xref: /freebsd/sys/dev/iwn/if_iwn.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 2007-2009
3  *	Damien Bergamini <damien.bergamini@free.fr>
4  * Copyright (c) 2008
5  *	Benjamin Close <benjsc@FreeBSD.org>
6  * Copyright (c) 2008 Sam Leffler, Errno Consulting
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
23  * adapters.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/sysctl.h>
32 #include <sys/mbuf.h>
33 #include <sys/kernel.h>
34 #include <sys/socket.h>
35 #include <sys/systm.h>
36 #include <sys/malloc.h>
37 #include <sys/bus.h>
38 #include <sys/rman.h>
39 #include <sys/endian.h>
40 #include <sys/firmware.h>
41 #include <sys/limits.h>
42 #include <sys/module.h>
43 #include <sys/queue.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/bus.h>
47 #include <machine/resource.h>
48 #include <machine/clock.h>
49 
50 #include <dev/pci/pcireg.h>
51 #include <dev/pci/pcivar.h>
52 
53 #include <net/bpf.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/ethernet.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_types.h>
60 
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/if_ether.h>
65 #include <netinet/ip.h>
66 
67 #include <net80211/ieee80211_var.h>
68 #include <net80211/ieee80211_radiotap.h>
69 #include <net80211/ieee80211_regdomain.h>
70 #include <net80211/ieee80211_ratectl.h>
71 
72 #include <dev/iwn/if_iwnreg.h>
73 #include <dev/iwn/if_iwnvar.h>
74 
75 struct iwn_ident {
76 	uint16_t	vendor;
77 	uint16_t	device;
78 	const char	*name;
79 };
80 
81 static const struct iwn_ident iwn_ident_table[] = {
82 	{ 0x8086, 0x0082, "Intel Centrino Advanced-N 6205"		},
83 	{ 0x8086, 0x0083, "Intel Centrino Wireless-N 1000"		},
84 	{ 0x8086, 0x0084, "Intel Centrino Wireless-N 1000"		},
85 	{ 0x8086, 0x0085, "Intel Centrino Advanced-N 6205"		},
86 	{ 0x8086, 0x0087, "Intel Centrino Advanced-N + WiMAX 6250"	},
87 	{ 0x8086, 0x0089, "Intel Centrino Advanced-N + WiMAX 6250"	},
88 	{ 0x8086, 0x008a, "Intel Centrino Wireless-N 1030"		},
89 	{ 0x8086, 0x008b, "Intel Centrino Wireless-N 1030"		},
90 	{ 0x8086, 0x0090, "Intel Centrino Advanced-N 6230"		},
91 	{ 0x8086, 0x0091, "Intel Centrino Advanced-N 6230"		},
92 	{ 0x8086, 0x0885, "Intel Centrino Wireless-N + WiMAX 6150"	},
93 	{ 0x8086, 0x0886, "Intel Centrino Wireless-N + WiMAX 6150"	},
94 	{ 0x8086, 0x0896, "Intel Centrino Wireless-N 130"		},
95 	{ 0x8086, 0x0887, "Intel Centrino Wireless-N 130"		},
96 	{ 0x8086, 0x08ae, "Intel Centrino Wireless-N 100"		},
97 	{ 0x8086, 0x08af, "Intel Centrino Wireless-N 100"		},
98 	{ 0x8086, 0x4229, "Intel Wireless WiFi Link 4965"		},
99 	{ 0x8086, 0x422b, "Intel Centrino Ultimate-N 6300"		},
100 	{ 0x8086, 0x422c, "Intel Centrino Advanced-N 6200"		},
101 	{ 0x8086, 0x422d, "Intel Wireless WiFi Link 4965"		},
102 	{ 0x8086, 0x4230, "Intel Wireless WiFi Link 4965"		},
103 	{ 0x8086, 0x4232, "Intel WiFi Link 5100"			},
104 	{ 0x8086, 0x4233, "Intel Wireless WiFi Link 4965"		},
105 	{ 0x8086, 0x4235, "Intel Ultimate N WiFi Link 5300"		},
106 	{ 0x8086, 0x4236, "Intel Ultimate N WiFi Link 5300"		},
107 	{ 0x8086, 0x4237, "Intel WiFi Link 5100"			},
108 	{ 0x8086, 0x4238, "Intel Centrino Ultimate-N 6300"		},
109 	{ 0x8086, 0x4239, "Intel Centrino Advanced-N 6200"		},
110 	{ 0x8086, 0x423a, "Intel WiMAX/WiFi Link 5350"			},
111 	{ 0x8086, 0x423b, "Intel WiMAX/WiFi Link 5350"			},
112 	{ 0x8086, 0x423c, "Intel WiMAX/WiFi Link 5150"			},
113 	{ 0x8086, 0x423d, "Intel WiMAX/WiFi Link 5150"			},
114 	{ 0, 0, NULL }
115 };
116 
117 static int	iwn_probe(device_t);
118 static int	iwn_attach(device_t);
119 static int	iwn4965_attach(struct iwn_softc *, uint16_t);
120 static int	iwn5000_attach(struct iwn_softc *, uint16_t);
121 static void	iwn_radiotap_attach(struct iwn_softc *);
122 static void	iwn_sysctlattach(struct iwn_softc *);
123 static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
124 		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
125 		    const uint8_t [IEEE80211_ADDR_LEN],
126 		    const uint8_t [IEEE80211_ADDR_LEN]);
127 static void	iwn_vap_delete(struct ieee80211vap *);
128 static int	iwn_detach(device_t);
129 static int	iwn_shutdown(device_t);
130 static int	iwn_suspend(device_t);
131 static int	iwn_resume(device_t);
132 static int	iwn_nic_lock(struct iwn_softc *);
133 static int	iwn_eeprom_lock(struct iwn_softc *);
134 static int	iwn_init_otprom(struct iwn_softc *);
135 static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
136 static void	iwn_dma_map_addr(void *, bus_dma_segment_t *, int, int);
137 static int	iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
138 		    void **, bus_size_t, bus_size_t);
139 static void	iwn_dma_contig_free(struct iwn_dma_info *);
140 static int	iwn_alloc_sched(struct iwn_softc *);
141 static void	iwn_free_sched(struct iwn_softc *);
142 static int	iwn_alloc_kw(struct iwn_softc *);
143 static void	iwn_free_kw(struct iwn_softc *);
144 static int	iwn_alloc_ict(struct iwn_softc *);
145 static void	iwn_free_ict(struct iwn_softc *);
146 static int	iwn_alloc_fwmem(struct iwn_softc *);
147 static void	iwn_free_fwmem(struct iwn_softc *);
148 static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
149 static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
150 static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
151 static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
152 		    int);
153 static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
154 static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
155 static void	iwn5000_ict_reset(struct iwn_softc *);
156 static int	iwn_read_eeprom(struct iwn_softc *,
157 		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
158 static void	iwn4965_read_eeprom(struct iwn_softc *);
159 static void	iwn4965_print_power_group(struct iwn_softc *, int);
160 static void	iwn5000_read_eeprom(struct iwn_softc *);
161 static uint32_t	iwn_eeprom_channel_flags(struct iwn_eeprom_chan *);
162 static void	iwn_read_eeprom_band(struct iwn_softc *, int);
163 static void	iwn_read_eeprom_ht40(struct iwn_softc *, int);
164 static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
165 static struct iwn_eeprom_chan *iwn_find_eeprom_channel(struct iwn_softc *,
166 		    struct ieee80211_channel *);
167 static int	iwn_setregdomain(struct ieee80211com *,
168 		    struct ieee80211_regdomain *, int,
169 		    struct ieee80211_channel[]);
170 static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
171 static struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
172 		    const uint8_t mac[IEEE80211_ADDR_LEN]);
173 static void	iwn_newassoc(struct ieee80211_node *, int);
174 static int	iwn_media_change(struct ifnet *);
175 static int	iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
176 static void	iwn_calib_timeout(void *);
177 static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
178 		    struct iwn_rx_data *);
179 static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
180 		    struct iwn_rx_data *);
181 static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
182 		    struct iwn_rx_data *);
183 static void	iwn5000_rx_calib_results(struct iwn_softc *,
184 		    struct iwn_rx_desc *, struct iwn_rx_data *);
185 static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
186 		    struct iwn_rx_data *);
187 static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
188 		    struct iwn_rx_data *);
189 static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
190 		    struct iwn_rx_data *);
191 static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
192 		    uint8_t);
193 static void	iwn_ampdu_tx_done(struct iwn_softc *, int, int, int, void *);
194 static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
195 static void	iwn_notif_intr(struct iwn_softc *);
196 static void	iwn_wakeup_intr(struct iwn_softc *);
197 static void	iwn_rftoggle_intr(struct iwn_softc *);
198 static void	iwn_fatal_intr(struct iwn_softc *);
199 static void	iwn_intr(void *);
200 static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
201 		    uint16_t);
202 static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
203 		    uint16_t);
204 #ifdef notyet
205 static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
206 #endif
207 static int	iwn_tx_data(struct iwn_softc *, struct mbuf *,
208 		    struct ieee80211_node *);
209 static int	iwn_tx_data_raw(struct iwn_softc *, struct mbuf *,
210 		    struct ieee80211_node *,
211 		    const struct ieee80211_bpf_params *params);
212 static int	iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
213 		    const struct ieee80211_bpf_params *);
214 static void	iwn_start(struct ifnet *);
215 static void	iwn_start_locked(struct ifnet *);
216 static void	iwn_watchdog(void *);
217 static int	iwn_ioctl(struct ifnet *, u_long, caddr_t);
218 static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
219 static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
220 		    int);
221 static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
222 		    int);
223 static int	iwn_set_link_quality(struct iwn_softc *,
224 		    struct ieee80211_node *);
225 static int	iwn_add_broadcast_node(struct iwn_softc *, int);
226 static int	iwn_updateedca(struct ieee80211com *);
227 static void	iwn_update_mcast(struct ifnet *);
228 static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
229 static int	iwn_set_critical_temp(struct iwn_softc *);
230 static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
231 static void	iwn4965_power_calibration(struct iwn_softc *, int);
232 static int	iwn4965_set_txpower(struct iwn_softc *,
233 		    struct ieee80211_channel *, int);
234 static int	iwn5000_set_txpower(struct iwn_softc *,
235 		    struct ieee80211_channel *, int);
236 static int	iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
237 static int	iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
238 static int	iwn_get_noise(const struct iwn_rx_general_stats *);
239 static int	iwn4965_get_temperature(struct iwn_softc *);
240 static int	iwn5000_get_temperature(struct iwn_softc *);
241 static int	iwn_init_sensitivity(struct iwn_softc *);
242 static void	iwn_collect_noise(struct iwn_softc *,
243 		    const struct iwn_rx_general_stats *);
244 static int	iwn4965_init_gains(struct iwn_softc *);
245 static int	iwn5000_init_gains(struct iwn_softc *);
246 static int	iwn4965_set_gains(struct iwn_softc *);
247 static int	iwn5000_set_gains(struct iwn_softc *);
248 static void	iwn_tune_sensitivity(struct iwn_softc *,
249 		    const struct iwn_rx_stats *);
250 static int	iwn_send_sensitivity(struct iwn_softc *);
251 static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
252 static int	iwn_send_btcoex(struct iwn_softc *);
253 static int	iwn_send_advanced_btcoex(struct iwn_softc *);
254 static int	iwn5000_runtime_calib(struct iwn_softc *);
255 static int	iwn_config(struct iwn_softc *);
256 static uint8_t	*ieee80211_add_ssid(uint8_t *, const uint8_t *, u_int);
257 static int	iwn_scan(struct iwn_softc *);
258 static int	iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
259 static int	iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
260 static int	iwn_ampdu_rx_start(struct ieee80211_node *,
261 		    struct ieee80211_rx_ampdu *, int, int, int);
262 static void	iwn_ampdu_rx_stop(struct ieee80211_node *,
263 		    struct ieee80211_rx_ampdu *);
264 static int	iwn_addba_request(struct ieee80211_node *,
265 		    struct ieee80211_tx_ampdu *, int, int, int);
266 static int	iwn_addba_response(struct ieee80211_node *,
267 		    struct ieee80211_tx_ampdu *, int, int, int);
268 static int	iwn_ampdu_tx_start(struct ieee80211com *,
269 		    struct ieee80211_node *, uint8_t);
270 static void	iwn_ampdu_tx_stop(struct ieee80211_node *,
271 		    struct ieee80211_tx_ampdu *);
272 static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
273 		    struct ieee80211_node *, int, uint8_t, uint16_t);
274 static void	iwn4965_ampdu_tx_stop(struct iwn_softc *, int,
275 		    uint8_t, uint16_t);
276 static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
277 		    struct ieee80211_node *, int, uint8_t, uint16_t);
278 static void	iwn5000_ampdu_tx_stop(struct iwn_softc *, int,
279 		    uint8_t, uint16_t);
280 static int	iwn5000_query_calibration(struct iwn_softc *);
281 static int	iwn5000_send_calibration(struct iwn_softc *);
282 static int	iwn5000_send_wimax_coex(struct iwn_softc *);
283 static int	iwn5000_crystal_calib(struct iwn_softc *);
284 static int	iwn5000_temp_offset_calib(struct iwn_softc *);
285 static int	iwn4965_post_alive(struct iwn_softc *);
286 static int	iwn5000_post_alive(struct iwn_softc *);
287 static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
288 		    int);
289 static int	iwn4965_load_firmware(struct iwn_softc *);
290 static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
291 		    const uint8_t *, int);
292 static int	iwn5000_load_firmware(struct iwn_softc *);
293 static int	iwn_read_firmware_leg(struct iwn_softc *,
294 		    struct iwn_fw_info *);
295 static int	iwn_read_firmware_tlv(struct iwn_softc *,
296 		    struct iwn_fw_info *, uint16_t);
297 static int	iwn_read_firmware(struct iwn_softc *);
298 static int	iwn_clock_wait(struct iwn_softc *);
299 static int	iwn_apm_init(struct iwn_softc *);
300 static void	iwn_apm_stop_master(struct iwn_softc *);
301 static void	iwn_apm_stop(struct iwn_softc *);
302 static int	iwn4965_nic_config(struct iwn_softc *);
303 static int	iwn5000_nic_config(struct iwn_softc *);
304 static int	iwn_hw_prepare(struct iwn_softc *);
305 static int	iwn_hw_init(struct iwn_softc *);
306 static void	iwn_hw_stop(struct iwn_softc *);
307 static void	iwn_radio_on(void *, int);
308 static void	iwn_radio_off(void *, int);
309 static void	iwn_init_locked(struct iwn_softc *);
310 static void	iwn_init(void *);
311 static void	iwn_stop_locked(struct iwn_softc *);
312 static void	iwn_stop(struct iwn_softc *);
313 static void	iwn_scan_start(struct ieee80211com *);
314 static void	iwn_scan_end(struct ieee80211com *);
315 static void	iwn_set_channel(struct ieee80211com *);
316 static void	iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
317 static void	iwn_scan_mindwell(struct ieee80211_scan_state *);
318 static void	iwn_hw_reset(void *, int);
319 
320 #define IWN_DEBUG
321 #ifdef IWN_DEBUG
322 enum {
323 	IWN_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
324 	IWN_DEBUG_RECV		= 0x00000002,	/* basic recv operation */
325 	IWN_DEBUG_STATE		= 0x00000004,	/* 802.11 state transitions */
326 	IWN_DEBUG_TXPOW		= 0x00000008,	/* tx power processing */
327 	IWN_DEBUG_RESET		= 0x00000010,	/* reset processing */
328 	IWN_DEBUG_OPS		= 0x00000020,	/* iwn_ops processing */
329 	IWN_DEBUG_BEACON 	= 0x00000040,	/* beacon handling */
330 	IWN_DEBUG_WATCHDOG 	= 0x00000080,	/* watchdog timeout */
331 	IWN_DEBUG_INTR		= 0x00000100,	/* ISR */
332 	IWN_DEBUG_CALIBRATE	= 0x00000200,	/* periodic calibration */
333 	IWN_DEBUG_NODE		= 0x00000400,	/* node management */
334 	IWN_DEBUG_LED		= 0x00000800,	/* led management */
335 	IWN_DEBUG_CMD		= 0x00001000,	/* cmd submission */
336 	IWN_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
337 	IWN_DEBUG_ANY		= 0xffffffff
338 };
339 
340 #define DPRINTF(sc, m, fmt, ...) do {			\
341 	if (sc->sc_debug & (m))				\
342 		printf(fmt, __VA_ARGS__);		\
343 } while (0)
344 
345 static const char *
346 iwn_intr_str(uint8_t cmd)
347 {
348 	switch (cmd) {
349 	/* Notifications */
350 	case IWN_UC_READY:		return "UC_READY";
351 	case IWN_ADD_NODE_DONE:		return "ADD_NODE_DONE";
352 	case IWN_TX_DONE:		return "TX_DONE";
353 	case IWN_START_SCAN:		return "START_SCAN";
354 	case IWN_STOP_SCAN:		return "STOP_SCAN";
355 	case IWN_RX_STATISTICS:		return "RX_STATS";
356 	case IWN_BEACON_STATISTICS:	return "BEACON_STATS";
357 	case IWN_STATE_CHANGED:		return "STATE_CHANGED";
358 	case IWN_BEACON_MISSED:		return "BEACON_MISSED";
359 	case IWN_RX_PHY:		return "RX_PHY";
360 	case IWN_MPDU_RX_DONE:		return "MPDU_RX_DONE";
361 	case IWN_RX_DONE:		return "RX_DONE";
362 
363 	/* Command Notifications */
364 	case IWN_CMD_RXON:		return "IWN_CMD_RXON";
365 	case IWN_CMD_RXON_ASSOC:	return "IWN_CMD_RXON_ASSOC";
366 	case IWN_CMD_EDCA_PARAMS:	return "IWN_CMD_EDCA_PARAMS";
367 	case IWN_CMD_TIMING:		return "IWN_CMD_TIMING";
368 	case IWN_CMD_LINK_QUALITY:	return "IWN_CMD_LINK_QUALITY";
369 	case IWN_CMD_SET_LED:		return "IWN_CMD_SET_LED";
370 	case IWN5000_CMD_WIMAX_COEX:	return "IWN5000_CMD_WIMAX_COEX";
371 	case IWN5000_CMD_CALIB_CONFIG:	return "IWN5000_CMD_CALIB_CONFIG";
372 	case IWN5000_CMD_CALIB_RESULT:	return "IWN5000_CMD_CALIB_RESULT";
373 	case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
374 	case IWN_CMD_SET_POWER_MODE:	return "IWN_CMD_SET_POWER_MODE";
375 	case IWN_CMD_SCAN:		return "IWN_CMD_SCAN";
376 	case IWN_CMD_SCAN_RESULTS:	return "IWN_CMD_SCAN_RESULTS";
377 	case IWN_CMD_TXPOWER:		return "IWN_CMD_TXPOWER";
378 	case IWN_CMD_TXPOWER_DBM:	return "IWN_CMD_TXPOWER_DBM";
379 	case IWN5000_CMD_TX_ANT_CONFIG:	return "IWN5000_CMD_TX_ANT_CONFIG";
380 	case IWN_CMD_BT_COEX:		return "IWN_CMD_BT_COEX";
381 	case IWN_CMD_SET_CRITICAL_TEMP:	return "IWN_CMD_SET_CRITICAL_TEMP";
382 	case IWN_CMD_SET_SENSITIVITY:	return "IWN_CMD_SET_SENSITIVITY";
383 	case IWN_CMD_PHY_CALIB:		return "IWN_CMD_PHY_CALIB";
384 	}
385 	return "UNKNOWN INTR NOTIF/CMD";
386 }
387 #else
388 #define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
389 #endif
390 
391 static device_method_t iwn_methods[] = {
392 	/* Device interface */
393 	DEVMETHOD(device_probe,		iwn_probe),
394 	DEVMETHOD(device_attach,	iwn_attach),
395 	DEVMETHOD(device_detach,	iwn_detach),
396 	DEVMETHOD(device_shutdown,	iwn_shutdown),
397 	DEVMETHOD(device_suspend,	iwn_suspend),
398 	DEVMETHOD(device_resume,	iwn_resume),
399 	{ 0, 0 }
400 };
401 
402 static driver_t iwn_driver = {
403 	"iwn",
404 	iwn_methods,
405 	sizeof(struct iwn_softc)
406 };
407 static devclass_t iwn_devclass;
408 
409 DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
410 
411 MODULE_VERSION(iwn, 1);
412 
413 MODULE_DEPEND(iwn, firmware, 1, 1, 1);
414 MODULE_DEPEND(iwn, pci, 1, 1, 1);
415 MODULE_DEPEND(iwn, wlan, 1, 1, 1);
416 
417 static int
418 iwn_probe(device_t dev)
419 {
420 	const struct iwn_ident *ident;
421 
422 	for (ident = iwn_ident_table; ident->name != NULL; ident++) {
423 		if (pci_get_vendor(dev) == ident->vendor &&
424 		    pci_get_device(dev) == ident->device) {
425 			device_set_desc(dev, ident->name);
426 			return 0;
427 		}
428 	}
429 	return ENXIO;
430 }
431 
432 static int
433 iwn_attach(device_t dev)
434 {
435 	struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
436 	struct ieee80211com *ic;
437 	struct ifnet *ifp;
438 	uint32_t reg;
439 	int i, error, result;
440 	uint8_t macaddr[IEEE80211_ADDR_LEN];
441 
442 	sc->sc_dev = dev;
443 
444 	/*
445 	 * Get the offset of the PCI Express Capability Structure in PCI
446 	 * Configuration Space.
447 	 */
448 	error = pci_find_cap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
449 	if (error != 0) {
450 		device_printf(dev, "PCIe capability structure not found!\n");
451 		return error;
452 	}
453 
454 	/* Clear device-specific "PCI retry timeout" register (41h). */
455 	pci_write_config(dev, 0x41, 0, 1);
456 
457 	/* Hardware bug workaround. */
458 	reg = pci_read_config(dev, PCIR_COMMAND, 1);
459 	if (reg & PCIM_CMD_INTxDIS) {
460 		DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
461 		    __func__);
462 		reg &= ~PCIM_CMD_INTxDIS;
463 		pci_write_config(dev, PCIR_COMMAND, reg, 1);
464 	}
465 
466 	/* Enable bus-mastering. */
467 	pci_enable_busmaster(dev);
468 
469 	sc->mem_rid = PCIR_BAR(0);
470 	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
471 	    RF_ACTIVE);
472 	if (sc->mem == NULL) {
473 		device_printf(dev, "can't map mem space\n");
474 		error = ENOMEM;
475 		return error;
476 	}
477 	sc->sc_st = rman_get_bustag(sc->mem);
478 	sc->sc_sh = rman_get_bushandle(sc->mem);
479 
480 	sc->irq_rid = 0;
481 	if ((result = pci_msi_count(dev)) == 1 &&
482 	    pci_alloc_msi(dev, &result) == 0)
483 		sc->irq_rid = 1;
484 	/* Install interrupt handler. */
485 	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
486 	    RF_ACTIVE | RF_SHAREABLE);
487 	if (sc->irq == NULL) {
488 		device_printf(dev, "can't map interrupt\n");
489 		error = ENOMEM;
490 		goto fail;
491 	}
492 
493 	IWN_LOCK_INIT(sc);
494 
495 	/* Read hardware revision and attach. */
496 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
497 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
498 		error = iwn4965_attach(sc, pci_get_device(dev));
499 	else
500 		error = iwn5000_attach(sc, pci_get_device(dev));
501 	if (error != 0) {
502 		device_printf(dev, "could not attach device, error %d\n",
503 		    error);
504 		goto fail;
505 	}
506 
507 	if ((error = iwn_hw_prepare(sc)) != 0) {
508 		device_printf(dev, "hardware not ready, error %d\n", error);
509 		goto fail;
510 	}
511 
512 	/* Allocate DMA memory for firmware transfers. */
513 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
514 		device_printf(dev,
515 		    "could not allocate memory for firmware, error %d\n",
516 		    error);
517 		goto fail;
518 	}
519 
520 	/* Allocate "Keep Warm" page. */
521 	if ((error = iwn_alloc_kw(sc)) != 0) {
522 		device_printf(dev,
523 		    "could not allocate keep warm page, error %d\n", error);
524 		goto fail;
525 	}
526 
527 	/* Allocate ICT table for 5000 Series. */
528 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
529 	    (error = iwn_alloc_ict(sc)) != 0) {
530 		device_printf(dev, "could not allocate ICT table, error %d\n",
531 		    error);
532 		goto fail;
533 	}
534 
535 	/* Allocate TX scheduler "rings". */
536 	if ((error = iwn_alloc_sched(sc)) != 0) {
537 		device_printf(dev,
538 		    "could not allocate TX scheduler rings, error %d\n", error);
539 		goto fail;
540 	}
541 
542 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
543 	for (i = 0; i < sc->ntxqs; i++) {
544 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
545 			device_printf(dev,
546 			    "could not allocate TX ring %d, error %d\n", i,
547 			    error);
548 			goto fail;
549 		}
550 	}
551 
552 	/* Allocate RX ring. */
553 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
554 		device_printf(dev, "could not allocate RX ring, error %d\n",
555 		    error);
556 		goto fail;
557 	}
558 
559 	/* Clear pending interrupts. */
560 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
561 
562 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
563 	if (ifp == NULL) {
564 		device_printf(dev, "can not allocate ifnet structure\n");
565 		goto fail;
566 	}
567 
568 	ic = ifp->if_l2com;
569 	ic->ic_ifp = ifp;
570 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
571 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
572 
573 	/* Set device capabilities. */
574 	ic->ic_caps =
575 		  IEEE80211_C_STA		/* station mode supported */
576 		| IEEE80211_C_MONITOR		/* monitor mode supported */
577 		| IEEE80211_C_BGSCAN		/* background scanning */
578 		| IEEE80211_C_TXPMGT		/* tx power management */
579 		| IEEE80211_C_SHSLOT		/* short slot time supported */
580 		| IEEE80211_C_WPA
581 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582 #if 0
583 		| IEEE80211_C_IBSS		/* ibss/adhoc mode */
584 #endif
585 		| IEEE80211_C_WME		/* WME */
586 		;
587 
588 	/* Read MAC address, channels, etc from EEPROM. */
589 	if ((error = iwn_read_eeprom(sc, macaddr)) != 0) {
590 		device_printf(dev, "could not read EEPROM, error %d\n",
591 		    error);
592 		goto fail;
593 	}
594 
595 	/* Count the number of available chains. */
596 	sc->ntxchains =
597 	    ((sc->txchainmask >> 2) & 1) +
598 	    ((sc->txchainmask >> 1) & 1) +
599 	    ((sc->txchainmask >> 0) & 1);
600 	sc->nrxchains =
601 	    ((sc->rxchainmask >> 2) & 1) +
602 	    ((sc->rxchainmask >> 1) & 1) +
603 	    ((sc->rxchainmask >> 0) & 1);
604 	if (bootverbose) {
605 		device_printf(dev, "MIMO %dT%dR, %.4s, address %6D\n",
606 		    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
607 		    macaddr, ":");
608 	}
609 
610 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
611 		ic->ic_rxstream = sc->nrxchains;
612 		ic->ic_txstream = sc->ntxchains;
613 		ic->ic_htcaps =
614 			  IEEE80211_HTCAP_SMPS_OFF	/* SMPS mode disabled */
615 			| IEEE80211_HTCAP_SHORTGI20	/* short GI in 20MHz */
616 			| IEEE80211_HTCAP_CHWIDTH40	/* 40MHz channel width*/
617 			| IEEE80211_HTCAP_SHORTGI40	/* short GI in 40MHz */
618 #ifdef notyet
619 			| IEEE80211_HTCAP_GREENFIELD
620 #if IWN_RBUF_SIZE == 8192
621 			| IEEE80211_HTCAP_MAXAMSDU_7935	/* max A-MSDU length */
622 #else
623 			| IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
624 #endif
625 #endif
626 			/* s/w capabilities */
627 			| IEEE80211_HTC_HT		/* HT operation */
628 			| IEEE80211_HTC_AMPDU		/* tx A-MPDU */
629 #ifdef notyet
630 			| IEEE80211_HTC_AMSDU		/* tx A-MSDU */
631 #endif
632 			;
633 	}
634 
635 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
636 	ifp->if_softc = sc;
637 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
638 	ifp->if_init = iwn_init;
639 	ifp->if_ioctl = iwn_ioctl;
640 	ifp->if_start = iwn_start;
641 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
642 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
643 	IFQ_SET_READY(&ifp->if_snd);
644 
645 	ieee80211_ifattach(ic, macaddr);
646 	ic->ic_vap_create = iwn_vap_create;
647 	ic->ic_vap_delete = iwn_vap_delete;
648 	ic->ic_raw_xmit = iwn_raw_xmit;
649 	ic->ic_node_alloc = iwn_node_alloc;
650 	sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
651 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
652 	sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
653 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
654 	sc->sc_addba_request = ic->ic_addba_request;
655 	ic->ic_addba_request = iwn_addba_request;
656 	sc->sc_addba_response = ic->ic_addba_response;
657 	ic->ic_addba_response = iwn_addba_response;
658 	sc->sc_addba_stop = ic->ic_addba_stop;
659 	ic->ic_addba_stop = iwn_ampdu_tx_stop;
660 	ic->ic_newassoc = iwn_newassoc;
661 	ic->ic_wme.wme_update = iwn_updateedca;
662 	ic->ic_update_mcast = iwn_update_mcast;
663 	ic->ic_scan_start = iwn_scan_start;
664 	ic->ic_scan_end = iwn_scan_end;
665 	ic->ic_set_channel = iwn_set_channel;
666 	ic->ic_scan_curchan = iwn_scan_curchan;
667 	ic->ic_scan_mindwell = iwn_scan_mindwell;
668 	ic->ic_setregdomain = iwn_setregdomain;
669 
670 	iwn_radiotap_attach(sc);
671 
672 	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
673 	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
674 	TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc);
675 	TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc);
676 	TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc);
677 
678 	iwn_sysctlattach(sc);
679 
680 	/*
681 	 * Hook our interrupt after all initialization is complete.
682 	 */
683 	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
684 	    NULL, iwn_intr, sc, &sc->sc_ih);
685 	if (error != 0) {
686 		device_printf(dev, "can't establish interrupt, error %d\n",
687 		    error);
688 		goto fail;
689 	}
690 
691 	if (bootverbose)
692 		ieee80211_announce(ic);
693 	return 0;
694 fail:
695 	iwn_detach(dev);
696 	return error;
697 }
698 
699 static int
700 iwn4965_attach(struct iwn_softc *sc, uint16_t pid)
701 {
702 	struct iwn_ops *ops = &sc->ops;
703 
704 	ops->load_firmware = iwn4965_load_firmware;
705 	ops->read_eeprom = iwn4965_read_eeprom;
706 	ops->post_alive = iwn4965_post_alive;
707 	ops->nic_config = iwn4965_nic_config;
708 	ops->update_sched = iwn4965_update_sched;
709 	ops->get_temperature = iwn4965_get_temperature;
710 	ops->get_rssi = iwn4965_get_rssi;
711 	ops->set_txpower = iwn4965_set_txpower;
712 	ops->init_gains = iwn4965_init_gains;
713 	ops->set_gains = iwn4965_set_gains;
714 	ops->add_node = iwn4965_add_node;
715 	ops->tx_done = iwn4965_tx_done;
716 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
717 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
718 	sc->ntxqs = IWN4965_NTXQUEUES;
719 	sc->firstaggqueue = IWN4965_FIRSTAGGQUEUE;
720 	sc->ndmachnls = IWN4965_NDMACHNLS;
721 	sc->broadcast_id = IWN4965_ID_BROADCAST;
722 	sc->rxonsz = IWN4965_RXONSZ;
723 	sc->schedsz = IWN4965_SCHEDSZ;
724 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
725 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
726 	sc->fwsz = IWN4965_FWSZ;
727 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
728 	sc->limits = &iwn4965_sensitivity_limits;
729 	sc->fwname = "iwn4965fw";
730 	/* Override chains masks, ROM is known to be broken. */
731 	sc->txchainmask = IWN_ANT_AB;
732 	sc->rxchainmask = IWN_ANT_ABC;
733 
734 	return 0;
735 }
736 
737 static int
738 iwn5000_attach(struct iwn_softc *sc, uint16_t pid)
739 {
740 	struct iwn_ops *ops = &sc->ops;
741 
742 	ops->load_firmware = iwn5000_load_firmware;
743 	ops->read_eeprom = iwn5000_read_eeprom;
744 	ops->post_alive = iwn5000_post_alive;
745 	ops->nic_config = iwn5000_nic_config;
746 	ops->update_sched = iwn5000_update_sched;
747 	ops->get_temperature = iwn5000_get_temperature;
748 	ops->get_rssi = iwn5000_get_rssi;
749 	ops->set_txpower = iwn5000_set_txpower;
750 	ops->init_gains = iwn5000_init_gains;
751 	ops->set_gains = iwn5000_set_gains;
752 	ops->add_node = iwn5000_add_node;
753 	ops->tx_done = iwn5000_tx_done;
754 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
755 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
756 	sc->ntxqs = IWN5000_NTXQUEUES;
757 	sc->firstaggqueue = IWN5000_FIRSTAGGQUEUE;
758 	sc->ndmachnls = IWN5000_NDMACHNLS;
759 	sc->broadcast_id = IWN5000_ID_BROADCAST;
760 	sc->rxonsz = IWN5000_RXONSZ;
761 	sc->schedsz = IWN5000_SCHEDSZ;
762 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
763 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
764 	sc->fwsz = IWN5000_FWSZ;
765 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
766 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
767 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
768 
769 	switch (sc->hw_type) {
770 	case IWN_HW_REV_TYPE_5100:
771 		sc->limits = &iwn5000_sensitivity_limits;
772 		sc->fwname = "iwn5000fw";
773 		/* Override chains masks, ROM is known to be broken. */
774 		sc->txchainmask = IWN_ANT_B;
775 		sc->rxchainmask = IWN_ANT_AB;
776 		break;
777 	case IWN_HW_REV_TYPE_5150:
778 		sc->limits = &iwn5150_sensitivity_limits;
779 		sc->fwname = "iwn5150fw";
780 		break;
781 	case IWN_HW_REV_TYPE_5300:
782 	case IWN_HW_REV_TYPE_5350:
783 		sc->limits = &iwn5000_sensitivity_limits;
784 		sc->fwname = "iwn5000fw";
785 		break;
786 	case IWN_HW_REV_TYPE_1000:
787 		sc->limits = &iwn1000_sensitivity_limits;
788 		sc->fwname = "iwn1000fw";
789 		break;
790 	case IWN_HW_REV_TYPE_6000:
791 		sc->limits = &iwn6000_sensitivity_limits;
792 		sc->fwname = "iwn6000fw";
793 		if (pid == 0x422c || pid == 0x4239) {
794 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
795 			/* Override chains masks, ROM is known to be broken. */
796 			sc->txchainmask = IWN_ANT_BC;
797 			sc->rxchainmask = IWN_ANT_BC;
798 		}
799 		break;
800 	case IWN_HW_REV_TYPE_6050:
801 		sc->limits = &iwn6000_sensitivity_limits;
802 		sc->fwname = "iwn6050fw";
803 		/* Override chains masks, ROM is known to be broken. */
804 		sc->txchainmask = IWN_ANT_AB;
805 		sc->rxchainmask = IWN_ANT_AB;
806 		break;
807 	case IWN_HW_REV_TYPE_6005:
808 		sc->limits = &iwn6000_sensitivity_limits;
809 		if (pid != 0x0082 && pid != 0x0085) {
810 			sc->fwname = "iwn6000g2bfw";
811 			sc->sc_flags |= IWN_FLAG_ADV_BTCOEX;
812 		} else
813 			sc->fwname = "iwn6000g2afw";
814 		break;
815 	default:
816 		device_printf(sc->sc_dev, "adapter type %d not supported\n",
817 		    sc->hw_type);
818 		return ENOTSUP;
819 	}
820 	return 0;
821 }
822 
823 /*
824  * Attach the interface to 802.11 radiotap.
825  */
826 static void
827 iwn_radiotap_attach(struct iwn_softc *sc)
828 {
829 	struct ifnet *ifp = sc->sc_ifp;
830 	struct ieee80211com *ic = ifp->if_l2com;
831 
832 	ieee80211_radiotap_attach(ic,
833 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
834 		IWN_TX_RADIOTAP_PRESENT,
835 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
836 		IWN_RX_RADIOTAP_PRESENT);
837 }
838 
839 static void
840 iwn_sysctlattach(struct iwn_softc *sc)
841 {
842 	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
843 	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
844 
845 #ifdef IWN_DEBUG
846 	sc->sc_debug = 0;
847 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
848 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
849 #endif
850 }
851 
852 static struct ieee80211vap *
853 iwn_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
854     enum ieee80211_opmode opmode, int flags,
855     const uint8_t bssid[IEEE80211_ADDR_LEN],
856     const uint8_t mac[IEEE80211_ADDR_LEN])
857 {
858 	struct iwn_vap *ivp;
859 	struct ieee80211vap *vap;
860 
861 	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
862 		return NULL;
863 	ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
864 	    M_80211_VAP, M_NOWAIT | M_ZERO);
865 	if (ivp == NULL)
866 		return NULL;
867 	vap = &ivp->iv_vap;
868 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
869 	vap->iv_bmissthreshold = 10;		/* override default */
870 	/* Override with driver methods. */
871 	ivp->iv_newstate = vap->iv_newstate;
872 	vap->iv_newstate = iwn_newstate;
873 
874 	ieee80211_ratectl_init(vap);
875 	/* Complete setup. */
876 	ieee80211_vap_attach(vap, iwn_media_change, ieee80211_media_status);
877 	ic->ic_opmode = opmode;
878 	return vap;
879 }
880 
881 static void
882 iwn_vap_delete(struct ieee80211vap *vap)
883 {
884 	struct iwn_vap *ivp = IWN_VAP(vap);
885 
886 	ieee80211_ratectl_deinit(vap);
887 	ieee80211_vap_detach(vap);
888 	free(ivp, M_80211_VAP);
889 }
890 
891 static int
892 iwn_detach(device_t dev)
893 {
894 	struct iwn_softc *sc = device_get_softc(dev);
895 	struct ifnet *ifp = sc->sc_ifp;
896 	struct ieee80211com *ic;
897 	int qid;
898 
899 	if (ifp != NULL) {
900 		ic = ifp->if_l2com;
901 
902 		ieee80211_draintask(ic, &sc->sc_reinit_task);
903 		ieee80211_draintask(ic, &sc->sc_radioon_task);
904 		ieee80211_draintask(ic, &sc->sc_radiooff_task);
905 
906 		iwn_stop(sc);
907 		callout_drain(&sc->watchdog_to);
908 		callout_drain(&sc->calib_to);
909 		ieee80211_ifdetach(ic);
910 	}
911 
912 	/* Uninstall interrupt handler. */
913 	if (sc->irq != NULL) {
914 		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
915 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
916 		if (sc->irq_rid == 1)
917 			pci_release_msi(dev);
918 	}
919 
920 	/* Free DMA resources. */
921 	iwn_free_rx_ring(sc, &sc->rxq);
922 	for (qid = 0; qid < sc->ntxqs; qid++)
923 		iwn_free_tx_ring(sc, &sc->txq[qid]);
924 	iwn_free_sched(sc);
925 	iwn_free_kw(sc);
926 	if (sc->ict != NULL)
927 		iwn_free_ict(sc);
928 	iwn_free_fwmem(sc);
929 
930 	if (sc->mem != NULL)
931 		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
932 
933 	if (ifp != NULL)
934 		if_free(ifp);
935 
936 	IWN_LOCK_DESTROY(sc);
937 	return 0;
938 }
939 
940 static int
941 iwn_shutdown(device_t dev)
942 {
943 	struct iwn_softc *sc = device_get_softc(dev);
944 
945 	iwn_stop(sc);
946 	return 0;
947 }
948 
949 static int
950 iwn_suspend(device_t dev)
951 {
952 	struct iwn_softc *sc = device_get_softc(dev);
953 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
954 
955 	ieee80211_suspend_all(ic);
956 	return 0;
957 }
958 
959 static int
960 iwn_resume(device_t dev)
961 {
962 	struct iwn_softc *sc = device_get_softc(dev);
963 	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
964 
965 	/* Clear device-specific "PCI retry timeout" register (41h). */
966 	pci_write_config(dev, 0x41, 0, 1);
967 
968 	ieee80211_resume_all(ic);
969 	return 0;
970 }
971 
972 static int
973 iwn_nic_lock(struct iwn_softc *sc)
974 {
975 	int ntries;
976 
977 	/* Request exclusive access to NIC. */
978 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
979 
980 	/* Spin until we actually get the lock. */
981 	for (ntries = 0; ntries < 1000; ntries++) {
982 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
983 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
984 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
985 			return 0;
986 		DELAY(10);
987 	}
988 	return ETIMEDOUT;
989 }
990 
991 static __inline void
992 iwn_nic_unlock(struct iwn_softc *sc)
993 {
994 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
995 }
996 
997 static __inline uint32_t
998 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
999 {
1000 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1001 	IWN_BARRIER_READ_WRITE(sc);
1002 	return IWN_READ(sc, IWN_PRPH_RDATA);
1003 }
1004 
1005 static __inline void
1006 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1007 {
1008 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1009 	IWN_BARRIER_WRITE(sc);
1010 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1011 }
1012 
1013 static __inline void
1014 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1015 {
1016 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1017 }
1018 
1019 static __inline void
1020 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1021 {
1022 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1023 }
1024 
1025 static __inline void
1026 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1027     const uint32_t *data, int count)
1028 {
1029 	for (; count > 0; count--, data++, addr += 4)
1030 		iwn_prph_write(sc, addr, *data);
1031 }
1032 
1033 static __inline uint32_t
1034 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1035 {
1036 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1037 	IWN_BARRIER_READ_WRITE(sc);
1038 	return IWN_READ(sc, IWN_MEM_RDATA);
1039 }
1040 
1041 static __inline void
1042 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1043 {
1044 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1045 	IWN_BARRIER_WRITE(sc);
1046 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1047 }
1048 
1049 static __inline void
1050 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1051 {
1052 	uint32_t tmp;
1053 
1054 	tmp = iwn_mem_read(sc, addr & ~3);
1055 	if (addr & 3)
1056 		tmp = (tmp & 0x0000ffff) | data << 16;
1057 	else
1058 		tmp = (tmp & 0xffff0000) | data;
1059 	iwn_mem_write(sc, addr & ~3, tmp);
1060 }
1061 
1062 static __inline void
1063 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1064     int count)
1065 {
1066 	for (; count > 0; count--, addr += 4)
1067 		*data++ = iwn_mem_read(sc, addr);
1068 }
1069 
1070 static __inline void
1071 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1072     int count)
1073 {
1074 	for (; count > 0; count--, addr += 4)
1075 		iwn_mem_write(sc, addr, val);
1076 }
1077 
1078 static int
1079 iwn_eeprom_lock(struct iwn_softc *sc)
1080 {
1081 	int i, ntries;
1082 
1083 	for (i = 0; i < 100; i++) {
1084 		/* Request exclusive access to EEPROM. */
1085 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1086 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1087 
1088 		/* Spin until we actually get the lock. */
1089 		for (ntries = 0; ntries < 100; ntries++) {
1090 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1091 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1092 				return 0;
1093 			DELAY(10);
1094 		}
1095 	}
1096 	return ETIMEDOUT;
1097 }
1098 
1099 static __inline void
1100 iwn_eeprom_unlock(struct iwn_softc *sc)
1101 {
1102 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1103 }
1104 
1105 /*
1106  * Initialize access by host to One Time Programmable ROM.
1107  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1108  */
1109 static int
1110 iwn_init_otprom(struct iwn_softc *sc)
1111 {
1112 	uint16_t prev, base, next;
1113 	int count, error;
1114 
1115 	/* Wait for clock stabilization before accessing prph. */
1116 	if ((error = iwn_clock_wait(sc)) != 0)
1117 		return error;
1118 
1119 	if ((error = iwn_nic_lock(sc)) != 0)
1120 		return error;
1121 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1122 	DELAY(5);
1123 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1124 	iwn_nic_unlock(sc);
1125 
1126 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1127 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1128 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1129 		    IWN_RESET_LINK_PWR_MGMT_DIS);
1130 	}
1131 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1132 	/* Clear ECC status. */
1133 	IWN_SETBITS(sc, IWN_OTP_GP,
1134 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1135 
1136 	/*
1137 	 * Find the block before last block (contains the EEPROM image)
1138 	 * for HW without OTP shadow RAM.
1139 	 */
1140 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1141 		/* Switch to absolute addressing mode. */
1142 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1143 		base = prev = 0;
1144 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1145 			error = iwn_read_prom_data(sc, base, &next, 2);
1146 			if (error != 0)
1147 				return error;
1148 			if (next == 0)	/* End of linked-list. */
1149 				break;
1150 			prev = base;
1151 			base = le16toh(next);
1152 		}
1153 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1154 			return EIO;
1155 		/* Skip "next" word. */
1156 		sc->prom_base = prev + 1;
1157 	}
1158 	return 0;
1159 }
1160 
1161 static int
1162 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1163 {
1164 	uint8_t *out = data;
1165 	uint32_t val, tmp;
1166 	int ntries;
1167 
1168 	addr += sc->prom_base;
1169 	for (; count > 0; count -= 2, addr++) {
1170 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1171 		for (ntries = 0; ntries < 10; ntries++) {
1172 			val = IWN_READ(sc, IWN_EEPROM);
1173 			if (val & IWN_EEPROM_READ_VALID)
1174 				break;
1175 			DELAY(5);
1176 		}
1177 		if (ntries == 10) {
1178 			device_printf(sc->sc_dev,
1179 			    "timeout reading ROM at 0x%x\n", addr);
1180 			return ETIMEDOUT;
1181 		}
1182 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1183 			/* OTPROM, check for ECC errors. */
1184 			tmp = IWN_READ(sc, IWN_OTP_GP);
1185 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1186 				device_printf(sc->sc_dev,
1187 				    "OTPROM ECC error at 0x%x\n", addr);
1188 				return EIO;
1189 			}
1190 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1191 				/* Correctable ECC error, clear bit. */
1192 				IWN_SETBITS(sc, IWN_OTP_GP,
1193 				    IWN_OTP_GP_ECC_CORR_STTS);
1194 			}
1195 		}
1196 		*out++ = val >> 16;
1197 		if (count > 1)
1198 			*out++ = val >> 24;
1199 	}
1200 	return 0;
1201 }
1202 
1203 static void
1204 iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1205 {
1206 	if (error != 0)
1207 		return;
1208 	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
1209 	*(bus_addr_t *)arg = segs[0].ds_addr;
1210 }
1211 
1212 static int
1213 iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
1214     void **kvap, bus_size_t size, bus_size_t alignment)
1215 {
1216 	int error;
1217 
1218 	dma->tag = NULL;
1219 	dma->size = size;
1220 
1221 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
1222 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1223 	    1, size, BUS_DMA_NOWAIT, NULL, NULL, &dma->tag);
1224 	if (error != 0)
1225 		goto fail;
1226 
1227 	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
1228 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &dma->map);
1229 	if (error != 0)
1230 		goto fail;
1231 
1232 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, size,
1233 	    iwn_dma_map_addr, &dma->paddr, BUS_DMA_NOWAIT);
1234 	if (error != 0)
1235 		goto fail;
1236 
1237 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
1238 
1239 	if (kvap != NULL)
1240 		*kvap = dma->vaddr;
1241 
1242 	return 0;
1243 
1244 fail:	iwn_dma_contig_free(dma);
1245 	return error;
1246 }
1247 
1248 static void
1249 iwn_dma_contig_free(struct iwn_dma_info *dma)
1250 {
1251 	if (dma->map != NULL) {
1252 		if (dma->vaddr != NULL) {
1253 			bus_dmamap_sync(dma->tag, dma->map,
1254 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1255 			bus_dmamap_unload(dma->tag, dma->map);
1256 			bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
1257 			dma->vaddr = NULL;
1258 		}
1259 		bus_dmamap_destroy(dma->tag, dma->map);
1260 		dma->map = NULL;
1261 	}
1262 	if (dma->tag != NULL) {
1263 		bus_dma_tag_destroy(dma->tag);
1264 		dma->tag = NULL;
1265 	}
1266 }
1267 
1268 static int
1269 iwn_alloc_sched(struct iwn_softc *sc)
1270 {
1271 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1272 	return iwn_dma_contig_alloc(sc, &sc->sched_dma, (void **)&sc->sched,
1273 	    sc->schedsz, 1024);
1274 }
1275 
1276 static void
1277 iwn_free_sched(struct iwn_softc *sc)
1278 {
1279 	iwn_dma_contig_free(&sc->sched_dma);
1280 }
1281 
1282 static int
1283 iwn_alloc_kw(struct iwn_softc *sc)
1284 {
1285 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1286 	return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096);
1287 }
1288 
1289 static void
1290 iwn_free_kw(struct iwn_softc *sc)
1291 {
1292 	iwn_dma_contig_free(&sc->kw_dma);
1293 }
1294 
1295 static int
1296 iwn_alloc_ict(struct iwn_softc *sc)
1297 {
1298 	/* ICT table must be aligned on a 4KB boundary. */
1299 	return iwn_dma_contig_alloc(sc, &sc->ict_dma, (void **)&sc->ict,
1300 	    IWN_ICT_SIZE, 4096);
1301 }
1302 
1303 static void
1304 iwn_free_ict(struct iwn_softc *sc)
1305 {
1306 	iwn_dma_contig_free(&sc->ict_dma);
1307 }
1308 
1309 static int
1310 iwn_alloc_fwmem(struct iwn_softc *sc)
1311 {
1312 	/* Must be aligned on a 16-byte boundary. */
1313 	return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL, sc->fwsz, 16);
1314 }
1315 
1316 static void
1317 iwn_free_fwmem(struct iwn_softc *sc)
1318 {
1319 	iwn_dma_contig_free(&sc->fw_dma);
1320 }
1321 
1322 static int
1323 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1324 {
1325 	bus_size_t size;
1326 	int i, error;
1327 
1328 	ring->cur = 0;
1329 
1330 	/* Allocate RX descriptors (256-byte aligned). */
1331 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1332 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1333 	    size, 256);
1334 	if (error != 0) {
1335 		device_printf(sc->sc_dev,
1336 		    "%s: could not allocate RX ring DMA memory, error %d\n",
1337 		    __func__, error);
1338 		goto fail;
1339 	}
1340 
1341 	/* Allocate RX status area (16-byte aligned). */
1342 	error = iwn_dma_contig_alloc(sc, &ring->stat_dma, (void **)&ring->stat,
1343 	    sizeof (struct iwn_rx_status), 16);
1344 	if (error != 0) {
1345 		device_printf(sc->sc_dev,
1346 		    "%s: could not allocate RX status DMA memory, error %d\n",
1347 		    __func__, error);
1348 		goto fail;
1349 	}
1350 
1351 	/* Create RX buffer DMA tag. */
1352 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1353 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1354 	    IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, BUS_DMA_NOWAIT, NULL, NULL,
1355 	    &ring->data_dmat);
1356 	if (error != 0) {
1357 		device_printf(sc->sc_dev,
1358 		    "%s: could not create RX buf DMA tag, error %d\n",
1359 		    __func__, error);
1360 		goto fail;
1361 	}
1362 
1363 	/*
1364 	 * Allocate and map RX buffers.
1365 	 */
1366 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1367 		struct iwn_rx_data *data = &ring->data[i];
1368 		bus_addr_t paddr;
1369 
1370 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1371 		if (error != 0) {
1372 			device_printf(sc->sc_dev,
1373 			    "%s: could not create RX buf DMA map, error %d\n",
1374 			    __func__, error);
1375 			goto fail;
1376 		}
1377 
1378 		data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR,
1379 		    IWN_RBUF_SIZE);
1380 		if (data->m == NULL) {
1381 			device_printf(sc->sc_dev,
1382 			    "%s: could not allocate RX mbuf\n", __func__);
1383 			error = ENOBUFS;
1384 			goto fail;
1385 		}
1386 
1387 		error = bus_dmamap_load(ring->data_dmat, data->map,
1388 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
1389 		    &paddr, BUS_DMA_NOWAIT);
1390 		if (error != 0 && error != EFBIG) {
1391 			device_printf(sc->sc_dev,
1392 			    "%s: can't not map mbuf, error %d\n", __func__,
1393 			    error);
1394 			goto fail;
1395 		}
1396 
1397 		/* Set physical address of RX buffer (256-byte aligned). */
1398 		ring->desc[i] = htole32(paddr >> 8);
1399 	}
1400 
1401 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1402 	    BUS_DMASYNC_PREWRITE);
1403 
1404 	return 0;
1405 
1406 fail:	iwn_free_rx_ring(sc, ring);
1407 	return error;
1408 }
1409 
1410 static void
1411 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1412 {
1413 	int ntries;
1414 
1415 	if (iwn_nic_lock(sc) == 0) {
1416 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1417 		for (ntries = 0; ntries < 1000; ntries++) {
1418 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1419 			    IWN_FH_RX_STATUS_IDLE)
1420 				break;
1421 			DELAY(10);
1422 		}
1423 		iwn_nic_unlock(sc);
1424 	}
1425 	ring->cur = 0;
1426 	sc->last_rx_valid = 0;
1427 }
1428 
1429 static void
1430 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1431 {
1432 	int i;
1433 
1434 	iwn_dma_contig_free(&ring->desc_dma);
1435 	iwn_dma_contig_free(&ring->stat_dma);
1436 
1437 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1438 		struct iwn_rx_data *data = &ring->data[i];
1439 
1440 		if (data->m != NULL) {
1441 			bus_dmamap_sync(ring->data_dmat, data->map,
1442 			    BUS_DMASYNC_POSTREAD);
1443 			bus_dmamap_unload(ring->data_dmat, data->map);
1444 			m_freem(data->m);
1445 			data->m = NULL;
1446 		}
1447 		if (data->map != NULL)
1448 			bus_dmamap_destroy(ring->data_dmat, data->map);
1449 	}
1450 	if (ring->data_dmat != NULL) {
1451 		bus_dma_tag_destroy(ring->data_dmat);
1452 		ring->data_dmat = NULL;
1453 	}
1454 }
1455 
1456 static int
1457 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1458 {
1459 	bus_addr_t paddr;
1460 	bus_size_t size;
1461 	int i, error;
1462 
1463 	ring->qid = qid;
1464 	ring->queued = 0;
1465 	ring->cur = 0;
1466 
1467 	/* Allocate TX descriptors (256-byte aligned). */
1468 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1469 	error = iwn_dma_contig_alloc(sc, &ring->desc_dma, (void **)&ring->desc,
1470 	    size, 256);
1471 	if (error != 0) {
1472 		device_printf(sc->sc_dev,
1473 		    "%s: could not allocate TX ring DMA memory, error %d\n",
1474 		    __func__, error);
1475 		goto fail;
1476 	}
1477 
1478 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1479 	error = iwn_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1480 	    size, 4);
1481 	if (error != 0) {
1482 		device_printf(sc->sc_dev,
1483 		    "%s: could not allocate TX cmd DMA memory, error %d\n",
1484 		    __func__, error);
1485 		goto fail;
1486 	}
1487 
1488 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1489 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1490 	    IWN_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1491 	    &ring->data_dmat);
1492 	if (error != 0) {
1493 		device_printf(sc->sc_dev,
1494 		    "%s: could not create TX buf DMA tag, error %d\n",
1495 		    __func__, error);
1496 		goto fail;
1497 	}
1498 
1499 	paddr = ring->cmd_dma.paddr;
1500 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1501 		struct iwn_tx_data *data = &ring->data[i];
1502 
1503 		data->cmd_paddr = paddr;
1504 		data->scratch_paddr = paddr + 12;
1505 		paddr += sizeof (struct iwn_tx_cmd);
1506 
1507 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1508 		if (error != 0) {
1509 			device_printf(sc->sc_dev,
1510 			    "%s: could not create TX buf DMA map, error %d\n",
1511 			    __func__, error);
1512 			goto fail;
1513 		}
1514 	}
1515 	return 0;
1516 
1517 fail:	iwn_free_tx_ring(sc, ring);
1518 	return error;
1519 }
1520 
1521 static void
1522 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1523 {
1524 	int i;
1525 
1526 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1527 		struct iwn_tx_data *data = &ring->data[i];
1528 
1529 		if (data->m != NULL) {
1530 			bus_dmamap_sync(ring->data_dmat, data->map,
1531 			    BUS_DMASYNC_POSTWRITE);
1532 			bus_dmamap_unload(ring->data_dmat, data->map);
1533 			m_freem(data->m);
1534 			data->m = NULL;
1535 		}
1536 	}
1537 	/* Clear TX descriptors. */
1538 	memset(ring->desc, 0, ring->desc_dma.size);
1539 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1540 	    BUS_DMASYNC_PREWRITE);
1541 	sc->qfullmsk &= ~(1 << ring->qid);
1542 	ring->queued = 0;
1543 	ring->cur = 0;
1544 }
1545 
1546 static void
1547 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1548 {
1549 	int i;
1550 
1551 	iwn_dma_contig_free(&ring->desc_dma);
1552 	iwn_dma_contig_free(&ring->cmd_dma);
1553 
1554 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1555 		struct iwn_tx_data *data = &ring->data[i];
1556 
1557 		if (data->m != NULL) {
1558 			bus_dmamap_sync(ring->data_dmat, data->map,
1559 			    BUS_DMASYNC_POSTWRITE);
1560 			bus_dmamap_unload(ring->data_dmat, data->map);
1561 			m_freem(data->m);
1562 		}
1563 		if (data->map != NULL)
1564 			bus_dmamap_destroy(ring->data_dmat, data->map);
1565 	}
1566 	if (ring->data_dmat != NULL) {
1567 		bus_dma_tag_destroy(ring->data_dmat);
1568 		ring->data_dmat = NULL;
1569 	}
1570 }
1571 
1572 static void
1573 iwn5000_ict_reset(struct iwn_softc *sc)
1574 {
1575 	/* Disable interrupts. */
1576 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1577 
1578 	/* Reset ICT table. */
1579 	memset(sc->ict, 0, IWN_ICT_SIZE);
1580 	sc->ict_cur = 0;
1581 
1582 	/* Set physical address of ICT table (4KB aligned). */
1583 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
1584 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1585 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1586 
1587 	/* Enable periodic RX interrupt. */
1588 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1589 	/* Switch to ICT interrupt mode in driver. */
1590 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1591 
1592 	/* Re-enable interrupts. */
1593 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1594 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1595 }
1596 
1597 static int
1598 iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
1599 {
1600 	struct iwn_ops *ops = &sc->ops;
1601 	uint16_t val;
1602 	int error;
1603 
1604 	/* Check whether adapter has an EEPROM or an OTPROM. */
1605 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1606 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1607 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1608 	DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
1609 	    (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
1610 
1611 	/* Adapter has to be powered on for EEPROM access to work. */
1612 	if ((error = iwn_apm_init(sc)) != 0) {
1613 		device_printf(sc->sc_dev,
1614 		    "%s: could not power ON adapter, error %d\n", __func__,
1615 		    error);
1616 		return error;
1617 	}
1618 
1619 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1620 		device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
1621 		return EIO;
1622 	}
1623 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1624 		device_printf(sc->sc_dev, "%s: could not lock ROM, error %d\n",
1625 		    __func__, error);
1626 		return error;
1627 	}
1628 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1629 		if ((error = iwn_init_otprom(sc)) != 0) {
1630 			device_printf(sc->sc_dev,
1631 			    "%s: could not initialize OTPROM, error %d\n",
1632 			    __func__, error);
1633 			return error;
1634 		}
1635 	}
1636 
1637 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1638 	DPRINTF(sc, IWN_DEBUG_RESET, "SKU capabilities=0x%04x\n", le16toh(val));
1639 	/* Check if HT support is bonded out. */
1640 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1641 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1642 
1643 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1644 	sc->rfcfg = le16toh(val);
1645 	DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
1646 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1647 	if (sc->txchainmask == 0)
1648 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1649 	if (sc->rxchainmask == 0)
1650 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1651 
1652 	/* Read MAC address. */
1653 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
1654 
1655 	/* Read adapter-specific information from EEPROM. */
1656 	ops->read_eeprom(sc);
1657 
1658 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1659 
1660 	iwn_eeprom_unlock(sc);
1661 	return 0;
1662 }
1663 
1664 static void
1665 iwn4965_read_eeprom(struct iwn_softc *sc)
1666 {
1667 	uint32_t addr;
1668 	uint16_t val;
1669 	int i;
1670 
1671 	/* Read regulatory domain (4 ASCII characters). */
1672 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1673 
1674 	/* Read the list of authorized channels (20MHz ones only). */
1675 	for (i = 0; i < 7; i++) {
1676 		addr = iwn4965_regulatory_bands[i];
1677 		iwn_read_eeprom_channels(sc, i, addr);
1678 	}
1679 
1680 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1681 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1682 	sc->maxpwr2GHz = val & 0xff;
1683 	sc->maxpwr5GHz = val >> 8;
1684 	/* Check that EEPROM values are within valid range. */
1685 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1686 		sc->maxpwr5GHz = 38;
1687 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1688 		sc->maxpwr2GHz = 38;
1689 	DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
1690 	    sc->maxpwr2GHz, sc->maxpwr5GHz);
1691 
1692 	/* Read samples for each TX power group. */
1693 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1694 	    sizeof sc->bands);
1695 
1696 	/* Read voltage at which samples were taken. */
1697 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1698 	sc->eeprom_voltage = (int16_t)le16toh(val);
1699 	DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
1700 	    sc->eeprom_voltage);
1701 
1702 #ifdef IWN_DEBUG
1703 	/* Print samples. */
1704 	if (sc->sc_debug & IWN_DEBUG_ANY) {
1705 		for (i = 0; i < IWN_NBANDS; i++)
1706 			iwn4965_print_power_group(sc, i);
1707 	}
1708 #endif
1709 }
1710 
1711 #ifdef IWN_DEBUG
1712 static void
1713 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1714 {
1715 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1716 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1717 	int j, c;
1718 
1719 	printf("===band %d===\n", i);
1720 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1721 	printf("chan1 num=%d\n", chans[0].num);
1722 	for (c = 0; c < 2; c++) {
1723 		for (j = 0; j < IWN_NSAMPLES; j++) {
1724 			printf("chain %d, sample %d: temp=%d gain=%d "
1725 			    "power=%d pa_det=%d\n", c, j,
1726 			    chans[0].samples[c][j].temp,
1727 			    chans[0].samples[c][j].gain,
1728 			    chans[0].samples[c][j].power,
1729 			    chans[0].samples[c][j].pa_det);
1730 		}
1731 	}
1732 	printf("chan2 num=%d\n", chans[1].num);
1733 	for (c = 0; c < 2; c++) {
1734 		for (j = 0; j < IWN_NSAMPLES; j++) {
1735 			printf("chain %d, sample %d: temp=%d gain=%d "
1736 			    "power=%d pa_det=%d\n", c, j,
1737 			    chans[1].samples[c][j].temp,
1738 			    chans[1].samples[c][j].gain,
1739 			    chans[1].samples[c][j].power,
1740 			    chans[1].samples[c][j].pa_det);
1741 		}
1742 	}
1743 }
1744 #endif
1745 
1746 static void
1747 iwn5000_read_eeprom(struct iwn_softc *sc)
1748 {
1749 	struct iwn5000_eeprom_calib_hdr hdr;
1750 	int32_t volt;
1751 	uint32_t base, addr;
1752 	uint16_t val;
1753 	int i;
1754 
1755 	/* Read regulatory domain (4 ASCII characters). */
1756 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1757 	base = le16toh(val);
1758 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1759 	    sc->eeprom_domain, 4);
1760 
1761 	/* Read the list of authorized channels (20MHz ones only). */
1762 	for (i = 0; i < 7; i++) {
1763 		if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1764 			addr = base + iwn6000_regulatory_bands[i];
1765 		else
1766 			addr = base + iwn5000_regulatory_bands[i];
1767 		iwn_read_eeprom_channels(sc, i, addr);
1768 	}
1769 
1770 	/* Read enhanced TX power information for 6000 Series. */
1771 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1772 		iwn_read_eeprom_enhinfo(sc);
1773 
1774 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1775 	base = le16toh(val);
1776 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1777 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
1778 	    "%s: calib version=%u pa type=%u voltage=%u\n", __func__,
1779 	    hdr.version, hdr.pa_type, le16toh(hdr.volt));
1780 	sc->calib_ver = hdr.version;
1781 
1782 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1783 		/* Compute temperature offset. */
1784 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1785 		sc->eeprom_temp = le16toh(val);
1786 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1787 		volt = le16toh(val);
1788 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1789 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
1790 		    sc->eeprom_temp, volt, sc->temp_off);
1791 	} else {
1792 		/* Read crystal calibration. */
1793 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1794 		    &sc->eeprom_crystal, sizeof (uint32_t));
1795 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
1796 		    le32toh(sc->eeprom_crystal));
1797 	}
1798 }
1799 
1800 /*
1801  * Translate EEPROM flags to net80211.
1802  */
1803 static uint32_t
1804 iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
1805 {
1806 	uint32_t nflags;
1807 
1808 	nflags = 0;
1809 	if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
1810 		nflags |= IEEE80211_CHAN_PASSIVE;
1811 	if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
1812 		nflags |= IEEE80211_CHAN_NOADHOC;
1813 	if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
1814 		nflags |= IEEE80211_CHAN_DFS;
1815 		/* XXX apparently IBSS may still be marked */
1816 		nflags |= IEEE80211_CHAN_NOADHOC;
1817 	}
1818 
1819 	return nflags;
1820 }
1821 
1822 static void
1823 iwn_read_eeprom_band(struct iwn_softc *sc, int n)
1824 {
1825 	struct ifnet *ifp = sc->sc_ifp;
1826 	struct ieee80211com *ic = ifp->if_l2com;
1827 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1828 	const struct iwn_chan_band *band = &iwn_bands[n];
1829 	struct ieee80211_channel *c;
1830 	uint8_t chan;
1831 	int i, nflags;
1832 
1833 	for (i = 0; i < band->nchan; i++) {
1834 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1835 			DPRINTF(sc, IWN_DEBUG_RESET,
1836 			    "skip chan %d flags 0x%x maxpwr %d\n",
1837 			    band->chan[i], channels[i].flags,
1838 			    channels[i].maxpwr);
1839 			continue;
1840 		}
1841 		chan = band->chan[i];
1842 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1843 
1844 		c = &ic->ic_channels[ic->ic_nchans++];
1845 		c->ic_ieee = chan;
1846 		c->ic_maxregpower = channels[i].maxpwr;
1847 		c->ic_maxpower = 2*c->ic_maxregpower;
1848 
1849 		if (n == 0) {	/* 2GHz band */
1850 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_G);
1851 			/* G =>'s B is supported */
1852 			c->ic_flags = IEEE80211_CHAN_B | nflags;
1853 			c = &ic->ic_channels[ic->ic_nchans++];
1854 			c[0] = c[-1];
1855 			c->ic_flags = IEEE80211_CHAN_G | nflags;
1856 		} else {	/* 5GHz band */
1857 			c->ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A);
1858 			c->ic_flags = IEEE80211_CHAN_A | nflags;
1859 		}
1860 
1861 		/* Save maximum allowed TX power for this channel. */
1862 		sc->maxpwr[chan] = channels[i].maxpwr;
1863 
1864 		DPRINTF(sc, IWN_DEBUG_RESET,
1865 		    "add chan %d flags 0x%x maxpwr %d\n", chan,
1866 		    channels[i].flags, channels[i].maxpwr);
1867 
1868 		if (sc->sc_flags & IWN_FLAG_HAS_11N) {
1869 			/* add HT20, HT40 added separately */
1870 			c = &ic->ic_channels[ic->ic_nchans++];
1871 			c[0] = c[-1];
1872 			c->ic_flags |= IEEE80211_CHAN_HT20;
1873 		}
1874 	}
1875 }
1876 
1877 static void
1878 iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
1879 {
1880 	struct ifnet *ifp = sc->sc_ifp;
1881 	struct ieee80211com *ic = ifp->if_l2com;
1882 	struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
1883 	const struct iwn_chan_band *band = &iwn_bands[n];
1884 	struct ieee80211_channel *c, *cent, *extc;
1885 	uint8_t chan;
1886 	int i, nflags;
1887 
1888 	if (!(sc->sc_flags & IWN_FLAG_HAS_11N))
1889 		return;
1890 
1891 	for (i = 0; i < band->nchan; i++) {
1892 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
1893 			DPRINTF(sc, IWN_DEBUG_RESET,
1894 			    "skip chan %d flags 0x%x maxpwr %d\n",
1895 			    band->chan[i], channels[i].flags,
1896 			    channels[i].maxpwr);
1897 			continue;
1898 		}
1899 		chan = band->chan[i];
1900 		nflags = iwn_eeprom_channel_flags(&channels[i]);
1901 
1902 		/*
1903 		 * Each entry defines an HT40 channel pair; find the
1904 		 * center channel, then the extension channel above.
1905 		 */
1906 		cent = ieee80211_find_channel_byieee(ic, chan,
1907 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1908 		if (cent == NULL) {	/* XXX shouldn't happen */
1909 			device_printf(sc->sc_dev,
1910 			    "%s: no entry for channel %d\n", __func__, chan);
1911 			continue;
1912 		}
1913 		extc = ieee80211_find_channel(ic, cent->ic_freq+20,
1914 		    (n == 5 ? IEEE80211_CHAN_G : IEEE80211_CHAN_A));
1915 		if (extc == NULL) {
1916 			DPRINTF(sc, IWN_DEBUG_RESET,
1917 			    "%s: skip chan %d, extension channel not found\n",
1918 			    __func__, chan);
1919 			continue;
1920 		}
1921 
1922 		DPRINTF(sc, IWN_DEBUG_RESET,
1923 		    "add ht40 chan %d flags 0x%x maxpwr %d\n",
1924 		    chan, channels[i].flags, channels[i].maxpwr);
1925 
1926 		c = &ic->ic_channels[ic->ic_nchans++];
1927 		c[0] = cent[0];
1928 		c->ic_extieee = extc->ic_ieee;
1929 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1930 		c->ic_flags |= IEEE80211_CHAN_HT40U | nflags;
1931 		c = &ic->ic_channels[ic->ic_nchans++];
1932 		c[0] = extc[0];
1933 		c->ic_extieee = cent->ic_ieee;
1934 		c->ic_flags &= ~IEEE80211_CHAN_HT;
1935 		c->ic_flags |= IEEE80211_CHAN_HT40D | nflags;
1936 	}
1937 }
1938 
1939 static void
1940 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1941 {
1942 	struct ifnet *ifp = sc->sc_ifp;
1943 	struct ieee80211com *ic = ifp->if_l2com;
1944 
1945 	iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
1946 	    iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
1947 
1948 	if (n < 5)
1949 		iwn_read_eeprom_band(sc, n);
1950 	else
1951 		iwn_read_eeprom_ht40(sc, n);
1952 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
1953 }
1954 
1955 static struct iwn_eeprom_chan *
1956 iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
1957 {
1958 	int band, chan, i, j;
1959 
1960 	if (IEEE80211_IS_CHAN_HT40(c)) {
1961 		band = IEEE80211_IS_CHAN_5GHZ(c) ? 6 : 5;
1962 		if (IEEE80211_IS_CHAN_HT40D(c))
1963 			chan = c->ic_extieee;
1964 		else
1965 			chan = c->ic_ieee;
1966 		for (i = 0; i < iwn_bands[band].nchan; i++) {
1967 			if (iwn_bands[band].chan[i] == chan)
1968 				return &sc->eeprom_channels[band][i];
1969 		}
1970 	} else {
1971 		for (j = 0; j < 5; j++) {
1972 			for (i = 0; i < iwn_bands[j].nchan; i++) {
1973 				if (iwn_bands[j].chan[i] == c->ic_ieee)
1974 					return &sc->eeprom_channels[j][i];
1975 			}
1976 		}
1977 	}
1978 	return NULL;
1979 }
1980 
1981 /*
1982  * Enforce flags read from EEPROM.
1983  */
1984 static int
1985 iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
1986     int nchan, struct ieee80211_channel chans[])
1987 {
1988 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
1989 	int i;
1990 
1991 	for (i = 0; i < nchan; i++) {
1992 		struct ieee80211_channel *c = &chans[i];
1993 		struct iwn_eeprom_chan *channel;
1994 
1995 		channel = iwn_find_eeprom_channel(sc, c);
1996 		if (channel == NULL) {
1997 			if_printf(ic->ic_ifp,
1998 			    "%s: invalid channel %u freq %u/0x%x\n",
1999 			    __func__, c->ic_ieee, c->ic_freq, c->ic_flags);
2000 			return EINVAL;
2001 		}
2002 		c->ic_flags |= iwn_eeprom_channel_flags(channel);
2003 	}
2004 
2005 	return 0;
2006 }
2007 
2008 static void
2009 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
2010 {
2011 	struct iwn_eeprom_enhinfo enhinfo[35];
2012 	struct ifnet *ifp = sc->sc_ifp;
2013 	struct ieee80211com *ic = ifp->if_l2com;
2014 	struct ieee80211_channel *c;
2015 	uint16_t val, base;
2016 	int8_t maxpwr;
2017 	uint8_t flags;
2018 	int i, j;
2019 
2020 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
2021 	base = le16toh(val);
2022 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
2023 	    enhinfo, sizeof enhinfo);
2024 
2025 	for (i = 0; i < nitems(enhinfo); i++) {
2026 		flags = enhinfo[i].flags;
2027 		if (!(flags & IWN_ENHINFO_VALID))
2028 			continue;	/* Skip invalid entries. */
2029 
2030 		maxpwr = 0;
2031 		if (sc->txchainmask & IWN_ANT_A)
2032 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
2033 		if (sc->txchainmask & IWN_ANT_B)
2034 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
2035 		if (sc->txchainmask & IWN_ANT_C)
2036 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
2037 		if (sc->ntxchains == 2)
2038 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
2039 		else if (sc->ntxchains == 3)
2040 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
2041 
2042 		for (j = 0; j < ic->ic_nchans; j++) {
2043 			c = &ic->ic_channels[j];
2044 			if ((flags & IWN_ENHINFO_5GHZ)) {
2045 				if (!IEEE80211_IS_CHAN_A(c))
2046 					continue;
2047 			} else if ((flags & IWN_ENHINFO_OFDM)) {
2048 				if (!IEEE80211_IS_CHAN_G(c))
2049 					continue;
2050 			} else if (!IEEE80211_IS_CHAN_B(c))
2051 				continue;
2052 			if ((flags & IWN_ENHINFO_HT40)) {
2053 				if (!IEEE80211_IS_CHAN_HT40(c))
2054 					continue;
2055 			} else {
2056 				if (IEEE80211_IS_CHAN_HT40(c))
2057 					continue;
2058 			}
2059 			if (enhinfo[i].chan != 0 &&
2060 			    enhinfo[i].chan != c->ic_ieee)
2061 				continue;
2062 
2063 			DPRINTF(sc, IWN_DEBUG_RESET,
2064 			    "channel %d(%x), maxpwr %d\n", c->ic_ieee,
2065 			    c->ic_flags, maxpwr / 2);
2066 			c->ic_maxregpower = maxpwr / 2;
2067 			c->ic_maxpower = maxpwr;
2068 		}
2069 	}
2070 }
2071 
2072 static struct ieee80211_node *
2073 iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2074 {
2075 	return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
2076 }
2077 
2078 static __inline int
2079 rate2plcp(int rate)
2080 {
2081 	switch (rate & 0xff) {
2082 	case 12:	return 0xd;
2083 	case 18:	return 0xf;
2084 	case 24:	return 0x5;
2085 	case 36:	return 0x7;
2086 	case 48:	return 0x9;
2087 	case 72:	return 0xb;
2088 	case 96:	return 0x1;
2089 	case 108:	return 0x3;
2090 	case 2:		return 10;
2091 	case 4:		return 20;
2092 	case 11:	return 55;
2093 	case 22:	return 110;
2094 	}
2095 	return 0;
2096 }
2097 
2098 static void
2099 iwn_newassoc(struct ieee80211_node *ni, int isnew)
2100 {
2101 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
2102 	struct ieee80211com *ic = ni->ni_ic;
2103 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2104 	struct iwn_node *wn = (void *)ni;
2105 	uint8_t txant1, txant2;
2106 	int i, plcp, rate, ridx;
2107 
2108 	/* Use the first valid TX antenna. */
2109 	txant1 = IWN_LSB(sc->txchainmask);
2110 	txant2 = IWN_LSB(sc->txchainmask & ~txant1);
2111 
2112 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2113 		ridx = ni->ni_rates.rs_nrates - 1;
2114 		for (i = ni->ni_htrates.rs_nrates - 1; i >= 0; i--) {
2115 			plcp = RV(ni->ni_htrates.rs_rates[i]) | IWN_RFLAG_MCS;
2116 			if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
2117 				plcp |= IWN_RFLAG_HT40;
2118 				if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI40)
2119 					plcp |= IWN_RFLAG_SGI;
2120 			} else if (ni->ni_htcap & IEEE80211_HTCAP_SHORTGI20)
2121 				plcp |= IWN_RFLAG_SGI;
2122 			if (RV(ni->ni_htrates.rs_rates[i]) > 7)
2123 				plcp |= IWN_RFLAG_ANT(txant1 | txant2);
2124 			else
2125 				plcp |= IWN_RFLAG_ANT(txant1);
2126 			if (ridx >= 0) {
2127 				rate = RV(ni->ni_rates.rs_rates[ridx]);
2128 				wn->ridx[rate] = plcp;
2129 			}
2130 			wn->ridx[IEEE80211_RATE_MCS | i] = plcp;
2131 			ridx--;
2132 		}
2133 	} else {
2134 		for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
2135 			rate = RV(ni->ni_rates.rs_rates[i]);
2136 			plcp = rate2plcp(rate);
2137 			ridx = ic->ic_rt->rateCodeToIndex[rate];
2138 			if (ridx < IWN_RIDX_OFDM6 &&
2139 			    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
2140 				plcp |= IWN_RFLAG_CCK;
2141 			plcp |= IWN_RFLAG_ANT(txant1);
2142 			wn->ridx[rate] = htole32(plcp);
2143 		}
2144 	}
2145 #undef	RV
2146 }
2147 
2148 static int
2149 iwn_media_change(struct ifnet *ifp)
2150 {
2151 	int error;
2152 
2153 	error = ieee80211_media_change(ifp);
2154 	/* NB: only the fixed rate can change and that doesn't need a reset */
2155 	return (error == ENETRESET ? 0 : error);
2156 }
2157 
2158 static int
2159 iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
2160 {
2161 	struct iwn_vap *ivp = IWN_VAP(vap);
2162 	struct ieee80211com *ic = vap->iv_ic;
2163 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
2164 	int error = 0;
2165 
2166 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
2167 	    ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate]);
2168 
2169 	IEEE80211_UNLOCK(ic);
2170 	IWN_LOCK(sc);
2171 	callout_stop(&sc->calib_to);
2172 
2173 	switch (nstate) {
2174 	case IEEE80211_S_ASSOC:
2175 		if (vap->iv_state != IEEE80211_S_RUN)
2176 			break;
2177 		/* FALLTHROUGH */
2178 	case IEEE80211_S_AUTH:
2179 		if (vap->iv_state == IEEE80211_S_AUTH)
2180 			break;
2181 
2182 		/*
2183 		 * !AUTH -> AUTH transition requires state reset to handle
2184 		 * reassociations correctly.
2185 		 */
2186 		sc->rxon.associd = 0;
2187 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
2188 		sc->calib.state = IWN_CALIB_STATE_INIT;
2189 
2190 		if ((error = iwn_auth(sc, vap)) != 0) {
2191 			device_printf(sc->sc_dev,
2192 			    "%s: could not move to auth state\n", __func__);
2193 		}
2194 		break;
2195 
2196 	case IEEE80211_S_RUN:
2197 		/*
2198 		 * RUN -> RUN transition; Just restart the timers.
2199 		 */
2200 		if (vap->iv_state == IEEE80211_S_RUN) {
2201 			sc->calib_cnt = 0;
2202 			break;
2203 		}
2204 
2205 		/*
2206 		 * !RUN -> RUN requires setting the association id
2207 		 * which is done with a firmware cmd.  We also defer
2208 		 * starting the timers until that work is done.
2209 		 */
2210 		if ((error = iwn_run(sc, vap)) != 0) {
2211 			device_printf(sc->sc_dev,
2212 			    "%s: could not move to run state\n", __func__);
2213 		}
2214 		break;
2215 
2216 	case IEEE80211_S_INIT:
2217 		sc->calib.state = IWN_CALIB_STATE_INIT;
2218 		break;
2219 
2220 	default:
2221 		break;
2222 	}
2223 	IWN_UNLOCK(sc);
2224 	IEEE80211_LOCK(ic);
2225 	if (error != 0)
2226 		return error;
2227 	return ivp->iv_newstate(vap, nstate, arg);
2228 }
2229 
2230 static void
2231 iwn_calib_timeout(void *arg)
2232 {
2233 	struct iwn_softc *sc = arg;
2234 
2235 	IWN_LOCK_ASSERT(sc);
2236 
2237 	/* Force automatic TX power calibration every 60 secs. */
2238 	if (++sc->calib_cnt >= 120) {
2239 		uint32_t flags = 0;
2240 
2241 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
2242 		    "sending request for statistics");
2243 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2244 		    sizeof flags, 1);
2245 		sc->calib_cnt = 0;
2246 	}
2247 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
2248 	    sc);
2249 }
2250 
2251 /*
2252  * Process an RX_PHY firmware notification.  This is usually immediately
2253  * followed by an MPDU_RX_DONE notification.
2254  */
2255 static void
2256 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2257     struct iwn_rx_data *data)
2258 {
2259 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2260 
2261 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
2262 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2263 
2264 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2265 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2266 	sc->last_rx_valid = 1;
2267 }
2268 
2269 /*
2270  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2271  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2272  */
2273 static void
2274 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2275     struct iwn_rx_data *data)
2276 {
2277 	struct iwn_ops *ops = &sc->ops;
2278 	struct ifnet *ifp = sc->sc_ifp;
2279 	struct ieee80211com *ic = ifp->if_l2com;
2280 	struct iwn_rx_ring *ring = &sc->rxq;
2281 	struct ieee80211_frame *wh;
2282 	struct ieee80211_node *ni;
2283 	struct mbuf *m, *m1;
2284 	struct iwn_rx_stat *stat;
2285 	caddr_t head;
2286 	bus_addr_t paddr;
2287 	uint32_t flags;
2288 	int error, len, rssi, nf;
2289 
2290 	if (desc->type == IWN_MPDU_RX_DONE) {
2291 		/* Check for prior RX_PHY notification. */
2292 		if (!sc->last_rx_valid) {
2293 			DPRINTF(sc, IWN_DEBUG_ANY,
2294 			    "%s: missing RX_PHY\n", __func__);
2295 			return;
2296 		}
2297 		stat = &sc->last_rx_stat;
2298 	} else
2299 		stat = (struct iwn_rx_stat *)(desc + 1);
2300 
2301 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2302 
2303 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2304 		device_printf(sc->sc_dev,
2305 		    "%s: invalid RX statistic header, len %d\n", __func__,
2306 		    stat->cfg_phy_len);
2307 		return;
2308 	}
2309 	if (desc->type == IWN_MPDU_RX_DONE) {
2310 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2311 		head = (caddr_t)(mpdu + 1);
2312 		len = le16toh(mpdu->len);
2313 	} else {
2314 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2315 		len = le16toh(stat->len);
2316 	}
2317 
2318 	flags = le32toh(*(uint32_t *)(head + len));
2319 
2320 	/* Discard frames with a bad FCS early. */
2321 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2322 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: RX flags error %x\n",
2323 		    __func__, flags);
2324 		ifp->if_ierrors++;
2325 		return;
2326 	}
2327 	/* Discard frames that are too short. */
2328 	if (len < sizeof (*wh)) {
2329 		DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
2330 		    __func__, len);
2331 		ifp->if_ierrors++;
2332 		return;
2333 	}
2334 
2335 	m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, IWN_RBUF_SIZE);
2336 	if (m1 == NULL) {
2337 		DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
2338 		    __func__);
2339 		ifp->if_ierrors++;
2340 		return;
2341 	}
2342 	bus_dmamap_unload(ring->data_dmat, data->map);
2343 
2344 	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m1, void *),
2345 	    IWN_RBUF_SIZE, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
2346 	if (error != 0 && error != EFBIG) {
2347 		device_printf(sc->sc_dev,
2348 		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
2349 		m_freem(m1);
2350 
2351 		/* Try to reload the old mbuf. */
2352 		error = bus_dmamap_load(ring->data_dmat, data->map,
2353 		    mtod(data->m, void *), IWN_RBUF_SIZE, iwn_dma_map_addr,
2354 		    &paddr, BUS_DMA_NOWAIT);
2355 		if (error != 0 && error != EFBIG) {
2356 			panic("%s: could not load old RX mbuf", __func__);
2357 		}
2358 		/* Physical address may have changed. */
2359 		ring->desc[ring->cur] = htole32(paddr >> 8);
2360 		bus_dmamap_sync(ring->data_dmat, ring->desc_dma.map,
2361 		    BUS_DMASYNC_PREWRITE);
2362 		ifp->if_ierrors++;
2363 		return;
2364 	}
2365 
2366 	m = data->m;
2367 	data->m = m1;
2368 	/* Update RX descriptor. */
2369 	ring->desc[ring->cur] = htole32(paddr >> 8);
2370 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2371 	    BUS_DMASYNC_PREWRITE);
2372 
2373 	/* Finalize mbuf. */
2374 	m->m_pkthdr.rcvif = ifp;
2375 	m->m_data = head;
2376 	m->m_pkthdr.len = m->m_len = len;
2377 
2378 	/* Grab a reference to the source node. */
2379 	wh = mtod(m, struct ieee80211_frame *);
2380 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2381 	nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
2382 	    (ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
2383 
2384 	rssi = ops->get_rssi(sc, stat);
2385 
2386 	if (ieee80211_radiotap_active(ic)) {
2387 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2388 
2389 		tap->wr_flags = 0;
2390 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2391 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2392 		tap->wr_dbm_antsignal = (int8_t)rssi;
2393 		tap->wr_dbm_antnoise = (int8_t)nf;
2394 		tap->wr_tsft = stat->tstamp;
2395 		switch (stat->rate) {
2396 		/* CCK rates. */
2397 		case  10: tap->wr_rate =   2; break;
2398 		case  20: tap->wr_rate =   4; break;
2399 		case  55: tap->wr_rate =  11; break;
2400 		case 110: tap->wr_rate =  22; break;
2401 		/* OFDM rates. */
2402 		case 0xd: tap->wr_rate =  12; break;
2403 		case 0xf: tap->wr_rate =  18; break;
2404 		case 0x5: tap->wr_rate =  24; break;
2405 		case 0x7: tap->wr_rate =  36; break;
2406 		case 0x9: tap->wr_rate =  48; break;
2407 		case 0xb: tap->wr_rate =  72; break;
2408 		case 0x1: tap->wr_rate =  96; break;
2409 		case 0x3: tap->wr_rate = 108; break;
2410 		/* Unknown rate: should not happen. */
2411 		default:  tap->wr_rate =   0;
2412 		}
2413 	}
2414 
2415 	IWN_UNLOCK(sc);
2416 
2417 	/* Send the frame to the 802.11 layer. */
2418 	if (ni != NULL) {
2419 		if (ni->ni_flags & IEEE80211_NODE_HT)
2420 			m->m_flags |= M_AMPDU;
2421 		(void)ieee80211_input(ni, m, rssi - nf, nf);
2422 		/* Node is no longer needed. */
2423 		ieee80211_free_node(ni);
2424 	} else
2425 		(void)ieee80211_input_all(ic, m, rssi - nf, nf);
2426 
2427 	IWN_LOCK(sc);
2428 }
2429 
2430 /* Process an incoming Compressed BlockAck. */
2431 static void
2432 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2433     struct iwn_rx_data *data)
2434 {
2435 	struct iwn_ops *ops = &sc->ops;
2436 	struct ifnet *ifp = sc->sc_ifp;
2437 	struct iwn_node *wn;
2438 	struct ieee80211_node *ni;
2439 	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2440 	struct iwn_tx_ring *txq;
2441 	struct iwn_tx_data *txdata;
2442 	struct ieee80211_tx_ampdu *tap;
2443 	struct mbuf *m;
2444 	uint64_t bitmap;
2445 	uint16_t ssn;
2446 	uint8_t tid;
2447 	int ackfailcnt = 0, i, lastidx, qid, *res, shift;
2448 
2449 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2450 
2451 	qid = le16toh(ba->qid);
2452 	txq = &sc->txq[ba->qid];
2453 	tap = sc->qid2tap[ba->qid];
2454 	tid = tap->txa_tid;
2455 	wn = (void *)tap->txa_ni;
2456 
2457 	res = NULL;
2458 	ssn = 0;
2459 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2460 		res = tap->txa_private;
2461 		ssn = tap->txa_start & 0xfff;
2462 	}
2463 
2464 	for (lastidx = le16toh(ba->ssn) & 0xff; txq->read != lastidx;) {
2465 		txdata = &txq->data[txq->read];
2466 
2467 		/* Unmap and free mbuf. */
2468 		bus_dmamap_sync(txq->data_dmat, txdata->map,
2469 		    BUS_DMASYNC_POSTWRITE);
2470 		bus_dmamap_unload(txq->data_dmat, txdata->map);
2471 		m = txdata->m, txdata->m = NULL;
2472 		ni = txdata->ni, txdata->ni = NULL;
2473 
2474 		KASSERT(ni != NULL, ("no node"));
2475 		KASSERT(m != NULL, ("no mbuf"));
2476 
2477 		if (m->m_flags & M_TXCB)
2478 			ieee80211_process_callback(ni, m, 1);
2479 
2480 		m_freem(m);
2481 		ieee80211_free_node(ni);
2482 
2483 		txq->queued--;
2484 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2485 	}
2486 
2487 	if (txq->queued == 0 && res != NULL) {
2488 		iwn_nic_lock(sc);
2489 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2490 		iwn_nic_unlock(sc);
2491 		sc->qid2tap[qid] = NULL;
2492 		free(res, M_DEVBUF);
2493 		return;
2494 	}
2495 
2496 	if (wn->agg[tid].bitmap == 0)
2497 		return;
2498 
2499 	shift = wn->agg[tid].startidx - ((le16toh(ba->seq) >> 4) & 0xff);
2500 	if (shift < 0)
2501 		shift += 0x100;
2502 
2503 	if (wn->agg[tid].nframes > (64 - shift))
2504 		return;
2505 
2506 	ni = tap->txa_ni;
2507 	bitmap = (le64toh(ba->bitmap) >> shift) & wn->agg[tid].bitmap;
2508 	for (i = 0; bitmap; i++) {
2509 		if ((bitmap & 1) == 0) {
2510 			ifp->if_oerrors++;
2511 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2512 			    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2513 		} else {
2514 			ifp->if_opackets++;
2515 			ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
2516 			    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2517 		}
2518 		bitmap >>= 1;
2519 	}
2520 }
2521 
2522 /*
2523  * Process a CALIBRATION_RESULT notification sent by the initialization
2524  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2525  */
2526 static void
2527 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2528     struct iwn_rx_data *data)
2529 {
2530 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2531 	int len, idx = -1;
2532 
2533 	/* Runtime firmware should not send such a notification. */
2534 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2535 		return;
2536 
2537 	len = (le32toh(desc->len) & 0x3fff) - 4;
2538 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2539 
2540 	switch (calib->code) {
2541 	case IWN5000_PHY_CALIB_DC:
2542 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0 &&
2543 		    (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2544 		     sc->hw_type >= IWN_HW_REV_TYPE_6000) &&
2545 		     sc->hw_type != IWN_HW_REV_TYPE_6050)
2546 			idx = 0;
2547 		break;
2548 	case IWN5000_PHY_CALIB_LO:
2549 		idx = 1;
2550 		break;
2551 	case IWN5000_PHY_CALIB_TX_IQ:
2552 		idx = 2;
2553 		break;
2554 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2555 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2556 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2557 			idx = 3;
2558 		break;
2559 	case IWN5000_PHY_CALIB_BASE_BAND:
2560 		idx = 4;
2561 		break;
2562 	}
2563 	if (idx == -1)	/* Ignore other results. */
2564 		return;
2565 
2566 	/* Save calibration result. */
2567 	if (sc->calibcmd[idx].buf != NULL)
2568 		free(sc->calibcmd[idx].buf, M_DEVBUF);
2569 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2570 	if (sc->calibcmd[idx].buf == NULL) {
2571 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2572 		    "not enough memory for calibration result %d\n",
2573 		    calib->code);
2574 		return;
2575 	}
2576 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
2577 	    "saving calibration result code=%d len=%d\n", calib->code, len);
2578 	sc->calibcmd[idx].len = len;
2579 	memcpy(sc->calibcmd[idx].buf, calib, len);
2580 }
2581 
2582 /*
2583  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2584  * The latter is sent by the firmware after each received beacon.
2585  */
2586 static void
2587 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2588     struct iwn_rx_data *data)
2589 {
2590 	struct iwn_ops *ops = &sc->ops;
2591 	struct ifnet *ifp = sc->sc_ifp;
2592 	struct ieee80211com *ic = ifp->if_l2com;
2593 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2594 	struct iwn_calib_state *calib = &sc->calib;
2595 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2596 	int temp;
2597 
2598 	/* Ignore statistics received during a scan. */
2599 	if (vap->iv_state != IEEE80211_S_RUN ||
2600 	    (ic->ic_flags & IEEE80211_F_SCAN))
2601 		return;
2602 
2603 	bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2604 
2605 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received statistics, cmd %d\n",
2606 	    __func__, desc->type);
2607 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2608 
2609 	/* Test if temperature has changed. */
2610 	if (stats->general.temp != sc->rawtemp) {
2611 		/* Convert "raw" temperature to degC. */
2612 		sc->rawtemp = stats->general.temp;
2613 		temp = ops->get_temperature(sc);
2614 		DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
2615 		    __func__, temp);
2616 
2617 		/* Update TX power if need be (4965AGN only). */
2618 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2619 			iwn4965_power_calibration(sc, temp);
2620 	}
2621 
2622 	if (desc->type != IWN_BEACON_STATISTICS)
2623 		return;	/* Reply to a statistics request. */
2624 
2625 	sc->noise = iwn_get_noise(&stats->rx.general);
2626 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
2627 
2628 	/* Test that RSSI and noise are present in stats report. */
2629 	if (le32toh(stats->rx.general.flags) != 1) {
2630 		DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
2631 		    "received statistics without RSSI");
2632 		return;
2633 	}
2634 
2635 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2636 		iwn_collect_noise(sc, &stats->rx.general);
2637 	else if (calib->state == IWN_CALIB_STATE_RUN)
2638 		iwn_tune_sensitivity(sc, &stats->rx);
2639 }
2640 
2641 /*
2642  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2643  * and 5000 adapters have different incompatible TX status formats.
2644  */
2645 static void
2646 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2647     struct iwn_rx_data *data)
2648 {
2649 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2650 	struct iwn_tx_ring *ring;
2651 	int qid;
2652 
2653 	qid = desc->qid & 0xf;
2654 	ring = &sc->txq[qid];
2655 
2656 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2657 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2658 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2659 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2660 	    le32toh(stat->status));
2661 
2662 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2663 	if (qid >= sc->firstaggqueue) {
2664 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2665 		    &stat->status);
2666 	} else {
2667 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2668 		    le32toh(stat->status) & 0xff);
2669 	}
2670 }
2671 
2672 static void
2673 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2674     struct iwn_rx_data *data)
2675 {
2676 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2677 	struct iwn_tx_ring *ring;
2678 	int qid;
2679 
2680 	qid = desc->qid & 0xf;
2681 	ring = &sc->txq[qid];
2682 
2683 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
2684 	    "qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
2685 	    __func__, desc->qid, desc->idx, stat->ackfailcnt,
2686 	    stat->btkillcnt, stat->rate, le16toh(stat->duration),
2687 	    le32toh(stat->status));
2688 
2689 #ifdef notyet
2690 	/* Reset TX scheduler slot. */
2691 	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2692 #endif
2693 
2694 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
2695 	if (qid >= sc->firstaggqueue) {
2696 		iwn_ampdu_tx_done(sc, qid, desc->idx, stat->nframes,
2697 		    &stat->status);
2698 	} else {
2699 		iwn_tx_done(sc, desc, stat->ackfailcnt,
2700 		    le16toh(stat->status) & 0xff);
2701 	}
2702 }
2703 
2704 /*
2705  * Adapter-independent backend for TX_DONE firmware notifications.
2706  */
2707 static void
2708 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2709     uint8_t status)
2710 {
2711 	struct ifnet *ifp = sc->sc_ifp;
2712 	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2713 	struct iwn_tx_data *data = &ring->data[desc->idx];
2714 	struct mbuf *m;
2715 	struct ieee80211_node *ni;
2716 	struct ieee80211vap *vap;
2717 
2718 	KASSERT(data->ni != NULL, ("no node"));
2719 
2720 	/* Unmap and free mbuf. */
2721 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
2722 	bus_dmamap_unload(ring->data_dmat, data->map);
2723 	m = data->m, data->m = NULL;
2724 	ni = data->ni, data->ni = NULL;
2725 	vap = ni->ni_vap;
2726 
2727 	if (m->m_flags & M_TXCB) {
2728 		/*
2729 		 * Channels marked for "radar" require traffic to be received
2730 		 * to unlock before we can transmit.  Until traffic is seen
2731 		 * any attempt to transmit is returned immediately with status
2732 		 * set to IWN_TX_FAIL_TX_LOCKED.  Unfortunately this can easily
2733 		 * happen on first authenticate after scanning.  To workaround
2734 		 * this we ignore a failure of this sort in AUTH state so the
2735 		 * 802.11 layer will fall back to using a timeout to wait for
2736 		 * the AUTH reply.  This allows the firmware time to see
2737 		 * traffic so a subsequent retry of AUTH succeeds.  It's
2738 		 * unclear why the firmware does not maintain state for
2739 		 * channels recently visited as this would allow immediate
2740 		 * use of the channel after a scan (where we see traffic).
2741 		 */
2742 		if (status == IWN_TX_FAIL_TX_LOCKED &&
2743 		    ni->ni_vap->iv_state == IEEE80211_S_AUTH)
2744 			ieee80211_process_callback(ni, m, 0);
2745 		else
2746 			ieee80211_process_callback(ni, m,
2747 			    (status & IWN_TX_FAIL) != 0);
2748 	}
2749 
2750 	/*
2751 	 * Update rate control statistics for the node.
2752 	 */
2753 	if (status & IWN_TX_FAIL) {
2754 		ifp->if_oerrors++;
2755 		ieee80211_ratectl_tx_complete(vap, ni,
2756 		    IEEE80211_RATECTL_TX_FAILURE, &ackfailcnt, NULL);
2757 	} else {
2758 		ifp->if_opackets++;
2759 		ieee80211_ratectl_tx_complete(vap, ni,
2760 		    IEEE80211_RATECTL_TX_SUCCESS, &ackfailcnt, NULL);
2761 	}
2762 	m_freem(m);
2763 	ieee80211_free_node(ni);
2764 
2765 	sc->sc_tx_timer = 0;
2766 	if (--ring->queued < IWN_TX_RING_LOMARK) {
2767 		sc->qfullmsk &= ~(1 << ring->qid);
2768 		if (sc->qfullmsk == 0 &&
2769 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2770 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2771 			iwn_start_locked(ifp);
2772 		}
2773 	}
2774 }
2775 
2776 /*
2777  * Process a "command done" firmware notification.  This is where we wakeup
2778  * processes waiting for a synchronous command completion.
2779  */
2780 static void
2781 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2782 {
2783 	struct iwn_tx_ring *ring = &sc->txq[4];
2784 	struct iwn_tx_data *data;
2785 
2786 	if ((desc->qid & 0xf) != 4)
2787 		return;	/* Not a command ack. */
2788 
2789 	data = &ring->data[desc->idx];
2790 
2791 	/* If the command was mapped in an mbuf, free it. */
2792 	if (data->m != NULL) {
2793 		bus_dmamap_sync(ring->data_dmat, data->map,
2794 		    BUS_DMASYNC_POSTWRITE);
2795 		bus_dmamap_unload(ring->data_dmat, data->map);
2796 		m_freem(data->m);
2797 		data->m = NULL;
2798 	}
2799 	wakeup(&ring->desc[desc->idx]);
2800 }
2801 
2802 static void
2803 iwn_ampdu_tx_done(struct iwn_softc *sc, int qid, int idx, int nframes,
2804     void *stat)
2805 {
2806 	struct iwn_ops *ops = &sc->ops;
2807 	struct ifnet *ifp = sc->sc_ifp;
2808 	struct iwn_tx_ring *ring = &sc->txq[qid];
2809 	struct iwn_tx_data *data;
2810 	struct mbuf *m;
2811 	struct iwn_node *wn;
2812 	struct ieee80211_node *ni;
2813 	struct ieee80211_tx_ampdu *tap;
2814 	uint64_t bitmap;
2815 	uint32_t *status = stat;
2816 	uint16_t *aggstatus = stat;
2817 	uint16_t ssn;
2818 	uint8_t tid;
2819 	int bit, i, lastidx, *res, seqno, shift, start;
2820 
2821 #ifdef NOT_YET
2822 	if (nframes == 1) {
2823 		if ((*status & 0xff) != 1 && (*status & 0xff) != 2)
2824 			printf("ieee80211_send_bar()\n");
2825 	}
2826 #endif
2827 
2828 	bitmap = 0;
2829 	start = idx;
2830 	for (i = 0; i < nframes; i++) {
2831 		if (le16toh(aggstatus[i * 2]) & 0xc)
2832 			continue;
2833 
2834 		idx = le16toh(aggstatus[2*i + 1]) & 0xff;
2835 		bit = idx - start;
2836 		shift = 0;
2837 		if (bit >= 64) {
2838 			shift = 0x100 - idx + start;
2839 			bit = 0;
2840 			start = idx;
2841 		} else if (bit <= -64)
2842 			bit = 0x100 - start + idx;
2843 		else if (bit < 0) {
2844 			shift = start - idx;
2845 			start = idx;
2846 			bit = 0;
2847 		}
2848 		bitmap = bitmap << shift;
2849 		bitmap |= 1ULL << bit;
2850 	}
2851 	tap = sc->qid2tap[qid];
2852 	tid = tap->txa_tid;
2853 	wn = (void *)tap->txa_ni;
2854 	wn->agg[tid].bitmap = bitmap;
2855 	wn->agg[tid].startidx = start;
2856 	wn->agg[tid].nframes = nframes;
2857 
2858 	res = NULL;
2859 	ssn = 0;
2860 	if (!IEEE80211_AMPDU_RUNNING(tap)) {
2861 		res = tap->txa_private;
2862 		ssn = tap->txa_start & 0xfff;
2863 	}
2864 
2865 	seqno = le32toh(*(status + nframes)) & 0xfff;
2866 	for (lastidx = (seqno & 0xff); ring->read != lastidx;) {
2867 		data = &ring->data[ring->read];
2868 
2869 		/* Unmap and free mbuf. */
2870 		bus_dmamap_sync(ring->data_dmat, data->map,
2871 		    BUS_DMASYNC_POSTWRITE);
2872 		bus_dmamap_unload(ring->data_dmat, data->map);
2873 		m = data->m, data->m = NULL;
2874 		ni = data->ni, data->ni = NULL;
2875 
2876 		KASSERT(ni != NULL, ("no node"));
2877 		KASSERT(m != NULL, ("no mbuf"));
2878 
2879 		if (m->m_flags & M_TXCB)
2880 			ieee80211_process_callback(ni, m, 1);
2881 
2882 		m_freem(m);
2883 		ieee80211_free_node(ni);
2884 
2885 		ring->queued--;
2886 		ring->read = (ring->read + 1) % IWN_TX_RING_COUNT;
2887 	}
2888 
2889 	if (ring->queued == 0 && res != NULL) {
2890 		iwn_nic_lock(sc);
2891 		ops->ampdu_tx_stop(sc, qid, tid, ssn);
2892 		iwn_nic_unlock(sc);
2893 		sc->qid2tap[qid] = NULL;
2894 		free(res, M_DEVBUF);
2895 		return;
2896 	}
2897 
2898 	sc->sc_tx_timer = 0;
2899 	if (ring->queued < IWN_TX_RING_LOMARK) {
2900 		sc->qfullmsk &= ~(1 << ring->qid);
2901 		if (sc->qfullmsk == 0 &&
2902 		    (ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
2903 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2904 			iwn_start_locked(ifp);
2905 		}
2906 	}
2907 }
2908 
2909 /*
2910  * Process an INT_FH_RX or INT_SW_RX interrupt.
2911  */
2912 static void
2913 iwn_notif_intr(struct iwn_softc *sc)
2914 {
2915 	struct iwn_ops *ops = &sc->ops;
2916 	struct ifnet *ifp = sc->sc_ifp;
2917 	struct ieee80211com *ic = ifp->if_l2com;
2918 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2919 	uint16_t hw;
2920 
2921 	bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
2922 	    BUS_DMASYNC_POSTREAD);
2923 
2924 	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2925 	while (sc->rxq.cur != hw) {
2926 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2927 		struct iwn_rx_desc *desc;
2928 
2929 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2930 		    BUS_DMASYNC_POSTREAD);
2931 		desc = mtod(data->m, struct iwn_rx_desc *);
2932 
2933 		DPRINTF(sc, IWN_DEBUG_RECV,
2934 		    "%s: qid %x idx %d flags %x type %d(%s) len %d\n",
2935 		    __func__, desc->qid & 0xf, desc->idx, desc->flags,
2936 		    desc->type, iwn_intr_str(desc->type),
2937 		    le16toh(desc->len));
2938 
2939 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2940 			iwn_cmd_done(sc, desc);
2941 
2942 		switch (desc->type) {
2943 		case IWN_RX_PHY:
2944 			iwn_rx_phy(sc, desc, data);
2945 			break;
2946 
2947 		case IWN_RX_DONE:		/* 4965AGN only. */
2948 		case IWN_MPDU_RX_DONE:
2949 			/* An 802.11 frame has been received. */
2950 			iwn_rx_done(sc, desc, data);
2951 			break;
2952 
2953 		case IWN_RX_COMPRESSED_BA:
2954 			/* A Compressed BlockAck has been received. */
2955 			iwn_rx_compressed_ba(sc, desc, data);
2956 			break;
2957 
2958 		case IWN_TX_DONE:
2959 			/* An 802.11 frame has been transmitted. */
2960 			ops->tx_done(sc, desc, data);
2961 			break;
2962 
2963 		case IWN_RX_STATISTICS:
2964 		case IWN_BEACON_STATISTICS:
2965 			iwn_rx_statistics(sc, desc, data);
2966 			break;
2967 
2968 		case IWN_BEACON_MISSED:
2969 		{
2970 			struct iwn_beacon_missed *miss =
2971 			    (struct iwn_beacon_missed *)(desc + 1);
2972 			int misses;
2973 
2974 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
2975 			    BUS_DMASYNC_POSTREAD);
2976 			misses = le32toh(miss->consecutive);
2977 
2978 			DPRINTF(sc, IWN_DEBUG_STATE,
2979 			    "%s: beacons missed %d/%d\n", __func__,
2980 			    misses, le32toh(miss->total));
2981 			/*
2982 			 * If more than 5 consecutive beacons are missed,
2983 			 * reinitialize the sensitivity state machine.
2984 			 */
2985 			if (vap->iv_state == IEEE80211_S_RUN &&
2986 			    (ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2987 				if (misses > 5)
2988 					(void)iwn_init_sensitivity(sc);
2989 				if (misses >= vap->iv_bmissthreshold) {
2990 					IWN_UNLOCK(sc);
2991 					ieee80211_beacon_miss(ic);
2992 					IWN_LOCK(sc);
2993 				}
2994 			}
2995 			break;
2996 		}
2997 		case IWN_UC_READY:
2998 		{
2999 			struct iwn_ucode_info *uc =
3000 			    (struct iwn_ucode_info *)(desc + 1);
3001 
3002 			/* The microcontroller is ready. */
3003 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3004 			    BUS_DMASYNC_POSTREAD);
3005 			DPRINTF(sc, IWN_DEBUG_RESET,
3006 			    "microcode alive notification version=%d.%d "
3007 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
3008 			    uc->subtype, le32toh(uc->valid));
3009 
3010 			if (le32toh(uc->valid) != 1) {
3011 				device_printf(sc->sc_dev,
3012 				    "microcontroller initialization failed");
3013 				break;
3014 			}
3015 			if (uc->subtype == IWN_UCODE_INIT) {
3016 				/* Save microcontroller report. */
3017 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
3018 			}
3019 			/* Save the address of the error log in SRAM. */
3020 			sc->errptr = le32toh(uc->errptr);
3021 			break;
3022 		}
3023 		case IWN_STATE_CHANGED:
3024 		{
3025 			uint32_t *status = (uint32_t *)(desc + 1);
3026 
3027 			/*
3028 			 * State change allows hardware switch change to be
3029 			 * noted. However, we handle this in iwn_intr as we
3030 			 * get both the enable/disble intr.
3031 			 */
3032 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3033 			    BUS_DMASYNC_POSTREAD);
3034 			DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
3035 			    le32toh(*status));
3036 			break;
3037 		}
3038 		case IWN_START_SCAN:
3039 		{
3040 			struct iwn_start_scan *scan =
3041 			    (struct iwn_start_scan *)(desc + 1);
3042 
3043 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3044 			    BUS_DMASYNC_POSTREAD);
3045 			DPRINTF(sc, IWN_DEBUG_ANY,
3046 			    "%s: scanning channel %d status %x\n",
3047 			    __func__, scan->chan, le32toh(scan->status));
3048 			break;
3049 		}
3050 		case IWN_STOP_SCAN:
3051 		{
3052 			struct iwn_stop_scan *scan =
3053 			    (struct iwn_stop_scan *)(desc + 1);
3054 
3055 			bus_dmamap_sync(sc->rxq.data_dmat, data->map,
3056 			    BUS_DMASYNC_POSTREAD);
3057 			DPRINTF(sc, IWN_DEBUG_STATE,
3058 			    "scan finished nchan=%d status=%d chan=%d\n",
3059 			    scan->nchan, scan->status, scan->chan);
3060 
3061 			IWN_UNLOCK(sc);
3062 			ieee80211_scan_next(vap);
3063 			IWN_LOCK(sc);
3064 			break;
3065 		}
3066 		case IWN5000_CALIBRATION_RESULT:
3067 			iwn5000_rx_calib_results(sc, desc, data);
3068 			break;
3069 
3070 		case IWN5000_CALIBRATION_DONE:
3071 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3072 			wakeup(sc);
3073 			break;
3074 		}
3075 
3076 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3077 	}
3078 
3079 	/* Tell the firmware what we have processed. */
3080 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3081 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3082 }
3083 
3084 /*
3085  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3086  * from power-down sleep mode.
3087  */
3088 static void
3089 iwn_wakeup_intr(struct iwn_softc *sc)
3090 {
3091 	int qid;
3092 
3093 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
3094 	    __func__);
3095 
3096 	/* Wakeup RX and TX rings. */
3097 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3098 	for (qid = 0; qid < sc->ntxqs; qid++) {
3099 		struct iwn_tx_ring *ring = &sc->txq[qid];
3100 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3101 	}
3102 }
3103 
3104 static void
3105 iwn_rftoggle_intr(struct iwn_softc *sc)
3106 {
3107 	struct ifnet *ifp = sc->sc_ifp;
3108 	struct ieee80211com *ic = ifp->if_l2com;
3109 	uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
3110 
3111 	IWN_LOCK_ASSERT(sc);
3112 
3113 	device_printf(sc->sc_dev, "RF switch: radio %s\n",
3114 	    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
3115 	if (tmp & IWN_GP_CNTRL_RFKILL)
3116 		ieee80211_runtask(ic, &sc->sc_radioon_task);
3117 	else
3118 		ieee80211_runtask(ic, &sc->sc_radiooff_task);
3119 }
3120 
3121 /*
3122  * Dump the error log of the firmware when a firmware panic occurs.  Although
3123  * we can't debug the firmware because it is neither open source nor free, it
3124  * can help us to identify certain classes of problems.
3125  */
3126 static void
3127 iwn_fatal_intr(struct iwn_softc *sc)
3128 {
3129 	struct iwn_fw_dump dump;
3130 	int i;
3131 
3132 	IWN_LOCK_ASSERT(sc);
3133 
3134 	/* Force a complete recalibration on next init. */
3135 	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3136 
3137 	/* Check that the error log address is valid. */
3138 	if (sc->errptr < IWN_FW_DATA_BASE ||
3139 	    sc->errptr + sizeof (dump) >
3140 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3141 		printf("%s: bad firmware error log address 0x%08x\n", __func__,
3142 		    sc->errptr);
3143 		return;
3144 	}
3145 	if (iwn_nic_lock(sc) != 0) {
3146 		printf("%s: could not read firmware error log\n", __func__);
3147 		return;
3148 	}
3149 	/* Read firmware error log from SRAM. */
3150 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3151 	    sizeof (dump) / sizeof (uint32_t));
3152 	iwn_nic_unlock(sc);
3153 
3154 	if (dump.valid == 0) {
3155 		printf("%s: firmware error log is empty\n", __func__);
3156 		return;
3157 	}
3158 	printf("firmware error log:\n");
3159 	printf("  error type      = \"%s\" (0x%08X)\n",
3160 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3161 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3162 	    dump.id);
3163 	printf("  program counter = 0x%08X\n", dump.pc);
3164 	printf("  source line     = 0x%08X\n", dump.src_line);
3165 	printf("  error data      = 0x%08X%08X\n",
3166 	    dump.error_data[0], dump.error_data[1]);
3167 	printf("  branch link     = 0x%08X%08X\n",
3168 	    dump.branch_link[0], dump.branch_link[1]);
3169 	printf("  interrupt link  = 0x%08X%08X\n",
3170 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3171 	printf("  time            = %u\n", dump.time[0]);
3172 
3173 	/* Dump driver status (TX and RX rings) while we're here. */
3174 	printf("driver status:\n");
3175 	for (i = 0; i < sc->ntxqs; i++) {
3176 		struct iwn_tx_ring *ring = &sc->txq[i];
3177 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3178 		    i, ring->qid, ring->cur, ring->queued);
3179 	}
3180 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3181 }
3182 
3183 static void
3184 iwn_intr(void *arg)
3185 {
3186 	struct iwn_softc *sc = arg;
3187 	struct ifnet *ifp = sc->sc_ifp;
3188 	uint32_t r1, r2, tmp;
3189 
3190 	IWN_LOCK(sc);
3191 
3192 	/* Disable interrupts. */
3193 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3194 
3195 	/* Read interrupts from ICT (fast) or from registers (slow). */
3196 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3197 		tmp = 0;
3198 		while (sc->ict[sc->ict_cur] != 0) {
3199 			tmp |= sc->ict[sc->ict_cur];
3200 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3201 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3202 		}
3203 		tmp = le32toh(tmp);
3204 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3205 			tmp = 0;
3206 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3207 			tmp |= 0x8000;
3208 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3209 		r2 = 0;	/* Unused. */
3210 	} else {
3211 		r1 = IWN_READ(sc, IWN_INT);
3212 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3213 			return;	/* Hardware gone! */
3214 		r2 = IWN_READ(sc, IWN_FH_INT);
3215 	}
3216 
3217 	DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
3218 
3219 	if (r1 == 0 && r2 == 0)
3220 		goto done;	/* Interrupt not for us. */
3221 
3222 	/* Acknowledge interrupts. */
3223 	IWN_WRITE(sc, IWN_INT, r1);
3224 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3225 		IWN_WRITE(sc, IWN_FH_INT, r2);
3226 
3227 	if (r1 & IWN_INT_RF_TOGGLED) {
3228 		iwn_rftoggle_intr(sc);
3229 		goto done;
3230 	}
3231 	if (r1 & IWN_INT_CT_REACHED) {
3232 		device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
3233 		    __func__);
3234 	}
3235 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3236 		device_printf(sc->sc_dev, "%s: fatal firmware error\n",
3237 		    __func__);
3238 		/* Dump firmware error log and stop. */
3239 		iwn_fatal_intr(sc);
3240 		ifp->if_flags &= ~IFF_UP;
3241 		iwn_stop_locked(sc);
3242 		goto done;
3243 	}
3244 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3245 	    (r2 & IWN_FH_INT_RX)) {
3246 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3247 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3248 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3249 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3250 			    IWN_INT_PERIODIC_DIS);
3251 			iwn_notif_intr(sc);
3252 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3253 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3254 				    IWN_INT_PERIODIC_ENA);
3255 			}
3256 		} else
3257 			iwn_notif_intr(sc);
3258 	}
3259 
3260 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3261 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3262 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3263 		wakeup(sc);	/* FH DMA transfer completed. */
3264 	}
3265 
3266 	if (r1 & IWN_INT_ALIVE)
3267 		wakeup(sc);	/* Firmware is alive. */
3268 
3269 	if (r1 & IWN_INT_WAKEUP)
3270 		iwn_wakeup_intr(sc);
3271 
3272 done:
3273 	/* Re-enable interrupts. */
3274 	if (ifp->if_flags & IFF_UP)
3275 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3276 
3277 	IWN_UNLOCK(sc);
3278 }
3279 
3280 /*
3281  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3282  * 5000 adapters use a slightly different format).
3283  */
3284 static void
3285 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3286     uint16_t len)
3287 {
3288 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3289 
3290 	*w = htole16(len + 8);
3291 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3292 	    BUS_DMASYNC_PREWRITE);
3293 	if (idx < IWN_SCHED_WINSZ) {
3294 		*(w + IWN_TX_RING_COUNT) = *w;
3295 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3296 		    BUS_DMASYNC_PREWRITE);
3297 	}
3298 }
3299 
3300 static void
3301 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3302     uint16_t len)
3303 {
3304 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3305 
3306 	*w = htole16(id << 12 | (len + 8));
3307 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3308 	    BUS_DMASYNC_PREWRITE);
3309 	if (idx < IWN_SCHED_WINSZ) {
3310 		*(w + IWN_TX_RING_COUNT) = *w;
3311 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3312 		    BUS_DMASYNC_PREWRITE);
3313 	}
3314 }
3315 
3316 #ifdef notyet
3317 static void
3318 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3319 {
3320 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3321 
3322 	*w = (*w & htole16(0xf000)) | htole16(1);
3323 	bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3324 	    BUS_DMASYNC_PREWRITE);
3325 	if (idx < IWN_SCHED_WINSZ) {
3326 		*(w + IWN_TX_RING_COUNT) = *w;
3327 		bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
3328 		    BUS_DMASYNC_PREWRITE);
3329 	}
3330 }
3331 #endif
3332 
3333 static int
3334 iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3335 {
3336 	struct iwn_ops *ops = &sc->ops;
3337 	const struct ieee80211_txparam *tp;
3338 	struct ieee80211vap *vap = ni->ni_vap;
3339 	struct ieee80211com *ic = ni->ni_ic;
3340 	struct iwn_node *wn = (void *)ni;
3341 	struct iwn_tx_ring *ring;
3342 	struct iwn_tx_desc *desc;
3343 	struct iwn_tx_data *data;
3344 	struct iwn_tx_cmd *cmd;
3345 	struct iwn_cmd_data *tx;
3346 	struct ieee80211_frame *wh;
3347 	struct ieee80211_key *k = NULL;
3348 	struct mbuf *m1;
3349 	uint32_t flags;
3350 	uint16_t qos;
3351 	u_int hdrlen;
3352 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3353 	uint8_t tid, ridx, txant, type;
3354 	int ac, i, totlen, error, pad, nsegs = 0, rate;
3355 
3356 	IWN_LOCK_ASSERT(sc);
3357 
3358 	wh = mtod(m, struct ieee80211_frame *);
3359 	hdrlen = ieee80211_anyhdrsize(wh);
3360 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3361 
3362 	/* Select EDCA Access Category and TX ring for this frame. */
3363 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
3364 		qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
3365 		tid = qos & IEEE80211_QOS_TID;
3366 	} else {
3367 		qos = 0;
3368 		tid = 0;
3369 	}
3370 	ac = M_WME_GETAC(m);
3371 	if (m->m_flags & M_AMPDU_MPDU) {
3372 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
3373 
3374 		if (!IEEE80211_AMPDU_RUNNING(tap)) {
3375 			m_freem(m);
3376 			return EINVAL;
3377 		}
3378 
3379 		ac = *(int *)tap->txa_private;
3380 		*(uint16_t *)wh->i_seq =
3381 		    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
3382 		ni->ni_txseqs[tid]++;
3383 	}
3384 	ring = &sc->txq[ac];
3385 	desc = &ring->desc[ring->cur];
3386 	data = &ring->data[ring->cur];
3387 
3388 	/* Choose a TX rate index. */
3389 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
3390 	if (type == IEEE80211_FC0_TYPE_MGT)
3391 		rate = tp->mgmtrate;
3392 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
3393 		rate = tp->mcastrate;
3394 	else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
3395 		rate = tp->ucastrate;
3396 	else {
3397 		/* XXX pass pktlen */
3398 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
3399 		rate = ni->ni_txrate;
3400 	}
3401 	ridx = ic->ic_rt->rateCodeToIndex[rate];
3402 
3403 	/* Encrypt the frame if need be. */
3404 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3405 		/* Retrieve key for TX. */
3406 		k = ieee80211_crypto_encap(ni, m);
3407 		if (k == NULL) {
3408 			m_freem(m);
3409 			return ENOBUFS;
3410 		}
3411 		/* 802.11 header may have moved. */
3412 		wh = mtod(m, struct ieee80211_frame *);
3413 	}
3414 	totlen = m->m_pkthdr.len;
3415 
3416 	if (ieee80211_radiotap_active_vap(vap)) {
3417 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3418 
3419 		tap->wt_flags = 0;
3420 		tap->wt_rate = rate;
3421 		if (k != NULL)
3422 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3423 
3424 		ieee80211_radiotap_tx(vap, m);
3425 	}
3426 
3427 	/* Prepare TX firmware command. */
3428 	cmd = &ring->cmd[ring->cur];
3429 	cmd->code = IWN_CMD_TX_DATA;
3430 	cmd->flags = 0;
3431 	cmd->qid = ring->qid;
3432 	cmd->idx = ring->cur;
3433 
3434 	tx = (struct iwn_cmd_data *)cmd->data;
3435 	/* NB: No need to clear tx, all fields are reinitialized here. */
3436 	tx->scratch = 0;	/* clear "scratch" area */
3437 
3438 	flags = 0;
3439 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3440 		/* Unicast frame, check if an ACK is expected. */
3441 		if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
3442 		    IEEE80211_QOS_ACKPOLICY_NOACK)
3443 			flags |= IWN_TX_NEED_ACK;
3444 	}
3445 	if ((wh->i_fc[0] &
3446 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3447 	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3448 		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3449 
3450 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3451 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3452 
3453 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3454 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3455 		/* NB: Group frames are sent using CCK in 802.11b/g. */
3456 		if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
3457 			flags |= IWN_TX_NEED_RTS;
3458 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3459 		    ridx >= IWN_RIDX_OFDM6) {
3460 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3461 				flags |= IWN_TX_NEED_CTS;
3462 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3463 				flags |= IWN_TX_NEED_RTS;
3464 		}
3465 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3466 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3467 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3468 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3469 				flags |= IWN_TX_NEED_PROTECTION;
3470 			} else
3471 				flags |= IWN_TX_FULL_TXOP;
3472 		}
3473 	}
3474 
3475 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3476 	    type != IEEE80211_FC0_TYPE_DATA)
3477 		tx->id = sc->broadcast_id;
3478 	else
3479 		tx->id = wn->id;
3480 
3481 	if (type == IEEE80211_FC0_TYPE_MGT) {
3482 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3483 
3484 		/* Tell HW to set timestamp in probe responses. */
3485 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3486 			flags |= IWN_TX_INSERT_TSTAMP;
3487 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3488 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3489 			tx->timeout = htole16(3);
3490 		else
3491 			tx->timeout = htole16(2);
3492 	} else
3493 		tx->timeout = htole16(0);
3494 
3495 	if (hdrlen & 3) {
3496 		/* First segment length must be a multiple of 4. */
3497 		flags |= IWN_TX_NEED_PADDING;
3498 		pad = 4 - (hdrlen & 3);
3499 	} else
3500 		pad = 0;
3501 
3502 	tx->len = htole16(totlen);
3503 	tx->tid = tid;
3504 	tx->rts_ntries = 60;
3505 	tx->data_ntries = 15;
3506 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3507 	tx->rate = wn->ridx[rate];
3508 	if (tx->id == sc->broadcast_id) {
3509 		/* Group or management frame. */
3510 		tx->linkq = 0;
3511 		/* XXX Alternate between antenna A and B? */
3512 		txant = IWN_LSB(sc->txchainmask);
3513 		tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3514 	} else {
3515 		tx->linkq = ni->ni_rates.rs_nrates - ridx - 1;
3516 		flags |= IWN_TX_LINKQ;	/* enable MRR */
3517 	}
3518 	/* Set physical address of "scratch area". */
3519 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3520 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3521 
3522 	/* Copy 802.11 header in TX command. */
3523 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3524 
3525 	/* Trim 802.11 header. */
3526 	m_adj(m, hdrlen);
3527 	tx->security = 0;
3528 	tx->flags = htole32(flags);
3529 
3530 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3531 	    &nsegs, BUS_DMA_NOWAIT);
3532 	if (error != 0) {
3533 		if (error != EFBIG) {
3534 			device_printf(sc->sc_dev,
3535 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3536 			m_freem(m);
3537 			return error;
3538 		}
3539 		/* Too many DMA segments, linearize mbuf. */
3540 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3541 		if (m1 == NULL) {
3542 			device_printf(sc->sc_dev,
3543 			    "%s: could not defrag mbuf\n", __func__);
3544 			m_freem(m);
3545 			return ENOBUFS;
3546 		}
3547 		m = m1;
3548 
3549 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3550 		    segs, &nsegs, BUS_DMA_NOWAIT);
3551 		if (error != 0) {
3552 			device_printf(sc->sc_dev,
3553 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3554 			m_freem(m);
3555 			return error;
3556 		}
3557 	}
3558 
3559 	data->m = m;
3560 	data->ni = ni;
3561 
3562 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3563 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3564 
3565 	/* Fill TX descriptor. */
3566 	desc->nsegs = 1;
3567 	if (m->m_len != 0)
3568 		desc->nsegs += nsegs;
3569 	/* First DMA segment is used by the TX command. */
3570 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3571 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3572 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3573 	/* Other DMA segments are for data payload. */
3574 	seg = &segs[0];
3575 	for (i = 1; i <= nsegs; i++) {
3576 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3577 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3578 		    seg->ds_len << 4);
3579 		seg++;
3580 	}
3581 
3582 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3583 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3584 	    BUS_DMASYNC_PREWRITE);
3585 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3586 	    BUS_DMASYNC_PREWRITE);
3587 
3588 	/* Update TX scheduler. */
3589 	if (ring->qid >= sc->firstaggqueue)
3590 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3591 
3592 	/* Kick TX ring. */
3593 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3594 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3595 
3596 	/* Mark TX ring as full if we reach a certain threshold. */
3597 	if (++ring->queued > IWN_TX_RING_HIMARK)
3598 		sc->qfullmsk |= 1 << ring->qid;
3599 
3600 	return 0;
3601 }
3602 
3603 static int
3604 iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
3605     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
3606 {
3607 	struct iwn_ops *ops = &sc->ops;
3608 	struct ifnet *ifp = sc->sc_ifp;
3609 	struct ieee80211vap *vap = ni->ni_vap;
3610 	struct ieee80211com *ic = ifp->if_l2com;
3611 	struct iwn_tx_cmd *cmd;
3612 	struct iwn_cmd_data *tx;
3613 	struct ieee80211_frame *wh;
3614 	struct iwn_tx_ring *ring;
3615 	struct iwn_tx_desc *desc;
3616 	struct iwn_tx_data *data;
3617 	struct mbuf *m1;
3618 	bus_dma_segment_t *seg, segs[IWN_MAX_SCATTER];
3619 	uint32_t flags;
3620 	u_int hdrlen;
3621 	int ac, totlen, error, pad, nsegs = 0, i, rate;
3622 	uint8_t ridx, type, txant;
3623 
3624 	IWN_LOCK_ASSERT(sc);
3625 
3626 	wh = mtod(m, struct ieee80211_frame *);
3627 	hdrlen = ieee80211_anyhdrsize(wh);
3628 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3629 
3630 	ac = params->ibp_pri & 3;
3631 
3632 	ring = &sc->txq[ac];
3633 	desc = &ring->desc[ring->cur];
3634 	data = &ring->data[ring->cur];
3635 
3636 	/* Choose a TX rate index. */
3637 	rate = params->ibp_rate0;
3638 	ridx = ic->ic_rt->rateCodeToIndex[rate];
3639 	if (ridx == (uint8_t)-1) {
3640 		/* XXX fall back to mcast/mgmt rate? */
3641 		m_freem(m);
3642 		return EINVAL;
3643 	}
3644 
3645 	totlen = m->m_pkthdr.len;
3646 
3647 	/* Prepare TX firmware command. */
3648 	cmd = &ring->cmd[ring->cur];
3649 	cmd->code = IWN_CMD_TX_DATA;
3650 	cmd->flags = 0;
3651 	cmd->qid = ring->qid;
3652 	cmd->idx = ring->cur;
3653 
3654 	tx = (struct iwn_cmd_data *)cmd->data;
3655 	/* NB: No need to clear tx, all fields are reinitialized here. */
3656 	tx->scratch = 0;	/* clear "scratch" area */
3657 
3658 	flags = 0;
3659 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
3660 		flags |= IWN_TX_NEED_ACK;
3661 	if (params->ibp_flags & IEEE80211_BPF_RTS) {
3662 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3663 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3664 			flags &= ~IWN_TX_NEED_RTS;
3665 			flags |= IWN_TX_NEED_PROTECTION;
3666 		} else
3667 			flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
3668 	}
3669 	if (params->ibp_flags & IEEE80211_BPF_CTS) {
3670 		if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3671 			/* 5000 autoselects RTS/CTS or CTS-to-self. */
3672 			flags &= ~IWN_TX_NEED_CTS;
3673 			flags |= IWN_TX_NEED_PROTECTION;
3674 		} else
3675 			flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
3676 	}
3677 	if (type == IEEE80211_FC0_TYPE_MGT) {
3678 		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3679 
3680 		/* Tell HW to set timestamp in probe responses. */
3681 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3682 			flags |= IWN_TX_INSERT_TSTAMP;
3683 
3684 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3685 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3686 			tx->timeout = htole16(3);
3687 		else
3688 			tx->timeout = htole16(2);
3689 	} else
3690 		tx->timeout = htole16(0);
3691 
3692 	if (hdrlen & 3) {
3693 		/* First segment length must be a multiple of 4. */
3694 		flags |= IWN_TX_NEED_PADDING;
3695 		pad = 4 - (hdrlen & 3);
3696 	} else
3697 		pad = 0;
3698 
3699 	if (ieee80211_radiotap_active_vap(vap)) {
3700 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3701 
3702 		tap->wt_flags = 0;
3703 		tap->wt_rate = rate;
3704 
3705 		ieee80211_radiotap_tx(vap, m);
3706 	}
3707 
3708 	tx->len = htole16(totlen);
3709 	tx->tid = 0;
3710 	tx->id = sc->broadcast_id;
3711 	tx->rts_ntries = params->ibp_try1;
3712 	tx->data_ntries = params->ibp_try0;
3713 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3714 	tx->rate = htole32(rate2plcp(rate));
3715 	if (ridx < IWN_RIDX_OFDM6 &&
3716 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
3717 		tx->rate |= htole32(IWN_RFLAG_CCK);
3718 	/* Group or management frame. */
3719 	tx->linkq = 0;
3720 	txant = IWN_LSB(sc->txchainmask);
3721 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
3722 	/* Set physical address of "scratch area". */
3723 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3724 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3725 
3726 	/* Copy 802.11 header in TX command. */
3727 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3728 
3729 	/* Trim 802.11 header. */
3730 	m_adj(m, hdrlen);
3731 	tx->security = 0;
3732 	tx->flags = htole32(flags);
3733 
3734 	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m, segs,
3735 	    &nsegs, BUS_DMA_NOWAIT);
3736 	if (error != 0) {
3737 		if (error != EFBIG) {
3738 			device_printf(sc->sc_dev,
3739 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3740 			m_freem(m);
3741 			return error;
3742 		}
3743 		/* Too many DMA segments, linearize mbuf. */
3744 		m1 = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
3745 		if (m1 == NULL) {
3746 			device_printf(sc->sc_dev,
3747 			    "%s: could not defrag mbuf\n", __func__);
3748 			m_freem(m);
3749 			return ENOBUFS;
3750 		}
3751 		m = m1;
3752 
3753 		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m,
3754 		    segs, &nsegs, BUS_DMA_NOWAIT);
3755 		if (error != 0) {
3756 			device_printf(sc->sc_dev,
3757 			    "%s: can't map mbuf (error %d)\n", __func__, error);
3758 			m_freem(m);
3759 			return error;
3760 		}
3761 	}
3762 
3763 	data->m = m;
3764 	data->ni = ni;
3765 
3766 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
3767 	    __func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
3768 
3769 	/* Fill TX descriptor. */
3770 	desc->nsegs = 1;
3771 	if (m->m_len != 0)
3772 		desc->nsegs += nsegs;
3773 	/* First DMA segment is used by the TX command. */
3774 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3775 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3776 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3777 	/* Other DMA segments are for data payload. */
3778 	seg = &segs[0];
3779 	for (i = 1; i <= nsegs; i++) {
3780 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3781 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3782 		    seg->ds_len << 4);
3783 		seg++;
3784 	}
3785 
3786 	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
3787 	bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
3788 	    BUS_DMASYNC_PREWRITE);
3789 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
3790 	    BUS_DMASYNC_PREWRITE);
3791 
3792 	/* Update TX scheduler. */
3793 	if (ring->qid >= sc->firstaggqueue)
3794 		ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3795 
3796 	/* Kick TX ring. */
3797 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3798 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3799 
3800 	/* Mark TX ring as full if we reach a certain threshold. */
3801 	if (++ring->queued > IWN_TX_RING_HIMARK)
3802 		sc->qfullmsk |= 1 << ring->qid;
3803 
3804 	return 0;
3805 }
3806 
3807 static int
3808 iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3809     const struct ieee80211_bpf_params *params)
3810 {
3811 	struct ieee80211com *ic = ni->ni_ic;
3812 	struct ifnet *ifp = ic->ic_ifp;
3813 	struct iwn_softc *sc = ifp->if_softc;
3814 	int error = 0;
3815 
3816 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3817 		ieee80211_free_node(ni);
3818 		m_freem(m);
3819 		return ENETDOWN;
3820 	}
3821 
3822 	IWN_LOCK(sc);
3823 	if (params == NULL) {
3824 		/*
3825 		 * Legacy path; interpret frame contents to decide
3826 		 * precisely how to send the frame.
3827 		 */
3828 		error = iwn_tx_data(sc, m, ni);
3829 	} else {
3830 		/*
3831 		 * Caller supplied explicit parameters to use in
3832 		 * sending the frame.
3833 		 */
3834 		error = iwn_tx_data_raw(sc, m, ni, params);
3835 	}
3836 	if (error != 0) {
3837 		/* NB: m is reclaimed on tx failure */
3838 		ieee80211_free_node(ni);
3839 		ifp->if_oerrors++;
3840 	}
3841 	sc->sc_tx_timer = 5;
3842 
3843 	IWN_UNLOCK(sc);
3844 	return error;
3845 }
3846 
3847 static void
3848 iwn_start(struct ifnet *ifp)
3849 {
3850 	struct iwn_softc *sc = ifp->if_softc;
3851 
3852 	IWN_LOCK(sc);
3853 	iwn_start_locked(ifp);
3854 	IWN_UNLOCK(sc);
3855 }
3856 
3857 static void
3858 iwn_start_locked(struct ifnet *ifp)
3859 {
3860 	struct iwn_softc *sc = ifp->if_softc;
3861 	struct ieee80211_node *ni;
3862 	struct mbuf *m;
3863 
3864 	IWN_LOCK_ASSERT(sc);
3865 
3866 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
3867 	    (ifp->if_drv_flags & IFF_DRV_OACTIVE))
3868 		return;
3869 
3870 	for (;;) {
3871 		if (sc->qfullmsk != 0) {
3872 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3873 			break;
3874 		}
3875 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
3876 		if (m == NULL)
3877 			break;
3878 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
3879 		if (iwn_tx_data(sc, m, ni) != 0) {
3880 			ieee80211_free_node(ni);
3881 			ifp->if_oerrors++;
3882 			continue;
3883 		}
3884 		sc->sc_tx_timer = 5;
3885 	}
3886 }
3887 
3888 static void
3889 iwn_watchdog(void *arg)
3890 {
3891 	struct iwn_softc *sc = arg;
3892 	struct ifnet *ifp = sc->sc_ifp;
3893 	struct ieee80211com *ic = ifp->if_l2com;
3894 
3895 	IWN_LOCK_ASSERT(sc);
3896 
3897 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
3898 
3899 	if (sc->sc_tx_timer > 0) {
3900 		if (--sc->sc_tx_timer == 0) {
3901 			if_printf(ifp, "device timeout\n");
3902 			ieee80211_runtask(ic, &sc->sc_reinit_task);
3903 			return;
3904 		}
3905 	}
3906 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
3907 }
3908 
3909 static int
3910 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3911 {
3912 	struct iwn_softc *sc = ifp->if_softc;
3913 	struct ieee80211com *ic = ifp->if_l2com;
3914 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3915 	struct ifreq *ifr = (struct ifreq *) data;
3916 	int error = 0, startall = 0, stop = 0;
3917 
3918 	switch (cmd) {
3919 	case SIOCGIFADDR:
3920 		error = ether_ioctl(ifp, cmd, data);
3921 		break;
3922 	case SIOCSIFFLAGS:
3923 		IWN_LOCK(sc);
3924 		if (ifp->if_flags & IFF_UP) {
3925 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3926 				iwn_init_locked(sc);
3927 				if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
3928 					startall = 1;
3929 				else
3930 					stop = 1;
3931 			}
3932 		} else {
3933 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3934 				iwn_stop_locked(sc);
3935 		}
3936 		IWN_UNLOCK(sc);
3937 		if (startall)
3938 			ieee80211_start_all(ic);
3939 		else if (vap != NULL && stop)
3940 			ieee80211_stop(vap);
3941 		break;
3942 	case SIOCGIFMEDIA:
3943 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
3944 		break;
3945 	default:
3946 		error = EINVAL;
3947 		break;
3948 	}
3949 	return error;
3950 }
3951 
3952 /*
3953  * Send a command to the firmware.
3954  */
3955 static int
3956 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3957 {
3958 	struct iwn_tx_ring *ring = &sc->txq[4];
3959 	struct iwn_tx_desc *desc;
3960 	struct iwn_tx_data *data;
3961 	struct iwn_tx_cmd *cmd;
3962 	struct mbuf *m;
3963 	bus_addr_t paddr;
3964 	int totlen, error;
3965 
3966 	if (async == 0)
3967 		IWN_LOCK_ASSERT(sc);
3968 
3969 	desc = &ring->desc[ring->cur];
3970 	data = &ring->data[ring->cur];
3971 	totlen = 4 + size;
3972 
3973 	if (size > sizeof cmd->data) {
3974 		/* Command is too large to fit in a descriptor. */
3975 		if (totlen > MCLBYTES)
3976 			return EINVAL;
3977 		m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
3978 		if (m == NULL)
3979 			return ENOMEM;
3980 		cmd = mtod(m, struct iwn_tx_cmd *);
3981 		error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
3982 		    totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
3983 		if (error != 0) {
3984 			m_freem(m);
3985 			return error;
3986 		}
3987 		data->m = m;
3988 	} else {
3989 		cmd = &ring->cmd[ring->cur];
3990 		paddr = data->cmd_paddr;
3991 	}
3992 
3993 	cmd->code = code;
3994 	cmd->flags = 0;
3995 	cmd->qid = ring->qid;
3996 	cmd->idx = ring->cur;
3997 	memcpy(cmd->data, buf, size);
3998 
3999 	desc->nsegs = 1;
4000 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
4001 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
4002 
4003 	DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
4004 	    __func__, iwn_intr_str(cmd->code), cmd->code,
4005 	    cmd->flags, cmd->qid, cmd->idx);
4006 
4007 	if (size > sizeof cmd->data) {
4008 		bus_dmamap_sync(ring->data_dmat, data->map,
4009 		    BUS_DMASYNC_PREWRITE);
4010 	} else {
4011 		bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
4012 		    BUS_DMASYNC_PREWRITE);
4013 	}
4014 	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
4015 	    BUS_DMASYNC_PREWRITE);
4016 
4017 	/* Kick command ring. */
4018 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
4019 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
4020 
4021 	return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
4022 }
4023 
4024 static int
4025 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4026 {
4027 	struct iwn4965_node_info hnode;
4028 	caddr_t src, dst;
4029 
4030 	/*
4031 	 * We use the node structure for 5000 Series internally (it is
4032 	 * a superset of the one for 4965AGN). We thus copy the common
4033 	 * fields before sending the command.
4034 	 */
4035 	src = (caddr_t)node;
4036 	dst = (caddr_t)&hnode;
4037 	memcpy(dst, src, 48);
4038 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
4039 	memcpy(dst + 48, src + 72, 20);
4040 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
4041 }
4042 
4043 static int
4044 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
4045 {
4046 	/* Direct mapping. */
4047 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
4048 }
4049 
4050 static int
4051 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
4052 {
4053 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
4054 	struct iwn_node *wn = (void *)ni;
4055 	struct ieee80211_rateset *rs = &ni->ni_rates;
4056 	struct iwn_cmd_link_quality linkq;
4057 	uint8_t txant;
4058 	int i, rate, txrate;
4059 
4060 	/* Use the first valid TX antenna. */
4061 	txant = IWN_LSB(sc->txchainmask);
4062 
4063 	memset(&linkq, 0, sizeof linkq);
4064 	linkq.id = wn->id;
4065 	linkq.antmsk_1stream = txant;
4066 	linkq.antmsk_2stream = IWN_ANT_AB;
4067 	linkq.ampdu_max = 64;
4068 	linkq.ampdu_threshold = 3;
4069 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4070 
4071 	/* Start at highest available bit-rate. */
4072 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4073 		txrate = ni->ni_htrates.rs_nrates - 1;
4074 	else
4075 		txrate = rs->rs_nrates - 1;
4076 	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
4077 		if (IEEE80211_IS_CHAN_HT(ni->ni_chan))
4078 			rate = IEEE80211_RATE_MCS | txrate;
4079 		else
4080 			rate = RV(rs->rs_rates[txrate]);
4081 		linkq.retry[i] = wn->ridx[rate];
4082 
4083 		if ((le32toh(wn->ridx[rate]) & IWN_RFLAG_MCS) &&
4084 		    RV(le32toh(wn->ridx[rate])) > 7)
4085 			linkq.mimo = i + 1;
4086 
4087 		/* Next retry at immediate lower bit-rate. */
4088 		if (txrate > 0)
4089 			txrate--;
4090 	}
4091 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
4092 #undef	RV
4093 }
4094 
4095 /*
4096  * Broadcast node is used to send group-addressed and management frames.
4097  */
4098 static int
4099 iwn_add_broadcast_node(struct iwn_softc *sc, int async)
4100 {
4101 	struct iwn_ops *ops = &sc->ops;
4102 	struct ifnet *ifp = sc->sc_ifp;
4103 	struct ieee80211com *ic = ifp->if_l2com;
4104 	struct iwn_node_info node;
4105 	struct iwn_cmd_link_quality linkq;
4106 	uint8_t txant;
4107 	int i, error;
4108 
4109 	memset(&node, 0, sizeof node);
4110 	IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
4111 	node.id = sc->broadcast_id;
4112 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
4113 	if ((error = ops->add_node(sc, &node, async)) != 0)
4114 		return error;
4115 
4116 	/* Use the first valid TX antenna. */
4117 	txant = IWN_LSB(sc->txchainmask);
4118 
4119 	memset(&linkq, 0, sizeof linkq);
4120 	linkq.id = sc->broadcast_id;
4121 	linkq.antmsk_1stream = txant;
4122 	linkq.antmsk_2stream = IWN_ANT_AB;
4123 	linkq.ampdu_max = 64;
4124 	linkq.ampdu_threshold = 3;
4125 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
4126 
4127 	/* Use lowest mandatory bit-rate. */
4128 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
4129 		linkq.retry[0] = htole32(0xd);
4130 	else
4131 		linkq.retry[0] = htole32(10 | IWN_RFLAG_CCK);
4132 	linkq.retry[0] |= htole32(IWN_RFLAG_ANT(txant));
4133 	/* Use same bit-rate for all TX retries. */
4134 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4135 		linkq.retry[i] = linkq.retry[0];
4136 	}
4137 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4138 }
4139 
4140 static int
4141 iwn_updateedca(struct ieee80211com *ic)
4142 {
4143 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4144 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
4145 	struct iwn_edca_params cmd;
4146 	int aci;
4147 
4148 	memset(&cmd, 0, sizeof cmd);
4149 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4150 	for (aci = 0; aci < WME_NUM_AC; aci++) {
4151 		const struct wmeParams *ac =
4152 		    &ic->ic_wme.wme_chanParams.cap_wmeParams[aci];
4153 		cmd.ac[aci].aifsn = ac->wmep_aifsn;
4154 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->wmep_logcwmin));
4155 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->wmep_logcwmax));
4156 		cmd.ac[aci].txoplimit =
4157 		    htole16(IEEE80211_TXOP_TO_US(ac->wmep_txopLimit));
4158 	}
4159 	IEEE80211_UNLOCK(ic);
4160 	IWN_LOCK(sc);
4161 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4162 	IWN_UNLOCK(sc);
4163 	IEEE80211_LOCK(ic);
4164 	return 0;
4165 #undef IWN_EXP2
4166 }
4167 
4168 static void
4169 iwn_update_mcast(struct ifnet *ifp)
4170 {
4171 	/* Ignore */
4172 }
4173 
4174 static void
4175 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4176 {
4177 	struct iwn_cmd_led led;
4178 
4179 	/* Clear microcode LED ownership. */
4180 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4181 
4182 	led.which = which;
4183 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4184 	led.off = off;
4185 	led.on = on;
4186 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4187 }
4188 
4189 /*
4190  * Set the critical temperature at which the firmware will stop the radio
4191  * and notify us.
4192  */
4193 static int
4194 iwn_set_critical_temp(struct iwn_softc *sc)
4195 {
4196 	struct iwn_critical_temp crit;
4197 	int32_t temp;
4198 
4199 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4200 
4201 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4202 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4203 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4204 		temp = IWN_CTOK(110);
4205 	else
4206 		temp = 110;
4207 	memset(&crit, 0, sizeof crit);
4208 	crit.tempR = htole32(temp);
4209 	DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n", temp);
4210 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4211 }
4212 
4213 static int
4214 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4215 {
4216 	struct iwn_cmd_timing cmd;
4217 	uint64_t val, mod;
4218 
4219 	memset(&cmd, 0, sizeof cmd);
4220 	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
4221 	cmd.bintval = htole16(ni->ni_intval);
4222 	cmd.lintval = htole16(10);
4223 
4224 	/* Compute remaining time until next beacon. */
4225 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4226 	mod = le64toh(cmd.tstamp) % val;
4227 	cmd.binitval = htole32((uint32_t)(val - mod));
4228 
4229 	DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
4230 	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
4231 
4232 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4233 }
4234 
4235 static void
4236 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4237 {
4238 	struct ifnet *ifp = sc->sc_ifp;
4239 	struct ieee80211com *ic = ifp->if_l2com;
4240 
4241 	/* Adjust TX power if need be (delta >= 3 degC). */
4242 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
4243 	    __func__, sc->temp, temp);
4244 	if (abs(temp - sc->temp) >= 3) {
4245 		/* Record temperature of last calibration. */
4246 		sc->temp = temp;
4247 		(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
4248 	}
4249 }
4250 
4251 /*
4252  * Set TX power for current channel (each rate has its own power settings).
4253  * This function takes into account the regulatory information from EEPROM,
4254  * the current temperature and the current voltage.
4255  */
4256 static int
4257 iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4258     int async)
4259 {
4260 /* Fixed-point arithmetic division using a n-bit fractional part. */
4261 #define fdivround(a, b, n)	\
4262 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4263 /* Linear interpolation. */
4264 #define interpolate(x, x1, y1, x2, y2, n)	\
4265 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4266 
4267 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4268 	struct iwn_ucode_info *uc = &sc->ucode_info;
4269 	struct iwn4965_cmd_txpower cmd;
4270 	struct iwn4965_eeprom_chan_samples *chans;
4271 	const uint8_t *rf_gain, *dsp_gain;
4272 	int32_t vdiff, tdiff;
4273 	int i, c, grp, maxpwr;
4274 	uint8_t chan;
4275 
4276 	/* Retrieve current channel from last RXON. */
4277 	chan = sc->rxon.chan;
4278 	DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
4279 	    chan);
4280 
4281 	memset(&cmd, 0, sizeof cmd);
4282 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4283 	cmd.chan = chan;
4284 
4285 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4286 		maxpwr   = sc->maxpwr5GHz;
4287 		rf_gain  = iwn4965_rf_gain_5ghz;
4288 		dsp_gain = iwn4965_dsp_gain_5ghz;
4289 	} else {
4290 		maxpwr   = sc->maxpwr2GHz;
4291 		rf_gain  = iwn4965_rf_gain_2ghz;
4292 		dsp_gain = iwn4965_dsp_gain_2ghz;
4293 	}
4294 
4295 	/* Compute voltage compensation. */
4296 	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
4297 	if (vdiff > 0)
4298 		vdiff *= 2;
4299 	if (abs(vdiff) > 2)
4300 		vdiff = 0;
4301 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4302 	    "%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4303 	    __func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
4304 
4305 	/* Get channel attenuation group. */
4306 	if (chan <= 20)		/* 1-20 */
4307 		grp = 4;
4308 	else if (chan <= 43)	/* 34-43 */
4309 		grp = 0;
4310 	else if (chan <= 70)	/* 44-70 */
4311 		grp = 1;
4312 	else if (chan <= 124)	/* 71-124 */
4313 		grp = 2;
4314 	else			/* 125-200 */
4315 		grp = 3;
4316 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4317 	    "%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
4318 
4319 	/* Get channel sub-band. */
4320 	for (i = 0; i < IWN_NBANDS; i++)
4321 		if (sc->bands[i].lo != 0 &&
4322 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4323 			break;
4324 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4325 		return EINVAL;
4326 	chans = sc->bands[i].chans;
4327 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4328 	    "%s: chan %d sub-band=%d\n", __func__, chan, i);
4329 
4330 	for (c = 0; c < 2; c++) {
4331 		uint8_t power, gain, temp;
4332 		int maxchpwr, pwr, ridx, idx;
4333 
4334 		power = interpolate(chan,
4335 		    chans[0].num, chans[0].samples[c][1].power,
4336 		    chans[1].num, chans[1].samples[c][1].power, 1);
4337 		gain  = interpolate(chan,
4338 		    chans[0].num, chans[0].samples[c][1].gain,
4339 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4340 		temp  = interpolate(chan,
4341 		    chans[0].num, chans[0].samples[c][1].temp,
4342 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4343 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4344 		    "%s: Tx chain %d: power=%d gain=%d temp=%d\n",
4345 		    __func__, c, power, gain, temp);
4346 
4347 		/* Compute temperature compensation. */
4348 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4349 		DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4350 		    "%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
4351 		    __func__, tdiff, sc->temp, temp);
4352 
4353 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4354 			/* Convert dBm to half-dBm. */
4355 			maxchpwr = sc->maxpwr[chan] * 2;
4356 			if ((ridx / 8) & 1)
4357 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4358 
4359 			pwr = maxpwr;
4360 
4361 			/* Adjust TX power based on rate. */
4362 			if ((ridx % 8) == 5)
4363 				pwr -= 15;	/* OFDM48: -7.5dB */
4364 			else if ((ridx % 8) == 6)
4365 				pwr -= 17;	/* OFDM54: -8.5dB */
4366 			else if ((ridx % 8) == 7)
4367 				pwr -= 20;	/* OFDM60: -10dB */
4368 			else
4369 				pwr -= 10;	/* Others: -5dB */
4370 
4371 			/* Do not exceed channel max TX power. */
4372 			if (pwr > maxchpwr)
4373 				pwr = maxchpwr;
4374 
4375 			idx = gain - (pwr - power) - tdiff - vdiff;
4376 			if ((ridx / 8) & 1)	/* MIMO */
4377 				idx += (int32_t)le32toh(uc->atten[grp][c]);
4378 
4379 			if (cmd.band == 0)
4380 				idx += 9;	/* 5GHz */
4381 			if (ridx == IWN_RIDX_MAX)
4382 				idx += 5;	/* CCK */
4383 
4384 			/* Make sure idx stays in a valid range. */
4385 			if (idx < 0)
4386 				idx = 0;
4387 			else if (idx > IWN4965_MAX_PWR_INDEX)
4388 				idx = IWN4965_MAX_PWR_INDEX;
4389 
4390 			DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4391 			    "%s: Tx chain %d, rate idx %d: power=%d\n",
4392 			    __func__, c, ridx, idx);
4393 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4394 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4395 		}
4396 	}
4397 
4398 	DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
4399 	    "%s: set tx power for chan %d\n", __func__, chan);
4400 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4401 
4402 #undef interpolate
4403 #undef fdivround
4404 }
4405 
4406 static int
4407 iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
4408     int async)
4409 {
4410 	struct iwn5000_cmd_txpower cmd;
4411 
4412 	/*
4413 	 * TX power calibration is handled automatically by the firmware
4414 	 * for 5000 Series.
4415 	 */
4416 	memset(&cmd, 0, sizeof cmd);
4417 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4418 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4419 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4420 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
4421 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4422 }
4423 
4424 /*
4425  * Retrieve the maximum RSSI (in dBm) among receivers.
4426  */
4427 static int
4428 iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4429 {
4430 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4431 	uint8_t mask, agc;
4432 	int rssi;
4433 
4434 	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
4435 	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
4436 
4437 	rssi = 0;
4438 	if (mask & IWN_ANT_A)
4439 		rssi = MAX(rssi, phy->rssi[0]);
4440 	if (mask & IWN_ANT_B)
4441 		rssi = MAX(rssi, phy->rssi[2]);
4442 	if (mask & IWN_ANT_C)
4443 		rssi = MAX(rssi, phy->rssi[4]);
4444 
4445 	DPRINTF(sc, IWN_DEBUG_RECV,
4446 	    "%s: agc %d mask 0x%x rssi %d %d %d result %d\n", __func__, agc,
4447 	    mask, phy->rssi[0], phy->rssi[2], phy->rssi[4],
4448 	    rssi - agc - IWN_RSSI_TO_DBM);
4449 	return rssi - agc - IWN_RSSI_TO_DBM;
4450 }
4451 
4452 static int
4453 iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
4454 {
4455 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4456 	uint8_t agc;
4457 	int rssi;
4458 
4459 	agc = (le32toh(phy->agc) >> 9) & 0x7f;
4460 
4461 	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
4462 		   le16toh(phy->rssi[1]) & 0xff);
4463 	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
4464 
4465 	DPRINTF(sc, IWN_DEBUG_RECV,
4466 	    "%s: agc %d rssi %d %d %d result %d\n", __func__, agc,
4467 	    phy->rssi[0], phy->rssi[1], phy->rssi[2],
4468 	    rssi - agc - IWN_RSSI_TO_DBM);
4469 	return rssi - agc - IWN_RSSI_TO_DBM;
4470 }
4471 
4472 /*
4473  * Retrieve the average noise (in dBm) among receivers.
4474  */
4475 static int
4476 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4477 {
4478 	int i, total, nbant, noise;
4479 
4480 	total = nbant = 0;
4481 	for (i = 0; i < 3; i++) {
4482 		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
4483 			continue;
4484 		total += noise;
4485 		nbant++;
4486 	}
4487 	/* There should be at least one antenna but check anyway. */
4488 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4489 }
4490 
4491 /*
4492  * Compute temperature (in degC) from last received statistics.
4493  */
4494 static int
4495 iwn4965_get_temperature(struct iwn_softc *sc)
4496 {
4497 	struct iwn_ucode_info *uc = &sc->ucode_info;
4498 	int32_t r1, r2, r3, r4, temp;
4499 
4500 	r1 = le32toh(uc->temp[0].chan20MHz);
4501 	r2 = le32toh(uc->temp[1].chan20MHz);
4502 	r3 = le32toh(uc->temp[2].chan20MHz);
4503 	r4 = le32toh(sc->rawtemp);
4504 
4505 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4506 		return 0;
4507 
4508 	/* Sign-extend 23-bit R4 value to 32-bit. */
4509 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4510 	/* Compute temperature in Kelvin. */
4511 	temp = (259 * (r4 - r2)) / (r3 - r1);
4512 	temp = (temp * 97) / 100 + 8;
4513 
4514 	DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
4515 	    IWN_KTOC(temp));
4516 	return IWN_KTOC(temp);
4517 }
4518 
4519 static int
4520 iwn5000_get_temperature(struct iwn_softc *sc)
4521 {
4522 	int32_t temp;
4523 
4524 	/*
4525 	 * Temperature is not used by the driver for 5000 Series because
4526 	 * TX power calibration is handled by firmware.
4527 	 */
4528 	temp = le32toh(sc->rawtemp);
4529 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4530 		temp = (temp / -5) + sc->temp_off;
4531 		temp = IWN_KTOC(temp);
4532 	}
4533 	return temp;
4534 }
4535 
4536 /*
4537  * Initialize sensitivity calibration state machine.
4538  */
4539 static int
4540 iwn_init_sensitivity(struct iwn_softc *sc)
4541 {
4542 	struct iwn_ops *ops = &sc->ops;
4543 	struct iwn_calib_state *calib = &sc->calib;
4544 	uint32_t flags;
4545 	int error;
4546 
4547 	/* Reset calibration state machine. */
4548 	memset(calib, 0, sizeof (*calib));
4549 	calib->state = IWN_CALIB_STATE_INIT;
4550 	calib->cck_state = IWN_CCK_STATE_HIFA;
4551 	/* Set initial correlation values. */
4552 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4553 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4554 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4555 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4556 	calib->cck_x4      = 125;
4557 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4558 	calib->energy_cck  = sc->limits->energy_cck;
4559 
4560 	/* Write initial sensitivity. */
4561 	if ((error = iwn_send_sensitivity(sc)) != 0)
4562 		return error;
4563 
4564 	/* Write initial gains. */
4565 	if ((error = ops->init_gains(sc)) != 0)
4566 		return error;
4567 
4568 	/* Request statistics at each beacon interval. */
4569 	flags = 0;
4570 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending request for statistics\n",
4571 	    __func__);
4572 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4573 }
4574 
4575 /*
4576  * Collect noise and RSSI statistics for the first 20 beacons received
4577  * after association and use them to determine connected antennas and
4578  * to set differential gains.
4579  */
4580 static void
4581 iwn_collect_noise(struct iwn_softc *sc,
4582     const struct iwn_rx_general_stats *stats)
4583 {
4584 	struct iwn_ops *ops = &sc->ops;
4585 	struct iwn_calib_state *calib = &sc->calib;
4586 	uint32_t val;
4587 	int i;
4588 
4589 	/* Accumulate RSSI and noise for all 3 antennas. */
4590 	for (i = 0; i < 3; i++) {
4591 		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4592 		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4593 	}
4594 	/* NB: We update differential gains only once after 20 beacons. */
4595 	if (++calib->nbeacons < 20)
4596 		return;
4597 
4598 	/* Determine highest average RSSI. */
4599 	val = MAX(calib->rssi[0], calib->rssi[1]);
4600 	val = MAX(calib->rssi[2], val);
4601 
4602 	/* Determine which antennas are connected. */
4603 	sc->chainmask = sc->rxchainmask;
4604 	for (i = 0; i < 3; i++)
4605 		if (val - calib->rssi[i] > 15 * 20)
4606 			sc->chainmask &= ~(1 << i);
4607 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4608 	    "%s: RX chains mask: theoretical=0x%x, actual=0x%x\n",
4609 	    __func__, sc->rxchainmask, sc->chainmask);
4610 
4611 	/* If none of the TX antennas are connected, keep at least one. */
4612 	if ((sc->chainmask & sc->txchainmask) == 0)
4613 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4614 
4615 	(void)ops->set_gains(sc);
4616 	calib->state = IWN_CALIB_STATE_RUN;
4617 
4618 #ifdef notyet
4619 	/* XXX Disable RX chains with no antennas connected. */
4620 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4621 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4622 #endif
4623 
4624 #if 0
4625 	/* XXX: not yet */
4626 	/* Enable power-saving mode if requested by user. */
4627 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4628 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4629 #endif
4630 }
4631 
4632 static int
4633 iwn4965_init_gains(struct iwn_softc *sc)
4634 {
4635 	struct iwn_phy_calib_gain cmd;
4636 
4637 	memset(&cmd, 0, sizeof cmd);
4638 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4639 	/* Differential gains initially set to 0 for all 3 antennas. */
4640 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4641 	    "%s: setting initial differential gains\n", __func__);
4642 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4643 }
4644 
4645 static int
4646 iwn5000_init_gains(struct iwn_softc *sc)
4647 {
4648 	struct iwn_phy_calib cmd;
4649 
4650 	memset(&cmd, 0, sizeof cmd);
4651 	cmd.code = sc->reset_noise_gain;
4652 	cmd.ngroups = 1;
4653 	cmd.isvalid = 1;
4654 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4655 	    "%s: setting initial differential gains\n", __func__);
4656 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4657 }
4658 
4659 static int
4660 iwn4965_set_gains(struct iwn_softc *sc)
4661 {
4662 	struct iwn_calib_state *calib = &sc->calib;
4663 	struct iwn_phy_calib_gain cmd;
4664 	int i, delta, noise;
4665 
4666 	/* Get minimal noise among connected antennas. */
4667 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4668 	for (i = 0; i < 3; i++)
4669 		if (sc->chainmask & (1 << i))
4670 			noise = MIN(calib->noise[i], noise);
4671 
4672 	memset(&cmd, 0, sizeof cmd);
4673 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4674 	/* Set differential gains for connected antennas. */
4675 	for (i = 0; i < 3; i++) {
4676 		if (sc->chainmask & (1 << i)) {
4677 			/* Compute attenuation (in unit of 1.5dB). */
4678 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4679 			/* NB: delta <= 0 */
4680 			/* Limit to [-4.5dB,0]. */
4681 			cmd.gain[i] = MIN(abs(delta), 3);
4682 			if (delta < 0)
4683 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4684 		}
4685 	}
4686 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4687 	    "setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4688 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
4689 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4690 }
4691 
4692 static int
4693 iwn5000_set_gains(struct iwn_softc *sc)
4694 {
4695 	struct iwn_calib_state *calib = &sc->calib;
4696 	struct iwn_phy_calib_gain cmd;
4697 	int i, ant, div, delta;
4698 
4699 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4700 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4701 
4702 	memset(&cmd, 0, sizeof cmd);
4703 	cmd.code = sc->noise_gain;
4704 	cmd.ngroups = 1;
4705 	cmd.isvalid = 1;
4706 	/* Get first available RX antenna as referential. */
4707 	ant = IWN_LSB(sc->rxchainmask);
4708 	/* Set differential gains for other antennas. */
4709 	for (i = ant + 1; i < 3; i++) {
4710 		if (sc->chainmask & (1 << i)) {
4711 			/* The delta is relative to antenna "ant". */
4712 			delta = ((int32_t)calib->noise[ant] -
4713 			    (int32_t)calib->noise[i]) / div;
4714 			/* Limit to [-4.5dB,+4.5dB]. */
4715 			cmd.gain[i - 1] = MIN(abs(delta), 3);
4716 			if (delta < 0)
4717 				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4718 		}
4719 	}
4720 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4721 	    "setting differential gains Ant B/C: %x/%x (%x)\n",
4722 	    cmd.gain[0], cmd.gain[1], sc->chainmask);
4723 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4724 }
4725 
4726 /*
4727  * Tune RF RX sensitivity based on the number of false alarms detected
4728  * during the last beacon period.
4729  */
4730 static void
4731 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4732 {
4733 #define inc(val, inc, max)			\
4734 	if ((val) < (max)) {			\
4735 		if ((val) < (max) - (inc))	\
4736 			(val) += (inc);		\
4737 		else				\
4738 			(val) = (max);		\
4739 		needs_update = 1;		\
4740 	}
4741 #define dec(val, dec, min)			\
4742 	if ((val) > (min)) {			\
4743 		if ((val) > (min) + (dec))	\
4744 			(val) -= (dec);		\
4745 		else				\
4746 			(val) = (min);		\
4747 		needs_update = 1;		\
4748 	}
4749 
4750 	const struct iwn_sensitivity_limits *limits = sc->limits;
4751 	struct iwn_calib_state *calib = &sc->calib;
4752 	uint32_t val, rxena, fa;
4753 	uint32_t energy[3], energy_min;
4754 	uint8_t noise[3], noise_ref;
4755 	int i, needs_update = 0;
4756 
4757 	/* Check that we've been enabled long enough. */
4758 	if ((rxena = le32toh(stats->general.load)) == 0)
4759 		return;
4760 
4761 	/* Compute number of false alarms since last call for OFDM. */
4762 	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4763 	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4764 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4765 
4766 	/* Save counters values for next call. */
4767 	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4768 	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4769 
4770 	if (fa > 50 * rxena) {
4771 		/* High false alarm count, decrease sensitivity. */
4772 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4773 		    "%s: OFDM high false alarm count: %u\n", __func__, fa);
4774 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4775 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4776 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4777 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4778 
4779 	} else if (fa < 5 * rxena) {
4780 		/* Low false alarm count, increase sensitivity. */
4781 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4782 		    "%s: OFDM low false alarm count: %u\n", __func__, fa);
4783 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4784 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4785 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4786 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4787 	}
4788 
4789 	/* Compute maximum noise among 3 receivers. */
4790 	for (i = 0; i < 3; i++)
4791 		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4792 	val = MAX(noise[0], noise[1]);
4793 	val = MAX(noise[2], val);
4794 	/* Insert it into our samples table. */
4795 	calib->noise_samples[calib->cur_noise_sample] = val;
4796 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4797 
4798 	/* Compute maximum noise among last 20 samples. */
4799 	noise_ref = calib->noise_samples[0];
4800 	for (i = 1; i < 20; i++)
4801 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4802 
4803 	/* Compute maximum energy among 3 receivers. */
4804 	for (i = 0; i < 3; i++)
4805 		energy[i] = le32toh(stats->general.energy[i]);
4806 	val = MIN(energy[0], energy[1]);
4807 	val = MIN(energy[2], val);
4808 	/* Insert it into our samples table. */
4809 	calib->energy_samples[calib->cur_energy_sample] = val;
4810 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4811 
4812 	/* Compute minimum energy among last 10 samples. */
4813 	energy_min = calib->energy_samples[0];
4814 	for (i = 1; i < 10; i++)
4815 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4816 	energy_min += 6;
4817 
4818 	/* Compute number of false alarms since last call for CCK. */
4819 	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4820 	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4821 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4822 
4823 	/* Save counters values for next call. */
4824 	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4825 	calib->fa_cck = le32toh(stats->cck.fa);
4826 
4827 	if (fa > 50 * rxena) {
4828 		/* High false alarm count, decrease sensitivity. */
4829 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4830 		    "%s: CCK high false alarm count: %u\n", __func__, fa);
4831 		calib->cck_state = IWN_CCK_STATE_HIFA;
4832 		calib->low_fa = 0;
4833 
4834 		if (calib->cck_x4 > 160) {
4835 			calib->noise_ref = noise_ref;
4836 			if (calib->energy_cck > 2)
4837 				dec(calib->energy_cck, 2, energy_min);
4838 		}
4839 		if (calib->cck_x4 < 160) {
4840 			calib->cck_x4 = 161;
4841 			needs_update = 1;
4842 		} else
4843 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4844 
4845 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4846 
4847 	} else if (fa < 5 * rxena) {
4848 		/* Low false alarm count, increase sensitivity. */
4849 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4850 		    "%s: CCK low false alarm count: %u\n", __func__, fa);
4851 		calib->cck_state = IWN_CCK_STATE_LOFA;
4852 		calib->low_fa++;
4853 
4854 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4855 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4856 		     calib->low_fa > 100)) {
4857 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4858 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4859 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4860 		}
4861 	} else {
4862 		/* Not worth to increase or decrease sensitivity. */
4863 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4864 		    "%s: CCK normal false alarm count: %u\n", __func__, fa);
4865 		calib->low_fa = 0;
4866 		calib->noise_ref = noise_ref;
4867 
4868 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4869 			/* Previous interval had many false alarms. */
4870 			dec(calib->energy_cck, 8, energy_min);
4871 		}
4872 		calib->cck_state = IWN_CCK_STATE_INIT;
4873 	}
4874 
4875 	if (needs_update)
4876 		(void)iwn_send_sensitivity(sc);
4877 #undef dec
4878 #undef inc
4879 }
4880 
4881 static int
4882 iwn_send_sensitivity(struct iwn_softc *sc)
4883 {
4884 	struct iwn_calib_state *calib = &sc->calib;
4885 	struct iwn_enhanced_sensitivity_cmd cmd;
4886 	int len;
4887 
4888 	memset(&cmd, 0, sizeof cmd);
4889 	len = sizeof (struct iwn_sensitivity_cmd);
4890 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4891 	/* OFDM modulation. */
4892 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4893 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4894 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4895 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4896 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4897 	cmd.energy_ofdm_th     = htole16(62);
4898 	/* CCK modulation. */
4899 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4900 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4901 	cmd.energy_cck         = htole16(calib->energy_cck);
4902 	/* Barker modulation: use default values. */
4903 	cmd.corr_barker        = htole16(190);
4904 	cmd.corr_barker_mrc    = htole16(390);
4905 
4906 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
4907 	    "%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
4908 	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4909 	    calib->ofdm_mrc_x4, calib->cck_x4,
4910 	    calib->cck_mrc_x4, calib->energy_cck);
4911 
4912 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4913 		goto send;
4914 	/* Enhanced sensitivity settings. */
4915 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4916 	cmd.ofdm_det_slope_mrc = htole16(668);
4917 	cmd.ofdm_det_icept_mrc = htole16(4);
4918 	cmd.ofdm_det_slope     = htole16(486);
4919 	cmd.ofdm_det_icept     = htole16(37);
4920 	cmd.cck_det_slope_mrc  = htole16(853);
4921 	cmd.cck_det_icept_mrc  = htole16(4);
4922 	cmd.cck_det_slope      = htole16(476);
4923 	cmd.cck_det_icept      = htole16(99);
4924 send:
4925 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4926 }
4927 
4928 /*
4929  * Set STA mode power saving level (between 0 and 5).
4930  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4931  */
4932 static int
4933 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4934 {
4935 	struct iwn_pmgt_cmd cmd;
4936 	const struct iwn_pmgt *pmgt;
4937 	uint32_t max, skip_dtim;
4938 	uint32_t reg;
4939 	int i;
4940 
4941 	/* Select which PS parameters to use. */
4942 	if (dtim <= 2)
4943 		pmgt = &iwn_pmgt[0][level];
4944 	else if (dtim <= 10)
4945 		pmgt = &iwn_pmgt[1][level];
4946 	else
4947 		pmgt = &iwn_pmgt[2][level];
4948 
4949 	memset(&cmd, 0, sizeof cmd);
4950 	if (level != 0)	/* not CAM */
4951 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4952 	if (level == 5)
4953 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4954 	/* Retrieve PCIe Active State Power Management (ASPM). */
4955 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
4956 	if (!(reg & 0x1))	/* L0s Entry disabled. */
4957 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4958 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4959 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4960 
4961 	if (dtim == 0) {
4962 		dtim = 1;
4963 		skip_dtim = 0;
4964 	} else
4965 		skip_dtim = pmgt->skip_dtim;
4966 	if (skip_dtim != 0) {
4967 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4968 		max = pmgt->intval[4];
4969 		if (max == (uint32_t)-1)
4970 			max = dtim * (skip_dtim + 1);
4971 		else if (max > dtim)
4972 			max = (max / dtim) * dtim;
4973 	} else
4974 		max = dtim;
4975 	for (i = 0; i < 5; i++)
4976 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4977 
4978 	DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
4979 	    level);
4980 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4981 }
4982 
4983 static int
4984 iwn_send_btcoex(struct iwn_softc *sc)
4985 {
4986 	struct iwn_bluetooth cmd;
4987 
4988 	memset(&cmd, 0, sizeof cmd);
4989 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4990 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4991 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4992 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: configuring bluetooth coexistence\n",
4993 	    __func__);
4994 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4995 }
4996 
4997 static int
4998 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4999 {
5000 	static const uint32_t btcoex_3wire[12] = {
5001 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
5002 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
5003 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
5004 	};
5005 	struct iwn6000_btcoex_config btconfig;
5006 	struct iwn_btcoex_priotable btprio;
5007 	struct iwn_btcoex_prot btprot;
5008 	int error, i;
5009 
5010 	memset(&btconfig, 0, sizeof btconfig);
5011 	btconfig.flags = 145;
5012 	btconfig.max_kill = 5;
5013 	btconfig.bt3_t7_timer = 1;
5014 	btconfig.kill_ack = htole32(0xffff0000);
5015 	btconfig.kill_cts = htole32(0xffff0000);
5016 	btconfig.sample_time = 2;
5017 	btconfig.bt3_t2_timer = 0xc;
5018 	for (i = 0; i < 12; i++)
5019 		btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
5020 	btconfig.valid = htole16(0xff);
5021 	btconfig.prio_boost = 0xf0;
5022 	DPRINTF(sc, IWN_DEBUG_RESET,
5023 	    "%s: configuring advanced bluetooth coexistence\n", __func__);
5024 	error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig, sizeof(btconfig), 1);
5025 	if (error != 0)
5026 		return error;
5027 
5028 	memset(&btprio, 0, sizeof btprio);
5029 	btprio.calib_init1 = 0x6;
5030 	btprio.calib_init2 = 0x7;
5031 	btprio.calib_periodic_low1 = 0x2;
5032 	btprio.calib_periodic_low2 = 0x3;
5033 	btprio.calib_periodic_high1 = 0x4;
5034 	btprio.calib_periodic_high2 = 0x5;
5035 	btprio.dtim = 0x6;
5036 	btprio.scan52 = 0x8;
5037 	btprio.scan24 = 0xa;
5038 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
5039 	    1);
5040 	if (error != 0)
5041 		return error;
5042 
5043 	/* Force BT state machine change. */
5044 	memset(&btprot, 0, sizeof btprio);
5045 	btprot.open = 1;
5046 	btprot.type = 1;
5047 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5048 	if (error != 0)
5049 		return error;
5050 	btprot.open = 0;
5051 	return iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
5052 }
5053 
5054 static int
5055 iwn5000_runtime_calib(struct iwn_softc *sc)
5056 {
5057 	struct iwn5000_calib_config cmd;
5058 
5059 	memset(&cmd, 0, sizeof cmd);
5060 	cmd.ucode.once.enable = 0xffffffff;
5061 	cmd.ucode.once.start = IWN5000_CALIB_DC;
5062 	DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5063 	    "%s: configuring runtime calibration\n", __func__);
5064 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
5065 }
5066 
5067 static int
5068 iwn_config(struct iwn_softc *sc)
5069 {
5070 	struct iwn_ops *ops = &sc->ops;
5071 	struct ifnet *ifp = sc->sc_ifp;
5072 	struct ieee80211com *ic = ifp->if_l2com;
5073 	uint32_t txmask;
5074 	uint16_t rxchain;
5075 	int error;
5076 
5077 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
5078 		/* Set radio temperature sensor offset. */
5079 		error = iwn5000_temp_offset_calib(sc);
5080 		if (error != 0) {
5081 			device_printf(sc->sc_dev,
5082 			    "%s: could not set temperature offset\n", __func__);
5083 			return error;
5084 		}
5085 	}
5086 
5087 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5088 		/* Configure runtime DC calibration. */
5089 		error = iwn5000_runtime_calib(sc);
5090 		if (error != 0) {
5091 			device_printf(sc->sc_dev,
5092 			    "%s: could not configure runtime calibration\n",
5093 			    __func__);
5094 			return error;
5095 		}
5096 	}
5097 
5098 	/* Configure valid TX chains for >=5000 Series. */
5099 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
5100 		txmask = htole32(sc->txchainmask);
5101 		DPRINTF(sc, IWN_DEBUG_RESET,
5102 		    "%s: configuring valid TX chains 0x%x\n", __func__, txmask);
5103 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
5104 		    sizeof txmask, 0);
5105 		if (error != 0) {
5106 			device_printf(sc->sc_dev,
5107 			    "%s: could not configure valid TX chains, "
5108 			    "error %d\n", __func__, error);
5109 			return error;
5110 		}
5111 	}
5112 
5113 	/* Configure bluetooth coexistence. */
5114 	if (sc->sc_flags & IWN_FLAG_ADV_BTCOEX)
5115 		error = iwn_send_advanced_btcoex(sc);
5116 	else
5117 		error = iwn_send_btcoex(sc);
5118 	if (error != 0) {
5119 		device_printf(sc->sc_dev,
5120 		    "%s: could not configure bluetooth coexistence, error %d\n",
5121 		    __func__, error);
5122 		return error;
5123 	}
5124 
5125 	/* Set mode, channel, RX filter and enable RX. */
5126 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5127 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
5128 	IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
5129 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
5130 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5131 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
5132 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5133 	switch (ic->ic_opmode) {
5134 	case IEEE80211_M_STA:
5135 		sc->rxon.mode = IWN_MODE_STA;
5136 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5137 		break;
5138 	case IEEE80211_M_MONITOR:
5139 		sc->rxon.mode = IWN_MODE_MONITOR;
5140 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5141 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5142 		break;
5143 	default:
5144 		/* Should not get there. */
5145 		break;
5146 	}
5147 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5148 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5149 	sc->rxon.ht_single_mask = 0xff;
5150 	sc->rxon.ht_dual_mask = 0xff;
5151 	sc->rxon.ht_triple_mask = 0xff;
5152 	rxchain =
5153 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5154 	    IWN_RXCHAIN_MIMO_COUNT(2) |
5155 	    IWN_RXCHAIN_IDLE_COUNT(2);
5156 	sc->rxon.rxchain = htole16(rxchain);
5157 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
5158 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5159 	if (error != 0) {
5160 		device_printf(sc->sc_dev, "%s: RXON command failed\n",
5161 		    __func__);
5162 		return error;
5163 	}
5164 
5165 	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
5166 		device_printf(sc->sc_dev, "%s: could not add broadcast node\n",
5167 		    __func__);
5168 		return error;
5169 	}
5170 
5171 	/* Configuration has changed, set TX power accordingly. */
5172 	if ((error = ops->set_txpower(sc, ic->ic_curchan, 0)) != 0) {
5173 		device_printf(sc->sc_dev, "%s: could not set TX power\n",
5174 		    __func__);
5175 		return error;
5176 	}
5177 
5178 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5179 		device_printf(sc->sc_dev,
5180 		    "%s: could not set critical temperature\n", __func__);
5181 		return error;
5182 	}
5183 
5184 	/* Set power saving level to CAM during initialization. */
5185 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5186 		device_printf(sc->sc_dev,
5187 		    "%s: could not set power saving level\n", __func__);
5188 		return error;
5189 	}
5190 	return 0;
5191 }
5192 
5193 /*
5194  * Add an ssid element to a frame.
5195  */
5196 static uint8_t *
5197 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
5198 {
5199 	*frm++ = IEEE80211_ELEMID_SSID;
5200 	*frm++ = len;
5201 	memcpy(frm, ssid, len);
5202 	return frm + len;
5203 }
5204 
5205 static int
5206 iwn_scan(struct iwn_softc *sc)
5207 {
5208 	struct ifnet *ifp = sc->sc_ifp;
5209 	struct ieee80211com *ic = ifp->if_l2com;
5210 	struct ieee80211_scan_state *ss = ic->ic_scan;	/*XXX*/
5211 	struct ieee80211_node *ni = ss->ss_vap->iv_bss;
5212 	struct iwn_scan_hdr *hdr;
5213 	struct iwn_cmd_data *tx;
5214 	struct iwn_scan_essid *essid;
5215 	struct iwn_scan_chan *chan;
5216 	struct ieee80211_frame *wh;
5217 	struct ieee80211_rateset *rs;
5218 	struct ieee80211_channel *c;
5219 	uint8_t *buf, *frm;
5220 	uint16_t rxchain;
5221 	uint8_t txant;
5222 	int buflen, error;
5223 
5224 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5225 	if (buf == NULL) {
5226 		device_printf(sc->sc_dev,
5227 		    "%s: could not allocate buffer for scan command\n",
5228 		    __func__);
5229 		return ENOMEM;
5230 	}
5231 	hdr = (struct iwn_scan_hdr *)buf;
5232 	/*
5233 	 * Move to the next channel if no frames are received within 10ms
5234 	 * after sending the probe request.
5235 	 */
5236 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5237 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5238 
5239 	/* Select antennas for scanning. */
5240 	rxchain =
5241 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5242 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5243 	    IWN_RXCHAIN_DRIVER_FORCE;
5244 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
5245 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5246 		/* Ant A must be avoided in 5GHz because of an HW bug. */
5247 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5248 	} else	/* Use all available RX antennas. */
5249 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5250 	hdr->rxchain = htole16(rxchain);
5251 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5252 
5253 	tx = (struct iwn_cmd_data *)(hdr + 1);
5254 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5255 	tx->id = sc->broadcast_id;
5256 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5257 
5258 	if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
5259 		/* Send probe requests at 6Mbps. */
5260 		tx->rate = htole32(0xd);
5261 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5262 	} else {
5263 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5264 		if (sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5265 		    sc->rxon.associd && sc->rxon.chan > 14)
5266 			tx->rate = htole32(0xd);
5267 		else {
5268 			/* Send probe requests at 1Mbps. */
5269 			tx->rate = htole32(10 | IWN_RFLAG_CCK);
5270 		}
5271 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5272 	}
5273 	/* Use the first valid TX antenna. */
5274 	txant = IWN_LSB(sc->txchainmask);
5275 	tx->rate |= htole32(IWN_RFLAG_ANT(txant));
5276 
5277 	essid = (struct iwn_scan_essid *)(tx + 1);
5278 	if (ss->ss_ssid[0].len != 0) {
5279 		essid[0].id = IEEE80211_ELEMID_SSID;
5280 		essid[0].len = ss->ss_ssid[0].len;
5281 		memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
5282 	}
5283 	/*
5284 	 * Build a probe request frame.  Most of the following code is a
5285 	 * copy & paste of what is done in net80211.
5286 	 */
5287 	wh = (struct ieee80211_frame *)(essid + 20);
5288 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5289 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5290 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5291 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
5292 	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
5293 	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
5294 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5295 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5296 
5297 	frm = (uint8_t *)(wh + 1);
5298 	frm = ieee80211_add_ssid(frm, NULL, 0);
5299 	frm = ieee80211_add_rates(frm, rs);
5300 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5301 		frm = ieee80211_add_xrates(frm, rs);
5302 	if (ic->ic_htcaps & IEEE80211_HTC_HT)
5303 		frm = ieee80211_add_htcap(frm, ni);
5304 
5305 	/* Set length of probe request. */
5306 	tx->len = htole16(frm - (uint8_t *)wh);
5307 
5308 	c = ic->ic_curchan;
5309 	chan = (struct iwn_scan_chan *)frm;
5310 	chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5311 	chan->flags = 0;
5312 	if (ss->ss_nssid > 0)
5313 		chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5314 	chan->dsp_gain = 0x6e;
5315 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
5316 	    !(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5317 		chan->rf_gain = 0x3b;
5318 		chan->active  = htole16(24);
5319 		chan->passive = htole16(110);
5320 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5321 	} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
5322 		chan->rf_gain = 0x3b;
5323 		chan->active  = htole16(24);
5324 		if (sc->rxon.associd)
5325 			chan->passive = htole16(78);
5326 		else
5327 			chan->passive = htole16(110);
5328 		hdr->crc_threshold = 0xffff;
5329 	} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
5330 		chan->rf_gain = 0x28;
5331 		chan->active  = htole16(36);
5332 		chan->passive = htole16(120);
5333 		chan->flags |= htole32(IWN_CHAN_ACTIVE);
5334 	} else {
5335 		chan->rf_gain = 0x28;
5336 		chan->active  = htole16(36);
5337 		if (sc->rxon.associd)
5338 			chan->passive = htole16(88);
5339 		else
5340 			chan->passive = htole16(120);
5341 		hdr->crc_threshold = 0xffff;
5342 	}
5343 
5344 	DPRINTF(sc, IWN_DEBUG_STATE,
5345 	    "%s: chan %u flags 0x%x rf_gain 0x%x "
5346 	    "dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
5347 	    chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
5348 	    chan->active, chan->passive);
5349 
5350 	hdr->nchan++;
5351 	chan++;
5352 	buflen = (uint8_t *)chan - buf;
5353 	hdr->len = htole16(buflen);
5354 
5355 	DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
5356 	    hdr->nchan);
5357 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5358 	free(buf, M_DEVBUF);
5359 	return error;
5360 }
5361 
5362 static int
5363 iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
5364 {
5365 	struct iwn_ops *ops = &sc->ops;
5366 	struct ifnet *ifp = sc->sc_ifp;
5367 	struct ieee80211com *ic = ifp->if_l2com;
5368 	struct ieee80211_node *ni = vap->iv_bss;
5369 	int error;
5370 
5371 	/* Update adapter configuration. */
5372 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5373 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5374 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5375 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5376 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5377 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5378 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5379 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5380 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5381 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5382 		sc->rxon.cck_mask  = 0;
5383 		sc->rxon.ofdm_mask = 0x15;
5384 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5385 		sc->rxon.cck_mask  = 0x03;
5386 		sc->rxon.ofdm_mask = 0;
5387 	} else {
5388 		/* Assume 802.11b/g. */
5389 		sc->rxon.cck_mask  = 0x0f;
5390 		sc->rxon.ofdm_mask = 0x15;
5391 	}
5392 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x cck %x ofdm %x\n",
5393 	    sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask,
5394 	    sc->rxon.ofdm_mask);
5395 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5396 	if (error != 0) {
5397 		device_printf(sc->sc_dev, "%s: RXON command failed, error %d\n",
5398 		    __func__, error);
5399 		return error;
5400 	}
5401 
5402 	/* Configuration has changed, set TX power accordingly. */
5403 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5404 		device_printf(sc->sc_dev,
5405 		    "%s: could not set TX power, error %d\n", __func__, error);
5406 		return error;
5407 	}
5408 	/*
5409 	 * Reconfiguring RXON clears the firmware nodes table so we must
5410 	 * add the broadcast node again.
5411 	 */
5412 	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
5413 		device_printf(sc->sc_dev,
5414 		    "%s: could not add broadcast node, error %d\n", __func__,
5415 		    error);
5416 		return error;
5417 	}
5418 	return 0;
5419 }
5420 
5421 static int
5422 iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
5423 {
5424 	struct iwn_ops *ops = &sc->ops;
5425 	struct ifnet *ifp = sc->sc_ifp;
5426 	struct ieee80211com *ic = ifp->if_l2com;
5427 	struct ieee80211_node *ni = vap->iv_bss;
5428 	struct iwn_node_info node;
5429 	uint32_t htflags = 0;
5430 	int error;
5431 
5432 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5433 		/* Link LED blinks while monitoring. */
5434 		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
5435 		return 0;
5436 	}
5437 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5438 		device_printf(sc->sc_dev,
5439 		    "%s: could not set timing, error %d\n", __func__, error);
5440 		return error;
5441 	}
5442 
5443 	/* Update adapter configuration. */
5444 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5445 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5446 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5447 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5448 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
5449 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5450 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5451 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5452 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5453 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5454 	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
5455 		sc->rxon.cck_mask  = 0;
5456 		sc->rxon.ofdm_mask = 0x15;
5457 	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
5458 		sc->rxon.cck_mask  = 0x03;
5459 		sc->rxon.ofdm_mask = 0;
5460 	} else {
5461 		/* Assume 802.11b/g. */
5462 		sc->rxon.cck_mask  = 0x0f;
5463 		sc->rxon.ofdm_mask = 0x15;
5464 	}
5465 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5466 		htflags |= IWN_RXON_HT_PROTMODE(ic->ic_curhtprotmode);
5467 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan)) {
5468 			switch (ic->ic_curhtprotmode) {
5469 			case IEEE80211_HTINFO_OPMODE_HT20PR:
5470 				htflags |= IWN_RXON_HT_MODEPURE40;
5471 				break;
5472 			default:
5473 				htflags |= IWN_RXON_HT_MODEMIXED;
5474 				break;
5475 			}
5476 		}
5477 		if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
5478 			htflags |= IWN_RXON_HT_HT40MINUS;
5479 	}
5480 	sc->rxon.flags |= htole32(htflags);
5481 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5482 	DPRINTF(sc, IWN_DEBUG_STATE, "rxon chan %d flags %x\n",
5483 	    sc->rxon.chan, sc->rxon.flags);
5484 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5485 	if (error != 0) {
5486 		device_printf(sc->sc_dev,
5487 		    "%s: could not update configuration, error %d\n", __func__,
5488 		    error);
5489 		return error;
5490 	}
5491 
5492 	/* Configuration has changed, set TX power accordingly. */
5493 	if ((error = ops->set_txpower(sc, ni->ni_chan, 1)) != 0) {
5494 		device_printf(sc->sc_dev,
5495 		    "%s: could not set TX power, error %d\n", __func__, error);
5496 		return error;
5497 	}
5498 
5499 	/* Fake a join to initialize the TX rate. */
5500 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5501 	iwn_newassoc(ni, 1);
5502 
5503 	/* Add BSS node. */
5504 	memset(&node, 0, sizeof node);
5505 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5506 	node.id = IWN_ID_BSS;
5507 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
5508 		switch (ni->ni_htcap & IEEE80211_HTCAP_SMPS) {
5509 		case IEEE80211_HTCAP_SMPS_ENA:
5510 			node.htflags |= htole32(IWN_SMPS_MIMO_DIS);
5511 			break;
5512 		case IEEE80211_HTCAP_SMPS_DYNAMIC:
5513 			node.htflags |= htole32(IWN_SMPS_MIMO_PROT);
5514 			break;
5515 		}
5516 		node.htflags |= htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5517 		    IWN_AMDPU_DENSITY(5));	/* 4us */
5518 		if (IEEE80211_IS_CHAN_HT40(ni->ni_chan))
5519 			node.htflags |= htole32(IWN_NODE_HT40);
5520 	}
5521 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: adding BSS node\n", __func__);
5522 	error = ops->add_node(sc, &node, 1);
5523 	if (error != 0) {
5524 		device_printf(sc->sc_dev,
5525 		    "%s: could not add BSS node, error %d\n", __func__, error);
5526 		return error;
5527 	}
5528 	DPRINTF(sc, IWN_DEBUG_STATE, "%s: setting link quality for node %d\n",
5529 	    __func__, node.id);
5530 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5531 		device_printf(sc->sc_dev,
5532 		    "%s: could not setup link quality for node %d, error %d\n",
5533 		    __func__, node.id, error);
5534 		return error;
5535 	}
5536 
5537 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5538 		device_printf(sc->sc_dev,
5539 		    "%s: could not set sensitivity, error %d\n", __func__,
5540 		    error);
5541 		return error;
5542 	}
5543 	/* Start periodic calibration timer. */
5544 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5545 	sc->calib_cnt = 0;
5546 	callout_reset(&sc->calib_to, msecs_to_ticks(500), iwn_calib_timeout,
5547 	    sc);
5548 
5549 	/* Link LED always on while associated. */
5550 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5551 	return 0;
5552 }
5553 
5554 /*
5555  * This function is called by upper layer when an ADDBA request is received
5556  * from another STA and before the ADDBA response is sent.
5557  */
5558 static int
5559 iwn_ampdu_rx_start(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap,
5560     int baparamset, int batimeout, int baseqctl)
5561 {
5562 #define MS(_v, _f)	(((_v) & _f) >> _f##_S)
5563 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5564 	struct iwn_ops *ops = &sc->ops;
5565 	struct iwn_node *wn = (void *)ni;
5566 	struct iwn_node_info node;
5567 	uint16_t ssn;
5568 	uint8_t tid;
5569 	int error;
5570 
5571 	tid = MS(le16toh(baparamset), IEEE80211_BAPS_TID);
5572 	ssn = MS(le16toh(baseqctl), IEEE80211_BASEQ_START);
5573 
5574 	memset(&node, 0, sizeof node);
5575 	node.id = wn->id;
5576 	node.control = IWN_NODE_UPDATE;
5577 	node.flags = IWN_FLAG_SET_ADDBA;
5578 	node.addba_tid = tid;
5579 	node.addba_ssn = htole16(ssn);
5580 	DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
5581 	    wn->id, tid, ssn);
5582 	error = ops->add_node(sc, &node, 1);
5583 	if (error != 0)
5584 		return error;
5585 	return sc->sc_ampdu_rx_start(ni, rap, baparamset, batimeout, baseqctl);
5586 #undef MS
5587 }
5588 
5589 /*
5590  * This function is called by upper layer on teardown of an HT-immediate
5591  * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5592  */
5593 static void
5594 iwn_ampdu_rx_stop(struct ieee80211_node *ni, struct ieee80211_rx_ampdu *rap)
5595 {
5596 	struct ieee80211com *ic = ni->ni_ic;
5597 	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5598 	struct iwn_ops *ops = &sc->ops;
5599 	struct iwn_node *wn = (void *)ni;
5600 	struct iwn_node_info node;
5601 	uint8_t tid;
5602 
5603 	/* XXX: tid as an argument */
5604 	for (tid = 0; tid < WME_NUM_TID; tid++) {
5605 		if (&ni->ni_rx_ampdu[tid] == rap)
5606 			break;
5607 	}
5608 
5609 	memset(&node, 0, sizeof node);
5610 	node.id = wn->id;
5611 	node.control = IWN_NODE_UPDATE;
5612 	node.flags = IWN_FLAG_SET_DELBA;
5613 	node.delba_tid = tid;
5614 	DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
5615 	(void)ops->add_node(sc, &node, 1);
5616 	sc->sc_ampdu_rx_stop(ni, rap);
5617 }
5618 
5619 static int
5620 iwn_addba_request(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5621     int dialogtoken, int baparamset, int batimeout)
5622 {
5623 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5624 	int qid;
5625 
5626 	for (qid = sc->firstaggqueue; qid < sc->ntxqs; qid++) {
5627 		if (sc->qid2tap[qid] == NULL)
5628 			break;
5629 	}
5630 	if (qid == sc->ntxqs) {
5631 		DPRINTF(sc, IWN_DEBUG_XMIT, "%s: not free aggregation queue\n",
5632 		    __func__);
5633 		return 0;
5634 	}
5635 	tap->txa_private = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
5636 	if (tap->txa_private == NULL) {
5637 		device_printf(sc->sc_dev,
5638 		    "%s: failed to alloc TX aggregation structure\n", __func__);
5639 		return 0;
5640 	}
5641 	sc->qid2tap[qid] = tap;
5642 	*(int *)tap->txa_private = qid;
5643 	return sc->sc_addba_request(ni, tap, dialogtoken, baparamset,
5644 	    batimeout);
5645 }
5646 
5647 static int
5648 iwn_addba_response(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap,
5649     int code, int baparamset, int batimeout)
5650 {
5651 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5652 	int qid = *(int *)tap->txa_private;
5653 	uint8_t tid = tap->txa_tid;
5654 	int ret;
5655 
5656 	if (code == IEEE80211_STATUS_SUCCESS) {
5657 		ni->ni_txseqs[tid] = tap->txa_start & 0xfff;
5658 		ret = iwn_ampdu_tx_start(ni->ni_ic, ni, tid);
5659 		if (ret != 1)
5660 			return ret;
5661 	} else {
5662 		sc->qid2tap[qid] = NULL;
5663 		free(tap->txa_private, M_DEVBUF);
5664 		tap->txa_private = NULL;
5665 	}
5666 	return sc->sc_addba_response(ni, tap, code, baparamset, batimeout);
5667 }
5668 
5669 /*
5670  * This function is called by upper layer when an ADDBA response is received
5671  * from another STA.
5672  */
5673 static int
5674 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5675     uint8_t tid)
5676 {
5677 	struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
5678 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5679 	struct iwn_ops *ops = &sc->ops;
5680 	struct iwn_node *wn = (void *)ni;
5681 	struct iwn_node_info node;
5682 	int error, qid;
5683 
5684 	/* Enable TX for the specified RA/TID. */
5685 	wn->disable_tid &= ~(1 << tid);
5686 	memset(&node, 0, sizeof node);
5687 	node.id = wn->id;
5688 	node.control = IWN_NODE_UPDATE;
5689 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5690 	node.disable_tid = htole16(wn->disable_tid);
5691 	error = ops->add_node(sc, &node, 1);
5692 	if (error != 0)
5693 		return 0;
5694 
5695 	if ((error = iwn_nic_lock(sc)) != 0)
5696 		return 0;
5697 	qid = *(int *)tap->txa_private;
5698 	DPRINTF(sc, IWN_DEBUG_XMIT, "%s: ra=%d tid=%d ssn=%d qid=%d\n",
5699 	    __func__, wn->id, tid, tap->txa_start, qid);
5700 	ops->ampdu_tx_start(sc, ni, qid, tid, tap->txa_start & 0xfff);
5701 	iwn_nic_unlock(sc);
5702 
5703 	iwn_set_link_quality(sc, ni);
5704 	return 1;
5705 }
5706 
5707 static void
5708 iwn_ampdu_tx_stop(struct ieee80211_node *ni, struct ieee80211_tx_ampdu *tap)
5709 {
5710 	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
5711 	struct iwn_ops *ops = &sc->ops;
5712 	uint8_t tid = tap->txa_tid;
5713 	int qid;
5714 
5715 	sc->sc_addba_stop(ni, tap);
5716 
5717 	if (tap->txa_private == NULL)
5718 		return;
5719 
5720 	qid = *(int *)tap->txa_private;
5721 	if (sc->txq[qid].queued != 0)
5722 		return;
5723 	if (iwn_nic_lock(sc) != 0)
5724 		return;
5725 	ops->ampdu_tx_stop(sc, qid, tid, tap->txa_start & 0xfff);
5726 	iwn_nic_unlock(sc);
5727 	sc->qid2tap[qid] = NULL;
5728 	free(tap->txa_private, M_DEVBUF);
5729 	tap->txa_private = NULL;
5730 }
5731 
5732 static void
5733 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5734     int qid, uint8_t tid, uint16_t ssn)
5735 {
5736 	struct iwn_node *wn = (void *)ni;
5737 
5738 	/* Stop TX scheduler while we're changing its configuration. */
5739 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5740 	    IWN4965_TXQ_STATUS_CHGACT);
5741 
5742 	/* Assign RA/TID translation to the queue. */
5743 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5744 	    wn->id << 4 | tid);
5745 
5746 	/* Enable chain-building mode for the queue. */
5747 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5748 
5749 	/* Set starting sequence number from the ADDBA request. */
5750 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5751 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5752 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5753 
5754 	/* Set scheduler window size. */
5755 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5756 	    IWN_SCHED_WINSZ);
5757 	/* Set scheduler frame limit. */
5758 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5759 	    IWN_SCHED_LIMIT << 16);
5760 
5761 	/* Enable interrupts for the queue. */
5762 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5763 
5764 	/* Mark the queue as active. */
5765 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5766 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5767 	    iwn_tid2fifo[tid] << 1);
5768 }
5769 
5770 static void
5771 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5772 {
5773 	/* Stop TX scheduler while we're changing its configuration. */
5774 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5775 	    IWN4965_TXQ_STATUS_CHGACT);
5776 
5777 	/* Set starting sequence number from the ADDBA request. */
5778 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5779 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5780 
5781 	/* Disable interrupts for the queue. */
5782 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5783 
5784 	/* Mark the queue as inactive. */
5785 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5786 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5787 }
5788 
5789 static void
5790 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5791     int qid, uint8_t tid, uint16_t ssn)
5792 {
5793 	struct iwn_node *wn = (void *)ni;
5794 
5795 	/* Stop TX scheduler while we're changing its configuration. */
5796 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5797 	    IWN5000_TXQ_STATUS_CHGACT);
5798 
5799 	/* Assign RA/TID translation to the queue. */
5800 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5801 	    wn->id << 4 | tid);
5802 
5803 	/* Enable chain-building mode for the queue. */
5804 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5805 
5806 	/* Enable aggregation for the queue. */
5807 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5808 
5809 	/* Set starting sequence number from the ADDBA request. */
5810 	sc->txq[qid].cur = sc->txq[qid].read = (ssn & 0xff);
5811 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5812 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5813 
5814 	/* Set scheduler window size and frame limit. */
5815 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5816 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5817 
5818 	/* Enable interrupts for the queue. */
5819 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5820 
5821 	/* Mark the queue as active. */
5822 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5823 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5824 }
5825 
5826 static void
5827 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, int qid, uint8_t tid, uint16_t ssn)
5828 {
5829 	/* Stop TX scheduler while we're changing its configuration. */
5830 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5831 	    IWN5000_TXQ_STATUS_CHGACT);
5832 
5833 	/* Disable aggregation for the queue. */
5834 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5835 
5836 	/* Set starting sequence number from the ADDBA request. */
5837 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5838 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5839 
5840 	/* Disable interrupts for the queue. */
5841 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5842 
5843 	/* Mark the queue as inactive. */
5844 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5845 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5846 }
5847 
5848 /*
5849  * Query calibration tables from the initialization firmware.  We do this
5850  * only once at first boot.  Called from a process context.
5851  */
5852 static int
5853 iwn5000_query_calibration(struct iwn_softc *sc)
5854 {
5855 	struct iwn5000_calib_config cmd;
5856 	int error;
5857 
5858 	memset(&cmd, 0, sizeof cmd);
5859 	cmd.ucode.once.enable = 0xffffffff;
5860 	cmd.ucode.once.start  = 0xffffffff;
5861 	cmd.ucode.once.send   = 0xffffffff;
5862 	cmd.ucode.flags       = 0xffffffff;
5863 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
5864 	    __func__);
5865 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5866 	if (error != 0)
5867 		return error;
5868 
5869 	/* Wait at most two seconds for calibration to complete. */
5870 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5871 		error = msleep(sc, &sc->sc_mtx, PCATCH, "iwncal", 2 * hz);
5872 	return error;
5873 }
5874 
5875 /*
5876  * Send calibration results to the runtime firmware.  These results were
5877  * obtained on first boot from the initialization firmware.
5878  */
5879 static int
5880 iwn5000_send_calibration(struct iwn_softc *sc)
5881 {
5882 	int idx, error;
5883 
5884 	for (idx = 0; idx < 5; idx++) {
5885 		if (sc->calibcmd[idx].buf == NULL)
5886 			continue;	/* No results available. */
5887 		DPRINTF(sc, IWN_DEBUG_CALIBRATE,
5888 		    "send calibration result idx=%d len=%d\n", idx,
5889 		    sc->calibcmd[idx].len);
5890 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5891 		    sc->calibcmd[idx].len, 0);
5892 		if (error != 0) {
5893 			device_printf(sc->sc_dev,
5894 			    "%s: could not send calibration result, error %d\n",
5895 			    __func__, error);
5896 			return error;
5897 		}
5898 	}
5899 	return 0;
5900 }
5901 
5902 static int
5903 iwn5000_send_wimax_coex(struct iwn_softc *sc)
5904 {
5905 	struct iwn5000_wimax_coex wimax;
5906 
5907 #ifdef notyet
5908 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5909 		/* Enable WiMAX coexistence for combo adapters. */
5910 		wimax.flags =
5911 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5912 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5913 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5914 		    IWN_WIMAX_COEX_ENABLE;
5915 		memcpy(wimax.events, iwn6050_wimax_events,
5916 		    sizeof iwn6050_wimax_events);
5917 	} else
5918 #endif
5919 	{
5920 		/* Disable WiMAX coexistence. */
5921 		wimax.flags = 0;
5922 		memset(wimax.events, 0, sizeof wimax.events);
5923 	}
5924 	DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
5925 	    __func__);
5926 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5927 }
5928 
5929 static int
5930 iwn5000_crystal_calib(struct iwn_softc *sc)
5931 {
5932 	struct iwn5000_phy_calib_crystal cmd;
5933 
5934 	memset(&cmd, 0, sizeof cmd);
5935 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5936 	cmd.ngroups = 1;
5937 	cmd.isvalid = 1;
5938 	cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5939 	cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5940 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "sending crystal calibration %d, %d\n",
5941 	    cmd.cap_pin[0], cmd.cap_pin[1]);
5942 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5943 }
5944 
5945 static int
5946 iwn5000_temp_offset_calib(struct iwn_softc *sc)
5947 {
5948 	struct iwn5000_phy_calib_temp_offset cmd;
5949 
5950 	memset(&cmd, 0, sizeof cmd);
5951 	cmd.code = IWN5000_PHY_CALIB_TEMP_OFFSET;
5952 	cmd.ngroups = 1;
5953 	cmd.isvalid = 1;
5954 	if (sc->eeprom_temp != 0)
5955 		cmd.offset = htole16(sc->eeprom_temp);
5956 	else
5957 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5958 	DPRINTF(sc, IWN_DEBUG_CALIBRATE, "setting radio sensor offset to %d\n",
5959 	    le16toh(cmd.offset));
5960 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5961 }
5962 
5963 /*
5964  * This function is called after the runtime firmware notifies us of its
5965  * readiness (called in a process context).
5966  */
5967 static int
5968 iwn4965_post_alive(struct iwn_softc *sc)
5969 {
5970 	int error, qid;
5971 
5972 	if ((error = iwn_nic_lock(sc)) != 0)
5973 		return error;
5974 
5975 	/* Clear TX scheduler state in SRAM. */
5976 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5977 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5978 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5979 
5980 	/* Set physical address of TX scheduler rings (1KB aligned). */
5981 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5982 
5983 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5984 
5985 	/* Disable chain mode for all our 16 queues. */
5986 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5987 
5988 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5989 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5990 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5991 
5992 		/* Set scheduler window size. */
5993 		iwn_mem_write(sc, sc->sched_base +
5994 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5995 		/* Set scheduler frame limit. */
5996 		iwn_mem_write(sc, sc->sched_base +
5997 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5998 		    IWN_SCHED_LIMIT << 16);
5999 	}
6000 
6001 	/* Enable interrupts for all our 16 queues. */
6002 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6003 	/* Identify TX FIFO rings (0-7). */
6004 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6005 
6006 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6007 	for (qid = 0; qid < 7; qid++) {
6008 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6009 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6010 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6011 	}
6012 	iwn_nic_unlock(sc);
6013 	return 0;
6014 }
6015 
6016 /*
6017  * This function is called after the initialization or runtime firmware
6018  * notifies us of its readiness (called in a process context).
6019  */
6020 static int
6021 iwn5000_post_alive(struct iwn_softc *sc)
6022 {
6023 	int error, qid;
6024 
6025 	/* Switch to using ICT interrupt mode. */
6026 	iwn5000_ict_reset(sc);
6027 
6028 	if ((error = iwn_nic_lock(sc)) != 0)
6029 		return error;
6030 
6031 	/* Clear TX scheduler state in SRAM. */
6032 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6033 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6034 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6035 
6036 	/* Set physical address of TX scheduler rings (1KB aligned). */
6037 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6038 
6039 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6040 
6041 	/* Enable chain mode for all queues, except command queue. */
6042 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6043 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6044 
6045 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6046 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6047 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6048 
6049 		iwn_mem_write(sc, sc->sched_base +
6050 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6051 		/* Set scheduler window size and frame limit. */
6052 		iwn_mem_write(sc, sc->sched_base +
6053 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6054 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6055 	}
6056 
6057 	/* Enable interrupts for all our 20 queues. */
6058 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6059 	/* Identify TX FIFO rings (0-7). */
6060 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6061 
6062 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6063 	for (qid = 0; qid < 7; qid++) {
6064 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6065 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6066 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6067 	}
6068 	iwn_nic_unlock(sc);
6069 
6070 	/* Configure WiMAX coexistence for combo adapters. */
6071 	error = iwn5000_send_wimax_coex(sc);
6072 	if (error != 0) {
6073 		device_printf(sc->sc_dev,
6074 		    "%s: could not configure WiMAX coexistence, error %d\n",
6075 		    __func__, error);
6076 		return error;
6077 	}
6078 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6079 		/* Perform crystal calibration. */
6080 		error = iwn5000_crystal_calib(sc);
6081 		if (error != 0) {
6082 			device_printf(sc->sc_dev,
6083 			    "%s: crystal calibration failed, error %d\n",
6084 			    __func__, error);
6085 			return error;
6086 		}
6087 	}
6088 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6089 		/* Query calibration from the initialization firmware. */
6090 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6091 			device_printf(sc->sc_dev,
6092 			    "%s: could not query calibration, error %d\n",
6093 			    __func__, error);
6094 			return error;
6095 		}
6096 		/*
6097 		 * We have the calibration results now, reboot with the
6098 		 * runtime firmware (call ourselves recursively!)
6099 		 */
6100 		iwn_hw_stop(sc);
6101 		error = iwn_hw_init(sc);
6102 	} else {
6103 		/* Send calibration results to runtime firmware. */
6104 		error = iwn5000_send_calibration(sc);
6105 	}
6106 	return error;
6107 }
6108 
6109 /*
6110  * The firmware boot code is small and is intended to be copied directly into
6111  * the NIC internal memory (no DMA transfer).
6112  */
6113 static int
6114 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6115 {
6116 	int error, ntries;
6117 
6118 	size /= sizeof (uint32_t);
6119 
6120 	if ((error = iwn_nic_lock(sc)) != 0)
6121 		return error;
6122 
6123 	/* Copy microcode image into NIC memory. */
6124 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6125 	    (const uint32_t *)ucode, size);
6126 
6127 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6128 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6129 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6130 
6131 	/* Start boot load now. */
6132 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6133 
6134 	/* Wait for transfer to complete. */
6135 	for (ntries = 0; ntries < 1000; ntries++) {
6136 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6137 		    IWN_BSM_WR_CTRL_START))
6138 			break;
6139 		DELAY(10);
6140 	}
6141 	if (ntries == 1000) {
6142 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6143 		    __func__);
6144 		iwn_nic_unlock(sc);
6145 		return ETIMEDOUT;
6146 	}
6147 
6148 	/* Enable boot after power up. */
6149 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6150 
6151 	iwn_nic_unlock(sc);
6152 	return 0;
6153 }
6154 
6155 static int
6156 iwn4965_load_firmware(struct iwn_softc *sc)
6157 {
6158 	struct iwn_fw_info *fw = &sc->fw;
6159 	struct iwn_dma_info *dma = &sc->fw_dma;
6160 	int error;
6161 
6162 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6163 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6164 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6165 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6166 	    fw->init.text, fw->init.textsz);
6167 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6168 
6169 	/* Tell adapter where to find initialization sections. */
6170 	if ((error = iwn_nic_lock(sc)) != 0)
6171 		return error;
6172 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6173 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6174 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6175 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6176 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6177 	iwn_nic_unlock(sc);
6178 
6179 	/* Load firmware boot code. */
6180 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6181 	if (error != 0) {
6182 		device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
6183 		    __func__);
6184 		return error;
6185 	}
6186 	/* Now press "execute". */
6187 	IWN_WRITE(sc, IWN_RESET, 0);
6188 
6189 	/* Wait at most one second for first alive notification. */
6190 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6191 		device_printf(sc->sc_dev,
6192 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6193 		    __func__, error);
6194 		return error;
6195 	}
6196 
6197 	/* Retrieve current temperature for initial TX power calibration. */
6198 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6199 	sc->temp = iwn4965_get_temperature(sc);
6200 
6201 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6202 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6203 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6204 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6205 	    fw->main.text, fw->main.textsz);
6206 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6207 
6208 	/* Tell adapter where to find runtime sections. */
6209 	if ((error = iwn_nic_lock(sc)) != 0)
6210 		return error;
6211 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6212 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6213 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6214 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6215 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6216 	    IWN_FW_UPDATED | fw->main.textsz);
6217 	iwn_nic_unlock(sc);
6218 
6219 	return 0;
6220 }
6221 
6222 static int
6223 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6224     const uint8_t *section, int size)
6225 {
6226 	struct iwn_dma_info *dma = &sc->fw_dma;
6227 	int error;
6228 
6229 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6230 	memcpy(dma->vaddr, section, size);
6231 	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
6232 
6233 	if ((error = iwn_nic_lock(sc)) != 0)
6234 		return error;
6235 
6236 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6237 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6238 
6239 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6240 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6241 	    IWN_LOADDR(dma->paddr));
6242 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6243 	    IWN_HIADDR(dma->paddr) << 28 | size);
6244 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6245 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6246 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6247 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6248 
6249 	/* Kick Flow Handler to start DMA transfer. */
6250 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6251 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6252 
6253 	iwn_nic_unlock(sc);
6254 
6255 	/* Wait at most five seconds for FH DMA transfer to complete. */
6256 	return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 5 * hz);
6257 }
6258 
6259 static int
6260 iwn5000_load_firmware(struct iwn_softc *sc)
6261 {
6262 	struct iwn_fw_part *fw;
6263 	int error;
6264 
6265 	/* Load the initialization firmware on first boot only. */
6266 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6267 	    &sc->fw.main : &sc->fw.init;
6268 
6269 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6270 	    fw->text, fw->textsz);
6271 	if (error != 0) {
6272 		device_printf(sc->sc_dev,
6273 		    "%s: could not load firmware %s section, error %d\n",
6274 		    __func__, ".text", error);
6275 		return error;
6276 	}
6277 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6278 	    fw->data, fw->datasz);
6279 	if (error != 0) {
6280 		device_printf(sc->sc_dev,
6281 		    "%s: could not load firmware %s section, error %d\n",
6282 		    __func__, ".data", error);
6283 		return error;
6284 	}
6285 
6286 	/* Now press "execute". */
6287 	IWN_WRITE(sc, IWN_RESET, 0);
6288 	return 0;
6289 }
6290 
6291 /*
6292  * Extract text and data sections from a legacy firmware image.
6293  */
6294 static int
6295 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6296 {
6297 	const uint32_t *ptr;
6298 	size_t hdrlen = 24;
6299 	uint32_t rev;
6300 
6301 	ptr = (const uint32_t *)fw->data;
6302 	rev = le32toh(*ptr++);
6303 
6304 	/* Check firmware API version. */
6305 	if (IWN_FW_API(rev) <= 1) {
6306 		device_printf(sc->sc_dev,
6307 		    "%s: bad firmware, need API version >=2\n", __func__);
6308 		return EINVAL;
6309 	}
6310 	if (IWN_FW_API(rev) >= 3) {
6311 		/* Skip build number (version 2 header). */
6312 		hdrlen += 4;
6313 		ptr++;
6314 	}
6315 	if (fw->size < hdrlen) {
6316 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6317 		    __func__, fw->size);
6318 		return EINVAL;
6319 	}
6320 	fw->main.textsz = le32toh(*ptr++);
6321 	fw->main.datasz = le32toh(*ptr++);
6322 	fw->init.textsz = le32toh(*ptr++);
6323 	fw->init.datasz = le32toh(*ptr++);
6324 	fw->boot.textsz = le32toh(*ptr++);
6325 
6326 	/* Check that all firmware sections fit. */
6327 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6328 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6329 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6330 		    __func__, fw->size);
6331 		return EINVAL;
6332 	}
6333 
6334 	/* Get pointers to firmware sections. */
6335 	fw->main.text = (const uint8_t *)ptr;
6336 	fw->main.data = fw->main.text + fw->main.textsz;
6337 	fw->init.text = fw->main.data + fw->main.datasz;
6338 	fw->init.data = fw->init.text + fw->init.textsz;
6339 	fw->boot.text = fw->init.data + fw->init.datasz;
6340 	return 0;
6341 }
6342 
6343 /*
6344  * Extract text and data sections from a TLV firmware image.
6345  */
6346 static int
6347 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6348     uint16_t alt)
6349 {
6350 	const struct iwn_fw_tlv_hdr *hdr;
6351 	const struct iwn_fw_tlv *tlv;
6352 	const uint8_t *ptr, *end;
6353 	uint64_t altmask;
6354 	uint32_t len, tmp;
6355 
6356 	if (fw->size < sizeof (*hdr)) {
6357 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6358 		    __func__, fw->size);
6359 		return EINVAL;
6360 	}
6361 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6362 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6363 		device_printf(sc->sc_dev, "%s: bad firmware signature 0x%08x\n",
6364 		    __func__, le32toh(hdr->signature));
6365 		return EINVAL;
6366 	}
6367 	DPRINTF(sc, IWN_DEBUG_RESET, "FW: \"%.64s\", build 0x%x\n", hdr->descr,
6368 	    le32toh(hdr->build));
6369 
6370 	/*
6371 	 * Select the closest supported alternative that is less than
6372 	 * or equal to the specified one.
6373 	 */
6374 	altmask = le64toh(hdr->altmask);
6375 	while (alt > 0 && !(altmask & (1ULL << alt)))
6376 		alt--;	/* Downgrade. */
6377 	DPRINTF(sc, IWN_DEBUG_RESET, "using alternative %d\n", alt);
6378 
6379 	ptr = (const uint8_t *)(hdr + 1);
6380 	end = (const uint8_t *)(fw->data + fw->size);
6381 
6382 	/* Parse type-length-value fields. */
6383 	while (ptr + sizeof (*tlv) <= end) {
6384 		tlv = (const struct iwn_fw_tlv *)ptr;
6385 		len = le32toh(tlv->len);
6386 
6387 		ptr += sizeof (*tlv);
6388 		if (ptr + len > end) {
6389 			device_printf(sc->sc_dev,
6390 			    "%s: firmware too short: %zu bytes\n", __func__,
6391 			    fw->size);
6392 			return EINVAL;
6393 		}
6394 		/* Skip other alternatives. */
6395 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6396 			goto next;
6397 
6398 		switch (le16toh(tlv->type)) {
6399 		case IWN_FW_TLV_MAIN_TEXT:
6400 			fw->main.text = ptr;
6401 			fw->main.textsz = len;
6402 			break;
6403 		case IWN_FW_TLV_MAIN_DATA:
6404 			fw->main.data = ptr;
6405 			fw->main.datasz = len;
6406 			break;
6407 		case IWN_FW_TLV_INIT_TEXT:
6408 			fw->init.text = ptr;
6409 			fw->init.textsz = len;
6410 			break;
6411 		case IWN_FW_TLV_INIT_DATA:
6412 			fw->init.data = ptr;
6413 			fw->init.datasz = len;
6414 			break;
6415 		case IWN_FW_TLV_BOOT_TEXT:
6416 			fw->boot.text = ptr;
6417 			fw->boot.textsz = len;
6418 			break;
6419 		case IWN_FW_TLV_ENH_SENS:
6420 			if (!len)
6421 				sc->sc_flags |= IWN_FLAG_ENH_SENS;
6422 			break;
6423 		case IWN_FW_TLV_PHY_CALIB:
6424 			tmp = htole32(*ptr);
6425 			if (tmp < 253) {
6426 				sc->reset_noise_gain = tmp;
6427 				sc->noise_gain = tmp + 1;
6428 			}
6429 			break;
6430 		default:
6431 			DPRINTF(sc, IWN_DEBUG_RESET,
6432 			    "TLV type %d not handled\n", le16toh(tlv->type));
6433 			break;
6434 		}
6435  next:		/* TLV fields are 32-bit aligned. */
6436 		ptr += (len + 3) & ~3;
6437 	}
6438 	return 0;
6439 }
6440 
6441 static int
6442 iwn_read_firmware(struct iwn_softc *sc)
6443 {
6444 	struct iwn_fw_info *fw = &sc->fw;
6445 	int error;
6446 
6447 	IWN_UNLOCK(sc);
6448 
6449 	memset(fw, 0, sizeof (*fw));
6450 
6451 	/* Read firmware image from filesystem. */
6452 	sc->fw_fp = firmware_get(sc->fwname);
6453 	if (sc->fw_fp == NULL) {
6454 		device_printf(sc->sc_dev, "%s: could not read firmware %s\n",
6455 		    __func__, sc->fwname);
6456 		IWN_LOCK(sc);
6457 		return EINVAL;
6458 	}
6459 	IWN_LOCK(sc);
6460 
6461 	fw->size = sc->fw_fp->datasize;
6462 	fw->data = (const uint8_t *)sc->fw_fp->data;
6463 	if (fw->size < sizeof (uint32_t)) {
6464 		device_printf(sc->sc_dev, "%s: firmware too short: %zu bytes\n",
6465 		    __func__, fw->size);
6466 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6467 		sc->fw_fp = NULL;
6468 		return EINVAL;
6469 	}
6470 
6471 	/* Retrieve text and data sections. */
6472 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6473 		error = iwn_read_firmware_leg(sc, fw);
6474 	else
6475 		error = iwn_read_firmware_tlv(sc, fw, 1);
6476 	if (error != 0) {
6477 		device_printf(sc->sc_dev,
6478 		    "%s: could not read firmware sections, error %d\n",
6479 		    __func__, error);
6480 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6481 		sc->fw_fp = NULL;
6482 		return error;
6483 	}
6484 
6485 	/* Make sure text and data sections fit in hardware memory. */
6486 	if (fw->main.textsz > sc->fw_text_maxsz ||
6487 	    fw->main.datasz > sc->fw_data_maxsz ||
6488 	    fw->init.textsz > sc->fw_text_maxsz ||
6489 	    fw->init.datasz > sc->fw_data_maxsz ||
6490 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6491 	    (fw->boot.textsz & 3) != 0) {
6492 		device_printf(sc->sc_dev, "%s: firmware sections too large\n",
6493 		    __func__);
6494 		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6495 		sc->fw_fp = NULL;
6496 		return EINVAL;
6497 	}
6498 
6499 	/* We can proceed with loading the firmware. */
6500 	return 0;
6501 }
6502 
6503 static int
6504 iwn_clock_wait(struct iwn_softc *sc)
6505 {
6506 	int ntries;
6507 
6508 	/* Set "initialization complete" bit. */
6509 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6510 
6511 	/* Wait for clock stabilization. */
6512 	for (ntries = 0; ntries < 2500; ntries++) {
6513 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6514 			return 0;
6515 		DELAY(10);
6516 	}
6517 	device_printf(sc->sc_dev,
6518 	    "%s: timeout waiting for clock stabilization\n", __func__);
6519 	return ETIMEDOUT;
6520 }
6521 
6522 static int
6523 iwn_apm_init(struct iwn_softc *sc)
6524 {
6525 	uint32_t reg;
6526 	int error;
6527 
6528 	/* Disable L0s exit timer (NMI bug workaround). */
6529 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6530 	/* Don't wait for ICH L0s (ICH bug workaround). */
6531 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6532 
6533 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6534 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6535 
6536 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6537 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6538 
6539 	/* Retrieve PCIe Active State Power Management (ASPM). */
6540 	reg = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
6541 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6542 	if (reg & 0x02)	/* L1 Entry enabled. */
6543 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6544 	else
6545 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6546 
6547 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6548 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6549 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6550 
6551 	/* Wait for clock stabilization before accessing prph. */
6552 	if ((error = iwn_clock_wait(sc)) != 0)
6553 		return error;
6554 
6555 	if ((error = iwn_nic_lock(sc)) != 0)
6556 		return error;
6557 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6558 		/* Enable DMA and BSM (Bootstrap State Machine). */
6559 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6560 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6561 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6562 	} else {
6563 		/* Enable DMA. */
6564 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6565 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6566 	}
6567 	DELAY(20);
6568 	/* Disable L1-Active. */
6569 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6570 	iwn_nic_unlock(sc);
6571 
6572 	return 0;
6573 }
6574 
6575 static void
6576 iwn_apm_stop_master(struct iwn_softc *sc)
6577 {
6578 	int ntries;
6579 
6580 	/* Stop busmaster DMA activity. */
6581 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6582 	for (ntries = 0; ntries < 100; ntries++) {
6583 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6584 			return;
6585 		DELAY(10);
6586 	}
6587 	device_printf(sc->sc_dev, "%s: timeout waiting for master\n", __func__);
6588 }
6589 
6590 static void
6591 iwn_apm_stop(struct iwn_softc *sc)
6592 {
6593 	iwn_apm_stop_master(sc);
6594 
6595 	/* Reset the entire device. */
6596 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6597 	DELAY(10);
6598 	/* Clear "initialization complete" bit. */
6599 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6600 }
6601 
6602 static int
6603 iwn4965_nic_config(struct iwn_softc *sc)
6604 {
6605 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6606 		/*
6607 		 * I don't believe this to be correct but this is what the
6608 		 * vendor driver is doing. Probably the bits should not be
6609 		 * shifted in IWN_RFCFG_*.
6610 		 */
6611 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6612 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6613 		    IWN_RFCFG_STEP(sc->rfcfg) |
6614 		    IWN_RFCFG_DASH(sc->rfcfg));
6615 	}
6616 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6617 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6618 	return 0;
6619 }
6620 
6621 static int
6622 iwn5000_nic_config(struct iwn_softc *sc)
6623 {
6624 	uint32_t tmp;
6625 	int error;
6626 
6627 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6628 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6629 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6630 		    IWN_RFCFG_STEP(sc->rfcfg) |
6631 		    IWN_RFCFG_DASH(sc->rfcfg));
6632 	}
6633 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6634 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6635 
6636 	if ((error = iwn_nic_lock(sc)) != 0)
6637 		return error;
6638 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6639 
6640 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6641 		/*
6642 		 * Select first Switching Voltage Regulator (1.32V) to
6643 		 * solve a stability issue related to noisy DC2DC line
6644 		 * in the silicon of 1000 Series.
6645 		 */
6646 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6647 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6648 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6649 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6650 	}
6651 	iwn_nic_unlock(sc);
6652 
6653 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6654 		/* Use internal power amplifier only. */
6655 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6656 	}
6657 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6658 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6659 		/* Indicate that ROM calibration version is >=6. */
6660 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6661 	}
6662 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6663 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6664 	return 0;
6665 }
6666 
6667 /*
6668  * Take NIC ownership over Intel Active Management Technology (AMT).
6669  */
6670 static int
6671 iwn_hw_prepare(struct iwn_softc *sc)
6672 {
6673 	int ntries;
6674 
6675 	/* Check if hardware is ready. */
6676 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6677 	for (ntries = 0; ntries < 5; ntries++) {
6678 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6679 		    IWN_HW_IF_CONFIG_NIC_READY)
6680 			return 0;
6681 		DELAY(10);
6682 	}
6683 
6684 	/* Hardware not ready, force into ready state. */
6685 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6686 	for (ntries = 0; ntries < 15000; ntries++) {
6687 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6688 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6689 			break;
6690 		DELAY(10);
6691 	}
6692 	if (ntries == 15000)
6693 		return ETIMEDOUT;
6694 
6695 	/* Hardware should be ready now. */
6696 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6697 	for (ntries = 0; ntries < 5; ntries++) {
6698 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6699 		    IWN_HW_IF_CONFIG_NIC_READY)
6700 			return 0;
6701 		DELAY(10);
6702 	}
6703 	return ETIMEDOUT;
6704 }
6705 
6706 static int
6707 iwn_hw_init(struct iwn_softc *sc)
6708 {
6709 	struct iwn_ops *ops = &sc->ops;
6710 	int error, chnl, qid;
6711 
6712 	/* Clear pending interrupts. */
6713 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6714 
6715 	if ((error = iwn_apm_init(sc)) != 0) {
6716 		device_printf(sc->sc_dev,
6717 		    "%s: could not power ON adapter, error %d\n", __func__,
6718 		    error);
6719 		return error;
6720 	}
6721 
6722 	/* Select VMAIN power source. */
6723 	if ((error = iwn_nic_lock(sc)) != 0)
6724 		return error;
6725 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6726 	iwn_nic_unlock(sc);
6727 
6728 	/* Perform adapter-specific initialization. */
6729 	if ((error = ops->nic_config(sc)) != 0)
6730 		return error;
6731 
6732 	/* Initialize RX ring. */
6733 	if ((error = iwn_nic_lock(sc)) != 0)
6734 		return error;
6735 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6736 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6737 	/* Set physical address of RX ring (256-byte aligned). */
6738 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6739 	/* Set physical address of RX status (16-byte aligned). */
6740 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6741 	/* Enable RX. */
6742 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6743 	    IWN_FH_RX_CONFIG_ENA           |
6744 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6745 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6746 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6747 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6748 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6749 	iwn_nic_unlock(sc);
6750 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6751 
6752 	if ((error = iwn_nic_lock(sc)) != 0)
6753 		return error;
6754 
6755 	/* Initialize TX scheduler. */
6756 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6757 
6758 	/* Set physical address of "keep warm" page (16-byte aligned). */
6759 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6760 
6761 	/* Initialize TX rings. */
6762 	for (qid = 0; qid < sc->ntxqs; qid++) {
6763 		struct iwn_tx_ring *txq = &sc->txq[qid];
6764 
6765 		/* Set physical address of TX ring (256-byte aligned). */
6766 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6767 		    txq->desc_dma.paddr >> 8);
6768 	}
6769 	iwn_nic_unlock(sc);
6770 
6771 	/* Enable DMA channels. */
6772 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6773 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6774 		    IWN_FH_TX_CONFIG_DMA_ENA |
6775 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6776 	}
6777 
6778 	/* Clear "radio off" and "commands blocked" bits. */
6779 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6780 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6781 
6782 	/* Clear pending interrupts. */
6783 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6784 	/* Enable interrupt coalescing. */
6785 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6786 	/* Enable interrupts. */
6787 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6788 
6789 	/* _Really_ make sure "radio off" bit is cleared! */
6790 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6791 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6792 
6793 	/* Enable shadow registers. */
6794 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6795 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6796 
6797 	if ((error = ops->load_firmware(sc)) != 0) {
6798 		device_printf(sc->sc_dev,
6799 		    "%s: could not load firmware, error %d\n", __func__,
6800 		    error);
6801 		return error;
6802 	}
6803 	/* Wait at most one second for firmware alive notification. */
6804 	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz)) != 0) {
6805 		device_printf(sc->sc_dev,
6806 		    "%s: timeout waiting for adapter to initialize, error %d\n",
6807 		    __func__, error);
6808 		return error;
6809 	}
6810 	/* Do post-firmware initialization. */
6811 	return ops->post_alive(sc);
6812 }
6813 
6814 static void
6815 iwn_hw_stop(struct iwn_softc *sc)
6816 {
6817 	int chnl, qid, ntries;
6818 
6819 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6820 
6821 	/* Disable interrupts. */
6822 	IWN_WRITE(sc, IWN_INT_MASK, 0);
6823 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6824 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6825 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6826 
6827 	/* Make sure we no longer hold the NIC lock. */
6828 	iwn_nic_unlock(sc);
6829 
6830 	/* Stop TX scheduler. */
6831 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6832 
6833 	/* Stop all DMA channels. */
6834 	if (iwn_nic_lock(sc) == 0) {
6835 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6836 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6837 			for (ntries = 0; ntries < 200; ntries++) {
6838 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6839 				    IWN_FH_TX_STATUS_IDLE(chnl))
6840 					break;
6841 				DELAY(10);
6842 			}
6843 		}
6844 		iwn_nic_unlock(sc);
6845 	}
6846 
6847 	/* Stop RX ring. */
6848 	iwn_reset_rx_ring(sc, &sc->rxq);
6849 
6850 	/* Reset all TX rings. */
6851 	for (qid = 0; qid < sc->ntxqs; qid++)
6852 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6853 
6854 	if (iwn_nic_lock(sc) == 0) {
6855 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6856 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6857 		iwn_nic_unlock(sc);
6858 	}
6859 	DELAY(5);
6860 	/* Power OFF adapter. */
6861 	iwn_apm_stop(sc);
6862 }
6863 
6864 static void
6865 iwn_radio_on(void *arg0, int pending)
6866 {
6867 	struct iwn_softc *sc = arg0;
6868 	struct ifnet *ifp = sc->sc_ifp;
6869 	struct ieee80211com *ic = ifp->if_l2com;
6870 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6871 
6872 	if (vap != NULL) {
6873 		iwn_init(sc);
6874 		ieee80211_init(vap);
6875 	}
6876 }
6877 
6878 static void
6879 iwn_radio_off(void *arg0, int pending)
6880 {
6881 	struct iwn_softc *sc = arg0;
6882 	struct ifnet *ifp = sc->sc_ifp;
6883 	struct ieee80211com *ic = ifp->if_l2com;
6884 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
6885 
6886 	iwn_stop(sc);
6887 	if (vap != NULL)
6888 		ieee80211_stop(vap);
6889 
6890 	/* Enable interrupts to get RF toggle notification. */
6891 	IWN_LOCK(sc);
6892 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6893 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6894 	IWN_UNLOCK(sc);
6895 }
6896 
6897 static void
6898 iwn_init_locked(struct iwn_softc *sc)
6899 {
6900 	struct ifnet *ifp = sc->sc_ifp;
6901 	int error;
6902 
6903 	IWN_LOCK_ASSERT(sc);
6904 
6905 	if ((error = iwn_hw_prepare(sc)) != 0) {
6906 		device_printf(sc->sc_dev, "%s: hardware not ready, error %d\n",
6907 		    __func__, error);
6908 		goto fail;
6909 	}
6910 
6911 	/* Initialize interrupt mask to default value. */
6912 	sc->int_mask = IWN_INT_MASK_DEF;
6913 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6914 
6915 	/* Check that the radio is not disabled by hardware switch. */
6916 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6917 		device_printf(sc->sc_dev,
6918 		    "radio is disabled by hardware switch\n");
6919 		/* Enable interrupts to get RF toggle notifications. */
6920 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
6921 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6922 		return;
6923 	}
6924 
6925 	/* Read firmware images from the filesystem. */
6926 	if ((error = iwn_read_firmware(sc)) != 0) {
6927 		device_printf(sc->sc_dev,
6928 		    "%s: could not read firmware, error %d\n", __func__,
6929 		    error);
6930 		goto fail;
6931 	}
6932 
6933 	/* Initialize hardware and upload firmware. */
6934 	error = iwn_hw_init(sc);
6935 	firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
6936 	sc->fw_fp = NULL;
6937 	if (error != 0) {
6938 		device_printf(sc->sc_dev,
6939 		    "%s: could not initialize hardware, error %d\n", __func__,
6940 		    error);
6941 		goto fail;
6942 	}
6943 
6944 	/* Configure adapter now that it is ready. */
6945 	if ((error = iwn_config(sc)) != 0) {
6946 		device_printf(sc->sc_dev,
6947 		    "%s: could not configure device, error %d\n", __func__,
6948 		    error);
6949 		goto fail;
6950 	}
6951 
6952 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
6953 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
6954 
6955 	callout_reset(&sc->watchdog_to, hz, iwn_watchdog, sc);
6956 	return;
6957 
6958 fail:	iwn_stop_locked(sc);
6959 }
6960 
6961 static void
6962 iwn_init(void *arg)
6963 {
6964 	struct iwn_softc *sc = arg;
6965 	struct ifnet *ifp = sc->sc_ifp;
6966 	struct ieee80211com *ic = ifp->if_l2com;
6967 
6968 	IWN_LOCK(sc);
6969 	iwn_init_locked(sc);
6970 	IWN_UNLOCK(sc);
6971 
6972 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
6973 		ieee80211_start_all(ic);
6974 }
6975 
6976 static void
6977 iwn_stop_locked(struct iwn_softc *sc)
6978 {
6979 	struct ifnet *ifp = sc->sc_ifp;
6980 
6981 	IWN_LOCK_ASSERT(sc);
6982 
6983 	sc->sc_tx_timer = 0;
6984 	callout_stop(&sc->watchdog_to);
6985 	callout_stop(&sc->calib_to);
6986 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
6987 
6988 	/* Power OFF hardware. */
6989 	iwn_hw_stop(sc);
6990 }
6991 
6992 static void
6993 iwn_stop(struct iwn_softc *sc)
6994 {
6995 	IWN_LOCK(sc);
6996 	iwn_stop_locked(sc);
6997 	IWN_UNLOCK(sc);
6998 }
6999 
7000 /*
7001  * Callback from net80211 to start a scan.
7002  */
7003 static void
7004 iwn_scan_start(struct ieee80211com *ic)
7005 {
7006 	struct ifnet *ifp = ic->ic_ifp;
7007 	struct iwn_softc *sc = ifp->if_softc;
7008 
7009 	IWN_LOCK(sc);
7010 	/* make the link LED blink while we're scanning */
7011 	iwn_set_led(sc, IWN_LED_LINK, 20, 2);
7012 	IWN_UNLOCK(sc);
7013 }
7014 
7015 /*
7016  * Callback from net80211 to terminate a scan.
7017  */
7018 static void
7019 iwn_scan_end(struct ieee80211com *ic)
7020 {
7021 	struct ifnet *ifp = ic->ic_ifp;
7022 	struct iwn_softc *sc = ifp->if_softc;
7023 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
7024 
7025 	IWN_LOCK(sc);
7026 	if (vap->iv_state == IEEE80211_S_RUN) {
7027 		/* Set link LED to ON status if we are associated */
7028 		iwn_set_led(sc, IWN_LED_LINK, 0, 1);
7029 	}
7030 	IWN_UNLOCK(sc);
7031 }
7032 
7033 /*
7034  * Callback from net80211 to force a channel change.
7035  */
7036 static void
7037 iwn_set_channel(struct ieee80211com *ic)
7038 {
7039 	const struct ieee80211_channel *c = ic->ic_curchan;
7040 	struct ifnet *ifp = ic->ic_ifp;
7041 	struct iwn_softc *sc = ifp->if_softc;
7042 	int error;
7043 
7044 	IWN_LOCK(sc);
7045 	sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
7046 	sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
7047 	sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
7048 	sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
7049 
7050 	/*
7051 	 * Only need to set the channel in Monitor mode. AP scanning and auth
7052 	 * are already taken care of by their respective firmware commands.
7053 	 */
7054 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
7055 		error = iwn_config(sc);
7056 		if (error != 0)
7057 		device_printf(sc->sc_dev,
7058 		    "%s: error %d settting channel\n", __func__, error);
7059 	}
7060 	IWN_UNLOCK(sc);
7061 }
7062 
7063 /*
7064  * Callback from net80211 to start scanning of the current channel.
7065  */
7066 static void
7067 iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
7068 {
7069 	struct ieee80211vap *vap = ss->ss_vap;
7070 	struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
7071 	int error;
7072 
7073 	IWN_LOCK(sc);
7074 	error = iwn_scan(sc);
7075 	IWN_UNLOCK(sc);
7076 	if (error != 0)
7077 		ieee80211_cancel_scan(vap);
7078 }
7079 
7080 /*
7081  * Callback from net80211 to handle the minimum dwell time being met.
7082  * The intent is to terminate the scan but we just let the firmware
7083  * notify us when it's finished as we have no safe way to abort it.
7084  */
7085 static void
7086 iwn_scan_mindwell(struct ieee80211_scan_state *ss)
7087 {
7088 	/* NB: don't try to abort scan; wait for firmware to finish */
7089 }
7090 
7091 static void
7092 iwn_hw_reset(void *arg0, int pending)
7093 {
7094 	struct iwn_softc *sc = arg0;
7095 	struct ifnet *ifp = sc->sc_ifp;
7096 	struct ieee80211com *ic = ifp->if_l2com;
7097 
7098 	iwn_stop(sc);
7099 	iwn_init(sc);
7100 	ieee80211_notify_radio(ic, 1);
7101 }
7102