupt mask to default value. */
8776 	sc->int_mask = IWN_INT_MASK_DEF;
8777 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8778 
8779 	/* Check that the radio is not disabled by hardware switch. */
8780 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8781 		device_printf(sc->sc_dev,
8782 		    "radio is disabled by hardware switch\n");
8783 		/* Enable interrupts to get RF toggle notifications. */
8784 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8785 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8786 		return;
8787 	}
8788 
8789 	/* Read firmware images from the filesystem. */
8790 	if ((error = iwn_read_firmware(sc)) != 0) {
8791 		device_printf(sc->sc_dev,
8792 		    "%s: could not read firmware, error %d\n", __func__,
8793 		    error);
8794 		goto fail;
8795 	}
8796 
8797 	/* Initialize hardware and upload firmware. */
8798 	error = iwn_hw_init(sc);
8799 	iwn_unload_firmware(sc);
8800 	if (error != 0) {
8801 		device_printf(sc->sc_dev,
8802 		    "%s: could not initialize hardware, error %d\n", __func__,
8803 		    error);
8804 		goto fail;
8805 	}
8806 
8807 	/* Configure adapter now that it is ready. */
8808 	if ((error = iwn_config(sc)) != 0) {
8809 		device_printf(sc->sc_dev,
8810 		    "%s: could not configure device, error %d\n", __func__,
8811 		    error);
8812 		goto fail;
8813 	}
8814 
8815 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8816 
8817 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8818 
8819 	return;
8820 
8821 fail:
8822 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8823 	iwn_stop_locked(sc);
8824 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8825 }
8826 
8827 static void
8828 iwn_init(struct iwn_softc *sc)
8829 {
8830 
8831 	IWN_LOCK(sc);
8832 	iwn_init_locked(sc);
8833 	IWN_UNLOCK(sc);
8834 
8835 	if (sc->sc_flags & IWN_FLAG_RUNNING)
8836 		ieee80211_start_all(&sc->sc_ic);
8837 }
8838 
8839 static void
8840 iwn_stop_locked(struct iwn_softc *sc)
8841 {
8842 
8843 	IWN_LOCK_ASSERT(sc);
8844 
8845 	sc->sc_is_scanning = 0;
8846 	sc->sc_tx_timer = 0;
8847 	callout_stop(&sc->watchdog_to);
8848 	callout_stop(&sc->calib_to);
8849 	sc->sc_flags &= ~IWN_FLAG_RUNNING;
8850 
8851 	/* Power OFF hardware. */
8852 	iwn_hw_stop(sc);
8853 }
8854 
8855 static void
8856 iwn_stop(struct iwn_softc *sc)
8857 {
8858 	IWN_LOCK(sc);
8859 	iwn_stop_locked(sc);
8860 	IWN_UNLOCK(sc);
8861 }
8862 
8863 /*
8864  * Callback from net80211 to start a scan.
8865  */
8866 static void
8867 iwn_scan_start(struct ieee80211com *ic)
8868 {
8869 	struct iwn_softc *sc = ic->ic_softc;
8870 
8871 	IWN_LOCK(sc);
8872 	/* make the link LED blink while we're scanning */
8873 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8874 	IWN_UNLOCK(sc);
8875 }
8876 
8877 /*
8878  * Callback from net80211 to terminate a scan.
8879  */
8880 static void
8881 iwn_scan_end(struct ieee80211com *ic)
8882 {
8883 	struct iwn_softc *sc = ic->ic_softc;
8884 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8885 
8886 	IWN_LOCK(sc);
8887 	if (vap->iv_state == IEEE80211_S_RUN) {
8888 		/* Set link LED to ON status if we are associated */
8889 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8890 	}
8891 	IWN_UNLOCK(sc);
8892 }
8893 
8894 /*
8895  * Callback from net80211 to force a channel change.
8896  */
8897 static void
8898 iwn_set_channel(struct ieee80211com *ic)
8899 {
8900 	const struct ieee80211_channel *c = ic->ic_curchan;
8901 	struct iwn_softc *sc = ic->ic_softc;
8902 	int error;
8903 
8904 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8905 
8906 	IWN_LOCK(sc);
8907 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8908 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8909 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8910 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8911 
8912 	/*
8913 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8914 	 * are already taken care of by their respective firmware commands.
8915 	 */
8916 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8917 		error = iwn_config(sc);
8918 		if (error != 0)
8919 		device_printf(sc->sc_dev,
8920 		    "%s: error %d settting channel\n", __func__, error);
8921 	}
8922 	IWN_UNLOCK(sc);
8923 }
8924 
8925 /*
8926  * Callback from net80211 to start scanning of the current channel.
8927  */
8928 static void
8929 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8930 {
8931 	struct ieee80211vap *vap = ss->ss_vap;
8932 	struct ieee80211com *ic = vap->iv_ic;
8933 	struct iwn_softc *sc = ic->ic_softc;
8934 	int error;
8935 
8936 	IWN_LOCK(sc);
8937 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8938 	IWN_UNLOCK(sc);
8939 	if (error != 0)
8940 		ieee80211_cancel_scan(vap);
8941 }
8942 
8943 /*
8944  * Callback from net80211 to handle the minimum dwell time being met.
8945  * The intent is to terminate the scan but we just let the firmware
8946  * notify us when it's finished as we have no safe way to abort it.
8947  */
8948 static void
8949 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8950 {
8951 	/* NB: don't try to abort scan; wait for firmware to finish */
8952 }
8953 #ifdef	IWN_DEBUG
8954 #define	IWN_DESC(x) case x:	return #x
8955 
8956 /*
8957  * Translate CSR code to string
8958  */
8959 static char *iwn_get_csr_string(int csr)
8960 {
8961 	switch (csr) {
8962 		IWN_DESC(IWN_HW_IF_CONFIG);
8963 		IWN_DESC(IWN_INT_COALESCING);
8964 		IWN_DESC(IWN_INT);
8965 		IWN_DESC(IWN_INT_MASK);
8966 		IWN_DESC(IWN_FH_INT);
8967 		IWN_DESC(IWN_GPIO_IN);
8968 		IWN_DESC(IWN_RESET);
8969 		IWN_DESC(IWN_GP_CNTRL);
8970 		IWN_DESC(IWN_HW_REV);
8971 		IWN_DESC(IWN_EEPROM);
8972 		IWN_DESC(IWN_EEPROM_GP);
8973 		IWN_DESC(IWN_OTP_GP);
8974 		IWN_DESC(IWN_GIO);
8975 		IWN_DESC(IWN_GP_UCODE);
8976 		IWN_DESC(IWN_GP_DRIVER);
8977 		IWN_DESC(IWN_UCODE_GP1);
8978 		IWN_DESC(IWN_UCODE_GP2);
8979 		IWN_DESC(IWN_LED);
8980 		IWN_DESC(IWN_DRAM_INT_TBL);
8981 		IWN_DESC(IWN_GIO_CHICKEN);
8982 		IWN_DESC(IWN_ANA_PLL);
8983 		IWN_DESC(IWN_HW_REV_WA);
8984 		IWN_DESC(IWN_DBG_HPET_MEM);
8985 	default:
8986 		return "UNKNOWN CSR";
8987 	}
8988 }
8989 
8990 /*
8991  * This function print firmware register
8992  */
8993 static void
8994 iwn_debug_register(struct iwn_softc *sc)
8995 {
8996 	int i;
8997 	static const uint32_t csr_tbl[] = {
8998 		IWN_HW_IF_CONFIG,
8999 		IWN_INT_COALESCING,
9000 		IWN_INT,
9001 		IWN_INT_MASK,
9002 		IWN_FH_INT,
9003 		IWN_GPIO_IN,
9004 		IWN_RESET,
9005 		IWN_GP_CNTRL,
9006 		IWN_HW_REV,
9007 		IWN_EEPROM,
9008 		IWN_EEPROM_GP,
9009 		IWN_OTP_GP,
9010 		IWN_GIO,
9011 		IWN_GP_UCODE,
9012 		IWN_GP_DRIVER,
9013 		IWN_UCODE_GP1,
9014 		IWN_UCODE_GP2,
9015 		IWN_LED,
9016 		IWN_DRAM_INT_TBL,
9017 		IWN_GIO_CHICKEN,
9018 		IWN_ANA_PLL,
9019 		IWN_HW_REV_WA,
9020 		IWN_DBG_HPET_MEM,
9021 	};
9022 	DPRINTF(sc, IWN_DEBUG_REGISTER,
9023 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
9024 	    "\n");
9025 	for (i = 0; i <  nitems(csr_tbl); i++){
9026 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
9027 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
9028 		if ((i+1) % 3 == 0)
9029 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9030 	}
9031 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
9032 }
9033 #endif
9034 
9035 
9036