xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 864c53ead899f7838cd2e1cca3b485a4a82f5cdc)
1 /*-
2  * Copyright (c) 2007-2009 Damien Bergamini <damien.bergamini@free.fr>
3  * Copyright (c) 2008 Benjamin Close <benjsc@FreeBSD.org>
4  * Copyright (c) 2008 Sam Leffler, Errno Consulting
5  * Copyright (c) 2011 Intel Corporation
6  * Copyright (c) 2013 Cedric GROSS <c.gross@kreiz-it.fr>
7  * Copyright (c) 2013 Adrian Chadd <adrian@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 /*
23  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
24  * adapters.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_wlan.h"
31 #include "opt_iwn.h"
32 
33 #include <sys/param.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/socket.h>
39 #include <sys/systm.h>
40 #include <sys/malloc.h>
41 #include <sys/bus.h>
42 #include <sys/rman.h>
43 #include <sys/endian.h>
44 #include <sys/firmware.h>
45 #include <sys/limits.h>
46 #include <sys/module.h>
47 #include <sys/queue.h>
48 #include <sys/taskqueue.h>
49 
50 #include <machine/bus.h>
51 #include <machine/resource.h>
52 #include <machine/clock.h>
53 
54 #include <dev/pci/pcireg.h>
55 #include <dev/pci/pcivar.h>
56 
57 #include <net/bpf.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_arp.h>
61 #include <net/ethernet.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_types.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/if_ether.h>
70 #include <netinet/ip.h>
71 
72 #include <net80211/ieee80211_var.h>
73 #include <net80211/ieee80211_radiotap.h>
74 #include <net80211/ieee80211_regdomain.h>
75 #include <net80211/ieee80211_ratectl.h>
76 
77 #include <dev/iwn/if_iwnreg.h>
78 #include <dev/iwn/if_iwnvar.h>
79 #include <dev/iwn/if_iwn_devid.h>
80 #include <dev/iwn/if_iwn_chip_cfg.h>
81 #include <dev/iwn/if_iwn_debug.h>
82 #include <dev/iwn/if_iwn_ioctl.h>
83 
84 struct iwn_ident {
85 	uint16_t	vendor;
86 	uint16_t	device;
87 	const char	*name;
88 };
89 
90 static const struct iwn_ident iwn_ident_table[] = {
91 	{ 0x8086, IWN_DID_6x05_1, "Intel Centrino Advanced-N 6205"		},
92 	{ 0x8086, IWN_DID_1000_1, "Intel Centrino Wireless-N 1000"		},
93 	{ 0x8086, IWN_DID_1000_2, "Intel Centrino Wireless-N 1000"		},
94 	{ 0x8086, IWN_DID_6x05_2, "Intel Centrino Advanced-N 6205"		},
95 	{ 0x8086, IWN_DID_6050_1, "Intel Centrino Advanced-N + WiMAX 6250"	},
96 	{ 0x8086, IWN_DID_6050_2, "Intel Centrino Advanced-N + WiMAX 6250"	},
97 	{ 0x8086, IWN_DID_x030_1, "Intel Centrino Wireless-N 1030"		},
98 	{ 0x8086, IWN_DID_x030_2, "Intel Centrino Wireless-N 1030"		},
99 	{ 0x8086, IWN_DID_x030_3, "Intel Centrino Advanced-N 6230"		},
100 	{ 0x8086, IWN_DID_x030_4, "Intel Centrino Advanced-N 6230"		},
101 	{ 0x8086, IWN_DID_6150_1, "Intel Centrino Wireless-N + WiMAX 6150"	},
102 	{ 0x8086, IWN_DID_6150_2, "Intel Centrino Wireless-N + WiMAX 6150"	},
103 	{ 0x8086, IWN_DID_2x00_1, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
104 	{ 0x8086, IWN_DID_2x00_2, "Intel(R) Centrino(R) Wireless-N 2200 BGN"	},
105 	/* XXX 2200D is IWN_SDID_2x00_4; there's no way to express this here! */
106 	{ 0x8086, IWN_DID_2x30_1, "Intel Centrino Wireless-N 2230"		},
107 	{ 0x8086, IWN_DID_2x30_2, "Intel Centrino Wireless-N 2230"		},
108 	{ 0x8086, IWN_DID_130_1, "Intel Centrino Wireless-N 130"		},
109 	{ 0x8086, IWN_DID_130_2, "Intel Centrino Wireless-N 130"		},
110 	{ 0x8086, IWN_DID_100_1, "Intel Centrino Wireless-N 100"		},
111 	{ 0x8086, IWN_DID_100_2, "Intel Centrino Wireless-N 100"		},
112 	{ 0x8086, IWN_DID_105_1, "Intel Centrino Wireless-N 105"		},
113 	{ 0x8086, IWN_DID_105_2, "Intel Centrino Wireless-N 105"		},
114 	{ 0x8086, IWN_DID_135_1, "Intel Centrino Wireless-N 135"		},
115 	{ 0x8086, IWN_DID_135_2, "Intel Centrino Wireless-N 135"		},
116 	{ 0x8086, IWN_DID_4965_1, "Intel Wireless WiFi Link 4965"		},
117 	{ 0x8086, IWN_DID_6x00_1, "Intel Centrino Ultimate-N 6300"		},
118 	{ 0x8086, IWN_DID_6x00_2, "Intel Centrino Advanced-N 6200"		},
119 	{ 0x8086, IWN_DID_4965_2, "Intel Wireless WiFi Link 4965"		},
120 	{ 0x8086, IWN_DID_4965_3, "Intel Wireless WiFi Link 4965"		},
121 	{ 0x8086, IWN_DID_5x00_1, "Intel WiFi Link 5100"			},
122 	{ 0x8086, IWN_DID_4965_4, "Intel Wireless WiFi Link 4965"		},
123 	{ 0x8086, IWN_DID_5x00_3, "Intel Ultimate N WiFi Link 5300"		},
124 	{ 0x8086, IWN_DID_5x00_4, "Intel Ultimate N WiFi Link 5300"		},
125 	{ 0x8086, IWN_DID_5x00_2, "Intel WiFi Link 5100"			},
126 	{ 0x8086, IWN_DID_6x00_3, "Intel Centrino Ultimate-N 6300"		},
127 	{ 0x8086, IWN_DID_6x00_4, "Intel Centrino Advanced-N 6200"		},
128 	{ 0x8086, IWN_DID_5x50_1, "Intel WiMAX/WiFi Link 5350"			},
129 	{ 0x8086, IWN_DID_5x50_2, "Intel WiMAX/WiFi Link 5350"			},
130 	{ 0x8086, IWN_DID_5x50_3, "Intel WiMAX/WiFi Link 5150"			},
131 	{ 0x8086, IWN_DID_5x50_4, "Intel WiMAX/WiFi Link 5150"			},
132 	{ 0x8086, IWN_DID_6035_1, "Intel Centrino Advanced 6235"		},
133 	{ 0x8086, IWN_DID_6035_2, "Intel Centrino Advanced 6235"		},
134 	{ 0, 0, NULL }
135 };
136 
137 static int	iwn_probe(device_t);
138 static int	iwn_attach(device_t);
139 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
140 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
141 static int	iwn_config_specific(struct iwn_softc *, uint16_t);
142 static void	iwn_radiotap_attach(struct iwn_softc *);
143 static void	iwn_sysctlattach(struct iwn_softc *);
144 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
145 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
146 		    const uint8_t [IEEE80211_ADDR_LEN],
147 		    const uint8_t [IEEE80211_ADDR_LEN]);
148 static void	iwn_vap_delete(struct ieee80211vap *);
149 static int	iwn_detach(device_t);
150 static int	iwn_shutdown(device_t);
151 static int	iwn_suspend(device_t);
152 static int	iwn_resume(device_t);
153 static int	iwn_nic_lock(struct iwn_softc *);
154 static int	iwn_eeprom_lock(struct iwn_softc *);
155 static int	iwn_init_otprom(struct iwn_softc *);
156 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
157 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
158 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
159 		    void **, bus_size_t, bus_size_t);
160 static void	iwn_dma_contig_free(struct iwn_dma_info *);
161 static int	iwn_alloc_sched(struct iwn_softc *);
162 static void	iwn_free_sched(struct iwn_softc *);
163 static int	iwn_alloc_kw(struct iwn_softc *);
164 static void	iwn_free_kw(struct iwn_softc *);
165 static int	iwn_alloc_ict(struct iwn_softc *);
166 static void	iwn_free_ict(struct iwn_softc *);
167 static int	iwn_alloc_fwmem(struct iwn_softc *);
168 static void	iwn_free_fwmem(struct iwn_softc *);
169 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
170 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
171 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
172 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
173 		    int);
174 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
175 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
176 static void	iwn5000_ict_reset(struct iwn_softc *);
177 static int	iwn_read_eeprom(struct iwn_softc *,
178 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
179 static void	iwn4965_read_eeprom(struct iwn_softc *);
180 #ifdef	IWN_DEBUG
181 static void	iwn4965_print_power_group(struct iwn_softc *, int);
182 #endif
183 static void	iwn5000_read_eeprom(struct iwn_softc *);
184 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
185 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
186 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
187 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
188 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
189 		    struct ieee80211_channel *);
190 static int	iwn_setregdomain(struct ieee80211com *,
191 		    struct ieee80211_regdomain *, int,
192 		    struct ieee80211_channel[]);
193 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
194 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
195 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
196 static void	iwn_newassoc(struct ieee80211_node *, int);
197 static int	iwn_media_change(struct ifnet *);
198 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
199 static void	iwn_calib_timeout(void *);
200 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
201 		    struct iwn_rx_data *);
202 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
203 		    struct iwn_rx_data *);
204 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
205 		    struct iwn_rx_data *);
206 static void	iwn5000_rx_calib_results(struct iwn_softc *,
207 		    struct iwn_rx_desc *, struct iwn_rx_data *);
208 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
209 		    struct iwn_rx_data *);
210 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
211 		    struct iwn_rx_data *);
212 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
213 		    struct iwn_rx_data *);
214 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
215 		    uint8_t);
216 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
217 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
218 static void	iwn_notif_intr(struct iwn_softc *);
219 static void	iwn_wakeup_intr(struct iwn_softc *);
220 static void	iwn_rftoggle_intr(struct iwn_softc *);
221 static void	iwn_fatal_intr(struct iwn_softc *);
222 static void	iwn_intr(void *);
223 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
224 		    uint16_t);
225 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
226 		    uint16_t);
227 #ifdef notyet
228 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
229 #endif
230 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
231 		    struct ieee80211_node *);
232 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
233 		    struct ieee80211_node *,
234 		    const struct ieee80211_bpf_params *params);
235 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
236 		    const struct ieee80211_bpf_params *);
237 static void	iwn_start(struct ifnet *);
238 static void	iwn_start_locked(struct ifnet *);
239 static void	iwn_watchdog(void *);
240 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
241 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
242 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
243 		    int);
244 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
245 		    int);
246 static int	iwn_set_link_quality(struct iwn_softc *,
247 		    struct ieee80211_node *);
248 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
249 static int	iwn_updateedca(struct ieee80211com *);
250 static void	iwn_update_mcast(struct ifnet *);
251 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
252 static int	iwn_set_critical_temp(struct iwn_softc *);
253 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
254 static void	iwn4965_power_calibration(struct iwn_softc *, int);
255 static int	iwn4965_set_txpower(struct iwn_softc *,
256 		    struct ieee80211_channel *, int);
257 static int	iwn5000_set_txpower(struct iwn_softc *,
258 		    struct ieee80211_channel *, int);
259 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
260 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
261 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
262 static int	iwn4965_get_temperature(struct iwn_softc *);
263 static int	iwn5000_get_temperature(struct iwn_softc *);
264 static int	iwn_init_sensitivity(struct iwn_softc *);
265 static void	iwn_collect_noise(struct iwn_softc *,
266 		    const struct iwn_rx_general_stats *);
267 static int	iwn4965_init_gains(struct iwn_softc *);
268 static int	iwn5000_init_gains(struct iwn_softc *);
269 static int	iwn4965_set_gains(struct iwn_softc *);
270 static int	iwn5000_set_gains(struct iwn_softc *);
271 static void	iwn_tune_sensitivity(struct iwn_softc *,
272 		    const struct iwn_rx_stats *);
273 static void	iwn_save_stats_counters(struct iwn_softc *,
274 		    const struct iwn_stats *);
275 static int	iwn_send_sensitivity(struct iwn_softc *);
276 static void	iwn_check_rx_recovery(struct iwn_softc *, struct iwn_stats *);
277 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
278 static int	iwn_send_btcoex(struct iwn_softc *);
279 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
280 static int	iwn5000_runtime_calib(struct iwn_softc *);
281 static int	iwn_config(struct iwn_softc *);
282 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
283 static int	iwn_scan(struct iwn_softc *, struct ieee80211vap *,
284 		    struct ieee80211_scan_state *, struct ieee80211_channel *);
285 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
286 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
287 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
288 		    struct ieee80211_rx_ampdu *, int, int, int);
289 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
290 		    struct ieee80211_rx_ampdu *);
291 static int	iwn_addba_request(struct ieee80211_node *,
292 		    struct ieee80211_tx_ampdu *, int, int, int);
293 static int	iwn_addba_response(struct ieee80211_node *,
294 		    struct ieee80211_tx_ampdu *, int, int, int);
295 static int	iwn_ampdu_tx_start(struct ieee80211com *,
296 		    struct ieee80211_node *, uint8_t);
297 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
298 		    struct ieee80211_tx_ampdu *);
299 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
300 		    struct ieee80211_node *, int, uint8_t, uint16_t);
301 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
302 		    uint8_t, uint16_t);
303 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
304 		    struct ieee80211_node *, int, uint8_t, uint16_t);
305 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
306 		    uint8_t, uint16_t);
307 static int	iwn5000_query_calibration(struct iwn_softc *);
308 static int	iwn5000_send_calibration(struct iwn_softc *);
309 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
310 static int	iwn5000_crystal_calib(struct iwn_softc *);
311 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
312 static int	iwn5000_temp_offset_calibv2(struct iwn_softc *);
313 static int	iwn4965_post_alive(struct iwn_softc *);
314 static int	iwn5000_post_alive(struct iwn_softc *);
315 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
316 		    int);
317 static int	iwn4965_load_firmware(struct iwn_softc *);
318 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
319 		    const uint8_t *, int);
320 static int	iwn5000_load_firmware(struct iwn_softc *);
321 static int	iwn_read_firmware_leg(struct iwn_softc *,
322 		    struct iwn_fw_info *);
323 static int	iwn_read_firmware_tlv(struct iwn_softc *,
324 		    struct iwn_fw_info *, uint16_t);
325 static int	iwn_read_firmware(struct iwn_softc *);
326 static int	iwn_clock_wait(struct iwn_softc *);
327 static int	iwn_apm_init(struct iwn_softc *);
328 static void	iwn_apm_stop_master(struct iwn_softc *);
329 static void	iwn_apm_stop(struct iwn_softc *);
330 static int	iwn4965_nic_config(struct iwn_softc *);
331 static int	iwn5000_nic_config(struct iwn_softc *);
332 static int	iwn_hw_prepare(struct iwn_softc *);
333 static int	iwn_hw_init(struct iwn_softc *);
334 static void	iwn_hw_stop(struct iwn_softc *);
335 static void	iwn_radio_on(void *, int);
336 static void	iwn_radio_off(void *, int);
337 static void	iwn_panicked(void *, int);
338 static void	iwn_init_locked(struct iwn_softc *);
339 static void	iwn_init(void *);
340 static void	iwn_stop_locked(struct iwn_softc *);
341 static void	iwn_stop(struct iwn_softc *);
342 static void	iwn_scan_start(struct ieee80211com *);
343 static void	iwn_scan_end(struct ieee80211com *);
344 static void	iwn_set_channel(struct ieee80211com *);
345 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
346 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
347 static void	iwn_hw_reset(void *, int);
348 #ifdef	IWN_DEBUG
349 static char	*iwn_get_csr_string(int);
350 static void	iwn_debug_register(struct iwn_softc *);
351 #endif
352 
353 static device_method_t iwn_methods[] = {
354 	/* Device interface */
355 	DEVMETHOD(device_probe,		iwn_probe),
356 	DEVMETHOD(device_attach,	iwn_attach),
357 	DEVMETHOD(device_detach,	iwn_detach),
358 	DEVMETHOD(device_shutdown,	iwn_shutdown),
359 	DEVMETHOD(device_suspend,	iwn_suspend),
360 	DEVMETHOD(device_resume,	iwn_resume),
361 
362 	DEVMETHOD_END
363 };
364 
365 static driver_t iwn_driver = {
366 	"iwn",
367 	iwn_methods,
368 	sizeof(struct iwn_softc)
369 };
370 static devclass_t iwn_devclass;
371 
372 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, NULL, NULL);
373 
374 MODULE_VERSION(iwn, 1);
375 
376 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
377 MODULE_DEPEND(iwn, pci, 1, 1, 1);
378 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
379 
380 static int
381 iwn_probe(device_t dev)
382 {
383 	const struct iwn_ident *ident;
384 
385 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
386 		if (pci_get_vendor(dev) == ident->vendor &&
387 		    pci_get_device(dev) == ident->device) {
388 			device_set_desc(dev, ident->name);
389 			return (BUS_PROBE_DEFAULT);
390 		}
391 	}
392 	return ENXIO;
393 }
394 
395 static int
396 iwn_attach(device_t dev)
397 {
398 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
399 	struct ieee80211com *ic;
400 	struct ifnet *ifp;
401 	int i, error, rid;
402 	uint8_t macaddr[IEEE80211_ADDR_LEN];
403 
404 	sc->sc_dev = dev;
405 
406 #ifdef	IWN_DEBUG
407 	error = resource_int_value(device_get_name(sc->sc_dev),
408 	    device_get_unit(sc->sc_dev), "debug", &(sc->sc_debug));
409 	if (error != 0)
410 		sc->sc_debug = 0;
411 #else
412 	sc->sc_debug = 0;
413 #endif
414 
415 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: begin\n",__func__);
416 
417 	/*
418 	 * Get the offset of the PCI Express Capability Structure in PCI
419 	 * Configuration Space.
420 	 */
421 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
422 	if (error != 0) {
423 		device_printf(dev, "PCIe capability structure not found!\n");
424 		return error;
425 	}
426 
427 	/* Clear device-specific "PCI retry timeout" register (41h). */
428 	pci_write_config(dev, 0x41, 0, 1);
429 
430 	/* Enable bus-mastering. */
431 	pci_enable_busmaster(dev);
432 
433 	rid = PCIR_BAR(0);
434 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
435 	    RF_ACTIVE);
436 	if (sc->mem == NULL) {
437 		device_printf(dev, "can't map mem space\n");
438 		error = ENOMEM;
439 		return error;
440 	}
441 	sc->sc_st = rman_get_bustag(sc->mem);
442 	sc->sc_sh = rman_get_bushandle(sc->mem);
443 
444 	i = 1;
445 	rid = 0;
446 	if (pci_alloc_msi(dev, &i) == 0)
447 		rid = 1;
448 	/* Install interrupt handler. */
449 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE |
450 	    (rid != 0 ? 0 : RF_SHAREABLE));
451 	if (sc->irq == NULL) {
452 		device_printf(dev, "can't map interrupt\n");
453 		error = ENOMEM;
454 		goto fail;
455 	}
456 
457 	IWN_LOCK_INIT(sc);
458 
459 	/* Read hardware revision and attach. */
460 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> IWN_HW_REV_TYPE_SHIFT)
461 	    & IWN_HW_REV_TYPE_MASK;
462 	sc->subdevice_id = pci_get_subdevice(dev);
463 
464 	/*
465 	 * 4965 versus 5000 and later have different methods.
466 	 * Let's set those up first.
467 	 */
468 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
469 		error = iwn4965_attach(sc, pci_get_device(dev));
470 	else
471 		error = iwn5000_attach(sc, pci_get_device(dev));
472 	if (error != 0) {
473 		device_printf(dev, "could not attach device, error %d\n",
474 		    error);
475 		goto fail;
476 	}
477 
478 	/*
479 	 * Next, let's setup the various parameters of each NIC.
480 	 */
481 	error = iwn_config_specific(sc, pci_get_device(dev));
482 	if (error != 0) {
483 		device_printf(dev, "could not attach device, error %d\n",
484 		    error);
485 		goto fail;
486 	}
487 
488 	if ((error = iwn_hw_prepare(sc)) != 0) {
489 		device_printf(dev, "hardware not ready, error %d\n", error);
490 		goto fail;
491 	}
492 
493 	/* Allocate DMA memory for firmware transfers. */
494 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
495 		device_printf(dev,
496 		    "could not allocate memory for firmware, error %d\n",
497 		    error);
498 		goto fail;
499 	}
500 
501 	/* Allocate "Keep Warm" page. */
502 	if ((error = iwn_alloc_kw(sc)) != 0) {
503 		device_printf(dev,
504 		    "could not allocate keep warm page, error %d\n", error);
505 		goto fail;
506 	}
507 
508 	/* Allocate ICT table for 5000 Series. */
509 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
510 	    (error = iwn_alloc_ict(sc)) != 0) {
511 		device_printf(dev, "could not allocate ICT table, error %d\n",
512 		    error);
513 		goto fail;
514 	}
515 
516 	/* Allocate TX scheduler "rings". */
517 	if ((error = iwn_alloc_sched(sc)) != 0) {
518 		device_printf(dev,
519 		    "could not allocate TX scheduler rings, error %d\n", error);
520 		goto fail;
521 	}
522 
523 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
524 	for (i = 0; i < sc->ntxqs; i++) {
525 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
526 			device_printf(dev,
527 			    "could not allocate TX ring %d, error %d\n", i,
528 			    error);
529 			goto fail;
530 		}
531 	}
532 
533 	/* Allocate RX ring. */
534 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
535 		device_printf(dev, "could not allocate RX ring, error %d\n",
536 		    error);
537 		goto fail;
538 	}
539 
540 	/* Clear pending interrupts. */
541 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
542 
543 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
544 	if (ifp == NULL) {
545 		device_printf(dev, "can not allocate ifnet structure\n");
546 		goto fail;
547 	}
548 
549 	ic = ifp->if_l2com;
550 	ic->ic_ifp = ifp;
551 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
552 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
553 
554 	/* Set device capabilities. */
555 	ic->ic_caps =
556 		  IEEE80211_C_STA		/* station mode supported */
557 		| IEEE80211_C_MONITOR		/* monitor mode supported */
558 		| IEEE80211_C_BGSCAN		/* background scanning */
559 		| IEEE80211_C_TXPMGT		/* tx power management */
560 		| IEEE80211_C_SHSLOT		/* short slot time supported */
561 		| IEEE80211_C_WPA
562 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
563 #if 0
564 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
565 #endif
566 		| IEEE80211_C_WME		/* WME */
567 		| IEEE80211_C_PMGT		/* Station-side power mgmt */
568 		;
569 
570 	/* Read MAC address, channels, etc from EEPROM. */
571 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
572 		device_printf(dev, "could not read EEPROM, error %d\n",
573 		    error);
574 		goto fail;
575 	}
576 
577 	/* Count the number of available chains. */
578 	sc->ntxchains =
579 	    ((sc->txchainmask >> 2) & 1) +
580 	    ((sc->txchainmask >> 1) & 1) +
581 	    ((sc->txchainmask >> 0) & 1);
582 	sc->nrxchains =
583 	    ((sc->rxchainmask >> 2) & 1) +
584 	    ((sc->rxchainmask >> 1) & 1) +
585 	    ((sc->rxchainmask >> 0) & 1);
586 	if (bootverbose) {
587 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
588 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
589 		    macaddr, ":");
590 	}
591 
592 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
593 		ic->ic_rxstream = sc->nrxchains;
594 		ic->ic_txstream = sc->ntxchains;
595 
596 		/*
597 		 * The NICs we currently support cap out at 2x2 support
598 		 * separate from the chains being used.
599 		 *
600 		 * This is a total hack to work around that until some
601 		 * per-device method is implemented to return the
602 		 * actual stream support.
603 		 *
604 		 * XXX Note: the 5350 is a 3x3 device; so we shouldn't
605 		 * cap this!  But, anything that touches rates in the
606 		 * driver needs to be audited first before 3x3 is enabled.
607 		 */
608 		if (ic->ic_rxstream > 2)
609 			ic->ic_rxstream = 2;
610 		if (ic->ic_txstream > 2)
611 			ic->ic_txstream = 2;
612 
613 		ic->ic_htcaps =
614 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
615 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
616 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
617 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
618 #ifdef notyet
619 			| IEEE80211_HTCAP_GREENFIELD
620 #if IWN_RBUF_SIZE == 8192
621 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
622 #else
623 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
624 #endif
625 #endif
626 			/* s/w capabilities */
627 			| IEEE80211_HTC_HT		/* HT operation */
628 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
629 #ifdef notyet
630 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
631 #endif
632 			;
633 	}
634 
635 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
636 	ifp->if_softc = sc;
637 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
638 	ifp->if_init = iwn_init;
639 	ifp->if_ioctl = iwn_ioctl;
640 	ifp->if_start = iwn_start;
641 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
642 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
643 	IFQ_SET_READY(&ifp->if_snd);
644 
645 	ieee80211_ifattach(ic, macaddr);
646 	ic->ic_vap_create = iwn_vap_create;
647 	ic->ic_vap_delete = iwn_vap_delete;
648 	ic->ic_raw_xmit = iwn_raw_xmit;
649 	ic->ic_node_alloc = iwn_node_alloc;
650 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
651 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
652 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
653 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
654 	sc->sc_addba_request = ic->ic_addba_request;
655 	ic->ic_addba_request = iwn_addba_request;
656 	sc->sc_addba_response = ic->ic_addba_response;
657 	ic->ic_addba_response = iwn_addba_response;
658 	sc->sc_addba_stop = ic->ic_addba_stop;
659 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
660 	ic->ic_newassoc = iwn_newassoc;
661 	ic->ic_wme.wme_update = iwn_updateedca;
662 	ic->ic_update_mcast = iwn_update_mcast;
663 	ic->ic_scan_start = iwn_scan_start;
664 	ic->ic_scan_end = iwn_scan_end;
665 	ic->ic_set_channel = iwn_set_channel;
666 	ic->ic_scan_curchan = iwn_scan_curchan;
667 	ic->ic_scan_mindwell = iwn_scan_mindwell;
668 	ic->ic_setregdomain = iwn_setregdomain;
669 
670 	iwn_radiotap_attach(sc);
671 
672 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
673 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
674 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
675 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
676 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
677 	TASK_INIT(&sc->sc_panic_task, 0, iwn_panicked, sc);
678 
679 	sc->sc_tq = taskqueue_create("iwn_taskq", M_WAITOK,
680 	    taskqueue_thread_enqueue, &sc->sc_tq);
681 	error = taskqueue_start_threads(&sc->sc_tq, 1, 0, "iwn_taskq");
682 	if (error != 0) {
683 		device_printf(dev, "can't start threads, error %d\n", error);
684 		goto fail;
685 	}
686 
687 	iwn_sysctlattach(sc);
688 
689 	/*
690 	 * Hook our interrupt after all initialization is complete.
691 	 */
692 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
693 	    NULL, iwn_intr, sc, &sc->sc_ih);
694 	if (error != 0) {
695 		device_printf(dev, "can't establish interrupt, error %d\n",
696 		    error);
697 		goto fail;
698 	}
699 
700 #if 0
701 	device_printf(sc->sc_dev, "%s: rx_stats=%d, rx_stats_bt=%d\n",
702 	    __func__,
703 	    sizeof(struct iwn_stats),
704 	    sizeof(struct iwn_stats_bt));
705 #endif
706 
707 	if (bootverbose)
708 		ieee80211_announce(ic);
709 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
710 	return 0;
711 fail:
712 	iwn_detach(dev);
713 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
714 	return error;
715 }
716 
717 /*
718  * Define specific configuration based on device id and subdevice id
719  * pid : PCI device id
720  */
721 static int
722 iwn_config_specific(struct iwn_softc *sc, uint16_t pid)
723 {
724 
725 	switch (pid) {
726 /* 4965 series */
727 	case IWN_DID_4965_1:
728 	case IWN_DID_4965_2:
729 	case IWN_DID_4965_3:
730 	case IWN_DID_4965_4:
731 		sc->base_params = &iwn4965_base_params;
732 		sc->limits = &iwn4965_sensitivity_limits;
733 		sc->fwname = "iwn4965fw";
734 		/* Override chains masks, ROM is known to be broken. */
735 		sc->txchainmask = IWN_ANT_AB;
736 		sc->rxchainmask = IWN_ANT_ABC;
737 		/* Enable normal btcoex */
738 		sc->sc_flags |= IWN_FLAG_BTCOEX;
739 		break;
740 /* 1000 Series */
741 	case IWN_DID_1000_1:
742 	case IWN_DID_1000_2:
743 		switch(sc->subdevice_id) {
744 			case	IWN_SDID_1000_1:
745 			case	IWN_SDID_1000_2:
746 			case	IWN_SDID_1000_3:
747 			case	IWN_SDID_1000_4:
748 			case	IWN_SDID_1000_5:
749 			case	IWN_SDID_1000_6:
750 			case	IWN_SDID_1000_7:
751 			case	IWN_SDID_1000_8:
752 			case	IWN_SDID_1000_9:
753 			case	IWN_SDID_1000_10:
754 			case	IWN_SDID_1000_11:
755 			case	IWN_SDID_1000_12:
756 				sc->limits = &iwn1000_sensitivity_limits;
757 				sc->base_params = &iwn1000_base_params;
758 				sc->fwname = "iwn1000fw";
759 				break;
760 			default:
761 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
762 				    "0x%04x rev %d not supported (subdevice)\n", pid,
763 				    sc->subdevice_id,sc->hw_type);
764 				return ENOTSUP;
765 		}
766 		break;
767 /* 6x00 Series */
768 	case IWN_DID_6x00_2:
769 	case IWN_DID_6x00_4:
770 	case IWN_DID_6x00_1:
771 	case IWN_DID_6x00_3:
772 		sc->fwname = "iwn6000fw";
773 		sc->limits = &iwn6000_sensitivity_limits;
774 		switch(sc->subdevice_id) {
775 			case IWN_SDID_6x00_1:
776 			case IWN_SDID_6x00_2:
777 			case IWN_SDID_6x00_8:
778 				//iwl6000_3agn_cfg
779 				sc->base_params = &iwn_6000_base_params;
780 				break;
781 			case IWN_SDID_6x00_3:
782 			case IWN_SDID_6x00_6:
783 			case IWN_SDID_6x00_9:
784 				////iwl6000i_2agn
785 			case IWN_SDID_6x00_4:
786 			case IWN_SDID_6x00_7:
787 			case IWN_SDID_6x00_10:
788 				//iwl6000i_2abg_cfg
789 			case IWN_SDID_6x00_5:
790 				//iwl6000i_2bg_cfg
791 				sc->base_params = &iwn_6000i_base_params;
792 				sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
793 				sc->txchainmask = IWN_ANT_BC;
794 				sc->rxchainmask = IWN_ANT_BC;
795 				break;
796 			default:
797 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
798 				    "0x%04x rev %d not supported (subdevice)\n", pid,
799 				    sc->subdevice_id,sc->hw_type);
800 				return ENOTSUP;
801 		}
802 		break;
803 /* 6x05 Series */
804 	case IWN_DID_6x05_1:
805 	case IWN_DID_6x05_2:
806 		switch(sc->subdevice_id) {
807 			case IWN_SDID_6x05_1:
808 			case IWN_SDID_6x05_4:
809 			case IWN_SDID_6x05_6:
810 				//iwl6005_2agn_cfg
811 			case IWN_SDID_6x05_2:
812 			case IWN_SDID_6x05_5:
813 			case IWN_SDID_6x05_7:
814 				//iwl6005_2abg_cfg
815 			case IWN_SDID_6x05_3:
816 				//iwl6005_2bg_cfg
817 			case IWN_SDID_6x05_8:
818 			case IWN_SDID_6x05_9:
819 				//iwl6005_2agn_sff_cfg
820 			case IWN_SDID_6x05_10:
821 				//iwl6005_2agn_d_cfg
822 			case IWN_SDID_6x05_11:
823 				//iwl6005_2agn_mow1_cfg
824 			case IWN_SDID_6x05_12:
825 				//iwl6005_2agn_mow2_cfg
826 				sc->fwname = "iwn6000g2afw";
827 				sc->limits = &iwn6000_sensitivity_limits;
828 				sc->base_params = &iwn_6000g2_base_params;
829 				break;
830 			default:
831 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
832 				    "0x%04x rev %d not supported (subdevice)\n", pid,
833 				    sc->subdevice_id,sc->hw_type);
834 				return ENOTSUP;
835 		}
836 		break;
837 /* 6x35 Series */
838 	case IWN_DID_6035_1:
839 	case IWN_DID_6035_2:
840 		switch(sc->subdevice_id) {
841 			case IWN_SDID_6035_1:
842 			case IWN_SDID_6035_2:
843 			case IWN_SDID_6035_3:
844 			case IWN_SDID_6035_4:
845 				sc->fwname = "iwn6000g2bfw";
846 				sc->limits = &iwn6235_sensitivity_limits;
847 				sc->base_params = &iwn_6235_base_params;
848 				break;
849 			default:
850 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
851 				    "0x%04x rev %d not supported (subdevice)\n", pid,
852 				    sc->subdevice_id,sc->hw_type);
853 				return ENOTSUP;
854 		}
855 		break;
856 /* 6x50 WiFi/WiMax Series */
857 	case IWN_DID_6050_1:
858 	case IWN_DID_6050_2:
859 		switch(sc->subdevice_id) {
860 			case IWN_SDID_6050_1:
861 			case IWN_SDID_6050_3:
862 			case IWN_SDID_6050_5:
863 				//iwl6050_2agn_cfg
864 			case IWN_SDID_6050_2:
865 			case IWN_SDID_6050_4:
866 			case IWN_SDID_6050_6:
867 				//iwl6050_2abg_cfg
868 				sc->fwname = "iwn6050fw";
869 				sc->txchainmask = IWN_ANT_AB;
870 				sc->rxchainmask = IWN_ANT_AB;
871 				sc->limits = &iwn6000_sensitivity_limits;
872 				sc->base_params = &iwn_6050_base_params;
873 				break;
874 			default:
875 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
876 				    "0x%04x rev %d not supported (subdevice)\n", pid,
877 				    sc->subdevice_id,sc->hw_type);
878 				return ENOTSUP;
879 		}
880 		break;
881 /* 6150 WiFi/WiMax Series */
882 	case IWN_DID_6150_1:
883 	case IWN_DID_6150_2:
884 		switch(sc->subdevice_id) {
885 			case IWN_SDID_6150_1:
886 			case IWN_SDID_6150_3:
887 			case IWN_SDID_6150_5:
888 				// iwl6150_bgn_cfg
889 			case IWN_SDID_6150_2:
890 			case IWN_SDID_6150_4:
891 			case IWN_SDID_6150_6:
892 				//iwl6150_bg_cfg
893 				sc->fwname = "iwn6050fw";
894 				sc->limits = &iwn6000_sensitivity_limits;
895 				sc->base_params = &iwn_6150_base_params;
896 				break;
897 			default:
898 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
899 				    "0x%04x rev %d not supported (subdevice)\n", pid,
900 				    sc->subdevice_id,sc->hw_type);
901 				return ENOTSUP;
902 		}
903 		break;
904 /* 6030 Series and 1030 Series */
905 	case IWN_DID_x030_1:
906 	case IWN_DID_x030_2:
907 	case IWN_DID_x030_3:
908 	case IWN_DID_x030_4:
909 		switch(sc->subdevice_id) {
910 			case IWN_SDID_x030_1:
911 			case IWN_SDID_x030_3:
912 			case IWN_SDID_x030_5:
913 			// iwl1030_bgn_cfg
914 			case IWN_SDID_x030_2:
915 			case IWN_SDID_x030_4:
916 			case IWN_SDID_x030_6:
917 			//iwl1030_bg_cfg
918 			case IWN_SDID_x030_7:
919 			case IWN_SDID_x030_10:
920 			case IWN_SDID_x030_14:
921 			//iwl6030_2agn_cfg
922 			case IWN_SDID_x030_8:
923 			case IWN_SDID_x030_11:
924 			case IWN_SDID_x030_15:
925 			// iwl6030_2bgn_cfg
926 			case IWN_SDID_x030_9:
927 			case IWN_SDID_x030_12:
928 			case IWN_SDID_x030_16:
929 			// iwl6030_2abg_cfg
930 			case IWN_SDID_x030_13:
931 			//iwl6030_2bg_cfg
932 				sc->fwname = "iwn6000g2bfw";
933 				sc->limits = &iwn6000_sensitivity_limits;
934 				sc->base_params = &iwn_6000g2b_base_params;
935 				break;
936 			default:
937 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
938 				    "0x%04x rev %d not supported (subdevice)\n", pid,
939 				    sc->subdevice_id,sc->hw_type);
940 				return ENOTSUP;
941 		}
942 		break;
943 /* 130 Series WiFi */
944 /* XXX: This series will need adjustment for rate.
945  * see rx_with_siso_diversity in linux kernel
946  */
947 	case IWN_DID_130_1:
948 	case IWN_DID_130_2:
949 		switch(sc->subdevice_id) {
950 			case IWN_SDID_130_1:
951 			case IWN_SDID_130_3:
952 			case IWN_SDID_130_5:
953 			//iwl130_bgn_cfg
954 			case IWN_SDID_130_2:
955 			case IWN_SDID_130_4:
956 			case IWN_SDID_130_6:
957 			//iwl130_bg_cfg
958 				sc->fwname = "iwn6000g2bfw";
959 				sc->limits = &iwn6000_sensitivity_limits;
960 				sc->base_params = &iwn_6000g2b_base_params;
961 				break;
962 			default:
963 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
964 				    "0x%04x rev %d not supported (subdevice)\n", pid,
965 				    sc->subdevice_id,sc->hw_type);
966 				return ENOTSUP;
967 		}
968 		break;
969 /* 100 Series WiFi */
970 	case IWN_DID_100_1:
971 	case IWN_DID_100_2:
972 		switch(sc->subdevice_id) {
973 			case IWN_SDID_100_1:
974 			case IWN_SDID_100_2:
975 			case IWN_SDID_100_3:
976 			case IWN_SDID_100_4:
977 			case IWN_SDID_100_5:
978 			case IWN_SDID_100_6:
979 				sc->limits = &iwn1000_sensitivity_limits;
980 				sc->base_params = &iwn1000_base_params;
981 				sc->fwname = "iwn100fw";
982 				break;
983 			default:
984 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
985 				    "0x%04x rev %d not supported (subdevice)\n", pid,
986 				    sc->subdevice_id,sc->hw_type);
987 				return ENOTSUP;
988 		}
989 		break;
990 
991 /* 105 Series */
992 /* XXX: This series will need adjustment for rate.
993  * see rx_with_siso_diversity in linux kernel
994  */
995 	case IWN_DID_105_1:
996 	case IWN_DID_105_2:
997 		switch(sc->subdevice_id) {
998 			case IWN_SDID_105_1:
999 			case IWN_SDID_105_2:
1000 			case IWN_SDID_105_3:
1001 			//iwl105_bgn_cfg
1002 			case IWN_SDID_105_4:
1003 			//iwl105_bgn_d_cfg
1004 				sc->limits = &iwn2030_sensitivity_limits;
1005 				sc->base_params = &iwn2000_base_params;
1006 				sc->fwname = "iwn105fw";
1007 				break;
1008 			default:
1009 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1010 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1011 				    sc->subdevice_id,sc->hw_type);
1012 				return ENOTSUP;
1013 		}
1014 		break;
1015 
1016 /* 135 Series */
1017 /* XXX: This series will need adjustment for rate.
1018  * see rx_with_siso_diversity in linux kernel
1019  */
1020 	case IWN_DID_135_1:
1021 	case IWN_DID_135_2:
1022 		switch(sc->subdevice_id) {
1023 			case IWN_SDID_135_1:
1024 			case IWN_SDID_135_2:
1025 			case IWN_SDID_135_3:
1026 				sc->limits = &iwn2030_sensitivity_limits;
1027 				sc->base_params = &iwn2030_base_params;
1028 				sc->fwname = "iwn135fw";
1029 				break;
1030 			default:
1031 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1032 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1033 				    sc->subdevice_id,sc->hw_type);
1034 				return ENOTSUP;
1035 		}
1036 		break;
1037 
1038 /* 2x00 Series */
1039 	case IWN_DID_2x00_1:
1040 	case IWN_DID_2x00_2:
1041 		switch(sc->subdevice_id) {
1042 			case IWN_SDID_2x00_1:
1043 			case IWN_SDID_2x00_2:
1044 			case IWN_SDID_2x00_3:
1045 			//iwl2000_2bgn_cfg
1046 			case IWN_SDID_2x00_4:
1047 			//iwl2000_2bgn_d_cfg
1048 				sc->limits = &iwn2030_sensitivity_limits;
1049 				sc->base_params = &iwn2000_base_params;
1050 				sc->fwname = "iwn2000fw";
1051 				break;
1052 			default:
1053 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1054 				    "0x%04x rev %d not supported (subdevice) \n",
1055 				    pid, sc->subdevice_id, sc->hw_type);
1056 				return ENOTSUP;
1057 		}
1058 		break;
1059 /* 2x30 Series */
1060 	case IWN_DID_2x30_1:
1061 	case IWN_DID_2x30_2:
1062 		switch(sc->subdevice_id) {
1063 			case IWN_SDID_2x30_1:
1064 			case IWN_SDID_2x30_3:
1065 			case IWN_SDID_2x30_5:
1066 			//iwl100_bgn_cfg
1067 			case IWN_SDID_2x30_2:
1068 			case IWN_SDID_2x30_4:
1069 			case IWN_SDID_2x30_6:
1070 			//iwl100_bg_cfg
1071 				sc->limits = &iwn2030_sensitivity_limits;
1072 				sc->base_params = &iwn2030_base_params;
1073 				sc->fwname = "iwn2030fw";
1074 				break;
1075 			default:
1076 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1077 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1078 				    sc->subdevice_id,sc->hw_type);
1079 				return ENOTSUP;
1080 		}
1081 		break;
1082 /* 5x00 Series */
1083 	case IWN_DID_5x00_1:
1084 	case IWN_DID_5x00_2:
1085 	case IWN_DID_5x00_3:
1086 	case IWN_DID_5x00_4:
1087 		sc->limits = &iwn5000_sensitivity_limits;
1088 		sc->base_params = &iwn5000_base_params;
1089 		sc->fwname = "iwn5000fw";
1090 		switch(sc->subdevice_id) {
1091 			case IWN_SDID_5x00_1:
1092 			case IWN_SDID_5x00_2:
1093 			case IWN_SDID_5x00_3:
1094 			case IWN_SDID_5x00_4:
1095 			case IWN_SDID_5x00_9:
1096 			case IWN_SDID_5x00_10:
1097 			case IWN_SDID_5x00_11:
1098 			case IWN_SDID_5x00_12:
1099 			case IWN_SDID_5x00_17:
1100 			case IWN_SDID_5x00_18:
1101 			case IWN_SDID_5x00_19:
1102 			case IWN_SDID_5x00_20:
1103 			//iwl5100_agn_cfg
1104 				sc->txchainmask = IWN_ANT_B;
1105 				sc->rxchainmask = IWN_ANT_AB;
1106 				break;
1107 			case IWN_SDID_5x00_5:
1108 			case IWN_SDID_5x00_6:
1109 			case IWN_SDID_5x00_13:
1110 			case IWN_SDID_5x00_14:
1111 			case IWN_SDID_5x00_21:
1112 			case IWN_SDID_5x00_22:
1113 			//iwl5100_bgn_cfg
1114 				sc->txchainmask = IWN_ANT_B;
1115 				sc->rxchainmask = IWN_ANT_AB;
1116 				break;
1117 			case IWN_SDID_5x00_7:
1118 			case IWN_SDID_5x00_8:
1119 			case IWN_SDID_5x00_15:
1120 			case IWN_SDID_5x00_16:
1121 			case IWN_SDID_5x00_23:
1122 			case IWN_SDID_5x00_24:
1123 			//iwl5100_abg_cfg
1124 				sc->txchainmask = IWN_ANT_B;
1125 				sc->rxchainmask = IWN_ANT_AB;
1126 				break;
1127 			case IWN_SDID_5x00_25:
1128 			case IWN_SDID_5x00_26:
1129 			case IWN_SDID_5x00_27:
1130 			case IWN_SDID_5x00_28:
1131 			case IWN_SDID_5x00_29:
1132 			case IWN_SDID_5x00_30:
1133 			case IWN_SDID_5x00_31:
1134 			case IWN_SDID_5x00_32:
1135 			case IWN_SDID_5x00_33:
1136 			case IWN_SDID_5x00_34:
1137 			case IWN_SDID_5x00_35:
1138 			case IWN_SDID_5x00_36:
1139 			//iwl5300_agn_cfg
1140 				sc->txchainmask = IWN_ANT_ABC;
1141 				sc->rxchainmask = IWN_ANT_ABC;
1142 				break;
1143 			default:
1144 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1145 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1146 				    sc->subdevice_id,sc->hw_type);
1147 				return ENOTSUP;
1148 		}
1149 		break;
1150 /* 5x50 Series */
1151 	case IWN_DID_5x50_1:
1152 	case IWN_DID_5x50_2:
1153 	case IWN_DID_5x50_3:
1154 	case IWN_DID_5x50_4:
1155 		sc->limits = &iwn5000_sensitivity_limits;
1156 		sc->base_params = &iwn5000_base_params;
1157 		sc->fwname = "iwn5000fw";
1158 		switch(sc->subdevice_id) {
1159 			case IWN_SDID_5x50_1:
1160 			case IWN_SDID_5x50_2:
1161 			case IWN_SDID_5x50_3:
1162 			//iwl5350_agn_cfg
1163 				sc->limits = &iwn5000_sensitivity_limits;
1164 				sc->base_params = &iwn5000_base_params;
1165 				sc->fwname = "iwn5000fw";
1166 				break;
1167 			case IWN_SDID_5x50_4:
1168 			case IWN_SDID_5x50_5:
1169 			case IWN_SDID_5x50_8:
1170 			case IWN_SDID_5x50_9:
1171 			case IWN_SDID_5x50_10:
1172 			case IWN_SDID_5x50_11:
1173 			//iwl5150_agn_cfg
1174 			case IWN_SDID_5x50_6:
1175 			case IWN_SDID_5x50_7:
1176 			case IWN_SDID_5x50_12:
1177 			case IWN_SDID_5x50_13:
1178 			//iwl5150_abg_cfg
1179 				sc->limits = &iwn5000_sensitivity_limits;
1180 				sc->fwname = "iwn5150fw";
1181 				sc->base_params = &iwn_5x50_base_params;
1182 				break;
1183 			default:
1184 				device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id :"
1185 				    "0x%04x rev %d not supported (subdevice)\n", pid,
1186 				    sc->subdevice_id,sc->hw_type);
1187 				return ENOTSUP;
1188 		}
1189 		break;
1190 	default:
1191 		device_printf(sc->sc_dev, "adapter type id : 0x%04x sub id : 0x%04x"
1192 		    "rev 0x%08x not supported (device)\n", pid, sc->subdevice_id,
1193 		     sc->hw_type);
1194 		return ENOTSUP;
1195 	}
1196 	return 0;
1197 }
1198 
1199 static int
1200 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
1201 {
1202 	struct iwn_ops *ops = &sc->ops;
1203 
1204 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1205 	ops->load_firmware = iwn4965_load_firmware;
1206 	ops->read_eeprom = iwn4965_read_eeprom;
1207 	ops->post_alive = iwn4965_post_alive;
1208 	ops->nic_config = iwn4965_nic_config;
1209 	ops->update_sched = iwn4965_update_sched;
1210 	ops->get_temperature = iwn4965_get_temperature;
1211 	ops->get_rssi = iwn4965_get_rssi;
1212 	ops->set_txpower = iwn4965_set_txpower;
1213 	ops->init_gains = iwn4965_init_gains;
1214 	ops->set_gains = iwn4965_set_gains;
1215 	ops->add_node = iwn4965_add_node;
1216 	ops->tx_done = iwn4965_tx_done;
1217 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
1218 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
1219 	sc->ntxqs = IWN4965_NTXQUEUES;
1220 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
1221 	sc->ndmachnls = IWN4965_NDMACHNLS;
1222 	sc->broadcast_id = IWN4965_ID_BROADCAST;
1223 	sc->rxonsz = IWN4965_RXONSZ;
1224 	sc->schedsz = IWN4965_SCHEDSZ;
1225 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
1226 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
1227 	sc->fwsz = IWN4965_FWSZ;
1228 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
1229 	sc->limits = &iwn4965_sensitivity_limits;
1230 	sc->fwname = "iwn4965fw";
1231 	/* Override chains masks, ROM is known to be broken. */
1232 	sc->txchainmask = IWN_ANT_AB;
1233 	sc->rxchainmask = IWN_ANT_ABC;
1234 	/* Enable normal btcoex */
1235 	sc->sc_flags |= IWN_FLAG_BTCOEX;
1236 
1237 	DPRINTF(sc, IWN_DEBUG_TRACE, "%s: end\n",__func__);
1238 
1239 	return 0;
1240 }
1241 
1242 static int
1243 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
1244 {
1245 	struct iwn_ops *ops = &sc->ops;
1246 
1247 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1248 
1249 	ops->load_firmware = iwn5000_load_firmware;
1250 	ops->read_eeprom = iwn5000_read_eeprom;
1251 	ops->post_alive = iwn5000_post_alive;
1252 	ops->nic_config = iwn5000_nic_config;
1253 	ops->update_sched = iwn5000_update_sched;
1254 	ops->get_temperature = iwn5000_get_temperature;
1255 	ops->get_rssi = iwn5000_get_rssi;
1256 	ops->set_txpower = iwn5000_set_txpower;
1257 	ops->init_gains = iwn5000_init_gains;
1258 	ops->set_gains = iwn5000_set_gains;
1259 	ops->add_node = iwn5000_add_node;
1260 	ops->tx_done = iwn5000_tx_done;
1261 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
1262 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
1263 	sc->ntxqs = IWN5000_NTXQUEUES;
1264 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
1265 	sc->ndmachnls = IWN5000_NDMACHNLS;
1266 	sc->broadcast_id = IWN5000_ID_BROADCAST;
1267 	sc->rxonsz = IWN5000_RXONSZ;
1268 	sc->schedsz = IWN5000_SCHEDSZ;
1269 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
1270 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
1271 	sc->fwsz = IWN5000_FWSZ;
1272 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
1273 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
1274 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
1275 
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Attach the interface to 802.11 radiotap.
1281  */
1282 static void
1283 iwn_radiotap_attach(struct iwn_softc *sc)
1284 {
1285 	struct ifnet *ifp = sc->sc_ifp;
1286 	struct ieee80211com *ic = ifp->if_l2com;
1287 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1288 	ieee80211_radiotap_attach(ic,
1289 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
1290 		IWN_TX_RADIOTAP_PRESENT,
1291 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
1292 		IWN_RX_RADIOTAP_PRESENT);
1293 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1294 }
1295 
1296 static void
1297 iwn_sysctlattach(struct iwn_softc *sc)
1298 {
1299 #ifdef	IWN_DEBUG
1300 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
1301 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
1302 
1303 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1304 	    "debug", CTLFLAG_RW, &sc->sc_debug, sc->sc_debug,
1305 		"control debugging printfs");
1306 #endif
1307 }
1308 
1309 static struct ieee80211vap *
1310 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1311     enum ieee80211_opmode opmode, int flags,
1312     const uint8_t bssid[IEEE80211_ADDR_LEN],
1313     const uint8_t mac[IEEE80211_ADDR_LEN])
1314 {
1315 	struct iwn_vap *ivp;
1316 	struct ieee80211vap *vap;
1317 	uint8_t mac1[IEEE80211_ADDR_LEN];
1318 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1319 
1320 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
1321 		return NULL;
1322 
1323 	IEEE80211_ADDR_COPY(mac1, mac);
1324 
1325 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
1326 	    M_80211_VAP, M_NOWAIT | M_ZERO);
1327 	if (ivp == NULL)
1328 		return NULL;
1329 	vap = &ivp->iv_vap;
1330 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac1);
1331 	ivp->ctx = IWN_RXON_BSS_CTX;
1332 	IEEE80211_ADDR_COPY(ivp->macaddr, mac1);
1333 	vap->iv_bmissthreshold = 10;		/* override default */
1334 	/* Override with driver methods. */
1335 	ivp->iv_newstate = vap->iv_newstate;
1336 	vap->iv_newstate = iwn_newstate;
1337 	sc->ivap[IWN_RXON_BSS_CTX] = vap;
1338 
1339 	ieee80211_ratectl_init(vap);
1340 	/* Complete setup. */
1341 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
1342 	ic->ic_opmode = opmode;
1343 	return vap;
1344 }
1345 
1346 static void
1347 iwn_vap_delete(struct ieee80211vap *vap)
1348 {
1349 	struct iwn_vap *ivp = IWN_VAP(vap);
1350 
1351 	ieee80211_ratectl_deinit(vap);
1352 	ieee80211_vap_detach(vap);
1353 	free(ivp, M_80211_VAP);
1354 }
1355 
1356 static int
1357 iwn_detach(device_t dev)
1358 {
1359 	struct iwn_softc *sc = device_get_softc(dev);
1360 	struct ifnet *ifp = sc->sc_ifp;
1361 	struct ieee80211com *ic;
1362 	int qid;
1363 
1364 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1365 
1366 	if (ifp != NULL) {
1367 		ic = ifp->if_l2com;
1368 
1369 		ieee80211_draintask(ic, &sc->sc_reinit_task);
1370 		ieee80211_draintask(ic, &sc->sc_radioon_task);
1371 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
1372 
1373 		iwn_stop(sc);
1374 
1375 		taskqueue_drain_all(sc->sc_tq);
1376 		taskqueue_free(sc->sc_tq);
1377 
1378 		callout_drain(&sc->watchdog_to);
1379 		callout_drain(&sc->calib_to);
1380 		ieee80211_ifdetach(ic);
1381 	}
1382 
1383 	/* Uninstall interrupt handler. */
1384 	if (sc->irq != NULL) {
1385 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
1386 		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
1387 		    sc->irq);
1388 		pci_release_msi(dev);
1389 	}
1390 
1391 	/* Free DMA resources. */
1392 	iwn_free_rx_ring(sc, &sc->rxq);
1393 	for (qid = 0; qid < sc->ntxqs; qid++)
1394 		iwn_free_tx_ring(sc, &sc->txq[qid]);
1395 	iwn_free_sched(sc);
1396 	iwn_free_kw(sc);
1397 	if (sc->ict != NULL)
1398 		iwn_free_ict(sc);
1399 	iwn_free_fwmem(sc);
1400 
1401 	if (sc->mem != NULL)
1402 		bus_release_resource(dev, SYS_RES_MEMORY,
1403 		    rman_get_rid(sc->mem), sc->mem);
1404 
1405 	if (ifp != NULL)
1406 		if_free(ifp);
1407 
1408 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n", __func__);
1409 	IWN_LOCK_DESTROY(sc);
1410 	return 0;
1411 }
1412 
1413 static int
1414 iwn_shutdown(device_t dev)
1415 {
1416 	struct iwn_softc *sc = device_get_softc(dev);
1417 
1418 	iwn_stop(sc);
1419 	return 0;
1420 }
1421 
1422 static int
1423 iwn_suspend(device_t dev)
1424 {
1425 	struct iwn_softc *sc = device_get_softc(dev);
1426 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1427 
1428 	ieee80211_suspend_all(ic);
1429 	return 0;
1430 }
1431 
1432 static int
1433 iwn_resume(device_t dev)
1434 {
1435 	struct iwn_softc *sc = device_get_softc(dev);
1436 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1437 
1438 	/* Clear device-specific "PCI retry timeout" register (41h). */
1439 	pci_write_config(dev, 0x41, 0, 1);
1440 
1441 	ieee80211_resume_all(ic);
1442 	return 0;
1443 }
1444 
1445 static int
1446 iwn_nic_lock(struct iwn_softc *sc)
1447 {
1448 	int ntries;
1449 
1450 	/* Request exclusive access to NIC. */
1451 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1452 
1453 	/* Spin until we actually get the lock. */
1454 	for (ntries = 0; ntries < 1000; ntries++) {
1455 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1456 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1457 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1458 			return 0;
1459 		DELAY(10);
1460 	}
1461 	return ETIMEDOUT;
1462 }
1463 
1464 static __inline void
1465 iwn_nic_unlock(struct iwn_softc *sc)
1466 {
1467 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1468 }
1469 
1470 static __inline uint32_t
1471 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1472 {
1473 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1474 	IWN_BARRIER_READ_WRITE(sc);
1475 	return IWN_READ(sc, IWN_PRPH_RDATA);
1476 }
1477 
1478 static __inline void
1479 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1480 {
1481 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1482 	IWN_BARRIER_WRITE(sc);
1483 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1484 }
1485 
1486 static __inline void
1487 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1488 {
1489 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1490 }
1491 
1492 static __inline void
1493 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1494 {
1495 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1496 }
1497 
1498 static __inline void
1499 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1500     const uint32_t *data, int count)
1501 {
1502 	for (; count > 0; count--, data++, addr += 4)
1503 		iwn_prph_write(sc, addr, *data);
1504 }
1505 
1506 static __inline uint32_t
1507 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1508 {
1509 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1510 	IWN_BARRIER_READ_WRITE(sc);
1511 	return IWN_READ(sc, IWN_MEM_RDATA);
1512 }
1513 
1514 static __inline void
1515 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1516 {
1517 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1518 	IWN_BARRIER_WRITE(sc);
1519 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1520 }
1521 
1522 static __inline void
1523 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1524 {
1525 	uint32_t tmp;
1526 
1527 	tmp = iwn_mem_read(sc, addr & ~3);
1528 	if (addr & 3)
1529 		tmp = (tmp & 0x0000ffff) | data << 16;
1530 	else
1531 		tmp = (tmp & 0xffff0000) | data;
1532 	iwn_mem_write(sc, addr & ~3, tmp);
1533 }
1534 
1535 static __inline void
1536 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1537     int count)
1538 {
1539 	for (; count > 0; count--, addr += 4)
1540 		*data++ = iwn_mem_read(sc, addr);
1541 }
1542 
1543 static __inline void
1544 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1545     int count)
1546 {
1547 	for (; count > 0; count--, addr += 4)
1548 		iwn_mem_write(sc, addr, val);
1549 }
1550 
1551 static int
1552 iwn_eeprom_lock(struct iwn_softc *sc)
1553 {
1554 	int i, ntries;
1555 
1556 	for (i = 0; i < 100; i++) {
1557 		/* Request exclusive access to EEPROM. */
1558 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1559 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1560 
1561 		/* Spin until we actually get the lock. */
1562 		for (ntries = 0; ntries < 100; ntries++) {
1563 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1564 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1565 				return 0;
1566 			DELAY(10);
1567 		}
1568 	}
1569 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end timeout\n", __func__);
1570 	return ETIMEDOUT;
1571 }
1572 
1573 static __inline void
1574 iwn_eeprom_unlock(struct iwn_softc *sc)
1575 {
1576 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1577 }
1578 
1579 /*
1580  * Initialize access by host to One Time Programmable ROM.
1581  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1582  */
1583 static int
1584 iwn_init_otprom(struct iwn_softc *sc)
1585 {
1586 	uint16_t prev, base, next;
1587 	int count, error;
1588 
1589 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1590 
1591 	/* Wait for clock stabilization before accessing prph. */
1592 	if ((error = iwn_clock_wait(sc)) != 0)
1593 		return error;
1594 
1595 	if ((error = iwn_nic_lock(sc)) != 0)
1596 		return error;
1597 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1598 	DELAY(5);
1599 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1600 	iwn_nic_unlock(sc);
1601 
1602 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1603 	if (sc->base_params->shadow_ram_support) {
1604 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1605 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1606 	}
1607 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1608 	/* Clear ECC status. */
1609 	IWN_SETBITS(sc, IWN_OTP_GP,
1610 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1611 
1612 	/*
1613 	 * Find the block before last block (contains the EEPROM image)
1614 	 * for HW without OTP shadow RAM.
1615 	 */
1616 	if (! sc->base_params->shadow_ram_support) {
1617 		/* Switch to absolute addressing mode. */
1618 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1619 		base = prev = 0;
1620 		for (count = 0; count < sc->base_params->max_ll_items;
1621 		    count++) {
1622 			error = iwn_read_prom_data(sc, base, &next, 2);
1623 			if (error != 0)
1624 				return error;
1625 			if (next == 0)	/* End of linked-list. */
1626 				break;
1627 			prev = base;
1628 			base = le16toh(next);
1629 		}
1630 		if (count == 0 || count == sc->base_params->max_ll_items)
1631 			return EIO;
1632 		/* Skip "next" word. */
1633 		sc->prom_base = prev + 1;
1634 	}
1635 
1636 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1637 
1638 	return 0;
1639 }
1640 
1641 static int
1642 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1643 {
1644 	uint8_t *out = data;
1645 	uint32_t val, tmp;
1646 	int ntries;
1647 
1648 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1649 
1650 	addr += sc->prom_base;
1651 	for (; count > 0; count -= 2, addr++) {
1652 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1653 		for (ntries = 0; ntries < 10; ntries++) {
1654 			val = IWN_READ(sc, IWN_EEPROM);
1655 			if (val & IWN_EEPROM_READ_VALID)
1656 				break;
1657 			DELAY(5);
1658 		}
1659 		if (ntries == 10) {
1660 			device_printf(sc->sc_dev,
1661 			    "timeout reading ROM at 0x%x\n", addr);
1662 			return ETIMEDOUT;
1663 		}
1664 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1665 			/* OTPROM, check for ECC errors. */
1666 			tmp = IWN_READ(sc, IWN_OTP_GP);
1667 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1668 				device_printf(sc->sc_dev,
1669 				    "OTPROM ECC error at 0x%x\n", addr);
1670 				return EIO;
1671 			}
1672 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1673 				/* Correctable ECC error, clear bit. */
1674 				IWN_SETBITS(sc, IWN_OTP_GP,
1675 				    IWN_OTP_GP_ECC_CORR_STTS);
1676 			}
1677 		}
1678 		*out++ = val >> 16;
1679 		if (count > 1)
1680 			*out++ = val >> 24;
1681 	}
1682 
1683 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
1684 
1685 	return 0;
1686 }
1687 
1688 static void
1689 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1690 {
1691 	if (error != 0)
1692 		return;
1693 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1694 	*(bus_addr_t *)arg = segs[0].ds_addr;
1695 }
1696 
1697 static int
1698 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1699     void **kvap, bus_size_t size, bus_size_t alignment)
1700 {
1701 	int error;
1702 
1703 	dma->tag = NULL;
1704 	dma->size = size;
1705 
1706 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1707 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1708 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1709 	if (error != 0)
1710 		goto fail;
1711 
1712 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1713 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1714 	if (error != 0)
1715 		goto fail;
1716 
1717 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1718 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1719 	if (error != 0)
1720 		goto fail;
1721 
1722 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1723 
1724 	if (kvap != NULL)
1725 		*kvap = dma->vaddr;
1726 
1727 	return 0;
1728 
1729 fail:	iwn_dma_contig_free(dma);
1730 	return error;
1731 }
1732 
1733 static void
1734 iwn_dma_contig_free(struct iwn_dma_info *dma)
1735 {
1736 	if (dma->map != NULL) {
1737 		if (dma->vaddr != NULL) {
1738 			bus_dmamap_sync(dma->tag, dma->map,
1739 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1740 			bus_dmamap_unload(dma->tag, dma->map);
1741 			bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1742 			dma->vaddr = NULL;
1743 		}
1744 		bus_dmamap_destroy(dma->tag, dma->map);
1745 		dma->map = NULL;
1746 	}
1747 	if (dma->tag != NULL) {
1748 		bus_dma_tag_destroy(dma->tag);
1749 		dma->tag = NULL;
1750 	}
1751 }
1752 
1753 static int
1754 iwn_alloc_sched(struct iwn_softc *sc)
1755 {
1756 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1757 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1758 	    sc->schedsz, 1024);
1759 }
1760 
1761 static void
1762 iwn_free_sched(struct iwn_softc *sc)
1763 {
1764 	iwn_dma_contig_free(&sc->sched_dma);
1765 }
1766 
1767 static int
1768 iwn_alloc_kw(struct iwn_softc *sc)
1769 {
1770 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1771 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1772 }
1773 
1774 static void
1775 iwn_free_kw(struct iwn_softc *sc)
1776 {
1777 	iwn_dma_contig_free(&sc->kw_dma);
1778 }
1779 
1780 static int
1781 iwn_alloc_ict(struct iwn_softc *sc)
1782 {
1783 	/* ICT table must be aligned on a 4KB boundary. */
1784 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1785 	    IWN_ICT_SIZE, 4096);
1786 }
1787 
1788 static void
1789 iwn_free_ict(struct iwn_softc *sc)
1790 {
1791 	iwn_dma_contig_free(&sc->ict_dma);
1792 }
1793 
1794 static int
1795 iwn_alloc_fwmem(struct iwn_softc *sc)
1796 {
1797 	/* Must be aligned on a 16-byte boundary. */
1798 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1799 }
1800 
1801 static void
1802 iwn_free_fwmem(struct iwn_softc *sc)
1803 {
1804 	iwn_dma_contig_free(&sc->fw_dma);
1805 }
1806 
1807 static int
1808 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1809 {
1810 	bus_size_t size;
1811 	int i, error;
1812 
1813 	ring->cur = 0;
1814 
1815 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1816 
1817 	/* Allocate RX descriptors (256-byte aligned). */
1818 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1819 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1820 	    size, 256);
1821 	if (error != 0) {
1822 		device_printf(sc->sc_dev,
1823 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1824 		    __func__, error);
1825 		goto fail;
1826 	}
1827 
1828 	/* Allocate RX status area (16-byte aligned). */
1829 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1830 	    sizeof (struct iwn_rx_status), 16);
1831 	if (error != 0) {
1832 		device_printf(sc->sc_dev,
1833 		    "%s: could not allocate RX status DMA memory, error %d\n",
1834 		    __func__, error);
1835 		goto fail;
1836 	}
1837 
1838 	/* Create RX buffer DMA tag. */
1839 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1840 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1841 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1842 	    &ring->data_dmat);
1843 	if (error != 0) {
1844 		device_printf(sc->sc_dev,
1845 		    "%s: could not create RX buf DMA tag, error %d\n",
1846 		    __func__, error);
1847 		goto fail;
1848 	}
1849 
1850 	/*
1851 	 * Allocate and map RX buffers.
1852 	 */
1853 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1854 		struct iwn_rx_data *data = &ring->data[i];
1855 		bus_addr_t paddr;
1856 
1857 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1858 		if (error != 0) {
1859 			device_printf(sc->sc_dev,
1860 			    "%s: could not create RX buf DMA map, error %d\n",
1861 			    __func__, error);
1862 			goto fail;
1863 		}
1864 
1865 		data->m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
1866 		    IWN_RBUF_SIZE);
1867 		if (data->m == NULL) {
1868 			device_printf(sc->sc_dev,
1869 			    "%s: could not allocate RX mbuf\n", __func__);
1870 			error = ENOBUFS;
1871 			goto fail;
1872 		}
1873 
1874 		error = bus_dmamap_load(ring->data_dmat, data->map,
1875 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1876 		    &paddr, BUS_DMA_NOWAIT);
1877 		if (error != 0 && error != EFBIG) {
1878 			device_printf(sc->sc_dev,
1879 			    "%s: can't not map mbuf, error %d\n", __func__,
1880 			    error);
1881 			goto fail;
1882 		}
1883 
1884 		/* Set physical address of RX buffer (256-byte aligned). */
1885 		ring->desc[i] = htole32(paddr >> 8);
1886 	}
1887 
1888 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1889 	    BUS_DMASYNC_PREWRITE);
1890 
1891 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
1892 
1893 	return 0;
1894 
1895 fail:	iwn_free_rx_ring(sc, ring);
1896 
1897 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
1898 
1899 	return error;
1900 }
1901 
1902 static void
1903 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1904 {
1905 	int ntries;
1906 
1907 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
1908 
1909 	if (iwn_nic_lock(sc) == 0) {
1910 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1911 		for (ntries = 0; ntries < 1000; ntries++) {
1912 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1913 			    IWN_FH_RX_STATUS_IDLE)
1914 				break;
1915 			DELAY(10);
1916 		}
1917 		iwn_nic_unlock(sc);
1918 	}
1919 	ring->cur = 0;
1920 	sc->last_rx_valid = 0;
1921 }
1922 
1923 static void
1924 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1925 {
1926 	int i;
1927 
1928 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
1929 
1930 	iwn_dma_contig_free(&ring->desc_dma);
1931 	iwn_dma_contig_free(&ring->stat_dma);
1932 
1933 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1934 		struct iwn_rx_data *data = &ring->data[i];
1935 
1936 		if (data->m != NULL) {
1937 			bus_dmamap_sync(ring->data_dmat, data->map,
1938 			    BUS_DMASYNC_POSTREAD);
1939 			bus_dmamap_unload(ring->data_dmat, data->map);
1940 			m_freem(data->m);
1941 			data->m = NULL;
1942 		}
1943 		if (data->map != NULL)
1944 			bus_dmamap_destroy(ring->data_dmat, data->map);
1945 	}
1946 	if (ring->data_dmat != NULL) {
1947 		bus_dma_tag_destroy(ring->data_dmat);
1948 		ring->data_dmat = NULL;
1949 	}
1950 }
1951 
1952 static int
1953 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1954 {
1955 	bus_addr_t paddr;
1956 	bus_size_t size;
1957 	int i, error;
1958 
1959 	ring->qid = qid;
1960 	ring->queued = 0;
1961 	ring->cur = 0;
1962 
1963 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
1964 
1965 	/* Allocate TX descriptors (256-byte aligned). */
1966 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1967 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1968 	    size, 256);
1969 	if (error != 0) {
1970 		device_printf(sc->sc_dev,
1971 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1972 		    __func__, error);
1973 		goto fail;
1974 	}
1975 
1976 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1977 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1978 	    size, 4);
1979 	if (error != 0) {
1980 		device_printf(sc->sc_dev,
1981 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1982 		    __func__, error);
1983 		goto fail;
1984 	}
1985 
1986 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1987 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1988 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1989 	    &ring->data_dmat);
1990 	if (error != 0) {
1991 		device_printf(sc->sc_dev,
1992 		    "%s: could not create TX buf DMA tag, error %d\n",
1993 		    __func__, error);
1994 		goto fail;
1995 	}
1996 
1997 	paddr = ring->cmd_dma.paddr;
1998 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1999 		struct iwn_tx_data *data = &ring->data[i];
2000 
2001 		data->cmd_paddr = paddr;
2002 		data->scratch_paddr = paddr + 12;
2003 		paddr += sizeof (struct iwn_tx_cmd);
2004 
2005 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
2006 		if (error != 0) {
2007 			device_printf(sc->sc_dev,
2008 			    "%s: could not create TX buf DMA map, error %d\n",
2009 			    __func__, error);
2010 			goto fail;
2011 		}
2012 	}
2013 
2014 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2015 
2016 	return 0;
2017 
2018 fail:	iwn_free_tx_ring(sc, ring);
2019 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2020 	return error;
2021 }
2022 
2023 static void
2024 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2025 {
2026 	int i;
2027 
2028 	DPRINTF(sc, IWN_DEBUG_TRACE, "->doing %s \n", __func__);
2029 
2030 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2031 		struct iwn_tx_data *data = &ring->data[i];
2032 
2033 		if (data->m != NULL) {
2034 			bus_dmamap_sync(ring->data_dmat, data->map,
2035 			    BUS_DMASYNC_POSTWRITE);
2036 			bus_dmamap_unload(ring->data_dmat, data->map);
2037 			m_freem(data->m);
2038 			data->m = NULL;
2039 		}
2040 	}
2041 	/* Clear TX descriptors. */
2042 	memset(ring->desc, 0, ring->desc_dma.size);
2043 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2044 	    BUS_DMASYNC_PREWRITE);
2045 	sc->qfullmsk &= ~(1 << ring->qid);
2046 	ring->queued = 0;
2047 	ring->cur = 0;
2048 }
2049 
2050 static void
2051 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2052 {
2053 	int i;
2054 
2055 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s \n", __func__);
2056 
2057 	iwn_dma_contig_free(&ring->desc_dma);
2058 	iwn_dma_contig_free(&ring->cmd_dma);
2059 
2060 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
2061 		struct iwn_tx_data *data = &ring->data[i];
2062 
2063 		if (data->m != NULL) {
2064 			bus_dmamap_sync(ring->data_dmat, data->map,
2065 			    BUS_DMASYNC_POSTWRITE);
2066 			bus_dmamap_unload(ring->data_dmat, data->map);
2067 			m_freem(data->m);
2068 		}
2069 		if (data->map != NULL)
2070 			bus_dmamap_destroy(ring->data_dmat, data->map);
2071 	}
2072 	if (ring->data_dmat != NULL) {
2073 		bus_dma_tag_destroy(ring->data_dmat);
2074 		ring->data_dmat = NULL;
2075 	}
2076 }
2077 
2078 static void
2079 iwn5000_ict_reset(struct iwn_softc *sc)
2080 {
2081 	/* Disable interrupts. */
2082 	IWN_WRITE(sc, IWN_INT_MASK, 0);
2083 
2084 	/* Reset ICT table. */
2085 	memset(sc->ict, 0, IWN_ICT_SIZE);
2086 	sc->ict_cur = 0;
2087 
2088 	/* Set physical address of ICT table (4KB aligned). */
2089 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
2090 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
2091 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
2092 
2093 	/* Enable periodic RX interrupt. */
2094 	sc->int_mask |= IWN_INT_RX_PERIODIC;
2095 	/* Switch to ICT interrupt mode in driver. */
2096 	sc->sc_flags |= IWN_FLAG_USE_ICT;
2097 
2098 	/* Re-enable interrupts. */
2099 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
2100 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2101 }
2102 
2103 static int
2104 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2105 {
2106 	struct iwn_ops *ops = &sc->ops;
2107 	uint16_t val;
2108 	int error;
2109 
2110 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2111 
2112 	/* Check whether adapter has an EEPROM or an OTPROM. */
2113 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
2114 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
2115 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
2116 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
2117 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
2118 
2119 	/* Adapter has to be powered on for EEPROM access to work. */
2120 	if ((error = iwn_apm_init(sc)) != 0) {
2121 		device_printf(sc->sc_dev,
2122 		    "%s: could not power ON adapter, error %d\n", __func__,
2123 		    error);
2124 		return error;
2125 	}
2126 
2127 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
2128 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
2129 		return EIO;
2130 	}
2131 	if ((error = iwn_eeprom_lock(sc)) != 0) {
2132 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
2133 		    __func__, error);
2134 		return error;
2135 	}
2136 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
2137 		if ((error = iwn_init_otprom(sc)) != 0) {
2138 			device_printf(sc->sc_dev,
2139 			    "%s: could not initialize OTPROM, error %d\n",
2140 			    __func__, error);
2141 			return error;
2142 		}
2143 	}
2144 
2145 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
2146 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
2147 	/* Check if HT support is bonded out. */
2148 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
2149 		sc->sc_flags |= IWN_FLAG_HAS_11N;
2150 
2151 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
2152 	sc->rfcfg = le16toh(val);
2153 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
2154 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
2155 	if (sc->txchainmask == 0)
2156 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
2157 	if (sc->rxchainmask == 0)
2158 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
2159 
2160 	/* Read MAC address. */
2161 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
2162 
2163 	/* Read adapter-specific information from EEPROM. */
2164 	ops->read_eeprom(sc);
2165 
2166 	iwn_apm_stop(sc);	/* Power OFF adapter. */
2167 
2168 	iwn_eeprom_unlock(sc);
2169 
2170 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2171 
2172 	return 0;
2173 }
2174 
2175 static void
2176 iwn4965_read_eeprom(struct iwn_softc *sc)
2177 {
2178 	uint32_t addr;
2179 	uint16_t val;
2180 	int i;
2181 
2182 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2183 
2184 	/* Read regulatory domain (4 ASCII characters). */
2185 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
2186 
2187 	/* Read the list of authorized channels (20MHz ones only). */
2188 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2189 		addr = iwn4965_regulatory_bands[i];
2190 		iwn_read_eeprom_channels(sc, i, addr);
2191 	}
2192 
2193 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
2194 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
2195 	sc->maxpwr2GHz = val & 0xff;
2196 	sc->maxpwr5GHz = val >> 8;
2197 	/* Check that EEPROM values are within valid range. */
2198 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
2199 		sc->maxpwr5GHz = 38;
2200 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
2201 		sc->maxpwr2GHz = 38;
2202 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
2203 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
2204 
2205 	/* Read samples for each TX power group. */
2206 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
2207 	    sizeof sc->bands);
2208 
2209 	/* Read voltage at which samples were taken. */
2210 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
2211 	sc->eeprom_voltage = (int16_t)le16toh(val);
2212 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
2213 	    sc->eeprom_voltage);
2214 
2215 #ifdef IWN_DEBUG
2216 	/* Print samples. */
2217 	if (sc->sc_debug & IWN_DEBUG_ANY) {
2218 		for (i = 0; i < IWN_NBANDS - 1; i++)
2219 			iwn4965_print_power_group(sc, i);
2220 	}
2221 #endif
2222 
2223 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2224 }
2225 
2226 #ifdef IWN_DEBUG
2227 static void
2228 iwn4965_print_power_group(struct iwn_softc *sc, int i)
2229 {
2230 	struct iwn4965_eeprom_band *band = &sc->bands[i];
2231 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
2232 	int j, c;
2233 
2234 	printf("===band %d===\n", i);
2235 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
2236 	printf("chan1 num=%d\n", chans[0].num);
2237 	for (c = 0; c < 2; c++) {
2238 		for (j = 0; j < IWN_NSAMPLES; j++) {
2239 			printf("chain %d, sample %d: temp=%d gain=%d "
2240 			    "power=%d pa_det=%d\n", c, j,
2241 			    chans[0].samples[c][j].temp,
2242 			    chans[0].samples[c][j].gain,
2243 			    chans[0].samples[c][j].power,
2244 			    chans[0].samples[c][j].pa_det);
2245 		}
2246 	}
2247 	printf("chan2 num=%d\n", chans[1].num);
2248 	for (c = 0; c < 2; c++) {
2249 		for (j = 0; j < IWN_NSAMPLES; j++) {
2250 			printf("chain %d, sample %d: temp=%d gain=%d "
2251 			    "power=%d pa_det=%d\n", c, j,
2252 			    chans[1].samples[c][j].temp,
2253 			    chans[1].samples[c][j].gain,
2254 			    chans[1].samples[c][j].power,
2255 			    chans[1].samples[c][j].pa_det);
2256 		}
2257 	}
2258 }
2259 #endif
2260 
2261 static void
2262 iwn5000_read_eeprom(struct iwn_softc *sc)
2263 {
2264 	struct iwn5000_eeprom_calib_hdr hdr;
2265 	int32_t volt;
2266 	uint32_t base, addr;
2267 	uint16_t val;
2268 	int i;
2269 
2270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2271 
2272 	/* Read regulatory domain (4 ASCII characters). */
2273 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2274 	base = le16toh(val);
2275 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
2276 	    sc->eeprom_domain, 4);
2277 
2278 	/* Read the list of authorized channels (20MHz ones only). */
2279 	for (i = 0; i < IWN_NBANDS - 1; i++) {
2280 		addr =  base + sc->base_params->regulatory_bands[i];
2281 		iwn_read_eeprom_channels(sc, i, addr);
2282 	}
2283 
2284 	/* Read enhanced TX power information for 6000 Series. */
2285 	if (sc->base_params->enhanced_TX_power)
2286 		iwn_read_eeprom_enhinfo(sc);
2287 
2288 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
2289 	base = le16toh(val);
2290 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
2291 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2292 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
2293 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
2294 	sc->calib_ver = hdr.version;
2295 
2296 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
2297 		sc->eeprom_voltage = le16toh(hdr.volt);
2298 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2299 		sc->eeprom_temp_high=le16toh(val);
2300 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2301 		sc->eeprom_temp = le16toh(val);
2302 	}
2303 
2304 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
2305 		/* Compute temperature offset. */
2306 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
2307 		sc->eeprom_temp = le16toh(val);
2308 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
2309 		volt = le16toh(val);
2310 		sc->temp_off = sc->eeprom_temp - (volt / -5);
2311 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
2312 		    sc->eeprom_temp, volt, sc->temp_off);
2313 	} else {
2314 		/* Read crystal calibration. */
2315 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
2316 		    &sc->eeprom_crystal, sizeof (uint32_t));
2317 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
2318 		    le32toh(sc->eeprom_crystal));
2319 	}
2320 
2321 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2322 
2323 }
2324 
2325 /*
2326  * Translate EEPROM flags to net80211.
2327  */
2328 static uint32_t
2329 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
2330 {
2331 	uint32_t nflags;
2332 
2333 	nflags = 0;
2334 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
2335 		nflags |= IEEE80211_CHAN_PASSIVE;
2336 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
2337 		nflags |= IEEE80211_CHAN_NOADHOC;
2338 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
2339 		nflags |= IEEE80211_CHAN_DFS;
2340 		/* XXX apparently IBSS may still be marked */
2341 		nflags |= IEEE80211_CHAN_NOADHOC;
2342 	}
2343 
2344 	return nflags;
2345 }
2346 
2347 static void
2348 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
2349 {
2350 	struct ifnet *ifp = sc->sc_ifp;
2351 	struct ieee80211com *ic = ifp->if_l2com;
2352 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2353 	const struct iwn_chan_band *band = &iwn_bands[n];
2354 	struct ieee80211_channel *c;
2355 	uint8_t chan;
2356 	int i, nflags;
2357 
2358 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2359 
2360 	for (i = 0; i < band->nchan; i++) {
2361 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2362 			DPRINTF(sc, IWN_DEBUG_RESET,
2363 			    "skip chan %d flags 0x%x maxpwr %d\n",
2364 			    band->chan[i], channels[i].flags,
2365 			    channels[i].maxpwr);
2366 			continue;
2367 		}
2368 		chan = band->chan[i];
2369 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2370 
2371 		c = &ic->ic_channels[ic->ic_nchans++];
2372 		c->ic_ieee = chan;
2373 		c->ic_maxregpower = channels[i].maxpwr;
2374 		c->ic_maxpower = 2*c->ic_maxregpower;
2375 
2376 		if (n == 0) {	/* 2GHz band */
2377 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
2378 			/* G =>'s B is supported */
2379 			c->ic_flags = IEEE80211_CHAN_B | nflags;
2380 			c = &ic->ic_channels[ic->ic_nchans++];
2381 			c[0] = c[-1];
2382 			c->ic_flags = IEEE80211_CHAN_G | nflags;
2383 		} else {	/* 5GHz band */
2384 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
2385 			c->ic_flags = IEEE80211_CHAN_A | nflags;
2386 		}
2387 
2388 		/* Save maximum allowed TX power for this channel. */
2389 		sc->maxpwr[chan] = channels[i].maxpwr;
2390 
2391 		DPRINTF(sc, IWN_DEBUG_RESET,
2392 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
2393 		    channels[i].flags, channels[i].maxpwr);
2394 
2395 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
2396 			/* add HT20, HT40 added separately */
2397 			c = &ic->ic_channels[ic->ic_nchans++];
2398 			c[0] = c[-1];
2399 			c->ic_flags |= IEEE80211_CHAN_HT20;
2400 		}
2401 	}
2402 
2403 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2404 
2405 }
2406 
2407 static void
2408 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
2409 {
2410 	struct ifnet *ifp = sc->sc_ifp;
2411 	struct ieee80211com *ic = ifp->if_l2com;
2412 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
2413 	const struct iwn_chan_band *band = &iwn_bands[n];
2414 	struct ieee80211_channel *c, *cent, *extc;
2415 	uint8_t chan;
2416 	int i, nflags;
2417 
2418 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s start\n", __func__);
2419 
2420 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N)) {
2421 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end no 11n\n", __func__);
2422 		return;
2423 	}
2424 
2425 	for (i = 0; i < band->nchan; i++) {
2426 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
2427 			DPRINTF(sc, IWN_DEBUG_RESET,
2428 			    "skip chan %d flags 0x%x maxpwr %d\n",
2429 			    band->chan[i], channels[i].flags,
2430 			    channels[i].maxpwr);
2431 			continue;
2432 		}
2433 		chan = band->chan[i];
2434 		nflags = iwn_eeprom_channel_flags(&channels[i]);
2435 
2436 		/*
2437 		 * Each entry defines an HT40 channel pair; find the
2438 		 * center channel, then the extension channel above.
2439 		 */
2440 		cent = ieee80211_find_channel_byieee(ic, chan,
2441 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2442 		if (cent == NULL) {	/* XXX shouldn't happen */
2443 			device_printf(sc->sc_dev,
2444 			    "%s: no entry for channel %d\n", __func__, chan);
2445 			continue;
2446 		}
2447 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
2448 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
2449 		if (extc == NULL) {
2450 			DPRINTF(sc, IWN_DEBUG_RESET,
2451 			    "%s: skip chan %d, extension channel not found\n",
2452 			    __func__, chan);
2453 			continue;
2454 		}
2455 
2456 		DPRINTF(sc, IWN_DEBUG_RESET,
2457 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
2458 		    chan, channels[i].flags, channels[i].maxpwr);
2459 
2460 		c = &ic->ic_channels[ic->ic_nchans++];
2461 		c[0] = cent[0];
2462 		c->ic_extieee = extc->ic_ieee;
2463 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2464 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
2465 		c = &ic->ic_channels[ic->ic_nchans++];
2466 		c[0] = extc[0];
2467 		c->ic_extieee = cent->ic_ieee;
2468 		c->ic_flags &= ~IEEE80211_CHAN_HT;
2469 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
2470 	}
2471 
2472 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2473 
2474 }
2475 
2476 static void
2477 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
2478 {
2479 	struct ifnet *ifp = sc->sc_ifp;
2480 	struct ieee80211com *ic = ifp->if_l2com;
2481 
2482 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
2483 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
2484 
2485 	if (n < 5)
2486 		iwn_read_eeprom_band(sc, n);
2487 	else
2488 		iwn_read_eeprom_ht40(sc, n);
2489 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
2490 }
2491 
2492 static struct iwn_eeprom_chan *
2493 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
2494 {
2495 	int band, chan, i, j;
2496 
2497 	if (IEEE80211_IS_CHAN_HT40(c)) {
2498 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
2499 		if (IEEE80211_IS_CHAN_HT40D(c))
2500 			chan = c->ic_extieee;
2501 		else
2502 			chan = c->ic_ieee;
2503 		for (i = 0; i < iwn_bands[band].nchan; i++) {
2504 			if (iwn_bands[band].chan[i] == chan)
2505 				return &sc->eeprom_channels[band][i];
2506 		}
2507 	} else {
2508 		for (j = 0; j < 5; j++) {
2509 			for (i = 0; i < iwn_bands[j].nchan; i++) {
2510 				if (iwn_bands[j].chan[i] == c->ic_ieee)
2511 					return &sc->eeprom_channels[j][i];
2512 			}
2513 		}
2514 	}
2515 	return NULL;
2516 }
2517 
2518 /*
2519  * Enforce flags read from EEPROM.
2520  */
2521 static int
2522 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
2523     int nchan, struct ieee80211_channel chans[])
2524 {
2525 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2526 	int i;
2527 
2528 	for (i = 0; i < nchan; i++) {
2529 		struct ieee80211_channel *c = &chans[i];
2530 		struct iwn_eeprom_chan *channel;
2531 
2532 		channel = iwn_find_eeprom_channel(sc, c);
2533 		if (channel == NULL) {
2534 			if_printf(ic->ic_ifp,
2535 			    "%s: invalid channel %u freq %u/0x%x\n",
2536 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2537 			return EINVAL;
2538 		}
2539 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static void
2546 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2547 {
2548 	struct iwn_eeprom_enhinfo enhinfo[35];
2549 	struct ifnet *ifp = sc->sc_ifp;
2550 	struct ieee80211com *ic = ifp->if_l2com;
2551 	struct ieee80211_channel *c;
2552 	uint16_t val, base;
2553 	int8_t maxpwr;
2554 	uint8_t flags;
2555 	int i, j;
2556 
2557 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2558 
2559 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2560 	base = le16toh(val);
2561 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2562 	    enhinfo, sizeof enhinfo);
2563 
2564 	for (i = 0; i < nitems(enhinfo); i++) {
2565 		flags = enhinfo[i].flags;
2566 		if (!(flags & IWN_ENHINFO_VALID))
2567 			continue;	/* Skip invalid entries. */
2568 
2569 		maxpwr = 0;
2570 		if (sc->txchainmask & IWN_ANT_A)
2571 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2572 		if (sc->txchainmask & IWN_ANT_B)
2573 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2574 		if (sc->txchainmask & IWN_ANT_C)
2575 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2576 		if (sc->ntxchains == 2)
2577 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2578 		else if (sc->ntxchains == 3)
2579 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2580 
2581 		for (j = 0; j < ic->ic_nchans; j++) {
2582 			c = &ic->ic_channels[j];
2583 			if ((flags & IWN_ENHINFO_5GHZ)) {
2584 				if (!IEEE80211_IS_CHAN_A(c))
2585 					continue;
2586 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2587 				if (!IEEE80211_IS_CHAN_G(c))
2588 					continue;
2589 			} else if (!IEEE80211_IS_CHAN_B(c))
2590 				continue;
2591 			if ((flags & IWN_ENHINFO_HT40)) {
2592 				if (!IEEE80211_IS_CHAN_HT40(c))
2593 					continue;
2594 			} else {
2595 				if (IEEE80211_IS_CHAN_HT40(c))
2596 					continue;
2597 			}
2598 			if (enhinfo[i].chan != 0 &&
2599 			    enhinfo[i].chan != c->ic_ieee)
2600 				continue;
2601 
2602 			DPRINTF(sc, IWN_DEBUG_RESET,
2603 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2604 			    c->ic_flags, maxpwr / 2);
2605 			c->ic_maxregpower = maxpwr / 2;
2606 			c->ic_maxpower = maxpwr;
2607 		}
2608 	}
2609 
2610 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end\n", __func__);
2611 
2612 }
2613 
2614 static struct ieee80211_node *
2615 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2616 {
2617 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2618 }
2619 
2620 static __inline int
2621 rate2plcp(int rate)
2622 {
2623 	switch (rate & 0xff) {
2624 	case 12:	return 0xd;
2625 	case 18:	return 0xf;
2626 	case 24:	return 0x5;
2627 	case 36:	return 0x7;
2628 	case 48:	return 0x9;
2629 	case 72:	return 0xb;
2630 	case 96:	return 0x1;
2631 	case 108:	return 0x3;
2632 	case 2:		return 10;
2633 	case 4:		return 20;
2634 	case 11:	return 55;
2635 	case 22:	return 110;
2636 	}
2637 	return 0;
2638 }
2639 
2640 /*
2641  * Calculate the required PLCP value from the given rate,
2642  * to the given node.
2643  *
2644  * This will take the node configuration (eg 11n, rate table
2645  * setup, etc) into consideration.
2646  */
2647 static uint32_t
2648 iwn_rate_to_plcp(struct iwn_softc *sc, struct ieee80211_node *ni,
2649     uint8_t rate)
2650 {
2651 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2652 	struct ieee80211com *ic = ni->ni_ic;
2653 	uint8_t txant1, txant2;
2654 	uint32_t plcp = 0;
2655 	int ridx;
2656 
2657 	/* Use the first valid TX antenna. */
2658 	txant1 = IWN_LSB(sc->txchainmask);
2659 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2660 
2661 	/*
2662 	 * If it's an MCS rate, let's set the plcp correctly
2663 	 * and set the relevant flags based on the node config.
2664 	 */
2665 	if (rate & IEEE80211_RATE_MCS) {
2666 		/*
2667 		 * Set the initial PLCP value to be between 0->31 for
2668 		 * MCS 0 -> MCS 31, then set the "I'm an MCS rate!"
2669 		 * flag.
2670 		 */
2671 		plcp = RV(rate) | IWN_RFLAG_MCS;
2672 
2673 		/*
2674 		 * XXX the following should only occur if both
2675 		 * the local configuration _and_ the remote node
2676 		 * advertise these capabilities.  Thus this code
2677 		 * may need fixing!
2678 		 */
2679 
2680 		/*
2681 		 * Set the channel width and guard interval.
2682 		 */
2683 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2684 			plcp |= IWN_RFLAG_HT40;
2685 			if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2686 				plcp |= IWN_RFLAG_SGI;
2687 		} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20) {
2688 			plcp |= IWN_RFLAG_SGI;
2689 		}
2690 
2691 		/*
2692 		 * If it's a two stream rate, enable TX on both
2693 		 * antennas.
2694 		 *
2695 		 * XXX three stream rates?
2696 		 */
2697 		if (rate > 0x87)
2698 			plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2699 		else
2700 			plcp |= IWN_RFLAG_ANT(txant1);
2701 	} else {
2702 		/*
2703 		 * Set the initial PLCP - fine for both
2704 		 * OFDM and CCK rates.
2705 		 */
2706 		plcp = rate2plcp(rate);
2707 
2708 		/* Set CCK flag if it's CCK */
2709 
2710 		/* XXX It would be nice to have a method
2711 		 * to map the ridx -> phy table entry
2712 		 * so we could just query that, rather than
2713 		 * this hack to check against IWN_RIDX_OFDM6.
2714 		 */
2715 		ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
2716 		    rate & IEEE80211_RATE_VAL);
2717 		if (ridx < IWN_RIDX_OFDM6 &&
2718 		    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2719 			plcp |= IWN_RFLAG_CCK;
2720 
2721 		/* Set antenna configuration */
2722 		plcp |= IWN_RFLAG_ANT(txant1);
2723 	}
2724 
2725 	DPRINTF(sc, IWN_DEBUG_TXRATE, "%s: rate=0x%02x, plcp=0x%08x\n",
2726 	    __func__,
2727 	    rate,
2728 	    plcp);
2729 
2730 	return (htole32(plcp));
2731 #undef	RV
2732 }
2733 
2734 static void
2735 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2736 {
2737 	/* Doesn't do anything at the moment */
2738 }
2739 
2740 static int
2741 iwn_media_change(struct ifnet *ifp)
2742 {
2743 	int error;
2744 
2745 	error = ieee80211_media_change(ifp);
2746 	/* NB: only the fixed rate can change and that doesn't need a reset */
2747 	return (error == ENETRESET ? 0 : error);
2748 }
2749 
2750 static int
2751 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2752 {
2753 	struct iwn_vap *ivp = IWN_VAP(vap);
2754 	struct ieee80211com *ic = vap->iv_ic;
2755 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2756 	int error = 0;
2757 
2758 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2759 
2760 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2761 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2762 
2763 	IEEE80211_UNLOCK(ic);
2764 	IWN_LOCK(sc);
2765 	callout_stop(&sc->calib_to);
2766 
2767 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
2768 
2769 	switch (nstate) {
2770 	case IEEE80211_S_ASSOC:
2771 		if (vap->iv_state != IEEE80211_S_RUN)
2772 			break;
2773 		/* FALLTHROUGH */
2774 	case IEEE80211_S_AUTH:
2775 		if (vap->iv_state == IEEE80211_S_AUTH)
2776 			break;
2777 
2778 		/*
2779 		 * !AUTH -> AUTH transition requires state reset to handle
2780 		 * reassociations correctly.
2781 		 */
2782 		sc->rxon->associd = 0;
2783 		sc->rxon->filter &= ~htole32(IWN_FILTER_BSS);
2784 		sc->calib.state = IWN_CALIB_STATE_INIT;
2785 
2786 		if ((error = iwn_auth(sc, vap)) != 0) {
2787 			device_printf(sc->sc_dev,
2788 			    "%s: could not move to auth state\n", __func__);
2789 		}
2790 		break;
2791 
2792 	case IEEE80211_S_RUN:
2793 		/*
2794 		 * RUN -> RUN transition; Just restart the timers.
2795 		 */
2796 		if (vap->iv_state == IEEE80211_S_RUN) {
2797 			sc->calib_cnt = 0;
2798 			break;
2799 		}
2800 
2801 		/*
2802 		 * !RUN -> RUN requires setting the association id
2803 		 * which is done with a firmware cmd.  We also defer
2804 		 * starting the timers until that work is done.
2805 		 */
2806 		if ((error = iwn_run(sc, vap)) != 0) {
2807 			device_printf(sc->sc_dev,
2808 			    "%s: could not move to run state\n", __func__);
2809 		}
2810 		break;
2811 
2812 	case IEEE80211_S_INIT:
2813 		sc->calib.state = IWN_CALIB_STATE_INIT;
2814 		break;
2815 
2816 	default:
2817 		break;
2818 	}
2819 	IWN_UNLOCK(sc);
2820 	IEEE80211_LOCK(ic);
2821 	if (error != 0){
2822 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
2823 		return error;
2824 	}
2825 
2826 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
2827 
2828 	return ivp->iv_newstate(vap, nstate, arg);
2829 }
2830 
2831 static void
2832 iwn_calib_timeout(void *arg)
2833 {
2834 	struct iwn_softc *sc = arg;
2835 
2836 	IWN_LOCK_ASSERT(sc);
2837 
2838 	/* Force automatic TX power calibration every 60 secs. */
2839 	if (++sc->calib_cnt >= 120) {
2840 		uint32_t flags = 0;
2841 
2842 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2843 		    "sending request for statistics");
2844 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2845 		    sizeof flags, 1);
2846 		sc->calib_cnt = 0;
2847 	}
2848 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2849 	    sc);
2850 }
2851 
2852 /*
2853  * Process an RX_PHY firmware notification.  This is usually immediately
2854  * followed by an MPDU_RX_DONE notification.
2855  */
2856 static void
2857 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2858     struct iwn_rx_data *data)
2859 {
2860 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2861 
2862 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2863 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2864 
2865 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2866 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2867 	sc->last_rx_valid = 1;
2868 }
2869 
2870 /*
2871  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2872  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2873  */
2874 static void
2875 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2876     struct iwn_rx_data *data)
2877 {
2878 	struct iwn_ops *ops = &sc->ops;
2879 	struct ifnet *ifp = sc->sc_ifp;
2880 	struct ieee80211com *ic = ifp->if_l2com;
2881 	struct iwn_rx_ring *ring = &sc->rxq;
2882 	struct ieee80211_frame *wh;
2883 	struct ieee80211_node *ni;
2884 	struct mbuf *m, *m1;
2885 	struct iwn_rx_stat *stat;
2886 	caddr_t head;
2887 	bus_addr_t paddr;
2888 	uint32_t flags;
2889 	int error, len, rssi, nf;
2890 
2891 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
2892 
2893 	if (desc->type == IWN_MPDU_RX_DONE) {
2894 		/* Check for prior RX_PHY notification. */
2895 		if (!sc->last_rx_valid) {
2896 			DPRINTF(sc, IWN_DEBUG_ANY,
2897 			    "%s: missing RX_PHY\n", __func__);
2898 			return;
2899 		}
2900 		stat = &sc->last_rx_stat;
2901 	} else
2902 		stat = (struct iwn_rx_stat *)(desc + 1);
2903 
2904 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2905 
2906 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2907 		device_printf(sc->sc_dev,
2908 		    "%s: invalid RX statistic header, len %d\n", __func__,
2909 		    stat->cfg_phy_len);
2910 		return;
2911 	}
2912 	if (desc->type == IWN_MPDU_RX_DONE) {
2913 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2914 		head = (caddr_t)(mpdu + 1);
2915 		len = le16toh(mpdu->len);
2916 	} else {
2917 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2918 		len = le16toh(stat->len);
2919 	}
2920 
2921 	flags = le32toh(*(uint32_t *)(head + len));
2922 
2923 	/* Discard frames with a bad FCS early. */
2924 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2925 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2926 		    __func__, flags);
2927 		ifp->if_ierrors++;
2928 		return;
2929 	}
2930 	/* Discard frames that are too short. */
2931 	if (len < sizeof (*wh)) {
2932 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2933 		    __func__, len);
2934 		ifp->if_ierrors++;
2935 		return;
2936 	}
2937 
2938 	m1 = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2939 	if (m1 == NULL) {
2940 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2941 		    __func__);
2942 		ifp->if_ierrors++;
2943 		return;
2944 	}
2945 	bus_dmamap_unload(ring->data_dmat, data->map);
2946 
2947 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2948 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2949 	if (error != 0 && error != EFBIG) {
2950 		device_printf(sc->sc_dev,
2951 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2952 		m_freem(m1);
2953 
2954 		/* Try to reload the old mbuf. */
2955 		error = bus_dmamap_load(ring->data_dmat, data->map,
2956 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2957 		    &paddr, BUS_DMA_NOWAIT);
2958 		if (error != 0 && error != EFBIG) {
2959 			panic("%s: could not load old RX mbuf", __func__);
2960 		}
2961 		/* Physical address may have changed. */
2962 		ring->desc[ring->cur] = htole32(paddr >> 8);
2963 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2964 		    BUS_DMASYNC_PREWRITE);
2965 		ifp->if_ierrors++;
2966 		return;
2967 	}
2968 
2969 	m = data->m;
2970 	data->m = m1;
2971 	/* Update RX descriptor. */
2972 	ring->desc[ring->cur] = htole32(paddr >> 8);
2973 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2974 	    BUS_DMASYNC_PREWRITE);
2975 
2976 	/* Finalize mbuf. */
2977 	m->m_pkthdr.rcvif = ifp;
2978 	m->m_data = head;
2979 	m->m_pkthdr.len = m->m_len = len;
2980 
2981 	/* Grab a reference to the source node. */
2982 	wh = mtod(m, struct ieee80211_frame *);
2983 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2984 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2985 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2986 
2987 	rssi = ops->get_rssi(sc, stat);
2988 
2989 	if (ieee80211_radiotap_active(ic)) {
2990 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2991 
2992 		tap->wr_flags = 0;
2993 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2994 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2995 		tap->wr_dbm_antsignal = (int8_t)rssi;
2996 		tap->wr_dbm_antnoise = (int8_t)nf;
2997 		tap->wr_tsft = stat->tstamp;
2998 		switch (stat->rate) {
2999 		/* CCK rates. */
3000 		case  10: tap->wr_rate =   2; break;
3001 		case  20: tap->wr_rate =   4; break;
3002 		case  55: tap->wr_rate =  11; break;
3003 		case 110: tap->wr_rate =  22; break;
3004 		/* OFDM rates. */
3005 		case 0xd: tap->wr_rate =  12; break;
3006 		case 0xf: tap->wr_rate =  18; break;
3007 		case 0x5: tap->wr_rate =  24; break;
3008 		case 0x7: tap->wr_rate =  36; break;
3009 		case 0x9: tap->wr_rate =  48; break;
3010 		case 0xb: tap->wr_rate =  72; break;
3011 		case 0x1: tap->wr_rate =  96; break;
3012 		case 0x3: tap->wr_rate = 108; break;
3013 		/* Unknown rate: should not happen. */
3014 		default:  tap->wr_rate =   0;
3015 		}
3016 	}
3017 
3018 	IWN_UNLOCK(sc);
3019 
3020 	/* Send the frame to the 802.11 layer. */
3021 	if (ni != NULL) {
3022 		if (ni->ni_flags & IEEE80211_NODE_HT)
3023 			m->m_flags |= M_AMPDU;
3024 		(void)ieee80211_input(ni, m, rssi - nf, nf);
3025 		/* Node is no longer needed. */
3026 		ieee80211_free_node(ni);
3027 	} else
3028 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
3029 
3030 	IWN_LOCK(sc);
3031 
3032 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3033 
3034 }
3035 
3036 /* Process an incoming Compressed BlockAck. */
3037 static void
3038 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3039     struct iwn_rx_data *data)
3040 {
3041 	struct iwn_ops *ops = &sc->ops;
3042 	struct ifnet *ifp = sc->sc_ifp;
3043 	struct iwn_node *wn;
3044 	struct ieee80211_node *ni;
3045 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
3046 	struct iwn_tx_ring *txq;
3047 	struct iwn_tx_data *txdata;
3048 	struct ieee80211_tx_ampdu *tap;
3049 	struct mbuf *m;
3050 	uint64_t bitmap;
3051 	uint16_t ssn;
3052 	uint8_t tid;
3053 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
3054 
3055 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3056 
3057 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3058 
3059 	qid = le16toh(ba->qid);
3060 	txq = &sc->txq[ba->qid];
3061 	tap = sc->qid2tap[ba->qid];
3062 	tid = tap->txa_tid;
3063 	wn = (void *)tap->txa_ni;
3064 
3065 	res = NULL;
3066 	ssn = 0;
3067 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3068 		res = tap->txa_private;
3069 		ssn = tap->txa_start & 0xfff;
3070 	}
3071 
3072 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
3073 		txdata = &txq->data[txq->read];
3074 
3075 		/* Unmap and free mbuf. */
3076 		bus_dmamap_sync(txq->data_dmat, txdata->map,
3077 		    BUS_DMASYNC_POSTWRITE);
3078 		bus_dmamap_unload(txq->data_dmat, txdata->map);
3079 		m = txdata->m, txdata->m = NULL;
3080 		ni = txdata->ni, txdata->ni = NULL;
3081 
3082 		KASSERT(ni != NULL, ("no node"));
3083 		KASSERT(m != NULL, ("no mbuf"));
3084 
3085 		ieee80211_tx_complete(ni, m, 1);
3086 
3087 		txq->queued--;
3088 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
3089 	}
3090 
3091 	if (txq->queued == 0 && res != NULL) {
3092 		iwn_nic_lock(sc);
3093 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3094 		iwn_nic_unlock(sc);
3095 		sc->qid2tap[qid] = NULL;
3096 		free(res, M_DEVBUF);
3097 		return;
3098 	}
3099 
3100 	if (wn->agg[tid].bitmap == 0)
3101 		return;
3102 
3103 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
3104 	if (shift < 0)
3105 		shift += 0x100;
3106 
3107 	if (wn->agg[tid].nframes > (64 - shift))
3108 		return;
3109 
3110 	ni = tap->txa_ni;
3111 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
3112 	for (i = 0; bitmap; i++) {
3113 		if ((bitmap & 1) == 0) {
3114 			ifp->if_oerrors++;
3115 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3116 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3117 		} else {
3118 			ifp->if_opackets++;
3119 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3120 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3121 		}
3122 		bitmap >>= 1;
3123 	}
3124 
3125 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3126 
3127 }
3128 
3129 /*
3130  * Process a CALIBRATION_RESULT notification sent by the initialization
3131  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
3132  */
3133 static void
3134 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3135     struct iwn_rx_data *data)
3136 {
3137 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
3138 	int len, idx = -1;
3139 
3140 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3141 
3142 	/* Runtime firmware should not send such a notification. */
3143 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE){
3144 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received after clib done\n",
3145 	    __func__);
3146 		return;
3147 	}
3148 	len = (le32toh(desc->len) & 0x3fff) - 4;
3149 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3150 
3151 	switch (calib->code) {
3152 	case IWN5000_PHY_CALIB_DC:
3153 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_DC)
3154 			idx = 0;
3155 		break;
3156 	case IWN5000_PHY_CALIB_LO:
3157 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_LO)
3158 			idx = 1;
3159 		break;
3160 	case IWN5000_PHY_CALIB_TX_IQ:
3161 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ)
3162 			idx = 2;
3163 		break;
3164 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
3165 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TX_IQ_PERIODIC)
3166 			idx = 3;
3167 		break;
3168 	case IWN5000_PHY_CALIB_BASE_BAND:
3169 		if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_BASE_BAND)
3170 			idx = 4;
3171 		break;
3172 	}
3173 	if (idx == -1)	/* Ignore other results. */
3174 		return;
3175 
3176 	/* Save calibration result. */
3177 	if (sc->calibcmd[idx].buf != NULL)
3178 		free(sc->calibcmd[idx].buf, M_DEVBUF);
3179 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
3180 	if (sc->calibcmd[idx].buf == NULL) {
3181 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3182 		    "not enough memory for calibration result %d\n",
3183 		    calib->code);
3184 		return;
3185 	}
3186 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
3187 	    "saving calibration result idx=%d, code=%d len=%d\n", idx, calib->code, len);
3188 	sc->calibcmd[idx].len = len;
3189 	memcpy(sc->calibcmd[idx].buf, calib, len);
3190 }
3191 
3192 static void
3193 iwn_stats_update(struct iwn_softc *sc, struct iwn_calib_state *calib,
3194     struct iwn_stats *stats, int len)
3195 {
3196 	struct iwn_stats_bt *stats_bt;
3197 	struct iwn_stats *lstats;
3198 
3199 	/*
3200 	 * First - check whether the length is the bluetooth or normal.
3201 	 *
3202 	 * If it's normal - just copy it and bump out.
3203 	 * Otherwise we have to convert things.
3204 	 */
3205 
3206 	if (len == sizeof(struct iwn_stats) + 4) {
3207 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3208 		sc->last_stat_valid = 1;
3209 		return;
3210 	}
3211 
3212 	/*
3213 	 * If it's not the bluetooth size - log, then just copy.
3214 	 */
3215 	if (len != sizeof(struct iwn_stats_bt) + 4) {
3216 		DPRINTF(sc, IWN_DEBUG_STATS,
3217 		    "%s: size of rx statistics (%d) not an expected size!\n",
3218 		    __func__,
3219 		    len);
3220 		memcpy(&sc->last_stat, stats, sizeof(struct iwn_stats));
3221 		sc->last_stat_valid = 1;
3222 		return;
3223 	}
3224 
3225 	/*
3226 	 * Ok. Time to copy.
3227 	 */
3228 	stats_bt = (struct iwn_stats_bt *) stats;
3229 	lstats = &sc->last_stat;
3230 
3231 	/* flags */
3232 	lstats->flags = stats_bt->flags;
3233 	/* rx_bt */
3234 	memcpy(&lstats->rx.ofdm, &stats_bt->rx_bt.ofdm,
3235 	    sizeof(struct iwn_rx_phy_stats));
3236 	memcpy(&lstats->rx.cck, &stats_bt->rx_bt.cck,
3237 	    sizeof(struct iwn_rx_phy_stats));
3238 	memcpy(&lstats->rx.general, &stats_bt->rx_bt.general_bt.common,
3239 	    sizeof(struct iwn_rx_general_stats));
3240 	memcpy(&lstats->rx.ht, &stats_bt->rx_bt.ht,
3241 	    sizeof(struct iwn_rx_ht_phy_stats));
3242 	/* tx */
3243 	memcpy(&lstats->tx, &stats_bt->tx,
3244 	    sizeof(struct iwn_tx_stats));
3245 	/* general */
3246 	memcpy(&lstats->general, &stats_bt->general,
3247 	    sizeof(struct iwn_general_stats));
3248 
3249 	/* XXX TODO: Squirrel away the extra bluetooth stats somewhere */
3250 	sc->last_stat_valid = 1;
3251 }
3252 
3253 /*
3254  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
3255  * The latter is sent by the firmware after each received beacon.
3256  */
3257 static void
3258 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3259     struct iwn_rx_data *data)
3260 {
3261 	struct iwn_ops *ops = &sc->ops;
3262 	struct ifnet *ifp = sc->sc_ifp;
3263 	struct ieee80211com *ic = ifp->if_l2com;
3264 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3265 	struct iwn_calib_state *calib = &sc->calib;
3266 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
3267 	struct iwn_stats *lstats;
3268 	int temp;
3269 
3270 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3271 
3272 	/* Ignore statistics received during a scan. */
3273 	if (vap->iv_state != IEEE80211_S_RUN ||
3274 	    (ic->ic_flags & IEEE80211_F_SCAN)){
3275 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s received during calib\n",
3276 	    __func__);
3277 		return;
3278 	}
3279 
3280 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3281 
3282 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_STATS,
3283 	    "%s: received statistics, cmd %d, len %d\n",
3284 	    __func__, desc->type, le16toh(desc->len));
3285 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
3286 
3287 	/*
3288 	 * Collect/track general statistics for reporting.
3289 	 *
3290 	 * This takes care of ensuring that the bluetooth sized message
3291 	 * will be correctly converted to the legacy sized message.
3292 	 */
3293 	iwn_stats_update(sc, calib, stats, le16toh(desc->len));
3294 
3295 	/*
3296 	 * And now, let's take a reference of it to use!
3297 	 */
3298 	lstats = &sc->last_stat;
3299 
3300 	/* Test if temperature has changed. */
3301 	if (lstats->general.temp != sc->rawtemp) {
3302 		/* Convert "raw" temperature to degC. */
3303 		sc->rawtemp = stats->general.temp;
3304 		temp = ops->get_temperature(sc);
3305 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
3306 		    __func__, temp);
3307 
3308 		/* Update TX power if need be (4965AGN only). */
3309 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3310 			iwn4965_power_calibration(sc, temp);
3311 	}
3312 
3313 	if (desc->type != IWN_BEACON_STATISTICS)
3314 		return;	/* Reply to a statistics request. */
3315 
3316 	sc->noise = iwn_get_noise(&lstats->rx.general);
3317 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
3318 
3319 	/* Test that RSSI and noise are present in stats report. */
3320 	if (le32toh(lstats->rx.general.flags) != 1) {
3321 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
3322 		    "received statistics without RSSI");
3323 		return;
3324 	}
3325 
3326 	if (calib->state == IWN_CALIB_STATE_ASSOC)
3327 		iwn_collect_noise(sc, &lstats->rx.general);
3328 	else if (calib->state == IWN_CALIB_STATE_RUN) {
3329 		iwn_tune_sensitivity(sc, &lstats->rx);
3330 		/*
3331 		 * XXX TODO: Only run the RX recovery if we're associated!
3332 		 */
3333 		iwn_check_rx_recovery(sc, lstats);
3334 		iwn_save_stats_counters(sc, lstats);
3335 	}
3336 
3337 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3338 }
3339 
3340 /*
3341  * Save the relevant statistic counters for the next calibration
3342  * pass.
3343  */
3344 static void
3345 iwn_save_stats_counters(struct iwn_softc *sc, const struct iwn_stats *rs)
3346 {
3347 	struct iwn_calib_state *calib = &sc->calib;
3348 
3349 	/* Save counters values for next call. */
3350 	calib->bad_plcp_cck = le32toh(rs->rx.cck.bad_plcp);
3351 	calib->fa_cck = le32toh(rs->rx.cck.fa);
3352 	calib->bad_plcp_ht = le32toh(rs->rx.ht.bad_plcp);
3353 	calib->bad_plcp_ofdm = le32toh(rs->rx.ofdm.bad_plcp);
3354 	calib->fa_ofdm = le32toh(rs->rx.ofdm.fa);
3355 
3356 	/* Last time we received these tick values */
3357 	sc->last_calib_ticks = ticks;
3358 }
3359 
3360 /*
3361  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
3362  * and 5000 adapters have different incompatible TX status formats.
3363  */
3364 static void
3365 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3366     struct iwn_rx_data *data)
3367 {
3368 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
3369 	struct iwn_tx_ring *ring;
3370 	int qid;
3371 
3372 	qid = desc->qid & 0xf;
3373 	ring = &sc->txq[qid];
3374 
3375 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3376 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3377 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3378 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3379 	    le32toh(stat->status));
3380 
3381 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3382 	if (qid >= sc->firstaggqueue) {
3383 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3384 		    &stat->status);
3385 	} else {
3386 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3387 		    le32toh(stat->status) & 0xff);
3388 	}
3389 }
3390 
3391 static void
3392 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
3393     struct iwn_rx_data *data)
3394 {
3395 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
3396 	struct iwn_tx_ring *ring;
3397 	int qid;
3398 
3399 	qid = desc->qid & 0xf;
3400 	ring = &sc->txq[qid];
3401 
3402 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
3403 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
3404 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
3405 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
3406 	    le32toh(stat->status));
3407 
3408 #ifdef notyet
3409 	/* Reset TX scheduler slot. */
3410 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
3411 #endif
3412 
3413 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
3414 	if (qid >= sc->firstaggqueue) {
3415 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
3416 		    &stat->status);
3417 	} else {
3418 		iwn_tx_done(sc, desc, stat->ackfailcnt,
3419 		    le16toh(stat->status) & 0xff);
3420 	}
3421 }
3422 
3423 /*
3424  * Adapter-independent backend for TX_DONE firmware notifications.
3425  */
3426 static void
3427 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
3428     uint8_t status)
3429 {
3430 	struct ifnet *ifp = sc->sc_ifp;
3431 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
3432 	struct iwn_tx_data *data = &ring->data[desc->idx];
3433 	struct mbuf *m;
3434 	struct ieee80211_node *ni;
3435 	struct ieee80211vap *vap;
3436 
3437 	KASSERT(data->ni != NULL, ("no node"));
3438 
3439 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3440 
3441 	/* Unmap and free mbuf. */
3442 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
3443 	bus_dmamap_unload(ring->data_dmat, data->map);
3444 	m = data->m, data->m = NULL;
3445 	ni = data->ni, data->ni = NULL;
3446 	vap = ni->ni_vap;
3447 
3448 	/*
3449 	 * Update rate control statistics for the node.
3450 	 */
3451 	if (status & IWN_TX_FAIL) {
3452 		ifp->if_oerrors++;
3453 		ieee80211_ratectl_tx_complete(vap, ni,
3454 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
3455 	} else {
3456 		ifp->if_opackets++;
3457 		ieee80211_ratectl_tx_complete(vap, ni,
3458 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
3459 	}
3460 
3461 	/*
3462 	 * Channels marked for "radar" require traffic to be received
3463 	 * to unlock before we can transmit.  Until traffic is seen
3464 	 * any attempt to transmit is returned immediately with status
3465 	 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
3466 	 * happen on first authenticate after scanning.  To workaround
3467 	 * this we ignore a failure of this sort in AUTH state so the
3468 	 * 802.11 layer will fall back to using a timeout to wait for
3469 	 * the AUTH reply.  This allows the firmware time to see
3470 	 * traffic so a subsequent retry of AUTH succeeds.  It's
3471 	 * unclear why the firmware does not maintain state for
3472 	 * channels recently visited as this would allow immediate
3473 	 * use of the channel after a scan (where we see traffic).
3474 	 */
3475 	if (status == IWN_TX_FAIL_TX_LOCKED &&
3476 	    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
3477 		ieee80211_tx_complete(ni, m, 0);
3478 	else
3479 		ieee80211_tx_complete(ni, m,
3480 		    (status & IWN_TX_FAIL) != 0);
3481 
3482 	sc->sc_tx_timer = 0;
3483 	if (--ring->queued < IWN_TX_RING_LOMARK) {
3484 		sc->qfullmsk &= ~(1 << ring->qid);
3485 		if (sc->qfullmsk == 0 &&
3486 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3487 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3488 			iwn_start_locked(ifp);
3489 		}
3490 	}
3491 
3492 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3493 
3494 }
3495 
3496 /*
3497  * Process a "command done" firmware notification.  This is where we wakeup
3498  * processes waiting for a synchronous command completion.
3499  */
3500 static void
3501 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
3502 {
3503 	struct iwn_tx_ring *ring;
3504 	struct iwn_tx_data *data;
3505 	int cmd_queue_num;
3506 
3507 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
3508 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
3509 	else
3510 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
3511 
3512 	if ((desc->qid & IWN_RX_DESC_QID_MSK) != cmd_queue_num)
3513 		return;	/* Not a command ack. */
3514 
3515 	ring = &sc->txq[cmd_queue_num];
3516 	data = &ring->data[desc->idx];
3517 
3518 	/* If the command was mapped in an mbuf, free it. */
3519 	if (data->m != NULL) {
3520 		bus_dmamap_sync(ring->data_dmat, data->map,
3521 		    BUS_DMASYNC_POSTWRITE);
3522 		bus_dmamap_unload(ring->data_dmat, data->map);
3523 		m_freem(data->m);
3524 		data->m = NULL;
3525 	}
3526 	wakeup(&ring->desc[desc->idx]);
3527 }
3528 
3529 static void
3530 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
3531     void *stat)
3532 {
3533 	struct iwn_ops *ops = &sc->ops;
3534 	struct ifnet *ifp = sc->sc_ifp;
3535 	struct iwn_tx_ring *ring = &sc->txq[qid];
3536 	struct iwn_tx_data *data;
3537 	struct mbuf *m;
3538 	struct iwn_node *wn;
3539 	struct ieee80211_node *ni;
3540 	struct ieee80211_tx_ampdu *tap;
3541 	uint64_t bitmap;
3542 	uint32_t *status = stat;
3543 	uint16_t *aggstatus = stat;
3544 	uint16_t ssn;
3545 	uint8_t tid;
3546 	int bit, i, lastidx, *res, seqno, shift, start;
3547 
3548 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
3549 
3550 	if (nframes == 1) {
3551 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2) {
3552 #ifdef	NOT_YET
3553 			printf("ieee80211_send_bar()\n");
3554 #endif
3555 			/*
3556 			 * If we completely fail a transmit, make sure a
3557 			 * notification is pushed up to the rate control
3558 			 * layer.
3559 			 */
3560 			tap = sc->qid2tap[qid];
3561 			tid = tap->txa_tid;
3562 			wn = (void *)tap->txa_ni;
3563 			ni = tap->txa_ni;
3564 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
3565 			    IEEE80211_RATECTL_TX_FAILURE, &nframes, NULL);
3566 		}
3567 	}
3568 
3569 	bitmap = 0;
3570 	start = idx;
3571 	for (i = 0; i < nframes; i++) {
3572 		if (le16toh(aggstatus[i * 2]) & 0xc)
3573 			continue;
3574 
3575 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
3576 		bit = idx - start;
3577 		shift = 0;
3578 		if (bit >= 64) {
3579 			shift = 0x100 - idx + start;
3580 			bit = 0;
3581 			start = idx;
3582 		} else if (bit <= -64)
3583 			bit = 0x100 - start + idx;
3584 		else if (bit < 0) {
3585 			shift = start - idx;
3586 			start = idx;
3587 			bit = 0;
3588 		}
3589 		bitmap = bitmap << shift;
3590 		bitmap |= 1ULL << bit;
3591 	}
3592 	tap = sc->qid2tap[qid];
3593 	tid = tap->txa_tid;
3594 	wn = (void *)tap->txa_ni;
3595 	wn->agg[tid].bitmap = bitmap;
3596 	wn->agg[tid].startidx = start;
3597 	wn->agg[tid].nframes = nframes;
3598 
3599 	res = NULL;
3600 	ssn = 0;
3601 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
3602 		res = tap->txa_private;
3603 		ssn = tap->txa_start & 0xfff;
3604 	}
3605 
3606 	seqno = le32toh(*(status + nframes)) & 0xfff;
3607 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
3608 		data = &ring->data[ring->read];
3609 
3610 		/* Unmap and free mbuf. */
3611 		bus_dmamap_sync(ring->data_dmat, data->map,
3612 		    BUS_DMASYNC_POSTWRITE);
3613 		bus_dmamap_unload(ring->data_dmat, data->map);
3614 		m = data->m, data->m = NULL;
3615 		ni = data->ni, data->ni = NULL;
3616 
3617 		KASSERT(ni != NULL, ("no node"));
3618 		KASSERT(m != NULL, ("no mbuf"));
3619 
3620 		ieee80211_tx_complete(ni, m, 1);
3621 
3622 		ring->queued--;
3623 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
3624 	}
3625 
3626 	if (ring->queued == 0 && res != NULL) {
3627 		iwn_nic_lock(sc);
3628 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
3629 		iwn_nic_unlock(sc);
3630 		sc->qid2tap[qid] = NULL;
3631 		free(res, M_DEVBUF);
3632 		return;
3633 	}
3634 
3635 	sc->sc_tx_timer = 0;
3636 	if (ring->queued < IWN_TX_RING_LOMARK) {
3637 		sc->qfullmsk &= ~(1 << ring->qid);
3638 		if (sc->qfullmsk == 0 &&
3639 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
3640 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3641 			iwn_start_locked(ifp);
3642 		}
3643 	}
3644 
3645 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
3646 
3647 }
3648 
3649 /*
3650  * Process an INT_FH_RX or INT_SW_RX interrupt.
3651  */
3652 static void
3653 iwn_notif_intr(struct iwn_softc *sc)
3654 {
3655 	struct iwn_ops *ops = &sc->ops;
3656 	struct ifnet *ifp = sc->sc_ifp;
3657 	struct ieee80211com *ic = ifp->if_l2com;
3658 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3659 	uint16_t hw;
3660 
3661 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
3662 	    BUS_DMASYNC_POSTREAD);
3663 
3664 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
3665 	while (sc->rxq.cur != hw) {
3666 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
3667 		struct iwn_rx_desc *desc;
3668 
3669 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3670 		    BUS_DMASYNC_POSTREAD);
3671 		desc = mtod(data->m, struct iwn_rx_desc *);
3672 
3673 		DPRINTF(sc, IWN_DEBUG_RECV,
3674 		    "%s: cur=%d; qid %x idx %d flags %x type %d(%s) len %d\n",
3675 		    __func__, sc->rxq.cur, desc->qid & 0xf, desc->idx, desc->flags,
3676 		    desc->type, iwn_intr_str(desc->type),
3677 		    le16toh(desc->len));
3678 
3679 		if (!(desc->qid & IWN_UNSOLICITED_RX_NOTIF))	/* Reply to a command. */
3680 			iwn_cmd_done(sc, desc);
3681 
3682 		switch (desc->type) {
3683 		case IWN_RX_PHY:
3684 			iwn_rx_phy(sc, desc, data);
3685 			break;
3686 
3687 		case IWN_RX_DONE:		/* 4965AGN only. */
3688 		case IWN_MPDU_RX_DONE:
3689 			/* An 802.11 frame has been received. */
3690 			iwn_rx_done(sc, desc, data);
3691 			break;
3692 
3693 		case IWN_RX_COMPRESSED_BA:
3694 			/* A Compressed BlockAck has been received. */
3695 			iwn_rx_compressed_ba(sc, desc, data);
3696 			break;
3697 
3698 		case IWN_TX_DONE:
3699 			/* An 802.11 frame has been transmitted. */
3700 			ops->tx_done(sc, desc, data);
3701 			break;
3702 
3703 		case IWN_RX_STATISTICS:
3704 		case IWN_BEACON_STATISTICS:
3705 			iwn_rx_statistics(sc, desc, data);
3706 			break;
3707 
3708 		case IWN_BEACON_MISSED:
3709 		{
3710 			struct iwn_beacon_missed *miss =
3711 			    (struct iwn_beacon_missed *)(desc + 1);
3712 			int misses;
3713 
3714 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3715 			    BUS_DMASYNC_POSTREAD);
3716 			misses = le32toh(miss->consecutive);
3717 
3718 			DPRINTF(sc, IWN_DEBUG_STATE,
3719 			    "%s: beacons missed %d/%d\n", __func__,
3720 			    misses, le32toh(miss->total));
3721 			/*
3722 			 * If more than 5 consecutive beacons are missed,
3723 			 * reinitialize the sensitivity state machine.
3724 			 */
3725 			if (vap->iv_state == IEEE80211_S_RUN &&
3726 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3727 				if (misses > 5)
3728 					(void)iwn_init_sensitivity(sc);
3729 				if (misses >= vap->iv_bmissthreshold) {
3730 					IWN_UNLOCK(sc);
3731 					ieee80211_beacon_miss(ic);
3732 					IWN_LOCK(sc);
3733 				}
3734 			}
3735 			break;
3736 		}
3737 		case IWN_UC_READY:
3738 		{
3739 			struct iwn_ucode_info *uc =
3740 			    (struct iwn_ucode_info *)(desc + 1);
3741 
3742 			/* The microcontroller is ready. */
3743 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3744 			    BUS_DMASYNC_POSTREAD);
3745 			DPRINTF(sc, IWN_DEBUG_RESET,
3746 			    "microcode alive notification version=%d.%d "
3747 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3748 			    uc->subtype, le32toh(uc->valid));
3749 
3750 			if (le32toh(uc->valid) != 1) {
3751 				device_printf(sc->sc_dev,
3752 				    "microcontroller initialization failed");
3753 				break;
3754 			}
3755 			if (uc->subtype == IWN_UCODE_INIT) {
3756 				/* Save microcontroller report. */
3757 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3758 			}
3759 			/* Save the address of the error log in SRAM. */
3760 			sc->errptr = le32toh(uc->errptr);
3761 			break;
3762 		}
3763 		case IWN_STATE_CHANGED:
3764 		{
3765 			/*
3766 			 * State change allows hardware switch change to be
3767 			 * noted. However, we handle this in iwn_intr as we
3768 			 * get both the enable/disble intr.
3769 			 */
3770 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3771 			    BUS_DMASYNC_POSTREAD);
3772 #ifdef	IWN_DEBUG
3773 			uint32_t *status = (uint32_t *)(desc + 1);
3774 			DPRINTF(sc, IWN_DEBUG_INTR | IWN_DEBUG_STATE,
3775 			    "state changed to %x\n",
3776 			    le32toh(*status));
3777 #endif
3778 			break;
3779 		}
3780 		case IWN_START_SCAN:
3781 		{
3782 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3783 			    BUS_DMASYNC_POSTREAD);
3784 #ifdef	IWN_DEBUG
3785 			struct iwn_start_scan *scan =
3786 			    (struct iwn_start_scan *)(desc + 1);
3787 			DPRINTF(sc, IWN_DEBUG_ANY,
3788 			    "%s: scanning channel %d status %x\n",
3789 			    __func__, scan->chan, le32toh(scan->status));
3790 #endif
3791 			break;
3792 		}
3793 		case IWN_STOP_SCAN:
3794 		{
3795 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3796 			    BUS_DMASYNC_POSTREAD);
3797 #ifdef	IWN_DEBUG
3798 			struct iwn_stop_scan *scan =
3799 			    (struct iwn_stop_scan *)(desc + 1);
3800 			DPRINTF(sc, IWN_DEBUG_STATE | IWN_DEBUG_SCAN,
3801 			    "scan finished nchan=%d status=%d chan=%d\n",
3802 			    scan->nchan, scan->status, scan->chan);
3803 #endif
3804 			sc->sc_is_scanning = 0;
3805 			IWN_UNLOCK(sc);
3806 			ieee80211_scan_next(vap);
3807 			IWN_LOCK(sc);
3808 			break;
3809 		}
3810 		case IWN5000_CALIBRATION_RESULT:
3811 			iwn5000_rx_calib_results(sc, desc, data);
3812 			break;
3813 
3814 		case IWN5000_CALIBRATION_DONE:
3815 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3816 			wakeup(sc);
3817 			break;
3818 		}
3819 
3820 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3821 	}
3822 
3823 	/* Tell the firmware what we have processed. */
3824 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3825 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3826 }
3827 
3828 /*
3829  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3830  * from power-down sleep mode.
3831  */
3832 static void
3833 iwn_wakeup_intr(struct iwn_softc *sc)
3834 {
3835 	int qid;
3836 
3837 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3838 	    __func__);
3839 
3840 	/* Wakeup RX and TX rings. */
3841 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3842 	for (qid = 0; qid < sc->ntxqs; qid++) {
3843 		struct iwn_tx_ring *ring = &sc->txq[qid];
3844 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3845 	}
3846 }
3847 
3848 static void
3849 iwn_rftoggle_intr(struct iwn_softc *sc)
3850 {
3851 	struct ifnet *ifp = sc->sc_ifp;
3852 	struct ieee80211com *ic = ifp->if_l2com;
3853 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3854 
3855 	IWN_LOCK_ASSERT(sc);
3856 
3857 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3858 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3859 	if (tmp & IWN_GP_CNTRL_RFKILL)
3860 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3861 	else
3862 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3863 }
3864 
3865 /*
3866  * Dump the error log of the firmware when a firmware panic occurs.  Although
3867  * we can't debug the firmware because it is neither open source nor free, it
3868  * can help us to identify certain classes of problems.
3869  */
3870 static void
3871 iwn_fatal_intr(struct iwn_softc *sc)
3872 {
3873 	struct iwn_fw_dump dump;
3874 	int i;
3875 
3876 	IWN_LOCK_ASSERT(sc);
3877 
3878 	/* Force a complete recalibration on next init. */
3879 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3880 
3881 	/* Check that the error log address is valid. */
3882 	if (sc->errptr < IWN_FW_DATA_BASE ||
3883 	    sc->errptr + sizeof (dump) >
3884 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3885 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3886 		    sc->errptr);
3887 		return;
3888 	}
3889 	if (iwn_nic_lock(sc) != 0) {
3890 		printf("%s: could not read firmware error log\n", __func__);
3891 		return;
3892 	}
3893 	/* Read firmware error log from SRAM. */
3894 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3895 	    sizeof (dump) / sizeof (uint32_t));
3896 	iwn_nic_unlock(sc);
3897 
3898 	if (dump.valid == 0) {
3899 		printf("%s: firmware error log is empty\n", __func__);
3900 		return;
3901 	}
3902 	printf("firmware error log:\n");
3903 	printf("  error type      = \"%s\" (0x%08X)\n",
3904 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3905 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3906 	    dump.id);
3907 	printf("  program counter = 0x%08X\n", dump.pc);
3908 	printf("  source line     = 0x%08X\n", dump.src_line);
3909 	printf("  error data      = 0x%08X%08X\n",
3910 	    dump.error_data[0], dump.error_data[1]);
3911 	printf("  branch link     = 0x%08X%08X\n",
3912 	    dump.branch_link[0], dump.branch_link[1]);
3913 	printf("  interrupt link  = 0x%08X%08X\n",
3914 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3915 	printf("  time            = %u\n", dump.time[0]);
3916 
3917 	/* Dump driver status (TX and RX rings) while we're here. */
3918 	printf("driver status:\n");
3919 	for (i = 0; i < sc->ntxqs; i++) {
3920 		struct iwn_tx_ring *ring = &sc->txq[i];
3921 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3922 		    i, ring->qid, ring->cur, ring->queued);
3923 	}
3924 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3925 }
3926 
3927 static void
3928 iwn_intr(void *arg)
3929 {
3930 	struct iwn_softc *sc = arg;
3931 	struct ifnet *ifp = sc->sc_ifp;
3932 	uint32_t r1, r2, tmp;
3933 
3934 	IWN_LOCK(sc);
3935 
3936 	/* Disable interrupts. */
3937 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3938 
3939 	/* Read interrupts from ICT (fast) or from registers (slow). */
3940 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3941 		tmp = 0;
3942 		while (sc->ict[sc->ict_cur] != 0) {
3943 			tmp |= sc->ict[sc->ict_cur];
3944 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3945 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3946 		}
3947 		tmp = le32toh(tmp);
3948 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3949 			tmp = 0;
3950 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3951 			tmp |= 0x8000;
3952 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3953 		r2 = 0;	/* Unused. */
3954 	} else {
3955 		r1 = IWN_READ(sc, IWN_INT);
3956 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3957 			return;	/* Hardware gone! */
3958 		r2 = IWN_READ(sc, IWN_FH_INT);
3959 	}
3960 
3961 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=0x%08x reg2=0x%08x\n"
3962     , r1, r2);
3963 
3964 	if (r1 == 0 && r2 == 0)
3965 		goto done;	/* Interrupt not for us. */
3966 
3967 	/* Acknowledge interrupts. */
3968 	IWN_WRITE(sc, IWN_INT, r1);
3969 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3970 		IWN_WRITE(sc, IWN_FH_INT, r2);
3971 
3972 	if (r1 & IWN_INT_RF_TOGGLED) {
3973 		iwn_rftoggle_intr(sc);
3974 		goto done;
3975 	}
3976 	if (r1 & IWN_INT_CT_REACHED) {
3977 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3978 		    __func__);
3979 	}
3980 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3981 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3982 		    __func__);
3983 #ifdef	IWN_DEBUG
3984 		iwn_debug_register(sc);
3985 #endif
3986 		/* Dump firmware error log and stop. */
3987 		iwn_fatal_intr(sc);
3988 
3989 		taskqueue_enqueue(sc->sc_tq, &sc->sc_panic_task);
3990 		goto done;
3991 	}
3992 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3993 	    (r2 & IWN_FH_INT_RX)) {
3994 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3995 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3996 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3997 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3998 			    IWN_INT_PERIODIC_DIS);
3999 			iwn_notif_intr(sc);
4000 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
4001 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
4002 				    IWN_INT_PERIODIC_ENA);
4003 			}
4004 		} else
4005 			iwn_notif_intr(sc);
4006 	}
4007 
4008 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
4009 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
4010 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
4011 		wakeup(sc);	/* FH DMA transfer completed. */
4012 	}
4013 
4014 	if (r1 & IWN_INT_ALIVE)
4015 		wakeup(sc);	/* Firmware is alive. */
4016 
4017 	if (r1 & IWN_INT_WAKEUP)
4018 		iwn_wakeup_intr(sc);
4019 
4020 done:
4021 	/* Re-enable interrupts. */
4022 	if (ifp->if_flags & IFF_UP)
4023 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
4024 
4025 	IWN_UNLOCK(sc);
4026 }
4027 
4028 /*
4029  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
4030  * 5000 adapters use a slightly different format).
4031  */
4032 static void
4033 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4034     uint16_t len)
4035 {
4036 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
4037 
4038 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4039 
4040 	*w = htole16(len + 8);
4041 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4042 	    BUS_DMASYNC_PREWRITE);
4043 	if (idx < IWN_SCHED_WINSZ) {
4044 		*(w + IWN_TX_RING_COUNT) = *w;
4045 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4046 		    BUS_DMASYNC_PREWRITE);
4047 	}
4048 }
4049 
4050 static void
4051 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
4052     uint16_t len)
4053 {
4054 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4055 
4056 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4057 
4058 	*w = htole16(id << 12 | (len + 8));
4059 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4060 	    BUS_DMASYNC_PREWRITE);
4061 	if (idx < IWN_SCHED_WINSZ) {
4062 		*(w + IWN_TX_RING_COUNT) = *w;
4063 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4064 		    BUS_DMASYNC_PREWRITE);
4065 	}
4066 }
4067 
4068 #ifdef notyet
4069 static void
4070 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
4071 {
4072 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
4073 
4074 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4075 
4076 	*w = (*w & htole16(0xf000)) | htole16(1);
4077 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4078 	    BUS_DMASYNC_PREWRITE);
4079 	if (idx < IWN_SCHED_WINSZ) {
4080 		*(w + IWN_TX_RING_COUNT) = *w;
4081 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
4082 		    BUS_DMASYNC_PREWRITE);
4083 	}
4084 }
4085 #endif
4086 
4087 /*
4088  * Check whether OFDM 11g protection will be enabled for the given rate.
4089  *
4090  * The original driver code only enabled protection for OFDM rates.
4091  * It didn't check to see whether it was operating in 11a or 11bg mode.
4092  */
4093 static int
4094 iwn_check_rate_needs_protection(struct iwn_softc *sc,
4095     struct ieee80211vap *vap, uint8_t rate)
4096 {
4097 	struct ieee80211com *ic = vap->iv_ic;
4098 
4099 	/*
4100 	 * Not in 2GHz mode? Then there's no need to enable OFDM
4101 	 * 11bg protection.
4102 	 */
4103 	if (! IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
4104 		return (0);
4105 	}
4106 
4107 	/*
4108 	 * 11bg protection not enabled? Then don't use it.
4109 	 */
4110 	if ((ic->ic_flags & IEEE80211_F_USEPROT) == 0)
4111 		return (0);
4112 
4113 	/*
4114 	 * If it's an 11n rate, then for now we enable
4115 	 * protection.
4116 	 */
4117 	if (rate & IEEE80211_RATE_MCS) {
4118 		return (1);
4119 	}
4120 
4121 	/*
4122 	 * Do a rate table lookup.  If the PHY is CCK,
4123 	 * don't do protection.
4124 	 */
4125 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_CCK)
4126 		return (0);
4127 
4128 	/*
4129 	 * Yup, enable protection.
4130 	 */
4131 	return (1);
4132 }
4133 
4134 /*
4135  * return a value between 0 and IWN_MAX_TX_RETRIES-1 as an index into
4136  * the link quality table that reflects this particular entry.
4137  */
4138 static int
4139 iwn_tx_rate_to_linkq_offset(struct iwn_softc *sc, struct ieee80211_node *ni,
4140     uint8_t rate)
4141 {
4142 	struct ieee80211_rateset *rs;
4143 	int is_11n;
4144 	int nr;
4145 	int i;
4146 	uint8_t cmp_rate;
4147 
4148 	/*
4149 	 * Figure out if we're using 11n or not here.
4150 	 */
4151 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0)
4152 		is_11n = 1;
4153 	else
4154 		is_11n = 0;
4155 
4156 	/*
4157 	 * Use the correct rate table.
4158 	 */
4159 	if (is_11n) {
4160 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
4161 		nr = ni->ni_htrates.rs_nrates;
4162 	} else {
4163 		rs = &ni->ni_rates;
4164 		nr = rs->rs_nrates;
4165 	}
4166 
4167 	/*
4168 	 * Find the relevant link quality entry in the table.
4169 	 */
4170 	for (i = 0; i < nr && i < IWN_MAX_TX_RETRIES - 1 ; i++) {
4171 		/*
4172 		 * The link quality table index starts at 0 == highest
4173 		 * rate, so we walk the rate table backwards.
4174 		 */
4175 		cmp_rate = rs->rs_rates[(nr - 1) - i];
4176 		if (rate & IEEE80211_RATE_MCS)
4177 			cmp_rate |= IEEE80211_RATE_MCS;
4178 
4179 #if 0
4180 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: idx %d: nr=%d, rate=0x%02x, rateentry=0x%02x\n",
4181 		    __func__,
4182 		    i,
4183 		    nr,
4184 		    rate,
4185 		    cmp_rate);
4186 #endif
4187 
4188 		if (cmp_rate == rate)
4189 			return (i);
4190 	}
4191 
4192 	/* Failed? Start at the end */
4193 	return (IWN_MAX_TX_RETRIES - 1);
4194 }
4195 
4196 static int
4197 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
4198 {
4199 	struct iwn_ops *ops = &sc->ops;
4200 	const struct ieee80211_txparam *tp;
4201 	struct ieee80211vap *vap = ni->ni_vap;
4202 	struct ieee80211com *ic = ni->ni_ic;
4203 	struct iwn_node *wn = (void *)ni;
4204 	struct iwn_tx_ring *ring;
4205 	struct iwn_tx_desc *desc;
4206 	struct iwn_tx_data *data;
4207 	struct iwn_tx_cmd *cmd;
4208 	struct iwn_cmd_data *tx;
4209 	struct ieee80211_frame *wh;
4210 	struct ieee80211_key *k = NULL;
4211 	struct mbuf *m1;
4212 	uint32_t flags;
4213 	uint16_t qos;
4214 	u_int hdrlen;
4215 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4216 	uint8_t tid, type;
4217 	int ac, i, totlen, error, pad, nsegs = 0, rate;
4218 
4219 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4220 
4221 	IWN_LOCK_ASSERT(sc);
4222 
4223 	wh = mtod(m, struct ieee80211_frame *);
4224 	hdrlen = ieee80211_anyhdrsize(wh);
4225 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4226 
4227 	/* Select EDCA Access Category and TX ring for this frame. */
4228 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
4229 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
4230 		tid = qos & IEEE80211_QOS_TID;
4231 	} else {
4232 		qos = 0;
4233 		tid = 0;
4234 	}
4235 	ac = M_WME_GETAC(m);
4236 	if (m->m_flags & M_AMPDU_MPDU) {
4237 		uint16_t seqno;
4238 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
4239 
4240 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
4241 			m_freem(m);
4242 			return EINVAL;
4243 		}
4244 
4245 		/*
4246 		 * Queue this frame to the hardware ring that we've
4247 		 * negotiated AMPDU TX on.
4248 		 *
4249 		 * Note that the sequence number must match the TX slot
4250 		 * being used!
4251 		 */
4252 		ac = *(int *)tap->txa_private;
4253 		seqno = ni->ni_txseqs[tid];
4254 		*(uint16_t *)wh->i_seq =
4255 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4256 		ring = &sc->txq[ac];
4257 		if ((seqno % 256) != ring->cur) {
4258 			device_printf(sc->sc_dev,
4259 			    "%s: m=%p: seqno (%d) (%d) != ring index (%d) !\n",
4260 			    __func__,
4261 			    m,
4262 			    seqno,
4263 			    seqno % 256,
4264 			    ring->cur);
4265 		}
4266 		ni->ni_txseqs[tid]++;
4267 	}
4268 	ring = &sc->txq[ac];
4269 	desc = &ring->desc[ring->cur];
4270 	data = &ring->data[ring->cur];
4271 
4272 	/* Choose a TX rate index. */
4273 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
4274 	if (type == IEEE80211_FC0_TYPE_MGT)
4275 		rate = tp->mgmtrate;
4276 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
4277 		rate = tp->mcastrate;
4278 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
4279 		rate = tp->ucastrate;
4280 	else if (m->m_flags & M_EAPOL)
4281 		rate = tp->mgmtrate;
4282 	else {
4283 		/* XXX pass pktlen */
4284 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
4285 		rate = ni->ni_txrate;
4286 	}
4287 
4288 	/* Encrypt the frame if need be. */
4289 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
4290 		/* Retrieve key for TX. */
4291 		k = ieee80211_crypto_encap(ni, m);
4292 		if (k == NULL) {
4293 			m_freem(m);
4294 			return ENOBUFS;
4295 		}
4296 		/* 802.11 header may have moved. */
4297 		wh = mtod(m, struct ieee80211_frame *);
4298 	}
4299 	totlen = m->m_pkthdr.len;
4300 
4301 	if (ieee80211_radiotap_active_vap(vap)) {
4302 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4303 
4304 		tap->wt_flags = 0;
4305 		tap->wt_rate = rate;
4306 		if (k != NULL)
4307 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4308 
4309 		ieee80211_radiotap_tx(vap, m);
4310 	}
4311 
4312 	/* Prepare TX firmware command. */
4313 	cmd = &ring->cmd[ring->cur];
4314 	cmd->code = IWN_CMD_TX_DATA;
4315 	cmd->flags = 0;
4316 	cmd->qid = ring->qid;
4317 	cmd->idx = ring->cur;
4318 
4319 	tx = (struct iwn_cmd_data *)cmd->data;
4320 	/* NB: No need to clear tx, all fields are reinitialized here. */
4321 	tx->scratch = 0;	/* clear "scratch" area */
4322 
4323 	flags = 0;
4324 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4325 		/* Unicast frame, check if an ACK is expected. */
4326 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
4327 		    IEEE80211_QOS_ACKPOLICY_NOACK)
4328 			flags |= IWN_TX_NEED_ACK;
4329 	}
4330 	if ((wh->i_fc[0] &
4331 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
4332 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
4333 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
4334 
4335 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
4336 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
4337 
4338 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
4339 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
4340 		/* NB: Group frames are sent using CCK in 802.11b/g. */
4341 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
4342 			flags |= IWN_TX_NEED_RTS;
4343 		} else if (iwn_check_rate_needs_protection(sc, vap, rate)) {
4344 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4345 				flags |= IWN_TX_NEED_CTS;
4346 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4347 				flags |= IWN_TX_NEED_RTS;
4348 		}
4349 
4350 		/* XXX HT protection? */
4351 
4352 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
4353 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4354 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
4355 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
4356 				flags |= IWN_TX_NEED_PROTECTION;
4357 			} else
4358 				flags |= IWN_TX_FULL_TXOP;
4359 		}
4360 	}
4361 
4362 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
4363 	    type != IEEE80211_FC0_TYPE_DATA)
4364 		tx->id = sc->broadcast_id;
4365 	else
4366 		tx->id = wn->id;
4367 
4368 	if (type == IEEE80211_FC0_TYPE_MGT) {
4369 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4370 
4371 		/* Tell HW to set timestamp in probe responses. */
4372 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4373 			flags |= IWN_TX_INSERT_TSTAMP;
4374 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4375 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4376 			tx->timeout = htole16(3);
4377 		else
4378 			tx->timeout = htole16(2);
4379 	} else
4380 		tx->timeout = htole16(0);
4381 
4382 	if (hdrlen & 3) {
4383 		/* First segment length must be a multiple of 4. */
4384 		flags |= IWN_TX_NEED_PADDING;
4385 		pad = 4 - (hdrlen & 3);
4386 	} else
4387 		pad = 0;
4388 
4389 	tx->len = htole16(totlen);
4390 	tx->tid = tid;
4391 	tx->rts_ntries = 60;
4392 	tx->data_ntries = 15;
4393 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4394 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4395 	if (tx->id == sc->broadcast_id) {
4396 		/* Group or management frame. */
4397 		tx->linkq = 0;
4398 	} else {
4399 		tx->linkq = iwn_tx_rate_to_linkq_offset(sc, ni, rate);
4400 		flags |= IWN_TX_LINKQ;	/* enable MRR */
4401 	}
4402 
4403 	/* Set physical address of "scratch area". */
4404 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4405 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4406 
4407 	/* Copy 802.11 header in TX command. */
4408 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4409 
4410 	/* Trim 802.11 header. */
4411 	m_adj(m, hdrlen);
4412 	tx->security = 0;
4413 	tx->flags = htole32(flags);
4414 
4415 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4416 	    &nsegs, BUS_DMA_NOWAIT);
4417 	if (error != 0) {
4418 		if (error != EFBIG) {
4419 			device_printf(sc->sc_dev,
4420 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4421 			m_freem(m);
4422 			return error;
4423 		}
4424 		/* Too many DMA segments, linearize mbuf. */
4425 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4426 		if (m1 == NULL) {
4427 			device_printf(sc->sc_dev,
4428 			    "%s: could not defrag mbuf\n", __func__);
4429 			m_freem(m);
4430 			return ENOBUFS;
4431 		}
4432 		m = m1;
4433 
4434 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4435 		    segs, &nsegs, BUS_DMA_NOWAIT);
4436 		if (error != 0) {
4437 			device_printf(sc->sc_dev,
4438 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4439 			m_freem(m);
4440 			return error;
4441 		}
4442 	}
4443 
4444 	data->m = m;
4445 	data->ni = ni;
4446 
4447 	DPRINTF(sc, IWN_DEBUG_XMIT,
4448 	    "%s: qid %d idx %d len %d nsegs %d rate %04x plcp 0x%08x\n",
4449 	    __func__,
4450 	    ring->qid,
4451 	    ring->cur,
4452 	    m->m_pkthdr.len,
4453 	    nsegs,
4454 	    rate,
4455 	    tx->rate);
4456 
4457 	/* Fill TX descriptor. */
4458 	desc->nsegs = 1;
4459 	if (m->m_len != 0)
4460 		desc->nsegs += nsegs;
4461 	/* First DMA segment is used by the TX command. */
4462 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4463 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4464 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4465 	/* Other DMA segments are for data payload. */
4466 	seg = &segs[0];
4467 	for (i = 1; i <= nsegs; i++) {
4468 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4469 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4470 		    seg->ds_len << 4);
4471 		seg++;
4472 	}
4473 
4474 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4475 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4476 	    BUS_DMASYNC_PREWRITE);
4477 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4478 	    BUS_DMASYNC_PREWRITE);
4479 
4480 	/* Update TX scheduler. */
4481 	if (ring->qid >= sc->firstaggqueue)
4482 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4483 
4484 	/* Kick TX ring. */
4485 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4486 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4487 
4488 	/* Mark TX ring as full if we reach a certain threshold. */
4489 	if (++ring->queued > IWN_TX_RING_HIMARK)
4490 		sc->qfullmsk |= 1 << ring->qid;
4491 
4492 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4493 
4494 	return 0;
4495 }
4496 
4497 static int
4498 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
4499     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
4500 {
4501 	struct iwn_ops *ops = &sc->ops;
4502 //	struct ifnet *ifp = sc->sc_ifp;
4503 	struct ieee80211vap *vap = ni->ni_vap;
4504 //	struct ieee80211com *ic = ifp->if_l2com;
4505 	struct iwn_tx_cmd *cmd;
4506 	struct iwn_cmd_data *tx;
4507 	struct ieee80211_frame *wh;
4508 	struct iwn_tx_ring *ring;
4509 	struct iwn_tx_desc *desc;
4510 	struct iwn_tx_data *data;
4511 	struct mbuf *m1;
4512 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
4513 	uint32_t flags;
4514 	u_int hdrlen;
4515 	int ac, totlen, error, pad, nsegs = 0, i, rate;
4516 	uint8_t type;
4517 
4518 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4519 
4520 	IWN_LOCK_ASSERT(sc);
4521 
4522 	wh = mtod(m, struct ieee80211_frame *);
4523 	hdrlen = ieee80211_anyhdrsize(wh);
4524 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4525 
4526 	ac = params->ibp_pri & 3;
4527 
4528 	ring = &sc->txq[ac];
4529 	desc = &ring->desc[ring->cur];
4530 	data = &ring->data[ring->cur];
4531 
4532 	/* Choose a TX rate. */
4533 	rate = params->ibp_rate0;
4534 	totlen = m->m_pkthdr.len;
4535 
4536 	/* Prepare TX firmware command. */
4537 	cmd = &ring->cmd[ring->cur];
4538 	cmd->code = IWN_CMD_TX_DATA;
4539 	cmd->flags = 0;
4540 	cmd->qid = ring->qid;
4541 	cmd->idx = ring->cur;
4542 
4543 	tx = (struct iwn_cmd_data *)cmd->data;
4544 	/* NB: No need to clear tx, all fields are reinitialized here. */
4545 	tx->scratch = 0;	/* clear "scratch" area */
4546 
4547 	flags = 0;
4548 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
4549 		flags |= IWN_TX_NEED_ACK;
4550 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
4551 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4552 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4553 			flags &= ~IWN_TX_NEED_RTS;
4554 			flags |= IWN_TX_NEED_PROTECTION;
4555 		} else
4556 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
4557 	}
4558 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
4559 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4560 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
4561 			flags &= ~IWN_TX_NEED_CTS;
4562 			flags |= IWN_TX_NEED_PROTECTION;
4563 		} else
4564 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
4565 	}
4566 	if (type == IEEE80211_FC0_TYPE_MGT) {
4567 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4568 
4569 		/* Tell HW to set timestamp in probe responses. */
4570 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4571 			flags |= IWN_TX_INSERT_TSTAMP;
4572 
4573 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
4574 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
4575 			tx->timeout = htole16(3);
4576 		else
4577 			tx->timeout = htole16(2);
4578 	} else
4579 		tx->timeout = htole16(0);
4580 
4581 	if (hdrlen & 3) {
4582 		/* First segment length must be a multiple of 4. */
4583 		flags |= IWN_TX_NEED_PADDING;
4584 		pad = 4 - (hdrlen & 3);
4585 	} else
4586 		pad = 0;
4587 
4588 	if (ieee80211_radiotap_active_vap(vap)) {
4589 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
4590 
4591 		tap->wt_flags = 0;
4592 		tap->wt_rate = rate;
4593 
4594 		ieee80211_radiotap_tx(vap, m);
4595 	}
4596 
4597 	tx->len = htole16(totlen);
4598 	tx->tid = 0;
4599 	tx->id = sc->broadcast_id;
4600 	tx->rts_ntries = params->ibp_try1;
4601 	tx->data_ntries = params->ibp_try0;
4602 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4603 	tx->rate = iwn_rate_to_plcp(sc, ni, rate);
4604 
4605 	/* Group or management frame. */
4606 	tx->linkq = 0;
4607 
4608 	/* Set physical address of "scratch area". */
4609 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
4610 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
4611 
4612 	/* Copy 802.11 header in TX command. */
4613 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
4614 
4615 	/* Trim 802.11 header. */
4616 	m_adj(m, hdrlen);
4617 	tx->security = 0;
4618 	tx->flags = htole32(flags);
4619 
4620 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
4621 	    &nsegs, BUS_DMA_NOWAIT);
4622 	if (error != 0) {
4623 		if (error != EFBIG) {
4624 			device_printf(sc->sc_dev,
4625 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4626 			m_freem(m);
4627 			return error;
4628 		}
4629 		/* Too many DMA segments, linearize mbuf. */
4630 		m1 = m_collapse(m, M_NOWAIT, IWN_MAX_SCATTER);
4631 		if (m1 == NULL) {
4632 			device_printf(sc->sc_dev,
4633 			    "%s: could not defrag mbuf\n", __func__);
4634 			m_freem(m);
4635 			return ENOBUFS;
4636 		}
4637 		m = m1;
4638 
4639 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
4640 		    segs, &nsegs, BUS_DMA_NOWAIT);
4641 		if (error != 0) {
4642 			device_printf(sc->sc_dev,
4643 			    "%s: can't map mbuf (error %d)\n", __func__, error);
4644 			m_freem(m);
4645 			return error;
4646 		}
4647 	}
4648 
4649 	data->m = m;
4650 	data->ni = ni;
4651 
4652 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
4653 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
4654 
4655 	/* Fill TX descriptor. */
4656 	desc->nsegs = 1;
4657 	if (m->m_len != 0)
4658 		desc->nsegs += nsegs;
4659 	/* First DMA segment is used by the TX command. */
4660 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
4661 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
4662 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
4663 	/* Other DMA segments are for data payload. */
4664 	seg = &segs[0];
4665 	for (i = 1; i <= nsegs; i++) {
4666 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
4667 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
4668 		    seg->ds_len << 4);
4669 		seg++;
4670 	}
4671 
4672 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
4673 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4674 	    BUS_DMASYNC_PREWRITE);
4675 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4676 	    BUS_DMASYNC_PREWRITE);
4677 
4678 	/* Update TX scheduler. */
4679 	if (ring->qid >= sc->firstaggqueue)
4680 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
4681 
4682 	/* Kick TX ring. */
4683 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4684 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4685 
4686 	/* Mark TX ring as full if we reach a certain threshold. */
4687 	if (++ring->queued > IWN_TX_RING_HIMARK)
4688 		sc->qfullmsk |= 1 << ring->qid;
4689 
4690 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4691 
4692 	return 0;
4693 }
4694 
4695 static int
4696 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
4697     const struct ieee80211_bpf_params *params)
4698 {
4699 	struct ieee80211com *ic = ni->ni_ic;
4700 	struct ifnet *ifp = ic->ic_ifp;
4701 	struct iwn_softc *sc = ifp->if_softc;
4702 	int error = 0;
4703 
4704 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4705 
4706 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4707 		ieee80211_free_node(ni);
4708 		m_freem(m);
4709 		return ENETDOWN;
4710 	}
4711 
4712 	IWN_LOCK(sc);
4713 	if (params == NULL) {
4714 		/*
4715 		 * Legacy path; interpret frame contents to decide
4716 		 * precisely how to send the frame.
4717 		 */
4718 		error = iwn_tx_data(sc, m, ni);
4719 	} else {
4720 		/*
4721 		 * Caller supplied explicit parameters to use in
4722 		 * sending the frame.
4723 		 */
4724 		error = iwn_tx_data_raw(sc, m, ni, params);
4725 	}
4726 	if (error != 0) {
4727 		/* NB: m is reclaimed on tx failure */
4728 		ieee80211_free_node(ni);
4729 		ifp->if_oerrors++;
4730 	}
4731 	sc->sc_tx_timer = 5;
4732 
4733 	IWN_UNLOCK(sc);
4734 
4735 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4736 
4737 	return error;
4738 }
4739 
4740 static void
4741 iwn_start(struct ifnet *ifp)
4742 {
4743 	struct iwn_softc *sc = ifp->if_softc;
4744 
4745 	IWN_LOCK(sc);
4746 	iwn_start_locked(ifp);
4747 	IWN_UNLOCK(sc);
4748 }
4749 
4750 static void
4751 iwn_start_locked(struct ifnet *ifp)
4752 {
4753 	struct iwn_softc *sc = ifp->if_softc;
4754 	struct ieee80211_node *ni;
4755 	struct mbuf *m;
4756 
4757 	IWN_LOCK_ASSERT(sc);
4758 
4759 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
4760 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
4761 		return;
4762 
4763 	for (;;) {
4764 		if (sc->qfullmsk != 0) {
4765 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4766 			break;
4767 		}
4768 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
4769 		if (m == NULL)
4770 			break;
4771 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
4772 		if (iwn_tx_data(sc, m, ni) != 0) {
4773 			ieee80211_free_node(ni);
4774 			ifp->if_oerrors++;
4775 			continue;
4776 		}
4777 		sc->sc_tx_timer = 5;
4778 	}
4779 }
4780 
4781 static void
4782 iwn_watchdog(void *arg)
4783 {
4784 	struct iwn_softc *sc = arg;
4785 	struct ifnet *ifp = sc->sc_ifp;
4786 	struct ieee80211com *ic = ifp->if_l2com;
4787 
4788 	IWN_LOCK_ASSERT(sc);
4789 
4790 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
4791 
4792 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4793 
4794 	if (sc->sc_tx_timer > 0) {
4795 		if (--sc->sc_tx_timer == 0) {
4796 			if_printf(ifp, "device timeout\n");
4797 			ieee80211_runtask(ic, &sc->sc_reinit_task);
4798 			return;
4799 		}
4800 	}
4801 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
4802 }
4803 
4804 static int
4805 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4806 {
4807 	struct iwn_softc *sc = ifp->if_softc;
4808 	struct ieee80211com *ic = ifp->if_l2com;
4809 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
4810 	struct ifreq *ifr = (struct ifreq *) data;
4811 	int error = 0, startall = 0, stop = 0;
4812 
4813 	switch (cmd) {
4814 	case SIOCGIFADDR:
4815 		error = ether_ioctl(ifp, cmd, data);
4816 		break;
4817 	case SIOCSIFFLAGS:
4818 		IWN_LOCK(sc);
4819 		if (ifp->if_flags & IFF_UP) {
4820 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
4821 				iwn_init_locked(sc);
4822 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
4823 					startall = 1;
4824 				else
4825 					stop = 1;
4826 			}
4827 		} else {
4828 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4829 				iwn_stop_locked(sc);
4830 		}
4831 		IWN_UNLOCK(sc);
4832 		if (startall)
4833 			ieee80211_start_all(ic);
4834 		else if (vap != NULL && stop)
4835 			ieee80211_stop(vap);
4836 		break;
4837 	case SIOCGIFMEDIA:
4838 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4839 		break;
4840 	case SIOCGIWNSTATS:
4841 		IWN_LOCK(sc);
4842 		/* XXX validate permissions/memory/etc? */
4843 		error = copyout(&sc->last_stat, ifr->ifr_data,
4844 		    sizeof(struct iwn_stats));
4845 		IWN_UNLOCK(sc);
4846 		break;
4847 	case SIOCZIWNSTATS:
4848 		IWN_LOCK(sc);
4849 		memset(&sc->last_stat, 0, sizeof(struct iwn_stats));
4850 		IWN_UNLOCK(sc);
4851 		error = 0;
4852 		break;
4853 	default:
4854 		error = EINVAL;
4855 		break;
4856 	}
4857 	return error;
4858 }
4859 
4860 /*
4861  * Send a command to the firmware.
4862  */
4863 static int
4864 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
4865 {
4866 	struct iwn_tx_ring *ring;
4867 	struct iwn_tx_desc *desc;
4868 	struct iwn_tx_data *data;
4869 	struct iwn_tx_cmd *cmd;
4870 	struct mbuf *m;
4871 	bus_addr_t paddr;
4872 	int totlen, error;
4873 	int cmd_queue_num;
4874 
4875 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4876 
4877 	if (async == 0)
4878 		IWN_LOCK_ASSERT(sc);
4879 
4880 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
4881 		cmd_queue_num = IWN_PAN_CMD_QUEUE;
4882 	else
4883 		cmd_queue_num = IWN_CMD_QUEUE_NUM;
4884 
4885 	ring = &sc->txq[cmd_queue_num];
4886 	desc = &ring->desc[ring->cur];
4887 	data = &ring->data[ring->cur];
4888 	totlen = 4 + size;
4889 
4890 	if (size > sizeof cmd->data) {
4891 		/* Command is too large to fit in a descriptor. */
4892 		if (totlen > MCLBYTES)
4893 			return EINVAL;
4894 		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
4895 		if (m == NULL)
4896 			return ENOMEM;
4897 		cmd = mtod(m, struct iwn_tx_cmd *);
4898 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
4899 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
4900 		if (error != 0) {
4901 			m_freem(m);
4902 			return error;
4903 		}
4904 		data->m = m;
4905 	} else {
4906 		cmd = &ring->cmd[ring->cur];
4907 		paddr = data->cmd_paddr;
4908 	}
4909 
4910 	cmd->code = code;
4911 	cmd->flags = 0;
4912 	cmd->qid = ring->qid;
4913 	cmd->idx = ring->cur;
4914 	memcpy(cmd->data, buf, size);
4915 
4916 	desc->nsegs = 1;
4917 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4918 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4919 
4920 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4921 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4922 	    cmd->flags, cmd->qid, cmd->idx);
4923 
4924 	if (size > sizeof cmd->data) {
4925 		bus_dmamap_sync(ring->data_dmat, data->map,
4926 		    BUS_DMASYNC_PREWRITE);
4927 	} else {
4928 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4929 		    BUS_DMASYNC_PREWRITE);
4930 	}
4931 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4932 	    BUS_DMASYNC_PREWRITE);
4933 
4934 	/* Kick command ring. */
4935 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4936 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4937 
4938 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
4939 
4940 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4941 }
4942 
4943 static int
4944 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4945 {
4946 	struct iwn4965_node_info hnode;
4947 	caddr_t src, dst;
4948 
4949 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4950 
4951 	/*
4952 	 * We use the node structure for 5000 Series internally (it is
4953 	 * a superset of the one for 4965AGN). We thus copy the common
4954 	 * fields before sending the command.
4955 	 */
4956 	src = (caddr_t)node;
4957 	dst = (caddr_t)&hnode;
4958 	memcpy(dst, src, 48);
4959 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4960 	memcpy(dst + 48, src + 72, 20);
4961 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4962 }
4963 
4964 static int
4965 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4966 {
4967 
4968 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
4969 
4970 	/* Direct mapping. */
4971 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4972 }
4973 
4974 static int
4975 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4976 {
4977 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4978 	struct iwn_node *wn = (void *)ni;
4979 	struct ieee80211_rateset *rs;
4980 	struct iwn_cmd_link_quality linkq;
4981 	uint8_t txant;
4982 	int i, rate, txrate;
4983 	int is_11n;
4984 
4985 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
4986 
4987 	/* Use the first valid TX antenna. */
4988 	txant = IWN_LSB(sc->txchainmask);
4989 
4990 	memset(&linkq, 0, sizeof linkq);
4991 	linkq.id = wn->id;
4992 	linkq.antmsk_1stream = txant;
4993 
4994 	/*
4995 	 * The '2 stream' setup is a bit .. odd.
4996 	 *
4997 	 * For NICs that support only 1 antenna, default to IWN_ANT_AB or
4998 	 * the firmware panics (eg Intel 5100.)
4999 	 *
5000 	 * For NICs that support two antennas, we use ANT_AB.
5001 	 *
5002 	 * For NICs that support three antennas, we use the two that
5003 	 * wasn't the default one.
5004 	 *
5005 	 * XXX TODO: if bluetooth (full concurrent) is enabled, restrict
5006 	 * this to only one antenna.
5007 	 */
5008 
5009 	/* So - if there's no secondary antenna, assume IWN_ANT_AB */
5010 
5011 	/* Default - transmit on the other antennas */
5012 	linkq.antmsk_2stream = (sc->txchainmask & ~IWN_LSB(sc->txchainmask));
5013 
5014 	/* Now, if it's zero, set it to IWN_ANT_AB, so to not panic firmware */
5015 	if (linkq.antmsk_2stream == 0)
5016 		linkq.antmsk_2stream = IWN_ANT_AB;
5017 
5018 	/*
5019 	 * If the NIC is a two-stream TX NIC, configure the TX mask to
5020 	 * the default chainmask
5021 	 */
5022 	else if (sc->ntxchains == 2)
5023 		linkq.antmsk_2stream = sc->txchainmask;
5024 
5025 	linkq.ampdu_max = 32;		/* XXX negotiated? */
5026 	linkq.ampdu_threshold = 3;
5027 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5028 
5029 	DPRINTF(sc, IWN_DEBUG_XMIT,
5030 	    "%s: 1stream antenna=0x%02x, 2stream antenna=0x%02x, ntxstreams=%d\n",
5031 	    __func__,
5032 	    linkq.antmsk_1stream,
5033 	    linkq.antmsk_2stream,
5034 	    sc->ntxchains);
5035 
5036 	/*
5037 	 * Are we using 11n rates? Ensure the channel is
5038 	 * 11n _and_ we have some 11n rates, or don't
5039 	 * try.
5040 	 */
5041 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_htrates.rs_nrates > 0) {
5042 		rs = (struct ieee80211_rateset *) &ni->ni_htrates;
5043 		is_11n = 1;
5044 	} else {
5045 		rs = &ni->ni_rates;
5046 		is_11n = 0;
5047 	}
5048 
5049 	/* Start at highest available bit-rate. */
5050 	/*
5051 	 * XXX this is all very dirty!
5052 	 */
5053 	if (is_11n)
5054 		txrate = ni->ni_htrates.rs_nrates - 1;
5055 	else
5056 		txrate = rs->rs_nrates - 1;
5057 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
5058 		uint32_t plcp;
5059 
5060 		if (is_11n)
5061 			rate = IEEE80211_RATE_MCS | rs->rs_rates[txrate];
5062 		else
5063 			rate = RV(rs->rs_rates[txrate]);
5064 
5065 		DPRINTF(sc, IWN_DEBUG_XMIT,
5066 		    "%s: i=%d, txrate=%d, rate=0x%02x\n",
5067 		    __func__,
5068 		    i,
5069 		    txrate,
5070 		    rate);
5071 
5072 		/* Do rate -> PLCP config mapping */
5073 		plcp = iwn_rate_to_plcp(sc, ni, rate);
5074 		linkq.retry[i] = plcp;
5075 
5076 		/*
5077 		 * The mimo field is an index into the table which
5078 		 * indicates the first index where it and subsequent entries
5079 		 * will not be using MIMO.
5080 		 *
5081 		 * Since we're filling linkq from 0..15 and we're filling
5082 		 * from the higest MCS rates to the lowest rates, if we
5083 		 * _are_ doing a dual-stream rate, set mimo to idx+1 (ie,
5084 		 * the next entry.)  That way if the next entry is a non-MIMO
5085 		 * entry, we're already pointing at it.
5086 		 */
5087 		if ((le32toh(plcp) & IWN_RFLAG_MCS) &&
5088 		    RV(le32toh(plcp)) > 7)
5089 			linkq.mimo = i + 1;
5090 
5091 		/* Next retry at immediate lower bit-rate. */
5092 		if (txrate > 0)
5093 			txrate--;
5094 	}
5095 
5096 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5097 
5098 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
5099 #undef	RV
5100 }
5101 
5102 /*
5103  * Broadcast node is used to send group-addressed and management frames.
5104  */
5105 static int
5106 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
5107 {
5108 	struct iwn_ops *ops = &sc->ops;
5109 	struct ifnet *ifp = sc->sc_ifp;
5110 	struct ieee80211com *ic = ifp->if_l2com;
5111 	struct iwn_node_info node;
5112 	struct iwn_cmd_link_quality linkq;
5113 	uint8_t txant;
5114 	int i, error;
5115 
5116 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5117 
5118 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5119 
5120 	memset(&node, 0, sizeof node);
5121 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
5122 	node.id = sc->broadcast_id;
5123 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
5124 	if ((error = ops->add_node(sc, &node, async)) != 0)
5125 		return error;
5126 
5127 	/* Use the first valid TX antenna. */
5128 	txant = IWN_LSB(sc->txchainmask);
5129 
5130 	memset(&linkq, 0, sizeof linkq);
5131 	linkq.id = sc->broadcast_id;
5132 	linkq.antmsk_1stream = txant;
5133 	linkq.antmsk_2stream = IWN_ANT_AB;
5134 	linkq.ampdu_max = 64;
5135 	linkq.ampdu_threshold = 3;
5136 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
5137 
5138 	/* Use lowest mandatory bit-rate. */
5139 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
5140 		linkq.retry[0] = htole32(0xd);
5141 	else
5142 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
5143 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
5144 	/* Use same bit-rate for all TX retries. */
5145 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
5146 		linkq.retry[i] = linkq.retry[0];
5147 	}
5148 
5149 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5150 
5151 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
5152 }
5153 
5154 static int
5155 iwn_updateedca(struct ieee80211com *ic)
5156 {
5157 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
5158 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5159 	struct iwn_edca_params cmd;
5160 	int aci;
5161 
5162 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5163 
5164 	memset(&cmd, 0, sizeof cmd);
5165 	cmd.flags = htole32(IWN_EDCA_UPDATE);
5166 	for (aci = 0; aci < WME_NUM_AC; aci++) {
5167 		const struct wmeParams *ac =
5168 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
5169 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
5170 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
5171 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
5172 		cmd.ac[aci].txoplimit =
5173 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
5174 	}
5175 	IEEE80211_UNLOCK(ic);
5176 	IWN_LOCK(sc);
5177 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5178 	IWN_UNLOCK(sc);
5179 	IEEE80211_LOCK(ic);
5180 
5181 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5182 
5183 	return 0;
5184 #undef IWN_EXP2
5185 }
5186 
5187 static void
5188 iwn_update_mcast(struct ifnet *ifp)
5189 {
5190 	/* Ignore */
5191 }
5192 
5193 static void
5194 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
5195 {
5196 	struct iwn_cmd_led led;
5197 
5198 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5199 
5200 #if 0
5201 	/* XXX don't set LEDs during scan? */
5202 	if (sc->sc_is_scanning)
5203 		return;
5204 #endif
5205 
5206 	/* Clear microcode LED ownership. */
5207 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
5208 
5209 	led.which = which;
5210 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
5211 	led.off = off;
5212 	led.on = on;
5213 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
5214 }
5215 
5216 /*
5217  * Set the critical temperature at which the firmware will stop the radio
5218  * and notify us.
5219  */
5220 static int
5221 iwn_set_critical_temp(struct iwn_softc *sc)
5222 {
5223 	struct iwn_critical_temp crit;
5224 	int32_t temp;
5225 
5226 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5227 
5228 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
5229 
5230 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
5231 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
5232 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
5233 		temp = IWN_CTOK(110);
5234 	else
5235 		temp = 110;
5236 	memset(&crit, 0, sizeof crit);
5237 	crit.tempR = htole32(temp);
5238 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
5239 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
5240 }
5241 
5242 static int
5243 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
5244 {
5245 	struct iwn_cmd_timing cmd;
5246 	uint64_t val, mod;
5247 
5248 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5249 
5250 	memset(&cmd, 0, sizeof cmd);
5251 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
5252 	cmd.bintval = htole16(ni->ni_intval);
5253 	cmd.lintval = htole16(10);
5254 
5255 	/* Compute remaining time until next beacon. */
5256 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
5257 	mod = le64toh(cmd.tstamp) % val;
5258 	cmd.binitval = htole32((uint32_t)(val - mod));
5259 
5260 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
5261 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
5262 
5263 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
5264 }
5265 
5266 static void
5267 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
5268 {
5269 	struct ifnet *ifp = sc->sc_ifp;
5270 	struct ieee80211com *ic = ifp->if_l2com;
5271 
5272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5273 
5274 	/* Adjust TX power if need be (delta >= 3 degC). */
5275 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
5276 	    __func__, sc->temp, temp);
5277 	if (abs(temp - sc->temp) >= 3) {
5278 		/* Record temperature of last calibration. */
5279 		sc->temp = temp;
5280 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
5281 	}
5282 }
5283 
5284 /*
5285  * Set TX power for current channel (each rate has its own power settings).
5286  * This function takes into account the regulatory information from EEPROM,
5287  * the current temperature and the current voltage.
5288  */
5289 static int
5290 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5291     int async)
5292 {
5293 /* Fixed-point arithmetic division using a n-bit fractional part. */
5294 #define fdivround(a, b, n)	\
5295 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
5296 /* Linear interpolation. */
5297 #define interpolate(x, x1, y1, x2, y2, n)	\
5298 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
5299 
5300 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
5301 	struct iwn_ucode_info *uc = &sc->ucode_info;
5302 	struct iwn4965_cmd_txpower cmd;
5303 	struct iwn4965_eeprom_chan_samples *chans;
5304 	const uint8_t *rf_gain, *dsp_gain;
5305 	int32_t vdiff, tdiff;
5306 	int i, c, grp, maxpwr;
5307 	uint8_t chan;
5308 
5309 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
5310 	/* Retrieve current channel from last RXON. */
5311 	chan = sc->rxon->chan;
5312 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
5313 	    chan);
5314 
5315 	memset(&cmd, 0, sizeof cmd);
5316 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
5317 	cmd.chan = chan;
5318 
5319 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
5320 		maxpwr   = sc->maxpwr5GHz;
5321 		rf_gain  = iwn4965_rf_gain_5ghz;
5322 		dsp_gain = iwn4965_dsp_gain_5ghz;
5323 	} else {
5324 		maxpwr   = sc->maxpwr2GHz;
5325 		rf_gain  = iwn4965_rf_gain_2ghz;
5326 		dsp_gain = iwn4965_dsp_gain_2ghz;
5327 	}
5328 
5329 	/* Compute voltage compensation. */
5330 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
5331 	if (vdiff > 0)
5332 		vdiff *= 2;
5333 	if (abs(vdiff) > 2)
5334 		vdiff = 0;
5335 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5336 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
5337 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
5338 
5339 	/* Get channel attenuation group. */
5340 	if (chan <= 20)		/* 1-20 */
5341 		grp = 4;
5342 	else if (chan <= 43)	/* 34-43 */
5343 		grp = 0;
5344 	else if (chan <= 70)	/* 44-70 */
5345 		grp = 1;
5346 	else if (chan <= 124)	/* 71-124 */
5347 		grp = 2;
5348 	else			/* 125-200 */
5349 		grp = 3;
5350 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5351 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
5352 
5353 	/* Get channel sub-band. */
5354 	for (i = 0; i < IWN_NBANDS; i++)
5355 		if (sc->bands[i].lo != 0 &&
5356 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
5357 			break;
5358 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
5359 		return EINVAL;
5360 	chans = sc->bands[i].chans;
5361 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5362 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
5363 
5364 	for (c = 0; c < 2; c++) {
5365 		uint8_t power, gain, temp;
5366 		int maxchpwr, pwr, ridx, idx;
5367 
5368 		power = interpolate(chan,
5369 		    chans[0].num, chans[0].samples[c][1].power,
5370 		    chans[1].num, chans[1].samples[c][1].power, 1);
5371 		gain  = interpolate(chan,
5372 		    chans[0].num, chans[0].samples[c][1].gain,
5373 		    chans[1].num, chans[1].samples[c][1].gain, 1);
5374 		temp  = interpolate(chan,
5375 		    chans[0].num, chans[0].samples[c][1].temp,
5376 		    chans[1].num, chans[1].samples[c][1].temp, 1);
5377 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5378 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
5379 		    __func__, c, power, gain, temp);
5380 
5381 		/* Compute temperature compensation. */
5382 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
5383 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5384 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
5385 		    __func__, tdiff, sc->temp, temp);
5386 
5387 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
5388 			/* Convert dBm to half-dBm. */
5389 			maxchpwr = sc->maxpwr[chan] * 2;
5390 			if ((ridx / 8) & 1)
5391 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
5392 
5393 			pwr = maxpwr;
5394 
5395 			/* Adjust TX power based on rate. */
5396 			if ((ridx % 8) == 5)
5397 				pwr -= 15;	/* OFDM48: -7.5dB */
5398 			else if ((ridx % 8) == 6)
5399 				pwr -= 17;	/* OFDM54: -8.5dB */
5400 			else if ((ridx % 8) == 7)
5401 				pwr -= 20;	/* OFDM60: -10dB */
5402 			else
5403 				pwr -= 10;	/* Others: -5dB */
5404 
5405 			/* Do not exceed channel max TX power. */
5406 			if (pwr > maxchpwr)
5407 				pwr = maxchpwr;
5408 
5409 			idx = gain - (pwr - power) - tdiff - vdiff;
5410 			if ((ridx / 8) & 1)	/* MIMO */
5411 				idx += (int32_t)le32toh(uc->atten[grp][c]);
5412 
5413 			if (cmd.band == 0)
5414 				idx += 9;	/* 5GHz */
5415 			if (ridx == IWN_RIDX_MAX)
5416 				idx += 5;	/* CCK */
5417 
5418 			/* Make sure idx stays in a valid range. */
5419 			if (idx < 0)
5420 				idx = 0;
5421 			else if (idx > IWN4965_MAX_PWR_INDEX)
5422 				idx = IWN4965_MAX_PWR_INDEX;
5423 
5424 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5425 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
5426 			    __func__, c, ridx, idx);
5427 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
5428 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
5429 		}
5430 	}
5431 
5432 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
5433 	    "%s: set tx power for chan %d\n", __func__, chan);
5434 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
5435 
5436 #undef interpolate
5437 #undef fdivround
5438 }
5439 
5440 static int
5441 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
5442     int async)
5443 {
5444 	struct iwn5000_cmd_txpower cmd;
5445 
5446 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5447 
5448 	/*
5449 	 * TX power calibration is handled automatically by the firmware
5450 	 * for 5000 Series.
5451 	 */
5452 	memset(&cmd, 0, sizeof cmd);
5453 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
5454 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
5455 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
5456 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
5457 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
5458 }
5459 
5460 /*
5461  * Retrieve the maximum RSSI (in dBm) among receivers.
5462  */
5463 static int
5464 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5465 {
5466 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
5467 	uint8_t mask, agc;
5468 	int rssi;
5469 
5470 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5471 
5472 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
5473 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
5474 
5475 	rssi = 0;
5476 	if (mask & IWN_ANT_A)
5477 		rssi = MAX(rssi, phy->rssi[0]);
5478 	if (mask & IWN_ANT_B)
5479 		rssi = MAX(rssi, phy->rssi[2]);
5480 	if (mask & IWN_ANT_C)
5481 		rssi = MAX(rssi, phy->rssi[4]);
5482 
5483 	DPRINTF(sc, IWN_DEBUG_RECV,
5484 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
5485 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
5486 	    rssi - agc - IWN_RSSI_TO_DBM);
5487 	return rssi - agc - IWN_RSSI_TO_DBM;
5488 }
5489 
5490 static int
5491 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
5492 {
5493 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
5494 	uint8_t agc;
5495 	int rssi;
5496 
5497 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5498 
5499 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
5500 
5501 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
5502 		   le16toh(phy->rssi[1]) & 0xff);
5503 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
5504 
5505 	DPRINTF(sc, IWN_DEBUG_RECV,
5506 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
5507 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
5508 	    rssi - agc - IWN_RSSI_TO_DBM);
5509 	return rssi - agc - IWN_RSSI_TO_DBM;
5510 }
5511 
5512 /*
5513  * Retrieve the average noise (in dBm) among receivers.
5514  */
5515 static int
5516 iwn_get_noise(const struct iwn_rx_general_stats *stats)
5517 {
5518 	int i, total, nbant, noise;
5519 
5520 	total = nbant = 0;
5521 	for (i = 0; i < 3; i++) {
5522 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
5523 			continue;
5524 		total += noise;
5525 		nbant++;
5526 	}
5527 	/* There should be at least one antenna but check anyway. */
5528 	return (nbant == 0) ? -127 : (total / nbant) - 107;
5529 }
5530 
5531 /*
5532  * Compute temperature (in degC) from last received statistics.
5533  */
5534 static int
5535 iwn4965_get_temperature(struct iwn_softc *sc)
5536 {
5537 	struct iwn_ucode_info *uc = &sc->ucode_info;
5538 	int32_t r1, r2, r3, r4, temp;
5539 
5540 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5541 
5542 	r1 = le32toh(uc->temp[0].chan20MHz);
5543 	r2 = le32toh(uc->temp[1].chan20MHz);
5544 	r3 = le32toh(uc->temp[2].chan20MHz);
5545 	r4 = le32toh(sc->rawtemp);
5546 
5547 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
5548 		return 0;
5549 
5550 	/* Sign-extend 23-bit R4 value to 32-bit. */
5551 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
5552 	/* Compute temperature in Kelvin. */
5553 	temp = (259 * (r4 - r2)) / (r3 - r1);
5554 	temp = (temp * 97) / 100 + 8;
5555 
5556 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
5557 	    IWN_KTOC(temp));
5558 	return IWN_KTOC(temp);
5559 }
5560 
5561 static int
5562 iwn5000_get_temperature(struct iwn_softc *sc)
5563 {
5564 	int32_t temp;
5565 
5566 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5567 
5568 	/*
5569 	 * Temperature is not used by the driver for 5000 Series because
5570 	 * TX power calibration is handled by firmware.
5571 	 */
5572 	temp = le32toh(sc->rawtemp);
5573 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
5574 		temp = (temp / -5) + sc->temp_off;
5575 		temp = IWN_KTOC(temp);
5576 	}
5577 	return temp;
5578 }
5579 
5580 /*
5581  * Initialize sensitivity calibration state machine.
5582  */
5583 static int
5584 iwn_init_sensitivity(struct iwn_softc *sc)
5585 {
5586 	struct iwn_ops *ops = &sc->ops;
5587 	struct iwn_calib_state *calib = &sc->calib;
5588 	uint32_t flags;
5589 	int error;
5590 
5591 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5592 
5593 	/* Reset calibration state machine. */
5594 	memset(calib, 0, sizeof (*calib));
5595 	calib->state = IWN_CALIB_STATE_INIT;
5596 	calib->cck_state = IWN_CCK_STATE_HIFA;
5597 	/* Set initial correlation values. */
5598 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
5599 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
5600 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
5601 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
5602 	calib->cck_x4      = 125;
5603 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
5604 	calib->energy_cck  = sc->limits->energy_cck;
5605 
5606 	/* Write initial sensitivity. */
5607 	if ((error = iwn_send_sensitivity(sc)) != 0)
5608 		return error;
5609 
5610 	/* Write initial gains. */
5611 	if ((error = ops->init_gains(sc)) != 0)
5612 		return error;
5613 
5614 	/* Request statistics at each beacon interval. */
5615 	flags = 0;
5616 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
5617 	    __func__);
5618 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
5619 }
5620 
5621 /*
5622  * Collect noise and RSSI statistics for the first 20 beacons received
5623  * after association and use them to determine connected antennas and
5624  * to set differential gains.
5625  */
5626 static void
5627 iwn_collect_noise(struct iwn_softc *sc,
5628     const struct iwn_rx_general_stats *stats)
5629 {
5630 	struct iwn_ops *ops = &sc->ops;
5631 	struct iwn_calib_state *calib = &sc->calib;
5632 	struct ifnet *ifp = sc->sc_ifp;
5633 	struct ieee80211com *ic = ifp->if_l2com;
5634 	uint32_t val;
5635 	int i;
5636 
5637 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5638 
5639 	/* Accumulate RSSI and noise for all 3 antennas. */
5640 	for (i = 0; i < 3; i++) {
5641 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
5642 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
5643 	}
5644 	/* NB: We update differential gains only once after 20 beacons. */
5645 	if (++calib->nbeacons < 20)
5646 		return;
5647 
5648 	/* Determine highest average RSSI. */
5649 	val = MAX(calib->rssi[0], calib->rssi[1]);
5650 	val = MAX(calib->rssi[2], val);
5651 
5652 	/* Determine which antennas are connected. */
5653 	sc->chainmask = sc->rxchainmask;
5654 	for (i = 0; i < 3; i++)
5655 		if (val - calib->rssi[i] > 15 * 20)
5656 			sc->chainmask &= ~(1 << i);
5657 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5658 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
5659 	    __func__, sc->rxchainmask, sc->chainmask);
5660 
5661 	/* If none of the TX antennas are connected, keep at least one. */
5662 	if ((sc->chainmask & sc->txchainmask) == 0)
5663 		sc->chainmask |= IWN_LSB(sc->txchainmask);
5664 
5665 	(void)ops->set_gains(sc);
5666 	calib->state = IWN_CALIB_STATE_RUN;
5667 
5668 #ifdef notyet
5669 	/* XXX Disable RX chains with no antennas connected. */
5670 	sc->rxon->rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
5671 	if (sc->sc_is_scanning)
5672 		device_printf(sc->sc_dev,
5673 		    "%s: is_scanning set, before RXON\n",
5674 		    __func__);
5675 	(void)iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
5676 #endif
5677 
5678 	/* Enable power-saving mode if requested by user. */
5679 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5680 		(void)iwn_set_pslevel(sc, 0, 3, 1);
5681 
5682 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5683 
5684 }
5685 
5686 static int
5687 iwn4965_init_gains(struct iwn_softc *sc)
5688 {
5689 	struct iwn_phy_calib_gain cmd;
5690 
5691 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5692 
5693 	memset(&cmd, 0, sizeof cmd);
5694 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5695 	/* Differential gains initially set to 0 for all 3 antennas. */
5696 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5697 	    "%s: setting initial differential gains\n", __func__);
5698 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5699 }
5700 
5701 static int
5702 iwn5000_init_gains(struct iwn_softc *sc)
5703 {
5704 	struct iwn_phy_calib cmd;
5705 
5706 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5707 
5708 	memset(&cmd, 0, sizeof cmd);
5709 	cmd.code = sc->reset_noise_gain;
5710 	cmd.ngroups = 1;
5711 	cmd.isvalid = 1;
5712 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5713 	    "%s: setting initial differential gains\n", __func__);
5714 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5715 }
5716 
5717 static int
5718 iwn4965_set_gains(struct iwn_softc *sc)
5719 {
5720 	struct iwn_calib_state *calib = &sc->calib;
5721 	struct iwn_phy_calib_gain cmd;
5722 	int i, delta, noise;
5723 
5724 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5725 
5726 	/* Get minimal noise among connected antennas. */
5727 	noise = INT_MAX;	/* NB: There's at least one antenna. */
5728 	for (i = 0; i < 3; i++)
5729 		if (sc->chainmask & (1 << i))
5730 			noise = MIN(calib->noise[i], noise);
5731 
5732 	memset(&cmd, 0, sizeof cmd);
5733 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
5734 	/* Set differential gains for connected antennas. */
5735 	for (i = 0; i < 3; i++) {
5736 		if (sc->chainmask & (1 << i)) {
5737 			/* Compute attenuation (in unit of 1.5dB). */
5738 			delta = (noise - (int32_t)calib->noise[i]) / 30;
5739 			/* NB: delta <= 0 */
5740 			/* Limit to [-4.5dB,0]. */
5741 			cmd.gain[i] = MIN(abs(delta), 3);
5742 			if (delta < 0)
5743 				cmd.gain[i] |= 1 << 2;	/* sign bit */
5744 		}
5745 	}
5746 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5747 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
5748 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
5749 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5750 }
5751 
5752 static int
5753 iwn5000_set_gains(struct iwn_softc *sc)
5754 {
5755 	struct iwn_calib_state *calib = &sc->calib;
5756 	struct iwn_phy_calib_gain cmd;
5757 	int i, ant, div, delta;
5758 
5759 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
5760 
5761 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
5762 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
5763 
5764 	memset(&cmd, 0, sizeof cmd);
5765 	cmd.code = sc->noise_gain;
5766 	cmd.ngroups = 1;
5767 	cmd.isvalid = 1;
5768 	/* Get first available RX antenna as referential. */
5769 	ant = IWN_LSB(sc->rxchainmask);
5770 	/* Set differential gains for other antennas. */
5771 	for (i = ant + 1; i < 3; i++) {
5772 		if (sc->chainmask & (1 << i)) {
5773 			/* The delta is relative to antenna "ant". */
5774 			delta = ((int32_t)calib->noise[ant] -
5775 			    (int32_t)calib->noise[i]) / div;
5776 			/* Limit to [-4.5dB,+4.5dB]. */
5777 			cmd.gain[i - 1] = MIN(abs(delta), 3);
5778 			if (delta < 0)
5779 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
5780 		}
5781 	}
5782 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5783 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
5784 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
5785 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
5786 }
5787 
5788 /*
5789  * Tune RF RX sensitivity based on the number of false alarms detected
5790  * during the last beacon period.
5791  */
5792 static void
5793 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
5794 {
5795 #define inc(val, inc, max)			\
5796 	if ((val) < (max)) {			\
5797 		if ((val) < (max) - (inc))	\
5798 			(val) += (inc);		\
5799 		else				\
5800 			(val) = (max);		\
5801 		needs_update = 1;		\
5802 	}
5803 #define dec(val, dec, min)			\
5804 	if ((val) > (min)) {			\
5805 		if ((val) > (min) + (dec))	\
5806 			(val) -= (dec);		\
5807 		else				\
5808 			(val) = (min);		\
5809 		needs_update = 1;		\
5810 	}
5811 
5812 	const struct iwn_sensitivity_limits *limits = sc->limits;
5813 	struct iwn_calib_state *calib = &sc->calib;
5814 	uint32_t val, rxena, fa;
5815 	uint32_t energy[3], energy_min;
5816 	uint8_t noise[3], noise_ref;
5817 	int i, needs_update = 0;
5818 
5819 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
5820 
5821 	/* Check that we've been enabled long enough. */
5822 	if ((rxena = le32toh(stats->general.load)) == 0){
5823 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end not so long\n", __func__);
5824 		return;
5825 	}
5826 
5827 	/* Compute number of false alarms since last call for OFDM. */
5828 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
5829 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
5830 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5831 
5832 	if (fa > 50 * rxena) {
5833 		/* High false alarm count, decrease sensitivity. */
5834 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5835 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
5836 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
5837 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
5838 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
5839 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
5840 
5841 	} else if (fa < 5 * rxena) {
5842 		/* Low false alarm count, increase sensitivity. */
5843 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5844 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
5845 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
5846 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
5847 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
5848 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
5849 	}
5850 
5851 	/* Compute maximum noise among 3 receivers. */
5852 	for (i = 0; i < 3; i++)
5853 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
5854 	val = MAX(noise[0], noise[1]);
5855 	val = MAX(noise[2], val);
5856 	/* Insert it into our samples table. */
5857 	calib->noise_samples[calib->cur_noise_sample] = val;
5858 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
5859 
5860 	/* Compute maximum noise among last 20 samples. */
5861 	noise_ref = calib->noise_samples[0];
5862 	for (i = 1; i < 20; i++)
5863 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
5864 
5865 	/* Compute maximum energy among 3 receivers. */
5866 	for (i = 0; i < 3; i++)
5867 		energy[i] = le32toh(stats->general.energy[i]);
5868 	val = MIN(energy[0], energy[1]);
5869 	val = MIN(energy[2], val);
5870 	/* Insert it into our samples table. */
5871 	calib->energy_samples[calib->cur_energy_sample] = val;
5872 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
5873 
5874 	/* Compute minimum energy among last 10 samples. */
5875 	energy_min = calib->energy_samples[0];
5876 	for (i = 1; i < 10; i++)
5877 		energy_min = MAX(energy_min, calib->energy_samples[i]);
5878 	energy_min += 6;
5879 
5880 	/* Compute number of false alarms since last call for CCK. */
5881 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
5882 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
5883 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
5884 
5885 	if (fa > 50 * rxena) {
5886 		/* High false alarm count, decrease sensitivity. */
5887 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5888 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
5889 		calib->cck_state = IWN_CCK_STATE_HIFA;
5890 		calib->low_fa = 0;
5891 
5892 		if (calib->cck_x4 > 160) {
5893 			calib->noise_ref = noise_ref;
5894 			if (calib->energy_cck > 2)
5895 				dec(calib->energy_cck, 2, energy_min);
5896 		}
5897 		if (calib->cck_x4 < 160) {
5898 			calib->cck_x4 = 161;
5899 			needs_update = 1;
5900 		} else
5901 			inc(calib->cck_x4, 3, limits->max_cck_x4);
5902 
5903 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
5904 
5905 	} else if (fa < 5 * rxena) {
5906 		/* Low false alarm count, increase sensitivity. */
5907 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5908 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
5909 		calib->cck_state = IWN_CCK_STATE_LOFA;
5910 		calib->low_fa++;
5911 
5912 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
5913 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
5914 		     calib->low_fa > 100)) {
5915 			inc(calib->energy_cck, 2, limits->min_energy_cck);
5916 			dec(calib->cck_x4,     3, limits->min_cck_x4);
5917 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
5918 		}
5919 	} else {
5920 		/* Not worth to increase or decrease sensitivity. */
5921 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5922 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
5923 		calib->low_fa = 0;
5924 		calib->noise_ref = noise_ref;
5925 
5926 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
5927 			/* Previous interval had many false alarms. */
5928 			dec(calib->energy_cck, 8, energy_min);
5929 		}
5930 		calib->cck_state = IWN_CCK_STATE_INIT;
5931 	}
5932 
5933 	if (needs_update)
5934 		(void)iwn_send_sensitivity(sc);
5935 
5936 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
5937 
5938 #undef dec
5939 #undef inc
5940 }
5941 
5942 static int
5943 iwn_send_sensitivity(struct iwn_softc *sc)
5944 {
5945 	struct iwn_calib_state *calib = &sc->calib;
5946 	struct iwn_enhanced_sensitivity_cmd cmd;
5947 	int len;
5948 
5949 	memset(&cmd, 0, sizeof cmd);
5950 	len = sizeof (struct iwn_sensitivity_cmd);
5951 	cmd.which = IWN_SENSITIVITY_WORKTBL;
5952 	/* OFDM modulation. */
5953 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
5954 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
5955 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
5956 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
5957 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
5958 	cmd.energy_ofdm_th     = htole16(62);
5959 	/* CCK modulation. */
5960 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
5961 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
5962 	cmd.energy_cck         = htole16(calib->energy_cck);
5963 	/* Barker modulation: use default values. */
5964 	cmd.corr_barker        = htole16(190);
5965 	cmd.corr_barker_mrc    = htole16(sc->limits->barker_mrc);
5966 
5967 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5968 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
5969 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
5970 	    calib->ofdm_mrc_x4, calib->cck_x4,
5971 	    calib->cck_mrc_x4, calib->energy_cck);
5972 
5973 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
5974 		goto send;
5975 	/* Enhanced sensitivity settings. */
5976 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
5977 	cmd.ofdm_det_slope_mrc = htole16(668);
5978 	cmd.ofdm_det_icept_mrc = htole16(4);
5979 	cmd.ofdm_det_slope     = htole16(486);
5980 	cmd.ofdm_det_icept     = htole16(37);
5981 	cmd.cck_det_slope_mrc  = htole16(853);
5982 	cmd.cck_det_icept_mrc  = htole16(4);
5983 	cmd.cck_det_slope      = htole16(476);
5984 	cmd.cck_det_icept      = htole16(99);
5985 send:
5986 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
5987 }
5988 
5989 /*
5990  * Look at the increase of PLCP errors over time; if it exceeds
5991  * a programmed threshold then trigger an RF retune.
5992  */
5993 static void
5994 iwn_check_rx_recovery(struct iwn_softc *sc, struct iwn_stats *rs)
5995 {
5996 	int32_t delta_ofdm, delta_ht, delta_cck;
5997 	struct iwn_calib_state *calib = &sc->calib;
5998 	int delta_ticks, cur_ticks;
5999 	int delta_msec;
6000 	int thresh;
6001 
6002 	/*
6003 	 * Calculate the difference between the current and
6004 	 * previous statistics.
6005 	 */
6006 	delta_cck = le32toh(rs->rx.cck.bad_plcp) - calib->bad_plcp_cck;
6007 	delta_ofdm = le32toh(rs->rx.ofdm.bad_plcp) - calib->bad_plcp_ofdm;
6008 	delta_ht = le32toh(rs->rx.ht.bad_plcp) - calib->bad_plcp_ht;
6009 
6010 	/*
6011 	 * Calculate the delta in time between successive statistics
6012 	 * messages.  Yes, it can roll over; so we make sure that
6013 	 * this doesn't happen.
6014 	 *
6015 	 * XXX go figure out what to do about rollover
6016 	 * XXX go figure out what to do if ticks rolls over to -ve instead!
6017 	 * XXX go stab signed integer overflow undefined-ness in the face.
6018 	 */
6019 	cur_ticks = ticks;
6020 	delta_ticks = cur_ticks - sc->last_calib_ticks;
6021 
6022 	/*
6023 	 * If any are negative, then the firmware likely reset; so just
6024 	 * bail.  We'll pick this up next time.
6025 	 */
6026 	if (delta_cck < 0 || delta_ofdm < 0 || delta_ht < 0 || delta_ticks < 0)
6027 		return;
6028 
6029 	/*
6030 	 * delta_ticks is in ticks; we need to convert it up to milliseconds
6031 	 * so we can do some useful math with it.
6032 	 */
6033 	delta_msec = ticks_to_msecs(delta_ticks);
6034 
6035 	/*
6036 	 * Calculate what our threshold is given the current delta_msec.
6037 	 */
6038 	thresh = sc->base_params->plcp_err_threshold * delta_msec;
6039 
6040 	DPRINTF(sc, IWN_DEBUG_STATE,
6041 	    "%s: time delta: %d; cck=%d, ofdm=%d, ht=%d, total=%d, thresh=%d\n",
6042 	    __func__,
6043 	    delta_msec,
6044 	    delta_cck,
6045 	    delta_ofdm,
6046 	    delta_ht,
6047 	    (delta_msec + delta_cck + delta_ofdm + delta_ht),
6048 	    thresh);
6049 
6050 	/*
6051 	 * If we need a retune, then schedule a single channel scan
6052 	 * to a channel that isn't the currently active one!
6053 	 *
6054 	 * The math from linux iwlwifi:
6055 	 *
6056 	 * if ((delta * 100 / msecs) > threshold)
6057 	 */
6058 	if (thresh > 0 && (delta_cck + delta_ofdm + delta_ht) * 100 > thresh) {
6059 		DPRINTF(sc, IWN_DEBUG_ANY,
6060 		    "%s: PLCP error threshold raw (%d) comparison (%d) "
6061 		    "over limit (%d); retune!\n",
6062 		    __func__,
6063 		    (delta_cck + delta_ofdm + delta_ht),
6064 		    (delta_cck + delta_ofdm + delta_ht) * 100,
6065 		    thresh);
6066 	}
6067 }
6068 
6069 /*
6070  * Set STA mode power saving level (between 0 and 5).
6071  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
6072  */
6073 static int
6074 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
6075 {
6076 	struct iwn_pmgt_cmd cmd;
6077 	const struct iwn_pmgt *pmgt;
6078 	uint32_t max, skip_dtim;
6079 	uint32_t reg;
6080 	int i;
6081 
6082 	DPRINTF(sc, IWN_DEBUG_PWRSAVE,
6083 	    "%s: dtim=%d, level=%d, async=%d\n",
6084 	    __func__,
6085 	    dtim,
6086 	    level,
6087 	    async);
6088 
6089 	/* Select which PS parameters to use. */
6090 	if (dtim <= 2)
6091 		pmgt = &iwn_pmgt[0][level];
6092 	else if (dtim <= 10)
6093 		pmgt = &iwn_pmgt[1][level];
6094 	else
6095 		pmgt = &iwn_pmgt[2][level];
6096 
6097 	memset(&cmd, 0, sizeof cmd);
6098 	if (level != 0)	/* not CAM */
6099 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
6100 	if (level == 5)
6101 		cmd.flags |= htole16(IWN_PS_FAST_PD);
6102 	/* Retrieve PCIe Active State Power Management (ASPM). */
6103 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6104 	if (!(reg & 0x1))	/* L0s Entry disabled. */
6105 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
6106 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
6107 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
6108 
6109 	if (dtim == 0) {
6110 		dtim = 1;
6111 		skip_dtim = 0;
6112 	} else
6113 		skip_dtim = pmgt->skip_dtim;
6114 	if (skip_dtim != 0) {
6115 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
6116 		max = pmgt->intval[4];
6117 		if (max == (uint32_t)-1)
6118 			max = dtim * (skip_dtim + 1);
6119 		else if (max > dtim)
6120 			max = (max / dtim) * dtim;
6121 	} else
6122 		max = dtim;
6123 	for (i = 0; i < 5; i++)
6124 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
6125 
6126 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
6127 	    level);
6128 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
6129 }
6130 
6131 static int
6132 iwn_send_btcoex(struct iwn_softc *sc)
6133 {
6134 	struct iwn_bluetooth cmd;
6135 
6136 	memset(&cmd, 0, sizeof cmd);
6137 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
6138 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
6139 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
6140 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
6141 	    __func__);
6142 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
6143 }
6144 
6145 static int
6146 iwn_send_advanced_btcoex(struct iwn_softc *sc)
6147 {
6148 	static const uint32_t btcoex_3wire[12] = {
6149 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
6150 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
6151 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
6152 	};
6153 	struct iwn6000_btcoex_config btconfig;
6154 	struct iwn2000_btcoex_config btconfig2k;
6155 	struct iwn_btcoex_priotable btprio;
6156 	struct iwn_btcoex_prot btprot;
6157 	int error, i;
6158 	uint8_t flags;
6159 
6160 	memset(&btconfig, 0, sizeof btconfig);
6161 	memset(&btconfig2k, 0, sizeof btconfig2k);
6162 
6163 	flags = IWN_BT_FLAG_COEX6000_MODE_3W <<
6164 	    IWN_BT_FLAG_COEX6000_MODE_SHIFT; // Done as is in linux kernel 3.2
6165 
6166 	if (sc->base_params->bt_sco_disable)
6167 		flags &= ~IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6168 	else
6169 		flags |= IWN_BT_FLAG_SYNC_2_BT_DISABLE;
6170 
6171 	flags |= IWN_BT_FLAG_COEX6000_CHAN_INHIBITION;
6172 
6173 	/* Default flags result is 145 as old value */
6174 
6175 	/*
6176 	 * Flags value has to be review. Values must change if we
6177 	 * which to disable it
6178 	 */
6179 	if (sc->base_params->bt_session_2) {
6180 		btconfig2k.flags = flags;
6181 		btconfig2k.max_kill = 5;
6182 		btconfig2k.bt3_t7_timer = 1;
6183 		btconfig2k.kill_ack = htole32(0xffff0000);
6184 		btconfig2k.kill_cts = htole32(0xffff0000);
6185 		btconfig2k.sample_time = 2;
6186 		btconfig2k.bt3_t2_timer = 0xc;
6187 
6188 		for (i = 0; i < 12; i++)
6189 			btconfig2k.lookup_table[i] = htole32(btcoex_3wire[i]);
6190 		btconfig2k.valid = htole16(0xff);
6191 		btconfig2k.prio_boost = htole32(0xf0);
6192 		DPRINTF(sc, IWN_DEBUG_RESET,
6193 		    "%s: configuring advanced bluetooth coexistence"
6194 		    " session 2, flags : 0x%x\n",
6195 		    __func__,
6196 		    flags);
6197 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig2k,
6198 		    sizeof(btconfig2k), 1);
6199 	} else {
6200 		btconfig.flags = flags;
6201 		btconfig.max_kill = 5;
6202 		btconfig.bt3_t7_timer = 1;
6203 		btconfig.kill_ack = htole32(0xffff0000);
6204 		btconfig.kill_cts = htole32(0xffff0000);
6205 		btconfig.sample_time = 2;
6206 		btconfig.bt3_t2_timer = 0xc;
6207 
6208 		for (i = 0; i < 12; i++)
6209 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
6210 		btconfig.valid = htole16(0xff);
6211 		btconfig.prio_boost = 0xf0;
6212 		DPRINTF(sc, IWN_DEBUG_RESET,
6213 		    "%s: configuring advanced bluetooth coexistence,"
6214 		    " flags : 0x%x\n",
6215 		    __func__,
6216 		    flags);
6217 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
6218 		    sizeof(btconfig), 1);
6219 	}
6220 
6221 	if (error != 0)
6222 		return error;
6223 
6224 	memset(&btprio, 0, sizeof btprio);
6225 	btprio.calib_init1 = 0x6;
6226 	btprio.calib_init2 = 0x7;
6227 	btprio.calib_periodic_low1 = 0x2;
6228 	btprio.calib_periodic_low2 = 0x3;
6229 	btprio.calib_periodic_high1 = 0x4;
6230 	btprio.calib_periodic_high2 = 0x5;
6231 	btprio.dtim = 0x6;
6232 	btprio.scan52 = 0x8;
6233 	btprio.scan24 = 0xa;
6234 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
6235 	    1);
6236 	if (error != 0)
6237 		return error;
6238 
6239 	/* Force BT state machine change. */
6240 	memset(&btprot, 0, sizeof btprot);
6241 	btprot.open = 1;
6242 	btprot.type = 1;
6243 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6244 	if (error != 0)
6245 		return error;
6246 	btprot.open = 0;
6247 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
6248 }
6249 
6250 static int
6251 iwn5000_runtime_calib(struct iwn_softc *sc)
6252 {
6253 	struct iwn5000_calib_config cmd;
6254 
6255 	memset(&cmd, 0, sizeof cmd);
6256 	cmd.ucode.once.enable = 0xffffffff;
6257 	cmd.ucode.once.start = IWN5000_CALIB_DC;
6258 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
6259 	    "%s: configuring runtime calibration\n", __func__);
6260 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
6261 }
6262 
6263 static int
6264 iwn_config(struct iwn_softc *sc)
6265 {
6266 	struct iwn_ops *ops = &sc->ops;
6267 	struct ifnet *ifp = sc->sc_ifp;
6268 	struct ieee80211com *ic = ifp->if_l2com;
6269 	uint32_t txmask;
6270 	uint16_t rxchain;
6271 	int error;
6272 
6273 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6274 
6275 	if ((sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET)
6276 	    && (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2)) {
6277 		device_printf(sc->sc_dev,"%s: temp_offset and temp_offsetv2 are"
6278 		    " exclusive each together. Review NIC config file. Conf"
6279 		    " :  0x%08x Flags :  0x%08x  \n", __func__,
6280 		    sc->base_params->calib_need,
6281 		    (IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET |
6282 		    IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2));
6283 		return (EINVAL);
6284 	}
6285 
6286 	/* Compute temperature calib if needed. Will be send by send calib */
6287 	if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSET) {
6288 		error = iwn5000_temp_offset_calib(sc);
6289 		if (error != 0) {
6290 			device_printf(sc->sc_dev,
6291 			    "%s: could not set temperature offset\n", __func__);
6292 			return (error);
6293 		}
6294 	} else if (sc->base_params->calib_need & IWN_FLG_NEED_PHY_CALIB_TEMP_OFFSETv2) {
6295 		error = iwn5000_temp_offset_calibv2(sc);
6296 		if (error != 0) {
6297 			device_printf(sc->sc_dev,
6298 			    "%s: could not compute temperature offset v2\n",
6299 			    __func__);
6300 			return (error);
6301 		}
6302 	}
6303 
6304 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6305 		/* Configure runtime DC calibration. */
6306 		error = iwn5000_runtime_calib(sc);
6307 		if (error != 0) {
6308 			device_printf(sc->sc_dev,
6309 			    "%s: could not configure runtime calibration\n",
6310 			    __func__);
6311 			return error;
6312 		}
6313 	}
6314 
6315 	/* Configure valid TX chains for >=5000 Series. */
6316 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
6317 		txmask = htole32(sc->txchainmask);
6318 		DPRINTF(sc, IWN_DEBUG_RESET,
6319 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
6320 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
6321 		    sizeof txmask, 0);
6322 		if (error != 0) {
6323 			device_printf(sc->sc_dev,
6324 			    "%s: could not configure valid TX chains, "
6325 			    "error %d\n", __func__, error);
6326 			return error;
6327 		}
6328 	}
6329 
6330 	/* Configure bluetooth coexistence. */
6331 	error = 0;
6332 
6333 	/* Configure bluetooth coexistence if needed. */
6334 	if (sc->base_params->bt_mode == IWN_BT_ADVANCED)
6335 		error = iwn_send_advanced_btcoex(sc);
6336 	if (sc->base_params->bt_mode == IWN_BT_SIMPLE)
6337 		error = iwn_send_btcoex(sc);
6338 
6339 	if (error != 0) {
6340 		device_printf(sc->sc_dev,
6341 		    "%s: could not configure bluetooth coexistence, error %d\n",
6342 		    __func__, error);
6343 		return error;
6344 	}
6345 
6346 	/* Set mode, channel, RX filter and enable RX. */
6347 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6348 	memset(sc->rxon, 0, sizeof (struct iwn_rxon));
6349 	IEEE80211_ADDR_COPY(sc->rxon->myaddr, IF_LLADDR(ifp));
6350 	IEEE80211_ADDR_COPY(sc->rxon->wlap, IF_LLADDR(ifp));
6351 	sc->rxon->chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
6352 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6353 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
6354 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6355 	switch (ic->ic_opmode) {
6356 	case IEEE80211_M_STA:
6357 		sc->rxon->mode = IWN_MODE_STA;
6358 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST);
6359 		break;
6360 	case IEEE80211_M_MONITOR:
6361 		sc->rxon->mode = IWN_MODE_MONITOR;
6362 		sc->rxon->filter = htole32(IWN_FILTER_MULTICAST |
6363 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
6364 		break;
6365 	default:
6366 		/* Should not get there. */
6367 		break;
6368 	}
6369 	sc->rxon->cck_mask  = 0x0f;	/* not yet negotiated */
6370 	sc->rxon->ofdm_mask = 0xff;	/* not yet negotiated */
6371 	sc->rxon->ht_single_mask = 0xff;
6372 	sc->rxon->ht_dual_mask = 0xff;
6373 	sc->rxon->ht_triple_mask = 0xff;
6374 	rxchain =
6375 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6376 	    IWN_RXCHAIN_MIMO_COUNT(2) |
6377 	    IWN_RXCHAIN_IDLE_COUNT(2);
6378 	sc->rxon->rxchain = htole16(rxchain);
6379 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
6380 	if (sc->sc_is_scanning)
6381 		device_printf(sc->sc_dev,
6382 		    "%s: is_scanning set, before RXON\n",
6383 		    __func__);
6384 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 0);
6385 	if (error != 0) {
6386 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
6387 		    __func__);
6388 		return error;
6389 	}
6390 
6391 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
6392 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
6393 		    __func__);
6394 		return error;
6395 	}
6396 
6397 	/* Configuration has changed, set TX power accordingly. */
6398 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
6399 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
6400 		    __func__);
6401 		return error;
6402 	}
6403 
6404 	if ((error = iwn_set_critical_temp(sc)) != 0) {
6405 		device_printf(sc->sc_dev,
6406 		    "%s: could not set critical temperature\n", __func__);
6407 		return error;
6408 	}
6409 
6410 	/* Set power saving level to CAM during initialization. */
6411 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
6412 		device_printf(sc->sc_dev,
6413 		    "%s: could not set power saving level\n", __func__);
6414 		return error;
6415 	}
6416 
6417 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6418 
6419 	return 0;
6420 }
6421 
6422 /*
6423  * Add an ssid element to a frame.
6424  */
6425 static uint8_t *
6426 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
6427 {
6428 	*frm++ = IEEE80211_ELEMID_SSID;
6429 	*frm++ = len;
6430 	memcpy(frm, ssid, len);
6431 	return frm + len;
6432 }
6433 
6434 static uint16_t
6435 iwn_get_active_dwell_time(struct iwn_softc *sc,
6436     struct ieee80211_channel *c, uint8_t n_probes)
6437 {
6438 	/* No channel? Default to 2GHz settings */
6439 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6440 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
6441 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
6442 	}
6443 
6444 	/* 5GHz dwell time */
6445 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
6446 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
6447 }
6448 
6449 /*
6450  * Limit the total dwell time to 85% of the beacon interval.
6451  *
6452  * Returns the dwell time in milliseconds.
6453  */
6454 static uint16_t
6455 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
6456 {
6457 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6458 	struct ieee80211vap *vap = NULL;
6459 	int bintval = 0;
6460 
6461 	/* bintval is in TU (1.024mS) */
6462 	if (! TAILQ_EMPTY(&ic->ic_vaps)) {
6463 		vap = TAILQ_FIRST(&ic->ic_vaps);
6464 		bintval = vap->iv_bss->ni_intval;
6465 	}
6466 
6467 	/*
6468 	 * If it's non-zero, we should calculate the minimum of
6469 	 * it and the DWELL_BASE.
6470 	 *
6471 	 * XXX Yes, the math should take into account that bintval
6472 	 * is 1.024mS, not 1mS..
6473 	 */
6474 	if (bintval > 0) {
6475 		DPRINTF(sc, IWN_DEBUG_SCAN,
6476 		    "%s: bintval=%d\n",
6477 		    __func__,
6478 		    bintval);
6479 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
6480 	}
6481 
6482 	/* No association context? Default */
6483 	return (IWN_PASSIVE_DWELL_BASE);
6484 }
6485 
6486 static uint16_t
6487 iwn_get_passive_dwell_time(struct iwn_softc *sc, struct ieee80211_channel *c)
6488 {
6489 	uint16_t passive;
6490 
6491 	if (c == NULL || IEEE80211_IS_CHAN_2GHZ(c)) {
6492 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
6493 	} else {
6494 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
6495 	}
6496 
6497 	/* Clamp to the beacon interval if we're associated */
6498 	return (iwn_limit_dwell(sc, passive));
6499 }
6500 
6501 static int
6502 iwn_scan(struct iwn_softc *sc, struct ieee80211vap *vap,
6503     struct ieee80211_scan_state *ss, struct ieee80211_channel *c)
6504 {
6505 	struct ifnet *ifp = sc->sc_ifp;
6506 	struct ieee80211com *ic = ifp->if_l2com;
6507 	struct ieee80211_node *ni = vap->iv_bss;
6508 	struct iwn_scan_hdr *hdr;
6509 	struct iwn_cmd_data *tx;
6510 	struct iwn_scan_essid *essid;
6511 	struct iwn_scan_chan *chan;
6512 	struct ieee80211_frame *wh;
6513 	struct ieee80211_rateset *rs;
6514 	uint8_t *buf, *frm;
6515 	uint16_t rxchain;
6516 	uint8_t txant;
6517 	int buflen, error;
6518 	int is_active;
6519 	uint16_t dwell_active, dwell_passive;
6520 	uint32_t extra, scan_service_time;
6521 
6522 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6523 
6524 	/*
6525 	 * We are absolutely not allowed to send a scan command when another
6526 	 * scan command is pending.
6527 	 */
6528 	if (sc->sc_is_scanning) {
6529 		device_printf(sc->sc_dev, "%s: called whilst scanning!\n",
6530 		    __func__);
6531 		return (EAGAIN);
6532 	}
6533 
6534 	/* Assign the scan channel */
6535 	c = ic->ic_curchan;
6536 
6537 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6538 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
6539 	if (buf == NULL) {
6540 		device_printf(sc->sc_dev,
6541 		    "%s: could not allocate buffer for scan command\n",
6542 		    __func__);
6543 		return ENOMEM;
6544 	}
6545 	hdr = (struct iwn_scan_hdr *)buf;
6546 	/*
6547 	 * Move to the next channel if no frames are received within 10ms
6548 	 * after sending the probe request.
6549 	 */
6550 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
6551 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
6552 	/*
6553 	 * Max needs to be greater than active and passive and quiet!
6554 	 * It's also in microseconds!
6555 	 */
6556 	hdr->max_svc = htole32(250 * 1024);
6557 
6558 	/*
6559 	 * Reset scan: interval=100
6560 	 * Normal scan: interval=becaon interval
6561 	 * suspend_time: 100 (TU)
6562 	 *
6563 	 */
6564 	extra = (100 /* suspend_time */ / 100 /* beacon interval */) << 22;
6565 	//scan_service_time = extra | ((100 /* susp */ % 100 /* int */) * 1024);
6566 	scan_service_time = (4 << 22) | (100 * 1024);	/* Hardcode for now! */
6567 	hdr->pause_svc = htole32(scan_service_time);
6568 
6569 	/* Select antennas for scanning. */
6570 	rxchain =
6571 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
6572 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
6573 	    IWN_RXCHAIN_DRIVER_FORCE;
6574 	if (IEEE80211_IS_CHAN_A(c) &&
6575 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
6576 		/* Ant A must be avoided in 5GHz because of an HW bug. */
6577 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
6578 	} else	/* Use all available RX antennas. */
6579 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
6580 	hdr->rxchain = htole16(rxchain);
6581 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
6582 
6583 	tx = (struct iwn_cmd_data *)(hdr + 1);
6584 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
6585 	tx->id = sc->broadcast_id;
6586 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
6587 
6588 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
6589 		/* Send probe requests at 6Mbps. */
6590 		tx->rate = htole32(0xd);
6591 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
6592 	} else {
6593 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
6594 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
6595 		    sc->rxon->associd && sc->rxon->chan > 14)
6596 			tx->rate = htole32(0xd);
6597 		else {
6598 			/* Send probe requests at 1Mbps. */
6599 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
6600 		}
6601 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
6602 	}
6603 	/* Use the first valid TX antenna. */
6604 	txant = IWN_LSB(sc->txchainmask);
6605 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
6606 
6607 	/*
6608 	 * Only do active scanning if we're announcing a probe request
6609 	 * for a given SSID (or more, if we ever add it to the driver.)
6610 	 */
6611 	is_active = 0;
6612 
6613 	/*
6614 	 * If we're scanning for a specific SSID, add it to the command.
6615 	 *
6616 	 * XXX maybe look at adding support for scanning multiple SSIDs?
6617 	 */
6618 	essid = (struct iwn_scan_essid *)(tx + 1);
6619 	if (ss != NULL) {
6620 		if (ss->ss_ssid[0].len != 0) {
6621 			essid[0].id = IEEE80211_ELEMID_SSID;
6622 			essid[0].len = ss->ss_ssid[0].len;
6623 			memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
6624 		}
6625 
6626 		DPRINTF(sc, IWN_DEBUG_SCAN, "%s: ssid_len=%d, ssid=%*s\n",
6627 		    __func__,
6628 		    ss->ss_ssid[0].len,
6629 		    ss->ss_ssid[0].len,
6630 		    ss->ss_ssid[0].ssid);
6631 
6632 		if (ss->ss_nssid > 0)
6633 			is_active = 1;
6634 	}
6635 
6636 	/*
6637 	 * Build a probe request frame.  Most of the following code is a
6638 	 * copy & paste of what is done in net80211.
6639 	 */
6640 	wh = (struct ieee80211_frame *)(essid + 20);
6641 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
6642 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
6643 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
6644 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
6645 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
6646 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
6647 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
6648 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
6649 
6650 	frm = (uint8_t *)(wh + 1);
6651 	frm = ieee80211_add_ssid(frm, NULL, 0);
6652 	frm = ieee80211_add_rates(frm, rs);
6653 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
6654 		frm = ieee80211_add_xrates(frm, rs);
6655 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
6656 		frm = ieee80211_add_htcap(frm, ni);
6657 
6658 	/* Set length of probe request. */
6659 	tx->len = htole16(frm - (uint8_t *)wh);
6660 
6661 	/*
6662 	 * If active scanning is requested but a certain channel is
6663 	 * marked passive, we can do active scanning if we detect
6664 	 * transmissions.
6665 	 *
6666 	 * There is an issue with some firmware versions that triggers
6667 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
6668 	 * on a radar channel even though this means that we should NOT
6669 	 * send probes.
6670 	 *
6671 	 * The "good CRC threshold" is the number of frames that we
6672 	 * need to receive during our dwell time on a channel before
6673 	 * sending out probes -- setting this to a huge value will
6674 	 * mean we never reach it, but at the same time work around
6675 	 * the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
6676 	 * here instead of IWL_GOOD_CRC_TH_DISABLED.
6677 	 *
6678 	 * This was fixed in later versions along with some other
6679 	 * scan changes, and the threshold behaves as a flag in those
6680 	 * versions.
6681 	 */
6682 
6683 	/*
6684 	 * If we're doing active scanning, set the crc_threshold
6685 	 * to a suitable value.  This is different to active veruss
6686 	 * passive scanning depending upon the channel flags; the
6687 	 * firmware will obey that particular check for us.
6688 	 */
6689 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
6690 		hdr->crc_threshold = is_active ?
6691 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
6692 	else
6693 		hdr->crc_threshold = is_active ?
6694 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
6695 
6696 	chan = (struct iwn_scan_chan *)frm;
6697 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
6698 	chan->flags = 0;
6699 	if (ss->ss_nssid > 0)
6700 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
6701 	chan->dsp_gain = 0x6e;
6702 
6703 	/*
6704 	 * Set the passive/active flag depending upon the channel mode.
6705 	 * XXX TODO: take the is_active flag into account as well?
6706 	 */
6707 	if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
6708 		chan->flags |= htole32(IWN_CHAN_PASSIVE);
6709 	else
6710 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
6711 
6712 	/*
6713 	 * Calculate the active/passive dwell times.
6714 	 */
6715 
6716 	dwell_active = iwn_get_active_dwell_time(sc, c, ss->ss_nssid);
6717 	dwell_passive = iwn_get_passive_dwell_time(sc, c);
6718 
6719 	/* Make sure they're valid */
6720 	if (dwell_passive <= dwell_active)
6721 		dwell_passive = dwell_active + 1;
6722 
6723 	chan->active = htole16(dwell_active);
6724 	chan->passive = htole16(dwell_passive);
6725 
6726 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
6727 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6728 		chan->rf_gain = 0x3b;
6729 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
6730 		chan->rf_gain = 0x3b;
6731 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
6732 		chan->rf_gain = 0x28;
6733 	} else {
6734 		chan->rf_gain = 0x28;
6735 	}
6736 
6737 	DPRINTF(sc, IWN_DEBUG_STATE,
6738 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
6739 	    "dsp_gain 0x%x active %d passive %d scan_svc_time %d crc 0x%x "
6740 	    "isactive=%d numssid=%d\n", __func__,
6741 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
6742 	    dwell_active, dwell_passive, scan_service_time,
6743 	    hdr->crc_threshold, is_active, ss->ss_nssid);
6744 
6745 	hdr->nchan++;
6746 	chan++;
6747 	buflen = (uint8_t *)chan - buf;
6748 	hdr->len = htole16(buflen);
6749 
6750 	if (sc->sc_is_scanning) {
6751 		device_printf(sc->sc_dev,
6752 		    "%s: called with is_scanning set!\n",
6753 		    __func__);
6754 	}
6755 	sc->sc_is_scanning = 1;
6756 
6757 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
6758 	    hdr->nchan);
6759 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
6760 	free(buf, M_DEVBUF);
6761 
6762 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6763 
6764 	return error;
6765 }
6766 
6767 static int
6768 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
6769 {
6770 	struct iwn_ops *ops = &sc->ops;
6771 	struct ifnet *ifp = sc->sc_ifp;
6772 	struct ieee80211com *ic = ifp->if_l2com;
6773 	struct ieee80211_node *ni = vap->iv_bss;
6774 	int error;
6775 
6776 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6777 
6778 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6779 	/* Update adapter configuration. */
6780 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6781 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6782 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6783 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6784 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6785 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6786 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6787 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6788 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6789 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6790 		sc->rxon->cck_mask  = 0;
6791 		sc->rxon->ofdm_mask = 0x15;
6792 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6793 		sc->rxon->cck_mask  = 0x03;
6794 		sc->rxon->ofdm_mask = 0;
6795 	} else {
6796 		/* Assume 802.11b/g. */
6797 		sc->rxon->cck_mask  = 0x03;
6798 		sc->rxon->ofdm_mask = 0x15;
6799 	}
6800 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
6801 	    sc->rxon->chan, sc->rxon->flags, sc->rxon->cck_mask,
6802 	    sc->rxon->ofdm_mask);
6803 	if (sc->sc_is_scanning)
6804 		device_printf(sc->sc_dev,
6805 		    "%s: is_scanning set, before RXON\n",
6806 		    __func__);
6807 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6808 	if (error != 0) {
6809 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
6810 		    __func__, error);
6811 		return error;
6812 	}
6813 
6814 	/* Configuration has changed, set TX power accordingly. */
6815 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6816 		device_printf(sc->sc_dev,
6817 		    "%s: could not set TX power, error %d\n", __func__, error);
6818 		return error;
6819 	}
6820 	/*
6821 	 * Reconfiguring RXON clears the firmware nodes table so we must
6822 	 * add the broadcast node again.
6823 	 */
6824 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
6825 		device_printf(sc->sc_dev,
6826 		    "%s: could not add broadcast node, error %d\n", __func__,
6827 		    error);
6828 		return error;
6829 	}
6830 
6831 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6832 
6833 	return 0;
6834 }
6835 
6836 static int
6837 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
6838 {
6839 	struct iwn_ops *ops = &sc->ops;
6840 	struct ifnet *ifp = sc->sc_ifp;
6841 	struct ieee80211com *ic = ifp->if_l2com;
6842 	struct ieee80211_node *ni = vap->iv_bss;
6843 	struct iwn_node_info node;
6844 	uint32_t htflags = 0;
6845 	int error;
6846 
6847 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
6848 
6849 	sc->rxon = &sc->rx_on[IWN_RXON_BSS_CTX];
6850 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
6851 		/* Link LED blinks while monitoring. */
6852 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
6853 		return 0;
6854 	}
6855 	if ((error = iwn_set_timing(sc, ni)) != 0) {
6856 		device_printf(sc->sc_dev,
6857 		    "%s: could not set timing, error %d\n", __func__, error);
6858 		return error;
6859 	}
6860 
6861 	/* Update adapter configuration. */
6862 	IEEE80211_ADDR_COPY(sc->rxon->bssid, ni->ni_bssid);
6863 	sc->rxon->associd = htole16(IEEE80211_AID(ni->ni_associd));
6864 	sc->rxon->chan = ieee80211_chan2ieee(ic, ni->ni_chan);
6865 	sc->rxon->flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
6866 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
6867 		sc->rxon->flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
6868 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
6869 		sc->rxon->flags |= htole32(IWN_RXON_SHSLOT);
6870 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
6871 		sc->rxon->flags |= htole32(IWN_RXON_SHPREAMBLE);
6872 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
6873 		sc->rxon->cck_mask  = 0;
6874 		sc->rxon->ofdm_mask = 0x15;
6875 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
6876 		sc->rxon->cck_mask  = 0x03;
6877 		sc->rxon->ofdm_mask = 0;
6878 	} else {
6879 		/* Assume 802.11b/g. */
6880 		sc->rxon->cck_mask  = 0x0f;
6881 		sc->rxon->ofdm_mask = 0x15;
6882 	}
6883 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6884 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
6885 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
6886 			switch (ic->ic_curhtprotmode) {
6887 			case IEEE80211_HTINFO_OPMODE_HT20PR:
6888 				htflags |= IWN_RXON_HT_MODEPURE40;
6889 				break;
6890 			default:
6891 				htflags |= IWN_RXON_HT_MODEMIXED;
6892 				break;
6893 			}
6894 		}
6895 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
6896 			htflags |= IWN_RXON_HT_HT40MINUS;
6897 	}
6898 	sc->rxon->flags |= htole32(htflags);
6899 	sc->rxon->filter |= htole32(IWN_FILTER_BSS);
6900 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
6901 	    sc->rxon->chan, sc->rxon->flags);
6902 	if (sc->sc_is_scanning)
6903 		device_printf(sc->sc_dev,
6904 		    "%s: is_scanning set, before RXON\n",
6905 		    __func__);
6906 	error = iwn_cmd(sc, IWN_CMD_RXON, sc->rxon, sc->rxonsz, 1);
6907 	if (error != 0) {
6908 		device_printf(sc->sc_dev,
6909 		    "%s: could not update configuration, error %d\n", __func__,
6910 		    error);
6911 		return error;
6912 	}
6913 
6914 	/* Configuration has changed, set TX power accordingly. */
6915 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
6916 		device_printf(sc->sc_dev,
6917 		    "%s: could not set TX power, error %d\n", __func__, error);
6918 		return error;
6919 	}
6920 
6921 	/* Fake a join to initialize the TX rate. */
6922 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
6923 	iwn_newassoc(ni, 1);
6924 
6925 	/* Add BSS node. */
6926 	memset(&node, 0, sizeof node);
6927 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
6928 	node.id = IWN_ID_BSS;
6929 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
6930 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
6931 		case IEEE80211_HTCAP_SMPS_ENA:
6932 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
6933 			break;
6934 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
6935 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
6936 			break;
6937 		}
6938 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
6939 		    IWN_AMDPU_DENSITY(5));	/* 4us */
6940 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
6941 			node.htflags |= htole32(IWN_NODE_HT40);
6942 	}
6943 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
6944 	error = ops->add_node(sc, &node, 1);
6945 	if (error != 0) {
6946 		device_printf(sc->sc_dev,
6947 		    "%s: could not add BSS node, error %d\n", __func__, error);
6948 		return error;
6949 	}
6950 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
6951 	    __func__, node.id);
6952 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
6953 		device_printf(sc->sc_dev,
6954 		    "%s: could not setup link quality for node %d, error %d\n",
6955 		    __func__, node.id, error);
6956 		return error;
6957 	}
6958 
6959 	if ((error = iwn_init_sensitivity(sc)) != 0) {
6960 		device_printf(sc->sc_dev,
6961 		    "%s: could not set sensitivity, error %d\n", __func__,
6962 		    error);
6963 		return error;
6964 	}
6965 	/* Start periodic calibration timer. */
6966 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
6967 	sc->calib_cnt = 0;
6968 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
6969 	    sc);
6970 
6971 	/* Link LED always on while associated. */
6972 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
6973 
6974 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
6975 
6976 	return 0;
6977 }
6978 
6979 /*
6980  * This function is called by upper layer when an ADDBA request is received
6981  * from another STA and before the ADDBA response is sent.
6982  */
6983 static int
6984 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
6985     int baparamset, int batimeout, int baseqctl)
6986 {
6987 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
6988 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
6989 	struct iwn_ops *ops = &sc->ops;
6990 	struct iwn_node *wn = (void *)ni;
6991 	struct iwn_node_info node;
6992 	uint16_t ssn;
6993 	uint8_t tid;
6994 	int error;
6995 
6996 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
6997 
6998 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
6999 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
7000 
7001 	memset(&node, 0, sizeof node);
7002 	node.id = wn->id;
7003 	node.control = IWN_NODE_UPDATE;
7004 	node.flags = IWN_FLAG_SET_ADDBA;
7005 	node.addba_tid = tid;
7006 	node.addba_ssn = htole16(ssn);
7007 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
7008 	    wn->id, tid, ssn);
7009 	error = ops->add_node(sc, &node, 1);
7010 	if (error != 0)
7011 		return error;
7012 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
7013 #undef MS
7014 }
7015 
7016 /*
7017  * This function is called by upper layer on teardown of an HT-immediate
7018  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
7019  */
7020 static void
7021 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
7022 {
7023 	struct ieee80211com *ic = ni->ni_ic;
7024 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
7025 	struct iwn_ops *ops = &sc->ops;
7026 	struct iwn_node *wn = (void *)ni;
7027 	struct iwn_node_info node;
7028 	uint8_t tid;
7029 
7030 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7031 
7032 	/* XXX: tid as an argument */
7033 	for (tid = 0; tid < WME_NUM_TID; tid++) {
7034 		if (&ni->ni_rx_ampdu[tid] == rap)
7035 			break;
7036 	}
7037 
7038 	memset(&node, 0, sizeof node);
7039 	node.id = wn->id;
7040 	node.control = IWN_NODE_UPDATE;
7041 	node.flags = IWN_FLAG_SET_DELBA;
7042 	node.delba_tid = tid;
7043 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
7044 	(void)ops->add_node(sc, &node, 1);
7045 	sc->sc_ampdu_rx_stop(ni, rap);
7046 }
7047 
7048 static int
7049 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7050     int dialogtoken, int baparamset, int batimeout)
7051 {
7052 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7053 	int qid;
7054 
7055 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7056 
7057 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
7058 		if (sc->qid2tap[qid] == NULL)
7059 			break;
7060 	}
7061 	if (qid == sc->ntxqs) {
7062 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
7063 		    __func__);
7064 		return 0;
7065 	}
7066 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
7067 	if (tap->txa_private == NULL) {
7068 		device_printf(sc->sc_dev,
7069 		    "%s: failed to alloc TX aggregation structure\n", __func__);
7070 		return 0;
7071 	}
7072 	sc->qid2tap[qid] = tap;
7073 	*(int *)tap->txa_private = qid;
7074 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
7075 	    batimeout);
7076 }
7077 
7078 static int
7079 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
7080     int code, int baparamset, int batimeout)
7081 {
7082 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7083 	int qid = *(int *)tap->txa_private;
7084 	uint8_t tid = tap->txa_tid;
7085 	int ret;
7086 
7087 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7088 
7089 	if (code == IEEE80211_STATUS_SUCCESS) {
7090 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
7091 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
7092 		if (ret != 1)
7093 			return ret;
7094 	} else {
7095 		sc->qid2tap[qid] = NULL;
7096 		free(tap->txa_private, M_DEVBUF);
7097 		tap->txa_private = NULL;
7098 	}
7099 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
7100 }
7101 
7102 /*
7103  * This function is called by upper layer when an ADDBA response is received
7104  * from another STA.
7105  */
7106 static int
7107 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
7108     uint8_t tid)
7109 {
7110 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
7111 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7112 	struct iwn_ops *ops = &sc->ops;
7113 	struct iwn_node *wn = (void *)ni;
7114 	struct iwn_node_info node;
7115 	int error, qid;
7116 
7117 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7118 
7119 	/* Enable TX for the specified RA/TID. */
7120 	wn->disable_tid &= ~(1 << tid);
7121 	memset(&node, 0, sizeof node);
7122 	node.id = wn->id;
7123 	node.control = IWN_NODE_UPDATE;
7124 	node.flags = IWN_FLAG_SET_DISABLE_TID;
7125 	node.disable_tid = htole16(wn->disable_tid);
7126 	error = ops->add_node(sc, &node, 1);
7127 	if (error != 0)
7128 		return 0;
7129 
7130 	if ((error = iwn_nic_lock(sc)) != 0)
7131 		return 0;
7132 	qid = *(int *)tap->txa_private;
7133 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
7134 	    __func__, wn->id, tid, tap->txa_start, qid);
7135 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
7136 	iwn_nic_unlock(sc);
7137 
7138 	iwn_set_link_quality(sc, ni);
7139 	return 1;
7140 }
7141 
7142 static void
7143 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
7144 {
7145 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
7146 	struct iwn_ops *ops = &sc->ops;
7147 	uint8_t tid = tap->txa_tid;
7148 	int qid;
7149 
7150 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7151 
7152 	sc->sc_addba_stop(ni, tap);
7153 
7154 	if (tap->txa_private == NULL)
7155 		return;
7156 
7157 	qid = *(int *)tap->txa_private;
7158 	if (sc->txq[qid].queued != 0)
7159 		return;
7160 	if (iwn_nic_lock(sc) != 0)
7161 		return;
7162 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
7163 	iwn_nic_unlock(sc);
7164 	sc->qid2tap[qid] = NULL;
7165 	free(tap->txa_private, M_DEVBUF);
7166 	tap->txa_private = NULL;
7167 }
7168 
7169 static void
7170 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7171     int qid, uint8_t tid, uint16_t ssn)
7172 {
7173 	struct iwn_node *wn = (void *)ni;
7174 
7175 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7176 
7177 	/* Stop TX scheduler while we're changing its configuration. */
7178 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7179 	    IWN4965_TXQ_STATUS_CHGACT);
7180 
7181 	/* Assign RA/TID translation to the queue. */
7182 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
7183 	    wn->id << 4 | tid);
7184 
7185 	/* Enable chain-building mode for the queue. */
7186 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
7187 
7188 	/* Set starting sequence number from the ADDBA request. */
7189 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7190 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7191 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7192 
7193 	/* Set scheduler window size. */
7194 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
7195 	    IWN_SCHED_WINSZ);
7196 	/* Set scheduler frame limit. */
7197 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7198 	    IWN_SCHED_LIMIT << 16);
7199 
7200 	/* Enable interrupts for the queue. */
7201 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7202 
7203 	/* Mark the queue as active. */
7204 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7205 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
7206 	    iwn_tid2fifo[tid] << 1);
7207 }
7208 
7209 static void
7210 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7211 {
7212 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7213 
7214 	/* Stop TX scheduler while we're changing its configuration. */
7215 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7216 	    IWN4965_TXQ_STATUS_CHGACT);
7217 
7218 	/* Set starting sequence number from the ADDBA request. */
7219 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7220 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
7221 
7222 	/* Disable interrupts for the queue. */
7223 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
7224 
7225 	/* Mark the queue as inactive. */
7226 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7227 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
7228 }
7229 
7230 static void
7231 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
7232     int qid, uint8_t tid, uint16_t ssn)
7233 {
7234 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7235 
7236 	struct iwn_node *wn = (void *)ni;
7237 
7238 	/* Stop TX scheduler while we're changing its configuration. */
7239 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7240 	    IWN5000_TXQ_STATUS_CHGACT);
7241 
7242 	/* Assign RA/TID translation to the queue. */
7243 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
7244 	    wn->id << 4 | tid);
7245 
7246 	/* Enable chain-building mode for the queue. */
7247 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
7248 
7249 	/* Enable aggregation for the queue. */
7250 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7251 
7252 	/* Set starting sequence number from the ADDBA request. */
7253 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
7254 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7255 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7256 
7257 	/* Set scheduler window size and frame limit. */
7258 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7259 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7260 
7261 	/* Enable interrupts for the queue. */
7262 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7263 
7264 	/* Mark the queue as active. */
7265 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7266 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
7267 }
7268 
7269 static void
7270 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
7271 {
7272 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7273 
7274 	/* Stop TX scheduler while we're changing its configuration. */
7275 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7276 	    IWN5000_TXQ_STATUS_CHGACT);
7277 
7278 	/* Disable aggregation for the queue. */
7279 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
7280 
7281 	/* Set starting sequence number from the ADDBA request. */
7282 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
7283 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
7284 
7285 	/* Disable interrupts for the queue. */
7286 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
7287 
7288 	/* Mark the queue as inactive. */
7289 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7290 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
7291 }
7292 
7293 /*
7294  * Query calibration tables from the initialization firmware.  We do this
7295  * only once at first boot.  Called from a process context.
7296  */
7297 static int
7298 iwn5000_query_calibration(struct iwn_softc *sc)
7299 {
7300 	struct iwn5000_calib_config cmd;
7301 	int error;
7302 
7303 	memset(&cmd, 0, sizeof cmd);
7304 	cmd.ucode.once.enable = htole32(0xffffffff);
7305 	cmd.ucode.once.start  = htole32(0xffffffff);
7306 	cmd.ucode.once.send   = htole32(0xffffffff);
7307 	cmd.ucode.flags       = htole32(0xffffffff);
7308 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
7309 	    __func__);
7310 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
7311 	if (error != 0)
7312 		return error;
7313 
7314 	/* Wait at most two seconds for calibration to complete. */
7315 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
7316 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
7317 	return error;
7318 }
7319 
7320 /*
7321  * Send calibration results to the runtime firmware.  These results were
7322  * obtained on first boot from the initialization firmware.
7323  */
7324 static int
7325 iwn5000_send_calibration(struct iwn_softc *sc)
7326 {
7327 	int idx, error;
7328 
7329 	for (idx = 0; idx < IWN5000_PHY_CALIB_MAX_RESULT; idx++) {
7330 		if (!(sc->base_params->calib_need & (1<<idx))) {
7331 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7332 			    "No need of calib %d\n",
7333 			    idx);
7334 			continue; /* no need for this calib */
7335 		}
7336 		if (sc->calibcmd[idx].buf == NULL) {
7337 			DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7338 			    "Need calib idx : %d but no available data\n",
7339 			    idx);
7340 			continue;
7341 		}
7342 
7343 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7344 		    "send calibration result idx=%d len=%d\n", idx,
7345 		    sc->calibcmd[idx].len);
7346 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
7347 		    sc->calibcmd[idx].len, 0);
7348 		if (error != 0) {
7349 			device_printf(sc->sc_dev,
7350 			    "%s: could not send calibration result, error %d\n",
7351 			    __func__, error);
7352 			return error;
7353 		}
7354 	}
7355 	return 0;
7356 }
7357 
7358 static int
7359 iwn5000_send_wimax_coex(struct iwn_softc *sc)
7360 {
7361 	struct iwn5000_wimax_coex wimax;
7362 
7363 #if 0
7364 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
7365 		/* Enable WiMAX coexistence for combo adapters. */
7366 		wimax.flags =
7367 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
7368 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
7369 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
7370 		    IWN_WIMAX_COEX_ENABLE;
7371 		memcpy(wimax.events, iwn6050_wimax_events,
7372 		    sizeof iwn6050_wimax_events);
7373 	} else
7374 #endif
7375 	{
7376 		/* Disable WiMAX coexistence. */
7377 		wimax.flags = 0;
7378 		memset(wimax.events, 0, sizeof wimax.events);
7379 	}
7380 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
7381 	    __func__);
7382 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
7383 }
7384 
7385 static int
7386 iwn5000_crystal_calib(struct iwn_softc *sc)
7387 {
7388 	struct iwn5000_phy_calib_crystal cmd;
7389 
7390 	memset(&cmd, 0, sizeof cmd);
7391 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
7392 	cmd.ngroups = 1;
7393 	cmd.isvalid = 1;
7394 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
7395 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
7396 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
7397 	    cmd.cap_pin[0], cmd.cap_pin[1]);
7398 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7399 }
7400 
7401 static int
7402 iwn5000_temp_offset_calib(struct iwn_softc *sc)
7403 {
7404 	struct iwn5000_phy_calib_temp_offset cmd;
7405 
7406 	memset(&cmd, 0, sizeof cmd);
7407 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7408 	cmd.ngroups = 1;
7409 	cmd.isvalid = 1;
7410 	if (sc->eeprom_temp != 0)
7411 		cmd.offset = htole16(sc->eeprom_temp);
7412 	else
7413 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
7414 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
7415 	    le16toh(cmd.offset));
7416 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7417 }
7418 
7419 static int
7420 iwn5000_temp_offset_calibv2(struct iwn_softc *sc)
7421 {
7422 	struct iwn5000_phy_calib_temp_offsetv2 cmd;
7423 
7424 	memset(&cmd, 0, sizeof cmd);
7425 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
7426 	cmd.ngroups = 1;
7427 	cmd.isvalid = 1;
7428 	if (sc->eeprom_temp != 0) {
7429 		cmd.offset_low = htole16(sc->eeprom_temp);
7430 		cmd.offset_high = htole16(sc->eeprom_temp_high);
7431 	} else {
7432 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
7433 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
7434 	}
7435 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
7436 
7437 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
7438 	    "setting radio sensor low offset to %d, high offset to %d, voltage to %d\n",
7439 	    le16toh(cmd.offset_low),
7440 	    le16toh(cmd.offset_high),
7441 	    le16toh(cmd.burnt_voltage_ref));
7442 
7443 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
7444 }
7445 
7446 /*
7447  * This function is called after the runtime firmware notifies us of its
7448  * readiness (called in a process context).
7449  */
7450 static int
7451 iwn4965_post_alive(struct iwn_softc *sc)
7452 {
7453 	int error, qid;
7454 
7455 	if ((error = iwn_nic_lock(sc)) != 0)
7456 		return error;
7457 
7458 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7459 
7460 	/* Clear TX scheduler state in SRAM. */
7461 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7462 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
7463 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
7464 
7465 	/* Set physical address of TX scheduler rings (1KB aligned). */
7466 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7467 
7468 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7469 
7470 	/* Disable chain mode for all our 16 queues. */
7471 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
7472 
7473 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
7474 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
7475 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7476 
7477 		/* Set scheduler window size. */
7478 		iwn_mem_write(sc, sc->sched_base +
7479 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
7480 		/* Set scheduler frame limit. */
7481 		iwn_mem_write(sc, sc->sched_base +
7482 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
7483 		    IWN_SCHED_LIMIT << 16);
7484 	}
7485 
7486 	/* Enable interrupts for all our 16 queues. */
7487 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
7488 	/* Identify TX FIFO rings (0-7). */
7489 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
7490 
7491 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7492 	for (qid = 0; qid < 7; qid++) {
7493 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
7494 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
7495 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
7496 	}
7497 	iwn_nic_unlock(sc);
7498 	return 0;
7499 }
7500 
7501 /*
7502  * This function is called after the initialization or runtime firmware
7503  * notifies us of its readiness (called in a process context).
7504  */
7505 static int
7506 iwn5000_post_alive(struct iwn_softc *sc)
7507 {
7508 	int error, qid;
7509 
7510 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
7511 
7512 	/* Switch to using ICT interrupt mode. */
7513 	iwn5000_ict_reset(sc);
7514 
7515 	if ((error = iwn_nic_lock(sc)) != 0){
7516 		DPRINTF(sc, IWN_DEBUG_TRACE, "->%s end in error\n", __func__);
7517 		return error;
7518 	}
7519 
7520 	/* Clear TX scheduler state in SRAM. */
7521 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
7522 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
7523 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
7524 
7525 	/* Set physical address of TX scheduler rings (1KB aligned). */
7526 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
7527 
7528 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
7529 
7530 	/* Enable chain mode for all queues, except command queue. */
7531 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT)
7532 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffdf);
7533 	else
7534 		iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
7535 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
7536 
7537 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
7538 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
7539 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
7540 
7541 		iwn_mem_write(sc, sc->sched_base +
7542 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
7543 		/* Set scheduler window size and frame limit. */
7544 		iwn_mem_write(sc, sc->sched_base +
7545 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
7546 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
7547 	}
7548 
7549 	/* Enable interrupts for all our 20 queues. */
7550 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
7551 	/* Identify TX FIFO rings (0-7). */
7552 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
7553 
7554 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7555 	if (sc->sc_flags & IWN_FLAG_PAN_SUPPORT) {
7556 		/* Mark TX rings as active. */
7557 		for (qid = 0; qid < 11; qid++) {
7558 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 0, 4, 2, 5, 4, 7, 5 };
7559 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7560 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7561 		}
7562 	} else {
7563 		/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
7564 		for (qid = 0; qid < 7; qid++) {
7565 			static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
7566 			iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
7567 			    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
7568 		}
7569 	}
7570 	iwn_nic_unlock(sc);
7571 
7572 	/* Configure WiMAX coexistence for combo adapters. */
7573 	error = iwn5000_send_wimax_coex(sc);
7574 	if (error != 0) {
7575 		device_printf(sc->sc_dev,
7576 		    "%s: could not configure WiMAX coexistence, error %d\n",
7577 		    __func__, error);
7578 		return error;
7579 	}
7580 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
7581 		/* Perform crystal calibration. */
7582 		error = iwn5000_crystal_calib(sc);
7583 		if (error != 0) {
7584 			device_printf(sc->sc_dev,
7585 			    "%s: crystal calibration failed, error %d\n",
7586 			    __func__, error);
7587 			return error;
7588 		}
7589 	}
7590 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
7591 		/* Query calibration from the initialization firmware. */
7592 		if ((error = iwn5000_query_calibration(sc)) != 0) {
7593 			device_printf(sc->sc_dev,
7594 			    "%s: could not query calibration, error %d\n",
7595 			    __func__, error);
7596 			return error;
7597 		}
7598 		/*
7599 		 * We have the calibration results now, reboot with the
7600 		 * runtime firmware (call ourselves recursively!)
7601 		 */
7602 		iwn_hw_stop(sc);
7603 		error = iwn_hw_init(sc);
7604 	} else {
7605 		/* Send calibration results to runtime firmware. */
7606 		error = iwn5000_send_calibration(sc);
7607 	}
7608 
7609 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
7610 
7611 	return error;
7612 }
7613 
7614 /*
7615  * The firmware boot code is small and is intended to be copied directly into
7616  * the NIC internal memory (no DMA transfer).
7617  */
7618 static int
7619 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
7620 {
7621 	int error, ntries;
7622 
7623 	size /= sizeof (uint32_t);
7624 
7625 	if ((error = iwn_nic_lock(sc)) != 0)
7626 		return error;
7627 
7628 	/* Copy microcode image into NIC memory. */
7629 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
7630 	    (const uint32_t *)ucode, size);
7631 
7632 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
7633 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
7634 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
7635 
7636 	/* Start boot load now. */
7637 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
7638 
7639 	/* Wait for transfer to complete. */
7640 	for (ntries = 0; ntries < 1000; ntries++) {
7641 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
7642 		    IWN_BSM_WR_CTRL_START))
7643 			break;
7644 		DELAY(10);
7645 	}
7646 	if (ntries == 1000) {
7647 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7648 		    __func__);
7649 		iwn_nic_unlock(sc);
7650 		return ETIMEDOUT;
7651 	}
7652 
7653 	/* Enable boot after power up. */
7654 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
7655 
7656 	iwn_nic_unlock(sc);
7657 	return 0;
7658 }
7659 
7660 static int
7661 iwn4965_load_firmware(struct iwn_softc *sc)
7662 {
7663 	struct iwn_fw_info *fw = &sc->fw;
7664 	struct iwn_dma_info *dma = &sc->fw_dma;
7665 	int error;
7666 
7667 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
7668 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
7669 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7670 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7671 	    fw->init.text, fw->init.textsz);
7672 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7673 
7674 	/* Tell adapter where to find initialization sections. */
7675 	if ((error = iwn_nic_lock(sc)) != 0)
7676 		return error;
7677 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7678 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
7679 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7680 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7681 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
7682 	iwn_nic_unlock(sc);
7683 
7684 	/* Load firmware boot code. */
7685 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
7686 	if (error != 0) {
7687 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
7688 		    __func__);
7689 		return error;
7690 	}
7691 	/* Now press "execute". */
7692 	IWN_WRITE(sc, IWN_RESET, 0);
7693 
7694 	/* Wait at most one second for first alive notification. */
7695 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
7696 		device_printf(sc->sc_dev,
7697 		    "%s: timeout waiting for adapter to initialize, error %d\n",
7698 		    __func__, error);
7699 		return error;
7700 	}
7701 
7702 	/* Retrieve current temperature for initial TX power calibration. */
7703 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
7704 	sc->temp = iwn4965_get_temperature(sc);
7705 
7706 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
7707 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
7708 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7709 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
7710 	    fw->main.text, fw->main.textsz);
7711 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7712 
7713 	/* Tell adapter where to find runtime sections. */
7714 	if ((error = iwn_nic_lock(sc)) != 0)
7715 		return error;
7716 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
7717 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
7718 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
7719 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
7720 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
7721 	    IWN_FW_UPDATED | fw->main.textsz);
7722 	iwn_nic_unlock(sc);
7723 
7724 	return 0;
7725 }
7726 
7727 static int
7728 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
7729     const uint8_t *section, int size)
7730 {
7731 	struct iwn_dma_info *dma = &sc->fw_dma;
7732 	int error;
7733 
7734 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7735 
7736 	/* Copy firmware section into pre-allocated DMA-safe memory. */
7737 	memcpy(dma->vaddr, section, size);
7738 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
7739 
7740 	if ((error = iwn_nic_lock(sc)) != 0)
7741 		return error;
7742 
7743 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7744 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
7745 
7746 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
7747 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
7748 	    IWN_LOADDR(dma->paddr));
7749 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
7750 	    IWN_HIADDR(dma->paddr) << 28 | size);
7751 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
7752 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
7753 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
7754 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
7755 
7756 	/* Kick Flow Handler to start DMA transfer. */
7757 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
7758 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
7759 
7760 	iwn_nic_unlock(sc);
7761 
7762 	/* Wait at most five seconds for FH DMA transfer to complete. */
7763 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
7764 }
7765 
7766 static int
7767 iwn5000_load_firmware(struct iwn_softc *sc)
7768 {
7769 	struct iwn_fw_part *fw;
7770 	int error;
7771 
7772 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7773 
7774 	/* Load the initialization firmware on first boot only. */
7775 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
7776 	    &sc->fw.main : &sc->fw.init;
7777 
7778 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
7779 	    fw->text, fw->textsz);
7780 	if (error != 0) {
7781 		device_printf(sc->sc_dev,
7782 		    "%s: could not load firmware %s section, error %d\n",
7783 		    __func__, ".text", error);
7784 		return error;
7785 	}
7786 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
7787 	    fw->data, fw->datasz);
7788 	if (error != 0) {
7789 		device_printf(sc->sc_dev,
7790 		    "%s: could not load firmware %s section, error %d\n",
7791 		    __func__, ".data", error);
7792 		return error;
7793 	}
7794 
7795 	/* Now press "execute". */
7796 	IWN_WRITE(sc, IWN_RESET, 0);
7797 	return 0;
7798 }
7799 
7800 /*
7801  * Extract text and data sections from a legacy firmware image.
7802  */
7803 static int
7804 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
7805 {
7806 	const uint32_t *ptr;
7807 	size_t hdrlen = 24;
7808 	uint32_t rev;
7809 
7810 	ptr = (const uint32_t *)fw->data;
7811 	rev = le32toh(*ptr++);
7812 
7813 	/* Check firmware API version. */
7814 	if (IWN_FW_API(rev) <= 1) {
7815 		device_printf(sc->sc_dev,
7816 		    "%s: bad firmware, need API version >=2\n", __func__);
7817 		return EINVAL;
7818 	}
7819 	if (IWN_FW_API(rev) >= 3) {
7820 		/* Skip build number (version 2 header). */
7821 		hdrlen += 4;
7822 		ptr++;
7823 	}
7824 	if (fw->size < hdrlen) {
7825 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7826 		    __func__, fw->size);
7827 		return EINVAL;
7828 	}
7829 	fw->main.textsz = le32toh(*ptr++);
7830 	fw->main.datasz = le32toh(*ptr++);
7831 	fw->init.textsz = le32toh(*ptr++);
7832 	fw->init.datasz = le32toh(*ptr++);
7833 	fw->boot.textsz = le32toh(*ptr++);
7834 
7835 	/* Check that all firmware sections fit. */
7836 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
7837 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
7838 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7839 		    __func__, fw->size);
7840 		return EINVAL;
7841 	}
7842 
7843 	/* Get pointers to firmware sections. */
7844 	fw->main.text = (const uint8_t *)ptr;
7845 	fw->main.data = fw->main.text + fw->main.textsz;
7846 	fw->init.text = fw->main.data + fw->main.datasz;
7847 	fw->init.data = fw->init.text + fw->init.textsz;
7848 	fw->boot.text = fw->init.data + fw->init.datasz;
7849 	return 0;
7850 }
7851 
7852 /*
7853  * Extract text and data sections from a TLV firmware image.
7854  */
7855 static int
7856 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
7857     uint16_t alt)
7858 {
7859 	const struct iwn_fw_tlv_hdr *hdr;
7860 	const struct iwn_fw_tlv *tlv;
7861 	const uint8_t *ptr, *end;
7862 	uint64_t altmask;
7863 	uint32_t len, tmp;
7864 
7865 	if (fw->size < sizeof (*hdr)) {
7866 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
7867 		    __func__, fw->size);
7868 		return EINVAL;
7869 	}
7870 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
7871 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
7872 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
7873 		    __func__, le32toh(hdr->signature));
7874 		return EINVAL;
7875 	}
7876 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
7877 	    le32toh(hdr->build));
7878 
7879 	/*
7880 	 * Select the closest supported alternative that is less than
7881 	 * or equal to the specified one.
7882 	 */
7883 	altmask = le64toh(hdr->altmask);
7884 	while (alt > 0 && !(altmask & (1ULL << alt)))
7885 		alt--;	/* Downgrade. */
7886 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
7887 
7888 	ptr = (const uint8_t *)(hdr + 1);
7889 	end = (const uint8_t *)(fw->data + fw->size);
7890 
7891 	/* Parse type-length-value fields. */
7892 	while (ptr + sizeof (*tlv) <= end) {
7893 		tlv = (const struct iwn_fw_tlv *)ptr;
7894 		len = le32toh(tlv->len);
7895 
7896 		ptr += sizeof (*tlv);
7897 		if (ptr + len > end) {
7898 			device_printf(sc->sc_dev,
7899 			    "%s: firmware too short: %zu bytes\n", __func__,
7900 			    fw->size);
7901 			return EINVAL;
7902 		}
7903 		/* Skip other alternatives. */
7904 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
7905 			goto next;
7906 
7907 		switch (le16toh(tlv->type)) {
7908 		case IWN_FW_TLV_MAIN_TEXT:
7909 			fw->main.text = ptr;
7910 			fw->main.textsz = len;
7911 			break;
7912 		case IWN_FW_TLV_MAIN_DATA:
7913 			fw->main.data = ptr;
7914 			fw->main.datasz = len;
7915 			break;
7916 		case IWN_FW_TLV_INIT_TEXT:
7917 			fw->init.text = ptr;
7918 			fw->init.textsz = len;
7919 			break;
7920 		case IWN_FW_TLV_INIT_DATA:
7921 			fw->init.data = ptr;
7922 			fw->init.datasz = len;
7923 			break;
7924 		case IWN_FW_TLV_BOOT_TEXT:
7925 			fw->boot.text = ptr;
7926 			fw->boot.textsz = len;
7927 			break;
7928 		case IWN_FW_TLV_ENH_SENS:
7929 			if (!len)
7930 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
7931 			break;
7932 		case IWN_FW_TLV_PHY_CALIB:
7933 			tmp = le32toh(*ptr);
7934 			if (tmp < 253) {
7935 				sc->reset_noise_gain = tmp;
7936 				sc->noise_gain = tmp + 1;
7937 			}
7938 			break;
7939 		case IWN_FW_TLV_PAN:
7940 			sc->sc_flags |= IWN_FLAG_PAN_SUPPORT;
7941 			DPRINTF(sc, IWN_DEBUG_RESET,
7942 			    "PAN Support found: %d\n", 1);
7943 			break;
7944 		case IWN_FW_TLV_FLAGS:
7945 			if (len < sizeof(uint32_t))
7946 				break;
7947 			if (len % sizeof(uint32_t))
7948 				break;
7949 			sc->tlv_feature_flags = le32toh(*ptr);
7950 			DPRINTF(sc, IWN_DEBUG_RESET,
7951 			    "%s: feature: 0x%08x\n",
7952 			    __func__,
7953 			    sc->tlv_feature_flags);
7954 			break;
7955 		case IWN_FW_TLV_PBREQ_MAXLEN:
7956 		case IWN_FW_TLV_RUNT_EVTLOG_PTR:
7957 		case IWN_FW_TLV_RUNT_EVTLOG_SIZE:
7958 		case IWN_FW_TLV_RUNT_ERRLOG_PTR:
7959 		case IWN_FW_TLV_INIT_EVTLOG_PTR:
7960 		case IWN_FW_TLV_INIT_EVTLOG_SIZE:
7961 		case IWN_FW_TLV_INIT_ERRLOG_PTR:
7962 		case IWN_FW_TLV_WOWLAN_INST:
7963 		case IWN_FW_TLV_WOWLAN_DATA:
7964 			DPRINTF(sc, IWN_DEBUG_RESET,
7965 			    "TLV type %d reconized but not handled\n",
7966 			    le16toh(tlv->type));
7967 			break;
7968 		default:
7969 			DPRINTF(sc, IWN_DEBUG_RESET,
7970 			    "TLV type %d not handled\n", le16toh(tlv->type));
7971 			break;
7972 		}
7973  next:		/* TLV fields are 32-bit aligned. */
7974 		ptr += (len + 3) & ~3;
7975 	}
7976 	return 0;
7977 }
7978 
7979 static int
7980 iwn_read_firmware(struct iwn_softc *sc)
7981 {
7982 	struct iwn_fw_info *fw = &sc->fw;
7983 	int error;
7984 
7985 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
7986 
7987 	IWN_UNLOCK(sc);
7988 
7989 	memset(fw, 0, sizeof (*fw));
7990 
7991 	/* Read firmware image from filesystem. */
7992 	sc->fw_fp = firmware_get(sc->fwname);
7993 	if (sc->fw_fp == NULL) {
7994 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
7995 		    __func__, sc->fwname);
7996 		IWN_LOCK(sc);
7997 		return EINVAL;
7998 	}
7999 	IWN_LOCK(sc);
8000 
8001 	fw->size = sc->fw_fp->datasize;
8002 	fw->data = (const uint8_t *)sc->fw_fp->data;
8003 	if (fw->size < sizeof (uint32_t)) {
8004 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
8005 		    __func__, fw->size);
8006 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8007 		sc->fw_fp = NULL;
8008 		return EINVAL;
8009 	}
8010 
8011 	/* Retrieve text and data sections. */
8012 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
8013 		error = iwn_read_firmware_leg(sc, fw);
8014 	else
8015 		error = iwn_read_firmware_tlv(sc, fw, 1);
8016 	if (error != 0) {
8017 		device_printf(sc->sc_dev,
8018 		    "%s: could not read firmware sections, error %d\n",
8019 		    __func__, error);
8020 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8021 		sc->fw_fp = NULL;
8022 		return error;
8023 	}
8024 
8025 	/* Make sure text and data sections fit in hardware memory. */
8026 	if (fw->main.textsz > sc->fw_text_maxsz ||
8027 	    fw->main.datasz > sc->fw_data_maxsz ||
8028 	    fw->init.textsz > sc->fw_text_maxsz ||
8029 	    fw->init.datasz > sc->fw_data_maxsz ||
8030 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
8031 	    (fw->boot.textsz & 3) != 0) {
8032 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
8033 		    __func__);
8034 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8035 		sc->fw_fp = NULL;
8036 		return EINVAL;
8037 	}
8038 
8039 	/* We can proceed with loading the firmware. */
8040 	return 0;
8041 }
8042 
8043 static int
8044 iwn_clock_wait(struct iwn_softc *sc)
8045 {
8046 	int ntries;
8047 
8048 	/* Set "initialization complete" bit. */
8049 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8050 
8051 	/* Wait for clock stabilization. */
8052 	for (ntries = 0; ntries < 2500; ntries++) {
8053 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
8054 			return 0;
8055 		DELAY(10);
8056 	}
8057 	device_printf(sc->sc_dev,
8058 	    "%s: timeout waiting for clock stabilization\n", __func__);
8059 	return ETIMEDOUT;
8060 }
8061 
8062 static int
8063 iwn_apm_init(struct iwn_softc *sc)
8064 {
8065 	uint32_t reg;
8066 	int error;
8067 
8068 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8069 
8070 	/* Disable L0s exit timer (NMI bug workaround). */
8071 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
8072 	/* Don't wait for ICH L0s (ICH bug workaround). */
8073 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
8074 
8075 	/* Set FH wait threshold to max (HW bug under stress workaround). */
8076 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
8077 
8078 	/* Enable HAP INTA to move adapter from L1a to L0s. */
8079 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
8080 
8081 	/* Retrieve PCIe Active State Power Management (ASPM). */
8082 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
8083 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
8084 	if (reg & 0x02)	/* L1 Entry enabled. */
8085 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8086 	else
8087 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
8088 
8089 	if (sc->base_params->pll_cfg_val)
8090 		IWN_SETBITS(sc, IWN_ANA_PLL, sc->base_params->pll_cfg_val);
8091 
8092 	/* Wait for clock stabilization before accessing prph. */
8093 	if ((error = iwn_clock_wait(sc)) != 0)
8094 		return error;
8095 
8096 	if ((error = iwn_nic_lock(sc)) != 0)
8097 		return error;
8098 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
8099 		/* Enable DMA and BSM (Bootstrap State Machine). */
8100 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8101 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
8102 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
8103 	} else {
8104 		/* Enable DMA. */
8105 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
8106 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8107 	}
8108 	DELAY(20);
8109 	/* Disable L1-Active. */
8110 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
8111 	iwn_nic_unlock(sc);
8112 
8113 	return 0;
8114 }
8115 
8116 static void
8117 iwn_apm_stop_master(struct iwn_softc *sc)
8118 {
8119 	int ntries;
8120 
8121 	/* Stop busmaster DMA activity. */
8122 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
8123 	for (ntries = 0; ntries < 100; ntries++) {
8124 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
8125 			return;
8126 		DELAY(10);
8127 	}
8128 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
8129 }
8130 
8131 static void
8132 iwn_apm_stop(struct iwn_softc *sc)
8133 {
8134 	iwn_apm_stop_master(sc);
8135 
8136 	/* Reset the entire device. */
8137 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
8138 	DELAY(10);
8139 	/* Clear "initialization complete" bit. */
8140 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
8141 }
8142 
8143 static int
8144 iwn4965_nic_config(struct iwn_softc *sc)
8145 {
8146 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8147 
8148 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
8149 		/*
8150 		 * I don't believe this to be correct but this is what the
8151 		 * vendor driver is doing. Probably the bits should not be
8152 		 * shifted in IWN_RFCFG_*.
8153 		 */
8154 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8155 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8156 		    IWN_RFCFG_STEP(sc->rfcfg) |
8157 		    IWN_RFCFG_DASH(sc->rfcfg));
8158 	}
8159 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8160 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8161 	return 0;
8162 }
8163 
8164 static int
8165 iwn5000_nic_config(struct iwn_softc *sc)
8166 {
8167 	uint32_t tmp;
8168 	int error;
8169 
8170 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8171 
8172 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
8173 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8174 		    IWN_RFCFG_TYPE(sc->rfcfg) |
8175 		    IWN_RFCFG_STEP(sc->rfcfg) |
8176 		    IWN_RFCFG_DASH(sc->rfcfg));
8177 	}
8178 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
8179 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
8180 
8181 	if ((error = iwn_nic_lock(sc)) != 0)
8182 		return error;
8183 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
8184 
8185 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
8186 		/*
8187 		 * Select first Switching Voltage Regulator (1.32V) to
8188 		 * solve a stability issue related to noisy DC2DC line
8189 		 * in the silicon of 1000 Series.
8190 		 */
8191 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
8192 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
8193 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
8194 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
8195 	}
8196 	iwn_nic_unlock(sc);
8197 
8198 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
8199 		/* Use internal power amplifier only. */
8200 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
8201 	}
8202 	if (sc->base_params->additional_nic_config && sc->calib_ver >= 6) {
8203 		/* Indicate that ROM calibration version is >=6. */
8204 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
8205 	}
8206 	if (sc->base_params->additional_gp_drv_bit)
8207 		IWN_SETBITS(sc, IWN_GP_DRIVER,
8208 		    sc->base_params->additional_gp_drv_bit);
8209 	return 0;
8210 }
8211 
8212 /*
8213  * Take NIC ownership over Intel Active Management Technology (AMT).
8214  */
8215 static int
8216 iwn_hw_prepare(struct iwn_softc *sc)
8217 {
8218 	int ntries;
8219 
8220 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8221 
8222 	/* Check if hardware is ready. */
8223 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8224 	for (ntries = 0; ntries < 5; ntries++) {
8225 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8226 		    IWN_HW_IF_CONFIG_NIC_READY)
8227 			return 0;
8228 		DELAY(10);
8229 	}
8230 
8231 	/* Hardware not ready, force into ready state. */
8232 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
8233 	for (ntries = 0; ntries < 15000; ntries++) {
8234 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
8235 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
8236 			break;
8237 		DELAY(10);
8238 	}
8239 	if (ntries == 15000)
8240 		return ETIMEDOUT;
8241 
8242 	/* Hardware should be ready now. */
8243 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
8244 	for (ntries = 0; ntries < 5; ntries++) {
8245 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
8246 		    IWN_HW_IF_CONFIG_NIC_READY)
8247 			return 0;
8248 		DELAY(10);
8249 	}
8250 	return ETIMEDOUT;
8251 }
8252 
8253 static int
8254 iwn_hw_init(struct iwn_softc *sc)
8255 {
8256 	struct iwn_ops *ops = &sc->ops;
8257 	int error, chnl, qid;
8258 
8259 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8260 
8261 	/* Clear pending interrupts. */
8262 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8263 
8264 	if ((error = iwn_apm_init(sc)) != 0) {
8265 		device_printf(sc->sc_dev,
8266 		    "%s: could not power ON adapter, error %d\n", __func__,
8267 		    error);
8268 		return error;
8269 	}
8270 
8271 	/* Select VMAIN power source. */
8272 	if ((error = iwn_nic_lock(sc)) != 0)
8273 		return error;
8274 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
8275 	iwn_nic_unlock(sc);
8276 
8277 	/* Perform adapter-specific initialization. */
8278 	if ((error = ops->nic_config(sc)) != 0)
8279 		return error;
8280 
8281 	/* Initialize RX ring. */
8282 	if ((error = iwn_nic_lock(sc)) != 0)
8283 		return error;
8284 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
8285 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
8286 	/* Set physical address of RX ring (256-byte aligned). */
8287 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
8288 	/* Set physical address of RX status (16-byte aligned). */
8289 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
8290 	/* Enable RX. */
8291 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
8292 	    IWN_FH_RX_CONFIG_ENA           |
8293 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
8294 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
8295 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
8296 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
8297 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
8298 	iwn_nic_unlock(sc);
8299 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
8300 
8301 	if ((error = iwn_nic_lock(sc)) != 0)
8302 		return error;
8303 
8304 	/* Initialize TX scheduler. */
8305 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8306 
8307 	/* Set physical address of "keep warm" page (16-byte aligned). */
8308 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
8309 
8310 	/* Initialize TX rings. */
8311 	for (qid = 0; qid < sc->ntxqs; qid++) {
8312 		struct iwn_tx_ring *txq = &sc->txq[qid];
8313 
8314 		/* Set physical address of TX ring (256-byte aligned). */
8315 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
8316 		    txq->desc_dma.paddr >> 8);
8317 	}
8318 	iwn_nic_unlock(sc);
8319 
8320 	/* Enable DMA channels. */
8321 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8322 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
8323 		    IWN_FH_TX_CONFIG_DMA_ENA |
8324 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
8325 	}
8326 
8327 	/* Clear "radio off" and "commands blocked" bits. */
8328 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8329 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
8330 
8331 	/* Clear pending interrupts. */
8332 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8333 	/* Enable interrupt coalescing. */
8334 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
8335 	/* Enable interrupts. */
8336 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8337 
8338 	/* _Really_ make sure "radio off" bit is cleared! */
8339 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8340 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
8341 
8342 	/* Enable shadow registers. */
8343 	if (sc->base_params->shadow_reg_enable)
8344 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
8345 
8346 	if ((error = ops->load_firmware(sc)) != 0) {
8347 		device_printf(sc->sc_dev,
8348 		    "%s: could not load firmware, error %d\n", __func__,
8349 		    error);
8350 		return error;
8351 	}
8352 	/* Wait at most one second for firmware alive notification. */
8353 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
8354 		device_printf(sc->sc_dev,
8355 		    "%s: timeout waiting for adapter to initialize, error %d\n",
8356 		    __func__, error);
8357 		return error;
8358 	}
8359 	/* Do post-firmware initialization. */
8360 
8361 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8362 
8363 	return ops->post_alive(sc);
8364 }
8365 
8366 static void
8367 iwn_hw_stop(struct iwn_softc *sc)
8368 {
8369 	int chnl, qid, ntries;
8370 
8371 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8372 
8373 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
8374 
8375 	/* Disable interrupts. */
8376 	IWN_WRITE(sc, IWN_INT_MASK, 0);
8377 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8378 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
8379 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8380 
8381 	/* Make sure we no longer hold the NIC lock. */
8382 	iwn_nic_unlock(sc);
8383 
8384 	/* Stop TX scheduler. */
8385 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
8386 
8387 	/* Stop all DMA channels. */
8388 	if (iwn_nic_lock(sc) == 0) {
8389 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
8390 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
8391 			for (ntries = 0; ntries < 200; ntries++) {
8392 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
8393 				    IWN_FH_TX_STATUS_IDLE(chnl))
8394 					break;
8395 				DELAY(10);
8396 			}
8397 		}
8398 		iwn_nic_unlock(sc);
8399 	}
8400 
8401 	/* Stop RX ring. */
8402 	iwn_reset_rx_ring(sc, &sc->rxq);
8403 
8404 	/* Reset all TX rings. */
8405 	for (qid = 0; qid < sc->ntxqs; qid++)
8406 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
8407 
8408 	if (iwn_nic_lock(sc) == 0) {
8409 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
8410 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
8411 		iwn_nic_unlock(sc);
8412 	}
8413 	DELAY(5);
8414 	/* Power OFF adapter. */
8415 	iwn_apm_stop(sc);
8416 }
8417 
8418 static void
8419 iwn_radio_on(void *arg0, int pending)
8420 {
8421 	struct iwn_softc *sc = arg0;
8422 	struct ifnet *ifp = sc->sc_ifp;
8423 	struct ieee80211com *ic = ifp->if_l2com;
8424 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8425 
8426 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8427 
8428 	if (vap != NULL) {
8429 		iwn_init(sc);
8430 		ieee80211_init(vap);
8431 	}
8432 }
8433 
8434 static void
8435 iwn_radio_off(void *arg0, int pending)
8436 {
8437 	struct iwn_softc *sc = arg0;
8438 	struct ifnet *ifp = sc->sc_ifp;
8439 	struct ieee80211com *ic = ifp->if_l2com;
8440 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8441 
8442 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8443 
8444 	iwn_stop(sc);
8445 	if (vap != NULL)
8446 		ieee80211_stop(vap);
8447 
8448 	/* Enable interrupts to get RF toggle notification. */
8449 	IWN_LOCK(sc);
8450 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
8451 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8452 	IWN_UNLOCK(sc);
8453 }
8454 
8455 static void
8456 iwn_panicked(void *arg0, int pending)
8457 {
8458 	struct iwn_softc *sc = arg0;
8459 	struct ifnet *ifp = sc->sc_ifp;
8460 	struct ieee80211com *ic = ifp->if_l2com;
8461 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8462 	int error;
8463 
8464 	if (vap == NULL) {
8465 		printf("%s: null vap\n", __func__);
8466 		return;
8467 	}
8468 
8469 	device_printf(sc->sc_dev, "%s: controller panicked, iv_state = %d; "
8470 	    "resetting...\n", __func__, vap->iv_state);
8471 
8472 	iwn_stop(sc);
8473 	iwn_init(sc);
8474 	iwn_start(sc->sc_ifp);
8475 	if (vap->iv_state >= IEEE80211_S_AUTH &&
8476 	    (error = iwn_auth(sc, vap)) != 0) {
8477 		device_printf(sc->sc_dev,
8478 		    "%s: could not move to auth state\n", __func__);
8479 	}
8480 	if (vap->iv_state >= IEEE80211_S_RUN &&
8481 	    (error = iwn_run(sc, vap)) != 0) {
8482 		device_printf(sc->sc_dev,
8483 		    "%s: could not move to run state\n", __func__);
8484 	}
8485 }
8486 
8487 static void
8488 iwn_init_locked(struct iwn_softc *sc)
8489 {
8490 	struct ifnet *ifp = sc->sc_ifp;
8491 	int error;
8492 
8493 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s begin\n", __func__);
8494 
8495 	IWN_LOCK_ASSERT(sc);
8496 
8497 	if ((error = iwn_hw_prepare(sc)) != 0) {
8498 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
8499 		    __func__, error);
8500 		goto fail;
8501 	}
8502 
8503 	/* Initialize interrupt mask to default value. */
8504 	sc->int_mask = IWN_INT_MASK_DEF;
8505 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
8506 
8507 	/* Check that the radio is not disabled by hardware switch. */
8508 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
8509 		device_printf(sc->sc_dev,
8510 		    "radio is disabled by hardware switch\n");
8511 		/* Enable interrupts to get RF toggle notifications. */
8512 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
8513 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
8514 		return;
8515 	}
8516 
8517 	/* Read firmware images from the filesystem. */
8518 	if ((error = iwn_read_firmware(sc)) != 0) {
8519 		device_printf(sc->sc_dev,
8520 		    "%s: could not read firmware, error %d\n", __func__,
8521 		    error);
8522 		goto fail;
8523 	}
8524 
8525 	/* Initialize hardware and upload firmware. */
8526 	error = iwn_hw_init(sc);
8527 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
8528 	sc->fw_fp = NULL;
8529 	if (error != 0) {
8530 		device_printf(sc->sc_dev,
8531 		    "%s: could not initialize hardware, error %d\n", __func__,
8532 		    error);
8533 		goto fail;
8534 	}
8535 
8536 	/* Configure adapter now that it is ready. */
8537 	if ((error = iwn_config(sc)) != 0) {
8538 		device_printf(sc->sc_dev,
8539 		    "%s: could not configure device, error %d\n", __func__,
8540 		    error);
8541 		goto fail;
8542 	}
8543 
8544 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
8545 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
8546 
8547 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
8548 
8549 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end\n",__func__);
8550 
8551 	return;
8552 
8553 fail:	iwn_stop_locked(sc);
8554 	DPRINTF(sc, IWN_DEBUG_TRACE, "->%s: end in error\n",__func__);
8555 }
8556 
8557 static void
8558 iwn_init(void *arg)
8559 {
8560 	struct iwn_softc *sc = arg;
8561 	struct ifnet *ifp = sc->sc_ifp;
8562 	struct ieee80211com *ic = ifp->if_l2com;
8563 
8564 	IWN_LOCK(sc);
8565 	iwn_init_locked(sc);
8566 	IWN_UNLOCK(sc);
8567 
8568 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
8569 		ieee80211_start_all(ic);
8570 }
8571 
8572 static void
8573 iwn_stop_locked(struct iwn_softc *sc)
8574 {
8575 	struct ifnet *ifp = sc->sc_ifp;
8576 
8577 	IWN_LOCK_ASSERT(sc);
8578 
8579 	sc->sc_is_scanning = 0;
8580 	sc->sc_tx_timer = 0;
8581 	callout_stop(&sc->watchdog_to);
8582 	callout_stop(&sc->calib_to);
8583 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
8584 
8585 	/* Power OFF hardware. */
8586 	iwn_hw_stop(sc);
8587 }
8588 
8589 static void
8590 iwn_stop(struct iwn_softc *sc)
8591 {
8592 	IWN_LOCK(sc);
8593 	iwn_stop_locked(sc);
8594 	IWN_UNLOCK(sc);
8595 }
8596 
8597 /*
8598  * Callback from net80211 to start a scan.
8599  */
8600 static void
8601 iwn_scan_start(struct ieee80211com *ic)
8602 {
8603 	struct ifnet *ifp = ic->ic_ifp;
8604 	struct iwn_softc *sc = ifp->if_softc;
8605 
8606 	IWN_LOCK(sc);
8607 	/* make the link LED blink while we're scanning */
8608 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
8609 	IWN_UNLOCK(sc);
8610 }
8611 
8612 /*
8613  * Callback from net80211 to terminate a scan.
8614  */
8615 static void
8616 iwn_scan_end(struct ieee80211com *ic)
8617 {
8618 	struct ifnet *ifp = ic->ic_ifp;
8619 	struct iwn_softc *sc = ifp->if_softc;
8620 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
8621 
8622 	IWN_LOCK(sc);
8623 	if (vap->iv_state == IEEE80211_S_RUN) {
8624 		/* Set link LED to ON status if we are associated */
8625 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
8626 	}
8627 	IWN_UNLOCK(sc);
8628 }
8629 
8630 /*
8631  * Callback from net80211 to force a channel change.
8632  */
8633 static void
8634 iwn_set_channel(struct ieee80211com *ic)
8635 {
8636 	const struct ieee80211_channel *c = ic->ic_curchan;
8637 	struct ifnet *ifp = ic->ic_ifp;
8638 	struct iwn_softc *sc = ifp->if_softc;
8639 	int error;
8640 
8641 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8642 
8643 	IWN_LOCK(sc);
8644 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
8645 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
8646 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
8647 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
8648 
8649 	/*
8650 	 * Only need to set the channel in Monitor mode. AP scanning and auth
8651 	 * are already taken care of by their respective firmware commands.
8652 	 */
8653 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
8654 		error = iwn_config(sc);
8655 		if (error != 0)
8656 		device_printf(sc->sc_dev,
8657 		    "%s: error %d settting channel\n", __func__, error);
8658 	}
8659 	IWN_UNLOCK(sc);
8660 }
8661 
8662 /*
8663  * Callback from net80211 to start scanning of the current channel.
8664  */
8665 static void
8666 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
8667 {
8668 	struct ieee80211vap *vap = ss->ss_vap;
8669 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
8670 	struct ieee80211com *ic = vap->iv_ic;
8671 	int error;
8672 
8673 	IWN_LOCK(sc);
8674 	error = iwn_scan(sc, vap, ss, ic->ic_curchan);
8675 	IWN_UNLOCK(sc);
8676 	if (error != 0)
8677 		ieee80211_cancel_scan(vap);
8678 }
8679 
8680 /*
8681  * Callback from net80211 to handle the minimum dwell time being met.
8682  * The intent is to terminate the scan but we just let the firmware
8683  * notify us when it's finished as we have no safe way to abort it.
8684  */
8685 static void
8686 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
8687 {
8688 	/* NB: don't try to abort scan; wait for firmware to finish */
8689 }
8690 
8691 static void
8692 iwn_hw_reset(void *arg0, int pending)
8693 {
8694 	struct iwn_softc *sc = arg0;
8695 	struct ifnet *ifp = sc->sc_ifp;
8696 	struct ieee80211com *ic = ifp->if_l2com;
8697 
8698 	DPRINTF(sc, IWN_DEBUG_TRACE, "->Doing %s\n", __func__);
8699 
8700 	iwn_stop(sc);
8701 	iwn_init(sc);
8702 	ieee80211_notify_radio(ic, 1);
8703 }
8704 #ifdef	IWN_DEBUG
8705 #define	IWN_DESC(x) case x:	return #x
8706 #define	COUNTOF(array) (sizeof(array) / sizeof(array[0]))
8707 
8708 /*
8709  * Translate CSR code to string
8710  */
8711 static char *iwn_get_csr_string(int csr)
8712 {
8713 	switch (csr) {
8714 		IWN_DESC(IWN_HW_IF_CONFIG);
8715 		IWN_DESC(IWN_INT_COALESCING);
8716 		IWN_DESC(IWN_INT);
8717 		IWN_DESC(IWN_INT_MASK);
8718 		IWN_DESC(IWN_FH_INT);
8719 		IWN_DESC(IWN_GPIO_IN);
8720 		IWN_DESC(IWN_RESET);
8721 		IWN_DESC(IWN_GP_CNTRL);
8722 		IWN_DESC(IWN_HW_REV);
8723 		IWN_DESC(IWN_EEPROM);
8724 		IWN_DESC(IWN_EEPROM_GP);
8725 		IWN_DESC(IWN_OTP_GP);
8726 		IWN_DESC(IWN_GIO);
8727 		IWN_DESC(IWN_GP_UCODE);
8728 		IWN_DESC(IWN_GP_DRIVER);
8729 		IWN_DESC(IWN_UCODE_GP1);
8730 		IWN_DESC(IWN_UCODE_GP2);
8731 		IWN_DESC(IWN_LED);
8732 		IWN_DESC(IWN_DRAM_INT_TBL);
8733 		IWN_DESC(IWN_GIO_CHICKEN);
8734 		IWN_DESC(IWN_ANA_PLL);
8735 		IWN_DESC(IWN_HW_REV_WA);
8736 		IWN_DESC(IWN_DBG_HPET_MEM);
8737 	default:
8738 		return "UNKNOWN CSR";
8739 	}
8740 }
8741 
8742 /*
8743  * This function print firmware register
8744  */
8745 static void
8746 iwn_debug_register(struct iwn_softc *sc)
8747 {
8748 	int i;
8749 	static const uint32_t csr_tbl[] = {
8750 		IWN_HW_IF_CONFIG,
8751 		IWN_INT_COALESCING,
8752 		IWN_INT,
8753 		IWN_INT_MASK,
8754 		IWN_FH_INT,
8755 		IWN_GPIO_IN,
8756 		IWN_RESET,
8757 		IWN_GP_CNTRL,
8758 		IWN_HW_REV,
8759 		IWN_EEPROM,
8760 		IWN_EEPROM_GP,
8761 		IWN_OTP_GP,
8762 		IWN_GIO,
8763 		IWN_GP_UCODE,
8764 		IWN_GP_DRIVER,
8765 		IWN_UCODE_GP1,
8766 		IWN_UCODE_GP2,
8767 		IWN_LED,
8768 		IWN_DRAM_INT_TBL,
8769 		IWN_GIO_CHICKEN,
8770 		IWN_ANA_PLL,
8771 		IWN_HW_REV_WA,
8772 		IWN_DBG_HPET_MEM,
8773 	};
8774 	DPRINTF(sc, IWN_DEBUG_REGISTER,
8775 	    "CSR values: (2nd byte of IWN_INT_COALESCING is IWN_INT_PERIODIC)%s",
8776 	    "\n");
8777 	for (i = 0; i <  COUNTOF(csr_tbl); i++){
8778 		DPRINTF(sc, IWN_DEBUG_REGISTER,"  %10s: 0x%08x ",
8779 			iwn_get_csr_string(csr_tbl[i]), IWN_READ(sc, csr_tbl[i]));
8780 		if ((i+1) % 3 == 0)
8781 			DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8782 	}
8783 	DPRINTF(sc, IWN_DEBUG_REGISTER,"%s","\n");
8784 }
8785 #endif
8786